Science.gov

Sample records for developed laminar flow

  1. Laminar flow control perforated wing panel development

    NASA Technical Reports Server (NTRS)

    Fischler, J. E.

    1986-01-01

    Many structural concepts for a wing leading edge laminar flow control hybrid panel were analytically investigated. After many small, medium, and large tests, the selected design was verified. New analytic methods were developed to combine porous titanium sheet bonded to a substructure of fiberglass and carbon/epoxy cloth. At -65 and +160 F test conditions, the critical bond of the porous titanium to the composite failed at lower than anticipated test loads. New cure cycles, design improvements, and test improvements significantly improved the strength and reduced the deflections from thermal and lateral loadings. The wave tolerance limits for turbulence were not exceeded. Consideration of the beam column midbay deflections from the combinations of the axial and lateral loadings and thermal bowing at -65 F, room temperature, and +160 F were included. Many lap shear tests were performed at several cure cycles. Results indicate that sufficient verification was obtained to fabricate a demonstration vehicle.

  2. Lockheed laminar-flow control systems development and applications

    NASA Technical Reports Server (NTRS)

    Lange, Roy H.

    1987-01-01

    Progress is summarized from 1974 to the present in the practical application of laminar-flow control (LFC) to subsonic transport aircraft. Those efforts included preliminary design system studies of commercial and military transports and experimental investigations leading to the development of the leading-edge flight test article installed on the NASA JetStar flight test aircraft. The benefits of LFC on drag, fuel efficiency, lift-to-drag ratio, and operating costs are compared with those for turbulent flow aircraft. The current activities in the NASA Industry Laminar-Flow Enabling Technologies Development contract include summaries of activities in the Task 1 development of a slotted-surface structural concept using advanced aluminum materials and the Task 2 preliminary conceptual design study of global-range military hybrid laminar flow control (HLFC) to obtain data at high Reynolds numbers and at Mach numbers representative of long-range subsonic transport aircraft operation.

  3. Laminar Flow Aircraft Certification

    NASA Technical Reports Server (NTRS)

    Williams, Louis J. (Compiler)

    1986-01-01

    Various topics telative to laminar flow aircraft certification are discussed. Boundary layer stability, flaps for laminar flow airfoils, computational wing design studies, manufacturing requirements, windtunnel tests, and flow visualization are among the topics covered.

  4. Pulsating laminar fully developed channel and pipe flows.

    PubMed

    Haddad, Kais; Ertunç, Ozgür; Mishra, Manoranjan; Delgado, Antonio

    2010-01-01

    Analytical investigations are carried out on pulsating laminar incompressible fully developed channel and pipe flows. An analytical solution of the velocity profile for arbitrary time-periodic pulsations is derived by approximating the pulsating flow variables by a Fourier series. The explicit interdependence between pulsations of velocity, mass-flow rate, pressure gradient, and wall shear stress are shown by using the proper dimensionless parameters that govern the flow. Utilizing the analytical results, the scaling laws for dimensionless pulsation amplitudes of the velocity, mass-flow rate, pressure gradient, and wall shear stress are analyzed as functions of the dimensionless pulsation frequency. Special attention has been given to the scaling laws describing the flow reversal phenomenon occurring in pulsating flows, such as the condition for flow reversal, the dependency of the reversal duration, and the amplitude. It is shown that two reversal locations away from the wall can occur in pulsating flows in pipes and channels and the reversed amount of mass per period reaches a maximum at a certain dimensionless frequency for a given amplitude of mass-flow rate fluctuations. These analyses are numerically conducted for pipe and channel flows over a large frequency range in a comparative manner. PMID:20365456

  5. Supersonic Laminar Flow Control Research

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Wiberg, Clark G.

    1996-01-01

    The objective of this research is to understand supersonic laminar flow stability, transition and active control. Some prediction techniques will be developed or modified to analyze laminar flow stability. The effects of distributed heating and cooling as an active boundary layer control technique will be studied. The primary tasks of the research apply to the NASA/Ames PoC and LFSWT's nozzle design with laminar flow control and are listed as follows: Predictions of supersonic laminar boundary layer stability and transition; Effects of wall heating and cooling on supersonic laminar flow control on a flat plate; Performance evaluation of the PoC and LFSWT nozzle designs with wall heating and cooling applied at different locations and various lengths; Effects of a conducted-vs-pulse wall temperature distribution for the LFSWT; and Application of wall heating and/or cooling to laminar boundary layer and flow separation control of airfoils and investigation of related active control techniques.

  6. Development of laminar flow control wing surface porous structure

    NASA Technical Reports Server (NTRS)

    Klotzsche, M.; Pearce, W.; Anderson, C.; Thelander, J.; Boronow, W.; Gallimore, F.; Brown, W.; Matsuo, T.; Christensen, J.; Primavera, G.

