Sample records for deuteromycota hyphomycetes conidia

  1. Effects of whole-stream nutrient enrichment on the concentration and abundance of aquatic hyphomycete conidia in transport

    Treesearch

    Vol. 96(1): 57-65 Mycologia

    2004-01-01

    The concentrations and relative abundances of aquatic hyphomycete conidia in water were followed during a three-year study in two headwater streams at Coweeta Hydrologic Laboratory, North Carolina, using the membrane-filtration technique. After a one-ye& pretreatment period, one of the streams was enriched continuously with inorganic nutrients (N+P) for two years...

  2. Impact of two treatments of a formulation of Beauveria bassiana (Deuteromycota: Hyphomycetes) conidia on Varroa mites (Acari: Varroidae) and on honeybee (Hymenoptera: Apidae) colony health.

    PubMed

    Meikle, William G; Mercadier, Guy; Holst, Niels; Girod, Vincent

    2008-12-01

    Bee colonies in southern France were treated with conidia (asexual spores) from two strains of Beauveria bassiana, an entomopathogenic fungus. One strain was commercial (GHA) and the other had been isolated from Varroa mites in the region (Bb05002). Objectives were to evaluate treatment effect on colony weight, adult bee mass, capped brood, and on Varroa fall onto sticky boards. Treatments included conidia formulated with either carnauba or candelilla wax powder, candelilla wax powder alone, or control; in two treatment groups formulation was applied a second time after one week. Treatment did not affect colony health. Colonies treated twice with Bb05002 conidia and carnauba wax powder had significantly higher mite fall compared to colonies treated with blank candelilla wax powder. The proportion of fallen mites that were infected in both conidia treatments was higher than controls for 18 days after the second treatment. The number of fungal propagules on the bees themselves remained elevated for about 14 days after the second treatment. These results were compared to published results from previous experiments with regard to infection duration.

  3. Detection of hyphomycetes in the upper respiratory tract of patients with cystic fibrosis.

    PubMed

    Horré, R; Marklein, G; Siekmeier, R; Reiffert, S-M

    2011-11-01

    The respiratory tract of cystic fibrosis patients is colonised by bacteria and fungi. Although colonisation by slow growing fungi such as Pseudallescheria, Scedosporium and Exophiala species has been studied previously, the colonisation rate differs from study to study. Infections caused by these fungi have been recognised, especially after lung transplants. Monitoring of respiratory tract colonisation in cystic fibrosis patients includes the use of several semi-selective culture media to detect bacteria such as Pseudomonas aeruginosa and Burkholderia cepacia as well as Candida albicans. It is relevant to study whether conventional methods are sufficient for the detection of slow growing hyphomycetes or if additional semi-selective culture media should be used. In total, 589 respiratory specimens from cystic fibrosis patients were examined for the presence of slow growing hyphomycetes. For 439 samples from 81 patients, in addition to conventional methods, erythritol-chloramphenicol agar was used for the selective isolation of Exophiala dermatitidis and paraffin-covered liquid Sabouraud media for the detection of phaeohyphomycetes. For 150 subsequent samples from 42 patients, SceSel+ agar was used for selective isolation of Pseudallescheria and Scedosporium species,and brain-heart infusion bouillon containing a wooden stick for hyphomycete detection. Selective isolation techniques were superior in detecting non-Aspergillus hyphomycetes compared with conventional methods. Although liquid media detected fewer strains of Exophiala, Pseudallescheria and Scedosporium species, additional hyphomycete species not detected by other methods were isolated. Current conventional methods are insufficient to detect non-Aspergillus hyphomycetes, especially Exophiala, Pseudallescheria and Scedosporium species, in sputum samples of cystic fibrosis patients. © 2010 Blackwell Verlag GmbH.

  4. Recognition of fibronectin by Penicillium marneffei conidia via a sialic acid-dependent process and its relationship to the interaction between conidia and laminin.

    PubMed

    Hamilton, A J; Jeavons, L; Youngchim, S; Vanittanakom, N

    1999-10-01

    Adhesion of Penicillium marneffei conidia to the extracellular matrix protein laminin via a sialic acid-dependent process has previously been demonstrated. This study describes the interaction of P. marneffei conidia with fibronectin and examines the relationship of this process to the recognition of laminin via conidia. Immunofluorescence microscopy demonstrated that fibronectin bound to the surface of conidia and to phialides, but not to hyphae, in a pattern similar to that reported for laminin. Conidia were able to bind to fibronectin immobilized on microtiter plates in a concentration-dependent manner. However, binding to fibronectin (at any given concentration of protein and conidia) was less than that to laminin under equivalent conditions. Soluble fibronectin and antifibronectin antibody inhibited adherence of conidia to fibronectin in the plate adherence assay; soluble laminin also caused pronounced inhibition. Various monosaccharides and several peptides had no effect on adherence to fibronectin. However, N-acetylneuraminic acid abolished adherence to fibronectin, indicating that the interaction was mediated through a sialic acid-dependent process; the latter parallels observations of laminin binding by conidia. Fibronectin binding (and binding of laminin) was considerably reduced by prolonged preincubation of conidia with chymotrypsin, suggesting the protein nature of the binding site. Conidia from older cultures were more adherent to both immobilized fibronectin and laminin than conidia from younger cultures. Ligand affinity binding demonstrated the presence of a 20-kDa protein with the ability to bind both fibronectin and laminin. There would therefore appear to be a common receptor for the binding of fibronectin and laminin on the surface of P. marneffei, and the interaction described here maybe important in mediating attachment of the fungus to host tissue.

  5. Proteomic profile of dormant Trichophyton Rubrum conidia

    PubMed Central

    Leng, Wenchuan; Liu, Tao; Li, Rui; Yang, Jian; Wei, Candong; Zhang, Wenliang; Jin, Qi

    2008-01-01

    Background Trichophyton rubrum is the most common dermatophyte causing fungal skin infections in humans. Asexual sporulation is an important means of propagation for T. rubrum, and conidia produced by this way are thought to be the primary cause of human infections. Despite their importance in pathogenesis, the conidia of T. rubrum remain understudied. We intend to intensively investigate the proteome of dormant T. rubrum conidia to characterize its molecular and cellular features and to enhance the development of novel therapeutic strategies. Results The proteome of T. rubrum conidia was analyzed by combining shotgun proteomics with sample prefractionation and multiple enzyme digestion. In total, 1026 proteins were identified. All identified proteins were compared to those in the NCBI non-redundant protein database, the eukaryotic orthologous groups database, and the gene ontology database to obtain functional annotation information. Functional classification revealed that the identified proteins covered nearly all major biological processes. Some proteins were spore specific and related to the survival and dispersal of T. rubrum conidia, and many proteins were important to conidial germination and response to environmental conditions. Conclusion Our results suggest that the proteome of T. rubrum conidia is considerably complex, and that the maintenance of conidial dormancy is an intricate and elaborate process. This data set provides the first global framework for the dormant T. rubrum conidia proteome and is a stepping stone on the way to further study of the molecular mechanisms of T. rubrum conidial germination and the maintenance of conidial dormancy. PMID:18578874

  6. Taka-amylase A in the conidia of Aspergillus oryzae RIB40.

    PubMed

    Nguyen, Cong Ha; Tsurumizu, Ryoji; Sato, Tsutomu; Takeuchi, Michio

    2005-11-01

    A study of Taka-amylase A of conidia from Aspergillus oryzae RIB40 was done. During the research, proteins from conidia and germinated conidia were analyzed using SDS-PAGE, 2-D gel electrophoresis, Western blot analysis, MALDI-TOF Mass spectrometry, and native-PAGE combined with activity staining of TAA. The results showed that TAA exists not only in germinated conidia but also in conidia. Some bands representing degraded products of TAA were detected. Conidia, which formed on starch (SCYA), glucose (DCYA), and glycerol (GCYA) plates, contained mature TAA. Only one active band of TAA was detected after native-PAGE activity staining. In addition, TAA activity was detected in cell extracts of conidia using 0.5 M acetate buffer, pH 5.2, as extraction buffer, but was not detected in whole conidia or cell debris. The results indicate that TAA exists in conidia in active form even when starch, glucose, or glycerol is used as carbon source. TAA might belong to a set of basal proteins inside conidia, which helps in imbibition and germination of conidia.

  7. Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells.

    PubMed

    Amin, Shayista; Thywissen, Andreas; Heinekamp, Thorsten; Saluz, Hans Peter; Brakhage, Axel A

    2014-07-01

    Aspergillus fumigatus is the most important air-borne pathogenic fungus of humans. Upon inhalation of conidia, the fungus makes close contact with lung epithelial cells, which only possess low phagocytic activity. These cells are in particular interesting to address the question whether there is some form of persistence of conidia of A. fumigatus in the human host. Therefore, by also using uracil-auxotrophic mutant strains, we were able to investigate the interaction of A549 lung epithelial cells and A. fumigatus conidia in detail for long periods. Interestingly, unlike professional phagocytes, our study showed that the presence of conidial dihydroxynaphthalene (DHN) melanin enhanced the uptake of A. fumigatus conidia by epithelial cells when compared with non-pigmented pksP mutant conidia. Furthermore, conidia of A. fumigatus were able to survive within epithelial cells. This was due to the presence of DHN melanin in the cell wall of conidia, because melanised wild-type conidia showed a higher survival rate inside epithelial cells and led to inhibition of acidification of phagolysosomes. Both effects were not observed for white (non-melanised) conidia of the pksP mutant strain. Moreover, in contrast to pksP mutant conidia, melanised wild-type conidia were able to inhibit the extrinsic apoptotic pathway in A549 lung epithelial cells even for longer periods. The anti-apoptotic effect was not restricted to conidia, because both conidia-derived melanin ghosts (cell-free DHN melanin) and a different type of melanin, dihydroxyphenylalanine (DOPA) melanin, acted anti-apoptotically. Taken together, these data indicate the possibility of melanin-dependent persistence of conidia in lung epithelial cells. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Morphological Variations in Conidia of Arthrobotrys oligospora on Different Media.

    PubMed

    Singh, R K; Kumar, Niranjan; Singh, K P

    2005-06-01

    Most commonly occurring predacious fungus Arthrobotrys oligospora showed great variation in size and shape of conidia on some media. The formation of larger conidia was recorded on beef extract and nutrient agar media. The length of conidia in Richard's YPSS, Sabouraud's, PDA and corn meal agar media was of medium size while smaller conidia were produced on Czapek's, Jensen's, Martin's medium. Maximum width of conidia was recorded on YPSS medium followed by Sabouraud's medium. The average size of spores on nematode infested corn meal agar medium was slightly increased than those on corn meal agar medium.

  9. Heterogeneity in liquid shaken cultures of Aspergillus niger inoculated with melanised conidia or conidia of pigmentation mutants

    PubMed Central

    van Veluw, G.J.; Teertstra, W.R.; de Bekker, C.; Vinck, A.; van Beek, N.; Muller, W.H.; Arentshorst, M.; van der Mei, H.C.; Ram, A.F.J.; Dijksterhuis, J.; Wösten, H.A.B.

    2013-01-01

    Black pigmented conidia of Aspergillus niger give rise to micro-colonies when incubated in liquid shaken medium. These micro-colonies are heterogeneous with respect to gene expression and size. We here studied the biophysical properties of the conidia of a control strain and of strains in which the fwnA, olvA or brnA gene is inactivated. These strains form fawn-, olive-, and brown-coloured conidia, respectively. The ΔolvA strain produced larger conidia (3.8 μm) when compared to the other strains (3.2–3.3 μm). Moreover, the conidia of the ΔolvA strain were highly hydrophilic, whereas those of the other strains were hydrophobic. The zeta potential of the ΔolvA conidia in medium was also more negative when compared to the control strain. This was accompanied by the near absence of a rodlet layer of hydrophobins. Using the Complex Object Parametric Analyzer and Sorter it was shown that the ratio of individual hyphae and micro-colonies in liquid shaken cultures of the deletion strains was lower when compared to the control strain. The average size of the micro-colonies of the control strain was also smaller (628 μm) than that of the deletion strains (790–858 μm). The size distribution of the micro-colonies of the ΔfwnA strain was normally distributed, while that of the other strains could be explained by assuming a population of small and a population of large micro-colonies. In the last set of experiments it was shown that relative expression levels of gpdA, and AmyR and XlnR regulated genes correlate in individual hyphae at the periphery of micro-colonies. This indicates the existence of transcriptionally and translationally highly active and lowly active hyphae as was previously shown in macro-colonies. However, the existence of distinct populations of hyphae with high and low transcriptional and translational activity seems to be less robust when compared to macro-colonies grown on solid medium. PMID:23449476

  10. Preparation of fungal conidia impacts their susceptibility to inactivation by ethanol vapours.

    PubMed

    Dao, Thien; Dantigny, Philippe

    2009-11-15

    A common protocol employed for the preparation of conidia employs flooding a fungal colony grown on semi-solid media under optimum conditions with an aqueous solution. In contrast, conidia produced in a natural environment are usually not hydrated when disseminated in air and can be produced under water stress. In order to simulate the latter conditions, cultures were grown at different water activities and conidia were dry-harvested on the lid by turning the dishes upside-down then gently tapping the bottom of the box. This study aimed at assessing the effect of the preparation of fungal conidia on their inactivation by ethanol vapours. Firstly ethanol vapours (either 0.30 or 0.45 kPa) were applied to conidia obtained from the standardised protocol and to dry-harvested conidia for some species of Penicillium. While all dry-harvested conidia remained viable after 24 h of treatment, about 1.0, 3.5 and 2.5 log(10) reductions were observed for hydrated conidia of Penicillium chrysogenum, Penicillium digitatum and Penicillium italicum respectively. Secondly ethanol vapours (0.67 kPa) were applied to dry-harvested conidia obtained from cultures grown at 0.99 a(w) and at reduced water activities. For all species, the susceptibility to ethanol vapours of conidia obtained at 0.99 a(w) was significantly greater than that of conidia obtained at reduced water activities. Conidia produced in a natural environment under non-optimal conditions would be much more resistant to ethanol vapours than those produced in the laboratory. This phenomenon may be due to a reduced intracellular water activity of dry-harvested conidia.

  11. Splash dispersal of Phyllosticta citricarpa conidia from infected citrus fruit.

    PubMed

    Perryman, S A M; Clark, S J; West, J S

    2014-10-09

    Rain-splash dispersal of Phyllosticta citricarpa (syn. Guignardia citricarpa) conidia (pycnidiospores) from infected oranges was studied in still air and combined with wind. High power microscopy demonstrated the presence of conidia in splash droplets from diseased oranges, which exuded conidia for over one hour during repeated wetting. The largest (5 mm) incident drops produced the highest splashes (up to 41.0 cm). A linear-by-quadratic surface model predicted highest splashes to be 41.91 cm at a horizontal distance of 25.97 cm from the target orange. Large splash droplets contained most conidia (4-5.5 mm splashes averaged 308 conidia), but were splashed <30 cm horizontal distance. Most (80-90%) splashes were <1 mm diameter but carried only 0-4 conidia per droplet. In multiple splash experiments, splashes combined to reach higher maxima (up to 61.7 cm; linear-by-quadratic surface model prediction, 62.1 cm) than in the single splash experiments. In combination with wind, higher wind speeds carried an increasing proportion of splashes downwind travelling horizontally at least 8 m at the highest wind speed tested (7 m/s), due to a small proportion of droplets (<1 mm) being aerosolised. These experiments suggest that P. citricarpa conidia can be dispersed from infected oranges by splashes of water in rainfall events.

  12. Binding of extracellular matrix proteins to Aspergillus fumigatus conidia.

    PubMed Central

    Gil, M L; Peñalver, M C; Lopez-Ribot, J L; O'Connor, J E; Martinez, J P

    1996-01-01

    As detected by confocal immunofluorescence microscopy, binding of fibronectin and laminin appeared to be associated with the protrusions present on the outer cell wall layer of resting Aspergillus fumigatus conidia. Flow cytometry confirmed that binding of laminin to conidia was dose dependent and saturable. Laminin binding was virtually eliminated in trypsin-treated organisms, thus suggesting the protein nature of the binding site. Conidia were also able to specifically adhere to laminin immobilized on microtiter plates. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting (immunoblotting) with laminin and antilaminin antibody of whole conidial homogenates allowed identification, among the complex array of protein and glycoprotein species, of one polypeptide with an apparent molecular mass of 37 kDa which specifically interacts with laminin. The fact that binding of conidia to soluble or immobilized laminin or fibronectin was inhibited by fibronectin or laminin, respectively, suggests the existence of common binding sites for both ligands on the surface of conidia. Intact conidia were also able to adhere to type I and IV collagen immobilized on microtiter plates; adhesion was found to be dose dependent and saturable. Adhesion to immobilized type I and IV collagen was markedly inhibited by laminin and weakly inhibited by fibronectin. Coincubation of conidia with Arg-Gly-Asp (RGD) peptides caused a dose-dependent decrease in binding of cells to immobilized or soluble fibronectin, yet interaction of cells with soluble or immobilized laminin and type I and IV collagen remained unaffected. Interactions described here could be important in mediating attachment of the fungus to host tissues, thus playing a role in the establishment of the disease. PMID:8945572

  13. Splash dispersal of Phyllosticta citricarpa conidia from infected citrus fruit

    PubMed Central

    Perryman, S. A. M.; Clark, S. J.; West, J. S.

    2014-01-01

    Rain-splash dispersal of Phyllosticta citricarpa (syn. Guignardia citricarpa) conidia (pycnidiospores) from infected oranges was studied in still air and combined with wind. High power microscopy demonstrated the presence of conidia in splash droplets from diseased oranges, which exuded conidia for over one hour during repeated wetting. The largest (5 mm) incident drops produced the highest splashes (up to 41.0 cm). A linear-by-quadratic surface model predicted highest splashes to be 41.91 cm at a horizontal distance of 25.97 cm from the target orange. Large splash droplets contained most conidia (4–5.5 mm splashes averaged 308 conidia), but were splashed <30 cm horizontal distance. Most (80–90%) splashes were <1 mm diameter but carried only 0–4 conidia per droplet. In multiple splash experiments, splashes combined to reach higher maxima (up to 61.7 cm; linear-by-quadratic surface model prediction, 62.1 cm) than in the single splash experiments. In combination with wind, higher wind speeds carried an increasing proportion of splashes downwind travelling horizontally at least 8 m at the highest wind speed tested (7 m/s), due to a small proportion of droplets (<1 mm) being aerosolised. These experiments suggest that P. citricarpa conidia can be dispersed from infected oranges by splashes of water in rainfall events. PMID:25298272

  14. Host Soluble Mediators: Defying the Immunological Inertness of Aspergillus fumigatus Conidia.

    PubMed

    Wong, Sarah Sze Wah; Aimanianda, Vishukumar

    2017-12-24

    Aspergillus fumigatus produce airborne spores (conidia), which are inhaled in abundant quantity. In an immunocompromised population, the host immune system fails to clear the inhaled conidia, which then germinate and invade, leading to pulmonary aspergillosis. In an immunocompetent population, the inhaled conidia are efficiently cleared by the host immune system. Soluble mediators of the innate immunity, that involve the complement system, acute-phase proteins, antimicrobial peptides and cytokines, are often considered to play a complementary role in the defense of the fungal pathogen. In fact, the soluble mediators are essential in achieving an efficient clearance of the dormant conidia, which is the morphotype of the fungus upon inhalation by the host. Importantly, harnessing the host soluble mediators challenges the immunological inertness of the dormant conidia due to the presence of the rodlet and melanin layers. In the review, we summarized the major soluble mediators in the lung that are involved in the recognition of the dormant conidia. This knowledge is essential in the complete understanding of the immune defense against A. fumigatus .

  15. The Role of Antennae in Removing Entomopathogenic Fungi from Cuticle of the Termite, Coptotermes formosanus

    PubMed Central

    Yanagawa, Aya; Yokohari, Fumio; Shimizu, Susumu

    2009-01-01

    Our previous research has shown that the termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae), protects itself from entomopathogenic fungi by mutual grooming behavior. The termite removes and discards foreign organisms, such as fungal conidia, from the body surface of its nestmates by mutual grooming behavior. The role of the antennae in detecting the condia was examind here. Three entomopathogenic fungi were used, Beauveria brongniartii 782 (Saccardo) (Hypocreales), Paecilomyces fumosoroseus K3 (Wize) (Hyphomycetes), and Metarhizium anisopliae 455 Sorokin (Hyphomycetes). Termites with antennae removed conidia more efficiently than termites without antennae. There were differences between termites with and without antennae in selection of sites to be groomed on nestmates, in the length of grooming and in occurrence of grooming. Electroantennogram (EAG) responses were recorded from termite antennae and the waveforms were rather specific to the kinds of fungi used as odor sources. Termites were able to distinguish between the tested fungi in feeding tests. These results show that the antennae play important roles in the mutual grooming behavior of the termite. PMID:19611249

  16. Comparison of methodologies for conidia production by Alternaria alternata from citrus

    PubMed Central

    Carvalho, Daniel D. C.; Alves, Eduardo; Batista, Tereza R. S.; Camargos, Renato B.; Lopes, Eloísa A. G. L.

    2008-01-01

    Conidia production is a problem in the study of Alternaria alternata from citrus. Thus, this study aimed to compare existing methodologies for conidial production of A. alternata isolated from Ponkan tangerine (2 isolates), Cravo lemon (1 isolate), Pêra orange (2 isolates) and Murcott tangor (1 isolate). The methodologies used were conidia production with 12 and 24 hours under white fluorescent light, evaluation with 24 and 48 hours after applying fungal mycelium stress technique, cold stress followed by injury of mycelium and evaluation with 24 hours, using healthy vegetable tissue and the use of black fluorescent near ultraviolet (NUV) lamp. Satisfactory result was obtained with A. alternata isolate from Murcott tangor, with the production of 2.8 × 105 conidia mL-1, when fungal mycelium was stressed (Petri dish with 66.66% of fungi growth) and subsequently 24 h of growth. The use of white light (24 h) and black fluorescent NUV lamp also induced expressive conidia production by one isolate of Ponkan tangerine, which produced 17.2 × 105 and 10.1 × 105conidia mL-1 and another of Murcott tangor, which produced 13.9 × 105 and 10.1 × 105 conidia mL-1, respectively. The remaining methodologies analyzed in this study were not able to induce conidia production in satisfactory quantity. The use of both mycelium stress technique and white light (24 h) and black fluorescent NUV lamp allowed the production of enough quantities of conidia to be used in vitro (detection of fungitoxic substances) and in vivo (pathogenicity test) assays, respectively. PMID:24031309

  17. Proteomics of Aspergillus fumigatus Conidia-containing Phagolysosomes Identifies Processes Governing Immune Evasion.

    PubMed

    Schmidt, Hella; Vlaic, Sebastian; Krüger, Thomas; Schmidt, Franziska; Balkenhol, Johannes; Dandekar, Thomas; Guthke, Reinhard; Kniemeyer, Olaf; Heinekamp, Thorsten; Brakhage, Axel A

    2018-06-01

    Invasive infections by the human pathogenic fungus Aspergillus fumigatus start with the outgrowth of asexual, airborne spores (conidia) into the lung tissue of immunocompromised patients. The resident alveolar macrophages phagocytose conidia, which end up in phagolysosomes. However, A. fumigatus conidia resist phagocytic degradation to a certain degree. This is mainly attributable to the pigment 1,8-dihydroxynaphthalene (DHN) melanin located in the cell wall of conidia, which manipulates the phagolysosomal maturation and prevents their intracellular killing. To get insight in the underlying molecular mechanisms, we comparatively analyzed proteins of mouse macrophage phagolysosomes containing melanized wild-type (wt) or nonmelanized pksP mutant conidia. For this purpose, a protocol to isolate conidia-containing phagolysosomes was established and a reference protein map of phagolysosomes was generated. We identified 637 host and 22 A. fumigatus proteins that were differentially abundant in the phagolysosome. 472 of the host proteins were overrepresented in the pksP mutant and 165 in the wt conidia-containing phagolysosome. Eight of the fungal proteins were produced only in pksP mutant and 14 proteins in wt conidia-containing phagolysosomes. Bioinformatical analysis compiled a regulatory module, which indicates host processes affected by the fungus. These processes include vATPase-driven phagolysosomal acidification, Rab5 and Vamp8-dependent endocytic trafficking, signaling pathways, as well as recruitment of the Lamp1 phagolysosomal maturation marker and the lysosomal cysteine protease cathepsin Z. Western blotting and immunofluorescence analyses confirmed the proteome data and moreover showed differential abundance of the major metabolic regulator mTOR. Taken together, with the help of a protocol optimized to isolate A. fumigatus conidia-containing phagolysosomes and a potent bioinformatics algorithm, we were able to confirm A. fumigatus conidia

  18. Novel Technique for Quantifying Adhesion of Metarhizium anisopliae Conidia to the Tick Cuticle▿

    PubMed Central

    Ment, Dana; Gindin, Galina; Rot, Asael; Soroker, Victoria; Glazer, Itamar; Barel, Shimon; Samish, Michael

    2010-01-01

    The present study describes an accurate quantitative method for quantifying the adherence of conidia to the arthropod cuticle and the dynamics of conidial germination on the host. The method was developed using conidia of Metarhizium anisopliae var. anisopliae (Metschn.) Sorokin (Hypocreales: Clavicipitaceae) and engorged Rhipicephalus annulatus (Say) (Arachnida: Ixodidae) females and was also verified for M. anisopliae var. acridum Driver et Milner (Hypocreales: Clavicipitaceae) and Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) larvae. This novel method is based on using an organic solvent (dichloromethane [DCM]) to remove the adhered conidia from the tick cuticle, suspending the conidia in a detergent solution, and then counting them using a hemocytometer. To confirm the efficacy of the method, scanning electron microscopy (SEM) was used to observe the conidial adherence to and removal from the tick cuticle. As the concentration of conidia in the suspension increased, there were correlating increases in both the number of conidia adhering to engorged female R. annulatus and tick mortality. However, no correlation was observed between a tick's susceptibility to fungal infection and the amount of adhered conidia. These findings support the commonly accepted understanding of the nature of the adhesion process. The mechanism enabling the removal of the adhered conidia from the host cuticle is discussed. PMID:20363785

  19. Capillary electrophoresis of conidia from cultivated microscopic filamentous fungi.

    PubMed

    Horká, Marie; Růzicka, Filip; Kubesová, Anna; Holá, Veronika; Slais, Karel

    2009-05-15

    In immunocompromised people fungal agents are able to cause serious infections with high mortality rate. An early diagnosis can increase the chances of survival of the affected patients. Simultaneously, the fungi produce toxins and they are frequent cause of allergy. Currently, various methods are used for detection and identification of these pathogens. They use microscopic examination and growth characteristic of the fungi. New methods are based on the analysis of structural elements of the target microorganisms such as proteins, polysaccharides, glycoproteins, nucleic acids, etc. for the construction of antibodies, probes, and primers for detection. The above-mentioned methods are time-consuming and elaborate. Here hydrophobic conidia from the cultures of different strains of the filamentous fungi were focused and separated by capillary zone electrophoresis and capillary isoelectric focusing. The detection was optimized by dynamic modifying of conidia by the nonionogenic tenside on the basis of pyrenebutanoate. Down to 10 labeled conidia of the fungal strains were fluorometrically detected, and isoelectric points of conidia were determined. The observed isoelectric points were compared with those obtained from the separation of the cultured clinical samples, and they were found to be not host-specific.

  20. Evaluation of soyscreen in an oil-based formulation for UV protection of Beauveria bassiana conidia.

    PubMed

    Behle, Robert W; Compton, David L; Laszlo, Joseph A; Shapiro-Ilan, David I

    2009-10-01

    Soyscreen oil was studied as a formulation ingredient to protect Beauveria bassiana (Balsamo) Vuillemin conidia from UV degradation. Feruloylated soy glycerides, referred to as Soyscreen oil, are biobased UV-absorbing molecules made by combining molecules of soybean oil with ferulic acid. Conidia stored in Soyscreen oil for 28 wk at 25, 30, and 35 degrees C retained viability as well as conidia stored in sunflower oil, demonstrating that Soyscreen did not adversely affect viability with prolonged storage. For samples applied to glass and exposed to simulated sunlight (xenon light), conidia in sunflower oil with or without sunscreens (Soyscreen or oxyl methoxycinnimate) had similar conidia viability after exposure. These oil formulations retained conidia viability better than conidia applied as an aqueous treatment. However, the 10% Soyscreen oil formulation applied to field grown cabbage (Brassica oleracea L.) and bean (Phaseolus vulgaris L.) plants, did not improve residual insecticidal activity compared with aqueous applications of unformulated conidia or two commercial formulations when assayed against Trichoplusia ni (Hübner) larvae. Our results suggest that the oil applications lose UV protection because the oil was absorbed by the leaf. This conclusion was supported in subsequent laboratory exposures of conidia in oil-based formulations with UV screens applied to cabbage leaves or balsa wood, which lost protection as measured by decreased viability of conidia when exposed to simulated sunlight. As a result, additional formulation techniques such as encapsulation to prevent separation of the protective oil from the conidia may be required to extend protection when oil formulations are applied in the field.

  1. Interaction between Paracoccidioides brasiliensis conidia and the coagulation system: involvement of fibrinogen

    PubMed Central

    Tamayo, Diana; Hernández, Orville; Muñoz-Cadavid, Cesar; Cano, Luz Elena; González, Angel

    2013-01-01

    The infectious process starts with an initial contact between pathogen and host. We have previously demonstrated that Paracoccidioides brasiliensis conidia interact with plasma proteins including fibrinogen, which is considered the major component of the coagulation system. In this study, we evaluated the in vitro capacity of P. brasiliensis conidia to aggregate with plasma proteins and compounds involved in the coagulation system. We assessed the aggregation of P. brasiliensis conidia after incubation with human serum or plasma in the presence or absence of anticoagulants, extracellular matrix (ECM) proteins, metabolic and protein inhibitors, monosaccharides and other compounds. Additionally, prothrombin and partial thromboplastin times were determined after the interaction of P. brasiliensis conidia with human plasma. ECM proteins, monosaccharides and human plasma significantly induced P. brasiliensis conidial aggregation; however, anticoagulants and metabolic and protein inhibitors diminished the aggregation process. The extrinsic coagulation pathway was not affected by the interaction between P. brasiliensis conidia and plasma proteins, while the intrinsic pathway was markedly altered. These results indicate that P. brasiliensis conidia interact with proteins involved in the coagulation system. This interaction may play an important role in the initial inflammatory response, as well as fungal disease progression caused by P. brasiliensis dissemination. PMID:23827999

  2. Mannitol and Mannitol Dehydrogenases in Conidia of Aspergillus oryzae

    PubMed Central

    Horikoshi, Koki; Iida, Shigeji; Ikeda, Yonosuke

    1965-01-01

    Horikoshi, Koki (The Institute of Physical and Chemical Research, Tokyo, Japan), Shigeji Iida, and Yonosuke Ikeda. Mannitol and mannitol dehydrogenases in conidia of Aspergillus oryzae. J. Bacteriol. 89:326–330. 1965.—A sugar alcohol was isolated from the conidia of Aspergillus oryzae and identified as d-mannitol. Two types of d-mannitol dehydrogenases, nicotinamide adenine dinucleotide phosphate-linked and nicotinamide adenine dinucleotide-linked, were found in the conidia. Substrate specificities, pH optima, Michaelis-Menton constants, and the effects of inhibitors were studied. d-Mannitol was converted to fructose by the dehydrogenases. Synthesis of d-mannitol dehydrogenases was not observed during germination; the content of d-mannitol decreased at an early stage of germination. It was assumed, therefore, that d-mannitol might be used as the source of endogenous respiration and provide energy for the germination. PMID:14255698

  3. A procedure for quantifying adhesion of conidia of Botrytis cinerea to the skin of apple fruit.

    PubMed

    Filonow, A B

    2001-08-01

    Ultrasonication was evaluated as a nonchemical means to quantitatively remove conidia of Botrytis cinerea from the skin of Golden Delicious apple (Malus domestica Borkh.) fruit. A probe immersed in a suspension of conidia and generating 20 kHz at 150 W for 30- or 60-s pulses destroyed 13.3% or 29% of conidia, respectively. Destruction at 150 W for 10 s or at 30-120 W for up to 60 s was <2%. The procedure for quantifying adhesion of conidia to the skin of fruit consisted of pipetting a 50-microL water droplet containing 5 x 10(4) conidia onto the skinside of a slice of fruit, incubating the slices inside sealed 500 cm3 glass jars, excising a 1 cm diameter piece of skin bearing the droplet, and sonicating the skin in 8 mL of ice-cold water at 150 W for 10 s. The skin was removed, the suspension was centrifuged at 1250 x g for 15 min, and the supernatant was reduced to 1 mL by vacuum suction using a pipet. Conidia were stained with crystal violet and counted in a hemacytometer. Adhesion of conidia to skin was 3.0%, 14.6%, 20.8%, 39.4%, 57.6%, and 73.1% after 0, 2, 4, 8, 12, and 24 h incubation, respectively. Sonication was more effective than two other procedures for recovery of conidia. Conidia on the skin of fruit exposed to 4 microL of butyl acetate in the headspace of glass jars for 4 h at 23 degrees C increased the adhesion of conidia 107% above that for unexposed conidia. Sonication with a programmable power- and time-controlled probe was a simple, rapid, safe, and effective method for quantifying adhesion of B. cinerea conidia to the skin of apple fruit.

  4. A long natural-antisense RNA is accumulated in the conidia of Aspergillus oryzae.

    PubMed

    Tsujii, Masaru; Okuda, Satoshi; Ishi, Kazutomo; Madokoro, Kana; Takeuchi, Michio; Yamagata, Youhei

    2016-01-01

    Analysis of expressed sequence tag libraries from various culture conditions revealed the existence of conidia-specific transcripts assembled to putative conidiation-specific reductase gene (csrA) in Aspergillus oryzae. However, the all transcripts were transcribed with opposite direction to the gene csrA. The sequence analysis of the transcript revealed that the RNA overlapped mRNA of csrA with 3'-end, and did not code protein longer than 60 amino acid residues. We designated the transcript Conidia Specific Long Natural-antisense RNA (CSLNR). The real-time PCR analysis demonstrated that the CSLNR is conidia-specific transcript, which cannot be transcribed in the absence of brlA, and the amount of CSLNR was much more than that of the transcript from csrA in conidia. Furthermore, the csrA deletion, also lacking coding region of CSLNR in A. oryzae reduced the number of conidia. Overexpression of CsrA demonstrated the inhibition of growth and conidiation, while CSLNR did not affect conidiation.

  5. Chronological aging in conidia of pathogenic Aspergillus: Comparison between species.

    PubMed

    Oliveira, Manuela; Pereira, Clara; Bessa, Cláudia; Araujo, Ricardo; Saraiva, Lucília

    2015-11-01

    Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus and Aspergillus niger are common airborne fungi, and the most frequent causative agents of human fungal infections. However, the resistance and lifetime persistence of these fungi in the atmosphere, and the mechanism of aging of Aspergillus conidia are unknown.With this work, we intended to study the processes underlying conidial aging of these four relevant and pathogenic Aspergillus species. Chronological aging was therefore evaluated in A. fumigatus, A. flavus, A. terreus and A. niger conidia exposed to environmental and human body temperatures. The results showed that the aging process in Aspergillus conidia involves apoptosis,with metacaspase activation, DNA fragmentation, and reactive oxygen species production, associated with secondary necrosis. Distinct results were observed for the selected pathogenic species. At environmental conditions, A. niger was the species with the highest resistance to aging, indicating a higher adaption to environmental conditions, whereas A. flavus followed by A. terreus were the most sensitive species. At higher temperatures (37 °C), A. fumigatus presented the longest lifespan, in accordance with its good adaptation to the human body temperature. Altogether,with this work new insights regarding conidia aging are provided, which may be useful when designing treatments for aspergillosis.

  6. Production of Conidia by the Fungus Metarhizium anisopliae Using Solid-State Fermentation.

    PubMed

    Loera-Corral, Octavio; Porcayo-Loza, Javier; Montesinos-Matias, Roberto; Favela-Torres, Ernesto

    2016-01-01

    This chapter describes the production of conidia by Metarhizium anisopliae using solid-state fermentation. Before production of conidia, procedures for strains conservation, reactivation, and propagation are essential in order to provide genetic stability of the strains. The strain is conserved in freeze-dried vials and then reactivated through insect inoculation. Rice is used as a substrate for the conidia production in two different bioreactors: plastic bags and tubular bioreactor. The CO2 production in the tubular bioreactors is measured with a respirometer; this system allows calculating indirect growth parameters as lag time (tlag) (25-35 h), maximum rate of CO2 production (rCO2 max) (0.5-0.7 mg/gdm h), specific rate of CO2 production (μ) (0.10-0.15 1/h), and final CO2 production (CO2) (100-120 mg/gdm). Conidial yield per gram of dry substrate (gdm) should be above 1 × 10(9) conidia/gdm after 10 days of incubation. Germination and viability of conidia obtained after 10 days of incubation should be above 80 % and 75 %, respectively. Bioassays using of Tenebrio molitor as a host insect should yield a final mortality above 80 %.

  7. Production and processing of Metarhizium anisopliae var. acridum submerged conidia for locust and grasshopper control.

    PubMed

    Kassa, Adane; Stephan, Dietrich; Vidal, Stefan; Zimmermann, Gisbert

    2004-01-01

    Currently, mycopesticide development for locust and grasshopper control depends on aerial conidia or submerged spores of entomopathogenic fungi. In our study, the production of submerged conidia of Metarhizium anisopliae var. acridum (IMI 330189) was investigated in a liquid medium containing 3% biomalt and 1% yeast extract (BH-medium). The effects of freeze and spray drying techniques on the quality of submerged conidia were determined. The influence of different additives on the viability of fresh submerged conidia and their suitability for oil flowable concentrate formulation development was assessed. In a BH medium maintained at 180 rev min(-1), at 30 degrees C for 72 h, IMI 330189 produced a green pigmented biomass of submerged conidia whereas in Adámek medium it produced a yellowish biomass of submerged spores. The spore concentration was high in both media; however, the size of the spores produced in the BH medium was significantly lower than those produced in Adámek medium (P < 0.001). Submerged conidia can be effectively dried using either freeze or spray drying techniques. The viability and speed of germination were significantly affected by the drying and pulverizing process (P < 0.001). The initial viability was significantly higher for spray-dried submerged conidia than for freeze-dried spores. Pulverizing of freeze-dried submerged conidia reduced the speed of germination and the viability by 63-95%. Dried submerged conidia can be stored over 45 wk at low temperatures (< 10 degrees) without suffering a significant loss in viability. Furthermore, we have identified carriers that are suitable for oil flowable concentrate formulation development.

  8. Microencapsuling aerial conidia of Trichoderma harzianum through spray drying at elevated temperatures

    USDA-ARS?s Scientific Manuscript database

    Trichoderma conidia are mostly produced by solid fermentation systems. Inoculum is produced by liquid culturing, and then transferred to solid substrate for aerial conidial production. Aerial conidia of T. harzianum are hydrophilic in nature, and it is difficult to separate them from the solid subst...

  9. Melanin is required for the formation of the multi-cellular conidia in the endophytic fungus Pestalotiopsis microspora.

    PubMed

    Yu, Xi; Huo, Liang; Liu, Heng; Chen, Longfei; Wang, Yu; Zhu, Xudong

    2015-10-01

    Melanin plays an important role in regulating various biological processes in many fungi. However, its biological role in conidiation remains largely elusive. We report here that conidia production, morphogenesis, integrity, germination and their viability in Pestalotiopsis microspora require the polyketide-derived melanin. A polyketide synthase gene, pks1, was identified and demonstrated responsible for melanin biosynthesis in this fungus. A targeted deletion mutant strain Δpks1 displayed a defect in pigmentation of conidia and had an albino colonial phenotype. Interestingly, Δpks1 produced approximately 6-fold as many conidia as the wild type did, suggesting a negative modulation of melanin on conidia production in this fungus. Moreover, the conidia failed to develop into the normal five-cell morphology, rather the three main-body cells separated via constriction at the original septum position to generate three independent mutant conidia. This result suggests a novel role of melanin in the formation of the multi-cellular conidia. Germ tubes could develop from the three different types of mutant conidia and kept elongating, despite a significantly lower germination rate was observed for them. Still more, the unpigmented conidia became permeable to Calcofluor White and DAPI, suggesting the integrity of the conidia was impaired. Deliberate inhibition of melanin biosynthesis by a specific inhibitor, tricyclazole, led to a similar phenotypes. This work demonstrates a new function of fungal melanin in conidial development. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Citric acid production using immobilized conidia of Aspergillus niger TMB 2022

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsay, S.S.; To, K.Y.

    1987-02-20

    Conidia of Aspergillus niger TMB 2022 were immobilized in calcium alginate for the production of citric acid. A 1-ml condidia suspension containing ca. 2.32 x 10/sup 8/ conidia were entrapped into sodium alginate solution in order to prepare 3% Ca-alginate (w/v) gel bead. Immobilized conidia were inoculated into productive medium containing 14% sucrose, 0.25% (NH/sub 4/)/sub 2/CO/sub 3/, 0.25% KH/sub 2/PO/sub 4/, and 0.025% MgSO/sub 4/.7H/sub 2/O with addition of 0.06 mg/l CuSO/sub 4/.5H/sub 2/O, 0.25 mg/l ZnCl/sub 2/, 1.3 mg/l FeCl/sub 3/.6H/sub 2/O, pH 3.8, and incubated at 35 degrees C for 13 days by surface culture to producemore » 61.53 g/l anhydrous citric acid. Under the same conditions with a batchwise culture, it was found that immobilized conidia could maintain a longer period for citric acid production (31 days): over 70 g/l anhydrous citric acid from runs No. 2-4, with the maximum yield for anhydrous citric acid reaching 77.02 g/l for run No. 2. In contrast, free conidia maintained a shorter acid-producing phase, circa 17 days; the maximum yield for anhydrous citric acid was 71.07 g/l for run No. 2 but dropped quickly as the run number increased. 14 references.« less

  11. A murine inhalation model to characterize pulmonary exposure to dry Aspergillus fumigatus conidia.

    PubMed

    Buskirk, Amanda D; Green, Brett J; Lemons, Angela R; Nayak, Ajay P; Goldsmith, W Travis; Kashon, Michael L; Anderson, Stacey E; Hettick, Justin M; Templeton, Steven P; Germolec, Dori R; Beezhold, Donald H

    2014-01-01

    Most murine models of fungal exposure are based on the delivery of uncharacterized extracts or liquid conidia suspensions using aspiration or intranasal approaches. Studies that model exposure to dry fungal aerosols using whole body inhalation have only recently been described. In this study, we aimed to characterize pulmonary immune responses following repeated inhalation of conidia utilizing an acoustical generator to deliver dry fungal aerosols to mice housed in a nose only exposure chamber. Immunocompetent female BALB/cJ mice were exposed to conidia derived from Aspergillus fumigatus wild-type (WT) or a melanin-deficient (Δalb1) strain. Conidia were aerosolized and delivered to mice at an estimated deposition dose of 1×105 twice a week for 4 weeks (8 total). Histopathological and immunological endpoints were assessed 4, 24, 48, and 72 hours after the final exposure. Histopathological analysis showed that conidia derived from both strains induced lung inflammation, especially at 24 and 48 hour time points. Immunological endpoints evaluated in bronchoalveolar lavage fluid (BALF) and the mediastinal lymph nodes showed that exposure to WT conidia led to elevated numbers of macrophages, granulocytes, and lymphocytes. Importantly, CD8+ IL17+ (Tc17) cells were significantly higher in BALF and positively correlated with germination of A. fumigatus WT spores. Germination was associated with specific IgG to intracellular proteins while Δalb1 spores elicited antibodies to cell wall hydrophobin. These data suggest that inhalation exposures may provide a more representative analysis of immune responses following exposures to environmentally and occupationally prevalent fungal contaminants.

  12. Aspergillus fumigatus viability drives allergic responses to inhaled conidia.

    PubMed

    Nayak, Ajay P; Croston, Tara L; Lemons, Angela R; Goldsmith, W T; Marshall, Nikki B; Kashon, Michael L; Germolec, Dori R; Beezhold, Donald H; Green, Brett J

    2018-04-13

    Aspergillus fumigatus induced allergic airway disease has been shown to involve conidial germination in vivo but the immunological mechanisms remain uncharacterized. A subchronic murine exposure model was used to examine the immunological mediators that are regulated in response to either culturable or non-culturable A. fumigatus conidia. Female B6C3F1/N mice were repeatedly dosed via inhalation with 1 x 105 viable or heat inactivated conidia (HIC), twice a week for 13 weeks (26 exposures). Control mice inhaled HEPA-filtered air. The influence of A. fumigatus conidial germination on the pulmonary immunopathological outcomes was evaluated by flow cytometry analysis of cellular infiltration in the airways, assessment of lung mRNA expression, and quantitative proteomics and histopathology of whole lung tissue. Repeated inhalation of viable conidia, but not HIC, resulted in allergic inflammation marked by vascular remodeling, extensive eosinophilia, and accumulation of alternatively activated macrophages (AAMs) in the murine airways. More specifically, mice that inhaled viable conidia resulted in a mixed TH1 and TH2 (IL-13) cytokine response. Recruitment of eosinophils corresponded with increased Ccl11 transcripts. Furthermore, genes associated with M2 or alternatively activated macrophage polarization (e.g. Arg1, Chil3 and Retnla) were significantly upregulated in viable A. fumigatus exposed mice. In mice inhaling HIC, CD4+ T cells expressing IFN-γ (TH1) dominated the lymphocytic infiltration. Quantitative proteomics of the lung revealed metabolic reprogramming accompanied by mitochondrial dysfunction and endoplasmic reticulum stress stimulated by oxidative stress from repetitive microbial insult. Our studies demonstrate that A. fumigatus conidial viability in vivo is critical to the immunopathological presentation of chronic fungal allergic disease. Copyright © 2018. Published by Elsevier Inc.

  13. Temporal and Spatial Dispersal of Cladobotryum Conidia in the Controlled Environment of a Mushroom Growing Room▿

    PubMed Central

    Adie, Bruce; Grogan, Helen; Archer, Simon; Mills, Peter

    2006-01-01

    Cladobotryum spp. are responsible for cobweb disease of mushrooms. In two commercial and one experimental mushroom-growing room, Cladobotryum conidia were released into the air in direct response to physical disturbance of disease colonies during either crop watering or treatment by covering with salt to 10 mm. Conidia were detected using a Burkard spore trap or agar-based trap plates. A maximum concentration of ∼25,000 conidia m−3 was recorded in a small (75-m3) experimental growing room in the hour following the salting of 16 cobweb patches (0.55 m2). Concentrations of 100 and 40 conidia m−3 were recorded in the two larger commercial growing rooms in the hour following the salting of 18 and 11 patches of cobweb (diameter, approximately 50 to 200 mm), respectively. In controlled experiments, disturbed conidia were dispersed rapidly throughout a small growing room, with 91 to 97% of conidia settling out within 15 min. Eighty-five percent of conidia settled out within a 0.5-m radius when air-conditioning fans were switched off, consistent with airborne spore dispersal. Alternative methods for treating diseased areas to minimize conidial release and distribution were investigated and included covering disease colonies with damp paper tissue prior to salt application (tissue salting) and holding a dust extractor above disease colonies during salt application. Both methods resulted in no detectable airborne conidia, but the tissue paper salting technique was more convenient. Prevention of airborne conidial release and distribution is essential to avoid mushroom spotting symptoms, secondary colonies, and early crop termination. PMID:16980426

  14. X RAY SENSITIVITY OF CONIDIA OF COLLECTOTRICHUM COCCODES (WALLR.) HUGHES (in Italian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loprieno, N.; Nannarone, A.

    1963-01-01

    Conidia collected from 6-day-old cultures of Colletotrichum coccodes were washed, resuspended in distilled water, and exposed to various doses of x radiation. Samples of the conidia were then seeded on complete media and survival was evaluated after 3 days by counting the number of colonies. Results demonstrate a very high sensitivity of this fungus to the lethal effects of x rays. (C.H.)

  15. Growth under visible light increases conidia and mucilage production and tolerance to UV-B radiation in the plant pathogenic fungus Colletotrichum acutatum.

    PubMed

    de Menezes, Henrique D; Massola, Nelson S; Flint, Stephan D; Silva, Geraldo J; Bachmann, Luciano; Rangel, Drauzio E N; Braga, Gilberto U L

    2015-01-01

    Light conditions can influence fungal development. Some spectral wavebands can induce conidial production, whereas others can kill the conidia, reducing the population size and limiting dispersal. The plant pathogenic fungus Colletotrichum acutatum causes anthracnose in several crops. During the asexual stage on the host plant, Colletototrichum produces acervuli with abundant mucilage-embedded conidia. These conidia are responsible for fungal dispersal and host infection. This study examined the effect of visible light during C. acutatum growth on the production of conidia and mucilage and also on the UV tolerance of these conidia. Conidial tolerance to an environmentally realistic UV irradiance was determined both in conidia surrounded by mucilage on sporulating colonies and in conidial suspension. Exposures to visible light during fungal growth increased production of conidia and mucilage as well as conidial tolerance to UV. Colonies exposed to light produced 1.7 times more conidia than colonies grown in continuous darkness. The UV tolerances of conidia produced under light were at least two times higher than conidia produced in the dark. Conidia embedded in the mucilage on sporulating colonies were more tolerant of UV than conidia in suspension that were washed free of mucilage. Conidial tolerance to UV radiation varied among five selected isolates. © 2014 The American Society of Photobiology.

  16. Interactions of Aspergillus fumigatus Conidia with Airway Epithelial Cells: A Critical Review

    PubMed Central

    Croft, Carys A.; Culibrk, Luka; Moore, Margo M.; Tebbutt, Scott J.

    2016-01-01

    Aspergillus fumigatus is an environmental filamentous fungus that also acts as an opportunistic pathogen able to cause a variety of symptoms, from an allergic response to a life-threatening disseminated fungal infection. The infectious agents are inhaled conidia whose first point of contact is most likely to be an airway epithelial cell (AEC). The interaction between epithelial cells and conidia is multifaceted and complex, and has implications for later steps in pathogenesis. Increasing evidence has demonstrated a key role for the airway epithelium in the response to respiratory pathogens, particularly at early stages of infection; therefore, elucidating the early stages of interaction of conidia with AECs is essential to understand the establishment of infection in cohorts of at-risk patients. Here, we present a comprehensive review of the early interactions between A. fumigatus and AECs, including bronchial and alveolar epithelial cells. We describe mechanisms of adhesion, internalization of conidia by AECs, the immune response of AECs, as well as the role of fungal virulence factors, and patterns of fungal gene expression characteristic of early infection. A clear understanding of the mechanisms involved in the early establishment of infection by A. fumigatus could point to novel targets for therapy and prophylaxis. PMID:27092126

  17. Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia)

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Smausz, T.; Antal, Zs.; Kresz, N.; Bor, Zs.; Chrisey, D.

    2004-09-01

    We present an investigation on absorbing film assisted laser induced forward transfer (AFA-LIFT) of fungus (Trichoderma) conidia. A KrF excimer laser beam [λ =248nm,FWHM=30ns (FWHM, full width at half maximum)] was directed through a quartz plate and focused onto its silver coated surface where conidia of the Trichoderma strain were uniformly spread. The laser fluence was varied in the range of 0-2600mJ/cm2 and each laser pulse transferred a pixel of target material. The average irradiated area was 8×10-2mm2. After the transfer procedure, the yeast extract medium covered glass slide and the transferred conidia patterns were incubated for 20 h and then observed using an optical microscope. The transferred conidia pixels were germinated and the areas of the culture medium surfaces covered by the pixels were evaluated as a function of laser fluence. As the laser fluence was increased from 0 to 355mJ/cm2 the transferred and germinated pixel area increased from 0 to 0.25mm2. Further increase in fluence resulted in a drastic decrease down to an approximately constant value of 0.06mm2. The yield of successful transfer by AFA-LIFT and germination was as much as 75% at 355mJ/cm2. The results prove that AFA-LIFT can successfully be applied for the controlled transfer of biological objects.

  18. Temperature during conidiation affects stress tolerance, pigmentation, and trypacidin accumulation in the conidia of the airborne pathogen Aspergillus fumigatus

    PubMed Central

    Sakai, Kanae; Suzuki, Satoshi; Umemura, Myco; Nogawa, Toshihiko; Kato, Naoki; Osada, Hiroyuki; Watanabe, Akira; Kawamoto, Susumu; Gonoi, Tohru; Kamei, Katsuhiko

    2017-01-01

    Asexual spores (conidia) are reproductive structures that play a crucial role in fungal distribution and survival. As fungal conidia are, in most cases, etiological agents of plant diseases and fungal lung disease, their stress resistance and interaction with their hosts have drawn increasing attention. In the present study, we investigated whether environmental temperature during conidiation affects the stress tolerance of the conidia of the human pathogenic fungus Aspergillus fumigatus. Conidia from a 25°C culture showed a lower tolerance to heat (60°C) and oxidative (H2O2) stresses and a marked resistance to ultraviolet radiation exposure, compared with those produced at 37 and 45°C. The accumulation of trehalose was lower in the conidia from the 25°C culture. Furthermore, the conidia from the 25°C culture showed darker pigmentation and increased transcripts of dihydroxynaphthalene (DHN)-melanin biosynthesis-related genes (i.e., pksP, arp1, and arp2). An RNA-sequencing analysis revealed that the transcription level of the trypacidin (tpc) gene cluster, which contains 13 genes, was sharply and coordinately activated in the conidia from the 25°C culture. Accordingly, trypacidin was abundant in the conidia from the 25°C culture, whereas there was little trypacidin in the conidia from the 37°C culture. Taken together, these data show that the environmental temperature during conidiation affects conidial properties such as stress tolerance, pigmentation, and mycotoxin accumulation. To enhance our knowledge, we further explored the temperature-dependent production of DHN-melanin and trypacidin in clinical A. fumigatus isolates. Some of the isolates showed temperature-independent production of DHN-melanin and/or trypacidin, indicating that the conidia-associated secondary metabolisms differed among the isolates. PMID:28486558

  19. Proteomic analysis of early phase of conidia germination in Aspergillus nidulans.

    PubMed

    Oh, Young Taek; Ahn, Chun-Seob; Kim, Jeong Geun; Ro, Hyeon-Su; Lee, Chang-Won; Kim, Jae Won

    2010-03-01

    In order to investigate proteins involved in early phase of conidia germination, proteomic analysis was performed using two-dimensional gel electrophoresis (2D-GE) in conjunction with MALDI-TOF mass spectrometry (MS). The expression levels of 241 proteins varied quantitatively with statistical significance (P<0.05) at the early phase of the germination stage. Out of these 57 were identified by MALDI-TOF MS. Through classification of physiological functions from Conserved Domain Database analysis, among the identified proteins, 21, 13, and 6 proteins were associated with energy metabolism, protein synthesis, and protein folding process, respectively. Interestingly, eight proteins, which are involved in detoxification of reactive oxygen species (ROS) including catalase A, thioredoxin reductase, and mitochondrial peroxiredoxin, were also identified. The expression levels of the genes were further confirmed using Northern blot and reverse transcriptase (RT)-PCR analyses. This study represents the first proteomic analysis of early phase of conidia germination and will contribute to a better understanding of the molecular events involved in conidia germination process. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  20. Modification of a pollen trap design to capture airborne conidia of Entomophaga maimaiga and detection of conidia by quantitative PCR

    Treesearch

    Tonya D. Bittner; Ann E. Hajek; Andrew M. Liebhold; Harold Thistle; Dan Cullen

    2017-01-01

    The goal of this study was to develop effective and practical field sampling methods for quantification of aerial deposition of airborne conidia of Entomophaga maimaiga over space and time. This important fungal pathogen is a major cause of larval death in invasive gypsy moth (Lymantria dispar) populations in the United States...

  1. Production of conidia by entomopathogenic fungi: from inoculants to final quality tests.

    PubMed

    Muñiz-Paredes, Facundo; Miranda-Hernández, Francisco; Loera, Octavio

    2017-03-01

    Demand for biopesticides is growing due to the increase of areas under integrated pest management worldwide. Conidia from entomopathogenic fungi play a major role as infective units in the current market of biopesticides. Success in a massive production of fungal conidia include the use of proper long-term conservation microbial methods, aimed at preserving the phenotypic traits of the strains. The development of suitable inoculants should also be considered since that favours a rapid germination and invasiveness of the substrate in solid state cultures (SSC). After the selection of a suitable fungal strain, proven optimization approaches for SSC mainly include the combination of substrates, moisture, texturizers, aeration and moderate stress to induce conidiation. Nonetheless, during storage and upon application in open fields, conidia either as free propagules or imbibed in formulations are subjected to stress due to abiotic factors, then quality should be preserved to resist such harsh conditions. All of these topics are analysed in this report.

  2. Metabolic activity in dormant conidia of Aspergillus niger and developmental changes during conidial outgrowth.

    PubMed

    Novodvorska, Michaela; Stratford, Malcolm; Blythe, Martin J; Wilson, Raymond; Beniston, Richard G; Archer, David B

    2016-09-01

    The early stages of development of Aspergillus niger conidia during outgrowth were explored by combining genome-wide gene expression analysis (RNAseq), proteomics, Warburg manometry and uptake studies. Resting conidia suspended in water were demonstrated for the first time to be metabolically active as low levels of oxygen uptake and the generation of carbon dioxide were detected, suggesting that low-level respiratory metabolism occurs in conidia for maintenance. Upon triggering of spore germination, generation of CO2 increased dramatically. For a short period, which coincided with mobilisation of the intracellular polyol, trehalose, there was no increase in uptake of O2 indicating that trehalose was metabolised by fermentation. Data from genome-wide mRNA profiling showed the presence of transcripts associated with fermentative and respiratory metabolism in resting conidia. Following triggering of conidial outgrowth, there was a clear switch to respiration after 25min, confirmed by cyanide inhibition. No effect of SHAM, salicylhydroxamic acid, on respiration suggests electron flow via cytochrome c oxidase. Glucose entry into spores was not detectable before 1h after triggering germination. The impact of sorbic acid on germination was examined and we showed that it inhibits glucose uptake. O2 uptake was also inhibited, delaying the onset of respiration and extending the period of fermentation. In conclusion, we show that conidia suspended in water are not completely dormant and that conidial outgrowth involves fermentative metabolism that precedes respiration. Copyright © 2016. Published by Elsevier Inc.

  3. Colonization with Small Conidia Aspergillus Species is associated with Bronchiolitis Obliterans Syndrome: A Two-Center Validation Study

    PubMed Central

    Weigt, S. Sam; Copeland, C. Ashley Finlen; Derhovanessian, Ariss; Shino, Michael Y.; Davis, W. Austin; Snyder, Laurie D.; Saggar, Rajan; Lynch, Joseph P.; Ross, David J.; Ardehali, Abbas; Elashoff, Robert M.; Palmer, Scott M.; Belperio, John A.

    2012-01-01

    Aspergillus colonization after lung transplantation may increase the risk for bronchiolitis obliterans syndrome (BOS), a disease of small airways. We hypothesized that colonization with small conidia Aspergillus species would be associated with a greater risk of BOS, based upon an increased likelihood of deposition in small airways. We studied adult primary lung recipients from two large centers; 298 recipients at University of California, Los Angeles and 482 recipients at Duke University Medical Center. We grouped Aspergillus species by conidia diameter ≤3.5μm. We assessed the relationship of colonization with outcomes in Cox models. Pre-BOS colonization with small conidia Aspergillus species, but not large, was a risk factor for BOS (P = 0.002, HR 1.44, 95% CI 1.14–1.82), along with acute rejection, single lung, and Pseudomonas. Colonization with small conidia species also associated with risk of death (P = 0.03, HR 1.30, 95% CI 1.03–1.64). Although other virulence traits besides conidia size may be important, we have demonstrated in two large independent cohorts that colonization with small conidia Aspergillus species increases the risk of BOS and death. Prospective evaluation of strategies to prevent Aspergillus colonization of small airways is warranted, with the goal of preserving lung allograft function as long as possible. PMID:23398785

  4. Temperature, water activity and pH during conidia production affect the physiological state and germination time of Penicillium species.

    PubMed

    Nguyen Van Long, Nicolas; Vasseur, Valérie; Coroller, Louis; Dantigny, Philippe; Le Panse, Sophie; Weill, Amélie; Mounier, Jérôme; Rigalma, Karim

    2017-01-16

    Conidial germination and mycelial growth are generally studied with conidia produced under optimal conditions to increase conidial yield. Nonetheless, the physiological state of such conidia most likely differs from those involved in spoilage of naturally contaminated food. The present study aimed at investigating the impact of temperature, pH and water activity (a w ) during production of conidia on the germination parameters and compatible solutes of conidia of Penicillium roqueforti and Penicillium expansum. Low temperature (5°C) and reduced a w (0.900 a w ) during sporulation significantly reduced conidial germination times whereas the pH of the sporulation medium only had a slight effect at the tested values (2.5, 8.0). Conidia of P. roqueforti produced at 5°C germinated up to 45h earlier than those produced at 20°C. Conidia of P. roqueforti and P. expansum produced at 0.900 a w germinated respectively up to 8h and 3h earlier than conidia produced at 0.980 a w . Furthermore, trehalose and mannitol assessments suggested that earlier germination might be related to delayed conidial maturation even though no ultra-structural modifications were observed by transmission electron microscopy. Taken together, these results highlight the importance of considering environmental conditions during sporulation in mycological studies. The physiological state of fungal conidia should be taken into account to design challenge tests or predictive mycology studies. This knowledge may also be of interest to improve the germination capacity of fungal cultures commonly used in fermented foods. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Density, Viability Conidia And Symptoms of Metarhizium anisopliae infection on Oryctes rhinoceros larvae

    NASA Astrophysics Data System (ADS)

    Indriyanti, D. R.; Putri, R. I. P.; Widiyaningrum, P.; Herlina, L.

    2017-04-01

    M. anisopliae is parasitic fungus on insect pests; it is used as a biocontrol agent. M. anisopliae can be propagated on maize or rice substrate. M. anisopliae is currently sold in the form of kaolin powder formulations. Before it is used to check the density, viability and pathogenicity of M. anisopliae. However the problem is the kaolin powder very soft, so it difficult to distinguish between kaolin and conidia. This article gives information on how to calculate conidia density, viability and symptoms of M. anisopliae infection on Oryctes rhinoceros larvae. The study was conducted in the laboratory to determine the density and viability. The pathogenicity testing was done using pots. The Pot is containing soil substrate mixed with M. Anispoliae and ten tails O. Rhinoceros larvae per pot. The results showed that the density of M. anisopliae conidia was 1.81 x 108 conidia mL-1 and the viability was 94% within 24 hours. The larval mortality began to emerge in the 1st week, and all larvae died at the sixth week. The symptom of M. anisopliae infection on Oryctes rhinoceros larvae, there was a black spot on the larval integument. The larvae movements become slow and poor appetite; it will die within 3-7 days. The larvae die hard, and the white hyphae grow on the body surface that turns green.

  6. Comparative study of airborne Alternaria conidia levels in two cities in Castilla-La Mancha (central Spain), and correlations with weather-related variables.

    PubMed

    Sabariego, Silvia; Bouso, Veronica; Pérez-Badia, Rosa

    2012-01-01

    Alternaria conidia are among the airborne biological particles known to trigger allergic respiratory diseases. The presented paper reports on a study of seasonal variations in airborne Alternaria conidia concentrations in 2 cities in the central Spanish region of Castilla-La Mancha, Albacete and Toledo. The influence of weather-related variables on airborne conidia levels and distribution was also analysed. Sampling was carried out from 2008-2010 using a Hirst sampler, following the methodology established by the Spanish Aerobiology Network. Annual airborne Alternaria conidia counts were higher in Toledo (annual mean 3,936 conidia) than in Albacete (annual mean 2,268 conidia). Conidia were detected in the air throughout the year, but levels peaked between May-September. Considerable year-on-year variations were recorded both in total annual counts and in seasonal distribution. A significant positive correlation was generally found between mean daily Alternaria counts and both temperature and hours of sunlight, while a significant negative correlation was recorded for relative humidity, daily and cumulative rainfall, and wind speed. Regression models indicated that between 31%-52% of the variation in airborne Alternaria conidia concentrations could be explained by weather-related variables.

  7. Aspergillus terreus accessory conidia are unique in surface architecture, cell wall composition and germination kinetics.

    PubMed

    Deak, Eszter; Wilson, Selwyn D; White, Elizabeth; Carr, Janice H; Balajee, S Arunmozhi

    2009-10-30

    Infection with Aspergillus terreus is more likely to result in invasive, disseminated disease when compared to other Aspergillus species; importantly this species appears to be less susceptible to the antifungal drug amphotericin B. Unique to this species is the ability to produce specialized structures denoted as accessory conidia (AC) directly on hyphae both in vitro and in vivo. With the hypothesis that production of AC by A. terreus may enhance virulence of this organism, we analyzed the phenotype, structure and metabolic potential of these conidia. Comparison of A. terreus phialidic conidia (conidia that arise from conidiophores, PC) and AC architecture by electron microscopy revealed distinct morphological differences between the two conidial forms; AC have a smoother, thicker outer cell surface with no apparent pigment-like layer. Further, AC germinated rapidly, had enhanced adherence to microspheres, and were metabolically more active compared to PC. Additionally, AC contained less cell membrane ergosterol, which correlated with decreased susceptibility to AMB as determined using a flow cytometry based analysis. Furthermore, AC exhibited surface patches of beta1-3 glucan, suggestive of attachment scarring. Collectively, the findings of this study suggest a possible role for AC in A. terreus pathogenesis.

  8. Comparative transcriptome analysis revealing dormant conidia and germination associated genes in Aspergillus species: an essential role for AtfA in conidial dormancy.

    PubMed

    Hagiwara, Daisuke; Takahashi, Hiroki; Kusuya, Yoko; Kawamoto, Susumu; Kamei, Katsuhiko; Gonoi, Tohru

    2016-05-17

    Fungal conidia are usually dormant unless the extracellular conditions are right for germination. Despite the importance of dormancy, little is known about the molecular mechanism underlying entry to, maintenance of, and exit from dormancy. To gain comprehensive and inter-species insights, transcriptome analyses were conducted across Aspergillus fumigatus, Aspergillus niger, and Aspergillus oryzae. We found transcripts of 687, 694, and 812 genes were enriched in the resting conidia compared with hyphae in A. fumigatus, A. niger, and A. oryzae, respectively (conidia-associated genes). Similarly, transcripts of 766, 1,241, and 749 genes were increased in the 1 h-cultured conidia compared with the resting conidia (germination-associated genes). Among the three Aspergillus species, we identified orthologous 6,172 genes, 91 and 391 of which are common conidia- and germination-associated genes, respectively. A variety of stress-related genes, including the catalase genes, were found in the common conidia-associated gene set, and ribosome-related genes were significantly enriched among the germination-associated genes. Among the germination-associated genes, we found that calA-family genes encoding a thaumatin-like protein were extraordinary expressed in early germination stage in all Aspergillus species tested here. In A. fumigatus 63 % of the common conidia-associated genes were expressed in a bZIP-type transcriptional regulator AtfA-dependent manner, indicating that AtfA plays a pivotal role in the maintenance of resting conidial physiology. Unexpectedly, the precocious expression of the germination-associated calA and an abnormal metabolic activity were detected in the resting conidia of the atfA mutant, suggesting that AtfA was involved in the retention of conidial dormancy. A comparison among transcriptomes of hyphae, resting conidia, and 1 h-grown conidia in the three Aspergillus species revealed likely common factors involved in conidial dormancy. Atf

  9. A novel computerised image analysis method for the measurement of production of conidia from the aphid pathogenic fungus Erynia neoaphidis.

    PubMed

    Bonner, Tony J; Pell, Judith K; Gray, Simon N

    2003-03-14

    A semi-automated method has been developed for the quantification and measurement of conidia discharged by the aphid pathogen Erynia neoaphidis. This was used to compare conidiation by E. neoaphidis-mycosed pea aphid cadavers, mycelial plugs cut from agar plates, mycelial pellets from shake flasks and by mycelial pellets from different phases of liquid batch fermenter culture. Aphid cadavers discharged significantly more and significantly smaller conidia than plugs or pellets. The volume of conidia discharged was stable over the period of discharge (80 h), but more detailed analysis of the size frequency distribution showed that more very small and very large conidia were discharged after 5 h incubation than after 75 h incubation. Biomass harvested at the end of the exponential growth phase in batch fermenter culture produced significantly more conidia than biomass from any other growth phase. The implications of these findings for the development of production and formulation processes for E. neoaphidis as a biological control agent are discussed.

  10. Influence of Infection Court, Host Vigor, and Culture Filtrates on Canker Production by Botryodiplodia Theobromae Conidia in Sycamore

    Treesearch

    R. Lewis

    1978-01-01

    Some of the factors that influence canker development in American sycamores inoculated with Botryodiplodia theobromae conidia were determined. A combination of B. theobromae culture filtrates and conidia resulted in 100% canker production when introduced into stem wounds; however, a combination of Cephalosporium diospyri...

  11. A proteomic and ultrastructural characterization of Aspergillus fumigatus' conidia adaptation at different culture ages.

    PubMed

    Anjo, Sandra I; Figueiredo, Francisco; Fernandes, Rui; Manadas, Bruno; Oliveira, Manuela

    2017-05-24

    The airborne fungus Aspergillus fumigatus is one of the most common agents of human fungal infections with a remarkable impact on public health. However, A. fumigatus conidia atmospheric resistance and longevity mechanisms are still unknown. Therefore, in this work, the processes underlying conidial adaptation were studied by a time course evaluation of the proteomics and ultrastructural changes of A. fumigatus' conidia at three time-points selected according to relevant changes previously established in conidial survival rates. The proteomics characterization revealed that conidia change from a highly active metabolic to a dormant state, culminating in cell autolysis as revealed by the increased levels of hydrolytic enzymes. Structural characterization corroborates the proteomics data, with noticeable changes observed in mitochondria, nucleus and plasma membrane ultrastructure, accompanied by the formation of autophagic vacuoles. These changes are consistent with both apoptotic and autophagic processes, and indicate that the changes in protein levels may anticipate those in cell morphology. The findings presented in this work not only clarify the processes underlying conidial adaptation to nutrient limiting conditions but can also be exploited for improving infection control strategies and in the development of new therapeutical drugs. Additionally, the present study was deposited in a public database and thus, it may also be a valuable dataset to be used by the scientific community as a tool to understand and identified other potential targets associated with conidia resistance. Copyright © 2017. Published by Elsevier B.V.

  12. Riboflavin induces Metarhizium spp. to produce conidia with elevated tolerance to UV-B, and upregulates photolyases, laccases and polyketide synthases genes.

    PubMed

    Pereira-Junior, R A; Huarte-Bonnet, C; Paixão, F R S; Roberts, D W; Luz, C; Pedrini, N; Fernandes, É K K

    2018-02-23

    The effect of nutritional supplementation of two Metarhizium species with riboflavin (Rb) during production of conidia was evaluated on (i) conidial tolerance (based on germination) to UV-B radiation and on (ii) conidial expression following UV-B irradiation, of enzymes known to be active in photoreactivation, viz., photolyase (Phr), laccase (Lac) and polyketide synthase (Pks). Metarhizium acridum (ARSEF 324) and Metarhizium robertsii (ARSEF 2575) were grown either on (i) potato dextrose agar medium (PDA), (ii) PDA supplemented with 1% yeast extract (PDAY), (iii) PDA supplemented with Rb (PDA+Rb), or (iv) PDAY supplemented with Rb (PDAY+Rb). Resulting conidia were exposed to 866·7 mW m -2 of UV-B Quaite-weighted irradiance to total doses of 3·9 or 6·24 kJ m -2 . Some conidia also were exposed to 16 klux of white light (WL) after being irradiated, or not, with UV-B to investigate the role of possible photoreactivation. Relative germination of conidia produced on PDA+Rb (regardless Rb concentration) or on PDAY and exposed to UV-B was higher compared to conidia cultivated on PDA without Rb supplement, or to conidia suspended in Rb solution immediately prior to UV-B exposure. The expression of MaLac3 and MaPks2 for M. acridum, as well as MrPhr2, MrLac1, MrLac2 and MrLac3 for M. robertsii was higher when the isolates were cultivated on PDA+Rb and exposed to UV-B followed by exposure to WL, or exposed to WL only. Rb in culture medium increases the UV-B tolerance of M. robertsii and M. acridum conidia, and which may be related to increased expression of Phr, Lac and Pks genes in these conidia. The enhanced UV-B tolerance of Metarhizium spp. conidia produced on Rb-enriched media may improve the effectiveness of these fungi in biological control programs. © 2018 The Society for Applied Microbiology.

  13. Response of Aquatic Hyphomycete Communities to Changes in Heavy Metal Exposure

    NASA Astrophysics Data System (ADS)

    Sridhar, K. R.; Bärlocher, Felix; Krauss, Gerd-Joachim; Krauss, Gudrun

    2005-02-01

    Decomposition of Alnus glutinosa (alder) leaves was studied in a severely (site H4) and a moderately (site H8) heavy metal polluted stream in the former copper shale mining district of Mansfeld, Central Germany. Leaves at H8 had reduced fungal diversity and spore production but a high exponential decay rate (k = 0.065). No further mass loss of leaves occurred at H4 after 4-6 weeks, and fungal diversity and spore production were lower than in H8. Decay and sporulation rates gradually increased to values of H8 control leaves in leaves preincubated in H4 and then transferred to H8. These increases correlated with the invasion of transplanted leaves by Tetracladium marchalianum and Tricladium angulatum. In the reverse transplant experiment (H8 to H4), mass loss appeared to stop immediately. Sporulation rates also declined, but remained consistently above levels in H4 control leaves. Leaves precolonized in the laboratory by one of three aquatic hyphomycete species exhibited increased decay rates in both streams. Sporulation rates on these leaves were greater than those of control leaves in H4, but smaller than those of control leaves in H8.

  14. Colony-PCR Is a Rapid Method for DNA Amplification of Hyphomycetes

    PubMed Central

    Walch, Georg; Knapp, Maria; Rainer, Georg; Peintner, Ursula

    2016-01-01

    Fungal pure cultures identified with both classical morphological methods and through barcoding sequences are a basic requirement for reliable reference sequences in public databases. Improved techniques for an accelerated DNA barcode reference library construction will result in considerably improved sequence databases covering a wider taxonomic range. Fast, cheap, and reliable methods for obtaining DNA sequences from fungal isolates are, therefore, a valuable tool for the scientific community. Direct colony PCR was already successfully established for yeasts, but has not been evaluated for a wide range of anamorphic soil fungi up to now, and a direct amplification protocol for hyphomycetes without tissue pre-treatment has not been published so far. Here, we present a colony PCR technique directly from fungal hyphae without previous DNA extraction or other prior manipulation. Seven hundred eighty-eight fungal strains from 48 genera were tested with a success rate of 86%. PCR success varied considerably: DNA of fungi belonging to the genera Cladosporium, Geomyces, Fusarium, and Mortierella could be amplified with high success. DNA of soil-borne yeasts was always successfully amplified. Absidia, Mucor, Trichoderma, and Penicillium isolates had noticeably lower PCR success. PMID:29376929

  15. Germination of fungal conidia after exposure to low concentration ozone atmospheres.

    USDA-ARS?s Scientific Manuscript database

    The germinability of conidia of Alternaria alternata, Aspergillus flavus, Aspergillus niger, Penicillium digitatum, Penicillium expansum, or Penicillium italicum was determined periodically during exposure for approximately 100 days to a humid atmosphere of air alone or air containing 150 ppb ozone ...

  16. Human Neutrophils Use Different Mechanisms To Kill Aspergillus fumigatus Conidia and Hyphae: Evidence from Phagocyte Defects.

    PubMed

    Gazendam, Roel P; van Hamme, John L; Tool, Anton T J; Hoogenboezem, Mark; van den Berg, J Merlijn; Prins, Jan M; Vitkov, Ljubomir; van de Veerdonk, Frank L; van den Berg, Timo K; Roos, Dirk; Kuijpers, Taco W

    2016-02-01

    Neutrophils are known to play a pivotal role in the host defense against Aspergillus infections. This is illustrated by the prevalence of Aspergillus infections in patients with neutropenia or phagocyte functional defects, such as chronic granulomatous disease. However, the mechanisms by which human neutrophils recognize and kill Aspergillus are poorly understood. In this work, we have studied in detail which neutrophil functions, including neutrophil extracellular trap (NET) formation, are involved in the killing of Aspergillus fumigatus conidia and hyphae, using neutrophils from patients with well-defined genetic immunodeficiencies. Recognition of conidia involves integrin CD11b/CD18 (and not dectin-1), which triggers a PI3K-dependent nonoxidative intracellular mechanism of killing. When the conidia escape from early killing and germinate, the extracellular destruction of the Aspergillus hyphae needs opsonization by Abs and involves predominantly recognition via Fcγ receptors, signaling via Syk, PI3K, and protein kinase C to trigger the production of toxic reactive oxygen metabolites by the NADPH oxidase and myeloperoxidase. A. fumigatus induces NET formation; however, NETs did not contribute to A. fumigatus killing. Thus, our findings reveal distinct killing mechanisms of Aspergillus conidia and hyphae by human neutrophils, leading to a comprehensive insight in the innate antifungal response. Copyright © 2016 by The American Association of Immunologists, Inc.

  17. Gene co-expression analysis identifies gene clusters associated with isotropic and polarized growth in Aspergillus fumigatus conidia.

    PubMed

    Baltussen, Tim J H; Coolen, Jordy P M; Zoll, Jan; Verweij, Paul E; Melchers, Willem J G

    2018-04-26

    Aspergillus fumigatus is a saprophytic fungus that extensively produces conidia. These microscopic asexually reproductive structures are small enough to reach the lungs. Germination of conidia followed by hyphal growth inside human lungs is a key step in the establishment of infection in immunocompromised patients. RNA-Seq was used to analyze the transcriptome of dormant and germinating A. fumigatus conidia. Construction of a gene co-expression network revealed four gene clusters (modules) correlated with a growth phase (dormant, isotropic growth, polarized growth). Transcripts levels of genes encoding for secondary metabolites were high in dormant conidia. During isotropic growth, transcript levels of genes involved in cell wall modifications increased. Two modules encoding for growth and cell cycle/DNA processing were associated with polarized growth. In addition, the co-expression network was used to identify highly connected intermodular hub genes. These genes may have a pivotal role in the respective module and could therefore be compelling therapeutic targets. Generally, cell wall remodeling is an important process during isotropic and polarized growth, characterized by an increase of transcripts coding for hyphal growth and cell cycle/DNA processing when polarized growth is initiated. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Proteome profiling and functional classification of intracellular proteins from conidia of the human-pathogenic mold Aspergillus fumigatus.

    PubMed

    Teutschbein, Janka; Albrecht, Daniela; Pötsch, Maria; Guthke, Reinhard; Aimanianda, Vishukumar; Clavaud, Cécile; Latgé, Jean-Paul; Brakhage, Axel A; Kniemeyer, Olaf

    2010-07-02

    Aspergillus fumigatus is a ubiquitously distributed filamentous fungus that has emerged as one of the most serious life-threatening pathogens in immunocompromised patients. The mechanisms for its pathogenicity are poorly understood. Here, we analyzed the proteome of dormant A. fumigatus conidia as the fungal entity having the initial contact with the host. Applying two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), we established a 2-D reference map of conidial proteins. By MALDI-TOF mass spectrometry, we identified a total number of 449 different proteins. We show that 57 proteins of our map are over-represented in resting conidia compared to mycelium. Enzymes involved in reactive oxygen intermediates (ROI) detoxification, pigment biosynthesis, and conidial rodlet layer formation were highly abundant in A. fumigatus spores and most probably account for their enormous stress resistance. Interestingly, pyruvate decarboxylase and alcohol dehydrogenase were detectable in dormant conidia, suggesting that alcoholic fermentation plays a role during dormancy or early germination. Moreover, we show that enzymes for rapid reactivation of protein biosynthesis and metabolic processes are preserved in resting conidia, which therefore feature the potential to immediately respond to an environmental stimulus by germination. The generated data lay the foundations for further proteomic analyses and a better understanding of fungal pathogenesis.

  19. Human Natural Killer Cells Exhibit Direct Activity Against Aspergillus fumigatus Hyphae, But Not Against Resting Conidia

    PubMed Central

    Schmidt, Stanislaw; Tramsen, Lars; Hanisch, Mitra; Latgé, Jean-Paul; Huenecke, Sabine; Koehl, Ulrike

    2011-01-01

    Because natural killer (NK) cells kill tumor cells and combat infections, there is growing interest in adoptively transferring NK cells to hematopoietic stem cell recipients. Unfortunately, in humans, the activity of NK cells against Aspergillus species, the major cause of invasive fungal infection in stem cell recipients, are poorly characterized. Our results show that unstimulated and interleukin-2 prestimulated human NK cells kill Aspergillus fumigatus hyphae but do not affect resting conidia. Killing is also induced by the supernatant of prestimulated NK cells and human perforin. The high levels of interferon-γ and granulocyte macrophage colony-stimulating factor produced by prestimulated NK cells are significantly reduced by Aspergillus, indicating an immunosuppressive effect of the fungus. Whereas Aspergillus hyphae activate NK cells, resting, and germinating, conidia and conidia of ΔrodA mutants lacking the hydrophobic surface layer do not. Our results suggest that adoptively transferred human NK cells may be a potential antifungal tool in the transplantation context. PMID:21208932

  20. Medium components and culture conditions affect the thermotolerance of aerial conidia of fungal biocontrol agent Beauveria bassiana.

    PubMed

    Ying, S-H; Feng, M-G

    2006-09-01

    To produce more thermotolerable conidia of Beauveria bassiana, a well-known fungal biocontrol agent, by optimizing the medium components and culture conditions. The conidia produced on media including 0.5-6% glucose, sucrose or starch as carbon source and 50-300-microg ml(-1) Cu2+, Zn2+, Mn2+ or Fe3+ as additive to Sabouraud dextrose medium at 15-30 degrees C, pH 4-8 or KCl-adjusted water availabilities were exposed to 30-min wet heat stress at 48 degrees C. The medium components for conidial production with greatly enhanced thermotolerance included 4% glucose as optimum or 1% starch as alternative for the carbon source and < or =50-microg ml(-1) Mn2+ for the metal additive. The culture conditions were optimized as 25 degrees C and pH 5-6. Conidial thermotolerance decreased remarkably when sucrose and Fe3+ or Cu2+ were used in the cultures, but altered slightly when 50-200-microg ml(-1) Zn2+ were included. The tolerance of B. bassiana conidia to the thermal stress was significantly affected by the medium composition and culture conditions under which the conidia were produced. Proper treatment of small grains as mass production substrates for more glucose release and supplement of glucose or 50-microg ml(-1) Mn2+ are possible means to enhancing conidial thermotolerance and field persistence for improved insect control.

  1. Consecutive monitoring of lifelong production of conidia by individual conidiophores of Blumeria graminis f. sp. hordei on barley leaves by digital microscopic techniques with electrostatic micromanipulation.

    PubMed

    Moriura, Nobuyuki; Matsuda, Yoshinori; Oichi, Wataru; Nakashima, Shinya; Hirai, Tatsuo; Sameshima, Takeshi; Nonomura, Teruo; Kakutani, Koji; Kusakari, Shin-Ichi; Higashi, Katsuhide; Toyoda, Hideyoshi

    2006-01-01

    Conidial formation and secession by living conidiophores of Blumeria graminis f. sp. hordei on barley leaves were consecutively monitored using a high-fidelity digital microscopic technique combined with electrostatic micromanipulation to trap the released conidia. Conidial chains formed on conidiophores through a series of septum-mediated division and growth of generative cells. Apical conidial cells on the conidiophores were abstricted after the conidial chains developed ten conidial cells. The conidia were electrically conductive, and a positive charge was induced in the cells by a negatively polarized insulator probe (ebonite). The electrostatic force between the conidia and the insulator was used to attract the abstricted conidia from the conidiophores on leaves. This conidium movement from the targeted conidiophore to the rod was directly viewed under the digital microscope, and the length of the interval between conidial septation and secession, the total number of the conidia produced by a single conidiophore, and the modes of conidiogenesis were clarified. During the stage of conidial secession, the generative cells pushed new conidial cells upwards by repeated division and growth. The successive release of two apical conidia was synchronized with the successive septation and growth of a generative cell. The release ceased after 4-5 conidia were released without division and growth of the generative cell. Thus, the life of an individual conidiophore (from the erection of the conidiophore to the release of the final conidium) was shown to be 107 h and to produce an average of 33 conidia. To our knowledge, this is the first report on the direct estimation of life-long conidial production by a powdery mildew on host leaves.

  2. Optimization of erythritol and glycerol accumulation in conidia of Beauveria bassiana by solid-state fermentation, using response surface methodology.

