Deterministic models for traffic jams
NASA Astrophysics Data System (ADS)
Nagel, Kai; Herrmann, Hans J.
1993-10-01
We study several deterministic one-dimensional traffic models. For integer positions and velocities we find the typical high and low density phases separated by a simple transition. If positions and velocities are continuous variables the model shows self-organized critically driven by the slowest car.
Traffic chaotic dynamics modeling and analysis of deterministic network
NASA Astrophysics Data System (ADS)
Wu, Weiqiang; Huang, Ning; Wu, Zhitao
2016-07-01
Network traffic is an important and direct acting factor of network reliability and performance. To understand the behaviors of network traffic, chaotic dynamics models were proposed and helped to analyze nondeterministic network a lot. The previous research thought that the chaotic dynamics behavior was caused by random factors, and the deterministic networks would not exhibit chaotic dynamics behavior because of lacking of random factors. In this paper, we first adopted chaos theory to analyze traffic data collected from a typical deterministic network testbed — avionics full duplex switched Ethernet (AFDX, a typical deterministic network) testbed, and found that the chaotic dynamics behavior also existed in deterministic network. Then in order to explore the chaos generating mechanism, we applied the mean field theory to construct the traffic dynamics equation (TDE) for deterministic network traffic modeling without any network random factors. Through studying the derived TDE, we proposed that chaotic dynamics was one of the nature properties of network traffic, and it also could be looked as the action effect of TDE control parameters. A network simulation was performed and the results verified that the network congestion resulted in the chaotic dynamics for a deterministic network, which was identical with expectation of TDE. Our research will be helpful to analyze the traffic complicated dynamics behavior for deterministic network and contribute to network reliability designing and analysis.
Traffic-light boundary in the deterministic Nagel-Schreckenberg model
NASA Astrophysics Data System (ADS)
Jia, Ning; Ma, Shoufeng
2011-06-01
The characteristics of the deterministic Nagel-Schreckenberg model with traffic-light boundary conditions are investigated and elucidated in a mostly theoretically way. First, precise analytical results of the outflow are obtained for cases in which the duration of the red phase is longer than one step. Then, some results are found and studied for cases in which the red phase equals one step. The main findings include the following. The maximum outflow is “road-length related” if the inflow is saturated; otherwise, if the inbound cars are generated stochastically, multiple theoretical outflow volumes may exist. The findings indicate that although the traffic-light boundary can be implemented in a simple and deterministic manner, the deterministic Nagel-Schreckenberg model with such a boundary has some unique and interesting behaviors.
Classification and unification of the microscopic deterministic traffic models.
Yang, Bo; Monterola, Christopher
2015-10-01
We identify a universal mathematical structure in microscopic deterministic traffic models (with identical drivers), and thus we show that all such existing models in the literature, including both the two-phase and three-phase models, can be understood as special cases of a master model by expansion around a set of well-defined ground states. This allows any two traffic models to be properly compared and identified. The three-phase models are characterized by the vanishing of leading orders of expansion within a certain density range, and as an example the popular intelligent driver model is shown to be equivalent to a generalized optimal velocity (OV) model. We also explore the diverse solutions of the generalized OV model that can be important both for understanding human driving behaviors and algorithms for autonomous driverless vehicles. PMID:26565284
Classification and unification of the microscopic deterministic traffic models
NASA Astrophysics Data System (ADS)
Yang, Bo; Monterola, Christopher
2015-10-01
We identify a universal mathematical structure in microscopic deterministic traffic models (with identical drivers), and thus we show that all such existing models in the literature, including both the two-phase and three-phase models, can be understood as special cases of a master model by expansion around a set of well-defined ground states. This allows any two traffic models to be properly compared and identified. The three-phase models are characterized by the vanishing of leading orders of expansion within a certain density range, and as an example the popular intelligent driver model is shown to be equivalent to a generalized optimal velocity (OV) model. We also explore the diverse solutions of the generalized OV model that can be important both for understanding human driving behaviors and algorithms for autonomous driverless vehicles.
Deterministic generation of remote entanglement with active quantum feedback
Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta
2015-12-10
We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can bemore » modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.« less
Deterministic generation of remote entanglement with active quantum feedback
Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta
2015-12-10
We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.
Deterministic generation of remote entanglement with active quantum feedback
NASA Astrophysics Data System (ADS)
Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta
2015-12-01
We consider the task of deterministically entangling two remote qubits using joint measurement and feedback, but no directly entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Finally, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.
Traffic scenario generation technique for piloted simulation studies
NASA Technical Reports Server (NTRS)
Williams, David H.; Wells, Douglas C.
1985-01-01
Piloted simulation studies of cockpit traffic display concepts require the development of representative traffic scenarios. With the exception of specific aircraft interaction issues, most research questions can be addressed using traffic scenarios consisting of prerecorded aircraft movements merged together to form a desired traffic pattern. Prerecorded traffic scenarios have distinct research advantages, allowing control of traffic encounters with repeatability of scenarios between different test subjects. A technique is described for generation of prerecorded jet transport traffic scenarios suitable for use in piloted simulation studies. Individual flight profiles for the aircraft in the scenario are created interactively with a computer program designed specifically for this purpose. The profiles are then time-correlated and merged into a complete scenario. This technique was used to create traffic scenarios for the Denver, Colorado area with operations centered at Stapleton International Airport. Traffic scenarios for other areas may also be created using this technique, with appropriate modifications made to the navigation fix locations contained in the flight profile generation program.
Deterministic Generation of Arbitrary Photonic States Assisted by Dissipation
NASA Astrophysics Data System (ADS)
González-Tudela, A.; Paulisch, V.; Chang, D. E.; Kimble, H. J.; Cirac, J. I.
2015-10-01
A scheme to utilize atomlike emitters coupled to nanophotonic waveguides is proposed for the generation of many-body entangled states and for the reversible mapping of these states of matter to photonic states of an optical pulse in the waveguide. Our protocol makes use of decoherence-free subspaces (DFSs) for the atomic emitters with coherent evolution within the DFSs enforced by strong dissipative coupling to the waveguide. By switching from subradiant to superradiant states, entangled atomic states are mapped to photonic states with high fidelity. An implementation using ultracold atoms coupled to a photonic crystal waveguide is discussed.
Mesh generation and energy group condensation studies for the jaguar deterministic transport code
Kennedy, R. A.; Watson, A. M.; Iwueke, C. I.; Edwards, E. J.
2012-07-01
The deterministic transport code Jaguar is introduced, and the modeling process for Jaguar is demonstrated using a two-dimensional assembly model of the Hoogenboom-Martin Performance Benchmark Problem. This single assembly model is being used to test and analyze optimal modeling methodologies and techniques for Jaguar. This paper focuses on spatial mesh generation and energy condensation techniques. In this summary, the models and processes are defined as well as thermal flux solution comparisons with the Monte Carlo code MC21. (authors)
NASA Astrophysics Data System (ADS)
Li, Jia; Wu, Pinghui; Chang, Liping
2016-02-01
It is commonly known that the far-zone spectrum of a scattered field can be utilized to measure the scattering potential of the medium. However, properties of evanescent fields scattered from the medium with the dielectric susceptibility being a deterministic function, to the best of our knowledge, have not been concerned so far. Assuming the scattering potential of a spatially deterministic medium suffices the Gaussian profile, integrations are derived for the near-zone evanescent field generated by the scattering of light from the medium. It is noticed that the spectral density of the scattered field decays exponentially as either the propagation distance of scattered waves or the effective radius of the scattering potential (ERSP) increases. These results are applicable to the near-field biomedical imaging where the considered tiny particles and molecules solely scatter evanescent waves in near-zone regions.
All-electrical deterministic single domain wall generation for on-chip applications
Guite, Chinkhanlun; Kerk, I. S.; Sekhar, M. Chandra; Ramu, M.; Goolaup, S.; Lew, W. S.
2014-01-01
Controlling domain wall (DW) generation and dynamics behaviour in ferromagnetic nanowire is critical to the engineering of domain wall-based non-volatile logic and magnetic memory devices. Previous research showed that DW generation suffered from a random or stochastic nature and that makes the realization of DW based device a challenging task. Conventionally, stabilizing a Néel DW requires a long pulsed current and the assistance of an external magnetic field. Here, we demonstrate a method to deterministically produce single DW without having to compromise the pulse duration. No external field is required to stabilize the DW. This is achieved by controlling the stray field magnetostatic interaction between a current-carrying strip line generated DW and the edge of the nanowire. The natural edge-field assisted domain wall generation process was found to be twice as fast as the conventional methods and requires less current density. Such deterministic DW generation method could potentially bring DW device technology, a step closer to on-chip application. PMID:25500734
Transforming the NAS: The Next Generation Air Traffic Control System
NASA Technical Reports Server (NTRS)
Erzberger, Heinz
2004-01-01
The next-generation air traffic control system must be designed to safely and efficiently accommodate the large growth of traffic expected in the near future. It should be sufficiently scalable to contend with the factor of 2 or more increase in demand expected by the year 2020. Analysis has shown that the current method of controlling air traffic cannot be scaled up to provide such levels of capacity. Therefore, to achieve a large increase in capacity while also giving pilots increased freedom to optimize their flight trajectories requires a fundamental change in the way air traffic is controlled. The key to achieving a factor of 2 or more increase in airspace capacity is to automate separation monitoring and control and to use an air-ground data link to send trajectories and clearances directly between ground-based and airborne systems. In addition to increasing capacity and offering greater flexibility in the selection of trajectories, this approach also has the potential to increase safety by reducing controller and pilot errors that occur in routine monitoring and voice communication tasks.
Deterministic generations of quantum state with no more than six qubits
NASA Astrophysics Data System (ADS)
Luo, Ming-Xing; Ma, Song-Ya; Deng, Yun; Wang, Xiaojun
2015-03-01
The ability to prepare arbitrary quantum state is the holy grail of quantum information technology. Previous schemes focus on circuit complexity using implicit decomposition schemes for global evolutions and are difficult in quantum experiments because the generation circuit can be completed for given coefficients each time. One protocol is firstly proposed in this paper in order to deterministically generate arbitrary four-qubit states with any coefficients. In order to complete this scheme with present physical techniques, we present an explicit quantum circuit with unknown coefficients of prepared states using elementary quantum gates. The key of our scheme is constructing the Cartan KAK decomposition of special transformations in and . And then, this protocol is extended to arbitrary five-qubit states and six-qubit states.
NASA Astrophysics Data System (ADS)
Oonishi, Takehito; Konishi, Tsuyoshi; Itoh, Kazuyoshi
2007-09-01
A binary subwavelength structure for multilevel phase modulation can be designed by our previously proposed deterministic design method without iterative optimization method. To use our design technique in various applications of a computer generated hologram (CGH) like an array illuminator, beam-shaping, signal processing, and so on, an image quality of a reconstructed image from a CGH has become much more important. In this paper, we verify the image quality of a reconstructed image from a CGH designed by our method in terms of the modulation transfer function (MTF) and the spatial resolution. Simulation results show that our technique can theoretically achieve a MTF of more than 99% over a wide range and a spatial resolution of less than 9.66μm.
Deterministic generation of many-photon GHZ states using quantum dots in a cavity
NASA Astrophysics Data System (ADS)
Leuenberger, Michael; Erementchouk, Mikhail; Elhalawany, Ahmed
2014-03-01
We propose a novel theoretical scheme based on the off-resonant interaction of N photons with four InAs/GaAs semiconductor quantum dots (QDs) in an GaAs microdisk cavity to create many-photon GHZ states deterministically in the polarization degree of freedom at a wavelength of 1.3 μm with probability p = 1 for N up to 60, without the need of any projective measurement or local unitary operation. Taking advantage of off-resonant interaction, the time evolution of the N-photon state is robust against decoherence due to exciton-phonon and hyperfine interactions. However, decoherence due to leakage of the photons out of the cavity is not negligible and is therefore considered. Remarkably, by taking advantage of a cascaded multi-level Landau-Zener transition, we are able to reduce the GHZ state generation time to below 100 ps for N up to 60, which allows for the creation of GHZ states with N up to 60 in cavities with Q =106 with fidelity above 70% including decoherence due to leakage. Our method paves the way to the miniaturization of many-photon GHZ state sources to the nanoscale regime, with the possibility to integrate them on a computer chip based on semiconductor materials. We acknowledge support from NSF and AFOSR.
Network Traffic Generator for Low-rate Small Network Equipment Software
Lanzisera, Steven
2013-05-28
Application that uses the Python low-level socket interface to pass network traffic between devices on the local side of a NAT router and the WAN side of the NAT router. This application is designed to generate traffic that complies with the Energy Star Small Network Equipment Test Method.
Deterministic generation of many-photon GHZ states using quantum dots in a cavity
NASA Astrophysics Data System (ADS)
Leuenberger, Michael N.; Erementchouk, Mikhail
2014-05-01
Compared to classical light sources, quantum sources based on N00N states consisting of N photons achieve an N-times higher phase sensitivity, giving rise to super-resolution.1, 2, 3 N00N-state creation schemes based on linear optics and projective measurements only have a success probability p that decreases exponentially with N,4, 5, 6 e.g. p = 4.4x10-14 for N = 20.7 Feed-forward improves the scaling but N fluctuates nondeterministically in each attempt.8, 9 Schemes based on parametric down-conversion suffer from low production efficiency and low fidelity.9 A recent scheme based on atoms in a cavity combines deterministic time evolution, local unitary operations, and projective measurements.10 Here we propose a novel scheme based on the off-resonant interaction of N photons with four semiconductor quantum dots (QDs) in a cavity to create GHZ states, also called polarization N00N states, deterministically with p = 1 and fidelity above 90% for N<= 60, without the need of any projective measurement or local unitary operation. Using our measure we obtain maximum N-photon entanglement EN = 1 for arbitrary N. Our method paves the way to the miniaturization of N00N and GHZ-state sources to the nanoscale regime, with the possibility to integrate them on a computer chip based on semiconductor materials.
MMPP Traffic Generator for the Testing of the SCAR 2 Fast Packet Switch
NASA Technical Reports Server (NTRS)
Chren, William A., Jr.
1995-01-01
A prototype MWP Traffic Generator (TG) has been designed for testing of the COMSAT-supplied SCAR II Fast Packet Switch. By generating packets distributed according to a Markov-Modulated Poisson Process (MMPP) model. it allows the assessment of the switch performance under traffic conditions that are more realistic than could be generated using the COMSAT-supplied Traffic Generator Module. The MMPP model is widely believed to model accurately real-world superimposed voice and data communications traffic. The TG was designed to be as much as possible of a "drop-in" replacement for the COMSAT Traffic Generator Module. The latter fit on two Altera EPM7256EGC 192-pin CPLDs and produced traffic for one switch input port. No board changes are necessary because it has been partitioned to use the existing board traces. The TG, consisting of parts "TGDATPROC" and "TGRAMCTL" must merely be reprogrammed into the Altera devices of the same name. However, the 040 controller software must be modified to provide TG initialization data. This data will be given in Section II.
NASA Astrophysics Data System (ADS)
Fernandes, Stenio; Kamienski, Carlos; Sadok, Djamel
2003-08-01
Synthetic self-similar traffic in computer networks simulation is of imperative significance for the capturing and reproducing of actual Internet data traffic behavior. A universally used procedure for generating self-similar traffic is achieved by aggregating On/Off sources where the active (On) and idle (Off) periods exhibit heavy tailed distributions. This work analyzes the balance between accuracy and computational efficiency in generating self-similar traffic and presents important results that can be useful to parameterize existing heavy tailed distributions such as Pareto, Weibull and Lognormal in a simulation analysis. Our results were obtained through the simulation of various scenarios and were evaluated by estimating the Hurst (H) parameter, which measures the self-similarity level, using several methods.
Methodology for Generating Conflict Scenarios by Time Shifting Recorded Traffic Data
NASA Technical Reports Server (NTRS)
Paglione, Mike; Oaks, Robert; Bilimoria, Karl D.
2003-01-01
A methodology is presented for generating conflict scenarios that can be used as test cases to estimate the operational performance of a conflict probe. Recorded air traffic data is time shifted to create traffic scenarios featuring conflicts with characteristic properties similar to those encountered in typical air traffic operations. First, a reference set of conflicts is obtained from trajectories that are computed using birth points and nominal flight plans extracted from recorded traffic data. Distributions are obtained for several primary properties (e.g., encounter angle) that are most likely to affect the performance of a conflict probe. A genetic algorithm is then utilized to determine the values of time shifts for the recorded track data so that the primary properties of conflicts generated by the time shifted data match those of the reference set. This methodology is successfully demonstrated using recorded traffic data for the Memphis Air Route Traffic Control Center; a key result is that the required time shifts are less than 5 min for 99% of the tracks. It is also observed that close matching of the primary properties used in this study additionally provides a good match for some other secondary properties.
Evaporation of traffic-generated nanoparticles during advection from source
NASA Astrophysics Data System (ADS)
Harrison, Roy M.; Jones, Alan M.; Beddows, David C. S.; Dall'Osto, Manuel; Nikolova, Irina
2016-01-01
Earlier work has demonstrated the potential for volatilisation of nanoparticles emitted by road traffic as these are advected downwind from the source of emissions, but there have been few studies and the processes have yet to be elucidated in detail. Using a dataset collected at paired sampling sites located respectively in a street canyon and in a nearby park, an in depth analysis of particle number size distributions has been conducted in order to better understand the size reduction of the semi-volatile nanoparticles. By sorting the size distributions according to wind direction and fitting log normal modes, it can be seen that the mode peaking at around 22 nm at the street canyon site is on average shrinking to 6.2 nm diameter at the park site which indicates a mean shrinkage rate for these particles of 0.13 nm s-1 with temperatures within the range 12-18 °C. The diurnal variation of the shrunken mode in the park reflects the diurnal pattern of particle concentrations at the street canyon site taken as the main source area. An analysis of peak diameter for the smallest mode at the downwind park site shows an inverse relationship to wind speed suggesting that dilution rather than travel time is the main determinant of the particle shrinkage rate. An evaluation of previously collected C10 to C35 n-alkane data from a different urban location shows a good fit to Pankow partitioning theory reflecting the semi-volatility of compounds believed to be representative of the composition of diesel exhaust nanoparticles, hence confirming the feasibility of an evaporative mechanism for particle shrinkage.
Generation of deterministic tsunami hazard maps in the Bay of Cadiz, south-west Spain
NASA Astrophysics Data System (ADS)
Álvarez-Gómez, J. A.; Otero, L.; Olabarrieta, M.; González, M.; Carreño, E.; Baptista, M. A.; Miranda, J. M.; Medina, R.; Lima, V.
2009-04-01
free surface elevation, maximum water depth, maximum current speed, maximum Froude number and maximum impact forces (hydrostatic and dynamic forces). The fault rupture and sea bottom displacement has been computed by means of the Okada equations. As result, a set of more than 100 deterministic thematic maps have been created in a GIS environment incorporating geographical data and high resolution orthorectified satellite images. These thematic maps form an atlas of inundation maps that will be distributed to different government authorities and civil protection and emergency agencies. The authors gratefully acknowledge the financial support provided by the EU under the frame of the European Project TRANSFER (Tsunami Risk And Strategies For the European Region), 6th Framework Programme.
Dual-monitor deterministic hardware for visual stimuli generation in neuroscience experiments.
Gazziro, Mario; Almeida, Lirio
2010-01-01
This article describes the development of a dual-monitor visual stimulus generator that is used in neuroscience experiments with invertebrates such as flies. The experiment consists in the visualization of two fixed images that are displaced horizontally according to the stimulus data. The system was developed using off-the-shelf FPGA kits and it is capable of displaying 640x480 pixels with 256 intensity levels at 200 frames per second (FPS) on each monitor. A Raster plot of the experiment with the superimposed stimuli was generated as the result of this work. A novel architecture was developed, using the same DOT Clock for both monitors, and its implementation generates a perfect synchronism in both devices. PMID:21096378
Yang, W. S.; Lee, C. H.
2008-05-16
Under the fast reactor simulation program launched in April 2007, development of an advanced multigroup cross section generation code was initiated in July 2007, in conjunction with the development of the high-fidelity deterministic neutron transport code UNIC. The general objectives are to simplify the existing multi-step schemes and to improve the resolved and unresolved resonance treatments. Based on the review results of current methods and the fact that they have been applied successfully to fast critical experiment analyses and fast reactor designs for last three decades, the methodologies of the ETOE-2/MC{sup 2}-2/SDX code system were selected as the starting set of methodologies for multigroup cross section generation for fast reactor analysis. As the first step for coupling with the UNIC code and use in a parallel computing environment, the MC{sup 2}-2 code was updated by modernizing the memory structure and replacing old data management package subroutines and functions with FORTRAN 90 based routines. Various modifications were also made in the ETOE-2 and MC{sup 2}-2 codes to process the ENDF/B-VII.0 data properly. Using the updated ETOE-2/MC{sup 2}-2 code system, the ENDF/B-VII.0 data was successfully processed for major heavy and intermediate nuclides employed in sodium-cooled fast reactors. Initial verification tests of the MC{sup 2}-2 libraries generated from ENDF/B-VII.0 data were performed by inter-comparison of twenty-one group infinite dilute total cross sections obtained from MC{sup 2}-2, VIM, and NJOY. For almost all nuclides considered, MC{sup 2}-2 cross sections agreed very well with those from VIM and NJOY. Preliminary validation tests of the ENDF/B-VII.0 libraries of MC{sup 2}-2 were also performed using a set of sixteen fast critical benchmark problems. The deterministic results based on MC{sup 2}-2/TWODANT calculations were in good agreement with MCNP solutions within {approx}0.25% {Delta}{rho}, except a few small LANL fast assemblies
Lehr, D.; Dietrich, K.; Siefke, T.; Kley, E.-B.; Alaee, R.; Filter, R.; Lederer, F.; Rockstuhl, C.; Tünnermann, A.
2014-10-06
A double-patterning process for scalable, efficient, and deterministic nanoring array fabrication is presented. It enables gaps and features below a size of 20 nm. A writing time of 3 min/cm{sup 2} makes this process extremely appealing for scientific and industrial applications. Numerical simulations are in agreement with experimentally measured optical spectra. Therefore, a platform and a design tool for upcoming next generation plasmonic devices like hybrid plasmonic quantum systems are delivered.
Trajectory Assessment and Modification Tools for Next Generation Air Traffic Management Operations
NASA Technical Reports Server (NTRS)
Brasil, Connie; Lee, Paul; Mainini, Matthew; Lee, Homola; Lee, Hwasoo; Prevot, Thomas; Smith, Nancy
2011-01-01
This paper reviews three Next Generation Air Transportation System (NextGen) based high fidelity air traffic control human-in-the-loop (HITL) simulations, with a focus on the expected requirement of enhanced automated trajectory assessment and modification tools to support future air traffic flow management (ATFM) planning positions. The simulations were conducted at the National Aeronautics and Space Administration (NASA) Ames Research Centers Airspace Operations Laboratory (AOL) in 2009 and 2010. The test airspace for all three simulations assumed the mid-term NextGenEn-Route high altitude environment utilizing high altitude sectors from the Kansas City and Memphis Air Route Traffic Control Centers. Trajectory assessment, modification and coordination decision support tools were developed at the AOL in order to perform future ATFM tasks. Overall tool usage results and user acceptability ratings were collected across three areas of NextGen operatoins to evaluate the tools. In addition to the usefulness and usability feedback, feasibility issues, benefits, and future requirements were also addressed. Overall, the tool sets were rated very useful and usable, and many elements of the tools received high scores and were used frequently and successfully. Tool utilization results in all three HITLs showed both user and system benefits including better airspace throughput, reduced controller workload, and highly effective communication protocols in both full Data Comm and mixed-equipage environments.
Fast and optimized methodology to generate road traffic emission inventories and their uncertainties
NASA Astrophysics Data System (ADS)
Blond, N.; Ho, B. Q.; Clappier, A.
2012-04-01
Road traffic emissions are one of the main sources of air pollution in the cities. They are also the main sources of uncertainties in the air quality numerical models used to forecast and define abatement strategies. Until now, the available models for generating road traffic emission always required a big effort, money and time. This inhibits decisions to preserve air quality, especially in developing countries where road traffic emissions are changing very fast. In this research, we developed a new model designed to fast produce road traffic emission inventories. This model, called EMISENS, combines the well-known top-down and bottom-up approaches to force them to be coherent. A Monte Carlo methodology is included for computing emission uncertainties and the uncertainty rate due to each input parameters. This paper presents the EMISENS model and a demonstration of its capabilities through an application over Strasbourg region (Alsace), France. Same input data as collected for Circul'air model (using bottom-up approach) which has been applied for many years to forecast and study air pollution by the Alsatian air quality agency, ASPA, are used to evaluate the impact of several simplifications that a user could operate . These experiments give the possibility to review older methodologies and evaluate EMISENS results when few input data are available to produce emission inventories, as in developing countries and assumptions need to be done. We show that same average fraction of mileage driven with a cold engine can be used for all the cells of the study domain and one emission factor could replace both cold and hot emission factors.
NASA Technical Reports Server (NTRS)
Khambatta, Cyrus F.
2007-01-01
A technique for automated development of scenarios for use in the Multi-Center Traffic Management Advisor (McTMA) software simulations is described. The resulting software is designed and implemented to automate the generation of simulation scenarios with the intent of reducing the time it currently takes using an observational approach. The software program is effective in achieving this goal. The scenarios created for use in the McTMA simulations are based on data taken from data files from the McTMA system, and were manually edited before incorporation into the simulations to ensure accuracy. Despite the software s overall favorable performance, several key software issues are identified. Proposed solutions to these issues are discussed. Future enhancements to the scenario generator software may address the limitations identified in this paper.
The spatial relationship between traffic-generated air pollution and noise in 2 US cities☆
Allen, Ryan W.; Davies, Hugh; Cohen, Martin A.; Mallach, Gary; Kaufman, Joel D.; Adar, Sara D.
2011-01-01
Traffic-generated air pollution and noise have both been linked to cardiovascular morbidity. Since traffic is a shared source, there is potential for correlated exposures that may lead to confounding in epidemiologic studies. As part of the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air), 2-week NO and NO2 concentrations were measured at up to 105 locations, selected primarily to characterize gradients near major roads, in each of 9 US communities. We measured 5-min A-weighted equivalent continuous sound pressure levels (Leq) and ultrafine particle (UFP) counts at a subset of these NO/NO2 monitoring locations in Chicago, IL (N = 69 in December 2006; N = 36 in April 2007) and Riverside County, CA (N = 46 in April 2007). Leq and UFP were measured during non-“rush hour” periods (10:00–16:00) to maximize comparability between measurements. We evaluated roadway proximity exposure surrogates in relation to the measured levels, estimated noise–air pollution correlation coefficients, and evaluated the impact of regional-scale pollution gradients, wind direction, and roadway proximity on the correlations. Five-minute Leq measurements in December 2006 and April 2007 were highly correlated (r = 0.84), and measurements made at different times of day were similar (coefficients of variation: 0.5–13%), indicating that 5-min measurements are representative of long-term Leq. Binary and continuous roadway proximity metrics characterized Leq as well or better than NO or NO2. We found strong regional-scale gradients in NO and NO2, particularly in Chicago, but only weak regional-scale gradients in Leq and UFP. Leq was most consistently correlated with NO, but the correlations were moderate (0.20–0.60). After removing the influence of regional-scale gradients the correlations generally increased (Leq–NO: r = 0.49–0.62), and correlations downwind of major roads (Leq–NO: r = 0.53–0.74) were consistently higher than those upwind (0.35–0.65). There
Studies of uncontrolled air traffic patterns, phase 1
NASA Technical Reports Server (NTRS)
Baxa, E. G., Jr.; Scharf, L. L.; Ruedger, W. H.; Modi, J. A.; Wheelock, S. L.; Davis, C. M.
1975-01-01
The general aviation air traffic flow patterns at uncontrolled airports are investigated and analyzed and traffic pattern concepts are developed to minimize the midair collision hazard in uncontrolled airspace. An analytical approach to evaluate midair collision hazard probability as a function of traffic densities is established which is basically independent of path structure. Two methods of generating space-time interrelationships between terminal area aircraft are presented; one is a deterministic model to generate pseudorandom aircraft tracks, the other is a statistical model in preliminary form. Some hazard measures are presented for selected traffic densities. It is concluded that the probability of encountering a hazard should be minimized independently of any other considerations and that the number of encounters involving visible-avoidable aircraft should be maximized at the expense of encounters in other categories.
NASA Astrophysics Data System (ADS)
Trefan, Gyorgy
1993-01-01
The goal of this thesis is to contribute to the ambitious program of the foundation of developing statistical physics using chaos. We build a deterministic model of Brownian motion and provide a microscopic derivation of the Fokker-Planck equation. Since the Brownian motion of a particle is the result of the competing processes of diffusion and dissipation, we create a model where both diffusion and dissipation originate from the same deterministic mechanism--the deterministic interaction of that particle with its environment. We show that standard diffusion which is the basis of the Fokker-Planck equation rests on the Central Limit Theorem, and, consequently, on the possibility of deriving it from a deterministic process with a quickly decaying correlation function. The sensitive dependence on initial conditions, one of the defining properties of chaos insures this rapid decay. We carefully address the problem of deriving dissipation from the interaction of a particle with a fully deterministic nonlinear bath, that we term the booster. We show that the solution of this problem essentially rests on the linear response of a booster to an external perturbation. This raises a long-standing problem concerned with Kubo's Linear Response Theory and the strong criticism against it by van Kampen. Kubo's theory is based on a perturbation treatment of the Liouville equation, which, in turn, is expected to be totally equivalent to a first-order perturbation treatment of single trajectories. Since the boosters are chaotic, and chaos is essential to generate diffusion, the single trajectories are highly unstable and do not respond linearly to weak external perturbation. We adopt chaotic maps as boosters of a Brownian particle, and therefore address the problem of the response of a chaotic booster to an external perturbation. We notice that a fully chaotic map is characterized by an invariant measure which is a continuous function of the control parameters of the map
Williams, K.A.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.
1987-06-01
The total busbar electric generating costs were estimated for locations in ten regions of the United States for base-load nuclear and coal-fired power plants with a startup date of January 2000. For the Midwest region a complete data set that specifies each parameter used to obtain the comparative results is supplied. When based on the reference set of input variables, the comparison of power generation costs is found to favor nuclear in most regions of the country. Nuclear power is most favored in the northeast and western regions where coal must be transported over long distances; however, coal-fired generation is most competitive in the north central region where large reserves of cheaply mineable coal exist. In several regions small changes in the reference variables could cause either option to be preferred. The reference data set reflects the better of recent electric utility construction cost experience (BE) for nuclear plants. This study assumes as its reference case a stable regulatory environment and improved planning and construction practices, resulting in nuclear plants typically built at the present BE costs. Today's BE nuclear-plant capital investment cost model is then being used as a surrogate for projected costs for the next generation of light-water reactor plants. An alternative analysis based on today's median experience (ME) nuclear-plant construction cost experience is also included. In this case, coal is favored in all ten regions, implying that typical nuclear capital investment costs must improve for nuclear to be competitive.
NASA Astrophysics Data System (ADS)
Aktas, Ismet; King, Thomas; Mengi, Cem
Communication networks require a deep understanding of the source of generated traffic, i.e., the application. A multitude number of applications exist that generate different types of traffic, for example web, peer-to-peer, voice, and video traffic. Within the scope of performance analysis of protocols for communication networks, modeling and generating of such traffic is essential to achieve accurate and credible results. This requires that the most relevant aspects are captured by analyzing the traffic and subsequently properly represented in the application model.
NASA Astrophysics Data System (ADS)
Hazelhoff, Lykele; Creusen, Ivo M.; Woudsma, Thomas; de With, Peter H. N.
2015-11-01
Combined databases of road markings and traffic signs provide a complete and full description of the present traffic legislation and instructions. Such databases contribute to efficient signage maintenance, improve navigation, and benefit autonomous driving vehicles. A system is presented for the automated creation of such combined databases, which additionally investigates the benefit of this combination for automated contextual placement analysis. This analysis involves verification of the co-occurrence of traffic signs and road markings to retrieve a list of potentially incorrectly signaled (and thus potentially unsafe) road situations. This co-occurrence verification is specifically explored for both pedestrian crossings and yield situations. Evaluations on 420 km of road have shown that individual detection of traffic signs and road markings denoting these road situations can be performed with accuracies of 98% and 85%, respectively. Combining both approaches shows that over 95% of the pedestrian crossings and give-way situations can be identified. An exploration toward additional co-occurrence analysis of signs and markings shows that inconsistently signaled situations can successfully be extracted, such that specific safety actions can be directed toward cases lacking signs or markings, while most consistently signaled situations can be omitted from this analysis.
A queuing model for road traffic simulation
Guerrouahane, N.; Aissani, D.; Bouallouche-Medjkoune, L.; Farhi, N.
2015-03-10
We present in this article a stochastic queuing model for the raod traffic. The model is based on the M/G/c/c state dependent queuing model, and is inspired from the deterministic Godunov scheme for the road traffic simulation. We first propose a variant of M/G/c/c state dependent model that works with density-flow fundamental diagrams rather than density-speed relationships. We then extend this model in order to consider upstream traffic demand as well as downstream traffic supply. Finally, we show how to model a whole raod by concatenating raod sections as in the deterministic Godunov scheme.
Deterministic Walks with Choice
Beeler, Katy E.; Berenhaut, Kenneth S.; Cooper, Joshua N.; Hunter, Meagan N.; Barr, Peter S.
2014-01-10
This paper studies deterministic movement over toroidal grids, integrating local information, bounded memory and choice at individual nodes. The research is motivated by recent work on deterministic random walks, and applications in multi-agent systems. Several results regarding passing tokens through toroidal grids are discussed, as well as some open questions.
Deterministic relativistic quantum bit commitment
NASA Astrophysics Data System (ADS)
Adlam, Emily; Kent, Adrian
2015-06-01
We describe new unconditionally secure bit commitment schemes whose security is based on Minkowski causality and the monogamy of quantum entanglement. We first describe an ideal scheme that is purely deterministic, in the sense that neither party needs to generate any secret randomness at any stage. We also describe a variant that allows the committer to proceed deterministically, requires only local randomness generation from the receiver, and allows the commitment to be verified in the neighborhood of the unveiling point. We show that these schemes still offer near-perfect security in the presence of losses and errors, which can be made perfect if the committer uses an extra single random secret bit. We discuss scenarios where these advantages are significant.
Deterministic scale-free networks
NASA Astrophysics Data System (ADS)
Barabási, Albert-László; Ravasz, Erzsébet; Vicsek, Tamás
2001-10-01
Scale-free networks are abundant in nature and society, describing such diverse systems as the world wide web, the web of human sexual contacts, or the chemical network of a cell. All models used to generate a scale-free topology are stochastic, that is they create networks in which the nodes appear to be randomly connected to each other. Here we propose a simple model that generates scale-free networks in a deterministic fashion. We solve exactly the model, showing that the tail of the degree distribution follows a power law.
Appropriate time scales for nonlinear analyses of deterministic jump systems
NASA Astrophysics Data System (ADS)
Suzuki, Tomoya
2011-06-01
In the real world, there are many phenomena that are derived from deterministic systems but which fluctuate with nonuniform time intervals. This paper discusses the appropriate time scales that can be applied to such systems to analyze their properties. The financial markets are an example of such systems wherein price movements fluctuate with nonuniform time intervals. However, it is common to apply uniform time scales such as 1-min data and 1-h data to study price movements. This paper examines the validity of such time scales by using surrogate data tests to ascertain whether the deterministic properties of the original system can be identified from uniform sampled data. The results show that uniform time samplings are often inappropriate for nonlinear analyses. However, for other systems such as neural spikes and Internet traffic packets, which produce similar outputs, uniform time samplings are quite effective in extracting the system properties. Nevertheless, uniform samplings often generate overlapping data, which can cause false rejections of surrogate data tests.
Basic model for traffic interweave
NASA Astrophysics Data System (ADS)
Huang, Ding-wei
2015-09-01
We propose a three-parameter traffic model. The system consists of a loop with two junctions. The three parameters control the inflow, the outflow (from the junctions,) and the interweave (in the loop.) The dynamics is deterministic. The boundary conditions are stochastic. We present preliminary results for a complete phase diagram and all possible phase transitions. We observe four distinct traffic phases: free flow, congestion, bottleneck, and gridlock. The proposed model is able to present economically a clear perspective to these four different phases. Free flow and congestion are caused by the traffic conditions in the junctions. Both bottleneck and gridlock are caused by the traffic interweave in the loop. Instead of directly related to conventional congestion, gridlock can be taken as an extreme limit of bottleneck. This model can be useful to clarify the characteristics of traffic phases. This model can also be extended for practical applications.
NASA Technical Reports Server (NTRS)
Roske-Hofstrand, Renate J.
1990-01-01
The man-machine interface and its influence on the characteristics of computer displays in automated air traffic is discussed. The graphical presentation of spatial relationships and the problems it poses for air traffic control, and the solution of such problems are addressed. Psychological factors involved in the man-machine interface are stressed.
Deterministic hierarchical networks
NASA Astrophysics Data System (ADS)
Barrière, L.; Comellas, F.; Dalfó, C.; Fiol, M. A.
2016-06-01
It has been shown that many networks associated with complex systems are small-world (they have both a large local clustering coefficient and a small diameter) and also scale-free (the degrees are distributed according to a power law). Moreover, these networks are very often hierarchical, as they describe the modularity of the systems that are modeled. Most of the studies for complex networks are based on stochastic methods. However, a deterministic method, with an exact determination of the main relevant parameters of the networks, has proven useful. Indeed, this approach complements and enhances the probabilistic and simulation techniques and, therefore, it provides a better understanding of the modeled systems. In this paper we find the radius, diameter, clustering coefficient and degree distribution of a generic family of deterministic hierarchical small-world scale-free networks that has been considered for modeling real-life complex systems.
Near real-time traffic routing
NASA Technical Reports Server (NTRS)
Yang, Chaowei (Inventor); Cao, Ying (Inventor); Xie, Jibo (Inventor); Zhou, Bin (Inventor)
2012-01-01
A near real-time physical transportation network routing system comprising: a traffic simulation computing grid and a dynamic traffic routing service computing grid. The traffic simulator produces traffic network travel time predictions for a physical transportation network using a traffic simulation model and common input data. The physical transportation network is divided into a multiple sections. Each section has a primary zone and a buffer zone. The traffic simulation computing grid includes multiple of traffic simulation computing nodes. The common input data includes static network characteristics, an origin-destination data table, dynamic traffic information data and historical traffic data. The dynamic traffic routing service computing grid includes multiple dynamic traffic routing computing nodes and generates traffic route(s) using the traffic network travel time predictions.
Prediction of interior noise in buildings generated by underground rail traffic
NASA Astrophysics Data System (ADS)
Nagy, A. B.; Fiala, P.; Márki, F.; Augusztinovicz, F.; Degrande, G.; Jacobs, S.; Brassenx, D.
2006-06-01
The prediction of sound field in cavities surrounded by vibrating walls is a simple task nowadays, provided that the velocity distribution along the walls is known in sufficient detail. This information can be obtained from a structural finite element (FE) calculation of the building and the results can be fed directly into a conventional boundary element (BE) analysis. Though methodically simple, it is not an attractive way of prediction from the practical point of view: the size of the matrices needed for BE calculation is too large, thus their inversion is very cumbersome and computationally intensive. The paper introduces a modified numerical calculation method appropriate for practical calculations without the need to construct and invert large matrices. The suggested method is based on the Rayleigh radiation integral and some standard direct (collocational) BE techniques, where the necessary input data are generated from measured or calculated velocity values at just a few points. The technique has been compared and validated on the basis of an extensive measurement series, performed in a reinforced concrete frame building close to a tunnel of line RER B of the underground railway network in Paris.
Deterministic Bilinear System Identification
NASA Astrophysics Data System (ADS)
Lee, Cheh-Han; Juang, Jer-Nan
2013-12-01
A unified identification method is proposed for system realization of a deterministic continuous-time/discrete-time bilinear models from input and output measurement data. A generalized Hankel matrix is formed with the output measurements obtained by applying a set of repeated input sequences to a bilinear system. A computational procedure is developed to extract a time varying discrete-time state-space model from the generalized Hankel matrix. The bilinear system models are realized by transforming the identified time varying discrete-time model to the bilinear models. Numerical simulations are given to show the effectiveness of the proposed identification method.
Chengjiang Mao
1996-12-31
In typical AI systems, we employ so-called non-deterministic reasoning (NDR), which resorts to some systematic search with backtracking in the search spaces defined by knowledge bases (KBs). An eminent property of NDR is that it facilitates programming, especially programming for those difficult AI problems such as natural language processing for which it is difficult to find algorithms to tell computers what to do at every step. However, poor efficiency of NDR is still an open problem. Our work aims at overcoming this efficiency problem.
The Traffic Management Advisor
NASA Technical Reports Server (NTRS)
Nedell, William; Erzberger, Heinz; Neuman, Frank
1990-01-01
The traffic management advisor (TMA) is comprised of algorithms, a graphical interface, and interactive tools for controlling the flow of air traffic into the terminal area. The primary algorithm incorporated in it is a real-time scheduler which generates efficient landing sequences and landing times for arrivals within about 200 n.m. from touchdown. A unique feature of the TMA is its graphical interface that allows the traffic manager to modify the computer-generated schedules for specific aircraft while allowing the automatic scheduler to continue generating schedules for all other aircraft. The graphical interface also provides convenient methods for monitoring the traffic flow and changing scheduling parameters during real-time operation.
The Deterministic Information Bottleneck
NASA Astrophysics Data System (ADS)
Strouse, D. J.; Schwab, David
2015-03-01
A fundamental and ubiquitous task that all organisms face is prediction of the future based on past sensory experience. Since an individual's memory resources are limited and costly, however, there is a tradeoff between memory cost and predictive payoff. The information bottleneck (IB) method (Tishby, Pereira, & Bialek 2000) formulates this tradeoff as a mathematical optimization problem using an information theoretic cost function. IB encourages storing as few bits of past sensory input as possible while selectively preserving the bits that are most predictive of the future. Here we introduce an alternative formulation of the IB method, which we call the deterministic information bottleneck (DIB). First, we argue for an alternative cost function, which better represents the biologically-motivated goal of minimizing required memory resources. Then, we show that this seemingly minor change has the dramatic effect of converting the optimal memory encoder from stochastic to deterministic. Next, we propose an iterative algorithm for solving the DIB problem. Additionally, we compare the IB and DIB methods on a variety of synthetic datasets, and examine the performance of retinal ganglion cell populations relative to the optimal encoding strategy for each problem.
Visualization of Traffic Accidents
NASA Technical Reports Server (NTRS)
Wang, Jie; Shen, Yuzhong; Khattak, Asad
2010-01-01
Traffic accidents have tremendous impact on society. Annually approximately 6.4 million vehicle accidents are reported by police in the US and nearly half of them result in catastrophic injuries. Visualizations of traffic accidents using geographic information systems (GIS) greatly facilitate handling and analysis of traffic accidents in many aspects. Environmental Systems Research Institute (ESRI), Inc. is the world leader in GIS research and development. ArcGIS, a software package developed by ESRI, has the capabilities to display events associated with a road network, such as accident locations, and pavement quality. But when event locations related to a road network are processed, the existing algorithm used by ArcGIS does not utilize all the information related to the routes of the road network and produces erroneous visualization results of event locations. This software bug causes serious problems for applications in which accurate location information is critical for emergency responses, such as traffic accidents. This paper aims to address this problem and proposes an improved method that utilizes all relevant information of traffic accidents, namely, route number, direction, and mile post, and extracts correct event locations for accurate traffic accident visualization and analysis. The proposed method generates a new shape file for traffic accidents and displays them on top of the existing road network in ArcGIS. Visualization of traffic accidents along Hampton Roads Bridge Tunnel is included to demonstrate the effectiveness of the proposed method.
Semiautomated Management Of Arriving Air Traffic
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; Nedell, William
1992-01-01
System of computers, graphical workstations, and computer programs developed for semiautomated management of approach and arrival of numerous aircraft at airport. System comprises three subsystems: traffic-management advisor, used for controlling traffic into terminal area; descent advisor generates information integrated into plan-view display of traffic on monitor; and final-approach-spacing tool used to merge traffic converging on final approach path while making sure aircraft are properly spaced. Not intended to restrict decisions of air-traffic controllers.
NASA Astrophysics Data System (ADS)
Merkisz, Jerzy; Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Wojciechowski, Krzysztof T.
2015-06-01
We present an analysis of thermal energy recovery through a proprietary thermoelectric generator (TEG) in an actual vehicle driving cycle reproduced on a dynamic engine test bed. The tests were performed on a 1.3-L 66-kW diesel engine. The TEG was fitted in the vehicle exhaust system. In order to assess the thermal energy losses in the exhaust system, advanced portable emission measurement system research tools were used, such as Semtech DS by Sensors. Aside from the exhaust emissions, the said analyzer measures the exhaust mass flow and exhaust temperature, vehicle driving parameters and reads and records the engine parameters. The difficulty related to the energy recovery measurements under actual traffic conditions, particularly when passenger vehicles and TEGs are used, spurred the authors to develop a proprietary method of transposing the actual driving cycle as a function V = f( t) onto the engine test bed, opn which the driving profile, previously recorded in the city traffic, was reproduced. The length of the cycle was 12.6 km. Along with the motion parameters, the authors reproduced the parameters of the vehicle and its transmission. The adopted methodology enabled high repeatability of the research trials while still ensuring engine dynamic states occurring in the city traffic.
Traffic jam induced by a crosscut road in a traffic-flow model
NASA Astrophysics Data System (ADS)
Nagatani, Takashi; Seno, Tadachika
1994-06-01
A deterministic cellular automaton model is presented to simulate the traffic jam induced by a crosscut road in a two-dimensional traffic flow. The effect of a crosscut road on the traffic flow is investigated by the use of a computer simulation. The traffic jam appears when a shock (discontinuous interface of different car densities) is formed. The condition for shock formation is derived for car densities p y and p x of the crosscut road and its crossing streets. The phase diagram and the dependence of the traffic flow on the car densities are shown. Also, we study the shock structure and the scaling of its width. The width Δ w of the shock scales with the system size L as Δ w ≈ L{1}/{2}. We present a self-consistent mean-field theory for the traffic flow.
Are earthquakes deterministic or chaotic?
NASA Astrophysics Data System (ADS)
Rundle, John B.; Julian, Bruce R.; Turcotte, Donald L.
During the last decade, physicists and applied mathematicians have made substantial headway in understanding the dynamics of complex nonlinear systems. Progress has been possible due to the development of several new tools, including the renormalization group approach, phase portraits, and scaling methods (fractals). At the same time, mathematical geophysicists interested in earthquakes have begun to utilize these same concepts to generate models of faults and fractures.In order to bring these scientific communities together, it was decided to convene the workshop, Physics of Earthquake Faults: Deterministic or Chaotic?, held February 12-15, at the Asilomar conference center near Monterey, Calif. Thirty-six Earth scientists met with 15 physicists and applied mathematicians to discuss how recent advances in nonlinear systems might be applied to better understand earthquakes. Funding was provided by the Geodynamics Branch of the National Aeronautics and Space Administration, the National Science Foundation, and the Office of Basic Energy Sciences of the U.S. Department of Energy. Organizational and logistical support were provided by the U.S. Geological Survey.
Deterministic methods in radiation transport
Rice, A.F.; Roussin, R.W.
1992-06-01
The Seminar on Deterministic Methods in Radiation Transport was held February 4--5, 1992, in Oak Ridge, Tennessee. Eleven presentations were made and the full papers are published in this report, along with three that were submitted but not given orally. These papers represent a good overview of the state of the art in the deterministic solution of radiation transport problems for a variety of applications of current interest to the Radiation Shielding Information Center user community.
Analyzing freeway traffic under congestion: Traffic dynamics approach
Nam, D.H.; Drew, D.R.
1998-05-01
This paper presents an analysis of freeway traffic flows under congestion based on the principle of traffic dynamics, using the example of recurring congestion. Queuing and discharging mechanisms are analyzed using the fundamental concept of conservation of vehicles. These analysis results are applied for reviewing the two conventional macroscopic analysis tools, deterministic queuing analysis and shock-wave analysis. Comparative study results have demonstrated that (1) the two methods are fundamentally different from the traffic modeling point of view; (2) deterministic queuing analysis always underestimates the overall magnitude of delays compared to shock-wave analysis; and (3) the area between the demand and the capacity curves in a queuing diagram is analytically equivalent to total vehicle-hours of travel in congestion as opposed to the widely accepted total vehicle-hours of delay. The study results imply that the guidelines of the 1994 Highway Capacity Manual may result in the underestimation of congestion-related statistics. For the purposes of illustration and verification, a numerical example problem is provided.
NASA Technical Reports Server (NTRS)
1992-01-01
Mestech's X-15 "Eye in the Sky," a traffic monitoring system, incorporates NASA imaging and robotic vision technology. A camera or "sensor box" is mounted in a housing. The sensor detects vehicles approaching an intersection and sends the information to a computer, which controls the traffic light according to the traffic rate. Jet Propulsion Laboratory technical support packages aided in the company's development of the system. The X-15's "smart highway" can also be used to count vehicles on a highway and compute the number in each lane and their speeds, important information for freeway control engineers. Additional applications are in airport and railroad operations. The system is intended to replace loop-type traffic detectors.