    1984-01-01

    It was concluded that the chordwise air collection method, which actually combines chordwise and spanwise air collection, is the best of the designs conceived up to this time for full chord laminar flow control (LFC). Its shallower ducting improved structural efficiency of the main wing box resulting in a reduction in wing weight, and it provided continuous support of the chordwise panel joints, better matching of suction and clearing airflow requirements, and simplified duct to suction source minifolding. Laminar flow control on both the upper and lower surfaces was previously reduced to LFC suction on the upper surface only, back to 85 percent chord. The study concludes that, in addition to reduced wing area and other practical advantages, this system would be lighter because of the increase in effective structural wing thickness.

  7. Development of laminar flow control wing surface composite structures

    NASA Technical Reports Server (NTRS)

    Lineberger, L. B.

    1984-01-01

    The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program beginning in 1976 to develop technologies to improve fuel efficiency. This report documents the Lockheed-Georgia Company accomplishments under NAS1-16235 LFC Laminar-Flow-Control Wing Panel Structural Design And Development (WSSD); Design, manufacturing, and testing activities. An in-depth preliminary design of the baseline 1993 LFC wing was accomplished. A surface panel using the Lockheed graphite/epoxy integrated LFC wing box structural concept was designed. The concept was shown by analysis to be structurally efficient and cost effective. Critical details of the surface and surface joints were demonstrated by fabricating and testing complex, concept selection specimens. Cost of the baseline LFC aircraft was estimated and compared to the turbulent aircraft. The mission fuel weight was 21.7 percent lower for the LFC aircraft. The calculation shows that the lower fuel costs for LFC offset the higher incremental costs of LFC in less than six months.

  8. Aircraft Laminar Flow Control

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1998-01-01

    Aircraft laminar flow control (LFC) from the 1930's through the 1990's is reviewed and the current status of the technology is assessed. Examples are provided to demonstrate the benefits of LFC for subsonic and supersonic aircraft. Early studies related to the laminar boundary-layer flow physics, manufacturing tolerances for laminar flow, and insect-contamination avoidance are discussed. LFC concept studies in wind-tunnel and flight experiments are the major focus of the paper. LFC design tools are briefly outlined for completeness.

  9. Laminar flow control leading edge glove flight test article development

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.; Mcnay, D. E.; Thelander, J. A.

    1984-01-01

    A laminar flow control (LFC) flight test article was designed and fabricated to fit into the right leading edge of a JetStar aircraft. The article was designed to attach to the front spar and fill in approx. 70 inches of the leading edge that are normally occupied by the large slipper fuel tank. The outer contour of the test article was constrained to align with an external fairing aft of the front spar which provided a surface pressure distribution over the test region representative of an LFC airfoil. LFC is achieved by applying suction through a finely perforated surface, which removes a small fraction of the boundary layer. The LFC test article has a retractable high lift shield to protect the laminar surface from contamination by airborne debris during takeoff and low altitude operation. The shield is designed to intercept insects and other particles that could otherwise impact the leading edge. Because the shield will intercept freezing rain and ice, a oozing glycol ice protection system is installed on the shield leading edge. In addition to the shield, a liquid freezing point depressant can be sprayed on the back of the shield.

  10. Laminar flow control for transport aircraft applications

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.

    1986-01-01

    The incorporation of laminar flow control into transport aircraft is discussed. Design concepts for the wing surface panel of laminar flow control transport aircraft are described. The development of small amounts of laminar flow on small commercial transports with natural or hybrid flow control is examined. Techniques for eliminating the insect contamination problem in the leading-edge region are proposed.

  11. Supersonic Laminar Flow Control Research

    NASA Technical Reports Server (NTRS)

    Lo, C. F.; Wiberg, Clark G.

    1996-01-01

    The objective of this research is to understand supersonic laminar flow stability, transition and active control. Some prediction techniques are developed or modified to analyze laminar flow stability. The effects of distributed heating and cooling as an active boundary layer control technique are studied. The primary tasks of the research apply to the NASA/Ames Proof-of-Concept (PoC) and the Laminar Flow Supersonic Wind Tunnel's (LFSWT's) nozzle design with laminar flow control and are listed as follows: (1) Predictions of supersonic laminar boundary layer stability and transition; (2) Effects of wall heating and cooling on supersonic laminar flow control on a flat plate; (3) Performance evaluation of the PoC and LFSWT nozzle designs with wall heating and cooling applied at different locations and various lengths; (4) Effects of a conducted -vs- pulse wall temperature distribution for the LFSWT; and (5) Application of wall heating and/or cooling to laminar boundary layer and flow separation control of airfoils and investigation of related active control techniques.

  12. Operational considerations for laminar flow aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, Dal V.; Wagner, Richard D.

    1986-01-01

    Considerable progress has been made in the development of laminar flow technology for commercial transports during the NASA Aircraft Energy Efficiency (ACEE) laminar flow program. Practical, operational laminar flow control (LFC) systems have been designed, fabricated, and are undergoing flight testing. New materials, fabrication methods, analysis techniques, and design concepts were developed and show much promise. The laminar flow control systems now being flight tested on the NASA Jetstar aircraft are complemented by natural laminar flow flight tests to be accomplished with the F-14 variable-sweep transition flight experiment. An overview of some operational aspects of this exciting program is given.