    PubMed

    Tarocco, Federico; Lecuona, Roberto E; Couto, Alicia S; Arcas, Jorge A

    2005-09-01

    Entomopathogenic fungi are widely produced for use as mycoinsecticides. Therefore, improvement of the shelf life of fungal propagules under good and adverse conditions should be a pre-requisite of their production. In order to improve conidial physiology as well as mycoinsecticide efficiency, culture conditions may be varied. The Doehlert design was used to generate response surfaces with an estimation of the parameters of the quadratic model allowing the study of three different factors at a different number of levels. This experimental design was applied to optimize water activity (aw), pH, and fermentation time for Beauveria bassiana conidial production and accumulation of polyols in solid-state fermentation. Thus, it was possible to identify the region in the experimental range in which the optimum values of these parameters were simultaneously achieved. Maximal conidia production was achieved at pH 5-6 and aw=0.999. Under these conditions, polyol accumulation was 3 mg erythritol/g conidia and 29.6 mg glycerol/g conidia. However, maximal polyol accumulation was achieved at pH 4.5 and aw 0.950; erythritol production increased 33-fold and glycerol production 4.5-fold. Under these conditions conidia production was 1,000 times lower. The possibilities of increasing the quality of the biocontrol agent without neglecting yield are discussed.

  3. The pbrB gene encodes a laccase required for DHN-melanin synthesis in conidia of Talaromyces (Penicillium) marneffei.

    PubMed

    Sapmak, Ariya; Boyce, Kylie J; Andrianopoulos, Alex; Vanittanakom, Nongnuch

    2015-01-01

    Talaromyces marneffei (Basionym: Penicillium marneffei) is a significant opportunistic fungal pathogen in patients infected with human immunodeficiency virus in Southeast Asia. T. marneffei cells have been shown to become melanized in vivo. Melanins are pigment biopolymers which act as a non-specific protectant against various stressors and which play an important role during virulence in fungi. The synthesis of the two most commonly found melanins in fungi, the eumelanin DOPA-melanin and the allomelanin DHN-melanin, requires the action of laccase enzymes. The T. marneffei genome encodes a number of laccases and this study describes the characterization of one of these, pbrB, during growth and development. A strain carrying a PbrB-GFP fusion shows that pbrB is expressed at high levels during asexual development (conidiation) but not in cells growing vegetatively. The pbrB gene is required for the synthesis of DHN-melanin in conidia and when deleted results in brown pigmented conidia, in contrast to the green conidia of the wild type.

  4. Influence of temperature and humidity on the viability of Ophiognomonia clavigignenti-juglandacearum Conidia

    Treesearch

    M.J. Moore; M.E. Ostry

    2015-01-01

    Butternut canker, caused by the fungus Ophiognomonia clavigignenti-juglandacearum, primarily kills butternut (Juglans cinerea). Rain splash and local air currents are the primary means of conidia dispersal but that does not explain its long-distance spread and infection of isolated trees. Dispersal by insect or animal vectors...

  5. Modification of a Pollen Trap Design To Capture Airborne Conidia of Entomophaga maimaiga and Detection of Conidia by Quantitative PCR.

    PubMed

    Bittner, Tonya D; Hajek, Ann E; Liebhold, Andrew M; Thistle, Harold

    2017-09-01

    The goal of this study was to develop effective and practical field sampling methods for quantification of aerial deposition of airborne conidia of Entomophaga maimaiga over space and time. This important fungal pathogen is a major cause of larval death in invasive gypsy moth ( Lymantria dispar ) populations in the United States. Airborne conidia of this pathogen are relatively large (similar in size to pollen), with unusual characteristics, and require specialized methods for collection and quantification. Initially, dry sampling (settling of spores from the air onto a dry surface) was used to confirm the detectability of E. maimaiga at field sites with L. dispar deaths caused by E. maimaiga , using quantitative PCR (qPCR) methods. We then measured the signal degradation of conidial DNA on dry surfaces under field conditions, ultimately rejecting dry sampling as a reliable method due to rapid DNA degradation. We modified a chamber-style trap commonly used in palynology to capture settling spores in buffer. We tested this wet-trapping method in a large-scale (137-km) spore-trapping survey across gypsy moth outbreak regions in Pennsylvania undergoing epizootics, in the summer of 2016. Using 4-day collection periods during the period of late instar and pupal development, we detected variable amounts of target DNA settling from the air. The amounts declined over the season and with distance from the nearest defoliated area, indicating airborne spore dispersal from outbreak areas. IMPORTANCE We report on a method for trapping and quantifying airborne spores of Entomophaga maimaiga , an important fungal pathogen affecting gypsy moth ( Lymantria dispar ) populations. This method can be used to track dispersal of E. maimaiga from epizootic areas and ultimately to provide critical understanding of the spatial dynamics of gypsy moth-pathogen interactions. Copyright © 2017 American Society for Microbiology.

  6. Detection of airborne Stachybotrys chartarum macrocyclic trichothecene mycotoxins on particulates smaller than conidia.

    PubMed

    Brasel, T L; Douglas, D R; Wilson, S C; Straus, D C

    2005-01-01

    Highly respirable particles (diameter, <1 microm) constitute the majority of particulate matter found in indoor air. It is hypothesized that these particles serve as carriers for toxic compounds, specifically the compounds produced by molds in water-damaged buildings. The presence of airborne Stachybotrys chartarum trichothecene mycotoxins on particles smaller than conidia (e.g., fungal fragments) was therefore investigated. Cellulose ceiling tiles with confluent Stachybotrys growth were placed in gas-drying containers through which filtered air was passed. Exiting particulates were collected by using a series of polycarbonate membrane filters with decreasing pore sizes. Scanning electron microscopy was employed to determine the presence of conidia on the filters. A competitive enzyme-linked immunosorbent assay (ELISA) specific for macrocyclic trichothecenes was used to analyze filter extracts. Cross-reactivity to various mycotoxins was examined to confirm the specificity. Statistically significant (P < 0.05) ELISA binding was observed primarily for macrocyclic trichothecenes at concentrations of 50 and 5 ng/ml and 500 pg/ml (58.4 to 83.5% inhibition). Of the remaining toxins tested, only verrucarol and diacetylverrucarol (nonmacrocyclic trichothecenes) demonstrated significant binding (18.2 and 51.7% inhibition, respectively) and then only at high concentrations. The results showed that extracts from conidium-free filters demonstrated statistically significant (P < 0.05) antibody binding that increased with sampling time (38.4 to 71.9% inhibition, representing a range of 0.5 to 4.0 ng/ml). High-performance liquid chromatography analysis suggested the presence of satratoxin H in conidium-free filter extracts. These data show that S. chartarum trichothecene mycotoxins can become airborne in association with intact conidia or smaller particles. These findings may have important implications for indoor air quality assessment.

  7. The pbrB Gene Encodes a Laccase Required for DHN-Melanin Synthesis in Conidia of Talaromyces (Penicillium) marneffei

    PubMed Central

    Sapmak, Ariya; Boyce, Kylie J.; Andrianopoulos, Alex; Vanittanakom, Nongnuch

    2015-01-01

    Talaromyces marneffei (Basionym: Penicillium marneffei) is a significant opportunistic fungal pathogen in patients infected with human immunodeficiency virus in Southeast Asia. T. marneffei cells have been shown to become melanized in vivo. Melanins are pigment biopolymers which act as a non-specific protectant against various stressors and which play an important role during virulence in fungi. The synthesis of the two most commonly found melanins in fungi, the eumelanin DOPA-melanin and the allomelanin DHN-melanin, requires the action of laccase enzymes. The T. marneffei genome encodes a number of laccases and this study describes the characterization of one of these, pbrB, during growth and development. A strain carrying a PbrB-GFP fusion shows that pbrB is expressed at high levels during asexual development (conidiation) but not in cells growing vegetatively. The pbrB gene is required for the synthesis of DHN-melanin in conidia and when deleted results in brown pigmented conidia, in contrast to the green conidia of the wild type. PMID:25866870

  8. Metacridamides A and B, bioactive macrocycles from conidia of the entomopathogenic fungus Metarhizium acridum

    USDA-ARS?s Scientific Manuscript database

    Metarhizium acridum, an entomopathogenic fungus, has been commercialized and used successfully for biocontrol of grasshopper pests in Africa and Australia. Its conidia produce two novel 17-membered macrocycles, metacridamides A (1) and B (2), which consist of a Phe unit condensed with a nonaketide....

  9. A Non-canonical Melanin Biosynthesis Pathway Protects Aspergillus terreus Conidia from Environmental Stress.

    PubMed

    Geib, Elena; Gressler, Markus; Viediernikova, Iuliia; Hillmann, Falk; Jacobsen, Ilse D; Nietzsche, Sandor; Hertweck, Christian; Brock, Matthias

    2016-05-19

    Melanins are ubiquitous pigments found in all kingdoms of life. Most organisms use them for protection from environmental stress, although some fungi employ melanins as virulence determinants. The human pathogenic fungus Aspergillus fumigatus and related Ascomycetes produce dihydroxynaphthalene- (DHN) melanin in their spores, the conidia, and use it to inhibit phagolysosome acidification. However, biosynthetic origin of melanin in a related fungus, Aspergillus terreus, has remained a mystery because A. terreus lacks genes for synthesis of DHN-melanin. Here we identify genes coding for an unusual NRPS-like enzyme (MelA) and a tyrosinase (TyrP) that A. terreus expressed under conidiation conditions. We demonstrate that MelA produces aspulvinone E, which is activated for polymerization by TyrP. Functional studies reveal that this new pigment, Asp-melanin, confers resistance against UV light and hampers phagocytosis by soil amoeba. Unexpectedly, Asp-melanin does not inhibit acidification of phagolysosomes, thus likely contributing specifically to survival of A. terreus conidia in acidic environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Identification of Aspergillus fumigatus Surface Components That Mediate Interaction of Conidia and Hyphae With Human Platelets.

    PubMed

    Rambach, Günter; Blum, Gerhard; Latgé, Jean-Paul; Fontaine, Thierry; Heinekamp, Thorsten; Hagleitner, Magdalena; Jeckström, Hanna; Weigel, Günter; Würtinger, Philipp; Pfaller, Kristian; Krappmann, Sven; Löffler, Jürgen; Lass-Flörl, Cornelia; Speth, Cornelia

    2015-10-01

    Platelets were recently identified as a part of innate immunity. They are activated by contact with Aspergillus fumigatus; putative consequences include antifungal defense but also thrombosis, excessive inflammation, and thrombocytopenia. We aimed to identify those fungal surface structures that mediate interaction with platelets. Human platelets were incubated with Aspergillus conidia and hyphae, isolated wall components, or fungal surface mutants. Interaction was visualized microscopically; activation was quantified by flow cytometry of specific markers. The capacity of A. fumigatus conidia to activate platelets is at least partly due to melanin, because this effect can be mimicked with "melanin ghosts"; a mutant lacking melanin showed reduced platelet stimulating potency. In contrast, conidial hydrophobin masks relevant structures, because an A. fumigatus mutant lacking the hydrophobin protein induced stronger platelet activation than wild-type conidia. A. fumigatus hyphae also contain surface structures that interact with platelets. Wall proteins, galactomannan, chitin, and β-glucan are not the relevant hyphal components; instead, the recently identified fungal polysaccharide galactosaminogalactan potently triggered platelet activation. Conidial melanin and hydrophobin as well as hyphal galactosaminogalactan represent important pathogenicity factors that modulate platelet activity and thus might influence immune responses, inflammation, and thrombosis in infected patients. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Germination of penicillium paneum Conidia is regulated by 1-octen-3-ol, a volatile self-inhibitor.

    PubMed

    Chitarra, Gilma S; Abee, Tjakko; Rombouts, Frank M; Posthumus, Maarten A; Dijksterhuis, Jan

    2004-05-01

    Penicillium paneum is an important contaminant of cereal grains which is able to grow at low temperature, low pH, high levels of carbon dioxide, and under acid conditions. P. paneum produces mycotoxins, which may be harmful to animals and humans. We found that conidia in dense suspensions showed poor germination, suggesting the presence of a self-inhibitor. A volatile compound(s) produced by these high-density conditions also inhibited mycelial growth of different species of fungi belonging to a variety of genera, suggesting a broad action range. The heat-stable compound was isolated by successive centrifugation of the supernatant obtained from spore suspensions with a density of 10(9) conidia ml(-1). By using static headspace analyses, two major peaks were distinguished, with the highest production of these metabolites after 22 h of incubation at 25 degrees C and shaking at 140 rpm. Gas chromatography coupled with mass spectra analysis revealed the compounds to be 3-octanone and 1-octen-3-ol. Notably, only the latter compound appeared to block the germination process at different developmental stages of the conidia (swelling and germ tube formation). In this study, 1-octen-3-ol influenced different developmental processes during the P. paneum life cycle, including induction of microcycle conidiation and inhibition of spore germination. Therefore, the compound can be considered a fungal hormone during fungal development.

  12. Germination of Penicillium paneum Conidia Is Regulated by 1-Octen-3-ol, a Volatile Self-Inhibitor

    PubMed Central

    Chitarra, Gilma S.; Abee, Tjakko; Rombouts, Frank M.; Posthumus, Maarten A.; Dijksterhuis, Jan

    2004-01-01

    Penicillium paneum is an important contaminant of cereal grains which is able to grow at low temperature, low pH, high levels of carbon dioxide, and under acid conditions. P. paneum produces mycotoxins, which may be harmful to animals and humans. We found that conidia in dense suspensions showed poor germination, suggesting the presence of a self-inhibitor. A volatile compound(s) produced by these high-density conditions also inhibited mycelial growth of different species of fungi belonging to a variety of genera, suggesting a broad action range. The heat-stable compound was isolated by successive centrifugation of the supernatant obtained from spore suspensions with a density of 109 conidia ml−1. By using static headspace analyses, two major peaks were distinguished, with the highest production of these metabolites after 22 h of incubation at 25°C and shaking at 140 rpm. Gas chromatography coupled with mass spectra analysis revealed the compounds to be 3-octanone and 1-octen-3-ol. Notably, only the latter compound appeared to block the germination process at different developmental stages of the conidia (swelling and germ tube formation). In this study, 1-octen-3-ol influenced different developmental processes during the P. paneum life cycle, including induction of microcycle conidiation and inhibition of spore germination. Therefore, the compound can be considered a fungal hormone during fungal development. PMID:15128538

  13. Surface Structure Characterization of Aspergillus fumigatus Conidia Mutated in the Melanin Synthesis Pathway and Their Human Cellular Immune Response

    PubMed Central

    Bayry, Jagadeesh; Beaussart, Audrey; Dufrêne, Yves F.; Sharma, Meenu; Bansal, Kushagra; Kniemeyer, Olaf; Aimanianda, Vishukumar; Brakhage, Axel A.; Kaveri, Srini V.; Kwon-Chung, Kyung J.

    2014-01-01

    In Aspergillus fumigatus, the conidial surface contains dihydroxynaphthalene (DHN)-melanin. Six-clustered gene products have been identified that mediate sequential catalysis of DHN-melanin biosynthesis. Melanin thus produced is known to be a virulence factor, protecting the fungus from the host defense mechanisms. In the present study, individual deletion of the genes involved in the initial three steps of melanin biosynthesis resulted in an altered conidial surface with masked surface rodlet layer, leaky cell wall allowing the deposition of proteins on the cell surface and exposing the otherwise-masked cell wall polysaccharides at the surface. Melanin as such was immunologically inert; however, deletion mutant conidia with modified surfaces could activate human dendritic cells and the subsequent cytokine production in contrast to the wild-type conidia. Cell surface defects were rectified in the conidia mutated in downstream melanin biosynthetic pathway, and maximum immune inertness was observed upon synthesis of vermelone onward. These observations suggest that although melanin as such is an immunologically inert material, it confers virulence by facilitating proper formation of the A. fumigatus conidial surface. PMID:24818666

  14. Evaluation of Soyscreen in an Oil-based Formulation for UV Protection of Beauveria bassiana Conidia

    USDA-ARS?s Scientific Manuscript database

    SoyScreen oil was studied as a formulation ingredient to protect Beauveria bassiana (Balsamo) Vuillemin conidia from UV degradation. Feruloylated soy glycerides, referred to as SoyScreen oil, are biobased ultraviolet-absorbing molecules made by combining molecules of soybean oil with ferulic acid. ...

  15. Susceptibility testing of terbinafine alone and in combination with amphotericin B, itraconazole, or voriconazole against conidia and hyphae of dematiaceous molds.

    PubMed

    Biancalana, Fernanda Simas Corrêa; Lyra, Luzia; Moretti, Maria Luiza; Schreiber, Angélica Zaninelli

    2011-12-01

    Studies have demonstrated excellent in vivo efficacy of terbinafine combined with other antifungal agents against dematiaceous molds; however, there is a lack of in vitro studies. Most studies evaluated conidia inocula, but susceptibility testing of hyphae could mimic the fungal status in infected tissues and might reflect the therapeutic potential of the agent. We investigated the in vitro susceptibility of terbinafine alone and in combination with amphotericin B, itraconazole, or voriconazole against conidia by microdilution and dynamic measurement of hyphae growth of dematiaceous molds. The MIC values for hyphae were, until 3 dilutions, below the MIC obtained for conidia. The results indicated 100% synergistic interactions between terbinafine and azoles or amphotericin B in all tests, but lower MICs for hyphae. In conclusion, our findings allow us to say that the hyphal form of tested dematiaceous molds showed high susceptibility to all antifungal agents evaluated, alone and in combination with terbinafine. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Surface structure characterization of Aspergillus fumigatus conidia mutated in the melanin synthesis pathway and their human cellular immune response.

    PubMed

    Bayry, Jagadeesh; Beaussart, Audrey; Dufrêne, Yves F; Sharma, Meenu; Bansal, Kushagra; Kniemeyer, Olaf; Aimanianda, Vishukumar; Brakhage, Axel A; Kaveri, Srini V; Kwon-Chung, Kyung J; Latgé, Jean-Paul; Beauvais, Anne

    2014-08-01

    In Aspergillus fumigatus, the conidial surface contains dihydroxynaphthalene (DHN)-melanin. Six-clustered gene products have been identified that mediate sequential catalysis of DHN-melanin biosynthesis. Melanin thus produced is known to be a virulence factor, protecting the fungus from the host defense mechanisms. In the present study, individual deletion of the genes involved in the initial three steps of melanin biosynthesis resulted in an altered conidial surface with masked surface rodlet layer, leaky cell wall allowing the deposition of proteins on the cell surface and exposing the otherwise-masked cell wall polysaccharides at the surface. Melanin as such was immunologically inert; however, deletion mutant conidia with modified surfaces could activate human dendritic cells and the subsequent cytokine production in contrast to the wild-type conidia. Cell surface defects were rectified in the conidia mutated in downstream melanin biosynthetic pathway, and maximum immune inertness was observed upon synthesis of vermelone onward. These observations suggest that although melanin as such is an immunologically inert material, it confers virulence by facilitating proper formation of the A. fumigatus conidial surface. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. In vitro: Response of plant growth regulators and antimalformins on conidia germination of Fusarium mangiferae and incidence of mango malformation.

    PubMed

    Ansari, Mohammad Wahid; Tula, Suresh; Shukla, Alok; Pant, Ramesh Chandra; Tuteja, Narendra

    2013-11-01

    Mango malformation is the most important and threatening disease of recent times, primarily because of persistent lacuna in complete understanding of its nature. Diverse Fusarium spp, including F. mangiferae, were found to be associated with the disease. Here, F. mangiferae from mango cv Dashehri was morphologically characterized. Typically, oval-shaped microconidia without septum and crescent-shaped macroconidia with 3-septate were more often observed, whereas not a single chlamydospore was detected. The length and width of micro- and macro-conidia were 7.5, 55, 3.2, and 3.5, respectively. The plant growth regulators such as NAA, GA3, BAP and ethrel were found to induce in vitro germination of conidia of F. mangiferae after 12 h. In contrast, antimalformin silver nitrate (AgNO3) inhibits conidial germination in vitro and none of conidia was germinated beyond 500 ppm, however antimalformin glutathione was highly effective in stimulating conidial germination of F. mangiferae in vitro at > 1000 ppm after 24 h. We observed that the response of F. mangiferae to germinate the conidia in vitro under influence of plant growth regulators and antimalformins is not coincided with earlier findings of reduced disease incidence by exogenous application of these compounds. The present findings do not authenticate the involvement of F. mangiferae in the disease, however hormonal imbalance, most probably ethylene, might be responsible for deformed functional morphology of panicle. Further, a signal transduction mechanism of stress-stimulated ethylene imbalance causing physio-morphological changes in reproductive organs of mango flower and thereby failure of fertilization and fruit set, which needs to be investigated.

  18. Conidia survival of Aspergillus section Nigri, Flavi and Circumdati under UV-A and UV-B radiation with cycling temperature/light regime.

    PubMed

    García-Cela, Maria Esther; Marín, Sonia; Reyes, Monica; Sanchis, Vicent; Ramos, Antonio J

    2016-04-01

    Bio-geographical differences in fungal infection distribution have been observed around the world, confirming that climatic conditions are decisive in colonization. This research is focused on the impact of ultraviolet radiation (UV) on Aspergillus species, based on the consideration that an increase in UV-B radiation may have large ecological effects. Conidia of six mycotoxigenic Aspergillus species isolated from vineyards located in the northeast and south of Spain were incubated for 15 days under light/dark cycles and temperatures between 20 and 30 °C per day. Additionally, 6 h of exposure to UV-A or UV-B radiation per day were included in the light exposure. UV irradiance used were 1.7 ± 0.2 mW cm(-2) of UV-A (peak 365 nm) and 0.10 ± 0.2 mW cm(-2) of UV-B (peak 312 nm). The intrinsic decrease in viability of conidia over time was accentuated when they were UV irradiated. UV-B radiation was more harmful. Conidial sensitivity to UV light was marked in Aspergillus section Circumdati. Conidia pigmentation could be related to UV sensitivity. Different resistance was observed within species belonging to sections Flavi and Nigri. An increase in UV radiation could lead to a reduction in the Aspergillus spp. inoculum present in the field (vineyards, nuts, cereal crops). In addition, it could unbalance the spore species present in the field, leading to a higher predominance of dark-pigmented conidia. © 2015 Society of Chemical Industry.

  19. Germination of Aspergillus niger conidia is triggered by nitrogen compounds related to L-amino acids.

    PubMed

    Hayer, Kimran; Stratford, Malcolm; Archer, David B

    2014-10-01

    Conidial germination is fundamentally important to the growth and dissemination of most fungi. It has been previously shown (K. Hayer, M. Stratford, and D. B. Archer, Appl. Environ. Microbiol. 79:6924-6931, 2013, http://dx.doi.org/10.1128/AEM.02061-13), using sugar analogs, that germination is a 2-stage process involving triggering of germination and then nutrient uptake for hyphal outgrowth. In the present study, we tested this 2-stage germination process using a series of nitrogen-containing compounds for the ability to trigger the breaking of dormancy of Aspergillus niger conidia and then to support the formation of hyphae by acting as nitrogen sources. Triggering and germination were also compared between A. niger and Aspergillus nidulans using 2-deoxy-D-glucose (trigger), D-galactose (nontrigger in A. niger but trigger in A. nidulans), and an N source (required in A. niger but not in A. nidulans). Although most of the nitrogen compounds studied served as nitrogen sources for growth, only some nitrogen compounds could trigger germination of A. niger conidia, and all were related to L-amino acids. Using L-amino acid analogs without either the amine or the carboxylic acid group revealed that both the amine and carboxylic acid groups were essential for an L-amino acid to serve as a trigger molecule. Generally, conidia were able to sense and recognize nitrogen compounds that fitted into a specific size range. There was no evidence of uptake of either triggering or nontriggering compounds over the first 90 min of A. niger conidial germination, suggesting that the germination trigger sensors are not located within the spore. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Evaluation of Conidia-Dust Formulation of the Entomopathogenic Fungus, Metarhizium anisopliae to Biocontrol the Brown-Banded Cockroach, Supella longipalpa F.

    PubMed Central

    Sharififard, Mona; Mossadegh, Mohammad Saeed; Vazirianzadeh, Babak; Latifi, Seyed Mahmood

    2014-01-01

    Background: The brown-banded cockroach Supella longipalpa (F.) as a mechanical vector of pathogens and source of allergens has recently become widespread in the city of Ahvaz, southwestern Iran. Objectives: This research was done to evaluate the efficacy of a dust-formulation of Metarhizium anisopliae isolate IRAN 437C, as a common entomopathogenous fungus, against S. longipalpa. Materials and Methods: Conidia dust-formulations of M. anisopliae were prepared in proportions of 1%, 5%, 10%, 25%, 50% and 100% with bad wheat flour as the carrier. Cockroaches were exposed to surfaces treated with 1.5 mg/cm2 of the formulations under laboratory and semi-field conditions. Results: Cockroach mortality rates increased and survival times (ST50) decreased with an increased proportion of conidia from 1% to 100% but records taken for mortality and survival time from proportions of 25%, 50% and 100% were not significantly different. The mortality rates reached 100% and 90-100% in adults and nymphs, respectively on the seventh day. The lowest ST50 was related to the proportion of 100% (3 days). Probit analysis indicated LD50 and LD90 values of 1.7 × 106 and 1.7 × 107 conidia/cm2 for adults and these values changed to 4.5 × 106 and 2.9 × 107 for third and fourth instar nymphs at three days post exposure. Proportion of 25% caused mortality rates of 87%, 81% and 73% in adult, adult & nymph and nymph populations, respectively at four days after exposure under room conditions. Conclusions: Conidia dust-formulation of M. anospliae isolate IRAN 437C could present a promising alternative to control the brown-banded cockroach. PMID:25371804

  1. EVALUATION OF DIFFERENT METHODS FOR THE EXTRACTION OF DNA FROM FUNGAL CONIDIA BY QUANTITATIVE COMPETITIVE PCR ANALYSIS

    EPA Science Inventory

    Five different DNA extraction methods were evaluated for their effectiveness in recovering PCR templates from the conidia of a series of fungal species often encountered in indoor air. The test organisms were Aspergillus versicolor, Penicillium chrysogenum, Stachybotrys chartaru...

  2. The effect of time postexposure and sex on the horizontal transmission of Metarhizium brunneum conidia between Asian longhorned beetle (Coleoptera: Cerambycidae) mates.

    PubMed

    Ugine, Todd A; Peters, Kenlyn E; Gardescu, Sana; Hajek, Ann E

    2014-12-01

    A study using Metarhizium brunneum Petch fungal bands designed to improve delivery of conidia to adult Asian longhorned beetles, Anoplophora glabripennis (Motschulsky), was conducted to determine how a time delay between exposure to infective conidia and pairing of male and female beetles would affect the ability to successfully transfer lethal doses of conidia to a mate. We measured conidial load at the time of mate pairing (0, 4, 24, 48 h postexposure) and assessed its effect on beetle mortality. Conidial load per beetle decreased across the four sampling times, and there was no effect of beetle sex on conidial load. At all time periods postexposure, beetles that climbed across fungal bands carried enough conidia that at least some of their indirectly exposed mates died of mycosis. For indirectly exposed beetles, mortality decreased significantly as the time delay increased from 0 to 48 h, and this was independent of beetle sex. Median survival time was only 11.5 d for females indirectly exposed immediately after their mate had been exposed, but >3 wk when there was a 48-h delay before pairing. Generally, beetles exposed directly to fungal bands died faster than their indirectly exposed mates. In contrast to the pattern seen for indirectly exposed beetles, beetles exposed directly to fungal bands showed no change in survival times with a delay between exposure and pairing. Median survival times of exposed females and males were generally similar, at 10.5-12.5 d.

  3. The physiological effects of multi-walled carbon nanotubes (MWCNTs) on conidia and the development of the entomopathogenic fungus, Metarhizium anisopliae (Metsch.) Sorok.

    PubMed

    Gorczyca, Anna; Kasprowicz, Marek J; Lemek, Tadeusz

    2014-01-01

    The aim of the study was an in vitro evaluation of the effect of MWCNTs on the conidia of two strains of entomopathogenic fungus, Metarhizium anisopliae. The study made use of water suspensions of MWCNTs (concentration ∼ 3 mg·mL(-1)) made from commercial nanotubes and centrifuged. The conidia were placed in contact with nanotubes for 240 h. An assessment of MWCNT influence on conidia was performed after 1, 24, 72 and 240 h and focused on the linear growth of vegetative mycelium derived from these conidia, mycelium sporulation in subcultures and pathogenicity. Using TEM imaging, it was demonstrated that carbon nanotubes are able to damage cell membranes of the examined fungi conidia. However, the absence was noted of a significantly fungistatic effect of both MWCNT suspensions on the examined strains with respect to the physiological features in question. The increase in vegetative mycelium effected by spores after contact with MWCNTs was characterized by a slight modification in relation to the control. There was no strong trend (inhibition - stimulation), in relation to the effect of the tested suspension of carbon nanotubes, on the development of the vegetative mycelium in in vitro culture. Sporulation of the mycelium after completion of the culture only occurred in one case (strain Ma73F and culture of spores after 24-h contact with MWCNTs) significantly more intensely than in the controls. With respect to pathogenicity for test insects compared to the control strain, Ma73F spores grown from the longest contact with nanotubes suspensions performed significantly better. On the basis of the calculated of mycelium index growth rates and the time of death of the test insects (LT50), it was found that the adverse effects of water suspension MWCNTs on the spores of M. anisopliae were applied after a short contact with biological material. This indicates unfavorable physical rather than chemical effects on the tested cell. Over time, nanotube aggregation in water

  4. Arthrornyces and Blastosporella, two new genera of conidia-producing lyophylloid agarics (Agaricales, Basidiornycota) from the neotropics

    Treesearch

    Timothy J. Baroni; Ana Esperanza Franco-molano; D. Jean Lodge; Daniel L. Lindner; Egon Horak; Valerie Hofstetter

    2007-01-01

    Two new genera encompassing three new species of lyophylloid agarics that produce conidia on the basidiomata are described. Arthromyces is a genus comprised of two very different arthrospore-producing mushroom species found in the Greater Antilles and Central America. Blastosporella is a monotypic genus with spherical balls of...

  5. Electrophoretic and serological analyses of cytoplasmic antigens from Aspergillus fumigatus during growth of conidia to mature mycelia.

    PubMed

    Piechura, J E; Riefel, R S; Daft, L J

    1987-08-01

    The changes of cytoplasmic components concomitant with conidium to mature mycelium growth of Aspergillus fumigatus strain Ag 507 were analysed by one- and two-dimensional polyacrylamide gel electrophoresis (SDS-PAGE; 2-DE). SDS-PAGE monitored molecular weight differences between components of cytosol preparations obtained from conidia and those through 96 h of mycelial growth. 2-DE analyses indicated that some components characteristic of mature cytosol begin to appear by 7 h. Cytoplasmic preparations absorbed with rabbit immunoglobulins raised to mature cytosol were analysed by 2-DE. Conidia cytosol components were not absorbed to a great degree, unlike those from later stages of mycelial growth, which indicates that cytosol components may be changed and/or synthesized de novo during growth of the fungus. Analysis of the cytosol preparations by fused rocket immunoelectrophoresis showed that some components are synthesized in different amounts at various times during growth: 3, 4, 7, 8, and 18 h of growth, components begin to appear that may be synthesized de novo. Enzyme-linked immunosorbent assay with rabbit antiserum to mature cytosol and cytosol preparations obtained from conidia through 96 h of growth, indicated differences of molecular structures between the cytosol preparations. The anticytosol IgG and IgE titers of sera from patients with allergic bronchopulmonary aspergillosis were both elevated and fluctuated with each preparation. The specific IgG and IgE titers both appeared to be elevated with cytosol preparations obtained from 4, 5, 7, and 9 h of growth and highest against the 96 h preparation.

  6. Arthromyces and Blastosporella, two new genera of conidia-producing lyophylloid agarics (Agaricales, Basidiomycota) from the neotropics

    Treesearch

    Timothy J. Baroni; Ana Esperanza Franco-Molano; D. Jean Lodge; Daniel L. Lindner; Egon Horak; Valerie Hofstetter

    2007-01-01

    Two new genera encompassing three new species of lyophylloid agarics that produce conidia on the basidiomata are described. Arthromyces is a genus comprised of two very different arthrospore-producing mushroom species found in the Greater Antilles and Central America. Blastosporella is a monotypic genus with spherical balls of blastospores covering the pileus surface...

  7. QUANTIFICATION OF STACHYBOTRYS CHARTARUM CONIDIA IN INDOOR DUST USING REAL TIME, FLUORESCENT PROBE-BASED DETECTION OF PCR PRODUCTS

    EPA Science Inventory

    Analyses of fungal spores or conidia in indoor dust samples can be useful for determining the contamination status of building interiors and in signaling instances where potentially harmful exposures of building occupants to these organisms may exist. A recently developed method ...

  8. Effect of zinc compounds on Fusarium verticillioides growth, hyphae alterations, conidia, and fumonisin production.

    PubMed

    Savi, Geovana D; Vitorino, Vinícius; Bortoluzzi, Adailton J; Scussel, Vildes M

    2013-10-01

    Several strategies are used to eliminate toxigenic fungi that produce fumonisins in grains. Fusarium verticillioides can be controlled by the application of synthetic fungicides in the field or during storage. However, there may also be residuals, which may remain in the foods. Inorganic compounds such as zinc are cheap, stable and could present strong antifungal activity. Some Zn compounds can be utilized as dietary supplements and are authorized for the fortification of foods. Knowing the advantages and that low concentrations of Zn can have antimicrobial activity, our objective was to evaluate the effects of Zn compounds on the growth of F. verticillioides and the production of fumonisin and conidia. In addition, we aimed to verify that Zn compounds cause morphological alterations of the hyphae, mortality and production of reactive oxygen species. Zn compounds efficiently reduced fungal growth and fumonisin production. Treatment using zinc perchlorate gave the best results. All treatments inhibited conidia production and caused morphological alterations of the hyphae. It was possible to observe cell death and production of reactive oxygen species. Zn compounds have advantages compared to other antifungal compounds. In particular, they are non-toxic for the organism in appropriate amounts. They could be studied further as potential fungicides in agriculture. © 2013 Society of Chemical Industry.

  9. Hypocrea rufa/Trichoderma viride: a reassessment, and description of five closely related species with and without warted conidia

    PubMed Central

    Jaklitsch, Walter M.; Samuels, Gary J.; Dodd, Sarah L.; Lu, Bing-Sheng; Druzhinina, Irina S.

    2006-01-01

    The type species of the genus Hypocrea (Hypocreaceae, Hypocreales, Ascomycota, Fungi), H. rufa, is re-defined and epitypified using a combination of phenotype (morphology of teleomorphs and anamorphs, and characteristics in culture) and phylogenetic analyses of the translation-elongation factor 1α gene. Its anamorph, T. viride, the type species of Trichoderma, is re-described and epitypified. Eidamia viridescens is combined as Trichoderma viridescens and is recognised as one of the most morphologically and phylogenetically similar relatives of T. viride. Its teleomorph is newly described as Hypocrea viridescens. Contrary to frequent citations of H. rufa and T. viride in the literature, this species is relatively rare. Although both T. viride and T. viridescens have a wide geographic distribution, their greatest genetic diversity appears to be in Europe and North America. Hypocrea vinosa is characterised and its anamorph, T. vinosum sp. nov., is described. Conidia of T. vinosum are subglobose and warted. The new species T. gamsii is proposed. It shares eidamia-like morphology of conidiophores with T. viridescens, but it has smooth, ellipsoidal conidia that have the longest L/W ratio that we have seen in Trichoderma. Trichoderma scalesiae, an endophyte of trunks of Scalesia pedunculata in the Galapagos Islands, is described as new. It only produces conidia on a low-nutrient agar to which filter paper has been added. Additional phylogenetically distinct clades are recognised and provisionally delimited from the species here described. Trichoderma neokoningii, a T. koningii-like species, is described from a collection made in Peru on a fruit of Theobroma cacao infected with Moniliophthora roreri. PMID:18490991

  10. Thermal inactivation of Botrytis cinerea conidia in synthetic medium and strawberry puree.

    PubMed

    Villa-Rojas, R; Sosa-Morales, M E; López-Malo, A; Tang, J

    2012-04-16

    Botrytis cinerea is one of the most important post-harvest molds that cause quality deterioration of strawberries and other fruits even during refrigeration storage. This research studied the effects of thermal inactivation of B. cinerea in synthetic medium and strawberry puree using hot water baths at different temperatures. These media were studied in order to determine if results obtained in a solution with the major components of the fruit (synthetic media), are comparable to the ones obtained in fruit purees. The results demonstrated that B. cinerea spores can be inactivated by heat treatments using relatively low temperatures (42-46 °C). Inactivation curves were well described by first order kinetics (R² 0.91-0.99). B. cinerea conidia inoculated in synthetic medium required less time to achieve one log reduction in population than those inoculated in the fruit puree. D values were 22, 8.5, 4 and 1.4 min at 42, 44, 46 and 48 °C, respectively, in synthetic medium; while D values in strawberry puree were 44.9, 13.8, 4.7 and 1.4 min at 42, 44, 46 and 48 °C, respectively. The z values obtained were 4.15 and 5.08 °C for the strawberry puree and synthetic medium respectively, showing higher sensitivity of B. cinerea in fruit purees than in the synthetic medium. Thus, a change in the medium composition had a marked difference in the heat inactivation of B. cinerea conidia, and the results obtained in synthetic medium are not accurate to describe the behavior of the microorganism in the fruit. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Evaluation of Strains of Metarhizium anisopliae and Beauveria bassiana against Spodoptera litura on the Basis of Their Virulence, Germination Rate, Conidia Production, Radial Growth and Enzyme Activity.

    PubMed

    Petlamul, Wanida; Prasertsan, Poonsuk

    2012-06-01

    Ten strains of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were evaluated to find the most effective strain for optimization studies. The first criterion tested for strain selection was the mortality (> 50%) of Spodoptera litura larvae after inoculation of the fungus for 4 days. Results on several bioassays revealed that B. bassiana BNBCRC showed the most virulence on mortality S. litura larvae (80% mortality). B. bassiana BNBCRC also showed the highest germination rate (72.22%). However, its conidia yield (7.2 × 10(8) conidia/mL) was lower than those of B. bassiana B 14841 (8.3 × 10(8) conidia/mL) and M. anisopliae M6 (8.2 × 10(8) conidia/mL). The highest accumulative radial growth was obtained from the strain B14841 (37.10 mm/day) while the strain BNBCRC showed moderate radial growth (24.40 mm/day). M. anisopliae M6 possessed the highest protease activity (145.00 mU/mL) while M. anisopliae M8 possessed the highest chitinase activity (20.00 mU/mL) during 96~144 hr cultivation. Amongst these criteria, selection based on virulence and germination rate lead to the selection of B. bassiana BNBCRC. B. bassiana B14841 would be selected if based on growth rate while M. anisopliae M6 and M8 possessed the highest enzyme activities.

  12. Differential Regulation by Organic Compounds and Heavy Metals of Multiple Laccase Genes in the Aquatic Hyphomycete Clavariopsis aquatica

    PubMed Central

    Solé, Magali; Müller, Ines; Pecyna, Marek J.; Fetzer, Ingo; Harms, Hauke

    2012-01-01

    To advance the understanding of the molecular mechanisms controlling microbial activities involved in carbon cycling and mitigation of environmental pollution in freshwaters, the influence of heavy metals and natural as well as xenobiotic organic compounds on laccase gene expression was quantified using quantitative real-time PCR (qRT-PCR) in an exclusively aquatic fungus (the aquatic hyphomycete Clavariopsis aquatica) for the first time. Five putative laccase genes (lcc1 to lcc5) identified in C. aquatica were differentially expressed in response to the fungal growth stage and potential laccase inducers, with certain genes being upregulated by, e.g., the lignocellulose breakdown product vanillic acid, the endocrine disruptor technical nonylphenol, manganese, and zinc. lcc4 is inducible by vanillic acid and most likely encodes an extracellular laccase already excreted during the trophophase of the organism, suggesting a function during fungal substrate colonization. Surprisingly, unlike many laccases of terrestrial fungi, none of the C. aquatica laccase genes was found to be upregulated by copper. However, copper strongly increases extracellular laccase activity in C. aquatica, possibly due to stabilization of the copper-containing catalytic center of the enzyme. Copper was found to half-saturate laccase activity already at about 1.8 μM, in favor of a fungal adaptation to low copper concentrations of aquatic habitats. PMID:22544244

  13. Aerial treatment of the Australian plague locust, Chortoicetes terminifera (Orthoptera: Acrididae) with Metarhizium anisopliae (Deuteromycotina: Hyphomycetes).

    PubMed

    Hunter, D M; Milner, R J; Spurgin, P A

    2001-04-01

    Between October 1999 and April 2000, nearly 4000 ha of nymphal bands and adult swarms of Chortoicetes terminifera (Walker) were aerially treated using a ULV oil formulation of strain FI-985 of Metarhizium anisopliae var. acridum. During the mild weather (maxima 22-30 degrees C) of spring (October), there was little change in nymphal bands during the first week but at all doses between 25-100 g (1-4 x 10(12) conidia) ha(-1), the bands rapidly declined 9-12 days after treatment reaching > 90% mortality by 14 days. Metarhizium persisted for some time as there was 50% mortality of locusts fed vegetation collected from the treated blocks seven days after treatment. Persistence was confirmed by the high mortality of bands that invaded from untreated areas and of nymphs that hatched on the plot five to seven days after treatment, though mortality was then delayed until early in the third week. During summer (January), temperatures were high (maxima 36-42 degrees C), and at all doses between 25 and 125 g (1-5 x 10(12) conidia) ha(-1), there was a rapid decline seven to ten days after treatment. By 12-14 days, there was a > 90% decline in numbers in most blocks which was confirmed by helicopter surveys two weeks after treatment that found very few adults within or near treated areas. Mortality was delayed in the high dose where there were blockages of spray equipment during treatment. The clear demonstration that Metarhizium can suppress small local populations of C. terminifera led to the limited operational use of Metarhizium on an organic farm and in a National Park where nearly 2500 ha of bands and swarms were treated. Continued research is needed to develop a commercially viable product so that Metarhizium can form a significant part of a programme of integrated pest management of locusts in Australia.

  14. Dark Period Following UV-C Treatment Enhances Killing of Botrytis cinerea Conidia and Controls Gray Mold of Strawberries.

    PubMed

    Janisiewicz, Wojciech J; Takeda, Fumiomi; Glenn, D Michael; Camp, Mary J; Jurick, Wayne M

    2016-04-01

    Strawberries are available throughout the year either from production in the field or from high and low tunnel culture. Diversity of production conditions results in new challenges in controlling diseases before and after harvest. Fungicides have traditionally been used to control these diseases; however, their limitations necessitate a search for new approaches. We found that UV-C irradiation of Botrytis cinerea, a major pathogen of strawberry, can effectively kill this fungus if a dark period follows the treatment. The inclusion of a 4-h dark period resulted in almost complete kill of B. cinerea conidia on agar media at a dose of 12.36 J/m2. The UV-C dose did not cause a reduction in photosynthesis in strawberry leaves or discoloration of sepals, even after exposing plants repeatedly (twice a week) for 7 weeks. Although irradiation of dry conidia of B. cinerea with this dose resulted in some survival, the conidia were not infective and not able to cause decay even when inoculated onto a highly susceptible mature apple fruit. Irradiation of strawberry pollen at 12.36 J/m2 did not affect pollen germination, tube growth and length in vitro, or germination and tube growth in the style of hand-pollinated emasculated strawberry flowers. No negative effect of the UV-C treatment was observed on fruit yield and quality in high tunnel culture. In the fruit and flower petal inoculation tests, the UV-C treatment was highly effective in reducing fruit decay and petal infection. This UV-C treatment with an exposure time of 60 s may be useful in controlling gray mold in tunnel production of strawberries and may also have the potential for use in intensive field and indoor production of other fruits and vegetables providing that a 4-h dark period follows the irradiation.

  15. Photodynamic inactivation of conidia of the fungus Colletotrichum abscissum on Citrus sinensis plants with methylene blue under solar radiation.

    PubMed

    Gonzales, Júlia C; Brancini, Guilherme T P; Rodrigues, Gabriela B; Silva-Junior, Geraldo José; Bachmann, Luciano; Wainwright, Mark; Braga, Gilberto Ú L

    2017-11-01

    Antimicrobial photodynamic treatment (APDT) is a promising light based approach to control diseases caused by plant-pathogenic fungi. In the present study, we evaluated the effects of APDT with the phenothiazinium photosensitizer methylene blue (MB) under solar radiation on the germination and viability of conidia of the pathogenic fungus Colletotricum abscissum (former Colletotrichum acutatum sensu lato). Experiments were performed both on petals and leaves of sweet orange (Citrus sinensis) in different seasons and weather conditions. Conidial suspensions were deposited on the leaves and petals surface, treated with the PS (25 or 50μM) and exposed to solar radiation for only 30min. The effects of APDT on conidia were evaluated by counting the colony forming units recovered from leaves and petals and by direct evaluating conidial germination on the surface of these plant organs after the treatment. To better understand the mechanistic of conidial photodynamic inactivation, the effect of APDT on the permeability of the conidial plasma membrane was assessed using the fluorescent probe propidium iodide (PI) together with flow cytometry and fluorescence microscopy. APDT with MB and solar exposure killed C. abscissum conidia and prevented their germination on both leaves and petals of citrus. Reduction of conidial viability was up to three orders of magnitude and a complete photodynamic inactivation was achieved in some of the treatments. APDT damaged the conidial plasma membrane and increased its permeability to PI. No damage to sweet orange flowers or leaves was observed after APDT. The demonstration of the efficacy of APDT on the plant host represents a further step towards the use of the method for control phytopathogens in the field. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A novel approach of utilization of the fungal conidia biomass to remove heavy metals from the aqueous solution through immobilization

    NASA Astrophysics Data System (ADS)

    Cai, Chun-Xiang; Xu, Jian; Deng, Nian-Fang; Dong, Xue-Wei; Tang, Hao; Liang, Yu; Fan, Xian-Wei; Li, You-Zhi

    2016-11-01

    The biomass of filamentous fungi is an important cost-effective biomass for heavy metal biosorption. However, use of free fungal cells can cause difficulties in the separation of biomass from the effluent. In this study, we immobilized the living conidia of the heavy metal-resistant Penicillium janthinillum strain GXCR by polyvinyl alcohol (PVA)-sodium alginate (SA) beads to remove heavy metals from an aqueous solution containing a low concentration (70 mg/L) of Cu, Pb, and Cd. The PVA-SA-conidia beads showed perfect characters of appropriate mechanical strength suitable for metal removal from the dynamic wastewater environment, an ideal settleability, easy separation from the solution, and a high metal biosorption and removal rate even after four cycles of successive sorption-desorption of the beads, overcoming disadvantages when fungal biomasses alone are used for heavy metal removal from wastewater. We also discuss the major biosorption-affecting factors, biosorption models, and biosorption mechanisms.

  17. A novel approach of utilization of the fungal conidia biomass to remove heavy metals from the aqueous solution through immobilization

    PubMed Central

    Cai, Chun-Xiang; Xu, Jian; Deng, Nian-Fang; Dong, Xue-Wei; Tang, Hao; Liang, Yu; Fan, Xian-Wei; Li, You-Zhi

    2016-01-01

    The biomass of filamentous fungi is an important cost-effective biomass for heavy metal biosorption. However, use of free fungal cells can cause difficulties in the separation of biomass from the effluent. In this study, we immobilized the living conidia of the heavy metal-resistant Penicillium janthinillum strain GXCR by polyvinyl alcohol (PVA)-sodium alginate (SA) beads to remove heavy metals from an aqueous solution containing a low concentration (70 mg/L) of Cu, Pb, and Cd. The PVA-SA-conidia beads showed perfect characters of appropriate mechanical strength suitable for metal removal from the dynamic wastewater environment, an ideal settleability, easy separation from the solution, and a high metal biosorption and removal rate even after four cycles of successive sorption-desorption of the beads, overcoming disadvantages when fungal biomasses alone are used for heavy metal removal from wastewater. We also discuss the major biosorption-affecting factors, biosorption models, and biosorption mechanisms. PMID:27848987

  18. Transformation of Epichloë typhina by electroporation of conidia

    PubMed Central

    2011-01-01

    Background Choke, caused by the endophytic fungus Epichloë typhina, is an important disease affecting orchardgrass (Dactylis glomerata L.) seed production in the Willamette Valley. Little is known concerning the conditions necessary for successful infection of orchardgrass by E. typhina. Detection of E. typhina in plants early in the disease cycle can be difficult due to the sparse distribution of hyphae in the plant. Therefore, a sensitive method to detect fungal infection in plants would provide an invaluable tool for elucidating the conditions for establishment of infection in orchardgrass. Utilization of a marker gene, such as the green fluorescent protein (GFP), transformed into Epichloë will facilitate characterization of the initial stages of infection and establishment of the fungus in plants. Findings We have developed a rapid, efficient, and reproducible transformation method using electroporation of germinating Epichloë conidia isolated from infected plants. Conclusions The GFP labelled E. typhina provides a valuable molecular tool to researchers studying conditions and mechanisms involved in the establishment of choke disease in orchardgrass. PMID:21375770

  19. Impact of urban air pollution on the allergenicity of Aspergillus fumigatus conidia: Outdoor exposure study supported by laboratory experiments.

    PubMed

    Lang-Yona, Naama; Shuster-Meiseles, Timor; Mazar, Yinon; Yarden, Oded; Rudich, Yinon

    2016-01-15

    Understanding the chemical interactions of common allergens in urban environments may help to decipher the general increase in susceptibility to allergies observed in recent decades. In this study, asexual conidia of the allergenic mold Aspergillus fumigatus were exposed to air pollution under natural (ambient) and controlled (laboratory) conditions. The allergenic activity was measured using two immunoassays and supported by a protein mass spectrometry analysis. The allergenicity of the conidia was found to increase by 2-5 fold compared to the control for short exposure times of up to 12h (accumulated exposure of about 50 ppb NO2 and 750 ppb O3), possibly due to nitration. At higher exposure times, the allergenicity increase lessened due to protein deamidation. These results indicate that during the first 12h of exposure, the allergenic potency of the fungal allergen A. fumigatus in polluted urban environments is expected to increase. Additional work is needed in order to determine if this behavior occurs for other allergens. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Inhibition of Pseudogymnoascus destructans growth from conidia and mycelial extension by bacterially produced volatile organic compounds.

    PubMed

    Cornelison, Christopher T; Gabriel, Kyle T; Barlament, Courtney; Crow, Sidney A

    2014-02-01

    The recently identified causative agent of white-nose syndrome (WNS), Pseudogymnoascus destructans, has been implicated in the mortality of an estimated 5.5 million North American bats since its initial documentation in 2006 (Frick et al. in Science 329:679-682, 2010). In an effort to identify potential biological and chemical control options for WNS, 6 previously described bacterially produced volatile organic compounds (VOCs) were screened for anti-P. destructans activity. The compounds include decanal; 2-ethyl-1-hexanol; nonanal; benzothiazole; benzaldehyde; andN,N-dimethyloctylamine. P. destructans conidia and mycelial plugs were exposed to the VOCs in a closed air space at 15 and 4 °C and then evaluated for growth inhibition. All VOCs inhibited growth from conidia as well as inhibiting radial mycelial extension, with the greatest effect at 4 °C. Studies of the ecology of fungistatic soils and the natural abundance of the fungistatic VOCs present in these environments suggest a synergistic activity of select VOCs may occur. The evaluation of formulations of two or three VOCs at equivalent concentrations was supportive of synergistic activity in several cases. The identification of bacterially produced VOCs with anti-P. destructans activity indicates disease-suppressive and fungistatic soils as a potentially significant reservoir of biological and chemical control options for WNS and provides wildlife management personnel with tools to combat this devastating disease.

  1. Expression and arrangement of extracellular matrix proteins in the lungs of mice infected with Paracoccidioides brasiliensis conidia

    PubMed Central

    González, Angel; Lenzi, Henrique Leonel; Motta, Ester Maria; Caputo, Luzia; Restrepo, Angela; Cano, Luz Elena

    2008-01-01

    Extracellular matrix (ECM) proteins are important modulators of migration, differentiation and proliferation for the various cell types present in the lungs; they influence the immune response as well as participate in the adherence of several fungi including Paracoccidioides brasiliensis. The expression, deposition and arrangement of ECM proteins such as laminin, fibronectin, fibrinogen, collagen and proteoglycans in the lungs of mice infected with P. brasiliensis conidia has been evaluated in this study, together with the elastic fibre system. Lungs of BALB/c mice infected with P. brasiliensis conidia were analysed for the different ECM proteins by histological and immunohistochemical procedures at different times of infection. In addition, laser scanning confocal microscopy and scanning electron microscopy were used. During the early periods, the lungs of infected animals showed an inflammatory infiltrate composed mainly of polymorphonuclear neutrophils (PMNs) and macrophages, while during the later periods, mice presented a chronic inflammatory response with granuloma formation. Re-arrangement and increased expression of all ECM proteins tested were observed throughout all studied periods, especially during the occurrence of inflammatory infiltration and formation of the granuloma. The elastic fibre system showed an elastolysis process in all experiments. In conclusion, this study provides new details of pulmonary ECM distribution during the course of paracoccidioidomycosis. PMID:18336528

  2. Differential DNA methylation may contribute to temporal and spatial regulation of gene expression and the development of mycelia and conidia in entomopathogenic fungus Metarhizium robertsii.

    PubMed

    Li, Wanzhen; Wang, Yulong; Zhu, Jianyu; Wang, Zhangxun; Tang, Guiliang; Huang, Bo

    2017-03-01

    Conidia and mycelia are two important developmental stages in the asexual life cycle of entomopathogenic fungus Metarhizium. Despite the crucial role that DNA methylation plays in many biological processes, its role in regulation of gene expression and development in fungi is not yet fully understood. We performed genome-wide analysis of DNA methylation patterns of an M. robertsii strain with single base pair resolution. Specifically, we examined for changes in methylation patterns between the conidia and mycelia stages. The results showed that approximately 0.38 % of cytosines are methylated in conidia, which is lower than the DNA methylation level (0.42 %) in mycelia. We found that DNA methylation undergoes genome-wide reprogramming during fungal development in M. robertsii. 132 differentially methylated regions (DMRs), which were mostly distributed in gene regions, were identified. KEGG analysis revealed that the DMR-associated genes belong to metabolic pathways. Intriguingly, in contrast to most other eukaryotes, promoter activities in M. robertsii seemed differentially modulated by DNA methylation levels. We found that transcription tended to be enhanced in genes with moderate promoter methylation, while gene expression was decreased in genes with high or low promoter methylation. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  3. A Quantitative Dynamic Simulation of Bremia lactucae Airborne Conidia Concentration above a Lettuce Canopy.

    PubMed

    Fall, Mamadou Lamine; Van der Heyden, Hervé; Carisse, Odile

    2016-01-01

    Lettuce downy mildew, caused by the oomycete Bremia lactucae Regel, is a major threat to lettuce production worldwide. Lettuce downy mildew is a polycyclic disease driven by airborne spores. A weather-based dynamic simulation model for B. lactucae airborne spores was developed to simulate the aerobiological characteristics of the pathogen. The model was built using the STELLA platform by following the system dynamics methodology. The model was developed using published equations describing disease subprocesses (e.g., sporulation) and assembled knowledge of the interactions among pathogen, host, and weather. The model was evaluated with four years of independent data by comparing model simulations with observations of hourly and daily airborne spore concentrations. The results show an accurate simulation of the trend and shape of B. lactucae temporal dynamics of airborne spore concentration. The model simulated hourly and daily peaks in airborne spore concentrations. More than 95% of the simulation runs, the daily-simulated airborne conidia concentration was 0 when airborne conidia were not observed. Also, the relationship between the simulated and the observed airborne spores was linear. In more than 94% of the simulation runs, the proportion of the linear variation in the hourly-observed values explained by the variation in the hourly-simulated values was greater than 0.7 in all years except one. Most of the errors came from the deviation from the 1:1 line, and the proportion of errors due to the model bias was low. This model is the only dynamic model developed to mimic the dynamics of airborne inoculum and represents an initial step towards improved lettuce downy mildew understanding, forecasting and management.

  4. A Quantitative Dynamic Simulation of Bremia lactucae Airborne Conidia Concentration above a Lettuce Canopy

    PubMed Central

    Fall, Mamadou Lamine; Van der Heyden, Hervé; Carisse, Odile

    2016-01-01

    Lettuce downy mildew, caused by the oomycete Bremia lactucae Regel, is a major threat to lettuce production worldwide. Lettuce downy mildew is a polycyclic disease driven by airborne spores. A weather-based dynamic simulation model for B. lactucae airborne spores was developed to simulate the aerobiological characteristics of the pathogen. The model was built using the STELLA platform by following the system dynamics methodology. The model was developed using published equations describing disease subprocesses (e.g., sporulation) and assembled knowledge of the interactions among pathogen, host, and weather. The model was evaluated with four years of independent data by comparing model simulations with observations of hourly and daily airborne spore concentrations. The results show an accurate simulation of the trend and shape of B. lactucae temporal dynamics of airborne spore concentration. The model simulated hourly and daily peaks in airborne spore concentrations. More than 95% of the simulation runs, the daily-simulated airborne conidia concentration was 0 when airborne conidia were not observed. Also, the relationship between the simulated and the observed airborne spores was linear. In more than 94% of the simulation runs, the proportion of the linear variation in the hourly-observed values explained by the variation in the hourly-simulated values was greater than 0.7 in all years except one. Most of the errors came from the deviation from the 1:1 line, and the proportion of errors due to the model bias was low. This model is the only dynamic model developed to mimic the dynamics of airborne inoculum and represents an initial step towards improved lettuce downy mildew understanding, forecasting and management. PMID:26953691

  5. Copulation Activity, Sperm Production and Conidia Transfer in Aedes aegypti Males Contaminated by Metarhizium anisopliae: A Biological Control Prospect

    PubMed Central

    Russell, Tanya L.; Braks, Marieta A. H.

    2015-01-01

    Background Dengue is the most prevalent arboviral disease transmitted by Aedes aegypti worldwide, whose chemical control is difficult, expensive, and of inconsistent efficacy. Releases of Metarhizium anisopliae—exposed Ae. aegypti males to disseminate conidia among female mosquitoes by mating represents a promising biological control approach against this important vector. A better understanding of fungus virulence and impact on reproductive parameters of Ae. aegypti, is need before testing auto-dissemination strategies. Methodology/Principal Findings Mortality, mating competitiveness, sperm production, and the capacity to auto-disseminate the fungus to females up to the 5thcopulation, were compared between Aedes aegypti males exposed to 5.96 x 107 conidia per cm2 of M. anisopliae and uninfected males. Half (50%) of fungus-exposed males (FEMs) died within the first 4 days post-exposure (PE). FEMs required 34% more time to successively copulate with 5 females (165 ± 3 minutes) than uninfected males (109 ± 3 minutes). Additionally, fungus infection reduced the sperm production by 87% at 5 days PE. Some beneficial impacts were observed, FEMs were able to successfully compete with uninfected males in cages, inseminating an equivalent number of females (about 25%). Under semi-field conditions, the ability of FEMs to search for and inseminate females was also equivalent to uninfected males (both inseminating about 40% females); but for the remaining females that were not inseminated, evidence of tarsal contact (transfer of fluorescent dust) was significantly greater in FEMs compared to controls. The estimated conidia load of a female exposed on the 5th copulation was 5,200 mL-1 which was sufficient to cause mortality. Conclusion/Significance Our study is the first to demonstrate auto-dissemination of M. anisopliae through transfer of fungus from males to female Ae. aegypti during mating under semi-field conditions. Our results suggest that auto-dissemination studies

  6. Repellent activity of desiccant dusts and conidia of the entomopathogenic fungus Beauveria bassiana when tested against poultry red mites (Dermanyssus gallinae) in laboratory experiments.

    PubMed

    Kilpinen, Ole; Steenberg, Tove

    2016-11-01

    Desiccant dusts and entomopathogenic fungi have previously been found to hold potential against the poultry red mite, which is an important pest in egg production and notoriously difficult to control. Both control agents may cause repellence in other arthropods and potentially also influence control levels adversely when used against the poultry red mite. Five desiccant dust products with good efficacy against the poultry red mite Dermanyssus gallinae caused avoidance behavior in mites when tested in bioassays. The repellent activity was correlated with efficacy, which was found to depend on both dose and relative humidity (RH). However, one desiccant dust was significantly less repellent compared to other dusts with similar levels of efficacy. Further, dry conidia of the fungus Beauveria bassiana were also shown to be repellent to poultry red mites, both when applied on its own and when admixed with a low dose of the desiccant dust Diamol. The pick-up of desiccant dust particles and fungus conidia from treated surfaces by mites did not differ depending on RH, whereas the overall efficacy of the two control agents were significantly higher at 75 than at 85 % RH. In addition, the combined effect of the two substances was synergistic when tested in a bioassay where mites could choose whether to cross a treated surface. This is the first time a member of Acari has been shown to be repelled by desiccant dusts and by conidia of an entomopathogenic fungus.

  7. Influence of shredder feeding and nutrients on fungal activity and community structure in headwater streams

    Treesearch

    Namil Chung; Keller. Suberkropp

    2008-01-01

    In stream detrital food webs, interactions occur between aquatic hyphomycetes associated with decomposing leaves and shredders consuming those leaves. However, few studies have examined how the feeding activity of shredders affects aquatic hyphomycetes. We examined the effect of shredder feeding on aquatic hyphomycete communities associated with submerged leaves in two...

  8. Effects of tricyclazole (5-methyl-1,2,4-triazol[3,4] benzothiazole), a specific DHN-melanin inhibitor, on the morphology of Fonsecaea pedrosoi conidia and sclerotic cells.

    PubMed

    Franzen, Anderson J; Cunha, Marcel M L; Batista, Evander J O; Seabra, Sergio H; De Souza, Wanderley; Rozental, Sonia

    2006-09-01

    The influence of tricyclazole (5-methyl-1,2,4-triazol[3,4]benzothiazole), a specific DHN-melanin inhibitor, on the cell walls and intracellular structures of Fonsecaea pedrosoi conidia and sclerotic cells was analyzed by transmission electron microscopy (TEM), deep-etching, and field emission scanning electron microscopy. The treatment of the fungus with 16 microg mL(-1) of tricyclazole (TC) did not significantly affect fungal viability, but electron microscopy observations showed several important morphological differences between TC-treated and non-TC treated cells. Control sclerotic cells presented patched granules, with an average diameter of 47 nm, on the cell surface, which were absent in TC-treated cells. Also, TC-treated sclerotic cells showed an undulated relief. TC treatment leads to an accumulation of electron lucent vacuoles in the fungal cytoplasm of both conidia and sclerotic cells, and treated conidia observed by deep etching showed a relevant thickening of the fungal cell wall. Together, these observations support the previous data of our group that F. pedrosoi synthesizes melanin in intracellular organelles. In addition, we suggest that melanin is not only an extracellular constituent but could also be dispersing all over the cell walls and could have an effective role in cross-linking different cell wall compounds that help maintain the regular shape of the cell wall. (c) 2006 Wiley-Liss, Inc.

  9. Desiccant dusts synergize the effect of Beauveria bassiana (Hyphomycetes: Moniliales) on stored-grain beetles.

    PubMed

    Lord, J C

    2001-04-01

    Diatomaceous earth (DE) is a desiccant insecticide and most efficacious in low humidity. It acts on insect cuticle by absorbing lipids, and perhaps by cuticular abrasion. Beauveria bassiana (Balsamo) Vuillemin, an entomopathogenic fungus, is most efficacious in high humidity and has a complex interaction with cuticular lipids. Interaction between these materials may enhance insect control performance. Assays with stored-grain beetles were conducted with B. bassiana at rates of 11, 33, 100, and 300 mg of conidia per kilogram of grain with and without single rates of DE that killed 10% or less of the target beetles. The assays revealed synergism in effects on adult Rhyzopertha dominica (F.) and Oryzaephilus surinamensis (L.) at all doses. There was statistically significant synergism for adult Cryptolestes ferrugineus (Stephens) and larval R. dominica but at only one B. bassiana rate for each target. Both amorphous silicon dioxide, a sorptive dust, and diamond dust, an abrasive, showed synergistic interaction with B. bassiana on adult R. dominica. These results may provide a basis for a least-toxic approach to control of stored-product beetles and for efficacy-enhancing formulation of entomopathogenic fungi.

  10. Liquid culture production of microsclerotia and submerged conidia by Trichoderma harzianum active against damping-off disease caused by Rhizoctonia solani.

    PubMed

    Kobori, Nilce N; Mascarin, Gabriel M; Jackson, Mark A; Schisler, David A

    2015-04-01

    Media and culturing protocols were identified that supported the formation of submerged conidia and microsclerotia (MS) by Trichoderma harzianum Rifai strain T-22 using liquid culture fermentation. Liquid media with a higher carbon concentration (36 g L(-1)) promoted MS formation at all C:N ratios tested. Hyphae aggregated to form MS after 2 d growth and after 7 d MS were fully melanized. This is the first report of MS formation by T. harzianum or any species of Trichoderma. Furthermore, submerged conidia formation was induced by liquid culture media, but yields, desiccation tolerance, and storage stability varied with C:N ratio and carbon rate. Air-dried MS granules (<4% moisture) retained excellent shelf life under cool and unrefrigerated storage conditions with no loss in conidial production. A low-cost complex nitrogen source based on cottonseed flour effectively supported high MS yields. Amending potting mix with dried MS formulations reduced or eliminated damping-off of melon seedlings caused by Rhizoctonia solani. Together, the results provide insights into the liquid culture production, stabilization process, and bioefficacy of the hitherto unreported MS of T. harzianum as a potential biofungicide for use in integrated management programs against soilborne diseases. Copyright © 2014 The British Mycological Society. All rights reserved.

  11. Boric Acid Inhibition of Trichophyton rubrum Growth and Conidia Formation.

    PubMed

    Schmidt, Martin

    2017-12-01

    Trichophyton rubrum is a common human dermatophyte that is the causative agent of 80-93% of fungal infections of the skin and nails. While dermatophyte infections in healthy people are easily treatable with over-the-counter medications, such infections pose a higher risk for patients with compromised immune function and impaired regenerative potential. The efficacy of boric acid (BA) for the treatment of vaginal yeast infections prompted an investigation of the effect of BA on growth and morphology of T. rubrum. This is of particular interest since BA facilitates wound healing, raising the possibility that treating athlete's foot with BA, either alone or in combination with other antifungal drugs, would combine the benefits of antimicrobial activity and tissue regeneration to accelerate healing of infected skin. The data presented here show that BA represses T. rubrum growth at a concentration reported to be beneficial for host tissue regeneration. Oxygen exposure increases BA toxicity, and mycelia growing under BA stress avoid colonizing the surface of the growth surface, which leads to a suppression of aerial mycelium growth and surface conidia formation. BA penetrates into solid agar matrices, but the relative lack of oxygen below the substrate surface limits the effectiveness of BA in suppressing growth of embedded T. rubrum cells.

  12. Common but different: The expanding realm of Cladosporium

    PubMed Central

    Bensch, K.; Groenewald, J.Z.; Braun, U.; Dijksterhuis, J.; de Jesús Yáñez-Morales, M.; Crous, P.W.

    2015-01-01

    The genus Cladosporium (Cladosporiaceae, Dothideomycetes), which represents one of the largest genera of dematiaceous hyphomycetes, has been intensively investigated during the past decade. In the process, three major species complexes (C. cladosporioides, C. herbarum and C. sphaerospermum) were resolved based on morphology and DNA phylogeny, and a monographic revision of the genus (s. lat.) published reflecting the current taxonomic status quo. In the present study a further 19 new species are described based on phylogenetic characters (nuclear ribosomal RNA gene operon, including the internal transcribed spacer regions ITS1 and ITS2, as well as partial actin and translation elongation factor 1-α gene sequences) and morphological differences. For a selection of the species with ornamented conidia, scanning electron microscopic photos were prepared to illustrate the different types of surface ornamentation. Surprisingly, during this study Cladosporium ramotenellum was found to be a quite common saprobic species, being widely distributed and occurring on various substrates. Therefore, an emended species description is provided. Furthermore, the host range and distribution data for several previously described species are also expanded. PMID:26955200

  13. The aquatic hyphomycete Heliscus lugdunensis protects its hyphae tip cells from cadmium: A micro X-ray fluorescence and X-ray absorption near edge structure spectroscopy study

    NASA Astrophysics Data System (ADS)

    Isaure, Marie-Pierre; Leyh, Benjamin; Salomé, Murielle; Krauss, Gerd-Joachim; Schaumlöffel, Dirk; Dobritzsch, Dirk

    2017-11-01

    Aquatic fungi can be used to evaluate the functioning of natural ecosystems. Heliscus lugdunensis is an early colonizer of allochthone leafs. Since this aquatic hyphomycete is able to develop in metal contaminated habitats and tolerates cadmium, it appears to be a good candidate to investigate adaptation to metal pollution. This study aimed at examining the sequestration of Cd in the hyphae of H. lugdunensis, and particularly the role of the tip cells. For that, H. lugdunensis growth was evaluated under various Cd concentrations, and a combination of synchrotron micro X-ray fluorescence and X-ray absorption near edge structure spectroscopy was carried out to determine the compartments of Cd accumulation and the Cd chemical species, respectively. Results showed that the hyphal tip cells were depleted in Cd, and that the metal was stored in older cells. Cd was mainly associated with sulfur ligands and to a lesser extent bound to phosphates and carboxyl/hydroxyl groups from cell wall and/or organic acids. Finally, the aquatic fungus was able to maintain the tip cell as a functional system, thus allowing the colonization of contaminated environments.

  14. Novel cytosolic allergens of Aspergillus fumigatus identified from germinating conidia.

    PubMed

    Singh, Bharat; Sharma, Gainda L; Oellerich, Michael; Kumar, Ram; Singh, Seema; Bhadoria, Dharam P; Katyal, Anju; Reichard, Utz; Asif, Abdul R

    2010-11-05

    Aspergillus fumigatus is the common cause of allergic broncho-pulmonary aspergillosis (ABPA) and most of the allergens have been described from its secreted fraction. In the present investigation, germinating conidial cytosolic proteins of A. fumigatus were extracted from a 16 h culture. The proteome from this fraction was developed, and immuno-blots were generated using pooled ABPA patients' sera. Well separated Immunoglobulin-E (IgE) and Immunoglobulin-G (IgG) reactive spots were picked from corresponding 2DE gels and subjected to mass spectrometric analysis. As a result, 66 immuno-reactive proteins were identified from two geographically different strains (190/96 and DAYA) of A. fumigatus. Only 3 out of 66 proteins reacted with IgG, and the remaining 63 proteins were found to be IgE reactive. These 63 IgE-reactive cytosolic proteins from germinating conidia included 2 already known (Asp f12 and Asp f22) and 4 predicted allergens (Hsp88, Hsp70, malate dehydrogenase, and alcohol dehydrogenase) based on their homology with other known fungal allergens. In view of this, the panel of presently identified IgE-reactive novel proteins holds the potential of providing a basis for the wider diagnostic application in assay for allergic aspergillosis. We could demonstrate that recombinantly expressed proteins from this panel showed consistent reactivity with IgE of individual sera of ABPA patients. The recombinantly expressed proteins may also be useful in desensitization therapy of allergic disorders including ABPA.

  15. Interaction of THP-1 Monocytes with Conidia and Hyphae of Different Curvularia Strains

    PubMed Central

    Tóth, Eszter Judit; Boros, Éva; Hoffmann, Alexandra; Szebenyi, Csilla; Homa, Mónika; Nagy, Gábor; Vágvölgyi, Csaba; Nagy, István; Papp, Tamás

    2017-01-01

    Interaction of the human monocytic cell line, THP-1 with clinical isolates of three Curvularia species were examined. Members of this filamentous fungal genus can cause deep mycoses emerging in both immunocompromised and immunocompetent patients. It was found that monocytes reacted only to the hyphal form of Curvularia lunata. Cells attached to the germ tubes and hyphae and production of elevated levels of interleukin (IL)-8 and IL-10 and a low level of TNF-α were measured. At the same time, monocytes failed to produce IL-6. This monocytic response, especially with the induction of the anti-inflammatory IL-10, correlates well to the observation that C. lunata frequently cause chronic infections even in immunocompetent persons. Despite the attachment to the hyphae, monocytes could not reduce the viability of the fungus and the significant decrease in the relative transcript level of HLA-DRA assumes the lack of antigen presentation of the fungus by this cell type. C. spicifera and C. hawaiiensis failed to induce the gathering of the cells or the production of any analyzed cytokines. Monocytes did not recognize conidia of Curvularia species, even when melanin was lacking in their cell wall. PMID:29093719

  16. Interaction of THP-1 Monocytes with Conidia and Hyphae of Different Curvularia Strains.

    PubMed

    Tóth, Eszter Judit; Boros, Éva; Hoffmann, Alexandra; Szebenyi, Csilla; Homa, Mónika; Nagy, Gábor; Vágvölgyi, Csaba; Nagy, István; Papp, Tamás

    2017-01-01

    Interaction of the human monocytic cell line, THP-1 with clinical isolates of three Curvularia species were examined. Members of this filamentous fungal genus can cause deep mycoses emerging in both immunocompromised and immunocompetent patients. It was found that monocytes reacted only to the hyphal form of Curvularia lunata . Cells attached to the germ tubes and hyphae and production of elevated levels of interleukin (IL)-8 and IL-10 and a low level of TNF-α were measured. At the same time, monocytes failed to produce IL-6. This monocytic response, especially with the induction of the anti-inflammatory IL-10, correlates well to the observation that C. lunata frequently cause chronic infections even in immunocompetent persons. Despite the attachment to the hyphae, monocytes could not reduce the viability of the fungus and the significant decrease in the relative transcript level of HLA-DRA assumes the lack of antigen presentation of the fungus by this cell type. C. spicifera and C. hawaiiensis failed to induce the gathering of the cells or the production of any analyzed cytokines. Monocytes did not recognize conidia of Curvularia species, even when melanin was lacking in their cell wall.

  17. Production of Pycnidia and Conidia by Guignardia bidwellii, the Causal Agent of Grape Black Rot, as Affected by Temperature and Humidity.

    PubMed

    Onesti, G; González-Domínguez, E; Rossi, V

    2017-02-01

    Black rot, caused by the fungus Guignardia bidwellii, is a polycyclic disease affecting grape leaves and berries. In environmentally controlled experiments and in a 3-year field study, the effects of temperature and relative humidity (RH) were assessed on the following growth parameters of G. bidwellii: (i) formation of pycnidia and cirri in grape leaf lesions, (ii) production and germination of conidia, and (iii) length of the period between lesion appearance and pycnidia production. Pycnidia were produced between 5 and 35°C and at 90 to 100% RH but more pycnidia were produced between 20 and 30°C. No pycnidia were produced at RH < 90%. The first pycnidia were produced in approximately 2 days after lesion appearance at ≥20°C and in 8 days at 5°C; pycnidia continued to be produced on the same lesion for 5 to 16 days after lesion appearance, depending on the temperature. Models were developed to describe the effect of temperature and RH on pycnidia production, accounting for 95 and 97% of variability, respectively. Cirri were extruded only between 15 and 35°C and mainly at 100% RH. Field experiments confirmed that pycnidia are produced for several days on a leaf lesion and that the length of the period between lesion appearance and pycnidia production depends on temperature. Overall, the findings showed that production of conidia requires high humidity; under field conditions, some hours at high humidity, which usually occur at nighttime, rather than constant high humidity may be sufficient.

  18. Yield and cold storage of Trichoderma conidia is influenced by substrate pH and storage temperature.

    PubMed

    Steyaert, Johanna M; Chomic, Anastasia; Nieto-Jacobo, Maria; Mendoza-Mendoza, Artemio; Hay, Amanda J; Braithwaite, Mark; Stewart, Alison

    2017-05-01

    In this study we examined the influence of the ambient pH during morphogenesis on conidial yield of Trichoderma sp. "atroviride B" LU132 and T. hamatum LU593 and storage at low temperatures. The ambient pH of the growth media had a dramatic influence on the level of Trichoderma conidiation and this was dependent on the strain and growth media. On malt-extract agar, LU593 yield decreased with increasing pH (3-6), whereas yield increased with increasing pH for LU132. During solid substrate production the reverse was true for LU132 whereby yield decreased with increasing pH. The germination potential of the conidia decreased significantly over time in cold storage and the rate of decline was a factor of the strain, pH during morphogenesis, growth media, and storage temperature. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Interactions between stream fungi and bacteria associated with decomposing leaf litter at different levels of nutrient availability

    Treesearch

    Vladislav Gulis; Keller Suberkropp

    2003-01-01

    We examined the potential for interactions between aquatic hyphomycetes and bacteria isolated from leaves decaying in a headwater stream. In agar plate assays, culture filtrates of each of 28 aquatic hyphomycete isolates tested (5 species) inhibited bacterial growth (16 Gram-negative bacterial isolates belonging to 6 colony morphotypes were tested). Inhibition of...

  20. A spindle pole antigen gene MoSPA2 is important for polar cell growth of vegetative hyphae and conidia, but is dispensable for pathogenicity in Magnaporthe oryzae.

    PubMed

    Li, Chao; Yang, Jun; Zhou, Wei; Chen, Xiao-Lin; Huang, Jin-Guang; Cheng, Zhi-Hua; Zhao, Wen-Sheng; Zhang, Yan; Peng, You-Liang

    2014-11-01

    Spa2 is an important component of the multiprotein complex polarisome, which is involved in the establishment, maintenance, termination of polarized cell growth and is important for defining tip growth of filamentous fungi. In this study, we isolated an insertional mutant of the rice blast fungus Magnaporthe oryzae that formed smaller colony and conidia compared with the wild type. In the mutant, a spindle pole antigen gene MoSPA2 was disrupted by the integration of an exogenous plasmid. Targeted gene deletion and complementation assays demonstrated the gene disruption was responsible for the defects of the insertional mutant. Interestingly, the MoSpa2-GFP fusion protein was found to accumulate as a spot at hyphal tips, septa of hyphae and conidial tip cells where germ tubes are usually produced, but not in appressoria, infection hyphae or at the septa of conidia. Furthermore, the deletion mutants of MoSPA2 exhibited slower hyphal tip growth, more hyphal branches, and smaller size of conidial tip cells. However, MoSPA2 is not required for plant infection. These results indicate that MoSPA2 is required for vegetative hyphal growth and maintaining conidium morphology and that spotted accumulation of MoSpa2 is important for its functions during cell polar growth.

  1. Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales)

    PubMed Central

    Bensch, K.; Groenewald, J.Z.; Dijksterhuis, J.; Starink-Willemse, M.; Andersen, B.; Summerell, B.A.; Shin, H.-D.; Dugan, F.M.; Schroers, H.-J.; Braun, U.; Crous, P.W.

    2010-01-01

    The genus Cladosporium is one of the largest genera of dematiaceous hyphomycetes, and is characterised by a coronate scar structure, conidia in acropetal chains and Davidiella teleomorphs. Based on morphology and DNA phylogeny, the species complexes of C. herbarum and C. sphaerospermum have been resolved, resulting in the elucidation of numerous new taxa. In the present study, more than 200 isolates belonging to the C. cladosporioides complex were examined and phylogenetically analysed on the basis of DNA sequences of the nuclear ribosomal RNA gene operon, including the internal transcribed spacer regions ITS1 and ITS2, the 5.8S nrDNA, as well as partial actin and translation elongation factor 1-α gene sequences. For the saprobic, widely distributed species Cladosporium cladosporioides, both a neotype and epitype are designated in order to specify a well established circumscription and concept of this species. Cladosporium tenuissimum and C. oxysporum, two saprobes abundant in the tropics, are epitypified and shown to be allied to, but distinct from C. cladosporioides. Twenty-two species are newly described on the basis of phylogenetic characters and cryptic morphological differences. The most important phenotypic characters for distinguishing species within the C. cladosporioides complex, which represents a monophyletic subclade within the genus, are shape, width, length, septation and surface ornamentation of conidia and conidiophores; length and branching patterns of conidial chains and hyphal shape, width and arrangement. Many of the treated species, e.g., C. acalyphae, C. angustisporum, C. australiense, C. basiinflatum, C. chalastosporoides, C. colocasiae, C. cucumerinum, C. exasperatum, C. exile, C. flabelliforme, C. gamsianum, and C. globisporum are currently known only from specific hosts, or have a restricted geographical distribution. A key to all species recognised within the C. cladosporioides complex is provided. PMID:20877444

  2. Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Coleoptera: Scarabaeidae), as biological control agents against the June beetle

    PubMed Central

    Erler, Fedai; Ates, A. Ozgur

    2015-01-01

    The aim of this study was to evaluate the effectiveness of the entomopathogenic fungi (EPF), Beauveria bassiana (Bals.) Vuill. (Deuteromycotina: Hyphomycetes) strain PPRI 5339 [BroadBand, an emulsifiable spore concentrate (EC) formulation] and Metarhizium anisopliae (Metsch.) Sorokin (Hypocreales: Clavicipitaceae) strain F52 [Met52, both EC and granular (GR) formulations] against the larvae of Polyphylla fullo (L.) (Coleoptera: Scarabaeidae). Larvicidal bioassays were performed in foam boxes (100 by 75 by 50 cm; length by width by height), containing moist soil medium with some humus and potato tubers as food. Although the B. bassiana product (min. 4 × 109 conidia/ml) was applied at 100, 150, and 200 ml/100 l water; M. anisopliae strain F52 was applied at 500, 1,000, and 1,500 g/m3 of moist soil medium for GR (9 × 108 cfu/g) and 75, 100, and 125 ml/100 l water for EC (5.5 × 109 conidia/ml) formulation. Both fungi were pathogenic to larvae of the pest; however, young larvae (1st and 2nd instars) were more susceptible to infection than older ones (3rd instar). Mortality rates of young and older larvae varied with conidial concentration of both fungi and elapsed time after application. The B. bassiana product was more effective than both of the formulations of the M. anisopliae product, causing mortalities up to 79.8 and 71.6% in young and older larvae, respectively. The highest mortality rates of young and older larvae caused by the M. anisopliae product were 74.1 and 67.6% for the GR formulation, 70.2 and 61.8% for the EC formulation, respectively. These results may suggest that both fungi have potential to be used for management of P. fullo. PMID:25881632

  3. [Isolation, identification and anticancer activity of an endophytic fungi from Juglans mandshurica].

    PubMed

    Li, Meiya; Wu, Yunwei; Jiang, Fusheng; Yu, Xiangli; Tang, Kexuan; Miao, Zhiqi

    2009-07-01

    The endophytic fungus named FSN006 was isolated from the inner bark of Juglans mandshurica. It grew quickly and formed circular colony on PDA plate. The upper side of the colony was white, while the lower side of the colony and the conditioned medium were light yellow as a result of significant yellow pigment substances were produced and secreted by the fungi. Green elliptic conidia appeared when cultured on CMX plate. Based on the morphology identification and ITS sequence, it was clear that this fungus belonged to the Deuteromycotina, HyPhomycetes, Moniliales, Trichoderma longibrachiatum. The conditioned medium of FSN006 showed a high anti-tumor ability against liver cancer cell-HepG2, and reached its IC50 concentration after being diluted 20 times, while the IC50 concentration of curcumine was(11.49 +/- 0.12) mg x L(-1). In addition, there was preeminent selective inhibiting effect against the normal liver cell strain HL-7702 and its caner counter strain HepG2. The inhibiting effect against strain HL-7702 was only one quarter of that against HepG2 at the concentration of IC50. Therefore, the fermentation of FSN006 may provide a possible way to produce anticancer drug with higher efficiency and lower toxicity.

  4. Distinct innate immune phagocyte responses to Aspergillus fumigatus conidia and hyphae in zebrafish larvae.

    PubMed

    Knox, Benjamin P; Deng, Qing; Rood, Mary; Eickhoff, Jens C; Keller, Nancy P; Huttenlocher, Anna

    2014-10-01

    Aspergillus fumigatus is the most common filamentous fungal pathogen of immunocompromised hosts, resulting in invasive aspergillosis (IA) and high mortality rates. Innate immunity is known to be the predominant host defense against A. fumigatus; however, innate phagocyte responses to A. fumigatus in an intact host and their contributions to host survival remain unclear. Here, we describe a larval zebrafish A. fumigatus infection model amenable to real-time imaging of host-fungal interactions in live animals. Following infection with A. fumigatus, innate phagocyte populations exhibit clear preferences for different fungal morphologies: macrophages rapidly phagocytose conidia and form aggregates around hyphae, while the neutrophil response is dependent upon the presence of hyphae. Depletion of macrophages rendered host larvae susceptible to invasive disease. Moreover, a zebrafish model of human leukocyte adhesion deficiency with impaired neutrophil function also resulted in invasive disease and impaired host survival. In contrast, macrophage-deficient but not neutrophil-deficient larvae exhibited attenuated disease following challenge with a less virulent (ΔlaeA) strain of A. fumigatus, which has defects in secondary metabolite production. Taking these results together, we have established a new vertebrate model for studying innate immune responses to A. fumigatus that reveals distinct roles for neutrophils and macrophages in mediating host defense against IA. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Leaf-associated fungal diversity in acidified streams: insights from combining traditional and molecular approaches.