NASA Astrophysics Data System (ADS)
Treiber, Martin; Kesting, Arne; Helbing, Dirk
2006-07-01
We investigate the adaptation of the time headways in car-following models as a function of the local velocity variance, which is a measure of the inhomogeneity of traffic flow. We apply this mechanism to several car-following models and simulate traffic breakdowns in open systems with an on-ramp as bottleneck and in a closed ring road. Single-vehicle data and one-minute aggregated data generated by several virtual detectors show a semiquantitative agreement with microscopic and flow-density data from the Dutch freeway A9. This includes the observed distributions of the net time headways for free and congested traffic, the velocity variance as a function of density, and the fundamental diagram. The modal value of the time headway distribution is shifted by a factor of about 2 under congested conditions. Macroscopically, this corresponds to the capacity drop at the transition from free to congested traffic. The simulated fundamental diagram shows free, synchronized, and jammed traffic, and a wide scattering in the congested traffic regime. We explain this by a self-organized variance-driven process that leads to the spontaneous formation and decay of long-lived platoons even for a deterministic dynamics on a single lane.
Deterministic multidimensional nonuniform gap sampling
NASA Astrophysics Data System (ADS)
Worley, Bradley; Powers, Robert
2015-12-01
Born from empirical observations in nonuniformly sampled multidimensional NMR data relating to gaps between sampled points, the Poisson-gap sampling method has enjoyed widespread use in biomolecular NMR. While the majority of nonuniform sampling schemes are fully randomly drawn from probability densities that vary over a Nyquist grid, the Poisson-gap scheme employs constrained random deviates to minimize the gaps between sampled grid points. We describe a deterministic gap sampling method, based on the average behavior of Poisson-gap sampling, which performs comparably to its random counterpart with the additional benefit of completely deterministic behavior. We also introduce a general algorithm for multidimensional nonuniform sampling based on a gap equation, and apply it to yield a deterministic sampling scheme that combines burst-mode sampling features with those of Poisson-gap schemes. Finally, we derive a relationship between stochastic gap equations and the expectation value of their sampling probability densities.
State Traffic Data: Traffic Safety Facts, 2001.
ERIC Educational Resources Information Center
National Center for Statistics and Analysis (NHTSA), Washington, DC.
This brief provides statistical information on U.S. traffic accidents delineated by state. A map details the 2001 traffic fatalities by state and the percent change from 2000. Data tables include: (1) traffic fatalities and fatality rates, 2001; (2) traffic fatalities and percent change, 1975-2001; (3) alcohol involvement in fatal traffic crashes,…
Causse, Mickaël; Alonso, Roland; Vachon, François; Parise, Robert; Orliaguet, Jean-Pierre; Tremblay, Sébastien; Terrier, Patrice
2014-01-01
This study aims to determine whether indirect touch device can be used to interact with graphical objects displayed on another screen in an air traffic control (ATC) context. The introduction of such a device likely requires an adaptation of the sensory-motor system. The operator has to simultaneously perform movements on the horizontal plane while assessing them on the vertical plane. Thirty-six right-handed participants performed movement training with either constant or variable practice and with or without visual feedback of the displacement of their actions. Participants then performed a test phase without visual feedback. Performance improved in both practice conditions, but accuracy was higher with visual feedback. During the test phase, movement time was longer for those who had practiced with feedback, suggesting an element of dependency. However, this 'cost' of feedback did not extend to movement accuracy. Finally, participants who had received variable training performed better in the test phase, but accuracy was still unsatisfactory. We conclude that continuous visual feedback on the stylus position is necessary if tablets are to be introduced in ATC. PMID:25050968
Analysis of FDDI synchronous traffic delays
NASA Technical Reports Server (NTRS)
Johnson, Marjory J.
1988-01-01
The Fiber Distributed Data Interface (FDDI) high-speed token-ring protocol provides support for two classes of service: synchronous, to support applications which require deterministic access to the channel, and asynchronous, to support applications which do not have such stringent response-time requirements. The purpose of this paper is to determine how to set ring parameters to support synchronous traffic most efficiently. Both theoretical results and results obtained from a simulation study are presented.
NASA Technical Reports Server (NTRS)
1995-01-01
Intelligent Vision Systems, Inc. (InVision) needed image acquisition technology that was reliable in bad weather for its TDS-200 Traffic Detection System. InVision researchers used information from NASA Tech Briefs and assistance from Johnson Space Center to finish the system. The NASA technology used was developed for Earth-observing imaging satellites: charge coupled devices, in which silicon chips convert light directly into electronic or digital images. The TDS-200 consists of sensors mounted above traffic on poles or span wires, enabling two sensors to view an intersection; a "swing and sway" feature to compensate for movement of the sensors; a combination of electronic shutter and gain control; and sensor output to an image digital signal processor, still frame video and optionally live video.
Analysis of FBC deterministic chaos
Daw, C.S.
1996-06-01
It has recently been discovered that the performance of a number of fossil energy conversion devices such as fluidized beds, pulsed combustors, steady combustors, and internal combustion engines are affected by deterministic chaos. It is now recognized that understanding and controlling the chaotic elements of these devices can lead to significantly improved energy efficiency and reduced emissions. Application of these techniques to key fossil energy processes are expected to provide important competitive advantages for U.S. industry.
ERIC Educational Resources Information Center
Schulz, Laura E.; Hooppell, Catherine; Jenkins, Adrianna C.
2008-01-01
Three studies look at whether the assumption of causal determinism (the assumption that all else being equal, causes generate effects deterministically) affects children's imitation of modeled actions. These studies show even when the frequency of an effect is matched, both preschoolers (N = 60; M = 56 months) and toddlers (N = 48; M = 18 months)…
Techniques to quantify the sensitivity of deterministic model uncertainties
Ishigami, T. ); Cazzoli, E. . Nuclear Energy Dept.); Khatib-Rahbar ); Unwin, S.D. )
1989-04-01
Several existing methods for the assessment of the sensitivity of output uncertainty distributions generated by deterministic computer models to the uncertainty distributions assigned to the input parameters are reviewed and new techniques are proposed. Merits and limitations of the various techniques are examined by detailed application to the suppression pool aerosol removal code (SPARC).
Moment equations for a piecewise deterministic PDE
NASA Astrophysics Data System (ADS)
Bressloff, Paul C.; Lawley, Sean D.
2015-03-01
We analyze a piecewise deterministic PDE consisting of the diffusion equation on a finite interval Ω with randomly switching boundary conditions and diffusion coefficient. We proceed by spatially discretizing the diffusion equation using finite differences and constructing the Chapman-Kolmogorov (CK) equation for the resulting finite-dimensional stochastic hybrid system. We show how the CK equation can be used to generate a hierarchy of equations for the r-th moments of the stochastic field, which take the form of r-dimensional parabolic PDEs on {{Ω }r} that couple to lower order moments at the boundaries. We explicitly solve the first and second order moment equations (r = 2). We then describe how the r-th moment of the stochastic PDE can be interpreted in terms of the splitting probability that r non-interacting Brownian particles all exit at the same boundary; although the particles are non-interacting, statistical correlations arise due to the fact that they all move in the same randomly switching environment. Hence the stochastic diffusion equation describes two levels of randomness: Brownian motion at the individual particle level and a randomly switching environment. Finally, in the limit of fast switching, we use a quasi-steady state approximation to reduce the piecewise deterministic PDE to an SPDE with multiplicative Gaussian noise in the bulk and a stochastically-driven boundary.
Analysis of Malicious Traffic in Modbus/TCP Communications
NASA Astrophysics Data System (ADS)
Kobayashi, Tiago H.; Batista, Aguinaldo B.; Medeiros, João Paulo S.; Filho, José Macedo F.; Brito, Agostinho M.; Pires, Paulo S. Motta
This paper presents the results of our analysis about the influence of Information Technology (IT) malicious traffic on an IP-based automation environment. We utilized a traffic generator, called MACE (Malicious trAffic Composition Environment), to inject malicious traffic in a Modbus/TCP communication system and a sniffer to capture and analyze network traffic. The realized tests show that malicious traffic represents a serious risk to critical information infrastructures. We show that this kind of traffic can increase latency of Modbus/TCP communication and that, in some cases, can put Modbus/TCP devices out of communication.
Survivability of Deterministic Dynamical Systems
Hellmann, Frank; Schultz, Paul; Grabow, Carsten; Heitzig, Jobst; Kurths, Jürgen
2016-01-01
The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures. PMID:27405955
Survivability of Deterministic Dynamical Systems
NASA Astrophysics Data System (ADS)
Hellmann, Frank; Schultz, Paul; Grabow, Carsten; Heitzig, Jobst; Kurths, Jürgen
2016-07-01
The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures.
Survivability of Deterministic Dynamical Systems.
Hellmann, Frank; Schultz, Paul; Grabow, Carsten; Heitzig, Jobst; Kurths, Jürgen
2016-01-01
The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures. PMID:27405955
Jamitons: Phantom Traffic Jams
ERIC Educational Resources Information Center
Kowszun, Jorj
2013-01-01
Traffic on motorways can slow down for no apparent reason. Sudden changes in speed by one or two drivers can create a chain reaction that causes a traffic jam for the vehicles that are following. This kind of phantom traffic jam is called a "jamiton" and the article discusses some of the ways in which traffic engineers produce…
Sensitivity analysis in a Lassa fever deterministic mathematical model
NASA Astrophysics Data System (ADS)
Abdullahi, Mohammed Baba; Doko, Umar Chado; Mamuda, Mamman
2015-05-01
Lassa virus that causes the Lassa fever is on the list of potential bio-weapons agents. It was recently imported into Germany, the Netherlands, the United Kingdom and the United States as a consequence of the rapid growth of international traffic. A model with five mutually exclusive compartments related to Lassa fever is presented and the basic reproduction number analyzed. A sensitivity analysis of the deterministic model is performed. This is done in order to determine the relative importance of the model parameters to the disease transmission. The result of the sensitivity analysis shows that the most sensitive parameter is the human immigration, followed by human recovery rate, then person to person contact. This suggests that control strategies should target human immigration, effective drugs for treatment and education to reduced person to person contact.
Real-Time Surface Traffic Adviser
NASA Technical Reports Server (NTRS)
Glass, Brian J. (Inventor); Spirkovska, Liljana (Inventor); McDermott, William J. (Inventor); Reisman, Ronald J. (Inventor); Gibson, James (Inventor); Iverson, David L. (Inventor)
2001-01-01
A real-time data management system which uses data generated at different rates by multiple heterogeneous incompatible data sources are presented. In one embodiment, the invention is as an airport surface traffic data management system (traffic adviser) that electronically interconnects air traffic control, airline, and airport operations user communities to facilitate information sharing and improve taxi queuing. The system uses an expert system to fuse dam from a variety of airline, airport operations, ramp control, and air traffic control sources, in order to establish, predict, and update reference data values for every aircraft surface operation.
Cellular automata for traffic flow modeling. Final report
Benjaafar, S.; Dooley, K.; Setyawan, W.
1997-12-01
In this paper, the authors explore the usefulness of cellular automata to traffic flow modeling. The authors extend some of the existing CA models to capture characteristics of traffic flow that have not been possible to model using either conventional analytical models or existing simulation techniques. In particular, the authors examine higher moments of traffic flow and evaluate their effect on overall traffic performance. The behavior of these higher moments is found to be surprising, somewhat counter-intuitive, and to have important implications for design and control of traffic systems. For example, the authors show that the density of maximum throughput is near the density of maximum speed variance. Contrary to current practice, traffic should, therefore, be steered away from this density region. For deterministic systems the authors found traffic flow to possess a finite period which is highly sensitive to density in a non-monotonic fashion. The authors show that knowledge of this periodic behavior to be very useful in designing and controlling automated systems. These results are obtained for both single and two lane systems. For two lane systems, the authors also examine the relationship between lane changing behavior and flow performance. The authors show that the density of maximum land changing frequency occurs past the density of maximum throughput. Therefore, traffic should also be steered away from this density region.
Traffic gridlock on complex networks
NASA Astrophysics Data System (ADS)
Mendes, G. A.; da Silva, L. R.; Herrmann, H. J.
2012-01-01
Here we study how a traffic jam spreads on complex networks when driven by an increasing flux between certain initial and final points. For that purpose, we developed two new traffic models based on vehicular traffic and applied them on the Apollonian network and the Swiss road network. The first model is an electrical analog, using ohmic and non-ohmic resistors which is a classical approach in Physics while the second one which we call the herding model, is based on human driving behavior. For both models, we study the sequence of clogged roads up to the traffic gridlock and display the fragilities of the network. In the electrical model, by increasing the external potential, resistors burn out, as the voltage drop between the ends increases above a certain threshold. Analyzing both models, we observed some power-law functions that occur only near a traffic gridlock as well as the dependence on topological features of the network and influence on flux and the robustness in Apollonian networks of different generations.
Deterministic blade row interactions in a centrifugal compressor stage
NASA Technical Reports Server (NTRS)
Kirtley, K. R.; Beach, T. A.
1991-01-01
The three-dimensional viscous flow in a low speed centrifugal compressor stage is simulated using an average passage Navier-Stokes analysis. The impeller discharge flow is of the jet/wake type with low momentum fluid in the shroud-pressure side corner coincident with the tip leakage vortex. This nonuniformity introduces periodic unsteadiness in the vane frame of reference. The effect of such deterministic unsteadiness on the time-mean is included in the analysis through the average passage stress, which allows the analysis of blade row interactions. The magnitude of the divergence of the deterministic unsteady stress is of the order of the divergence of the Reynolds stress over most of the span, from the impeller trailing edge to the vane throat. Although the potential effects on the blade trailing edge from the diffuser vane are small, strong secondary flows generated by the impeller degrade the performance of the diffuser vanes.
Deterministic algorithm with agglomerative heuristic for location problems
NASA Astrophysics Data System (ADS)
Kazakovtsev, L.; Stupina, A.
2015-10-01
Authors consider the clustering problem solved with the k-means method and p-median problem with various distance metrics. The p-median problem and the k-means problem as its special case are most popular models of the location theory. They are implemented for solving problems of clustering and many practically important logistic problems such as optimal factory or warehouse location, oil or gas wells, optimal drilling for oil offshore, steam generators in heavy oil fields. Authors propose new deterministic heuristic algorithm based on ideas of the Information Bottleneck Clustering and genetic algorithms with greedy heuristic. In this paper, results of running new algorithm on various data sets are given in comparison with known deterministic and stochastic methods. New algorithm is shown to be significantly faster than the Information Bottleneck Clustering method having analogous preciseness.
Risk-based and deterministic regulation
Fischer, L.E.; Brown, N.W.
1995-07-01
Both risk-based and deterministic methods are used for regulating the nuclear industry to protect the public safety and health from undue risk. The deterministic method is one where performance standards are specified for each kind of nuclear system or facility. The deterministic performance standards address normal operations and design basis events which include transient and accident conditions. The risk-based method uses probabilistic risk assessment methods to supplement the deterministic one by (1) addressing all possible events (including those beyond the design basis events), (2) using a systematic, logical process for identifying and evaluating accidents, and (3) considering alternative means to reduce accident frequency and/or consequences. Although both deterministic and risk-based methods have been successfully applied, there is need for a better understanding of their applications and supportive roles. This paper describes the relationship between the two methods and how they are used to develop and assess regulations in the nuclear industry. Preliminary guidance is suggested for determining the need for using risk based methods to supplement deterministic ones. However, it is recommended that more detailed guidance and criteria be developed for this purpose.
Deterministic Superreplication of One-Parameter Unitary Transformations
NASA Astrophysics Data System (ADS)
Dür, W.; Sekatski, P.; Skotiniotis, M.
2015-03-01
We show that one can deterministically generate, out of N copies of an unknown unitary operation, up to N2 almost perfect copies. The result holds for all operations generated by a Hamiltonian with an unknown interaction strength. This generalizes a similar result in the context of phase-covariant cloning where, however, superreplication comes at the price of an exponentially reduced probability of success. We also show that multiple copies of unitary operations can be emulated by operations acting on a much smaller space, e.g., a magnetic field acting on a single n -level system allows one to emulate the action of the field on n2 qubits.
ERIC Educational Resources Information Center
Hart, Vincent G.
1981-01-01
Two examples are given of ways traffic engineers estimate traffic flow. The first, Floating Car Method, involves some basic ideas and the notion of relative velocity. The second, Maximum Traffic Flow, is viewed to involve simple applications of calculus. The material provides insight into specialized applications of mathematics. (MP)
Study of traffic statistics of assembled burst traffic in optical burst-switched networks
NASA Astrophysics Data System (ADS)
Yu, Xiang; Chen, Yang; Qiao, Chunming
2002-07-01
Optical Burst Switching (OBS) is considered as a promising switching technique for building the next generation optical Internet. In OBS networks, one important issue is how the performance will be affected by bursts assembled from packets, which is the basic transmission unit in OBS. In this paper, we study the fundamental statistic properties such as the burst length distribution, inter-arrival time distribution, as well as correlation structure of assembled burst traffic from burst assembly algorithms. From both theoretical and empirical results, it is demonstrated that after the assembly, the traffic will in general approach the Gaussian distribution. In particular, the variance of assembled traffic decreases with the increase in the assembly window size and the traffic load. However, the long range dependence in the input traffic will not change after assembly. Such smoothed assembled traffic will enhance the OBS performance by reducing burst loss and increase OBS throughput. This result is useful for the future study of OBS node and networks.
Creighton, H. ); Allen, R.; Stewart, S.; Hayto, S. )
1990-11-01
The traffic congestion on our roads today is becoming a critical problem. There is increased fuel consumption as cars wait along poorly timed arterials. Safety is threatened as poor traffic flow leads to collisions. This paper reports that Transport Canada and the Ministry of Transportation Ontario has developed an integrated traffic system (ITS). The system is designed to enable the optimization of traffic flow on existing roadways. The ITS system contains a data-base management system for traffic data (including accidents, roadway volumes, and signal timing details) and links this data base to the traffic analysis programs. This will ease the data management situation within the municipalities and standardize the traffic operations and reduce duplication of computerization development efforts.
Deterministic phase retrieval employing spherical illumination
NASA Astrophysics Data System (ADS)
Martínez-Carranza, J.; Falaggis, K.; Kozacki, T.
2015-05-01
Deterministic Phase Retrieval techniques (DPRTs) employ a series of paraxial beam intensities in order to recover the phase of a complex field. These paraxial intensities are usually generated in systems that employ plane-wave illumination. This type of illumination allows a direct processing of the captured intensities with DPRTs for recovering the phase. Furthermore, it has been shown that intensities for DPRTs can be acquired from systems that use spherical illumination as well. However, this type of illumination presents a major setback for DPRTs: the captured intensities change their size for each position of the detector on the propagation axis. In order to apply the DPRTs, reescalation of the captured intensities has to be applied. This condition can increase the error sensitivity of the final phase result if it is not carried out properly. In this work, we introduce a novel system based on a Phase Light Modulator (PLM) for capturing the intensities when employing spherical illumination. The proposed optical system enables us to capture the diffraction pattern of under, in, and over-focus intensities. The employment of the PLM allows capturing the corresponding intensities without displacing the detector. Moreover, with the proposed optical system we can control accurately the magnification of the captured intensities. Thus, the stack of captured intensities can be used in DPRTs, overcoming the problems related with the resizing of the images. In order to prove our claims, the corresponding numerical experiments will be carried out. These simulations will show that the retrieved phases with spherical illumination are accurate and can be compared with those that employ plane wave illumination. We demonstrate that with the employment of the PLM, the proposed optical system has several advantages as: the optical system is compact, the beam size on the detector plane is controlled accurately, and the errors coming from mechanical motion can be suppressed easily.
McQuinn, Ian H; Lesage, Véronique; Carrier, Dominic; Larrivée, Geneviève; Samson, Yves; Chartrand, Sylvain; Michaud, Robert; Theriault, James
2011-12-01
The threatened resident beluga population of the St. Lawrence Estuary shares the Saguenay-St. Lawrence Marine Park with significant anthropogenic noise sources, including marine commercial traffic and a well-established, vessel-based whale-watching industry. Frequency-dependent (FD) weighting was used to approximate beluga hearing sensitivity to determine how noise exposure varied in time and space at six sites of high beluga summer residency. The relative contribution of each source to acoustic habitat degradation was estimated by measuring noise levels throughout the summer and noise signatures of typical vessel classes with respect to traffic volume and sound propagation characteristics. Rigid-hulled inflatable boats were the dominant noise source with respect to estimated beluga hearing sensitivity in the studied habitats due to their high occurrence and proximity, high correlation with site-specific FD-weighted sound levels, and the dominance of mid-frequencies (0.3-23 kHz) in their noise signatures. Median C-weighted sound pressure level (SPL(RMS)) had a range of 19 dB re 1 μPa between the noisiest and quietest sites. Broadband SPL(RMS) exceeded 120 dB re 1 μPa 8-32% of the time depending on the site. Impacts of these noise levels on St. Lawrence beluga will depend on exposure recurrence and individual responsiveness. PMID:22225023
Stochastic search with Poisson and deterministic resetting
NASA Astrophysics Data System (ADS)
Bhat, Uttam; De Bacco, Caterina; Redner, S.
2016-08-01
We investigate a stochastic search process in one, two, and three dimensions in which N diffusing searchers that all start at x 0 seek a target at the origin. Each of the searchers is also reset to its starting point, either with rate r, or deterministically, with a reset time T. In one dimension and for a small number of searchers, the search time and the search cost are minimized at a non-zero optimal reset rate (or time), while for sufficiently large N, resetting always hinders the search. In general, a single searcher leads to the minimum search cost in one, two, and three dimensions. When the resetting is deterministic, several unexpected feature arise for N searchers, including the search time being independent of T for 1/T\\to 0 and the search cost being independent of N over a suitable range of N. Moreover, deterministic resetting typically leads to a lower search cost than in Poisson resetting.
Optimal partial deterministic quantum teleportation of qubits
Mista, Ladislav Jr.; Filip, Radim
2005-02-01
We propose a protocol implementing optimal partial deterministic quantum teleportation for qubits. This is a teleportation scheme realizing deterministically an optimal 1{yields}2 asymmetric universal cloning where one imperfect copy of the input state emerges at the sender's station while the other copy emerges at receiver's possibly distant station. The optimality means that the fidelities of the copies saturate the asymmetric cloning inequality. The performance of the protocol relies on the partial deterministic nondemolition Bell measurement that allows us to continuously control the flow of information among the outgoing qubits. We also demonstrate that the measurement is optimal two-qubit operation in the sense of the trade-off between the state disturbance and the information gain.
Deterministic evolutionary game dynamics in finite populations.
Altrock, Philipp M; Traulsen, Arne
2009-07-01
Evolutionary game dynamics describes the spreading of successful strategies in a population of reproducing individuals. Typically, the microscopic definition of strategy spreading is stochastic such that the dynamics becomes deterministic only in infinitely large populations. Here, we present a microscopic birth-death process that has a fully deterministic strong selection limit in well-mixed populations of any size. Additionally, under weak selection, from this process the frequency-dependent Moran process is recovered. This makes it a natural extension of the usual evolutionary dynamics under weak selection. We find simple expressions for the fixation probabilities and average fixation times of the process in evolutionary games with two players and two strategies. For cyclic games with two players and three strategies, we show that the resulting deterministic dynamics crucially depends on the initial condition in a nontrivial way. PMID:19658731
Effect of Uncertainty on Deterministic Runway Scheduling
NASA Technical Reports Server (NTRS)
Gupta, Gautam; Malik, Waqar; Jung, Yoon C.
2012-01-01
Active runway scheduling involves scheduling departures for takeoffs and arrivals for runway crossing subject to numerous constraints. This paper evaluates the effect of uncertainty on a deterministic runway scheduler. The evaluation is done against a first-come- first-serve scheme. In particular, the sequence from a deterministic scheduler is frozen and the times adjusted to satisfy all separation criteria; this approach is tested against FCFS. The comparison is done for both system performance (throughput and system delay) and predictability, and varying levels of congestion are considered. The modeling of uncertainty is done in two ways: as equal uncertainty in availability at the runway as for all aircraft, and as increasing uncertainty for later aircraft. Results indicate that the deterministic approach consistently performs better than first-come-first-serve in both system performance and predictability.
Deterministic mediated superdense coding with linear optics
NASA Astrophysics Data System (ADS)
Pavičić, Mladen
2016-02-01
We present a scheme of deterministic mediated superdense coding of entangled photon states employing only linear-optics elements. Ideally, we are able to deterministically transfer four messages by manipulating just one of the photons. Two degrees of freedom, polarization and spatial, are used. A new kind of source of heralded down-converted photon pairs conditioned on detection of another pair with an efficiency of 92% is proposed. Realistic probabilistic experimental verification of the scheme with such a source of preselected pairs is feasible with today's technology. We obtain the channel capacity of 1.78 bits for a full-fledged implementation.
Deterministic aggregation kinetics of superparamagnetic colloidal particles
NASA Astrophysics Data System (ADS)
Reynolds, Colin P.; Klop, Kira E.; Lavergne, François A.; Morrow, Sarah M.; Aarts, Dirk G. A. L.; Dullens, Roel P. A.
2015-12-01
We study the irreversible aggregation kinetics of superparamagnetic colloidal particles in two dimensions in the presence of an in-plane magnetic field at low packing fractions. Optical microscopy and image analysis techniques are used to follow the aggregation process and in particular study the packing fraction and field dependence of the mean cluster size. We compare these to the theoretically predicted scalings for diffusion limited and deterministic aggregation. It is shown that the aggregation kinetics for our experimental system is consistent with a deterministic mechanism, which thus shows that the contribution of diffusion is negligible.
Nine challenges for deterministic epidemic models
Roberts, Mick; Andreasen, Viggo; Lloyd, Alun; Pellis, Lorenzo
2016-01-01
Deterministic models have a long history of being applied to the study of infectious disease epidemiology. We highlight and discuss nine challenges in this area. The first two concern the endemic equilibrium and its stability. We indicate the need for models that describe multi-strain infections, infections with time-varying infectivity, and those where super infection is possible. We then consider the need for advances in spatial epidemic models, and draw attention to the lack of models that explore the relationship between communicable and non-communicable diseases. The final two challenges concern the uses and limitations of deterministic models as approximations to stochastic systems. PMID:25843383
An efficient method to detect periodic behavior in botnet traffic by analyzing control plane traffic
AsSadhan, Basil; Moura, José M.F.
2013-01-01
Botnets are large networks of bots (compromised machines) that are under the control of a small number of bot masters. They pose a significant threat to Internet’s communications and applications. A botnet relies on command and control (C2) communications channels traffic between its members for its attack execution. C2 traffic occurs prior to any attack; hence, the detection of botnet’s C2 traffic enables the detection of members of the botnet before any real harm happens. We analyze C2 traffic and find that it exhibits a periodic behavior. This is due to the pre-programmed behavior of bots that check for updates to download them every T seconds. We exploit this periodic behavior to detect C2 traffic. The detection involves evaluating the periodogram of the monitored traffic. Then applying Walker’s large sample test to the periodogram’s maximum ordinate in order to determine if it is due to a periodic component or not. If the periodogram of the monitored traffic contains a periodic component, then it is highly likely that it is due to a bot’s C2 traffic. The test looks only at aggregate control plane traffic behavior, which makes it more scalable than techniques that involve deep packet inspection (DPI) or tracking the communication flows of different hosts. We apply the test to two types of botnet, tinyP2P and IRC that are generated by SLINGbot. We verify the periodic behavior of their C2 traffic and compare it to the results we get on real traffic that is obtained from a secured enterprise network. We further study the characteristics of the test in the presence of injected HTTP background traffic and the effect of the duty cycle on the periodic behavior. PMID:25685512
Deterministic Single-Phonon Source Triggered by a Single Photon
NASA Astrophysics Data System (ADS)
Söllner, Immo; Midolo, Leonardo; Lodahl, Peter
2016-06-01
We propose a scheme that enables the deterministic generation of single phonons at gigahertz frequencies triggered by single photons in the near infrared. This process is mediated by a quantum dot embedded on chip in an optomechanical circuit, which allows for the simultaneous control of the relevant photonic and phononic frequencies. We devise new optomechanical circuit elements that constitute the necessary building blocks for the proposed scheme and are readily implementable within the current state-of-the-art of nanofabrication. This will open new avenues for implementing quantum functionalities based on phonons as an on-chip quantum bus.
Deterministic Single-Phonon Source Triggered by a Single Photon.
Söllner, Immo; Midolo, Leonardo; Lodahl, Peter
2016-06-10
We propose a scheme that enables the deterministic generation of single phonons at gigahertz frequencies triggered by single photons in the near infrared. This process is mediated by a quantum dot embedded on chip in an optomechanical circuit, which allows for the simultaneous control of the relevant photonic and phononic frequencies. We devise new optomechanical circuit elements that constitute the necessary building blocks for the proposed scheme and are readily implementable within the current state-of-the-art of nanofabrication. This will open new avenues for implementing quantum functionalities based on phonons as an on-chip quantum bus. PMID:27341236
Immunization of traffic-driven epidemic spreading
NASA Astrophysics Data System (ADS)
Yang, Han-Xin; Wang, Bing-Hong
2016-02-01
In this paper, we study the control of the traffic-driven epidemic spreading by immunization strategy. We consider the random, degree-based and betweenness-based immunization strategies, respectively. It is found that the betweenness-based immunization strategy can most effectively prevent the outbreak of traffic-driven epidemic. Besides, we find that the critical number of immune nodes above which epidemic dies out is increased with the enhancement of the spreading rate and the packet-generation rate.
A deterministic discrete ordinates transport proxy application
Energy Science and Technology Software Center (ESTSC)
2014-06-03
Kripke is a simple 3D deterministic discrete ordinates (Sn) particle transport code that maintains the computational load and communications pattern of a real transport code. It is intended to be a research tool to explore different data layouts, new programming paradigms and computer architectures.
STATISTICAL ANALYSIS OF A DETERMINISTIC STOCHASTIC ORBIT
Kaufman, Allan N.; Abarbanel, Henry D.I.; Grebogi, Celso
1980-05-01
If the solution of a deterministic equation is stochastic (in the sense of orbital instability), it can be subjected to a statistical analysis. This is illustrated for a coded orbit of the Chirikov mapping. Statistical dependence and the Markov assumption are tested. The Kolmogorov-Sinai entropy is related to the probability distribution for the orbit.
Computers in Traffic Education.
ERIC Educational Resources Information Center
Alexander, O. P.
1983-01-01
Traffic education covers basic road skills, legal/insurance aspects, highway code, accident causation/prevention, and vehicle maintenance. Microcomputer applications to traffic education are outlined, followed by a selected example of programs currently available (focusing on drill/practice, simulation, problem-solving, data manipulation, games,…
NASA Technical Reports Server (NTRS)
DEVALUEZ
1922-01-01
The ways in which the international and internal French air traffic accords interact with each other is outlined in this report. The principal questions covered by the present legislation are as follows: 1) Conditions of safety which must be fulfilled by aircraft; 2) Licenses for members of the crew; 3) Traffic rules to be observed by French and foreign aircraft.
ERIC Educational Resources Information Center
Roman, Harry T.
2014-01-01
Traffic lights are an important part of the transportation infrastructure, regulating traffic flow and maintaining safety when crossing busy streets. When they go awry or become nonfunctional, a great deal of havoc and danger can be present. During power outages, the street lights go out all over the affected area. It would be good to be able to…
Trafficability and workability of soils
Technology Transfer Automated Retrieval System (TEKTRAN)
Trafficability and workability are soil capabilities supporting operations of agricultural machinery. Trafficability is a soil's capability to support agricultural traffic without degrading soils and ecosystems. Workability is a soil capability supporting tillage. Agriculture is associated with mech...
NASA Technical Reports Server (NTRS)
1973-01-01
The traffic analyses and system requirements data generated in the study resulted in the development of two traffic models; the baseline traffic model and the new traffic model. The baseline traffic model provides traceability between the numbers and types of geosynchronous missions considered in the study and the entire spectrum of missions foreseen in the total national space program. The information presented pertaining to the baseline traffic model includes: (1) definition of the baseline traffic model, including identification of specific geosynchronous missions and their payload delivery schedules through 1990; (2) Satellite location criteria, including the resulting distribution of the satellite population; (3) Geosynchronous orbit saturation analyses, including the effects of satellite physical proximity and potential electromagnetic interference; and (4) Platform system requirements analyses, including satellite and mission equipment descriptions, the options and limitations in grouping satellites, and on-orbit servicing criteria (both remotely controlled and man-attended).
Are earthquakes an example of deterministic chaos?
NASA Technical Reports Server (NTRS)
Huang, Jie; Turcotte, Donald L.
1990-01-01
A simple mass-spring model is used to systematically examine the dynamical behavior introduced by fault zone heterogeneities. The model consists of two sliding blocks coupled to each other and to a constant velocity driver by elastic springs. The state of this system can be characterized by the positions of the two blocks relative to the driver. A simple static/dynamic friction law is used. When the system is symmetric, cyclic behavior is observed. For an asymmetric system, where the frictional forces for the two blocks are not equal, the solutions exhibit deterministic chaos. Chaotic windows occur repeatedly between regions of limit cycles on bifurcation diagrams. The model behavior is similar to that of the one-dimensional logistic map. The results provide substantial evidence that earthquakes are an example of deterministic chaos.
Deterministic dynamics in the minority game
NASA Astrophysics Data System (ADS)
Jefferies, P.; Hart, M. L.; Johnson, N. F.
2002-01-01
The minority game (MG) behaves as a stochastically disturbed deterministic system due to the coin toss invoked to resolve tied strategies. Averaging over this stochasticity yields a description of the MG's deterministic dynamics via mapping equations for the strategy score and global information. The strategy-score map contains both restoring-force and bias terms, whose magnitudes depend on the game's quenched disorder. Approximate analytical expressions are obtained and the effect of ``market impact'' is discussed. The global-information map represents a trajectory on a de Bruijn graph. For small quenched disorder, a Eulerian trail represents a stable attractor. It is shown analytically how antipersistence arises. The response to perturbations and different initial conditions is also discussed.
The deterministic and statistical Burgers equation
NASA Astrophysics Data System (ADS)
Fournier, J.-D.; Frisch, U.
Fourier-Lagrangian representations of the UV-region inviscid-limit solutions of the equations of Burgers (1939) are developed for deterministic and random initial conditions. The Fourier-mode amplitude behavior of the deterministic case is characterized by complex singularities with fast decrease, power-law preshocks with k indices of about -4/3, and shocks with k to the -1. In the random case, shocks are associated with a k to the -2 spectrum which overruns the smaller wavenumbers and appears immediately under Gaussian initial conditions. The use of the Hopf-Cole solution in the random case is illustrated in calculations of the law of energy decay by a modified Kida (1979) method. Graphs and diagrams of the results are provided.
Improving ground-penetrating radar data in sedimentary rocks using deterministic deconvolution
Xia, J.; Franseen, E.K.; Miller, R.D.; Weis, T.V.; Byrnes, A.P.
2003-01-01
Resolution is key to confidently identifying unique geologic features using ground-penetrating radar (GPR) data. Source wavelet "ringing" (related to bandwidth) in a GPR section limits resolution because of wavelet interference, and can smear reflections in time and/or space. The resultant potential for misinterpretation limits the usefulness of GPR. Deconvolution offers the ability to compress the source wavelet and improve temporal resolution. Unlike statistical deconvolution, deterministic deconvolution is mathematically simple and stable while providing the highest possible resolution because it uses the source wavelet unique to the specific radar equipment. Source wavelets generated in, transmitted through and acquired from air allow successful application of deterministic approaches to wavelet suppression. We demonstrate the validity of using a source wavelet acquired in air as the operator for deterministic deconvolution in a field application using "400-MHz" antennas at a quarry site characterized by interbedded carbonates with shale partings. We collected GPR data on a bench adjacent to cleanly exposed quarry faces in which we placed conductive rods to provide conclusive groundtruth for this approach to deconvolution. The best deconvolution results, which are confirmed by the conductive rods for the 400-MHz antenna tests, were observed for wavelets acquired when the transmitter and receiver were separated by 0.3 m. Applying deterministic deconvolution to GPR data collected in sedimentary strata at our study site resulted in an improvement in resolution (50%) and improved spatial location (0.10-0.15 m) of geologic features compared to the same data processed without deterministic deconvolution. The effectiveness of deterministic deconvolution for increased resolution and spatial accuracy of specific geologic features is further demonstrated by comparing results of deconvolved data with nondeconvolved data acquired along a 30-m transect immediately adjacent
Shape-Controlled Deterministic Assembly of Nanowires.
Zhao, Yunlong; Yao, Jun; Xu, Lin; Mankin, Max N; Zhu, Yinbo; Wu, Hengan; Mai, Liqiang; Zhang, Qingjie; Lieber, Charles M
2016-04-13
Large-scale, deterministic assembly of nanowires and nanotubes with rationally controlled geometries could expand the potential applications of one-dimensional nanomaterials in bottom-up integrated nanodevice arrays and circuits. Control of the positions of straight nanowires and nanotubes has been achieved using several assembly methods, although simultaneous control of position and geometry has not been realized. Here, we demonstrate a new concept combining simultaneous assembly and guided shaping to achieve large-scale, high-precision shape controlled deterministic assembly of nanowires. We lithographically pattern U-shaped trenches and then shear transfer nanowires to the patterned substrate wafers, where the trenches serve to define the positions and shapes of transferred nanowires. Studies using semicircular trenches defined by electron-beam lithography yielded U-shaped nanowires with radii of curvature defined by inner surface of the trenches. Wafer-scale deterministic assembly produced U-shaped nanowires for >430,000 sites with a yield of ∼90%. In addition, mechanistic studies and simulations demonstrate that shaping results in primarily elastic deformation of the nanowires and show clearly the diameter-dependent limits achievable for accessible forces. Last, this approach was used to assemble U-shaped three-dimensional nanowire field-effect transistor bioprobe arrays containing 200 individually addressable nanodevices. By combining the strengths of wafer-scale top-down fabrication with diverse and tunable properties of one-dimensional building blocks in novel structural configurations, shape-controlled deterministic nanowire assembly is expected to enable new applications in many areas including nanobioelectronics and nanophotonics. PMID:26999059
Ada programming guidelines for deterministic storage management
NASA Technical Reports Server (NTRS)
Auty, David
1988-01-01
Previous reports have established that a program can be written in the Ada language such that the program's storage management requirements are determinable prior to its execution. Specific guidelines for ensuring such deterministic usage of Ada dynamic storage requirements are described. Because requirements may vary from one application to another, guidelines are presented in a most-restrictive to least-restrictive fashion to allow the reader to match appropriate restrictions to the particular application area under investigation.
Deterministic Mean-Field Ensemble Kalman Filtering
Law, Kody J. H.; Tembine, Hamidou; Tempone, Raul
2016-05-03
The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. In this paper, a density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence κ between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d
Coupled Deterministic-Monte Carlo Transport for Radiation Portal Modeling
Smith, Leon E.; Miller, Erin A.; Wittman, Richard S.; Shaver, Mark W.
2008-01-14
Radiation portal monitors are being deployed, both domestically and internationally, to detect illicit movement of radiological materials concealed in cargo. Evaluation of the current and next generations of these radiation portal monitor (RPM) technologies is an ongoing process. 'Injection studies' that superimpose, computationally, the signature from threat materials onto empirical vehicle profiles collected at ports of entry, are often a component of the RPM evaluation process. However, measurement of realistic threat devices can be both expensive and time-consuming. Radiation transport methods that can predict the response of radiation detection sensors with high fidelity, and do so rapidly enough to allow the modeling of many different threat-source configurations, are a cornerstone of reliable evaluation results. Monte Carlo methods have been the primary tool of the detection community for these kinds of calculations, in no small part because they are particularly effective for calculating pulse-height spectra in gamma-ray spectrometers. However, computational times for problems with a high degree of scattering and absorption can be extremely long. Deterministic codes that discretize the transport in space, angle, and energy offer potential advantages in computational efficiency for these same kinds of problems, but the pulse-height calculations needed to predict gamma-ray spectrometer response are not readily accessible. These complementary strengths for radiation detection scenarios suggest that coupling Monte Carlo and deterministic methods could be beneficial in terms of computational efficiency. Pacific Northwest National Laboratory and its collaborators are developing a RAdiation Detection Scenario Analysis Toolbox (RADSAT) founded on this coupling approach. The deterministic core of RADSAT is Attila, a three-dimensional, tetrahedral-mesh code originally developed by Los Alamos National Laboratory, and since expanded and refined by Transpire, Inc. [1
Software for Simulating Air Traffic
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Bilimoria, Karl; Grabbe, Shon; Chatterji, Gano; Sheth, Kapil; Mulfinger, Daniel
2006-01-01
Future Air Traffic Management Concepts Evaluation Tool (FACET) is a system of software for performing computational simulations for evaluating advanced concepts of advanced air-traffic management. FACET includes a program that generates a graphical user interface plus programs and databases that implement computational models of weather, airspace, airports, navigation aids, aircraft performance, and aircraft trajectories. Examples of concepts studied by use of FACET include aircraft self-separation for free flight; prediction of air-traffic-controller workload; decision support for direct routing; integration of spacecraft-launch operations into the U.S. national airspace system; and traffic- flow-management using rerouting, metering, and ground delays. Aircraft can be modeled as flying along either flight-plan routes or great-circle routes as they climb, cruise, and descend according to their individual performance models. The FACET software is modular and is written in the Java and C programming languages. The architecture of FACET strikes a balance between flexibility and fidelity; as a consequence, FACET can be used to model systemwide airspace operations over the contiguous U.S., involving as many as 10,000 aircraft, all on a single desktop or laptop computer running any of a variety of operating systems. Two notable applications of FACET include: (1) reroute conformance monitoring algorithms that have been implemented in one of the Federal Aviation Administration s nationally deployed, real-time, operational systems; and (2) the licensing and integration of FACET with the commercially available Flight Explorer, which is an Internet- based, real-time flight-tracking system.
Deterministic modelling and stochastic simulation of biochemical pathways using MATLAB.
Ullah, M; Schmidt, H; Cho, K H; Wolkenhauer, O
2006-03-01
The analysis of complex biochemical networks is conducted in two popular conceptual frameworks for modelling. The deterministic approach requires the solution of ordinary differential equations (ODEs, reaction rate equations) with concentrations as continuous state variables. The stochastic approach involves the simulation of differential-difference equations (chemical master equations, CMEs) with probabilities as variables. This is to generate counts of molecules for chemical species as realisations of random variables drawn from the probability distribution described by the CMEs. Although there are numerous tools available, many of them free, the modelling and simulation environment MATLAB is widely used in the physical and engineering sciences. We describe a collection of MATLAB functions to construct and solve ODEs for deterministic simulation and to implement realisations of CMEs for stochastic simulation using advanced MATLAB coding (Release 14). The program was successfully applied to pathway models from the literature for both cases. The results were compared to implementations using alternative tools for dynamic modelling and simulation of biochemical networks. The aim is to provide a concise set of MATLAB functions that encourage the experimentation with systems biology models. All the script files are available from www.sbi.uni-rostock.de/ publications_matlab-paper.html. PMID:16986253
NASA Technical Reports Server (NTRS)
1997-01-01
The high level requirement of the Air Traffic Network (ATN) project is to provide a mechanism for evaluating the impact of router scheduling modifications on a networks efficiency, without implementing the modifications in the live network.
NASA Astrophysics Data System (ADS)
Samson, E. C.; Wilson, K. E.; Newman, Z. L.; Anderson, B. P.
2016-02-01
We experimentally and numerically demonstrate deterministic creation and manipulation of a pair of oppositely charged singly quantized vortices in a highly oblate Bose-Einstein condensate (BEC). Two identical blue-detuned, focused Gaussian laser beams that pierce the BEC serve as repulsive obstacles for the superfluid atomic gas; by controlling the positions of the beams within the plane of the BEC, superfluid flow is deterministically established around each beam such that two vortices of opposite circulation are generated by the motion of the beams, with each vortex pinned to the in situ position of a laser beam. We study the vortex creation process, and show that the vortices can be moved about within the BEC by translating the positions of the laser beams. This technique can serve as a building block in future experimental techniques to create, on-demand, deterministic arrangements of few or many vortices within a BEC for precise studies of vortex dynamics and vortex interactions.
Fourcassié, Vincent; Dussutour, Audrey; Deneubourg, Jean-Louis
2010-07-15
Many animals take part in flow-like collective movements. In most species, however, the flow is unidirectional. Ants are one of the rare group of organisms in which flow-like movements are predominantly bidirectional. This adds to the difficulty of the task of maintaining a smooth, efficient movement. Yet, ants seem to fare well at this task. Do they really? And if so, how do such simple organisms succeed in maintaining a smooth traffic flow, when even humans experience trouble with this task? How does traffic in ants compare with that in human pedestrians or vehicles? The experimental study of ant traffic is only a few years old but it has already provided interesting insights into traffic organization and regulation in animals, showing in particular that an ant colony as a whole can be considered as a typical self-organized adaptive system. In this review we will show that the study of ant traffic can not only uncover basic principles of behavioral ecology and evolution in social insects but also provide new insights into the study of traffic systems in general. PMID:20581264
Al-Shargabi, Mohammed A; Shaikh, Asadullah; Ismail, Abdulsamad S
2016-01-01
Optical burst switching (OBS) networks have been attracting much consideration as a promising approach to build the next generation optical Internet. A solution for enhancing the Quality of Service (QoS) for high priority real time traffic over OBS with the fairness among the traffic types is absent in current OBS' QoS schemes. In this paper we present a novel Real Time Quality of Service with Fairness Ratio (RT-QoSFR) scheme that can adapt the burst assembly parameters according to the traffic QoS needs in order to enhance the real time traffic QoS requirements and to ensure the fairness for other traffic. The results show that RT-QoSFR scheme is able to fulfill the real time traffic requirements (end to end delay, and loss rate) ensuring the fairness for other traffics under various conditions such as the type of real time traffic and traffic load. RT-QoSFR can guarantee that the delay of the real time traffic packets does not exceed the maximum packets transfer delay value. Furthermore, it can reduce the real time traffic packets loss, at the same time guarantee the fairness for non real time traffic packets by determining the ratio of real time traffic inside the burst to be 50-60%, 30-40%, and 10-20% for high, normal, and low traffic loads respectively. PMID:27583557
Simulating traffic flow with Lotus 1-2-3
Snelting, D.T.
1986-07-01
This article discusses the use of spreadsheet software in simulating traffic flow on an approach to a pretimed signalized intersection. Such a simulation model would serve the following purposes: 1. It could help traffic engineers realize the types of applications that are possible with spreadsheets or expand their current thinking in this area. 2. It should provide traffic engineers and transportation planners with a relatively simple tool for obtaining a ''feel'' for traffic flow characteristics. 3. Delay and stopping data generated from the model could be used to verify other research data and actual field data.
A superstatistical model of vehicular traffic flow
NASA Astrophysics Data System (ADS)
Kosun, Caglar; Ozdemir, Serhan
2016-02-01
In the analysis of vehicular traffic flow, a myriad of techniques have been implemented. In this study, superstatistics is used in modeling the traffic flow on a highway segment. Traffic variables such as vehicular speeds, volume, and headway were collected for three days. For the superstatistical approach, at least two distinct time scales must exist, so that a superposition of nonequilibrium systems assumption could hold. When the slow dynamics of the vehicle speeds exhibit a Gaussian distribution in between the fluctuations of the system at large, one speaks of a relaxation to a local equilibrium. These Gaussian distributions are found with corresponding standard deviations 1 /√{ β }. This translates into a series of fluctuating beta values, hence the statistics of statistics, superstatistics. The traffic flow model has generated an inverse temperature parameter (beta) distribution as well as the speed distribution. This beta distribution has shown that the fluctuations in beta are distributed with respect to a chi-square distribution. It must be mentioned that two distinct Tsallis q values are specified: one is time-dependent and the other is independent. A ramification of these q values is that the highway segment and the traffic flow generate separate characteristics. This highway segment in question is not only nonadditive in nature, but a nonequilibrium driven system, with frequent relaxations to a Gaussian.
Benke, G. |; Brandt, J.; Chen, H.; Dastangoo, S.; Miller, G.J.
1996-05-01
Recent empirical studies of traffic measurements of packet switched networks have demonstrated that actual network traffic is self-similar, or long range dependent, in nature. That is, the measured traffic is bursty over a wide range of time intervals. Furthermore, the emergence of high-speed network backbones demands the study of accurate models of aggregated traffic to assess network performance. This paper provides a method for generation of self-similar traffic, which can be used to drive network simulation models. The authors present the results of a simulation study of a two-node ATM network configuration that supports the ATM Forum`s Available Bit Rate (ABR) service. In this study, the authors compare the state of the queue at the source router at the edge of the ATM network under both Poisson and self-similar traffic loading. These findings indicate an order of magnitude increase in queue length for self-similar traffic loading as compared to Poisson loading. Moreover, when background VBR traffic is present, self-similar ABR traffic causes more congestion at the ATM switches than does Poisson traffic.
CHAOS AND STOCHASTICITY IN DETERMINISTICALLY GENERATED MULTIFRACTAL MEASURES. (R824780)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Minimal Deterministic Physicality Applied to Cosmology
NASA Astrophysics Data System (ADS)
Valentine, John S.
This report summarizes ongoing research and development since our 2012 foundation paper, including the emergent effects of a deterministic mechanism for fermion interactions: (1) the coherence of black holes and particles using a quantum chaotic model; (2) wide-scale (anti)matter prevalence from exclusion and weak interaction during the fermion reconstitution process; and (3) red-shift due to variations of vacuum energy density. We provide a context for Standard Model fields, and show how gravitation can be accountably unified in the same mechanism, but not as a unified field.
Deterministic Switching in Bismuth Ferrite Nanoislands.