  13. Development of advanced stability theory suction prediction techniques for laminar flow control. [on swept wings

    NASA Technical Reports Server (NTRS)

    Srokowski, A. J.

    1978-01-01

    The problem of obtaining accurate estimates of suction requirements on swept laminar flow control wings was discussed. A fast accurate computer code developed to predict suction requirements by integrating disturbance amplification rates was described. Assumptions and approximations used in the present computer code are examined in light of flow conditions on the swept wing which may limit their validity.

  14. Supersonic laminar-flow control

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.; Malik, Mujeeb R.

    1987-01-01

    Detailed, up to date systems studies of the application of laminar flow control (LFC) to various supersonic missions and/or vehicles, both civilian and military, are not yet available. However, various first order looks at the benefits are summarized. The bottom line is that laminar flow control may allow development of a viable second generation SST. This follows from a combination of reduced fuel, structure, and insulation weight permitting operation at higher altitudes, thereby lowering sonic boom along with improving performance. The long stage lengths associated with the emerging economic importance of the Pacific Basin are creating a serious and renewed requirement for such a vehicle. Supersonic LFC techniques are discussed.

  15. Hybrid laminar flow control study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Hybrid laminar flow control (HLFC) in which leading edge suction is used in conjunction with wing pressure distribution tailoring to postpone boundary layer transition and reduce friction drag was examined. Airfoil design characteristics required for laminar flow control (LFC) were determined. The aerodynamic design of the HLFC wing for a 178 passenger commercial turbofan transport was developed, and a drag was estimated. Systems changes required to install HLFC were defined, and weights and fuel economy were estimated. The potential for 9% fuel reduction for a 3926-km (2120-nmi) mission is identified.

  16. Flight experiences with laminar flow

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    1986-01-01

    A review of natural laminar flow (NLF) flight experiences over the period from the 1930's to the present has been given to provide information on the achievability and maintainability of NLF in typical airplane operating environments. Significant effects of loss of laminar flow on airplane performance have been observed for several airplanes, indicating the importance of providing information on these changes to laminar flow airplane operators. Significant changes in airplane stability and control and maximum lift were observed in flight experiments with the loss of laminar flow. However, these effects can be avoided by proper selection of airfoils. Conservative laminar flow airfoil designs should be employed which do not experience significant loss of lift (caused by flow separation) upon the loss of laminar flow. Mechanisms have been observed for the effects of insect accumulation, flight through clouds and precipitation, and propeller slipstreams on laminar flow behavior. Fixed transition testing, in addition to free transition testing, is recommended as a new standard procedure for airplanes with surfaces designed to support laminar flow.

  17. Development of Advanced High Lift Leading Edge Technology for Laminar Flow Wings

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Korntheuer, Andrea; Komadina, Steve; Lin, John C.

    2013-01-01

    This paper describes the Advanced High Lift Leading Edge (AHLLE) task performed by Northrop Grumman Systems Corporation, Aerospace Systems (NGAS) for the NASA Subsonic Fixed Wing project in an effort to develop enabling high-lift technology for laminar flow wings. Based on a known laminar cruise airfoil that incorporated an NGAS-developed integrated slot design, this effort involved using Computational Fluid Dynamics (CFD) analysis and quality function deployment (QFD) analysis on several leading edge concepts, and subsequently down-selected to two blown leading-edge concepts for testing. A 7-foot-span AHLLE airfoil model was designed and fabricated at NGAS and then tested at the NGAS 7 x 10 Low Speed Wind Tunnel in Hawthorne, CA. The model configurations tested included: baseline, deflected trailing edge, blown deflected trailing edge, blown leading edge, morphed leading edge, and blown/morphed leading edge. A successful demonstration of high lift leading edge technology was achieved, and the target goals for improved lift were exceeded by 30% with a maximum section lift coefficient (Cl) of 5.2. Maximum incremental section lift coefficients ( Cl) of 3.5 and 3.1 were achieved for a blown drooped (morphed) leading edge concept and a non-drooped leading edge blowing concept, respectively. The most effective AHLLE design yielded an estimated 94% lift improvement over the conventional high lift Krueger flap configurations while providing laminar flow capability on the cruise configuration.

  18. MASS TRANSFER TO ROTATING DISKS AND ROTATING RINGS IN LAMINAR, TRANSITION, AND FULLY DEVELOPED TURBULENT FLOW

    SciTech Connect

    Law Jr., C.G.; Pierini, P.; Newman, J.

    1980-07-01

    Experimental data and theoretical calculations are presented for the mass-transfer rate to rotating disks and rotating rings when laminar, transition, and fully developed turbulent flow exist upon different portions of the surface. Good agreement of data and the model is obtained for rotating disks and relatively thick rotating rings. Results of the calculations for thin rings generally exceed the experimental data measured in transition and turbulent flow. A y{sup +{sup 3}} form for the eddy diffusivity is used to fit the data. No improvement is noticed with a form involving both y{sup +{sup 3}} and y{sup +{sup 3}}.