    PubMed

    Clivot, Hugues; Cornut, Julien; Chauvet, Eric; Elger, Arnaud; Poupin, Pascal; Guérold, François; Pagnout, Christophe

    2014-07-01

    We combined microscopic and molecular methods to investigate fungal assemblages on alder leaf litter exposed in the benthic and hyporheic zones of five streams across a gradient of increasing acidification for 4 weeks. The results showed that acidification and elevated Al concentrations strongly depressed sporulating aquatic hyphomycetes diversity in both zones of streams, while fungal diversity assessed by denaturing gradient gel electrophoresis (DGGE) appeared unaffected. Clone library analyses revealed that fungal communities on leaves were dominated by members of Ascomycetes and to a lesser extent by Basidiomycetes and Chytridiomycetes. An important contribution of terrestrial fungi was observed in both zones of the most acidified stream and in the hyporheic zone of the reference circumneutral stream. The highest leaf breakdown rate was observed in the circumneutral stream and occurred in the presence of both the highest diversity of sporulating aquatic hyphomycetes and the highest contribution to clone libraries of sequences affiliated with aquatic hyphomycetes. Both methods underline the major role played by aquatic hyphomycetes in leaf decomposition process. Our findings also bring out new highlights on the identity of leaf-associated fungal communities and their responses to anthropogenic alteration of running water ecosystems. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Coleoptera: Scarabaeidae), as biological control agents against the June beetle.

    PubMed

    Erler, Fedai; Ates, A Ozgur

    2015-01-01

    The aim of this study was to evaluate the effectiveness of the entomopathogenic fungi (EPF), Beauveria bassiana (Bals.) Vuill. (Deuteromycotina: Hyphomycetes) strain PPRI 5339 [BroadBand, an emulsifiable spore concentrate (EC) formulation] and Metarhizium anisopliae (Metsch.) Sorokin (Hypocreales: Clavicipitaceae) strain F52 [Met52, both EC and granular (GR) formulations] against the larvae of Polyphylla fullo (L.) (Coleoptera: Scarabaeidae). Larvicidal bioassays were performed in foam boxes (100 by 75 by 50 cm; length by width by height), containing moist soil medium with some humus and potato tubers as food. Although the B. bassiana product (min. 4 × 10(9) conidia/ml) was applied at 100, 150, and 200 ml/100 l water; M. anisopliae strain F52 was applied at 500, 1,000, and 1,500 g/m(3) of moist soil medium for GR (9 × 10(8) cfu/g) and 75, 100, and 125 ml/100 l water for EC (5.5 × 10(9) conidia/ml) formulation. Both fungi were pathogenic to larvae of the pest; however, young larvae (1st and 2nd instars) were more susceptible to infection than older ones (3rd instar). Mortality rates of young and older larvae varied with conidial concentration of both fungi and elapsed time after application. The B. bassiana product was more effective than both of the formulations of the M. anisopliae product, causing mortalities up to 79.8 and 71.6% in young and older larvae, respectively. The highest mortality rates of young and older larvae caused by the M. anisopliae product were 74.1 and 67.6% for the GR formulation, 70.2 and 61.8% for the EC formulation, respectively. These results may suggest that both fungi have potential to be used for management of P. fullo. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  7. Quantification of the Influence of Extracellular Laccase and Intracellular Reactions on the Isomer-Specific Biotransformation of the Xenoestrogen Technical Nonylphenol by the Aquatic Hyphomycete Clavariopsis aquatica▿

    PubMed Central

    Martin, Claudia; Corvini, Philippe F. X.; Vinken, Ralph; Junghanns, Charles; Krauss, Gudrun; Schlosser, Dietmar

    2009-01-01

    The aquatic hyphomycete Clavariopsis aquatica was used to quantify the effects of extracellular laccase and intracellular reactions on the isomer-specific biotransformation of technical nonylphenol (t-NP). In laccase-producing cultures, maximal removal rates of t-NP and the isomer 4-(1-ethyl-1,4-dimethylpentyl)phenol (NP112) were about 1.6- and 2.4-fold higher, respectively, than in laccase-lacking cultures. The selective suppression of either laccase or intracellular reactions resulted in essentially comparable maximal removal rates for both compounds. Evidence for an unspecific oxidation of t-NP isomers was consistently obtained from laccase-expressing fungal cultures when intracellular biotransformation was suppressed and from reaction mixtures containing isolated laccase. This observation contrasts with the selective degradation of t-NP isomers by bacteria and should prevent the enrichment of highly estrogenic isomers in remaining t-NP. In contrast with laccase reactions, intracellular fungal biotransformation caused a significant shift in the isomeric composition of remaining t-NP. As a result, certain t-NP constituents related to more estrogenic isomers were less efficiently degraded than others. In contrast to bacterial degradation via ipso-hydroxylation, the substitution pattern of the quaternary α-carbon of t-NP isomers does not seem to be very important for intracellular transformation in C. aquatica. As-yet-unknown intracellular enzymes are obviously induced by nonylphenols. Mass spectral data of the metabolites resulting from the intracellular oxidation of t-NP, NP112, and 4-(1-ethyl-1,3-dimethylpentyl)phenol indicate nonyl chain hydroxylation, further oxidation into keto or aldehyde compounds, and the subsequent formation of carboxylic acid derivatives. Further metabolites suggest nonyl chain desaturation and methylation of carboxylic acids. The phenolic moieties of the nonylphenols remained unchanged. PMID:19429559

  8. Distinct CD4+-T-cell responses to live and heat-inactivated Aspergillus fumigatus conidia.

    PubMed

    Rivera, Amariliz; Van Epps, Heather L; Hohl, Tobias M; Rizzuto, Gabrielle; Pamer, Eric G

    2005-11-01

    Aspergillus fumigatus is an important fungal pathogen that causes invasive pulmonary disease in immunocompromised hosts. Respiratory exposure to A. fumigatus spores also causes allergic bronchopulmonary aspergillosis, a Th2 CD4+-T-cell-mediated disease that accompanies asthma. The microbial factors that influence the differentiation of A. fumigatus-specific CD4+ T lymphocytes into Th1 versus Th2 cells remain incompletely defined. We therefore examined CD4+-T-cell responses of immunologically intact mice to intratracheal challenge with live or heat-inactivated A. fumigatus spores. Live but not heat-inactivated fungal spores resulted in recruitment of gamma interferon (IFN-gamma)-producing, fungus-specific CD4+ T cells to lung airways, achieving A. fumigatus-specific frequencies exceeding 5% of total CD4+ T cells. While heat-inactivated spores did not induce detectable levels of IFN-gamma-producing, A. fumigatus-specific CD4+ T cells in the airways, they did prime CD4+ T-cell responses in draining lymph nodes that produced greater amounts of interleukin 4 (IL-4) and IL-13 than T cells responding to live conidia. While immunization with live fungal spores induced antibody responses, we found a marked decrease in isotype-switched, A. fumigatus-specific antibodies in sera of mice following immunization with heat-inactivated spores. Our studies demonstrate that robust Th1 T-cell and humoral responses are restricted to challenge with fungal spores that have the potential to germinate and cause invasive infection. How the adaptive immune system distinguishes between metabolically active and inactive fungal spores remains an important question.

  9. Laboratory and Field Evaluation of the Entomopathogenic Fungus Beauveria bassiana (Deuteromycotina: Hyphomycetes) for Population Management of Spruce Beetle, Dendroctonus rufipennis (Coleoptera: Scolytinae), in Felled Trees and Factors Limiting Pathogen Success.

    PubMed

    Davis, Thomas Seth; Mann, Andrew J; Malesky, Danielle; Jankowski, Egan; Bradley, Clifford

    2018-03-24

    An isolate of the entomopathogenic fungus Beauveria bassiana (Bals.) Vuill. (Deuteromycotina: Hyphomycetes) was tested for its ability to reduce survival and reproduction of spruce beetle, Dendroctonus rufipennis (Kirby) (Coleoptera: Scolytinae), under laboratory and field conditions. Conidial suspension applied directly to adults or to filter papers that adults contacted had a median survival time of 3-4 d in laboratory assays and beetles died more rapidly when exposed to conidial suspension than when treated with surfactant solution only. In the field, conidial suspension was applied to the surface of felled and pheromone-baited Engelmann spruce (Picea engelmannii) trees using a backpack sprayer. Mortality of colonizing parent beetles (F0), reproduction (abundance of F1 offspring in logs), and emergence of F1 beetles from logs was compared between treated and nontreated logs. Application of spore suspension increased mortality of F0 adults by 36% on average. Total F1 reproduction was reduced by 17% and emergence from logs was reduced by 13% in treated logs, but considerable variability in reproduction and emergence was observed. Viable spores were re-isolated from treated logs up to 90 d after application, indicating that spores are capable of long-term persistence on the tree bole microhabitat. Subsequent in vitro tests revealed that temperatures below 15°C and exposure to spruce monoterpenes likely limit performance of B. bassiana under field conditions, but exposure to low-intensity light or interactions with spruce beetle symbiotic fungi were not strongly inhibitory. It is concluded that matching environmental tolerances of biocontrol fungi to field conditions can likely improve their usefulness for control of spruce beetle in windthrown trees.

  10. Do Invertebrate Activity and Current Velocity Affect Fungal Assemblage Structure in Leaves?

    NASA Astrophysics Data System (ADS)

    Ferreira, Verónica; Graça, Manuel A. S.

    2006-02-01

    In this study we assessed the effect of current velocity and shredder presence, manipulated in artificial channels, on the structure of the fungal assemblage colonizing alder (Alnus glutinosa (L.) Gaertner) leaves incubated in coarse and fine mesh bags. Fungal sporulation rates, cumulative conidial production and number of species of aquatic hyphomycetes were higher in leaves exposed to high rather than to low current velocity. The opposite was observed regarding Simpson's index (D) on the fungal assemblage. Some species of aquatic hyphomycetes were consistently stimulated in high current channels. No effect of shredders or of mesh type was observed.

  11. Survival of Penicillium spp. conidia during deep-frying and baking steps of frozen chicken nuggets processing.

    PubMed

    Wigmann, Évelin Francine; Moreira, Rafael Chelala; Alvarenga, Verônica Ortiz; Sant'Ana, Anderson S; Copetti, Marina Venturini

    2016-05-01

    This study aimed at determining whether Penicillium spp. strains could survive through the heat treatment applied during the processing of frozen chicken nuggets. Firstly, it was found that the conidia of Penicillium were not able to survive the heat shock in phosphate buffer at pH 7.2 in thermal death tubes (TDT) at 80 °C/30 min. Subsequently, each Penicillium strain was inoculated in frozen chicken nuggets, which were subjected to the following treatments: i) only deep frying (frying oil at 195-200 °C), ii) only baking (120-130 °C until the internal temperature reached 70 °C) and iii) deep frying followed by baking (frying oil temperature of 195-200 °C and baking temperature of 120-130 °C, until the internal temperature reached 70 °C). The results indicated that Penicillium polonicum NGT 23/12, Penicillium commune NGT 16/12, Penicillium solitum NGT 30/12 and Penicillium crustosum NGT 51/12 were able to survive after the combined treatment (deep frying followed by baking) when inoculated in chicken nuggets. P. polonicum NGT 23/12 was the most resistant strain to the combined treatment (deep frying and baking), as its population was reduced by 3 log cycles CFU/g, when the internal temperature reached 78 °C after 10 min and 30 s of baking. The present data show that if Penicillium spp. is present in high numbers in raw materials, such as breading flours, it will survive the thermal processing applied during chicken nuggets production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Studies on mould growth and biomass production using waste banana peel.

    PubMed

    Essien, J P; Akpan, E J; Essien, E P

    2005-09-01

    Hyphomycetous (Aspergillus fumigatus) and Phycomycetous (Mucor hiemalis) moulds were cultivated in vitro at room temperature (28 + 20 degrees C) to examined their growth and biomass production on waste banana peel agar (BPA) and broth (BPB) using commercial malt extract agar (MEA) and broth (MEB) as control. The moulds grew comparatively well on banana peel substrates. No significant difference (p > 0.05) in radial growth rates was observed between moulds cultivated on PBA and MEA, although growth rates on MEA were slightly better. Slight variations in sizes of asexual spores and reproductive hyphae were also observed between moulds grown on MEA and BPA. Smaller conidia and sporangiospores, and shorter aerial hyphae (conidiophores and sporangiophores) were noticed in moulds grown on BPA than on MEA. The biomass weight of the test moulds obtained after one month of incubation with BPB were only about 1.8 mg and 1.4 mg less than values recorded for A. fumigatus and M. hiemalis respectively, grown on MEB. The impressive performance of the moulds on banana peel substrate may be attributed to the rich nutrient (particularly the crude protein 7.8% and crude fat 11.6% contents) composition of banana peels. The value of this agricultural waste can therefore be increased by its use not only in the manufacture of mycological medium but also in the production of valuable microfungal biomass which is rich in protein and fatty acids.

  13. Fungi Associated with the Hemlock Woolly Adelgid, Adelges tsugae, and Assessment of Entomopathogenic Isolates for Management

    PubMed Central

    Reid, W.R.; Parker, B.L.; Gouli, S.Y.; Skinner, M.; Gouli, V.V.; Teillon, H.B.

    2010-01-01

    Fungi associated with the hemlock wooly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae), were collected throughout the eastern USA and southern China. Twenty fungal genera were identified, as were 79 entomopathogenic isolates, including: Lecanicillium lecanii (Zimmermann) (Hypocreales: Insertae sedis), Isaria farinosa (Holm: Fries.) (Cordycipitaceae), Beauveria bassiana (Balasamo) (Hyphomycetes), and Fusarium spp (Nectriaceae). The remaining fungal genera associated with insect cadavers were similar for both the USA and China collections, although the abundance of Acremonium (Hypocreaceae) was greater in China. The entomopathogenic isolates were assayed for efficacy against Myzus persicae (Sulzer) (Homoptera: Aphididae) and yielded mortality ranging from 3 to 92%. Ten isolates demonstrating the highest efficacy were further assessed for efficacy against field-collected A. tsugae under laboratory conditions. Overall, two B. bassiana, one L. lecanii, and a strain of Metarhizium anisopliae (Metchnikoff) (Hypocreales: Clavicipitaceae), demonstrated significantly higher efficacy against A. tsugae than the others. Isolates were further evaluated for conidial production, germination rate and colony growth at four temperatures representative of field conditions. All isolates were determined to be mesophiles with optimal temperature between 25–30° C. In general, conidial production increased with temperature, though two I. farinosa produced significantly more conidia at cooler temperatures. When efficacy values were compared with conidial production and temperature tolerances, Agricultural Research Service Collection of Entomopathogenic Fungi (ARSEF) 1080, 5170, and 5798 had characteristics comparable to the industrial B. bassiana strain GHA. PMID:20672977

  14. Taxa-area relationship of aquatic fungi on deciduous leaves.

    PubMed

    Duarte, Sofia; Cássio, Fernanda; Pascoal, Cláudia; Bärlocher, Felix

    2017-01-01

    One of the fundamental patterns in macroecology is the increase in the number of observed taxa with size of sampled area. For microbes, the shape of this relationship remains less clear. The current study assessed the diversity of aquatic fungi, by the traditional approach based on conidial morphology (captures reproducing aquatic hyphomycetes) and next generation sequencing (NGS; captures other fungi as well), on graded sizes of alder leaves (0.6 to 13.6 cm2). Leaves were submerged in two streams in geographically distant locations: the Oliveira Stream in Portugal and the Boss Brook in Canada. Decay rates of alder leaves and fungal sporulation rates did not differ between streams. Fungal biomass was higher in Boss Brook than in Oliveira Stream, and in both streams almost 100% of the reads belonged to active fungal taxa. In general, larger leaf areas tended to harbour more fungi, but these findings were not consistent between techniques. Morphospecies-based diversity increased with leaf area in Boss Brook, but not in Oliveira Stream; metabarcoding data showed an opposite trend. The higher resolution of metabarcoding resulted in steeper taxa-accumulation curves than morphospecies-based assessments (fungal conidia morphology). Fungal communities assessed by metabarcoding were spatially structured by leaf area in both streams. Metabarcoding promises greater resolution to assess biodiversity patterns in aquatic fungi and may be more accurate for assessing taxa-area relationships and local to global diversity ratios.

  15. Effects of Airflow and Changing Humidity on the Aerosolization of Respirable Fungal Fragments and Conidia of Botrytis cinerea

    PubMed Central

    2012-01-01

    The purpose of this study was to investigate the aerosolization of particles (micro- and macroconidia and fragments) from Botrytis cinerea cultures in relation to potential human inhalation in indoor environments. The influence of the following factors on the aerosolization of B. cinerea particles was studied: exposure to airflow, relative humidity (rh), changing rh, and plant or building materials. The aerodynamic diameter (da) and the respirable fraction of the aerosolized particles were determined. Conidia and fragments of B. cinerea were not aerosolized as a response to a decrease in the rh. In contrast, both micro- and macroconidia and fungal fragments were aerosolized when exposed to an airflow of 1.5 m s−1 or 0.5 m s−1. Significantly more particles of microconidial size and fragment size were aerosolized at a low rh (18 to 40% rh) than at a higher rh (60 to 80% rh) when cultures were exposed to airflow. The size of the respirable fraction of the aerosolized particles was dependent on the rh but not on the growth material. At high rh, about 30% of the aerosolized particles were of respirable size, while at low rh, about 70% were of respirable size. During low rh, more fungal (1→3)-β-d-glucan and chitinase were aerosolized than during high rh. In conclusion, exposure to external physical forces such as airflow is necessary for the aerosolization of particles from B. cinerea. The amount and size distribution are highly affected by the rh, and more particles of respirable sizes were aerosolized at low rh than at high rh. PMID:22447608

  16. Susceptibility screening of hyphae-forming fungi with a new, easy, and fast inoculum preparation method.

    PubMed

    Schmalreck, Arno; Willinger, Birgit; Czaika, Viktor; Fegeler, Wolfgang; Becker, Karsten; Blum, Gerhard; Lass-Flörl, Cornelia

    2012-12-01

    In vitro susceptibility testing of clinically important fungi becomes more and more essential due to the rising number of fungal infections in patients with impaired immune system. Existing standardized microbroth dilution methods for in vitro testing of molds (CLSI, EUCAST) are not intended for routine testing. These methods are very time-consuming and dependent on sporulating of hyphomycetes. In this multicentre study, a new (independent of sporulation) inoculum preparation method (containing a mixture of vegetative cells, hyphae, and conidia) was evaluated. Minimal inhibitory concentrations (MIC) of amphotericin B, posaconazole, and voriconazole of 180 molds were determined with two different culture media (YST and RPMI 1640) according to the DIN (Deutsches Institut für Normung) microdilution assay. 24 and 48 h MIC of quality control strains, tested per each test run, prepared with the new inoculum method were in the range of DIN. YST and RPMI 1640 media showed similar MIC distributions for all molds tested. MIC readings at 48 versus 24 h yield 1 log(2) higher MIC values and more than 90 % of the MICs read at 24 and 48 h were within ± 2 log(2) dilution. MIC end point reading (log(2 MIC-RPMI 1640)-log(2 MIC-YST)) of both media demonstrated a tendency to slightly lower MICs with RPMI 1640 medium. This study reports the results of a new, time-saving, and easy-to-perform method for inoculum preparation for routine susceptibility testing that can be applied for all types of spore-/non-spore and hyphae-forming fungi.

  17. The oral route in the pathogenesis of paracoccidioidomycosis: an experimental study in BALB/c mice infected with P. brasiliensis conidia.

    PubMed

    Roldán, J C; Tabares, A M; Gómez, B L; Aristizábal, B E; Cock, A M; Restrepo, A

    2001-01-01

    Due to the high frequency of oral mucosal lesions observed in paracoccidioidomycosis patients, it was advocated that the infection was acquired by the traumatic implantation of the etiologic agent Paracoccidioides brasiliensis. Although at present this theory is considered invalid, it has not yet been excluded in experimental studies. In order to determine if intra-oral inoculation could explain the pathogenesis of paracoccidioidomycosis, 64 BALB/c mice were inoculated intra-orally with 850.000 viable P. brasiliensis conidia into the mandibular body. Animals were sacrificed at various time intervals up to 20 weeks and cultures were made from gingiva, lungs, spleen, and liver. Additionally, histopathological studies of the mandibular body were also performed. P. brasiliensis was isolated from all gingival tissues during the interval 24-72 h, indicating that the infection was active. During the 5-10 week period, the infection appeared to have been controlled at the inoculation site as cultures showed a significant reduction in colony forming units (CFU); however, at the 15-20 week period such control was lost and the fungus was recovered once more. Dissemination to other body sites was rare; thus, the lungs were involved in just one animal (2%), the liver in two (3%) and the spleen in seven (11%). The infection became established as proven by positive organ cultures, but the dissemination pattern did not correspond to the one observed in humans. Based on these findings, the intra-oral traumatic route does not appear to mimic the natural history of paracoccidioidomycosis.

  18. Influence of substrate type and temperature on the developmental morphology of Pandora neoaphidis (Zygomycetes: entomophthorales), a pathogen of the tobacco aphid (Homoptera: aphididae).

    PubMed

    Dara, S K; Semtner, P J

    1998-09-01

    Developmental morphology of Pandora neoaphidis was observed on the surfaces of the tobacco aphid, Myzus nicotianae, tobacco leaves (Nicotiana tabacum), and glass coverslips at 13 and 20 degrees C for 12 and 24 h postinoculation. Pandora neoaphidis responded similarly on the two living substrates, but differed on the inert coverslips. The proportions of ellipsoid conidia (primary and secondary) were similar on all substrates. Higher proportions of appressoria and lower proportions of round secondary conidia and germinating conidia occurred on the aphids and leaves than on the coverslips. Appressoria predominated over round secondary conidia and germinating conidia on the living substrates at 20 degrees C, but the opposite was seen at 13 degrees C. The proportions of ellipsoid conidia were similar at both temperatures. On coverslips, the proportions of appressoria and round secondary conidia were similar at both temperatures. However, the proportions of germinating and ellipsoid conidia were higher at 13 and 20 degrees C, respectively. Copyright 1998 Academic Press.

  19. Pathogenicity of conidia-based preparations of entomopathogenic fungi against the greenhouse pest aphids Myzus persicae, Aphis gossypii, and Aulacorthum solani (Hemiptera: Aphididae).

    PubMed

    Jandricic, S E; Filotas, M; Sanderson, J P; Wraight, S P

    2014-05-01

    Seeking new isolates of entomopathogenic fungi with greater virulence against greenhouse aphid pests than those currently registered in North America for control of these insects, single-dose screening assays of 44 selected fungal isolates and 4 commercially available strains were conducted against first-instar nymphs of Myzus persicae and Aphis gossypii. The assays identified a number of Beauveria and Metarhizium isolates with virulence equal to or greater than that of the commercial strains against the nymphal aphids, but none exhibited exceptionally high virulence. Virulence of Isaria isolates was unexpectedly low (<31% mortality at doses>1000conidia/mm(2)). In dose-response assays, Beauveria ARSEF 5493 proved most virulent against M. persicae and A. gossypii; however, LC50s of this isolate did not differ significantly from those of B. bassiana commercial strain JW-1. Dose-response assays were also conducted with Aulacorthum solani, the first reported evaluations of Beauveria and Metarhizium against this pest. The novel isolate Metarhizium 5471 showed virulence⩾that of Beauveria 5493 in terms of LC25 and LC50, but 5493 produced a steeper dose response (slope). Additional tests showed that adult aphids are more susceptible than nymphs to fungal infection but confirmed that infection has a limited pre-mortem effect on aphid reproduction. Effects of assay techniques and the potential of fungal pathogens as aphid-control agents are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Microsatellite variability in the entomopathogenic fungus Paeciolomyces fumosoroseus: genetic diversity and population structure

    USDA-ARS?s Scientific Manuscript database

    The hyphomycete Paecilomyces fumosoroseus (Pfr) is a geographically widespread fungus capable of infecting various insect hosts. The fungus has been used for the biological control of several important insect pests of agriculture. However knowledge of the fungus’ genetic diversity and population str...

  1. Potassium influences forage bermudagrass yield and fungal leaf disease severity in Mississippi

    USDA-ARS?s Scientific Manuscript database

    Leaf spot diseases are associated with K deficiency in forage bermudagrass. In 2010, a natural disease epiphytotic caused by six species of Bipolaris, Curvularia, and Exserohilum (dematiaceous hyphomycetes) was evaluated in 56 plots of ‘Tifton 44' bermudagrass in Mississippi. Pathogen occurrence, di...

  2. Cryptic diversity, pathogenicity, and evolutionary species boundaries in Cercospora populations associated with Cercospora leaf spot of Beta vulgaris

    USDA-ARS?s Scientific Manuscript database

    Cercospora is one of the largest genera of hyphomycetes accommodating several important phytopathogenic species associated with foliar diseases of vegetable and field crops. Cercospora leaf spot (CLS), caused by C. beticola, is a destructive disease of Beta vulgaris (sugar beet, table beet and swiss...

  3. Effect of heat stress and oil formulation on conidial germination of Metarhizium anisopliae s.s. on tick cuticle and artificial medium.

    PubMed

    Barreto, Lucas P; Luz, Christian; Mascarin, Gabriel M; Roberts, Donald W; Arruda, Walquíria; Fernandes, Éverton K K

    2016-07-01

    The effect of heat stress (45°C) versus non-heat stress (27°C) on germination of Metarhizium anisopliae sensu stricto (s.s.) isolate IP 119 was examined with conidia formulated (suspended) in pure mineral oil or in water (Tween 80, 0.01%), and then applied onto the cuticle of Rhipicephalus sanguineus sensu lato (s.l.) engorged females or onto culture medium (PDAY). In addition, bioassays were performed to investigate the effect of conidia heated while formulated in oil, then applied to blood-engorged adult R. sanguineus females. Conidia suspended in water then exposed to 45°C, in comparison to conidia formulated in mineral oil and exposed to the same temperature, germinated less and more slowly when incubated on either PDAY medium or tick cuticle. Also, conidial germination on tick cuticle was delayed in comparison to germination on artificial culture medium; for example, germination was 13% on tick cuticle 72h after inoculation, in contrast to 61.5% on PDAY medium. Unheated (27°C) conidia suspended in either water or oil and applied to tick cuticle developed appressoria 36h after treatment; whereas only heat-stressed conidia formulated in oil developed appressoria on tick cuticle. In comparison to conidia heated in mineral oil, there was a strong negative effect of heat on germination of conidia heated in water before being applied to arthropod cuticle. Nevertheless, bioassays [based primarily on egg production (quantity) and egg hatchability] exhibited high percentages of tick control regardless of the type of conidial suspension; i.e., water- or oil-formulated conidia, and whether or not conidia were previously exposed to heat. In comparison to aqueous conidial preparations, however, conidia formulated in oil reduced egg hatchability irrespective of heat or no-heat exposure. In conclusion, mineral-oil formulation protected conidia against heat-induced delay of both germination and appressorium production when applied to the cuticle of R. sanguineus

  4. Effects of physical and nutritional stress conditions during mycelial growth on conidial germination speed, adhesion to host cuticle, and virulence of Metarhizium anisopliae, an entomopathogenic fungus.

    PubMed

    Rangel, Drauzio E N; Alston, Diane G; Roberts, Donald W

    2008-11-01

    Growth under stress may influence pathogen virulence and other phenotypic traits. Conidia of the entomopathogenic fungus Metarhizium anisopliae var. anisopliae (isolate ARSEF 2575) were produced under different stress conditions and then examined for influences on in vitro conidial germination speed, adhesion to the insect cuticle, and virulence to an insect host, Tenebrio molitor. Conidia were produced under non-stress conditions [on potato-dextrose agar plus 1gl(-1) yeast extract (PDAY; control)], or under the following stress conditions: osmotic (PDAY+sodium chloride or potassium chloride, 0.6 or 0.8m); oxidative [(PDAY+hydrogen peroxide, 5mm) or UV-A (irradiation of mycelium on PDAY)]; heat shock (heat treatment of mycelium on PDAY at 45 degrees C, 40min); and nutritive [minimal medium (MM) with no carbon source, or on MM plus 3gl(-1) lactose (MML)]. Conidia were most virulent (based on mortality at 3d) and had the fastest germination rates when produced on MML, followed by MM. In addition, conidial adhesion to host cuticle was greatest when the conidia were produced on MML. Media with high osmolarity (0.8m) produced conidia with slightly elevated virulence and faster germination rates than conidia produced on the control medium (PDAY), but this trend did not hold for media with the lower osmolarity, (0.6m). Conidia produced from mycelium irradiated with UV-A while growing on PDAY had somewhat elevated virulence levels similar to that of conidia produced on MM, but their germination rate was not increased. Hydrogen peroxide and heat shock treatments did not alter virulence. These results demonstrate that the germination, adhesion and virulence of M. anisopliae conidia can be strongly influenced by culture conditions (including stresses) during production of the conidia.

  5. Conidiation of Penicillium camemberti in submerged liquid cultures is dependent on the nitrogen source.

    PubMed

    Boualem, Khadidja; Labrie, Steve; Gervais, Patrick; Waché, Yves; Cavin, Jean-François

    2016-02-01

    To study the ability of a commercial Penicillium camemberti strain, used for Camembert type cheese ripening, to produce conidia during growth in liquid culture (LC), in media containing different sources of nitrogen as, industrially, conidia are produced by growth at the surface of a solid state culture because conidiation in stirred submerged aerobic LC is not known. In complex media containing peptic digest of meat, hyphae ends did not differentiate into phialides and conidia. Contrarily, in a synthetic media containing KNO3 as sole nitrogen source, hyphae ends differentiated into phialides producing 0.5 × 10(7) conidia/ml. Conidia produced in LC were 25 % less hydrophobic than conidia produced in solid culture, and this correlates with a seven-times-lower expression of the gene rodA encoding hydrophobin RodA in the mycelium grown in LC. Conidiation of P. camembertii is stimulated in iquid medium containing KNO3 as sole source of nitrogen and therefore opens up opportunities for using liquid medium in commercial productions.

  6. Neurospora crassa 1,3-α-glucan synthase, AGS-1, is required for cell wall biosynthesis during macroconidia development

    PubMed Central

    Fu, Ci; Tanaka, Asuma

    2014-01-01

    The Neurospora crassa genome encodes two 1,3-α-glucan synthases. One of these 1,3-α-glucan synthase genes, ags-1, was shown to be required for the synthesis of 1,3-α-glucan in the aerial hyphae and macroconidia cell walls. 1,3-α-Glucan was found in the conidia cell wall, but was absent from the vegetative hyphae cell wall. Deletion of ags-1 affected conidial development. Δags-1 produced only 5 % as many conidia as the WT and most of the conidia produced by Δags-1 were not viable. The ags-1 upstream regulatory elements were shown to direct cell-type-specific expression of red fluorescent protein in conidia and aerial hyphae. A haemagglutinin-tagged AGS-1 was found to be expressed in aerial hyphae and conidia. The research showed that 1,3-α-glucan is an aerial hyphae and conidia cell wall component, and is required for normal conidial differentiation. PMID:24847001

  7. [Production of infectious units of Isaria fumosorosea (Hypocreales: Cordycipitaceae) from different indigenous isolates of northeastern Mexico using 3 propagation strategies].

    PubMed

    Gandarilla-Pacheco, Fatima L; Morales-Ramos, Lilia H; Pereyra-Alférez, Benito; Elías-Santos, Myriam; Quintero-Zapata, Isela

    The aim of this study was to evaluate the production of blastospores and conidia of different native isolates and a strain of Isaria fumosorosea using different propagation techniques. Two liquid culture media of casamino acids and peptone as nitrogen sources and glucose as carbon source for both media cultures were respectively used in the production of blastospores, while for the production of conidia, the fungi were grown in potato dextrose agar; from these cultures, solutions of conidia to a concentration of 1×10 6 per milliliter were prepared to inoculate flasks with Sabouraud dextrose broth for the liquid phase of the biphasic culture, also known as preculture. Subsequently, rice grain bags were inoculated with the preculture and the conidia solutions, which were incubated for 14 days for solid fermentation and biphasic culture, respectively. The HIB-23 isolate recorded a concentration of 4.90×10 8 blastospores/ml in the casamino acid medium, while a concentration of 2.15×10 8 blastospores/ml was obtained in the peptone collagen medium. For the Pfr-612 strain, the conidia production in solid-state fermentation was 1.58×10 9 conidia/g, and for HIB-30 in the biphasic culture of 9.00×10 6 conidia/g. Solid-state fermentation proved to be the most effective method with an average of 1.09×10 9 conidia/g, whereas the biphasic culture was the least effective method with 2.76×10 6 conidia/g; no significant difference was reported for the submerged production media. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Scorpion neurotoxin AaIT-expressing Beauveria bassiana enhances the virulence against Aedes albopictus mosquitoes.

    PubMed

    Deng, Sheng-Qun; Cai, Qun-Di; Deng, Ming-Zhi; Huang, Qiang; Peng, Hong-Juan

    2017-12-01

    To improve the insecticidal efficacy of this entomopathogen Beauveria bassiana, the fungus was genetically modified to express an insect-specific scorpion neurotoxin AaIT. The virulence of the recombinant B. bassiana strain (Bb-AaIT) against Aedes albopictus adults (which occurs via penetration through the cuticle during spore germination or by conidia ingestion), and the larvae (by conidia ingestion) was measured with bioassays. The median lethal concentration (LC 50 ) of Bb-AaIT against A. albopictus larvae was 313.3-fold lower on day 4 and 11.3-fold lower on day 10 than that of the wild type (WT). Through conidia feeding or body contact, Bb-AaIT killed 50% of adult female mosquitoes at 3.9- or 1.9-fold reduced concentrations on day 4 and at 2.1- or 2.4-fold reduced concentrations on day 10. Compared with the results for the WT, the median lethal time (LT 50 ) of Bb-AaIT was reduced by 28.6% at 1 × 10 7 conidia ml -1 and 34.3% at 1 × 10 6 conidia ml -1 in the larvae bioassay by conidia ingestion, while it decreased 32.3% at 1 × 10 7 conidia ml -1 by conidia ingestion and 24.2% at 1 × 10 8 conidia ml -1 by penetrating through the cuticle in the adult bioassay. All the differences were significant. Our findings indicated that Bb-AaIT had higher virulence and faster action than the WT in killing the larval and adult mosquitoes, and therefore, it is valuable for development as a commercial mosquito pesticide.

  9. Hide, Keep Quiet, and Keep Low: Properties That Make Aspergillus fumigatus a Successful Lung Pathogen

    PubMed Central

    Escobar, Natalia; Ordonez, Soledad R.; Wösten, Han A. B.; Haas, Pieter-Jan A.; de Cock, Hans; Haagsman, Henk P.

    2016-01-01

    Representatives of the genus Aspergillus are opportunistic fungal pathogens. Their conidia can reach the alveoli by inhalation and can give rise to infections in immunocompromised individuals. Aspergillus fumigatus is the causal agent of invasive aspergillosis in nearly 90% of the cases. It is not yet well-established what makes this fungus more pathogenic than other aspergilli such as A. niger. Here, we show that A. fumigatus and A. niger conidia adhere with similar efficiency to lung epithelial A549 cells but A. fumigatus conidia internalized 17% more efficiently. Conidia of both aspergilli were taken up in phagolysosomes 8 h after the challenge. These organelles only acidified in the case of A. niger, which is probably due to the type of melanin coating of the conidia. Viability of both types of conidia was not affected after uptake in the phagolysosomes. Germination of A. fumigatus and A. niger conidia in the presence of epithelial cells was delayed when compared to conidia in the medium. However, germination of A. niger conidia was still higher than that of A. fumigatus 10 h after exposure to A549 cells. Remarkably, A. fumigatus hyphae grew mainly parallel to the epithelium, while growth direction of A. niger hyphae was predominantly perpendicular to the plane of the cells. Neutrophils reduced germination and hyphal growth of A. niger, but not of A fumigatus, in presence of epithelial cells. Taken together, efficient internalization, delayed germination, and hyphal growth parallel to the epithelium gives a new insight into what could be the causes for the success of A. fumigatus compared to A. niger as an opportunistic pathogen in the lung. PMID:27092115

  10. Production, Survival, and Evaluation of Solid-Substrate Inocula of Penicillium oxalicum, a Biocontrol Agent Against Fusarium Wilt of Tomato.

    PubMed

    Larena, I; Melgarejo, P; De Cal, A

    2002-08-01

    ABSTRACT Production of conidia of Penicillium oxalicum (ATCC number pending), a biocontrol agent of Fusarium oxysporum f. sp. lycopersici, was tested in liquid and solid fermentation. P. oxalicum produced 250-fold more conidia in solid than in liquid fermentation at 30 days after inoculation of substrate. Solid fermentation was carried out in plastic bags (600 cm(3)) especially designed for solid fermentation (VALMIC) containing 50 g of peat/vermiculite (PV) (1:1, wt/wt) with 40% moisture, sealed, sterilized, and then inoculated with 1 ml of a conidial suspension of P. oxalicum (10(5) conidia g(-1) dry substrate), sealed again, and incubated in darkness at 20 to 25 degrees C for 30 days. Addition of amendments to PV in a proportion of 0.5 (wt/wt) significantly increased conidial production of P. oxalicum. The best production was obtained on PV plus meal of cereal grains (barley) or leguminous seeds (lentil) (100-fold higher). Conidial production obtained after 5 days of inoculation was similar to that obtained at 30 days. However, viability of conidia produced in PV plus lentil meal was 35% higher than that of conidia produced in PV plus barley meal. Changes in proportions (1:1:0.5, wt/wt/wt; 1:1:1, wt/wt/wt; 1:0.5:0.5, wt/wt/wt; 1:1:0.5, vol/vol/vol) of components of the substrate (peat/vermiculite/lentil meal) did not enhance production or viability of conidia. Optimal initial moisture in the substrate was 30 to 40%. At lower moistures, significant reductions of production of conidia were observed, particularly at 10%. There was a general decline in the number of conidia in bags with time of storage at -80, -20, 4, and 25 degrees C, or at room temperature (range from 30 to 15 degrees C), with the highest decline occurring from 60 to 180 days. Conidial viability also was reduced with time, except for conidia stored at -20 degrees C. Fresh conidia produced in solid fermentation system or those conidia stored at -20 degrees C for 180 days reduced Fusarium wilt of

  11. Effects of successive subculturing on stability, virulence, conidial yield, germination and shelf-life of entomopathogenic fungi.

    PubMed

    Ansari, M A; Butt, T M

    2011-06-01

    To determine the stability and conidial yield of two strains of the entomopathogenic fungus Metarhizium anisopliae and one strain of M. brunneum, being developed for the control of insect pests. The conidial yields and the shelf-life of the conidia of two commercially viable strains of M. anisopliae V275 (=F52) and ARSEF 4556 and one strain of M. brunneum (ARSEF 3297) were determined after harvesting conidia from in vitro subcultures on Sabouraud dextrose agar (SDA) and broken basmati rice. The strains were stable and showed no decline in virulence against Tenebrio molitor, even when subcultured successively 12 times on SDA. Conidia-bound Pr1 protease activity decreased in conidia harvested from SDA and mycosed cadavers after the 1st subculture, but increased in conidia produced on rice. The C:N ratio of conidia from mycosed cadavers was lower than that of conidia from rice or SDA. Irrespective of the number of subcultures, strain ARSEF 4556 produced significantly higher conidial yields than ARSEF 3297 and V275. The 12th subculture of V275 and ARSEF 3297 produced the lowest conidial yield. Shelf-life studies showed that conidia of strain ARSEF 4556 had a higher conidial viability than V275 and ARSEF 3297 after 4 months, stored at 4°C. The current study shows that determining strain stability and conidial yield through successive subculturing is an essential component for selecting the best strain for commercial purposes.   This is the first study to compare quality control parameters in the production of conidia on rice, and it shows that the level of Pr1 is comparatively high for inoculum produced on rice. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  12. Population Genetics of the Aquatic Fungus Tetracladium marchalianum over Space and Time

    PubMed Central

    Anderson, Jennifer L.; Shearer, Carol A.

    2011-01-01

    Aquatic hyphomycete fungi are fundamental mediators of energy flow and nutrient spiraling in rivers. These microscopic fungi are primarily dispersed in river currents, undergo substantial annual fluctuations in abundance, and reproduce either predominantly or exclusively asexually. These aspects of aquatic hyphomycete biology are expected to influence levels and distributions of genetic diversity over both spatial and temporal scales. In this study, we investigated the spatiotemporal distribution of genotypic diversity in the representative aquatic hyphomycete Tetracladium marchalianum. We sampled populations of this fungus from seven sites, three sites each in two rivers in Illinois, USA, and one site in a Wisconsin river, USA, and repeatedly sampled one population over two years to track population genetic parameters through two seasonal cycles. The resulting fungal isolates (N = 391) were genotyped at eight polymorphic microsatellite loci. In spite of seasonal reductions in the abundance of this species, genotypic diversity was consistently very high and allele frequencies remarkably stable over time. Likewise, genotypic diversity was very high at all sites. Genetic differentiation was only observed between the most distant rivers (∼450 km). Clear evidence that T. marchalianum reproduces sexually in nature was not observed. Additionally, we used phylogenetic analysis of partial β-tubulin gene sequences to confirm that the fungal isolates studied here represent a single species. These results suggest that populations of T. marchalianum may be very large and highly connected at local scales. We speculate that large population sizes and colonization of alternate substrates in both terrestrial and aquatic environments may effectively buffer the aquatic populations from in-stream population fluctuations and facilitate stability in allele frequencies over time. These data also suggest that overland dispersal is more important for structuring populations of T

  13. Fungi and bacteria involved in desert varnish formation

    NASA Technical Reports Server (NTRS)

    Taylor-George, S.; Palmer, F.; Staley, J. T.; Curtiss, B.; Adams, J. B.; Borns, D. J.

    1983-01-01

    Desert varnish is a coating of ferromanganese oxides and clays that develops on rock surfaces in arid to semi-arid regions. Active respiration but not photosynthesis was detected on varnished rock surfaces from the Sonoran Desert. Light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations, and cultivation experiments indicate that both fungi, primarily dematiaceous hyphomycetes, and bacteria are found on and within desert varnish coatings from the arid regions studied. Some fungi grow as microcolonial fungi (MCF) on rocks, and microscopic observations suggest MCF become incorporated in the varnish coating. SEM-EDAX (energy dispersive X-ray systems) analyses indicate the MCF contain 3 of the characteristic elements of varnish: iron, aluminum, and silicon. In some locations, MCF are also enriched in manganese relative to the rock substratum. Furthermore, some of the dematiaceous hyphomycetes that have been cultivated are able to oxidize manganese under laboratory conditions. It is possible that manganese-oxidizing bacteria, which are found in varnish, also play an important role in varnish formation.

  14. Successive construction of cellulase hyperproducers of Trichoderma using hyperpolyploids.

    PubMed

    Toyama, H; Toyama, N

    2000-01-01

    When the swollen conidia of Trichoderma reesei QM 6a are treated with 0.1% (w/v) colchicine solution, huge autopolyploid nuclei can be formed in those swollen conidia. When a mycelial mat derived from such a conidum is treated with a haploidizing reagent, benomyl, many fan-shaped sectors are produced from the colony, and cellulase hyperproducers are selected from conidia on the colony. When colchicine and benomyl treatments are repeated on cellulase hyperproducers, new hyperproducers can be constructed successively and systematically. Moreover, when conidia derived from autopolyploids are treated with ethylmethanesulfonate solution, another type of cellulase hyperproducers (polyploids) can be obtained.

  15. Conidial germination in Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans: influence of growth conditions and antifungal susceptibility profiles.

    PubMed

    Mello, Thaís Pereira de; Aor, Ana Carolina; Oliveira, Simone Santiago Carvalho de; Branquinha, Marta Helena; Santos, André Luis Souza Dos

    2016-06-27

    In the present study, we have investigated some growth conditions capable of inducing the conidial germination in Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans. Germination in Sabouraud medium (pH 7.0, 37ºC, 5% CO2) showed to be a typically time-dependent event, reaching ~75% in S. minutisporum and > 90% in S. apiospermum, S. aurantiacum and L. prolificans after 4 h. Similar germination rate was observed when conidia were incubated under different media and pHs. Contrarily, temperature and CO2 tension modulated the germination. The isotropic conidial growth (swelling) and germ tube-like projection were evidenced by microscopy and cytometry. Morphometric parameters augmented in a time-dependent fashion, evidencing changes in size and granularity of fungal cells compared with dormant 0 h conidia. In parallel, a clear increase in the mitochondrial activity was measured during the transformation of conidia-into-germinated conidia. Susceptibility profiles to itraconazole, fluconazole, voriconazole, amphotericin B and caspofungin varied regarding each morphotype and each fungal species. Overall, the minimal inhibitory concentrations for hyphae were higher than conidia and germinated conidia, except for caspofungin. Collectively, our study add new data about the conidia-into-hyphae transformation in Scedosporium and Lomentospora species, which is a relevant biological process of these molds directly connected to their antifungal resistance and pathogenicity mechanisms.

  16. Conidial germination in Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans: influence of growth conditions and antifungal susceptibility profiles

    PubMed Central

    de Mello, Thaís Pereira; Aor, Ana Carolina; de Oliveira, Simone Santiago Carvalho; Branquinha, Marta Helena; dos Santos, André Luis Souza

    2016-01-01

    In the present study, we have investigated some growth conditions capable of inducing the conidial germination in Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans. Germination in Sabouraud medium (pH 7.0, 37ºC, 5% CO2) showed to be a typically time-dependent event, reaching ~75% in S. minutisporum and > 90% in S. apiospermum, S. aurantiacum and L. prolificans after 4 h. Similar germination rate was observed when conidia were incubated under different media and pHs. Contrarily, temperature and CO2 tension modulated the germination. The isotropic conidial growth (swelling) and germ tube-like projection were evidenced by microscopy and cytometry. Morphometric parameters augmented in a time-dependent fashion, evidencing changes in size and granularity of fungal cells compared with dormant 0 h conidia. In parallel, a clear increase in the mitochondrial activity was measured during the transformation of conidia-into-germinated conidia. Susceptibility profiles to itraconazole, fluconazole, voriconazole, amphotericin B and caspofungin varied regarding each morphotype and each fungal species. Overall, the minimal inhibitory concentrations for hyphae were higher than conidia and germinated conidia, except for caspofungin. Collectively, our study add new data about the conidia-into-hyphae transformation in Scedosporium and Lomentospora species, which is a relevant biological process of these molds directly connected to their antifungal resistance and pathogenicity mechanisms. PMID:27355215

  17. The AMP-Activated Protein Kinase Homolog Snf1 Concerts Carbon Utilization, Conidia Production and the Biosynthesis of Secondary Metabolites in the Taxol-Producer Pestalotiopsis microspora.

    PubMed

    Wang, Dan; Li, Yingying; Wang, Haichuan; Wei, Dongsheng; Akhberdi, Oren; Liu, Yanjie; Xiang, Biyun; Hao, Xiaoran; Zhu, Xudong

    2018-01-24

    Highly conserved, the Snf1/AMPK is a central regulator of carbon metabolism and energy production in the eukaryotes. However, its function in filamentous fungi has not been well established. In this study, we reported functional characterization of Snf1/AMPK in the growth, development and secondary metabolism in the filamentous fungus Pestalotiopsis microspora . By deletion of the yeast SNF1 homolog, we found that it regulated the utilization of carbon sources, e.g., sucrose, demonstrating a conserved function of this kinase in filamentous fungus. Importantly, several novel functions of SNF1 were unraveled. For instance, the deletion strain displayed remarkable retardation in vegetative growth and pigmentation and produced a diminished number of conidia, even in the presence of the primary carbon source glucose. Deletion of the gene caused damages in the cell wall as shown by its hypersensitivities to Calcofluor white and Congo red, suggesting a critical role of Snf1 in maintaining cell wall integrity. Furthermore, the mutant strain Δ snf1 was hypersensitive to stress, e.g., osmotic pressure (1 M sorbitol), drug G418 and heat shock, though the mechanism remains to be illustrated. Significantly, disruption of the gene altered the production of secondary metabolites. By high-performance liquid chromatography (HPLC) profiling, we found that Δ snf1 barely produced secondary metabolites, e.g., the known product pestalotiollide B. This study suggests that Snf1 is a key regulator in filamentous fungus Pestalotiopsis microspora concerting carbon metabolism and the filamentous growth, conidiation, cell wall integrity, stress tolerance and the biosynthesis of secondary metabolites.

  18. The AMP-Activated Protein Kinase Homolog Snf1 Concerts Carbon Utilization, Conidia Production and the Biosynthesis of Secondary Metabolites in the Taxol-Producer Pestalotiopsis microspora

    PubMed Central

    Wang, Dan; Li, Yingying; Wang, Haichuan; Wei, Dongsheng; Akhberdi, Oren; Liu, Yanjie; Xiang, Biyun; Hao, Xiaoran; Zhu, Xudong

    2018-01-01

    Highly conserved, the Snf1/AMPK is a central regulator of carbon metabolism and energy production in the eukaryotes. However, its function in filamentous fungi has not been well established. In this study, we reported functional characterization of Snf1/AMPK in the growth, development and secondary metabolism in the filamentous fungus Pestalotiopsis microspora. By deletion of the yeast SNF1 homolog, we found that it regulated the utilization of carbon sources, e.g., sucrose, demonstrating a conserved function of this kinase in filamentous fungus. Importantly, several novel functions of SNF1 were unraveled. For instance, the deletion strain displayed remarkable retardation in vegetative growth and pigmentation and produced a diminished number of conidia, even in the presence of the primary carbon source glucose. Deletion of the gene caused damages in the cell wall as shown by its hypersensitivities to Calcofluor white and Congo red, suggesting a critical role of Snf1 in maintaining cell wall integrity. Furthermore, the mutant strain Δsnf1 was hypersensitive to stress, e.g., osmotic pressure (1 M sorbitol), drug G418 and heat shock, though the mechanism remains to be illustrated. Significantly, disruption of the gene altered the production of secondary metabolites. By high-performance liquid chromatography (HPLC) profiling, we found that Δsnf1 barely produced secondary metabolites, e.g., the known product pestalotiollide B. This study suggests that Snf1 is a key regulator in filamentous fungus Pestalotiopsis microspora concerting carbon metabolism and the filamentous growth, conidiation, cell wall integrity, stress tolerance and the biosynthesis of secondary metabolites. PMID:29364863

  19. Characterization of on-target generated tryptic peptides from Giberella zeae conidia spore proteins by means of matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Dong, Hongjuan; Marchetti-Deschmann, Martina; Allmaier, Günter

    2014-01-01

    Traditionally characterization of microbial proteins is performed by a complex sequence of steps with the final step to be either Edman sequencing or mass spectrometry, which generally takes several weeks or months to be complete. In this work, we proposed a strategy for the characterization of tryptic peptides derived from Giberella zeae (anamorph: Fusarium graminearum) proteins in parallel to intact cell mass spectrometry (ICMS) in which no complicated and time-consuming steps were needed. Experimentally, after a simple washing treatment of the spores, the aliquots of the intact G. zeae macro conidia spores solution, were deposited two times onto one MALDI (matrix-assisted laser desorption ionization) mass spectrometry (MS) target (two spots). One spot was used for ICMS and the second spot was subject to a brief on-target digestion with bead-immobilized or non-immobilized trypsin. Subsequently, one spot was analyzed immediately by MALDI MS in the linear mode (ICMS) whereas the second spot containing the digested material was investigated by MALDI MS in the reflectron mode ("peptide mass fingerprint") followed by protonated peptide selection for MS/MS (post source decay (PSD) fragment ion) analysis. Based on the formed fragment ions of selected tryptic peptides a complete or partial amino acid sequence was generated by manual de novo sequencing. These sequence data were used for homology search for protein identification. Finally four different peptides of varying abundances have been identified successfully allowing the verification that our desorbed/ionized surface compounds were indeed derived from proteins. The presence of three different proteins could be found unambiguously. Interestingly, one of these proteins is belonging to the ribosomal superfamily which indicates that not only surface-associated proteins were digested. This strategy minimized the amount of time and labor required for obtaining deeper information on spore preparations within the

  20. Pulmonary immune responses to Aspergillus fumigatus in an immunocompetent mouse model of repeated exposures

    PubMed Central

    Buskirk, Amanda D.; Templeton, Steven P.; Nayak, Ajay P.; Hettick, Justin M.; Law, Brandon F.; Green, Brett J.; Beezhold, Donald H.

    2015-01-01

    Aspergillus fumigatus is a filamentous fungus that produces abundant pigmented conidia. Several fungal components have been identified as virulence factors, including melanin; however, the impact of these factors in a repeated exposure model resembling natural environmental exposures remains unknown. This study examined the role of fungal melanin in the stimulation of pulmonary immune responses using immunocompetent BALB/c mice in a multiple exposure model. It compared conidia from wild-type A. fumigatus to two melanin mutants of the same strain, Δarp2 (tan) or Δalb1 (white). Mass spectrometry-based analysis of conidial extracts demonstrated that there was little difference in the protein fingerprint profiles between the three strains. Field emission scanning electron microscopy demonstrated that the immunologically inert Rodlet A layer remained intact in melanin-deficient conidia. Thus, the primary difference between the strains was the extent of melanization. Histopathology indicated that each A. fumigatus strain induced lung inflammation, regardless of the extent of melanization. In mice exposed to Δalb1 conidia, an increase in airway eosinophils and a decrease in neutrophils and CD8+ IL-17+ (Tc17) cells were observed. Additionally, it was shown that melanin mutant conidia were more rapidly cleared from the lungs than wild-type conidia. These data suggest that the presence of fungal melanin may modulate the pulmonary immune response in a mouse model of repeated exposures to A. fumigatus conidia. PMID:23919459

  1. Aspergillus fumigatus spore proteomics and genetics reveal that VeA represses DefA-mediated DNA damage response.

    PubMed

    Shin, Kwang-Soo; Park, Hee-Soo; Kim, Young; Heo, In-Beom; Kim, Young Hwan; Yu, Jae-Hyuk

    2016-10-04

    Aspergillus fumigatus reproduces and infects host by forming a high number of small asexual spores (conidia). The velvet proteins are global transcriptional regulators governing the complex process of conidiogenesis in this fungus. Here, to further understand the velvet-mediated regulation, we carried out comparative proteomic analyses of conidia of wild type (WT) and three velvet mutants (ΔveA, ΔvelB and ΔvosA). Cluster analysis of 184 protein spots showing at least 1.5-fold differential accumulation between WT and mutants reveal the clustering of WT- ΔveA and ΔvelB-ΔvosA. Among 43 proteins identified by Nano-LC-ESI-MS/MS, 23 including several heat shock proteins showed more than two-fold reduction in both the ∆velB and ∆vosA conidia. On the contrary, three proteins exhibited more than five-fold increase in ∆veA only, including the putative RNA polymerase II degradation factor DefA. The deletion of defA resulted in a reduced number of conidia and restricted colony growth. In addition, the defA deletion mutant conidia showed hypersensitivity against the DNA damaging agents NQO and MMS, while the ΔveA mutant conidia were more resistant against to NQO. Taken together, we propose that VeA controls protein level of DefA in conidia, which are dormant and equipped with multiple layers of protection against environmental cues. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Dimilin effects on leaf-decomposing aquatic fungi on the Fernow Experimental Forest, West Virginia

    Treesearch

    T. Dubey; S. L. Stephenson; P. J. Edwards

    1995-01-01

    Dimilin was applied to two watersheds on the Fernow Experimental Forest on May 16,1992, as part of a study to evaluate its effect on non-target organisms. Data were obtained on the occurrence, conidial production, and leaf litter colonization of aquatic hyphomycetes 5 days prior to and 2, 10, 25, and 55 days following application in the two treated watersheds and two...

  3. Entomopathogenic fungus as a biological control for an important vector of livestock disease: the Culicoides biting midge.

    PubMed

    Ansari, Minshad Ali; Pope, Edward C; Carpenter, Simon; Scholte, Ernst-Jan; Butt, Tariq M

    2011-01-10

    The recent outbreak of bluetongue virus in northern Europe has led to an urgent need to identify control measures for the Culicoides (Diptera: Ceratopogonidae) biting midges that transmit it. Following successful use of the entomopathogenic fungus Metarhizium anisopliae against larval stages of biting midge Culicoides nubeculosus Meigen, we investigated the efficacy of this strain and other fungi (Beauveria bassiana, Isaria fumosorosea and Lecanicillium longisporum) as biocontrol agents against adult C. nubeculosus in laboratory and greenhouse studies. Exposure of midges to 'dry' conidia of all fungal isolates caused significant reductions in survival compared to untreated controls. Metarhizium anisopliae strain V275 was the most virulent, causing a significantly decrease in midge survival compared to all other fungal strains tested. The LT(50) value for strain V275 was 1.42 days compared to 2.21-3.22 days for the other isolates. The virulence of this strain was then further evaluated by exposing C. nubeculosus to varying doses (10(8)-10(11) conidia m(-2)) using different substrates (horse manure, damp peat, leaf litter) as a resting site. All exposed adults were found to be infected with the strain V275 four days after exposure. A further study exposed C. nubeculosus adults to 'dry' conidia and 'wet' conidia (conidia suspended in 0.03% aq. Tween 80) of strain V275 applied to damp peat and leaf litter in cages within a greenhouse. 'Dry' conidia were more effective than 'wet' conidia, causing 100% mortality after 5 days. This is the first study to demonstrate that entomopathogenic fungi are potential biocontrol agents against adult Culicoides, through the application of 'dry' conidia on surfaces (e.g., manure, leaf litter, livestock) where the midges tend to rest. Subsequent conidial transmission between males and females may cause an increased level of fungi-induced mortality in midges thus reducing the incidence of disease.

  4. Effects of temperature, light and incubation period on production, germination and bioactivity of Trichoderma atroviride.

    PubMed

    Daryaei, A; Jones, E E; Ghazalibiglar, H; Glare, T R; Falloon, R E

    2016-04-01

    The goal was to determine the effect of temperature, light and incubation period on production, germination and bioactivity of Trichoderma atroviride LU132 against Rhizoctonia solani. The incubation temperatures of 20, 25 or 30°C were assessed on the production of T. atroviride conidia under constant light over a 25 and 50 days periods. The resulting conidia were also studied for germination and bioactivity. Conidium production was maximum at 25°C after 20 days. The second peak of conidium production occurred at 45-50 days. Incubation at 25°C after 15 days showed optimum production of T. atroviride LU132. Conidia produced at 30°C gave the greatest germination and bioactivity in comparison with incubation at 20 or 25°C. This study indicates that the temperature at which conidia of T. atroviride are produced affects germination and bioactivity. Formulations based on production of the high conidia yield may not result in optimal bioactivity and there is a trade-off between quantity and quality of T. atroviride LU132 conidia. Conidium production was shown to be a continuous process, and increased under a dark/light regime. This is the first report of bimodal conidium production in a Trichoderma biological control agent (BCA), which is likely to be on 20 days cycle, and is dependent on colony age rather than abiotic factors. Conidia produced after 15 days are likely to be the most suitable for use in commercial production of this strain as a BCA. Most studies on Trichoderma-based BCA have only shown the effect of culture conditions on the high conidia yield regardless of conidium quality. This study is the first report on conidium quality affected by principal culture conditions for Trichoderma biological control formulations. © 2016 The Society for Applied Microbiology.

  5. MoTea4-Mediated Polarized Growth Is Essential for Proper Asexual Development and Pathogenesis in Magnaporthe oryzae▿†

    PubMed Central

    Patkar, Rajesh N.; Suresh, Angayarkanni; Naqvi, Naweed I.

    2010-01-01

    Polarized growth is essential for cellular development and function and requires coordinated organization of the cytoskeletal elements. Tea4, an important polarity determinant, regulates localized F-actin assembly and bipolar growth in fission yeast and directional mycelial growth in Aspergillus. Here, we characterize Tea4 in the rice blast fungus Magnaporthe oryzae (MoTea4). Similar to its orthologs, MoTea4-green fluorescent protein (MoTea4-GFP) showed punctate distribution confined to growth zones, particularly in the mycelial tips, aerial hyphae, conidiophores, conidia, and infection structures (appressoria) in Magnaporthe. MoTea4 was dispensable for vegetative growth in Magnaporthe. However, loss of MoTea4 led to a zigzag morphology in the aerial hyphae and a huge reduction in conidiation. The majority of the tea4Δ conidia were two celled, as opposed to the tricellular conidia in the wild type. Structure-function analysis indicated that the SH3 and coiled-coil domains of MoTea4 are necessary for proper conidiation in Magnaporthe. The tea4Δ conidia failed to produce proper appressoria and consequently failed to infect the host plants. The tea4Δ conidia and germ tubes showed disorganized F-actin structures with significantly reduced numbers of cortical actin patches. Compared to the wild-type conidia, the tea4Δ conidia showed aberrant germination, poor cytoplasmic streaming, and persistent accumulation of lipid droplets, likely due to the impaired F-actin cytoskeleton. Latrunculin A treatment of germinating wild-type conidia showed that an intact F-actin cytoskeleton is indeed essential for appressorial development in Magnaporthe. We show that MoTea4 plays an important role in organizing the F-actin cytoskeleton and is essentially required for polarized growth and morphogenesis during asexual and pathogenic development in Magnaporthe. PMID:20472691

  6. Conidial Dihydroxynaphthalene Melanin of the Human Pathogenic Fungus Aspergillus fumigatus Interferes with the Host Endocytosis Pathway.

    PubMed

    Thywißen, Andreas; Heinekamp, Thorsten; Dahse, Hans-Martin; Schmaler-Ripcke, Jeannette; Nietzsche, Sandor; Zipfel, Peter F; Brakhage, Axel A

    2011-01-01

    Aspergillus fumigatus is the most important air-borne fungal pathogen of humans. The interaction of the pathogen with the host's immune system represents a key process to understand pathogenicity. For elimination of invading microorganisms, they need to be efficiently phagocytosed and located in acidified phagolysosomes. However, as shown previously, A. fumigatus is able to manipulate the formation of functional phagolysosomes. Here, we demonstrate that in contrast to pigmentless pksP mutant conidia of A. fumigatus, the gray-green wild-type conidia inhibit the acidification of phagolysosomes of alveolar macrophages, monocyte-derived macrophages, and human neutrophil granulocytes. Therefore, this inhibition is independent of the cell type and applies to the major immune effector cells required for defense against A. fumigatus. Studies with melanin ghosts indicate that the inhibitory effect of wild-type conidia is due to their dihydroxynaphthalene (DHN)-melanin covering the conidia, whereas the hydrophobin RodA rodlet layer plays no role in this process. This is also supported by the observation that pksP conidia still exhibit the RodA hydrophobin layer, as shown by scanning electron microscopy. Mutants defective in different steps of the DHN-melanin biosynthesis showed stronger inhibition than pksP mutant conidia but lower inhibition than wild-type conidia. Moreover, A. fumigatus and A. flavus led to a stronger inhibition of phagolysosomal acidification than A. nidulans and A. terreus. These data indicate that a certain type of DHN-melanin that is different in the various Aspergillus species, is required for maximal inhibition of phagolysosomal acidification. Finally, we identified the vacuolar ATPase (vATPase) as potential target for A. fumigatus based on the finding that addition of bafilomycin which inhibits vATPase, led to complete inhibition of the acidification whereas the fusion of phagosomes containing wild-type conidia and lysosomes was not affected.

  7. Conidial Dihydroxynaphthalene Melanin of the Human Pathogenic Fungus Aspergillus fumigatus Interferes with the Host Endocytosis Pathway

    PubMed Central

    Thywißen, Andreas; Heinekamp, Thorsten; Dahse, Hans-Martin; Schmaler-Ripcke, Jeannette; Nietzsche, Sandor; Zipfel, Peter F.; Brakhage, Axel A.

    2011-01-01

    Aspergillus fumigatus is the most important air-borne fungal pathogen of humans. The interaction of the pathogen with the host's immune system represents a key process to understand pathogenicity. For elimination of invading microorganisms, they need to be efficiently phagocytosed and located in acidified phagolysosomes. However, as shown previously, A. fumigatus is able to manipulate the formation of functional phagolysosomes. Here, we demonstrate that in contrast to pigmentless pksP mutant conidia of A. fumigatus, the gray-green wild-type conidia inhibit the acidification of phagolysosomes of alveolar macrophages, monocyte-derived macrophages, and human neutrophil granulocytes. Therefore, this inhibition is independent of the cell type and applies to the major immune effector cells required for defense against A. fumigatus. Studies with melanin ghosts indicate that the inhibitory effect of wild-type conidia is due to their dihydroxynaphthalene (DHN)-melanin covering the conidia, whereas the hydrophobin RodA rodlet layer plays no role in this process. This is also supported by the observation that pksP conidia still exhibit the RodA hydrophobin layer, as shown by scanning electron microscopy. Mutants defective in different steps of the DHN-melanin biosynthesis showed stronger inhibition than pksP mutant conidia but lower inhibition than wild-type conidia. Moreover, A. fumigatus and A. flavus led to a stronger inhibition of phagolysosomal acidification than A. nidulans and A. terreus. These data indicate that a certain type of DHN-melanin that is different in the various Aspergillus species, is required for maximal inhibition of phagolysosomal acidification. Finally, we identified the vacuolar ATPase (vATPase) as potential target for A. fumigatus based on the finding that addition of bafilomycin which inhibits vATPase, led to complete inhibition of the acidification whereas the fusion of phagosomes containing wild-type conidia and lysosomes was not affected. PMID

  8. Isolation and characterization of a pigmentless-conidium mutant of Aspergillus fumigatus with altered conidial surface and reduced virulence.

    PubMed Central

    Jahn, B; Koch, A; Schmidt, A; Wanner, G; Gehringer, H; Bhakdi, S; Brakhage, A A

    1997-01-01

    Aspergillus fumigatus is an important pathogen of immunocompromised hosts, causing pneumonia and invasive disseminated disease with high mortality. The factors contributing to the predominance of A. fumigatus as an opportunistic pathogen are largely unknown. Since the survival of conidia in the host is a prerequisite for establishing disease, we have been attempting to identify factors which are associated with conidia and, simultaneously, important for infection. Therefore, an A. fumigatus mutant strain (white [W]) lacking conidial pigmentation was isolated. Scanning electron microscopy revealed that conidia of the W mutant also differed in their surface morphology from those of the wild type (WT). Mutant (W) and WT conidia were compared with respect to their capacities to stimulate an oxidative response in human phagocytes, their intracellular survival in human monocytes, and virulence in a murine animal model. Luminol-dependent chemiluminescence was 10-fold higher when human neutrophils or monocytes were challenged with W conidia compared with WT conidia. Furthermore, mutant conidia were more susceptible to killing by oxidants in vitro and were more efficiently damaged by human monocytes in vitro than WT conidia. In a murine animal model, the W mutant strain showed reduced virulence compared with the WT. A reversion analysis of the W mutant demonstrated that all phenotypes associated with the W mutant, i.e., altered conidial surface, amount of reactive oxygen species release, susceptibility to hydrogen peroxide, and reduced virulence in an murine animal model, coreverted in revertants which had regained the ability to produce green spores. This finding strongly suggests that the A. fumigatus mutant described here carries a single mutation which caused all of the observed phenotypes. Our results suggest that the conidium pigment or a structural feature related to it contributes to fungal resistance against host defense mechanisms in A. fumigatus infections. PMID

  9. Conidial Hydrophobins of Aspergillus fumigatus

    PubMed Central

    Paris, Sophie; Debeaupuis, Jean-Paul; Crameri, Reto; Carey, Marilyn; Charlès, Franck; Prévost, Marie Christine; Schmitt, Christine; Philippe, Bruno; Latgé, Jean Paul

    2003-01-01

    The surface of Aspergillus fumigatus conidia, the first structure recognized by the host immune system, is covered by rodlets. We report that this outer cell wall layer contains two hydrophobins, RodAp and RodBp, which are found as highly insoluble complexes. The RODA gene was previously characterized, and ΔrodA conidia do not display a rodlet layer (N. Thau, M. Monod, B. Crestani, C. Rolland, G. Tronchin, J. P. Latgé, and S. Paris, Infect. Immun. 62:4380-4388, 1994). The RODB gene was cloned and disrupted. RodBp was highly homologous to RodAp and different from DewAp of A. nidulans. ΔrodB conidia had a rodlet layer similar to that of the wild-type conidia. Therefore, unlike RodAp, RodBp is not required for rodlet formation. The surface of ΔrodA conidia is granular; in contrast, an amorphous layer is present at the surface of the conidia of the ΔrodA ΔrodB double mutant. These data show that RodBp plays a role in the structure of the conidial cell wall. Moreover, rodletless mutants are more sensitive to killing by alveolar macrophages, suggesting that RodAp or the rodlet structure is involved in the resistance to host cells. PMID:12620846

  10. Interaction of an opportunistic fungus Purpureocillium lilacinum with human macrophages and dendritic cells.

    PubMed

    Peixoto, Mariana Lima Perazzini; Santos, Dilvani Oliveira; Souza, Ivy de Castro Campos de; Neri, Eloah Christina Lyrio; Sequeira, Danielly Correa Moreira de; De Luca, Paula Mello; Borba, Cíntia de Moraes

    2014-01-01

    Purpureocillium lilacinum is emerging as a causal agent of hyalohyphomycosis that is refractory to antifungal drugs; however, the pathogenic mechanisms underlying P. lilacinum infection are not understood. In this study, we investigated the interaction of P. lilacinum conidia with human macrophages and dendritic cells in vitro. Spores of a P. lilacinum clinical isolate were obtained by chill-heat shock. Mononuclear cells were isolated from eight healthy individuals. Monocytes were separated by cold aggregation and differentiated into macrophages by incubation for 7 to 10 days at 37°C or into dendritic cells by the addition of the cytokines human granulocyte-macrophage colony stimulating factor and interleukin-4. Conidial suspension was added to the human cells at 1:1, 2:1, and 5:1 (conidia:cells) ratios for 1h, 6h, and 24h, and the infection was evaluated by Giemsa staining and light microscopy. After 1h interaction, P. lilacinum conidia were internalized by human cells and after 6h contact, some conidia became inflated. After 24h interaction, the conidia produced germ tubes and hyphae, leading to the disruption of macrophage and dendritic cell membranes. The infection rate analyzed after 6h incubation of P. lilacinum conidia with cells at 2:1 and 1:1 ratios was 76.5% and 25.5%, respectively, for macrophages and 54.3% and 19.5%, respectively, for cultured dendritic cells. P. lilacinum conidia are capable of infecting and destroying both macrophages and dendritic cells, clearly demonstrating the ability of this pathogenic fungus to invade human phagocytic cells.

  11. Identification of individual powdery mildew fungi infecting leaves and direct detection of gene expression by single conidium polymerase chain reaction.

    PubMed

    Matsuda, Yoshinori; Sameshima, Takeshi; Moriura, Nobuyuki; Inoue, Kanako; Nonomura, Teruo; Kakutani, Koji; Nishimura, Hiroaki; Kusakari, Shin-Ichi; Takamatsu, Susumu; Toyoda, Hideyoshi

    2005-10-01

    ABSTRACT Greenhouse-grown tomato seedlings were inoculated naturally with two genera of powdery mildew conidia forming appressorial germ tubes that could not be differentiated by length alone. For direct identification, single germinated conidia were removed from leaves by means of a glass pipette linked to the manipulator of a high-fidelity digital microscope. This microscope enabled in vivo observation of the fungi without leaf decoloration or fungal staining. The isolated conidia were subjected to PCR amplification of the 5.8S rDNA and its adjacent internal transcribed spacer sequences followed by nested PCR to attain sensitivity high enough to amplify target nucleotide sequences (PCR/nested PCR). Target sequences from the conidia were completely coincident with those of the pathogen Oidium neolycopersici or Erysiphe trifolii (syn. Microsphaera trifolii), which is nonpathogenic on tomato. Using RT-PCR/nested PCR or multiplex RT-PCR/nested PCR, it was possible to amplify transcripts expressed in single conidia. Conidia at pre- and postgermination stages were removed individually from tomato leaves, and two powdery mildew genes were monitored. The results indicated that the beta-tubulin homolog TUB2-ol was expressed at pre- and postgermination stages and the cutinase homolog CUT1-ol was only expressed postgermination. Combining digital microscopic micromanipulation and two-step PCR amplification is thus useful for investigation of individual propagules on the surface of plants.

  12. Entomopathogenic Fungus as a Biological Control for an Important Vector of Livestock Disease: The Culicoides Biting Midge

    PubMed Central

    Ansari, Minshad Ali; Pope, Edward C.; Carpenter, Simon; Scholte, Ernst-Jan; Butt, Tariq M.

    2011-01-01

    Background The recent outbreak of bluetongue virus in northern Europe has led to an urgent need to identify control measures for the Culicoides (Diptera: Ceratopogonidae) biting midges that transmit it. Following successful use of the entomopathogenic fungus Metarhizium anisopliae against larval stages of biting midge Culicoides nubeculosus Meigen, we investigated the efficacy of this strain and other fungi (Beauveria bassiana, Isaria fumosorosea and Lecanicillium longisporum) as biocontrol agents against adult C. nubeculosus in laboratory and greenhouse studies. Methodology/Findings Exposure of midges to ‘dry’ conidia of all fungal isolates caused significant reductions in survival compared to untreated controls. Metarhizium anisopliae strain V275 was the most virulent, causing a significantly decrease in midge survival compared to all other fungal strains tested. The LT50 value for strain V275 was 1.42 days compared to 2.21–3.22 days for the other isolates. The virulence of this strain was then further evaluated by exposing C. nubeculosus to varying doses (108–1011 conidia m−2) using different substrates (horse manure, damp peat, leaf litter) as a resting site. All exposed adults were found to be infected with the strain V275 four days after exposure. A further study exposed C. nubeculosus adults to ‘dry’ conidia and ‘wet’ conidia (conidia suspended in 0.03% aq. Tween 80) of strain V275 applied to damp peat and leaf litter in cages within a greenhouse. ‘Dry’ conidia were more effective than ‘wet’ conidia, causing 100% mortality after 5 days. Conclusion/Significance This is the first study to demonstrate that entomopathogenic fungi are potential biocontrol agents against adult Culicoides, through the application of ‘dry’ conidia on surfaces (e.g., manure, leaf litter, livestock) where the midges tend to rest. Subsequent conidial transmission between males and females may cause an increased level of fungi-induced mortality in midges

  13. The pmr gene, encoding a Ca2+-ATPase, is required for calcium and manganese homeostasis and normal development of hyphae and conidia in Neurospora crassa.

    PubMed

    Bowman, Barry J; Abreu, Stephen; Johl, Jessica K; Bowman, Emma Jean

    2012-11-01

    The pmr gene is predicted to encode a Ca(2+)-ATPase in the secretory pathway. We examined two strains of Neurospora crassa that lacked PMR: the Δpmr strain, in which pmr was completely deleted, and pmr(RIP), in which the gene was extensively mutated. Both strains had identical, complex phenotypes. Compared to the wild type, these strains required high concentrations of calcium or manganese for optimal growth and had highly branched, slow-growing hyphae. They conidiated poorly, and the shape and size of the conidia were abnormal. Calcium accumulated in the Δpmr strains to only 20% of the wild-type level. High concentrations of MnCl(2) (1 to 5 mM) in growth medium partially suppressed the morphological defects but did not alter the defect in calcium accumulation. The Δpmr Δnca-2 double mutant (nca-2 encodes a Ca(2+)-ATPase in the plasma membrane) accumulated 8-fold more calcium than the wild type, and the morphology of the hyphae was more similar to that of wild-type hyphae. Previous experiments failed to show a function for nca-1, which encodes a SERCA-type Ca(2+)-ATPase in the endoplasmic reticulum (B. J. Bowman, S. Abreu, E. Margolles-Clark, M. Draskovic, and E. J. Bowman, Eukaryot. Cell 10:654-661, 2011). The pmr(RIP) Δnca-1 double mutant accumulated small amounts of calcium, like the Δpmr strain, but exhibited even more extreme morphological defects. Thus, PMR can apparently replace NCA-1 in the endoplasmic reticulum, but NCA-1 cannot replace PMR. The morphological defects in the Δpmr strain are likely caused, in part, by insufficient concentrations of calcium and manganese in the Golgi compartment; however, PMR is also needed to accumulate normal levels of calcium in the whole cell.

  14. Pathogenic differences of the entomopathogenic fungus Isaria cateniannulata to the spider mite Tetranychus urticae (Trombidiformes: Tetranychidae) and its predator Euseius nicholsi (Mesostigmata: Phytoseiidae).

    PubMed

    Zhang, Xiao-Na; Guo, Jian-Jun; Zou, Xiao; Jin, Dao-Chao

    2018-05-01

    Isaria cateniannulata and Euseius nicholsi are two important biological control agents currently being used in many areas of China to control a variety of pests. In order to determine the possibility of a concomitant application with the two agents in a biocontrol program involving the two-spotted spider mite, Tetranychus urticae, we quantified the pathogenicity of a strain of I. cateniannulata (08XS-1) against females of both T. urticae and E. nicholsi. We observed the infection process using scanning electron microscopy and fluorescence microscopy to distinguish differences in fungal performance. The female mites were infected by I. cateniannulata at 2 × 10 7 conidia/ml. The mortality of T. urticae was 100% when treated with submerged conidia and 92% when treated with aerial conidia (spray), and that of E. nicholsi was 4.2 and 6.7%, correspondingly. Following infection with aerial or submerged conidia, mated E. nicholsi females displayed no significant differences between treatments and control, indicating the fungus had no obvious effect on their vitality and fertility. This demonstrates that I. cateniannulata is safe to E. nicholsi when used to control T. urticae. The two types of propagules of I. cateniannulata are readily produced by common culture, and the submerged conidia, because of their substantially higher mortality, are preferable to the aerial conidia. Our results indicate that I. cateniannulata and E. nicholsi are viable candidates to be concomitantly applied in the biocontrol programs of T. urticae.

  15. Effects of ozone on the sporulation, germination, and pathogenicity of Botrytis cinerea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krause, C.R.; Weidensaul, T.C.

    1978-02-01

    Studies were initiated to determine if Botrytis cinerea conidia remain viable when grown in vivo and in vitro in the presence of ambient ozone levels and whether ozonized conidia retain pathogenicity. Experimental materials and methods used are described.

  16. Inactivation of carotenoid-producing and albino strains of Neurospora crassa by visible light, blacklight, and ultraviolet radiation.

    PubMed Central

    Blanc, P L; Tuveson, R W; Sargent, M L

    1976-01-01

    Suspensions of Neurospora crassa conidia were inactivated by blacklight (BL) radiation (300 to 425 nm) in the absence of exogenous photosensitizing compounds. Carotenoid-containing wild-type conidia were less sensitive to BL radiation than albino conidia, showing a dose enhancement factor (DEF) of 1.2 for dose levels resulting in less than 10% survival. The same strains were about equally sensitive to shortwave ultraviolet (UV) inactivation. The kinetics of BL inactivation are similar to those of photodynamic inactivation by visible light in the presence of a photosensitizing dye (methylene blue). Only limited inactivation by visible light in the absence of exogenous photosensitizers was observed. BL and UV inactivations are probably caused by different mechanisms since wild-type conidia are only slightly more resistant to BL radiation (DEF = 1.2 at 1.0% survival) than are conidia from a UV-sensitive strain (upr-1, uvs-3). The BL-induced lethal lesions are probably no cyclobutyl pyrimidine dimers since BL-inactivated Haemophilus influenzae transforming deoxyribonucleic acid is not photoreactivated by N. crassa wild-type enzyme extracts, whereas UV-inactivated transforming deoxyribonucleic acid is photoreactivable with this treatment. PMID:128556

  17. Endosporoideus gen. nov., a mitosporic fungus on Phoenix hanceana.

    PubMed

    Ho, Wai Hong; Yanna; Hyde, Kevin D; Goh, Teik Khiang

    2005-01-01

    Endosporoideus pedicellata gen. et sp, nov. is described and illustrated from decaying petioles of Phoenix hanceana collected from grassland in Tai Mo Shan, Hong Kong. The genus is unique in producing solitary, phragmosporous conidia. The conidia comprise a brown to dark brown inner-wall layer and thick, hyaline outer-wall layer and are produced holoblastically from determinate conidiogenous cells on micronematous, mononematous conidiophores. Cells of conidia may disarticulate at the septa. Representative steps in conidiogenesis of E. pedicellata are illustrated with light micrographs, and details of the conidiogenous events are interpreted schematically.

  18. Antifungal effects of citronella oil against Aspergillus niger ATCC 16404.

    PubMed

    Li, Wen-Ru; Shi, Qing-Shan; Ouyang, You-Sheng; Chen, Yi-Ben; Duan, Shun-Shan

    2013-08-01

    Essential oils are aromatic oily liquids obtained from some aromatic plant materials. Certain essential oils such as citronella oil contain antifungal activity, but the antifungal effect is still unknown. In this study, we explored the antifungal effect of citronella oil with Aspergillus niger ATCC 16404. The antifungal activity of citronella oil on conidia of A. niger was determined by poisoned food technique, broth dilution method, and disc volatility method. Experimental results indicated that the citronella oil has strong antifungal activity: 0.125 (v/v) and 0.25 % (v/v) citronella oil inhibited the growth of 5 × 10⁵ spore/ml conidia separately for 7 and 28 days while 0.5 % (v/v) citronella oil could completely kill the conidia of 5 × 10⁵ spore/ml. Moreover, the fungicidal kinetic curves revealed that more than 90 % conidia (initial concentration is 5 × 10⁵ spore/ml) were killed in all the treatments with 0.125 to 2 % citronella oil after 24 h. Furthermore, with increase of citronella oil concentration and treatment time, the antifungal activity was increased correspondingly. The 0.5 % (v/v) concentration of citronella oil was a threshold to kill the conidia thoroughly. The surviving conidia treated with 0.5 to 2 % citronella oil decreased by an order of magnitude every day, and no fungus survived after 10 days. With light microscope, scanning electron microscope, and transmission electron microscope, we found that citronella oil could lead to irreversible alteration of the hyphae and conidia. Based on our observation, we hypothesized that the citronella oil destroyed the cell wall of the A. niger hyphae, passed through the cell membrane, penetrated into the cytoplasm, and acted on the main organelles. Subsequently, the hyphae was collapsed and squashed due to large cytoplasm loss, and the organelles were severely destroyed. Similarly, citronella oil could lead to the rupture of hard cell wall and then act on the sporoplasm to kill the

  19. Presence of adhesive vesicles in the mycoherbicide Alternaria helianthi

    USDA-ARS?s Scientific Manuscript database

    Alternaria helianthi conidia have been shown to cause disease on common cocklebur. Conidia were applied to slides made hydrophobic by coating with dimethyldicholorosilane (mimics leaf surface), then rinsed and treated with FITC-Con A to stain the adhesive material. Alternaria helianthi coni...

  20. Evaluation of murine lung epithelial cells (TC-1 JHU-1) line to develop Th2-promoting cytokines IL-25/IL-33/TSLP and genes Tlr2/Tlr4 in response to Aspergillus fumigatus.

    PubMed

    Khosravi, A R; Shokri, H; Hassan Al-Heidary, S; Ghafarifar, F

    2018-03-07

    The aims of this study were to determine the role of live and heat-killed Aspergillus fumigatus conidia in releasing interleukin (IL)-25, IL-33 and thymic stromal lymphopoietin (TSLP) and to express Toll-like receptor (Tlr)2 and Tlr4 genes. Murine lung epithelial cells were incubated with live and heat-killed A. fumigatus conidia at 37°C for 6, 24 and 48h. After treatments, ELISA was performed to measure the concentrations of IL-25, IL-33 and TSLP in the supernatants. Quantitative real-time PCR (qPCR) was performed to assess the expression levels of Tlr2 and Tlr4 genes. The concentrations of IL-25 and IL-33 significantly increased after exposure to live and heat-killed conidia for various times when compared with untreated control (P<0.05). The secretion of TSLP at different concentrations of heat-killed conidia was significantly higher than both live conidia and untreated control (P<0.05). qRT-PCR results indicated a up-regulation from 1.08 to 3.60-fold for Tlr2 gene expression and 1.20 to 1.80-fold for Tlr4 gene expression exposed to heat-killed conidia. A. fumigatus has a potential ability to stimulate murine lung epithelial cells to produce IL-25/IL-33/TSLP, as well as to express Tlr2/Tlr4 genes, indicating an important role of lung epithelial cells in innate immune responses to A. fumigatus interaction. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Morphology and molecular taxonomy of Evlachovaea-like fungi, and the status of this unusual conidial genus

    USDA-ARS?s Scientific Manuscript database

    The entomopathogenic anamorphic genus Evlachovaea was described to differ from other fungi in forming its conidia obliquely to the axis of the conidiogenous cell and with successive conidia having alternate orientations with a zipper- or chevron-like arrangement resulting in flat, ribbon-like chains...