Morelli, Alessio; Johann, Florian; Burns, Stuart R; Douglas, Alan; Gregg, J Marty
2016-08-10
We report deterministic selection of polarization variant in bismuth BiFeO3 nanoislands via a two-step scanning probe microscopy procedure. The polarization orientation in a nanoisland is toggled to the desired variant after a reset operation by scanning a conductive atomic force probe in contact over the surface while a bias is applied. The final polarization variant is determined by the direction of the inhomogeneous in-plane trailing field associated with the moving probe tip. This work provides the framework for better control of switching in rhombohedral ferroelectrics and for a deeper understanding of exchange coupling in multiferroic nanoscale heterostructures toward the realization of magnetoelectric devices. PMID:27454612
Deterministic convergence in iterative phase shifting
Luna, Esteban; Salas, Luis; Sohn, Erika; Ruiz, Elfego; Nunez, Juan M.; Herrera, Joel
2009-03-10
Previous implementations of the iterative phase shifting method, in which the phase of a test object is computed from measurements using a phase shifting interferometer with unknown positions of the reference, do not provide an accurate way of knowing when convergence has been attained. We present a new approach to this method that allows us to deterministically identify convergence. The method is tested with a home-built Fizeau interferometer that measures optical surfaces polished to {lambda}/100 using the Hydra tool. The intrinsic quality of the measurements is better than 0.5 nm. Other possible applications for this technique include fringe projection or any problem where phase shifting is involved.
Deterministic quantum computation with one photonic qubit
NASA Astrophysics Data System (ADS)
Hor-Meyll, M.; Tasca, D. S.; Walborn, S. P.; Ribeiro, P. H. Souto; Santos, M. M.; Duzzioni, E. I.
2015-07-01
We show that deterministic quantum computing with one qubit (DQC1) can be experimentally implemented with a spatial light modulator, using the polarization and the transverse spatial degrees of freedom of light. The scheme allows the computation of the trace of a high-dimension matrix, being limited by the resolution of the modulator panel and the technical imperfections. In order to illustrate the method, we compute the normalized trace of unitary matrices and implement the Deutsch-Jozsa algorithm. The largest matrix that can be manipulated with our setup is 1080 ×1920 , which is able to represent a system with approximately 21 qubits.
Deterministic nonclassicality for quantum-mechanical oscillators in thermal states
NASA Astrophysics Data System (ADS)
Marek, Petr; Lachman, Lukáš; Slodička, Lukáš; Filip, Radim
2016-07-01
Quantum nonclassicality is the basic building stone for the vast majority of quantum information applications and methods of its generation are at the forefront of research. One of the obstacles any method needs to clear is the looming presence of decoherence and noise which act against the nonclassicality and often erase it completely. In this paper we show that nonclassical states of a quantum harmonic oscillator initially in thermal equilibrium states can be deterministically created by coupling it to a single two-level system. This can be achieved even in the absorption regime in which the two-level system is initially in the ground state. The method is resilient to noise and it may actually benefit from it, as witnessed by the systems with higher thermal energy producing more nonclassical states.
Scaling mobility patterns and collective movements: Deterministic walks in lattices
NASA Astrophysics Data System (ADS)
Han, Xiao-Pu; Zhou, Tao; Wang, Bing-Hong
2011-05-01
Scaling mobility patterns have been widely observed for animals. In this paper, we propose a deterministic walk model to understand the scaling mobility patterns, where walkers take the least-action walks on a lattice landscape and prey. Scaling laws in the displacement distribution emerge when the amount of prey resource approaches the critical point. Around the critical point, our model generates ordered collective movements of walkers with a quasiperiodic synchronization of walkers’ directions. These results indicate that the coevolution of walkers’ least-action behavior and the landscape could be a potential origin of not only the individual scaling mobility patterns but also the flocks of animals. Our findings provide a bridge to connect the individual scaling mobility patterns and the ordered collective movements.
Optimal Control of Hybrid Systems in Air Traffic Applications
NASA Astrophysics Data System (ADS)
Kamgarpour, Maryam
Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient
Virginia's traffic management system
Morris, J.; Marber, S. )
1992-07-01
This paper reports that Northern Virginia, like most other urban areas, faces the challenge of moving more and more vehicles on roads that are already overloaded. Traffic in Northern Virginia is continually increasing, but the development surrounding Interstate 395, 495, and 66 makes little room available for roadway expansion. Even if land were unlimited, the strict requirement of the Clean Air Act make building roads difficult. This paper reports that ensuring the most efficient use of the interstate highways is the goal of the Virginia Department of Transportation's (VDOT's) traffic management system (TMS). TMS is a computerized highway surveillance and control system that monitors 30 interstate miles on I-395, I-495, and I-66. The system helps squeeze the most use from these interstates by detecting and helping clear accidents or disabled vehicles and by smoothing traffic flow. TMS spots and helps clear an average of two incidents a day and prevents accidents caused by erratic traffic flow from ramps onto the main line. For motorists, these TMS functions translate into decreased travel time, vehicle operating costs, and air pollution. VDOT's TMS is the foundation for the intelligent vehicle-highway systems of tomorrow. It employs several elements that work together to improve traffic flow.
Discrete Deterministic and Stochastic Petri Nets
NASA Technical Reports Server (NTRS)
Zijal, Robert; Ciardo, Gianfranco
1996-01-01
Petri nets augmented with timing specifications gained a wide acceptance in the area of performance and reliability evaluation of complex systems exhibiting concurrency, synchronization, and conflicts. The state space of time-extended Petri nets is mapped onto its basic underlying stochastic process, which can be shown to be Markovian under the assumption of exponentially distributed firing times. The integration of exponentially and non-exponentially distributed timing is still one of the major problems for the analysis and was first attacked for continuous time Petri nets at the cost of structural or analytical restrictions. We propose a discrete deterministic and stochastic Petri net (DDSPN) formalism with no imposed structural or analytical restrictions where transitions can fire either in zero time or according to arbitrary firing times that can be represented as the time to absorption in a finite absorbing discrete time Markov chain (DTMC). Exponentially distributed firing times are then approximated arbitrarily well by geometric distributions. Deterministic firing times are a special case of the geometric distribution. The underlying stochastic process of a DDSPN is then also a DTMC, from which the transient and stationary solution can be obtained by standard techniques. A comprehensive algorithm and some state space reduction techniques for the analysis of DDSPNs are presented comprising the automatic detection of conflicts and confusions, which removes a major obstacle for the analysis of discrete time models.
Ballistic annihilation and deterministic surface growth
NASA Astrophysics Data System (ADS)
Belitsky, Vladimir; Ferrari, Pablo A.
1995-08-01
A model of deterministic surface growth studied by Krug and Spohn, a model of the annihilating reaction A+B→inert studied by Elskens and Frisch, a one-dimensional three-color cyclic cellular automaton studied by Fisch, and a particular automaton that has the number 184 in the classification of Wolfram can be studied via a cellular automaton with stochastic initial data called ballistic annihilation. This automaton is defined by the following rules: At time t=0, one particle is put at each integer point of ℝ. To each particle, a velocity is assigned in such a way that it may be either +1 or -1 with probabilities 1/2, independent of the velocities of the other particles. As time goes on, each particle moves along ℝ at the velocity assigned to it and annihilates when it collides with another particle. In the present paper we compute the distribution of this automaton for each time t ∈ ℕ. We then use this result to obtain the hydrodynamic limit for the surface profile from the model of deterministic surface growth mentioned above. We also show the relation of this limit process to the process which we call moving local minimum of Brownian motion. The latter is the process B {/x min}, x ∈ ℝ, defined by B {/x min}≔min{ B y ; x-1≤ y≤ x+1} for every x ∈ ℝ, where B x , x ∈ ℝ, is the standard Brownian motion with B 0=0.
Deterministic prediction of surface wind speed variations
NASA Astrophysics Data System (ADS)
Drisya, G. V.; Kiplangat, D. C.; Asokan, K.; Satheesh Kumar, K.
2014-11-01
Accurate prediction of wind speed is an important aspect of various tasks related to wind energy management such as wind turbine predictive control and wind power scheduling. The most typical characteristic of wind speed data is its persistent temporal variations. Most of the techniques reported in the literature for prediction of wind speed and power are based on statistical methods or probabilistic distribution of wind speed data. In this paper we demonstrate that deterministic forecasting methods can make accurate short-term predictions of wind speed using past data, at locations where the wind dynamics exhibit chaotic behaviour. The predictions are remarkably accurate up to 1 h with a normalised RMSE (root mean square error) of less than 0.02 and reasonably accurate up to 3 h with an error of less than 0.06. Repeated application of these methods at 234 different geographical locations for predicting wind speeds at 30-day intervals for 3 years reveals that the accuracy of prediction is more or less the same across all locations and time periods. Comparison of the results with f-ARIMA model predictions shows that the deterministic models with suitable parameters are capable of returning improved prediction accuracy and capturing the dynamical variations of the actual time series more faithfully. These methods are simple and computationally efficient and require only records of past data for making short-term wind speed forecasts within practically tolerable margin of errors.
Deterministic Creation of Macroscopic Cat States
Lombardo, Daniel; Twamley, Jason
2015-01-01
Despite current technological advances, observing quantum mechanical effects outside of the nanoscopic realm is extremely challenging. For this reason, the observation of such effects on larger scale systems is currently one of the most attractive goals in quantum science. Many experimental protocols have been proposed for both the creation and observation of quantum states on macroscopic scales, in particular, in the field of optomechanics. The majority of these proposals, however, rely on performing measurements, making them probabilistic. In this work we develop a completely deterministic method of macroscopic quantum state creation. We study the prototypical optomechanical Membrane In The Middle model and show that by controlling the membrane’s opacity, and through careful choice of the optical cavity initial state, we can deterministically create and grow the spatial extent of the membrane’s position into a large cat state. It is found that by using a Bose-Einstein condensate as a membrane high fidelity cat states with spatial separations of up to ∼300 nm can be achieved. PMID:26345157
Deterministic forward scatter from surface gravity waves.
Deane, Grant B; Preisig, James C; Tindle, Chris T; Lavery, Andone; Stokes, M Dale
2012-12-01
Deterministic structures in sound reflected by gravity waves, such as focused arrivals and Doppler shifts, have implications for underwater acoustics and sonar, and the performance of underwater acoustic communications systems. A stationary phase analysis of the Helmholtz-Kirchhoff scattering integral yields the trajectory of focused arrivals and their relationship to the curvature of the surface wave field. Deterministic effects along paths up to 70 water depths long are observed in shallow water measurements of surface-scattered sound at the Martha's Vineyard Coastal Observatory. The arrival time and amplitude of surface-scattered pulses are reconciled with model calculations using measurements of surface waves made with an upward-looking sonar mounted mid-way along the propagation path. The root mean square difference between the modeled and observed pulse arrival amplitude and delay, respectively, normalized by the maximum range of amplitudes and delays, is found to be 0.2 or less for the observation periods analyzed. Cross-correlation coefficients for modeled and observed pulse arrival delays varied from 0.83 to 0.16 depending on surface conditions. Cross-correlation coefficients for normalized pulse energy for the same conditions were small and varied from 0.16 to 0.06. In contrast, the modeled and observed pulse arrival delay and amplitude statistics were in good agreement. PMID:23231099
Deterministic Creation of Macroscopic Cat States.
Lombardo, Daniel; Twamley, Jason
2015-01-01
Despite current technological advances, observing quantum mechanical effects outside of the nanoscopic realm is extremely challenging. For this reason, the observation of such effects on larger scale systems is currently one of the most attractive goals in quantum science. Many experimental protocols have been proposed for both the creation and observation of quantum states on macroscopic scales, in particular, in the field of optomechanics. The majority of these proposals, however, rely on performing measurements, making them probabilistic. In this work we develop a completely deterministic method of macroscopic quantum state creation. We study the prototypical optomechanical Membrane In The Middle model and show that by controlling the membrane's opacity, and through careful choice of the optical cavity initial state, we can deterministically create and grow the spatial extent of the membrane's position into a large cat state. It is found that by using a Bose-Einstein condensate as a membrane high fidelity cat states with spatial separations of up to ∼300 nm can be achieved. PMID:26345157
Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Wagner, John C.; Evans, Thomas M.; Grove, Robert E.
2015-06-30
The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as muchmore » geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.« less
Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Wagner, John C.; Evans, Thomas M.; Grove, Robert E.
2015-06-30
The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.
Bagieński, Zbigniew
2015-02-01
Vehicle emissions are responsible for a considerable share of urban air pollution concentrations. The traffic air quality index (TAQI) is proposed as a useful tool for evaluating air quality near roadways. The TAQI associates air quality with the equivalent emission from traffic sources and with street structure (roadway structure) as anthropogenic factors. The paper presents a method of determining the TAQI and defines the degrees of harmfulness of emitted pollution. It proposes a classification specifying a potential threat to human health based on the TAQI value and shows an example of calculating the TAQI value for real urban streets. It also considers the role that car traffic plays in creating a local UHI. PMID:25461063
An improved adaptive ACO meta heuristic for scheduling multimedia traffic across the 802.11e EDCA
NASA Astrophysics Data System (ADS)
Ditze, Michael; Becker, Markus
2008-01-01
This paper presents an adaptive near-optimal scheduler for multimedia traffic for the 802.11e Enhanced Distributed Channel Access (EDCA) medium access control scheme. The scheduler exploits the ant colony optimization (ACO) meta heuristic to tackle the challenge of packet scheduling. ACO is a biologically inspired algorithm that is known to find near-optimal solutions for combinatorial optimization problems. Thus, we expect that ACO scheduling produces more efficient schedules than comparable deterministic scheduling approaches at the expenses of a computational overhead it introduces. We compare ACO scheduling relevant deterministic scheduling approaches, and in particular the MLLF scheduler that is specifically designed for the needs of compressed multimedia applications. The purpose of the evaluation is twofold. It allows to draw conclusions on the feasibility of ACO scheduling for multimedia traffic while it serves as a benchmark to determine to what extent deterministic schedulers fall short of a near-optimal solution.
Hybrid Verification of an Air Traffic Operational Concept
NASA Technical Reports Server (NTRS)
Munoz, Cesar A.
2005-01-01
A concept of operations for air traffic management consists of a set of flight rules and procedures aimed to keep aircraft safely separated. This paper reports on the formal verification of separation properties of the NASA's Small Aircraft Transportation System, Higher Volume Operations (SATS HVO) concept for non-towered, non-radar airports. Based on a geometric description of the SATS HVO air space, we derive analytical formulas to compute spacing requirements on nominal approaches. Then, we model the operational concept by a hybrid non-deterministic asynchronous state transition system. Using an explicit state exploration technique, we show that the spacing requirements are always satisfied on nominal approaches. All the mathematical development presented in this paper has been formally verified in the Prototype Verification System (PVS). Keywords. Formal verification, hybrid systems, air traffic management, theorem proving
Facility requirements for cockpit traffic display research
NASA Technical Reports Server (NTRS)
Chappell, S. L.; Kreifeldt, J. G.
1982-01-01
It is pointed out that much research is being conducted regarding the use of a cockpit display of traffic information (CDTI) for safe and efficient air traffic flow. A CDTI is a graphic display which shows the pilot the position of other aircraft relative to his or her aircraft. The present investigation is concerned with the facility requirements for the CDTI research. The facilities currently used for this research vary in fidelity from one CDTI-equipped simulator with computer-generated traffic, to four simulators with autopilot-like controls, all having a CDTI. Three groups of subjects were employed in the conducted study. Each of the groups included one controller, and three airline and four general aviation pilots.
Theory and Simulation for Traffic Characteristics on the Highway with a Slowdown Section.
Xu, Dejie; Mao, Baohua; Rong, Yaping; Wei, Wei
2015-01-01
We study the traffic characteristics on a single-lane highway with a slowdown section using the deterministic cellular automaton (CA) model. Based on the theoretical analysis, the relationships among local mean densities, velocities, traffic fluxes, and global densities are derived. The results show that two critical densities exist in the evolutionary process of traffic state, and they are significant demarcation points for traffic phase transition. Furthermore, the changing laws of the two critical densities with different length of limit section are also investigated. It is shown that only one critical density appears if a highway is not slowdown section; nevertheless, with the growing length of slowdown section, one critical density separates into two critical densities; if the entire highway is slowdown section, they finally merge into one. The contrastive analysis proves that the analytical results are consistent with the numerical ones. PMID:26089864
Statistical properties of deterministic Bernoulli flows
Radunskaya, A.E.
1992-12-31
This thesis presents several new theorems about the stability and the statistical properties of deterministic chaotic flows. Many concrete systems known to exhibit deterministic chaos have so far been shown to be of a class known as Bernoulli Flows. This class of flows is characterized by the Finitely Determined property, which can be checked in specific cases. The first theorem says that these flows can be modeled arbitrarily well for all time by continuous-time finite state Markov processes. In other words it is theoretically possible to model the flow arbitrarily well by a computer equipped with a roulette wheel. There follows a stability result, which says that one can distort the measurements made on the processes without affecting the approximation. These results are than applied to the problem of distinguishing deterministic chaos from stochastic processes in the analysis of time series. The second part of the thesis deals with a specific set of examples. Although it has been possible to analyze specific systems to determine whether they lie in the class of Bernoulli systems, the standard techniques rely on the construction of expanding and contracting fibers in the phase space of the system. These fibers are then used to coordinatize the phase space and to prove the existence of a hyperbolic structure. Unfortunately such methods may fail in the general case, where smoothness conditions and a small singular set cannot be assumed. For example, suppose the standard billiard flow on a square table with a perfectly round obstacle, which is known to be Bernoulli, is replaced by a similar flow on a table with a bumpy fractal-like obstacle: a model perhaps closer to nature. It is shown that these fibers no longer exist and hence cannot be used in the standard manner to prove Bernoulliness or ergodicity. But, one can use the fact that the class of Bernoulli flows is closed in the d-bar metric to show that this billard flow with a bumpy obstacle is in fact Bernoulli.
Deterministic, Nanoscale Fabrication of Mesoscale Objects
Jr., R M; Gilmer, J; Rubenchik, A; Shirk, M
2004-12-08
Neither LLNL nor any other organization has the capability to perform deterministic fabrication of mm-sized objects with arbitrary, {micro}m-sized, 3-D features and with 100-nm-scale accuracy and smoothness. This is particularly true for materials such as high explosives and low-density aerogels, as well as materials such as diamond and vanadium. The motivation for this project was to investigate the physics and chemistry that control the interactions of solid surfaces with laser beams and ion beams, with a view towards their applicability to the desired deterministic fabrication processes. As part of this LDRD project, one of our goals was to advance the state of the art for experimental work, but, in order to create ultimately a deterministic capability for such precision micromachining, another goal was to form a new modeling/simulation capability that could also extend the state of the art in this field. We have achieved both goals. In this project, we have, for the first time, combined a 1-D hydrocode (''HYADES'') with a 3-D molecular dynamics simulator (''MDCASK'') in our modeling studies. In FY02 and FY03, we investigated the ablation/surface-modification processes that occur on copper, gold, and nickel substrates with the use of sub-ps laser pulses. In FY04, we investigated laser ablation of carbon, including laser-enhanced chemical reaction on the carbon surface for both vitreous carbon and carbon aerogels. Both experimental and modeling results will be presented in the report that follows. The immediate impact of our investigation was a much better understanding of the chemical and physical processes that ensure when solid materials are exposed to femtosecond laser pulses. More broadly, we have better positioned LLNL to design a cluster tool for fabricating mesoscale objects utilizing laser pulses and ion-beams as well as more traditional machining/manufacturing techniques for applications such as components in NIF targets, remote sensors, including
Simulation laboratory for evaluating dynamic traffic management systems
Ban-Akiva, M.E.; Mishalani, R.G.; Yang, Q.; Koutsopoulos, H.N.
1997-08-01
This paper presents a simulation laboratory for performance evaluation and design refinement of dynamic traffic management systems. The laboratory consists of four integrated components: (1) a traffic management simulator, which mimics the generation of route guidance and operations of traffic signals and signs; (2) a traffic flow simulator, which models individual vehicle movements and drivers` route choice decisions in the presence of real-time traffic information; (3) a surveillance system module, which collects real-time traffic data from sensors and probe vehicles in the simulated network; and (4) a control device module, which implements control strategies and route guidance generated by the traffic management system under evaluation. The simulation laboratory has been implemented in C++ using object-oriented programming and a distributed environment. It features a graphical user interface that allows users to visualize the simulation process, including animation of vehicle movements, state of surveillance sensors, traffic signals, signs, and so on. This modeling system provides a unique tool for evaluating integrated ATIS and ATMS applications in a computer-based laboratory environment.
Simple deterministically constructed cycle reservoirs with regular jumps.
Rodan, Ali; Tiňo, Peter
2012-07-01
A new class of state-space models, reservoir models, with a fixed state transition structure (the "reservoir") and an adaptable readout from the state space, has recently emerged as a way for time series processing and modeling. Echo state network (ESN) is one of the simplest, yet powerful, reservoir models. ESN models are generally constructed in a randomized manner. In our previous study (Rodan & Tiňo, 2011), we showed that a very simple, cyclic, deterministically generated reservoir can yield performance competitive with standard ESN. In this contribution, we extend our previous study in three aspects. First, we introduce a novel simple deterministic reservoir model, cycle reservoir with jumps (CRJ), with highly constrained weight values, that has superior performance to standard ESN on a variety of temporal tasks of different origin and characteristics. Second, we elaborate on the possible link between reservoir characterizations, such as eigenvalue distribution of the reservoir matrix or pseudo-Lyapunov exponent of the input-driven reservoir dynamics, and the model performance. It has been suggested that a uniform coverage of the unit disk by such eigenvalues can lead to superior model performance. We show that despite highly constrained eigenvalue distribution, CRJ consistently outperforms ESN (which has much more uniform eigenvalue coverage of the unit disk). Also, unlike in the case of ESN, pseudo-Lyapunov exponents of the selected optimal CRJ models are consistently negative. Third, we present a new framework for determining the short-term memory capacity of linear reservoir models to a high degree of precision. Using the framework, we study the effect of shortcut connections in the CRJ reservoir topology on its memory capacity. PMID:22428595
Testing for deterministic trends in global sea surface temperature
NASA Astrophysics Data System (ADS)
Barbosa, Susana
2010-05-01
The identification and estimation of trends is a frequent and fundamental task in the analysis of hydrometeorological records. The task is challenging because even time series generated by purely random processes can exhibit visually appealing trends that can be misleadingly taken as evidence of non-stationary behavior. Hydrometeorological time series exhibiting long range dependence can also exhibit trend-like features that can be mistakenly interpreted as a trend, leading to erroneous forecasts and interpretations of the variability structure of the series, particularly in terms of statistical uncertainty. In practice the overwhelming majority of trends in hydro-climatic records are reported as the slope from a linear regression model. It is therefore important to assess when a linear regression model is a reasonable description for a time series. One could think that if a derived slope is statistically significant, particularly if inference is performed carefully, the linear regression model would be appropriate. However, stochastic features, such as long-range dependence can produce statistically significant linear trends. Therefore, the plausibility of the linear regression model needs to be tested itself, in addition to testing if the trend slope is statistically significant. In this work parametric statistical tests are applied in order to evaluate the trend-stationary assumption in global sea surface temperature for the period from January 1900 to December 2008. The fit of a linear deterministic model to the spatially-averaged global mean SST series yields a statistically significant positive slope, suggesting an increasing linear trend. However, statistical testing rejects the hypothesis of a deterministic linear trend with a stationary stochastic noise. This is supported by the form of the temporal structure of the detrended series, which exhibits large positive values up to lags of 5 years, indicating temporal persistence.
ERIC Educational Resources Information Center
Edwards, Arthur W.
1977-01-01
The importance of energy conservation is developed in this simulation. Children draw an automobile and then are asked to drive it through the classroom roadways. When a traffic jam results, students offer ways to eliminate it. The importance of mass transportation and car pools is stressed by the teacher. (MA)
Surface Traffic Management Research
NASA Technical Reports Server (NTRS)
Jung, Yoo Chul
2012-01-01
This presentation discusses an overview of the surface traffic management research conducted by NASA Ames. The concept and human-in-the-loop simulation of the Spot and Runway Departure Advisor (SARDA), an integrated decision support tool for the tower controllers and airline ramp operators, is also discussed.
Central limit behavior of deterministic dynamical systems
NASA Astrophysics Data System (ADS)
Tirnakli, Ugur; Beck, Christian; Tsallis, Constantino
2007-04-01
We investigate the probability density of rescaled sums of iterates of deterministic dynamical systems, a problem relevant for many complex physical systems consisting of dependent random variables. A central limit theorem (CLT) is valid only if the dynamical system under consideration is sufficiently mixing. For the fully developed logistic map and a cubic map we analytically calculate the leading-order corrections to the CLT if only a finite number of iterates is added and rescaled, and find excellent agreement with numerical experiments. At the critical point of period doubling accumulation, a CLT is not valid anymore due to strong temporal correlations between the iterates. Nevertheless, we provide numerical evidence that in this case the probability density converges to a q -Gaussian, thus leading to a power-law generalization of the CLT. The above behavior is universal and independent of the order of the maximum of the map considered, i.e., relevant for large classes of critical dynamical systems.
Deterministic multi-zone ice accretion modeling
NASA Technical Reports Server (NTRS)
Yamaguchi, K.; Hansman, R. J., Jr.; Kazmierczak, M.
1991-01-01
The study focuses on a deterministic model of the surface roughness transition behavior of glaze ice and analyzes the initial smooth/rough transition location, bead formation, and the propagation of the transition location. Based on a hypothesis that the smooth/rough transition location coincides with the laminar/turbulent boundary-layer transition location, a multizone model is implemented in the LEWICE code. In order to verify the effectiveness of the model, ice accretion predictions for simple cylinders calculated by the multizone LEWICE are compared to experimental ice shapes. The glaze ice shapes are found to be sensitive to the laminar surface roughness and bead thickness parameters controlling the transition location, while the ice shapes are found to be insensitive to the turbulent surface roughness.
Deterministic multi-zone ice accretion modeling
NASA Technical Reports Server (NTRS)
Yamaguchi, K.; Hansman, R. John, Jr.; Kazmierczak, Michael
1991-01-01
The focus here is on a deterministic model of the surface roughness transition behavior of glaze ice. The initial smooth/rough transition location, bead formation, and the propagation of the transition location are analyzed. Based on the hypothesis that the smooth/rough transition location coincides with the laminar/turbulent boundary layer transition location, a multizone model is implemented in the LEWICE code. In order to verify the effectiveness of the model, ice accretion predictions for simple cylinders calculated by the multizone LEWICE are compared to experimental ice shapes. The glaze ice shapes are found to be sensitive to the laminar surface roughness and bead thickness parameters controlling the transition location, while the ice shapes are found to be insensitive to the turbulent surface roughness.
Fast combinatorial optimization using generalized deterministic annealing
NASA Astrophysics Data System (ADS)
Acton, Scott T.; Ghosh, Joydeep; Bovik, Alan C.
1993-08-01
Generalized Deterministic Annealing (GDA) is a useful new tool for computing fast multi-state combinatorial optimization of difficult non-convex problems. By estimating the stationary distribution of simulated annealing (SA), GDA yields equivalent solutions to practical SA algorithms while providing a significant speed improvement. Using the standard GDA, the computational time of SA may be reduced by an order of magnitude, and, with a new implementation improvement, Windowed GDA, the time improvements reach two orders of magnitude with a trivial compromise in solution quality. The fast optimization of GDA has enabled expeditious computation of complex nonlinear image enhancement paradigms, such as the Piecewise Constant (PICO) regression examples used in this paper. To validate our analytical results, we apply GDA to the PICO regression problem and compare the results to other optimization methods. Several full image examples are provided that show successful PICO image enhancement using GDA in the presence of both Laplacian and Gaussian additive noise.
Deterministic polishing from theory to practice
NASA Astrophysics Data System (ADS)
Hooper, Abigail R.; Hoffmann, Nathan N.; Sarkas, Harry W.; Escolas, John; Hobbs, Zachary
2015-10-01
Improving predictability in optical fabrication can go a long way towards increasing profit margins and maintaining a competitive edge in an economic environment where pressure is mounting for optical manufacturers to cut costs. A major source of hidden cost is rework - the share of production that does not meet specification in the first pass through the polishing equipment. Rework substantially adds to the part's processing and labor costs as well as bottlenecks in production lines and frustration for managers, operators and customers. The polishing process consists of several interacting variables including: glass type, polishing pads, machine type, RPM, downforce, slurry type, baume level and even the operators themselves. Adjusting the process to get every variable under control while operating in a robust space can not only provide a deterministic polishing process which improves profitability but also produces a higher quality optic.
Targeted activation in deterministic and stochastic systems
NASA Astrophysics Data System (ADS)
Eisenhower, Bryan; Mezić, Igor
2010-02-01
Metastable escape is ubiquitous in many physical systems and is becoming a concern in engineering design as these designs (e.g., swarms of vehicles, coupled building energetics, nanoengineering, etc.) become more inspired by dynamics of biological, molecular and other natural systems. In light of this, we study a chain of coupled bistable oscillators which has two global conformations and we investigate how specialized or targeted disturbance is funneled in an inverse energy cascade and ultimately influences the transition process between the conformations. We derive a multiphase averaged approximation to these dynamics which illustrates the influence of actions in modal coordinates on the coarse behavior of this process. An activation condition that predicts how the disturbance influences the rate of transition is then derived. The prediction tools are derived for deterministic dynamics and we also present analogous behavior in the stochastic setting and show a divergence from Kramers activation behavior under targeted activation conditions.
Deterministic-random separation in nonstationary regime
NASA Astrophysics Data System (ADS)
Abboud, D.; Antoni, J.; Sieg-Zieba, S.; Eltabach, M.
2016-02-01
In rotating machinery vibration analysis, the synchronous average is perhaps the most widely used technique for extracting periodic components. Periodic components are typically related to gear vibrations, misalignments, unbalances, blade rotations, reciprocating forces, etc. Their separation from other random components is essential in vibration-based diagnosis in order to discriminate useful information from masking noise. However, synchronous averaging theoretically requires the machine to operate under stationary regime (i.e. the related vibration signals are cyclostationary) and is otherwise jeopardized by the presence of amplitude and phase modulations. A first object of this paper is to investigate the nature of the nonstationarity induced by the response of a linear time-invariant system subjected to speed varying excitation. For this purpose, the concept of a cyclo-non-stationary signal is introduced, which extends the class of cyclostationary signals to speed-varying regimes. Next, a "generalized synchronous average'' is designed to extract the deterministic part of a cyclo-non-stationary vibration signal-i.e. the analog of the periodic part of a cyclostationary signal. Two estimators of the GSA have been proposed. The first one returns the synchronous average of the signal at predefined discrete operating speeds. A brief statistical study of it is performed, aiming to provide the user with confidence intervals that reflect the "quality" of the estimator according to the SNR and the estimated speed. The second estimator returns a smoothed version of the former by enforcing continuity over the speed axis. It helps to reconstruct the deterministic component by tracking a specific trajectory dictated by the speed profile (assumed to be known a priori).The proposed method is validated first on synthetic signals and then on actual industrial signals. The usefulness of the approach is demonstrated on envelope-based diagnosis of bearings in variable
Pedestrians. Traffic Safety Facts, 2000.
ERIC Educational Resources Information Center
National Highway Traffic Safety Administration (DOT), Washington, DC.
This document provides statistical information on U.S. traffic accidents involving pedestrians. Data tables include: (1) trends in pedestrian and total traffic fatalities, 1990-2000; (2) pedestrians killed and injured, by age group, 2000; (3) non-occupant traffic fatalities, 1990-2000; (4) pedestrian fatalities, by time of day and day of week,…
Traffic Safety Facts, 2001: Pedestrians.
ERIC Educational Resources Information Center
National Highway Traffic Safety Administration (DOT), Washington, DC.
This document provides statistical information on U.S. traffic accidents involving pedestrians. Data tables include: (1) trends in pedestrian and total traffic fatalities, 1991-2001; (2) pedestrians killed and injured, by age group, 2001; (3) non-occupant traffic fatalities, 1991-2001; (4) pedestrian fatalities, by time of day and day of week,…
Traffic flow theory and characteristics
Hauer, E.; Pagitsas, E.; Shin, B.T.; Maze, T.H.; Hurley, J.W. Jr.
1981-01-01
Estimation of turning flows from automatic counts; a probabilistic model of gap acceptance behavior; sensitivity of fuel-consumption and delay values from traffic simulation; traffic data acquisition from small-format photography; decentralized control of congested street networks; improved estimation of traffic flow for real-time control; Maxband, a program for setting signals on arteries and triangular networks are discussed.
Calculation of photon pulse height distribution using deterministic and Monte Carlo methods
NASA Astrophysics Data System (ADS)
Akhavan, Azadeh; Vosoughi, Naser
2015-12-01
Radiation transport techniques which are used in radiation detection systems comprise one of two categories namely probabilistic and deterministic. However, probabilistic methods are typically used in pulse height distribution simulation by recreating the behavior of each individual particle, the deterministic approach, which approximates the macroscopic behavior of particles by solution of Boltzmann transport equation, is being developed because of its potential advantages in computational efficiency for complex radiation detection problems. In current work linear transport equation is solved using two methods including collided components of the scalar flux algorithm which is applied by iterating on the scattering source and ANISN deterministic computer code. This approach is presented in one dimension with anisotropic scattering orders up to P8 and angular quadrature orders up to S16. Also, multi-group gamma cross-section library required for this numerical transport simulation is generated in a discrete appropriate form. Finally, photon pulse height distributions are indirectly calculated by deterministic methods that approvingly compare with those from Monte Carlo based codes namely MCNPX and FLUKA.
Stochastic Model of Traffic Jam and Traffic Signal Control
NASA Astrophysics Data System (ADS)
Shin, Ji-Sun; Cui, Cheng-You; Lee, Tae-Hong; Lee, Hee-Hyol
Traffic signal control is an effective method to solve the traffic jam. and forecasting traffic density has been known as an important part of the Intelligent Transportation System (ITS). The several methods of the traffic signal control are known such as random walk method, Neuron Network method, Bayesian Network method, and so on. In this paper, we propose a new method of a traffic signal control using a predicted distribution of traffic jam based on a Dynamic Bayesian Network model. First, a forecasting model to predict a probabilistic distribution of the traffic jam during each period of traffic lights is built. As the forecasting model, the Dynamic Bayesian Network is used to predict the probabilistic distribution of a density of the traffic jam. According to measurement of two crossing points for each cycle, the inflow and outflow of each direction and the number of standing vehicles at former cycle are obtained. The number of standing vehicle at k-th cycle will be calculated synchronously. Next, the probabilistic distribution of the density of standing vehicle in each cycle will be predicted using the Dynamic Bayesian Network constructed for the traffic jam. And then a control rule to adjust the split and the cycle to increase the probability between a lower limit and ceiling of the standing vehicles is deduced. As the results of the simulation using the actual traffic data of Kitakyushu city, the effectiveness of the method is shown.
Deterministic and non-deterministic switching in chains of magnetic hysterons.
Tanasa, R; Stancu, A
2011-10-26
This paper presents a fundamental analysis of a single-domain ferromagnetic particles chain hysteresis in perpendicular geometry as a prototype for ultra-high density memories. Due to magnetostatic long range interactions the system has a complex hysteresis but stable features can be found. The loop has a number of deterministic Barkhausen jumps and consequently a number of stable plateaus that could be used in multistate memories. The fundamental elements that sustain this behavior are shown and discussed. PMID:21969255
Identifying MMORPG Bots: A Traffic Analysis Approach
NASA Astrophysics Data System (ADS)
Chen, Kuan-Ta; Jiang, Jhih-Wei; Huang, Polly; Chu, Hao-Hua; Lei, Chin-Laung; Chen, Wen-Chin
2008-12-01
Massively multiplayer online role playing games (MMORPGs) have become extremely popular among network gamers. Despite their success, one of MMORPG's greatest challenges is the increasing use of game bots, that is, autoplaying game clients. The use of game bots is considered unsportsmanlike and is therefore forbidden. To keep games in order, game police, played by actual human players, often patrol game zones and question suspicious players. This practice, however, is labor-intensive and ineffective. To address this problem, we analyze the traffic generated by human players versus game bots and propose general solutions to identify game bots. Taking Ragnarok Online as our subject, we study the traffic generated by human players and game bots. We find that their traffic is distinguishable by 1) the regularity in the release time of client commands, 2) the trend and magnitude of traffic burstiness in multiple time scales, and 3) the sensitivity to different network conditions. Based on these findings, we propose four strategies and two ensemble schemes to identify bots. Finally, we discuss the robustness of the proposed methods against countermeasures of bot developers, and consider a number of possible ways to manage the increasingly serious bot problem.
Highway traffic noise prediction based on GIS
NASA Astrophysics Data System (ADS)
Zhao, Jianghua; Qin, Qiming
2014-05-01
Before building a new road, we need to predict the traffic noise generated by vehicles. Traditional traffic noise prediction methods are based on certain locations and they are not only time-consuming, high cost, but also cannot be visualized. Geographical Information System (GIS) can not only solve the problem of manual data processing, but also can get noise values at any point. The paper selected a road segment from Wenxi to Heyang. According to the geographical overview of the study area and the comparison between several models, we combine the JTG B03-2006 model and the HJ2.4-2009 model to predict the traffic noise depending on the circumstances. Finally, we interpolate the noise values at each prediction point and then generate contours of noise. By overlaying the village data on the noise contour layer, we can get the thematic maps. The use of GIS for road traffic noise prediction greatly facilitates the decision-makers because of GIS spatial analysis function and visualization capabilities. We can clearly see the districts where noise are excessive, and thus it becomes convenient to optimize the road line and take noise reduction measures such as installing sound barriers and relocating villages and so on.
Expanding Regional Airport Usage to Accommodate Increased Air Traffic Demand
NASA Technical Reports Server (NTRS)
Russell, Carl R.
2009-01-01
Small regional airports present an underutilized source of capacity in the national air transportation system. This study sought to determine whether a 50 percent increase in national operations could be achieved by limiting demand growth at large hub airports and instead growing traffic levels at the surrounding regional airports. This demand scenario for future air traffic in the United States was generated and used as input to a 24-hour simulation of the national airspace system. Results of the demand generation process and metrics predicting the simulation results are presented, in addition to the actual simulation results. The demand generation process showed that sufficient runway capacity exists at regional airports to offload a significant portion of traffic from hub airports. Predictive metrics forecast a large reduction of delays at most major airports when demand is shifted. The simulation results then show that offloading hub traffic can significantly reduce nationwide delays.
The seismic traffic footprint: Tracking trains, aircraft, and cars seismically
NASA Astrophysics Data System (ADS)
Riahi, Nima; Gerstoft, Peter
2015-04-01
Although naturally occurring vibrations have proven useful to probe the subsurface, the vibrations caused by traffic have not been explored much. Such data, however, are less sensitive to weather and low visibility compared to some common out-of-road traffic sensing systems. We study traffic-generated seismic noise measured by an array of 5200 geophones that covered a 7 × 10 km area in Long Beach (California, USA) with a receiver spacing of 100 m. This allows us to look into urban vibrations below the resolution of a typical city block. The spatiotemporal structure of the anthropogenic seismic noise intensity reveals the Blue Line Metro train activity, departing and landing aircraft in Long Beach Airport and their acceleration, and gives clues about traffic movement along the I-405 highway at night. As low-cost, stand-alone seismic sensors are becoming more common, these findings indicate that seismic data may be useful for traffic monitoring.
Scan power-aware deterministic test scheme using a low-transition linear decompressor
NASA Astrophysics Data System (ADS)
Wang, Weizheng; Shuo, Cai; Xiang, Lingyun
2015-04-01
Growing test data volume and excessive testing power are both serious challenges in the testing of very large-scale integrated circuits. This article presents a scan power-aware deterministic test method based on a new linear decompressor which is composed of a traditional linear decompressor, k-input AND gates and T flip-flops. This decompression architecture can generate the low-transition deterministic test set for a circuit under test. When applying the test patterns generated by the linear decompressor, only a few transitions occur in the scan chains, and hence the switching activity during testing decreases significantly. Entire test flow compatible with the design is also presented. Experimental results on several large International Symposium on Circuits and Systems'89 and International Test Conference'99 benchmark circuits demonstrate that the proposed methodology can reduce test power significantly while providing a high compression ratio with limited hardware overhead.
Russell, A C; Hsieh, W L; Chen, K C; Heikenfeld, J
2015-01-13
Dielectrowetting effects of surface wrinkling, isotropic vs anisotropic spreading, electrode geometry, and deterministic dewetting are presented both experimentally and by 3D numerical modeling. The numerical results are generated by COMSOL in conjunction with the phase-field and electrohydrodynamic methods, including comparisons to experimental data. The dynamic behavior of the two-phase system has been accurately characterized on both the macro- and microscopic level. This work provides a deeper theoretical insight into the operating physics of dielectrowetting superspreading devices. PMID:25483348
Applications of the 3-D Deterministic Transport Code Attlla for Core Safety Analysis
D. S. Lucas
2004-10-01
An LDRD (Laboratory Directed Research and Development) project is ongoing at the Idaho National Engineering and Environmental Laboratory (INEEL) for applying the three-dimensional multi-group deterministic neutron transport code (Attila®) to criticality, flux and depletion calculations of the Advanced Test Reactor (ATR). This paper discusses the model development, capabilities of Attila, generation of the cross-section libraries, and comparisons to an ATR MCNP model and future.
Applications of the 3-D Deterministic Transport Attila{reg_sign} for Core Safety Analysis
Lucas, D.S.; Gougar, D.; Roth, P.A.; Wareing, T.; Failla, G.; McGhee, J.; Barnett, A.
2004-10-06
An LDRD (Laboratory Directed Research and Development) project is ongoing at the Idaho National Engineering and Environmental Laboratory (INEEL) for applying the three-dimensional multi-group deterministic neutron transport code (Attila{reg_sign}) to criticality, flux and depletion calculations of the Advanced Test Reactor (ATR). This paper discusses the model development, capabilities of Attila, generation of the cross-section libraries, and comparisons to an ATR MCNP model and future.
Modeling traffic on crossroads
NASA Astrophysics Data System (ADS)
Wastavino, L. A.; Toledo, B. A.; Rogan, J.; Zarama, R.; Muñoz, V.; Valdivia, J. A.
2007-07-01
A simplified traffic model is studied, consisting of two vehicles traveling through a sequence of crossroads regulated by yield signs. A car approaching a yield sign stops if, in the other street, there is a car closer than a certain distance xtol from the intersection. It is shown that the function which maps the state of the vehicles displays a period doubling transition to chaos. An interesting feature of the dynamics is that for extremely cautious drivers ( xtol too large), the map turns chaotic, thus becoming a potential source of emergent jams. Complex behavior such as the one observed in this simple system seems to be an essential ingredient in traffic patterns, and could be of relevance in studying actual crossroads situations.
NASA Astrophysics Data System (ADS)
Beckenbauer, Thomas
Road traffic is the most interfering noise source in developed countries. According to a publication of the European Union (EU) at the end of the twentieth century [1], about 40% of the population in 15 EU member states is exposed to road traffic noise at mean levels exceeding 55 dB(A). Nearly 80 million people, 20% of the population, are exposed to levels exceeding 65 dB(A) during daytime and more than 30% of the population is exposed to levels exceeding 55 dB(A) during night time. Such high noise levels cause health risks and social disorders (aggressiveness, protest, and helplessness), interference of communication and disturbance of sleep; the long- and short-term consequences cause adverse cardiovascular effects, detrimental hormonal responses (stress hormones), and possible disturbance of the human metabolism (nutrition) and the immune system. Even performance at work and school could be impaired.
NASA Astrophysics Data System (ADS)
Davis, L. C.
2015-03-01
The Texas A&M Transportation Institute estimated that traffic congestion cost the United States 121 billion in 2011 (the latest data available). The cost is due to wasted time and fuel. In addition to accidents and road construction, factors contributing to congestion include large demand, instability of high-density free flow and selfish behavior of drivers, which produces self-organized traffic bottlenecks. Extensive data collected on instrumented highways in various countries have led to a better understanding of traffic dynamics. From these measurements, Boris Kerner and colleagues developed a new theory called three-phase theory. They identified three major phases of flow observed in the data: free flow, synchronous flow and wide moving jams. The intermediate phase is called synchronous because vehicles in different lanes tend to have similar velocities. This congested phase, characterized by lower velocities yet modestly high throughput, frequently occurs near on-ramps and lane reductions. At present there are only two widely used methods of congestion mitigation: ramp metering and the display of current travel-time information to drivers. To find more effective methods to reduce congestion, researchers perform large-scale simulations using models based on the new theories. An algorithm has been proposed to realize Wardrop equilibria with real-time route information. Such equilibria have equal travel time on alternative routes between a given origin and destination. An active area of current research is the dynamics of connected vehicles, which communicate wirelessly with other vehicles and the surrounding infrastructure. These systems show great promise for improving traffic flow and safety.
NASA Astrophysics Data System (ADS)
Davis, L. Craig
2006-03-01
Congestion in freeway traffic is an example of self-organization in the language of complexity theory. Nonequilibrium, first-order phase transitions from free flow cause complex spatiotemporal patterns. Two distinct phases of congestion are observed in empirical traffic data--wide moving jams and synchronous flow. Wide moving jams are characterized by stopped or slowly moving vehicles within the jammed region, which widens and moves upstream at 15-20 km/h. Above a critical density of vehicles, a sudden decrease in the velocity of a lead vehicle can initiate a transition from metastable states to this phase. Human behaviors, especially delayed reactions, are implicated in the formation of jams. The synchronous flow phase results from a bottleneck such as an on-ramp. Thus, in contrast to a jam, the downstream front is pinned at a fixed location. The name of the phase comes from the equilibration (or synchronization) of speed and flow rate across all lanes caused by frequent vehicle lane changes. Synchronous flow occurs when the mainline flow and the rate of merging from an on-ramp are sufficiently large. Large-scale simulations using car-following models reproduce the physical phenomena occurring in traffic and suggest methods to improve flow and mediate congestion.
Simple Deterministically Constructed Recurrent Neural Networks
NASA Astrophysics Data System (ADS)
Rodan, Ali; Tiňo, Peter
A large number of models for time series processing, forecasting or modeling follows a state-space formulation. Models in the specific class of state-space approaches, referred to as Reservoir Computing, fix their state-transition function. The state space with the associated state transition structure forms a reservoir, which is supposed to be sufficiently complex so as to capture a large number of features of the input stream that can be potentially exploited by the reservoir-to-output readout mapping. The largely "black box" character of reservoirs prevents us from performing a deeper theoretical investigation of the dynamical properties of successful reservoirs. Reservoir construction is largely driven by a series of (more-or-less) ad-hoc randomized model building stages, with both the researchers and practitioners having to rely on a series of trials and errors. We show that a very simple deterministically constructed reservoir with simple cycle topology gives performances comparable to those of the Echo State Network (ESN) on a number of time series benchmarks. Moreover, we argue that the memory capacity of such a model can be made arbitrarily close to the proved theoretical limit.
Deterministic particle transport in a ratchet flow
NASA Astrophysics Data System (ADS)
Beltrame, Philippe; Makhoul, Mounia; Joelson, Maminirina
2016-01-01
This study is motivated by the issue of the pumping of particle through a periodic modulated channel. We focus on a simplified deterministic model of small inertia particles within the Stokes flow framework that we call "ratchet flow." A path-following method is employed in the parameter space in order to retrace the scenario which from bounded periodic solutions leads to particle transport. Depending on whether the magnitude of the particle drag is moderate or large, two main transport mechanisms are identified in which the role of the parity symmetry of the flow differs. For large drag, transport is induced by flow asymmetry, while for moderate drag, since the full transport solution bifurcation structure already exists for symmetric settings, flow asymmetry only makes the transport effective. We analyzed the scenarios of current reversals for each mechanism as well as the role of synchronization. In particular we show that, for large drag, the particle drift is similar to phase slip in a synchronization problem.
Urban daytime traffic noise prediction models.
da Paz, Elaine Carvalho; Zannin, Paulo Henrique Trombetta
2010-04-01
An evaluation was made of the acoustic environment generated by an urban highway using in situ measurements. Based on the data collected, a mathematical model was designed for the main sound levels (L (eq), L (10), L (50), and L (90)) as a function of the correlation between sound levels and between the equivalent sound pressure level and traffic variables. Four valid groups of mathematical models were generated to calculate daytime sound levels, which were statistically validated. It was found that the new models can be considered as accurate as other models presented in the literature to assess and predict daytime traffic noise, and that they stand out and differ from the existing models described in the literature thanks to two characteristics, namely, their linearity and the application of class intervals. PMID:19353296
Stochastic and Deterministic Assembly Processes in Subsurface Microbial Communities
Stegen, James C.; Lin, Xueju; Konopka, Allan; Fredrickson, Jim K.
2012-03-29
A major goal of microbial community ecology is to understand the forces that structure community composition. Deterministic selection by specific environmental factors is sometimes important, but in other cases stochastic or ecologically neutral processes dominate. Lacking is a unified conceptual framework aiming to understand why deterministic processes dominate in some contexts but not others. Here we work towards such a framework. By testing predictions derived from general ecological theory we aim to uncover factors that govern the relative influences of deterministic and stochastic processes. We couple spatiotemporal data on subsurface microbial communities and environmental parameters with metrics and null models of within and between community phylogenetic composition. Testing for phylogenetic signal in organismal niches showed that more closely related taxa have more similar habitat associations. Community phylogenetic analyses further showed that ecologically similar taxa coexist to a greater degree than expected by chance. Environmental filtering thus deterministically governs subsurface microbial community composition. More importantly, the influence of deterministic environmental filtering relative to stochastic factors was maximized at both ends of an environmental variation gradient. A stronger role of stochastic factors was, however, supported through analyses of phylogenetic temporal turnover. While phylogenetic turnover was on average faster than expected, most pairwise comparisons were not themselves significantly non-random. The relative influence of deterministic environmental filtering over community dynamics was elevated, however, in the most temporally and spatially variable environments. Our results point to general rules governing the relative influences of stochastic and deterministic processes across micro- and macro-organisms.