  19. Laminar-flow wind tunnel experiments

    NASA Technical Reports Server (NTRS)

    Harvey, William D.; Harris, Charles D.; Sewall, William G.; Stack, John P.

    1989-01-01

    Although most of the laminar flow airfoils recently developed at the NASA Langley Research Center were intended for general aviation applications, low-drag airfoils were designed for transonic speeds and wind tunnel performance tested. The objective was to extend the technology of laminar flow to higher Mach and Reynolds numbers and to swept leading edge wings representative of transport aircraft to achieve lower drag and significantly improved operation costs. This research involves stabilizing the laminar boundary layer through geometric shaping (Natural Laminar Flow, NLF) and active control involving the removal of a portion of the laminar boundary layer (Laminar-Flow Control, LFC), either through discrete slots or perforated surface. Results show that extensive regions of laminar flow with large reductions in skin friction drag can be maintained through the application of passive NLF boundary-layer control technologies to unswept transonic wings. At even greater extent of laminar flow and reduction in the total drag level can be obtained on a swept supercritical airfoil with active boundary layer-control.

  20. Development of a compact laminar flow heat exchanger with stainless steel micro-tubes

    NASA Astrophysics Data System (ADS)

    Saji, N.; Nagai, S.; Tsuchiya, K.; Asakura, H.; Obata, M.

    2001-05-01

    The present paper describes the design concept and manufacturing of a new compact laminar flow heat exchanger with stainless-steel micro-tubes for helium refrigerators. In the temperature range of less than 20 K, aluminum plate fin type heat exchangers exhibit a remarkable fall of performance characteristics as a compact heat exchanger. We presented in a previous paper that some compact heat exchangers with good performance in the temperature range of less than 4 K are required for a subcooled He II refrigerator cycle to be worked with 3He turbo-compressors (F. Doty, et al., A new look at the closed brayton cycle, Proceedings, IECEC-90 Reno, NV, 1991, p. 116). For this requirement, we developed a micro-tube strip counter flow type heat exchanger, which consists of 12 elements with a total of 4800 stainless steel micro-tubes. Each element is formed with 400 tubes and a newly developed vacuum brazing method was applied for the bonding to the side plate. Each tube has an inner diameter of 0.5 mm, an outer diameter of 0.7 mm and is 310 mm long. We developed a cladding plate with two layers of gold brazing sheet sandwiched inside. In aerodynamic and thermal design of the element, the laminar flow conditions were adopted for the flows of inner and outer tubes to keep a high heat transfer rate and a low pressure loss.

  1. Osborne Reynolds pipe flow: direct numerical simulation from laminar to fully-developed turbulence

    NASA Astrophysics Data System (ADS)

    Adrian, R. J.; Wu, X.; Moin, P.; Baltzer, J. R.

    2014-11-01

    Osborne Reynolds' pipe experiment marked the onset of modern viscous flow research, yet the detailed mechanism carrying the laminar state to fully-developed turbulence has been quite elusive, despite notable progress related to dynamic edge-state theory. Here, we continue our direct numerical simulation study on this problem using a 250R long, spatially-developing pipe configuration with various Reynolds numbers, inflow disturbances, and inlet base flow states. For the inlet base flow, both fully-developed laminar profile and the uniform plug profile are considered. Inlet disturbances consist of rings of turbulence of different width and radial location. In all the six cases examined so far, energy norms show exponential growth with axial distance until transition after an initial decay near the inlet. Skin-friction overshoots the Moody's correlation in most, but not all, the cases. Another common theme is that lambda vortices amplified out of susceptible elements in the inlet disturbances trigger rapidly growing hairpin packets at random locations and times, after which infant turbulent spots appear. Mature turbulent spots in the pipe transition are actually tight concentrations of hairpin packets looking like a hairpin forest. The plug flow inlet profile requires much stronger disturbances to transition than the parabolic profile.

  2. Overview of Laminar Flow Control

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1998-01-01

    The history of Laminar Flow Control (LFC) from the 1930s through the 1990s is reviewed and the current status of the technology is assessed. Early studies related to the natural laminar boundary-layer flow physics, manufacturing tolerances for laminar flow, and insect-contamination avoidance are discussed. Although most of this publication is about slot-, porous-, and perforated-suction LFC concept studies in wind tunnel and flight experiments, some mention is made of thermal LFC. Theoretical and computational tools to describe the LFC aerodynamics are included for completeness.

  3. Laminar Flow Analysis

    NASA Astrophysics Data System (ADS)

    Rogers, David F.

    1992-10-01

    The major thrust of this book is to present a technique of analysis that aids the formulation, understanding, and solution of problems of viscous flow. The intent is to avoid providing a "canned" program to solve a problem, offering instead a way to recognize the underlying physical, mathematical, and modeling concepts inherent in the solutions. The reader must first choose a mathematical model and derive governing equations based on realistic assumptions, or become aware of the limitations and assumptions associated with existing models. An appropriate solution technique is then selected. The solution technique may be either analytical or numerical. Computer-aided analysis algorithms supplement the classical analyses. The book begins by deriving the Navier-Stokes equation for a viscous compressible variable property fluid. The second chapter considers exact solutions of the incompressible hydrodynamic boundary layer equations solved with and without mass transfer at the wall. Forced convection, free convection, and the compressible laminar boundary layer are discussed in the remaining chapters. The text unifies the various topics by tracing a logical progression from simple to complex governing differential equations and boundary conditions. Numerical, parametric, and directed analysis problems are included at the end of each chapter.