  2. Insight into the feeding behavior of predatory mites on Beauveria bassiana, an arthropod pathogen

    PubMed Central

    Wu, Shengyong; Zhang, Ye; Xu, Xuenong; Lei, Zhongren

    2016-01-01

    Interactions between fungal entomopathogens and pest predators are particularly relevant in control of agricultural insect pests. In a laboratory study, we confirmed that the predatory mite, Neoseiulus barkeri, exhibited feeding behavior on the entomopathogenic fungus Beauveria bassiana conidia through DNA extracts. Using transmission electron microscopy, we determined that the majority of conidia found in the mite gut tended to dissolve within 24 h post ingestion, suggesting that the conidia had probably lost their viability. To our knowledge this is the first report of feeding behavior of phytoseiid mites on entomopathogenic fungus. The findings expand our knowledge of fungus–predator interactions. PMID:27041703

  3. Agent-based modeling approach of immune defense against spores of opportunistic human pathogenic fungi.

    PubMed

    Tokarski, Christian; Hummert, Sabine; Mech, Franziska; Figge, Marc Thilo; Germerodt, Sebastian; Schroeter, Anja; Schuster, Stefan

    2012-01-01

    Opportunistic human pathogenic fungi like the ubiquitous fungus Aspergillus fumigatus are a major threat to immunocompromised patients. An impaired immune system renders the body vulnerable to invasive mycoses that often lead to the death of the patient. While the number of immunocompromised patients is rising with medical progress, the process, and dynamics of defense against invaded and ready to germinate fungal conidia are still insufficiently understood. Besides macrophages, neutrophil granulocytes form an important line of defense in that they clear conidia. Live imaging shows the interaction of those phagocytes and conidia as a dynamic process of touching, dragging, and phagocytosis. To unravel strategies of phagocytes on the hunt for conidia an agent-based modeling approach is used, implemented in NetLogo. Different modes of movement of phagocytes are tested regarding their clearing efficiency: random walk, short-term persistence in their recent direction, chemotaxis of chemokines excreted by conidia, and communication between phagocytes. While the short-term persistence hunting strategy turned out to be superior to the simple random walk, following a gradient of chemokines released by conidial agents is even better. The advantage of communication between neutrophilic agents showed a strong dependency on the spatial scale of the focused area and the distribution of the pathogens.

  4. Light inhibits spore germination through phytochrome in Aspergillus nidulans.

    PubMed

    Röhrig, Julian; Kastner, Christian; Fischer, Reinhard

    2013-05-01

    Aspergillus nidulans responds to light in several aspects. The balance between sexual and asexual development as well as the amount of secondary metabolites produced is controlled by light. Here, we show that germination is largely delayed by blue (450 nm), red (700 nm), and far-red light (740 nm). The largest effect was observed with far-red light. Whereas 60 % of the conidia produced a germ tube after 20 h in the dark, less than 5 % of the conidia germinated under far-red light conditions. Because swelling of conidia was not affected, light appears to act at the stage of germ-tube formation. In the absence of nutrients, far-red light even inhibited swelling of conidia, whereas in the dark, conidia did swell and germinated after prolonged incubation. The blue-light signaling components, LreA (WC-1) and LreB (WC-2), and also the cryptochrome/photolyase CryA were not required for germination inhibition. However, in the phytochrome mutant, ∆fphA, the germination delay was released, but germination was delayed in the dark in comparison to wild type. This suggests a novel function of phytochrome as far-red light sensor and as activator of polarized growth in the dark.

  5. [Viability of nematophagous fungi Arthrobotrys robusta, Duddingtonia flagrans and Monacrosporium thaumasium after sporulation in different culture media].

    PubMed

    Maciel, Alessandro S; de Araujo, Jackson V; Campos, Artur K

    2006-01-01

    Due to the shortage of studies that indicate the culture mediums that optimize the sporulation of namatophagous fungi for use in researche, the sporulation of the fungal isolates A. robusta (I31), D. flagrans (CG768) and M. thaumasium (NF34A) was evaluated in laboratorial conditions for 10 days in the means water-agar 2% (WA 2%), potato-dextrose-agar 2% (PDA 2%), corn-meal-agar 2% (CMA 2%) and yeast-phosphate-sulphate-sucrose-agar (YPSSA). The largest conidia production (P < 0.05) for the isolate CG768 happened in BDA 2% while in the isolates I31 and NF34A produced larger conidia number in YPSSA (P < 0.05). The viability of the conidia to prey infective Ancylostoma spp. larvae did not lose its effectiveness (P < 0.05) independent of the culture medium. The middle of culture did not influence in the viability of the conidia (P > 0.05).

  6. Bioassay and Scanning Electron Microscopic Observations Reveal High Virulence of Entomopathogenic Fungus, Beauveria bassiana, on the Onion Maggot (Diptera: Anthomyiidae) Adults.

    PubMed

    Zhang, Hui; Wu, Shengyong; Xing, Zhenlong; Wang, Xiaoqing; Lei, Zhongren

    2016-12-01

    When flies were dipped in 1 × 10 8 conidia/ml conidia suspensions and then kept in the incubator (22 ± 1 °C, 70 ± 5% RH), scanning electron microscope observations revealed that, at 2 h, the majority of adhering Beauveria bassiana conidia were attached to either the wing surface or the interstitial area between the macrochaetae on the thorax and abdomen of the onion maggot adults. Germ tubes were being produced and had oriented toward the cuticle by 18 h. Penetration of the insect cuticle had occurred by 36 h, and by 48 h, germ tubes had completely penetrated the cuticle. Fungal mycelia had emerged from the insect body and were proliferating after 72 h. The superficial area and structure of the wings and macrochaetae may facilitate the attachment of conidia and enable effective penetration. The susceptibility of adults to 12 isolates, at a concentration of 1 × 10 7 conidia/ml, was tested in laboratory experiments. Eight of the more potent strains caused in excess of 85% adult mortality 8 d post inoculation, while the median lethal time (LT 50 ) of these strains was <6 d. The virulence of the more effective strains was further tested, and the median lethal concentrations (LC 50 ) were calculated by exposing adults to doses ranging from 10 3 -10 7 conidia/ml. The lowest LC 50 value, found in the isolate XJWLMQ-32, for the adults was 3.87 × 10 3 conidia/ml. These results demonstrate that some B. bassiana strains are highly virulent to onion maggot adults and should be considered as potential biocontrol agents against the adult flies. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Wavelength dependent recovery of UV-mediated damage: Tying up the loose ends of optical based powdery mildew management.

    PubMed

    Suthaparan, Aruppillai; Pathak, Ranjana; Solhaug, Knut Asbjørn; Gislerød, Hans Ragnar

    2018-01-01

    Controlled environment chamber experiments at Petri dish level were conducted to examine the wavelength and dose dependent efficacy of ultraviolet (UV) radiation, the recovery action potential of optical radiation applied concomitantly/subsequently to effective UV treatment, and the lapse time between UV treatment and subsequent exposure to recovery wavelength on germination efficiency of Oidium neolycopersici conidia. Conidia of eight- to nine-day-old colonies were dusted on water agar surface in Petri dishes and exposed to UV treatments (without lid). Immediately after UV treatments, Petri dishes were sealed and incubated in darkness or differing optical environments generated using seven different radiation sources (range 290nm to 780nm). Twenty-four hours after UV treatment, fifty conidia from each sample were assessed for germination. Compared to non-UV controls, <10% of the conidia germinated after 30s of exposure to 254nm or 283nm UV and subsequent dark incubation. Conidia germination was almost negligible if the exposure duration increased to 4min. Germination was about 60% with broad spectrum UV after 1min of exposure, and about 35% after 2 to 4min of exposure. There was no reduction of conidia germination with the exposure of ≤4min with 310nm. With the tested wavelength and dose ranges, germination recovery was effective in the 350nm to 500nm range. Germination efficiency of conidia treated with effective UV was significantly higher (>73%) if incubated subsequently in the 350nm to 500nm range (germination recovery). Furthermore, germination recovery depends on the characteristics of UV treatment (wavelength, and duration of exposure) and the lapse time between UV treatment and subsequent exposure to optical radiation in the recovery range. The findings of this study provide key criteria for wavelength selection, combination and application time in the optical radiation range, enabling improved design of optical based management strategies against

  8. A preliminary report on the contact-independent antagonism of Pseudogymnoascus destructans by Rhodococcus rhodochrous strain DAP96253.

    PubMed

    Cornelison, Christopher T; Keel, M Kevin; Gabriel, Kyle T; Barlament, Courtney K; Tucker, Trudy A; Pierce, George E; Crow, Sidney A

    2014-09-26

    The recently-identified causative agent of White-Nose Syndrome (WNS), Pseudogymnoascus destructans, has been responsible for the mortality of an estimated 5.5 million North American bats since its emergence in 2006. A primary focus of the National Response Plan, established by multiple state, federal and tribal agencies in 2011, was the identification of biological control options for WNS. In an effort to identify potential biological control options for WNS, multiply induced cells of Rhodococcus rhodochrous strain DAP96253 was screened for anti-P. destructans activity. Conidia and mycelial plugs of P. destructans were exposed to induced R. rhodochrous in a closed air-space at 15°C, 7°C and 4°C and were evaluated for contact-independent inhibition of conidia germination and mycelial extension with positive results. Additionally, in situ application methods for induced R. rhodochrous, such as fixed-cell catalyst and fermentation cell-paste in non-growth conditions, were screened with positive results. R. rhodochrous was assayed for ex vivo activity via exposure to bat tissue explants inoculated with P. destructans conidia. Induced R. rhodochrous completely inhibited growth from conidia at 15°C and had a strong fungistatic effect at 4°C. Induced R. rhodochrous inhibited P. destructans growth from conidia when cultured in a shared air-space with bat tissue explants inoculated with P. destructans conidia. The identification of inducible biological agents with contact-independent anti- P. destructans activity is a major milestone in the development of viable biological control options for in situ application and provides the first example of contact-independent antagonism of this devastating wildlife pathogen.

  9. Phosphorus availability modulates the toxic effect of silver on aquatic fungi and leaf litter decomposition.

    PubMed

    Funck, J Arce; Clivot, H; Felten, V; Rousselle, P; Guérold, F; Danger, M

    2013-11-15

    The functioning of forested headwater streams is intimately linked to the decomposition of leaf litter by decomposers, mainly aquatic hyphomycetes, which enables the transfer of allochthonous carbon to higher trophic levels. Evaluation of this process is being increasingly used as an indicator of ecosystem health and ecological integrity. Yet, even though the individual impacts of contaminants and nutrient availability on decomposition have been well studied, the understanding of their combined effects remains limited. In the current study, we investigated whether the toxic effects of a reemerging contaminant, silver (Ag), on leaf litter decomposition could be partly overcome in situations where microorganisms were benefitting from high phosphorus (P) availability, the latter being a key chemical element that often limits detritus decomposition. We also investigated whether these interactive effects were mediated by changes in the structure of the aquatic hyphomycete community. To verify these hypotheses, leaf litter decomposition by a consortium of ten aquatic hyphomycete species was followed in a microcosm experiment combining five Ag contamination levels and three P concentrations. Indirect effects of Ag and P on the consumption of leaf litter by the detritivorous crustacean, Gammarus fossarum, were also evaluated. Ag significantly reduced decomposition but only at the highest concentration tested, independently of P level. By contrast, P and Ag interactively affected fungal biomass. Both P level and Ag concentrations shaped microbial communities without significantly affecting the overall species richness. Finally, the levels of P and Ag interacted significantly on G. fossarum feeding rates, high [Ag] reducing litter consumption and low P availability tending to intensify the feeding rate. Given the high level of contaminant needed to impair the decomposition process, it is unlikely that a direct effect of Ag on leaf litter decomposition could be observed in

  10. Studying of cellular interaction of hairpin-like peptide EcAMP1 from barnyard grass (Echinochloa crusgalli L.) seeds with plant pathogenic fungus Fusarium solani using microscopy techniques.

    PubMed

    Vasilchenko, Alexey S; Yuryev, Mikhail; Ryazantsev, Dmitry Yu; Zavriev, Sergey K; Feofanov, Alexey V; Grishin, Eugene V; Rogozhin, Eugene A

    2016-11-01

    An interaction of recombinant hairpin-like cationic peptide EcAMP1 with conidia of plant pathogenic fungus Fusarium solani at the cellular level was studied by a combination of microscopic methods. EcAMP1 is from barnyard grass (Echinochloa crusgalli L.), and obtained by heterologous expression in Escherichia coli system. As a result, a direct relationship between hyphal growth inhibition and increasing active peptide concentration, time of incubation and fungal physiological condition has been determined. Dynamics of accumulation and redistribution of the peptide studied on fungal cellular cover and inside the conidia cells has been shown. The dynamics are dependent on time of coupling, as well as, a dissimilarity of EcAMP1 binding with cover of fungal conidia and its stepwise accumulation and diffuse localization in the cytoplasm. Correlation between structural disruption of fungal conidia and the presence of morphological changes has also been found. The correlation was found under the influence of peptide high concentrations at concentrations above 32 μM. The results indicate the presence of a binding of EcAMP1 with the surface of fungal conidia, thus, demonstrating a main specificity for its antifungal action at the cellular level. These results, however, cannot exclude the existence of attendant EcAMP1 action based on its intracellular localization on some specific targets. SCANNING 38:591-598, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  11. Quantitative proteomics revealed partial fungistatic mechanism of ammonia against conidial germination of nematode-trapping fungus Arthrobotrys oligospora ATCC24927.

    PubMed

    Liu, Tong; Tian, Dong-Wei; Zou, Li-Juan; Liu, Fang-Yu; Can, Qi-Yan; Yang, Jin-Kui; Xu, Jian-Ping; Huang, Xiao-Wei; Xi, Jia-Qin; Zhu, Ming-Liang; Mo, Ming-He; Zhang, Ke-Qin

    2018-05-01

    Ammonia is one of the fungistatic factors in soil that can suppress conidial germination, but the molecular mechanism underlying the suppression is unknown. In this study, the proteomes of fungistatic conidia, fresh conidia and germinated conidia of Arthrobotrys oligospora ATCC24927 were determined and quantified. The protein expression profile of fungistatic conidia was significantly different from those in the other two conditions. 281 proteins were down expressed in fungistatic conidia and characterized by GO annotation. Gene transcription analysis and inhibition of puromycin (a protein translation inhibitor) on conidial germination suggested that down expression of 33 protein translation related proteins might well result in repression of protein synthesis and inhibition of conidial germination. In addition, 16 down-expressed proteins were mapped to the Ras/mitogen-activated protein (Ras/MAP) regulatory networks which regulate conidial DNA synthesis. The conidial DNA synthesis was found to be definitely inhibited under by ammonia, and function studies of two Ras/MAP proteins by using knock-out strains provided partial evidence that Ras/MAP pathway regulate the conidial germination. These results suggested that down-expression of Ras/MAP related proteins might result in inhibition of DNA synthesis and finally result in inhibition conidial germination. This study revealed partial fungistatic mechanism of ammonia against conidial germination. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Colonization by Cladosporium spp. of painted metal surfaces associated with heating and air conditioning systems

    NASA Technical Reports Server (NTRS)

    Ahearn, D. G.; Simmons, R. B.; Switzer, K. F.; Ajello, L.; Pierson, D. L.

    1991-01-01

    Cladosporium cladosporioides and C. hebarum colonized painted metal surfaces of covering panels and register vents of heating, air conditioning and ventilation systems. Hyphae penetrated the paint film and developed characteristic conidiophores and conidia. The colonies were tightly appressed to the metal surface and conidia were not readily detectable via standard air sampling procedures.

  13. Alteration of protein patterns in black rock inhabiting fungi as a response to different temperatures

    PubMed Central

    Tesei, Donatella; Marzban, Gorji; Zakharova, Kristina; Isola, Daniela; Selbmann, Laura; Sterflinger, Katja

    2012-01-01

    Rock inhabiting fungi are among the most stress tolerant organisms on Earth. They are able to cope with different stressors determined by the typical conditions of bare rocks in hot and cold extreme environments. In this study first results of a system biological approach based on two-dimensional protein profiles are presented. Protein patterns of extremotolerant black fungi – Coniosporium perforans, Exophiala jeanselmei – and of the extremophilic fungus – Friedmanniomyces endolithicus – were compared with the cosmopolitan and mesophilic hyphomycete Penicillium chrysogenum in order to follow and determine changes in the expression pattern under different temperatures. The 2D protein gels indicated a temperature dependent qualitative change in all the tested strains. Whereas the reference strain P. chrysogenum expressed the highest number of proteins at 40 °C, thus exhibiting real signs of temperature induced reaction, black fungi, when exposed to temperatures far above their growth optimum, decreased the number of proteins indicating a down-regulation of their metabolism. Temperature of 1 °C led to an increased number of proteins in all of the analysed strains, with the exception of P. chrysogenum. These first results on temperature dependent reactions in rock inhabiting black fungi indicate a rather different strategy to cope with non-optimal temperature than in the mesophilic hyphomycete P. chrysogenum. PMID:22862921

  14. N-Chlorotaurine Exhibits Fungicidal Activity against Therapy-Refractory Scedosporium Species and Lomentospora prolificans.

    PubMed

    Lackner, Michaela; Binder, Ulrike; Reindl, Martin; Gönül, Beyhan; Fankhauser, Hannes; Mair, Christian; Nagl, Markus

    2015-10-01

    N-Chlorotaurine (NCT), a well-tolerated endogenous long-lived oxidant that can be applied topically as an antiseptic, was tested on its fungicidal activity against Scedosporium and Lomentospora, opportunistic fungi that cause severe infections with limited treatment options, mainly in immunocompromised patients. In quantitative killing assays, both hyphae and conidia of Scedosporium apiospermum, Scedosporium boydii, and Lomentospora prolificans (formerly Scedosporium prolificans) were killed by 55 mM (1.0%) NCT at pH 7.1 and 37°C, with a 1- to 4-log10 reduction in CFU after 4 h and a 4- to >6-log10 reduction after 24 h. The addition of ammonium chloride to NCT markedly increased this activity. LIVE/DEAD staining of conidia treated with 1.0% NCT for 0.5 to 3 h increased the permeability of the cell wall and membrane. Preincubation of the test fungi in 1.0% NCT for 10 to 60 min delayed the time to germination of conidia by 2 h to >12 h and reduced their germination rate by 10.0 to 100.0%. Larvae of Galleria mellonella infected with 1.0 × 10(7) conidia of S. apiospermum and S. boydii died at a rate of 90.0 to 100% after 8 to 12 days. The mortality rate was reduced to 20 to 50.0% if conidia were preincubated in 1.0% NCT for 0.5 h or if heat-inactivated conidia were used. Our study demonstrates the fungicidal activity of NCT against different Scedosporium and Lomentospora species. A postantifungal effect connected with a loss of virulence occurs after sublethal incubation times. The augmenting effect of ammonium chloride can be explained by the formation of monochloramine. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. N-Chlorotaurine Exhibits Fungicidal Activity against Therapy-Refractory Scedosporium Species and Lomentospora prolificans

    PubMed Central

    Lackner, Michaela; Binder, Ulrike; Reindl, Martin; Gönül, Beyhan; Fankhauser, Hannes; Mair, Christian

    2015-01-01

    N-Chlorotaurine (NCT), a well-tolerated endogenous long-lived oxidant that can be applied topically as an antiseptic, was tested on its fungicidal activity against Scedosporium and Lomentospora, opportunistic fungi that cause severe infections with limited treatment options, mainly in immunocompromised patients. In quantitative killing assays, both hyphae and conidia of Scedosporium apiospermum, Scedosporium boydii, and Lomentospora prolificans (formerly Scedosporium prolificans) were killed by 55 mM (1.0%) NCT at pH 7.1 and 37°C, with a 1- to 4-log10 reduction in CFU after 4 h and a 4- to >6-log10 reduction after 24 h. The addition of ammonium chloride to NCT markedly increased this activity. LIVE/DEAD staining of conidia treated with 1.0% NCT for 0.5 to 3 h increased the permeability of the cell wall and membrane. Preincubation of the test fungi in 1.0% NCT for 10 to 60 min delayed the time to germination of conidia by 2 h to >12 h and reduced their germination rate by 10.0 to 100.0%. Larvae of Galleria mellonella infected with 1.0 × 107 conidia of S. apiospermum and S. boydii died at a rate of 90.0 to 100% after 8 to 12 days. The mortality rate was reduced to 20 to 50.0% if conidia were preincubated in 1.0% NCT for 0.5 h or if heat-inactivated conidia were used. Our study demonstrates the fungicidal activity of NCT against different Scedosporium and Lomentospora species. A postantifungal effect connected with a loss of virulence occurs after sublethal incubation times. The augmenting effect of ammonium chloride can be explained by the formation of monochloramine. PMID:26239996

  16. First report of the infection of insecticide-resistant malaria vector mosquitoes with an entomopathogenic fungus under field conditions

    PubMed Central

    2011-01-01

    Background Insecticide-resistant mosquitoes are compromising the ability of current mosquito control tools to control malaria vectors. A proposed new approach for mosquito control is to use entomopathogenic fungi. These fungi have been shown to be lethal to both insecticide-susceptible and insecticide-resistant mosquitoes under laboratory conditions. The goal of this study was to see whether entomopathogenic fungi could be used to infect insecticide-resistant malaria vectors under field conditions, and to see whether the virulence and viability of the fungal conidia decreased after exposure to ambient African field conditions. Methods This study used the fungus Beauveria bassiana to infect the insecticide-resistant malaria vector Anopheles gambiae s.s (Diptera: Culicidae) VKPER laboratory colony strain. Fungal conidia were applied to polyester netting and kept under West African field conditions for varying periods of time. The virulence of the fungal-treated netting was tested 1, 3 and 5 days after net application by exposing An. gambiae s.s. VKPER mosquitoes in WHO cone bioassays carried out under field conditions. In addition, the viability of B. bassiana conidia was measured after up to 20 days exposure to field conditions. Results The results show that B. bassiana infection caused significantly increased mortality with the daily risk of dying being increased by 2.5× for the fungus-exposed mosquitoes compared to the control mosquitoes. However, the virulence of the B. bassiana conidia decreased with increasing time spent exposed to the field conditions, the older the treatment on the net, the lower the fungus-induced mortality rate. This is likely to be due to the climate because laboratory trials found no such decline within the same trial time period. Conidial viability also decreased with increasing exposure to the net and natural abiotic environmental conditions. After 20 days field exposure the conidial viability was 30%, but the viability of control

  17. Effect of different photoperiods on the growth, infectivity and colonization of Trinidadian strains of Paecilomyces fumosoroseus on the greenhouse whitefly, Trialeurodes vaporariorum, using a glass slide bioassay.

    PubMed

    Avery, Pasco B; Faull, Jane; Simmonds, Monique S J

    2004-01-01

    Growth, infectivity and colonization rates for blastospores and conidia of Trinidadian strains T, T10, and T11 of Paecilomyces fumosoroseus (Wize) Brown and Smith were assessed for activity against late fourth-instar nymphs of Trialeurodes vaporariorum (Westwood) (Homoptera:Aleyrodidae) under two different photoperiods (24 and 16 hour photophase). A glass-slide bioassay and a fungal development index, modified for both blastospores and conidia, were used to compare the development rates of the fungal strains on the insect hosts. Fewer adult whiteflies emerged from nymphs treated with blastospores and reared under a 16:8 hour light:dark photoperiod than a 24:0 hour photoperiod. Eclosion times of whitefly adults that emerged from nymphs treated with the different strains of conidia were similar over the 8 day experimental period at both light regimes. The percent eclosion of adult whiteflies seems to be directly correlated with the speed of infection of the blastospore or conidial treatment and the photoperiod regime. The longer photophase had a significant positive effect on development index for blastospores; however, a lesser effect was observed for the conidia at either light regime. Blastospore strain T11 offered the most potential of the three Trinidadian strains against T. vaporariorum fourth-instar nymphs, especially under constant light. The glass-slide bioassay was successfully used to compare both blastospores and conidia of P. fumosoroseus. It can be used to determine the pathogenicity and the efficacy of various fungal preparations against aleyrodid pests.

  18. Fungal melanin stimulates surfactant protein D-mediated opsonization of and host immune response to Aspergillus fumigatus spores.

    PubMed

    Wong, Sarah Sze Wah; Rani, Manjusha; Dodagatta-Marri, Eswari; Ibrahim-Granet, Oumaima; Kishore, Uday; Bayry, Jagadeesh; Latgé, Jean-Paul; Sahu, Arvind; Madan, Taruna; Aimanianda, Vishukumar

    2018-03-30

    Surfactant protein D (SP-D), a C-type lectin and pattern-recognition soluble factor, plays an important role in immune surveillance to detect and eliminate human pulmonary pathogens. SP-D has been shown to protect against infections with the most ubiquitous airborne fungal pathogen, Aspergillus fumigatus , but the fungal surface component(s) interacting with SP-D is unknown. Here, we show that SP-D binds to melanin pigment on the surface of A. fumigatus dormant spores (conidia). SP-D also exhibited an affinity to two cell-wall polysaccharides of A. fumigatus , galactomannan (GM) and galactosaminogalactan (GAG). The immunolabeling pattern of SP-D was punctate on the conidial surface and was uniform on germinating conidia, in accordance with the localization of melanin, GM, and GAG. We also found that the collagen-like domain of SP-D is involved in its interaction with melanin, whereas its carbohydrate-recognition domain recognized GM and GAG. Unlike un-opsonized conidia, SP-D-opsonized conidia were phagocytosed more efficiently and stimulated the secretion of proinflammatory cytokines by human monocyte-derived macrophages. Furthermore, SP-D -/- mice challenged intranasally with wildtype conidia or melanin ghosts ( i.e. hollow melanin spheres) displayed significantly reduced proinflammatory cytokines in the lung compared with wildtype mice. In summary, SP-D binds to melanin present on the dormant A. fumigatus conidial surface, facilitates conidial phagocytosis, and stimulates the host immune response. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Synthesis of Melanin-Like Pigments by Sporothrix schenckii In Vitro and during Mammalian Infection

    PubMed Central

    Morris-Jones, Rachael; Youngchim, Sirida; Gomez, Beatriz L.; Aisen, Phil; Hay, Roderick J.; Nosanchuk, Joshua D.; Casadevall, Arturo; Hamilton, Andrew J.

    2003-01-01

    Melanin has been implicated in the pathogenesis of several important human fungal pathogens. Existing data suggest that the conidia of the dimorphic fungal pathogen Sporothrix schenckii produce melanin or melanin-like compounds; in this study we aimed to confirm this suggestion and to demonstrate in vitro and in vivo production of melanin by yeast cells. S. schenckii grown on Mycosel agar produced visibly pigmented conidia, although yeast cells grown in brain heart infusion and minimal medium broth appeared to be nonpigmented macroscopically. However, treatment of both conidia and yeast cells with proteolytic enzymes, denaturant, and concentrated hot acid yielded dark particles similar in shape and size to the corresponding propagules, which were stable free radicals consistent with identification as melanins. Melanin particles extracted from S. schenckii yeast cells were used to produce a panel of murine monoclonal antibodies (MAbs) which labeled pigmented conidia, yeast cells, and the isolated particles. Tissue from hamster testicles infected with S. schenckii contained fungal cells that were labeled by melanin-binding MAbs, and digestion of infected hamster tissue yielded dark particles that were also reactive. Additionally, sera from humans with sporotrichosis contained antibodies that bound melanin particles. These findings indicate that S. schenckii conidia and yeast cells can produce melanin or melanin-like compounds in vitro and that yeast cells can synthesize pigment in vivo. Since melanin is an important virulence factor in other pathogenic fungi, this pigment may have a similar role in the pathogenesis of sporotrichosis. PMID:12819091

  20. Resting spore formation of aphid-pathogenic fungus Pandora nouryi depends on the concentration of infective inoculum.

    PubMed

    Huang, Zhi-Hong; Feng, Ming-Guang

    2008-07-01

    Resting spore formation of some aphid-pathogenic Entomophthorales is important for the seasonal pattern of their prevalence and survival but this process is poorly understood. To explore the possible mechanism involved in the process, Pandora nouryi (obligate aphid pathogen) interacted with green peach aphid Myzus persicae on cabbage leaves under favourable conditions. Host nymphs showered with primary conidia of an isolate (LC(50): 0.9-6.7 conidia mm(-2) 4-7 days post shower) from air captures in the low-latitude plateau of China produced resting spores (azygospores), primary conidia or both spore types. Surprisingly, the proportion of mycosed cadavers forming resting spores (P(CFRS)) increased sharply within the concentrations (C) of 28-240 conidia mm(-2), retained high levels at 240-1760, but was zero or extremely low at 0.3-16. The P(CFRS)-C relationship fit well the logistic equation P(CFRS) = 0.6774/[1 + exp(3.1229-0.0270C)] (r(2) = 0.975). This clarified for the first time the dependence of in vivo resting spore formation of P. nouryi upon the concentration of infective inoculum. A hypothesis is thus proposed that some sort of biochemical signals may exist in the host-pathogen interaction so that the fungal pathogen perceives the signals for prompt response to forthcoming host-density changes by either producing conidia for infecting available hosts or forming resting spores for surviving host absence in situ.

  1. ENZYME ACTIVITIES DURING THE ASEXUAL CYCLE OF NEUROSPORA CRASSA

    PubMed Central

    Stine, G. J.

    1968-01-01

    Three enzymes, (a) nicotinamide adenine diphosphate-dependent glutamic dehydrogenase (NAD enzyme), (b) nictoinamide adenine triphosphate-dependent glutamic dehydrogenase (NADP enzyme), and (c) nicotinamide-adenine dinucleotidase (NADase), were measured in separate extracts of Neurospora crassa grown in Vogel's medium N and medium N + glutamate. Specific activities and total units per culture of each enzyme were determined at nine separate intervals phased throughout the asexual cycle. The separate dehydrogenases were lowest in the conidia, increased slowly during germination, and increased rapidly during logarithmic mycelial growth. The amounts of these enzymes present during germination were small when compared with those found later during the production of the conidiophores. The NAD enzyme may be necessary for pregermination synthesis. The NADP-enzyme synthesis was associated with the appearance of the germ tube. Although higher levels of the dehydrogenases in the conidiophores resulted in more enzyme being found in the differentiated conidia, the rate of germination was uneffected. The greatest activity for the NADase enzyme was associated with the conidia, early phases of germination, and later production of new conidia. NADase decreased significantly with the onset of logarithmic growth, remained low during the differentiation of conidiophores, and increased considerably as the conidiophores aged. PMID:4384627

  2. Effects of ribonuclease A on amino acid transport in Neurospora crassa.

    PubMed

    Stuart, W D; Woodward, D O

    1975-04-01

    Incubation of Neurospora crassa conidia with ribonuclease (RNase) A reduces transport of L-phenylalanine by those cells. Under similar conditions, oxidized RNase A, RNase T1, and RNase T2 do not have this effect. Incubation of conidia with active RNase covalently attached to polyacrylamide beads reduces L-phenylalanine transport. This indicates that the site of enzymatic action is at the cell surface. At the lower concentration of enzyme used in this study, incubation with RNase A reduces transport of L-phenylalanine by the general (G) amino acid permease. Increasing the enzyme concentration results in reduction of transport by the neutral aromatic (N)-specific permease. The increased transport activity that accompanies onset of conidial germination is also sensitive to incubation with RNase A. Application of the enzyme to actively transporting cells does not release amino acid transported prior to enzyme addition. Cells cultured on media supplemented with [2-14C] uridine release isotopic activity after RNase A incubation. Analogous treatments with Pronase, RNase T1, RNase T2, or deoxyribonuclease I do not release isotope activity. Pronase treatment does reduce L-phenylalanine transport. Incubation of conidia with RNase A also inhibits germination of those conidia.

  3. Role of Ficolin-A and Lectin Complement Pathway in the Innate Defense against Pathogenic Aspergillus Species

    PubMed Central

    Bidula, Stefan; Kenawy, Hany; Ali, Youssif M.; Sexton, Darren; Schwaeble, Wilhelm J.

    2013-01-01

    Aspergillus species are saprophytic molds causing life-threatening invasive fungal infections in the immunocompromised host. Innate immune recognition, in particular, the mechanisms of opsonization and complement activation, has been reported to be an integral part of the defense against fungi. We have shown that the complement component ficolin-A significantly binds to Aspergillus conidia and hyphae in a concentration-dependent manner and was inhibited by N-acetylglucosamine and N-acetylgalactosamine. Calcium-independent binding to Aspergillus fumigatus and A. terreus was observed, but binding to A. flavus and A. niger was calcium dependent. Ficolin-A binding to conidia was increased under low-pH conditions, and opsonization led to enhanced binding of conidia to A549 airway epithelial cells. In investigations of the lectin pathway of complement activation, ficolin-A-opsonized conidia did not lead to lectin pathway-specific C4 deposition. In contrast, the collectin mannose binding lectin C (MBL-C) but not MBL-A led to efficient lectin pathway activation on A. fumigatus in the absence of ficolin-A. In addition, ficolin-A opsonization led to a modulation of the proinflammatory cytokine interleukin-8. We conclude that ficolin-A may play an important role in the innate defense against Aspergillus by opsonizing conidia, immobilizing this fungus through enhanced adherence to epithelial cells and modulation of inflammation. However, it appears that other immune pattern recognition molecules, i.e., those of the collectin MBL-C, are involved in the Aspergillus-lectin complement pathway activation rather than ficolin-A. PMID:23478320

  4. Biocontrol of the Brown-Banded Cockroach, Supella longipalpa F. (Blattaria: Blattellidae), with Entomopathogenic Fungus, Metharhizium anisopliae

    PubMed Central

    Sharififard, Mona; Mossadegh, Mohammad Saeed; Vazirianzadeh, Babak; Latifi, Seyed Mahmood

    2016-01-01

    Background: Considering to the high distribution of cockroaches as urban pests, the efficacy of different formulations of Metarhizium anisopliae strain Iran 437C were assessed against the brown-banded cockroach, Supella longipalpa F. under laboratory and field conditions. Methods: Metarhizium anisopliae isolates were screened with immersing adults of the brown-banded cockroachs in aqueous suspension of 108 conidia ml−1 followed by surface or bait treated with different doses of the most virulent isolate against the nymphs. Then formulations of conidia oil-in-water were examined versus cockroach nymphs using different plant oils and paraffin. Then they were evaluated and compared with aqueous suspension and control group. On a large-scale, the sunflower oil-in-water formulation of conidia was sprayed at houses using a hand sprayer. Results: Metarhizium anisopliae IRAN 437C was the most virulent isolate against the brown-banded cockroach, causing 100% mortality in adults at seven days post-exposure. Inoculated bait with this isolate was not enough pathogenic against the cockroach even at two weeks after treatment. Treated surface with conidia as aqueous suspension or oil-in-water formulation was more effective than the bait formulation against the cockroach caused 39.4–97.2% mortality compared with 2.5% mortality in control group after two days. Spraying the conidia formulated with sunflower oil was an effective formulation causing 76.1% reduction in the cockroach density on the third day post treatment in the houses. Conclusion: The oil-in-water formulation of M. anisopliae IRAN 437C could be recommended as a promising alternative for cockroach control. PMID:27308292

  5. Germination-defective mutant of Neurospora crassa that responds to siderophores

    NASA Technical Reports Server (NTRS)

    Charlang, G.; Williams, N. P.

    1977-01-01

    A conditionally germination-defective mutant of Neurospora crassa has been found to be partially curable by ferricrocin and other siderophores. The mutant conidia rapidly lose their membrane-bound siderophores when suspended in buffer or growth media. Germination is consequently delayed unless large numbers of conidia are present (positive population effect). This indicates that the mutant has a membrane defect involving the siderophore attachment site.

  6. Influence of plant root exudates, germ tube orientation and passive conidia transport on biological control of fusarium wilt by strains of nonpathogenic Fusarium oxysporum.

    PubMed

    Mandeel, Qaher A

    2006-03-01

    reached at 96 h. The presented data confirm the previous findings that attributes important for nonpathogenic fusaria to induce resistant are: rapid spore germination and orientation in response to root exudate; active root penetration and passive conidia transport in stem to initiate defence reaction without pathogenicity and enough lag period between induction and challenge inoculation. Strain C14 possesses all these qualifications and hence its ability to enhance host resistance is superior than strain C5.

  7. Aspergillus niger mutants affected in conidial pigmentation do not have an increased susceptibility to water stress during growth at low water activity.

    PubMed

    Segers, F J J; Wösten, H A B; Dijksterhuis, J

    2018-03-01

    Aspergillus niger forms conidia that contain melanin in their cell wall. This black pigment has been shown to protect fungi against UV radiation, and experimental evidence has indicated that it also protects against drought and high salt concentrations. In this study, growth of A. niger was evaluated at low water activity (a w ) and after changes in relative humidity (RH). In addition, deletion strains of A. niger affected in the melanin synthesis pathway were compared. Germination of conidia of the wild-type and deletion strains was observed at 0·81 a w and germ tubes continued growth at a w  ≥ 0·83. Conidia and microcolonies of the different strains were incubated for 1 week at lowered RH (33-84%). Conidia of all strains germinated and formed colonies after exposure to RH ≥33% when transferred back to malt extract medium at a w 0·98. Conidia germinated and showed limited growth at 84% RH. Microcolonies of all strains did not survive an incubation of 1 week at RH ≤75%, but continued growth after exposure to 84% RH. Together, this is the first genetic evidence that melanin does not play a role during germination and radial extension of fungi at low water conditions. Aspergillus niger, a cosmopolitan fungus with melanized conidia, is used here as a model system for fungal growth at low water activity (a w ) and humidity dynamics. From this study it becomes clear that melanin, contrary to what has been suggested before, is not a key factor in survival and growth during situations that mimic indoor conditions. Indoor fungal growth can lead to cosmetic damage to building materials and health problems. This knowledge makes clear that novel ways to limit indoor fungal growth have to be based on interference with other cellular traits of fungi. © 2018 The Society for Applied Microbiology.

  8. New use of broomcorn millets for production of granular cultures of aphid-pathogenic fungus Pandora neoaphidis for high sporulation potential and infectivity to Myzus persicae.

    PubMed

    Hua, Li; Feng, Ming-Guang

    2003-10-24

    Glutinous broomcorn millets from the crop Panicum miliaceum were first used as substrate to produce granular cultures of Pandora neoaphidis, an obligate fungal pathogen specific to aphids. Carrying a water content of 36.5% after being steamed in a regular autoclaving procedure, millet grains of each 15 g (dry weight) in a 100-ml flask were mixed with 3 ml modified Sabouraud dextrose broth containing half a mashed colony of P. neoaphidis grown on egg yolk milk agar and then incubated at 20 degrees C and a light/dark cycle of 12 h/12 h for 21 days. Based on individually monitoring conidial production potential of 20 millet grains sampled from an arbitrarily taken flask at 3-day intervals, the millet cultures incubated for 6-15 days were capable of producing 16.8-23.4 x 10(4) conidia per millet grain with conidial ejection lasting for up to 6 days. The cultured millet grains individually produced significantly more conidia than apterous adults of Myzus persicae killed by P. neoaphidis (8.4 x 10(4) conidia per cadaver) and sporulated twice longer. The modeling of time-dose-mortality data from bioassays on M. persicae apterae exposed to conidial showers from the cultured millet grains and the mycelial mats produced in liquid culture resulted in similar estimates of LC(50) (millets: 21.4, 7.3, and 4.9 conidia mm(-2) on days 5-7 after exposure; mycelial mats: 22.1, 10.6, and 7.7 conidia mm(-2)) although the LT(50) estimated at a given conidial concentration was slightly smaller for the millet cultures than for the mycelial mats. This indicates that the millet grains cultured with P. neoaphidis produced conidia as infective as or slightly more infective to M. persicae than those from the mycelial mats. Based on the sporulation potential, infectivity, and ease and cost of the millet cultures, the method developed in this study highly improved in vitro cultures of P. neoaphidis and may adapt to culturing other entomophthoralean fungi for microbial control of insect pests.

  9. Neem oil increases the efficiency of the entomopathogenic fungus Metarhizium anisopliae for the control of Aedes aegypti (Diptera: Culicidae) larvae.

    PubMed

    Gomes, Simone A; Paula, Adriano R; Ribeiro, Anderson; Moraes, Catia O P; Santos, Jonathan W A B; Silva, Carlos P; Samuels, Richard I

    2015-12-30

    Entomopathogenic fungi are potential candidates for use in integrated vector management and many isolates are compatible with synthetic and natural insecticides. Neem oil was tested separately and in combination with the entomopathogenic fungus Metarhizium anisopliae against larvae of the dengue vector Aedes aegypti. Our aim was to increase the effectiveness of the fungus for the control of larval mosquito populations. Commercially available neem oil was used at concentrations ranging from 0.0001 to 1%. Larval survival rates were monitored over a 7 day period following exposure to neem. The virulence of the fungus M. anisopliae was confirmed using five conidial concentrations (1 × 10(5) to 1 × 10(9) conidia mL(-1)) and survival monitored over 7 days. Two concentrations of fungal conidia were then tested together with neem (0.001%). Survival curve comparisons were carried out using the Log-rank test and end-point survival rates were compared using one-way ANOVA. 1% neem was toxic to A. aegypti larvae reducing survival to 18% with S50 of 2 days. Neem had no effect on conidial germination or fungal vegetative growth in vitro. Larval survival rates were reduced to 24% (S50 = 3 days) when using 1 × 10(9) conidia mL(-1). Using 1 × 10(8) conidia mL(-1), 30% survival (S50 = 3 days) was observed. We tested a "sub-lethal" neem concentration (0.001%) together with these concentrations of conidia. For combinations of neem + fungus, the survival rates were significantly lower than the survival rates seen for fungus alone or for neem alone. Using a combination of 1 × 10(7) conidia mL(-1) + neem (0.001%), the survival rates were 36%, whereas exposure to the fungus alone resulted in 74% survival and exposure to neem alone resulted in 78% survival. When using 1 × 10(8) conidia mL(-1), the survival curves were modified, with a combination of the fungus + neem resulting in 12% survival, whilst the fungus alone at this concentration also

  10. Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redman, R.S.; Rodriguez, R.J.; Clifton, D.R.

    1999-02-01

    A nonpathogenic mutant of Colletotrichum magna (path-1) was previously shown to protect watermelon (Citrullus lanatus) and cucumber (Cucumis sativus) seedlings from anthracnose disease elicited by wild-type C. magna. Disease protection was observed in stems of path-1-colonized cucurbits but not in cotyledons, indicating that path-1 conferred tissue-specific and/or localized protection. Plant biochemical indicators of a localized and systemic (peroxidase, phenylalanine ammonia-lyase, lignin, and salicylic acid) plant-defense response were investigated in anthracnose-resistant and-susceptible cultivars of cucurbit seedlings exposed to four treatments: (1) water (control), (2) path-1 conidia, (3) wild-type conidia, and (4) challenge conditions (inoculation into path-1 conidia for 48 h andmore » then exposure to wild-type conidia). Collectively, these analyses indicated that disease protection in path-1-colonized plants was correlated with the ability of these plants to mount a defense response more rapidly and to equal or greater levels than plants exposed to wild-type C. magna alone. Watermelon plants colonized with path-1 were also protected against disease caused by Colletotrichum orbiculare and Fusarium oxysporum. A model based on the kinetics of plant-defense activation is presented to explain the mechanism of path-1-conferred disease protection.« less

  11. O-Glycosylation in Cell Wall Proteins in Scedosporium prolificans Is Critical for Phagocytosis and Inflammatory Cytokines Production by Macrophages

    PubMed Central

    Xisto, Mariana I. D. S.; Bittencourt, Vera C. B.; Liporagi-Lopes, Livia Cristina; Haido, Rosa M. T.; Mendonça, Morena S. A.; Sassaki, Guilherme; Figueiredo, Rodrigo T.; Romanos, Maria Teresa V.; Barreto-Bergter, Eliana

    2015-01-01

    In this study, we analyze the importance of O-linked oligosaccharides present in peptidorhamnomannan (PRM) from the cell wall of the fungus Scedosporium prolificans for recognition and phagocytosis of conidia by macrophages. Adding PRM led to a dose-dependent inhibition of conidia phagocytosis, whereas de-O-glycosylated PRM did not show any effect. PRM induced the release of macrophage-derived antimicrobial compounds. However, O-linked oligosaccharides do not appear to be required for such induction. The effect of PRM on conidia-induced macrophage killing was examined using latex beads coated with PRM or de-O-glycosylated PRM. A decrease in macrophage viability similar to that caused by conidia was detected. However, macrophage killing was unaffected when beads coated with de-O-glycosylated PRM were used, indicating the toxic effect of O-linked oligosaccharides on macrophages. In addition, PRM triggered TNF-α release by macrophages. Chemical removal of O-linked oligosaccharides from PRM abolished cytokine induction, suggesting that the O-linked oligosaccharidic chains are important moieties involved in inflammatory responses through the induction of TNF-α secretion. In summary, we show that O-glycosylation plays a role in the recognition and uptake of S. prolificans by macrophages, killing of macrophages and production of pro- inflammatory cytokines. PMID:25875427

  12. Beauveria medogensis sp. nov., a new fungus of the entomopathogenic genus from China.

    PubMed

    Imoulan, Abdessamad; Wu, Hai-Jun; Lu, Wei-Lai; Li, Yi; Li, Bin-Bin; Yang, Rei-Heng; Wang, Wen-Jing; Wang, Xiao-Liang; Kirk, Paul M; Yao, Yi-Jian

    2016-09-01

    Beauveria is among the most ubiquitous genera of entomopathogenic fungi throughout the world. A previously unknown species of the genus was recently discovered from a soil sample collected from Tibetan Plateau, China and is here described as new to science, B. medogensis sp. nov. The new species is distinguished from its closest relatives based on both morphological characterization and molecular phylogenetic analyses. Beauveria medogensis is characterized by globose to subglobose conidia, morphologically similar to some other species of in the genus, but was conclusively separated from those species in the phylogenetic analyses including sequences of four nuclear genes (RPB1, RPB2, TEF1 and Bloc). The new species was clustered in the analyses in a single terminal lineage which was grouped with B. australis sequences together as a sister clade to the B. brongniartii terminal clade. Although molecularly closely related, the new species is distinct morphologically from its closest sisters, B. australis and B. brongniartii, in producing globose to subglobose conidia rather than subglobose, broadly ellipsoid to ellipsoid conidia or ellipsoidal to cylindrical conidia. As isolated from a soil sample, the entomopathogenicity of the new species has been confirmed using Helicoverpa armigera and Tenebrio molitor larvae. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A monograph of the entomopathogenic genera Hypocrella, Moelleriella, and Samuelsia gen. nov. (Ascomycota, Hypocreales, Clavicipitaceae), and their aschersonia-like anamorphs in the Neotropics

    PubMed Central

    Chaverri, P.; Liu, M.; Hodge, K.T.

    2008-01-01

    The present taxonomic revision deals with Neotropical species of three entomopathogenic genera that were once included in Hypocrella s. l.: Hypocrella s. str. (anamorph Aschersonia), Moelleriella (anamorph aschersonia-like), and Samuelsia gen. nov (anamorph aschersonia-like). Species of Hypocrella, Moelleriella, and Samuelsia are pathogens of scale insects (Coccidae and Lecaniidae, Homoptera) and whiteflies (Aleyrodidae, Homoptera) and are common in tropical regions. Phylogenetic analyses of DNA sequences from nuclear ribosomal large subunit (28S), translation elongation factor 1-α (TEF 1-α), and RNA polymerase II subunit 1 (RPB1) and analyses of multiple morphological characters demonstrate that the three segregated genera can be distinguished by the disarticulation of the ascospores and shape and size of conidia. Moelleriella has filiform multi-septate ascospores that disarticulate at the septa within the ascus and aschersonia-like anamorphs with fusoid conidia. Hypocrella s. str. has filiform to long-fusiform ascospores that do not disarticulate and Aschersonia s. str. anamorphs with fusoid conidia. The new genus proposed here, Samuelsia, has filiform to long-fusiform ascospores that do not disarticulate and aschersonia-like anamorphs with small allantoid conidia. In addition, the present study presents and discusses the evolution of species, morphology, and ecology in Hypocrella, Moelleriella, and Samuelsia based on multigene phylogenetic analyses. PMID:18490956

  14. Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna

    USGS Publications Warehouse

    Redman, R.S.; Freeman, S.; Clifton, D.R.; Morrel, J.; Brown, G.; Rodriguez, R.J.

    1999-01-01

    A nonpathogenic mutant of Colletotrichum magna (path-1) was previously shown to protect watermelon (Citrullus lanatus) and cucumber (Cucumis sativus) seedlings from anthracnose disease elicited by wild-type C. magna. Disease protection was observed in stems of path-1-colonized cucurbits but not in cotyledons, indicating that path-1 conferred tissue-specific and/or localized protection. Plant biochemical indicators of a localized and systemic (peroxidase, phenylalanine ammonia-lyase, lignin, and salicylic acid) 'plant-defense' response were investigated in anthracnose-resistant and -susceptible cultivars of cucurbit seedlings exposed to four treatments: (1) water (control), (2) path-1 conidia, (3) wild-type conidia, and (4) challenge conditions (inoculation into path-1 conidia for 48 h and then exposure to wild-type conidia). Collectively, these analyses indicated that disease protection in path-1 colonized plants was correlated with the ability of these plants to mount a defense response more rapidly and to equal or greater levels than plants exposed to wild-type C. magna alone. Watermelon plants colonized with path-1 were also protected against disease caused by Colletotrichum orbiculare and Fusarium oxysporum. A model based on the kinetics of plant-defense activation is presented to explain the mechanism of path-1-conferred disease protection.

  15. Generation of β-glucuronidase reporter-tagged strain to monitor Ustilaginoidea virens infection in rice.

    PubMed

    Andargie, Mebeaselassie; Yang, Chao; Li, Jianxiong

    2016-12-01

    An Agrobacterium-mediated genetic transformation system for the rice false smut fungus Ustilaginoidea virens was developed using conidia as recipients. A binary vector, pCAMBIA1301-P gpdA -GUS-T trpC , was constructed. The gpdA promoter (P gpdA ) from Aspergillus nidulans was used to drive the expression of the β-glucuronidase (GUS) gene which enabled GUS activity visualization. The conidia transformation efficiency reached approximately 110 to 250 transformants per 1×10 5 conidia. Based on the analysis made on five successive generations of subcultures and PCR, the pCAMBIA1301-GUS cassette had integrated into the genomes of all transformants and clearly showed mitotic stability. The novel reporter vector constructed will promote the functional characterization of genes and the construction of genetically engineered strains of this important fungus. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Pathogenicity and ultrastructural studies of the mode of penetration by Phoma strasseri in peppermint stems and rhizomes.

    PubMed

    Zimowska, Beata

    2012-01-01

    Pathogenicity and ultrastructural investigation of the inoculation of peppermint stems and rhizomes with Phoma strasseri conidia was undertaken using scanning and transmission electron microscopy to examine the host-parasite relationship. Pathogenicity experiments demonstrated that all tested P. strasseri isolates had infected the stems and rhizomes of peppermint. Of all inoculation methods, direct placement of colonized agar plugs on damaged epidermis and soaking stems and rhizomes in conidial suspension were the most effective. The behavior of the conidia deposited on the stems and rhizomes was investigated at different time intervals after inoculation: 6, 16, 24, 36 and 48 h. Conidia produced an appressorium directly at the end of a short germ tube. Appressoria were formed over the cuticle, but never over stomata. Direct penetration to host tissue through the cuticle was observed. The spore and hyphae were covered with a mucilaginous sheath.

  17. Metarhizium brunneum (Ascomycota; Hypocreales) Treatments Targeting Olive Fly in the Soil for Sustainable Crop Production

    PubMed Central

    Yousef, Meelad; Alba-Ramírez, Carmen; Garrido Jurado, Inmaculada; Mateu, Jordi; Raya Díaz, Silvia; Valverde-García, Pablo; Quesada-Moraga, Enrique

    2018-01-01

    Soil treatments with Metarhizium brunneum EAMa 01/58-Su strain conducted in both Northern and Southern Spain reduced the olive fly (Bactrocera oleae) population density emerging from the soil during spring up to 70% in treated plots compared with controls. A model to determine the influence of rainfall on the conidial wash into different soil types was developed, with most of the conidia retained at the first 5 cm, regardless of soil type, with relative percentages of conidia recovered ranging between 56 and 95%. Furthermore, the possible effect of UV-B exposure time on the pathogenicity of this strain against B. oleae adults coming from surviving preimaginals and carrying conidia from the soil at adult emergence was also evaluated. The UV-B irradiance has no significant effect on M. brunneum EAMa 01/58-Su pathogenicity with B. oleae adult mortalities of 93, 90, 79, and 77% after 0, 2, 4, and 6 of UV-B irradiance exposure, respectively. In a next step for the use of these M. brunneum EAMa 01/58-Sun soil treatments within a B. oleae IPM strategy, its possible effect of on the B. oleae cosmopolitan parasitoid Psyttalia concolor, its compatibility with the herbicide oxyfluorfen 24% commonly used in olive orchards and the possible presence of the fungus in the olive oil resulting from olives previously placed in contact with the fungus were investigated. Only the highest conidial concentration (1 × 108 conidia ml−) caused significant P. concolor adult mortality (22%) with enduing mycosis in 13% of the cadavers. There were no fungal propagules in olive oil samples resulting from olives previously contaminated by EAMa 01/58-Su conidia. Finally, the strain was demonstrated to be compatible with herbicide since the soil application of the fungus reduced the B. oleae population density up to 50% even when it was mixed with the herbicide in the same tank. The fungal inoculum reached basal levels 4 months after treatments (1.6 × 103 conidia g soil−1). These results

  18. Metarhizium brunneum (Ascomycota; Hypocreales) Treatments Targeting Olive Fly in the Soil for Sustainable Crop Production.

    PubMed

    Yousef, Meelad; Alba-Ramírez, Carmen; Garrido Jurado, Inmaculada; Mateu, Jordi; Raya Díaz, Silvia; Valverde-García, Pablo; Quesada-Moraga, Enrique

    2018-01-01

    Soil treatments with Metarhizium brunneum EAMa 01/58-Su strain conducted in both Northern and Southern Spain reduced the olive fly ( Bactrocera oleae ) population density emerging from the soil during spring up to 70% in treated plots compared with controls. A model to determine the influence of rainfall on the conidial wash into different soil types was developed, with most of the conidia retained at the first 5 cm, regardless of soil type, with relative percentages of conidia recovered ranging between 56 and 95%. Furthermore, the possible effect of UV-B exposure time on the pathogenicity of this strain against B. oleae adults coming from surviving preimaginals and carrying conidia from the soil at adult emergence was also evaluated. The UV-B irradiance has no significant effect on M. brunneum EAMa 01/58-Su pathogenicity with B. oleae adult mortalities of 93, 90, 79, and 77% after 0, 2, 4, and 6 of UV-B irradiance exposure, respectively. In a next step for the use of these M. brunneum EAMa 01/58-Sun soil treatments within a B. oleae IPM strategy, its possible effect of on the B. oleae cosmopolitan parasitoid Psyttalia concolor , its compatibility with the herbicide oxyfluorfen 24% commonly used in olive orchards and the possible presence of the fungus in the olive oil resulting from olives previously placed in contact with the fungus were investigated. Only the highest conidial concentration (1 × 10 8 conidia ml - ) caused significant P. concolor adult mortality (22%) with enduing mycosis in 13% of the cadavers. There were no fungal propagules in olive oil samples resulting from olives previously contaminated by EAMa 01/58-Su conidia. Finally, the strain was demonstrated to be compatible with herbicide since the soil application of the fungus reduced the B. oleae population density up to 50% even when it was mixed with the herbicide in the same tank. The fungal inoculum reached basal levels 4 months after treatments (1.6 × 10 3 conidia g soil -1 ). These results

  19. Efficacy of the entomopathogenic fungus Metarhizium brunneum in controlling the tick Rhipicephalus annulatus under field conditions.

    PubMed

    Samish, M; Rot, A; Ment, D; Barel, S; Glazer, I; Gindin, G

    2014-12-15

    High infectivity of entomopathogenic fungi to ticks under laboratory conditions has been demonstrated in many studies. However, the few reports on their use under field conditions demonstrate large variations in their success, often with no clear explanation. The present study evaluated the factors affecting the efficacy of the fungus Metarhizium brunneum against the tick Rhipicephalus (Boophilus) annulatus. It demonstrates how environmental conditions and ground cover affect the efficiency of the fungus under field conditions. During the summer, 93% of tick females exposed to fungus-contaminated ground died within 1 week, whereas during the winter, only 62.2% died within 6 weeks. Nevertheless, the hatchability of their eggs was only 6.1% during the summer and 0.0% during winter. Covering the ground with grass, leaves or gravel improved fungal performance. Aside from killing female ticks, the fungus had a substantial effect on tick fecundity. Fungal infection reduced the proportion of female ticks laying full-size egg masses by up to 91%, and reduced egg hatchability by up to 100%. To reduce the negative effect of outdoor factors on fungal activity, its conidia were mixed with different oils (olive, canola, mineral or paraffin at 10% v/v) and evaluated in both laboratory and field tests for efficacy. All tested oils without conidia sprayed on the sand did not influence tick survival or weight of the laid eggs but significantly reduced egghatchability. Conidia in water with canola or mineral oil spread on agarose and incubated for 18 h showed 57% and 0% germination, respectively. Comparing, under laboratory conditions, the effects of adding each of the four oils to conidia in water on ticks demonstrated no effect on female mortality or weight of the laid egg mass, but the percentage of hatched eggs was reduced. In outdoor trials, female ticks placed on the ground sprayed with conidia in water yielded an average of 175 larvae per female and there was no hatching of

  20. Compatibility and Infectivity of a Cercospora rodmanii Formulation with Enhancing Agents.

    DTIC Science & Technology

    1983-06-01

    575-588. 1975. "Germination of Botrytis cinerea conidia in vitro in Relation to Nutrient Conditions on Leaf Surfaces," Transactions of the British...and Botrytis cinerea conidia in vitro in Relation to Nutrient Conditions on Leaf Surfaces," Canadian Journal of Botany, Vol 29, pp 854-861. 19 19 Table...63- L’A AQUATIC PLANT CONTROL RESEARCH PROGRAM * jb~1 MISCELLANFOUS PAPER A-83-6 COMPATIBILITY AND INFECTIVITY OF A CERCOSPORA RODMAN/I FORMULATION

  1. Identification and functional analysis of endogenous nitric oxide in a filamentous fungus.

    PubMed

    Pengkit, Anchalee; Jeon, Seong Sil; Son, Soo Ji; Shin, Jae Ho; Baik, Ku Yeon; Choi, Eun Ha; Park, Gyungsoon

    2016-07-18

    In spite of its prevalence in animals and plants, endogenous nitric oxide (NO) has been rarely reported in fungi. We present here our observations on production of intracellular NO and its possible roles during development of Neurospora crassa, a model filamentous fungus. Intracellular NO was detected in hypha 8-16 hours after incubation in Vogel's minimal liquid media and conidiophores during conidiation using a fluorescent indicator (DAF-FM diacetate). Treatment with cPTIO, an NO scavenger, significantly reduced fluorescence levels and hindered hyphal growth in liquid media and conidiation, whereas exogenous NO enhanced hyphal extension on VM agar media and conidia formation. NO scavenging also dramatically diminished transcription of con-10 and con-13, genes preferentially expressed during conidiation. Our results suggest that intracellular NO is generated in young hypha growing in submerged culture and during conidia development and regulate mycelial development and conidia formation.

  2. Liberomyces gen. nov. with two new species of endophytic coelomycetes from broadleaf trees.

    PubMed

    Pazoutová, Sylvie; Srutka, Petr; Holusa, Jaroslav; Chudícková, Milada; Kubátová, Alena; Kolarík, Miroslav

    2012-01-01

    During a study of endophytic and saprotrophic fungi in the sapwood and phloem of broadleaf trees (Salix alba, Quercus robur, Ulmus laevis, Alnus glutinosa, Betula pendula) fungi belonging to an anamorphic coelomycetous genus not attributable to a described taxon were detected and isolated in pure culture. The new genus, Liberomyces, with two species, L. saliciphilus and L. macrosporus, is described. Both species have subglobose conidiomata containing holoblastic sympodial conidiogenous cells. The conidiomata dehisce irregularly or by ostiole and secrete a slimy suspension of conidia. The conidia are hyaline, narrowly allantoid with a typically curved distal end. In L. macrosporus simultaneous production of synanamorph with thin filamentous conidia was observed occasionally. The genus has no known teleomorph. Related sequences in the public databases belong to endophytes of angiosperms. Phylogenetic analysis revealed a position close to the Xylariales (Sordariomycetes), but family and order affiliation remained unclear.

  3. Identification and functional analysis of endogenous nitric oxide in a filamentous fungus

    PubMed Central

    Pengkit, Anchalee; Jeon, Seong Sil; Son, Soo Ji; Shin, Jae Ho; Baik, Ku Yeon; Choi, Eun Ha; Park, Gyungsoon

    2016-01-01

    In spite of its prevalence in animals and plants, endogenous nitric oxide (NO) has been rarely reported in fungi. We present here our observations on production of intracellular NO and its possible roles during development of Neurospora crassa, a model filamentous fungus. Intracellular NO was detected in hypha 8–16 hours after incubation in Vogel’s minimal liquid media and conidiophores during conidiation using a fluorescent indicator (DAF-FM diacetate). Treatment with cPTIO, an NO scavenger, significantly reduced fluorescence levels and hindered hyphal growth in liquid media and conidiation, whereas exogenous NO enhanced hyphal extension on VM agar media and conidia formation. NO scavenging also dramatically diminished transcription of con-10 and con-13, genes preferentially expressed during conidiation. Our results suggest that intracellular NO is generated in young hypha growing in submerged culture and during conidia development and regulate mycelial development and conidia formation. PMID:27425220

  4. Conidiogenesis-related DNA photolyase gene in Beauveria bassiana.

    PubMed

    Lee, Se Jin; Lee, Mi Rong; Kim, Sihyeon; Kim, Jong Cheol; Park, So Eun; Shin, Tae Young; Kim, Jae Su

    2018-03-01

    Beauveria bassiana is an entomopathogenic fungi used in environmentally mindful pest management. Its main active ingredient, conidia, is commercially available as a fungal biopesticide. Many studies of conidia production have focused on how to optimize culture conditions for maximum productivity and stability against unfavorable abiotic factors. However, understanding of how conidiogenesis-related genes provide improved conidial production remains unclear. In this study, we focus on identifying conidiogenesis-related genes in B. bassiana ERL1170 using a random mutagenesis technique. Transformation of ERL1170 using restriction enzyme-mediated integration generated one morphologically different transformant, ERL1170-pABeG #163. The transformant was confirmed to represent B. bassiana, and the binary vector was successfully integrated into the genome of ERL1170. Compared to the wild type, transformant #163 showed very slow hyphal growth and within 6 days only produced <1 × 10 6  conidia/0.28 cm 2 agar block (wild type: 6.2 × 10 7  conidia/agar block). Transformant #163 also exhibited different morphology than the wild type, including thicker hyphae with some club-shaped parts. In contrast, the typical morphology of wild type B. bassiana exhibits thread-like hyphae and conidiophore structures and circular conidia. To determine the location of the randomly inserted DNA, we conducted thermal asymmetric interlaced (TAIL) PCR and Escherichia coli cloning to clearly sequence the disrupted region. We identified one colony (colony No. 7) with an insertion site identified as DNA photolyase. This was confirmed through a gene knock-out study. It is possible the gene that encodes for DNA photolyase was disrupted during the insertion process and might be involved in fungal conidiogenesis. This work serves as a platform for exploring the function of a variety of B. bassiana genes involved in pest management and their downstream processing. Copyright © 2018

  5. Persistence versus Escape: Aspergillus terreus and Aspergillus fumigatus Employ Different Strategies during Interactions with Macrophages

    PubMed Central

    Slesiona, Silvia; Gressler, Markus; Mihlan, Michael; Zaehle, Christoph; Schaller, Martin; Barz, Dagmar; Hube, Bernhard; Jacobsen, Ilse D.; Brock, Matthias

    2012-01-01

    Invasive bronchopulmonary aspergillosis (IBPA) is a life-threatening disease in immunocompromised patients. Although Aspergillus terreus is frequently found in the environment, A. fumigatus is by far the main cause of IBPA. However, once A. terreus establishes infection in the host, disease is as fatal as A. fumigatus infections. Thus, we hypothesized that the initial steps of disease establishment might be fundamentally different between these two species. Since alveolar macrophages represent one of the first phagocytes facing inhaled conidia, we compared the interaction of A. terreus and A. fumigatus conidia with alveolar macrophages. A. terreus conidia were phagocytosed more rapidly than A. fumigatus conidia, possibly due to higher exposure of β-1,3-glucan and galactomannan on the surface. In agreement, blocking of dectin-1 and mannose receptors significantly reduced phagocytosis of A. terreus, but had only a moderate effect on phagocytosis of A. fumigatus. Once phagocytosed, and in contrast to A. fumigatus, A. terreus did not inhibit acidification of phagolysosomes, but remained viable without signs of germination both in vitro and in immunocompetent mice. The inability of A. terreus to germinate and pierce macrophages resulted in significantly lower cytotoxicity compared to A. fumigatus. Blocking phagolysosome acidification by the v-ATPase inhibitor bafilomycin increased A. terreus germination rates and cytotoxicity. Recombinant expression of the A. nidulans wA naphthopyrone synthase, a homologue of A. fumigatus PksP, inhibited phagolysosome acidification and resulted in increased germination, macrophage damage and virulence in corticosteroid-treated mice. In summary, we show that A. terreus and A. fumigatus have evolved significantly different strategies to survive the attack of host immune cells. While A. fumigatus prevents phagocytosis and phagolysosome acidification and escapes from macrophages by germination, A. terreus is rapidly phagocytosed, but

  6. Density and Molecular Epidemiology of Aspergillus in Air and Relationship to Outbreaks of Aspergillus Infection

    PubMed Central

    Leenders, Alexander C. A. P.; van Belkum, Alex; Behrendt, Myra; Luijendijk, Ad; Verbrugh, Henri A.

    1999-01-01

    After five patients were diagnosed with nosocomial invasive aspergillosis caused by Aspergillus fumigatus and A. flavus, a 14-month surveillance program for pathogenic and nonpathogenic fungal conidia in the air within and outside the University Hospital in Rotterdam (The Netherlands) was begun. A. fumigatus isolates obtained from the Department of Hematology were studied for genetic relatedness by randomly amplified polymorphic DNA (RAPD) analysis. This was repeated with A. fumigatus isolates contaminating culture media in the microbiology laboratory. The density of the conidia of nonpathogenic fungi in the outside air showed a seasonal variation: higher densities were measured during the summer, while lower densities were determined during the fall and winter. Hardly any variation was found in the numbers of Aspergillus conidia. We found decreasing numbers of conidia when comparing air from outside the hospital to that inside the hospital and when comparing open areas within the hospital to the closed department of hematology. The increase in the number of patients with invasive aspergillosis could not be explained by an increase in the number of Aspergillus conidia in the outside air. The short-term presence of A. flavus can only be explained by the presence of a point source, which was probably patient related. Genotyping A. fumigatus isolates from the department of hematology showed that clonally related isolates were persistently present for more than 1 year. Clinical isolates of A. fumigatus obtained during the outbreak period were different from these persistent clones. A. fumigatus isolates contaminating culture media were all genotypically identical, indicating a causative point source. Knowledge of the epidemiology of Aspergillus species is necessary for the development of strategies to prevent invasive aspergillosis. RAPD fingerprinting of Aspergillus isolates can help to determine the cause of an outbreak of invasive aspergillosis. PMID:10325319

  7. Biocontrol of blue mold on apple fruits by Aureobasidium pullulans (strain Ach 1-1): in vitro and in situ evidence for the possible involvement of competition for nutrients.

    PubMed

    Bencheqroun, S Krimi; Bajji, M; Massart, S; Bentata, F; Labhilili, M; Achbani, H; El Jaafari, S; Jijakli, M H

    2006-01-01

    Aureobasidium pullulans strain Ach1-1 was recently isolated for its biocontrol effectiveness against Penicillium expansum, the causal agent of blue mold on harvested apples. In the present study, strain Ach1-1 was found to be very effective in controlling P. expansum on apple wounds. For in vitro tests, strain Ach1-1 and P. expansum were cocultured in the presence of apple juice (0 - 5%) using a system preventing direct contact between both agents. The presence of the antagonist greatly reduced germination of conidia at low (0.1, 0.5 and 1%) but not at high (5%) juice concentrations. Germination of previously inhibited conidia at 0.5% apple juice was partially restored in the presence of the antagonist when fresh juice was added at a final concentration of 5%, and completely recovered at both 0.5 and 5% juice concentrations in the absence of the antagonist. These data show that P. expansum conidia are able to germinate when cocultered with strain Ach1-1 in conditions of sufficient rather than limited nutrient availability and that the antagonist does not affect the viability of these conidia, indicating that the inhibitory effect of strain Ach1-1 on conidia germination may be due to a competition for nutrients. Such observation was confirmed in situ since the application of high amounts of exogenous amino acids, vitamins or sugars on apple wounds significantly reduced the protective level of strain Ach1-1 against P. expansum, the most important effect was obtained with amino acids followed by vitamins and then by sugars. The present work provides both in vitro and in situ evidence that the biocontrol activity of strain Ach1-1 against P. expansum essentially relies on competition for apple fruit nutrients, especially amino acids.

  8. Cell Wall Modifications during Conidial Maturation of the Human Pathogenic Fungus Pseudallescheria boydii

    PubMed Central

    Ghamrawi, Sarah; Rénier, Gilles; Saulnier, Patrick; Cuenot, Stéphane; Zykwinska, Agata; Dutilh, Bas E.; Thornton, Christopher; Faure, Sébastien; Bouchara, Jean-Philippe

    2014-01-01

    Progress in extending the life expectancy of cystic fibrosis (CF) patients remains jeopardized by the increasing incidence of fungal respiratory infections. Pseudallescheria boydii (P. boydii), an emerging pathogen of humans, is a filamentous fungus frequently isolated from the respiratory secretions of CF patients. It is commonly believed that infection by this fungus occurs through inhalation of airborne conidia, but the mechanisms allowing the adherence of Pseudallescheria to the host epithelial cells and its escape from the host immune defenses remain largely unknown. Given that the cell wall orchestrates all these processes, we were interested in studying its dynamic changes in conidia as function of the age of cultures. We found that the surface hydrophobicity and electronegative charge of conidia increased with the age of culture. Melanin that can influence the cell surface properties, was extracted from conidia and estimated using UV-visible spectrophotometry. Cells were also directly examined and compared using electron paramagnetic resonance (EPR) that determines the production of free radicals. Consistent with the increased amount of melanin, the EPR signal intensity decreased suggesting polymerization of melanin. These results were confirmed by flow cytometry after studying the effect of melanin polymerization on the surface accessibility of mannose-containing glycoconjugates to fluorescent concanavalin A. In the absence of melanin, conidia showed a marked increase in fluorescence intensity as the age of culture increased. Using atomic force microscopy, we were unable to find rodlet-forming hydrophobins, molecules that can also affect conidial surface properties. In conclusion, the changes in surface properties and biochemical composition of the conidial wall with the age of culture highlight the process of conidial maturation. Mannose-containing glycoconjugates that are involved in immune recognition, are progressively masked by polymerization of

  9. Toxic reagents and expensive equipment: are they really necessary for the extraction of good quality fungal DNA?

    PubMed

    Rodrigues, P; Venâncio, A; Lima, N

    2018-01-01

    The aim of this work was to evaluate a fungal DNA extraction procedure with the lowest inputs in terms of time as well as of expensive and toxic chemicals, but able to consistently produce genomic DNA of good quality for PCR purposes. Two types of fungal biological material were tested - mycelium and conidia - combined with two protocols for DNA extraction using Sodium Dodecyl Sulphate (SDS) and Cetyl Trimethyl Ammonium Bromide as extraction buffers and glass beads for mechanical disruption of cell walls. Our results showed that conidia and SDS buffer was the combination that lead to the best DNA quality and yield, with the lowest variation between samples. This study clearly demonstrates that it is possible to obtain high yield and pure DNA from pigmented conidia without the use of strong cell disrupting procedures and of toxic reagents. There are numerous methods for DNA extraction from fungi. Some rely on expensive commercial kits and/or equipments, unavailable for many laboratories, or make use of toxic chemicals such as chloroform, phenol and mercaptoethanol. This study clearly demonstrates that it is possible to obtain high yields of pure DNA from pigmented conidia without the use of strong and expensive cell disrupting procedures and of toxic reagents. The method herein described is simultaneously inexpensive and adequate to DNA extraction from several different types of fungi. © 2017 The Society for Applied Microbiology.

  10. The innate immune response to Aspergillus fumigatus at the alveolar surface.

    PubMed

    Margalit, Anatte; Kavanagh, Kevin

    2015-09-01

    Aspergillus fumigatus is an ubiquitous, saprophytic mould that forms and releases airborne conidia which are inhaled by humans on a daily basis. When the immune system is compromised (e.g. immunosuppressive therapy prior to organ transplantation) or there is pre-existing pulmonary malfunction (e.g. asthma, cystic fibrosis, TB lesions), A. fumigatus exploits weaknesses in the host defenses which can result in the development of saphrophytic, allergic or invasive aspergillosis. If not effectively eliminated by the innate immune response, conidia germinate and form invasive hyphae which can penetrate pulmonary tissues. The innate immune response to A. fumigatus is stage-specific and various components of the host's defenses are recruited to challenge the different cellular forms of the pathogen. In immunocompetent hosts, anatomical barriers (e.g. the mucociliary elevator) and professional phagocytes such as alveolar macrophages (AM) and neutrophils prevent the development of aspergillosis by inhibiting the growth of conidia and hyphae. The recognition of inhaled conidia by AM leads to the intracellular degradation of the spores and the secretion of proinflammatory mediators which recruit neutrophils to assist in fungal clearance. During the later stages of infection, dendritic cells activate a protective A. fumigatus-specific adaptive immune response which is driven by Th1 CD4(+) T cells. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Chitin Synthases with a Myosin Motor-Like Domain Control the Resistance of Aspergillus fumigatus to Echinocandins

    PubMed Central

    Jiménez-Ortigosa, Cristina; Aimanianda, Vishukumar; Muszkieta, Laetitia; Mouyna, Isabelle; Alsteens, David; Pire, Stéphane; Beau, Remi; Krappmann, Sven; Beauvais, Anne; Dufrêne, Yves F.

    2012-01-01

    Aspergillus fumigatus has two chitin synthases (CSMA and CSMB) with a myosin motor-like domain (MMD) arranged in a head-to-head configuration. To understand the function of these chitin synthases, single and double csm mutant strains were constructed and analyzed. Although there was a slight reduction in mycelial growth of the mutants, the total chitin synthase activity and the cell wall chitin content were similar in the mycelium of all of the mutants and the parental strain. In the conidia, chitin content in the ΔcsmA strain cell wall was less than half the amount found in the parental strain. In contrast, the ΔcsmB mutant strain and, unexpectedly, the ΔcsmA/ΔcsmB mutant strain did not show any modification of chitin content in their conidial cell walls. In contrast to the hydrophobic conidia of the parental strain, conidia of all of the csm mutants were hydrophilic due to the presence of an amorphous material covering the hydrophobic surface-rodlet layer. The deletion of CSM genes also resulted in an increased susceptibility of resting and germinating conidia to echinocandins. These results show that the deletion of the CSMA and CSMB genes induced a significant disorganization of the cell wall structure, even though they contribute only weakly to the overall cell wall chitin synthesis. PMID:22964252

  12. Very-long-chain aldehydes induce appressorium formation in ascospores of the wheat powdery mildew fungus Blumeria graminis.

    PubMed

    Zhu, Mo; Riederer, Markus; Hildebrandt, Ulrich

    2017-08-01

    Asexually produced conidia of the wheat powdery mildew fungus Blumeria graminis f. sp. tritici (Bgt) are known to perceive cuticular very-long-chain aldehydes as signal substances strongly stimulating germination and differentiation of infection structures in a concentration- and chain-length-dependent manner. Conidial germination and appressorium formation are widely prevented by the presence of free water on the host surface. However, sexually produced ascospores can differentiate immersed in water. Applying a Formvar ® -based in vitro-system showed that ascospore appressorium formation was strongly induced by the presence of wheat leaf cuticular wax. Similar to conidia, ascospore appressorium formation is triggered by the presence of very-long-chain aldehydes in a chain-length-dependent manner with n-octacosanal as the most inducing aldehyde. Surface hydrophobicity positively affected ascospore germination but not appressorium formation. Ascospores required significantly more time to complete the differentiation of appressoria and exhibited a more distinct dependence on the availability of free water than their conidial counterparts. Unlike conidia, ascospores showed a more variable germination and differentiation pattern even with a single germ tube differentiating an appressorium. Despite these differences our results demonstrate that a host surface recognition principle based on cuticular very-long-chain aldehydes is a common feature of B. graminis f. sp. tritici ascospores and conidia. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  13. Geomyces destructans sp. nov. associated with bat white-nose syndrome

    USGS Publications Warehouse

    Gargas, Andrea; Trest, M.T.; Christensen, M.; Volk, T.J.; Blehert, David S.

    2009-01-01

    We describe and illustrate the new species Geomyces destructans. Bats infected with this fungus present with powdery conidia and hyphae on their muzzles, wing membranes, and/or pinnae, leading to description of the accompanying disease as white-nose syndrome, a cause of widespread mortality among hibernating bats in the northeastern US. Based on rRNA gene sequence (ITS and SSU) characters the fungus is placed in the genus Geomyces, yet its distinctive asymmetrically curved conidia are unlike those of any described Geomyces species.

  14. The in vitro fungicidal activity of human macrophages against Penicillium marneffei is suppressed by dexamethasone.

    PubMed

    Ma, Tuan; Chen, Renqiong; Li, Xiqing; Lu, Changming; Xi, Liyan

    2015-09-01

    Penicillium marneffei (P. marneffei) is a pathogenic fungus that can persist in macrophages and cause a life-threatening systemic mycosis in immunocompromised hosts. To elucidate the mechanisms underlying this opportunistic fungal infection, we established the co-culture system of P. marneffei conidia and human monocyte-derived macrophages (MDM) for investigating the interactions between them. And, we impaired the immune state of MDM by the addition of dexamethasone (DEX). Compared with immunocompetent MDM without DEX treatment in response to P. marneffei, DEX could damage MDM function in initiating the innate immune response through decreasing TNF-α production and the proportion of P. marneffei conidia in mature phagolysosomes, while the red pigment secretion by P. marneffei conidia was promoted by DEX following MDM lysis. Our data provide the evidence that DEX-treated MDM have a low fungicidal activity against P. marneffei that causes penicilliosis in immunocompromised hosts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. High temperature enhances the ability of Trichoderma asperellum to infect Pleurotus ostreatus mycelia

    PubMed Central

    Qiu, Zhiheng; Wu, Xiangli; Zhang, Jinxia

    2017-01-01

    Trichoderma asperellum is one of the species which can be isolated from contaminated Pleurotus ostreatus cultivation substrate with green mold disease. This study focused on the relationship between high temperature and infectivity of T. asperellum to P. ostreatus. Antagonism experiments between T. asperellum and P. ostreatus mycelia revealed that high temperature-treated P. ostreatus mycelia were more easily infected by T. asperellum and covered by conidia. Microscopic observation also showed that P. ostreatus mycelia treated with high temperature could adsorb more T. asperellum conidia. Furthermore, conidia obtained from T. asperellum mycelia grown at 36°C featured higher germination rate compared with that incubated at 28°C. High temperature-treated T. asperellum mycelia can produce conidia in shorter periods, and T. asperellum mycelia were less sensitive to high temperature than P. ostreatus. Deactivated P. ostreatus mycelia can induce T. asperellum cell wall-degrading enzymes (CWDEs) and P. ostreatus mycelia subjected to high temperature showed induced CWDEs more effective than those incubated at 28°C. Moreover, T. asperellum showed higher CWDEs activity at high temperature. In dual cultures, hydrogen peroxide (H2O2) increased after 36°C, and high concentration of H2O2 could significantly inhibit the growth of P. ostreatus mycelia. In summary, our findings indicated for the first time that high temperature can induce a series of mechanisms to enhance infection abilities of T. asperellum to P. ostreatus mycelia and to cause Pleurotus green mold disease. PMID:29073211

  16. An efficient Agrobacterium-mediated transformation method for aflatoxin generation fungus Aspergillus flavus.

    PubMed

    Han, Guomin; Shao, Qian; Li, Cuiping; Zhao, Kai; Jiang, Li; Fan, Jun; Jiang, Haiyang; Tao, Fang

    2018-05-01

    Aspergillus flavus often invade many important corps and produce harmful aflatoxins both in preharvest and during storage stages. The regulation mechanism of aflatoxin biosynthesis in this fungus has not been well explored mainly due to the lack of an efficient transformation method for constructing a genome-wide gene mutant library. This challenge was resolved in this study, where a reliable and efficient Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for A. flavus NRRL 3357 was established. The results showed that removal of multinucleate conidia, to collect a homogenous sample of uninucleate conidia for use as the transformation material, is the key step in this procedure. A. tumefaciens strain AGL-1 harboring the ble gene for zeocin resistance under the control of the gpdA promoter from A. nidulans is suitable for genetic transformation of this fungus. We successfully generated A. flavus transformants with an efficiency of ∼ 60 positive transformants per 10 6 conidia using our protocol. A small-scale insertional mutant library (∼ 1,000 mutants) was constructed using this method and the resulting several mutants lacked both production of conidia and aflatoxin biosynthesis capacity. Southern blotting analysis demonstrated that the majority of the transformants contained a single T-DNA insert on the genome. To the best of our knowledge, this is the first report of genetic transformation of A. flavus via ATMT and our protocol provides an effective tool for construction of genome-wide gene mutant libraries for functional analysis of important genes in A. flavus.

  17. Laboratory and field evaluation of an entomopathogenic fungus, Isaria cateniannulata strain 08XS-1, against Tetranychus urticae (Koch).

    PubMed

    Zhang, Xiaona; Jin, Daochao; Zou, Xiao; Guo, Jianjun

    2016-05-01

    The two-spotted mite, Tetranychus urticae Koch, is one of the most serious mite pests of crops throughout the world. Biocontrol of the mite with fungal agents has long been paid much attention because of the development of insecticide resistance and the severe restriction of chemical pesticides. In this study, the efficacy of submerged conidia of the entomopathogenic fungus Isaria cateniannulata strain 08XS-1 against T. urticae eggs, larvae and female adults was evaluated at different temperatures and humidity in the laboratory and under field conditions. The results showed that a suspension of 2 × 10(7) submerged conidia mL(-1) caused the highest mortalities of mite eggs, larvae and females (100, 100 and 70% respectively) at 100% relative humidity and 25 °C in the laboratory. In the field experiments against the mites, a suspension of 2 × 10(8) submerged conidia mL(-1) achieved significant efficiency - the relative control effects were 88.6, 83.8 and 83%, respectively, in cucumber, eggplant and bean fields after 10 days of treatment. The results suggest that the I. cateniannulata strain 08XS-1 is a potential fungal agent, with acceptable production cost of conidia, against T. urticae in the field in an area such as southwestern China with higher air humidity. © 2016 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  18. High temperature enhances the ability of Trichoderma asperellum to infect Pleurotus ostreatus mycelia.

    PubMed

    Qiu, Zhiheng; Wu, Xiangli; Zhang, Jinxia; Huang, Chenyang

    2017-01-01

    Trichoderma asperellum is one of the species which can be isolated from contaminated Pleurotus ostreatus cultivation substrate with green mold disease. This study focused on the relationship between high temperature and infectivity of T. asperellum to P. ostreatus. Antagonism experiments between T. asperellum and P. ostreatus mycelia revealed that high temperature-treated P. ostreatus mycelia were more easily infected by T. asperellum and covered by conidia. Microscopic observation also showed that P. ostreatus mycelia treated with high temperature could adsorb more T. asperellum conidia. Furthermore, conidia obtained from T. asperellum mycelia grown at 36°C featured higher germination rate compared with that incubated at 28°C. High temperature-treated T. asperellum mycelia can produce conidia in shorter periods, and T. asperellum mycelia were less sensitive to high temperature than P. ostreatus. Deactivated P. ostreatus mycelia can induce T. asperellum cell wall-degrading enzymes (CWDEs) and P. ostreatus mycelia subjected to high temperature showed induced CWDEs more effective than those incubated at 28°C. Moreover, T. asperellum showed higher CWDEs activity at high temperature. In dual cultures, hydrogen peroxide (H2O2) increased after 36°C, and high concentration of H2O2 could significantly inhibit the growth of P. ostreatus mycelia. In summary, our findings indicated for the first time that high temperature can induce a series of mechanisms to enhance infection abilities of T. asperellum to P. ostreatus mycelia and to cause Pleurotus green mold disease.

  19. Cell-cell recognition of host surfaces by pathogens. The adsorption of maize (Zea mays) root mucilage by surfaces of pathogenic fungi.

    PubMed Central

    Gould, J; Northcote, D H

    1986-01-01

    The adsorption of radioactive mucilage by pathogenic fungi was shown to be dependent upon time, the composition of mucilage, the type of fungal surface (conidia, hyphae, hyphal apices), fungal species, pH and bivalent cations. All fungal adhesins were inactivated by either proteinase or polysaccharase treatments. Adsorption was not inhibited by the numberous mono-, di- and oligo-saccharides that were tested individually, but it was inhibited absolutely by several polysaccharides. This suggested that adsorption of mucilage by pathogens involved conformational and ionic interactions between plant and fungal polymers but not fungal lectins bound to sugar residues of mucilage. Several fractionation schemes showed that pathogens bound only the most acidic of the variety of polymers that comprise mucilage. There was not any absolute distinction between ability to bind radioactive mucilage and type of pathogen or non-pathogen. However, there were notable differences in characteristics of adsorption between two types of pathogen. Differences were revealed by comparison of the adsorption capacities of conidia and germinant conidia and chromatography of radioactive mucilage on germinant conidia. An ectotrophic root-infecting fungus (a highly specialized pathogen) bound a greater proportion of mucilage than did a vascular-wilt fungus (of catholic host and tissue range) with more than one class of site for adsorption. In contrast with the vascular-wilt fungus, sites for adsorption on the specialized pathogen were present solely on surfaces formed by germination. PMID:3954742

  20. Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments

    PubMed Central

    Zalar, P.; de Hoog, G.S.; Schroers, H.-J.; Crous, P.W.; Groenewald, J.Z.; Gunde-Cimerman, N.