Observations on traffic flow patterns and traffic engineering practice
NASA Astrophysics Data System (ADS)
Wang, Feng; Gao, Lixin
2002-07-01
Border Gateway Protocol allows ASs to apply diverse routing policies for selecting routes and propagating reachability information to other ASs. This enables network operators to configure routing policies so as to control traffic flows between ASs. However, BGP is not designed for the inter-AS traffic engineering. This makes it difficult to implement effective routing policies to address network performance and utilization problems. Network operators usually tweak routing policies to influence the inter-domain traffic among the available links. This can lead to undesirable traffic flow patterns across the Internet and degrade the Internet traffic performance. In this paper, we show several observations on Internet traffic flow patterns and derive routing policies that give rise to the traffic flow patterns. Our results show that an AS can reach as much as 20% of the prefixes via a peer link even though there is a path via a customer link. In addition, an AS can reach as much as 80% of the prefixes via a provider link even though there is a path via a peer link. Second, we analyze the cause of the prevalence of these traffic patterns. Our analysis shows that an AS typically does not receive the potential route from its customers or peers. Third, we find that alternate routes have with lower propagation delay than the chosen routes for some prefixes. This shows that some traffic engineering practices might adversely affect Internet performance.
Nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates
Melechko, Anatoli V.; McKnight, Timothy E. , Guillorn, Michael A.; Ilic, Bojan; Merkulov, Vladimir I.; Doktycz, Mitchel J.; Lowndes, Douglas H.; Simpson, Michael L.
2011-05-17
Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. A method includes depositing a catalyst particle on a surface of a substrate to define a deterministically located position; growing an aligned elongated nanostructure on the substrate, an end of the aligned elongated nanostructure coupled to the substrate at the deterministically located position; coating the aligned elongated nanostructure with a conduit material; removing a portion of the conduit material to expose the catalyst particle; removing the catalyst particle; and removing the elongated nanostructure to define a nanoconduit.
Surface plasmon field enhancements in deterministic aperiodic structures.
Shugayev, Roman
2010-11-22
In this paper we analyze optical properties and plasmonic field enhancements in large aperiodic nanostructures. We introduce extension of Generalized Ohm's Law approach to estimate electromagnetic properties of Fibonacci, Rudin-Shapiro, cluster-cluster aggregate and random deterministic clusters. Our results suggest that deterministic aperiodic structures produce field enhancements comparable to random morphologies while offering better understanding of field localizations and improved substrate design controllability. Generalized Ohm's law results for deterministic aperiodic structures are in good agreement with simulations obtained using discrete dipole method. PMID:21164839
Air-Traffic Controllers Evaluate The Descent Advisor
NASA Technical Reports Server (NTRS)
Tobias, Leonard; Volckers, Uwe; Erzberger, Heinz
1992-01-01
Report describes study of Descent Advisor algorithm: software automation aid intended to assist air-traffic controllers in spacing traffic and meeting specified times or arrival. Based partly on mathematical models of weather conditions and performances of aircraft, it generates suggested clearances, including top-of-descent points and speed-profile data to attain objectives. Study focused on operational characteristics with specific attention to how it can be used for prediction, spacing, and metering.
Deterministic, Nanoscale Fabrication of Mesoscale Objects
Jr., R M; Shirk, M; Gilmer, G; Rubenchik, A
2004-09-24
Neither LLNL nor any other organization has the capability to perform deterministic fabrication of mm-sized objects with arbitrary, {micro}m-sized, 3-dimensional features with 20-nm-scale accuracy and smoothness. This is particularly true for materials such as high explosives and low-density aerogels. For deterministic fabrication of high energy-density physics (HEDP) targets, it will be necessary both to fabricate features in a wide variety of materials as well as to understand and simulate the fabrication process. We continue to investigate, both in experiment and in modeling, the ablation/surface-modification processes that occur with the use of laser pulses that are near the ablation threshold fluence. During the first two years, we studied ablation of metals, and we used sub-ps laser pulses, because pulses shorter than the electron-phonon relaxation time offered the most precise control of the energy that can be deposited into a metal surface. The use of sub-ps laser pulses also allowed a decoupling of the energy-deposition process from the ensuing movement/ablation of the atoms from the solid, which simplified the modeling. We investigated the ablation of material from copper, gold, and nickel substrates. We combined the power of the 1-D hydrocode ''HYADES'' with the state-of-the-art, 3-D molecular dynamics simulations ''MDCASK'' in our studies. For FY04, we have stretched ourselves to investigate laser ablation of carbon, including chemically-assisted processes. We undertook this research, because the energy deposition that is required to perform direct sublimation of carbon is much higher than that to stimulate the reaction 2C + O{sub 2} => 2CO. Thus, extremely fragile carbon aerogels might survive the chemically-assisted process more readily than ablation via direct laser sublimation. We had planned to start by studying vitreous carbon and move onto carbon aerogels. We were able to obtain flat, high-quality vitreous carbon, which was easy to work on
The Total Exposure Model (TEM) uses deterministic and stochastic methods to estimate the exposure of a person performing daily activities of eating, drinking, showering, and bathing. There were 250 time histories generated, by subject with activities, for the three exposure ro...
Deterministic Function Computation with Chemical Reaction Networks*
Chen, Ho-Lin; Doty, David; Soloveichik, David
2013-01-01
Chemical reaction networks (CRNs) formally model chemistry in a well-mixed solution. CRNs are widely used to describe information processing occurring in natural cellular regulatory networks, and with upcoming advances in synthetic biology, CRNs are a promising language for the design of artificial molecular control circuitry. Nonetheless, despite the widespread use of CRNs in the natural sciences, the range of computational behaviors exhibited by CRNs is not well understood. CRNs have been shown to be efficiently Turing-universal (i.e., able to simulate arbitrary algorithms) when allowing for a small probability of error. CRNs that are guaranteed to converge on a correct answer, on the other hand, have been shown to decide only the semilinear predicates (a multi-dimensional generalization of “eventually periodic” sets). We introduce the notion of function, rather than predicate, computation by representing the output of a function f : ℕk → ℕl by a count of some molecular species, i.e., if the CRN starts with x1, …, xk molecules of some “input” species X1, …, Xk, the CRN is guaranteed to converge to having f(x1, …, xk) molecules of the “output” species Y1, …, Yl. We show that a function f : ℕk → ℕl is deterministically computed by a CRN if and only if its graph {(x, y) ∈ ℕk × ℕl ∣ f(x) = y} is a semilinear set. Finally, we show that each semilinear function f (a function whose graph is a semilinear set) can be computed by a CRN on input x in expected time O(polylog ∥x∥1). PMID:25383068
Reproducible and deterministic production of aspheres
NASA Astrophysics Data System (ADS)
Leitz, Ernst Michael; Stroh, Carsten; Schwalb, Fabian
2015-10-01
Aspheric lenses are ground in a single point cutting mode. Subsequently different iterative polishing methods are applied followed by aberration measurements on external metrology instruments. For an economical production, metrology and correction steps need to be reduced. More deterministic grinding and polishing is mandatory. Single point grinding is a path-controlled process. The quality of a ground asphere is mainly influenced by the accuracy of the machine. Machine improvements must focus on path accuracy and thermal expansion. Optimized design, materials and thermal management reduce thermal expansion. The path accuracy can be improved using ISO 230-2 standardized measurements. Repeated interferometric measurements over the total travel of all CNC axes in both directions are recorded. Position deviations evaluated in correction tables improve the path accuracy and that of the ground surface. Aspheric polishing using a sub-aperture flexible polishing tool is a dwell time controlled process. For plano and spherical polishing the amount of material removal during polishing is proportional to pressure, relative velocity and time (Preston). For the use of flexible tools on aspheres or freeform surfaces additional non-linear components are necessary. Satisloh ADAPT calculates a predicted removal function from lens geometry, tool geometry and process parameters with FEM. Additionally the tooĺs local removal characteristics is determined in a simple test. By oscillating the tool on a plano or spherical sample of the same lens material, a trench is created. Its 3-D profile is measured to calibrate the removal simulation. Remaining aberrations of the desired lens shape can be predicted, reducing iteration and metrology steps.
Deterministic versus stochastic trends: Detection and challenges
NASA Astrophysics Data System (ADS)
Fatichi, S.; Barbosa, S. M.; Caporali, E.; Silva, M. E.
2009-09-01
The detection of a trend in a time series and the evaluation of its magnitude and statistical significance is an important task in geophysical research. This importance is amplified in climate change contexts, since trends are often used to characterize long-term climate variability and to quantify the magnitude and the statistical significance of changes in climate time series, both at global and local scales. Recent studies have demonstrated that the stochastic behavior of a time series can change the statistical significance of a trend, especially if the time series exhibits long-range dependence. The present study examines the trends in time series of daily average temperature recorded in 26 stations in the Tuscany region (Italy). In this study a new framework for trend detection is proposed. First two parametric statistical tests, the Phillips-Perron test and the Kwiatkowski-Phillips-Schmidt-Shin test, are applied in order to test for trend stationary and difference stationary behavior in the temperature time series. Then long-range dependence is assessed using different approaches, including wavelet analysis, heuristic methods and by fitting fractionally integrated autoregressive moving average models. The trend detection results are further compared with the results obtained using nonparametric trend detection methods: Mann-Kendall, Cox-Stuart and Spearman's ρ tests. This study confirms an increase in uncertainty when pronounced stochastic behaviors are present in the data. Nevertheless, for approximately one third of the analyzed records, the stochastic behavior itself cannot explain the long-term features of the time series, and a deterministic positive trend is the most likely explanation.
Understanding Vertical Jump Potentiation: A Deterministic Model.
Suchomel, Timothy J; Lamont, Hugh S; Moir, Gavin L
2016-06-01
This review article discusses previous postactivation potentiation (PAP) literature and provides a deterministic model for vertical jump (i.e., squat jump, countermovement jump, and drop/depth jump) potentiation. There are a number of factors that must be considered when designing an effective strength-power potentiation complex (SPPC) focused on vertical jump potentiation. Sport scientists and practitioners must consider the characteristics of the subject being tested and the design of the SPPC itself. Subject characteristics that must be considered when designing an SPPC focused on vertical jump potentiation include the individual's relative strength, sex, muscle characteristics, neuromuscular characteristics, current fatigue state, and training background. Aspects of the SPPC that must be considered for vertical jump potentiation include the potentiating exercise, level and rate of muscle activation, volume load completed, the ballistic or non-ballistic nature of the potentiating exercise, and the rest interval(s) used following the potentiating exercise. Sport scientists and practitioners should design and seek SPPCs that are practical in nature regarding the equipment needed and the rest interval required for a potentiated performance. If practitioners would like to incorporate PAP as a training tool, they must take the athlete training time restrictions into account as a number of previous SPPCs have been shown to require long rest periods before potentiation can be realized. Thus, practitioners should seek SPPCs that may be effectively implemented in training and that do not require excessive rest intervals that may take away from valuable training time. Practitioners may decrease the necessary time needed to realize potentiation by improving their subject's relative strength. PMID:26712510
Chang, T; Schiff, S J; Sauer, T; Gossard, J P; Burke, R E
1994-01-01
Long time series of monosynaptic Ia-afferent to alpha-motoneuron reflexes were recorded in the L7 or S1 ventral roots in the cat. Time series were collected before and after spinalization at T13 during constant amplitude stimulations of group Ia muscle afferents in the triceps surae muscle nerves. Using autocorrelation to analyze the linear correlation in the time series demonstrated oscillations in the decerebrate state (4/4) that were eliminated after spinalization (5/5). Three tests for determinism were applied to these series: 1) local flow, 2) local dispersion, and 3) nonlinear prediction. These algorithms were validated with time series generated from known deterministic equations. For each experimental and theoretical time series used, matched time-series of stochastic surrogate data were generated to serve as mathematical and statistical controls. Two of the time series collected in the decerebrate state (2/4) demonstrated evidence for deterministic structure. This structure could not be accounted for by the autocorrelation in the data, and was abolished following spinalization. None of the time series collected in the spinalized state (0/5) demonstrated evidence of determinism. Although monosynaptic reflex variability is generally stochastic in the spinalized state, this simple driven system may display deterministic behavior in the decerebrate state. Images FIGURE 1 PMID:7948680
An intelligent traffic controller
Kagolanu, K.; Fink, R.; Smartt, H.; Powell, R.; Larsen, E.
1995-12-01
A controller with advanced control logic can significantly improve traffic flows at intersections. In this vein, this paper explores fuzzy rules and algorithms to improve the intersection operation by rationalizing phase changes and green times. The fuzzy logic for control is enhanced by the exploration of neural networks for families of membership functions and for ideal cost functions. The concepts of fuzzy logic control are carried forth into the controller architecture. Finally, the architecture and the modules are discussed. In essence, the control logic and architecture of an intelligent controller are explored.
Deterministic point inclusion methods for computational applications with complex geometry
Khamayseh, Ahmed; Kuprat, Andrew P.
2008-11-21
A fundamental problem in computation is finding practical and efficient algorithms for determining if a query point is contained within a model of a three-dimensional solid. The solid is modeled using a general boundary representation that can contain polygonal elements and/or parametric patches.We have developed two such algorithms: the first is based on a global closest feature query, and the second is based on a local intersection query. Both algorithms work for two- and three-dimensional objects. This paper presents both algorithms, as well as the spatial data structures and queries required for efficient implementation of the algorithms. Applications for these algorithms include computational geometry, mesh generation, particle simulation, multiphysics coupling, and computer graphics. These methods are deterministic in that they do not involve random perturbations of diagnostic rays cast from the query point in order to avoid ‘unclean’ or ‘singular’ intersections of the rays with the geometry. Avoiding the necessity of such random perturbations will become increasingly important as geometries become more convoluted and complex.
DETERMINISTIC POINT INCLUSION METHODS FOR COMPUTATIONAL APPLICATIONS WITH COMPLEX GEOMETRY.
Khamayseh, Ahmed K; Kuprat, Andrew
2008-01-01
A fundamental problem in computation is finding practical and efficient algorithms for determining if a query point is contained within a model of a three-dimensional solid. The solid is modeled using a general boundary representation that can contain polygonal elements and/or parametric patches. We have developed two such algorithms: the first is based on a global closest feature query, and the second is based on a local intersection query. Both algorithms work for two- and three-dimensional objects. This paper presents both algorithms, as well as the spatial data structures and queries required for efficient implementation of the algorithms. Applications for these algorithms include computational geometry, mesh generation, particle simulation, multiphysics coupling, and computer graphics. These methods are deterministic in that they do not involve random perturbations of diagnostic rays cast from the query point in order to avoid "unclean" or "singular" intersections of the rays with the geometry. Avoiding the necessity of such random perturbations will become increasingly important as geometries become more convoluted and complex.
Entrepreneurs, chance, and the deterministic concentration of wealth.
Fargione, Joseph E; Lehman, Clarence; Polasky, Stephen
2011-01-01
In many economies, wealth is strikingly concentrated. Entrepreneurs--individuals with ownership in for-profit enterprises--comprise a large portion of the wealthiest individuals, and their behavior may help explain patterns in the national distribution of wealth. Entrepreneurs are less diversified and more heavily invested in their own companies than is commonly assumed in economic models. We present an intentionally simplified individual-based model of wealth generation among entrepreneurs to assess the role of chance and determinism in the distribution of wealth. We demonstrate that chance alone, combined with the deterministic effects of compounding returns, can lead to unlimited concentration of wealth, such that the percentage of all wealth owned by a few entrepreneurs eventually approaches 100%. Specifically, concentration of wealth results when the rate of return on investment varies by entrepreneur and by time. This result is robust to inclusion of realities such as differing skill among entrepreneurs. The most likely overall growth rate of the economy decreases as businesses become less diverse, suggesting that high concentrations of wealth may adversely affect a country's economic growth. We show that a tax on large inherited fortunes, applied to a small portion of the most fortunate in the population, can efficiently arrest the concentration of wealth at intermediate levels. PMID:21814540
Entrepreneurs, Chance, and the Deterministic Concentration of Wealth
Fargione, Joseph E.; Lehman, Clarence; Polasky, Stephen
2011-01-01
In many economies, wealth is strikingly concentrated. Entrepreneurs–individuals with ownership in for-profit enterprises–comprise a large portion of the wealthiest individuals, and their behavior may help explain patterns in the national distribution of wealth. Entrepreneurs are less diversified and more heavily invested in their own companies than is commonly assumed in economic models. We present an intentionally simplified individual-based model of wealth generation among entrepreneurs to assess the role of chance and determinism in the distribution of wealth. We demonstrate that chance alone, combined with the deterministic effects of compounding returns, can lead to unlimited concentration of wealth, such that the percentage of all wealth owned by a few entrepreneurs eventually approaches 100%. Specifically, concentration of wealth results when the rate of return on investment varies by entrepreneur and by time. This result is robust to inclusion of realities such as differing skill among entrepreneurs. The most likely overall growth rate of the economy decreases as businesses become less diverse, suggesting that high concentrations of wealth may adversely affect a country's economic growth. We show that a tax on large inherited fortunes, applied to a small portion of the most fortunate in the population, can efficiently arrest the concentration of wealth at intermediate levels. PMID:21814540
Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity
Lee, Jonathan C.; Cui, Shanying; Zhang, Xingyu; Russell, Kasey J.; Magyar, Andrew P.; Hu, Evelyn L.; Bracher, David O.; Ohno, Kenichi; McLellan, Claire A.; Alemán, Benjamin; Bleszynski Jayich, Ania; Andrich, Paolo; Awschalom, David; Aharonovich, Igor
2014-12-29
The negatively charged nitrogen vacancy center (NV) in diamond has generated significant interest as a platform for quantum information processing and sensing in the solid state. For most applications, high quality optical cavities are required to enhance the NV zero-phonon line (ZPL) emission. An outstanding challenge in maximizing the degree of NV-cavity coupling is the deterministic placement of NVs within the cavity. Here, we report photonic crystal nanobeam cavities coupled to NVs incorporated by a delta-doping technique that allows nanometer-scale vertical positioning of the emitters. We demonstrate cavities with Q up to ∼24 000 and mode volume V ∼ 0.47(λ/n){sup 3} as well as resonant enhancement of the ZPL of an NV ensemble with Purcell factor of ∼20. Our fabrication technique provides a first step towards deterministic NV-cavity coupling using spatial control of the emitters.
Economical Video Monitoring of Traffic
NASA Technical Reports Server (NTRS)
Houser, B. C.; Paine, G.; Rubenstein, L. D.; Parham, O. Bruce, Jr.; Graves, W.; Bradley, C.
1986-01-01
Data compression allows video signals to be transmitted economically on telephone circuits. Telephone lines transmit television signals to remote traffic-control center. Lines also carry command signals from center to TV camera and compressor at highway site. Video system with television cameras positioned at critical points on highways allows traffic controllers to determine visually, almost immediately, exact cause of traffic-flow disruption; e.g., accidents, breakdowns, or spills, almost immediately. Controllers can then dispatch appropriate emergency services and alert motorists to minimize traffic backups.
Demonstration of alternative traffic information collection and management technologies
NASA Astrophysics Data System (ADS)
Knee, Helmut E.; Smith, Cy; Black, George; Petrolino, Joe
2004-03-01
Many of the components associated with the deployment of Intelligent Transportation Systems (ITS) to support a traffic management center (TMC) such as remote control cameras, traffic speed detectors, and variable message signs, have been available for many years. Their deployment, however, has been expensive and applied primarily to freeways and interstates, and have been deployed principally in the major metropolitan areas in the US; not smaller cities. The Knoxville (Tennessee) Transportation Planning Organization is sponsoring a project that will test the integration of several technologies to estimate near-real time traffic information data and information that could eventually be used by travelers to make better and more informed decisions related to their travel needs. The uniqueness of this demonstration is that it will seek to predict traffic conditions based on cellular phone signals already being collected by cellular communications companies. Information about the average speed on various portions of local arterials and incident identification (incident location) will be collected and compared to similar data generated by "probe vehicles". Successful validation of the speed information generated from cell phone data will allow traffic data to be generated much more economically and utilize technologies that are minimally infrastructure invasive. Furthermore, when validated, traffic information could be provided to the traveling public allowing then to make better decisions about trips. More efficient trip planning and execution can reduce congestion and associated vehicle emissions. This paper will discuss the technologies, the demonstration project, the project details, and future directions.
A Method to Separate Stochastic and Deterministic Information from Electrocardiograms
NASA Astrophysics Data System (ADS)
Gutiérrez, R. M.; Sandoval, L. A.
2005-01-01
In this work we present a new idea to develop a method to separate stochastic and deterministic information contained in an electrocardiogram, ECG, which may provide new sources of information with diagnostic purposes. We assume that the ECG has information corresponding to many different processes related with the cardiac activity as well as contamination from different sources related with the measurement procedure and the nature of the observed system itself. The method starts with the application of an improved archetypal analysis to separate the mentioned stochastic and deterministic information. From the stochastic point of view we analyze Renyi entropies, and with respect to the deterministic perspective we calculate the autocorrelation function and the corresponding correlation time. We show that healthy and pathologic information may be stochastic and/or deterministic, can be identified by different measures and located in different parts of the ECG.
Integral-transport-based deterministic brachytherapy dose calculations
NASA Astrophysics Data System (ADS)
Zhou, Chuanyu; Inanc, Feyzi
2003-01-01
We developed a transport-equation-based deterministic algorithm for computing three-dimensional brachytherapy dose distributions. The deterministic algorithm has been based on the integral transport equation. The algorithm provided us with the capability of computing dose distributions for multiple isotropic point and/or volumetric sources in a homogenous/heterogeneous medium. The algorithm results have been benchmarked against the results from the literature and MCNP results for isotropic point sources and volumetric sources.
HyDRa: control of parameters for deterministic polishing.
Ruiz, E; Salas, L; Sohn, E; Luna, E; Herrera, J; Quiros, F
2013-08-26
Deterministic hydrodynamic polishing with HyDRa requires a precise control of polishing parameters, such as propelling air pressure, slurry density, slurry flux and tool height. We describe the HyDRa polishing system and prove how precise, deterministic polishing can be achieved in terms of the control of these parameters. The polishing results of an 84 cm hyperbolic mirror are presented to illustrate how the stability of these parameters is important to obtain high-quality surfaces. PMID:24105579
Large scale traffic simulations
Nagel, K.; Barrett, C.L.; Rickert, M.
1997-04-01
Large scale microscopic (i.e. vehicle-based) traffic simulations pose high demands on computational speed in at least two application areas: (i) real-time traffic forecasting, and (ii) long-term planning applications (where repeated {open_quotes}looping{close_quotes} between the microsimulation and the simulated planning of individual person`s behavior is necessary). As a rough number, a real-time simulation of an area such as Los Angeles (ca. 1 million travellers) will need a computational speed of much higher than 1 million {open_quotes}particle{close_quotes} (= vehicle) updates per second. This paper reviews how this problem is approached in different projects and how these approaches are dependent both on the specific questions and on the prospective user community. The approaches reach from highly parallel and vectorizable, single-bit implementations on parallel supercomputers for Statistical Physics questions, via more realistic implementations on coupled workstations, to more complicated driving dynamics implemented again on parallel supercomputers. 45 refs., 9 figs., 1 tab.
Structural deterministic safety factors selection criteria and verification
NASA Technical Reports Server (NTRS)
Verderaime, V.
1992-01-01
Though current deterministic safety factors are arbitrarily and unaccountably specified, its ratio is rooted in resistive and applied stress probability distributions. This study approached the deterministic method from a probabilistic concept leading to a more systematic and coherent philosophy and criterion for designing more uniform and reliable high-performance structures. The deterministic method was noted to consist of three safety factors: a standard deviation multiplier of the applied stress distribution; a K-factor for the A- or B-basis material ultimate stress; and the conventional safety factor to ensure that the applied stress does not operate in the inelastic zone of metallic materials. The conventional safety factor is specifically defined as the ratio of ultimate-to-yield stresses. A deterministic safety index of the combined safety factors was derived from which the corresponding reliability proved the deterministic method is not reliability sensitive. The bases for selecting safety factors are presented and verification requirements are discussed. The suggested deterministic approach is applicable to all NASA, DOD, and commercial high-performance structures under static stresses.
A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem
Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming
2015-01-01
Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity. PMID:26180842
A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem.
Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming
2015-01-01
Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity. PMID:26180842
Chambers, David W
2005-01-01
Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession. PMID:16623137
Graphics development of DCOR: Deterministic combat model of Oak Ridge
Hunt, G.; Azmy, Y.Y.
1992-10-01
DCOR is a user-friendly computer implementation of a deterministic combat model developed at ORNL. To make the interpretation of the results more intuitive, a conversion of the numerical solution to a graphic animation sequence of battle evolution is desirable. DCOR uses a coarse computational spatial mesh superimposed on the battlefield. This research is aimed at developing robust methods for computing the position of the combative units over the continuum (and also pixeled) battlefield, from DCOR`s discrete-variable solution representing the density of each force type evaluated at gridpoints. Three main problems have been identified and solutions have been devised and implemented in a new visualization module of DCOR. First, there is the problem of distributing the total number of objects, each representing a combative unit of each force type, among the gridpoints at each time level of the animation. This problem is solved by distributing, for each force type, the total number of combative units, one by one, to the gridpoint with the largest calculated number of units. Second, there is the problem of distributing the number of units assigned to each computational gridpoint over the battlefield area attributed to that point. This problem is solved by distributing the units within that area by taking into account the influence of surrounding gridpoints using linear interpolation. Finally, time interpolated solutions must be generated to produce a sufficient number of frames to create a smooth animation sequence. Currently, enough frames may be generated either by direct computation via the PDE solver or by using linear programming techniques to linearly interpolate intermediate frames between calculated frames.
Automatic Data Traffic Control on DSM Architecture
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Jin, Hao-Qiang; Yan, Jerry; Kwak, Dochan (Technical Monitor)
2000-01-01
We study data traffic on distributed shared memory machines and conclude that data placement and grouping improve performance of scientific codes. We present several methods which user can employ to improve data traffic in his code. We report on implementation of a tool which detects the code fragments causing data congestions and advises user on improvements of data routing in these fragments. The capabilities of the tool include deduction of data alignment and affinity from the source code; detection of the code constructs having abnormally high cache or TLB misses; generation of data placement constructs. We demonstrate the capabilities of the tool on experiments with NAS parallel benchmarks and with a simple computational fluid dynamics application ARC3D.
Toxicity of inhaled traffic related particulate matter
NASA Astrophysics Data System (ADS)
Gerlofs-Nijland, Miriam E.; Campbell, Arezoo; Miller, Mark R.; Newby, David E.; Cassee, Flemming R.
2009-02-01
Traffic generated ultrafine particulates may play a major role in the development of adverse health effects. However, little is known about harmful effects caused by recurring exposure. We hypothesized that repeated exposure to particulate matter results in adverse pulmonary and systemic toxic effects. Exposure to diesel engine exhaust resulted in signs of oxidative stress in the lung, impaired coagulation, and changes in the immune system. Pro-inflammatory cytokine levels were decreased in some regions of the brain but increased in the striatum implying that exposure to diesel engine exhaust may selectively aggravate neurological impairment. Data from these three studies suggest that exposure to traffic related PM can mediate changes in the vasculature and brain of healthy rats. To what extent these changes may contribute to chronic neurodegenerative or vascular diseases is at present unclear.
Traffic Safety for Special Children
ERIC Educational Resources Information Center
Wilson, Val; MacKenzie, R. A.
1974-01-01
In a 6 weeks' unit on traffic education using flannel graphs, filmstrips and models, 12 special class students (IQ 55-82) ages 7- to 11-years-old learned six basic skills including crossing a road, obeying traffic lights and walking on country roads. (CL)
Steering Kids to Traffic Safety.
ERIC Educational Resources Information Center
PTA Today, 1991
1991-01-01
Guidelines to help parents explain traffic safety to children cover the following: school bus safety (e.g., remain seated, do not shout); walking (e.g., obey traffic signals, cross at crosswalks); driving (e.g., wear seatbelts, enter and exit from the curb side); and biking (e.g., wear helmets, do not ride at night). (SM)
Traffic Calming: A Social Issue
ERIC Educational Resources Information Center
Crouse, David W.
2004-01-01
Substantial urban growth fueled by a strong economy often results in heavy traffic thus making streets less hospitable. Traffic calming is one response to the pervasiveness of the automobile. The issues concern built environments and involve multiple actors reflecting different interests. The issues are rarely technical and involve combinations of…
36 CFR 1004.13 - Obstructing traffic.
Code of Federal Regulations, 2010 CFR
2010-07-01
... flow of traffic. ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Obstructing traffic. 1004.13 Section 1004.13 Parks, Forests, and Public Property PRESIDIO TRUST VEHICLES AND TRAFFIC SAFETY §...
Traffic-driven epidemic spreading in correlated networks
NASA Astrophysics Data System (ADS)
Yang, Han-Xin; Tang, Ming; Lai, Ying-Cheng
2015-06-01
In spite of the extensive previous efforts on traffic dynamics and epidemic spreading in complex networks, the problem of traffic-driven epidemic spreading on correlated networks has not been addressed. Interestingly, we find that the epidemic threshold, a fundamental quantity underlying the spreading dynamics, exhibits a nonmonotonic behavior in that it can be minimized for some critical value of the assortativity coefficient, a parameter characterizing the network correlation. To understand this phenomenon, we use the degree-based mean-field theory to calculate the traffic-driven epidemic threshold for correlated networks. The theory predicts that the threshold is inversely proportional to the packet-generation rate and the largest eigenvalue of the betweenness matrix. We obtain consistency between theory and numerics. Our results may provide insights into the important problem of controlling and/or harnessing real-world epidemic spreading dynamics driven by traffic flows.
Design of automated system for management of arrival traffic
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; Nedell, William
1989-01-01
The design of an automated air traffic control system based on a hierarchy of advisory tools for controllers is described. Compatibility of the tools with the human controller, a key objective of the design, is achieved by a judicious selection of tasks to be automated and careful attention to the design of the controller system interface. The design comprises three interconnected subsystems referred to as the Traffic Management Advisor, the Descent Advisor, and the Final Approach Spacing Tool. Each of these subsystems provides a collection of tools for specific controller positions and tasks. The design of two of these tools, the Descent Advisor, which provides automation tools for managing descent traffic, and the Traffic Management Advisor, which generates optimum landing schedules is focused on. The algorithms, automation modes, and graphical interfaces incorporated in the design are described.
Traffic flow on realistic road networks with adaptive traffic lights
NASA Astrophysics Data System (ADS)
de Gier, Jan; Garoni, Timothy M.; Rojas, Omar
2011-04-01
We present a model of traffic flow on generic urban road networks based on cellular automata. We apply this model to an existing road network in the Australian city of Melbourne, using empirical data as input. For comparison, we also apply this model to a square-grid network using hypothetical input data. On both networks we compare the effects of non-adaptive versus adaptive traffic lights, in which instantaneous traffic state information feeds back into the traffic signal schedule. We observe that not only do adaptive traffic lights result in better averages of network observables, they also lead to significantly smaller fluctuations in these observables. We furthermore compare two different systems of adaptive traffic signals, one which is informed by the traffic state on both upstream and downstream links and one which is informed by upstream links only. We find that, in general, both the mean and the fluctuation of the travel time are smallest when using the joint upstream-downstream control strategy.
A deterministic, gigabit serial timing, synchronization and data link for the RHIC LLRF
Hayes, T.; Smith, K.S.; Severino, F.
2011-03-28
A critical capability of the new RHIC low level rf (LLRF) system is the ability to synchronize signals across multiple locations. The 'Update Link' provides this functionality. The 'Update Link' is a deterministic serial data link based on the Xilinx RocketIO protocol that is broadcast over fiber optic cable at 1 gigabit per second (Gbps). The link provides timing events and data packets as well as time stamp information for synchronizing diagnostic data from multiple sources. The new RHIC LLRF was designed to be a flexible, modular system. The system is constructed of numerous independent RF Controller chassis. To provide synchronization among all of these chassis, the Update Link system was designed. The Update Link system provides a low latency, deterministic data path to broadcast information to all receivers in the system. The Update Link system is based on a central hub, the Update Link Master (ULM), which generates the data stream that is distributed via fiber optic links. Downstream chassis have non-deterministic connections back to the ULM that allow any chassis to provide data that is broadcast globally.
NASA Astrophysics Data System (ADS)
Sanborn, C. J.; Fitzpatrick, M.; Cormier, V. F.
2012-12-01
The differences between earthquakes and explosions are largest in the highest recordable frequency band. In this band, scattering of elastic energy by small-scale heterogeneity (less than a wavelength) can equilibrate energy on components of motion and stabilize the behavior of the Lg wave trapped in the Earth's crust. Larger scale structure (greater than a wavelength) can still assume major control over the efficiency or blockage of the Lg and other regional/local seismic waves. We seek to model the combined effects of the large-scale (deterministic) and the small scale (statistical) structure to invert for improved structural models and to evaluate the performance of yield estimators and discriminants at selected IMS monitoring stations in Eurasia. To that end we have modified a 3-D ray tracing code for calculating ray trajectory1 in large-scale deterministic structure by adding new code to calculate mean free path, scattering angle, polarization, and amplitude required by radiative transport theory for the effects of small-scale statistical structure.2 This poster explores the methods of radiative transport for both deterministic and statistical structure, with particular attention given to the scattering model, and presents preliminary synthetic seismograms generated by the code both with and without the effects of statistical scattering. References: (1) Menke, W., www.iris.edu/software/downloads/plotting/. (2) Shearer, P. M., and P.S. Earle, in Advances in Geophysics, Volume 50: Earth Heterogeneity and Scattering Effects on Seismic Waves, H. Sato and M.C. Fehler (ed.), 2008.
Non-deterministic analysis of a liquid polymeric-film drying process
Chen, K.S.; Cairncross, R.A.
1997-04-01
In this study the authors employed the Monte Carlo/Latin Hypercube sampling technique to generate input parameters for a liquid polymeric-film drying model with prescribed uncertainty distributions. The one-dimensional drying model employed in this study was that developed by Cairncross et al. They found that the non-deterministic analysis with Monte Carlo/Latin Hypercube sampling provides a useful tool for characterizing the two responses (residual solvent volume and the maximum solvent partial vapor pressure) of a liquid polymeric-film drying process. More precisely, they found that the non-deterministic analysis via Monte Carlo/Latin Hypercube sampling not only provides estimates of statistical variations of the response variables but also yields more realistic estimates of mean values, which can differ significantly from those calculated using deterministic simulation. For input-parameter uncertainties in the range from 2 to 10% of their respective means, variations of response variables were found to be comparable to the mean values.
Xia, J.; Franseen, E.K.; Miller, R.D.; Weis, T.V.
2004-01-01
We successfully applied deterministic deconvolution to real ground-penetrating radar (GPR) data by using the source wavelet that was generated in and transmitted through air as the operator. The GPR data were collected with 400-MHz antennas on a bench adjacent to a cleanly exposed quarry face. The quarry site is characterized by horizontally bedded carbonate strata with shale partings. In order to provide groundtruth for this deconvolution approach, 23 conductive rods were drilled into the quarry face at key locations. The steel rods provided critical information for: (1) correlation between reflections on GPR data and geologic features exposed in the quarry face, (2) GPR resolution limits, (3) accuracy of velocities calculated from common midpoint data and (4) identifying any multiples. Comparing the results of deconvolved data with non-deconvolved data demonstrates the effectiveness of deterministic deconvolution in low dielectric-loss media for increased accuracy of velocity models (improved at least 10-15% in our study after deterministic deconvolution), increased vertical and horizontal resolution of specific geologic features and more accurate representation of geologic features as confirmed from detailed study of the adjacent quarry wall. ?? 2004 Elsevier B.V. All rights reserved.
Hunt, G. ); Azmy, Y.Y. )
1992-10-01
DCOR is a user-friendly computer implementation of a deterministic combat model developed at ORNL. To make the interpretation of the results more intuitive, a conversion of the numerical solution to a graphic animation sequence of battle evolution is desirable. DCOR uses a coarse computational spatial mesh superimposed on the battlefield. This research is aimed at developing robust methods for computing the position of the combative units over the continuum (and also pixeled) battlefield, from DCOR's discrete-variable solution representing the density of each force type evaluated at gridpoints. Three main problems have been identified and solutions have been devised and implemented in a new visualization module of DCOR. First, there is the problem of distributing the total number of objects, each representing a combative unit of each force type, among the gridpoints at each time level of the animation. This problem is solved by distributing, for each force type, the total number of combative units, one by one, to the gridpoint with the largest calculated number of units. Second, there is the problem of distributing the number of units assigned to each computational gridpoint over the battlefield area attributed to that point. This problem is solved by distributing the units within that area by taking into account the influence of surrounding gridpoints using linear interpolation. Finally, time interpolated solutions must be generated to produce a sufficient number of frames to create a smooth animation sequence. Currently, enough frames may be generated either by direct computation via the PDE solver or by using linear programming techniques to linearly interpolate intermediate frames between calculated frames.
Traffic information computing platform for big data
Duan, Zongtao Li, Ying Zheng, Xibin Liu, Yan Dai, Jiting Kang, Jun
2014-10-06
Big data environment create data conditions for improving the quality of traffic information service. The target of this article is to construct a traffic information computing platform for big data environment. Through in-depth analysis the connotation and technology characteristics of big data and traffic information service, a distributed traffic atomic information computing platform architecture is proposed. Under the big data environment, this type of traffic atomic information computing architecture helps to guarantee the traffic safety and efficient operation, more intelligent and personalized traffic information service can be used for the traffic information users.
NASA Astrophysics Data System (ADS)
Muthalif, Asan G. A.; Wahid, Azni N.; Nor, Khairul A. M.
2014-02-01
Engineering systems such as aircraft, ships and automotive are considered built-up structures. Dynamically they are taught of as being fabricated from many components that are classified as 'deterministic subsystems' (DS) and 'non-deterministic subsystems' (Non-DS). Structures' response of the DS is deterministic in nature and analysed using deterministic modelling methods such as finite element (FE) method. The response of Non-DS is statistical in nature and estimated using statistical modelling technique such as statistical energy analysis (SEA). SEA method uses power balance equation, in which any external input to the subsystem must be represented in terms of power. Often, input force is taken as point force and ensemble average power delivered by point force is already well-established. However, the external input can also be applied in the form of moments exerted by a piezoelectric (PZT) patch actuator. In order to be able to apply SEA method for input moments, a mathematical representation for moment generated by PZT patch in the form of average power is needed, which is attempted in this paper. A simply-supported plate with attached PZT patch is taken as a benchmark model. Analytical solution to estimate average power is derived using mobility approach. Ensemble average of power given by the PZT patch actuator to the benchmark model when subjected to structural uncertainties is also simulated using Lagrangian method and FEA software. The analytical estimation is compared with the Lagrangian model and FE method for validation. The effects of size and location of the PZT actuators on the power delivered to the plate are later investigated.
Deterministic Modeling of the High Temperature Test Reactor
Ortensi, J.; Cogliati, J. J.; Pope, M. A.; Ferrer, R. M.; Ougouag, A. M.
2010-06-01
Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine INL’s current prismatic reactor deterministic analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 column thin annular core, and the fully loaded core critical condition with 30 columns. Special emphasis is devoted to the annular core modeling, which shares more characteristics with the NGNP base design. The DRAGON code is used in this study because it offers significant ease and versatility in modeling prismatic designs. Despite some geometric limitations, the code performs quite well compared to other lattice physics codes. DRAGON can generate transport solutions via collision probability (CP), method of characteristics (MOC), and discrete ordinates (Sn). A fine group cross section library based on the SHEM 281 energy structure is used in the DRAGON calculations. HEXPEDITE is the hexagonal z full core solver used in this study and is based on the Green’s Function solution of the transverse integrated equations. In addition, two Monte Carlo (MC) based codes, MCNP5 and PSG2/SERPENT, provide benchmarking capability for the DRAGON and the nodal diffusion solver codes. The results from this study show a consistent bias of 2–3% for the core multiplication factor. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement stems from the fact that during the experiments the
NASA Astrophysics Data System (ADS)
Raeesi, M.; Mesgari, M. S.; Mahmoudi, P.
2014-10-01
Short time prediction is one of the most important factors in intelligence transportation system (ITS). In this research, the use of feed forward neural network for traffic time-series prediction is presented. In this paper, the traffic in one direction of the road segment is predicted. The input of the neural network is the time delay data exported from the road traffic data of Monroe city. The time delay data is used for training the network. For generating the time delay data, the traffic data related to the first 300 days of 2008 is used. The performance of the feed forward neural network model is validated using the real observation data of the 301st day.
Automated Conflict Resolution For Air Traffic Control
NASA Technical Reports Server (NTRS)
Erzberger, Heinz
2005-01-01
The ability to detect and resolve conflicts automatically is considered to be an essential requirement for the next generation air traffic control system. While systems for automated conflict detection have been used operationally by controllers for more than 20 years, automated resolution systems have so far not reached the level of maturity required for operational deployment. Analytical models and algorithms for automated resolution have been traffic conditions to demonstrate that they can handle the complete spectrum of conflict situations encountered in actual operations. The resolution algorithm described in this paper was formulated to meet the performance requirements of the Automated Airspace Concept (AAC). The AAC, which was described in a recent paper [1], is a candidate for the next generation air traffic control system. The AAC's performance objectives are to increase safety and airspace capacity and to accommodate user preferences in flight operations to the greatest extent possible. In the AAC, resolution trajectories are generated by an automation system on the ground and sent to the aircraft autonomously via data link .The algorithm generating the trajectories must take into account the performance characteristics of the aircraft, the route structure of the airway system, and be capable of resolving all types of conflicts for properly equipped aircraft without requiring supervision and approval by a controller. Furthermore, the resolution trajectories should be compatible with the clearances, vectors and flight plan amendments that controllers customarily issue to pilots in resolving conflicts. The algorithm described herein, although formulated specifically to meet the needs of the AAC, provides a generic engine for resolving conflicts. Thus, it can be incorporated into any operational concept that requires a method for automated resolution, including concepts for autonomous air to air resolution.
Low Earth Orbit satellite traffic simulator
NASA Technical Reports Server (NTRS)
Hoelzel, John
1995-01-01
This paper describes a significant tool for Low Earth Orbit (LEO) capacity analysis, needed to support marketing, economic, and design analysis, known as a Satellite Traffic Simulator (STS). LEO satellites typically use multiple beams to help achieve the desired communication capacity, but the traffic demand in these beams in usually not uniform. Simulations of dynamic, average, and peak expected demand per beam is a very critical part of the marketing, economic, and design analysis necessary to field a viable LEO system. An STS is described in this paper which can simulate voice, data and FAX traffic carried by LEO satellite beams and Earth Station Gateways. It is applicable world-wide for any LEO satellite constellations operating over any regions. For aeronautical applications to LEO satellites. the anticipates aeronautical traffic (Erlangs for each hour of the day to be simulated) is prepared for geographically defined 'area targets' (each major operational region for the respective aircraft), and used as input to the STS. The STS was designed by Constellations Communications Inc. (CCI) and E-Systems for usage in Brazil in accordance with an ESCA/INPE Statement Of Work, and developed by Analytical Graphics Inc. (AGI) to execute on top of its Satellite Tool Kit (STK) commercial software. The STS simulates constellations of LEO satellite orbits, with input of traffic intensity (Erlangs) for each hour of the day generated from area targets (such as Brazilian States). accumulated in custom LEO satellite beams, and then accumulated in Earth Station Gateways. The STS is a very general simulator which can accommodate: many forms of orbital element and Walker Constellation input; simple beams or any user defined custom beams; and any location of Gateways. The paper describes some of these features, including Manual Mode dynamic graphical display of communication links, to illustrate which Gateway links are accessible and which links are not, at each 'step' of the
Road traffic injuries in Mozambique.
Romão, Francelina; Nizamo, Hanifa; Mapasse, Domingos; Rafico, Momede Mussá; José, João; Mataruca, Simão; Efron, M Lúcia; Omondi, Lucas O; Leifert, Thelma; Bicho, Joaquim M L Marungo
2003-01-01
Road traffic injuries affect the economy, health and quality of life of the people of Mozambique. Current road safety programmes are inadequate and inefficient given the magnitude of the problem. Data reported on road traffic crashes in the period 1990 to 2000 from the National Institute for Road Safety, the traffic police and the Central Hospital of Maputo were reviewed. The burden of road traffic injuries in Mozambique is rising, with at least three people killed daily. The age group most affected is 25-38 (39.35%), followed by 16-24 (20.79%). The main causes of crashes include reckless driving, drunken driving, roads with potholes, inadequate signs, lack of protection for pedestrians, and inadequate traffic law enforcement. However, the data are not adequate to reveal the true magnitude of the problem. Data collected by different sources are incomplete and not coordinated with other sources and databases. In urban areas, however, better response to crashes, treatment of the injured, reporting and data collection is attributable to a greater concentration of police and medical facilities. Road traffic safety programmes in Mozambique are inadequate and inefficient, starting with the data collection system. Improvement of injury surveillance systems is needed to help make road traffic safety a national development agenda priority and for developing and implementing road safety policies. For road safety programmes to be effective, government must facilitate stakeholders' involvement, and the clear definition of government activities, civil society activities and public-private partnerships need to be established. PMID:12772487
Traffic congestion and dispersion in Hurricane evacuation
NASA Astrophysics Data System (ADS)
Tanaka, Katsunori; Nagatani, Takashi; Hanaura, Hirotoshi
2007-03-01
We study the traffic congestion and dispersion of vehicles occurring on a single lane highway in Hurricane evacuation. The traffic congestion depends on both sensitivity and speed of the leading vehicle. When the leading vehicle moves with low speed, the vehicular traffic exhibits the stop and go-wave (oscillating congested traffic) for low sensitivity, while the traffic results in the homogeneous congested traffic for high sensitivity. The traffic dispersion is measured by the time difference between the leading and rear vehicles. The time difference fluctuates highly for the oscillating congestion traffic, while it keeps a constant value for the homogeneous congested traffic. The traffic states in Hurricane evacuation is connected to the phase diagram of conventional traffic.
Spreading of Traffic Jam in a Traffic Flow Model
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
1993-04-01
A cellular automaton (CA) model is presented to simulate the traffic jam induced by a traffic accident. The spreading of jamming cars induced by a car crash is investigated by computer simulation. An analogy is proposed between the crystal growth and the traffic-jam spreading. The scaling behavior of the traffic-jam spreading is studied. It is shown that the number N of jamming cars scales as N≈t2.34± 0.03 for p above the dynamical jamming transition pc{=}0.35 and N≈t1.07 below pc where t is the time and p is the density of cars. The time constant ts, which is the time required for all cars to stop, scales as ts≈p-1.07± 0.03 for p
An Application of Traffic Measurements to Route Planning for Traffic Flow Simulation in MATSim
NASA Astrophysics Data System (ADS)
Maciejewski, Michał
The paper presents MATSim Junction Turning Ratios Route Planner (JTRRouter) that enables to generate route plans for vehicles on the basis of traffic measurements conducted at intersections. The authors described a general design, functionality, and requirements of JTRRouter, and then presented a sketch of the route planning algorithm and discussed its computational complexity. In order to illustrate the most essential capabilities of the module, an example of route planning for a fragment of a real urban network was presented.
Air Traffic Management Research at NASA
NASA Technical Reports Server (NTRS)
Farley, Todd
2012-01-01
The U.S. air transportation system is the most productive in the world, moving far more people and goods than any other. It is also the safest system in the world, thanks in part to its venerable air traffic control system. But as demand for air travel continues to grow, the air traffic control systems aging infrastructure and labor-intensive procedures are impinging on its ability to keep pace with demand. And that impinges on the growth of our economy. Part of NASA's current mission in aeronautics research is to invent new technologies and procedures for ATC that will enable our national airspace system to accommodate the increasing demand for air transportation well into the next generation while still maintaining its excellent record for safety. It is a challenging mission, as efforts to modernize have, for decades, been hamstrung by the inability to assure safety to the satisfaction of system operators, system regulators, and/or the traveling public. In this talk, we'll provide a brief history of air traffic control, focusing on the tension between efficiency and safety assurance, and we'll highlight some new NASA technologies coming down the pike.
Automated Traffic Management System and Method
NASA Technical Reports Server (NTRS)
Glass, Brian J. (Inventor); Spirkovska, Liljana (Inventor); McDermott, William J. (Inventor); Reisman, Ronald J. (Inventor); Gibson, James (Inventor); Iverson, David L. (Inventor)
2000-01-01
A data management system and method that enables acquisition, integration, and management of real-time data generated at different rates, by multiple heterogeneous incompatible data sources. The system achieves this functionality by using an expert system to fuse data from a variety of airline, airport operations, ramp control, and air traffic control tower sources, to establish and update reference data values for every aircraft surface operation. The system may be configured as a real-time airport surface traffic management system (TMS) that electronically interconnects air traffic control, airline data, and airport operations data to facilitate information sharing and improve taxi queuing. In the TMS operational mode, empirical data shows substantial benefits in ramp operations for airlines, reducing departure taxi times by about one minute per aircraft in operational use, translating as $12 to $15 million per year savings to airlines at the Atlanta, Georgia airport. The data management system and method may also be used for scheduling the movement of multiple vehicles in other applications, such as marine vessels in harbors and ports, trucks or railroad cars in ports or shipping yards, and railroad cars in switching yards. Finally, the data management system and method may be used for managing containers at a shipping dock, stock on a factory floor or in a warehouse, or as a training tool for improving situational awareness of FAA tower controllers, ramp and airport operators, or commercial airline personnel in airfield surface operations.