  4. Research in Natural Laminar Flow and Laminar-Flow Control, part 3

    NASA Technical Reports Server (NTRS)

    Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)

    1987-01-01

    Part 3 of the Symposium proceedings contains papers addressing advanced airfoil development, flight research experiments, and supersonic transition/laminar flow control research. Specific topics include the design and testing of natural laminar flow (NLF) airfoils, NLF wing gloves, and NLF nacelles; laminar boundary-layer stability over fuselage forebodies; the design of low noise supersonic/hypersonic wind tunnels; and boundary layer instability mechanisms on swept leading edges at supersonic speeds.

  5. The development and evaluation of advanced technology laminar-flow-control subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1978-01-01

    A study was conducted to evaluate the technical and economic feasibility of applying laminar flow control (LFC) to the wings and empennage of long-range subsonic transport aircraft for initial operation in 1985. For a design mission range of 5500 n mi, advanced technology LFC and turbulent-flow aircraft were developed for a 200-passenger payload, and compared on the basis of production costs, direct operating costs, and fuel efficiency. Parametric analyses were conducted to establish optimum geometry, advanced system concepts were evaluated, and configuration variations maximizing the effectiveness of LFC were developed. The final comparisons include consideation of maintenance costs and procedures, manufacturing costs and procedures, and operational considerations peculiar to LFC aircraft.

  6. Finite difference analysis for developing laminar flow in circular tubes applied to forced and combined convection

    NASA Astrophysics Data System (ADS)

    Collins, M. W.

    1980-03-01

    The complete two-dimensional partial differential equations for developing laminar flow in a circular tube have been treated by a finite difference analysis. Property variation with temperature, especially that of viscosity, is allowed for in a flexible manner. The continuity and momentum equations, and then the energy equations, are solved by direct elimination at each axial step, and a marching procedure used in the axial direction. The stepwise energy balance is rigidly satisfied throughout by using it as a constituent equation in place of the 'explicit' wall thermal boundary condition normally used. The analysis predicts the complete developing hydrodynamic and thermal fields, together with friction factors and heat transfer coefficients. It has been tested for a range of fluid velocity and thermal boundary conditions and for various fluids, including high viscosity oils, water and air. Predictions for constant wall temperature presented here are for forced and combined convection and are compared with experimental data of Test and Zeldin and Schmidt.

  7. Flow development over low aspect ratio cantilevered circular cylinders in the laminar shedding regime

    NASA Astrophysics Data System (ADS)

    Morton, Chris; Saeedi, Mohammad; Martinuzzi, Robert

    2015-11-01

    The flow development over a cantilevered circular cylinder of aspect ratio 4 at Re = 300 has been investigated numerically by employing a laminar flow solution to the Navier-Stokes equations. The results show that two distinct wake modulation frequencies are detectable downstream of the cylinder, differing from higher Reynolds number turbulent flow cases where only one dominant frequency is present. In particular, there is a low frequency modulation with a well-defined narrow-band peak (fm) , and a high frequency contribution from the shedding of vortices (fv) . The fluctuating loading on the cylinder in the streamwise direction is tightly coupled with the low frequency modulation, while the transverse direction forces show only a weak correlation with the vortex shedding frequency. Coherent flow structures have been analyzed using proper orthogonal decomposition (POD) to provide insight into the nature of vortex formation and associated coupling with the detected low frequency modulation. The temporal coefficients obtained from the POD analysis have been used to construct a low order model for the investigation of the overall flow development. While the high frequency component is known to be related to the formation and shedding of vortices, the low frequency component is shown to be associated with a modulation in upwash and downwash intensity.

  8. Laminar flow control is maturing

    NASA Technical Reports Server (NTRS)

    Wagner, Richard D.; Bartlett, Dennis W.; Maddalon, Dal V.

    1988-01-01

    Recent research demonstrates that laminar flow (LF) can be reliable in flight and that the support system need not be complex. Shaping produces favorable pressure gradients for maintaining natural laminar flow (NLF), and laminar flow control (LFC) techniques such as full chord suction promise a fuel-saving payoff of up to 30 percent on long-range missions. For large aircraft, current research is concentrated on hybrid LFC concepts which combine suction and pressure-gradient control. At NASA Ames, an F-14 with variable wing sweep has been flight tested with smooth surface gloves on the wings; preliminary results indicate high transition Reynolds numbers to sweep angles as large as 25 deg. In addition, a 757 was flight tested with an NLF glove on the right wing just outboard of the engine pylon; and the LF was found to be suprisingly robust.

  9. Laminar flow: Challenge and potential

    NASA Technical Reports Server (NTRS)

    Kirchner, Mark E.