    2007-01-01

    Saprobic Cladosporium isolates morphologically similar to C. sphaerospermum are phylogenetically analysed on the basis of DNA sequences of the ribosomal RNA gene cluster, including the internal transcribed spacer regions ITS1 and ITS2, the 5.8S rDNA (ITS) and the small subunit (SSU) rDNA as well as β-tubulin and actin gene introns and exons. Most of the C. sphaerospermum-like species show halotolerance as a recurrent feature. Cladosporium sphaerospermum, which is characterised by almost globose conidia, is redefined on the basis of its ex-neotype culture. Cladosporium dominicanum, C. psychrotolerans, C. velox, C. spinulosum and C. halotolerans, all with globoid conidia, are newly described on the basis of phylogenetic analyses and cryptic morphological and physiological characters. Cladosporium halotolerans was isolated from hypersaline water and bathrooms and detected once on dolphin skin. Cladosporium dominicanum and C. velox were isolated from plant material and hypersaline water. Cladosporium psychrotolerans, which grows well at 4 °C but not at 30 °C, and C. spinulosum, having conspicuously ornamented conidia with long digitate projections, are currently only known from hypersaline water. We also newly describe C. salinae from hypersaline water and C. fusiforme from hypersaline water and animal feed. Both species have ovoid to ellipsoid conidia and are therefore reminiscent of C. herbarum. Cladosporium langeronii (= Hormodendrum langeronii) previously described as a pathogen on human skin, is halotolerant but has not yet been recorded from hypersaline environments. PMID:18490999

  1. An entomopathogenic strain of Beauveria bassiana against Frankliniella occidentalis with no detrimental effect on the predatory mite Neoseiulus barkeri: evidence from laboratory bioassay and scanning electron microscopic observation.

    PubMed

    Wu, Shengyong; Gao, Yulin; Zhang, Yaping; Wang, Endong; Xu, Xuenong; Lei, Zhongren

    2014-01-01

    Among 28 isolates of Beauveria bassiana tested for virulence against F. occidentalis in laboratory bioassays, we found strain SZ-26 as the most potent, causing 96% mortality in adults at 1×10(7) mL(-1)conidia after 4 days. The effect of the strain SZ-26 on survival, longevity and fecundity of the predatory mite Neoseiulus (Amblyseius) barkeri Hughes were studied under laboratory conditions. The bioassay results showed that the corrected mortalities were less than 4 and 8% at 10 days following inoculation of the adult and the larvae of the predator, respectively, with 1×10(7) conidia mL(-1) of SZ-26. Furthermore, no fungal hyphae were found in dead predators. The oviposition and postoviposition durations, longevity, and fecundity displayed no significant differences after inoculation with SZ-26 using first-instar larvae of F. occidentalis as prey in comparison with untreated predator. In contrast, the preoviposition durations were significantly longer. Observations with a scanning electron microscope, revealed that many conidia were attached to the cuticles of F. occidentalis at 2 h after treatment with germ tubes oriented toward cuticle at 24 h, penetration of the insect cuticle at 36 h, and finally, fungal colonization of the whole insect body at 60 h. In contrast, we never observed penetration of the predator's cuticle and conidia were shed gradually from the body, further demonstrating that B. bassiana strain SZ-26 show high toxicity against F. occidentalis but no pathogenicity to predatory mite.

  2. An Entomopathogenic Strain of Beauveria bassiana against Frankliniella occidentalis with no Detrimental Effect on the Predatory Mite Neoseiulus barkeri: Evidence from Laboratory Bioassay and Scanning Electron Microscopic Observation

    PubMed Central

    Wu, Shengyong; Gao, Yulin; Zhang, Yaping; Wang, Endong; Xu, Xuenong; Lei, Zhongren

    2014-01-01

    Among 28 isolates of Beauveria bassiana tested for virulence against F. occidentalis in laboratory bioassays, we found strain SZ-26 as the most potent, causing 96% mortality in adults at 1×107 mL−1conidia after 4 days. The effect of the strain SZ-26 on survival, longevity and fecundity of the predatory mite Neoseiulus (Amblyseius) barkeri Hughes were studied under laboratory conditions. The bioassay results showed that the corrected mortalities were less than 4 and 8% at 10 days following inoculation of the adult and the larvae of the predator, respectively, with 1×107 conidia mL−1 of SZ-26. Furthermore, no fungal hyphae were found in dead predators. The oviposition and postoviposition durations, longevity, and fecundity displayed no significant differences after inoculation with SZ-26 using first-instar larvae of F. occidentalis as prey in comparison with untreated predator. In contrast, the preoviposition durations were significantly longer. Observations with a scanning electron microscope, revealed that many conidia were attached to the cuticles of F. occidentalis at 2 h after treatment with germ tubes oriented toward cuticle at 24 h, penetration of the insect cuticle at 36 h, and finally, fungal colonization of the whole insect body at 60 h. In contrast, we never observed penetration of the predator's cuticle and conidia were shed gradually from the body, further demonstrating that B. bassiana strain SZ-26 show high toxicity against F. occidentalis but no pathogenicity to predatory mite. PMID:24454744

  3. Selection of entomopathogenic fungi for aphid control.

    PubMed

    Vu, Van Hanh; Hong, Suk Il; Kim, Keun

    2007-12-01

    Twelve strains of entomopathogenic fungi such as Lecanicillium lecanii, Paecilomyces farinosus, Beauveria bassiana, Metarhizium anisopliae, Cordyceps scarabaeicola, and Nomuraea rileyi were screened for aphid control. At 25 degrees C and 75% relative humidity (RH), among tested entomopathogenic fungi, L. lecanii 41185 showed the highest virulent pathogenicity for both Myzus persicae and Aphis gossypii, and their control values were both nearly 100% 5 and 2 d after treatment, respectively. Moreover, at an RH of 45% and in a wide temperature range (20-30 degrees C), L. lecanii 41185 also exhibited the highest virulence to M. persicae. The control value of M. persicae and the 50% lethal time (LT50) decreased significantly as the applied conidial concentration increased. The 50% lethal concentration (LC50) of the conidial suspension of this fungus was determined to be 6.55x10(5) conidia/ml. The control values of M. persicae resulting from the application of 1x10(7) and 1x10(8) conidia/ml were nearly the same and were significantly higher than that of 1x10(6) conidia/ml. The tested entomopathogenic fungi grew in a broad temperature range (15-30 degrees C). Lecanicillium strains showed optimum growth at 25 degrees C. The aerial conidia of Lecanicillium strains also could germinate in a broad temperature range (15-30 degrees C) and L. lecanii 41185 was the only strain with conidial germination at 35 degrees C.

  4. Hemolysis, Toxicity, and Randomly Amplified Polymorphic DNA Analysis of Stachybotrys chartarum Strains

    PubMed Central

    Vesper, Stephen J.; Dearborn, Dorr G.; Yike, Iwona; Sorenson, W. G.; Haugland, Richard A.

    1999-01-01

    Stachybotrys chartarum is an indoor air, toxigenic fungus that has been associated with a number of human and veterinary health problems. Most notable among these has been a cluster of idiopathic pulmonary hemorrhage cases that were observed in the Cleveland, Ohio, area. In this study, 16 strains of S. chartarum isolated from case (n = 8) or control (n = 8) homes in Cleveland and 12 non-Cleveland strains from diverse geographic locations were analyzed for hemolytic activity, conidial toxicity, and randomly amplified polymorphic DNA banding patterns. In tests for hemolytic activity, strains were grown at 23°C on wet wallboard pieces for an 8-week test period. Conidia from these wallboard pieces were subcultured on sheep’s blood agar once a week over this period and examined for growth and clearing of the medium at 37 or 23°C. Five of the Cleveland strains (all from case homes) showed hemolytic activity at 37°C throughout the 8-week test compared to 3 of the non-Cleveland strains. Five of the Cleveland strains, compared to two of the non-Cleveland strains, produced highly toxic conidia (>90 μg of T2 toxin equivalents per g [wet weight] of conidia) after 10 and 30 days of growth on wet wallboard. Only 3 of the 28 strains examined both were consistently hemolytic and produced highly toxic conidia. Each of these strains was isolated from a house in Cleveland where an infant had idiopathic pulmonary hemorrhage. PMID:10388719

  5. Hemolysis, toxicity, and randomly amplified polymorphic DNA analysis of Stachybotrys chartarum strains.

    PubMed

    Vesper, S J; Dearborn, D G; Yike, I; Sorenson, W G; Haugland, R A

    1999-07-01

    Stachybotrys chartarum is an indoor air, toxigenic fungus that has been associated with a number of human and veterinary health problems. Most notable among these has been a cluster of idiopathic pulmonary hemorrhage cases that were observed in the Cleveland, Ohio, area. In this study, 16 strains of S. chartarum isolated from case (n = 8) or control (n = 8) homes in Cleveland and 12 non-Cleveland strains from diverse geographic locations were analyzed for hemolytic activity, conidial toxicity, and randomly amplified polymorphic DNA banding patterns. In tests for hemolytic activity, strains were grown at 23 degrees C on wet wallboard pieces for an 8-week test period. Conidia from these wallboard pieces were subcultured on sheep's blood agar once a week over this period and examined for growth and clearing of the medium at 37 or 23 degrees C. Five of the Cleveland strains (all from case homes) showed hemolytic activity at 37 degrees C throughout the 8-week test compared to 3 of the non-Cleveland strains. Five of the Cleveland strains, compared to two of the non-Cleveland strains, produced highly toxic conidia (>90 microgram of T2 toxin equivalents per g [wet weight] of conidia) after 10 and 30 days of growth on wet wallboard. Only 3 of the 28 strains examined both were consistently hemolytic and produced highly toxic conidia. Each of these strains was isolated from a house in Cleveland where an infant had idiopathic pulmonary hemorrhage.

  6. CCR4-Not Complex Subunit Not2 Plays Critical Roles in Vegetative Growth, Conidiation and Virulence in Watermelon Fusarium Wilt Pathogen Fusarium oxysporum f. sp. niveum

    PubMed Central

    Dai, Yi; Cao, Zhongye; Huang, Lihong; Liu, Shixia; Shen, Zhihui; Wang, Yuyan; Wang, Hui; Zhang, Huijuan; Li, Dayong; Song, Fengming

    2016-01-01

    CCR4-Not complex is a multifunctional regulator that plays important roles in multiple cellular processes in eukaryotes. In the present study, the biological function of FonNot2, a core subunit of the CCR4-Not complex, was explored in Fusarium oxysporum f. sp. niveum (Fon), the causal agent of watermelon wilt disease. FonNot2 was expressed at higher levels in conidia and germinating conidia and during infection in Fon-inoculated watermelon roots than in mycelia. Targeted disruption of FonNot2 resulted in retarded vegetative growth, reduced conidia production, abnormal conidial morphology, and reduced virulence on watermelon. Scanning electron microscopy observation of infection behaviors and qRT-PCR analysis of in planta fungal growth revealed that the ΔFonNot2 mutant was defective in the ability to penetrate watermelon roots and showed reduced fungal biomass in root and stem of the inoculated plants. Phenotypic and biochemical analyses indicated that the ΔFonNot2 mutant displayed hypersensitivity to cell wall perturbing agents (e.g., Congo Red and Calcofluor White) and oxidative stress (e.g., H2O2 and paraquat), decreased fusaric acid content, and reduced reactive oxygen species (ROS) production during spore germination. Our data demonstrate that FonNot2 plays critical roles in regulating vegetable growth, conidiogenesis and conidia morphology, and virulence on watermelon via modulating cell wall integrity, oxidative stress response, ROS production and FA biosynthesis through the regulation of transcription of genes involved in multiple pathways. PMID:27695445

  7. Association of insects and ergot (Claviceps purpurea) in Kentucky bluegrass seed production fields.

    PubMed

    Butler, M D; Alderman, S C; Hammond, P C; Berry, R E

    2001-12-01

    Insects in Kentucky bluegrass seed production fields in Oregon, Idaho, and Washington were sampled just before harvest and their association with ergot conidia of Claviceps purpurea Fr. (Tul.) was evaluated during 1996-1998. A diversity of insects was observed at all three locations. The most abundant beneficial insects collected with sweep nets were Nysium spp., Nabis spp., ichneumonid wasps, and Hippodamia spp. The cranberry girdler, Chrysoteuchia topiaria (Zeller), was the only important pest on grass seed collected by sweep net. Numbers of aphids such as Sitobion avenae (F.), cicadellids and thrips such as Anaphothrips spp. and Aptinothrips spp. that were collected with all aphid sampler were below economic thresholds. Other insect groups occurred in low numbers. Noctuid moths collected in universal blacklight traps included nine species of cutworms and armyworms. Protogrotis obscura (B. & McD.) was the most common cutworm species and was present in all fields. The moth Chortodes rufostrigata (Pack.) previously reported only from wet meadows in northeast and south central Oregon was found in Kentucky bluegrass fields in central Oregon, suggesting that irrigated Kentucky bluegrass seed production fields may simulate a montane meadow habitat. Conidia of C. purpurea were found on a diversity of insects, including moths, flies, leafhoppers, and thrips. Up to 100% of moths and 75% of flies collected from some fields carried conidia of C. purpurea. No correlation between ergot honeydew present in a field and number of insects with conidia of C. purpurea was detected.

  8. Talaromyces neofusisporus and T. qii, two new species of section Talaromyces isolated from plant leaves in Tibet, China.

    PubMed

    Wang, Qi-Ming; Zhang, Yong-Hong; Wang, Bo; Wang, Long

    2016-01-04

    Two new species isolated from plant leaves belonging to Talaromyces section Talaromyces are reported, namely T. neofusisporus (ex-type AS3.15415 (T) = CBS 139516 (T)) and T. qii (ex-type AS3.15414 (T) = CBS 139515 (T)). Morphologically, T. neofusisporus is featured by forming synnemata on CYA and YES, bearing appressed biverticillate penicilli and smooth-walled fusiform conidia about 3.5-4.5 × 2-2.5 μm; and T. qii is characterized by velutinous colony texture, yellowish green conidia, yellow mycelium and ovoid to subglobose echinulate conidia measuring 3-3.5 μm. Phylogenetically, T. neofusisporus is such a unique species that no close relatives are found according to CaM, BenA and ITS1-5.8S-ITS2 as well as the combined three-gene sequences; and T. qii is related to T. thailandensis according to CaM, BenA and the combined sequence matrices, whereas ITS1-5.8S-ITS2 sequences do not support the close relationship between T. qii and T. thailandensis.

  9. Innate and adaptive immune response to chronic pulmonary infection of hyphae of Aspergillus fumigatus in a new murine model.

    PubMed

    Wang, Fengyuan; Zhang, Caiyun; Jiang, Yuan; Kou, Caixia; Kong, Qingtao; Long, Nanbiao; Lu, Ling; Sang, Hong

    2017-10-01

    The pathogenesis of chronic pulmonary aspergillosis (CPA) has seldom been studied due partly to a lack of animal models. Since hypha is the main morphology colonizing the airway in CPA, it's critical to study the immune reaction to chronic pulmonary infection of hyphae of Aspergillus fumigatus, which also has seldom been studied in vivo before. We established a novel murine model of chronic pulmonary infection of hyphae by challenging immunocompetent mice with tightly-structured hyphae balls intratracheally, and described the ensuing immunoreaction to hyphae and conidia, and the pathogenesis of CPA. Our experiment proved that the hyphae balls could induce a chronic pulmonary infection for 28 days with a considerable recrudescence at day 28 post-infection. Lungs infected with hyphae balls were remarkable for the many neutrophils and macrophages that flooded into airway lumens, with peribronchiolar infiltration of leukocytes. There was a transient increase of Th2 cells and Th17 cells at day 7 post-infection in the lung tissue. In contrast, lungs infected with conidia showed no peribronchiolar infiltration of leukocytes, but an influx of a great number of macrophages, and a much less number of neutrophils in the lumen. Besides, conidia activated the co-response of Th1, Th2 and Th17 cells with an increase of Treg cells in the lung tissue (quite different from most previous studies). We established a new murine model of chronic infection of hyphae to mimic the formation of CPA, and provide a new marker for different immune responses to hyphae and conidia.

  10. Rapid enumeration of low numbers of moulds in tea based drinks using an automated system.

    PubMed

    Tanaka, Kouichi; Yamaguchi, Nobuyasu; Baba, Takashi; Amano, Norihide; Nasu, Masao

    2011-01-31

    Aseptically prepared cold drinks based on tea have become popular worldwide. Contamination of these drinks with harmful microbes is a potential health problem because such drinks are kept free from preservatives to maximize aroma and flavour. Heat-tolerant conidia and ascospores of fungi can survive pasteurization, and need to be detected as quickly as possible. We were able to rapidly and accurately detect low numbers of conidia and ascospores in tea-based drinks using fluorescent staining followed by an automated counting system. Conidia or ascospores were inoculated into green tea and oolong tea, and samples were immediately filtered through nitrocellulose membranes (pore size: 0.8 μm) to concentrate fungal propagules. These were transferred onto potato dextrose agar and incubated for 23 h at 28 °C. Fungi germinating on the membranes were fluorescently stained for 30 min. The stained mycelia were counted selectively within 90s using an automated counting system (MGS-10LD; Chuo Electric Works, Osaka, Japan). Very low numbers (1 CFU/100ml) of conidia or ascospores could be rapidly counted, in contrast to traditional labour intensive techniques. All tested mould strains were detected within 24h while conventional plate counting required 72 h for colony enumeration. Counts of slow-growing fungi (Cladosporium cladosporioides) obtained by automated counting and by conventional plate counting were close (r(2) = 0.986). Our combination of methods enables counting of both fast- and slow-growing fungi, and should be useful for microbiological quality control of tea-based and also other drinks. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Biosynthesis and Functions of Melanin in Sporothrix schenckii

    PubMed Central

    Romero-Martinez, Rafael; Wheeler, Michael; Guerrero-Plata, Antonieta; Rico, Guadalupe; Torres-Guerrero, Haydée

    2000-01-01

    Sporothrix schenckii is a human pathogen that causes sporotrichosis, an important cutaneous mycosis with a worldwide distribution. It produces dark-brown conidia, which infect the host. We found that S. schenckii synthesizes melanin via the 1,8-dihydroxynaphthalene pentaketide pathway. Melanin biosynthesis in the wild type was inhibited by tricyclazole, and colonies of the fungus were reddish brown instead of black on tricyclazole-amended medium. Two melanin-deficient mutant strains were analyzed in this study: an albino that produced normal-appearing melanin on scytalone-amended medium and a reddish brown mutant that accumulated and extruded melanin metabolites into its medium. Scytalone and flaviolin obtained from cultures of the reddish brown mutant were identified by thin-layer chromatography, high-performance liquid chromatography, and UV spectra. Transmission electron microscopy showed an electron-dense granular material believed to be melanin in wild-type conidial cell walls, and this was absent in conidial walls of the albino mutant unless the albino was grown on a scytalone-amended medium. Melanized cells of wild-type S. schenckii and the albino grown on scytalone-amended medium were less susceptible to killing by chemically generated oxygen- and nitrogen-derived radicals and by UV light than were conidia of the mutant strains. Melanized conidia of the wild type and the scytalone-treated albino were also more resistant to phagocytosis and killing by human monocytes and murine macrophages than were unmelanized conidia of the two mutants. These results demonstrate that melanin protects S. schenckii against certain oxidative antimicrobial compounds and against attack by macrophages. PMID:10816530

  12. Membrane permeability and the loss of germination factor from Neurospora crassa at low water activities

    NASA Technical Reports Server (NTRS)

    Charlang, G.; Horowitz, N. H.

    1974-01-01

    Neurospora crassa conidia incubating in buffer at low water activities release a germination-essential component as well as 260-nm absorbing and ninhydrin-positive materials, regardless of whether an electrolyte or nonelectrolyte is used to reduce water activity. Chloroform and antibiotics known to increase cell-membrane permeability have a similar effect. This suggests that membrane damage occurs in media of low water activity and that an increase in permeability is responsible for the release of cellular components. The damage caused in media of low water activity is nonlethal in most cases, and the conidia recover when transferred to nutrient medium.

  13. A preliminary evaluation of the potential of Beauveria bassiana for bed bug control.

    PubMed

    Barbarin, Alexis M; Jenkins, Nina E; Rajotte, Edwin G; Thomas, Matthew B

    2012-09-15

    Residual biopesticide treatments of Beauveria bassiana were tested against the bed bug Cimex lectularius. An oil formulation of conidia was applied to different substrates. Bed bugs were exposed for 1 h, transferred to an unsprayed environment and monitored for mortality. Separate bioassays evaluated the effect of bed bug strain, sex, life stage, and exposure substrate on mortality. Rapid mortality was observed in all bioassays, with bed bugs exposed to treated jersey knit cotton dying most rapidly. A further assay demonstrated efficient autodissemination of conidia from exposed bed bugs to unexposed bed bugs within artificial harborages. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. CELL-WALL DEGRADING ENZYMES OF AQUATIC HYPHOMYCETES: A REVIEW. (U915444)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. Cercosporoid fungi (Mycosphaerellaceae) 2. Species on monocots (Acoraceae to Xyridaceae, excluding Poaceae).

    PubMed

    Braun, Uwe; Crous, Pedro W; Nakashima, Chiharu

    2014-12-01

    Cercosporoid fungi (formerly Cercospora s. lat.) represent one of the largest groups of hyphomycetes belonging to the Mycosphaerellaceae (Ascomycota). They include asexual morphs, asexual holomorphs, or species with mycosphaerella-like sexual morphs. Most of them are leaf-spotting plant pathogens with special phytopathological relevance. In the first part of a new monographic work, cercosporoid hyphomycetes occurring on other fungi (fungicolous species), on ferns (pteridophytes) and gymnosperms were treated. This second part deals with cercosporoid fungi on monocots (Liliopsida; Equisetopsida, Magnoliidae, Lilianae), which covers species occurring on host plants belonging to families arranged in alphabetical order from Acoraceae to Xyridaceae, excluding Poaceae (cereals and grasses) which requires a separate treatment. The species are described and illustrated in alphabetical order under the particular cercosporoid genera, supplemented by keys to the species concerned. A detailed introduction, a survey of currently recognised cercosporoid genera, a key to the genera concerned, and a discussion of taxonomically relevant characters were published in the first part of this series. Neopseudocercospora, an additional recently introduced cercosporoid genus, is briefly discussed. The following taxonomic novelties are introduced: Cercospora alpiniigena sp. nov., C. neomaricae sp. nov., Corynespora palmicola comb. nov., Exosporium miyakei comb. nov., E. petersii comb. nov., Neopseudocercospora zambiensis comb. nov., Passalora caladiicola comb. nov., P. streptopi comb. nov., P. togashiana comb. nov., P. tranzschelii var. chinensis var. nov., Pseudocercospora beaucarneae comb. nov., P. constrictoflexuosa comb. et stat. nov., P. curcumicola sp. nov., P. dispori comb. nov., P. smilacicola sp. nov., P. urariigena nom. nov., Zasmidium agavicola comb. nov., Z. cercestidis-afzelii comb. nov., Z. citri-griseum comb. nov., Z. cyrtopodii comb. nov., Z. gahnae comb. nov., Z. indicum

  16. New cost-effective bioconversion process of palm kernel cake into bioinsecticides based on Beauveria bassiana and Isaria javanica.

    PubMed

    do Nascimento Silva, Jaqueline; Mascarin, Gabriel Moura; Dos Santos Gomes, Isabel Cristina; Tinôco, Ricardo Salles; Quintela, Eliane Dias; Dos Reis Castilho, Leda; Freire, Denise Maria Guimarães

    2018-03-01

    The present study aimed to add value to palm oil by-products as substrates to efficiently produce conidia of Beauveria bassiana and Isaria javanica (Hypocreales: Cordycipitaceae) for biological control of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae), through a solid-state fermentation process using palm kernel cake and palm fiber as nutrient source and solid matrix, respectively. The optimum culture conditions yielded high concentrations of viable conidia after air-drying, when the fungi were grown on palm kernel cake (B. bassiana 7.65 × 10 9 and I. javanica 2.91 × 10 9  conidia g -1 dry substrate) after 6 days under optimal growth conditions set to 60% substrate moisture and 32 °C. Both fungal strains exhibited high efficacy against third-instar whitefly nymphs, inducing mortality up to 62.9 and 56.6% by B. bassiana and I. javanica, respectively, assessed after 9 days post-application in a screenhouse. Furthermore, we noted that insect mortality was strongly correlated with high atmospheric moisture, while B. bassiana appeared to require shorter accumulative hours under high moisture to kill whitefly nymphs compared to I. javanica. Our results underpin a feasible and cost-effective mass production method for aerial conidia, using palm kernel as the main substrate in order to produce efficacious fungal bioinsecticides against an invasive whitefly species in Brazil. Finally, our fermentation process may offer a sustainable and cost-effective means to produce eco-friendly mycoinsecticides, using an abundant agro-industrial by-product from Brazil that will ultimately assist in the integrated management of agricultural insect pests.

  17. UV-B radiation reduces in vitro germination of Metarhizium anisopliae s.l. but does not affect virulence in fungus-treated Aedes aegypti adults and development on dead mosquitoes.

    PubMed

    Falvo, M L; Pereira-Junior, R A; Rodrigues, J; López Lastra, C C; García, J J; Fernandes, É K K; Luz, C

    2016-12-01

    Control of diurnal Aedes aegypti with mycoinsecticides should consider the exposure of fungus-treated adults to sunlight, and especially to UV-B radiation that might affect activity of conidia applied on the mosquito's surface. Germination of Metarhizium anisopliae s.l. IP 46 conidia on SDAY medium was not affected at the lowest level of radiation with UV-B, 0·69 kJ m -2 , but was retarded and reduced at higher 2·075 and 4·15 kJ m -2 , and completely inhibited at ≥8·3 kJ m -2 . In contrast, germination of conidia applied onto fibreglass nettings and exposed from 0 to 16·6 kJ m -2 did not differ significantly among levels of irradiance exposure and the controls. There was also no significant impact of UV-B up to 16·6 kJ m -2 on the adulticidal activity of IP 46 and on the subsequent conidiogenesis on cadavers. The Quaite-weighted UV-B irradiance in the laboratory (1152 mW m -2 ) was higher than the natural sunlight irradiance observed in the city of Goiânia in Central Brazil on midday (706 mW m -2 in August to 911 mW m -2 in October 2015). UV-B does not impair the activity of IP 46 conidia applied previously to radiation on A. aegypti adults. Findings contribute to a better understanding of the effectiveness of M. anisopliae against day-active A. aegypti and its potential for biological mosquito control. © 2016 The Society for Applied Microbiology.

  18. Production of microsclerotia by Brazilian strains of Metarhizium spp. using submerged liquid culture fermentation.

    PubMed

    Mascarin, Gabriel Moura; Kobori, Nilce Naomi; de Jesus Vital, Rayan Carlos; Jackson, Mark Alan; Quintela, Eliane Dias

    2014-05-01

    We investigated the potential production and desiccation tolerance of microsclerotia (MS) by Brazilian strains of Metarhizium anisopliae (Ma), M. acridum (Mc) and M. robertsii (Mr). These fungi were grown in a liquid medium containing 16 g carbon l⁻¹ with a carbon:nitrogen ratio of 50:1. One hundred milliliters cultures were grown in 250 ml Erlenmeyer flasks in a rotary incubator shaker at 28 °C and 200 rpm for 5 days. Five-day-old MS were harvested, mixed with diatomaceous earth (DE) and air-dried for 2 days at 30 °C. The air-dried MS-DE granular preparations were milled by mortar + pestle and stored in centrifuged tubes at either 26 or -20 °C. Desiccation tolerance and conidia production were assessed for dried MS granules by measuring hyphal germination after incubation for 2 days on water agar plates at 26 °C and for conidia production following 7 days incubation. Yields of MS by all strains of Metarhizium were 6.1-7.3 × 10⁶ l⁻¹ after 3 days growth with maximum MS yields (0.7-1.1 × 10⁷ l⁻¹) after 5 days growth. No differences in biomass accumulation were observed after 3 days growth, whereas Ma-CG168 showed the highest biomass accumulation after 5 days growth. Dried MS-DE preparations of all fungal strains were equally tolerant to desiccation (≥93 % germination) and the highest conidia production was obtained by MS granules of Mc-CG423 (4 × 10⁹ conidia g⁻¹). All MS granules showed similar stability after storage at either 26 or -20 °C for 3.5 months.

  19. Correlation of cell surface proteins of distinct Beauveria bassiana cell types and adaption to varied environment and interaction with the host insect.

    PubMed

    Yang, Zhi; Jiang, Hongyan; Zhao, Xin; Lu, Zhuoyue; Luo, Zhibing; Li, Xuebing; Zhao, Jing; Zhang, Yongjun

    2017-02-01

    The insect fungal pathogen Beauveria bassiana produces a number of distinct cell types that include aerial conidia, blastospores and haemolymph-derived cells, termed hyphal bodies, to adapt varied environment niches and within the host insect. These cells display distinct biochemical properties and surface structures, and a highly ordered outermost brush-like structure uniquely present on hyphal bodies, but not on any in vitro cells. Here, we found that the outermost structure on the hyphal bodies mainly consisted of proteins associated to structural wall components in that most of it could be removed by dithiothreitol (DTT) or proteinase K. DTT-treatment also caused delayed germination, decreased tolerance to ultraviolet irradiation and virulence of conidia or blastospores, with decreased adherence and alternated carbohydrate epitopes, suggesting involvement in fungal development, stress responses and virulence. To characterize these cell surface molecules, proteins were released from the living cells using DTT, and identified and quantitated using label-free quantitative mass spectrometry. Thereafter, a series of bioinformatics programs were used to predict cell surface-associated proteins (CSAPs), and 96, 166 and 54 CSAPs were predicted from the identified protein pools of conidia, blastospores and hyphal bodies, respectively, which were involved in utilization of carbohydrate, nitrogen, and lipid, detoxification, pathogen-host interaction, and likely other cellular processes. Thirteen, sixty-nine and six CSAPs were exclusive in conidia, blastospores and hyphal bodies, respectively, which were verified by eGFP-tagged proteins at their N-terminus. Our data provide a crucial cue to understand mechanism of B. bassiana to adapt to varied environment and interaction with insect host. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Losing the battle against fungal infection: suppression of termite immune defenses during mycosis.

    PubMed

    Avulova, Svetlana; Rosengaus, Rebeca B

    2011-07-01

    The dampwood termite, Zootermopsis angusticollis is known to generate humoral immune responses to the entomopathogenic fungus Metarhizium anisopliae. However, little is known about how the termite's cellular immune system reacts to fungal infection. To test the effect of conidia exposure on cellular immunity, we quantified the number and types of hemocytes in the hemolymph of naïve nymphs and compared their circulating counts with those of nestmates exposed to 0, 2×10(3), 2×10(6) or 2×10(8) conidia/ml doses. These termites were then bled and their hemocytes counted on days 1, 2, 3, 4, 7 post-exposure. Our results show, first, that naïve Z. angusticollis nymphs have three different blood cell types tentatively identified as granular hemocytes, prohemocytes and plasmatocytes. In these individuals, plasmatocytes were on average 13.5 and 3.3 times more numerous than granular hemocytes and prohemocytes, respectively. Second, a full factorial general linear analysis indicated that hemocyte type, time elapsed since conidia exposure and conidia dosage as well as all their interactions explained 43% of the variability in hemocyte density. The numbers of prohemocytes and particularly plasmatocytes, but not granular hemocytes, appear to be affected by the progression of disease. The decline in hemocyte numbers coincided with the appearance of hyphal bodies and the onset of "sluggish" termite behavior that culminated in the insect's death. Hemocyte counts of infected males and females were affected to the same extent. Hence, M. anisopliae overtakes the cellular immune responses of Z. angusticollis mainly by destroying the host's most abundant hemocyte types. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. The Efficiency of Noni (Morinda citrifolia L.) Essential Oil on the Control of Leaf Spot Caused by Exserohilum turcicum in Maize Culture.

    PubMed

    Silva, Janaina Costa E; Mourão, Dalmarcia de Sousa Carlos; Lima, Fabia Silva de Oliveira; Sarmento, Renato de Almeida; Dalcin, Mateus Sunti; Aguiar, Raimundo Wagner de Souza; Santos, Gil Rodrigues Dos

    2017-08-14

    The objective of this work was to evaluate the efficiency of noni essential oil on the control of Exserohilum turcicum , a causative agent of Exserohilum spot in maize culture. In the sanitary test 400 seeds were incubated using the blotter test method. For the transmissibility test, the fragments of damaged leaves of seedlings were removed and put into a potato, dextrose and agar (PDA) culture environment. To verify the pathogenicity, Koch´s postulates were performed. In the phytotoxicity test different concentrations of noni oil were applied in maize seedlings. E. turcicum conidia were submitted to different concentrations of noni oil. In the preventive and curative tests noni essential oils were applied before and after the conidia inoculation, respectively. The results revealed the presence of fungi of the genres Aspergillus , Penicillium , Rhizopus , Fusarium , and Exserohilum in the maize seeds. The pathogenicity of E. turcicum and also the transmission of this fungus from the seeds to the maize seedlings was confirmed. The inhibition of conidia germination was proportional to the concentration increase. The preventive application of noni essential oil was the most efficient on the control of Exserohilum spot.

  2. Photodynamic inactivation of mold fungi spores by newly developed charged corroles.

    PubMed

    Preuß, Annegret; Saltsman, Irena; Mahammed, Atif; Pfitzner, Michael; Goldberg, Israel; Gross, Zeev; Röder, Beate

    2014-04-05

    The photodynamic effect, originally used in photodynamic therapy (PDT) for the treatment of different diseases, e.g. of cancer, has recently been introduced for the inactivation of bacteria. Mold fungi, which provoke health problems like allergies and diseases of the respiratory tract, are even more resistant and their biology is also very different. This study presents the development of four new photosensitizers, which, in combination with low doses of white light, inhibit the germination of mold fungi spores. Two of them even cause lethal damage to the conidia (spores) which are responsible for the spreading of mold fungi. The photoactivity of the newly synthesized corroles was obtained by their application on three different mold fungi: Aspergillus niger, Cladosporium cladosporoides, and Penicillium purpurgenum. To distinguish between inactivation of germination and permanent damage, the fungi were first incubated under illumination for examination of photosensitizer-induced growth inhibition and then left in darkness to test the survival of the conidia. None of the compounds displayed dark toxicity, but all of them attenuated or prevented germination when exposed to light, and the positively charged complexes induced a complete damage of the conidia. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Role of Hydrophobins in Aspergillus fumigatus.

    PubMed

    Valsecchi, Isabel; Dupres, Vincent; Stephen-Victor, Emmanuel; Guijarro, J Iñaki; Gibbons, John; Beau, Rémi; Bayry, Jagadeesh; Coppee, Jean-Yves; Lafont, Frank; Latgé, Jean-Paul; Beauvais, Anne

    2017-12-24

    Resistance of Aspergillus fumigatus conidia to desiccation and their capacity to reach the alveoli are partly due to the presence of a hydrophobic layer composed of a protein from the hydrophobin family, called RodA, which covers the conidial surface. In A. fumigatus there are seven hydrophobins (RodA-RodG) belonging to class I and III. Most of them have never been studied. We constructed single and multiple hydrophobin-deletion mutants until the generation of a hydrophobin-free mutant. The phenotype, immunogenicity, and virulence of the mutants were studied. RODA is the most expressed hydrophobin in sporulating cultures, whereas RODB is upregulated in biofilm conditions and in vivo Only RodA, however, is responsible for rodlet formation, sporulation, conidial hydrophobicity, resistance to physical insult or anionic dyes, and immunological inertia of the conidia. None of the hydrophobin plays a role in biofilm formation or its hydrophobicity. RodA is the only needed hydrophobin in A. fumigatus , conditioning the structure, permeability, hydrophobicity, and immune-inertia of the cell wall surface in conidia. Moreover, the defect of rodlets on the conidial cell wall surface impacts on the drug sensitivity of the fungus.

  4. Invasive Aspergillus terreus morphological transitions and immunoadaptations mediating antifungal resistance.

    PubMed

    Bengyella, Louis; Yekwa, Elsie Laban; Subhani, Muhammad Nasir; Tambo, Ernest; Nawaz, Kiran; Hetsa, Bakoena Ashton; Iftikhar, Sehrish; Waikhom, Sayanika Devi; Roy, Pranab

    2017-01-01

    Aspergillus terreus Thom is a pathogen of public health and agricultural importance for its seamless abilities to expand its ecological niche. The aim of this study was holistically to investigate A. terreus morphological and immunoadaptations and their implication in antifungal resistance and proliferation during infection. In-depth unstructured mining of relevant peer-reviewed literature was performed for A. terreus morphological, immune, resistance, and genetic diversity based on the sequenced calmodulin-like gene. Accessory conidia and phialidic conidia produced by A. terreus confer discrete anti-fungal resistance that ensures survivability during therapies. Interestingly, by producing unique metabolites such as Asp-melanin and terretonin, A. terreus is capable of hijacking macrophages and scavenging iron, respectively. As such, A. terreus has established a rare mechanism to mitigate phagocytosis and swing the interaction dynamics in favor of its proliferation and survival in hosts. It is further unraveled that besides A. terreus genetic diversity, morphological, biochemical, and immunologic adaptations associated with conidia germination and discharge of chemical signals during infection enable masking of the host defense as an integral part of its strategy to survive and rapidly colonize hosts.

  5. Role of Hydrophobins in Aspergillus fumigatus

    PubMed Central

    Valsecchi, Isabel; Dupres, Vincent; Stephen-Victor, Emmanuel; Guijarro, J. Iñaki; Gibbons, John; Beau, Rémi; Coppee, Jean-Yves; Lafont, Frank; Latgé, Jean-Paul; Beauvais, Anne

    2017-01-01

    Resistance of Aspergillus fumigatus conidia to desiccation and their capacity to reach the alveoli are partly due to the presence of a hydrophobic layer composed of a protein from the hydrophobin family, called RodA, which covers the conidial surface. In A. fumigatus there are seven hydrophobins (RodA–RodG) belonging to class I and III. Most of them have never been studied. We constructed single and multiple hydrophobin-deletion mutants until the generation of a hydrophobin-free mutant. The phenotype, immunogenicity, and virulence of the mutants were studied. RODA is the most expressed hydrophobin in sporulating cultures, whereas RODB is upregulated in biofilm conditions and in vivo Only RodA, however, is responsible for rodlet formation, sporulation, conidial hydrophobicity, resistance to physical insult or anionic dyes, and immunological inertia of the conidia. None of the hydrophobin plays a role in biofilm formation or its hydrophobicity. RodA is the only needed hydrophobin in A. fumigatus, conditioning the structure, permeability, hydrophobicity, and immune-inertia of the cell wall surface in conidia. Moreover, the defect of rodlets on the conidial cell wall surface impacts on the drug sensitivity of the fungus. PMID:29371496

  6. VeA of Aspergillus niger increases spore dispersing capacity by impacting conidiophore architecture.

    PubMed

    Wang, Fengfeng; Dijksterhuis, Jan; Wyatt, Timon; Wösten, Han A B; Bleichrodt, Robert-Jan

    2015-01-01

    Aspergillus species are highly abundant fungi worldwide. Their conidia are among the most dominant fungal spores in the air. Conidia are formed in chains on the vesicle of the asexual reproductive structure called the conidiophore. Here, it is shown that the velvet protein VeA of Aspergillus niger maximizes the diameter of the vesicle and the spore chain length. The length and width of the conidiophore stalk and vesicle were reduced nearly twofold in a ΔveA strain. The latter implies a fourfold reduced surface area to develop chains of spores. Over and above this, the conidial chain length was approximately fivefold reduced. The calculated 20-fold reduction in formation of conidia by ΔveA fits the 8- to 17-fold decrease in counted spore numbers. Notably, morphology of the ΔveA conidiophores of A. niger was very similar to that of wild-type Aspergillus sydowii. This suggests that VeA is key in conidiophore architecture diversity in the fungal kingdom. The finding that biomass formation of the A. niger ΔveA strain was reduced twofold shows that VeA not only impacts dispersion capacity but also colonization capacity of A. niger.

  7. The Efficiency of Noni (Morinda citrifolia L.) Essential Oil on the Control of Leaf Spot Caused by Exserohilum turcicum in Maize Culture

    PubMed Central

    Silva, Janaina Costa E; Mourão, Dalmarcia de Sousa Carlos; Lima, Fabia Silva de Oliveira; Sarmento, Renato de Almeida; Dalcin, Mateus Sunti; Aguiar, Raimundo Wagner de Souza

    2017-01-01

    The objective of this work was to evaluate the efficiency of noni essential oil on the control of Exserohilum turcicum, a causative agent of Exserohilum spot in maize culture. In the sanitary test 400 seeds were incubated using the blotter test method. For the transmissibility test, the fragments of damaged leaves of seedlings were removed and put into a potato, dextrose and agar (PDA) culture environment. To verify the pathogenicity, Koch´s postulates were performed. In the phytotoxicity test different concentrations of noni oil were applied in maize seedlings. E. turcicum conidia were submitted to different concentrations of noni oil. In the preventive and curative tests noni essential oils were applied before and after the conidia inoculation, respectively. The results revealed the presence of fungi of the genres Aspergillus, Penicillium, Rhizopus, Fusarium, and Exserohilum in the maize seeds. The pathogenicity of E. turcicum and also the transmission of this fungus from the seeds to the maize seedlings was confirmed. The inhibition of conidia germination was proportional to the concentration increase. The preventive application of noni essential oil was the most efficient on the control of Exserohilum spot. PMID:28930274

  8. Autolytic hydrolases affect sexual and asexual development of Aspergillus nidulans.

    PubMed

    Emri, Tamás; Vékony, Viktória; Gila, Barnabás; Nagy, Flóra; Forgács, Katalin; Pócsi, István

    2018-03-30

    Radial growth, asexual sporulation, and cleistothecia formation as well as extracellular chitinase and proteinase formation of Aspergillus nidulans were monitored in surface cultures in order to study the physiological role of extracellular hydrolase production in carbon-stressed cultures. We set up carbon-stressed and carbon-overfed experimental conditions by varying the starting glucose concentration within the range of 2.5 and 40 g/L. Glucose starvation induced radial growth and hydrolase production and enhanced the maturation of cleistothecia; meanwhile, glucose-rich conditions enhanced mycelial biomass, conidia, and cleistothecia production. Double deletion of chiB and engA (encoding an extracellular endochitinase and a β-1,3-endoglucanase, respectively) decreased conidia production under carbon-stressed conditions, suggesting that these autolytic hydrolases can support conidia formation by releasing nutrients from the cell wall polysaccharides of dead hyphae. Double deletion of prtA and pepJ (both genes encode extracellular proteases) reduced the number of cleistothecia even under carbon-rich conditions except in the presence of casamino acids, which supports the view that sexual development and amino acid metabolism are tightly connected to each other in this fungus.

  9. Impact of tricyclazole and azoxystrobin on growth, sporulation and secondary infection of the rice blast fungus, Magnaporthe oryzae.

    PubMed

    Kunova, Andrea; Pizzatti, Cristina; Cortesi, Paolo

    2013-02-01

    Rice blast, caused by Magnaporthe oryzae B. Couch sp. nov., is one of the most destructive rice diseases worldwide, causing substantial yield losses every year. In Italy, its management is based mainly on the use of two fungicides, azoxystrobin and tricyclazole, that restrain the disease progress. The aim of this study was to investigate and compare the inhibitory effects of the two fungicides on the growth, sporulation and secondary infection of M. oryzae. Magnaporthe oryzae mycelium growth was inhibited at low concentrations of azoxystrobin and relatively high concentrations of tricyclazole, while sporulation was more sensitive to both fungicides and was affected at similarly low doses. Furthermore, infection efficiency of conidia obtained from mycelia exposed to tricyclazole was affected to a higher extent than for conidia produced on azoxystrobin-amended media, even though germination of such conidia was reduced after azoxystrobin treatment. This study presents for the first time detailed azoxystrobin and tricyclazole growth-response curves for M. oryzae mycelium growth and sporulation. Furthermore, high efficacy of tricyclazole towards inhibition of sporulation and secondary infection indicates an additional possible mode of action of this fungicide that is different from inhibition of melanin biosynthesis. Copyright © 2012 Society of Chemical Industry.

  10. Surface phosphatase in Rhinocladiella aquaspersa: biochemical properties and its involvement with adhesion.

    PubMed

    Kneipp, Lucimar F; Magalhães, Andressa S; Abi-Chacra, Erika A; Souza, Lucieri O P; Alviano, Celuta S; Santos, André L S; Meyer-Fernandes, José R

    2012-08-01

    Rhinocladiella aquaspersa is an etiologic agent of chromoblastomycosis, a subcutaneous chronic infectious disease. In the present work, we found that the three morphological forms of this fungus (conidia, mycelia and sclerotic bodies) expressed different levels of ecto-phosphatase activity. Our results demonstrated that surface conidial enzyme is an acid phosphatase, inhibited by sodium salts of molybdate, orthovanadate and fluoride and that the inhibition caused by orthovanadate and molybdate was irreversible. The conidial ecto-phosphatase efficiently released phosphate groups from different phosphorylated substrates, causing a higher rate of phosphate removal when p-nitrophenylphosphate was used as substrate. This ecto-enzyme of R. aquaspersa is modulated by Co(2 +) ions and inorganic phosphate (Pi). Accordingly, removal of Pi from the culture medium resulted in a marked (121-fold) increase of ecto-phosphatase activity. Surface phosphatase activity is apparently involved in fungal adhesive properties, since the attachment of R. aquaspersa to epithelial cells was reversed by the pre-treatment of the conidia with orthovanadate, molybdate and anti-phosphatase antibody. Corroborating this finding, conidia with greater ecto-phosphatase activity (grown in Pi-depleted medium) showed higher adherence to epithelial cells than fungi cultivated in the presence of Pi.

  11. Morphogenetic circuitry regulating growth and development in the dimorphic pathogen Penicillium marneffei.

    PubMed

    Boyce, Kylie J; Andrianopoulos, Alex

    2013-02-01

    Penicillium marneffei is an emerging human-pathogenic fungus endemic to Southeast Asia. Like a number of other fungal pathogens, P. marneffei exhibits temperature-dependent dimorphic growth and grows in two distinct cellular morphologies, hyphae at 25°C and yeast cells at 37°C. Hyphae can differentiate to produce the infectious agents, asexual spores (conidia), which are inhaled into the host lung, where they are phagocytosed by pulmonary alveolar macrophages. Within macrophages, conidia germinate into unicellular yeast cells, which divide by fission. This minireview focuses on the current understanding of the genes required for the morphogenetic control of conidial germination, hyphal growth, asexual development, and yeast morphogenesis in P. marneffei.

  12. Real-time visualization of immune cell clearance of Aspergillus fumigatus spores and hyphae.

    PubMed

    Knox, Benjamin P; Huttenlocher, Anna; Keller, Nancy P

    2017-08-01

    Invasive aspergillosis (IA) is a disease of the immunocompromised host and generally caused by the opportunistic fungal pathogen Aspergillus fumigatus. While both host and fungal factors contribute to disease severity and outcome, there are fundamental features of IA development including fungal morphological transition from infectious conidia to tissue-penetrating hyphae as well as host defenses rooted in mechanisms of innate phagocyte function. Here we address recent advances in the field and use real-time in vivo imaging in the larval zebrafish to visually highlight conserved vertebrate innate immune behaviors including macrophage phagocytosis of conidia and neutrophil responses post-germination. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The Mosquito Melanization Response Is Implicated in Defense against the Entomopathogenic Fungus Beauveria bassiana

    PubMed Central

    Osta, Mike A.

    2012-01-01

    Mosquito immunity studies have focused mainly on characterizing immune effector mechanisms elicited against parasites, bacteria and more recently, viruses. However, those elicited against entomopathogenic fungi remain poorly understood, despite the ubiquitous nature of these microorganisms and their unique invasion route that bypasses the midgut epithelium, an important immune tissue and physical barrier. Here, we used the malaria vector Anopheles gambiae as a model to investigate the role of melanization, a potent immune effector mechanism of arthropods, in mosquito defense against the entomopathogenic fungus Beauveria bassiana, using in vivo functional genetic analysis and confocal microscopy. The temporal monitoring of fungal growth in mosquitoes injected with B. bassiana conidia showed that melanin eventually formed on all stages, including conidia, germ tubes and hyphae, except the single cell hyphal bodies. Nevertheless, melanin rarely aborted the growth of any of these stages and the mycelium continued growing despite being melanized. Silencing TEP1 and CLIPA8, key positive regulators of Plasmodium and bacterial melanization in A. gambiae, abolished completely melanin formation on hyphae but not on germinating conidia or germ tubes. The detection of a layer of hemocytes surrounding germinating conidia but not hyphae suggested that melanization of early fungal stages is cell-mediated while that of late stages is a humoral response dependent on TEP1 and CLIPA8. Microscopic analysis revealed specific association of TEP1 with surfaces of hyphae and the requirement of both, TEP1 and CLIPA8, for recruiting phenoloxidase to these surfaces. Finally, fungal proliferation was more rapid in TEP1 and CLIPA8 knockdown mosquitoes which exhibited increased sensitivity to natural B. bassiana infections than controls. In sum, the mosquito melanization response retards significantly B. bassiana growth and dissemination, a finding that may be exploited to design transgenic

  14. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Paula, Adriano R; Carolino, Aline T; Paula, Cátia O; Samuels, Richard I

    2011-01-25

    Dengue fever transmitted by the mosquito Aedes aegypti, is one of the most rapidly spreading insect borne diseases, stimulating the search for alternatives to current control measures. The dengue vector A. aegypti has received less attention than anophelene species, although more than 2.5 billion people are at risk of infection worldwide. Entomopathogenic fungi are emerging as potential candidates for the control of mosquitoes. Here we continue our studies on the pathogenicity of the entomopathogenic fungus Metarhizium anisopliae against adult A. aegypti females. With the aim of further reducing mean survival times of A. aegypti exposed to fungus impregnated surfaces, a sub-lethal concentration of the neonicotinoid insecticide Imidacloprid (IMI) was added to fungal suspensions. A sub-lethal concentration of IMI that did not significantly alter the daily survival rates or mean survival percentages of mosquitoes was identified to be 0.1 ppm. This sub-lethal concentration was combined with M. anisopliae conidia (1 × 10(9) conidia mL(-1)). Both the combined treatment and the conidia alone were able to reduce the survival of A. aegypti compared with untreated or IMI treated mosquitoes. Importantly, mosquito survival following exposure to the combined treatment for 6 and 12 hrs was significantly reduced when compared with mosquitoes exposed to conidia alone. This is the first time that a combination of an insecticide and an entomopathogenic fungus has been tested against A. aegypti. Firstly, the study showed the potential of IMI as an alternative to the currently employed pyrethroid adulticides. Secondly, as an alternative to applications of high concentrations of chemical insecticides, we suggest that adult A. aegypti could be controlled by surface application of entomopathogenic fungi and that the efficiency of these fungi could be increased by combining the fungi with ultra-low concentrations of insecticides, resulting in higher mortality following relatively short

  15. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    2011-01-01

    Background Dengue fever transmitted by the mosquito Aedes aegypti, is one of the most rapidly spreading insect borne diseases, stimulating the search for alternatives to current control measures. The dengue vector A. aegypti has received less attention than anophelene species, although more than 2.5 billion people are at risk of infection worldwide. Entomopathogenic fungi are emerging as potential candidates for the control of mosquitoes. Here we continue our studies on the pathogenicity of the entomopathogenic fungus Metarhizium anisopliae against adult A. aegypti females. With the aim of further reducing mean survival times of A. aegypti exposed to fungus impregnated surfaces, a sub-lethal concentration of the neonicotinoid insecticide Imidacloprid (IMI) was added to fungal suspensions. Results A sub-lethal concentration of IMI that did not significantly alter the daily survival rates or mean survival percentages of mosquitoes was identified to be 0.1 ppm. This sub-lethal concentration was combined with M. anisopliae conidia (1 × 109 conidia mL-1). Both the combined treatment and the conidia alone were able to reduce the survival of A. aegypti compared with untreated or IMI treated mosquitoes. Importantly, mosquito survival following exposure to the combined treatment for 6 and 12 hrs was significantly reduced when compared with mosquitoes exposed to conidia alone. Conclusions This is the first time that a combination of an insecticide and an entomopathogenic fungus has been tested against A. aegypti. Firstly, the study showed the potential of IMI as an alternative to the currently employed pyrethroid adulticides. Secondly, as an alternative to applications of high concentrations of chemical insecticides, we suggest that adult A. aegypti could be controlled by surface application of entomopathogenic fungi and that the efficiency of these fungi could be increased by combining the fungi with ultra-low concentrations of insecticides, resulting in higher mortality

  16. [The effect of the formulation on the shelf-life of biopesticides based on two Colombian isolates of Trichoderma koningiopsis Th003 and Trichoderma asperellum Th034].

    PubMed

    Santos, Adriana; García, Magda; Cotes, Alba Marina; Villamizar, Laura

    2012-01-01

    Four biopesticide prototypes formulated as dispersible granules and dry powders based on 2 Colombian isolates of Trichoderma koningiopsis (Th003) and T. asperellum (Th034) were developed. These microorganisms have antagonist activity against Fusarium oxysporum f. sp. lycopersici and Rhizoctonia solani with a reduction in incidence of between 70 and 100% in tomato crops and potato crops, respectively. To determine the effect of the formulation on the shelf-life of 4 biopesticides based on T. koningiopsis Th003 and Trichoderma asperellum Th034 at 3 different temperatures. The formulation effect was determined by evaluating the germination of unformulated and formulated conidia (dispersible granules and dry powder) stored at 8, 18 and 28°C for 18 months. Germination kinetics were used to estimate the shelf-life by using different mathematical models (zero order, first order, second order, Higuchi model, Korsmeyer-Peppas model and polynomial model). The products showed high stability of the conidia germination when they were stored at 8 and 18° C, with shelf-lives of 14.4 and 13.9 months for dry powder based on Th003, and 12.0 and 10.8 months for dry powder based on Th034, respectively. Prototypes formulated as dispersible granules stored at the same temperatures (8 and 18°C) showed lower shelf-lives, with values of 11.6 and 10.9 months for the Th003 product, and 10.7 and 7.2 months for the dispersible granules based on Th034. Significant reductions in germination were observed on unformulated conidia at all storage temperatures evaluated. The formulation type affected the conidia stability of the 2 Trichoderma spp. Colombian isolates. Dry powder was the prototype with the highest stability and shelf-life at all temperatures evaluated. Copyright © 2011 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  17. [Effects of Beauveria bassiana on Myzus persicae and its two predaceous natural enemies].

    PubMed

    Zhu, Hong; Luo, Xu-mei; Song, Jin-xin; Fan, Mei-zhen; Li, Zeng-zhi

    2011-09-01

    A Beauveria bassiana strain Bb21 was isolated from naturally infected green peach aphid Myzus persicae (Hemiptera: Aphididae). The effects of the strain on M. persicae and its two predaceous natural enemies Chrysoperla carnea (Neuroptera: Chrysopidae) and Harmonia axyridis (Coleoptera: Coccinellidae) were investigated under laboratory conditions. Bb21 had strong pathogenicity to M. persicae, with the LD50 of 97 conidia x mm(-2) (45-191, 95% confidence interval), but was less pathogenic to the second instar nymph of C. carnea, with the LD50 of 1089 conidia x mm(-2). The LD50 for C. carnea was 10.2 times higher than that for M. persicae. The pathogenicity of Bb21 to H. axyridis was very weak, with a low infection rate of 13% even at a high concentration 5 x 10(8) conidia x mL(-1). The Bb21 at low conidia concentration had less effect on the developmental period and fecundity of the two predaceous natural enemies. However, when applied at the high concentration 5 x 10(8) spores x mL(-1), Bb21 shortened the larval stage of H. axyridis averagely by 1.4 d and decreased the adult emergence rate and fecundity by 33% and 14%, respectively, and shortened the larval stage of C. carnea averagely by 0.7 d and decreased the adult emergence rate and fecundity by 24% and 11%, respectively. Since the LD50 for green peach aphid was much lower than that for the two predaceous natural enemies, and had very low effect on the adult emergence rate and fecundity of the two predators at the concentration recommended for field spray, Bb21 could be applied as a biocontrol agent of M. persicae in the integrated management of pernicious organisms.

  18. Development of a population-based threshold model of conidial germination for analysing the effects of physiological manipulation on the stress tolerance and infectivity of insect pathogenic fungi.

    PubMed

    Andersen, M; Magan, N; Mead, A; Chandler, D

    2006-09-01

    Entomopathogenic fungi are being used as biocontrol agents of insect pests, but their efficacy can be poor in environments where water availability is reduced. In this study, the potential to improve biocontrol by physiologically manipulating fungal inoculum was investigated. Cultures of Beauveria bassiana, Lecanicillium muscarium, Lecanicillium longisporum, Metarhizium anisopliae and Paecilomyces fumosoroseus were manipulated by growing them under conditions of water stress, which produced conidia with increased concentrations of erythritol. The time-course of germination of conidia at different water activities (water activity, aw) was described using a generalized linear model, and in most cases reducing the water activity of the germination medium delayed the onset of germination without affecting the distribution of germination times. The germination of M. anisopliae, L. muscarium, L. longisporum and P. fumosoroseus was accelerated over a range of aw levels as a result of physiological manipulation. However, the relationship between the effect of physiological manipulation on germination and the osmolyte content of conidia varied according to fungal species. There was a linear relationship between germination rate, expressed as the reciprocal of germination time, and aw of the germination medium, but there was no significant effect of fungal species or physiological manipulation on the aw threshold for germination. In bioassays with M. anisopliae, physiologically manipulated conidia germinated more rapidly on the surface of an insect host, the melon cotton aphid Aphis gossypii, and fungal virulence was increased even when relative humidity was reduced after an initial high period. It is concluded that physiological manipulation may lead to improvements in biocontrol in the field, but choice of fungal species/isolate will be critical. In addition, the population-based threshold model used in this study, which considered germination in terms of physiological

  19. Biomechanics of conidial dispersal in the toxic mold Stachybotrys chartarum

    PubMed Central

    Tucker, Kathryn; Stolze, Jessica L.; Kennedy, Aaron H.; Money, Nicholas P.

    2007-01-01

    Conidial dispersal in Stachybotrys chartarum in response to low-velocity airflow was studied using a microflow apparatus. The maximum rate of spore release occurred during the first 5 min of airflow, followed by a dramatic reduction in dispersal that left more than 99% of the conidia attached to their conidiophores. Micromanipulation of undisturbed colonies showed that micronewton (μN) forces were needed to dislodge spore clusters from their supporting conidiophores. Calculations show that airspeeds that normally prevail in the indoor environment disturb colonies with forces that are 1,000-fold lower, in the nanonewton (nN) range. Low-velocity airflow does not, therefore, cause sufficient disturbance to disperse a large proportion of the conidia of S. chartarum. PMID:17267247

  20. Monoclonal antibodies bind identically to both spores and hyphae of Aspergillus fumigatus.

    PubMed

    Reijula, K E; Kurup, V P; Kumar, A; Fink, J N

    1992-05-01

    Immunoelectron microscopy (IEM) was used to determine the binding of six monoclonal antibodies (MoAbs) produced against Aspergillus fumigatus antigens present on or within the conidia and hyphae of the fungus. Antigen-antibody complexes were demonstrated in EM using labelled colloidal gold particles (15 nm). Three out of 6 MoAbs (C9, F12 and H10) reacted only with the cytoplasmic components of A. fumigatus while the remaining three (B12, F6G5 and D6E6) showed reactivity to both cytoplasm and cell wall of the conidia and hyphae. The results indicate that IEM is of considerable value in determining and selecting monoclonal antibodies having specific reactivity with diverse antigenic components.

  1. Different virulence of the species of the Pseudallescheria boydii complex.

    PubMed

    Gilgado, Fèlix; Cano, Josep; Gené, Josepa; Serena, Carolina; Guarro, Josep

    2009-06-01

    Pseudallescheria boydii sensu lato is a complex of species involved in severe human infections. We have evaluated, using a murine model, the virulence of 2 strains of each of the most representative species of the complex, i.e., P. boydii sensu stricto, P. minutispora, Scedosporium apiospermum, S. aurantiacum and S. dehoogii. We used two different inocula, i.e., 5 x 10(4) conidia/ml (for immunosuppressed animals) and 1 x 10(6) conidia/ml (for immunocompetent animals), which were administered intravenously. Scedosporium aurantiacum and S. dehoogii were the most virulent species, causing the death of 80% and 70% of the immunocompetent mice, respectively. The remaining species only killed 0-20% of the animals.

  2. Invasive Infection with Fusarium chlamydosporum in a Patient with Aplastic Anemia

    PubMed Central

    Segal, Brahm H.; Walsh, Thomas J.; Liu, Johnson M.; Wilson, Jon D.; Kwon-Chung, Kyung J.

    1998-01-01

    We report the first case of invasive disease caused by Fusarium chlamydosporum. The patient had aplastic anemia with prolonged neutropenia and was treated with immunosuppressive therapy. While she was receiving empirical amphotericin B, a dark crusted lesion developed on her nasal turbinate. Histologic analysis revealed invasive hyaline hyphae and some darkly pigmented structures that resembled conidia of dematiaceous molds. Only after the mold was grown in culture were characteristic colonial morphology, phialides, conidia, and chlamydospores evident, thus permitting the identification of F. chlamydosporum. This case illustrates the ever-increasing spectrum of pathogenic Fusarium spp. in immunocompromised patients and emphasizes the potential pitfalls in histologic diagnosis, which may have important treatment implications. PMID:9620419

  3. A B-type histone acetyltransferase Hat1 regulates secondary metabolism, conidiation, and cell wall integrity in the taxol-producing fungus Pestalotiopsis microspora.

    PubMed

    Zhang, Qian; Chen, Longfei; Yu, Xi; Liu, Heng; Akhberdi, Oren; Pan, Jiao; Zhu, Xudong

    2016-12-01

    In filamentous fungi, many gene clusters for the biosynthesis of secondary metabolites often stay silent under laboratory culture conditions because of the absence of communication with its natural environment. Epigenetic processes have been demonstrated to be critical in the expression of the genes or gene clusters. Here, we report the identification of a B-type histone acetyltransferase, Hat1, and demonstrate its significant roles in secondary metabolism, conidiation, and the cell wall integrity in the fungus Pestalotiopsis microspora. An hat1 deletion strain shows a dramatic decrease of SMs in this fungus, suggesting hat1 functions as a global regulator on secondary metabolism. Moreover, the mutant strain hat1Δ delays to produce conidia with significantly decreased number of conidia, while shows little effect on vegetative growth, suggesting that it plays a critical role in conidiation. The hypersensitivity of hat1Δ to Congo red demonstrates that disruption of hat1 impairs the integrity of cell wall. Overexpression of the wild-type hat1 allele enhances conidiation by boosting the number of conidia. This is the first report on the role of a B-type histone acetyltransferase in fungal secondary metabolism and cell wall integrity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Virulence determinants of the human pathogenic fungus Aspergillus fumigatus protect against soil amoeba predation.

    PubMed

    Hillmann, Falk; Novohradská, Silvia; Mattern, Derek J; Forberger, Tilmann; Heinekamp, Thorsten; Westermann, Martin; Winckler, Thomas; Brakhage, Axel A

    2015-08-01

    Filamentous fungi represent classical examples for environmentally acquired human pathogens whose major virulence mechanisms are likely to have emerged long before the appearance of innate immune systems. In natural habitats, amoeba predation could impose a major selection pressure towards the acquisition of virulence attributes. To test this hypothesis, we exploited the amoeba Dictyostelium discoideum to study its interaction with Aspergillus fumigatus, two abundant soil inhabitants for which we found co-occurrence in various sites. Fungal conidia were efficiently taken up by D. discoideum, but ingestion was higher when conidia were devoid of the green fungal spore pigment dihydroxynaphtalene melanin, in line with earlier results obtained for immune cells. Conidia were able to survive phagocytic processing, and intracellular germination was initiated only after several hours of co-incubation which eventually led to a lethal disruption of the host cell. Besides phagocytic interactions, both amoeba and fungus secreted cross inhibitory factors which suppressed fungal growth or induced amoeba aggregation with subsequent cell lysis, respectively. On the fungal side, we identified gliotoxin as the major fungal factor killing Dictyostelium, supporting the idea that major virulence attributes, such as escape from phagocytosis and the secretion of mycotoxins are beneficial to escape from environmental predators. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. GROWTH-INHIBITORY EFFECTS OF FARNESOL AGAINST SCEDOSPORIUM BOYDII AND LOMENTOSPORA PROLIFICANS.

    PubMed

    Pumeesat, Potjaman; Wongsuk, Thanwa; Muangkaew, Watcharamat; Luplertlop, Natthanej

    2017-01-01

    Scedosporium boydii and Lomentospora prolificans are filamentous fungi reported to cause infection in immunocompromized individuals. We studied the effect of farnesol to inhibit growth of S. boydii and L. prolificans by measuring colony diameter and determining minimal effective concentration (MEC). S. boydii and L. prolificans were grown on Sabouraud dextrose agar (SDA) at 37oC for 5 days. Conidia were collected and adjusted to a concentration of 104 conidia/ ml. Twenty microliters of conidia suspension was placed in each well of a sixwell plate containing serial dilutions of farnesol (10 μM, 100 μM, 1,000 μM, and 10,000 μM) in SDA. Colony morphology and diameter were observed on days 1, 2, 3, and 4. Farnesol at concentrations of 1,000 μM or higher caused the colony diameter of both S. boydii and L. prolificans to be smaller than untreated controls in a dose-dependent manner. The MEC of farnesol to inhibit growth of both S. boydii and L. prolificans was 3.2 mM. This study reveals the antifungal property of farnesol against S. boydii and L. prolificans, which can be used for further study as an alternative antifungal agent against these fungal infections.

  6. Antifungal activity of β-carbolines on Penicillium digitatum and Botrytis cinerea.

    PubMed

    Olmedo, Gabriela M; Cerioni, Luciana; González, M Micaela; Cabrerizo, Franco M; Rapisarda, Viviana A; Volentini, Sabrina I

    2017-04-01

    β-carbolines (βCs) are alkaloids widely distributed in nature that have demonstrated antimicrobial properties. Here, we tested in vitro six βCs against Penicillium digitatum and Botrytis cinerea, causal agents of postharvest diseases on fruit and vegetables. Full aromatic βCs (harmine, harmol, norharmane and harmane) exhibited a marked inhibitory effect on conidia germination at concentrations between 0.5 and 1 mM, while dihydro-βCs (harmalina and harmalol) only caused germination delay. Harmol showed the highest inhibitory effect on both fungal pathogens. After 24 h of exposure to 1 mM harmol, conidia revealed a severe cellular damage, exhibiting disorganized cytoplasm and thickened cell wall. Harmol antimicrobial effect was fungicidal on B. cinerea, while it was fungistatic on P. digitatum. Conidia membrane permeabilization was detected in treatments with harmol at sub-inhibitory and inhibitory concentrations, for both pathogens. In addition, residual infectivity of P. digitatum on lemons and B. cinerea on blueberries was significantly reduced after exposure to this alkaloid. It also inhibited mycelial growth, preventing sporulation at the highest concentration tested. These results indicate that harmol might be a promising candidate as a new antifungal molecule to control causal agents of fruit diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Ethylene Glycol-Induced Alteration of Conidial Germination in Neurospora crassa

    PubMed Central

    Bates, W. K.; Wilson, J. F.

    1974-01-01

    In nutrient medium containing 3.22 M ethylene glycol or glycerol, conidia of Neurospora crassa grow as single cells, without forming the germ tubes characteristic of normal morphological germination. Ethylene glycol is more effective than glycerol in producing this response. After growth in ethylene glycol medium for a suitable time, the cells are easily disrupted by an abrupt decrease in osmotic pressure. Osmotic disruption yields intact nuclei and mitochondria, although mitochondrial fractions obtained in this way show significantly reduced concentrations of cytochromes c + c1, as compared to those observed for comparable fractions obtained from vegetative hyphae. Cell cultures gradually adapted to lower concentrations of the glycol show a much higher degree of synchrony in the formation of germ tubes than do untreated conidia. Images PMID:4359649

  8. Phaeohyphomycosis of the nasal sinuses caused by a new species of Exserohilum.

    PubMed Central

    Padhye, A A; Ajello, L; Wieden, M A; Steinbronn, K K

    1986-01-01

    A 27-year-old man with a 6-year history of allergies developed nasal polyps that occluded his nose and prevented visual examination beyond the nasal vestibules. Histological examination of the polyps and bony tissue revealed septate, dematiaceous hyphae invading the bone trabeculae. A dematiaceous fungus was isolated in pure culture from the diseased tissue. Detailed mycological examination of the isolate showed that it produced numerous, distinctive poroconidia from erect, geniculate, sympodial conidiophores. The conidia were straight and cylindroellipsoidal, had 8 to 13 distosepta, and had protruding hila. The outer cell walls of the conidia, which were initially smooth, became unevenly roughened on aging. Comparison with other Exserohilum species revealed that the isolate represented an undescribed species; it is named Exserohilum mcginnisii sp. nov. Images PMID:3745422

  9. The Homeobox BcHOX8 Gene in Botrytis Cinerea Regulates Vegetative Growth and Morphology

    PubMed Central

    Antal, Zsuzsanna; Rascle, Christine; Cimerman, Agnès; Viaud, Muriel; Billon-Grand, Geneviève; Choquer, Mathias; Bruel, Christophe

    2012-01-01

    Filamentous growth and the capacity at producing conidia are two critical aspects of most fungal life cycles, including that of many plant or animal pathogens. Here, we report on the identification of a homeobox transcription factor encoding gene that plays a role in these two particular aspects of the development of the phytopathogenic fungus Botrytis cinerea. Deletion of the BcHOX8 gene in both the B. cinerea B05-10 and T4 strains causes similar phenotypes, among which a curved, arabesque-like, hyphal growth on hydrophobic surfaces; the mutants were hence named Arabesque. Expression of the BcHOX8 gene is higher in conidia and infection cushions than in developing appressorium or mycelium. In the Arabesque mutants, colony growth rate is reduced and abnormal infection cushions are produced. Asexual reproduction is also affected with abnormal conidiophore being formed, strongly reduced conidia production and dramatic changes in conidial morphology. Finally, the mutation affects the fungus ability to efficiently colonize different host plants. Analysis of the B. cinerea genome shows that BcHOX8 is one member of a nine putative homeobox genes family. Available gene expression data suggest that these genes are functional and sequence comparisons indicate that two of them would be specific to B. cinerea and its close relative Sclerotinia sclerotiorum. PMID:23133556

  10. Critical Values of Porosity in Rice Cultures of Isaria fumosorosea by Adding Water Hyacinth: Effect on Conidial Yields and Quality.

    PubMed

    Angel-Cuapio, Alejandro; Figueroa-Montero, Arturo; Favela-Torres, Ernesto; Viniegra-González, Gustavo; Perraud-Gaime, Isabelle; Loera, Octavio

    2015-09-01

    Conidia of the entomopathogenic fungus Isaria fumosorosea are used to control insect pests in crops. Commercially available mycoinsecticides manufactured with this fungus are produced on a large scale via solid-state cultures (SSC). In order to favour gaseous exchange in SCC, texturizers can be added to increase porosity fraction (ε). This work presents results of water hyacinth (Eichhornia crassipes) as a novel texturizer. A mixture of parboiled rice (PR), with a ε = 0.23, was used as a substrate, which was then mixed with water hyacinth (WH amendment) as a texturizer at different proportions affecting ε. Strains CNRCB1 and ARSEF3302 of I. fumosorosea yielded 1.6 (1.49-1.71) × 10(9) and 7.3 (7.02-7.58) × 10(9) conidia per gram of initial dry rice after 8 days, at ε values of 0.34 and 0.36, respectively. Improvement of conidial yields corresponded to 1.33 and 1.55 times, respectively, compared to rice alone using WH amendment in the mixtures PR:WH (%) at 90-10 and 80-20. In addition, infectivity against Galleria mellonella larvae was maintained. This is the first report of the use of water hyacinth as a texturizer in SSC, affecting ε, which is proposed a key parameter in conidia production by I. fumosorosea, without affecting conidial infectivity.

  11. A floatable formulation and laboratory bioassay of Pandora delphacis (Entomophthoromycota: Entomophthorales) for the control of rice pest Nilaparvata lugens Stål (Hemiptera: Delphacidae).

    PubMed

    Zhou, Xiang; Su, Xiu; Liu, Hongbo

    2016-01-01

    The brown planthopper (BPH), Nilaparvata lugens (Staparvata luera: Delphacidae), is a serious rice pest that easily develops resistance to chemical insecticides and resistant rice varieties. This study evaluated the infectivity of the BPH fungal pathogen, Pandora delphacis, and developed a novel formulation as an alternative means of BPH control. In a multiconidial concentration bioassay, P. delphacis-infected BPH cadavers were observed on day 4, but most occurred between days 5 and 8. BPH mortality depended on the inoculated conidial concentration. The cumulative mortality of adult BPHs reached 81.7% at 192 conidia mm(-2) in 8 days. Inoculation with 40.9 conidia mm(-2) was sufficient to induce 50% BPH death, based on analysis of a time-concentration-mortality model. A floatable P. delphacis-based formulation was made for use in paddy fields; mycelium-containing pellets mimicking mycosed cadavers could produce 7-15.7 × 10(4) infectious conidia pellet(-1) at 11-28 °C. In the laboratory bioassay, three floating pellets in a BPH-rearing jar caused 75.5% BPH mortality within 8 days, similar to the mortality level caused by direct conidial inoculation. P. delphacis is a potential biocontrol agent of BPHs for further research, and the novel floatable formulation holds promise as a method for BPH control. © 2015 Society of Chemical Industry.

  12. Testing an innovative device against airborne Aspergillus contamination.

    PubMed

    Desoubeaux, Guillaume; Bernard, Marie-Charlotte; Gros, Valérie; Sarradin, Pierre; Perrodeau, Elodie; Vecellio, Laurent; Piscopo, Antoine; Chandenier, Jacques; Bernard, Louis

    2014-08-01

    Aspergillus fumigatus is a major airborne nosocomial pathogen that is responsible for severe mycosis in immunocompromised patients. We studied the efficacy of an innovative mobile air-treatment device in eliminating A. fumigatus from the air following experimental massive contamination in a high-security room. Viable mycological particles were isolated from sequential air samples in order to evaluate the device's effectiveness in removing the fungus. The concentration of airborne conidia was reduced by 95% in 18 min. Contamination was reduced below the detection threshold in 29 min, even when the machine was at the lowest airflow setting. In contrast, during spontaneous settling with no air treatment, conidia remained airborne for more than 1 h. This indoor air contamination model provided consistent and reproducible results. Because the air purifier proved to be effective at eliminating a major contaminant, it may prove useful in preventing air-transmitted disease agents. In an experimental space mimicking a hospital room, the AirLyse air purifier, which uses a combination of germicidal ultraviolet C irradiation and titanium photocatalysis, effectively eliminated Aspergillus conidia. Such a mobile device may be useful in routine practice for lowering microbiological air contamination in the rooms of patients at risk. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Maize leaf trichomes represent an entry point of infection for Fusarium species.

    PubMed

    Nguyen, Thi Thanh Xuan; Dehne, Heinz-Wilhelm; Steiner, Ulrike

    2016-08-01

    Fifteen day old maize seedlings were inoculated with Fusarium graminearum, Fusarium proliferatum, and Fusarium verticillioides. More than 90 % F. proliferatum and F. verticillioides conidia and 50 % of F. graminearum formed one germ tube whereas the other 50 % of F. graminearum conidia formed two to three germ tubes. The germ tubes of F. graminearum conidia were longer than those of F. proliferatum and F. verticillioides. The three species of Fusarium infected bi-cellular trichomes by adhering and growing along the trichomes or by attaching to the cap cell of the trichomes 48 h after inoculation. Hyphae penetrated into the trichomes at the base, the side or at the top of the cap cells. The hyphae colonized the cap cells and then spread to base cells. Prickle trichomes were infected 72 h after inoculation. The hyphae either wrapped around prickle trichomes or formed a mass of hyphae around the top of prickle trichomes or formed appressorium. Macro trichomes were infected by F. graminearum 7 d after inoculation. Following penetration, the fungus spread to adjacent epidermal cells and to the subcuticle. This investigation provides the first assessment of F. graminearum, F. proliferatum, and F. verticillioides infection via trichomes of maize leaves. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  14. The nematophagous fungus Monacrosporium thaumasium and its nematicidal activity on Angiostrongylus vasorum.

    PubMed

    Soares, Filippe Elias de Freitas; Braga, Fabio Ribeiro; de Araújo, Jackson Victor; Lima, Walter dos Santos; de Queiroz, José Humberto

    2015-01-01

    The dog acts as a reservoir and environmental disseminator of potentially zoonotic parasites. The objective of this work was to study the fungus Monacrosporium thaumasium regarding its nematicidal potential in laboratory trials and its proteolytic profile. The in vitro test was carried out through two assays (A and B). In assay A, conidia of the fungus N34a were added in positive coprocultures for Angiostrongylus vasorum. In assay B, crude extract (treated group) and distilled water (control group) were added to coprocultures. Next, the proteolytic profile of crude extract of the nematophagous fungus M. thaumasium (NF34a) was revealed by performing a zymogram. There was a reduction (p<0.01) in the averages of larvae recovered from the treated groups (conidia and crude extract) in relation to control groups. The zymogram suggested that the nematophagous fungus M. thaumasium produces a protease of approximately 40 kDa. The results of this work confirm that the conidia as well as the crude extract of the fungus M. thaumasium may be used to control A. vasorum L1. The proteolytic profile suggested the presence of one protease (Mt1) of approximately 40 kDa that in the future may be used in biological control of L1 of this nematode. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  15. Odor Aversion and Pathogen-Removal Efficiency in Grooming Behavior of the Termite Coptotermes formosanus

    PubMed Central

    Yanagawa, Aya; Fujiwara-Tsujii, Nao; Akino, Toshiharu; Yoshimura, Tsuyoshi; Yanagawa, Takashi; Shimizu, Susumu

    2012-01-01

    The results of biocontrol with entomopathogens in termites have been discouraging because of the strong social hygiene behavior for removing pathogens from termite colonies. However, the mechanism of pathogen detection is still unclear. For the successful application of biopesticides to termites in nature, it would be beneficial to identify substances that could disrupt the termite’s ability to perceive pathogens. We hypothesized that termites can perceive pathogens and this ability plays an important role in effective hygiene behavior. In this study, pathogen-detection in the subterranean termite Coptotermes formosanus was investigated. We performed quantitative assays on conidia removal by grooming behavior using epifluoresence microscopy and Y-maze tests to examine the perception of fungal odor by termites. Three species each of high- and low-virulence entomopathogenic fungi were used in each test. The results demonstrated that termites removed conidia more effectively from a nestmate’s cuticle if its odor elicited stronger aversion. Highly virulent pathogens showed higher attachment rates to termite surfaces and their odors were more strongly avoided than those of low-virulence isolates in the same species. Moreover, termites appeared to groom each other more persistently when they had more conidia on their bodies. In brief, insect perception of pathogen-related odor seems to play a role in the mechanism of their hygiene behavior. PMID:23077609

  16. Diatomaceous earth and oil enhance effectiveness of Metarhizium anisopliae against Triatoma infestans.

    PubMed

    Luz, Christian; Rodrigues, Juscelino; Rocha, Luiz F N

    2012-04-01

    Entomopathogenic fungi, especially Metarhizium anisopliae, have potential for integrated control of peridomestic triatomine bugs. However, the high susceptibility of these vectors to fungal infection at elevated ambient humidities decreases in the comparatively dry conditions that often prevail in their microhabitats. A formulation adapted to this target pest that induces high and quick mortality can help to overcome these drawbacks. In the present study diatomaceous earth, which is used against pests of stored grains or as an additive to mycoinsecticides, delayed but did not reduce in vitro germination of M. anisopliae s.l. IP 46 conidia after >24h agitation without affecting viability, and did not hamper the survival of Triatoma infestans nymphs exposed to treated surfaces. The settling behavior of nymphs on a treated surface in choice tests depended on the concentration of diatomaceous earth and ambient light level. Conidia formulated with diatomaceous earth and a vegetable oil synergized the insecticidal effect of the fungus in nymphs, and quickly killed all treated insects, even at 75% relative humidity (LT(90) 8.3 days) where unformulated conidia caused only 25% mortality after a 25 days exposure. The improved performance of a combined oil and desiccant dust formulation of this Metarhizium isolate raises the likelihood for its successful mycoinsecticidal use for triatomine control and, apparently, against other domestic insect pests. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Identification of fibrinogen-binding proteins of Aspergillus fumigatus using proteomic approach.

    PubMed

    Upadhyay, Santosh Kumar; Gautam, Poonam; Pandit, Hrishikesh; Singh, Yogendra; Basir, Seemi Farhat; Madan, Taruna

    2012-03-01

    Aspergillus fumigatus, the main etiological agent for various forms of human aspergillosis, gets access to the respiratory system of human host by inhalation of airborne conidia. These conidia possibly adhere to extracellular matrix (ECM) proteins. Among the ECM proteins involved in adherence, fibrinogen is thought to be crucial. Here, we studied whether A. fumigatus three-week culture filtrate (3wcf) proteins promote binding of A. fumigatus to ECM proteins and promote fungal growth. We observed that incubation of ECM with 3wcf proteins led to dose- and time-dependent increase in adherence of conidia to the ECM. In order to identify the catalogue of fibrinogen-binding A. fumigatus proteins, we carried out fibrinogen affinity blotting using two-dimensional gel electrophoresed 3wcf proteins. A total of 15 fibrinogen-binding protein spots corresponding to 7 unique proteins were identified in 3wcf using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF-TOF). Among these, 4 proteins, namely, beta-glucosidase, alpha-mannosidase, pectate lyase A and oryzin precursor were predicted to have cell wall or extracellular localization, whereas amidase family protein and two hypothetical proteins did not display the signal sequence. This study reports seven novel fibrinogen-binding proteins of A. fumigatus, some of which could be further explored for targeting the adhesion phenomenon as antifungal strategy.

  18. Monitoring persistence of the entomopathogenic fungus Metarhizium anisopliae under simulated field conditions with the aim of controlling adult Aedes aegypti (Diptera: Culicidae).

    PubMed

    Carolino, Aline T; Paula, Adriano R; Silva, Carlos P; Butt, Tariq M; Samuels, Richard I

    2014-04-25

    Entomopathogenic fungi are potential candidates for use in integrated vector management, with recent emphasis aimed at developing adult mosquito control methods. Here we investigated the persistence of the fungus Metarhizium anisopliae when tested against female A. aegypti under field conditions. Black cotton cloths impregnated with M. anisopliae conidia, formulated in vegetable oil + isoparaffin, were maintained on a covered veranda for up to 30 days. At specific times, pieces of the cloths were removed, placed in Tween 80 and the resuspended conidia were sprayed directly onto mosquitoes. The persistence of conidia impregnated on black cloths using three different carriers was evaluated in test rooms. Fifty mosquitoes were released into each room and after a 5 day period, the surviving insects were captured. Another 50 insects were then released into each room. The capacity of the fungus at reducing mosquito survival was evaluated over a total of 35 days. Conidia extracted from cloths maintained on the veranda for 2 to 18 days remained virulent, with 28 to 60% mosquito survival observed. Mosquito survival following exposure to fungus impregnated cloths showed that fungus + Tween caused similar reductions to that of fungus + vegetable oil. Mosquitoes exposed to the formulation fungus + vegetable oil had survival rates of 36% over the first 5 days of the experiment. Following the release of the second cohort of mosquitoes (6-11days), survival increased to 50%. The survival of the 12-17 day cohort (78%) was statistically equal to that of the controls (84%). Formulation of the fungus in vegetable oil + isoparaffin increased the persistence of the fungus, with the 18-23 day cohort (64% survival) still showing statistical differences to that of the controls (87% survival). The potential of entomopathogenic fungi for the control of adult A. aegypti was confirmed under field conditions. Vegetable oil + isoparaffin formulations of M. anisopliae significantly increased the

  19. Identification of the Fungal Pathogen that Causes Strawberry Anthracnose in Bangladesh and Evaluation of In Vitro Fungicide Activity

    PubMed Central

    Akhter, Md. Shamim; Alam, Shahidul; Islam, Md. Shafiqul

    2009-01-01

    This study was conducted to identify the Colletotrichum species causing anthracnose disease of strawberry in Balgladesh and to evaluate in vitro activity of commercial fungicides it. Based on morphological and cultural characteristics, all 22 isolates were identified as Colletotrichum gloeosporioides. They developed white or glittery colonies with grey to dark grey reverse colony colors and they produced cylindrical conidia. The efficacy of five commercial fungicides, Bavistin DF, Dithane M-45, Sulcox 50 WP, Corzim 50 WP and Rovral 50 WP, were tested against the fungus. Bavistin inhibited radial growth completely and was followed in efficacy by Dithane M-45. In Bavistin DF treated media, the fungus did not produce conidia. The percent inhibition of radial growth of the fungus was increased with the increasing concentrations of fungicide. PMID:23983513

  20. Macroconidial development and germination in Trichophyton mentagrophytes.

    PubMed

    Niimi, K; Niimi, M; Harada, K; Tokunaga, M; Tokunaga, J

    1988-02-01

    Trichophyton Mentagrophytes was investigated for macroconidial development with particular emphasis on the conidial ageing by light and scanning electron microscopy. Macroconidial germination was also studied under various conditions. Sabouraud glucose agar supplemented with 3% NaCl was used to enhance production of macroconidia. After a long-term cultivation macroconidial compartments changed to spherical thick-walled structure. Some 12-month-old macroconidia were still capable of germination. A wide range of temperature (15-37 degrees C), and inoculum of less than 1 X 10(5) conidia per ml of rich media were appropriate for macroconidial germination. The germination process of macroconidia was highly tolerant to NaCl. A small fraction of the conidia were able to germinate even in distilled water without activation. Effect of freeze-thaw or ultraviolet irradiation on macroconidial germination was determined.