Kinetic theory of vehicular traffic
NASA Astrophysics Data System (ADS)
Iannini, M. L. L.; Dickman, Ronald
2016-02-01
We review the kinetic theory of traffic proposed by Prigogine and Herman in which the Boltzmann equation is adapted to vehicular traffic. The kinetic equation and its solution are discussed, and a novel distribution of desired velocities that is more suitable for describing real traffic conditions is analyzed. We also study the stationary velocity distribution at the transition between individual and collective flow patterns. At this transition, the distribution splits into a smoothly varying regular part, in which vehicles have nonzero velocities, and a singular one, corresponding to stopped vehicles. Computational methods for obtaining the stationary velocity distribution and the full space-time evolution of the vehicular distribution are explained.
DETERMINISTIC TRANSPORT METHODS AND CODES AT LOS ALAMOS
J. E. MOREL
1999-06-01
The purposes of this paper are to: Present a brief history of deterministic transport methods development at Los Alamos National Laboratory from the 1950's to the present; Discuss the current status and capabilities of deterministic transport codes at Los Alamos; and Discuss future transport needs and possible future research directions. Our discussion of methods research necessarily includes only a small fraction of the total research actually done. The works that have been included represent a very subjective choice on the part of the author that was strongly influenced by his personal knowledge and experience. The remainder of this paper is organized in four sections: the first relates to deterministic methods research performed at Los Alamos, the second relates to production codes developed at Los Alamos, the third relates to the current status of transport codes at Los Alamos, and the fourth relates to future research directions at Los Alamos.
Estimating the epidemic threshold on networks by deterministic connections
Li, Kezan Zhu, Guanghu; Fu, Xinchu; Small, Michael
2014-12-15
For many epidemic networks some connections between nodes are treated as deterministic, while the remainder are random and have different connection probabilities. By applying spectral analysis to several constructed models, we find that one can estimate the epidemic thresholds of these networks by investigating information from only the deterministic connections. Nonetheless, in these models, generic nonuniform stochastic connections and heterogeneous community structure are also considered. The estimation of epidemic thresholds is achieved via inequalities with upper and lower bounds, which are found to be in very good agreement with numerical simulations. Since these deterministic connections are easier to detect than those stochastic connections, this work provides a feasible and effective method to estimate the epidemic thresholds in real epidemic networks.
Deterministic transformations of multipartite entangled states with tensor rank 2
Turgut, S.; Guel, Y.; Pak, N. K.
2010-01-15
Transformations involving only local operations assisted with classical communication are investigated for multipartite entangled pure states having tensor rank 2. All necessary and sufficient conditions for the possibility of deterministically converting truly multipartite, rank-2 states into each other are given. Furthermore, a chain of local operations that successfully achieves the transformation has been identified for all allowed transformations. The identified chains have two nice features: (1) each party needs to carry out at most one local operation and (2) all of these local operations are also deterministic transformations by themselves. Finally, it is found that there are disjoint classes of states, all of which can be identified by a single real parameter, which remain invariant under deterministic transformations.
Dynamics of traffic flow with real-time traffic information
NASA Astrophysics Data System (ADS)
Yokoya, Yasushi
2004-01-01
We studied dynamics of traffic flow with real-time information provided. Provision of the real-time traffic information based on advancements in telecommunication technology is expected to facilitate the efficient utilization of available road capacity. This system has a potentiality of not only engineering for road usage but also the science of complexity series. In the system, the information plays a role of feedback connecting microscopic and macroscopic phenomena beyond the hierarchical structure of statistical physics. In this paper, we tried to clarify how the information works in a network of traffic flow from the perspective of statistical physics. The dynamical feature of the traffic flow is abstracted by a contrastive study between the nonequilibrium statistical physics and a computer simulation based on cellular automaton. We found that the information disrupts the local equilibrium of traffic flow by a characteristic dissipation process due to interaction between the information and individual vehicles. The dissipative structure was observed in the time evolution of traffic flow driven far from equilibrium as a consequence of the breakdown of the local-equilibrium hypothesis.
The Future of Air Traffic Management
NASA Technical Reports Server (NTRS)
Denery, Dallas G.; Erzberger, Heinz; Edwards, Thomas A. (Technical Monitor)
1998-01-01
A system for the control of terminal area traffic to improve productivity, referred to as the Center-TRACON Automation System (CTAS), is being developed at NASA's Ames Research Center under a joint program with the FAA. CTAS consists of a set of integrated tools that provide computer-generated advisories for en-route and terminal area controllers. The premise behind the design of CTAS has been that successful planning of traffic requires accurate trajectory prediction. Data bases consisting of representative aircraft performance models, airline preferred operational procedures and a three dimensional wind model support the trajectory prediction. The research effort has been the design of a set of automation tools that make use of this trajectory prediction capability to assist controllers in overall management of traffic. The first tool, the Traffic Management Advisor (TMA), provides the overall flow management between the en route and terminal areas. A second tool, the Final Approach Spacing Tool (FAST) provides terminal area controllers with sequence and runway advisories to allow optimal use of the runways. The TMA and FAST are now being used in daily operations at Dallas/Ft. Worth airport. Additional activities include the development of several other tools. These include: 1) the En Route Descent Advisor that assist the en route controller in issuing conflict free descents and ascents; 2) the extension of FAST to include speed and heading advisories and the Expedite Departure Path (EDP) that assists the terminal controller in management of departures; and 3) the Collaborative Arrival Planner (CAP) that will assist the airlines in operational decision making. The purpose of this presentation is to review the CTAS concept and to present the results of recent field tests. The paper will first discuss the overall concept and then discuss the status of the individual tools.
Air Traffic Management Research at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Lee, Katharine
2005-01-01
Since the late 1980's, NASA Ames researchers have been investigating ways to improve the air transportation system through the development of decision support automation. These software advances, such as the Center-TRACON Automation System (eTAS) have been developed with teams of engineers, software developers, human factors experts, and air traffic controllers; some ASA Ames decision support tools are currently operational in Federal Aviation Administration (FAA) facilities and some are in use by the airlines. These tools have provided air traffic controllers and traffic managers the capabilities to help reduce overall delays and holding, and provide significant cost savings to the airlines as well as more manageable workload levels for air traffic service providers. NASA is continuing to collaborate with the FAA, as well as other government agencies, to plan and develop the next generation of decision support tools that will support anticipated changes in the air transportation system, including a projected increase to three times today's air-traffic levels by 2025. The presentation will review some of NASA Ames' recent achievements in air traffic management research, and discuss future tool developments and concepts currently under consideration.
Modeling conflicts of heterogeneous traffic at urban uncontrolled intersections
Trinadha Rao, V.; Rengaraju, V.R.
1998-01-01
The behavior of traffic in the heterogeneous environment of an urban uncontrolled intersection is complex and difficult to model. The present study describes the methodology of simulating the traffic flow and thereby estimating the number of conflicts in varying traffic flow conditions. The arrival pattern of vehicles was represented by a multivariate distribution to generate input to the simulation model. The model was validated externally, using field observed data, and was found to predict the number of conflicts well. As an illustration of usefulness of the model, variation of conflict rate (the probability of a vehicle`s getting involved in conflict) due to variation in traffic volume and the proportion of right-turning traffic has been quantified. Under the prevailing traffic composition and turning movements, the conflict rate is estimated to lie in the range of 0.66--0.70, 0.79--0.84, and 0.80-0.87 for intersection volumes of 2,000, 2,500, and 3,000 vehicles per hour, respectively. Issues related to the applicability of the proposed model are briefly discussed.
Inherent Conservatism in Deterministic Quasi-Static Structural Analysis
NASA Technical Reports Server (NTRS)
Verderaime, V.
1997-01-01
The cause of the long-suspected excessive conservatism in the prevailing structural deterministic safety factor has been identified as an inherent violation of the error propagation laws when reducing statistical data to deterministic values and then combining them algebraically through successive structural computational processes. These errors are restricted to the applied stress computations, and because mean and variations of the tolerance limit format are added, the errors are positive, serially cumulative, and excessively conservative. Reliability methods circumvent these errors and provide more efficient and uniform safe structures. The document is a tutorial on the deficiencies and nature of the current safety factor and of its improvement and transition to absolute reliability.
Multiparty Controlled Deterministic Secure Quantum Communication Through Entanglement Swapping
NASA Astrophysics Data System (ADS)
Dong, Li; Xiu, Xiao-Ming; Gao, Ya-Jun; Chi, Feng
A three-party controlled deterministic secure quantum communication scheme through entanglement swapping is proposed firstly. In the scheme, the sender needs to prepare a class of Greenberger-Horne-Zeilinger (GHZ) states which are used as quantum channel. The two communicators may securely communicate under the control of the controller if the quantum channel is safe. The roles of the sender, the receiver, and the controller can be exchanged owing to the symmetry of the quantum channel. Different from other controlled quantum secure communication schemes, the scheme needs lesser additional classical information for transferring secret information. Finally, it is generalized to a multiparty controlled deterministic secure quantum communication scheme.
Deterministic and efficient quantum cryptography based on Bell's theorem
Chen Zengbing; Pan Jianwei; Zhang Qiang; Bao Xiaohui; Schmiedmayer, Joerg
2006-05-15
We propose a double-entanglement-based quantum cryptography protocol that is both efficient and deterministic. The proposal uses photon pairs with entanglement both in polarization and in time degrees of freedom; each measurement in which both of the two communicating parties register a photon can establish one and only one perfect correlation, and thus deterministically create a key bit. Eavesdropping can be detected by violation of local realism. A variation of the protocol shows a higher security, similar to the six-state protocol, under individual attacks. Our scheme allows a robust implementation under the current technology.
A successful traffic relief program
Dimino, R.A.; Bezkorovainy, G.; Campbell, B.
1987-08-01
This article reports that in August 1986, under the direction of Mayor Raymond Flynn, the City of Boston initiated Phase I of a Traffic Relief Program (TRP). The program was an interagency effort of the Boston Transportation Department and the Boston Police Department, to provide increased enforcement of the city's traffic and parking regulations on congested roadways in downtown Boston. The TRP is a reaffirmation of the city's philosophy that major arterials' primary function is the movement of traffic during periods of heavy traffic flow. There were six objectives: to reduce vehicular travel time along travel corridors; to increase street/intersection capacity; to eliminate vehicular blockage at intersections; to eliminate double parking; to eliminate pedestrian/vehicular conflicts at intersections and thus reduce the potential number of accidents; and to provide clear regulatory and street name signage.
Investigating the Use of 3-D Deterministic Transport for Core Safety Analysis
H. D. Gougar; D. Scott
2004-04-01
An LDRD (Laboratory Directed Research and Development) project is underway at the Idaho National Laboratory (INL) to demonstrate the feasibility of using a three-dimensional multi-group deterministic neutron transport code (Attila®) to perform global (core-wide) criticality, flux and depletion calculations for safety analysis of the Advanced Test Reactor (ATR). This paper discusses the ATR, model development, capabilities of Attila, generation of the cross-section libraries, comparisons to experimental results for Advanced Fuel Cycle (AFC) concepts, and future work planned with Attila.
Risk estimates for deterministic health effects of inhaled weapons grade plutonium.
Scott, Bobby R; Peterson, Vern L
2003-09-01
Risk estimates for deterministic effects of inhaled weapons-grade plutonium (WG Pu) are needed to evaluate potential serious harm to (1) U.S. Department of Energy nuclear workers from accidental or other work-place releases of WG Pu; and (2) the public from terrorist actions resulting in the release of WG Pu to the environment. Deterministic health effects (the most serious radiobiological consequences to humans) can arise when large amounts of WG Pu are taken into the body. Inhalation is considered the most likely route of intake during work-place accidents or during a nuclear terrorism incident releasing WG Pu to the environment. Our current knowledge about radiation-related harm is insufficient for generating precise estimates of risk for a given WG Pu exposure scenario. This relates largely to uncertainties associated with currently available risk and dosimetry models. Thus, rather than generating point estimates of risk, distributions that account for variability/uncertainty are needed to properly characterize potential harm to humans from a given WG Pu exposure scenario. In this manuscript, we generate and summarize risk distributions for deterministic radiation effects in the lungs of nuclear workers from inhaled WG Pu particles (standard isotopic mix). These distributions were developed using NUREG/CR-4214 risk models and time-dependent, dose conversion factor data based on Publication 30 of the International Commission on Radiological Protection. Dose conversion factors based on ICRP Publication 30 are more relevant to deterministic effects than are the dose conversion factors based on ICRP Publication 66, which relate to targets for stochastic effects. Risk distributions that account for NUREG/CR-4214 parameter and model uncertainties were generated using the Monte Carlo method. Risks were evaluated for both lethality (from radiation pneumonitis) and morbidity (due to radiation-induced respiratory dysfunction) and were found to depend strongly on absorbed
Elliptical quantum dots as on-demand single photons sources with deterministic polarization states
NASA Astrophysics Data System (ADS)
Teng, Chu-Hsiang; Zhang, Lei; Hill, Tyler A.; Demory, Brandon; Deng, Hui; Ku, Pei-Cheng
2015-11-01
In quantum information, control of the single photon's polarization is essential. Here, we demonstrate single photon generation in a pre-programmed and deterministic polarization state, on a chip-scale platform, utilizing site-controlled elliptical quantum dots (QDs) synthesized by a top-down approach. The polarization from the QD emission is found to be linear with a high degree of linear polarization and parallel to the long axis of the ellipse. Single photon emission with orthogonal polarizations is achieved, and the dependence of the degree of linear polarization on the QD geometry is analyzed.
Elliptical quantum dots as on-demand single photons sources with deterministic polarization states
Teng, Chu-Hsiang; Demory, Brandon; Ku, Pei-Cheng; Zhang, Lei; Hill, Tyler A.; Deng, Hui
2015-11-09
In quantum information, control of the single photon's polarization is essential. Here, we demonstrate single photon generation in a pre-programmed and deterministic polarization state, on a chip-scale platform, utilizing site-controlled elliptical quantum dots (QDs) synthesized by a top-down approach. The polarization from the QD emission is found to be linear with a high degree of linear polarization and parallel to the long axis of the ellipse. Single photon emission with orthogonal polarizations is achieved, and the dependence of the degree of linear polarization on the QD geometry is analyzed.
36 CFR 4.13 - Obstructing traffic.
Code of Federal Regulations, 2010 CFR
2010-07-01
... interfere with the normal flow of traffic. ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Obstructing traffic. 4.13... VEHICLES AND TRAFFIC SAFETY § 4.13 Obstructing traffic. The following are prohibited: (a) Stopping...
Turbulent Dispersion of Traffic Emissions
NASA Astrophysics Data System (ADS)
Staebler, R. M.; Gordon, M.; Liggio, J.; Makar, P.; Mihele, C.; Brook, J.; Wentzell, J. J.; Gong, S.; Lu, G.; Lee, P.
2010-12-01
Emissions from the transportation sector are a significant source of air pollution. Ongoing efforts to reduce the impacts require tools to provide guidance on policies regarding fuels, vehicle types and traffic control. The air quality models currently used to predict the effectiveness of policies typically treat traffic emissions as a source uniformly distributed across the surface of a model grid. In reality, emissions occur along lines above the surface, in an initially highly concentrated form, and are immediately mixed by traffic-enhanced turbulence. Differences between model and reality in terms of both chemistry and dispersion are to be expected. The ALMITEE (Advancing Local-scale Modeling through Inclusion of Transportation Emission Experiments) subproject FEVER (Fast Evolution of Vehicle Emissions from Roadways), conducted on multi-lane highways in the Toronto area in the summer of 2010, included measurements to quantify the evolution and dispersion of traffic emissions. Continuous micro-meteorological data (heat and momentum fluxes, temperature, humidity and incoming solar radiation) were collected 10m from the road, next to a traffic camera used to determine traffic density, composition and speed. Sonic anemometers and an aircraft turbulence probe mounted on a mobile lab provided measurements of turbulent dispersion both directly in traffic on the highway as well as on perpendicular side roads, as a function of distance from the highway. The mobile lab was equipped with instruments to characterize the aerosol size and mass distributions, aerosol composition including black carbon content, NO, NO2, CO2, CO, SO2 and VOCs at high time resolution. Preliminary results on the consequences of turbulent dispersion of traffic emissions levels under a variety of conditions will be disseminated.
Fully automated urban traffic system
NASA Technical Reports Server (NTRS)
Dobrotin, B. M.; Hansen, G. R.; Peng, T. K. C.; Rennels, D. A.
1977-01-01
The replacement of the driver with an automatic system which could perform the functions of guiding and routing a vehicle with a human's capability of responding to changing traffic demands was discussed. The problem was divided into four technological areas; guidance, routing, computing, and communications. It was determined that the latter three areas being developed independent of any need for fully automated urban traffic. A guidance system that would meet system requirements was not being developed but was technically feasible.
Application of tabu search to deterministic and stochastic optimization problems
NASA Astrophysics Data System (ADS)
Gurtuna, Ozgur
During the past two decades, advances in computer science and operations research have resulted in many new optimization methods for tackling complex decision-making problems. One such method, tabu search, forms the basis of this thesis. Tabu search is a very versatile optimization heuristic that can be used for solving many different types of optimization problems. Another research area, real options, has also gained considerable momentum during the last two decades. Real options analysis is emerging as a robust and powerful method for tackling decision-making problems under uncertainty. Although the theoretical foundations of real options are well-established and significant progress has been made in the theory side, applications are lagging behind. A strong emphasis on practical applications and a multidisciplinary approach form the basic rationale of this thesis. The fundamental concepts and ideas behind tabu search and real options are investigated in order to provide a concise overview of the theory supporting both of these two fields. This theoretical overview feeds into the design and development of algorithms that are used to solve three different problems. The first problem examined is a deterministic one: finding the optimal servicing tours that minimize energy and/or duration of missions for servicing satellites around Earth's orbit. Due to the nature of the space environment, this problem is modeled as a time-dependent, moving-target optimization problem. Two solution methods are developed: an exhaustive method for smaller problem instances, and a method based on tabu search for larger ones. The second and third problems are related to decision-making under uncertainty. In the second problem, tabu search and real options are investigated together within the context of a stochastic optimization problem: option valuation. By merging tabu search and Monte Carlo simulation, a new method for studying options, Tabu Search Monte Carlo (TSMC) method, is
Evidence of Long Range Dependence and Self-similarity in Urban Traffic Systems
Thakur, Gautam S; Helmy, Ahmed; Hui, Pan
2015-01-01
Transportation simulation technologies should accurately model traffic demand, distribution, and assignment parame- ters for urban environment simulation. These three param- eters significantly impact transportation engineering bench- mark process, are also critical in realizing realistic traffic modeling situations. In this paper, we model and charac- terize traffic density distribution of thousands of locations around the world. The traffic densities are generated from millions of images collected over several years and processed using computer vision techniques. The resulting traffic den- sity distribution time series are then analyzed. It is found using the goodness-of-fit test that the traffic density dis- tributions follows heavy-tail models such as Log-gamma, Log-logistic, and Weibull in over 90% of analyzed locations. Moreover, a heavy-tail gives rise to long-range dependence and self-similarity, which we studied by estimating the Hurst exponent (H). Our analysis based on seven different Hurst estimators strongly indicate that the traffic distribution pat- terns are stochastically self-similar (0.5 H 1.0). We believe this is an important finding that will influence the design and development of the next generation traffic simu- lation techniques and also aid in accurately modeling traffic engineering of urban systems. In addition, it shall provide a much needed input for the development of smart cities.
Distributed Traffic Complexity Management by Preserving Trajectory Flexibility
NASA Technical Reports Server (NTRS)
Idris, Husni; Vivona, Robert A.; Garcia-Chico, Jose-Luis; Wing, David J.
2007-01-01
In order to handle the expected increase in air traffic volume, the next generation air transportation system is moving towards a distributed control architecture, in which groundbased service providers such as controllers and traffic managers and air-based users such as pilots share responsibility for aircraft trajectory generation and management. This paper presents preliminary research investigating a distributed trajectory-oriented approach to manage traffic complexity, based on preserving trajectory flexibility. The underlying hypotheses are that preserving trajectory flexibility autonomously by aircraft naturally achieves the aggregate objective of avoiding excessive traffic complexity, and that trajectory flexibility is increased by collaboratively minimizing trajectory constraints without jeopardizing the intended air traffic management objectives. This paper presents an analytical framework in which flexibility is defined in terms of robustness and adaptability to disturbances and preliminary metrics are proposed that can be used to preserve trajectory flexibility. The hypothesized impacts are illustrated through analyzing a trajectory solution space in a simple scenario with only speed as a degree of freedom, and in constraint situations involving meeting multiple times of arrival and resolving conflicts.
Risk-based versus deterministic explosives safety criteria
Wright, R.E.
1996-12-01
The Department of Defense Explosives Safety Board (DDESB) is actively considering ways to apply risk-based approaches in its decision- making processes. As such, an understanding of the impact of converting to risk-based criteria is required. The objectives of this project are to examine the benefits and drawbacks of risk-based criteria and to define the impact of converting from deterministic to risk-based criteria. Conclusions will be couched in terms that allow meaningful comparisons of deterministic and risk-based approaches. To this end, direct comparisons of the consequences and impacts of both deterministic and risk-based criteria at selected military installations are made. Deterministic criteria used in this report are those in DoD 6055.9-STD, `DoD Ammunition and Explosives Safety Standard.` Risk-based criteria selected for comparison are those used by the government of Switzerland, `Technical Requirements for the Storage of Ammunition (TLM 75).` The risk-based criteria used in Switzerland were selected because they have been successfully applied for over twenty-five years.
A difference characteristic for one-dimensional deterministic systems
NASA Astrophysics Data System (ADS)
Shahverdian, A. Yu.; Apkarian, A. V.
2007-06-01
A numerical characteristic for one-dimensional deterministic systems reflecting its higher order difference structure is introduced. The comparison with Lyapunov exponent is given. A difference analogy for Eggleston theorem as well as an estimate for Hausdorff dimension of the difference attractor, formulated in terms of the new characteristic is proved.
Deterministic dense coding and faithful teleportation with multipartite graph states
Huang, C.-Y.; Yu, I-C.; Lin, F.-L.; Hsu, L.-Y.
2009-05-15
We propose schemes to perform the deterministic dense coding and faithful teleportation with multipartite graph states. We also find the sufficient and necessary condition of a viable graph state for the proposed schemes. That is, for the associated graph, the reduced adjacency matrix of the Tanner-type subgraph between senders and receivers should be invertible.
From deterministic cellular automata to coupled map lattices
NASA Astrophysics Data System (ADS)
García-Morales, Vladimir
2016-07-01
A general mathematical method is presented for the systematic construction of coupled map lattices (CMLs) out of deterministic cellular automata (CAs). The entire CA rule space is addressed by means of a universal map for CAs that we have recently derived and that is not dependent on any freely adjustable parameters. The CMLs thus constructed are termed real-valued deterministic cellular automata (RDCA) and encompass all deterministic CAs in rule space in the asymptotic limit κ \\to 0 of a continuous parameter κ. Thus, RDCAs generalize CAs in such a way that they constitute CMLs when κ is finite and nonvanishing. In the limit κ \\to ∞ all RDCAs are shown to exhibit a global homogeneous fixed-point that attracts all initial conditions. A new bifurcation is discovered for RDCAs and its location is exactly determined from the linear stability analysis of the global quiescent state. In this bifurcation, fuzziness gradually begins to intrude in a purely deterministic CA-like dynamics. The mathematical method presented allows to get insight in some highly nontrivial behavior found after the bifurcation.
A Unit on Deterministic Chaos for Student Teachers
ERIC Educational Resources Information Center
Stavrou, D.; Assimopoulos, S.; Skordoulis, C.
2013-01-01
A unit aiming to introduce pre-service teachers of primary education to the limited predictability of deterministic chaotic systems is presented. The unit is based on a commercial chaotic pendulum system connected with a data acquisition interface. The capabilities and difficulties in understanding the notion of limited predictability of 18…
Deterministic retrieval of complex Green's functions using hard X rays.
Vine, D J; Paganin, D M; Pavlov, K M; Uesugi, K; Takeuchi, A; Suzuki, Y; Yagi, N; Kämpfe, T; Kley, E-B; Förster, E
2009-01-30
A massively parallel deterministic method is described for reconstructing shift-invariant complex Green's functions. As a first experimental implementation, we use a single phase contrast x-ray image to reconstruct the complex Green's function associated with Bragg reflection from a thick perfect crystal. The reconstruction is in excellent agreement with a classic prediction of dynamical diffraction theory. PMID:19257417
Full randomness from arbitrarily deterministic events.
Gallego, Rodrigo; Masanes, Lluis; De La Torre, Gonzalo; Dhara, Chirag; Aolita, Leandro; Acín, Antonio
2013-01-01
Do completely unpredictable events exist? Classical physics excludes fundamental randomness. Although quantum theory makes probabilistic predictions, this does not imply that nature is random, as randomness should be certified without relying on the complete structure of the theory being used. Bell tests approach the question from this perspective. However, they require prior perfect randomness, falling into a circular reasoning. A Bell test that generates perfect random bits from bits possessing high-but less than perfect-randomness has recently been obtained. Yet, the main question remained open: does any initial randomness suffice to certify perfect randomness? Here we show that this is indeed the case. We provide a Bell test that uses arbitrarily imperfect random bits to produce bits that are, under the non-signalling principle assumption, perfectly random. This provides the first protocol attaining full randomness amplification. Our results have strong implications onto the debate of whether there exist events that are fully random. PMID:24173040
Nearly deterministic preparation of the perfect W state with weak cross-Kerr nonlinearities
NASA Astrophysics Data System (ADS)
Dong, Li; Wang, Jun-Xi; Li, Qing-Yang; Shen, Hong-Zhi; Dong, Hai-Kuan; Xiu, Xiao-Ming; Gao, Ya-Jun; Oh, Choo Hiap
2016-01-01
Relying on weak cross-Kerr nonlinearities, we propose a nearly deterministic generation scheme of the three-photon polarization-entangled perfect W state which can be applied to the perfect teleportation of an unknown single-photon state and has robust entanglement against the loss of one photon of them. Three photons entangle together by virtue of the bus function of the coherent state serving as the intermediate among them. In the scheme, three processes are executed successively and two kinds of modules are inserted into the circuit, where the homodyne measurement and the photon number measurement are aptly performed. By means of classical feedforward techniques, single-photon unitary transformation operations are performed on the corresponding photons based on the obtained measurement outcomes, by which the generation efficiency of the perfect W state aims to nearly unity. Moreover, some currently available optical elements are applied in the generation process, which offer facilities for the practical implementation.
A Hybrid Monte Carlo-Deterministic Method for Global Binary Stochastic Medium Transport Problems
Keady, K P; Brantley, P
2010-03-04
Global deep-penetration transport problems are difficult to solve using traditional Monte Carlo techniques. In these problems, the scalar flux distribution is desired at all points in the spatial domain (global nature), and the scalar flux typically drops by several orders of magnitude across the problem (deep-penetration nature). As a result, few particle histories may reach certain regions of the domain, producing a relatively large variance in tallies in those regions. Implicit capture (also known as survival biasing or absorption suppression) can be used to increase the efficiency of the Monte Carlo transport algorithm to some degree. A hybrid Monte Carlo-deterministic technique has previously been developed by Cooper and Larsen to reduce variance in global problems by distributing particles more evenly throughout the spatial domain. This hybrid method uses an approximate deterministic estimate of the forward scalar flux distribution to automatically generate weight windows for the Monte Carlo transport simulation, avoiding the necessity for the code user to specify the weight window parameters. In a binary stochastic medium, the material properties at a given spatial location are known only statistically. The most common approach to solving particle transport problems involving binary stochastic media is to use the atomic mix (AM) approximation in which the transport problem is solved using ensemble-averaged material properties. The most ubiquitous deterministic model developed specifically for solving binary stochastic media transport problems is the Levermore-Pomraning (L-P) model. Zimmerman and Adams proposed a Monte Carlo algorithm (Algorithm A) that solves the Levermore-Pomraning equations and another Monte Carlo algorithm (Algorithm B) that is more accurate as a result of improved local material realization modeling. Recent benchmark studies have shown that Algorithm B is often significantly more accurate than Algorithm A (and therefore the L-P model
Road traffic injuries in Colombia.
Rodríguez, Deysi Yasmin; Fernández, Francisco José; Acero Velásquez, Hugo
2003-01-01
Road traffic injuries are a leading public health problem in Colombia. Pedestrians are the most vulnerable road users, especially in the main urban centers of Bogotá, Medellin and Cali. Data analyzed in this report include official statistics from the National Police and the National Institute of Legal Medicine and Forensic Sciences for 1996-2000, and results of a study conducted at the National University of Colombia in 2000. Methods from the Highway Capacity Manual were used for determining physical and technical variables, and a Geographical Information System tool was used for the location and spatial analysis of the road traffic crashes. Pedestrians accounted for close to 32% of injuries and 40% of the deaths from road traffic crashes. The problem of road traffic crashes existed predominately in urban areas. In the main urban centers, pedestrians constituted nearly 68% of road traffic crash victims. The high level of risky road use behaviors demonstrated by pedestrians and drivers, and inadequate infrastructure for safe mobility of pedestrians in some sections of the road network were the main contributing factors. Major improvements were achieved in Bogotá following enhancements to the municipal transport system and other policies introduced since 1995. In conclusion, policies and programs for improving road safety, in particular pedestrian safety, and strengthening urban planning are top priority. PMID:12772483
A traffic situation analysis system
NASA Astrophysics Data System (ADS)
Sidla, Oliver; Rosner, Marcin
2011-01-01
The observation and monitoring of traffic with smart visions systems for the purpose of improving traffic safety has a big potential. For example embedded vision systems built into vehicles can be used as early warning systems, or stationary camera systems can modify the switching frequency of signals at intersections. Today the automated analysis of traffic situations is still in its infancy - the patterns of vehicle motion and pedestrian flow in an urban environment are too complex to be fully understood by a vision system. We present steps towards such a traffic monitoring system which is designed to detect potentially dangerous traffic situations, especially incidents in which the interaction of pedestrians and vehicles might develop into safety critical encounters. The proposed system is field-tested at a real pedestrian crossing in the City of Vienna for the duration of one year. It consists of a cluster of 3 smart cameras, each of which is built from a very compact PC hardware system in an outdoor capable housing. Two cameras run vehicle detection software including license plate detection and recognition, one camera runs a complex pedestrian detection and tracking module based on the HOG detection principle. As a supplement, all 3 cameras use additional optical flow computation in a low-resolution video stream in order to estimate the motion path and speed of objects. This work describes the foundation for all 3 different object detection modalities (pedestrians, vehi1cles, license plates), and explains the system setup and its design.
Percolation properties in a traffic model
NASA Astrophysics Data System (ADS)
Wang, Feilong; Li, Daqing; Xu, Xiaoyun; Wu, Ruoqian; Havlin, Shlomo
2015-11-01
As a dynamical complex system, traffic is characterized by a transition from free flow to congestions, which is mostly studied in highways. However, despite its importance in developing congestion mitigation strategies, the understanding of this common traffic phenomenon in a city scale is still missing. An open question is how the traffic in the network collapses from a global efficient traffic to isolated local flows in small clusters, i.e. the question of traffic percolation. Here we study the traffic percolation properties on a lattice by simulation of an agent-based model for traffic. A critical traffic volume in this model distinguishes the free state from the congested state of traffic. Our results show that the threshold of traffic percolation decreases with increasing traffic volume and reaches a minimum value at the critical traffic volume. We show that this minimal threshold is the result of longest spatial correlation between traffic flows at the critical traffic volume. These findings may help to develop congestion mitigation strategies in a network view.
A traffic analyzer for multiple SpaceWire links
NASA Astrophysics Data System (ADS)
Liu, Scige J.; Giusi, Giovanni; Di Giorgio, Anna M.; Vertolli, Nello; Galli, Emanuele; Biondi, David; Farina, Maria; Pezzuto, Stefano; Spinoglio, Luigi
2014-07-01
Modern space missions are becoming increasingly complex: the interconnection of the units in a satellite is now a network of terminals linked together through routers, where devices with different level of automation and intelligence share the same data-network. The traceability of the network transactions is performed mostly at terminal level through log analysis and hence it is difficult to verify in real time the reliability of the interconnections and the interchange protocols. To improve and ease the traffic analysis in a SpaceWire network we implemented a low-level link analyzer, with the specific goal to simplify the integration and test phases in the development of space instrumentation. The traffic analyzer collects signals coming from pod probes connected in-series on the interested links between two SpaceWire terminals. With respect to the standard traffic analyzers, the design of this new tool includes the possibility to internally reshape the LVDS signal. This improvement increases the robustness of the analyzer towards environmental noise effects and guarantees a deterministic delay on all analyzed signals. The analyzer core is implemented on a Xilinx FPGA, programmed to decode the bidirectional LVDS signals at Link and Network level. Successively, the core packetizes protocol characters in homogeneous sets of time ordered events. The analyzer provides time-tagging functionality for each characters set, with a precision down to the FPGA Clock, i.e. about 20nsec in the adopted HW environment. The use of a common time reference for each character stream allows synchronous performance measurements. The collected information is then routed to an external computer for quick analysis: this is done via high-speed USB2 connection. With this analyzer it is possible to verify the link performances in terms of induced delays in the transmitted signals. A case study focused on the analysis of the Time-Code synchronization in presence of a SpaceWire Router is
Deterministically Polarized Fluorescence from Single Dye Molecules Aligned in Liquid Crystal Host
Lukishova, S.G.; Schmid, A.W.; Knox, R.; Freivald, P.; Boyd, R. W.; Stroud, Jr., C. R.; Marshall, K.L.
2005-09-30
We demonstrated for the first time to our konwledge deterministically polarized fluorescence from single dye molecules. Planar aligned nematic liquid crystal hosts provide deterministic alignment of single dye molecules in a preferred direction.
Traffic-driven SIR epidemic spreading in networks
NASA Astrophysics Data System (ADS)
Pu, Cunlai; Li, Siyuan; Yang, XianXia; Xu, Zhongqi; Ji, Zexuan; Yang, Jian
2016-03-01
We study SIR epidemic spreading in networks driven by traffic dynamics, which are further governed by static routing protocols. We obtain the maximum instantaneous population of infected nodes and the maximum population of ever infected nodes through simulation. We find that generally more balanced load distribution leads to more intense and wide spread of an epidemic in networks. Increasing either average node degree or homogeneity of degree distribution will facilitate epidemic spreading. When packet generation rate ρ is small, increasing ρ favors epidemic spreading. However, when ρ is large enough, traffic congestion appears which inhibits epidemic spreading.
Preliminary Benefits Assessment of Traffic Aware Strategic Aircrew Requests (TASAR)
NASA Technical Reports Server (NTRS)
Henderson, Jeff; Idris, Husni; Wing, David J.
2012-01-01
While en route, aircrews submit trajectory change requests to air traffic control (ATC) to better meet their objectives including reduced delays, reduced fuel burn, and passenger comfort. Aircrew requests are currently made with limited to no information on surrounding traffic. Consequently, these requests are uninformed about a key ATC objective, ensuring traffic separation, and therefore less likely to be accepted than requests informed by surrounding traffic and that avoids creating conflicts. This paper studies the benefits of providing aircrews with on-board decision support to generate optimized trajectory requests that are probed and cleared of known separation violations prior to issuing the request to ATC. These informed requests are referred to as traffic aware strategic aircrew requests (TASAR) and leverage traffic surveillance information available through Automatic Dependent Surveillance Broadcast (ADS-B) In capability. Preliminary fast-time simulation results show increased benefits with longer stage lengths since beneficial trajectory changes can be applied over a longer distance. Also, larger benefits were experienced between large hub airports as compared to other airport sizes. On average, an aircraft equipped with TASAR reduced its travel time by about one to four minutes per operation and fuel burn by about 50 to 550 lbs per operation depending on the objective of the aircrew (time, fuel, or weighted combination of time and fuel), class of airspace user, and aircraft type. These preliminary results are based on analysis of approximately one week of traffic in July 2012 and additional analysis is planned on a larger data set to confirm these initial findings.
Hidden geometry of traffic jamming.
Andjelković, Miroslav; Gupte, Neelima; Tadić, Bosiljka
2015-05-01
We introduce an approach based on algebraic topological methods that allow an accurate characterization of jamming in dynamical systems with queues. As a prototype system, we analyze the traffic of information packets with navigation and queuing at nodes on a network substrate in distinct dynamical regimes. A temporal sequence of traffic density fluctuations is mapped onto a mathematical graph in which each vertex denotes one dynamical state of the system. The coupling complexity between these states is revealed by classifying agglomerates of high-dimensional cliques that are intermingled at different topological levels and quantified by a set of geometrical and entropy measures. The free-flow, jamming, and congested traffic regimes result in graphs of different structure, while the largest geometrical complexity and minimum entropy mark the edge of the jamming region. PMID:26066222
Cao, Pengxing; Tan, Xiahui; Donovan, Graham; Sanderson, Michael J; Sneyd, James
2014-08-01
The inositol trisphosphate receptor ([Formula: see text]) is one of the most important cellular components responsible for oscillations in the cytoplasmic calcium concentration. Over the past decade, two major questions about the [Formula: see text] have arisen. Firstly, how best should the [Formula: see text] be modeled? In other words, what fundamental properties of the [Formula: see text] allow it to perform its function, and what are their quantitative properties? Secondly, although calcium oscillations are caused by the stochastic opening and closing of small numbers of [Formula: see text], is it possible for a deterministic model to be a reliable predictor of calcium behavior? Here, we answer these two questions, using airway smooth muscle cells (ASMC) as a specific example. Firstly, we show that periodic calcium waves in ASMC, as well as the statistics of calcium puffs in other cell types, can be quantitatively reproduced by a two-state model of the [Formula: see text], and thus the behavior of the [Formula: see text] is essentially determined by its modal structure. The structure within each mode is irrelevant for function. Secondly, we show that, although calcium waves in ASMC are generated by a stochastic mechanism, [Formula: see text] stochasticity is not essential for a qualitative prediction of how oscillation frequency depends on model parameters, and thus deterministic [Formula: see text] models demonstrate the same level of predictive capability as do stochastic models. We conclude that, firstly, calcium dynamics can be accurately modeled using simplified [Formula: see text] models, and, secondly, to obtain qualitative predictions of how oscillation frequency depends on parameters it is sufficient to use a deterministic model. PMID:25121766
Deterministic ion beam material adding technology for high-precision optical surfaces.
Liao, Wenlin; Dai, Yifan; Xie, Xuhui; Zhou, Lin
2013-02-20
Although ion beam figuring (IBF) provides a highly deterministic method for the precision figuring of optical components, several problems still need to be addressed, such as the limited correcting capability for mid-to-high spatial frequency surface errors and low machining efficiency for pit defects on surfaces. We propose a figuring method named deterministic ion beam material adding (IBA) technology to solve those problems in IBF. The current deterministic optical figuring mechanism, which is dedicated to removing local protuberances on optical surfaces, is enriched and developed by the IBA technology. Compared with IBF, this method can realize the uniform convergence of surface errors, where the particle transferring effect generated in the IBA process can effectively correct the mid-to-high spatial frequency errors. In addition, IBA can rapidly correct the pit defects on the surface and greatly improve the machining efficiency of the figuring process. The verification experiments are accomplished on our experimental installation to validate the feasibility of the IBA method. First, a fused silica sample with a rectangular pit defect is figured by using IBA. Through two iterations within only 47.5 min, this highly steep pit is effectively corrected, and the surface error is improved from the original 24.69 nm root mean square (RMS) to the final 3.68 nm RMS. Then another experiment is carried out to demonstrate the correcting capability of IBA for mid-to-high spatial frequency surface errors, and the final results indicate that the surface accuracy and surface quality can be simultaneously improved. PMID:23435003
The fully actuated traffic control problem solved by global optimization and complementarity
NASA Astrophysics Data System (ADS)
Ribeiro, Isabel M.; de Lurdes de Oliveira Simões, Maria
2016-02-01
Global optimization and complementarity are used to determine the signal timing for fully actuated traffic control, regarding effective green and red times on each cycle. The average values of these parameters can be used to estimate the control delay of vehicles. In this article, a two-phase queuing system for a signalized intersection is outlined, based on the principle of minimization of the total waiting time for the vehicles. The underlying model results in a linear program with linear complementarity constraints, solved by a sequential complementarity algorithm. Departure rates of vehicles during green and yellow periods were treated as deterministic, while arrival rates of vehicles were assumed to follow a Poisson distribution. Several traffic scenarios were created and solved. The numerical results reveal that it is possible to use global optimization and complementarity over a reasonable number of cycles and determine with efficiency effective green and red times for a signalized intersection.
Completion and continuation of nonlinear traffic time series: a probabilistic approach
NASA Astrophysics Data System (ADS)
Belomestny, D.; Jentsch, V.; Schreckenberg, M.
2003-11-01
When dealing with nonlinear time series of car traffic on highways, one of the outstanding problems to be solved is completion and continuation of data in space and time. To this end, the underlying process is decomposed into stochastic and deterministic components. The former is approximated by Gaussian white noise, while the latter refers, apart from always existing trends, to the space- and time-dependent jam propagation process. Jams are modelled in terms of dynamical Bayesian networks with radial basis functions involved. The models developed are used to tackle travel time estimation and prediction. Results are obtained for one of the most crowded traffic areas of Europe, namely the ring-like highway around Cologne.
An improved multi-value cellular automata model for heterogeneous bicycle traffic flow
NASA Astrophysics Data System (ADS)
Jin, Sheng; Qu, Xiaobo; Xu, Cheng; Ma, Dongfang; Wang, Dianhai
2015-10-01
This letter develops an improved multi-value cellular automata model for heterogeneous bicycle traffic flow taking the higher maximum speed of electric bicycles into consideration. The update rules of both regular and electric bicycles are improved, with maximum speeds of two and three cells per second respectively. Numerical simulation results for deterministic and stochastic cases are obtained. The fundamental diagrams and multiple states effects under different model parameters are analyzed and discussed. Field observations were made to calibrate the slowdown probabilities. The results imply that the improved extended Burgers cellular automata (IEBCA) model is more consistent with the field observations than previous models and greatly enhances the realism of the bicycle traffic model.
Traffic Flow Management and Optimization
NASA Technical Reports Server (NTRS)
Rios, Joseph Lucio
2014-01-01
This talk will present an overview of Traffic Flow Management (TFM) research at NASA Ames Research Center. Dr. Rios will focus on his work developing a large-scale, parallel approach to solving traffic flow management problems in the national airspace. In support of this talk, Dr. Rios will provide some background on operational aspects of TFM as well a discussion of some of the tools needed to perform such work including a high-fidelity airspace simulator. Current, on-going research related to TFM data services in the national airspace system and general aviation will also be presented.
Modeling the Environmental Impact of Air Traffic Operations
NASA Technical Reports Server (NTRS)
Chen, Neil
2011-01-01
There is increased interest to understand and mitigate the impacts of air traffic on the climate, since greenhouse gases, nitrogen oxides, and contrails generated by air traffic can have adverse impacts on the climate. The models described in this presentation are useful for quantifying these impacts and for studying alternative environmentally aware operational concepts. These models have been developed by leveraging and building upon existing simulation and optimization techniques developed for the design of efficient traffic flow management strategies. Specific enhancements to the existing simulation and optimization techniques include new models that simulate aircraft fuel flow, emissions and contrails. To ensure that these new models are beneficial to the larger climate research community, the outputs of these new models are compatible with existing global climate modeling tools like the FAA's Aviation Environmental Design Tool.
Spontaneous density fluctuations in granular flow and traffic
NASA Astrophysics Data System (ADS)
Herrmann, Hans J.
It is known that spontaneous density waves appear in granular material flowing through pipes or hoppers. A similar phenomenon is known from traffic jams on highways. Using numerical simulations we show that several types of waves exist and find that the density fluctuations follow a power law spectrum. We also investigate one-dimensional traffic models. If positions and velocities are continuous variables the model shows self-organized criticality driven by the slowest car. Lattice gas and lattice Boltzmann models reproduce the experimentally observed effects. Density waves are spontaneously generated when the viscosity has a non-linear dependence on density or shear rate as it is the case in traffic or granular flow.
Evolutionary Concepts for Decentralized Air Traffic Flow Management
NASA Technical Reports Server (NTRS)
Adams, Milton; Kolitz, Stephan; Milner, Joseph; Odoni, Amedeo
1997-01-01
Alternative concepts for modifying the policies and procedures under which the air traffic flow management system operates are described, and an approach to the evaluation of those concepts is discussed. Here, air traffic flow management includes all activities related to the management of the flow of aircraft and related system resources from 'block to block.' The alternative concepts represent stages in the evolution from the current system, in which air traffic management decision making is largely centralized within the FAA, to a more decentralized approach wherein the airlines and other airspace users collaborate in air traffic management decision making with the FAA. The emphasis in the discussion is on a viable medium-term partially decentralized scenario representing a phase of this evolution that is consistent with the decision-making approaches embodied in proposed Free Flight concepts for air traffic management. System-level metrics for analyzing and evaluating the various alternatives are defined, and a simulation testbed developed to generate values for those metrics is described. The fundamental issue of modeling airline behavior in decentralized environments is also raised, and an example of such a model, which deals with the preservation of flight bank integrity in hub airports, is presented.
An Evaluation Methodology for Traffic Awareness Displays
NASA Technical Reports Server (NTRS)
DeMaio, Joe; Dearing, Munro
2004-01-01
An evaluation methodology for traffic awareness displays for helicopters and other vertical/short takeoff aircraft was developed. Pilots of vertical/short takeoff aircraft wil1 require more traffic information than would pilots of conventional aircraft to avoid both other vertical/short takeoff traffic and conventional traffic. The BF Goodrich Skywatch traffic advisory display was used as a candidate display to develop a procedure for evaluating the usefulness of such displays. Four high-time helicopter pilots participated in a 16-hour flight evaluation. They flew a closed circuit in the San Francisco Bay Area. In one-half of the flights the evaluation pilot had the traffic advisory display as an aid in detecting and locating traffic. In the other half of the flights the traffic advisory display was not available to the evaluation pilot. Data examined include measures of traffic advisory display performance and pilot performance in detecting traffic, as well as subjective workload and situation awareness data. The traffic advisory system did not help the pilots to detect more traffic. The importance of detection to traffic awareness is discussed.
Dynamic Density: An Air Traffic Management Metric
NASA Technical Reports Server (NTRS)
Laudeman, I. V.; Shelden, S. G.; Branstrom, R.; Brasil, C. L.
1998-01-01
The definition of a metric of air traffic controller workload based on air traffic characteristics is essential to the development of both air traffic management automation and air traffic procedures. Dynamic density is a proposed concept for a metric that includes both traffic density (a count of aircraft in a volume of airspace) and traffic complexity (a measure of the complexity of the air traffic in a volume of airspace). It was hypothesized that a metric that includes terms that capture air traffic complexity will be a better measure of air traffic controller workload than current measures based only on traffic density. A weighted linear dynamic density function was developed and validated operationally. The proposed dynamic density function includes a traffic density term and eight traffic complexity terms. A unit-weighted dynamic density function was able to account for an average of 22% of the variance in observed controller activity not accounted for by traffic density alone. A comparative analysis of unit weights, subjective weights, and regression weights for the terms in the dynamic density equation was conducted. The best predictor of controller activity was the dynamic density equation with regression-weighted complexity terms.
Evaluation the initial estimators using deterministic minimum covariance determinant algorithm
NASA Astrophysics Data System (ADS)
Alrawashdeh, Mufda Jameel; Sabri, Shamsul Rijal Muhammad; Ismail, Mohd Tahir
2014-07-01
The aim of the study is to examine five initial estimators introduced by Hubert et al. [1] with five additional new initial estimators by using the Deterministic Minimum Covariance Determinant algorithm, DetMCD. The objective of the DetMCD is to robustify the location and scatter matrix parameters. Since these parameters are highly influenced by the presence of outliers, the DetMCD is a newly highly robust algorithm, where it is constructed to overcome the outlier's problem. DetMCD precedes the non-random subsets, which computes a small number of deterministic initial estimators and followed by concentration steps. Here, we are going to compare the DetMCD algorithm based on two groups of estimators - one with original five Huberts' estimators and the other five new estimators. The determinant values of these estimators are observed to evaluate the performance via several cases.
On the secure obfuscation of deterministic finite automata.
Anderson, William Erik
2008-06-01
In this paper, we show how to construct secure obfuscation for Deterministic Finite Automata, assuming non-uniformly strong one-way functions exist. We revisit the software protection approaches originally proposed by [5, 10, 12, 17] and revise them to the current obfuscation setting of Barak et al. [2]. Under this model, we introduce an efficient oracle that retains some 'small' secret about the original program. Using this secret, we can construct an obfuscator and two-party protocol that securely obfuscates Deterministic Finite Automata against malicious adversaries. The security of this model retains the strong 'virtual black box' property originally proposed in [2] while incorporating the stronger condition of dependent auxiliary inputs in [15]. Additionally, we show that our techniques remain secure under concurrent self-composition with adaptive inputs and that Turing machines are obfuscatable under this model.
Deterministic remote two-qubit state preparation in dissipative environments
NASA Astrophysics Data System (ADS)
Li, Jin-Fang; Liu, Jin-Ming; Feng, Xun-Li; Oh, C. H.