    1987-01-01

    Commercial air transportation has experienced revolutionary technology advances since WWII. These technology advances have resulted in an explosive growth in passenger traffic. Today, however, many technologies have matured, and maintaining a similar growth rate will be a challenge. A brief history of laminar flow technology and its application to subsonic and supersonic air transportation is presented.

  10. Laminar-flow flight experiments

    NASA Technical Reports Server (NTRS)

    Wagner, Richard D.; Maddalon, Dal V.; Bartlett, D. W.; Collier, F. S., Jr.; Braslow, A. L.

    1989-01-01

    The flight testing conducted over the past 10 years in the NASA laminar-flow control (LFC) will be reviewed. The LFC program was directed towards the most challenging technology application, the high supersonic speed transport. To place these recent experiences in perspective, earlier important flight tests will first be reviewed to recall the lessons learned at that time.

  11. Heat transfer in the thermally developing region of a laminar oscillating pipe flow

    NASA Astrophysics Data System (ADS)

    Lee, Dae-Young; Park, Sang-Jin; Tack Ro, Sung

    A theoretical analysis was performed focusing on the heat transfer associated with the laminar oscillating flow in a tube. This situation finds applications in the Stirling engines or regenerative-type refrigerators where the working fluid in the heat exchanger undergoes an oscillatory motion. Such an oscillating flow conceivably entails the thermally developing region, not only because the swept length of working fluid is roughly equal to or longer than the characteristic length of the heat exchanger, but also because the wall temperature changes abruptly along the longitudinal direction. For simulation of the practical heat exchanger composed of cooler and heater, two types of thermal boundary conditions are taken into account; either wall temperature or wall heat flux has a square-wave distribution. It is found that the thermally developing length increases in proportion to the oscillation frequency at slow oscillation but eventually approaches an asymptotic value at high frequency. The local average Nusselt number in the developing region is observed to be inversely proportional to the square root of the distance measured from the thermal discontinuity. Out of the thermally developing region, the local Nusselt number is determined only by the oscillation frequency regardless of axial position.

  12. Research in natural laminar flow and laminar-flow control, part 1

    SciTech Connect

    Hefner, J.N.; Sabo, F.E.

    1987-12-01

    Since the mid 1970's, NASA, industry, and universities have worked together to conduct important research focused at developing laminar flow technology that could reduce fuel consumption for general aviation, commuter, and transport aircraft by as much as 40 to 50 percent. The symposium was planned in view of the recent accomplishments within the areas of laminar flow control and natural laminar flow, and the potential benefits of laminar flow technology to the civil and military aircraft communities in the United States. Included were technical sessions on advanced theory and design tool development; wind tunnel and flight research; transition measurement and detection techniques; low and high Reynolds number research; and subsonic and supersonic research.

  13. Research in Natural Laminar Flow and Laminar-Flow Control, part 1

    NASA Technical Reports Server (NTRS)

    Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)

    1987-01-01

    Since the mid 1970's, NASA, industry, and universities have worked together to conduct important research focused at developing laminar flow technology that could reduce fuel consumption for general aviation, commuter, and transport aircraft by as much as 40 to 50 percent. The symposium was planned in view of the recent accomplishments within the areas of laminar flow control and natural laminar flow, and the potential benefits of laminar flow technology to the civil and military aircraft communities in the United States. Included were technical sessions on advanced theory and design tool development; wind tunnel and flight research; transition measurement and detection techniques; low and high Reynolds number research; and subsonic and supersonic research.

  14. Structural development of laminar flow control aircraft chordwise wing joint designs

    NASA Technical Reports Server (NTRS)

    Fischler, J. E.; Jerstad, N. M.; Gallimore, F. H., Jr.; Pollard, T. J.

    1989-01-01

    For laminar flow to be achieved, any protuberances on the surface must be small enough to avoid transition to turbulent flow. However, the surface must have joints between the structural components to allow assembly or replacement of damaged parts, although large continuous surfaces can be utilized to minimize the number the number of joints. Aircraft structural joints usually have many countersunk bolts or rivets on the outer surface. To maintain no mismatch on outer surfaces, it is desirable to attach the components from the inner surface. It is also desirable for the panels to be interchangeable, without the need for shims at the joint, to avoid surface discontinuities that could cause turbulence. Fabricating components while pressing their outer surfaces against an accurate mold helps to ensure surface smoothness and continuity at joints. These items were considered in evaluating the advantages and disadvantages of the joint design concepts. After evaluating six design concepts, two of the leading candidates were fabricated and tested using many small test panels. One joint concept was also built and tested using large panels. The small and large test panel deflections for the leading candidate designs at load factors up to +1.5 g's were well within the step and waviness requirements for avoiding transition.The small panels were designed and tested for compression and tension at -65 F, at ambient conditions, and at 160 F. The small panel results for the three-rib and the sliding-joint concepts indicated that they were both acceptable. The three-rib concept, with tapered splice plates, was considered to be the most practical. A modified three-rib joint that combined the best attributes of previous candidates was designed, developed, and tested. This improved joint met all of the structural strength, surface smoothness, and waviness criteria for laminar flow control (LFC). The design eliminated all disadvantages of the initial three-rib concept except for

  15. Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence

    DOE PAGESBeta

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.; Baltzer, Jon R.