  1. The revenge of time: fungal deterioration of cultural heritage with particular reference to books, paper and parchment.

    PubMed

    Sterflinger, Katja; Pinzari, Flavia

    2012-03-01

    Hyphomycetous fungi - so called 'mould'- are the most important agents of biodeterioration in museums, museums' storage rooms, in libraries, collections and restoration studios. Fungi are able to live at low water activities, they are perfectly adapted to indoor environments and thrive in microclimatic niches caused by condensation, lack of ventilation or water retention by hygroscopic materials. Fungi spoil valuable pieces of art aesthetically, mechanically, chemically and by degradation of organic components. Historical material made of paper and oil paintings with high amounts of organic binders are especially susceptible to fungal deterioration. In order to prevent fungal contamination or to treat already contaminated objects an integrated approach including climate control, material-specific cleaning and application of carefully selected biocides is necessary. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Differential allergy responses to Metarhizium anisopliae fungal component extracts in BALB/c mice

    EPA Science Inventory

    Intratracheal aspiration (IA) exposure to Metarhizium anisopliae crude antigen (MACA), which is composed of equal protein amounts of mycelium (MYC), conidia (CON) and inducible proteases/chitinases (IND) extracts/filtrates, has resulted in responses characteristic of human allerg...

  3. A Mechanistic Model of Botrytis cinerea on Grapevines That Includes Weather, Vine Growth Stage, and the Main Infection Pathways

    PubMed Central

    González-Domínguez, Elisa; Caffi, Tito; Ciliberti, Nicola; Rossi, Vittorio

    2015-01-01

    A mechanistic model for Botrytis cinerea on grapevine was developed. The model, which accounts for conidia production on various inoculum sources and for multiple infection pathways, considers two infection periods. During the first period (“inflorescences clearly visible” to “berries groat-sized”), the model calculates: i) infection severity on inflorescences and young clusters caused by conidia (SEV1). During the second period (“majority of berries touching” to “berries ripe for harvest”), the model calculates: ii) infection severity of ripening berries by conidia (SEV2); and iii) severity of berry-to-berry infection caused by mycelium (SEV3). The model was validated in 21 epidemics (vineyard × year combinations) between 2009 and 2014 in Italy and France. A discriminant function analysis (DFA) was used to: i) evaluate the ability of the model to predict mild, intermediate, and severe epidemics; and ii) assess how SEV1, SEV2, and SEV3 contribute to epidemics. The model correctly classified the severity of 17 of 21 epidemics. Results from DFA were also used to calculate the daily probabilities that an ongoing epidemic would be mild, intermediate, or severe. SEV1 was the most influential variable in discriminating between mild and intermediate epidemics, whereas SEV2 and SEV3 were relevant for discriminating between intermediate and severe epidemics. The model represents an improvement of previous B. cinerea models in viticulture and could be useful for making decisions about Botrytis bunch rot control. PMID:26457808

  4. Nest sanitation through defecation: antifungal properties of wood cockroach feces.

    PubMed

    Rosengaus, Rebeca B; Mead, Kerry; Du Comb, William S; Benson, Ryan W; Godoy, Veronica G

    2013-11-01

    The wood cockroach Cryptocercus punctulatus nests as family units inside decayed wood, a substrate known for its high microbial load. We tested the hypothesis that defecation within their nests, a common occurrence in this species, reduces the probability of fungal development. Conidia of the entomopathogenic fungus, Metarhizium anisopliae, were incubated with crushed feces and subsequently plated on potato dextrose agar. Relative to controls, the viability of fungal conidia was significantly reduced following incubation with feces and was negatively correlated with incubation time. Although the cockroach's hindgut contained abundant β-1,3-glucanase activity, its feces had no detectable enzymatic function. Hence, these enzymes are unlikely the source of the fungistasis. Instead, the antifungal compound(s) of the feces involved heat-sensitive factor(s) of potential microbial origin. When feces were boiled or when they were subjected to ultraviolet radiation and subsequently incubated with conidia, viability was "rescued" and germination rates were similar to those of controls. Filtration experiments indicate that the fungistatic activity of feces results from chemical interference. Because Cryptocercidae cockroaches have been considered appropriate models to make inferences about the factors fostering the evolution of termite sociality, we suggest that nesting in microbe-rich environments likely selected for the coupling of intranest defecation and feces fungistasis in the common ancestor of wood cockroaches and termites. This might in turn have served as a preadaptation that prevented mycosis as these phylogenetically related taxa diverged and evolved respectively into subsocial and eusocial organizations.

  5. Fusarium pathogenesis investigated using Galleria mellonella as a heterologous host

    PubMed Central

    Coleman, Jeffrey J.; Muhammed, Maged; Kasperkovitz, Pia V.; Vyas, Jatin M.; Mylonakis, Eleftherios

    2011-01-01

    Members of the fungal genus Fusarium are capable of manifesting in a multitude of clinical infections, most commonly in immunocompromised patients. In order to better understand the interaction between the fungus and host, we have developed the larvae of the greater wax moth, Galleria mellonella, as a heterologous host for fusaria. When conidia are injected into the hemocoel of this Lepidopteran system, both clinical and environmental isolates of the fungus are able to kill the larvae at 37°C, although killing occurs more rapidly when incubated at 30°C. This killing was dependent on several other factors besides temperature, including the Fusarium strain, the number of conidia injected, and the conidia morphology, where macroconidia are more virulent than their microconidia counterpart. There was a correlation in the killing rate of Fusarium spp. when evaluated in G. mellonella and a murine model. In vivo studies indicated G. mellonella hemocytes were capable of initially phagocytosing both conidial morphologies. The G. mellonella system was also used to evaluate antifungal agents, and amphotericin B was able to confer a significant increase in survival to Fusarium infected-larvae. The G. mellonella-Fusarium pathogenicity system revealed that virulence of Fusarium spp. is similar, regardless of the origin of the isolate, and that mammalian endothermy is a major deterrent for Fusarium infection and therefore provides a suitable alternative to mammalian models to investigate the interaction between the host and this increasingly important fungal pathogen. PMID:22115447

  6. Nest sanitation through defecation: antifungal properties of wood cockroach feces

    NASA Astrophysics Data System (ADS)

    Rosengaus, Rebeca B.; Mead, Kerry; Du Comb, William S.; Benson, Ryan W.; Godoy, Veronica G.

    2013-11-01

    The wood cockroach Cryptocercus punctulatus nests as family units inside decayed wood, a substrate known for its high microbial load. We tested the hypothesis that defecation within their nests, a common occurrence in this species, reduces the probability of fungal development. Conidia of the entomopathogenic fungus, Metarhizium anisopliae, were incubated with crushed feces and subsequently plated on potato dextrose agar. Relative to controls, the viability of fungal conidia was significantly reduced following incubation with feces and was negatively correlated with incubation time. Although the cockroach's hindgut contained abundant β-1,3-glucanase activity, its feces had no detectable enzymatic function. Hence, these enzymes are unlikely the source of the fungistasis. Instead, the antifungal compound(s) of the feces involved heat-sensitive factor(s) of potential microbial origin. When feces were boiled or when they were subjected to ultraviolet radiation and subsequently incubated with conidia, viability was "rescued" and germination rates were similar to those of controls. Filtration experiments indicate that the fungistatic activity of feces results from chemical interference. Because Cryptocercidae cockroaches have been considered appropriate models to make inferences about the factors fostering the evolution of termite sociality, we suggest that nesting in microbe-rich environments likely selected for the coupling of intranest defecation and feces fungistasis in the common ancestor of wood cockroaches and termites. This might in turn have served as a preadaptation that prevented mycosis as these phylogenetically related taxa diverged and evolved respectively into subsocial and eusocial organizations.

  7. In vitro effects of flutriafol and azoxystrobin on Beauvaria bassiana and its efficacy against Tetranychus urticae.

    PubMed

    Gatarayiha, Mutimura C; Laing, Mark D; Miller, Ray M

    2010-07-01

    Testing the compatibility of chemical pesticides and fungal biocontrol agents is necessary if these two agents are to be applied together in the integrated management of plant pests and diseases. In this study, the fungicides azoxystrobin (a strobilurin) and flutriafol (a triazole) were tested in vitro for their effects on germination of conidia and mycelial growth of Beauveria bassiana (Bals.) Vuill. and in bioassay for their effect on fungal activity against Tetranychus urticae Koch. The fungicides were tested at three different concentrations [recommended rate for field use (1 x X) and the dilutions 10(-1)x X and 10(-2)x X]. Flutriafol inhibited growth of mycelia and germination of the fungal conidia at all concentrations tested in vitro, and also reduced the efficacy of B. bassiana in bioassays against mites. The inhibitive effect of azoxystrobin in vitro varied with the concentration applied. A significant effect was observed at 1 x X and 10(-1)x X concentrations on both the germination of conidia and mycelia growth. At 10(-2)x X concentration, azoxystrobin showed little effect on B. bassiana. However, when this fungicide was tested in bioassays, none of the concentrations reduced B. bassiana activity against mites. Azoxystrobin was most compatible with B. bassiana, while flutriafol was the most harmful. Further studies are required to confirm the negative effect of flutriafol on B. bassiana activity. Copyright (c) 2010 Society of Chemical Industry.

  8. Effect of vacuolar ATPase subunit H (VmaH) on cellular pH, asexual cycle, stress tolerance and virulence in Beauveria bassiana.

    PubMed

    Zhu, Jing; Zhu, Xiao-Guan; Ying, Sheng-Hua; Feng, Ming-Guang

    2017-01-01

    Vacuolar ATPase (V-ATPase) is a conserved multi-subunit protein complex that mediates intracellular acidification in fungi. Here we show functional diversity of V-ATPase subunit H (BbVmaH) in Beauveria bassiana, a filamentous fungal insect pathogen. Deletion of BbvmaH resulted in elevated vacuolar pH, increased Ca 2+ level in cytosol but not in vacuoles, accelerated culture acidification and reduced accumulation of extracellular ammonia. Aerial conidiation and submerged blastospore production were largely delayed and reduced in the deletion mutant, respectively, accompanied with a significant delay in conidial germination, alterations of conidia and blastospores in morphology, size and/or density, and severe growth defects in minimal media with different carbon and nitrogen sources. Despite null responses to osmotic, oxidative and cell wall perturbing stresses, the deletion mutant showed increased sensitivity to Ca 2+ , Zn 2+ and Cu 2+ during growth while its conidia were less tolerant to a wet-heat stress at 45°C and UV-B irradiation. Intracellular glycerol and mannitol contents also decreased significantly. Its virulence to Galleria mellonella larvae was significantly attenuated when conidia were topically applied for normal cuticle infection or injected into haemocoel for cuticle-bypassing infection. All phenotypic changes were restored by targeted gene complementation. Our results indicate that BbVmaH plays an important role in sustaining not only vacuolar acidification but also cytosolic calcium accumulation, ambient pH homeostasis, in vitro asexual cycle and virulence in B. bassiana. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Morphology, cultural characteristics, and pathogenicity of Rhizosphaera kalkhoffii on Picea spp. in northern Minnesota and Wisconsin

    Treesearch

    Jennifer Juzwik

    1993-01-01

    Morphology, cultural characteristics, and pathogenicity of Rhizosphaera kalkhoffii from spruce (Picea spp.) showing premature needle loss in northern Minnesota and Wisconsin were investigated. Pycnidiospores from needles, conidia of the Hormonema-like synanamorph, and pycnidiospores produced in culture were...

  10. PREPARATION AND REGENERATION OF PROTOPLASTS OF COLLETOTRICHUM GLEOSPORIODES F. SP. AESCHYNOMENE

    EPA Science Inventory

    Protoplasts were produced from conidia of Colletotrichum gloesporioides f. sp. aeschynomene, a fungal plant pathogen of Aeschynomene virginica, during treatment with Novozym 234 or a mixture of chitinase and B-glucuronidase after pretreatment with 2-mercaptoethanol. rotoplasts we...

  11. Human Phaeohyphomycotic Osteomyelitis Caused by the Coelomycete Phomopsis Saccardo 1905: Criteria for Identification, Case History, and Therapy

    PubMed Central

    Sutton, Deanna A.; Timm, William D.; Morgan-Jones, Gareth; Rinaldi, Michael G.

    1999-01-01

    The Sphaeropsidales, coelomycetous fungi producing asexual conidia within enclosed conidiomata (pycnidia), are saprobic on numerous vascular plants. Despite their ubiquitous nature, only a limited number of genera have been documented as causing human disease. We report what we believe to be the first human case of osteomyelitis due to a Phomopsis species in a chronically immunosuppressed female. The patient developed a subcutaneous abscess on the distal phalanx of the right fourth finger complicated by osteomyelitis. Operative specimens revealed fungal hyphae and a pure culture of mould. The patient was treated with a 6-month course of itraconazole. At 16 months of follow-up, she remained free of recurrence. Phomopsis species differ from the similar, more frequently reported Phoma species by having immersed, thick-walled, multiloculate conidiomata and by the production of alpha (short, ellipsoidal) and beta (long, filamentous) conidia. PMID:9986861

  12. Sem study on the invasion of Nomuraea rileyi (Farlow) on silkworm, Bombyx mori Linn. causing green muscardine.

    PubMed

    Kumar, V; Singh, G P; Kumar, V; Babu, A M; Datta, R K

    1997-01-01

    The mature conidia of Nomuraea rileyi (Farlow) germinate on the larval integument of Bombyx mori within 24 h and penetrate the cuticle within 36 h after inoculation at 24.0 +/- 1.0 degrees C temperature and 80.0 +/- 5.0% relative humidity. The penetrating hyphae multiply by budding and septa formation in the hemocoel, and the larva succumbs to the infection 6-7 days post-treatment. The hyphal bodies elongate and become interwoven with other hyphae forming a mycelial complex across different tissues. The ramification of hyphae along the epidermal tissue results in larval mummification in 7-8 days. Numerous conidiophores emerge, producing a confluent white fungal mat over the entire surface of the host larva by 9-10 days. Pale green conidia develop, making the larval body green. Life cycle of the fungus on B. mori is completed in 10-11 days.

  13. Exophiala pisciphila. A study of its development.

    PubMed

    Gaskins, J E; Cheung, P J

    1986-03-01

    Exophiala pisciphila is a dematiaceous fungus that belongs to a group of fungi known as the 'black yeasts'. It was isolated from the skin lesions of a smooth dogfish, Mustelus canis Mitchill, that had been born in the shark exhibit tank of the New York Aquarium. The different stages of development of this fungus were studied by light microscopy and scanning electron microscopy to illustrate the morphology and surface structures of conidia and mycelium. The list of marine and fresh water fish, which have been infected by Exophiala spp. and Exophiala-like fungi has been up-dated. Potato Dextrose Agar and Malt Agar proved to be the best growth media, while Corn Meal Agar proved to be the best medium for studying the morphological features of the conidia and mycelial development of E. pisciphila, which exhibited polymorphic conidiogenesis.

  14. DIFFERENTIAL ALLERGIC AND NEUROTROPHIN RESPONSES TO FUNGAL COMPONENT EXTRACTS IN BALB/C MICE

    EPA Science Inventory

    Metarhizium anisopliae mycelium (MYC), conidia (CON) and inducible protease (IND) extracts were combined to produce the antigen MACA to screen for allergenic potential. Involuntary aspiration (IA) exposure to MACA in BALB/c mice has caused immune, inflammatory and physiological ...

  15. Biotechnology of Aureobasidium pullulans: A phylogenetic perspective

    USDA-ARS?s Scientific Manuscript database

    Aureobasidium pullulans is a fungus historically included among the "black yeasts." Although many strains are predominantly yeast-like, the species is actually polymorphic, exhibiting complex forms ranging from blastic conidia and swollen cells to pseudophyphae, hyphae, and chlamydospores. A. pull...

  16. Exposure of bed bugs to metarhizium anisopliae, and the effect of defensive secretions on fungal growth in vitro

    USDA-ARS?s Scientific Manuscript database

    Bed bugs Cimex lectularius were treated with conidia of the entomopathogenic fungus Metarhizium anisopliae by topical, spray, and contact exposure. One week post-exposure, inconsistent mortalities were observed, averaging 30% across all treatment groups and replicates. Microscopic examination of top...

  17. GERMINATION, VIABILITY AND CLEARANCE OF STACHYBOTRYS CHARTARUM IN THE LUNGS OF INFANT RATS

    EPA Science Inventory

    The fungus Stachybotrys chartarum has been associated with many adverse health effects including the condition known as idiopathic pulmonary hemorrhage in infants. In order to gain some insight into possible mechanisms, viable conidia of S. chartarum were instilled into the lung...

  18. Effects of surfactants on conidial germination of Myrothecium verrucaria

    USDA-ARS?s Scientific Manuscript database

    Myrothecium verrucaria has been employed as a unique biological control agent because it is highly effective against several annual and perennial weeds, including red vine, trumpet creeper, redroot pigweed, kudzu, hempsesbania and sicklepod. Although aerial conidia of M. verrucaria are hydrophilic, ...

  19. Asexual-sexual morph connection in the type species of Berkleasmium.

    PubMed

    Tanney, Joey; Miller, Andrew N

    2017-06-01

    Berkleasmium is a polyphyletic genus comprising 37 dematiaceous hyphomycetous species. In this study, independent collections of the type species, B. concinnum , were made from Eastern North America. Nuclear internal transcribed spacer rDNA (ITS) and partial nuc 28S large subunit rDNA (LSU) sequences obtained from collections and subsequent cultures showed that Berkleasmium concinnum is the asexual morph of Neoacanthostigma septoconstrictum ( Tubeufiaceae , Tubeufiales ). Phylogenies inferred from Bayesian inference and maximum likelihood analyses of ITS-LSU sequence data confirmed this asexual-sexual morph connection and a re-examination of fungarium reference specimens also revealed the co-occurrence of N. septoconstrictum ascomata and B. concinnum sporodochia. Neoacanthostigma septoconstrictum is therefore synonymized under B. concinnum on the basis of priority. A specimen identified as N. septoconstrictum from Thailand is described as N. thailandicum sp. nov., based on morphological and genetic distinctiveness.

  20. Monitoring persistence of the entomopathogenic fungus Metarhizium anisopliae under simulated field conditions with the aim of controlling adult Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    2014-01-01

    Background Entomopathogenic fungi are potential candidates for use in integrated vector management, with recent emphasis aimed at developing adult mosquito control methods. Here we investigated the persistence of the fungus Metarhizium anisopliae when tested against female A. aegypti under field conditions. Methods Black cotton cloths impregnated with M. anisopliae conidia, formulated in vegetable oil + isoparaffin, were maintained on a covered veranda for up to 30 days. At specific times, pieces of the cloths were removed, placed in Tween 80 and the resuspended conidia were sprayed directly onto mosquitoes. The persistence of conidia impregnated on black cloths using three different carriers was evaluated in test rooms. Fifty mosquitoes were released into each room and after a 5 day period, the surviving insects were captured. Another 50 insects were then released into each room. The capacity of the fungus at reducing mosquito survival was evaluated over a total of 35 days. Results Conidia extracted from cloths maintained on the veranda for 2 to 18 days remained virulent, with 28 to 60% mosquito survival observed. Mosquito survival following exposure to fungus impregnated cloths showed that fungus + Tween caused similar reductions to that of fungus + vegetable oil. Mosquitoes exposed to the formulation fungus + vegetable oil had survival rates of 36% over the first 5 days of the experiment. Following the release of the second cohort of mosquitoes (6-11days), survival increased to 50%. The survival of the 12–17 day cohort (78%) was statistically equal to that of the controls (84%). Formulation of the fungus in vegetable oil + isoparaffin increased the persistence of the fungus, with the 18–23 day cohort (64% survival) still showing statistical differences to that of the controls (87% survival). Conclusions The potential of entomopathogenic fungi for the control of adult A. aegypti was confirmed under field conditions. Vegetable oil + isoparaffin formulations of

  1. Sporothrix schenckii sensu stricto and Sporothrix brasiliensis Are Differentially Recognized by Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Martínez-Álvarez, José A.; Pérez-García, Luis A.; Mellado-Mojica, Erika; López, Mercedes G.; Martínez-Duncker, Iván; Lópes-Bezerra, Leila M.; Mora-Montes, Héctor M.

    2017-01-01

    Sporothrix schenckii sensu stricto and S. brasiliensis are usually associated to sporotrichosis, a subcutaneous mycosis worldwide distributed. Comparative analyses between these two species indicate they contain genetic and physiological differences that are likely to impact the interaction with host cells. Here, we study the composition of the cell wall from conidia, yeast-like cells and germlings of both species and found they contained the same sugar composition. The carbohydrate proportion in the S. schenckii sensu stricto wall was similar across the three cell morphologies, with exception in the chitin content, which was significantly different in the three morphologies. The cell wall from germlings showed lower rhamnose content and higher glucose levels than other cell morphologies. In S. brasiliensis, the wall sugars were constant in the three morphologies, but glucose was lower in yeast-like cells. In S. schenckii sensu stricto cells most of chitin and β1,3-glucan were underneath wall components, but in S. brasiliensis germlings, chitin was exposed at the cell surface, and β1,3-glucan was found in the outer part of the conidia wall. We also compared the ability of these cells to stimulate cytokine production by human peripheral blood mononuclear cells. The three S. schenckii sensu stricto morphologies stimulated increased levels of pro-inflammatory cytokines, when compared to S. brasiliensis cells; while the latter, with exception of conidia, stimulated higher IL-10 levels. Dectin-1 was a key receptor for cytokine production during stimulation with the three morphologies of S. schenckii sensu stricto, but dispensable for cytokine production stimulated by S. brasiliensis germlings. TLR2 and TLR4 were also involved in the sensing of Sporothrix cells, with a major role for the former during cytokine stimulation. Mannose receptor had a minor contribution during cytokine stimulation by S. schenckii sensu stricto yeast-like cells and germlings, but S. schenckii

  2. DOSE-DEPENDENT ALLERGIC ASTHMA RESPONSES TO PENICILLIUM CHRYSOGENUM

    EPA Science Inventory

    ABSTRACT
    Indoor mold has been associated with development of allergic asthma. Penicillium chrysogenum, a common indoor mold, is known to have several allergens and its viable conidia can induce allergic responses in a mouse model of allergic penicilliosis. The hypothesis o...

  3. Differential gene expression during conidiation in the grape powdery mildew fungus, Erysiphe necator

    USDA-ARS?s Scientific Manuscript database

    Asexual sporulation (conidiation) is coordinately regulated in the grape powdery mildew fungus Erysiphe necator, but nothing is known about its genetic regulation. We hypothesized that genes required for conidiation in other fungi would be up-regulated at conidiophore initiation and/or full conidia...

  4. Transcriptome of Aspergillus flavus aswA (AFLA_085170) deletion strain related to sclerotial development and production of secondary metabolites

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus produces many secondary metabolites including aflatoxins. Besides conidia, the fungus uses sclerotia as another type of propagule. We obtained transcriptomes from four growth conditions of the aswA mutant, a strain impaired in sclerotial development and production of sclerotium-sp...

  5. Regulation and specificity of antifungal metapleural gland secretion in leaf-cutting ants

    PubMed Central

    Yek, Sze Huei; Nash, David R.; Jensen, Annette B.; Boomsma, Jacobus J.

    2012-01-01

    Ants have paired metapleural glands (MGs) to produce secretions for prophylactic hygiene. These exocrine glands are particularly well developed in leaf-cutting ants, but whether the ants can actively regulate MG secretion is unknown. In a set of controlled experiments using conidia of five fungi, we show that the ants adjust the amount of MG secretion to the virulence of the fungus with which they are infected. We further applied fixed volumes of MG secretion of ants challenged with constant conidia doses to agar mats of the same fungal species. This showed that inhibition halos were significantly larger for ants challenged with virulent and mild pathogens/weeds than for controls and Escovopsis-challenged ants. We conclude that the MG defence system of leaf-cutting ants has characteristics reminiscent of an additional cuticular immune system, with specific and non-specific components, of which some are constitutive and others induced. PMID:22915672

  6. Changes in the physiological properties and kinetics of citric acid accumulation via carbon ion irradiation mutagenesis of Aspergillus niger *

    PubMed Central

    Hu, Wei; Chen, Ji-hong; Wang, Shu-yang; Liu, Jing; Song, Yuan; Wu, Qing-feng; Li, Wen-jian

    2016-01-01

    The objective of this work was to produce citric acid from corn starch using a newly isolated mutant of Aspergillus niger, and to analyze the relationship between changes in the physiological properties of A. niger induced by carbon ion irradiation and citric acid accumulation. Our results showed that the physiological characteristics of conidia in A. niger were closely related to citric acid accumulation and that lower growth rate and viability of conidia may be beneficial to citric acid accumulation. Using corn starch as a raw material, a high-yielding citric acid mutant, named HW2, was obtained. In a 10-L bioreactor, HW2 can accumulate 118.9 g/L citric acid with a residual total sugar concentration of only 14.4 g/L. This represented an 18% increase in citric acid accumulation and a 12.5% decrease in sugar utilization compared with the original strain.

  7. Mummified fruit as a source of inoculum and disease dynamics of olive anthracnose caused by Colletotrichum spp.

    PubMed

    Moral, Juan; Trapero, Antonio

    2012-10-01

    Anthracnose, caused by Colletotrichum spp., is a destructive disease of olive fruit worldwide. The objective of this study was to investigate the influence of agronomical and weather factors on inoculum production using detached olive fruit and on the development of epidemics in the field. The pathogen produced very large numbers of conidia on rotted (>1.87 × 10(8) conidia/fruit) or mummified (>2.16 × 10(4) conidia/fruit) fruit under optimal conditions. On mummified fruit, conidial production was highest on mummies incubated at 20 to 25°C and 96 h of wetness. Repeated washings of mummies reduced conidial production until it was very low after five washings. When mummies were placed in the tree canopy, conidial production was not reduced after 6 months (May to October); but, when they were held on the soil or buried in the soil, conidial production comparatively decreased up to 10,000 times. Anthracnose epidemics on susceptible 'Hojiblanca' and 'Picudo' during three seasons (2005-08) were influenced by rainfall, temperature, and fruit ripening, and had three main phases: the latent period (May to October); the onset of the epidemic, which coincided with the beginning of fruit ripening (early November); and disease development, which was predicted by the Weibull model (November to March). No epidemics developed on the susceptible cultivars during the driest season (2007-08) or on the resistant 'Picual' olive during any of the three seasons. These results provide the basis for a forecasting system of olive anthracnose which could greatly improve the management of this disease.

  8. Use of Green Fluorescent Protein-Transgenic Strains to Study Pathogenic and Nonpathogenic Lifestyles in Colletotrichum acutatum.

    PubMed

    Horowitz, Sigal; Freeman, Stanley; Sharon, Amir

    2002-07-01

    ABSTRACT Colletotrichum acutatum, which causes anthracnose disease on strawberry, can also persist on several other plant species without causing disease symptoms. The genetic and molecular bases that determine pathogenic and nonpathogenic lifestyles in C. acutatum are unclear. We developed a transformation system for C. acutatum by electroporation of germinating conidia, and transgenic isolates that express the green fluorescent protein (GFP) were produced. Details of the pathogenic and nonpathogenic lifestyles of C. acutatum were determined by using GFP-transgenic isolates. Major differences between colonization-mediating processes of strawberry and of other plants were observed. On the main host, strawberry, the germinating conidia formed branched, thick hyphae, and large numbers of appressoria were produced that were essential for plant penetration. In strawberry, the fungus developed rapidly, filling the mesophyll with dense mycelium that invaded the cells and caused necrosis of the tissue. In nonpathogenic interactions on pepper, eggplant, and tomato, the conidia germinated, producing thin, straight germ tubes. Appressoria were produced but failed to germinate and penetrate leaf tissue, resulting in epiphytic growth without invasion of the plant. Penetration of the plant occurred only several days after inoculation and was restricted to the intercellular spaces of the first cell layers of infected tissue without causing any visible damage. Much of the new fungal biomass continued to develop on the surface of inoculated organs in the nonpathogenic interaction. The differences in fungal development on strawberry compared with the other plant species suggest that signal molecules, which may be present only in strawberry, trigger appressorial germination and penetration of the primary host.

  9. Evaluation of a New Entomopathogenic Strain of Beauveria bassiana and a New Field Delivery Method against Solenopsis invicta

    PubMed Central

    Li, Jun; Guo, Qiang; Lin, Miaofeng; Jiang, Lu; Ye, Jingwen; Chen, Dasong; Li, Zhigang; Dai, Jianqing; Han, Shichou

    2016-01-01

    Solenopsis invicta Buren is one of the most important pests in China, and control measures are mainly based on the use of synthetic pesticides, which may be inadequate and unsustainable. Hence, there is a growing interest in developing biological control alternatives for managing S. invicta, such as the use of entomopathogenic fungi. To facilitate the commercialization of entomopathogenic fungi against S. invicta, 10 Beauveria bassiana isolates originating from different hosts were tested for virulence in laboratory bioassays, and the most pathogenic strain, ZGNKY-5, was tested in field studies using an improved pathogen delivery system. The cumulative mortality rate reached 93.40% at 1×108 mL-1 conidia after 504 h. The germination and invasion of the spores were observed under a scanning electron microscope, and several conidia adhered to the cuticle of S. invicta after 2 h. Furthermore, the germ tubes of the conidia oriented toward the cuticle after 48 h, and the mycelium colonized the entire body after 96 h. Based on the efficacy observed in the laboratory trials, further experiments were performed with ZGNKY-5 strain to evaluate its utility in an injection control technology against S. invicta in the field. We found that three dosage treatments of ZGNKY-5 strain (500 mL, 750 mL, and 1,000 mL per nest) had significant control effects. Our results show that this strain of Beauveria bassiana and our control method were effective against S. invicta in both laboratory and field settings. PMID:27341441

  10. The Expression of Dectin-1, Irak1 and Rip2 During the Host Response to Aspergillus fumigatus.

    PubMed

    Liu, Jinguo; Yu, Lin; Chen, Cuicui; Zhou, Jian; Gong, Xin; Li, Dandan; Hou, Dongni; Song, Yuanlin; Shao, Changzhou

    2018-04-01

    C-type lectin receptors (CLRs), Toll-like receptors (TLRs), and Nod-like receptors (NLRs) have the ability to recognize Aspergillus fumigatus (A. fumigates) and induce innate immune response. Dectin-1 is a well-described CLR, while interleukin-1 receptor-associated kinase 1 (Irak1) and receptor-interacting protein 2 (Rip2) are pivotal adaptor proteins of TLRs and NLRs signaling pathways, respectively. Our primary aim is to elucidate whether Dectin-1 regulates the expression of Irak1 and Rip2, and confirm that CLRs, TLRs, and NLRs pathways act synergistically in response to A. fumigatus infection. Pulmonary infection mouse models were established. Myeloid cells were differentiated in cell culture and examined by inverted microscopy, flow cytometry, and scanning electron microscopy. The relative mRNA levels were determined by qRT-PCR. The protein expression levels were determined by immunohistochemistry and Western blot. The expression of Dectin-1, Irak1, Rip2, and phosphorylation level of nuclear factor (NF)-κB p65 were induced by conidia in immunocompetent mice, while their expression and phosphorylation level were inhibited in immunocompromised mice after the administration of conidia. Conidia increased the expression of Dectin-1, Irak1, and Rip2 in myeloid cells, while Dectin-1 silencing significantly reduced their expression. Our findings demonstrate that Dectin-1, Irak1, and Rip2 are involved in response to A. fumigatus infection. Dectin-1 modulates the expression of Irak1 and Rip2. Additionally, these three signaling pathways are interconnected, and CLRs pathway plays a dominant role against A. fumigatus invasion.

  11. Environmental contamination by Aspergillus spp. in laying hen farms and associated health risks for farm workers.

    PubMed

    Cafarchia, Claudia; Camarda, Antonio; Iatta, Roberta; Danesi, Patrizia; Favuzzi, Vincenza; Di Paola, Giancarlo; Pugliese, Nicola; Caroli, Anna; Montagna, Maria Teresa; Otranto, Domenico

    2014-03-01

    Data on the occurrence and epidemiology of Aspergillus spp. in laying hens farms are scant. With the aims of determining levels of airborne contamination in laying hen farms and evaluating the potential risk of infection for workers and animals, 57 air samples from 19 sheds (Group I), 69 from faeces (Group II), 19 from poultry feedstuffs (Group III) and 60 from three anatomical sites (i.e. nostrils, pharynx, ears) of 20 farm workers (Group IV) were cultured. The Aspergillus spp. prevalence in samples ranged from 31.6% (Group III) to 55.5% (Group IV), whereas the highest conidia concentration was retrieved in Group II (1.2 × 10(4) c.f.u. g(-1)) and in Group III (1.9 × 10(3) c.f.u. g(-1)). The mean concentration of airborne Aspergillus spp. conidia was 70 c.f.u. m(-3) with Aspergillus fumigatus (27.3%) being the most frequently detected species, followed by Aspergillus flavus (6.3%). These Aspergillus spp. were also isolated from human nostrils (40%) and ears (35%) (P<0.05) (Group IV). No clinical aspergillosis was diagnosed in hens. The results demonstrate a relationship between the environmental contamination in hen farms and presence of Aspergillus spp. on animals and humans. Even if the concentration of airborne Aspergillus spp. conidia (i.e. 70 c.f.u. m(-3)) herein detected does not trigger clinical disease in hens, it causes human colonization. Correct management of hen farms is necessary to control environmental contamination by Aspergillus spp., and could lead to a significant reduction of animal and human colonization.

  12. Structural Features of Sugars That Trigger or Support Conidial Germination in the Filamentous Fungus Aspergillus niger

    PubMed Central

    Hayer, Kimran; Stratford, Malcolm

    2013-01-01

    The asexual spores (conidia) of Aspergillus niger germinate to produce hyphae under appropriate conditions. Germination is initiated by conidial swelling and mobilization of internal carbon and energy stores, followed by polarization and emergence of a hyphal germ tube. The effects of different pyranose sugars, all analogues of d-glucose, on the germination of A. niger conidia were explored, and we define germination as the transition from a dormant conidium into a germling. Within germination, we distinguish two distinct stages, the initial swelling of the conidium and subsequent polarized growth. The stage of conidial swelling requires a germination trigger, which we define as a compound that is sensed by the conidium and which leads to catabolism of d-trehalose and isotropic growth. Sugars that triggered germination and outgrowth included d-glucose, d-mannose, and d-xylose. Sugars that triggered germination but did not support subsequent outgrowth included d-tagatose, d-lyxose, and 2-deoxy-d-glucose. Nontriggering sugars included d-galactose, l-glucose, and d-arabinose. Certain nontriggering sugars, including d-galactose, supported outgrowth if added in the presence of a complementary triggering sugar. This division of functions indicates that sugars are involved in two separate events in germination, triggering and subsequent outgrowth, and the structural features of sugars that support each, both, or none of these events are discussed. We also present data on the uptake of sugars during the germination process and discuss possible mechanisms of triggering in the absence of apparent sugar uptake during the initial swelling of conidia. PMID:23995938

  13. Structural features of sugars that trigger or support conidial germination in the filamentous fungus Aspergillus niger.

    PubMed

    Hayer, Kimran; Stratford, Malcolm; Archer, David B

    2013-11-01

    The asexual spores (conidia) of Aspergillus niger germinate to produce hyphae under appropriate conditions. Germination is initiated by conidial swelling and mobilization of internal carbon and energy stores, followed by polarization and emergence of a hyphal germ tube. The effects of different pyranose sugars, all analogues of d-glucose, on the germination of A. niger conidia were explored, and we define germination as the transition from a dormant conidium into a germling. Within germination, we distinguish two distinct stages, the initial swelling of the conidium and subsequent polarized growth. The stage of conidial swelling requires a germination trigger, which we define as a compound that is sensed by the conidium and which leads to catabolism of d-trehalose and isotropic growth. Sugars that triggered germination and outgrowth included d-glucose, d-mannose, and d-xylose. Sugars that triggered germination but did not support subsequent outgrowth included d-tagatose, d-lyxose, and 2-deoxy-d-glucose. Nontriggering sugars included d-galactose, l-glucose, and d-arabinose. Certain nontriggering sugars, including d-galactose, supported outgrowth if added in the presence of a complementary triggering sugar. This division of functions indicates that sugars are involved in two separate events in germination, triggering and subsequent outgrowth, and the structural features of sugars that support each, both, or none of these events are discussed. We also present data on the uptake of sugars during the germination process and discuss possible mechanisms of triggering in the absence of apparent sugar uptake during the initial swelling of conidia.

  14. Method To immobilize the aphid-pathogenic fungus erynia neoaphidis in an alginate matrix for biocontrol

    PubMed

    Shah; Aebi; Tuor

    1998-11-01

    Erynia neoaphidis is an important fungal pathogen of aphid pests worldwide. There have been few reported attempts to formulate this natural agent for use in biocontrol. In the current study, factors involved in the immobilization of E. neoaphidis hyphae in an alginate matrix were investigated. Hyphae of two isolates cultured in liquid medium were 220 to 620 &mgr;m in length and 7 to 19 &mgr;m in diameter with a 74 to 83% cytoplasmic content. The optimal concentration of low-viscosity sodium alginate for production of conidia from entrapped hyphae was 1.5% (wt/vol), and 0.1 and 0.25 M calcium chloride were equally suitable for use as the gelling solution. Alginate beads were rinsed with 10% sucrose after gelling. However, beads should not be left for longer than 40 min in 0.1 M calcium chloride or 10% sucrose to prevent a 10% loss in conidial production. A 40% (vol/vol) concentration of fungal biomass produced significantly more conidia than either 20% or the standard concentration of 10%. This effect persisted even after beads were dried overnight in a laminar flow hood and stored at 4 degreesC for 4 days. Conidia from freshly produced alginate beads caused 27 to 32% infection in Pea aphids as determined by standardized laboratory bioassays. This finding was not significantly different from infections in aphids inoculated with fresh mycelial mats or plugs from Petri dish cultures. In conclusion, algination appears to be a promising technique for utilizing E. neoaphidis in the biocontrol of aphid pests.

  15. Discrimination of Aspergillus lentulus from Aspergillus fumigatus by Raman spectroscopy and MALDI-TOF MS.

    PubMed

    Verwer, P E B; van Leeuwen, W B; Girard, V; Monnin, V; van Belkum, A; Staab, J F; Verbrugh, H A; Bakker-Woudenberg, I A J M; van de Sande, W W J

    2014-02-01

    In 2005, a new sibling species of Aspergillus fumigatus was discovered: Aspergillus lentulus. Both species can cause invasive fungal disease in immune-compromised patients. The species are morphologically very similar. Current techniques for identification are PCR-based or morphology-based. These techniques are labour-intense and not sufficiently discriminatory. Since A. lentulus is less susceptible to several antifungal agents, it is important to correctly identify the causative infectious agent in order to optimize antifungal therapy. In this study we determined whether Raman spectroscopy and/or MALDI-TOF MS were able to differentiate between A. lentulus and A. fumigatus. For 16 isolates of A. lentulus and 16 isolates of A. fumigatus, Raman spectra and peptide profiles were obtained using the Spectracell and MALDI-TOF MS (VITEK MS RUO, bioMérieux) respectively. In order to obtain reliable Raman spectra for A. fumigatus and A. lentulus, the culture medium needed to be adjusted to obtain colourless conidia. Only Raman spectra obtained from colourless conidia were reproducible and correctly identified 25 out of 32 (78 %) of the Aspergillus strains. For VITEK MS RUO, no medium adjustments were necessary. Pigmented conidia resulted in reproducible peptide profiles as well in this case. VITEK MS RUO correctly identified 100 % of the Aspergillus isolates, within a timeframe of approximately 54 h including culture. Of the two techniques studied here, VITEK MS RUO was superior to Raman spectroscopy in the discrimination of A. lentulus from A. fumigatus. VITEK MS RUO seems to be a successful technique in the daily identification of Aspergillus spp. within a limited timeframe.

  16. Hessian-based quantitative image analysis of host-pathogen confrontation assays.

    PubMed

    Cseresnyes, Zoltan; Kraibooj, Kaswara; Figge, Marc Thilo

    2018-03-01

    Host-fungus interactions have gained a lot of interest in the past few decades, mainly due to an increasing number of fungal infections that are often associated with a high mortality rate in the absence of effective therapies. These interactions can be studied at the genetic level or at the functional level via imaging. Here, we introduce a new image processing method that quantifies the interaction between host cells and fungal invaders, for example, alveolar macrophages and the conidia of Aspergillus fumigatus. The new technique relies on the information content of transmitted light bright field microscopy images, utilizing the Hessian matrix eigenvalues to distinguish between unstained macrophages and the background, as well as between macrophages and fungal conidia. The performance of the new algorithm was measured by comparing the results of our method with that of an alternative approach that was based on fluorescence images from the same dataset. The comparison shows that the new algorithm performs very similarly to the fluorescence-based version. Consequently, the new algorithm is able to segment and characterize unlabeled cells, thus reducing the time and expense that would be spent on the fluorescent labeling in preparation for phagocytosis assays. By extending the proposed method to the label-free segmentation of fungal conidia, we will be able to reduce the need for fluorescence-based imaging even further. Our approach should thus help to minimize the possible side effects of fluorescence labeling on biological functions. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  17. The Proteomic Signature of Aspergillus fumigatus During Early Development*

    PubMed Central

    Cagas, Steven E.; Jain, Mohit Raja; Li, Hong; Perlin, David S.

    2011-01-01

    Aspergillus fumigatus is a saprophytic fungus that causes a range of diseases in humans including invasive aspergillosis. All forms of disease begin with the inhalation of conidia, which germinate and develop. Four stages of early development were evaluated using the gel free system of isobaric tagging for relative and absolute quantitation to determine the full proteomic profile of the pathogen. A total of 461 proteins were identified at 0, 4, 8, and 16 h and fold changes for each were established. Ten proteins including the hydrophobin rodlet protein RodA and a protein involved in melanin synthesis Abr2 were found to decrease relative to conidia. To generate a more comprehensive view of early development, a whole genome microarray analysis was performed comparing conidia to 8 and 16 h of growth. A total of 1871 genes were found to change significantly at 8 h with 1001 genes up-regulated and 870 down-regulated. At 16 h, 1235 genes changed significantly with 855 up-regulated and 380 down-regulated. When a comparison between the proteomics and microarray data was performed at 8 h, a total of 22 proteins with significant changes also had corresponding genes that changed significantly. When the same comparison was performed at 16 h, 12 protein and gene combinations were found. This study, the most comprehensive to date, provides insights into early pathways activated during growth and development of A. fumigatus. It reveals a pathogen that is gearing up for rapid growth by building translation machinery, generating ATP, and is very much committed to aerobic metabolism. PMID:21825280

  18. Sporulation in Erysiphe necator: signals, differential gene expression and possible implications for disease management

    USDA-ARS?s Scientific Manuscript database

    Abundant production of conidia is a driving factor for epidemics of grape powdery mildew (Erysiphe necator (syn. Uncinula necator). Previous investigations revealed evidence for a signal that coordinates the onset of asexual reproduction. The genetic basis for this signal in powdery mildews had not ...

  19. Metacridamides A and B from the biocontrol fungus metarhizium acridum

    USDA-ARS?s Scientific Manuscript database

    Metarhizium acridum, an entomopathogenic fungus, has been commercialized and used successfully for biocontrol of grasshopper pests in Africa and Australia. As part of an effort to catalog the secondary metabolites of this fungus we discovered that its conidia produce two novel 17-membered macrocycl...

  20. Performance of fogged disinfectants to inactivate conida of Penicillium digitatum within citrus degreening rooms

    USDA-ARS?s Scientific Manuscript database

    Fogging with formaldehyde of citrus packinghouses when the fruit are absent is a practice to control conidia of Penicillium digitatum (Pers.) Sacc., cause of citrus green mold. Replacements for formaldehyde in these facilities are needed because of worker and environmental health issues. To evaluate...

  1. Near-infrared hyperspectral imaging for detecting Aflatoxin B1 of maize kernels

    USDA-ARS?s Scientific Manuscript database

    The feasibility of detecting the Aflatoxin B1 in maize kernels inoculated with Aspergillus flavus conidia in the field was assessed using near-infrared hyperspectral imaging technique. After pixel-level calibration, wavelength dependent offset, the masking method was adopted to reduce the noise and ...

  2. In vitro colony interactions among species of Trichoderma with inference toward biological control.

    Treesearch

    Jimmy L. Reaves

    1994-01-01

    Colony interactions among 15 isolates representing seven species of Trichoderma were evaluated in vitro. Interactions characterized by zones of inhibition, demarcation lines, ridges of conidia, overgrowth, intermingling, anastomosis, and hyphal coiling in self-pairings and intraspecific and interspecific pairings of the seven species were recorded...

  3. Population structure and genetic diversity of Fusicladium effusum in the USA

    USDA-ARS?s Scientific Manuscript database

    Scab (Fusicladium effusum) is the most destructive disease of pecan in the Southeast US. Infection is thought to occur solely through asexually produced conidia. To explore the population structure and genetic diversity of F. effusum, populations were hierarchically sampled from 11 orchards in Alaba...

  4. Host deception: Predaceous fungus, esteya vermicola, entices pine wood nematode by mimicking the scent of its host pine for nutrient

    USDA-ARS?s Scientific Manuscript database

    A nematophagous fungus, Esteya vermicola, is recorded as the first endoparasitic fungus of pine wood nematode (PWN), Burasphelenchus xylophilus, in the last century. E. vermicola exhibited high infectivity toward PWN in the laboratory conditions and conidia spraying of this fungus on Japanese red pi...

  5. Septoria Canker on Nursery Stock of Populus Deltoides

    Treesearch

    T. H. Filer; F. I. McCracken; C. A. Mohn; W. K. Randall

    1971-01-01

    Septoria musiva Peck is capable of establishing itself on unwounded first-year stems of eastern cottonwood. Natural infections have been observed since 1969 in three forest nurseries in Mississippi, and inoculations have confirmed that both conidia and ascospores are capable of causing stem infections.

  6. Environmental factors impact Passalora sequoiae conidia counts from Leyland Cypress

    USDA-ARS?s Scientific Manuscript database

    Needle blight disease, caused by Passalora sequoiae, results in a progressive lost of leaf tissue on Leyland cypress (×Cupressocyparis leylandii) within container and field tree nurseries, in the landscape, and on Christmas tree farms. Fungicide schedules were developed in response to seasonal sympt...

  7. Heat-stressed Metarhizium anisopliae: Viability (in vitro) and virulence (in vivo) assessments against the tick Rhipicephalus sanguineus

    USDA-ARS?s Scientific Manuscript database

    The current study investigated the thermotolerance of Metarhizium anisopliae s.l. conidia from the commercial products Metarril® SP Organic and Metarril® WP. The efficacy of these M. anisopliae formulations against the tick Rhipicephalus sanguineus s.l. was studied in laboratory under optimum or hea...

  8. Mummy Berry Fruit Rot and Shoot Blight Incidence in Blueberry: Prediction, Ranking, and Stability in a Long-term Study

    USDA-ARS?s Scientific Manuscript database

    Mummy berry is an important disease of cultivated blueberry. The disease has two distinct phases; a blighting phase initiated by ascospores and a fruit infection stage initiated by conidia. In this study we investigated blueberry cultivar resistance to both phases of the disease and, utilizing ‘stan...

  9. Metarhizium microsclerotia and hydrogel versus hydromulch: testing fungal formulations against Asian longhorned beetles

    USDA-ARS?s Scientific Manuscript database

    The efficacy of microsclerotia of Metarhizium brunneum (Petch) (Hypocreales: Clavicipitaceae) strain F52 (ARSEF 7711) was tested using samples that had been exposed on forest trees, allowing time for conidia to be produced. An aqueous mixture of microsclerotial granules (61.3% of dry mass), a straw ...

  10. Evidence for sexual reproduction in Fusicladium effusum

    USDA-ARS?s Scientific Manuscript database

    Fusicladium effusum is the causal agent of pecan scab, the most prevalent and often catastrophic disease of pecan in the southeastern USA. Despite earlier efforts to determine a sexual stage, reproduction in F. effusum has been observed only by asexually produced conidia. However, the degree and dis...

  11. Phylogeny of Hirsutella species (Ophiocordycipitaceae) from the USA: remedying the paucity of Hirsutella sequence data

    USDA-ARS?s Scientific Manuscript database

    Hirsutella (Ophiocordycipitaceae: Hypocreales) is a genus of insect, mite, and nematode pathogens with an asexual morph, which generally produce a mucilaginous cluster of one or several conidia on phialides that are basally subulate and taper to a fine neck. The generic name Hirsutella has been prop...

  12. Dispersal of Beauveria bassiana by the activity of nettle insects.

    PubMed

    Meyling, Nicolai V; Pell, Judith K; Eilenberg, Jørgen

    2006-10-01

    Recent studies have shown that the entomopathogenic fungus Beauveria bassiana occurs naturally on the phylloplanes of several plants, including nettles. Insects could, by their activity, be contributing to this inoculum by dispersing it from other sites. The potential of nettle aphids Microlophium carnosum and their predator Anthocoris nemorum to disperse conidia of B. bassiana from soil to nettles and from sporulating cadavers in the nettle canopy was investigated in laboratory experiments. In petri dish assays, aphids showed potential to distribute B. bassiana from soil to nettle leaves. Predators dispersed inoculum from both soil and cadavers to nettle leaves in petri dishes. In microcosms, aphids did not disperse B. bassiana from the soil or from cadavers confined in the canopy, but A. nemorum were able to transfer inoculum from soil into the nettle canopy and to distribute conidia from cryptic cadavers. In some instances, infections were initiated in aphids and predators as a consequence of dispersal.

  13. Assessment of biofilm formation by Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans.

    PubMed

    Mello, Thaís P; Aor, Ana Carolina; Gonçalves, Diego S; Seabra, Sergio H; Branquinha, Marta H; Santos, André L S

    2016-08-01

    Reported herein is the ability of Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans conidia to adhere, differentiate into hyphae and form biofilms on both polystyrene and lung epithelial cells. To different degrees, all of the fungi adhered to polystyrene after 4 h, with a predominance of those with germinated conidia. Prolonged fungi-polystyrene contact resulted in the formation of a monolayer of intertwined mycelia, which was identified as a typical biofilm structure due to the presence of a viable mycelial biomass, extracellular matrix and enhanced antifungal resistance. Ultrastructural details were revealed by SEM and CLSM, showing the dense compaction of the mycelial biomass and the presence of channels within the organized biofilm. A similar biofilm structure was observed following the co-culture of each fungus with A549 cells, revealing a mycelial trap covering all of the lung epithelial monolayer. Collectively, these results highlight the potential for biofilm formation by these clinically relevant fungal pathogens.

  14. Aspergillus fumigatus and Aspergillosis

    PubMed Central

    Latgé, Jean-Paul

    1999-01-01

    Aspergillus fumigatus is one of the most ubiquitous of the airborne saprophytic fungi. Humans and animals constantly inhale numerous conidia of this fungus. The conidia are normally eliminated in the immunocompetent host by innate immune mechanisms, and aspergilloma and allergic bronchopulmonary aspergillosis, uncommon clinical syndromes, are the only infections observed in such hosts. Thus, A. fumigatus was considered for years to be a weak pathogen. With increases in the number of immunosuppressed patients, however, there has been a dramatic increase in severe and usually fatal invasive aspergillosis, now the most common mold infection worldwide. In this review, the focus is on the biology of A. fumigatus and the diseases it causes. Included are discussions of (i) genomic and molecular characterization of the organism, (ii) clinical and laboratory methods available for the diagnosis of aspergillosis in immunocompetent and immunocompromised hosts, (iii) identification of host and fungal factors that play a role in the establishment of the fungus in vivo, and (iv) problems associated with antifungal therapy. PMID:10194462

  15. Inoculum production and long-term conservation methods for cucurbits and tomato powdery mildews.

    PubMed

    Bardin, Marc; Suliman, Muna E; Sage-Palloix, Anne-Marie; Mohamed, Youssif F; Nicot, Philippe C

    2007-06-01

    The behaviour of cucurbit powdery mildews (Podosphaera xanthii and Golovinomyces cichoracearum) and tomato powdery mildew (Oidium neolycopersici) infesting detached cotyledons of Lagenaria leucantha cv. 'Minibottle' was studied in order to develop an easy culture method for pure inoculum production. High spore production was found with a combination of mannitol (0.1 m), sucrose (0.02 m) and agar (8 gl(-1)) in the cotyledon survival medium. Sporulation on cotyledons and viability of conidia were affected by the age of culture for the three species of powdery mildew tested. The age of cotyledons had also an impact of the spore production. This method was used to produce large amounts of inoculum for P. xanthii, G. cichoracearum and O. neolycopersici and enable the development of other species of powdery mildew like Leveillula taurica. Freezing conidia in liquid nitrogen enabled the long-term conservation of P. xanthii without any loss of virulence. The same method was unsuccessful with G. cichoracearum, and L. taurica and partly successful with O. neolycopersici.

  16. Effect of the Combination Hot Water - Calcium Chloride on the In Vitro Growth of Colletotrichum gloeosporioides and the Postharvest Quality of Infected Papaya

    PubMed Central

    Ayón-Reyna, Lidia Elena; López-Valenzuela, José Ángel; Delgado-Vargas, Francisco; López-López, Martha Edith; Molina-Corral, Francisco Javier; Carrillo-López, Armando; Vega-García, Misael Odín

    2017-01-01

    Anthracnose of papaya fruit caused by the fungus Colletotrichum gloeosporioides is one of the most economically important postharvest diseases. Hot water immersion (HW) and calcium chloride (Ca) treatments have been used to control papaya postharvest diseases; however, the effect of the combination HW-Ca on the pathogen growth and the development of the disease in infected papaya fruit has been scarcely studied. The aim of this study was to evaluate the effect of the HW-Ca treatment on the in vitro growth of C. gloesporioides conidia and the quality of infected papaya. In vitro, the HW-Ca treated conidia showed reduced mycelial growth and germination. In vivo, the HW-Ca treatment of infected papaya delayed for 5 days the onset of the anthracnose symptoms and improved the papaya postharvest quality. The combined treatment HW-Ca was better than any of the individual treatments to inhibit the in vitro development of C. gloeosporioides and to reduce the negative effects of papaya anthracnose. PMID:29238280

  17. Characterization and control of thread mould in cheese.

    PubMed

    Basílico, J C; debasílico, M Z; Chiericatti, C; Vinderola, C G

    2001-06-01

    The origin of a mould responsible for the contamination of an Argentinian cheese factory was identified and several antifungal treatments were assessed. Moulds were isolated and identified from vacuum-packed hard cheeses, from the environment and from the surfaces of the factory. A suspension conidia test containing different fungicides was performed; another assay involved the fumigation with p-OH fenilsalicidamide. Only Phoma glomerata was found in all of the mouldy cheeses, and was also obtained from different environments and machine surfaces. The most effective treatments against P. glomerata isolates were 0.5% (w/v) natamycin and 2% (v/v) parabens. Fumigation with p-OH fenilsalicidamide showed no satisfactory results. P. glomerata is an important thread mould-contaminating agent in vacuum-packed hard cheeses. Taking into account the survival of the conidia of the P. glomerata isolates to different antifungal treatments, the sources of contamination need to be controlled by designing a good factory layout.

  18. Use of acoustic technology to monitor the time course of Rhynchophorus ferrugineus larval mortality in date palms after treatments with Beauveria bassiana

    USDA-ARS?s Scientific Manuscript database

    Spectral and temporal patterns of insect sound impulses were monitored daily for 23-d periods in 8, 10, or 5 small date palm trees containing larvae dipped in 0 (control), 104 (low), or 108 (high) conidia/ml doses of entomopathogenic fungus, Beauveria bassiana (Bb 203), respectively. Each tree conta...

  19. Feasibility of detecting Aflatoxin B1 in single maize kernels using hyperspectral imaging

    USDA-ARS?s Scientific Manuscript database

    The feasibility of detecting Aflatoxin B1 (AFB1) in single maize kernel inoculated with Aspergillus flavus conidia in the field, as well as its spatial distribution in the kernels, was assessed using near-infrared hyperspectral imaging (HSI) technique. Firstly, an image mask was applied to a pixel-b...

  20. Effect of prior vegetative growth, inoculum density and light on conidiation in Erysiphe necator

    USDA-ARS?s Scientific Manuscript database

    A driving force in epidemics of grape powdery mildew is the abundant production of conidia. Our objective was to better define the three factors involved in the qualitative change that occurs when a mildew colony switches from vegetative growth to sporulation –inoculum density, light, and a sporulat...

  1. Aureobasidium pullulans morphology: two adapted polysaccharide stains.

    PubMed

    Oller, Anna R

    2005-12-01

    Morphological stages of Aureobasidium pullulans were investigated utilizing different media ingredients and were visualized by bright-field microscopy. A polysaccharide stain was developed to stain chlamydospores, cell walls, hyphae, and conidia, since current staining techniques do not reveal subcellular details to identify fungi, especially those that exhibit polysaccharide secretions.

  2. Ranking cultivated blueberry for Mummy Berry Blight and Fruit Infection Incidence

    USDA-ARS?s Scientific Manuscript database

    Mummy berry is an important disease of cultivated blueberry. The disease has two distinct phases; a blighting phase initiated by ascospores and a fruit infection stage initiated by conidia. In this study we investigated the resistance of more than 100 blueberry cultivar to both phases of the disease...

  3. It’s a Jungle Out There! Abiotic and Biotic Factors That Affect Efficacy and Persistence of the Entomopathogenic Fungi

    USDA-ARS?s Scientific Manuscript database

    One might conclude the soil is a more congenial arena for using entomopathogenic fungi (EPF) than the phylloplane. No ultraviolet light, no rainfall washing conidia from foliage, no rapid attenuation of conidial deposits by rapid plant canopy expansion. The soil is cool, damp and dark – perfect fo...

  4. Soil application of formulated Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) containing microsclerotia controls eggs of Aedes aegypti (Diptera: Culicidae)

    USDA-ARS?s Scientific Manuscript database

    We evaluated the potential of a granular formulation of Metarhizium brunneum F52 containing microsclerotia (MbMSc granules) for control of Aedes aegypti (L.) by targeting eggs. MbMSc granules produced infective conidia within 14 days after application to moist potting soil, producing 5.9 × 10**5, 2....

  5. Maxillary sinusitis from Microascus cinereus and Aspergillus repens.

    PubMed

    Aznar, C; de Bievre, C; Guiguen, C

    1989-02-01

    Microascus was associated with Aspergillus repens in a left maxillary sinus. Tissue contained septale filaments of two types, conidia, ostiolate perithecia containing ascospores corresponding to Microascus cinereus which was identified by culture. The abundance of sexual fructifications in the tissue indicates that pathogenicity is due to Microascus cinereus.

  6. Enhancing the Thermotolerance of Entomopathogenic Isaria fumosorosea SFP-198 Conidial Powder by Controlling the Moisture Content Using Drying and Adjuvants

    PubMed Central

    Lee, Se Jin; Lee, Hyang Burm

    2014-01-01

    Entomopathogenic fungi are promising pest-control agents but their industrial applicability is limited by their thermosusceptibility. With an aim to increase the thermotolerance of Isaria fumosorosea SFP-198, moisture absorbents were added to dried conidial powder, and the relationship between its water potential and thermotolerance was investigated. Mycotized rice grains were dried at 10℃, 20℃, 30℃, and 40℃ and the drying effect of each temperature for 24, 48, 96, and 140 hr was determined. Drying for 48 hr at 10℃ and 20℃ reduced the moisture content to < 5% without any significant loss of conidial thermotolerance, but drying at 30℃ and 40℃ reduced both moisture content and conidial thermotolerance. To maintain thermotolerance during storage, moisture absorbents, such as calcium chloride, silica gel, magnesium sulfate, white carbon, and sodium sulfate were individually added to previously dried-conidial powder at 10% (w/w). These mixtures was then stored at room temperature for 30 days and subjected to 50℃ for 2 hr. The white carbon mixture had the highest conidial thermotolerance, followed by silica gel, magnesium sulfate, and then the other absorbents. A significant correlation between the water potential and conidial thermotolerance was observed in all conidia-absorbent mixtures tested in this study (r = -0.945). Conidial thermotolerance in wet conditions was evaluated by adding moisturized white carbon (0~20% H2O) to conidia to mimic wet conditions. Notably, the conidia still maintained their thermotolerance under these conditions. Thus, it is evident that conidial thermotolerance can be maintained by drying mycotized rice grains at low temperatures and adding a moisture absorbent, such as white carbon. PMID:24808736

  7. AoRim15 is involved in conidial stress tolerance, conidiation and sclerotia formation in the filamentous fungus Aspergillus oryzae.

    PubMed

    Nakamura, Hidetoshi; Kikuma, Takashi; Jin, Feng Jie; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2016-04-01

    The serine-threonine kinase Rim15p is a master regulator of stress signaling and is required for stress tolerance and sexual sporulation in the yeast Saccharomyces cerevisiae. However, in filamentous fungi that reproduce asexually via conidiation, the physiological function of Rim15p homologs has not been extensively analyzed. Here, we functionally characterized the protein homolog of Rim15p in the filamentous fungus Aspergillus oryzae, by deleting and overexpressing the corresponding Aorim15 gene and examining the role of this protein in stress tolerance and development. Deletion of Aorim15 resulted in an increase in the sensitivity of conidia to oxidative and heat stresses, whereas conidia of the Aorim15 overexpressing strain were more resistant to these stresses. These results indicated that AoRim15 functions in stress tolerance, similar to S. cerevisiae Rim15p. Phenotypic analysis revealed that conidiation was markedly reduced by overexpression of Aorim15 in A. oryzae, and was completely abolished in the deletion strain. In addition, the formation of sclerotia, which is another type of developmental structure in filamentous fungi, was decreased by the deletion of Aorim15, whereas Aorim15 overexpression increased the number of sclerotia. These results indicated that AoRim15 is a positive regulator of sclerotia formation and that overexpression of AoRim15 shifts the developmental balance from conidiation towards sclerotia formation. Collectively, we demonstrated that AoRim15 is involved in the stress tolerance of conidia and differentially regulates between the two developmental fates of conidiation and sclerotia formation. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Sexual Reproduction in Aspergillus flavus Sclerotia: Acquisition of Novel Alleles from Soil Populations and Uniparental Mitochondrial Inheritance

    PubMed Central

    Horn, Bruce W.; Gell, Richard M.; Singh, Rakhi; Sorensen, Ronald B.; Carbone, Ignazio

    2016-01-01

    Aspergillus flavus colonizes agricultural commodities worldwide and contaminates them with carcinogenic aflatoxins. The high genetic diversity of A. flavus populations is largely due to sexual reproduction characterized by the formation of ascospore-bearing ascocarps embedded within sclerotia. A. flavus is heterothallic and laboratory crosses between strains of the opposite mating type produce progeny showing genetic recombination. Sclerotia formed in crops are dispersed onto the soil surface at harvest and are predominantly produced by single strains of one mating type. Less commonly, sclerotia may be fertilized during co-infection of crops with sexually compatible strains. In this study, laboratory and field experiments were performed to examine sexual reproduction in single-strain and fertilized sclerotia following exposure of sclerotia to natural fungal populations in soil. Female and male roles and mitochondrial inheritance in A. flavus were also examined through reciprocal crosses between sclerotia and conidia. Single-strain sclerotia produced ascospores on soil and progeny showed biparental inheritance that included novel alleles originating from fertilization by native soil strains. Sclerotia fertilized in the laboratory and applied to soil before ascocarp formation also produced ascospores with evidence of recombination in progeny, but only known parental alleles were detected. In reciprocal crosses, sclerotia and conidia from both strains functioned as female and male, respectively, indicating A. flavus is hermaphroditic, although the degree of fertility depended upon the parental sources of sclerotia and conidia. All progeny showed maternal inheritance of mitochondria from the sclerotia. Compared to A. flavus populations in crops, soil populations would provide a higher likelihood of exposure of sclerotia to sexually compatible strains and a more diverse source of genetic material for outcrossing. PMID:26731416

  9. Histopathologic criteria to confirm white-nose syndrome in bats

    USGS Publications Warehouse

    Meteyer, Carol U.; Buckles, Elizabeth L.; Blehert, David S.; Hicks, Alan C.; Green, David E.; Shearn-Bochsler, Valerie I.; Thomas, Nancy J.; Gargas, Andrea; Behr, Melissa

    2009-01-01

    White-nose syndrome (WNS) is a cutaneous fungal disease of hibernating bats associated with a novel Geomyces sp. fungus. Currently, confirmation of WNS requires histopathologic examination. Invasion of living tissue distinguishes this fungal infection from those caused by conventional transmissible dermatophytes. Although fungal hyphae penetrate the connective tissue of glabrous skin and muzzle, there is typically no cellular inflammatory response in hibernating bats. Preferred tissue samples to diagnose this fungal infection are rostral muzzle with nose and wing membrane fixed in 10% neutral buffered formalin. To optimize detection, the muzzle is trimmed longitudinally, the wing membrane is rolled, and multiple cross-sections are embedded to increase the surface area examined. Periodic acid-Schiff stain is essential to discriminate the nonpigmented fungal hyphae and conidia. Fungal hyphae form cup-like epidermal erosions and ulcers in the wing membrane and pinna with involvement of underlying connective tissue. In addition, fungal hyphae are present in hair follicles and in sebaceous and apocrine glands of the muzzle with invasion of tissue surrounding adnexa. Fungal hyphae in tissues are branching and septate, but the diameter and shape of the hyphae may vary from parallel walls measuring 2 ??m in diameter to irregular walls measuring 3-5 ??m in diameter. When present on short aerial hyphae, curved conidia are approximately 2.5 ??m wide and 7.5 ??m in curved length. Conidia have a more deeply basophilic center, and one or both ends are usually blunt. Although WNS is a disease of hibernating bats, severe wing damage due to fungal hyphae may be seen in bats that have recently emerged from hibernation. These recently emerged bats also have a robust suppurative inflammatory response.

  10. Development of a user-friendly delivery method for the fungus Metarhizium anisopliae to control the ectoparasitic mite Varroa destructor in honey bee, Apis mellifera, colonies.

    PubMed

    Kanga, Lambert H B; Adamczyk, John; Patt, Joseph; Gracia, Carlos; Cascino, John

    2010-12-01

    A user-friendly method to deliver Metarhizium spores to honey bee colonies for control of Varroa mites was developed and tested. Patty blend formulations protected the fungal spores at brood nest temperatures and served as an improved delivery system of the fungus to bee hives. Field trials conducted in 2006 in Texas using freshly harvested spores indicated that patty blend formulations of 10 g of conidia per hive (applied twice) significantly reduced the numbers of mites per adult bee, mites in sealed brood cells, and residual mites at the end of the 47-day experimental period. Colony development in terms of adult bee populations and brood production also improved. Field trials conducted in 2007 in Florida using less virulent spores produced mixed results. Patty blends of 10 g of conidia per hive (applied twice) were less successful in significantly reducing the number of mites per adult bee. However, hive survivorship and colony strength were improved, and the numbers of residual mites were significantly reduced at the end of the 42-day experimental period. The overall results from 2003 to 2008 field trials indicated that it was critical to have fungal spores with good germination, pathogenicity and virulence. We determined that fungal spores (1 × 10(10) viable spores per gram) with 98% germination and high pathogenicity (95% mite mortality at day 7) provided successful control of mite populations in established honey bee colonies at 10 g of conidia per hive (applied twice). Overall, microbial control of Varroa mite with M. anisopliae is feasible and could be a useful component of an integrated pest management program.

  11. Vital role for cyclophilin B (CypB) in asexual development, dimorphic transition and virulence of Beauveria bassiana.

    PubMed

    Chu, Zhen-Jian; Sun, Huan-Huan; Ying, Sheng-Hua; Feng, Ming-Guang

    2017-08-01

    Cyclophilin B (CypB) was previously revealed as one of many putative secretory proteins in the transcriptome of Beauveria bassiana infection to a lepidopteran pest. Here we show a main localization of CypB in hyphal cell walls and septa and its essential role in the in vitro and in vivo asexual cycles of the fungal insect pathogen. Deletion of cypB reduced colony growth by 16-42% on two rich media and 30 scant media with different carbon or nitrogen sources. The deletion mutant suffered a delayed conidiation on a standard medium and a final 47% reduction in conidial yield, accompanied with drastic transcript depression of several key genes required for conidiation and conidial maturation. The mutant conidia required 10h longer to germinate 50% at optimal 25°C than wild-type conidia. Intriguingly, cultivation of the mutant conidia in a trehalose-peptone broth mimic to insect hemolymph resulted in 83% reduction in blastospore yield but only slight decrease in biomass level, indicating severe defects in transition of hyphae to blastospores. LT 50 for the deletion mutant against Galleria mellonella larvae through normal cuticle infection was prolonged to 7.4d from a wild-type estimate of 4.7d. During colony growth, additionally, the deletion mutant displayed hypersensitivity to Congo red, menadione, H 2 O 2 and heat shock but increased tolerance to cyclosporine A and rapamycin. All of changes were restored by targeted gene complementation. Altogether, CypB takes part in sustaining normal growth, aerial conidiation, conidial germination, dimorphic transition, stress tolerance and pathogenicity in B. bassiana. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Persistence and Viability of Lecanicillium lecanii in Chinese Agricultural Soil

    PubMed Central

    Peng, De-Liang; Zhou, Jie; Zhang, Xiao-Lin; Zhang, Zhao-Rong; Zhao, Jin-Jin; Wu, Yu-Huan

    2015-01-01

    The entomopathogenic fungus L. lecanii has been developed as biopesticides and used widely for biological control of several insects in agricultural practice. Due to the lack of isolation/count methods for L. lecanii in soil, the persistence of this fungus in soil appears to have attracted no attention. A selective medium and count method for L. lecanii in soil based on cetyl trimethyl ammonium bromide (CTAB) was developed, and then the persistence and viability of this fungus in soil were investigated under field conditions between 2012 and 2014. The results showed that the rate of recovery for L. lecanii in soil on the selective CTAB medium was satisfactory. The minimum CFUs for L. lecanii on the selective medium (0.5 g/L CTAB) was about 102 conidia/g soil. The L. lecanii density in soil declined quickly in the first month after inoculation with fungal conidia, kept stable for 6 to 10 months, and then decreased gradually until undetectable. L. lecanii could persist for at least 14 months in the agricultural soil of northern China. The colony growth, conidia yield and germination rate on plates, as well as the median lethal concentration or times (LC50 or LT50) to aphids, mycelium growth in aphids and sporulation on aphids of L. lecanii did not change significantly during the persistence in soil. In general, the count method developed here was a very useful tool for monitoring the dynamics of natural or introduced L. lecanii populations in soil, and the data on the persistence of L. lecanii in soil reported here were helpful for biological control and environmental risk assessment. PMID:26375030

  13. Histopathologic criteria to confirm white-nose syndrome in bats.

    PubMed

    Meteyer, Carol Uphoff; Buckles, Elizabeth L; Blehert, David S; Hicks, Alan C; Green, D Earl; Shearn-Bochsler, Valerie; Thomas, Nancy J; Gargas, Andrea; Behr, Melissa J

    2009-07-01

    White-nose syndrome (WNS) is a cutaneous fungal disease of hibernating bats associated with a novel Geomyces sp. fungus. Currently, confirmation of WNS requires histopathologic examination. Invasion of living tissue distinguishes this fungal infection from those caused by conventional transmissible dermatophytes. Although fungal hyphae penetrate the connective tissue of glabrous skin and muzzle, there is typically no cellular inflammatory response in hibernating bats. Preferred tissue samples to diagnose this fungal infection are rostral muzzle with nose and wing membrane fixed in 10% neutral buffered formalin. To optimize detection, the muzzle is trimmed longitudinally, the wing membrane is rolled, and multiple cross-sections are embedded to increase the surface area examined. Periodic acid-Schiff stain is essential to discriminate the nonpigmented fungal hyphae and conidia. Fungal hyphae form cup-like epidermal erosions and ulcers in the wing membrane and pinna with involvement of underlying connective tissue. In addition, fungal hyphae are present in hair follicles and in sebaceous and apocrine glands of the muzzle with invasion of tissue surrounding adnexa. Fungal hyphae in tissues are branching and septate, but the diameter and shape of the hyphae may vary from parallel walls measuring 2 microm in diameter to irregular walls measuring 3-5 microm in diameter. When present on short aerial hyphae, curved conidia are approximately 2.5 microm wide and 7.5 microm in curved length. Conidia have a more deeply basophilic center, and one or both ends are usually blunt. Although WNS is a disease of hibernating bats, severe wing damage due to fungal hyphae may be seen in bats that have recently emerged from hibernation. These recently emerged bats also have a robust suppurative inflammatory response.

  14. Selection of indigenous isolates of entomopathogenic soil fungus Metarhizium anisopliae under laboratory conditions.

    PubMed

    Skalický, Aleš; Bohatá, Andrea; Šimková, Jana; Osborne, Lance S; Landa, Zdeněk

    2014-07-01

    Eight native isolates of the entomopathogenic fungus Metarhizium anisopliae (Metschnikoff) Sorokin were obtained by monitoring soils cultivated in a conventional manner. These isolates were compared in three areas: (a) conidial germination, (b) radial growth and sporulation and (c) ability of conidia to infect Tenebrio molitor larvae. All bioassays were carried out at constant temperatures of 10, 15, and 20 °C. Conidia of individual isolates demonstrated differences in germination after a 24-h long incubation at all evaluated temperatures. At 20 °C, the germination ranged from 67 to 100 % and at 15 °C from 5.33 to 46.67 %. At 10 °C, no germination was observed after 24 h; nevertheless, it was 8.67-44.67 % after 48 h. In terms of radial growth, the culture diameters and the associated production of spores of all isolates increased with increasing temperature. At 10 °C, sporulation was observed in three isolates while all remaining cultures appeared sterile. Three weeks post-inoculation, conidia of all assessed isolates caused 100 % cumulative mortality of treated larvae of T. molitor at 15 and 20 °C with the exception of isolate 110108 that induced 81.33 % mortality at 15 °C. At 10 °C, larval cumulative mortality ranged from 6.67 to 85.33 % depending on the isolate. Isolates 110108 and 110111 showed significantly slower outset and a much lower rate of infection at all temperatures compared to other tested isolates of M. anisopliae. The bioassays were carried out with the purpose to sort and select indigenous isolates of M. anisopliae useful as biocontrol agents in their original habitat.

  15. Genetic diversity and population structure of Fusicladium effusum on pecan in the U.S.A.

    USDA-ARS?s Scientific Manuscript database

    Fusicladium effusum causes pecan scab, which is the most destructive disease of pecan in the U.S.A. The disease is known to be spread through asexually produced conidia in rain splash and wind. The fungus has demonstrated pathogenic diversity, yet there is no information on its genetic diversity or ...

  16. Ascospore dispersal of Ceratocystiopsis ranaculosus, a mycangial fungus of the southern pine beetle

    Treesearch

    John C. Moser; Thelma J. Perry; J. Robert Bridges; Hui-Fen Yin

    1995-01-01

    Ascospores of the heterothallic fungus Ceratocystiopsis ranaculosus were found in the sporothecae of three mite species of the genus Tarsonemus.These mites were phoretic on the coniferous bark beetles Dendroctonus frontalis, D. brevicomis, and Ips acuminatus.Ceratocystiopsis ranaculosus inhabits the mycangium of both Dendroctonus species as conidia in a budding yeast-...

  17. Metacridamide B methanol-d4 monosolvate

    USDA-ARS?s Scientific Manuscript database

    The title compound was extracted from conidia of the fungus Metarhizium acridum. Crystals were obtained as a methanol-d4 solvate. The tail part of the 4-methylhexan-2-yl group exhibits disorder over two positions, with an occupancy ratio of 0.682 (9):0.318 (9). The crystal structure confirms the abs...

  18. The Effect of Hyperbaric Oxygen on the Growth of Mucor sp. Aspergillus fumigatus.

    DTIC Science & Technology

    1980-02-01

    designations are for controls. 12 mamo 7<)U 4/ Figure 2. Aspergillus fumigatus Top Frame - Hyphae at day 2. Middle Frame - Plyphae with developing...conidiaphores, day 3. L~ower Frame - Hyphae with conidiophores and conidia, day 4. Time~ designations are for co~ntrols. 14 0 lOum Figure 3. Grouth curves

  19. Potential of a strain of the entomopathogenic fungus Beauveria bassiana (Hypocreales: Cordycipitaceae) as a biological control agent against western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae)

    USDA-ARS?s Scientific Manuscript database

    Five Beauveria bassiana strains were evaluated for control of western flower thrips. Strain RSB was the most virulent, causing 69-96% mortality at concentrations of 1×104 – 1×107 conidia mL-1, 10 days after inoculation of first instars. In greenhouse trials, RSB applied to broccoli foliage signifi...

  20. Microbial specialists in below-grade foundation walls in Scandinavia.

    PubMed

    Nunez, M; Hammer, H

    2014-10-01

    Below-grade foundation walls are often exposed to excessive moisture by water infiltration, condensation, leakage, or lack of ventilation. Microbial growth in these structures depends largely on environmental factors, elapsed time, and the type of building materials and construction setup. The ecological preferences of Actinomycetes (Actinobacteria) and the molds Ascotricha chartarum, Myxotrichum chartarum (Ascomycota), Geomyces pannorum, and Monocillium sp. (Hyphomycetes) have been addressed based on analyses of 1764 samples collected in below-grade spaces during the period of 2001-2012. Our results show a significant correlation between these taxa and moist foundation walls as ecological niches. Substrate preference was the strongest predictor of taxa distribution within the wall, but the taxa's physiological needs, together with gradients of abiotic factors within the wall structure, also played a role. Our study describes for the first time how the wall environment affects microbial growth. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. The fungistatic and fungicidal effects of volatiles from metathoracic glands of soybean-attacking stink bugs (Heteroptera: Pentatomidae) on the entomopathogen Beauveria bassiana.

    PubMed

    Lopes, Rogério B; Laumann, Raul A; Blassioli-Moraes, Maria C; Borges, Miguel; Faria, Marcos

    2015-11-01

    This study was initially designed to evaluate the differential susceptibility of three soybean-attacking pentatomids to the entomopathogenic fungus Beauveria bassiana in standardized bioassays. Euschistus heros (Eh) was shown to be significantly less susceptible than Chinavia ubica (Cu), whereas Dichelops melacanthus (Dm) adults were highly susceptible to fungal infections. A deeper look at the mechanisms involved in the possible role of volatiles from metathoracic glands on fungal infections was undertaken, and gland extracts from Nezara viridula (Nv), a species known for its resilience to fungal infections, were also included in the assays. Atmospheres with volatiles from pentatomids with very low-susceptibility to B. bassiana infections (Eh and Nv) had a significant effect on speed of germination as shown in counts performed up to 22h post-inoculation, by which time 0.1 (control), 0.6 (Dm), 17.9 (Cu), 32.6 (Eh), and 43.4% (Nv) of conidia had not germinated. The fungistatic (inhibitory) and fungicidal (lethal) effects of Eh and Nv volatile-rich atmospheres were subsequently quantified in Petri dishes with either PDA or PDA medium amended with carbendazim, which allowed germination rates to be determined at 18 and 48h post-inoculation, respectively. As opposed to control, Eh volatile-rich atmosphere had a clear fungistatic effect, since germination rate was only 27.4% within 18h, but reached 99.4% at 48h post-inoculation. For Nv volatile-rich atmospheres, only 15.1% of conidia germinated within 18h, and by 48h post-inoculation, approx. 18% of conidia were unviable (neither germ tubes nor intumescence), whereas in the control treatment rates were >99% at both reading times. Therefore, the gaseous phase of defensive secretions from fungus-resilient pentatomids possess a strong inhibitory effect and may display a less pronounced lethal effect on fungal germination, as was the case for Nv. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Identification and evaluation of a new entomopathogenic fungal strain against Riptortus pedestris (Hemiptera: Alydidae) and its two egg parasitoids

    PubMed Central

    Lim, Un Taek

    2018-01-01

    A strain (ARP14) of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin was isolated from field-collected Riptortus pedestris (Fabricius) (Hemiptera: Alydidae). The lethal median concentration of the ARP14 strain was compared with that of a commercialized strain (GHA) of the same fungus against R. pedestris and its two egg parasitoids, Ooencyrtus nezarae Ishii (Hymenoptera: Encyrtidae) and Gryon japonicum (Ashmead) (Hymenoptera: Platygastridae). Mortality and mycosis rates were evaluated after exposure to five concentrations of the fungus, i.e., 1×109, 1×108, 1×107, 1×106, and 1×105 conidia/mL, using a glass scintillation vial as an exposure arena in 25.0 ± 0.5°C and 93.7 ± 2.9% RH. The lethal median concentrations (LC50) for 2nd and 4th instar nymphs, and adults of R. pedestris were not significantly different between the two strains of B. bassiana. However, the mycosis rate of ARP14 was 1.3 and 1.8 times higher than that of the GHA strain in 4th instar nymphs and adult females of R. pedestris, respectively, at the 1×108 conidia/mL concentration. More interestingly, the mycosis rates at 1×108 conidia/mL concentration in the parasitoids G. japonicum and O. nezarae were much lower in the ARP14 strain (15.0 and 0%) than in the GHA strain (73.3 and 66.0%), respectively, suggesting that the B. bassiana strain ARP14 is less virulent to these parasitoids than the commercially available strain. Our results suggest that B. bassiana ARP14 may be a potential new biopesticide against R. pedestris with fewer negative effects on beneficial parasitoids than currently available options. PMID:29664929

  3. Identification and evaluation of a new entomopathogenic fungal strain against Riptortus pedestris (Hemiptera: Alydidae) and its two egg parasitoids.

    PubMed

    Dangi, Naresh; Lim, Un Taek

    2018-01-01

    A strain (ARP14) of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin was isolated from field-collected Riptortus pedestris (Fabricius) (Hemiptera: Alydidae). The lethal median concentration of the ARP14 strain was compared with that of a commercialized strain (GHA) of the same fungus against R. pedestris and its two egg parasitoids, Ooencyrtus nezarae Ishii (Hymenoptera: Encyrtidae) and Gryon japonicum (Ashmead) (Hymenoptera: Platygastridae). Mortality and mycosis rates were evaluated after exposure to five concentrations of the fungus, i.e., 1×109, 1×108, 1×107, 1×106, and 1×105 conidia/mL, using a glass scintillation vial as an exposure arena in 25.0 ± 0.5°C and 93.7 ± 2.9% RH. The lethal median concentrations (LC50) for 2nd and 4th instar nymphs, and adults of R. pedestris were not significantly different between the two strains of B. bassiana. However, the mycosis rate of ARP14 was 1.3 and 1.8 times higher than that of the GHA strain in 4th instar nymphs and adult females of R. pedestris, respectively, at the 1×108 conidia/mL concentration. More interestingly, the mycosis rates at 1×108 conidia/mL concentration in the parasitoids G. japonicum and O. nezarae were much lower in the ARP14 strain (15.0 and 0%) than in the GHA strain (73.3 and 66.0%), respectively, suggesting that the B. bassiana strain ARP14 is less virulent to these parasitoids than the commercially available strain. Our results suggest that B. bassiana ARP14 may be a potential new biopesticide against R. pedestris with fewer negative effects on beneficial parasitoids than currently available options.