2016-05-01
We propose a new scheme for efficient remote preparation of an arbitrary two-qubit state, introducing two auxiliary qubits and using two Einstein-Podolsky-Rosen (EPR) states as the quantum channel in a non-recursive way. At variance with all existing schemes, our scheme accomplishes deterministic remote state preparation (RSP) with only one sender and the simplest entangled resource (say, EPR pairs). We construct the corresponding quantum logic circuit using a unitary matrix decomposition procedure and analytically obtain the average fidelity of the deterministic RSP process for dissipative environments. Our studies show that, while the average fidelity gradually decreases to a stable value without any revival in the Markovian regime, it decreases to the same stable value with a dampened revival amplitude in the non-Markovian regime. We also find that the average fidelity's approximate maximal value can be preserved for a long time if the non-Markovian and the detuning conditions are satisfied simultaneously.
Deterministic synthesis of mechanical NOON states in ultrastrong optomechanics
NASA Astrophysics Data System (ADS)
Macrí, V.; Garziano, L.; Ridolfo, A.; Di Stefano, O.; Savasta, S.
2016-07-01
We propose a protocol for the deterministic preparation of entangled NOON mechanical states. The system is constituted by two identical, optically coupled optomechanical systems. The protocol consists of two steps. In the first, one of the two optical resonators is excited by a resonant external π -like Gaussian optical pulse. When the optical excitation coherently partly transfers to the second cavity, the second step starts. It consists of sending simultaneously two additional π -like Gaussian optical pulses, one at each optical resonator, with specific frequencies. In the optomechanical ultrastrong coupling regime, when the coupling strength becomes a significant fraction of the mechanical frequency, we show that NOON mechanical states with quite high Fock states can be deterministically obtained. The operating range of this protocol is carefully analyzed. Calculations have been carried out taking into account the presence of decoherence, thermal noise, and imperfect cooling.
Deterministic error correction for nonlocal spatial-polarization hyperentanglement
Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu
2016-01-01
Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication. PMID:26861681
Approaches to implementing deterministic models in a probabilistic framework
Talbott, D.V.
1995-04-01
The increasing use of results from probabilistic risk assessments in the decision-making process makes it ever more important to eliminate simplifications in probabilistic models that might lead to conservative results. One area in which conservative simplifications are often made is modeling the physical interactions that occur during the progression of an accident sequence. This paper demonstrates and compares different approaches for incorporating deterministic models of physical parameters into probabilistic models; parameter range binning, response curves, and integral deterministic models. An example that combines all three approaches in a probabilistic model for the handling of an energetic material (i.e. high explosive, rocket propellant,...) is then presented using a directed graph model.
Deterministic error correction for nonlocal spatial-polarization hyperentanglement.
Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu
2016-01-01
Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication. PMID:26861681
Deterministic error correction for nonlocal spatial-polarization hyperentanglement
NASA Astrophysics Data System (ADS)
Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu
2016-02-01
Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication.
NASA Astrophysics Data System (ADS)
Wills, P.; Iacocca, E.; Hoefer, M. A.
2016-04-01
The magnetic dissipative droplet is a strongly nonlinear wave structure that can be stabilized in a thin film ferromagnet exhibiting perpendicular magnetic anisotropy by use of spin transfer torque. These structures have been observed experimentally at room temperature, showcasing their robustness against noise. Here, we quantify the effects of thermal noise by deriving stochastic equations of motion for a droplet based on soliton perturbation theory. First, it is found that deterministic droplets are linearly unstable at large bias currents, subject to a drift instability. When the droplet is linearly stable, our framework allows us to analytically compute the droplet's generation linewidth and center variance. Additionally, we study the influence of nonlocal and Oersted fields with micromagnetic simulations, providing insight into their effect on the generation linewidth. These results motivate detailed experiments on the current and temperature-dependent linewidth as well as drift instability statistics of droplets, which are important figures-of-merit in the prospect of droplet-based applications.
A deterministic algorithm for constrained enumeration of transmembrane protein folds.
Brown, William Michael; Young, Malin M.; Sale, Kenneth L.; Faulon, Jean-Loup Michel; Schoeniger, Joseph S.
2004-07-01
A deterministic algorithm for enumeration of transmembrane protein folds is presented. Using a set of sparse pairwise atomic distance constraints (such as those obtained from chemical cross-linking, FRET, or dipolar EPR experiments), the algorithm performs an exhaustive search of secondary structure element packing conformations distributed throughout the entire conformational space. The end result is a set of distinct protein conformations, which can be scored and refined as part of a process designed for computational elucidation of transmembrane protein structures.
Nano transfer and nanoreplication using deterministically grown sacrificial nanotemplates
Melechko, Anatoli V.; McKnight, Timothy E.; Guillorn, Michael A.; Ilic, Bojan; Merkulov, Vladimir I.; Doktycz, Mitchel J.; Lowndes, Douglas H.; Simpson, Michael L.
2012-03-27
Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. An apparatus, includes a substrate and a nanoconduit material coupled to a surface of the substrate. The substrate defines an aperture and the nanoconduit material defines a nanoconduit that is i) contiguous with the aperture and ii) aligned substantially non-parallel to a plane defined by the surface of the substrate.
Comment on: Supervisory Asymmetric Deterministic Secure Quantum Communication
NASA Astrophysics Data System (ADS)
Kao, Shih-Hung; Tsai, Chia-Wei; Hwang, Tzonelih
2012-12-01
In 2010, Xiu et al. (Optics Communications 284:2065-2069, 2011) proposed several applications based on a new secure four-site distribution scheme using χ-type entangled states. This paper points out that one of these applications, namely, supervisory asymmetric deterministic secure quantum communication, is subject to an information leakage problem, in which the receiver can extract two bits of a three-bit secret message without the supervisor's permission. An enhanced protocol is proposed to resolve this problem.
The deterministic SIS epidemic model in a Markovian random environment.
Economou, Antonis; Lopez-Herrero, Maria Jesus
2016-07-01
We consider the classical deterministic susceptible-infective-susceptible epidemic model, where the infection and recovery rates depend on a background environmental process that is modeled by a continuous time Markov chain. This framework is able to capture several important characteristics that appear in the evolution of real epidemics in large populations, such as seasonality effects and environmental influences. We propose computational approaches for the determination of various distributions that quantify the evolution of the number of infectives in the population. PMID:26515172
Deterministic entanglement of two neutral atoms via Rydberg blockade
Zhang, X. L.; Isenhower, L.; Gill, A. T.; Walker, T. G.; Saffman, M.
2010-09-15
We demonstrate the deterministic entanglement of two individually addressed neutral atoms using a Rydberg blockade mediated controlled-not gate. Parity oscillation measurements reveal a Bell state fidelity of F=0.58{+-}0.04, which is above the entanglement threshold of F=0.5, without any correction for atom loss, and F=0.71{+-}0.05 after correcting for background collisional losses. The fidelity results are shown to be in good agreement with a detailed error model.
Automatic drawing for traffic marking with MMS LIDAR intensity
NASA Astrophysics Data System (ADS)
Takahashi, G.; Takeda, H.; Shimano, Y.
2014-05-01
Upgrading the database of CYBER JAPAN has been strategically promoted because the "Basic Act on Promotion of Utilization of Geographical Information", was enacted in May 2007. In particular, there is a high demand for road information that comprises a framework in this database. Therefore, road inventory mapping work has to be accurate and eliminate variation caused by individual human operators. Further, the large number of traffic markings that are periodically maintained and possibly changed require an efficient method for updating spatial data. Currently, we apply manual photogrammetry drawing for mapping traffic markings. However, this method is not sufficiently efficient in terms of the required productivity, and data variation can arise from individual operators. In contrast, Mobile Mapping Systems (MMS) and high-density Laser Imaging Detection and Ranging (LIDAR) scanners are rapidly gaining popularity. The aim in this study is to build an efficient method for automatically drawing traffic markings using MMS LIDAR data. The key idea in this method is extracting lines using a Hough transform strategically focused on changes in local reflection intensity along scan lines. However, also note that this method processes every traffic marking. In this paper, we discuss a highly accurate and non-human-operator-dependent method that applies the following steps: (1) Binarizing LIDAR points by intensity and extracting higher intensity points; (2) Generating a Triangulated Irregular Network (TIN) from higher intensity points; (3) Deleting arcs by length and generating outline polygons on the TIN; (4) Generating buffers from the outline polygons; (5) Extracting points from the buffers using the original LIDAR points; (6) Extracting local-intensity-changing points along scan lines using the extracted points; (7) Extracting lines from intensity-changing points through a Hough transform; and (8) Connecting lines to generate automated traffic marking mapping data.
Probabilistic vs deterministic views in facing natural hazards
NASA Astrophysics Data System (ADS)
Arattano, Massimo; Coviello, Velio
2015-04-01
Natural hazards can be mitigated through active or passive measures. Among these latter countermeasures, Early Warning Systems (EWSs) are playing an increasing and significant role. In particular, a growing number of studies investigate the reliability of landslide EWSs, their comparability to alternative protection measures and their cost-effectiveness. EWSs, however, inevitably and intrinsically imply the concept of probability of occurrence and/or probability of error. Since a long time science has accepted and integrated the probabilistic nature of reality and its phenomena. The same cannot be told for other fields of knowledge, such as law or politics, with which scientists sometimes have to interact. These disciplines are in fact still linked to more deterministic views of life. The same is true for what is perceived by the public opinion, which often requires or even pretends a deterministic type of answer to its needs. So, as an example, it might be easy for people to feel completely safe because an EWS has been installed. It is also easy for an administrator or a politician to contribute to spread this wrong feeling, together with the idea of having dealt with the problem and done something definitive to face it. May geoethics play a role to create a link between the probabilistic world of nature and science and the tendency of the society to a more deterministic view of things? Answering this question could help scientists to feel more confident in planning and performing their research activities.
Deterministic form correction of extreme freeform optical surfaces
NASA Astrophysics Data System (ADS)
Lynch, Timothy P.; Myer, Brian W.; Medicus, Kate; DeGroote Nelson, Jessica
2015-10-01
The blistering pace of recent technological advances has led lens designers to rely increasingly on freeform optical components as crucial pieces of their designs. As these freeform components increase in geometrical complexity and continue to deviate further from traditional optical designs, the optical manufacturing community must rethink their fabrication processes in order to keep pace. To meet these new demands, Optimax has developed a variety of new deterministic freeform manufacturing processes. Combining traditional optical fabrication techniques with cutting edge technological innovations has yielded a multifaceted manufacturing approach that can successfully handle even the most extreme freeform optical surfaces. In particular, Optimax has placed emphasis on refining the deterministic form correction process. By developing many of these procedures in house, changes can be implemented quickly and efficiently in order to rapidly converge on an optimal manufacturing method. Advances in metrology techniques allow for rapid identification and quantification of irregularities in freeform surfaces, while deterministic correction algorithms precisely target features on the part and drastically reduce overall correction time. Together, these improvements have yielded significant advances in the realm of freeform manufacturing. With further refinements to these and other aspects of the freeform manufacturing process, the production of increasingly radical freeform optical components is quickly becoming a reality.
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.
Circulant Graph Modeling Deterministic Small-World Networks
NASA Astrophysics Data System (ADS)
Zhao, Chenggui
In recent years, many research works have revealed some technological networks including internet to be small-world networks, which is attracting attention from computer scientists. One can decide if or not a real network is Small-world by whether it has high local clustering and small average path distance which are the two distinguishing characteristics of small-world networks. So far, researchers have presented many small-world models by dynamically evolving a deterministic network into a small world one by stochastic adding vertices and edges to original networks. Rather few works focused on deterministic models. In this paper, as a important kind of Cayley graph, the circulant graph is proposed as models of deterministic small-world networks, thinking if its simple structures and significant adaptability. It shows circulant graph constructed in this document takes on the two expected characteristics of small word. This work should be useful because circulant graph has serviced as some models of communication and computer networks. The small world characteristic will be helpful to design and analysis of structure and performance.
Demographic noise can reverse the direction of deterministic selection.
Constable, George W A; Rogers, Tim; McKane, Alan J; Tarnita, Corina E
2016-08-01
Deterministic evolutionary theory robustly predicts that populations displaying altruistic behaviors will be driven to extinction by mutant cheats that absorb common benefits but do not themselves contribute. Here we show that when demographic stochasticity is accounted for, selection can in fact act in the reverse direction to that predicted deterministically, instead favoring cooperative behaviors that appreciably increase the carrying capacity of the population. Populations that exist in larger numbers experience a selective advantage by being more stochastically robust to invasions than smaller populations, and this advantage can persist even in the presence of reproductive costs. We investigate this general effect in the specific context of public goods production and find conditions for stochastic selection reversal leading to the success of public good producers. This insight, developed here analytically, is missed by the deterministic analysis as well as by standard game theoretic models that enforce a fixed population size. The effect is found to be amplified by space; in this scenario we find that selection reversal occurs within biologically reasonable parameter regimes for microbial populations. Beyond the public good problem, we formulate a general mathematical framework for models that may exhibit stochastic selection reversal. In this context, we describe a stochastic analog to [Formula: see text] theory, by which small populations can evolve to higher densities in the absence of disturbance. PMID:27450085
Spatiotemporal calibration and resolution refinement of output from deterministic models.
Gilani, Owais; McKay, Lisa A; Gregoire, Timothy G; Guan, Yongtao; Leaderer, Brian P; Holford, Theodore R
2016-06-30
Spatiotemporal calibration of output from deterministic models is an increasingly popular tool to more accurately and efficiently estimate the true distribution of spatial and temporal processes. Current calibration techniques have focused on a single source of data on observed measurements of the process of interest that are both temporally and spatially dense. Additionally, these methods often calibrate deterministic models available in grid-cell format with pixel sizes small enough that the centroid of the pixel closely approximates the measurement for other points within the pixel. We develop a modeling strategy that allows us to simultaneously incorporate information from two sources of data on observed measurements of the process (that differ in their spatial and temporal resolutions) to calibrate estimates from a deterministic model available on a regular grid. This method not only improves estimates of the pollutant at the grid centroids but also refines the spatial resolution of the grid data. The modeling strategy is illustrated by calibrating and spatially refining daily estimates of ambient nitrogen dioxide concentration over Connecticut for 1994 from the Community Multiscale Air Quality model (temporally dense grid-cell estimates on a large pixel size) using observations from an epidemiologic study (spatially dense and temporally sparse) and Environmental Protection Agency monitoring stations (temporally dense and spatially sparse). Copyright © 2016 John Wiley & Sons, Ltd. PMID:26790617
NASA Technical Reports Server (NTRS)
Williams, D. H.; Moen, G. C.
1983-01-01
The effect of traffic sensor noise on the ability of a pilot to perform an intrail spacing task was determined. The tests were conducted in a fixed base cockpit simulator configured as a current generation transport aircraft, with an electronic traffic display provided in the weather radarscope location. The true positions of the traffic were perturbed in both relative range and azimuth by random errors to simulate traffic sensor noise associated with an onboard sensor. The evaluation task involved simulated instrument approaches into a terminal area while maintaining self separation on a lead aircraft. Separation performance data and pilot subjective ratings and comments were obtained. The results of the separation data indicate that displayed traffic position errors, having standard deviation values up to 0.3-n.mi. range and 8 deg azimuth, had negligible effect on the spacing performance achieved by the pilots. Speed profiles of the lead aircraft, display of the lead aircraft groundspeed, and individual pilot techniques were found to significantly affect the mean spacing performance.
The Physics of Traffic Accidents
ERIC Educational Resources Information Center
Knight, Peter
1975-01-01
Shows how physics can be used to analyze and prevent traffic accidents by determining critical speeds on curves, the behavior of motor cycles and stability of articulated vehicles, and the visibility that is needed to make a minor road junction safe. (MLH)
Overview. Traffic Safety Facts, 2000.
ERIC Educational Resources Information Center
National Highway Traffic Safety Administration (DOT), Washington, DC.
This document provides statistical information on U.S. motor vehicle and traffic safety. Data include: (1) motor vehicle occupants and non-occupants killed and injured, 1990-2000; (2) persons killed and injured, and fatality and injury rates, 1990-2000; (3) restraint use rates for passenger car occupants in fatal crashes, 1990 and 2000; (4)…
Traffic Safety Facts, 2001. Overview.
ERIC Educational Resources Information Center
National Highway Traffic Safety Administration (DOT), Washington, DC.
This document provides statistical information on U.S. motor vehicle and traffic safety. Data include: (1) motor vehicle occupants and non-occupants killed and injured, 1991-2001; (2) persons killed and injured, and fatality and injury rates, 1991-2001; (3) restraint use rates for passenger car occupants in fatal crashes, 1991 and 2001; (4)…
Optical traffic-sensing concept
NASA Technical Reports Server (NTRS)
Johnston, A. R.; Shimada, K.
1978-01-01
Scaled-up optical proximity detector is versatile traffic sensor that replaces or augments existing systems such as inductive loops. Photosensor which does not depend on ambient light has several features that protect it against spurious or ambiguous inputs. It could be implemented in several forms to cope with different roadway conditions.
Broadcast control of air traffic
NASA Technical Reports Server (NTRS)
Litchford, G. B.
1972-01-01
The development of a system of broadcast control for improved flight safety and air traffic control is discussed. The system provides a balance of equality between improved cockpit guidance and control capability and ground control in order to provide the pilot with a greater degree of participation. The manner in which the system is operated and the equipment required for safe operation are examined.
Children. Traffic Safety Facts, 2000.
ERIC Educational Resources Information Center
National Highway Traffic Safety Administration (DOT), Washington, DC.
This document provides statistical information on the incidence of U.S. motor vehicle-related accidents and fatalities involving children. Data include: (1) total traffic fatalities among children 0-14 years old, by age group, 1990-2000; (2) total pedestrian fatalities among children 0-14 years old, by age group, 1990-2000; (3) total pedalcyclist…
Traffic Safety Facts, 2001: Children.
ERIC Educational Resources Information Center
National Highway Traffic Safety Administration (DOT), Washington, DC.
This document provides statistical information on the incidence of U.S. motor vehicle-related accidents and fatalities involving children. Data include: (1) total traffic fatalities among children 0-14 years old, by age group, 1991-2001; (2) total pedestrian fatalities among children 0-14 years old, by age group, 1991-2001; (3) total pedalcyclist…
Traffic Aware Strategic Aircrew Requests (TASAR)
NASA Technical Reports Server (NTRS)
Wing, David J.
2014-01-01
The Traffic Aware Strategic Aircrew Request (TASAR) concept offers onboard automation for the purpose of advising the pilot of traffic compatible trajectory changes that would be beneficial to the flight. A fast-time simulation study was conducted to assess the benefits of TASAR to Alaska Airlines. The simulation compares historical trajectories without TASAR to trajectories developed with TASAR and evaluated by controllers against their objectives. It was estimated that between 8,000 and 12,000 gallons of fuel and 900 to 1,300 minutes could be saved annually per aircraft. These savings were applied fleet-wide to produce an estimated annual cost savings to Alaska Airlines in excess of $5 million due to fuel, maintenance, and depreciation cost savings. Switching to a more wind-optimal trajectory was found to be the use case that generated the highest benefits out of the three TASAR use cases analyzed. Alaska TASAR requests peaked at four to eight requests per hour in high-altitude Seattle center sectors south of Seattle-Tacoma airport..
NASA Technical Reports Server (NTRS)
Huber, Hans
2006-01-01
Air transport forms complex networks that can be measured in order to understand its structural characteristics and functional properties. Recent models for network growth (i.e., preferential attachment, etc.) remain stochastic and do not seek to understand other network-specific mechanisms that may account for their development in a more microscopic way. Air traffic is made up of many constituent airlines that are either privately or publicly owned and that operate their own networks. They follow more or less similar business policies each. The way these airline networks organize among themselves into distinct traffic distributions reveals complex interaction among them, which in turn can be aggregated into larger (macro-) traffic distributions. Our approach allows for a more deterministic methodology that will assess the impact of airline strategies on the distinct distributions for air traffic, particularly inside Europe. One key question this paper is seeking to answer is whether there are distinct patterns of preferential attachment for given classes of airline networks to distinct types of European airports. Conclusions about the advancing degree of concentration in this industry and the airline operators that accelerate this process can be drawn.
Traffic fatalities and economic growth.
Kopits, Elizabeth; Cropper, Maureen
2005-01-01
This paper examines the relationship between traffic fatality risk and per capita income and uses it to forecast traffic fatalities by geographic region. Equations for the road death rate (fatalities/population) and its components--the rate of motorization (vehicles/population) and fatalities per vehicle (F/V)--are estimated using panel data from 1963 to 1999 for 88 countries. The natural logarithm of F/P, V/P, and F/V are expressed as spline (piecewise linear) functions of the logarithm of real per capita GDP (measured in 1985 international prices). Region-specific time trends during the period 1963-1999 are modeled in linear and log-linear form. These models are used to project traffic fatalities and the stock of motor vehicles to 2020. The per capita income at which traffic fatality risk (fatalities/population) begins to decline is 8600 US dollars (1985 international dollars) when separate time trends are used for each geographic region. This turning point is driven by the rate of decline in fatalities/vehicles as income rises since vehicles/population, while increasing with income at a decreasing rate, never declines with economic growth. Projections of future traffic fatalities suggest that the global road death toll will grow by approximately 66% over the next twenty years. This number, however, reflects divergent rates of change in different parts of the world: a decline in fatalities in high-income countries of approximately 28% versus an increase in fatalities of almost 92% in China and 147% in India. The road death rate is projected to rise to approximately 2 per 10,000 persons in developing countries by 2020, while it will fall to less than 1 per 10,000 in high-income countries. PMID:15607288
NASA Astrophysics Data System (ADS)
Galvan-Sosa, M.; Portilla, J.; Hernandez-Rueda, J.; Siegel, J.; Moreno, L.; Ruiz de la Cruz, A.; Solis, J.
2014-02-01
Femtosecond laser pulse temporal shaping techniques have led to important advances in different research fields like photochemistry, laser physics, non-linear optics, biology, or materials processing. This success is partly related to the use of optimal control algorithms. Due to the high dimensionality of the solution and control spaces, evolutionary algorithms are extensively applied and, among them, genetic ones have reached the status of a standard adaptive strategy. Still, their use is normally accompanied by a reduction of the problem complexity by different modalities of parameterization of the spectral phase. Exploiting Rabitz and co-authors' ideas about the topology of quantum landscapes, in this work we analyze the optimization of two different problems under a deterministic approach, using a multiple one-dimensional search (MODS) algorithm. In the first case we explore the determination of the optimal phase mask required for generating arbitrary temporal pulse shapes and compare the performance of the MODS algorithm to the standard iterative Gerchberg-Saxton algorithm. Based on the good performance achieved, the same method has been applied for optimizing two-photon absorption starting from temporally broadened laser pulses, or from laser pulses temporally and spectrally distorted by non-linear absorption in air, obtaining similarly good results which confirm the validity of the deterministic search approach.
NASA Astrophysics Data System (ADS)
Galvan-Sosa, M.; Portilla, J.; Hernandez-Rueda, J.; Siegel, J.; Moreno, L.; Ruiz de la Cruz, A.; Solis, J.
2013-04-01
Femtosecond laser pulse temporal shaping techniques have led to important advances in different research fields like photochemistry, laser physics, non-linear optics, biology, or materials processing. This success is partly related to the use of optimal control algorithms. Due to the high dimensionality of the solution and control spaces, evolutionary algorithms are extensively applied and, among them, genetic ones have reached the status of a standard adaptive strategy. Still, their use is normally accompanied by a reduction of the problem complexity by different modalities of parameterization of the spectral phase. Exploiting Rabitz and co-authors' ideas about the topology of quantum landscapes, in this work we analyze the optimization of two different problems under a deterministic approach, using a multiple one-dimensional search (MODS) algorithm. In the first case we explore the determination of the optimal phase mask required for generating arbitrary temporal pulse shapes and compare the performance of the MODS algorithm to the standard iterative Gerchberg-Saxton algorithm. Based on the good performance achieved, the same method has been applied for optimizing two-photon absorption starting from temporally broadened laser pulses, or from laser pulses temporally and spectrally distorted by non-linear absorption in air, obtaining similarly good results which confirm the validity of the deterministic search approach.
Development of a deterministic XML schema by resolving structure ambiguity of HL7 messages.
Huang, Ean-Wen; Wang, Da-Wei; Liou, Der-Ming
2005-10-01
Health level 7 (HL7) is a standard for medical information exchange. It defines data transfers for the application systems in the healthcare environment. Alternatively, the extensible markup language (XML) is a standard for data exchange using the Internet. If exchange messages follow the content and the sequence defined by HL7 and are expressed in the XML format, the system may benefit from the advantages of both standards. In creating the XML schema, we found ambiguities in HL7 message structures that cause the XML schema to be non-deterministic. These ambiguous expressions are summarized within 12 structures and can be replaced with equivalent or similar unambiguous structures. The finite state automata are used to verify expression equivalence. Applying this schema, an XML document may eliminate redundant segment group definitions and make the structure simple and easy to reproduce. In this paper, we discuss the methods and our experience in resolving ambiguous problems in HL7 messages to generate a deterministic XML schema. PMID:15993979
Computation of a Canadian SCWR unit cell with deterministic and Monte Carlo codes
Harrisson, G.; Marleau, G.
2012-07-01
The Canadian SCWR has the potential to achieve the goals that the generation IV nuclear reactors must meet. As part of the optimization process for this design concept, lattice cell calculations are routinely performed using deterministic codes. In this study, the first step (self-shielding treatment) of the computation scheme developed with the deterministic code DRAGON for the Canadian SCWR has been validated. Some options available in the module responsible for the resonance self-shielding calculation in DRAGON 3.06 and different microscopic cross section libraries based on the ENDF/B-VII.0 evaluated nuclear data file have been tested and compared to a reference calculation performed with the Monte Carlo code SERPENT under the same conditions. Compared to SERPENT, DRAGON underestimates the infinite multiplication factor in all cases. In general, the original Stammler model with the Livolant-Jeanpierre approximations are the most appropriate self-shielding options to use in this case of study. In addition, the 89 groups WIMS-AECL library for slight enriched uranium and the 172 groups WLUP library for a mixture of plutonium and thorium give the most consistent results with those of SERPENT. (authors)
Godt, J.W.; Baum, R.L.; Savage, W.Z.; Salciarini, D.; Schulz, W.H.; Harp, E.L.
2008-01-01
Application of transient deterministic shallow landslide models over broad regions for hazard and susceptibility assessments requires information on rainfall, topography and the distribution and properties of hillside materials. We survey techniques for generating the spatial and temporal input data for such models and present an example using a transient deterministic model that combines an analytic solution to assess the pore-pressure response to rainfall infiltration with an infinite-slope stability calculation. Pore-pressures and factors of safety are computed on a cell-by-cell basis and can be displayed or manipulated in a grid-based GIS. Input data are high-resolution (1.8??m) topographic information derived from LiDAR data and simple descriptions of initial pore-pressure distribution and boundary conditions for a study area north of Seattle, Washington. Rainfall information is taken from a previously defined empirical rainfall intensity-duration threshold and material strength and hydraulic properties were measured both in the field and laboratory. Results are tested by comparison with a shallow landslide inventory. Comparison of results with those from static infinite-slope stability analyses assuming fixed water-table heights shows that the spatial prediction of shallow landslide susceptibility is improved using the transient analyses; moreover, results can be depicted in terms of the rainfall intensity and duration known to trigger shallow landslides in the study area.
Systematic and Deterministic Graph-Minor Embedding of Cartesian Products of Complete Graphs
NASA Astrophysics Data System (ADS)
Zaribafiyan, Arman; Marchand, Dominic J. J.; Changiz Rezaei, Seyed Saeed
The limited connectivity of current and next-generation quantum annealers motivates the need for efficient graph-minor embedding methods. The overhead of the widely used heuristic techniques is quickly proving to be a significant bottleneck for real-world applications. To alleviate this obstacle, we propose a systematic deterministic embedding method that exploits the structures of both the input graph of the specific combinatorial optimization problem and the quantum annealer. We focus on the specific case of the Cartesian product of two complete graphs, a regular structure that occurs in many problems. We first divide the problem by embedding one of the factors of the Cartesian product in a repeatable unit. The resulting simplified problem consists of placing copies of this unit and connecting them together appropriately. Aside from the obvious speed and efficiency advantages of a systematic deterministic approach, the embeddings produced can be easily scaled for larger processors and show desirable properties with respect to the number of qubits used and the chain length distribution.
Sub-surface single ion detection in diamond: A path for deterministic color center creation
NASA Astrophysics Data System (ADS)
Abraham, John; Aguirre, Brandon; Pacheco, Jose; Camacho, Ryan; Bielejec, Edward; Sandia National Laboratories Team
Deterministic single color center creation remains a critical milestone for the integrated use of diamond color centers. It depends on three components: focused ion beam implantation to control the location, yield improvement to control the activation, and single ion implantation to control the number of implanted ions. A surface electrode detector has been fabricated on diamond where the electron hole pairs generated during ion implantation are used as the detection signal. Results will be presented demonstrating single ion detection. The detection efficiency of the device will be described as a function of implant energy and device geometry. It is anticipated that the controlled introduction of single dopant atoms in diamond will provide a basis for deterministic single localized color centers. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Bianchini, G.; Burgio, N.; Carta, M.; Peluso, V.; Fabrizio, V.; Ricci, L.
2012-07-01
The GUINEVERE experiment (Generation of Uninterrupted Intense Neutrons at the lead Venus Reactor) is an experimental program in support of the ADS technology presently carried out at SCK-CEN in Mol (Belgium). In the experiment a modified lay-out of the original thermal VENUS critical facility is coupled to an accelerator, built by the French body CNRS in Grenoble, working in both continuous and pulsed mode and delivering 14 MeV neutrons by bombardment of deuterons on a tritium-target. The modified lay-out of the facility consists of a fast subcritical core made of 30% U-235 enriched metallic Uranium in a lead matrix. Several off-line and on-line reactivity measurement techniques will be investigated during the experimental campaign. This report is focused on the simulation by deterministic (ERANOS French code) and Monte Carlo (MCNPX US code) calculations of three reactivity measurement techniques, Slope ({alpha}-fitting), Area-ratio and Source-jerk, applied to a GUINEVERE subcritical configuration (namely SC1). The inferred reactivity, in dollar units, by the Area-ratio method shows an overall agreement between the two deterministic and Monte Carlo computational approaches, whereas the MCNPX Source-jerk results are affected by large uncertainties and allow only partial conclusions about the comparison. Finally, no particular spatial dependence of the results is observed in the case of the GUINEVERE SC1 subcritical configuration. (authors)
Varouchakis, Epsilon A; Hristopulos, D T
2013-01-01
In sparsely monitored basins, accurate mapping of the spatial variability of groundwater level requires the interpolation of scattered data. This paper presents a comparison of deterministic interpolation methods, i.e. inverse distance weight (IDW) and minimum curvature (MC), with stochastic methods, i.e. ordinary kriging (OK), universal kriging (UK) and kriging with Delaunay triangulation (DK). The study area is the Mires Basin of Mesara Valley in Crete (Greece). This sparsely sampled basin has limited groundwater resources which are vital for the island's economy; spatial variations of the groundwater level are important for developing management and monitoring strategies. We evaluate the performance of the interpolation methods with respect to different statistical measures. The Spartan variogram family is applied for the first time to hydrological data and is shown to be optimal with respect to stochastic interpolation of this dataset. The three stochastic methods (OK, DK and UK) perform overall better than the deterministic counterparts (IDW and MC). DK, which is herein for the first time applied to hydrological data, yields the most accurate cross-validation estimate for the lowest value in the dataset. OK and UK lead to smooth isolevel contours, whilst DK and IDW generate more edges. The stochastic methods deliver estimates of prediction uncertainty which becomes highest near the southeastern border of the basin. PMID:22311559
Predicting Information Flows in Network Traffic.
ERIC Educational Resources Information Center
Hinich, Melvin J.; Molyneux, Robert E.
2003-01-01
Discusses information flow in networks and predicting network traffic and describes a study that uses time series analysis on a day's worth of Internet log data. Examines nonlinearity and traffic invariants, and suggests that prediction of network traffic may not be possible with current techniques. (Author/LRW)
30 CFR 56.9100 - Traffic control.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Traffic control. 56.9100 Section 56.9100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Dumping Traffic Safety § 56.9100 Traffic control. To provide for the safe movement of...
30 CFR 57.9100 - Traffic control.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Traffic control. 57.9100 Section 57.9100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Dumping Traffic Safety § 57.9100 Traffic control. To provide for the safe movement of...
30 CFR 56.9100 - Traffic control.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Traffic control. 56.9100 Section 56.9100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Dumping Traffic Safety § 56.9100 Traffic control. To provide for the safe movement of...
49 CFR 236.381 - Traffic locking.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Traffic locking. 236.381 Section 236.381..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Interlocking Inspection and Tests § 236.381 Traffic locking. Traffic locking shall be tested when placed in service...
49 CFR 236.381 - Traffic locking.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Traffic locking. 236.381 Section 236.381..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Interlocking Inspection and Tests § 236.381 Traffic locking. Traffic locking shall be tested when placed in service...
30 CFR 57.9100 - Traffic control.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Traffic control. 57.9100 Section 57.9100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Dumping Traffic Safety § 57.9100 Traffic control. To provide for the safe movement of...
49 CFR 236.381 - Traffic locking.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Traffic locking. 236.381 Section 236.381..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Interlocking Inspection and Tests § 236.381 Traffic locking. Traffic locking shall be tested when placed in service...
30 CFR 56.9100 - Traffic control.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Traffic control. 56.9100 Section 56.9100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Dumping Traffic Safety § 56.9100 Traffic control. To provide for the safe movement of...
49 CFR 236.381 - Traffic locking.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Traffic locking. 236.381 Section 236.381..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Interlocking Inspection and Tests § 236.381 Traffic locking. Traffic locking shall be tested when placed in service...
49 CFR 236.381 - Traffic locking.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Traffic locking. 236.381 Section 236.381..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Interlocking Inspection and Tests § 236.381 Traffic locking. Traffic locking shall be tested when placed in service...
30 CFR 57.9100 - Traffic control.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Traffic control. 57.9100 Section 57.9100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Dumping Traffic Safety § 57.9100 Traffic control. To provide for the safe movement of...
30 CFR 56.9100 - Traffic control.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Traffic control. 56.9100 Section 56.9100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Dumping Traffic Safety § 56.9100 Traffic control. To provide for the safe movement of...
30 CFR 57.9100 - Traffic control.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Traffic control. 57.9100 Section 57.9100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Dumping Traffic Safety § 57.9100 Traffic control. To provide for the safe movement of...
30 CFR 57.9100 - Traffic control.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Dumping Traffic Safety § 57.9100 Traffic control. To provide for the safe movement of self-propelled... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Traffic control. 57.9100 Section 57.9100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...
36 CFR 1004.13 - Obstructing traffic.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Obstructing traffic. 1004.13 Section 1004.13 Parks, Forests, and Public Property PRESIDIO TRUST VEHICLES AND TRAFFIC SAFETY § 1004.13 Obstructing traffic. The following are prohibited: (a) Stopping or parking a vehicle upon a Presidio...
36 CFR 1004.13 - Obstructing traffic.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Obstructing traffic. 1004.13 Section 1004.13 Parks, Forests, and Public Property PRESIDIO TRUST VEHICLES AND TRAFFIC SAFETY § 1004.13 Obstructing traffic. The following are prohibited: (a) Stopping or parking a vehicle upon a Presidio...
49 CFR 1139.2 - Traffic study.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 8 2013-10-01 2013-10-01 false Traffic study. 1139.2 Section 1139.2... of General Commodities § 1139.2 Traffic study. (a) The respondents shall submit a traffic study for... “base-calendar year—actual.” The study shall include a probability sampling of the actual...
49 CFR 1139.2 - Traffic study.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 8 2014-10-01 2014-10-01 false Traffic study. 1139.2 Section 1139.2... of General Commodities § 1139.2 Traffic study. (a) The respondents shall submit a traffic study for... “base-calendar year—actual.” The study shall include a probability sampling of the actual...
49 CFR 1139.2 - Traffic study.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 8 2012-10-01 2012-10-01 false Traffic study. 1139.2 Section 1139.2... of General Commodities § 1139.2 Traffic study. (a) The respondents shall submit a traffic study for... “base-calendar year—actual.” The study shall include a probability sampling of the actual...
36 CFR 1004.13 - Obstructing traffic.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Obstructing traffic. 1004.13 Section 1004.13 Parks, Forests, and Public Property PRESIDIO TRUST VEHICLES AND TRAFFIC SAFETY § 1004.13 Obstructing traffic. The following are prohibited: (a) Stopping or parking a vehicle upon a Presidio...
36 CFR 1004.13 - Obstructing traffic.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Obstructing traffic. 1004.13 Section 1004.13 Parks, Forests, and Public Property PRESIDIO TRUST VEHICLES AND TRAFFIC SAFETY § 1004.13 Obstructing traffic. The following are prohibited: (a) Stopping or parking a vehicle upon a Presidio...
15 CFR 265.22 - Bicycle traffic.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Bicycle traffic. 265.22 Section 265.22... Bicycle traffic. No person shall ride a bicycle other than in a manner exercising due caution for pedestrian and other traffic. No person shall ride a bicycle on sidewalks or inside any building, nor...
15 CFR 265.22 - Bicycle traffic.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Bicycle traffic. 265.22 Section 265.22... Bicycle traffic. No person shall ride a bicycle other than in a manner exercising due caution for pedestrian and other traffic. No person shall ride a bicycle on sidewalks or inside any building, nor...
15 CFR 265.22 - Bicycle traffic.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Bicycle traffic. 265.22 Section 265.22... Bicycle traffic. No person shall ride a bicycle other than in a manner exercising due caution for pedestrian and other traffic. No person shall ride a bicycle on sidewalks or inside any building, nor...
15 CFR 265.22 - Bicycle traffic.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Bicycle traffic. 265.22 Section 265.22... Bicycle traffic. No person shall ride a bicycle other than in a manner exercising due caution for pedestrian and other traffic. No person shall ride a bicycle on sidewalks or inside any building, nor...
15 CFR 265.22 - Bicycle traffic.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Bicycle traffic. 265.22 Section 265.22... Bicycle traffic. No person shall ride a bicycle other than in a manner exercising due caution for pedestrian and other traffic. No person shall ride a bicycle on sidewalks or inside any building, nor...
30 CFR 56.9100 - Traffic control.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Traffic control. 56.9100 Section 56.9100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Dumping Traffic Safety § 56.9100 Traffic control. To provide for the safe movement of...
14 CFR 25 - Traffic and Capacity Elements
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Editorial Note: For Federal Register citations affecting part 241, section 25, see the List of CFR Sections... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Traffic and Capacity Elements Section 25... Traffic Reporting Requirements Section 25 Traffic and Capacity Elements General Instructions. (a)...
Time Relevance of Convective Weather Forecast for Air Traffic Automation
NASA Technical Reports Server (NTRS)
Chan, William N.
2006-01-01
The Federal Aviation Administration (FAA) is handling nearly 120,000 flights a day through its Air Traffic Management (ATM) system and air traffic congestion is expected to increse substantially over the next 20 years. Weather-induced impacts to throughput and efficiency are the leading cause of flight delays accounting for 70% of all delays with convective weather accounting for 60% of all weather related delays. To support the Next Generation Air Traffic System goal of operating at 3X current capacity in the NAS, ATC decision support tools are being developed to create advisories to assist controllers in all weather constraints. Initial development of these decision support tools did not integrate information regarding weather constraints such as thunderstorms and relied on an additional system to provide that information. Future Decision Support Tools should move towards an integrated system where weather constraints are factored into the advisory of a Decision Support Tool (DST). Several groups such at NASA-Ames, Lincoln Laboratories, and MITRE are integrating convective weather data with DSTs. A survey of current convective weather forecast and observation data show they span a wide range of temporal and spatial resolutions. Short range convective observations can be obtained every 5 mins with longer range forecasts out to several days updated every 6 hrs. Today, the short range forecasts of less than 2 hours have a temporal resolution of 5 mins. Beyond 2 hours, forecasts have much lower temporal. resolution of typically 1 hour. Spatial resolutions vary from 1km for short range to 40km for longer range forecasts. Improving the accuracy of long range convective forecasts is a major challenge. A report published by the National Research Council states improvements for convective forecasts for the 2 to 6 hour time frame will only be achieved for a limited set of convective phenomena in the next 5 to 10 years. Improved longer range forecasts will be probabilistic
A macro traffic flow model accounting for real-time traffic state
NASA Astrophysics Data System (ADS)
Tang, Tie-Qiao; Chen, Liang; Wu, Yong-Hong; Caccetta, Lou
2015-11-01
In this paper, we propose a traffic flow model to study the effects of the real-time traffic state on traffic flow. The numerical results show that the proposed model can describe oscillation in traffic and stop-and-go traffic, where the speed-density relationship is qualitatively accordant with the empirical data of the Weizikeng segment of the Badaling freeway in Beijing, which means that the proposed model can qualitatively reproduce some complex traffic phenomena associated with real-time traffic state.
Evolution of Traffic Jam in Traffic Flow Model
NASA Astrophysics Data System (ADS)
Fukui, Minoru; Ishibashi, Yoshihiro
1993-11-01
Traffic flow is simulated in a three-state cellular automaton model. In a two-dimensional cell without a crashed car, the ensemble average of the velocity of the cars is enhanced by the self-organization in the low-density phase of cars. In the high-density phase above p{=}0.5 of car density, the velocity is decreased and the system then degenerates into a global jamming phase in which all cars are stopped. A crashed car provides the seed of a jamming cluster, which grows into a global traffic jam even in the low-density phase. The growth of the jamming cluster is studied, and the time dependence of the number of jamming cars and the scaling law for the cell sizes are discussed.
Simulation Study of Traffic Accidents in Bidirectional Traffic Models
NASA Astrophysics Data System (ADS)
Moussa, Najem
Conditions for the occurrence of bidirectional collisions are developed based on the Simon-Gutowitz bidirectional traffic model. Three types of dangerous situations can occur in this model. We analyze those corresponding to head-on collision; rear-end collision and lane-changing collision. Using Monte Carlo simulations, we compute the probability of the occurrence of these collisions for different values of the oncoming cars' density. It is found that the risk of collisions is important when the density of cars in one lane is small and that of the other lane is high enough. The influence of different proportions of heavy vehicles is also studied. We found that heavy vehicles cause an important reduction of traffic flow on the home lane and provoke an increase of the risk of car accidents.
Traffic flow theory and traffic flow simulation models. Transportation research record
1996-12-31
;Contents: Comparison of Simulation Modules of TRANSYT and INTEGRATION Models; Evaluation of SCATSIM-RTA Adaptive Traffic Network Simulation Model; Comparison NETSIM, NETFLO I, and NETFLO II Traffic Simulation Models for Fixed-Time Signal Control; Traffic Flow Simulation Through Parallel Processing; Cluster Analysis as Tool in Traffic Engineering; Traffic Platoon Dispersion Modeling on Arterial Streets; Hybrid Model for Estimating Permitted Left-Turn Saturations Flow Rate; and Passing Sight Distance and Overtaking Dilemma on Two-Lane Roads.
32 CFR 634.24 - Traffic planning and codes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 4 2010-07-01 2010-07-01 true Traffic planning and codes. 634.24 Section 634.24... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.24 Traffic planning and... traffic supervision program includes traffic circulation planning and control of motor vehicle...
32 CFR 634.24 - Traffic planning and codes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 4 2012-07-01 2011-07-01 true Traffic planning and codes. 634.24 Section 634.24... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.24 Traffic planning and codes. (a) Safe and efficient movement of traffic on an installation requires traffic supervision....
M Dzhambov, Angel; D Dimitrova, Donka; H Turnovska, Tanya
2014-09-01
Noise pollution is one of the four major pollutions in the world. In order to implement adequate strategies for noise control, assessment of traffic-generated noise is essential in city planning and management. The aim of this study was to determine whether space syntax could improve the predictive power of noise simulation. This paper reports a record linkage study which combined a documentary method with space syntax analysis. It analyses data about traffic flow as well as field-measured and computer-simulated traffic noise in two Bulgarian agglomerations. Our findings suggest that space syntax might have a potential in predicting traffic noise exposure by improving models for noise simulations using specialised software or actual traffic counts. The scientific attention might need to be directed towards space syntax in order to study its further application in current models and algorithms for noise prediction. PMID:25222575
a Photogrammetric Appraoch for Automatic Traffic Assessment Using Conventional Cctv Camera
NASA Astrophysics Data System (ADS)
Zarrinpanjeh, N.; Dadrassjavan, F.; Fattahi, H.
2015-12-01
One of the most practical tools for urban traffic monitoring is CCTV imaging which is widely used for traffic map generation and updating through human surveillance. But due to the expansion of urban road network and the use of huge number of CCTV cameras, visual inspection and updating of traffic sometimes seems to be ineffective and time consuming and therefore not providing real-time robust update. In this paper a method for vehicle detection accounting and speed estimation is proposed to give a more automated solution for traffic assessment. Through removing violating objects and detection of vehicles via morphological filtering and also classification of moving objects at the scene vehicles are counted and traffic speed is estimated. The proposed method is developed and tested using two datasets and evaluation values are computed. The results show that the successfulness of the algorithm decreases by about 12 % due to decrease in illumination quality of imagery.
Simulation of traffic control signal systems
NASA Technical Reports Server (NTRS)
Connolly, P. J.; Concannon, P. A.; Ricci, R. C.
1974-01-01
In recent years there has been considerable interest in the development and testing of control strategies for networks of urban traffic signal systems by simulation. Simulation is an inexpensive and timely method for evaluating the effect of these traffic control strategies since traffic phenomena are too complex to be defined by analytical models and since a controlled experiment may be hazardous, expensive, and slow in producing meaningful results. This paper describes the application of an urban traffic corridor program, to evaluate the effectiveness of different traffic control strategies for the Massachusetts Avenue TOPICS Project.
[Reduction of automobile traffic: urgent health promotion policy].
Tapia Granados, J A
1998-03-01
During the last few decades, traffic injuries have become one of the leading causes of death and disability in the world. In urban areas, traffic congestion, noise, and emissions from motor vehicles produce subjective disturbances and detectable pathological effects. More than one billion people are exposed to harmful levels of environmental pollution. Because its combustion engine generates carbon dioxide (CO2), the automobile is one of the chief sources of the gases that are causing the greenhouse effect. The latter has already caused a rise in the average ambient temperature, and over the next decades it will predictable cause significant climatic changes whose consequences, though uncertain, are likely to be harmful and possibly catastrophic. Aside from the greenhouse effect, the relentless growth of parking zones, traffic, and the roadway infrastructure in urban and rural areas is currently one of the leading causes of environmental degradation. Urban development, which is nearly always "planned" around traffic instead of people, leads to a significant deterioration in the quality of life, while it also destroys the social fabric. Unlike the private automobile, public transportation, bicycles, and walking help reduce pollution, congestion, and traffic volume, as well as the morbidity and mortality resulting from injuries and ailments related to pollution. Non-automobile transportation also encourages physical activity--with its positive effect on general health--and helps reduce the greenhouse effect. The drop in traffic volume and the increased use of alternate means of transportation are thus an integrated health promotion policy which should become an inherent part of the movement for the promotion of healthy cities and of transportation policies and economic policy in general. PMID:9567647
Wildfire susceptibility mapping: comparing deterministic and stochastic approaches
NASA Astrophysics Data System (ADS)
Pereira, Mário; Leuenberger, Michael; Parente, Joana; Tonini, Marj
2016-04-01
Conservation of Nature and Forests (ICNF) (http://www.icnf.pt/portal) which provides a detailed description of the shape and the size of area burnt by each fire in each year of occurrence. Two methodologies for susceptibility mapping were compared. First, the deterministic approach, based on the study of Verde and Zêzere (2010), which includes the computation of the favorability scores for each variable and the fire occurrence probability, as well as the validation of each model, resulting from the integration of different variables. Second, as non-linear method we selected the Random Forest algorithm (Breiman, 2001): this led us to identifying the most relevant variables conditioning the presence of wildfire and allowed us generating a map of fire susceptibility based on the resulting variable importance measures. By means of GIS techniques, we mapped the obtained predictions which represent the susceptibility of the study area to fires. Results obtained applying both the methodologies for wildfire susceptibility mapping, as well as of wildfire hazard maps for different total annual burnt area scenarios, were compared with the reference maps and allow us to assess the best approach for susceptibility mapping in Portugal. References: - Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. - Verde, J. C., & Zêzere, J. L. (2010). Assessment and validation of wildfire susceptibility and hazard in Portugal. Natural Hazards and Earth System Science, 10(3), 485-497.
Automated mixed traffic transit vehicle microprocessor controller
NASA Technical Reports Server (NTRS)
Marks, R. A.; Cassell, P.; Johnston, A. R.
1981-01-01
An improved Automated Mixed Traffic Vehicle (AMTV) speed control system employing a microprocessor and transistor chopper motor current controller is described and its performance is presented in terms of velocity versus time curves. The on board computer hardware and software systems are described as is the software development system. All of the programming used in this controller was implemented using FORTRAN. This microprocessor controller made possible a number of safety features and improved the comfort associated with starting and shopping. In addition, most of the vehicle's performance characteristics can be altered by simple program parameter changes. A failure analysis of the microprocessor controller was generated and the results are included. Flow diagrams for the speed control algorithms and complete FORTRAN code listings are also included.
Air traffic management evaluation tool
NASA Technical Reports Server (NTRS)
Sridhar, Banavar (Inventor); Sheth, Kapil S. (Inventor); Chatterji, Gano Broto (Inventor); Bilimoria, Karl D. (Inventor); Grabbe, Shon (Inventor); Schipper, John F. (Inventor)
2010-01-01
Method and system for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry. The invention provides for aircraft dynamics effects, such as wind effects at each altitude, altitude changes, airspeed changes and aircraft turns to provide predictions of aircraft trajectory (and, optionally, aircraft fuel use). A second system provides several aviation applications using the first system. These applications include conflict detection and resolution, miles-in trail or minutes-in-trail aircraft separation, flight arrival management, flight re-routing, weather prediction and analysis and interpolation of weather variables based upon sparse measurements.