    2015-06-15

    We report that the precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolvemore » into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody’s correlation. Plug base flow requires stronger inlet disturbance for transition. Finally, accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition.« less

  16. Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence

    SciTech Connect

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.; Baltzer, Jon R.

    2015-06-15

    We report that the precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolve into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody’s correlation. Plug base flow requires stronger inlet disturbance for transition. Finally, accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition.

  17. Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence

    PubMed Central

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.; Baltzer, Jon R.

    2015-01-01

    The precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolve into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody’s correlation. Plug base flow requires stronger inlet disturbance for transition. Accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition. PMID:26080447

  18. Structural tests and development of a laminar flow control wing surface composite chordwise joint

    NASA Technical Reports Server (NTRS)

    Lineberger, L. B.

    1984-01-01

    The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program beginning in 1976 to develop technologies to improve fuel efficiency. The Lockheed-Georgia Company accomplished under NAS1-16235 Laminar-Flow-Control (LFC) Wing Panel Structural Design and Development (WSSD); design, manufacturing, and testing activities. An in-depth preliminary design of the baseline 1993 LFC wing was accomplished. A surface panel using the Lockheed graphite/epoxy integrated LFC wing box structural concept was designed. The concept was shown by analysis to be structurally efficient and cost effective. Critical details of the surface and surface joint was demonstrated by fabricating and testing complex, concept selection specimens. The Lockheed-Georgia Company accomplishments, Development of LFC Wind Surface Composite Structures (WSCS), are documented. Tests were conducted on two CV2 panels to verify the static tension and fatigue strength of LFC wing surface chordwise joints.

  19. Novel features of a fully developed mixing-layer between co-flowing laminar and turbulent Couette flows

    NASA Astrophysics Data System (ADS)

    Narasimhamurthy, Vagesh D.; Andersson, Helge I.; Pettersen, Bjørnar

    2014-03-01

    A new flow configuration has been proposed in which a bilateral mixing-layer exists in the junction between co-flowing laminar and turbulent plane Couette flows. Contrary to a classical plane mixing-layer, the present mixing-layer did neither grow in time nor in streamwise direction. However, the mixing zone varied with the distance from the stationary wall. A direct numerical simulation showed that very-large-scale flow structures were found in the turbulent part of the flow with Reynolds number 1300 based on half the velocity U1 of the fastest-moving wall and half of the distance 2h between the walls. The laminar-turbulent interface exhibited a large-scale meandering motion with frequency 0.014U1/h and wavelength about 25h. Large-scale Taylor-Görtler-like roll cells were observed in the nominally laminar flow region with Reynolds number 260. This tailor-made flow is particularly well suited for explorations of momentum transfer and intermittency in the vicinity of the laminar-turbulent interface.

  20. Natural Laminar Flow Flight Experiment

    NASA Technical Reports Server (NTRS)

    Steers, L. L.

    1981-01-01

    A supercritical airfoil section was designed with favorable pressure gradients on both the upper and lower surfaces. Wind tunnel tests were conducted in the Langley 8 Foot Transonic Pressure Tunnel. The outer wing panels of the F-111 TACT airplane were modified to incorporate partial span test gloves having the natural laminar, flow profile. Instrumentation was installed to provide surface pressure data as well as to determine transition location and boundary layer characteristics. The flight experiment encompassed 19 flights conducted with and without transition fixed at several locations for wing leading edge sweep angles which varied from 10 to 26 at Mach numbers from 0.80 to 0.85 and altitudes of 7620 meters and 9144 meters. Preliminary results indicate that a large portion of the test chord experienced laminar flow.

  1. Development of technology for the fabrication of reliable laminar flow control panels on subsonic transports

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The feasibility of using porous composite materials (Kevlar, Doweave, and Leno Weave) as lightweight, efficient laminar flow control (LFC) surface materials is compared to the metallic 319L stainless Dynapore surfaces and electron beam drilled composite surfaces. Areas investigated include: (1) selection of the LFC-suitable surface materials, structural materials, and fabrication techniques for the LFC aircraft skins; (2) aerodynamic static air flow test results in terms of pressure drop through the LFC panel and the corresponding effective porosity; (3) structural design definition and analyses of the panels, and (4) contamination effects on static drop and effective porosity. Conclusions are presented and discussed.

  2. Development of quiet-flow supersonic wind tunnels for laminar-turbulent transition research

    NASA Technical Reports Server (NTRS)

    Schneider, Steven P.