  4. Vitamin D enhances resistance to aspergillus fumigatus in mice via inhibition of excessive autophagy.

    PubMed

    Dai, Jingjing; Liang, Yong; Li, Honglin; Zhou, Wubi; Wang, Bing; Gong, Aijia; Zhang, Rongbo

    2018-01-01

    The role of vitamin D in the regulation of lung immune defense and inflammatory response has attracted more and more attention. Vitamin D deficiency is closely related to respiratory tract infections. However, few studies have elucidated the mechanism of vitamin D deficiency on host pulmonary resistance to Aspergillus fumigatus ( A. fumigatus ). In this paper, the role of autophagy and Treg regulation in the treatment of rat models of A. fumigatus infection with vitamin D was investigated. We intratracheally injected the A. fumigatus spores into Mice fed with sufficient vitamin D (VitD+) or deficient diets (VitD-). Mortality, fungal load and weight changes were evaluated. The conidia of lung tissue were isolated for analysis of viability. Alveolar macrophages (AMs) were stimulated with a viable A. fumigatus conidia for determining the formation of lysosomes in vitro. The autophagy-related proteins dectin-1, ROS and LC3BII expression in AMs were measured. Fluorescence and Western blot were performed to evaluate the autophagic flux and Treg cells were detected by flow cytometry. After inoculation with A. fumigatus, the vitamin D deficient mice exhibited a higher rate of death, more fungal growth, and more weight loss than its sufficient peers. The viability of A. fumigatus conidia in VitD+ mice was significantly lower than that in VitD- mice. In the case of A. fumigatus infection, vitamin D delays the formation of lysosomes against A. fumigatus through autophagy. The autophagy flow measurement experiment also found that the vitamin D group lowered autophagy levels in cells and a small number of Treg cells. In conclusion, Vitamin D deficiency can lead to impaired lung defense in mice, which may be associated with the formation of excessive autophagy-induced lysosomes and increased counts of Treg cells.

  5. Development of a green fluorescent tagged strain of Aspergillus carbonarius to monitor fungal colonization in grapes.

    PubMed

    Crespo-Sempere, A; López-Pérez, M; Martínez-Culebras, P V; González-Candelas, L

    2011-08-02

    An enhanced green fluorescent protein has been used to tag an OTA-producing strain of Aspergillus carbonarius (W04-40) isolated from naturally infected grape berries. Transformation of the fungus was mediated by Agrobacterium tumefaciens. The most efficient transformation occurred when the co-cultivation was done with 10(4) conidia due to higher frequency of resistance colonies (894 per 10(4) conidia) and lower background obtained. To confirm the presence of the hph gene in hygromycin resistant colonies, 20 putative transformants were screened by PCR analysis. The hph gene was identified in all the transformants. Variation on the expression levels of the eGFP was detected among the transformants and 50% of them appeared bright green fluorescent under the microscope. Microscopic analysis of all the bright fluorescent transformants revealed homogeneity of the fluorescent signal, which was clearly visible in the hyphae as well as in the conidia. eGFP expression in A. carbonarius was shown to be stable in all transformants. Confocal Laser scanning microscopy images of grape berries infected with the eGFP transformant demonstrated fungal penetration into the berry tissues. OTA production was importantly increased in the eGFP transformant in comparison with the wild type strain and pathogenicity on grape berries was slightly decreased after four days of inoculation. However, no differences in virulence were found after seven days of inoculation, thus allowing utilization of this eGFP mutant for in situ analysis of A. carbonarius infection of grape berries. To our knowledge, this is the first report describing the construction of a GFP-tagged strain belonging to Aspergillus section Nigri for monitoring Aspergillus rot on grape berries. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Chemoraces and Habitat Specialization of Claviceps purpurea Populations

    PubMed Central

    Pažoutová, Sylvie; Olšovská, Jana; Linka, Marek; Kolínská, Renata; Flieger, Miroslav

    2000-01-01

    We studied genetic variability of 100 isolates of Claviceps purpurea by using randomly amplified polymorphic DNA (RAPD), an EcoRI restriction site polymorphism in the 5.8S ribosomal DNA (rDNA), the alkaloids produced, and conidial morphology. We identified three groups: (i) group G1 from fields and open meadows (57 isolates), (ii) group G2 from shady or wet habitats (41 isolates), and (iii) group G3 from Spartina anglica from salt marshes (2 isolates). The sclerotia of G1 isolates contained ergotamines and ergotoxines; G2 isolates produced ergosine and ergocristine along with small amounts of ergocryptine; and G3 isolates produced ergocristine and ergocryptine. The conidia of G1 isolates were 5 to 8 μm long, the conidia of G2 isolates were 7 to 10 μm long, and the conidia of G3 isolates were 10 to 12 μm long. Sclerotia of the G2 and G3 isolates floated on water. In the 5.8S rDNA analysis, an EcoRI site was found in G1 and G3 isolates but not in G2 isolates. The host preferences of the groups were not absolute, and there were host genera that were common to both G1 and G2; the presence of members of different groups in the same locality was rare. Without the use of RAPD or rDNA polymorphism, it was not possible to distinguish the three groups solely on the basis of phenotype, host, or habitat. In general, populations of C. purpurea are not host specialized, as previously assumed, but they are habitat specialized, and collecting strategies and toxin risk assessments should be changed to reflect this paradigm shift. PMID:11097923

  7. A morphological and phylogenetic revision of the Nectria cinnabarina species complex

    PubMed Central

    Hirooka, Y.; Rossman, A.Y.; Chaverri, P.

    2011-01-01

    The genus Nectria is typified by N. cinnabarina, a wood-inhabiting fungus common in temperate regions of the Northern Hemisphere. To determine the diversity within N. cinnabarina, specimens and cultures from Asia, Europe, and North America were obtained and examined. Their phylogeny was determined using sequences of multiple loci, specifically act, ITS, LSU, rpb1, tef1, and tub. Based on these observations, four species are recognised within the N. cinnabarina complex. Each species is delimited based on DNA sequence analyses and described and illustrated from specimens and cultures. The basionym for N. cinnabarina, Sphaeria cinnabarina, is lectotypified based on an illustration that is part of the protologue, and an epitype specimen is designated. Nectria cinnabarina s. str. is recircumscribed as having 2-septate ascospores and long stipitate sporodochia. Nectria dematiosa, previously considered a synonym of N. cinnabarina, has up to 2-septate ascospores and sessile sporodochia or no anamorph on the natural substrate. A third species, Nectria nigrescens, has up to 3-septate ascospores and short to long stipitate sporodochia. One newly described species, Nectria asiatica with a distribution restricted to Asia, has (0–)1-septate ascospores and short stipitate sporodochia. Young and mature conidia developing on SNA were observed for each species. Mature conidia of N. asiatica, N. cinnabarina, and N. nigrescens but not N. dematiosa bud when the mature conidia are crowded. On PDA the optimal temperature for growth for N. dematiosa is 20 °C, while for the other three species it is 25 °C. Based on our phylogenetic analyses, three subclades are evident within N. dematiosa. Although subtle culture and geographical differences exist, these subclades are not recognised as distinct species because the number of samples is small and the few specimens are insufficient to determine if morphological differences exist in the natural environment. PMID:21523188

  8. Laboratory evaluation of a native strain of Beauveria bassiana for controlling Dermanyssus gallinae (De Geer, 1778) (Acari: Dermanyssidae).

    PubMed

    Immediato, Davide; Camarda, Antonio; Iatta, Roberta; Puttilli, Maria Rita; Ramos, Rafael Antonio Nascimento; Di Paola, Giancarlo; Giangaspero, Annunziata; Otranto, Domenico; Cafarchia, Claudia

    2015-09-15

    The poultry red mite, Dermanyssus gallinae (De Geer, 1778) (Acari: Dermanyssidae) is one of the most economically important ectoparasites of laying hens worldwide. Chemical control of this mite may result in environmental and food contamination, as well as the development of drug resistance. High virulence of Beauveria bassiana sensu lato strains isolated from naturally infected hosts or from their environment has been demonstrated toward many arthropod species, including ticks. However, a limited number of studies have assessed the use of B. bassiana for the control of D. gallinae s.l. and none of them have employed native strains. This study reports the pathogenicity of a native strain of B. bassiana (CD1123) against nymphs and adults of D. gallinae. Batches of nymph and adult mites (i.e., n=720 for each stage) for treated groups (TGs) were placed on paper soaked with a 0.1% tween 80 suspension of B. bassiana (CIS, 10(5), 10(7) and 10(9) conidia/ml), whilst 240 untreated control mites for each stage (CG) were exposed only to 0.1% tween 80. The mites in TG showed a higher mortality at all stages (p<0.01) when compared to CG, depending on the time of exposure and the conidial concentration. A 100% mortality rate was recorded using a CIS of 10(9) conidia/ml 12 days post infection (DPI) in adults and 14 DPI in nymphs. B. bassiana suspension containing 10(9) conidia/ml was highly virulent towards nymph and adult stages of D. gallinae, therefore representing a possible promising natural product to be used in alternative or in combination to other acaricidal compounds currently used for controlling the red mite. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Phacidiopycnis washingtonensis--a new species associated with pome fruits from Washington State.

    PubMed

    Xiao, C L; Rogers, J D; Kim, Y K; Liu, Q

    2005-01-01

    A new species of Phacidiopycnis associated with pome fruits is described. The fungus causes fruit rot on apples during storage and is associated with a twig dieback and canker disease of crabapple trees and dead twigs of pear trees. To characterize the biology of the fungus and compare it with Ph. piri, the type species of the genus, effects of nine media and light on mycelial growth and pycnidial production, mycelial growth in response to temperature and mode of conidial germination in response to nutrient were determined. Apple-juice agar, pear-juice agar, prune-juice agar, potato-dextrose agar (PDA) and malt-extract agar, Czapek-Dox agar and oatmeal agar (OMA) favored mycelial growth. Cornmeal agar (CMA) did not favor mycelial growth. Light effect on pycnidial formation was medium dependent. Abundant pycnidia with mature conidia formed in 14 d old PDA and OMA cultures at 20 C, regardless of light, whereas none or very few pycnidia formed on other media in the dark. Fluorescent light stimulated formation of pycnidia except on CMA. The fungus grew at -3-25 C, with optimum growth at 15-20 C. Conidia germinated either by forming germ tubes or less often by budding. Budding of conidia occurred in 1 and 10% pear-juice solutions but not in 100% pear-juice solution. Six isolates of Ph. washingtonensis from different species of pome fruits had identical ITS sequences. The sizes of the ITS region were the same for both Ph. washingtonensis and Ph. piri, and four polymorphic nucleotide sites were found in the ITS region between Ph. washingtonensis and Ph. piri. The similarity in ITS sequences between these two taxa is confirmatory evidence for the erection of the new species of Phacidiopycnis associated with pome fruits we describe here.

  10. Effect of seasonal abiotic conditions and field margin habitat on the activity of Pandora neoaphidis inoculum on soil.

    PubMed

    Baverstock, J; Clark, S J; Pell, J K

    2008-03-01

    The ability of the aphid pathogenic fungus Pandora neoaphidis to remain active in the absence of a resting stage through a combination of continuous infection and as conidia deposited on soil was assessed alongside the potential for planted field margins to act as a refuge for the fungus. P. neoaphidis was able to infect the pea aphid, Acyrthosiphon pisum, when maintained under controlled conditions that simulated those that occur seasonally in the UK. Although there was a significant inverse relationship between temperature and time-to-kill, with death occurring after 4.2, 6.9 and 13.6 days when maintained under fluctuating summer, autumn and winter temperatures, respectively, there were no additional statistically significant effects of photoperiod. The activity of inoculum on soil was indirectly assessed by baiting with A. pisum. Under controlled conditions P. neoaphidis remained active on soil and was able to infect aphids for up to 80 days. However, the percentage of aphids that became infected decreased from 76% on day 1 to 11% on day 80. Whereas there was little difference in the activity of conidia that had been maintained at 4 degrees C and 10 degrees C, activity at 18 degrees C was considerably reduced. Under field conditions the activity of inoculum was strongly influenced by season. On day 49 there was little or no activity during spring, summer or winter. However, during autumn a mean proportion of 0.08 aphids still became infected with P. neoaphidis. Margin type did not affect the activity of conidia nor was there a difference in activity between blocks that had regenerated naturally and those that had been planted. These results suggest that P. neoaphidis can infect aphids and remain active on soil under the abiotic conditions that occur seasonally in the UK and that this fungus may be able to persist annually without a resting stage.

  11. Environmental Conditions Affect Botrytis cinerea Infection of Mature Grape Berries More Than the Strain or Transposon Genotype.

    PubMed

    Ciliberti, Nicola; Fermaud, Marc; Roudet, Jean; Rossi, Vittorio

    2015-08-01

    Effects of environment, Botrytis cinerea strain, and their interaction on the infection of mature grape berries were investigated. The combined effect of temperature (T) of 15, 20, 25, and 30°C and relative humidity (RH) of 65, 80, 90, and 100% was studied by inoculating berries with mycelium plugs. Regardless of the T, no disease occurred at 65% RH, and both disease incidence and severity increased with increasing RH. The combined effect of T (5 to 30°C) and wetness duration (WD) of 3, 6, 12, 24, and 36 h was studied by inoculating berries with conidia. At WD of 36 h, disease incidence was approximately 75% of affected berries at 20 or 25°C, 50% at 15°C, and 30 to 20% at 30 and 10°C; no infection occurred at 5°C. Under favorable conditions (100% RH or 36 h of WD) and unfavorable conditions (65% RH or 3 h of WD), berry wounding did not significantly affect disease incidence; under moderately favorable conditions (80% RH or 6 to 12 h of WD), disease incidence was approximately 1.5 to 5 times higher in wounded than in intact berries. Our data collectively showed that (i) T and RH or WD were more important than strain for mature berry infection by either mycelium or conidia and (ii) the effect of the environment on the different strains was similar. Two equations were developed describing the combined effect of T and RH, or T and WD, on disease incidence following inoculation by mycelium (R2=0.99) or conidia (R2=0.96), respectively. These equations may be useful in the development of models used to predict and control Botrytis bunch rot during berry ripening.

  12. Surface ultrastructural studies on the germination, penetration and conidial development of Aspergillus flavus Link:Fries infecting silkworm, Bombyx mori Linn.

    PubMed

    Kumar, Vineet; Singh, G P; Babu, A M

    2004-01-01

    Aspergillosis is a common disease of the silkworm Bombyx mori Linn., caused by an insect mycopathogen Aspergillus flavus Link:Fries. The present study reveals the germination, penetration and conidial development of A. flavus on the larval integument of B. mori under SEM. Four different strains (NB18, KA, NB4D2 and NB7) of B. mori was surface inoculated with ca. of 1 x 10(6) conidia/ml. Each conidium germinated on the cuticle approximately 6 h after inoculation, forming a humpy or suctorial appressoria within 24 h. The hyphae which entered into haemocoel 2 day post-inoculation, grew and multiplied extensively, forming a mycelial complex, causing death of the host larva in about 4-5 days. This occurred with minimal breakdown of the internal tissues. Death of the host was followed by ramification of the fungus through the mesodermal and epidermal tissues, leading to larval mummification about 5-6 days after inoculation. Extensive fungal growths on the entire larval body followed, consisting of aerial hyphae, which developed branched conidiophores. The aerial hyphae with abundant conidiophores formed a confluent yellowish green fungal mat over the entire larval body in 6-7 days of post-inoculation. The tip of each emerging conidiophores gradually dilated and developed to become a bulbous head known as the vesicle. A large number of conidiogenous cells were produced over the entire surface of vesicle, which later developed into finger-like projections termed as sterigmata or phialides. The phialides matured within 2 days after the aerial hyphae emerged as evidenced by chains of conidia at their tips. The conidia were globose with externally roughened walls. The life cycle of the fungus on B. mori was completed in six to seven days.

  13. Preillumination of rice blast conidia induces tolerance to subsequent oxidative stress

    USDA-ARS?s Scientific Manuscript database

    Many environmental factors, alone or combined, affect organisms by changing a pro-/antioxidant balance. Here we tested rice blast fungus (Magnaporthe oryzae) for possible cross-adaptations caused by relatively intense light and protecting from artificially formed reactive oxygen species (ROS) and RO...

  14. Mutants of Neurospora crassa that alter gene expression and conidia development.

    PubMed Central

    Madi, L; Ebbole, D J; White, B T; Yanofsky, C

    1994-01-01

    Several genes have been identified that are highly expressed during conidiation. Inactivation of these genes has no observable phenotypic effect. Transcripts of two such genes, con-6 and con-10, are normally absent from vegetative mycelia. To identify regulatory genes that affect con-6 and/or con-10 expression, strains were prepared in which the regulatory regions for these genes were fused to a gene conferring hygromycin resistance. Mutants were then selected that were resistant to the drug during mycelial growth. Mutations in several of the isolates had trans effects; they activated transcription of the corresponding intact gene and, in most isolates, one or more of the other con genes. Most interestingly, resistant mutants were obtained that were defective at different stages of conidiation. One mutant conidiated under conditions that do not permit conidiation in wild type. Images PMID:8016143

  15. Inflammatory Monocytes Orchestrate Innate Antifungal Immunity in the Lung

    PubMed Central

    Dutta, Orchi; Kasahara, Shinji; Donnelly, Robert; Du, Peicheng; Rosenfeld, Jeffrey; Leiner, Ingrid; Chen, Chiann-Chyi; Ron, Yacov; Hohl, Tobias M.; Rivera, Amariliz

    2014-01-01

    Aspergillus fumigatus is an environmental fungus that causes invasive aspergillosis (IA) in immunocompromised patients. Although -CC-chemokine receptor-2 (CCR2) and Ly6C-expressing inflammatory monocytes (CCR2+Mo) and their derivatives initiate adaptive pulmonary immune responses, their role in coordinating innate immune responses in the lung remain poorly defined. Using conditional and antibody-mediated cell ablation strategies, we found that CCR2+Mo and monocyte-derived dendritic cells (Mo-DCs) are essential for innate defense against inhaled conidia. By harnessing fluorescent Aspergillus reporter (FLARE) conidia that report fungal cell association and viability in vivo, we identify two mechanisms by which CCR2+Mo and Mo-DCs exert innate antifungal activity. First, CCR2+Mo and Mo-DCs condition the lung inflammatory milieu to augment neutrophil conidiacidal activity. Second, conidial uptake by CCR2+Mo temporally coincided with their differentiation into Mo-DCs, a process that resulted in direct conidial killing. Our findings illustrate both indirect and direct functions for CCR2+Mo and their derivatives in innate antifungal immunity in the lung. PMID:24586155

  16. Discovery, Development, and Evaluation of a Horn Fly-Isolated (Diptera: Muscidae) Beauveria bassiana (Hypocreales: Cordyciptaceae) Strain From Florida, USA

    PubMed Central

    Holderman, Christopher J.; Wood, Lois A.; Geden, Christopher J.

    2017-01-01

    The horn fly, Haematobia irritans (L.) is an important cattle pest and traditionally has been managed using insecticides; however, many horn fly populations are insecticide-resistant in United States. Use of alternative control techniques has been limited because of the challenges of managing a fly pest on pastured cattle. After the discovery of a wild horn fly infected with Beauveria bassiana in Florida, the fungus was cultured and evaluated for efficacy against laboratory-reared horn flies. This fungal strain was selected for increased virulence by passage through laboratory-reared horn fly hosts to shorten interval from infection to fly death and subsequent conidia formation, properties important to future use of the fungus as a biological control agent against horn flies. After seven passages through horn fly hosts, fly mortality was not significantly accelerated as evaluated through LT50 values, but conidia were readily produced from these killed flies. Although further development is needed to improve fungal efficacy, this fungal strain holds promise as a biological control agent for inclusion in horn fly integrated pest management programs. PMID:28423414

  17. Immune responses to invasive aspergillosis: new understanding and therapeutic opportunities

    PubMed Central

    Hohl, Tobias M.

    2017-01-01

    Purpose of review Invasive aspergillosis is a worldwide disease that primarily affects immune-compromised patients, agricultural workers with corneal abrasions, individuals with structural lung disease, and patients with primary immune deficiency. The critical function of the immune system is to prevent the germination of airborne conidia into tissue-invasive hyphae. This review covers recent advances that shape our understanding of anti-Aspergillus immunity at the molecular and cellular level. Recent findings Host defense against conidia and hyphae occurs via distinct molecular mechanisms that involve intracellular and extracellular killing pathways, as well as cooperation between different myeloid cell subsets. The strength and efficacy of the host response is shaped by the tissue microenvironment. In preclinical models of disease, host immune augmentation strategies have yielded benefits, yet translating these insights into therapeutic strategies in humans remains challenging. Summary Although advances in early diagnostic strategies and in antifungal drugs have ameliorated clinical outcomes of invasive aspergillosis, further improvements depend on gaining deeper insight into and translating advances in anti-Aspergillus immunity. PMID:28509673

  18. Disease and colony foundation in the dampwood termite Zootermopsis angusticollis: The survival advantage of nestmate pairs

    NASA Astrophysics Data System (ADS)

    Calleri, Daniel V.; Rosengaus, Rebeca B.; Traniello, James F. A.

    2005-06-01

    To determine the impact of inbreeding and outbreeding on disease resistance and survival during colony foundation, nestmate (NM) and non-nestmate (NON) primary reproductives of the dampwood termite Zootermopsis angusticollis were exposed to a single or double dose of conidia of the entomopathogenic fungus Metarhizium anisopliae. Male and female primary reproductive pairs originating from the same parent colony had higher survivorship than NON pairs in control and conidia-exposure treatments. The survival advantage of NM primary reproductives increased with the intensity of pathogen challenge and was significantly greater in the single- and double-dose treatments than in the controls. Although NM pairs had significantly lower mortality than NON pairs, the survivorship of colonies stabilized as they matured and inbred and outbred colonies did not differ in offspring production. These results demonstrate that colony foundation by NON male and female reproductives may have a disease-related survival cost during this critical phase of their life cycle. There may also be a cost associated with lower offspring heterozygosity, but in the first generation this does not appear to significantly impact colony growth.

  19. Acute invasive pulmonary aspergillosis, shortly after occupational exposure to polluted muddy water, in a previously healthy subject

    PubMed Central

    Pilaniya, Vikas; Gera, Kamal; Gothi, Rajesh; Shah, Ashok

    2015-01-01

    Invasive pulmonary aspergillosis (IPA) predominantly occurs in severely neutropenic immunocompromised subjects. The occurrence of acute IPA after brief but massive exposure to Aspergillus conidia in previously healthy subjects has been documented, although only six such cases have been reported. The diagnosis was delayed in all six of the affected patients, five of whom died. We report the case of a 50-year-old HIV-negative male, a water pipeline maintenance worker, who presented with acute-onset dyspnea and fever one day after working for 2 h in a deep pit containing polluted, muddy water. Over a one-month period, his general condition deteriorated markedly, despite antibiotic therapy. Imaging showed bilateral diffuse nodules with cavitation, some of which were surrounded by ground-glass opacity suggestive of a halo sign (a hallmark of IPA). Cultures (of sputum/bronchial aspirate samples) and serology were positive for Aspergillus fumigatus. After being started on itraconazole, the patient improved. We conclude that massive exposure to Aspergillus conidia can lead to acute IPA in immunocompetent subjects. PMID:26578140

  20. Nannizziopsis guarroi infection in 2 Inland Bearded Dragons (Pogona vitticeps): clinical, cytologic, histologic, and ultrastructural aspects.

    PubMed

    Le Donne, Viviana; Crossland, Nicholas; Brandão, João; Sokolova, Yuliya; Fowlkes, Natalie; Nevarez, Javier G; Langohr, Ingeborg M; Gaunt, Stephen D

    2016-06-01

    Chrysosporium-related infections have been increasingly reported in reptiles over the last 2 decades. In this report, we describe clinical, cytologic, histopathologic, and ultrastructural aspects of Chrysosporium-related infection in 2 Inland Bearded Dragons (Pogona vitticeps). Case 1 was presented for an enlarging raised lesion over the left eye and multiple additional masses over the dorsum. Case 2 was submitted to necropsy by the referring veterinarian for suspected yellow fungus disease. Impression smears of the nodules in case 1 revealed granulomatous to pyogranulomatous inflammation and many septate, variably long, 4-10 μm wide, often undulated hyphae, and very rare conidia. Postmortem impression smears of the superficial lesions of case 2 contained large numbers of solitary conidia and arthroconidia and low numbers of hyphae with similar morphology to case 1. Histopathology of the 2 cases revealed severe, multifocal, chronic, ulcerative, nodular pyogranulomatous dermatitis, with myriad intralesional septate hyphae, and arthroconidia. Fungal culture and molecular sequencing in both cases indicated infection with Nannizziopsis guarroi. © 2016 American Society for Veterinary Clinical Pathology.

  1. Seven wood-inhabiting new species of the genus Trichoderma (Fungi, Ascomycota) in Viride clade

    PubMed Central

    Qin, Wen-Tao; Zhuang, Wen-Ying

    2016-01-01

    More than 200 recent collections of Trichoderma from China were examined and 16 species belonging to the Viride clade were identified based on integrated studies of phenotypic and molecular data. Among them, seven wood-inhabiting new species, T. albofulvopsis, T. densum, T. laevisporum, T. sinokoningii, T. sparsum, T. sphaerosporum and T. subviride, are found. They form trichoderma- to verticillium-like conidiophores, lageniform to subulate phialides and globose to ellipsoidal conidia, but vary greatly in colony features, growth rates, and sizes of phialides and conidia. To explore their taxonomic positions, the phylogenetic tree including all the known species of the Viride clade is constructed based on sequence analyses of the combined RNA polymerase II subunit b and translation elongation factor 1 alpha exon genes. Our results indicated that the seven new species were well-located in the Koningii, Rogersonii and Neorufum subclades as well as a few independent terminal branches. They are clearly distinguishable from any existing species. Morphological distinctions and sequence divergences between the new species and their close relatives were discussed. PMID:27245694

  2. Seven wood-inhabiting new species of the genus Trichoderma (Fungi, Ascomycota) in Viride clade.

    PubMed

    Qin, Wen-Tao; Zhuang, Wen-Ying

    2016-06-01

    More than 200 recent collections of Trichoderma from China were examined and 16 species belonging to the Viride clade were identified based on integrated studies of phenotypic and molecular data. Among them, seven wood-inhabiting new species, T. albofulvopsis, T. densum, T. laevisporum, T. sinokoningii, T. sparsum, T. sphaerosporum and T. subviride, are found. They form trichoderma- to verticillium-like conidiophores, lageniform to subulate phialides and globose to ellipsoidal conidia, but vary greatly in colony features, growth rates, and sizes of phialides and conidia. To explore their taxonomic positions, the phylogenetic tree including all the known species of the Viride clade is constructed based on sequence analyses of the combined RNA polymerase II subunit b and translation elongation factor 1 alpha exon genes. Our results indicated that the seven new species were well-located in the Koningii, Rogersonii and Neorufum subclades as well as a few independent terminal branches. They are clearly distinguishable from any existing species. Morphological distinctions and sequence divergences between the new species and their close relatives were discussed.

  3. Two new hyaline-ascospored species of Trichoderma and their phylogenetic positions.

    PubMed

    Qin, W T; Zhuang, W Y

    2016-01-01

    Collections of hypocrealean fungi found on decaying wood in subtropical regions of China were examined. Two new species, Trichoderma confluens and T. hubeiense, were discovered and are described. Trichoderma confluens is characterized by its widely effuse to rarely pulvinate, yellow stromata with densely disposed yellowish brown ostioles, simple acremonium- to verticillium-like conidiophores, hyaline conidia and multiform chlamydospores. Trichoderma hubeiense has pulvinate, grayish yellow stromata with brownish ostioles, trichoderma- to verticillium-like conidiophores and hyaline conidia. The phylogenetic positions of the two fungi were investigated based on sequence analyses of RNA polymerase II subunit b and translation elongation factor 1-α genes. The results indicate that T. confluens belongs to the Hypocreanum clade and is associated with but clearly separated from T. applanatum and T. decipiens. Trichoderma hubeiense belongs to the Polysporum clade and related to T. bavaricum but obviously differs from other members of the clade in sequence data. Morphological distinctions between the new species and their close relatives are noted and discussed. © 2016 by The Mycological Society of America.

  4. Three new species of Trichoderma with hyaline ascospores from China.

    PubMed

    Zhu, Z X; Zhuang, W Y

    2015-01-01

    Collections of Trichoderma having hyaline ascospores from different areas of China were examined. Using combined analyses of morphological data, culture characters and phylogenetic information based on rDNA sequences of partial nuc translation elongation factor 1-α encoding gene (TEF1-α) and the gene encoding the second largest nuc RNA polymerase subunit (RPB2), three new species, Trichoderma applanatum, T. oligosporum and T. sinoluteum, were discovered and are described. Trichoderma applanatum produces continuous flat to pulvinate, white to cream stromata with dense orange or pale brown ostioles, and simple acremonium-like to verticillium-like conidiophores, belongs to the Hypocreanum clade and is closely related to T. decipiens. Trichoderma oligosporum forms reddish brown stromata with a downy surface, hyaline conidia and gliocladium-like conidiophores, and is closely related to but distinct from T. crystalligenum in the Psychrophila clade. Trichoderma sinoluteum, as a member of the Polysporum clade, is characterized by pale yellow stromata, white pustulate conidiomata, pachybasium-like conidiophores, and hyaline conidia. Differences between the new species and their close relatives are discussed. © 2015 by The Mycological Society of America.

  5. Occurrence of toxicity among protease, amylase, and color mutants of a nontoxic soy sauce koji mold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalayanamitr, A.; Bhumiratana, A.; Flegel, T.W.

    A soy sauce koji mold, Aspergillus flavus var. columnaris Raper and Fennel (ATCC 44310), was treated with UV irradiation to obtain mutant strains possessing high protease activities, high amylase activities, and light-colored conidia. Selected mutant strains were tested for toxicity, and some were found acutely toxic to weanling rats, although all were negative for aflatoxin production.

  6. The chsD and chsE genes of Aspergillus nidulans and their roles in chitin synthesis.

    PubMed

    Specht, C A; Liu, Y; Robbins, P W; Bulawa, C E; Iartchouk, N; Winter, K R; Riggle, P J; Rhodes, J C; Dodge, C L; Culp, D W; Borgia, P T

    1996-06-01

    Two chitin synthase genes, chsD and chsE, were identified from the filamentous ascomycete Aspergillus nidulans. In a region that is conserved among chitin synthases, the deduced amino acid sequences of chsD and chsE have greater sequence identity to the polypeptides encoded by the Saccharomyces cerevisiae CHS3 gene (also named CSD2, CAL1, DIT101, and KTI1) and the Candida albicans CHSE gene than to other chitin synthases. chsE is more closely related to the CHS3 genes, and this group constitutes the class IV chitin synthases. chsD differs sufficiently from the other classes of fungal chitin synthase genes to constitute a new class, class V. Each of the wild-type A. nidulans genes was replaced by a copy that had a substantial fraction of its coding region replaced by the A. nidulans argB gene. Hyphae from both chsD and chsE disruptants contain about 60-70% of the chitin content of wild-type hyphae. The morphology and development of chsE disruptants are indistinguishable from those of wild type. Nearly all of the conidia of chsD disruption strains swell excessively and lyse when germinated in low osmotic strength medium. Conidia that do not lyse produce hyphae that initially have normal morphology but subsequently lyse at subapical locations and show ballooned walls along their length. The lysis of germinating conidia and hyphae of chsD disruptants is prevented by the presence of osmotic stabilizers in the medium. Conidiophore vesicles from chsD disruption strains frequently swell excessively and lyse, resulting in colonies that show reduced conidiation. These properties indicate that chitin synthesized by the chsD-encoded isozyme contributes to the rigidity of the walls of germinating conidia, of the subapical region of hyphae, and of conidiophore vesicles, but is not necessary for normal morphology of these cells. The phenotypes of chsD and chsE disruptants indicate that the chitin synthesized by each isozyme serves a distinct function. The propensity of a chs

  7. Transmission of Beauveria bassiana from male to female Aedes aegypti mosquitoes

    PubMed Central

    2011-01-01

    Background Resistance to chemical insecticides plus high morbidity rates have lead to rising interest in fungi as candidates for biocontrol agents of mosquito vectors. In most studies fungal infections have been induced by exposure of mosquitoes to various surfaces treated with conidia. In the present study eight Mexican strains of Beauveria bassiana were assessed against Aedes aegypti by direct exposure of females to 6 × 108 conidia ml -1 on a filter paper, afterwards, the transmission of the least and most virulent isolates was evaluated by mating behavior from virgin, fungus-contaminated male to females, to examine this ethological pattern as a new approach to deliver conidia against the dengue vector. Methods In an exposure chamber with a filter paper impregnated with 6 × 108 conidia ml -1 of the least and most virulent strains of B. bassiana, 6-8 day old males of A. aegypti were exposed for 48 hours, and then transferred individually (each one was a replicate) to another chamber and confined with twenty healthy females of the same age. Clean males were used in controls. Survival, infection by true mating (insemination) or by mating attempts (no insemination) and fecundity were daily registered until the death of last female. Data analysis was conducted with proc glm for unbalanced experiments and means were separated with the Ryan test with SAS. Results All strains were highly virulent with LT50 ranging from 2.70 (± 0.29) to 5.33 (± 0.53) days. However the most (Bb-CBG2) and least virulent (Bb-CBG4) isolates were also transmitted by mating behavior; both killed 78-90% of females in 15 days after being confined with males that had previously been exposed for 48 hours to fungi. Of these mortality rates, 23 and 38% respectively, were infections acquired by copulations where insemination occurred. The LT50 for sexually-infected females were 7.92 (± 0.46) and 8.82 (± 0.45) days for both strains, while the one in control was 13.92 (± 0.58). Likewise

  8. Varying susceptibility of clinical and environmental Scedosporium isolates to chemical oxidative stress in conidial germination.

    PubMed

    Staerck, Cindy; Godon, Charlotte; Bouchara, Jean-Philippe; Fleury, Maxime J J

    2018-04-01

    Scedosporium species are opportunistic pathogens causing a great variety of infections in both immunocompetent and immunocompromised individuals. The Scedosporium genus ranks the second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF), after Aspergillus fumigatus, and most species are capable to chronically colonize the respiratory tract of these patients. Nevertheless, few data are available regarding evasion of the inhaled conidia to the host immune response. Upon microbial infection, macrophages and neutrophils release reactive oxygen species (ROS). To colonize the respiratory tract, the conidia need to germinate despite the oxidative stress generated by phagocytic cells. Germination of spores from different clinical or environmental isolates of the major Scedosporium species was investigated in oxidative stress conditions. All tested species showed susceptibility to oxidative stress. However, when comparing clinical and environmental isolates, differences in germination capabilities under oxidative stress conditions were seen between species as well as within each species. Among environmental isolates, Scedosporium aurantiacum isolates were the most resistant to oxidative stress whereas Scedosporium dehoogii were the most susceptible. Overall, the differences observed between Scedosporium species in the capacity to germinate under oxidative stress conditions could explain their varying prevalence and pathogenicity.

  9. Antimicrobial activity of pyrrocidines from Acremonium zeae against endophytes and pathogens of maize.

    PubMed

    Wicklow, Donald T; Poling, Stephen M

    2009-01-01

    Acremonium zeae produces pyrrocidines A and B, which are polyketide-amino acid-derived antibiotics, and is recognized as a seedborne protective endophyte of maize which augments host defenses against microbial pathogens causing seedling blights and stalk rots. Pyrrocidine A displayed significant in vitro activity against Aspergillus flavus and Fusarium verticillioides in assays performed using conidia as inoculum, with pyrrocidine A being more active than B. In equivalent assays performed with conidia or hyphal cells as inoculum, pyrrocidine A revealed potent activity against major stalk and ear rot pathogens of maize, including F. graminearum, Nigrospora oryzae, Stenocarpella (Diplodia) maydis, and Rhizoctonia zeae. Pyrrocidine A displayed significant activity against seed-rotting saprophytes A. flavus and Eupenicillium ochrosalmoneum, as well as seed-infecting colonists of the phylloplane Alternaria alternata, Cladosporium cladosporioides, and Curvularia lunata, which produces a damaging leaf spot disease. Protective endophytes, including mycoparasites which grow asymptomatically within healthy maize tissues, show little sensitivity to pyrrocidines. Pyrrocidine A also exhibited potent activity against Clavibacter michiganense subsp. nebraskense, causal agent of Goss's bacterial wilt of maize, and Bacillus mojaviense and Pseudomonas fluorescens, maize endophytes applied as biocontrol agents, but were ineffective against the wilt-producing bacterium Pantoea stewartii.

  10. Inducible immune proteins in the dampwood termite Zootermopsis angusticollis

    NASA Astrophysics Data System (ADS)

    Rosengaus, Rebeca B.; Cornelisse, Tara; Guschanski, Katerina; Traniello, James F. A.

    2007-01-01

    Dampwood termites, Zootermopsis angusticollis (Isoptera: Termopsidae), mount an immune response to resist microbial infection. Here we report on results of a novel analysis that allowed us to electrophoretically assess changes in hemolymph proteins in the same individual before and after exposure to a pathogen. We demonstrate that contact with a sublethal concentration of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycotina:Hypomycetes) induces the production of protective proteins in nymphs, pseudergates (false workers), and soldiers. Termites exposed to an immunizing dosage of fungal conidia consistently showed an enhancement of constitutive proteins (62-85 kDa) in the hemolymph as well as an induction of novel proteins (28-48 kDa) relative to preimmunization levels. No significant differences in protein banding patterns relative to baseline levels in control and naïve termites were observed. Incubating excised and eluted induced proteins produced by immunized pseudergates or immunized soldiers with conidia significantly reduced the germination of the fungus. The fungistatic effect of eluted proteins differed significantly among five colonies examined. Our results show that the upregulation of protective proteins in the hemolymph underscores the in vivo immune response we previously recorded in Z. angusticollis.

  11. Identification and validation of reference genes for qRT-PCR studies of the obligate aphid pathogenic fungus Pandora neoaphidis during different developmental stages.

    PubMed

    Zhang, Shutao; Chen, Chun; Xie, Tingna; Ye, Sudan

    2017-01-01

    The selection of stable reference genes is a critical step for the accurate quantification of gene expression. To identify and validate the reference genes in Pandora neoaphidis-an obligate aphid pathogenic fungus-the expression of 13classical candidate reference genes were evaluated by quantitative real-time reverse transcriptase polymerase chain reaction(qPCR) at four developmental stages (conidia, conidia with germ tubes, short hyphae and elongated hyphae). Four statistical algorithms, including geNorm, NormFinder, BestKeeper and Delta Ct method were used to rank putative reference genes according to their expression stability and indicate the best reference gene or combination of reference genes for accurate normalization. The analysis of comprehensive ranking revealed that ACT1and 18Swas the most stably expressed genes throughout the developmental stages. To further validate the suitability of the reference genes identified in this study, the expression of cell division control protein 25 (CDC25) and Chitinase 1(CHI1) genes were used to further confirm the validated candidate reference genes. Our study presented the first systematic study of reference gene(s) selection for P. neoaphidis study and provided guidelines to obtain more accurate qPCR results for future developmental efforts.

  12. Selection of reference genes for expression analysis in the entomophthoralean fungus Pandora neoaphidis.

    PubMed

    Chen, Chun; Xie, Tingna; Ye, Sudan; Jensen, Annette Bruun; Eilenberg, Jørgen

    2016-01-01

    The selection of suitable reference genes is crucial for accurate quantification of gene expression and can add to our understanding of host-pathogen interactions. To identify suitable reference genes in Pandora neoaphidis, an obligate aphid pathogenic fungus, the expression of three traditional candidate genes including 18S rRNA(18S), 28S rRNA(28S) and elongation factor 1 alpha-like protein (EF1), were measured by quantitative polymerase chain reaction at different developmental stages (conidia, conidia with germ tubes, short hyphae and elongated hyphae), and under different nutritional conditions. We calculated the expression stability of candidate reference genes using four algorithms including geNorm, NormFinder, BestKeeper and Delta Ct. The analysis results revealed that the comprehensive ranking of candidate reference genes from the most stable to the least stable was 18S (1.189), 28S (1.414) and EF1 (3). The 18S was, therefore, the most suitable reference gene for real-time RT-PCR analysis of gene expression under all conditions. These results will support further studies on gene expression in P. neoaphidis. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Aspergillus atacamensis and A. salisburgensis: two new halophilic species from hypersaline/arid habitats with a phialosimplex-like morphology.

    PubMed

    Martinelli, Livia; Zalar, Polona; Gunde-Cimerman, Nina; Azua-Bustos, Armando; Sterflinger, Katja; Piñar, Guadalupe

    2017-07-01

    Halophilic fungal strains isolated from historical wooden staircase in a salt mine in Austria, and from wall biofilm and soil of a cave in the Coastal Range of the hyperarid Atacama Desert in Chile were characterised and described newly as Aspergillus salisburgensis and Aspergillus atacamensis. Morphological characters including solitary phialides producing solitary conidia and conidia in chains and/or heads suggested affinity to Aspergillus subgenus Polypaecilum. Strains required salt for growth, grew optimally on media with 10-25% NaCl and at 15-28 °C. These values are similar to those observed for Aspergillus salinarus comb. nov. (Phialosimplex salinarum), while the ex-type strains of Aspergillus sclerotialis, Aspergillus chlamydosporus and Aspergillus caninus (all belonging to Aspergillus subgen. Polypaecilum) grew optimally at 0-5% NaCl and showed fastest growth at 28-37 °C. Phylogenetic analyses on the basis of rDNA sequences, RAPD-PCR fingerprint patterns, and cellobiohydrolase gene (cbh-I) polymorphism clustered the strains into three groups and supported their taxonomic recognition as A. salinarus, A. atacamensis and A. salisburgensis. On the basis of phylogenetic inferences, also Sagenomella keratitidis is newly combined as Aspergillus keratitidis and inferred as a species of Aspergillus subgenus Polypaecilum.

  14. Effect of nutrition and environmental factors on the endoparasitic fungus Esteya vermicola, a biocontrol agent against pine wilt disease.

    PubMed

    Xue, Jianjie; Zhang, Yongan; Wang, Chunyan; Wang, Yuzhu; Hou, Jingang; Wang, Zhen; Wang, Yunbo; Gu, Lijuan; Sung, Changkeun

    2013-09-01

    The nematophagous fungus Esteya vermicola has tremendous potential for biological control. This species exhibits strong infectious activity against pinewood nematodes, whereas the study on the effect of nutrition and environmental factors is still of paucity. Carbon (C), nitrogen (N), pH value, temperature, and water activity have great impact on the fungal growth, sporulation, and germination. In nutrition study, the greatest number of conidia (2.36 × 10(9) per colony) was obtained at the C:N ratio of 100:1 with a carbon concentration 32 g l(-1). In addition, the germination rate and radial growth of E. vermicola were used to evaluate the effects of environmental conditions and they were optimized as following: pH 5.5, 26 °C and water activity of 0.98. Our results also confirmed that variation of environmental factors has a detrimental influence on the efficacy of active conidia and growth of fungus. Moreover, under above optimal condition, the biocontrol efficacy was significantly improved in regard to the increase of adhesive and mortality rate, which highlight the study on the application of E. vermicola as pine wilt disease biocontrol agent.

  15. Combined use of the entomopathogenic fungus, Metarhizium brunneum, and the mosquito predator, Toxorhynchites brevipalpis, for control of mosquito larvae: Is this a risky biocontrol strategy?

    PubMed

    Alkhaibari, Abeer M; Maffeis, Thierry; Bull, James C; Butt, Tariq M

    2018-03-01

    Mosquitoes transmit several diseases, which are of global significance (malaria, dengue, yellow fever, Zika). The geographic range of mosquitoes is increasing due to climate change, tourism and trade. Both conidial and blastospore formulations of the entomopathogenic fungus, Metarhizium brunneum ARSEF 4556, are being investigated as mosquito larvicides. However, concerns have been raised over possible non-target impacts to arthropod mosquito predators such as larvae of Toxorhynchites brevipalpis which feed on larvae of mosquito vector species. Laboratory-based, small container bioassays showed, that T. bevipalpis larvae are susceptible to relatively high concentrations (i.e. ≥10 7  spores ml -1 ) of inoculum with blastospores being significantly more virulent than conidia. At lower concentrations (e.g. <10 7  spores ml -1 ), it appears that M. brunneum complements T. brevipalpis resulting in higher control than if either agent was used alone. At a concentration of 10 5  spores ml -1 , the LT 50 of for conidia and blastospores alone was 5.64 days (95% CI: 4.79-6.49 days) and 3.89 days (95% CI: 3.53-4.25 days), respectively. In combination with T. brevipalpis, this was reduced to 3.15 days (95% CI: 2.82-3.48 days) and 2.82 days (95% CI: 2.55-3.08 days). Here, combined treatment with the fungus and predator was beneficial but weaker than additive. At 10 7 and 10 8  blastospores ml -1 , mosquito larval mortality was mostly due to the fungal pathogen when the predator was combined with blastospores. However, with conidia, the effects of combined treatment were additive/synergistic at these high concentrations. Optimisation of fungal concentration and formulation will reduce: (1) risk to the predator and (2) application rates and costs of M. brunneum for control of mosquito larvae. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Suppression of Pythium spp. by Trichoderma spp. during germination of tomato seeds in soilless growing media.

    PubMed

    Aerts, R; De Schutter, B; Rombouts, L

    2002-01-01

    In the Flemish horticulture Pythium spp. is an important pathogen of tomato plants (Lycopersicon esculenthum) in soilless growing media. Therefore some experiments were conducted to evaluate the possibility of decreasing the damage caused by Pythium spp. by Trichoderma spp. In a tray with several growing media, a suspension of Trichoderma conidia (10(6)/ml growing medium) was applied two weeks before sowing. On some objects, a compost extract (Biostimulus) was added. The growing media used in the experiment were rockwool, recycled rockwool and recycled coconut fibre. After sowing, the trays were covered with perlite. Three isolates of Trichoderma spp.: T. asperellum (Biofungus), T. harzianum (Tri 003) and Trichoderma sp. (KHK) and two isolates of Pythium spp.: P. ultimum (MUCL) en P. aphanidermatum (HRI, UK) were used. Propamocarb was used as a chemical standard. The use of coconut fibre growing medium resulted in a higher percentage (36%) of germination than the rockwool media when only Pythium spp. was used. The presence of the spontaneous developing microflora in the coconut fibre medium gave probably also a suppression of Pythium spp. For that reason the results of the suppression by Trichoderma spp. are not easy to explain and very variable on the different objects. Pythium ultimum was more suppressed than P. aphanidermatum on all the growing media and the application of all the Trichoderma isolates increased the germination percentage of tomato seeds. T. asperellum (Biofungus) gave on rockwool also a good result for the suppression of P. aphanidermatum (increasing of germination with 48%). This effect was comparable with the propamocarb treatment (48%). T. harzianum (Tri 003) gave a small suppression (22%) and Trichoderma sp. (KHK) gave almost no suppression of P. aphanidermatum (7%). When less Trichoderma conidia were applied the germination percentage decreased. The adding of a compost extract (Biostimulus) had no influence on the results. This experiment

  17. Characterization and virulence of Beauveria spp. recovered from emerald ash borer in southwestern Ontario, Canada.

    PubMed

    Johny, Shajahan; Kyei-Poku, George; Gauthier, Debbie; Frankenhuyzen, Kees van; Krell, Peter J

    2012-09-15

    The emerald ash borer (EAB), Agrilus planipennis (Coleoptera: Buprestidae), is an invasive wood boring beetle that is decimating North America's ash trees (Fraxinus spp.). To find effective and safe indigenous biocontrol agents to manage EAB, we conducted a survey in 2008-2009 of entomopathogenic fungi (EPF) infecting EAB in five outbreak sites in southwestern Ontario, Canada. A total of 78 Beauveria spp. isolates were retrieved from dead and mycosed EAB cadavers residing in the phloem tissues of dead ash barks, larval frass extracted from feeding galleries under the bark of dead trees. Molecular characterization using sequences of the ITS, 5' end of EF1-α and intergenic Bloc region fragments revealed that Beauveria bassiana and Beauveria pseudobassiana were commonly associated with EAB in the sampled sites. Based on phylogenetic analysis inferred from ITS sequences, 17 of these isolates clustered with B. bassiana, which further grouped into three different sub-clades. However, the combined EF1-α and Bloc sequences detected five genotypes among the three sub-clades. The remaining 61 isolates clustered with B. pseudobassiana, which had identical ITS sequences but were further subdivided into two genotypes by variation in the EF1-α and Bloc regions. Initial virulence screening against EAB adults of 23 isolates representing the different clades yielded 8 that produced more than 90% mortality in a single concentration assay. These isolates differed in virulence based on LC(50) values estimated from multiple concentration bioassay and based on mean survival times at a conidia concentration of 2×10(6) conidia/ml. B. bassiana isolate L49-1AA was significantly more virulent and produced more conidia on EAB cadavers compared to the other indigenous isolates and the commercial strain B. bassiana GHA suggesting that L49-1AA may have potential as a microbiological control agent against EAB. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  18. Transcriptome Analyses Shed New Insights into Primary Metabolism and Regulation of Blumeria graminis f. sp. tritici during Conidiation.

    PubMed

    Zeng, Fan-Song; Menardo, Fabrizio; Xue, Min-Feng; Zhang, Xue-Jiang; Gong, Shuang-Jun; Yang, Li-Jun; Shi, Wen-Qi; Yu, Da-Zhao

    2017-01-01

    Conidia of the obligate biotrophic fungal pathogen Blumeria graminis f. sp. tritici ( Bgt ) play a vital role in its survival and rapid dispersal. However, little is known about the genetic basis for its asexual reproduction. To uncover the primary metabolic and regulatory events during conidiation, we sequenced the transcriptome of Bgt epiphytic structures at 3 (vegetative hyphae growth), 4 (foot cells initiation), and 5 (conidiophore erection) days post-inoculation (dpi). RNA-seq analyses identified 556 and 404 (combined 685) differentially expressed genes (DEGs) at 4 and 5 dpi compared with their expression levels at 3 dpi, respectively. We found that several genes involved in the conversion from a variety of sugars to glucose, glycolysis, the tricarboxylic acid cycle (TAC), the electron transport chain (ETC), and unsaturated fatty acid oxidation were activated during conidiation, suggesting that more energy supply is required during this process. Moreover, we found that glucose was converted into glycogen, which was accumulated in developing conidiophores, indicating that it could be the primary energy storage molecule in Bgt conidia. Clustering for the expression profiles of 91 regulatory genes showed that calcium (Ca 2+ ), H 2 O 2 , and phosphoinositide (PIP) signaling were involved in Bgt conidiation. Furthermore, a strong accumulation of H 2 O 2 in developing conidiophores was detected. Application of EGTA, a Ca 2+ chelator, and trifluoperazine dihydrochloride (TFP), a calmodulin (CaM) antagonist, markedly suppressed the generation of H 2 O 2 , affected foot cell and conidiophore development and reduced conidia production significantly. These results suggest that Ca 2+ and H 2 O 2 signaling play important roles in conidiogenesis and a crosslink between them is present. In addition to some conidiation-related orthologs known in other fungi, such as the velvet complex components, we identified several other novel B. graminis -specific genes that have not been

  19. Transcriptome Analyses Shed New Insights into Primary Metabolism and Regulation of Blumeria graminis f. sp. tritici during Conidiation

    PubMed Central

    Zeng, Fan-Song; Menardo, Fabrizio; Xue, Min-Feng; Zhang, Xue-Jiang; Gong, Shuang-Jun; Yang, Li-Jun; Shi, Wen-Qi; Yu, Da-Zhao

    2017-01-01

    Conidia of the obligate biotrophic fungal pathogen Blumeria graminis f. sp. tritici (Bgt) play a vital role in its survival and rapid dispersal. However, little is known about the genetic basis for its asexual reproduction. To uncover the primary metabolic and regulatory events during conidiation, we sequenced the transcriptome of Bgt epiphytic structures at 3 (vegetative hyphae growth), 4 (foot cells initiation), and 5 (conidiophore erection) days post-inoculation (dpi). RNA-seq analyses identified 556 and 404 (combined 685) differentially expressed genes (DEGs) at 4 and 5 dpi compared with their expression levels at 3 dpi, respectively. We found that several genes involved in the conversion from a variety of sugars to glucose, glycolysis, the tricarboxylic acid cycle (TAC), the electron transport chain (ETC), and unsaturated fatty acid oxidation were activated during conidiation, suggesting that more energy supply is required during this process. Moreover, we found that glucose was converted into glycogen, which was accumulated in developing conidiophores, indicating that it could be the primary energy storage molecule in Bgt conidia. Clustering for the expression profiles of 91 regulatory genes showed that calcium (Ca2+), H2O2, and phosphoinositide (PIP) signaling were involved in Bgt conidiation. Furthermore, a strong accumulation of H2O2 in developing conidiophores was detected. Application of EGTA, a Ca2+ chelator, and trifluoperazine dihydrochloride (TFP), a calmodulin (CaM) antagonist, markedly suppressed the generation of H2O2, affected foot cell and conidiophore development and reduced conidia production significantly. These results suggest that Ca2+ and H2O2 signaling play important roles in conidiogenesis and a crosslink between them is present. In addition to some conidiation-related orthologs known in other fungi, such as the velvet complex components, we identified several other novel B. graminis-specific genes that have not been previously found to

  20. The Composition and Attributes of Colletotrichum truncatum Spores Are Altered by the Nutritional Environment

    PubMed Central

    Jackson, Mark A.; Schisler, David A.

    1992-01-01

    Previous sporulation studies with Colletotrichum truncatum NRRL 13737, a fungal pathogen of the noxious weed Sesbania exaltata, showed that the carbon-to-nitrogen (CN) ratio of the conidiation medium influenced spore yield, morphology, and efficacy in inciting disease in S. exaltata. Spores produced in a medium with a CN ratio of 10:1 were more effective than were spores produced in a 30:1 or 80:1 ratio in causing disease in S. exaltata. With a basal salts medium supplemented with glucose and Casamino Acids, substrate utilization, spore production, biomass accumulation, and biomass and spore composition were compared in submerged cultures of C. truncatum grown in media with CN ratios of 80:1, 30:1, and 10:1. All cultures were sporulating by day 2, and spore concentrations in 5-day-old cultures were significantly different: 30:1 > 10:1 > 80:1. Amino acid and glucose utilization was balanced in cultures grown in media with a CN ratio of 10:1, whereas cultures grown in media with a CN ratio of 30:1 or 80:1 depleted amino acids prior to glucose. Conidia produced in media with a CN ratio of 10:1 contained significantly more protein (32% of dry weight) and less lipid (17% of dry weight) than conidia produced in media with a CN ratio of either 30:1 (15% protein, 33% lipid) or 80:1 (12% protein, 37% lipid). The higher lipid content of spores produced in media with a CN ratio of 30:1 or 80:1 was associated with the presence of increased numbers of lipid droplets. Optimization studies on conidia produced in media with CN ratios between 30:1 and 10:1 which compared yield, attributes, and efficacy in inciting disease in S. exaltata suggest that media with a CN ratio of 15:1 to 20:1 may be optimal for conidium production. Images PMID:16348737

  1. Towards the development of an autocontamination trap system to manage populations of emerald ash borer (Coleoptera: Buprestidae) with the native entomopathogenic fungus, Beauveria bassiana.

    PubMed

    Lyons, D Barry; Iavallée, Robert; Kyei-Poku, George; Van Frankenhuyzen, Kees; Johny, Shajahan; Guertin, Claude; Francese, Joseph A; Jones, Gene C; Blais, Martine

    2012-12-01

    Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) is an invasive species from Asia that was discovered in North America Canada, in 2002. Herein, we describe studies to develop an autocontamination trapping system to disseminate Beauveria bassiana to control beetle populations. The standard trap for emerald ash borer in Canada is a light green prism trap covered in an insect adhesive and baited with (Z)-3-hexenol. We compared of green multifunnel traps, green intercept panel traps (both with and without fluon coating) and green prism traps for capturing emerald ash borer in a green ash plantation. The coated green multifunnel traps captured significantly more males and more females than any other trap design. We examined the efficacy of two native B. bassiana isolates, INRS-CFL and L49-1AA. In a field experiment the INRS-CFL isolate attached to multifunnel traps in autocontamination chambers retained its pathogenicity to emerald ash borer adults for up to 43 d of outdoor exposure. Conidia germination of the INRS-CFL isolate was >69% after outdoor exposure in the traps for up to 57 d. The L49-1AA isolate was not pathogenic in simulated trap exposures and the germination rate was extremely low (<5.3%). Mean (+/- SEM) conidia loads on ash borer adults after being autocontaminated in the laboratory using pouches that had been exposed in traps out of doors for 29 d were 579,200 (+/- 86,181) and 2,400 (+/- 681) for the INRS-CFL and the LA9-1AA isolates, respectively. We also examined the fungal dissemination process under field conditions using the L49-1AA isolate in a green ash plantation. Beetles were lured to baited green multifunnel traps with attached autocontamination chambers. Beetles acquired fungal conidia from cultures growing on pouches in the chambers and were recaptured on Pestick-coated traps. In total, 2,532 beetles were captured of which 165 (6.5%) had fungal growth that resembled B. bassiana. Of these 25 beetles were positive for

  2. Production of Extracellular Traps against Aspergillus fumigatus In Vitro and in Infected Lung Tissue Is Dependent on Invading Neutrophils and Influenced by Hydrophobin RodA

    PubMed Central

    Aimanianda, Vishukumar; Nietzsche, Sandor; Thywißen, Andreas; Jeron, Andreas; Latgé, Jean-Paul; Brakhage, Axel A.; Gunzer, Matthias

    2010-01-01

    Aspergillus fumigatus is the most important airborne fungal pathogen causing life-threatening infections in immunocompromised patients. Macrophages and neutrophils are known to kill conidia, whereas hyphae are killed mainly by neutrophils. Since hyphae are too large to be engulfed, neutrophils possess an array of extracellular killing mechanisms including the formation of neutrophil extracellular traps (NETs) consisting of nuclear DNA decorated with fungicidal proteins. However, until now NET formation in response to A. fumigatus has only been demonstrated in vitro, the importance of neutrophils for their production in vivo is unclear and the molecular mechanisms of the fungus to defend against NET formation are unknown. Here, we show that human neutrophils produce NETs in vitro when encountering A. fumigatus. In time-lapse movies NET production was a highly dynamic process which, however, was only exhibited by a sub-population of cells. NETosis was maximal against hyphae, but reduced against resting and swollen conidia. In a newly developed mouse model we could then demonstrate the existence and measure the kinetics of NET formation in vivo by 2-photon microscopy of Aspergillus-infected lungs. We also observed the enormous dynamics of neutrophils within the lung and their ability to interact with and phagocytose fungal elements in situ. Furthermore, systemic neutrophil depletion in mice almost completely inhibited NET formation in lungs, thus directly linking the immigration of neutrophils with NET formation in vivo. By using fungal mutants and purified proteins we demonstrate that hydrophobin RodA, a surface protein making conidia immunologically inert, led to reduced NET formation of neutrophils encountering Aspergillus fungal elements. NET-dependent killing of Aspergillus-hyphae could be demonstrated at later time-points, but was only moderate. Thus, these data establish that NET formation occurs in vivo during host defence against A. fumigatus, but suggest

  3. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA.

    PubMed

    Bruns, Sandra; Kniemeyer, Olaf; Hasenberg, Mike; Aimanianda, Vishukumar; Nietzsche, Sandor; Thywissen, Andreas; Jeron, Andreas; Latgé, Jean-Paul; Brakhage, Axel A; Gunzer, Matthias

    2010-04-29

    Aspergillus fumigatus is the most important airborne fungal pathogen causing life-threatening infections in immunocompromised patients. Macrophages and neutrophils are known to kill conidia, whereas hyphae are killed mainly by neutrophils. Since hyphae are too large to be engulfed, neutrophils possess an array of extracellular killing mechanisms including the formation of neutrophil extracellular traps (NETs) consisting of nuclear DNA decorated with fungicidal proteins. However, until now NET formation in response to A. fumigatus has only been demonstrated in vitro, the importance of neutrophils for their production in vivo is unclear and the molecular mechanisms of the fungus to defend against NET formation are unknown. Here, we show that human neutrophils produce NETs in vitro when encountering A. fumigatus. In time-lapse movies NET production was a highly dynamic process which, however, was only exhibited by a sub-population of cells. NETosis was maximal against hyphae, but reduced against resting and swollen conidia. In a newly developed mouse model we could then demonstrate the existence and measure the kinetics of NET formation in vivo by 2-photon microscopy of Aspergillus-infected lungs. We also observed the enormous dynamics of neutrophils within the lung and their ability to interact with and phagocytose fungal elements in situ. Furthermore, systemic neutrophil depletion in mice almost completely inhibited NET formation in lungs, thus directly linking the immigration of neutrophils with NET formation in vivo. By using fungal mutants and purified proteins we demonstrate that hydrophobin RodA, a surface protein making conidia immunologically inert, led to reduced NET formation of neutrophils encountering Aspergillus fungal elements. NET-dependent killing of Aspergillus-hyphae could be demonstrated at later time-points, but was only moderate. Thus, these data establish that NET formation occurs in vivo during host defence against A. fumigatus, but suggest

  4. Prevalence of Scedosporium species and Lomentospora prolificans in patients with cystic fibrosis in a multicenter trial by use of a selective medium.

    PubMed

    Sedlacek, L; Graf, B; Schwarz, C; Albert, F; Peter, S; Würstl, B; Wagner, S; Klotz, M; Becker, A; Haase, G; Laniado, G; Kahl, B; Suerbaum, S; Seibold, M; Tintelnot, K

    2015-03-01

    Detection of hyphomycetes of the Scedosporium apiospermum complex and Lomentospora prolificans (Sac-Lp) is not yet standardized. Prevalence rates in patients with cystic fibrosis (CF) and the resistance pattern of these pathogens in Germany are unknown. In a one-year prospective study 11 laboratories used a selective medium for isolation of Sac-Lp, examining >11,600 respiratory samples from 2346 patients with CF. Isolates were identified by molecular methods and tested for susceptibility to antifungal drugs. The prevalence of Sac-Lp in patients with CF in Germany varied from 0.0 to 10.5% (mean: 3.1%) among the clinical centres. The benefit of the selective medium SceSel(+) compared to standard media for fungi was documented for >5000 samples. High antifungal resistance was detected in the S. apiospermum complex, and the multiresistance of L. prolificans was confirmed. Microbiology laboratories should be aware of these resistant species in patients with CF and consider using a selective medium. Copyright © 2015 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  5. The Influence of Shredder Feeding on Fungal Activity in a Nutrient-Enriched Stream and an Unaltered Stream

    NASA Astrophysics Data System (ADS)

    Chung, N.; Suberkopp, K.

    2005-05-01

    The effect of shredder feeding on aquatic hyphomycete communities associated with submerged leaves was studied in two southern Appalachian headwater streams in North Carolina. Coarse and fine mesh litter bags containing red maple (Acer rubrum) leaves were placed in the nutrient-enriched stream and in the reference stream and were retrieved monthly. Both shredder feeding and nutrient enrichment enhanced breakdown rates. The breakdown rates of leaves in coarse mesh bags in the reference stream (k = 0.0275) and fine mesh bags in the nutrient enriched stream (k = 0.0272) were not significantly different, suggesting that the shredding effect on litter breakdown was offset by higher fungal activity as a result of nutrient enrichment. Fungal sporulation rates and biomass (based on ergosterol concentrations) were higher in the nutrient enriched than in the reference stream, but neither fungal biomass nor sporulation rate was affected by shredder feeding. Species richness was higher in the nutrient-enriched than in the reference stream. The enrichment with nutrients altered fungal community composition more than shredder feeding.

  6. Fungal Planet description sheets: 69-91.

    PubMed

    Crous, P W; Groenewald, J Z; Shivas, R G; Edwards, J; Seifert, K A; Alfenas, A C; Alfenas, R F; Burgess, T I; Carnegie, A J; Hardy, G E St J; Hiscock, N; Hüberli, D; Jung, T; Louis-Seize, G; Okada, G; Pereira, O L; Stukely, M J C; Wang, W; White, G P; Young, A J; McTaggart, A R; Pascoe, I G; Porter, I J; Quaedvlieg, W

    2011-06-01

    Novel species of microfungi described in the present study include the following from Australia: Bagadiella victoriae and Bagadiella koalae on Eucalyptus spp., Catenulostroma eucalyptorum on Eucalyptus laevopinea, Cercospora eremochloae on Eremochloa bimaculata, Devriesia queenslandica on Scaevola taccada, Diaporthe musigena on Musa sp., Diaporthe acaciigena on Acacia retinodes, Leptoxyphium kurandae on Eucalyptus sp., Neofusicoccum grevilleae on Grevillea aurea, Phytophthora fluvialis from water in native bushland, Pseudocercospora cyathicola on Cyathea australis, and Teratosphaeria mareebensis on Eucalyptus sp. Other species include Passalora leptophlebiae on Eucalyptus leptophlebia (Brazil), Exophiala tremulae on Populus tremuloides and Dictyosporium stellatum from submerged wood (Canada), Mycosphaerella valgourgensis on Yucca sp. (France), Sclerostagonospora cycadis on Cycas revoluta (Japan), Rachicladosporium pini on Pinus monophylla (Netherlands), Mycosphaerella wachendorfiae on Wachendorfia thyrsifolia and Diaporthe rhusicola on Rhus pendulina (South Africa). Novel genera of hyphomycetes include Noosia banksiae on Banksia aemula (Australia), Utrechtiana cibiessia on Phragmites australis (Netherlands), and Funbolia dimorpha on blackened stem bark of an unidentified tree (USA). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.

  7. Filamentous Fungi.

    PubMed

    Powers-Fletcher, Margaret V; Kendall, Brian A; Griffin, Allen T; Hanson, Kimberly E

    2016-06-01

    Filamentous mycoses are often associated with significant morbidity and mortality. Prompt diagnosis and aggressive treatment are essential for good clinical outcomes in immunocompromised patients. The host immune response plays an essential role in determining the course of exposure to potential fungal pathogens. Depending on the effectiveness of immune response and the burden of organism exposure, fungi can either be cleared or infection can occur and progress to a potentially fatal invasive disease. Nonspecific cellular immunity (i.e., neutrophils, natural killer [NK] cells, and macrophages) combined with T-cell responses are the main immunologic mechanisms of protection. The most common potential mold pathogens include certain hyaline hyphomycetes, endemic fungi, the Mucorales, and some dematiaceous fungi. Laboratory diagnostics aimed at detecting and differentiating these organisms are crucial to helping clinicians make informed decisions about treatment. The purpose of this chapter is to provide an overview of the medically important fungal pathogens, as well as to discuss the patient characteristics, antifungal-therapy considerations, and laboratory tests used in current clinical practice for the immunocompromised host.

  8. Laboratory and clinical assessment of ketoconazole in deep-seated mycoses.

    PubMed

    Drouhet, E; Dupont, B

    1983-01-24

    Forty-eight cases of deep mycoses were studied and treated with ketoconazole, each with in vitro evaluation of the minimum inhibitory concentrations (MIC) of the causative fungi, in vivo pharmacokinetic, clinical, and mycologic evaluations, several months to two years after the treatment was stopped. Excellent results were obtained in six cases of chronic mucocutaneous candidiasis, with restoration of immunologic disturbances; 23 cases of systemic candidiasis, including new aspects of heroin addicts with cutaneous, ocular, or osteoarticular manifestations; eight cases of histoplasmosis, five due to Histoplasma capsulatum and three to Histoplasma duboisii, with cure in seven and remission in one; one case of African blastomycosis (Blastomyces dermatitidis); three cases of mycetoma, two due to Monosporium apiospermum, one due to a dematiacious fungus; three cases of entomophthoromycosis with cure; one case of fungal arthritis, due to new hyphomycete similar to M. apiospermum, pathogenic for laboratory animals; one case of Drechslera longirostrata causing vertebral arthritis, following a fungal endocarditis and cured by combination of ketoconazole with amphotericin B, each agent alone being ineffective; and other deep mycoses.

  9. The Occurrence and Diversity of Waterborne Fungi in African Aquatic Systems: Their Impact on Water Quality and Human Health.

    PubMed

    Magwaza, Nontokozo M; Nxumalo, Edward N; Mamba, Bhekie B; Msagati, Titus A M

    2017-05-20

    Currently, there is a worldwide growing interest in the occurrence and diversity of fungi and their secondary metabolites in aquatic systems, especially concerning their role in water quality and human health. However, this concern is hampered by the scant information that is available in the literature about aquatic fungi and how they affect water quality. There are only few published reports that link certain species of aquatic fungi to human health. The common aquatic fungal species that have been reported so far in African aquatic systems belong to the hyphomycetes kingdom. This paper thus aims to survey the information about the occurrence and factors that control the distribution of different species of fungi in African aquatic systems, as well as their effect on water quality and the possible metabolic pathways that lead to the formation of toxic secondary metabolites that are responsible for the deterioration of water quality. This review will also investigate the analytical and bioanalytical procedures that have been reported for the identification of different species of waterborne fungi and their secondary metabolites.

  10. The Occurrence and Diversity of Waterborne Fungi in African Aquatic Systems: Their Impact on Water Quality and Human Health

    PubMed Central

    Magwaza, Nontokozo M.; Nxumalo, Edward N.; Mamba, Bhekie B.; Msagati, Titus A. M.

    2017-01-01

    Currently, there is a worldwide growing interest in the occurrence and diversity of fungi and their secondary metabolites in aquatic systems, especially concerning their role in water quality and human health. However, this concern is hampered by the scant information that is available in the literature about aquatic fungi and how they affect water quality. There are only few published reports that link certain species of aquatic fungi to human health. The common aquatic fungal species that have been reported so far in African aquatic systems belong to the hyphomycetes kingdom. This paper thus aims to survey the information about the occurrence and factors that control the distribution of different species of fungi in African aquatic systems, as well as their effect on water quality and the possible metabolic pathways that lead to the formation of toxic secondary metabolites that are responsible for the deterioration of water quality. This review will also investigate the analytical and bioanalytical procedures that have been reported for the identification of different species of waterborne fungi and their secondary metabolites. PMID:28531124

  11. A cryptic pigment biosynthetic pathway uncovered by heterologous expression is essential for conidial development in Pestalotiopsis fici.

    PubMed

    Zhang, Peng; Wang, Xiuna; Fan, Aili; Zheng, Yanjing; Liu, Xingzhong; Wang, Shihua; Zou, Huixi; Oakley, Berl R; Keller, Nancy P; Yin, Wen-Bing

    2017-08-01

    Spore pigmentation is very common in the fungal kingdom. The best studied pigment in fungi is melanin which coats the surface of single cell spores. What and how pigments function in a fungal species with multiple cell conidia is poorly understood. Here, we identified and deleted a polyketide synthase (PKS) gene PfmaE and showed that it is essential for multicellular conidial pigmentation and development in a plant endophytic fungus, Pestalotiopsis fici. To further characterize the melanin pathway, we utilized an advanced Aspergillus nidulans heterologous system for the expression of the PKS PfmaE and the Pfma gene cluster. By structural elucidation of the pathway metabolite scytalone in A. nidulans, we provided chemical evidence that the Pfma cluster synthesizes DHN melanin. Combining genetic deletion and combinatorial gene expression of Pfma cluster genes, we determined that the putative reductase PfmaG and the PKS are sufficient for the synthesis of scytalone. Feeding scytalone back to the P. fici ΔPfmaE mutant restored pigmentation and multicellular adherence of the conidia. These results cement a growing understanding that pigments are essential not simply for protection of spores from biotic and abiotic stresses but also for spore structural development. © 2017 John Wiley & Sons Ltd.

  12. Inhibition of Phytophthora species, agents of cocoa black pod disease, by secondary metabolites of Trichoderma species.

    PubMed

    Pakora, Gilles-Alex; Mpika, Joseph; Kone, Daouda; Ducamp, Michel; Kebe, Ismael; Nay, Bastien; Buisson, Didier

    2017-09-30

    Cocoa production is affected by the black pod disease caused by several Phytophthora species that bring, about each year, an estimated loss of 44% of world production. Chemical control remains expensive and poses an enormous risk of poisoning for the users and the environment. Biocontrol by using antagonistic microorganisms has become an alternative to the integrated control strategy against this disease. Trichoderma viride T7, T. harzanium T40, and T. asperellum T54, which showed in vivo and in vitro antagonistic activity against P. palmivora, were cultured and mycelia extracted. Inhibition activity of crude extracts was determined, and then organic compounds were isolated and characterized. The in vitro effect of each compound on the conidia germination and mycelia growth of four P. palmivora, two P. megakaria, and one P. capsici was evaluated. T. viride that displayed best activities produced two active metabolites, viridin and gliovirin, against P. palmivora and P. megakaria strains. However, no activity against P. capsici was observed. Besides being active separately, these two compounds have a synergistic effect for both inhibitions, mycelia growth and conidia germination. These results provide the basis for the development of a low-impact pesticide based on a mixture of viridin and gliovirine.

  13. Reactive oxygen species production, induced by atmospheric modification, alter conidial quality of Beauveria bassiana.

    PubMed

    Pérez-Guzmán, D; Montesinos-Matías, R; Arce-Cervantes, O; Gómez-Quiroz, L E; Loera, O; Garza-López, P M

    2016-08-01

    The aim of this study was to determine the relationship between reactive oxygen species (ROS) production and conidial infectivity in Beauveria bassiana. Beauveria bassiana Bb 882.5 was cultured in solid-state culture (SSC) using rice under three oxygen conditions (21%, or pulses at 16 and 26%). Hydrophobicity was determined using exclusion phase assay. Bioassays with larvae or adults of Tenebrio molitor allowed the measurements of infectivity parameters. A fluorometric method was used for ROS quantification (superoxide and total peroxides). NADPH oxidase (NOX) activity was determined by specific inhibition. Conidial hydrophobicity decreased by O2 pulses. Mortality of larvae was only achieved with conidia harvested from cultures under 21% O2 ; whereas for adult insects, the infectivity parameters deteriorated in conidia obtained after pulses at 16 and 26% O2 . At day 7, ROS production increased after 16 and 26% O2 treatments. NOX activity induced ROS production at early stages of the culture. Modification of atmospheric oxygen increases ROS production, reducing conidial quality and infectivity. This is the first study in which conidial infectivity and ROS production in B. bassiana has been related, enhancing the knowledge of the effect of O2 pulses in B. bassiana. © 2016 The Society for Applied Microbiology.

  14. Passive vectoring of entomopathogenic fungus Beauveria bassiana among the wax moth Galleria mellonella larvae by the ectoparasitoid Habrobracon hebetor females.

    PubMed

    Kryukov, Vadim Yu; Kryukova, Natalia A; Tyurin, Maksim V; Yaroslavtseva, Olga N; Glupov, Viktor V

    2017-03-15

    Females of the ectoparasitoid Habrobracon hebetor attack and envenomate numerous host individuals during oviposition. The vectoring of the entomopathogenic fungus Beauveria bassiana during the adhesion stage by ectoparasitoid females among the wax moth larvae Galleria mellonella was explored under laboratory conditions. Vectoring occurred both from infected parasitoids to wax moth larvae and from infected to healthy wax moth larvae by parasitoids. The efficacy of vectoring in both cases was dose dependent. Parasitoid females were unable to recognize infected larvae in a labyrinth test. In addition, the presence of H. hebetor females significantly (1.5-13 fold) increased the mycoses level in clusters of G. mellonella, with 40% of the larvae infected with fungal conidia. Envenomation by H. hebetor increased conidia germination on the cuticles of the wax moth larvae by 4.4 fold. An enhanced germination rate (2 fold) was registered in the n-hexane epicuticular extract of envenomated larvae compared to that of healthy larvae. Both envenomation and mycoses enhanced the phenoloxidase (PO) activity in the integument of G. mellonella and, in contrast, decreased the encapsulation rate in hemolymphs. We hypothesize that changes in the integument property and inhibition of cellular immunity provide the highest infection efficacy of entomopathogenic fungi with H. hebetor. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  15. Evidence for Anti-Pseudogymnoascus destructans (Pd) Activity of Propolis.

    PubMed

    Ghosh, Soumya; McArthur, Robyn; Guo, Zhi Chao; McKerchar, Rory; Donkor, Kingsley; Xu, Jianping; Cheeptham, Naowarat

    2017-12-21

    White-nose syndrome (WNS) in bats, caused by Pseudogymnoascus destructans ( Pd ), is a cutaneous infection that has devastated North American bat populations since 2007. At present, there is no effective method for controlling this disease. Here, we evaluated the effect of propolis against Pd in vitro. Using Sabouraud dextrose agar (SDA) medium, approximately 1.7 × 10⁷ conidia spores of the Pd strain M3906-2/mL were spread on each plate and grown to form a consistent lawn. A Kirby-Bauer disk diffusion assay was employed using different concentrations of propolis (1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25%), in plates incubated at 8 °C and 15 °C. At 8 °C and 15 °C, as the concentration of propolis increased, there was an increasing zone of inhibition (ZOI), reaching the highest degree at 10% and 25% concentrations, respectively. A germule suppression assay showed a similar effect on Pd conidia germination. A MALDI-TOF-MS analysis of propolis revealed multiple constituents with a potential anti- Pd activity, including cinnamic acid, p-coumaric acid, and dihydrochalcones, which could be further tested for their individual effects. Our study suggests that propolis or its individual constituents might be suitable products against Pd .

  16. Evidence for Anti-Pseudogymnoascus destructans (Pd) Activity of Propolis

    PubMed Central

    Ghosh, Soumya; McArthur, Robyn; Guo, Zhi Chao; McKerchar, Rory; Donkor, Kingsley

    2017-01-01

    White-nose syndrome (WNS) in bats, caused by Pseudogymnoascus destructans (Pd), is a cutaneous infection that has devastated North American bat populations since 2007. At present, there is no effective method for controlling this disease. Here, we evaluated the effect of propolis against Pd in vitro. Using Sabouraud dextrose agar (SDA) medium, approximately 1.7 × 107 conidia spores of the Pd strain M3906-2/mL were spread on each plate and grown to form a consistent lawn. A Kirby–Bauer disk diffusion assay was employed using different concentrations of propolis (1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25%), in plates incubated at 8 °C and 15 °C. At 8 °C and 15 °C, as the concentration of propolis increased, there was an increasing zone of inhibition (ZOI), reaching the highest degree at 10% and 25% concentrations, respectively. A germule suppression assay showed a similar effect on Pd conidia germination. A MALDI-TOF-MS analysis of propolis revealed multiple constituents with a potential anti-Pd activity, including cinnamic acid, p-coumaric acid, and dihydrochalcones, which could be further tested for their individual effects. Our study suggests that propolis or its individual constituents might be suitable products against Pd. PMID:29267199

  17. Surface interactions of Fusarium graminearum on barley.

    PubMed

    Imboden, Lori; Afton, Drew; Trail, Frances

    2018-06-01

    The filamentous fungus Fusarium graminearum, a devastating pathogen of barley (Hordeum vulgare L.), produces mycotoxins that pose a health hazard. To investigate the surface interactions of F. graminearum on barley, we focused on barley florets, as the most important infection site leading to grain contamination. The fungus interacted with silica-accumulating cells (trichomes and silica/cork cell pairs) on the host surface. We identified variation in trichome-type cells between two-row and six-row barley, and in the role of specific epidermal cells in the ingress of F. graminearum into barley florets. Prickle-type trichomes functioned to trap conidia and were sites of fungal penetration. Infections of more mature florets supported the spread of hyphae into the vascular bundles, whereas younger florets did not show this spread. These differences related directly to the timing and location of increases in silica content during maturation. Focal accumulation of cellulose in infected paleae of two-row and six-row barley indicated that the response is in part linked to trichome type. Overall, silica-accumulating epidermal cells had an expanded role in barley, serving to trap conidia, provide sites for fungal ingress and initiate resistance responses, suggesting a role for silica in pathogen establishment. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  18. Comparative Proteomics Analyses of Two Races of Fusarium oxysporum f. sp. conglutinans that Differ in Pathogenicity

    PubMed Central

    Li, Erfeng; Ling, Jian; Wang, Gang; Xiao, Jiling; Yang, Yuhong; Mao, Zhenchuan; Wang, Xuchu; Xie, Bingyan

    2015-01-01

    Fusarium oxysporum is a soil-inhabiting fungus that induces vascular wilt and root rot in a variety of plants. F. oxysporum f. sp. conglutinans (Foc), which comprises two races, can cause wilt disease in cabbage. Compared with race 1 (52557−TM, R1), race 2 (58385−TM, R2) exhibits much stronger pathogenicity. Here, we provide the first proteome reference maps for Foc mycelium and conidia and identify 145 proteins with different abundances among the two races. Of these proteins, most of the high-abundance proteins in the R2 mycelium and conidia are involved in carbohydrate, amino acid and ion metabolism, which indicates that these proteins may play important roles in isolate R2’s stronger pathogenicity. The expression levels of 20 typical genes demonstrate similarly altered patterns compared to the proteomic analysis. The protein glucanosyltransferase, which is involved in carbohydrate metabolism, was selected for research. We knocked out the corresponding gene (gas1) and found that Foc-∆gas1 significantly reduced growth rate and virulence compared with wild type isolates. These results deepened our understanding of the proteins related to F. oxysporum pathogenicity in cabbage Fusarium wilt and provided new opportunities to control this disease. PMID:26333982

  19. Transcription factor Afmac1 controls copper import machinery in Aspergillus fumigatus.

    PubMed

    Kusuya, Yoko; Hagiwara, Daisuke; Sakai, Kanae; Yaguchi, Takashi; Gonoi, Tohru; Takahashi, Hiroki

    2017-08-01

    Copper (Cu) is an essential metal for all living organisms, although it is toxic in excess. Filamentous fungus must acquire copper from its environment for growth. Despite its essentiality for growth, the mechanisms that maintain copper homeostasis are not fully understood in filamentous fungus. To gain insights into copper homeostasis, we investigated the roles of a copper transcription factor Afmac1 in the life-threatening fungus Aspergillus fumigatus, a homolog of the yeast MAC1. We observed that the Afmac1 deletion mutant exhibited not only significantly slower growth, but also incomplete conidiation including a short chain of conidia and defective melanin. Moreover, the expressions of the copper transporters, ctrA1, ctrA2, and ctrC, and metalloreductases, Afu8g01310 and fre7, were repressed in ∆Afmac1 cells, while those expressions were induced under copper depletion conditions in wild-type. The expressions of pksP and wetA, which are, respectively, involved in biosynthesis of conidia-specific melanin and the late stage of conidiogenesis, were decreased in the ∆Afmac1 strain under minimal media condition. Taken together, these results indicate that copper acquisition through AfMac1 functions in growth as well as conidiation.

  20. The Aspergillus fumigatus conidial melanin production is regulated by the bifunctional bHLH DevR and MADS-box RlmA transcription factors.

    PubMed

    Valiante, Vito; Baldin, Clara; Hortschansky, Peter; Jain, Radhika; Thywißen, Andreas; Straßburger, Maria; Shelest, Ekaterina; Heinekamp, Thorsten; Brakhage, Axel A

    2016-10-01

    Melanins play a crucial role in defending organisms against external stressors. In several pathogenic fungi, including the human pathogen Aspergillus fumigatus, melanin production was shown to contribute to virulence. A. fumigatus produces two different types of melanins, i.e., pyomelanin and dihydroxynaphthalene (DHN)-melanin. DHN-melanin forms the gray-green pigment characteristic for conidia, playing an important role in immune evasion of conidia and thus for fungal virulence. The DHN-melanin biosynthesis pathway is encoded by six genes organized in a cluster with the polyketide synthase gene pksP as a core element. Here, cross-species promoter analysis identified specific DNA binding sites in the DHN-melanin biosynthesis genes pksP-arp1 intergenic region that can be recognized by bHLH and MADS-box transcriptional regulators. Independent deletion of two genes coding for the transcription factors DevR (bHLH) and RlmA (MADS-box) interfered with sporulation and reduced the expression of the DHN-melanin gene cluster. In vitro and in vivo experiments proved that these transcription factors cooperatively regulate pksP expression acting both as repressors and activators in a mutually exclusive manner. The dual role executed by each regulator depends on specific DNA motifs recognized in the pksP promoter region. © 2016 John Wiley & Sons Ltd.