Traffic Aware Planner (TAP) Flight Evaluation
NASA Technical Reports Server (NTRS)
Maris, John M.; Haynes, Mark A.; Wing, David J.; Burke, Kelly A.; Henderson, Jeff; Woods, Sharon E.
2014-01-01
NASA's Traffic Aware Planner (TAP) is a cockpit decision support tool that has the potential to achieve significant fuel and time savings when it is embedded in the data-rich Next Generation Air Transportation System (NextGen) airspace. To address a key step towards the operational deployment of TAP and the NASA concept of Traffic Aware Strategic Aircrew Requests (TASAR), a system evaluation was conducted in a representative flight environment in November, 2013. Numerous challenges were overcome to achieve this goal, including the porting of the foundational Autonomous Operations Planner (AOP) software from its original simulation-based, avionics-embedded environment to an Electronic Flight Bag (EFB) platform. A flight-test aircraft was modified to host the EFB, the TAP application, an Automatic Dependent Surveillance Broadcast (ADS-B) processor, and a satellite broadband datalink. Nine Evaluation Pilots conducted 26 hours of TAP assessments using four route profiles in the complex eastern and north-eastern United States airspace. Extensive avionics and video data were collected, supplemented by comprehensive inflight and post-flight questionnaires. TAP was verified to function properly in the live avionics and ADS-B environment, characterized by recorded data dropouts, latency, and ADS-B message fluctuations. Twelve TAP-generated optimization requests were submitted to ATC, of which nine were approved, and all of which resulted in fuel and/or time savings. Analysis of subjective workload data indicated that pilot interaction with TAP during flight operations did not induce additional cognitive loading. Additionally, analyses of post-flight questionnaire data showed that the pilots perceived TAP to be useful, understandable, intuitive, and easy to use. All program objectives were met, and the next phase of TAP development and evaluations with partner airlines is in planning for 2015.
Spatial continuity measures for probabilistic and deterministic geostatistics
Isaaks, E.H.; Srivastava, R.M.
1988-05-01
Geostatistics has traditionally used a probabilistic framework, one in which expected values or ensemble averages are of primary importance. The less familiar deterministic framework views geostatistical problems in terms of spatial integrals. This paper outlines the two frameworks and examines the issue of which spatial continuity measure, the covariance C(h) or the variogram ..sigma..(h), is appropriate for each framework. Although C(h) and ..sigma..(h) were defined originally in terms of spatial integrals, the convenience of probabilistic notation made the expected value definitions more common. These now classical expected value definitions entail a linear relationship between C(h) and ..sigma..(h); the spatial integral definitions do not. In a probabilistic framework, where available sample information is extrapolated to domains other than the one which was sampled, the expected value definitions are appropriate; furthermore, within a probabilistic framework, reasons exist for preferring the variogram to the covariance function. In a deterministic framework, where available sample information is interpolated within the same domain, the spatial integral definitions are appropriate and no reasons are known for preferring the variogram. A case study on a Wiener-Levy process demonstrates differences between the two frameworks and shows that, for most estimation problems, the deterministic viewpoint is more appropriate. Several case studies on real data sets reveal that the sample covariance function reflects the character of spatial continuity better than the sample variogram. From both theoretical and practical considerations, clearly for most geostatistical problems, direct estimation of the covariance is better than the traditional variogram approach.
Deterministic and Nondeterministic Behavior of Earthquakes and Hazard Mitigation Strategy
NASA Astrophysics Data System (ADS)
Kanamori, H.
2014-12-01
Earthquakes exhibit both deterministic and nondeterministic behavior. Deterministic behavior is controlled by length and time scales such as the dimension of seismogenic zones and plate-motion speed. Nondeterministic behavior is controlled by the interaction of many elements, such as asperities, in the system. Some subduction zones have strong deterministic elements which allow forecasts of future seismicity. For example, the forecasts of the 2010 Mw=8.8 Maule, Chile, earthquake and the 2012 Mw=7.6, Costa Rica, earthquake are good examples in which useful forecasts were made within a solid scientific framework using GPS. However, even in these cases, because of the nondeterministic elements uncertainties are difficult to quantify. In some subduction zones, nondeterministic behavior dominates because of complex plate boundary structures and defies useful forecasts. The 2011 Mw=9.0 Tohoku-Oki earthquake may be an example in which the physical framework was reasonably well understood, but complex interactions of asperities and insufficient knowledge about the subduction-zone structures led to the unexpected tragic consequence. Despite these difficulties, broadband seismology, GPS, and rapid data processing-telemetry technology can contribute to effective hazard mitigation through scenario earthquake approach and real-time warning. A scale-independent relation between M0 (seismic moment) and the source duration, t, can be used for the design of average scenario earthquakes. However, outliers caused by the variation of stress drop, radiation efficiency, and aspect ratio of the rupture plane are often the most hazardous and need to be included in scenario earthquakes. The recent development in real-time technology would help seismologists to cope with, and prepare for, devastating tsunamis and earthquakes. Combining a better understanding of earthquake diversity and modern technology is the key to effective and comprehensive hazard mitigation practices.
Deterministic side-branching during thermal dendritic growth
NASA Astrophysics Data System (ADS)
Mullis, Andrew M.
2015-06-01
The accepted view on dendritic side-branching is that side-branches grow as the result of selective amplification of thermal noise and that in the absence of such noise dendrites would grow without the development of side-arms. However, recently there has been renewed speculation about dendrites displaying deterministic side-branching [see e.g. ME Glicksman, Metall. Mater. Trans A 43 (2012) 391]. Generally, numerical models of dendritic growth, such as phase-field simulation, have tended to display behaviour which is commensurate with the former view, in that simulated dendrites do not develop side-branches unless noise is introduced into the simulation. However, here we present simulations at high undercooling that show that under certain conditions deterministic side-branching may occur. We use a model formulated in the thin interface limit and a range of advanced numerical techniques to minimise the numerical noise introduced into the solution, including a multigrid solver. Not only are multigrid solvers one of the most efficient means of inverting the large, but sparse, system of equations that results from implicit time-stepping, they are also very effective at smoothing noise at all wavelengths. This is in contrast to most Jacobi or Gauss-Seidel iterative schemes which are effective at removing noise with wavelengths comparable to the mesh size but tend to leave noise at longer wavelengths largely undamped. From an analysis of the tangential thermal gradients on the solid-liquid interface the mechanism for side-branching appears to be consistent with the deterministic model proposed by Glicksman.
Statistical methods of parameter estimation for deterministically chaotic time series.
Pisarenko, V F; Sornette, D
2004-03-01
We discuss the possibility of applying some standard statistical methods (the least-square method, the maximum likelihood method, and the method of statistical moments for estimation of parameters) to deterministically chaotic low-dimensional dynamic system (the logistic map) containing an observational noise. A "segmentation fitting" maximum likelihood (ML) method is suggested to estimate the structural parameter of the logistic map along with the initial value x(1) considered as an additional unknown parameter. The segmentation fitting method, called "piece-wise" ML, is similar in spirit but simpler and has smaller bias than the "multiple shooting" previously proposed. Comparisons with different previously proposed techniques on simulated numerical examples give favorable results (at least, for the investigated combinations of sample size N and noise level). Besides, unlike some suggested techniques, our method does not require the a priori knowledge of the noise variance. We also clarify the nature of the inherent difficulties in the statistical analysis of deterministically chaotic time series and the status of previously proposed Bayesian approaches. We note the trade off between the need of using a large number of data points in the ML analysis to decrease the bias (to guarantee consistency of the estimation) and the unstable nature of dynamical trajectories with exponentially fast loss of memory of the initial condition. The method of statistical moments for the estimation of the parameter of the logistic map is discussed. This method seems to be the unique method whose consistency for deterministically chaotic time series is proved so far theoretically (not only numerically). PMID:15089376
Demonstration of deterministic and high fidelity squeezing of quantum information
Yoshikawa, Jun-ichi; Takei, Nobuyuki; Furusawa, Akira; Hayashi, Toshiki; Akiyama, Takayuki; Huck, Alexander; Andersen, Ulrik L.
2007-12-15
By employing a recent proposal [R. Filip, P. Marek, and U.L. Andersen, Phys. Rev. A 71, 042308 (2005)] we experimentally demonstrate a universal, deterministic, and high-fidelity squeezing transformation of an optical field. It relies only on linear optics, homodyne detection, feedforward, and an ancillary squeezed vacuum state, thus direct interaction between a strong pump and the quantum state is circumvented. We demonstrate three different squeezing levels for a coherent state input. This scheme is highly suitable for the fault-tolerant squeezing transformation in a continuous variable quantum computer.
A deterministic global optimization using smooth diagonal auxiliary functions
NASA Astrophysics Data System (ADS)
Sergeyev, Yaroslav D.; Kvasov, Dmitri E.
2015-04-01
In many practical decision-making problems it happens that functions involved in optimization process are black-box with unknown analytical representations and hard to evaluate. In this paper, a global optimization problem is considered where both the goal function f (x) and its gradient f‧ (x) are black-box functions. It is supposed that f‧ (x) satisfies the Lipschitz condition over the search hyperinterval with an unknown Lipschitz constant K. A new deterministic 'Divide-the-Best' algorithm based on efficient diagonal partitions and smooth auxiliary functions is proposed in its basic version, its convergence conditions are studied and numerical experiments executed on eight hundred test functions are presented.
A Deterministic Transport Code for Space Environment Electrons
NASA Technical Reports Server (NTRS)
Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamczyk, Anne M.
2010-01-01
A deterministic computational procedure has been developed to describe transport of space environment electrons in various shield media. This code is an upgrade and extension of an earlier electron code. Whereas the former code was formulated on the basis of parametric functions derived from limited laboratory data, the present code utilizes well established theoretical representations to describe the relevant interactions and transport processes. The shield material specification has been made more general, as have the pertinent cross sections. A combined mean free path and average trajectory approach has been used in the transport formalism. Comparisons with Monte Carlo calculations are presented.
Deterministic versus stochastic aspects of superexponential population growth models
NASA Astrophysics Data System (ADS)
Grosjean, Nicolas; Huillet, Thierry
2016-08-01
Deterministic population growth models with power-law rates can exhibit a large variety of growth behaviors, ranging from algebraic, exponential to hyperexponential (finite time explosion). In this setup, selfsimilarity considerations play a key role, together with two time substitutions. Two stochastic versions of such models are investigated, showing a much richer variety of behaviors. One is the Lamperti construction of selfsimilar positive stochastic processes based on the exponentiation of spectrally positive processes, followed by an appropriate time change. The other one is based on stable continuous-state branching processes, given by another Lamperti time substitution applied to stable spectrally positive processes.
CALTRANS: A parallel, deterministic, 3D neutronics code
Carson, L.; Ferguson, J.; Rogers, J.
1994-04-01
Our efforts to parallelize the deterministic solution of the neutron transport equation has culminated in a new neutronics code CALTRANS, which has full 3D capability. In this article, we describe the layout and algorithms of CALTRANS and present performance measurements of the code on a variety of platforms. Explicit implementation of the parallel algorithms of CALTRANS using both the function calls of the Parallel Virtual Machine software package (PVM 3.2) and the Meiko CS-2 tagged message passing library (based on the Intel NX/2 interface) are provided in appendices.
Non-deterministic analysis of ocean environment loads
Fang Huacan; Xu Fayan; Gao Guohua; Xu Xingping
1995-12-31
Ocean environment loads consist of the wind force, sea wave force etc. Sea wave force not only has randomness, but also has fuzziness. Hence the non-deterministic description of wave environment must be carried out, in designing of an offshore structure or evaluation of the safety of offshore structure members in service. In order to consider the randomness of sea wave, the wind speed single parameter sea wave spectrum is proposed in the paper. And a new fuzzy grading statistic method for considering fuzziness of sea wave height H and period T is given in this paper. The principle and process of calculating fuzzy random sea wave spectrum will be published lastly.
The deterministic optical alignment of the HERMES spectrograph
NASA Astrophysics Data System (ADS)
Gers, Luke; Staszak, Nicholas
2014-07-01
The High Efficiency and Resolution Multi Element Spectrograph (HERMES) is a four channel, VPH-grating spectrograph fed by two 400 fiber slit assemblies whose construction and commissioning has now been completed at the Anglo Australian Telescope (AAT). The size, weight, complexity, and scheduling constraints of the system necessitated that a fully integrated, deterministic, opto-mechanical alignment system be designed into the spectrograph before it was manufactured. This paper presents the principles about which the system was assembled and aligned, including the equipment and the metrology methods employed to complete the spectrograph integration.
Application of deterministic chaos analysis to investigating CFB hydrodynamics
Yin, C.; Luo, Z.; Li, X.; Fang, M.; Ni, M.; Cen, K.
1997-12-31
This paper presents an application of deterministic chaos analysis to the behavior of a gas-solid circulating fluidized bed (CFB). Two improvements for the traditional algorithm are put forward: a rule and the mathematical model are present to determine the no-scale interval, and an improved formula and the corresponding recurrence formula are given to calculate distance. Calculation results for different operating conditions indicate that the correlation dimension and Kolmogorov entropy can be employed to characterize fluidization regimes and their transitions, and may be used to detect abnormal conditions in CFB.
Deterministic Ants in Labyrinth — Information Gained by Map Sharing
NASA Astrophysics Data System (ADS)
Malinowski, Janusz; Kantelhardt, Jan W.; Kułakowski, Krzysztof
2013-06-01
A few ant robots are placed in a labyrinth, formed by a square lattice with a small number of corridors removed. Ants move according to a deterministic algorithm designed to explore all corridors. Each ant remembers the shape of corridors which it has visited. Once two ants meet, they share the information acquired. We evaluate how the time of getting a complete information by an ant depends on the number of ants, and how the length known by an ant depends on time. Numerical results are presented in the form of scaling relations.
Deterministic controlled remote state preparation using partially entangled quantum channel
NASA Astrophysics Data System (ADS)
Chen, Na; Quan, Dong Xiao; Yang, Hong; Pei, Chang Xing
2016-04-01
In this paper, we propose a novel scheme for deterministic controlled remote state preparation (CRSP) of arbitrary two-qubit states. Suitably chosen partially entangled state is used as the quantum channel. With proper projective measurements carried out by the sender and controller, the receiver can reconstruct the target state by means of appropriate unitary operation. Unit success probability can be achieved for arbitrary two-qubit states. Different from some previous CRSP schemes utilizing partially entangled channels, auxiliary qubit is not required in our scheme. We also show that the success probability is independent of the parameters of the partially entangled quantum channel.
Biondo, Elliott D; Ibrahim, Ahmad M; Mosher, Scott W; Grove, Robert E
2015-01-01
Detailed radiation transport calculations are necessary for many aspects of the design of fusion energy systems (FES) such as ensuring occupational safety, assessing the activation of system components for waste disposal, and maintaining cryogenic temperatures within superconducting magnets. Hybrid Monte Carlo (MC)/deterministic techniques are necessary for this analysis because FES are large, heavily shielded, and contain streaming paths that can only be resolved with MC. The tremendous complexity of FES necessitates the use of CAD geometry for design and analysis. Previous ITER analysis has required the translation of CAD geometry to MCNP5 form in order to use the AutomateD VAriaNce reducTion Generator (ADVANTG) for hybrid MC/deterministic transport. In this work, ADVANTG was modified to support CAD geometry, allowing hybrid (MC)/deterministic transport to be done automatically and eliminating the need for this translation step. This was done by adding a new ray tracing routine to ADVANTG for CAD geometries using the Direct Accelerated Geometry Monte Carlo (DAGMC) software library. This new capability is demonstrated with a prompt dose rate calculation for an ITER computational benchmark problem using both the Consistent Adjoint Driven Importance Sampling (CADIS) method an the Forward Weighted (FW)-CADIS method. The variance reduction parameters produced by ADVANTG are shown to be the same using CAD geometry and standard MCNP5 geometry. Significant speedups were observed for both neutrons (as high as a factor of 7.1) and photons (as high as a factor of 59.6).
Latanision, R.M.
1990-12-01
Electrochemical corrosion is pervasive in virtually all engineering systems and in virtually all industrial circumstances. Although engineers now understand how to design systems to minimize corrosion in many instances, many fundamental questions remain poorly understood and, therefore, the development of corrosion control strategies is based more on empiricism than on a deep understanding of the processes by which metals corrode in electrolytes. Fluctuations in potential, or current, in electrochemical systems have been observed for many years. To date, all investigations of this phenomenon have utilized non-deterministic analyses. In this work it is proposed to study electrochemical noise from a deterministic viewpoint by comparison of experimental parameters, such as first and second order moments (non-deterministic), with computer simulation of corrosion at metal surfaces. In this way it is proposed to analyze the origins of these fluctuations and to elucidate the relationship between these fluctuations and kinetic parameters associated with metal dissolution and cathodic reduction reactions. This research program addresses in essence two areas of interest: (a) computer modeling of corrosion processes in order to study the electrochemical processes on an atomistic scale, and (b) experimental investigations of fluctuations in electrochemical systems and correlation of experimental results with computer modeling. In effect, the noise generated by mathematical modeling will be analyzed and compared to experimental noise in electrochemical systems. 1 fig.
NASA Astrophysics Data System (ADS)
Khoromskij, Boris N.
2007-09-01
We develop efficient data-sparse representations to a class of high order tensors via a block many-fold Kronecker product decomposition. Such a decomposition is based on low separation-rank approximations of the corresponding multivariate generating function. We combine the Sinc interpolation and a quadrature-based approximation with hierarchically organised block tensor-product formats. Different matrix and tensor operations in the generalised Kronecker tensor-product format including the Hadamard-type product can be implemented with the low cost. An application to the collision integral from the deterministic Boltzmann equation leads to an asymptotical cost O(n^4log^beta n) - O(n^5log^beta n) in the one-dimensional problem size n (depending on the model kernel function), which noticeably improves the complexity O(n^6log^beta n) of the full matrix representation.
Peng, Hai Yang; Li, Yong Feng; Lin, Wei Nan; Wang, Yu Zhan; Gao, Xing Yu; Wu, Tom
2012-01-01
Intensive investigations have been launched worldwide on the resistive switching (RS) phenomena in transition metal oxides due to both fascinating science and potential applications in next generation nonvolatile resistive random access memory (RRAM) devices. It is noteworthy that most of these oxides are strongly correlated electron systems, and their electronic properties are critically affected by the electron-electron interactions. Here, using NiO as an example, we show that rationally adjusting the stoichiometry and the associated defect characteristics enables controlled room temperature conversions between two distinct RS modes, i.e., nonvolatile memory switching and volatile threshold switching, within a single device. Moreover, from first-principles calculations and x-ray absorption spectroscopy studies, we found that the strong electron correlations and the exchange interactions between Ni and O orbitals play deterministic roles in the RS operations. PMID:22679556
A model for the I/O-channel traffic in computer systems.
NASA Technical Reports Server (NTRS)
Kuemmerle, K.
1972-01-01
A new model is proposed which is based on the assumption that the actual traffic to be processed by an I/O channel system is generated as the overflow from a fictitious server system having Poisson traffic as the input. The number of servers and the mean arrival rate can be readily adjusted to verify the main value and the variance of the actual traffic to be handled. A closed solution for the stationary probabilities of state is obtained, and the parameters conventionally used to describe the grade of performance of queuing systems (such as mean queue length, mean waiting time, and probability of waiting) are defined.
Traffic accident analysis using GIS: a case study of Kyrenia City
NASA Astrophysics Data System (ADS)
Kara, Can; Akçit, Nuhcan
2015-06-01
Traffic accidents are causing major deaths in urban environments, so analyzing locations of the traffic accidents and their reasons is crucial. In this manner, patterns of accidents and hotspot distribution are analyzed by using geographic information technology. Locations of the traffic accidents in the years 2011, 2012 and 2013 are combined to generate the kernel distribution map of Kyrenia City. This analysis aims to find high dense intersections and segments within the city. Additionally, spatial autocorrelation methods Local Morans I and Getis-Ord Gi are employed . The results are discussed in detail for further analysis. Finally, required changes for numerous intersections are suggested to decrease potential risks of high dense accident locations.
Kinetic energy management in road traffic injury prevention: a call for action
Khorasani-Zavareh, Davoud; Bigdeli, Maryam; Saadat, Soheil; Mohammadi, Reza
2015-01-01
Abstract: By virtue of their variability, mass and speed have important roles in transferring energies during a crash incidence (kinetic energy). The sum of kinetic energy is important in determining an injury severity and that is equal to one half of the vehicle mass multiplied by the square of the vehicle speed. To meet the Vision Zero policy (a traffic safety policy) prevention activities should be focused on vehicle speed management. Understanding the role of kinetic energy will help to develop measures to reduce the generation, distribution, and effects of this energy during a road traffic crash. Road traffic injury preventive activities necessitate Kinetic energy management to improve road user safety. PMID:24284810
Conflict-free trajectory planning for air traffic control automation
NASA Technical Reports Server (NTRS)
Slattery, Rhonda; Green, Steve
1994-01-01
As the traffic demand continues to grow within the National Airspace System (NAS), the need for long-range planning (30 minutes plus) of arrival traffic increases greatly. Research into air traffic control (ATC) automation at ARC has led to the development of the Center-TRACON Automation System (CTAS). CTAS determines optimum landing schedules for arrival traffic and assists controllers in meeting those schedules safely and efficiently. One crucial element in the development of CTAS is the capability to perform long-range (20 minutes) and short-range (5 minutes) conflict prediction and resolution once landing schedules are determined. The determination of conflict-free trajectories within the Center airspace is particularly difficult because of large variations in speed and altitude. The paper describes the current design and implementation of the conflict prediction and resolution tools used to generate CTAS advisories in Center airspace. Conflict criteria (separation requirements) are defined and the process of separation prediction is described. The major portion of the paper will describe the current implementation of CTAS conflict resolution algorithms in terms of the degrees of freedom for resolutions as well as resolution search techniques. The tools described in this paper have been implemented in a research system designed to rapidly develop and evaluate prototype concepts and will form the basis for an operational ATC automation system.
Predictability of normal heart rhythms and deterministic chaos
NASA Astrophysics Data System (ADS)
Lefebvre, J. H.; Goodings, D. A.; Kamath, M. V.; Fallen, E. L.
1993-04-01
The evidence for deterministic chaos in normal heart rhythms is examined. Electrocardiograms were recorded of 29 subjects falling into four groups—a young healthy group, an older healthy group, and two groups of patients who had recently suffered an acute myocardial infarction. From the measured R-R intervals, a time series of 1000 first differences was constructed for each subject. The correlation integral of Grassberger and Procaccia was calculated for several subjects using these relatively short time series. No evidence was found for the existence of an attractor having a dimension less than about 4. However, a prediction method recently proposed by Sugihara and May and an autoregressive linear predictor both show that there is a measure of short-term predictability in the differenced R-R intervals. Further analysis revealed that the short-term predictability calculated by the Sugihara-May method is not consistent with the null hypothesis of a Gaussian random process. The evidence for a small amount of nonlinear dynamical behavior together with the short-term predictability suggest that there is an element of deterministic chaos in normal heart rhythms, although it is not strong or persistent. Finally, two useful parameters of the predictability curves are identified, namely, the `first step predictability' and the `predictability decay rate,' neither of which appears to be significantly correlated with the standard deviation of the R-R intervals.
Shock-induced explosive chemistry in a deterministic sample configuration.
Stuecker, John Nicholas; Castaneda, Jaime N.; Cesarano, Joseph, III; Trott, Wayne Merle; Baer, Melvin R.; Tappan, Alexander Smith
2005-10-01
Explosive initiation and energy release have been studied in two sample geometries designed to minimize stochastic behavior in shock-loading experiments. These sample concepts include a design with explosive material occupying the hole locations of a close-packed bed of inert spheres and a design that utilizes infiltration of a liquid explosive into a well-defined inert matrix. Wave profiles transmitted by these samples in gas-gun impact experiments have been characterized by both velocity interferometry diagnostics and three-dimensional numerical simulations. Highly organized wave structures associated with the characteristic length scales of the deterministic samples have been observed. Initiation and reaction growth in an inert matrix filled with sensitized nitromethane (a homogeneous explosive material) result in wave profiles similar to those observed with heterogeneous explosives. Comparison of experimental and numerical results indicates that energetic material studies in deterministic sample geometries can provide an important new tool for validation of models of energy release in numerical simulations of explosive initiation and performance.
Deterministic doping and the exploration of spin qubits
Schenkel, T.; Weis, C. D.; Persaud, A.; Lo, C. C.; Chakarov, I.; Schneider, D. H.; Bokor, J.
2015-01-09
Deterministic doping by single ion implantation, the precise placement of individual dopant atoms into devices, is a path for the realization of quantum computer test structures where quantum bits (qubits) are based on electron and nuclear spins of donors or color centers. We present a donor - quantum dot type qubit architecture and discuss the use of medium and highly charged ions extracted from an Electron Beam Ion Trap/Source (EBIT/S) for deterministic doping. EBIT/S are attractive for the formation of qubit test structures due to the relatively low emittance of ion beams from an EBIT/S and due to the potential energy associated with the ions' charge state, which can aid single ion impact detection. Following ion implantation, dopant specific diffusion mechanisms during device processing affect the placement accuracy and coherence properties of donor spin qubits. For bismuth, range straggling is minimal but its relatively low solubility in silicon limits thermal budgets for the formation of qubit test structures.
Strongly Deterministic Population Dynamics in Closed Microbial Communities
NASA Astrophysics Data System (ADS)
Frentz, Zak; Kuehn, Seppe; Leibler, Stanislas
2015-10-01
Biological systems are influenced by random processes at all scales, including molecular, demographic, and behavioral fluctuations, as well as by their interactions with a fluctuating environment. We previously established microbial closed ecosystems (CES) as model systems for studying the role of random events and the emergent statistical laws governing population dynamics. Here, we present long-term measurements of population dynamics using replicate digital holographic microscopes that maintain CES under precisely controlled external conditions while automatically measuring abundances of three microbial species via single-cell imaging. With this system, we measure spatiotemporal population dynamics in more than 60 replicate CES over periods of months. In contrast to previous studies, we observe strongly deterministic population dynamics in replicate systems. Furthermore, we show that previously discovered statistical structure in abundance fluctuations across replicate CES is driven by variation in external conditions, such as illumination. In particular, we confirm the existence of stable ecomodes governing the correlations in population abundances of three species. The observation of strongly deterministic dynamics, together with stable structure of correlations in response to external perturbations, points towards a possibility of simple macroscopic laws governing microbial systems despite numerous stochastic events present on microscopic levels.
A DETERMINISTIC METHOD FOR TRANSIENT, THREE-DIMENSIONAL NUETRON TRANSPORT
Goluoglu, S.; Bentley, C.; Demeglio, R.; Dunn, M.; Norton, K.; Pevey, R.; Suslov, I.; Dodds, H. L.
1998-01-14
A deterministic method for solving the time-dependent, three-dimensional Boltzmam transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable of the neutron flux is known as the improved quasi-static (IQS) method. The position, energy, and angle-dependent neutron flux is computed deterministically by using the three-dimensional discrete ordinates code TORT. This paper briefly describes the methodology and selected results. The code developed at the University of Tennessee based on this methodology is called TDTORT. TDTORT can be used to model transients involving voided and/or strongly absorbing regions that require transport theory for accuracy. This code can also be used to model either small high-leakage systems, such as space reactors, or asymmetric control rod movements. TDTORT can model step, ramp, step followed by another step, and step followed by ramp type perturbations. It can also model columnwise rod movement can also be modeled. A special case of columnwise rod movement in a three-dimensional model of a boiling water reactor (BWR) with simple adiabatic feedback is also included. TDTORT is verified through several transient one-dimensional, two-dimensional, and three-dimensional benchmark problems. The results show that the transport methodology and corresponding code developed in this work have sufficient accuracy and speed for computing the dynamic behavior of complex multidimensional neutronic systems.
A deterministic method for transient, three-dimensional neutron transport
Goluoglu, S.; Bentley, C.; DeMeglio, R.; Dunn, M.; Norton, K.; Pevey, R.; Suslov, I.; Dodds, H.L.
1998-05-01
A deterministic method for solving the time-dependent, three-dimensional Boltzmann transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable of the neutron flux is known as the improved quasi-static (IQS) method. The position, energy, and angle-dependent neutron flux is computed deterministically by using the three-dimensional discrete ordinates code TORT. This paper briefly describes the methodology and selected results. The code developed at the University of Tennessee based on this methodology is called TDTORT. TDTORT can be used to model transients involving voided and/or strongly absorbing regions that require transport theory for accuracy. This code can also be used to model either small high-leakage systems, such as space reactors, or asymmetric control rod movements. TDTORT can model step, ramp, step followed by another step, and step followed by ramp type perturbations. It can also model columnwise rod movement. A special case of columnwise rod movement in a three-dimensional model of a boiling water reactor (BWR) with simple adiabatic feedback is also included. TDTORT is verified through several transient one-dimensional, two-dimensional, and three-dimensional benchmark problems. The results show that the transport methodology and corresponding code developed in this work have sufficient accuracy and speed for computing the dynamic behavior of complex multi-dimensional neutronic systems.
Deterministic Stress Modeling of Hot Gas Segregation in a Turbine
NASA Technical Reports Server (NTRS)
Busby, Judy; Sondak, Doug; Staubach, Brent; Davis, Roger
1998-01-01
Simulation of unsteady viscous turbomachinery flowfields is presently impractical as a design tool due to the long run times required. Designers rely predominantly on steady-state simulations, but these simulations do not account for some of the important unsteady flow physics. Unsteady flow effects can be modeled as source terms in the steady flow equations. These source terms, referred to as Lumped Deterministic Stresses (LDS), can be used to drive steady flow solution procedures to reproduce the time-average of an unsteady flow solution. The goal of this work is to investigate the feasibility of using inviscid lumped deterministic stresses to model unsteady combustion hot streak migration effects on the turbine blade tip and outer air seal heat loads using a steady computational approach. The LDS model is obtained from an unsteady inviscid calculation. The LDS model is then used with a steady viscous computation to simulate the time-averaged viscous solution. Both two-dimensional and three-dimensional applications are examined. The inviscid LDS model produces good results for the two-dimensional case and requires less than 10% of the CPU time of the unsteady viscous run. For the three-dimensional case, the LDS model does a good job of reproducing the time-averaged viscous temperature migration and separation as well as heat load on the outer air seal at a CPU cost that is 25% of that of an unsteady viscous computation.
Integrability of a deterministic cellular automaton driven by stochastic boundaries
NASA Astrophysics Data System (ADS)
Prosen, Tomaž; Mejía-Monasterio, Carlos
2016-05-01
We propose an interacting many-body space–time-discrete Markov chain model, which is composed of an integrable deterministic and reversible cellular automaton (rule 54 of Bobenko et al 1993 Commun. Math. Phys. 158 127) on a finite one-dimensional lattice {({{{Z}}}2)}× n, and local stochastic Markov chains at the two lattice boundaries which provide chemical baths for absorbing or emitting the solitons. Ergodicity and mixing of this many-body Markov chain is proven for generic values of bath parameters, implying the existence of a unique nonequilibrium steady state. The latter is constructed exactly and explicitly in terms of a particularly simple form of matrix product ansatz which is termed a patch ansatz. This gives rise to an explicit computation of observables and k-point correlations in the steady state as well as the construction of a nontrivial set of local conservation laws. The feasibility of an exact solution for the full spectrum and eigenvectors (decay modes) of the Markov matrix is suggested as well. We conjecture that our ideas can pave the road towards a theory of integrability of boundary driven classical deterministic lattice systems.
Non-Deterministic Dynamic Instability of Composite Shells
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2004-01-01
A computationally effective method is described to evaluate the non-deterministic dynamic instability (probabilistic dynamic buckling) of thin composite shells. The method is a judicious combination of available computer codes for finite element, composite mechanics, and probabilistic structural analysis. The solution method is incrementally updated Lagrangian. It is illustrated by applying it to thin composite cylindrical shell subjected to dynamic loads. Both deterministic and probabilistic buckling loads are evaluated to demonstrate the effectiveness of the method. A universal plot is obtained for the specific shell that can be used to approximate buckling loads for different load rates and different probability levels. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the time. The lower the probability, the lower is the buckling load for a specific time. Probabilistic sensitivity results show that the ply thickness, the fiber volume ratio and the fiber longitudinal modulus, dynamic load and loading rate are the dominant uncertainties, in that order.
Forced Translocation of Polymer through Nanopore: Deterministic Model and Simulations
NASA Astrophysics Data System (ADS)
Wang, Yanqian; Panyukov, Sergey; Liao, Qi; Rubinstein, Michael
2012-02-01
We propose a new theoretical model of forced translocation of a polymer chain through a nanopore. We assume that DNA translocation at high fields proceeds too fast for the chain to relax, and thus the chain unravels loop by loop in an almost deterministic way. So the distribution of translocation times of a given monomer is controlled by the initial conformation of the chain (the distribution of its loops). Our model predicts the translocation time of each monomer as an explicit function of initial polymer conformation. We refer to this concept as ``fingerprinting''. The width of the translocation time distribution is determined by the loop distribution in initial conformation as well as by the thermal fluctuations of the polymer chain during the translocation process. We show that the conformational broadening δt of translocation times of m-th monomer δtm^1.5 is stronger than the thermal broadening δtm^1.25 The predictions of our deterministic model were verified by extensive molecular dynamics simulations
Quantum secure direct communication and deterministic secure quantum communication
NASA Astrophysics Data System (ADS)
Long, Gui-Lu; Deng, Fu-Guo; Wang, Chuan; Li, Xi-Han; Wen, Kai; Wang, Wan-Ying
2007-07-01
In this review article, we review the recent development of quantum secure direct communication (QSDC) and deterministic secure quantum communication (DSQC) which both are used to transmit secret message, including the criteria for QSDC, some interesting QSDC protocols, the DSQC protocols and QSDC network, etc. The difference between these two branches of quantum communication is that DSQC requires the two parties exchange at least one bit of classical information for reading out the message in each qubit, and QSDC does not. They are attractive because they are deterministic, in particular, the QSDC protocol is fully quantum mechanical. With sophisticated quantum technology in the future, the QSDC may become more and more popular. For ensuring the safety of QSDC with single photons and quantum information sharing of single qubit in a noisy channel, a quantum privacy amplification protocol has been proposed. It involves very simple CHC operations and reduces the information leakage to a negligible small level. Moreover, with the one-party quantum error correction, a relation has been established between classical linear codes and quantum one-party codes, hence it is convenient to transfer many good classical error correction codes to the quantum world. The one-party quantum error correction codes are especially designed for quantum dense coding and related QSDC protocols based on dense coding.
Deterministic nature of the underlying dynamics of surface wind fluctuations
NASA Astrophysics Data System (ADS)
Sreelekshmi, R. C.; Asokan, K.; Satheesh Kumar, K.
2012-10-01
Modelling the fluctuations of the Earth's surface wind has a significant role in understanding the dynamics of atmosphere besides its impact on various fields ranging from agriculture to structural engineering. Most of the studies on the modelling and prediction of wind speed and power reported in the literature are based on statistical methods or the probabilistic distribution of the wind speed data. In this paper we investigate the suitability of a deterministic model to represent the wind speed fluctuations by employing tools of nonlinear dynamics. We have carried out a detailed nonlinear time series analysis of the daily mean wind speed data measured at Thiruvananthapuram (8.483° N,76.950° E) from 2000 to 2010. The results of the analysis strongly suggest that the underlying dynamics is deterministic, low-dimensional and chaotic suggesting the possibility of accurate short-term prediction. As most of the chaotic systems are confined to laboratories, this is another example of a naturally occurring time series showing chaotic behaviour.
Deterministic photon-emitter coupling in chiral photonic circuits
NASA Astrophysics Data System (ADS)
Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter
2015-09-01
Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.
An advanced deterministic method for spent fuel criticality safety analysis
DeHart, M.D.
1998-01-01
Over the past two decades, criticality safety analysts have come to rely to a large extent on Monte Carlo methods for criticality calculations. Monte Carlo has become popular because of its capability to model complex, non-orthogonal configurations or fissile materials, typical of real world problems. Over the last few years, however, interest in determinist transport methods has been revived, due shortcomings in the stochastic nature of Monte Carlo approaches for certain types of analyses. Specifically, deterministic methods are superior to stochastic methods for calculations requiring accurate neutron density distributions or differential fluxes. Although Monte Carlo methods are well suited for eigenvalue calculations, they lack the localized detail necessary to assess uncertainties and sensitivities important in determining a range of applicability. Monte Carlo methods are also inefficient as a transport solution for multiple pin depletion methods. Discrete ordinates methods have long been recognized as one of the most rigorous and accurate approximations used to solve the transport equation. However, until recently, geometric constraints in finite differencing schemes have made discrete ordinates methods impractical for non-orthogonal configurations such as reactor fuel assemblies. The development of an extended step characteristic (ESC) technique removes the grid structure limitations of traditional discrete ordinates methods. The NEWT computer code, a discrete ordinates code built upon the ESC formalism, is being developed as part of the SCALE code system. This paper will demonstrate the power, versatility, and applicability of NEWT as a state-of-the-art solution for current computational needs.
Deterministic Chaos in the X-ray Sources
NASA Astrophysics Data System (ADS)
Grzedzielski, M.; Sukova, P.; Janiuk, A.
2015-12-01
Hardly any of the observed black hole accretion disks in X-ray binaries and active galaxies shows constant flux. When the local stochastic variations of the disk occur at specific regions where a resonant behaviour takes place, there appear the quasi-periodic oscillations (QPOs). If the global structure of the flow and its non-linear hydrodynamics affects the fluctuations, the variability is chaotic in the sense of deterministic chaos. Our aim is to solve a problem of the stochastic versus deterministic nature of the black hole binary variabilities. We use both observational and analytic methods. We use the recurrence analysis and we study the occurence of long diagonal lines in the recurrence plot of observed data series and compare it to the surrogate series. We analyze here the data of two X-ray binaries - XTE J1550-564 and GX 339-4 observed by Rossi X-ray Timing Explorer. In these sources, the non-linear variability is expected because of the global conditions (such as the mean accretion rate) leading to the possible instability of an accretion disk. The thermal-viscous instability and fluctuations around the fixed-point solution occurs at high accretion rate, when the radiation pressure gives dominant contribution to the stress tensor.
Made-to-order nanocarbons through deterministic plasma nanotechnology
NASA Astrophysics Data System (ADS)
Ren, Yuping; Xu, Shuyan; Rider, Amanda Evelyn; Ostrikov, Kostya (Ken)
2011-02-01
Through a combinatorial approach involving experimental measurement and plasma modelling, it is shown that a high degree of control over diamond-like nanocarbon film sp3/sp2 ratio (and hence film properties) may be exercised, starting at the level of electrons (through modification of the plasma electron energy distribution function). Hydrogenated amorphous carbon nanoparticle films with high percentages of diamond-like bonds are grown using a middle-frequency (2 MHz) inductively coupled Ar + CH4 plasma. The sp3 fractions measured by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy in the thin films are explained qualitatively using sp3/sp2 ratios 1) derived from calculated sp3 and sp2 hybridized precursor species densities in a global plasma discharge model and 2) measured experimentally. It is shown that at high discharge power and lower CH4 concentrations, the sp3/sp2 fraction is higher. Our results suggest that a combination of predictive modeling and experimental studies is instrumental to achieve deterministically grown made-to-order diamond-like nanocarbons suitable for a variety of applications spanning from nano-magnetic resonance imaging to spin-flip quantum information devices. This deterministic approach can be extended to graphene, carbon nanotips, nanodiamond and other nanocarbon materials for a variety of applications
Deterministic photon-emitter coupling in chiral photonic circuits.
Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter
2015-09-01
Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light. PMID:26214251
Feasibility of a Monte Carlo-deterministic hybrid method for fast reactor analysis
Heo, W.; Kim, W.; Kim, Y.; Yun, S.
2013-07-01
A Monte Carlo and deterministic hybrid method is investigated for the analysis of fast reactors in this paper. Effective multi-group cross sections data are generated using a collision estimator in the MCNP5. A high order Legendre scattering cross section data generation module was added into the MCNP5 code. Both cross section data generated from MCNP5 and TRANSX/TWODANT using the homogeneous core model were compared, and were applied to DIF3D code for fast reactor core analysis of a 300 MWe SFR TRU burner core. For this analysis, 9 groups macroscopic-wise data was used. In this paper, a hybrid calculation MCNP5/DIF3D was used to analyze the core model. The cross section data was generated using MCNP5. The k{sub eff} and core power distribution were calculated using the 54 triangle FDM code DIF3D. A whole core calculation of the heterogeneous core model using the MCNP5 was selected as a reference. In terms of the k{sub eff}, 9-group MCNP5/DIF3D has a discrepancy of -154 pcm from the reference solution, 9-group TRANSX/TWODANT/DIF3D analysis gives -1070 pcm discrepancy. (authors)
STOP: Can We Minimize OR Traffic?
Elliott, Sara; Parker, Stacy; Mills, Judi; Meeusen, Lindsay; Frana, Theresa; Anderson, Marie; Storsveen, Amy; White, Amy
2015-10-01
Perioperative nurses at our institution voiced concerns about the amount of traffic in the ORs. We formed a workgroup consisting of perioperative nurses, educators, and leaders and initiated a quality improvement (QI) project to identify the amount of OR traffic that occurs during a procedure. The workgroup developed a check sheet to record door swings, staff classifications, reasons for opening the door, and the number of people in the OR at 15-minute intervals. Baseline results showed that average door swings ranged from 33 per hour in general surgery to 54 per hour in cardiac surgery. Nurses accounted for the most traffic, citing retrieving supplies as the main reason. Interventions focused on decreasing nurse traffic for retrieval of supplies in general surgery. Follow-up observations showed that average door swings increased to 41 per hour in general surgery, but nurse traffic decreased. Monitoring and limiting traffic could positively affect patient safety and outcomes. PMID:26411829
Analytical Solution of Traffic Cellular Automata Model
NASA Astrophysics Data System (ADS)
Lo, Shih-Ching; Hsu, Chia-Hung
2009-08-01
Complex traffic system seems to be simulated successfully by cellular automaton (CA) models. Various models are developed to understand single-lane traffic, multilane traffic, lane-changing behavior and network traffic situations. However, the result of CA simulation can only be obtained after massive microscopic computation. Although, the mean field theory (MFT) has been studied to be the approximation of CA model, the MFT can only applied to the simple CA rules or small value of parameters. In this study, we simulate traffic flow by the NaSch model under different combination of parameters, which are maximal speed, dawdling probability and density. After that, the position of critical density, the slope of free-flow and congested regime are observed and modeled due to the simulated data. Finally, the coefficients of the model will be calibrated by the simulated data and the analytical solution of traffic CA is obtained.
A System for Traffic Violation Detection
Aliane, Nourdine; Fernandez, Javier; Mata, Mario; Bemposta, Sergio
2014-01-01
This paper describes the framework and components of an experimental platform for an advanced driver assistance system (ADAS) aimed at providing drivers with a feedback about traffic violations they have committed during their driving. The system is able to detect some specific traffic violations, record data associated to these faults in a local data-base, and also allow visualization of the spatial and temporal information of these traffic violations in a geographical map using the standard Google Earth tool. The test-bed is mainly composed of two parts: a computer vision subsystem for traffic sign detection and recognition which operates during both day and nighttime, and an event data recorder (EDR) for recording data related to some specific traffic violations. The paper covers firstly the description of the hardware architecture and then presents the policies used for handling traffic violations. PMID:25421737
Traffic Flow Management Wrap-Up
NASA Technical Reports Server (NTRS)
Grabbe, Shon
2011-01-01
Traffic Flow Management involves the scheduling and routing of air traffic subject to airport and airspace capacity constraints, and the efficient use of available airspace. Significant challenges in this area include: (1) weather integration and forecasting, (2) accounting for user preferences in the Traffic Flow Management decision making process, and (3) understanding and mitigating the environmental impacts of air traffic on the environment. To address these challenges, researchers in the Traffic Flow Management area are developing modeling, simulation and optimization techniques to route and schedule air traffic flights and flows while accommodating user preferences, accounting for system uncertainties and considering the environmental impacts of aviation. This presentation will highlight some of the major challenges facing researchers in this domain, while also showcasing recent innovations designed to address these challenges.
Autosolitons in applied physics and traffic flow
Kerner, B.S.
1996-06-01
A review of investigations of autosolitons in nonlinear systems which are of interest for the applied physics and for the transportation research is presented. Autosolitons are solitary intrinsic states which can be formed in a broad class of physical, chemical, biological dissipative distributed media and in traffic flow. Properties of autosolitons which are general for physical systems and for traffic flow will be discussed. Based on results of recent investigations of traffic jams in traffic flow, a comparison of nonlinear characteristics of traffic jams and with nonlinear properties of autosolitons which can be formed in active systems with diffusion will be given. Forms, properties, processes of evolution of autosolitons in traffic flow, in semiconductors and in gas discharge plasma are considered. {copyright} {ital 1996 American Institute of Physics.}
Nextgen Technologies for Mid-Term and Far-Term Air Traffic Control Operations
NASA Technical Reports Server (NTRS)
Prevot, Thomas
2009-01-01
This paper describes technologies for mid-term and far-term air traffic control operations in the Next Generation Air Transportation System (NextGen). The technologies were developed and evaluated with human-in-the-loop simulations in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. The simulations were funded by several research focus areas within NASA's Airspace Systems program and some were co-funded by the FAA's Air Traffic Organization for Planning, Research and Technology.
Air traffic management evaluation tool
NASA Technical Reports Server (NTRS)
Sridhar, Banavar (Inventor); Sheth, Kapil S. (Inventor); Chatterji, Gano Broto (Inventor); Bilimoria, Karl D. (Inventor); Grabbe, Shon (Inventor); Schipper, John F. (Inventor)
2012-01-01
Methods for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. A first system receives parameters for flight plan configurations (e.g., initial fuel carried, flight route, flight route segments followed, flight altitude for a given flight route segment, aircraft velocity for each flight route segment, flight route ascent rate, flight route descent route, flight departure site, flight departure time, flight arrival time, flight destination site and/or alternate flight destination site), flight plan schedule, expected weather along each flight route segment, aircraft specifics, airspace (altitude) bounds for each flight route segment, navigational aids available. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry. The invention provides for aircraft dynamics effects, such as wind effects at each altitude, altitude changes, airspeed changes and aircraft turns to provide predictions of aircraft trajectory (and, optionally, aircraft fuel use). A second system provides several aviation applications using the first system. Several classes of potential incidents are analyzed and averted, by appropriate change en route of one or more parameters in the flight plan configuration, as provided by a conflict detection and resolution module and/or traffic flow management modules. These applications include conflict detection and resolution, miles-in trail or minutes-in-trail aircraft separation, flight arrival management, flight re-routing, weather prediction and analysis and interpolation of weather variables based upon sparse measurements. The invention combines these features to provide an aircraft monitoring system and an aircraft user system that interact and negotiate changes with each other.
Empirical synchronized flow in oversaturated city traffic.
Kerner, Boris S; Hemmerle, Peter; Koller, Micha; Hermanns, Gerhard; Klenov, Sergey L; Rehborn, Hubert; Schreckenberg, Michael
2014-09-01
Based on a study of anonymized GPS probe vehicle traces measured by personal navigation devices in vehicles randomly distributed in city traffic, empirical synchronized flow in oversaturated city traffic has been revealed. It turns out that real oversaturated city traffic resulting from speed breakdown in a city in most cases can be considered random spatiotemporal alternations between sequences of moving queues and synchronized flow patterns in which the moving queues do not occur. PMID:25314485
Network traffic analysis using dispersion patterns
Energy Science and Technology Software Center (ESTSC)
2010-03-15
The Verilog code us used to map a measurement solution on FPGA to analyze network traffic. It realizes a set of Bloom filters and counters, besides associated control logic that can quickly measure statistics like InDegree, OutDegree, Depth, in the context of Traffic Dispersion Graphs. Such patterns are helpful in classification of network activity, like Peer to Peer and Port-Scanning, in the traffic.
Empirical synchronized flow in oversaturated city traffic
NASA Astrophysics Data System (ADS)
Kerner, Boris S.; Hemmerle, Peter; Koller, Micha; Hermanns, Gerhard; Klenov, Sergey L.; Rehborn, Hubert; Schreckenberg, Michael
2014-09-01
Based on a study of anonymized GPS probe vehicle traces measured by personal navigation devices in vehicles randomly distributed in city traffic, empirical synchronized flow in oversaturated city traffic has been revealed. It turns out that real oversaturated city traffic resulting from speed breakdown in a city in most cases can be considered random spatiotemporal alternations between sequences of moving queues and synchronized flow patterns in which the moving queues do not occur.
STOL Traffic environment and operational procedures
NASA Technical Reports Server (NTRS)
Schlundt, R. W.; Dewolf, R. W.; Ausrotas, R. A.; Curry, R. E.; Demaio, D.; Keene, D. W.; Speyer, J. L.; Weinreich, M.; Zeldin, S.
1972-01-01
The expected traffic environment for an intercity STOL transportation system is examined, and operational procedures are discussed in order to identify problem areas which impact STOL avionics requirements. Factors considered include: traffic densities, STOL/CTOL/VTOL traffic mix, the expect ATC environment, aircraft noise models and community noise models and community noise impact, flight paths for noise abatement, wind considerations affecting landing, approach and landing considerations, STOLport site selection, runway capacity, and STOL operations at jetports, suburban airports, and separate STOLports.