  1. Antifungal Effect of Polygodial on Botrytis cinerea, a Fungal Pathogen Affecting Table Grapes

    PubMed Central

    Carrasco, Héctor; Robles-Kelly, Christian; Rubio, Julia; Olea, Andrés F.; Martínez, Rolando; Silva-Moreno, Evelyn

    2017-01-01

    The antifungal activity of polygodial, a secondary metabolite extracted from Canelo, on mycelial growth of different Botrytis cinerea isolates has been evaluated. The results show that polygodial affects growth of normal and resistant isolates of B. cinerea with EC50 values ranging between 117 and 175 ppm. In addition, polygodial markedly decreases the germination of B. cinerea, i.e., after six hours of incubation the percentage of germination decreases from 92% (control) to 25% and 5% in the presence of 20 ppm and 80 ppm of polygodial, respectively. Morphological studies indicate that conidia treated with polygodial are smaller, with irregular membrane border, and a lot of cell debris, as compared to conidia in the control. The existence of polygodial-induced membrane damage was confirmed by SYTOX® Green uptake assay. Gene expression studies confirm that the effect of polygodial on B. cinerea is mainly attributed to inhibition of germination and appears at early stages of B. cinerea development. On the other hand, drimenol, a drimane with chemical structure quite similar to polygodial, inhibits the mycelial growth efficiently. Thus, both compounds inhibit mycelial growth by different mechanisms. The different antifungal activities of these compounds are discussed in terms of the electronic density on the double bond. PMID:29077000

  2. Detection of Fusarium verticillioides by PCR-ELISA based on FUM21 gene.

    PubMed

    Omori, Aline Myuki; Ono, Elisabete Yurie Sataque; Bordini, Jaqueline Gozzi; Hirozawa, Melissa Tiemi; Fungaro, Maria Helena Pelegrinelli; Ono, Mario Augusto

    2018-08-01

    Fusarium verticillioides is a primary corn pathogen and fumonisin producer which is associated with toxic effects in humans and animals. The traditional methods for detection of fungal contamination based on morphological characteristics are time-consuming and show low sensitivity and specificity. Therefore, the objective of this study was to develop a PCR-ELISA based on the FUM21 gene for F. verticillioides detection. The DNA of the F. verticillioides, Fusarium sp., Aspergillus sp. and Penicillium sp. isolates was analyzed by conventional PCR and PCR-ELISA to determine the specificity. The PCR-ELISA was specific to F. verticillioides isolates, showed a 2.5 pg detection limit and was 100-fold more sensitive than conventional PCR. In corn samples inoculated with F. verticillioides conidia, the detection limit of the PCR-ELISA was 1 × 10 4 conidia/g and was also 100-fold more sensitive than conventional PCR. Naturally contaminated corn samples were analyzed by PCR-ELISA based on the FUM21 gene and PCR-ELISA absorbance values correlated positively (p < 0.05) with Fusarium sp. counts (CFU/g). These results suggest that the PCR-ELISA developed in this study can be useful for F. verticillioides detection in corn samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. THE EFFECT OF TEMPERATURE AND HUMIDITY ON THE TOBACCO POWDERY MILDEW FUNGUS

    DTIC Science & Technology

    The influence of temperature on the germination of conidia and on the infection of tobacco by powdery mildew was determined. For the former the...The existence of a very close correlation between the occurrence of powdery mildew in certain tobacco areas and the average daily maximum-minimum...temperatures prevailing in those areas could be shown. It was found, for example, that powdery mildew did not occur in areas in which the prevailing

  4. People’s Republic of China Scientific Abstracts, Number 169.

    DTIC Science & Technology

    1977-06-06

    Ya-an TITLE: "Biology of Erysiphe graminis DC. F. Sp. Tritici EM. Marchal in Relation to Incidence of Wheat Powdery Mildew in West Szechwan...pathogen and to initiate primarj infection of the disease in this area. (5) In powdery mildew prevail- ing winter wheat region, a higher temperature... wheat seedlings were inoculated with the conidia of Erysiphe graminis DC. f. tritici at 16-18 C, the host was penetrated around 12 hours after

  5. Effects of Simultaneous Radiofrequency Radiation and Chemical Exposure of Mammalian Cells. Volume 2

    DTIC Science & Technology

    1988-07-01

    chromosome - - - - - - -I aberrations and sister chromatid exchanges (SCE). Yao (1982) exposed rat kangaroo RH5 and RH1l6 cells to 2.45 GHz radiation, and...control was reported in chromosome aberrations. Yac (1982) investigated the cytogenetic consequences of chronic microwave exposure on rat kangaroo RH5...was said to be 280C. The cells were exposed both as conidia, which are "rather inactive metabolically ," and also after DNA replication had been

  6. Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae)

    PubMed Central

    Klaubauf, S.; Tharreau, D.; Fournier, E.; Groenewald, J.Z.; Crous, P.W.; de Vries, R.P.; Lebrun, M.-H.

    2014-01-01

    Species of Pyricularia (magnaporthe-like sexual morphs) are responsible for major diseases on grasses. Pyricularia oryzae (sexual morph Magnaporthe oryzae) is responsible for the major disease of rice called rice blast disease, and foliar diseases of wheat and millet, while Pyricularia grisea (sexual morph Magnaporthe grisea) is responsible for foliar diseases of Digitaria. Magnaporthe salvinii, M. poae and M. rhizophila produce asexual spores that differ from those of Pyricularia sensu stricto that has pyriform, 2-septate conidia produced on conidiophores with sympodial proliferation. Magnaporthe salvinii was recently allocated to Nakataea, while M. poae and M. rhizophila were placed in Magnaporthiopsis. To clarify the taxonomic relationships among species that are magnaporthe- or pyricularia-like in morphology, we analysed phylogenetic relationships among isolates representing a wide range of host plants by using partial DNA sequences of multiple genes such as LSU, ITS, RPB1, actin and calmodulin. Species of Pyricularia s. str. belong to a monophyletic clade that includes all P. oryzae/P. grisea isolates tested, defining the Pyriculariaceae, which is sister to the Ophioceraceae, representing two novel families. These clades are clearly distinct from species belonging to the Gaeumannomyces pro parte/Magnaporthiopsis/Nakataea generic complex that are monophyletic and define the Magnaporthaceae. A few magnaporthe- and pyricularia-like species are unrelated to Magnaporthaceae and Pyriculariaceae. Pyricularia oryzae/P. grisea isolates cluster into two related clades. Host plants such as Eleusine, Oryza, Setaria or Triticum were exclusively infected by isolates from P. oryzae, while some host plant such as Cenchrus, Echinochloa, Lolium, Pennisetum or Zingiber were infected by different Pyricularia species. This demonstrates that host range cannot be used as taxonomic criterion without extensive pathotyping. Our results also show that the typical pyriform, 2

  7. Isolation and Characterization of a New Fungal Species, Chrysosporium ophiodiicola, from a Mycotic Granuloma of a Black Rat Snake (Elaphe obsoleta obsoleta)▿

    PubMed Central

    Rajeev, S.; Sutton, D. A.; Wickes, B. L.; Miller, D. L.; Giri, D.; Van Meter, M.; Thompson, E. H.; Rinaldi, M. G.; Romanelli, A. M.; Cano, J. F.; Guarro, J.

    2009-01-01

    Isolation and characterization of the new species Chrysosporium ophiodiicola from a mycotic granuloma of a black rat snake (Elaphe obsoleta obsoleta) are reported. Analysis of the sequences of different fragments of the ribosomal genes demonstrated that this species belongs to the Onygenales and that this species is genetically different from other morphologically similar species of Chrysosporium. This new species is unique in having both narrow and cylindrical-to-slightly clavate conidia and a strong, pungent odor. PMID:19109465

  8. Endophytic Fungal Flora from Roots and Fruits of an Indian Neem Plant Azadirachta indica A. Juss., and Impact of Culture Media on their Isolation.

    PubMed

    Verma, Vijay C; Gond, Surendra K; Kumar, Anuj; Kharwar, Ravindra N; Boulanger, Lori-Ann; Strobel, Gary A

    2011-10-01

    Azadirachta indica A. Juss. (neem), native to India, is well known worldwide for its insecticidal and ethanopharmacological properties. Although endophytic microbes are known from this plant as only leaves and stems were the subjects of past reports. Now, a variety of procedures and a number of different media were used to isolate the maximum number of endophytic fungi from unripe fruits and roots. A total of 272 isolates of 29 filamentous fungal taxa were isolated at rate of 68.0% from 400 samples of three different individual trees (at locations-Az1, Az2, Az3). Mycological agar (MCA) medium yielded the highest number of isolates (95, with a 14.50% isolation rate) with the greatest species richness. Mycelia Sterilia (1, 2, 3) accounted for 11.06%, Coelomycetes 7.25%, while Hyphomycetes showed the maximum number of representative isolates (81.69%). Mycelia-Sterilia (1, 2, 3), based on their 5.8S ITS 1, ITS2 and partial 18S and 28S rDNA sequences were identified as Fusarium solani (99%), Chaetomium globosum (93%) and Chaetomium globosum (93%) respectively. Humicola, Drechslera, Colletotrichum, and Scytalidium sp. were some of the peculiar fungal endophytes recovered from this plant.

  9. COP9 signalosome subunit PfCsnE regulates secondary metabolism and conidial formation in Pestalotiopsis fici.

    PubMed

    Zheng, Yanjing; Wang, Xiuna; Zhang, Xiaoling; Li, Wei; Liu, Gang; Wang, Shihua; Yan, Xiufeng; Zou, Huixi; Yin, Wen-Bing

    2017-06-01

    The COP9 signalosome (CSN) is a highly conserved multiprotein complex in all eukaryotes and involved in regulation of organism development. In filamentous fungi, several lines of evidence indicate that fungal development and secondary metabolism (SM) are mediated by the fifth subunit of CSN, called CsnE. Here we uncover a connection with CsnE and conidial formation as well as SM regulation in the plant endophytic fungus Pestalotiopsis fici. A homology search of the P. fici genome with CsnE, involved in sexual development and SM in Aspergillus nidulans, identified PfCsnE. Deletion of PfcsnE resulted in a mutant that stopped conidial production, but the conidia are recovered in a PfcsnE complemented strain. This indicates that PfCsnE is required for the formation of conidia. Secondary metabolite analysis demonstrated that the ΔPfcsnE strain produced more chloroisosulochrin, less ficiolide A production in comparison to wild type (WT). Transcriptome analysis of WT and ΔPfcsnE strains indicated that PfcsnE impacts the expression levels of 8.37% of 14,797 annotated genes. Specifically, nine biosynthetic gene clusters (BGCs) were up-regulated and three BGCs were down-regulated by PfCsnE. Our results suggest that PfCsnE plays major roles in SM regulation and conidial development in P. fici.

  10. Pathway of Glycine Betaine Biosynthesis in Aspergillus fumigatus

    PubMed Central

    Lambou, Karine; Pennati, Andrea; Valsecchi, Isabel; Tada, Rui; Sherman, Stephen; Sato, Hajime; Beau, Remi

    2013-01-01

    The choline oxidase (CHOA) and betaine aldehyde dehydrogenase (BADH) genes identified in Aspergillus fumigatus are present as a cluster specific for fungal genomes. Biochemical and molecular analyses of this cluster showed that it has very specific biochemical and functional features that make it unique and different from its plant and bacterial homologs. A. fumigatus ChoAp catalyzed the oxidation of choline to glycine betaine with betaine aldehyde as an intermediate and reduced molecular oxygen to hydrogen peroxide using FAD as a cofactor. A. fumigatus Badhp oxidized betaine aldehyde to glycine betaine with reduction of NAD+ to NADH. Analysis of the AfchoAΔ::HPH and AfbadAΔ::HPH single mutants and the AfchoAΔAfbadAΔ::HPH double mutant showed that AfChoAp is essential for the use of choline as the sole nitrogen, carbon, or carbon and nitrogen source during the germination process. AfChoAp and AfBadAp were localized in the cytosol of germinating conidia and mycelia but were absent from resting conidia. Characterization of the mutant phenotypes showed that glycine betaine in A. fumigatus functions exclusively as a metabolic intermediate in the catabolism of choline and not as a stress protectant. This study in A. fumigatus is the first molecular, cellular, and biochemical characterization of the glycine betaine biosynthetic pathway in the fungal kingdom. PMID:23563483

  11. Pathway of glycine betaine biosynthesis in Aspergillus fumigatus.

    PubMed

    Lambou, Karine; Pennati, Andrea; Valsecchi, Isabel; Tada, Rui; Sherman, Stephen; Sato, Hajime; Beau, Remi; Gadda, Giovanni; Latgé, Jean-Paul

    2013-06-01

    The choline oxidase (CHOA) and betaine aldehyde dehydrogenase (BADH) genes identified in Aspergillus fumigatus are present as a cluster specific for fungal genomes. Biochemical and molecular analyses of this cluster showed that it has very specific biochemical and functional features that make it unique and different from its plant and bacterial homologs. A. fumigatus ChoAp catalyzed the oxidation of choline to glycine betaine with betaine aldehyde as an intermediate and reduced molecular oxygen to hydrogen peroxide using FAD as a cofactor. A. fumigatus Badhp oxidized betaine aldehyde to glycine betaine with reduction of NAD(+) to NADH. Analysis of the AfchoAΔ::HPH and AfbadAΔ::HPH single mutants and the AfchoAΔAfbadAΔ::HPH double mutant showed that AfChoAp is essential for the use of choline as the sole nitrogen, carbon, or carbon and nitrogen source during the germination process. AfChoAp and AfBadAp were localized in the cytosol of germinating conidia and mycelia but were absent from resting conidia. Characterization of the mutant phenotypes showed that glycine betaine in A. fumigatus functions exclusively as a metabolic intermediate in the catabolism of choline and not as a stress protectant. This study in A. fumigatus is the first molecular, cellular, and biochemical characterization of the glycine betaine biosynthetic pathway in the fungal kingdom.

  12. Development of a transformation system for Hirsutella spp. and visualization of the mode of nematode infection by GFP-labeled H. minnesotensis.

    PubMed

    Sun, Jingzu; Park, Sook-Young; Kang, Seogchan; Liu, Xingzhong; Qiu, Junzhi; Xiang, Meichun

    2015-07-20

    Hirsutella rhossiliensis and H. minnesotensis are endoparasitic fungi of the second-stage juvenile (J2) of the soybean cyst nematode (Heterodera glycines) in nature. They also parasitize both H. glycines J2 and Caenorhabditis elegans on agar plates. Agrobacterium tumefaciens-mediated transformation conditions were established for these Hirsutella spp. The resulting transformants were similar to the corresponding wild-type strains. The infection processes of H. glycines J2 and C. elegans second larval stage (L2) by H. minnesotensis expressing ZsGreen were microscopically analyzed. Conidia of H. minnesotensis adhered to passing nematodes within 8 h post-inoculation (hpi), formed an infection peg between 8 and 12 hpi, and penetrated the nematode cuticle between 12 and 24 hpi for C. elegans L2 and between 12 and 32 hpi for H. glycines J2. Hyphal proliferation inside of the nematode coelom was observed at approximately 32 hpi for C. elegans L2 and at approximately 40 hpi for H. glycines J2. The fungus consumed the whole body and grew out to produce conidia at approximately 156 and 204 hpi for C. elegans L2 and H. glycines J2, respectively. The efficient transformation protocol and a better understanding of infection process provide a solid foundation for studying the molecular and cellular mechanisms underlying fungal parasitism of nematodes.

  13. The Aspergillus flavus Homeobox Gene, hbx1, is Required for Development and Aflatoxin Production.

    PubMed

    Cary, Jeffrey W; Harris-Coward, Pamela; Scharfenstein, Leslie; Mack, Brian M; Chang, Perng-Kuang; Wei, Qijian; Lebar, Matthew; Carter-Wientjes, Carol; Majumdar, Rajtilak; Mitra, Chandrani; Banerjee, Sourav; Chanda, Anindya

    2017-10-12

    Homeobox proteins, a class of well conserved transcription factors, regulate the expression of targeted genes, especially those involved in development. In filamentous fungi, homeobox genes are required for normal conidiogenesis and fruiting body formation. In the present study, we identified eight homeobox ( hbx ) genes in the aflatoxin-producing ascomycete, Aspergillus flavus , and determined their respective role in growth, conidiation and sclerotial production. Disruption of seven of the eight genes had little to no effect on fungal growth and development. However, disruption of the homeobox gene AFLA_069100, designated as hbx1 , in two morphologically different A. flavus strains, CA14 and AF70, resulted in complete loss of production of conidia and sclerotia as well as aflatoxins B₁ and B₂, cyclopiazonic acid and aflatrem. Microscopic examination showed that the Δ hbx1 mutants did not produce conidiophores. The inability of Δ hbx1 mutants to produce conidia was related to downregulation of brlA (bristle) and abaA (abacus), regulatory genes for conidiophore development. These mutants also had significant downregulation of the aflatoxin pathway biosynthetic genes aflC , aflD , aflM and the cluster-specific regulatory gene, aflR . Our results demonstrate that hbx1 not only plays a significant role in controlling A. flavus development but is also critical for the production of secondary metabolites, such as aflatoxins.

  14. Effects of sunlight exposure on grapevine powdery mildew development.

    PubMed

    Austin, Craig N; Wilcox, Wayne F

    2012-09-01

    Natural and artificially induced shade increased grapevine powdery mildew (Erysiphe necator) severity in the vineyard, with foliar disease severity 49 to 75% higher relative to leaves in full sun, depending on the level of natural shading experienced and the individual experiment. Cluster disease severities increased by 20 to 40% relative to those on check vines when ultraviolet (UV) radiation was filtered from sunlight reaching vines in artificial shading experiments. Surface temperatures of leaves in full sunlight averaged 5 to 8°C higher than those in natural shade, and in one experiment, filtering 80% of all wavelengths of solar radiation, including longer wavelengths responsible for heating irradiated tissues, increased disease more than filtering UV alone. In controlled environment experiments, UV-B radiation reduced germination of E. necator conidia and inhibited both colony establishment (hyphal formation and elongation) and maturity (latent period). Inhibitory effects of UV-B radiation were significantly greater at 30°C than at 20 or 25°C. Thus, sunlight appears to inhibit powdery mildew development through at least two mechanisms, i.e., (i) UV radiation's damaging effects on exposed conidia and thalli of the pathogen; and (ii) elevating temperatures of irradiated tissues to a level supraoptimal or inhibitory for pathogen development. Furthermore, these effects are synergistic at temperatures near the upper threshold for disease development.

  15. Molecular Insights Into Development and Virulence Determinants of Aspergilli: A Proteomic Perspective

    PubMed Central

    Shankar, Jata; Tiwari, Shraddha; Shishodia, Sonia K.; Gangwar, Manali; Hoda, Shanu; Thakur, Raman; Vijayaraghavan, Pooja

    2018-01-01

    Aspergillus species are the major cause of health concern worldwide in immunocompromised individuals. Opportunistic Aspergilli cause invasive to allergic aspergillosis, whereas non-infectious Aspergilli have contributed to understand the biology of eukaryotic organisms and serve as a model organism. Morphotypes of Aspergilli such as conidia or mycelia/hyphae helped them to survive in favorable or unfavorable environmental conditions. These morphotypes contribute to virulence, pathogenicity and invasion into hosts by excreting proteins, enzymes or toxins. Morphological transition of Aspergillus species has been a critical step to infect host or to colonize on food products. Thus, we reviewed proteins from Aspergilli to understand the biological processes, biochemical, and cellular pathways that are involved in transition and morphogenesis. We majorly analyzed proteomic studies on A. fumigatus, A. flavus, A. terreus, and A. niger to gain insight into mechanisms involved in the transition from conidia to mycelia along with the role of secondary metabolites. Proteome analysis of morphotypes of Aspergilli provided information on key biological pathways required to exit conidial dormancy, consortia of virulent factors and mycotoxins during the transition. The application of proteomic approaches has uncovered the biological processes during development as well as intermediates of secondary metabolite biosynthesis pathway. We listed key proteins/ enzymes or toxins at different morphological types of Aspergillus that could be applicable in discovery of novel therapeutic targets or metabolite based diagnostic markers. PMID:29896454

  16. Molecular Insights Into Development and Virulence Determinants of Aspergilli: A Proteomic Perspective.

    PubMed

    Shankar, Jata; Tiwari, Shraddha; Shishodia, Sonia K; Gangwar, Manali; Hoda, Shanu; Thakur, Raman; Vijayaraghavan, Pooja

    2018-01-01

    Aspergillus species are the major cause of health concern worldwide in immunocompromised individuals. Opportunistic Aspergilli cause invasive to allergic aspergillosis, whereas non-infectious Aspergilli have contributed to understand the biology of eukaryotic organisms and serve as a model organism. Morphotypes of Aspergilli such as conidia or mycelia/hyphae helped them to survive in favorable or unfavorable environmental conditions. These morphotypes contribute to virulence, pathogenicity and invasion into hosts by excreting proteins, enzymes or toxins. Morphological transition of Aspergillus species has been a critical step to infect host or to colonize on food products. Thus, we reviewed proteins from Aspergilli to understand the biological processes, biochemical, and cellular pathways that are involved in transition and morphogenesis. We majorly analyzed proteomic studies on A. fumigatus, A. flavus, A. terreus , and A. niger to gain insight into mechanisms involved in the transition from conidia to mycelia along with the role of secondary metabolites. Proteome analysis of morphotypes of Aspergilli provided information on key biological pathways required to exit conidial dormancy, consortia of virulent factors and mycotoxins during the transition. The application of proteomic approaches has uncovered the biological processes during development as well as intermediates of secondary metabolite biosynthesis pathway. We listed key proteins/ enzymes or toxins at different morphological types of Aspergillus that could be applicable in discovery of novel therapeutic targets or metabolite based diagnostic markers.

  17. Interactions involving ozone, Botrytis cinerea, and B. squamosa on onion leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rist, D.L.

    1983-01-01

    Interactions involving Botrytis cinerea Pers., B. squamosa Walker, and ozone on onion (alium cepae L.) were investigated. Initially, threshold dosages of ozone required to predispose onion leaves to greater infection by B. cinerea and B. squamosa were determined under controlled conditions in an ozone-exposure chamber. Subsequent experiments supported the hypothesis that nutrients leaking out of ozone-injured cells stimulated lesion production by B. cinerea. The electrical conductivity of, and carbohydrate concentration in, dew collected from leaves of onion plants which had been exposed to ozone were greater than the electrical conductivity of, and carbohydrate concentration in, dew collected from leaves ofmore » other, non-exposed onion plants. When conidia of B. cinerea were suspended in dew collected from leaves of plants which had been exposed to ozone and the resulting suspension atomized onto leaves of non-exposed plants, more lesions were induced than on leaves of other non-exposed plants inoculated with conidia suspended in dew collected from plants which had not been exposed to ozone. EDU protected onion leaves from ozone-induced predisposition to these fungi under controlled conditions. Experiments designed to detect interaction between B. cinerea and B. squamosa in onion leaf blighting indicated that such interaction did not occur. Leaves were blighted rapidly when inoculated with B. squamosa whether B. cinerea was present or absent.« less

  18. Genetic analysis of conidiation regulatory pathways in koji-mold Aspergillus oryzae.

    PubMed

    Ogawa, Masahiro; Tokuoka, Masafumi; Jin, Feng Jie; Takahashi, Tadashi; Koyama, Yasuji

    2010-01-01

    Conidia of koji-mold Aspergillus oryzae are often used as starters in the fermented food industry. However, little is known about conidiation regulation in A. oryzae. To improve the productivity of conidia in A. oryzae, it is necessary to understand conidiation regulation in the strain. Therefore, we analyzed the conidiation regulatory system in A. oryzae using 10 kinds of conidiation regulatory gene disruptants. The phenotypes of AorfluG, AorflbA, AorflbB, AorflbC, AorflbD, AorflbE, AorbrlA, AorabaA, AorwetA, and AorfadA mutants are almost identical to those of the corresponding mutants in Aspergillus nidulans. The results indicated that the functions of conidiation regulatory genes are almost conserved between A. oryzae and A. nidulans. However, the severely reduced conidiation phenotype of the AorfluG disruptant in A. oryzae differs from the phenotype of the corresponding mutant in Aspergillus fumigatus in air-exposed culture conditions. These results suggest that A. oryzae, A. nidulans, and A. fumigatus have a G-protein signaling pathway and brlA orthologs in common, and only A. fumigatus has particular brlA activation pathways that are independent of the fluG ortholog. Furthermore, the analyses of AorflbA disruptant and AorfadA dominant-active mutants implicated that AorFadA-mediated G-protein signaling suppresses vegetative growth of A. oryzae.

  19. Alkane-grown Beauveria bassiana produce mycelial pellets displaying peroxisome proliferation, oxidative stress, and cell surface alterations.

    PubMed

    Huarte-Bonnet, Carla; Paixão, Flávia R S; Ponce, Juan C; Santana, Marianela; Prieto, Eduardo D; Pedrini, Nicolás

    2018-06-01

    The entomopathogenic fungus Beauveria bassiana is able to grow on insect cuticle hydrocarbons, inducing alkane assimilation pathways and concomitantly increasing virulence against insect hosts. In this study, we describe some physiological and molecular processes implicated in growth, nutritional stress response, and cellular alterations found in alkane-grown fungi. The fungal cytology was investigated using light and transmission electron microscopy while the surface topography was examined using atomic force microscopy. Additionally, the expression pattern of several genes associated with oxidative stress, peroxisome biogenesis, and hydrophobicity were analysed by qPCR. We found a novel type of growth in alkane-cultured B. bassiana similar to mycelial pellets described in other alkane-free fungi, which were able to produce viable conidia and to be pathogenic against larvae of the beetles Tenebrio molitor and Tribolium castaneum. Mycelial pellets were formed by hyphae cumulates with high peroxidase activity, exhibiting peroxisome proliferation and an apparent surface thickening. Alkane-grown conidia appeared to be more hydrophobic and cell surfaces displayed different topography than glucose-grown cells. We also found a significant induction in several genes encoding for peroxins, catalases, superoxide dismutases, and hydrophobins. These results show that both morphological and metabolic changes are triggered in mycelial pellets derived from alkane-grown B. bassiana. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  20. Scanning electron microscopy and histopathological observations of Beauveria bassiana infection of Colorado potato beetle larvae.

    PubMed

    Duan, Yulin; Wu, Hui; Ma, Zhiyan; Yang, Liu; Ma, Deying

    2017-10-01

    Beauveria bassiana is a potential candidate for use as an environmentally friendly bio-pesticide. We studied the infection process and histopathology of B. bassiana strain NDBJJ-BFG infection of the Colorado potato beetle (Leptinotarsa decemlineata) using scanning electron microscopy and hematoxylin-eosin staining of tissue sections. The results show that the fungus penetrated the insect epidermis through germ tubes and appressoria after spraying the larvae with conidial suspensions. The conidia began to germinate after 24 h and invade the epidermis. After 48 h, the conidia invaded the larvae with germ tubes and began to enter the haemocoel. By 72 h, hyphae had covered the host surface and had colonized the body cavity. The dermal layer was dissolved, muscle tissues were ruptured and adipose tissue was removed. The mycelium had damaged the intestinal wall muscles, and invaded into intestinal wall and midfield cells resulting in cell separation and tracheal deformation. After 96 h of inoculation, the internal structure of the larvae was destroyed. The research shows that B. bassiana NDBJJ-BFG surface inoculation resulted in a series of histopathological changes to the potato beetle larvae that proved lethal within 72 h. This indicated that this fungus has a high pathogenicity to Colorado potato beetle larvae. Copyright © 2017. Published by Elsevier Ltd.

  1. Tolerance of entomopathogenic fungi to ultraviolet radiation: a review on screening of strains and their formulation.

    PubMed

    Fernandes, Éverton K K; Rangel, Drauzio E N; Braga, Gilberto U L; Roberts, Donald W

    2015-08-01

    Ultraviolet radiation from sunlight is probably the most detrimental environmental factor affecting the viability of entomopathogenic fungi applied to solar-exposed sites (e.g., leaves) for pest control. Most entomopathogenic fungi are sensitive to UV radiation, but there is great inter- and intraspecies variability in susceptibility to UV. This variability may reflect natural adaptations of isolates to their different environmental conditions. Selecting strains with outstanding natural tolerance to UV is considered as an important step to identify promising biological control agents. However, reports on tolerance among the isolates used to date must be analyzed carefully due to considerable variations in the methods used to garner the data. The current review presents tables listing many studies in which different methods were applied to check natural and enhanced tolerance to UV stress of numerous entomopathogenic fungi, including several well-known isolates of these fungi. The assessment of UV tolerance is usually conducted with conidia using dose-response methods, wherein the UV dose is calculated simply by multiplying the total irradiance by the period (time) of exposure. Although irradiation from lamps seldom presents an environmentally realistic spectral distribution, laboratory tests circumvent the uncontrollable circumstances associated with field assays. Most attempts to increase field persistence of microbial agents have included formulating conidia with UV protectants; however, in many cases, field efficacy of formulated fungi is still not fully adequate for dependable pest control.

  2. Autophagy-associated alpha-arrestin signaling is required for conidiogenous cell development in Magnaporthe oryzae.

    PubMed

    Dong, Bo; Xu, Xiaojin; Chen, Guoqing; Zhang, Dandan; Tang, Mingzhi; Xu, Fei; Liu, Xiaohong; Wang, Hua; Zhou, Bo

    2016-08-08

    Conidiation patterning is evolutionarily complex and mechanism concerning conidiogenous cell differentiation remains largely unknown. Magnaporthe oryzae conidiates in a sympodial way and uses its conidia to infect host and disseminate blast disease. Arrestins are multifunctional proteins that modulate receptor down-regulation and scaffold components of intracellular trafficking routes. We here report an alpha-arrestin that regulates patterns of conidiation and contributes to pathogenicity in M. oryzae. We show that disruption of ARRDC1 generates mutants which produce conidia in an acropetal array and ARRDC1 significantly affects expression profile of CCA1, a virulence-related transcription factor required for conidiogenous cell differentiation. Although germ tubes normally develop appressoria, penetration peg formation is dramatically impaired and Δarrdc1 mutants are mostly nonpathogenic. Fluorescent analysis indicates that EGFP-ARRDC1 puncta are well colocalized with DsRed2-Atg8, and this distribution profile could not be altered in Δatg9 mutants, suggesting ARRDC1 enters into autophagic flux before autophagosome maturation. We propose that M. oryzae employs ARRDC1 to regulate specific receptors in response to conidiation-related signals for conidiogenous cell differentiation and utilize autophagosomes for desensitization of conidiogenous receptor, which transmits extracellular signal to the downstream elements of transcription factors. Our investigation extends novel significance of autophagy-associated alpha-arrestin signaling to fungal parasites.

  3. Transfer of a supernumerary chromosome between vegetatively incompatible biotypes of the fungus Colletotrichum gloeosporioides.

    PubMed Central

    He, C; Rusu, A G; Poplawski, A M; Irwin, J A; Manners, J M

    1998-01-01

    Two biotypes (A and B) of Colletotrichum gloeosporioides infect the tropical legumes Stylosanthes spp. in Australia. These biotypes are asexual and vegetatively incompatible. However, field isolates of biotype B carrying a supernumerary 2-Mb chromosome, thought to originate from biotype A, have been reported previously. We tested the hypothesis that the 2-Mb chromosome could be transferred from biotype A to biotype B under laboratory conditions. Selectable marker genes conferring resistance to hygromycin and phleomycin were introduced into isolates of biotypes A and B, respectively. A transformant of biotype A, with the hygromycin resistance gene integrated on the 2-Mb chromosome, was cocultivated with phleomycin-resistant transformants of biotype B. Double antibiotic-resistant colonies were obtained from conidia of these mixed cultures at a frequency of approximately 10(-7). Molecular analysis using RFLPs, RAPDs, and electrophoretic karyotypes showed that these colonies contained the 2-Mb chromosome in a biotype B genetic background. In contrast, no double antibiotic colonies developed from conidia obtained from mixed cultures of phleomycin-resistant transformants of biotype B with biotype A transformants carrying the hygromycin resistance gene integrated in chromosomes >2 Mb in size. The results demonstrated that the 2-Mb chromosome was selectively transferred from biotype A to biotype B. The horizontal transfer of specific chromosomes across vegetative incompatibility barriers may explain the origin of supernumerary chromosomes in fungi. PMID:9832523

  4. Agrobacterium tumefaciens-mediated transformation of the entomopathogenic fungus Nomuraea rileyi.

    PubMed

    Shao, Changwen; Yin, Youping; Qi, Zhaoran; Li, Ren; Song, Zhangyong; Li, Yan; Wang, Zhongkang

    2015-10-01

    An Agrobacterium-mediated genetic transformation system for the entomopathogenic fungus Nomuraea rileyi was established. Three binary T-DNA vectors, pPZP-Hph, pPZP-Hph-RNAi and pPZP-Hph-DsRed2, were constructed. The trpc promoter from Aspergillus nidulans was used as the cis-regulatory element to drive the expression of hygromycin phosphotransferase (hph) gene and DsRed2, which conferred the hygromycin B (Hyg B) resistance and red fluorescence visualization, respectively. The blastospores and conidia were used as the recipients. The blastospores' transformation efficiency reached ∼20-40 transformants per 10(6) blastospores, whereas the conidia were not transformed. Based on an analysis of five generations of subcultures, PCR and Southern blotting assays, the Ptrpc-hph cassette had integrated into the genomes of all transformants, which contained single copy of the hph gene and showed mitotic stability. Abundant altered morphologic phenotypes in colonies, blastospores and hyphae formations were observed in the arbitrary insertional mutants of N. rileyi, which made it possible to study the relationships between the functions and the interrupted genes over the whole genome. The transformation protocol will promote the functional characterization of genes, and the construction of genetically engineered strains of this important entomopathogenic fungus, and potentially of other similar fungal pathogens. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Zombie soldier beetles: Epizootics in the goldenrod soldier beetle, Chauliognathus pensylvanicus (Coleoptera: Cantharidae) caused by Eryniopsis lampyridarum (Entomophthoromycotina: Entomophthoraceae).

    PubMed

    Steinkraus, Donald C; Hajek, Ann E; Liebherr, Jim K

    2017-09-01

    Adult goldenrod soldier beetles, Chauliognathus pensylvanicus, were found infected by the fungus Eryniopsis lampyridarum (Entomophthoromycotina) in Arkansas during September - October (1996, 2001, 2015 and 2016). Living and dead infected beetles were found on flowering frost aster, Symphyotrichum pilosum, common boneset, Eupatorium perfoliatum, and Canada goldenrod, Solidago canadensis. Live and dead beetles (n=446) were collected in 1996 from S. pilosum flowers and held individually in the laboratory for determination of fungal prevalence. Of the beetles collected, 281 (63%) were males and 165 (37%) were females. A total of 90 beetles were infected with E. lampyridarum, an overall prevalence of 20.2%. Prevalence in males was 19.6% (n=55 infected/281 males total) and prevalence in females was 21.2% (n=35 infected /165 females total). Conidia were produced from 57% of the infected beetles, 23% of the infected beetles produced resting spores, and 20% contained the hyphal body stage. Infected beetles produced either conidia or resting spores but never both in the same host. Post-mortem morphological changes in the hosts due to E. lampyridarum were observed periodically for 24h. Shortly before death, by unknown mechanisms, dying infected beetles tightly clamped their mandibles into flower heads and ca. 15-22h later (between 2400 and 0700h) the fungus caused dead beetles to raise their elytra and expand their metathoracic wings. Copyright © 2017. Published by Elsevier Inc.

  6. Essential Oil of Cymbopogon citratus on the Control of the Curvularia Leaf Spot Disease on Maize.

    PubMed

    Mourão, Dalmarcia de Sousa Carlos; Ferreira de Souza Pereira, Talita; Souza, Danival José de; Chagas Júnior, Aloísio Freitas; Dalcin, Mateus Sunti; Veloso, Ronice Alves; Leão, Evelynne Urzêdo; Santos, Gil Rodrigues Dos

    2017-08-20

    The Curvularia Leaf Spot is becoming more common due to the culture expansion and the low resistance of the cultivated genotypes in tropical regions. Thus, the objective was to evaluate the fungitoxicity of the essential oil of Cymbopogon citratus upon the phytopathogen Curvularia lunata , causative agent of the Curvularia Leaf Spot. There was realized pathogenicity tests of C. lunata in maize plants, phytotoxicity of the essential oil of C. citratus and gas chromatography attached, germination tests of the conidia, and of in vitro inhibition of C. lunata . Also, there were realized tests aiming at verifying the phytopathogen control in vivo. In the pathogenicity tests, there were verified symptoms of the disease in all of the suspensions tested on plants. It was observed that the essential oil concentrations of 7.5 µL mL -1 to 50 µL mL -1 were phytotoxic. The majoritarian chemical components of the essential oil of C. citratus were Geranial (41.46%) and Neral (32.43%). The concentrations of 5 and 7.5 µL mL -1 inhibited 100% of conidia germination. None of the concentrations evaluated effectively inhibited C. lunata mycelial growth in in vitro tests. In the preventive control, the concentration of 7.5 µL mL -1 was sufficient for the reduction of the progress of the disease, however the curative control was not efficient on the tested dosages.

  7. Influence of entomopathogenic fungus, Metarhizium anisopliae, alone and in combination with diatomaceous earth and thiamethoxam on mortality, progeny production, mycosis, and sporulation of the stored grain insect pests.

    PubMed

    Ashraf, Misbah; Farooq, Muhammad; Shakeel, Muhammad; Din, Naima; Hussain, Shahbaz; Saeed, Nadia; Shakeel, Qaiser; Rajput, Nasir Ahmed

    2017-12-01

    The stored grain insects cause great damage to grains under storage conditions. Synthetic insecticides and fumigants are considered as key measures to control these stored grain insect pests. However, the major issue with these chemicals is grain contamination with chemical residues and development of resistance by insect pests to these chemicals. Biological control is considered as a potential alternative to chemical control especially with the use of pathogens, alone or in combination with selective insecticides. The present study was conducted to evaluate the synergism of Metarhizium anisopliae with diatomaceous earth (DE) and thiamethoxam against four insect pests on the stored wheat grains. In the first bioassay, the M. anisopliae was applied at 1.4 × 10 4 and 1.4 × 10 6 conidia/ml alone and in integration with two concentrations (250 and 500 ppm) of tested DE. The tested fungus when combined with DE and thiamethoxam possessed synergistic impact as compared to their individual efficacy. Adult mortality increased with respect to increased exposure interval and doses. In the second bioassay, M. anisopliae was applied at 1.4 × 10 4 conidia/ml individually and in combination with three concentrations (0.50, 0.75, and 1.00 ppm) of thiamethoxam. Results concluded that M. anisopliae integrated with DE and thiamethoxam provides more effective control of stored grain insect pests.

  8. Asp f6, an Aspergillus allergen specifically recognized by IgE from patients with allergic bronchopulmonary aspergillosis, is differentially expressed during germination.

    PubMed

    Schwienbacher, M; Israel, L; Heesemann, J; Ebel, F

    2005-11-01

    Aspergillus fumigatus is a pathogenic mould causing allergic and invasive respiratory diseases. Allergic bronchopulmonary Aspergillosis (ABPA) is a severe pulmonary complication resulting from hypersensitivity to A. fumigatus proteins. Aspergillus allergen Asp f6 is recognized by IgE from ABPA patients, but not from sensitized individuals, a fact that can be used to differentiate between these two groups of allergic patients. Proteins from hyphae, resting and germinating conidia of A. fumigatus were compared by SDS-PAGE. Protein identification was performed using MALDI-TOF mass spectrometry. Recombinant A. fumigatus allergens were used to isolate specific monoclonal antibodies (mab) from a hybridoma bank generated against Aspergillus proteins. A hyphae-specific 23 kDa A. fumigatus protein was identified as the allergen Asp f6/manganese-dependent superoxide dismutase (MnSOD). Differential expression of MnSOD was confirmed by immunoblot using a specific mab. In contrast, Asp f8 another intracellular, but not ABPA-specific allergen, was detected in hyphae and conidia. Aspergillus fumigatus is able to colonize its environment by the formation of hyphae. Hyphae are found in the lung of ABPA patients, but not in patients suffering from atopic asthma. Our finding that Asp f6 is specifically expressed in hyphae might explain why an IgE response to Asp f6 is specific for ABPA patients.

  9. A prospective survey of air and surface fungal contamination in a medical mycology laboratory at a tertiary care university hospital.

    PubMed

    Sautour, Marc; Dalle, Frédéric; Olivieri, Claire; L'ollivier, Coralie; Enderlin, Emilie; Salome, Elsa; Chovelon, Isabelle; Vagner, Odile; Sixt, Nathalie; Fricker-Pap, Véronique; Aho, Serge; Fontaneau, Olivier; Cachia, Claire; Bonnin, Alain

    2009-04-01

    Invasive filamentous fungi infections resulting from inhalation of mold conidia pose a major threat in immunocompromised patients. The diagnosis is based on direct smears, cultural symptoms, and culturing fungi. Airborne conidia present in the laboratory environment may cause contamination of cultures, resulting in false-positive diagnosis. Baseline values of fungal contamination in a clinical mycology laboratory have not been determined to date. A 1-year prospective survey of air and surface contamination was conducted in a clinical mycology laboratory during a period when large construction projects were being conducted in the hospital. Air was sampled with a portable air system impactor, and surfaces were sampled with contact Sabouraud agar plates. The collected data allowed the elaboration of Shewhart graphic charts. Mean fungal loads ranged from 2.27 to 4.36 colony forming units (cfu)/m(3) in air and from 0.61 to 1.69 cfu/plate on surfaces. Strict control procedures may limit the level of fungal contamination in a clinical mycology laboratory even in the context of large construction projects at the hospital site. Our data and the resulting Shewhart graphic charts provide baseline values to use when monitoring for inappropriate variations of the fungal contamination in a mycology laboratory as part of a quality assurance program. This is critical to the appropriate management of the fungal risk in hematology, cancer and transplantation patients.

  10. Isolation of pheromone precursor genes of Magnaporthe grisea.

    PubMed

    Shen, W C; Bobrowicz, P; Ebbole, D J

    1999-01-01

    In heterothallic ascomycetes one mating partner serves as the source of female tissue and is fertilized with spermatia from a partner of the opposite mating type. The role of pheromone signaling in mating is thought to involve recognition of cells of the opposite mating type. We have isolated two putative pheromone precursor genes of Magnaporthe grisea. The genes are present in both mating types of the fungus but they are expressed in a mating type-specific manner. The MF1-1 gene, expressed in Mat1-1 strains, is predicted to encode a 26-amino-acid polypeptide that is processed to produce a lipopeptide pheromone. The MF2-1 gene, expressed in Mat1-2 strains, is predicted to encode a precursor polypeptide that is processed by a Kex2-like protease to yield a pheromone with striking similarity to the predicted pheromone sequence of a close relative, Cryphonectria parasitica. Expression of the M. grisea putative pheromone precursor genes was observed under defined nutritional conditions and in field isolates. This suggests that the requirement for complex media for mating and the poor fertility of field isolates may not be due to limitation of pheromone precursor gene expression. Detection of putative pheromone precursor gene mRNA in conidia suggests that pheromones may be important for the fertility of conidia acting as spermatia. Copyright 1999 Academic Press.

  11. Central Role of IL-23 and IL-17 Producing Eosinophils as Immunomodulatory Effector Cells in Acute Pulmonary Aspergillosis and Allergic Asthma.

    PubMed

    Guerra, Evelyn Santos; Lee, Chrono K; Specht, Charles A; Yadav, Bhawna; Huang, Haibin; Akalin, Ali; Huh, Jun R; Mueller, Christian; Levitz, Stuart M

    2017-01-01

    Aspergillus fumigatus causes invasive pulmonary disease in immunocompromised hosts and allergic asthma in atopic individuals. We studied the contribution of lung eosinophils to these fungal diseases. By in vivo intracellular cytokine staining and confocal microscopy, we observed that eosinophils act as local sources of IL-23 and IL-17. Remarkably, mice lacking eosinophils had a >95% reduction in the percentage of lung IL-23p19+ cells as well as markedly reduced IL-23 heterodimer in lung lavage fluid. Eosinophils killed A. fumigatus conidia in vivo. Eosinopenic mice had higher mortality rates, decreased recruitment of inflammatory monocytes, and decreased expansion of lung macrophages after challenge with conidia. All of these functions underscore a potential protective role for eosinophils in acute aspergillosis. Given the postulated role for IL-17 in asthma pathogenesis, we assessed whether eosinophils could act as sources of IL-23 and IL-17 in models where mice were sensitized to either A. fumigatus antigens or ovalbumin (OVA). We found IL-23p19+ IL-17AF+ eosinophils in both allergic models. Moreover, close to 95% of IL-23p19+ cells and >90% of IL-17AF+ cells were identified as eosinophils. These data establish a new paradigm in acute and allergic aspergillosis whereby eosinophils act not only as effector cells but also as immunomodulatory cells driving the IL-23/IL-17 axis and contributing to inflammatory cell recruitment.

  12. Invasion of Solanum tuberosum L. by Aspergillus terreus: a microscopic and proteomics insight on pathogenicity.

    PubMed

    Louis, Bengyella; Waikhom, Sayanika Devi; Roy, Pranab; Bhardwaj, Pardeep Kumar; Singh, Mohendro Wakambam; Chandradev, Sharma K; Talukdar, Narayan Chandra

    2014-06-10

    Aspergillus terreus is one of the most harmful filamentous fungal pathogen of humans, animals and plants. Recently, researchers have discovered that A. terreus can cause foliar blight disease in potato (Solanum tuberosum L.). We used light and scanning electron microscopy, and performed proteomics analysis in an attempt to dissect the invasion process of A. terreus in this important crop. Microscopic study revealed that invasion of leaf tissue is marked by rapid germination of A. terreus phialidic conidia (PC) by 4 h after inoculation. By 8 h after inoculation, primary germ tubes from PC differentiated into irregular protuberance, often displayed stomata atropism, and failed to penetrate via the epidermal cells. Colonization of leaf tissues was associated with high rate of production of accessory conidia (AC). These analyses showed the occurrence of a unique opposing pattern of AC, tissue-specific and produced on melanized colonizing hyphae during the infection of leaf tissue. A significant proteome change hallmarked by differential expression of class I patatin, lipoxygenase, catalase-peroxidase complex, and cysteine proteinase inhibitor were observed during tuber colonization. These proteins are often involved in signal transduction pathways and crosstalk in pathogenic responses. A. terreus abundantly produced AC and multipolar germinating PC to invade potato leaf tissue. Additionally, A. terreus differentially induced enzymes in potato tuber during colonization which facilitates rapid disease development.

  13. Invasion of Solanum tuberosum L. by Aspergillus terreus: a microscopic and proteomics insight on pathogenicity

    PubMed Central

    2014-01-01

    Background Aspergillus terreus is one of the most harmful filamentous fungal pathogen of humans, animals and plants. Recently, researchers have discovered that A. terreus can cause foliar blight disease in potato (Solanum tuberosum L.). We used light and scanning electron microscopy, and performed proteomics analysis in an attempt to dissect the invasion process of A. terreus in this important crop. Results Microscopic study revealed that invasion of leaf tissue is marked by rapid germination of A. terreus phialidic conidia (PC) by 4 h after inoculation. By 8 h after inoculation, primary germ tubes from PC differentiated into irregular protuberance, often displayed stomata atropism, and failed to penetrate via the epidermal cells. Colonization of leaf tissues was associated with high rate of production of accessory conidia (AC). These analyses showed the occurrence of a unique opposing pattern of AC, tissue-specific and produced on melanized colonizing hyphae during the infection of leaf tissue. A significant proteome change hallmarked by differential expression of class I patatin, lipoxygenase, catalase-peroxidase complex, and cysteine proteinase inhibitor were observed during tuber colonization. These proteins are often involved in signal transduction pathways and crosstalk in pathogenic responses. Conclusion A. terreus abundantly produced AC and multipolar germinating PC to invade potato leaf tissue. Additionally, A. terreus differentially induced enzymes in potato tuber during colonization which facilitates rapid disease development. PMID:24917207

  14. Beauveria bassiana, Metarhizium anisopliae, and Metarhizium anisopliae var. acridum conidia: tolerance to imbibitional damage

    USDA-ARS?s Scientific Manuscript database

    When dry fungal cells are immersed in water, rapid imbibition (water uptake) may compromise the plasma membrane, killing the cell. This study investigated the impact of imbibitional damage (measured in terms of reduced viability) on Beauveria bassiana (Bb), Metarhizium anisopliae (Ma) and M. anisop...

  15. Health hazards related to conidia of Cladosporium-biological air pollutants in Poland, central Europe.

    PubMed

    Weryszko-Chmielewska, Elzbieta; Kasprzyk, Idalia; Nowak, Malgorzata; Sulborska, Aneta; Kaczmarek, Joanna; Szymanska, Agata; Haratym, Weronika; Gilski, Miroslaw; Jedryczka, Malgorzata

    2018-03-01

    The spores of Cladosporium Link. are often present in the air in high quantities and produce many allergenic proteins, which may lead to asthma. An aerobiological spore monitoring program can inform patients about the current spore concentration in air and help their physicians determine the spore dose that is harmful for a given individual. This makes it possible to develop optimized responses and propose personalized therapy for a particular sensitive patient. The aim of this study was to assess the extent of the human health hazard posed by the fungal genus Cladosporium. For the first time, we have determined the number of days on which air samples in Poland exceeded the concentrations linked to allergic responses of sensitive patients, according to thresholds established by three different groups (2800/3000/4000 spores per 1m 3 of the air). The survey was conducted over three consecutive growing seasons (April-September, 2010-2012) in three cities located in different climate zones of Poland (Poznan, Lublin and Rzeszow). The average number of days exceeding 2800 spores per cubic meter (the lowest threshold) ranged from 61 (2010) through 76 (2011) to 93 (2012), though there was significant variation between cities. In each year the highest concentration of spores in the air was detected in either Poznan or Lublin, both located on large plains with intensive agriculture. We have proposed that an effective, science-based software platform to support policy-making on air quality should incorporate biological air pollutant data, such as allergenic fungal spores and pollen grains. Copyright © 2017. Published by Elsevier B.V.

  16. Effects of extracts of fiberglass insulations on the growth of Aspergillus fumigatus and A. versicolor.

    PubMed

    Ezeonu, I M; Price, D L; Crow, S A; Ahearn, D G

    1995-11-01

    Water extracts of thermal and acoustic fiberglass insulations used in the duct work of heating, ventilation and air conditioning (HVAC) systems supported germination of conidia and growth of Aspergillus versicolor (Vuillemin) Tiraboschi 1908-9 and Aspergillus fumigatus Fresenius 1863. Urea, formaldehyde and unidentified organics were detected in the extracts. Formaldehyde in concentrations similar to those found in the extracts restricted the growth of both species in enriched media. A. versicolor, the more common species associated with fiberglass insulations, was more resistant to formaldehyde than A. fumigatus.

  17. Development in Aspergillus

    PubMed Central

    Krijgsheld, P.; Bleichrodt, R.; van Veluw, G.J.; Wang, F.; Müller, W.H.; Dijksterhuis, J.; Wösten, H.A.B.

    2013-01-01

    The genus Aspergillus represents a diverse group of fungi that are among the most abundant fungi in the world. Germination of a spore can lead to a vegetative mycelium that colonizes a substrate. The hyphae within the mycelium are highly heterogeneous with respect to gene expression, growth, and secretion. Aspergilli can reproduce both asexually and sexually. To this end, conidiophores and ascocarps are produced that form conidia and ascospores, respectively. This review describes the molecular mechanisms underlying growth and development of Aspergillus. PMID:23450714

  18. Neozygites osornensis sp. nov., a fungal species causing mortality to the cypress aphid Cinara cupressi in Chile.

    PubMed

    Retamal, Cristian Montalva; Barta, Marek; Pérez, Eladio Rojas; Flores, Eduardo Valenzuela

    2013-01-01

    An entomophthoralean fungus causing epizootics in populations of the cypress aphid, Cinara cupressi Buckton, in Chile is described as a new species, Neozygites osornensis Montalva et Barta. The aphid pathogen is described based on morphological characters. An exhaustive description, illustrations and a comparison with closely related species are provided. The fungus differs from similar Neozygites species by smaller hyphal bodies, nuclei, primary conidia, capilliconidia and capilliphores and by noticeably different shape of capilliconidia. A key to aphid-pathogenic species of Neozygites is also included.

  19. ACTION OF MUTAGENIC AGENTS ON AUXOTROPHIC STRAINS OF STREPTOMYCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarai, M.

    1962-01-01

    The mutagenic effect on Streptomyces auxotrophs of uv and x irradiation and of some chemical agerts was studied. From the observed reverse mutations it was concluded that uv and probably x irradiation have an optimal mutagenic dose. With nine auxotrophic strains it was shown that under the same conditions different gene loci reacted differently to the same mutagenic agent. With uy radiation, mutations occurred most frequently at doses falling within the range of 3500 to 4000 erg/mm/sup 2/. With such doses, the average mutation frequency for singly deficient mutants was 0.8 x 10/sup -6/, for doubly deficient mutants 8.4 xmore » 10/sup -8/. An analysis of the number of mutations as compared to the number of survivors in two biochemical mutants (N-4 and N-11) showed that with N- 4 the highest number of mutations was obtained at doses of 3500 to 4500 erg/mm/ sup 2/, namely, 12 to 15 per 10 surviving conidia, and with strain N-11, the highest frequency was obtained in the same dose range, namely, three to four mutations per 10/sup 6/ surviving conidia. The optimal dose of irradiation corresponds to 90 to 97% lethality. It was shown that, unlike the results with uv irradiation, with x rays no such definite relation existed between optimal dose and frequency of mutations. The highest mutation frequency occurred at doses of 20,000 to 25,000 r, which corresponded to 85 to 91% lethality. Of the chemical substances examined, a definite mutagenic action was exerted by acridine orange, streptomycin, hydroxylamine, phenyl, isocyannte, and 8-quinolinol. The maximum mutagenic frequency for survivors was 41.4 x 10/sup -6/ after uv irradiation (biochemical mutant arg 3-; frequency of sportaneous back mutation, 0.041 x 10/sup -6/). With x irradiation the maximum mutagenic frequency was 3.42 x 10/sup -6/ (biochemical mutant meth 1-; frequency of spontaneous back mutation, 0.28 X 10/sup -6/). With chemical agents the maximum mutation frequencies for the initial conidia number were as

  20. Effect of Aureobasidium pullulans strains against Botrytis cinerea on kiwifruit during storage and on fruit nutritional composition.

    PubMed

    Di Francesco, A; Mari, M; Ugolini, L; Baraldi, E

    2018-06-01

    Kiwifruit, wounded at the equator or by pedicel removal, to simulate the stem end wound, were treated with Aureobasidium pullulans (L1 and L8 strains) and subsequently inoculated with conidia of Botrytis cinerea. Fruits were stored at -1 °C in normal refrigeration (NR) or in controlled atmosphere (CA) (2% O 2 ; 4.5% CO 2 ). After 4 months, both antagonists significantly reduced the disease in all experiments, L1 better than L8. In NR, their efficacy was higher than 80%. In CA, the disease reduction was lower: between 30% (L1) and 60% (L8). The ability of both strains to compete with the pathogen for nutrients was tested in kiwifruit juice (0.5%) by in vitro experiments. Antagonists significantly reduced pathogen conidia germination in water and in juice. An HPLC analysis was performed to define the amino acid composition of kiwifruit juice upon L1 and L8 treatment. L1 and L8 greatly increased the concentration of both glutamic and aspartic acids and stimulated the production of new amino acids, although at low concentrations. Each amino acid displayed an antifungal effect against mycelium growth of B. cinerea. Finally, L1 and L8, cold tolerant and active strains in CA, can be effectively applied to control the stem end rot of kiwifruit in long storage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea

    PubMed Central

    Gao, Pan; Qin, Jiaxing; Li, Delong

    2018-01-01

    The fungal pathogen Botrytis cinerea causes gray mold disease on various hosts, which results in serious economic losses. Over the past several decades, many kinds of fungicides have been used to successfully control the disease. Meanwhile, the uses of fungicides lead to environmental pollution as well as a potential threat to the human health by the chemical residues in tomato fruit. Also, the gray mold disease is difficult to control with fungicides. Therefore, exploring alternative measures such as biological controls could be the best choice to control the disease and alleviate damages caused by fungicides. In this study, we isolated and identified a novel Pseudomonas strain termed as QBA5 from healthy tomato plant based on the morphological, biochemical characteristics and molecular detection. The antifungal activity assays revealed that, in the presence of QBA5, conidia germination, germ tube elongation and mycelial growth of B. cinerea were significantly inhibited. Most importantly, QBA5 exerted a significant preventive effectiveness against gray mold on tomato fruits and plants. The possible mechanism of QBA5 involved in the inhibition of B. cinerea was investigated. It revealed that the conidia plasma membrane of B. cinerea was severely damaged by QBA5. Further, four different antifungal compounds in the supernatant of QBA5 were separated by preparative high performance liquid chromatography (PHPLC). Overall, the data indicate that there is a considerable potential for QBA5 to reduce the damage caused by gray mold disease on tomato. PMID:29320571

  2. Activities of Aureobasidium pullulans cell filtrates against Monilinia laxa of peaches.

    PubMed

    Di Francesco, Alessandra; Roberti, Roberta; Martini, Camilla; Baraldi, Elena; Mari, Marta

    2015-12-01

    The Aureobasidium pullulans L1 and L8 strains are known as efficient biocontrol agents against several postharvest fungal pathogens. In order to better understand the mechanism of action underneath the antifungal activity of L1 and L8 strains, yeast cell filtrates grown at different times were evaluated in vivo against Monilinia laxa on peach. Lesion diameters on peach fruit were reduced by L1 and L8 culture filtrates of 42.5% and 67% respectively. The ability of these filtrates to inhibit M. laxa conidia germination and germ tube elongation was studied by in vitro assays. The results showed a 70% reduction of conidia germination for both strains while for germ tube elongation, it was 52% and 41% for L1 and L8 culture filtrates respectively. Finally, the activity of cell wall hydrolytic enzymes such as chitinase and glucanase in cell filtrates was analysed and the expression of genes encoding these activities was quantified during yeast growth. From 24h onward, both culture filtrates contained β,1-3,glucanase and. chitinase activities, the most pronounced of which was N-β-acetylglucosaminidase. Gene expression level encoding for these enzymes in L1 and L8 varied according to the strain. These results indicate that L1 and L8 strains culture filtrates retain the yeast antagonistic activity and suggest that the production of hydrolytic enzymes plays an important role in this activity. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Mechanism by which ammonium bicarbonate and ammonium sulfate inhibit mycotoxigenic fungi.

    PubMed Central

    DePasquale, D A; Montville, T J

    1990-01-01

    In this study we examined the mechanism by which ammonium bicarbonate inhibits mycotoxigenic fungi. Elevated extracellular pH, alone, was not responsible for the antifungal activity. Although conidia of Penicillium griseofulvum and Fusarium graminearum had internal pH (pHi) values as high as 8.0 in buffer at an external pH (pHo) of 9.5, their viability was not markedly affected. The pHi values from conidia equilibrated in glycine-NaOH-buffered treatments without ammonium bicarbonate or ammonium sulfate were similar to values obtained from buffered treatments containing the ammonium salts. Thus, inhibition did not appear to be directly related to increased pHi. Ammonium sulfate in buffered media at pH greater than or equal to 8.7 was as inhibitory as ammonium bicarbonate, but was completely ineffective at pH less than or equal to 7.8. The hypothesis that free ammonia caused the fungal inhibition was tested by using ammonium sulfate as a model for ammonium bicarbonate. Viability, expressed as log CFU/ml, and percent germination of P. griseofulvum and F. graminearum decreased dramatically as the free ammonia concentration increased. Germination rate ratios (the germination rate in buffered ammonium sulfate divided by the germination rate in buffer alone) decreased linearly as the free ammonia concentration increased, further establishing NH3 as the toxic agent. Ammonium bicarbonate inhibits fungi because the bicarbonate anion supplies the alkalinity necessary to establish an antifungal concentration of free ammonia. PMID:2082821

  4. [Overexpression of LaeA enhances mevastatin production and reduces sporulation of Penicillium citrinum].

    PubMed

    Zheng, Yueliang; Cao, Shuang; Huang, Yuqi; Liao, Guojian; Hu, Changhua

    2014-12-04

    To study the regulation of laeA overexpression on mevastatin production and sporulation in Penicillium citrinum. We cloned the laeA gene from Penicillium citrinum and constructed the vector pGiHTGi-laeA. The plasmid pGiHTGi-laeA was transformed in Penicillium citrinum by agrobacterium tumefaciens-mediated transformation. Positive transformants were detected by cloning the hygromycin gene. The mevastatin production of the wild type and OE:: laeA was compared by HPLC. The conidia number was counted by blood counting chamber. The biosynthetic gene cluster expression quantity of mevastatin in the wild type and OE: :laeA were analyzed by qRT-PCR. We constructed the plasmid pGiHTGi-laeA, and screened the positive transformants that overexpress the laeA in Penicillium citrinum. With the overexpression of laeA, the mevastatin production was increased from (0.69 ± 0.12) mg/g to (4.02 ± 0.50) mg/g dry cell weight. Compared to the wild type strain, the laeA expression quantity in the OE :: laeA strain increased 29%, and the mlcB expression increased 72%, the mlcR expression increased 153%. Moreover, the overexpression of laeA would decrease the conidia number. Overexpression of LaeA enhances mevastatin production and reduces sporulation of Penicillium citrinum, with increases expression of pathway-regulator mlcR, and biosynthetic gene MlcR. These results could guide global regulatory mechanism of mevastatin biosynthesis and the exploitation of high-production strain.

  5. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea.

    PubMed

    Gao, Pan; Qin, Jiaxing; Li, Delong; Zhou, Shanyue

    2018-01-01

    The fungal pathogen Botrytis cinerea causes gray mold disease on various hosts, which results in serious economic losses. Over the past several decades, many kinds of fungicides have been used to successfully control the disease. Meanwhile, the uses of fungicides lead to environmental pollution as well as a potential threat to the human health by the chemical residues in tomato fruit. Also, the gray mold disease is difficult to control with fungicides. Therefore, exploring alternative measures such as biological controls could be the best choice to control the disease and alleviate damages caused by fungicides. In this study, we isolated and identified a novel Pseudomonas strain termed as QBA5 from healthy tomato plant based on the morphological, biochemical characteristics and molecular detection. The antifungal activity assays revealed that, in the presence of QBA5, conidia germination, germ tube elongation and mycelial growth of B. cinerea were significantly inhibited. Most importantly, QBA5 exerted a significant preventive effectiveness against gray mold on tomato fruits and plants. The possible mechanism of QBA5 involved in the inhibition of B. cinerea was investigated. It revealed that the conidia plasma membrane of B. cinerea was severely damaged by QBA5. Further, four different antifungal compounds in the supernatant of QBA5 were separated by preparative high performance liquid chromatography (PHPLC). Overall, the data indicate that there is a considerable potential for QBA5 to reduce the damage caused by gray mold disease on tomato.

  6. Cystic fibrosis transmembrane conductance regulator regulates epithelial cell response to Aspergillus and resultant pulmonary inflammation.

    PubMed

    Chaudhary, Neelkamal; Datta, Kausik; Askin, Frederic B; Staab, Janet F; Marr, Kieren A

    2012-02-01

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) alter epithelial cell (EC) interactions with multiple microbes, such that dysregulated inflammation and injury occur with airway colonization in people with cystic fibrosis (CF). Aspergillus fumigatus frequently colonizes CF airways, but it has been assumed to be an innocent saprophyte; its potential role as a cause of lung disease is controversial. To study the interactions between Aspergillus and EC, and the role of the fungus in evoking inflammatory responses. A. fumigatus expressing green fluorescent protein was developed for in vitro and in vivo models, which used cell lines and mouse tracheal EC. Fungal spores (conidia) are rapidly ingested by ECs derived from bronchial cell lines and murine tracheas, supporting a role for EC in early airway clearance. Bronchial ECs harboring CFTR mutations (ΔF508) or deletion demonstrate impaired uptake and killing of conidia, and ECs with CFTR mutation undergo more conidial-induced apoptosis. Germinated (hyphal) forms of the fungus evoke secretion of inflammatory mediators, with CFTR mutation resulting in increased airway levels of macrophage inflammatory protein 2 and KC, and higher lung monocyte chemotactic protein-1. After A. fumigatus inhalation, CFTR(-/-) mice develop exaggerated lymphocytic inflammation, mucin accumulation, and lung injury. Data demonstrate a critical role for CFTR in mediating EC responses to A. fumigatus. Results suggest that the fungus elicits aberrant pulmonary inflammation in the setting of CFTR mutation, supporting the potential role of antifungals to halt progressive CF lung disease.

  7. Interaction of the pathogenic mold Aspergillus fumigatus with lung epithelial cells

    PubMed Central

    Osherov, Nir

    2012-01-01

    Aspergillus fumigatus is an opportunistic environmental mold that can cause severe allergic responses in atopic individuals and poses a life-threatening risk for severely immunocompromised patients. Infection is caused by inhalation of fungal spores (conidia) into the lungs. The initial point of contact between the fungus and the host is a monolayer of lung epithelial cells. Understanding how these cells react to fungal contact is crucial to elucidating the pathobiology of Aspergillus-related disease states. The experimental systems, both in vitro and in vivo, used to study these interactions, are described. Distinction is made between bronchial and alveolar epithelial cells. The experimental findings suggest that lung epithelial cells are more than just “innocent bystanders” or a purely physical barrier against infection. They can be better described as an active extension of our innate immune system, operating as a surveillance mechanism that can specifically identify fungal spores and activate an offensive response to block infection. This response includes the internalization of adherent conidia and the release of cytokines, antimicrobial peptides, and reactive oxygen species. In the case of allergy, lung epithelial cells can dampen an over-reactive immune response by releasing anti-inflammatory compounds such as kinurenine. This review summarizes our current knowledge regarding the interaction of A. fumigatus with lung epithelial cells. A better understanding of the interactions between A. fumigatus and lung epithelial cells has therapeutic implications, as stimulation or inhibition of the epithelial response may alter disease outcome. PMID:23055997

  8. Investigation of Aspergillus flavus in animal virulence.

    PubMed

    Lan, Huahui; Wu, Lianghuan; Sun, Ruilin; Yang, Kunlong; Liu, Yinghang; Wu, Jiefei; Geng, Longpo; Huang, Chuanzhong; Wang, Shihua

    2018-04-01

    Aspergillus flavus is a common fungal pathogen of plants, animals and humans. Recently, many genes of A. flavus have been reported involving in regulation of pathogenesis in crops, but whether these genes are involved in animal virulence is still unknown. Here, we used a previous easy-to-use infection model for A. flavus based on mouse model by intravenous inoculation of A. flavus conidia. The outcome of infections in mice model showed that A. flavus NRRL3357 and laboratory strain CA14 PTS were both in dose dependent manner and highly reproducible. The progress of disease could be monitored by mice survival and histology analysis. Fungal burden analysis indicated it was gradually decreased within 7 days after infection. Moreover, aspergillosis caused by A. flavus significantly up-regulated gene expression levels of immune response mediators, including INF-γ, TNF-α, Dectin-1 and TLR2. Furthermore, the defined deletion A. flavus strains that previously displayed virulence in crop infection were also determined in this mouse model, and the results showed comparable degrees of infection in mice. Our results suggested that intravenous inoculation of conidia could be a suitable model for testing different A. flavus mutants in animal virulence. We hope to use this model to determine distinct A. flavus strains virulence in animals and study novel therapeutic methods to help control fungus diseases in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. A Multifaceted Role of Tryptophan Metabolism and Indoleamine 2,3-Dioxygenase Activity in Aspergillus fumigatus-Host Interactions.

    PubMed

    Choera, Tsokyi; Zelante, Teresa; Romani, Luigina; Keller, Nancy P

    2017-01-01

    Aspergillus fumigatus is the most prevalent filamentous fungal pathogen of humans, causing either severe allergic bronchopulmonary aspergillosis or often fatal invasive pulmonary aspergillosis (IPA) in individuals with hyper- or hypo-immune deficiencies, respectively. Disease is primarily initiated upon the inhalation of the ubiquitous airborne conidia-the initial inoculum produced by A. fumigatus -which are complete developmental units with an ability to exploit diverse environments, ranging from agricultural composts to animal lungs. Upon infection, conidia initially rely on their own metabolic processes for survival in the host's lungs, a nutritionally limiting environment. One such nutritional limitation is the availability of aromatic amino acids (AAAs) as animals lack the enzymes to synthesize tryptophan (Trp) and phenylalanine and only produce tyrosine from dietary phenylalanine. However, A. fumigatus produces all three AAAs through the shikimate-chorismate pathway, where they play a critical role in fungal growth and development and in yielding many downstream metabolites. The downstream metabolites of Trp in A. fumigatus include the immunomodulatory kynurenine derived from indoleamine 2,3-dioxygenase (IDO) and toxins such as fumiquinazolines, gliotoxin, and fumitremorgins. Host IDO activity and/or host/microbe-derived kynurenines are increasingly correlated with many Aspergillus diseases including IPA and infections of chronic granulomatous disease patients. In this review, we will describe the potential metabolic cross talk between the host and the pathogen, specifically focusing on Trp metabolism, the implications for therapeutics, and the recent studies on the coevolution of host and microbe IDO activation in regulating inflammation, while controlling infection.

  10. Potential for entomopathogenic fungi to control Triatoma dimidiata (Hemiptera: Reduviidae), a vector of Chagas disease in Mexico.

    PubMed

    Vázquez-Martínez, María Guadalupe; Cirerol-Cruz, Blanca Elva; Torres-Estrada, José Luis; López, Mario Henry Rodríguez

    2014-01-01

    The use of entomopathogenic fungi to control disease vectors has become relevant because traditional chemical control methods have caused damage to the environment and led to the development of resistance among vectors. Thus, this study assessed the pathogenicity of entomopathogenic fungi in Triatoma dimidiata. Preparations of 108 conidia/ml of Gliocladium virens, Talaromyces flavus, Beauveria bassiana and Metarhizium anisopliae were applied topically on T. dimidiata nymphs and adults. Controls were treated with the 0.0001% Tween-80 vehicle. Mortality was evaluated and recorded daily for 30 days. The concentration required to kill 50% of T. dimidiata (LC50) was then calculated for the most pathogenic isolate. Pathogenicity in adults was similar among B. bassiana, G. virens and T. flavus (p>0.05) and differed from that in triatomine nymphs (p=0.009). The most entomopathogenic strains in adult triatomines were B. bassiana and G. virens, which both caused 100% mortality. In nymphs, the most entomopathogenic strain was B. bassiana, followed by G. virens. The native strain with the highest pathogenicity was G. virens, for which the LC50 for T. dimidiata nymphs was 1.98 x108 conidia/ml at 13 days after inoculation. Beauveria bassiana and G. virens showed entomopathogenic potential in T. dimidiata nymphs and adults. However, the native G. virens strain presents a higher probability of success in the field, and G. virens should thus be considered a potential candidate for the biological control of triatomine Chagas disease vectors.

  11. Entomopathogenic Fungi as Dual Control Agents against Both the Pest Myzus persicae and Phytopathogen Botrytis cinerea

    PubMed Central

    Yun, Hwi-Geon; Kim, Dong-Jun; Gwak, Won-Seok; Shin, Tae-Young

    2017-01-01

    The green peach aphid (Myzus persicae), a plant pest, and gray mold disease, caused by Botrytis cinerea, affect vegetables and fruit crops all over the world. To control this aphid and mold, farmers typically rely on the use of chemical insecticides or fungicides. However, intensive use of these chemicals over many years has led to the development of resistance. To overcome this problem, there is a need to develop alternative control methods to suppress populations of this plant pest and pathogen. Recently, potential roles have been demonstrated for entomopathogenic fungi in endophytism, phytopathogen antagonism, plant growth promotion, and rhizosphere colonization. Here, the antifungal activities of selected fungi with high virulence against green peach aphids were tested to explore their potential for the dual control of B. cinerea and M. persicae. Antifungal activities against B. cinerea were evaluated by dual culture assays using both aerial conidia and cultural filtrates of entomopathogenic fungi. Two fungal isolates, Beauveria bassiana SD15 and Metarhizium anisopliae SD3, were identified as having both virulence against aphids and antifungal activity. The virulence of these isolates against aphids was further tested using cultural filtrates, blastospores, and aerial conidia. The most virulence was observed in the simultaneous treatment with blastospores and cultural filtrate. These results suggest that the two fungal isolates selected in this study could be used effectively for the dual control of green peach aphids and gray mold for crop protection. PMID:29138624

  12. Development of an Agrobacterium-mediated transformation system for the cold-adapted fungi Pseudogymnoascus destructans and P. pannorum.

    PubMed

    Zhang, Tao; Ren, Ping; Chaturvedi, Vishnu; Chaturvedi, Sudha

    2015-08-01

    The mechanisms of cold adaptation by fungi remain unknown. This topic is of high interest due to the emergence of white-nose syndrome (WNS), a skin infection of hibernating bats caused by Pseudogymnoascus destructans (Pd). Recent studies indicated that apart from Pd, there is an abundance of other Pseudogymnoascus species in the hibernacula soil. We developed an Agrobacterium tumefaciens-mediated transformation (ATMT) system for Pd and a related fungus Pseudogymnoascus pannorum (Pp) to advance experimental studies. URE1 gene encoding the enzyme urease was used as an easy to screen marker to facilitate molecular genetic analyses. A Uracil-Specific Excision Reagent (USER) Friendly pRF-HU2 vector containing Pd or Pp ure1::hygromycin (HYG) disruption cassette was introduced into A. tumefaciens AGL-1 cells by electroporation and the resulting strains were co-cultivated with conidia of Pd or Pp for various durations and temperatures to optimize the ATMT system. Overall, 680 Pd (0.006%) and 1800 Pp (0.018%) transformants were obtained from plating of 10(7) conidia; their recoveries were strongly correlated with the length of the incubation period (96h for Pd; 72h for Pp) and with temperature (15-18°C for Pd; 25°C for Pp). The homologous recombination in transformants was 3.1% for Pd and 16.7% for Pp. The availability of a standardized ATMT system would allow future molecular genetic analyses of Pd and related cold-adapted fungi. Copyright © 2015. Published by Elsevier Inc.

  13. Induction of chlamydospore formation in fusarium by cyclic lipopeptide antibiotics from Bacillus subtilis C2.

    PubMed

    Li, Lei; Ma, Mingchuan; Huang, Rong; Qu, Qing; Li, Guohong; Zhou, Jinwei; Zhang, Keqin; Lu, Kaiping; Niu, Xuemei; Luo, Jun

    2012-08-01

    The culture filtrate of Bacillus subtilis strain C2 showed strong activity against the pathogenic fungus Fusarium solani f. sp. radicicola. A partially purified fraction (PPF) from the extract induced chlamydospore formation in Fusarium. Reverse-phase high performance liquid chromatography yielded 8 different fractions, six of which had chlamydospore-inducing activity. Mass spectrometry and nuclear magnetic resonance analyses identified the main active constituent as C(17) fengycin A (FA17), a cyclic lipopeptide. The effect of FA17 on morphology and physiology of two Fusarium species was dependent on the lipopeptide concentration. When challenged with FA17 at concentrations (0.5, 8, 64 μg ml(-1)) below the minimum inhibitory concentration (MIC) (128 μg ml(-1)), two species of Fusarium formed chlamydospores from hyphae, germ tubes, or inside the conidia within 2 days. At concentrations close to the MIC, FA17 caused Fusarium to form sparse and swollen hyphae or lysed conidia. The other five fractions were identified as fengycin A homologues. The homologues could also induce chlamydospore-like structures in 17 species of filamentous fungi including some specimens that do not normally produce chlamydospores, according to their taxonomic descriptions. Like other chlamydospores, these structures contained nuclei and lipid bodies as revealed by DAPI and Nile Red staining, and could germinate. This is the first study to demonstrate that under laboratory conditions fengycin, an antifungal lipopeptide produced by B. subtilis, can induce chlamydospore formation in Fusarium and chlamydospore-like structures in many filamentous fungi.

  14. Evaluation of alternative rice planthopper control by the combined action of oil-formulated Metarhizium anisopliae and low-rate buprofezin.

    PubMed

    Jin, Shao-Feng; Feng, Ming-Guang; Ying, Sheng-Hua; Mu, Wen-Jing; Chen, Jue-Qi

    2011-01-01

    High resistance of brown planthopper (BPH) Nilaparvata lugens Stål to common insecticides is a challenge for control of the pest. An alternative control strategy based on the combined application of fungal and chemical agents has been evaluated. Three gradient spore concentrations of oil-formulated Metarhizium anisopliae (Metschnikoff) Sorokin (Ma456) were sprayed onto third-instar nymphs in five bioassays comprising the low buprofezin rates of 0, 10, 20, 30 and 40 µg mL(-1) respectively. Fungal LC(50) after 1 week at 25 °C and 14:10 h light:dark photoperiod decreased from 386 conidia mm(-2) in the buprofezin-free bioassay to 40 at the highest chemical rate. Buprofezin (LC(50): 1647, 486 and 233 µg mL(-1) on days 2 to 4) had no significant effect on the fungal outgrowths of mycosis-killed cadavers at the low application rates. The fungal infection was found to cause 81% reduction in reproductive potential of BPH adults. In two 40 day field trials, significant planthopper (mainly BPH) control (54-60%) was achieved by biweekly sprays of two fungal candidates (Ma456 and Ma576) at 1.5 × 10(13) conidia ha(-1) and elevated to 80-83% by incorporating 30.8 g buprofezin ha(-1) into the fungal sprays. The combined application of the fungal and chemical agents is a promising alternative strategy for BPH control. Copyright © 2010 Society of Chemical Industry.

  15. Anopheline and culicine mosquitoes are not repelled by surfaces treated with the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana.

    PubMed

    Mnyone, Ladslaus L; Koenraadt, Constantianus Jm; Lyimo, Issa N; Mpingwa, Monica W; Takken, Willem; Russell, Tanya L

    2010-08-27

    Entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana, are promising bio-pesticides for application against adult malaria mosquito vectors. An understanding of the behavioural responses of mosquitoes towards these fungi is necessary to guide development of fungi beyond the 'proof of concept' stage and to design suitable intervention tools. Here we tested whether oil-formulations of the two fungi could be detected and avoided by adult Anopheles gambiae s.s., Anopheles arabiensis and Culex quinquefasciatus. The bioassays used a glass chamber divided into three compartments (each 250 × 250 × 250 mm): release, middle and stimulus compartments. Netting with or without fungus was fitted in front of the stimulus compartment. Mosquitoes were released and the proportion that entered the stimulus compartment was determined and compared between treatments. Treatments were untreated netting (control 1), netting with mineral oil (control 2) and fungal conidia formulated in mineral oil evaluated at three different dosages (2 × 1010, 4 × 1010 and 8 × 1010 conidia m-2). Neither fungal strain was repellent as the mean proportion of mosquitoes collected in the stimulus compartment did not differ between experiments with surfaces treated with and without fungus regardless of the fungal isolate and mosquito species tested. Our results indicate that mineral-oil formulations of M. anisopliae and B. bassiana were not repellent against the mosquito species tested. Therefore, both fungi are suitable candidates for the further development of tools that aim to control host-seeking or resting mosquitoes using entomopathogenic fungi.

  16. Compatibility of chemical insecticides and entomopathogenic fungi for control of soybean defoliating pest, Rachiplusia nu.

    PubMed

    Pelizza, Sebastian A; Schalamuk, Santiago; Simón, María R; Stenglein, Sebastian A; Pacheco-Marino, Suani G; Scorsetti, Ana C

    Rachiplusia nu (Guenée) (Lepidoptera: Noctuidae) is one of the major lepidopteran pests defoliating soybeans (Glycine max Merrill) in Argentina. The combined use of chemical insecticides and entomopathogenic fungi is a promising pest-control option to minimize adverse chemical effects. In this work, we evaluated the interactions between five insecticides-two being considered biorational-and five fungal entomopathogenic strains under laboratory conditions in order to determine the possible usefulness of combinations of these agents against R. nu. The insecticides were tested for compatibility at four doses by in vitro bioassay and for the lethality of R. nu by inoculations at three doses. Fungal strains were applied at 1×10 8 , 1×10 6 , and 1×10 4 conidia/ml. The combinations of those insecticides with Beauveria bassiana (LPSc 1067, LPSc 1082, LPSc 1098), Metarhizium anisopliae (LPSc 907), and Metarhizium robertsii (LPSc 963) caused higher R. nu-larval mortalities than any of the individual agents alone. We observed significant differences in the in vitro conidial viability, vegetative growth, and conidia production of the five strains of entomopathogenic fungi exposed to different doses of the chemical insecticides. The combination gamma-cyhalothrin-LPSc-1067 caused the highest percent mortality of R. nu larvae, with synergism occurring between the two agents at 50% and 25% of the maximum field doses. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Field bioassay of Metarhizium anisopliae strains to control the poultry red mite Dermanyssus gallinae.

    PubMed

    Tavassoli, M; Allymehr, M; Pourseyed, S H; Ownag, A; Bernousi, I; Mardani, K; Ghorbanzadegan, M; Shokrpoor, S

    2011-06-10

    The poultry red mite, Dermanyssus gallinae is one of the most economically deleterious ectoparasite of laying hens worldwide. To evaluate the efficacy of three strains (V245, 3247 and 715C) of entomopathogenic fungus Metarhizium anisopliae with potential as acaricides against D. gallinae, this investigation was carried out in a commercial caged laying poultry farm in Naghedeh, West Azarbaijan of Iran. The parasite infestation already existed in the farm. Sunflower oil suspension of all fungal strains, each in two concentrations (1×10(7) and 1×10(9) conidia/ml) were used separately as spray on hens and cages, and in the control group the cages were only sprayed with sunflower oil and sterile distilled water. For estimating the population rate of mites before and after treatment, special cardboard traps were fixed to cages during a 1-month period. The traps were placed on weeks -1, 0, 1, 2 and 3 and always removed after 1 w. The results showed that the population rates post fungal treatment with the lower concentration were not significantly different compared to the control group. However, the reduction in mite numbers induced by all three strains at the concentration of 1×10(9) conidia/ml was significantly higher than the control (P<0.05). The results revealed that under field conditions, higher concentrations of M. anisopliae will be required for controlling D. gallinae. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. The production and uses of Beauveria bassiana as a microbial insecticide.

    PubMed

    Mascarin, Gabriel Moura; Jaronski, Stefan T

    2016-11-01

    Among invertebrate fungal pathogens, Beauveria bassiana has assumed a key role in management of numerous arthropod agricultural, veterinary and forestry pests. Beauveria is typically deployed in one or more inundative applications of large numbers of aerial conidia in dry or liquid formulations, in a chemical paradigm. Mass production is mainly practiced by solid-state fermentation to yield hydrophobic aerial conidia, which remain the principal active ingredient of mycoinsecticides. More robust and cost-effective fermentation and formulation downstream platforms are imperative for its overall commercialization by industry. Hence, where economics allow, submerged liquid fermentation provides alternative method to produce effective and stable propagules that can be easily formulated as dry stable preparations. Formulation also continues to be a bottleneck in the development of stable and effective commercial Beauveria-mycoinsecticides in many countries, although good commercial formulations do exist. Future research on improving fermentation and formulation technologies coupled with the selection of multi-stress tolerant and virulent strains is needed to catalyze the widespread acceptance and usefulness of this fungus as a cost-effective mycoinsecticide. The role of Beauveria as one tool among many in integrated pest management, rather than a stand-alone management approach, needs to be better developed across the range of crop systems. Here, we provide an overview of mass-production and formulation strategies, updated list of registered commercial products, major biocontrol programs and ecological aspects affecting the use of Beauveria as a mycoinsecticide.

  19. Selection of antagonistic bacteria isolated from the Physalis peruviana rhizosphere against Fusarium oxysporum.

    PubMed

    Urrea, R; Cabezas, L; Sierra, R; Cárdenas, M; Restrepo, S; Jiménez, P

    2011-09-01

    Cape gooseberries (Physalis peruviana) have become increasingly important in Colombia for both domestic consumption and the international export market. Vascular wilting caused by Fusarium oxysporum is the most damaging disease to P. peruviana crops in Colombia. The control of this pathogen is mainly carried out by chemical and cultural practices, increasing production costs and generating resistance. Therefore, the objectives of this study were to test rhizobacteria isolates from P. peruviana rhizosphere against F. oxysporum under in vitro and in vivo conditions. Over 120 strains were isolated, and five were selected for their high inhibition of F. oxysporum growth and conidia production under in vitro conditions. These strains inhibited growth by 41-58% and reduced three- to fivefold conidia production. In the in vivo assays, all the tested isolates significantly reduced fungal pathogenicity in terms of virulence. Isolate B-3.4 was the most efficient in delaying the onset of the first symptoms. All isolates were identified as belonging to the genus Pseudomonas except for A-19 (Bacillus sp.). Our results confirmed that there are prospective rhizobacteria strains that can be used as biological control agents; some of them being able to inhibit in vitro F. oxysporum growth and sporulation. Incorporating these bacteria into biological control strategies for the disease that causes high economical losses in the second most exported fruit from Colombia would result in a reduced impact on environment and economy. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  20. Entomopathogenic Fungi as Dual Control Agents against Both the Pest Myzus persicae and Phytopathogen Botrytis cinerea.

    PubMed

    Yun, Hwi-Geon; Kim, Dong-Jun; Gwak, Won-Seok; Shin, Tae-Young; Woo, Soo-Dong

    2017-09-01

    The green peach aphid ( Myzus persicae ), a plant pest, and gray mold disease, caused by Botrytis cinerea , affect vegetables and fruit crops all over the world. To control this aphid and mold, farmers typically rely on the use of chemical insecticides or fungicides. However, intensive use of these chemicals over many years has led to the development of resistance. To overcome this problem, there is a need to develop alternative control methods to suppress populations of this plant pest and pathogen. Recently, potential roles have been demonstrated for entomopathogenic fungi in endophytism, phytopathogen antagonism, plant growth promotion, and rhizosphere colonization. Here, the antifungal activities of selected fungi with high virulence against green peach aphids were tested to explore their potential for the dual control of B. cinerea and M. persicae . Antifungal activities against B. cinerea were evaluated by dual culture assays using both aerial conidia and cultural filtrates of entomopathogenic fungi. Two fungal isolates, Beauveria bassiana SD15 and Metarhizium anisopliae SD3, were identified as having both virulence against aphids and antifungal activity. The virulence of these isolates against aphids was further tested using cultural filtrates, blastospores, and aerial conidia. The most virulence was observed in the simultaneous treatment with blastospores and cultural filtrate. These results suggest that the two fungal isolates selected in this study could be used effectively for the dual control of green peach aphids and gray mold for crop protection.