Traffic Management for Satellite-ATM Networks
NASA Technical Reports Server (NTRS)
Goyal, Rohit; Jain, Raj; Fahmy, Sonia; Vandalore, Bobby; Goyal, Mukul
1998-01-01
Various issues associated with "Traffic Management for Satellite-ATM Networks" are presented in viewgraph form. Specific topics include: 1) Traffic management issues for TCP/IP based data services over satellite-ATM networks; 2) Design issues for TCP/IP over ATM; 3) Optimization of the performance of TCP/IP over ATM for long delay networks; and 4) Evaluation of ATM service categories for TCP/IP traffic.
Noise and Vibration from Railroad Traffic
NASA Astrophysics Data System (ADS)
Wettschureck, Rüdiger G.; Hauck, Günther; Diehl, Rolf J.; Willenbrink, Ludger
The overdue beginning of new construction and development of train tracks since the 1960s coincided in the 1970s with an increasing sensitivity of the population towards noise, especially road traffic noise. This sensitivity has constantly increased since then and has significantly influenced the legislation concerning traffic noise. Today, in Germany all construction plans for traffic routes must also include an ensured prediction of the effect of noise on the residents.
Air Traffic Management Research at NASA Ames
NASA Technical Reports Server (NTRS)
Davis, Thomas J.
2012-01-01
The Aviation Systems Division at the NASA Ames Research Center conducts leading edge research in air traffic management concepts and technologies. This overview will present concepts and simulation results for research in traffic flow management, safe and efficient airport surface operations, super density terminal area operations, separation assurance and system wide modeling and simulation. A brief review of the ongoing air traffic management technology demonstration (ATD-1) will also be presented. A panel discussion, with Mr. Davis serving as a panelist, on air traffic research will follow the briefing.
Synchronized flow in oversaturated city traffic
NASA Astrophysics Data System (ADS)
Kerner, Boris S.; Klenov, Sergey L.; Hermanns, Gerhard; Hemmerle, Peter; Rehborn, Hubert; Schreckenberg, Michael
2013-11-01
Based on numerical simulations with a stochastic three-phase traffic flow model, we reveal that moving queues (moving jams) in oversaturated city traffic dissolve at some distance upstream of the traffic signal while transforming into synchronized flow. It is found that, as in highway traffic [Kerner, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.036110 85, 036110 (2012)], such a jam-absorption effect in city traffic is explained by a strong driver's speed adaptation: Time headways (space gaps) between vehicles increase upstream of a moving queue (moving jam), resulting in moving queue dissolution. It turns out that at given traffic signal parameters, the stronger the speed adaptation effect, the shorter the mean distance between the signal location and the road location at which moving queues dissolve fully and oversaturated traffic consists of synchronized flow only. A comparison of the synchronized flow in city traffic found in this Brief Report with synchronized flow in highway traffic is made.
Temporal Statistic of Traffic Accidents in Turkey
NASA Astrophysics Data System (ADS)
Erdogan, S.; Yalcin, M.; Yilmaz, M.; Korkmaz Takim, A.
2015-10-01
Traffic accidents form clusters in terms of geographic space and over time which themselves exhibit distinct spatial and temporal patterns. There is an imperative need to understand how, where and when traffic accidents occur in order to develop appropriate accident reduction strategies. An improved understanding of the location, time and reasons for traffic accidents makes a significant contribution to preventing them. Traffic accident occurrences have been extensively studied from different spatial and temporal points of view using a variety of methodological approaches. In literature, less research has been dedicated to the temporal patterns of traffic accidents. In this paper, the numbers of traffic accidents are normalized according to the traffic volume and the distribution and fluctuation of these accidents is examined in terms of Islamic time intervals. The daily activities and worship of Muslims are arranged according to these time intervals that are spaced fairly throughout the day according to the position of the sun. The Islamic time intervals are never been used before to identify the critical hour for traffic accidents in the world. The results show that the sunrise is the critical time that acts as a threshold in the rate of traffic accidents throughout Turkey in Islamic time intervals.
Timing of traffic lights and phase separation in two-dimensional traffic flow
NASA Astrophysics Data System (ADS)
Sun, Duo; Jiang, Rui; Wang, Bing-Hong
2010-02-01
In this paper, we study the effects of traffic light period in two-dimensional Biham-Middleton-Levine (BML) traffic flow model. It is found that a phase separation phenomenon, in which the system separates into coexistence of free flow and jam, could be observed in intermediate vehicle density range when traffic light period T⩾4. We have explained the reason of occurrence of phase separation and investigated its behavior in different traffic light period.
Dynamic traffic grooming with multigranularity traffic in WDM optical mesh networks
NASA Astrophysics Data System (ADS)
Huang, Jun; Zeng, Qingji; Liu, Jimin; Xiao, Pengcheng; Liu, Hua; Xiao, Shilin
2004-04-01
In this paper, a traffic-grooming problem for multi-granularity traffic of SDH/SONET in WDM grooming mesh networks is investigated. We propose a path select routing algorithm to solve this problem. The performances of this traffic grooming path select routing algorithm are evaluated in WDM grooming networks. Finally, we presented and compared the simulation results of this algorithm in dynamic traffic grooming WDM mesh networks with that of other algorithms.
NASA Astrophysics Data System (ADS)
Wolters, Janik; Kabuss, Julia; Knorr, Andreas; Benson, Oliver
2014-06-01
We propose an experiment to generate deterministic entanglement between separate nitrogen-vacancy (NV) centers mediated by the mode of a photonic crystal cavity. Using numerical simulations, the applicability and robustness of the entanglement operation to parameter regimes achievable with the present technology are investigated. We find that even with moderate cavity Q factors of 104 a concurrence of c >0.6 can be achieved within a time of tmax≈150 ns, while Q factors of 105 promise c >0.8. Most importantly, the investigated scheme is relatively insensitive to spectral diffusion and differences between the optical transition frequencies of the used NV centers.
Transport of traffic-related aerosols in urban areas.
Wróbel, A; Rokita, E; Maenhaut, W
2000-08-10
This study was undertaken to assess the influence of traffic on particulate air pollution in an urban area, and to characterise the short-range transport of the aerosols generated by traffic. The study was conducted in Kraków, a city located in southern Poland with a population of approximately 800,000. Aerosol samples were collected using automatic sampling equipment at five sites located at different distances from the main road in Kraków, ranging from 5 to 1500 m. The sampling set-up allowed standardisation of the results due to continuous determination of the meteorological parameters (temperature, atmospheric pressure, wind speed and direction, rainfall and humidity). Aerosol particles were separated according to aerodynamic diameter into two size fractions: > 1.9 microm (coarse fraction); and 1.9-72 microm (fine fraction). The concentrations of 27 elements were measured in both size fractions (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Rb, Sr, Zr, Ba, Pb). The multielement analyses were performed by Particle-Induced X-ray Emission (PIXE) spectrometry. Traffic contribution to particulate air pollution was determined on the basis of 13 elements which were present above the detection limit in all samples (Mg, Al, Si, P, S, K, Ca, Ti, Mn, Fe, Cu, Zn, Pb). It was found that the traffic contribution in the coarse size fraction was approximately 80% up to 150 m from the road; it dropped abruptly by a factor of 2 over a distance of 150-200 m and declined further to 20% at 1500 m from the road. Traffic contribution for the fine particle concentrations of individual elements was 50-70% in the close vicinity of the road (5 m); then there was a decrease, followed by an increase at a greater distance from the road. Possible explanations for this behaviour of the fine particles are given. PMID:10989929
Modeling self-consistent multi-class dynamic traffic flow
NASA Astrophysics Data System (ADS)
Cho, Hsun-Jung; Lo, Shih-Ching
2002-09-01
In this study, we present a systematic self-consistent multiclass multilane traffic model derived from the vehicular Boltzmann equation and the traffic dispersion model. The multilane domain is considered as a two-dimensional space and the interaction among vehicles in the domain is described by a dispersion model. The reason we consider a multilane domain as a two-dimensional space is that the driving behavior of road users may not be restricted by lanes, especially motorcyclists. The dispersion model, which is a nonlinear Poisson equation, is derived from the car-following theory and the equilibrium assumption. Under the concept that all kinds of users share the finite section, the density is distributed on a road by the dispersion model. In addition, the dynamic evolution of the traffic flow is determined by the systematic gas-kinetic model derived from the Boltzmann equation. Multiplying Boltzmann equation by the zeroth, first- and second-order moment functions, integrating both side of the equation and using chain rules, we can derive continuity, motion and variance equation, respectively. However, the second-order moment function, which is the square of the individual velocity, is employed by previous researches does not have physical meaning in traffic flow. Although the second-order expansion results in the velocity variance equation, additional terms may be generated. The velocity variance equation we propose is derived from multiplying Boltzmann equation by the individual velocity variance. It modifies the previous model and presents a new gas-kinetic traffic flow model. By coupling the gas-kinetic model and the dispersion model, a self-consistent system is presented.
Study and Simulation of Traffic Behavior in Cellular Network
NASA Astrophysics Data System (ADS)
Madhup, D. K.; Shrestha, C. L.; Sharma, R. K.
2007-07-01
Cellular radio systems accommodate a large number of users with a limited radio spectrum. The concept of trunking allows a large number of users to share the relatively small number of channels in a cell by providing access to each user, on demand, from a pool of available channels. Traffic engineering deals with provisioning of communication circuits in a given area for a number of subscribers with a required grade of service. Traffic in any cell depends upon the number of users, the average request rate and average call duration. Certain number of channels is required for the required GOS. To design an optimum capacity cellular system, traffic behavior on that system is important. The number of channel required can be estimated by using Erlang formula and Erlang table. Erlang table is not always useful to calculate the probability of blocking in various complex scenarios such as channel borrowing strategies. When the total number of channel available in a given cell are divided to serve partly for newly generated calls and partly for handover calls, and if they use dynamic channel assignment strategies like channel borrowing, then the probability of blocking can't be calculated from Erlang table. Simulation model of the behavior help us to determine the blocking and the channel utilization while using various channel assignment strategies. The title "Study and Simulation of Traffic Behavior in Cellular Network" entail the study of the blocking probability of traffic in cellular network for static channel assignment strategies and dynamic channel borrowing strategies through MATLAB programming language and graphic user interface (GUI). The result shows that the dynamic scheme can perform better than static maximizing the overall utilization of the circuits and minimizing the overall blocking.
32 CFR 634.26 - Traffic law enforcement principles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 4 2012-07-01 2011-07-01 true Traffic law enforcement principles. 634.26... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.26 Traffic law enforcement principles. (a) Traffic law enforcement should motivate drivers to operate...
32 CFR 634.25 - Installation traffic codes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 4 2010-07-01 2010-07-01 true Installation traffic codes. 634.25 Section 634.25... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.25 Installation traffic codes. (a) Installation or activity commanders will establish a traffic code for operation of...
32 CFR 634.25 - Installation traffic codes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 4 2014-07-01 2013-07-01 true Installation traffic codes. 634.25 Section 634.25... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.25 Installation traffic codes. (a) Installation or activity commanders will establish a traffic code for operation of...
32 CFR 634.25 - Installation traffic codes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 4 2012-07-01 2011-07-01 true Installation traffic codes. 634.25 Section 634.25... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.25 Installation traffic codes. (a) Installation or activity commanders will establish a traffic code for operation of...
41 CFR 109-40.301 - Traffic management functions administration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Traffic management... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.3-Traffic Management § 109-40.301 Traffic management functions administration. The DOE traffic management functions...
32 CFR 634.44 - The traffic point system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 4 2013-07-01 2013-07-01 false The traffic point system. 634.44 Section 634.44... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Driving Records and the Traffic Point System § 634.44 The traffic point system. The traffic point system provides a uniform administrative device...
32 CFR 634.24 - Traffic planning and codes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 4 2013-07-01 2013-07-01 false Traffic planning and codes. 634.24 Section 634... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.24 Traffic planning and codes. (a) Safe and efficient movement of traffic on an installation requires...
41 CFR 109-40.301 - Traffic management functions administration.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Traffic management... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.3-Traffic Management § 109-40.301 Traffic management functions administration. The DOE traffic management functions...
41 CFR 109-40.301 - Traffic management functions administration.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Traffic management... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.3-Traffic Management § 109-40.301 Traffic management functions administration. The DOE traffic management functions...
41 CFR 109-40.301 - Traffic management functions administration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Traffic management... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.3-Traffic Management § 109-40.301 Traffic management functions administration. The DOE traffic management functions...
41 CFR 109-40.301 - Traffic management functions administration.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Traffic management... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.3-Traffic Management § 109-40.301 Traffic management functions administration. The DOE traffic management functions...
32 CFR 634.44 - The traffic point system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 4 2011-07-01 2011-07-01 false The traffic point system. 634.44 Section 634.44... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Driving Records and the Traffic Point System § 634.44 The traffic point system. The traffic point system provides a uniform administrative device...
32 CFR 634.44 - The traffic point system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 4 2010-07-01 2010-07-01 true The traffic point system. 634.44 Section 634.44... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Driving Records and the Traffic Point System § 634.44 The traffic point system. The traffic point system provides a uniform administrative device...
32 CFR 634.44 - The traffic point system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 4 2014-07-01 2013-07-01 true The traffic point system. 634.44 Section 634.44... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Driving Records and the Traffic Point System § 634.44 The traffic point system. The traffic point system provides a uniform administrative device...
32 CFR 634.44 - The traffic point system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 4 2012-07-01 2011-07-01 true The traffic point system. 634.44 Section 634.44... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Driving Records and the Traffic Point System § 634.44 The traffic point system. The traffic point system provides a uniform administrative device...
14 CFR 93.123 - High density traffic airports.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false High density traffic airports. 93.123... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES High Density Traffic Airports § 93.123 High density traffic airports. (a) Each of the following airports is designated as a...
14 CFR 93.123 - High density traffic airports.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false High density traffic airports. 93.123... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES High Density Traffic Airports § 93.123 High density traffic airports. (a) Each of the following airports is designated as a...
14 CFR 93.123 - High density traffic airports.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false High density traffic airports. 93.123... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES High Density Traffic Airports § 93.123 High density traffic airports. (a) Each of the following airports is designated as a...
14 CFR 93.123 - High density traffic airports.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false High density traffic airports. 93.123... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES High Density Traffic Airports § 93.123 High density traffic airports. (a) Each of the following airports is designated as a...
14 CFR 93.123 - High density traffic airports.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false High density traffic airports. 93.123... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES High Density Traffic Airports § 93.123 High density traffic airports. (a) Each of the following airports is designated as a...
32 CFR 634.32 - Traffic violation reports.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 4 2011-07-01 2011-07-01 false Traffic violation reports. 634.32 Section 634.32... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.32 Traffic violation reports. (a) Most traffic violations occurring on DOD installations (within the UNITED STATES or...
32 CFR 634.26 - Traffic law enforcement principles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 4 2011-07-01 2011-07-01 false Traffic law enforcement principles. 634.26... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.26 Traffic law enforcement principles. (a) Traffic law enforcement should motivate drivers to operate...
32 CFR 634.26 - Traffic law enforcement principles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 4 2010-07-01 2010-07-01 true Traffic law enforcement principles. 634.26... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.26 Traffic law enforcement principles. (a) Traffic law enforcement should motivate drivers to operate...
33 CFR 83.10 - Traffic separation schemes (Rule 10).
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Proceed in the appropriate traffic lane in the general direction of traffic flow for that lane; (2) So far... so at as small an angle to the general direction of traffic flow as practicable. (c) Crossing traffic... cross on a heading as nearly as practicable at right angles to the general direction of traffic flow....
33 CFR 83.10 - Traffic separation schemes (Rule 10).
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Proceed in the appropriate traffic lane in the general direction of traffic flow for that lane; (2) So far... so at as small an angle to the general direction of traffic flow as practicable. (c) Crossing traffic... cross on a heading as nearly as practicable at right angles to the general direction of traffic flow....
33 CFR 83.10 - Traffic separation schemes (Rule 10).
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Proceed in the appropriate traffic lane in the general direction of traffic flow for that lane; (2) So far... so at as small an angle to the general direction of traffic flow as practicable. (c) Crossing traffic... cross on a heading as nearly as practicable at right angles to the general direction of traffic flow....
2015-01-01
Frequency seriation played a key role in the formation of archaeology as a discipline due to its ability to generate chronologies. Interest in its utility for exploring issues of contemporary interest beyond chronology, however, has been limited. This limitation is partly due to a lack of quantitative algorithms that can be used to build deterministic seriation solutions. When the number of assemblages becomes greater than just a handful, the resources required for evaluation of possible permutations easily outstrips available computing capacity. On the other hand, probabilistic approaches to creating seriations offer a computationally manageable alternative but rely upon a compressed description of the data to order assemblages. This compression removes the ability to use all of the features of our data to fit to the seriation model, obscuring violations of the model, and thus lessens our ability to understand the degree to which the resulting order is chronological, spatial, or a mixture. Recently, frequency seriation has been reconceived as a general method for studying the structure of cultural transmission through time and across space. The use of an evolution-based framework renews the potential for seriation but also calls for a computationally feasible algorithm that is capable of producing solutions under varying configurations, without manual trial and error fitting. Here, we introduce the Iterative Deterministic Seriation Solution (IDSS) for constructing frequency seriations, an algorithm that dramatically constrains the search for potential valid orders of assemblages. Our initial implementation of IDSS does not solve all the problems of seriation, but begins to moves towards a resolution of a long-standing problem in archaeology while opening up new avenues of research into the study of cultural relatedness. We demonstrate the utility of IDSS using late prehistoric decorated ceramics from the Mississippi River Valley. The results compare favorably to
Lipo, Carl P; Madsen, Mark E; Dunnell, Robert C
2015-01-01
Frequency seriation played a key role in the formation of archaeology as a discipline due to its ability to generate chronologies. Interest in its utility for exploring issues of contemporary interest beyond chronology, however, has been limited. This limitation is partly due to a lack of quantitative algorithms that can be used to build deterministic seriation solutions. When the number of assemblages becomes greater than just a handful, the resources required for evaluation of possible permutations easily outstrips available computing capacity. On the other hand, probabilistic approaches to creating seriations offer a computationally manageable alternative but rely upon a compressed description of the data to order assemblages. This compression removes the ability to use all of the features of our data to fit to the seriation model, obscuring violations of the model, and thus lessens our ability to understand the degree to which the resulting order is chronological, spatial, or a mixture. Recently, frequency seriation has been reconceived as a general method for studying the structure of cultural transmission through time and across space. The use of an evolution-based framework renews the potential for seriation but also calls for a computationally feasible algorithm that is capable of producing solutions under varying configurations, without manual trial and error fitting. Here, we introduce the Iterative Deterministic Seriation Solution (IDSS) for constructing frequency seriations, an algorithm that dramatically constrains the search for potential valid orders of assemblages. Our initial implementation of IDSS does not solve all the problems of seriation, but begins to moves towards a resolution of a long-standing problem in archaeology while opening up new avenues of research into the study of cultural relatedness. We demonstrate the utility of IDSS using late prehistoric decorated ceramics from the Mississippi River Valley. The results compare favorably to
Self-Organization in 2D Traffic Flow Model with Jam-Avoiding Drive
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
1995-04-01
A stochastic cellular automaton (CA) model is presented to investigate the traffic jam by self-organization in the two-dimensional (2D) traffic flow. The CA model is the extended version of the 2D asymmetric exclusion model to take into account jam-avoiding drive. Each site contains either a car moving to the up, a car moving to the right, or is empty. A up car can shift right with probability p ja if it is blocked ahead by other cars. It is shown that the three phases (the low-density phase, the intermediate-density phase and the high-density phase) appear in the traffic flow. The intermediate-density phase is characterized by the right moving of up cars. The jamming transition to the high-density jamming phase occurs with higher density of cars than that without jam-avoiding drive. The jamming transition point p 2c increases with the shifting probability p ja. In the deterministic limit of p ja=1, it is found that a new jamming transition occurs from the low-density synchronized-shifting phase to the high-density moving phase with increasing density of cars. In the synchronized-shifting phase, all up cars do not move to the up but shift to the right by synchronizing with the move of right cars. We show that the jam-avoiding drive has an important effect on the dynamical jamming transition.
[Hidden statistics of traffic accidents].
Nordentoft, E L; Larsen, C F; Jørgensen, H R
1989-10-23
Only 19% of the 3,071 injured persons who were treated in the casualty department of Odense Hospital following traffic accidents in 1987 could be found again in the police registers of traffic accidents from the same region. All of the registrations from the police registers from the central region could be found again in the casualty department. In 1971, the corresponding coverage was 36%. The degree of coverage is particularly low for single bicycle accidents, other bicycle accidents, other single accidents and the hours immediately after midnight. Considerable disagreement exists concerning registration of the use of safety belts and crash helmets. In Odense, the municipal road authorities utilize the localization of the accidents reported by the casualty department. The decrease in the degree of coverage is due mainly to an increasing proportion of bicycle accidents. Where casualties require admission to hospital, the coverage is approximately 75%. This has remained unchanged throughout the years and it is therefore suggested that this proportion should be employed as indicator of the effect of the majority of prophylactic measures. In addition, proposals are made for simplification of the police registration forms. PMID:2588362
Stochastic Generator of Chemical Structure. 3. Reaction Network Generation
FAULON,JEAN-LOUP; SAULT,ALLEN G.
2000-07-15
A new method to generate chemical reaction network is proposed. The particularity of the method is that network generation and mechanism reduction are performed simultaneously using sampling techniques. Our method is tested for hydrocarbon thermal cracking. Results and theoretical arguments demonstrate that our method scales in polynomial time while other deterministic network generator scale in exponential time. This finding offers the possibility to investigate complex reacting systems such as those studied in petroleum refining and combustion.
Quantum dissonance and deterministic quantum computation with a single qubit
NASA Astrophysics Data System (ADS)
Ali, Mazhar
2014-11-01
Mixed state quantum computation can perform certain tasks which are believed to be efficiently intractable on a classical computer. For a specific model of mixed state quantum computation, namely, deterministic quantum computation with a single qubit (DQC1), recent investigations suggest that quantum correlations other than entanglement might be responsible for the power of DQC1 model. However, strictly speaking, the role of entanglement in this model of computation was not entirely clear. We provide conclusive evidence that there are instances where quantum entanglement is not present in any part of this model, nevertheless we have advantage over classical computation. This establishes the fact that quantum dissonance (a kind of quantum correlations) present in fully separable (FS) states provide power to DQC1 model.
Deterministic Mutation Rate Variation in the Human Genome
Smith, Nick G.C.; Webster, Matthew T.; Ellegren, Hans
2002-01-01
Several studies of substitution rate variation have indicated that the local mutation rate varies over the mammalian genome. In the present study, we show significant variation in substitution rates within the noncoding part of the human genome using 4.7 Mb of human-chimpanzee pairwise comparisons. Moreover, we find a significant positive covariation of lineage-specific chimpanzee and human local substitution rates, and very similar mean substitution rates down the two lineages. The substitution rate variation is probably not caused by selection or biased gene conversion, and so we conclude that mutation rates vary deterministically across the noncoding nonrepetitive regions of the human genome. We also show that noncoding substitution rates are significantly affected by G+C base composition, partly because the base composition is not at equilibrium. PMID:12213772
Robust Audio Watermarking Scheme Based on Deterministic Plus Stochastic Model
NASA Astrophysics Data System (ADS)
Dhar, Pranab Kumar; Kim, Cheol Hong; Kim, Jong-Myon
Digital watermarking has been widely used for protecting digital contents from unauthorized duplication. This paper proposes a new watermarking scheme based on spectral modeling synthesis (SMS) for copyright protection of digital contents. SMS defines a sound as a combination of deterministic events plus a stochastic component that makes it possible for a synthesized sound to attain all of the perceptual characteristics of the original sound. In our proposed scheme, watermarks are embedded into the highest prominent peak of the magnitude spectrum of each non-overlapping frame in peak trajectories. Simulation results indicate that the proposed watermarking scheme is highly robust against various kinds of attacks such as noise addition, cropping, re-sampling, re-quantization, and MP3 compression and achieves similarity values ranging from 17 to 22. In addition, our proposed scheme achieves signal-to-noise ratio (SNR) values ranging from 29 dB to 30 dB.
A Deterministic Computational Procedure for Space Environment Electron Transport
NASA Technical Reports Server (NTRS)
Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamcyk, Anne M.
2010-01-01
A deterministic computational procedure for describing the transport of electrons in condensed media is formulated to simulate the effects and exposures from spectral distributions typical of electrons trapped in planetary magnetic fields. The primary purpose for developing the procedure is to provide a means of rapidly performing numerous repetitive transport calculations essential for electron radiation exposure assessments for complex space structures. The present code utilizes well-established theoretical representations to describe the relevant interactions and transport processes. A combined mean free path and average trajectory approach is used in the transport formalism. For typical space environment spectra, several favorable comparisons with Monte Carlo calculations are made which have indicated that accuracy is not compromised at the expense of the computational speed.
Reinforcement learning output feedback NN control using deterministic learning technique.
Xu, Bin; Yang, Chenguang; Shi, Zhongke
2014-03-01
In this brief, a novel adaptive-critic-based neural network (NN) controller is investigated for nonlinear pure-feedback systems. The controller design is based on the transformed predictor form, and the actor-critic NN control architecture includes two NNs, whereas the critic NN is used to approximate the strategic utility function, and the action NN is employed to minimize both the strategic utility function and the tracking error. A deterministic learning technique has been employed to guarantee that the partial persistent excitation condition of internal states is satisfied during tracking control to a periodic reference orbit. The uniformly ultimate boundedness of closed-loop signals is shown via Lyapunov stability analysis. Simulation results are presented to demonstrate the effectiveness of the proposed control. PMID:24807456
Deterministic processes vary during community assembly for ecologically dissimilar taxa
Powell, Jeff R.; Karunaratne, Senani; Campbell, Colin D.; Yao, Huaiying; Robinson, Lucinda; Singh, Brajesh K.
2015-01-01
The continuum hypothesis states that both deterministic and stochastic processes contribute to the assembly of ecological communities. However, the contextual dependency of these processes remains an open question that imposes strong limitations on predictions of community responses to environmental change. Here we measure community and habitat turnover across multiple vertical soil horizons at 183 sites across Scotland for bacteria and fungi, both dominant and functionally vital components of all soils but which differ substantially in their growth habit and dispersal capability. We find that habitat turnover is the primary driver of bacterial community turnover in general, although its importance decreases with increasing isolation and disturbance. Fungal communities, however, exhibit a highly stochastic assembly process, both neutral and non-neutral in nature, largely independent of disturbance. These findings suggest that increased focus on dispersal limitation and biotic interactions are necessary to manage and conserve the key ecosystem services provided by these assemblages. PMID:26436640
YALINA analytical benchmark analyses using the deterministic ERANOS code system.
Gohar, Y.; Aliberti, G.; Nuclear Engineering Division
2009-08-31
The growing stockpile of nuclear waste constitutes a severe challenge for the mankind for more than hundred thousand years. To reduce the radiotoxicity of the nuclear waste, the Accelerator Driven System (ADS) has been proposed. One of the most important issues of ADSs technology is the choice of the appropriate neutron spectrum for the transmutation of Minor Actinides (MA) and Long Lived Fission Products (LLFP). This report presents the analytical analyses obtained with the deterministic ERANOS code system for the YALINA facility within: (a) the collaboration between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research (JIPNR) Sosny of Belarus; and (b) the IAEA coordinated research projects for accelerator driven systems (ADS). This activity is conducted as a part of the Russian Research Reactor Fuel Return (RRRFR) Program and the Global Threat Reduction Initiative (GTRI) of DOE/NNSA.
Deterministic Squeezed States with Collective Measurements and Feedback.
Cox, Kevin C; Greve, Graham P; Weiner, Joshua M; Thompson, James K
2016-03-01
We demonstrate the creation of entangled, spin-squeezed states using a collective, or joint, measurement and real-time feedback. The pseudospin state of an ensemble of N=5×10^{4} laser-cooled ^{87}Rb atoms is deterministically driven to a specified population state with angular resolution that is a factor of 5.5(8) [7.4(6) dB] in variance below the standard quantum limit for unentangled atoms-comparable to the best enhancements using only unitary evolution. Without feedback, conditioning on the outcome of the joint premeasurement, we directly observe up to 59(8) times [17.7(6) dB] improvement in quantum phase variance relative to the standard quantum limit for N=4×10^{5} atoms. This is one of the largest reported entanglement enhancements to date in any system. PMID:26991175
Deterministic simulation of thermal neutron radiography and tomography
NASA Astrophysics Data System (ADS)
Pal Chowdhury, Rajarshi; Liu, Xin
2016-05-01
In recent years, thermal neutron radiography and tomography have gained much attention as one of the nondestructive testing methods. However, the application of thermal neutron radiography and tomography is hindered by their technical complexity, radiation shielding, and time-consuming data collection processes. Monte Carlo simulations have been developed in the past to improve the neutron imaging facility's ability. In this paper, a new deterministic simulation approach has been proposed and demonstrated to simulate neutron radiographs numerically using a ray tracing algorithm. This approach has made the simulation of neutron radiographs much faster than by previously used stochastic methods (i.e., Monte Carlo methods). The major problem with neutron radiography and tomography simulation is finding a suitable scatter model. In this paper, an analytic scatter model has been proposed that is validated by a Monte Carlo simulation.
A Deterministic Approximation Algorithm for Maximum 2-Path Packing
NASA Astrophysics Data System (ADS)
Tanahashi, Ruka; Chen, Zhi-Zhong
This paper deals with the maximum-weight 2-path packing problem (M2PP), which is the problem of computing a set of vertex-disjoint paths of length 2 in a given edge-weighted complete graph so that the total weight of edges in the paths is maximized. Previously, Hassin and Rubinstein gave a randomized cubic-time approximation algorithm for M2PP which achieves an expected ratio of 35/67 - ε ≈ 0.5223 - ε for any constant ε > 0. We refine their algorithm and derandomize it to obtain a deterministic cubic-time approximation algorithm for the problem which achieves a better ratio (namely, 0.5265 - ε for any constant ε > 0).
Location deterministic biosensing from quantum-dot-nanowire assemblies.
Liu, Chao; Kim, Kwanoh; Fan, D L
2014-08-25
Semiconductor quantum dots (QDs) with high fluorescent brightness, stability, and tunable sizes, have received considerable interest for imaging, sensing, and delivery of biomolecules. In this research, we demonstrate location deterministic biochemical detection from arrays of QD-nanowire hybrid assemblies. QDs with diameters less than 10 nm are manipulated and precisely positioned on the tips of the assembled Gold (Au) nanowires. The manipulation mechanisms are quantitatively understood as the synergetic effects of dielectrophoretic (DEP) and alternating current electroosmosis (ACEO) due to AC electric fields. The QD-nanowire hybrid sensors operate uniquely by concentrating bioanalytes to QDs on the tips of nanowires before detection, offering much enhanced efficiency and sensitivity, in addition to the position-predictable rationality. This research could result in advances in QD-based biomedical detection and inspires an innovative approach for fabricating various QD-based nanodevices. PMID:25316926
Location deterministic biosensing from quantum-dot-nanowire assemblies
Liu, Chao; Kim, Kwanoh; Fan, D. L.
2014-08-25
Semiconductor quantum dots (QDs) with high fluorescent brightness, stability, and tunable sizes, have received considerable interest for imaging, sensing, and delivery of biomolecules. In this research, we demonstrate location deterministic biochemical detection from arrays of QD-nanowire hybrid assemblies. QDs with diameters less than 10 nm are manipulated and precisely positioned on the tips of the assembled Gold (Au) nanowires. The manipulation mechanisms are quantitatively understood as the synergetic effects of dielectrophoretic (DEP) and alternating current electroosmosis (ACEO) due to AC electric fields. The QD-nanowire hybrid sensors operate uniquely by concentrating bioanalytes to QDs on the tips of nanowires before detection, offering much enhanced efficiency and sensitivity, in addition to the position-predictable rationality. This research could result in advances in QD-based biomedical detection and inspires an innovative approach for fabricating various QD-based nanodevices.
Deterministic Squeezed States with Collective Measurements and Feedback
NASA Astrophysics Data System (ADS)
Cox, Kevin C.; Greve, Graham P.; Weiner, Joshua M.; Thompson, James K.
2016-03-01
We demonstrate the creation of entangled, spin-squeezed states using a collective, or joint, measurement and real-time feedback. The pseudospin state of an ensemble of N =5 ×104 laser-cooled 87Rb atoms is deterministically driven to a specified population state with angular resolution that is a factor of 5.5(8) [7.4(6) dB] in variance below the standard quantum limit for unentangled atoms—comparable to the best enhancements using only unitary evolution. Without feedback, conditioning on the outcome of the joint premeasurement, we directly observe up to 59(8) times [17.7(6) dB] improvement in quantum phase variance relative to the standard quantum limit for N =4 ×105 atoms . This is one of the largest reported entanglement enhancements to date in any system.
Capillary-mediated interface perturbations: Deterministic pattern formation
NASA Astrophysics Data System (ADS)
Glicksman, Martin E.
2016-09-01
Leibniz-Reynolds analysis identifies a 4th-order capillary-mediated energy field that is responsible for shape changes observed during melting, and for interface speed perturbations during crystal growth. Field-theoretic principles also show that capillary-mediated energy distributions cancel over large length scales, but modulate the interface shape on smaller mesoscopic scales. Speed perturbations reverse direction at specific locations where they initiate inflection and branching on unstable interfaces, thereby enhancing pattern complexity. Simulations of pattern formation by several independent groups of investigators using a variety of numerical techniques confirm that shape changes during both melting and growth initiate at locations predicted from interface field theory. Finally, limit cycles occur as an interface and its capillary energy field co-evolve, leading to synchronized branching. Synchronous perturbations produce classical dendritic structures, whereas asynchronous perturbations observed in isotropic and weakly anisotropic systems lead to chaotic-looking patterns that remain nevertheless deterministic.
Validation of a Deterministic Vibroacoustic Response Prediction Model
NASA Technical Reports Server (NTRS)
Caimi, Raoul E.; Margasahayam, Ravi
1997-01-01
This report documents the recently completed effort involving validation of a deterministic theory for the random vibration problem of predicting the response of launch pad structures in the low-frequency range (0 to 50 hertz). Use of the Statistical Energy Analysis (SEA) methods is not suitable in this range. Measurements of launch-induced acoustic loads and subsequent structural response were made on a cantilever beam structure placed in close proximity (200 feet) to the launch pad. Innovative ways of characterizing random, nonstationary, non-Gaussian acoustics are used for the development of a structure's excitation model. Extremely good correlation was obtained between analytically computed responses and those measured on the cantilever beam. Additional tests are recommended to bound the problem to account for variations in launch trajectory and inclination.
Deterministic secure communications using two-mode squeezed states
Marino, Alberto M.; Stroud, C. R. Jr.
2006-08-15
We propose a scheme for quantum cryptography that uses the squeezing phase of a two-mode squeezed state to transmit information securely between two parties. The basic principle behind this scheme is the fact that each mode of the squeezed field by itself does not contain any information regarding the squeezing phase. The squeezing phase can only be obtained through a joint measurement of the two modes. This, combined with the fact that it is possible to perform remote squeezing measurements, makes it possible to implement a secure quantum communication scheme in which a deterministic signal can be transmitted directly between two parties while the encryption is done automatically by the quantum correlations present in the two-mode squeezed state.
Location deterministic biosensing from quantum-dot-nanowire assemblies
Liu, Chao; Kim, Kwanoh; Fan, D. L.
2014-01-01
Semiconductor quantum dots (QDs) with high fluorescent brightness, stability, and tunable sizes, have received considerable interest for imaging, sensing, and delivery of biomolecules. In this research, we demonstrate location deterministic biochemical detection from arrays of QD-nanowire hybrid assemblies. QDs with diameters less than 10 nm are manipulated and precisely positioned on the tips of the assembled Gold (Au) nanowires. The manipulation mechanisms are quantitatively understood as the synergetic effects of dielectrophoretic (DEP) and alternating current electroosmosis (ACEO) due to AC electric fields. The QD-nanowire hybrid sensors operate uniquely by concentrating bioanalytes to QDs on the tips of nanowires before detection, offering much enhanced efficiency and sensitivity, in addition to the position-predictable rationality. This research could result in advances in QD-based biomedical detection and inspires an innovative approach for fabricating various QD-based nanodevices. PMID:25316926
Conservative deterministic spectral Boltzmann solver near the grazing collisions limit
NASA Astrophysics Data System (ADS)
Haack, Jeffrey R.; Gamba, Irene M.
2012-11-01
We present new results building on the conservative deterministic spectral method for the space homogeneous Boltzmann equation developed by Gamba and Tharkabhushaman. This approach is a two-step process that acts on the weak form of the Boltzmann equation, and uses the machinery of the Fourier transform to reformulate the collisional integral into a weighted convolution in Fourier space. A constrained optimization problem is solved to preserve the mass, momentum, and energy of the resulting distribution. Within this framework we have extended the formulation to the case of more general case of collision operators with anisotropic scattering mechanisms, which requires a new formulation of the convolution weights. We also derive the grazing collisions limit for the method, and show that it is consistent with the Fokker-Planck-Landau equations as the grazing collisions parameter goes to zero.
Deterministic and Stochastic Receiver Clock Modeling in Precise Point Positioning
NASA Astrophysics Data System (ADS)
Orliac, E.; Dach, R.; Wang, K.; Rothacher, M.; Voithenleitner, D.; Hugentobler, U.; Heinze, M.; Svehla, D.
2012-04-01
The traditional GNSS (Global Navigation Satellite System) data analysis assumes an independent set of clock corrections for each epoch. This introduces a huge number of parameters that are highly correlated with station height and troposphere parameters. If the number of clock parameters can be reduced, the GNSS processing procedure may be stabilized. Experiments with kinematic solutions for stations equipped with H-Maser clocks have confirmed this. On the other hand, static coordinates do not significantly benefit from changing the strategy in handling the clock parameter. In the current GNSS constellation only GIOVE-B and the GPS Block IIF satellite clocks seem to be good enough to be modeled instead of freely estimated for each epoch without losing accuracy at the level of phase measurements. With the Galileo constellation this will change in future. In this context, ESA (European Space Agency) funded a project on "Satellite and Station Clock Modelling for GNSS". In the frame of this project, various deterministic and stochastic clock models have been evaluated, implemented and assessed for both, station and satellite clocks. In this paper we focus on the impact of modeling the receiver clock in the processing of GNSS data in static and kinematic precise point positioning (PPP) modes. Initial results show that for stations connected to an H-Maser clock the stability of the vertical position for kinematic PPP could be improved by up to 60%. The impact of clock modeling on the estimation of troposphere parameters is also investigated, along with the role of the tropospheric modeling itself, by testing various sampling rates and relative constraints for the troposphere parameters. Finally, we investigate the convergence time of PPP when deterministic or stochastic clock modeling is applied to the receiver clock.
Deterministic Diffusion Fiber Tracking Improved by Quantitative Anisotropy
Yeh, Fang-Cheng; Verstynen, Timothy D.; Wang, Yibao; Fernández-Miranda, Juan C.; Tseng, Wen-Yih Isaac
2013-01-01
Diffusion MRI tractography has emerged as a useful and popular tool for mapping connections between brain regions. In this study, we examined the performance of quantitative anisotropy (QA) in facilitating deterministic fiber tracking. Two phantom studies were conducted. The first phantom study examined the susceptibility of fractional anisotropy (FA), generalized factional anisotropy (GFA), and QA to various partial volume effects. The second phantom study examined the spatial resolution of the FA-aided, GFA-aided, and QA-aided tractographies. An in vivo study was conducted to track the arcuate fasciculus, and two neurosurgeons blind to the acquisition and analysis settings were invited to identify false tracks. The performance of QA in assisting fiber tracking was compared with FA, GFA, and anatomical information from T1-weighted images. Our first phantom study showed that QA is less sensitive to the partial volume effects of crossing fibers and free water, suggesting that it is a robust index. The second phantom study showed that the QA-aided tractography has better resolution than the FA-aided and GFA-aided tractography. Our in vivo study further showed that the QA-aided tractography outperforms the FA-aided, GFA-aided, and anatomy-aided tractographies. In the shell scheme (HARDI), the FA-aided, GFA-aided, and anatomy-aided tractographies have 30.7%, 32.6%, and 24.45% of the false tracks, respectively, while the QA-aided tractography has 16.2%. In the grid scheme (DSI), the FA-aided, GFA-aided, and anatomy-aided tractographies have 12.3%, 9.0%, and 10.93% of the false tracks, respectively, while the QA-aided tractography has 4.43%. The QA-aided deterministic fiber tracking may assist fiber tracking studies and facilitate the advancement of human connectomics. PMID:24348913
Standard fluctuation-dissipation process from a deterministic mapping
NASA Astrophysics Data System (ADS)
Bianucci, Marco; Mannella, Riccardo; Fan, Ximing; Grigolini, Paolo; West, Bruce J.
1993-03-01
We illustrate a derivation of a standard fluctuation-dissipation process from a discrete deterministic dynamical model. This model is a three-dimensional mapping, driving the motion of three variables, w, ξ, and π. We show that for suitable values of the parameters of this mapping, the motion of the variable w is indistinguishable from that of a stochastic variable described by a Fokker-Planck equation with well-defined friction γ and diffusion D. This result can be explained as follows. The bidimensional system of the two variables ξ and π is a nonlinear, deterministic, and chaotic system, with the key property of resulting in a finite correlation time for the variable ξ and in a linear response of ξ to an external perturbation. Both properties are traced back to the fully chaotic nature of this system. When this subsystem is coupled to the variable w, via a very weak coupling guaranteeing a large-time-scale separation between the two systems, the variable w is proven to be driven by a standard fluctuation-dissipation process. We call the subsystem a booster whose chaotic nature triggers the standard fluctuation-dissipation process exhibited by the variable w. The diffusion process is a trivial consequence of the central-limit theorem, whose validity is assured by the finite time scale of the correlation function of ξ. The dissipation affecting the variable w is traced back to the linear response of the booster, which is evaluated adopting a geometrical procedure based on the properties of chaos rather than the conventional perturbation approach.
Development of method for assessing traffic noise in certain typical conditions
NASA Astrophysics Data System (ADS)
Wu, Weixiong
2005-09-01
Assessing traffic noise is difficult in certain typical conditions in New York City due to changed street geometries, challenges of collection of non-traffic noise components, and levels of existing noise affected by heavy traffic at adjacent streets, among other variables. In general, a proportional model, i.e., a logarithmic equation to compute total passenger car equivalents (PCEs), is employed to assess traffic noise impacts based upon the noise methodology and the noise criteria under the City Environmental Quality Review (CEQR) guidelines. However, in some typical conditions, such as significant changes in roadway or street geometry, roadways that currently carry no or very low traffic volumes, and existing noise levels that are the result of multiple sources, the FHWA Traffic Noise Model (TNM) can be used to better compute project-generated traffic components. This paper presents a development of noise analysis method dealing with these conditions. Once a proportional model identifies any potential noise impacts for screening purposes, TNM computations can be conducted for more thorough and detailed noise analyses. The results demonstrate that while a proportional model provides a practical and convenient noise analysis for most situations, TNM can provide more accurate noise assessments for the conditions listed above.
Concepts and algorithms for terminal-area traffic management
NASA Technical Reports Server (NTRS)
Erzberger, H.; Chapel, J. D.
1984-01-01
The nation's air-traffic-control system is the subject of an extensive modernization program, including the planned introduction of advanced automation techniques. This paper gives an overview of a concept for automating terminal-area traffic management. Four-dimensional (4D) guidance techniques, which play an essential role in the automated system, are reviewed. One technique, intended for on-board computer implementation, is based on application of optimal control theory. The second technique is a simplified approach to 4D guidance intended for ground computer implementation. It generates advisory messages to help the controller maintain scheduled landing times of aircraft not equipped with on-board 4D guidance systems. An operational system for the second technique, recently evaluated in a simulation, is also described.
Collegiate Aviation and FAA Air Traffic Control.
ERIC Educational Resources Information Center
Ruiz, Jose R.; Ruiz, Lorelei E.
2003-01-01
Based on a literature review this article describes the Air Traffic-Collegiate Training Initiative (AT-CTI) program, including objectives, the process by which postsecondary institutes become affiliated, advantages of affiliation, and the recruitment and employment of air traffic control graduates by the Federal Aviation Administration. (Contains…
49 CFR 236.769 - Locking, traffic.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the direction of traffic on a section of track while that section is occupied or while a signal... 49 Transportation 4 2013-10-01 2013-10-01 false Locking, traffic. 236.769 Section 236.769..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions §...
49 CFR 236.769 - Locking, traffic.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the direction of traffic on a section of track while that section is occupied or while a signal... 49 Transportation 4 2014-10-01 2014-10-01 false Locking, traffic. 236.769 Section 236.769..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions §...
49 CFR 236.769 - Locking, traffic.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the direction of traffic on a section of track while that section is occupied or while a signal... 49 Transportation 4 2010-10-01 2010-10-01 false Locking, traffic. 236.769 Section 236.769..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions §...
49 CFR 236.769 - Locking, traffic.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the direction of traffic on a section of track while that section is occupied or while a signal... 49 Transportation 4 2011-10-01 2011-10-01 false Locking, traffic. 236.769 Section 236.769..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions §...
49 CFR 236.769 - Locking, traffic.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the direction of traffic on a section of track while that section is occupied or while a signal... 49 Transportation 4 2012-10-01 2012-10-01 false Locking, traffic. 236.769 Section 236.769..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions §...
Traffic Light Detection Using Conic Section Geometry
NASA Astrophysics Data System (ADS)
Hosseinyalmdary, S.; Yilmaz, A.
2016-06-01
Traffic lights detection and their state recognition is a crucial task that autonomous vehicles must reliably fulfill. Despite scientific endeavors, it still is an open problem due to the variations of traffic lights and their perception in image form. Unlike previous studies, this paper investigates the use of inaccurate and publicly available GIS databases such as OpenStreetMap. In addition, we are the first to exploit conic section geometry to improve the shape cue of the traffic lights in images. Conic section also enables us to estimate the pose of the traffic lights with respect to the camera. Our approach can detect multiple traffic lights in the scene, it also is able to detect the traffic lights in the absence of prior knowledge, and detect the traffics lights as far as 70 meters. The proposed approach has been evaluated for different scenarios and the results show that the use of stereo cameras significantly improves the accuracy of the traffic lights detection and pose estimation.
Minimizing the Delay at Traffic Lights
ERIC Educational Resources Information Center
Van Hecke, Tanja
2009-01-01
Vehicles holding at traffic lights is a typical queuing problem. At crossings the vehicles experience delay in both directions. Longer periods with green lights in one direction are disadvantageous for the vehicles coming from the other direction. The total delay for getting through the traffic point is what counts. This article presents an…
Automatic speech recognition in air traffic control
NASA Technical Reports Server (NTRS)
Karlsson, Joakim
1990-01-01
Automatic Speech Recognition (ASR) technology and its application to the Air Traffic Control system are described. The advantages of applying ASR to Air Traffic Control, as well as criteria for choosing a suitable ASR system are presented. Results from previous research and directions for future work at the Flight Transportation Laboratory are outlined.
Dynamic traffic assignment on parallel computers
Nagel, K.; Frye, R.; Jakob, R.; Rickert, M.; Stretz, P.
1998-12-01
The authors describe part of the current framework of the TRANSIMS traffic research project at the Los Alamos National Laboratory. It includes parallel implementations of a route planner and a microscopic traffic simulation model. They present performance figures and results of an offline load-balancing scheme used in one of the iterative re-planning runs required for dynamic route assignment.
A Serious Game for Traffic Accident Investigators
ERIC Educational Resources Information Center
Binsubaih, Ahmed; Maddock, Steve; Romano, Daniela
2006-01-01
In Dubai, traffic accidents kill one person every 37 hours and injure one person every 3 hours. Novice traffic accident investigators in the Dubai police force are expected to "learn by doing" in this intense environment. Currently, they use no alternative to the real world in order to practice. This paper argues for the use of an alternative…
Traffic accidents, facial injuries, and psychiatry.
Berger, J C
1975-01-01
The extent to which emotional factors play a direct or indirect role in the causation of traffic accidents has been presented along with the early and late emotional response of individuals to facial injuries as a result of traffic accidents. Illustrated case histories are presented. PMID:1116323
California Guide to Traffic Safety Education.
ERIC Educational Resources Information Center
California State Dept. of Education, Sacramento.
The guide proposes an elementary through high school program encompassing many aspects of traffic safety. Chapter 1 presents definitions, instructional goals, behavioral objectives, and K-6 traffic safety concepts coupled with student performance indicators. Various elements of program administration are covered in Chapter 2. Chapter 3 includes…
Highway Traffic Safety Manpower Functions Guide.
ERIC Educational Resources Information Center
Daugherty, Ronald D.; And Others
The purpose of the project, "Revision and Update of Traffic Safety Manpower Training Program Development Guide," was to develop the HIGHWAY TRAFFIC SAFETY MANPOWER FUNCTIONS GUIDE. This document provides an organizational schema illustrating the functions essential to be performed and the interrelationship of these functions to carry out highway…
Interdisciplinary Traffic Safety Instructional System: Series VI.
ERIC Educational Resources Information Center
Maryland State Dept. of Education, Baltimore.
Approximately 120 lessons for increasing sixth grade students' safety knowledge and skills as pedestrians in traffic and at school, as auto and school bus passengers, and as operators of bicycles are provided in this traffic curriculum. One third of the curriculum focuses on perceptual safety activities for young pedestrians, including lessons on…
Seven Traffic Signals in Two Minutes
2011-01-01
Topeka, KS has activated the first of three key traffic corridors to receive a "green light tunnel," a real-time adaptive traffic signal system that synchronizes signals to create a series of green lights for motorists. The result is fewer stops, less travel time and -- most importantly -- a lot of saved gasoline.