    1994-01-01

    This grant supported research into quiet-flow supersonic wind-tunnels, between May 1990 and December 1994. Quiet-flow nozzles operate with laminar nozzle-wall boundary layers, in order to provide low-disturbance flow for studies of laminar-turbulent transition under conditions comparable to flight. Major accomplishments include: (1) the design, fabrication, and performance-evaluation of a new kind of quiet tunnel, a quiet-flow Ludweig tube; (2) the integration of preexisting codes for nozzle design, 2D boundary-layer computation, and transition-estimation into a single user-friendly package for quiet-nozzle design; and (3) the design and preliminary evaluation of supersonic nozzles with square cross-section, as an alternative to conventional quiet-flow nozzles. After a brief summary of (1), a description of (2) is presented. Published work describing (3) is then summarized. The report concludes with a description of recent results for the Tollmien-Schlichting and Gortler instability in one of the square nozzles previously analyzed.

  3. Supersonic laminar flow control

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.

    1992-01-01

    A development status evaluation is presented for the theoretical understanding and design conceptualization of boundary layer control (BLC) systems applicable to supersonic transports, such as the currently envisioned NASA High Speed Civil Transport. By reducing fuel burned, supersonic BLC techniques could expand ranges to Pacific-crossing scales, while lowering sonic boom effects and upper-atmosphere pollution and even reducing skin friction temperature. The critical consideration for supersonic BLC is the presence of wave effects.

  4. Development of high-lift laminar wing using steady active flow control

    NASA Astrophysics Data System (ADS)

    Clayton, Patrick J.

    Fuel costs represent a large fraction of aircraft operating costs. Increased aircraft fuel efficiency is thus desirable. Laminar airfoils have the advantage of reduced cruise drag and increased fuel efficiency. Unfortunately, they cannot perform adequately during high-lift situations (i.e. takeoff and landing) due to low stall angles and low maximum lift caused by flow separation. Active flow control has shown the ability to prevent or mitigate separation effects, and increase maximum lift. This fact makes AFC technology a fitting solution for improving high-lift systems and reducing the need for slats and flap elements. This study focused on experimentally investigating the effects of steady active flow control from three slots, located at 1%, 10%, and 80% chord, respectively, over a laminar airfoil with 45 degree deflected flap. A 30-inch-span airfoil model was designed, fabricated, and then tested in the Bill James 2.5'x3' Wind Tunnel at Iowa State University. Pressure data were collected along the mid-span of the airfoil, and lift and drag were calculated. Five test cases with varying injection locations and varying Cμ were chosen: baseline, blown flap, leading edge blowing, equal blowing, and unequal blowing. Of these cases, unequal blowing achieved the greatest lift enhancement over the baseline. All cases were able to increase lift; however, gains were less than anticipated.

  5. Laminar and Turbulent Flow in Water

    ERIC Educational Resources Information Center

    Riveros, H. G.; Riveros-Rosas, D.

    2010-01-01

    There are many ways to visualize flow, either for laminar or turbulent flows. A very convincing way to show laminar and turbulent flows is by the perturbations on the surface of a beam of water coming out of a cylindrical tube. Photographs, taken with a flash, show the nature of the flow of water in pipes. They clearly show the difference between…

  6. Laminar flow instability in nuclear rockets

    SciTech Connect

    Black, D.L. )

    1993-01-20

    Laminar flow instability (LFI) is a rarely encountered phenomenon, occurring in gaseous heated channels with high exit-to-inlet temperature ratios and a laminar Reynolds Number at the channel exit, as may be experienced in a nuclear rocket. Analytical techniques were developed and programmed for parametric evaluation that had been previously validated by comparison with available experimental data. The four types of transients associated with LFI are described in terms of the governing equations. Parametric evaluations of solid core prismatic and particle bed fuel configurations were made to determine their sensitivities to LFI from temperature ratio, flow rate, orificing, transition Reynolds Number, pressure level, presence of an exit sonic nozzle, power density and heat flux shape. The flow rate at the point of neutral stability and the growth rate of the excursive transient are calculated. The full power design point and the cooldown phases of operation were both evaluated.

  7. Advanced stability theory analyses for laminar flow control

    NASA Technical Reports Server (NTRS)

    Orszag, S. A.

    1980-01-01

    Recent developments of the SALLY computer code for stability analysis of laminar flow control wings are summarized. Extensions of SALLY to study three dimensional compressible flows, nonparallel and nonlinear effects are discussed.

  8. Analysis of developing laminar flows in circular pipes using a higher-order finite-difference technique

    NASA Technical Reports Server (NTRS)

    Gladden, Herbert J.; Ko, Ching L.; Boddy, Douglas E.

    1995-01-01

    A higher-order finite-difference technique is developed to calculate the developing-flow field of steady incompressible laminar flows in the entrance regions of circular pipes. Navier-Stokes equations governing the motion of such a flow field are solved by using this new finite-difference scheme. This new technique can increase the accuracy of the finite-difference approximation, while also providing the option of using unevenly spaced clustered nodes for computation such that relatively fine grids can be adopted for regions with large velocity gradients. The velocity profile at the entrance of the pipe is assumed to be uniform for the computation. The velocity distribution and the surface pressure drop of the developing flow then are calculated and compared to existing experimental measurements reported in the literature. Computational results obtained are found to be in good agreement with existing experimental correlations and therefore, the reliability of the new technique has been successfully tested.

  9. Length and time for development of laminar flow in tubes following a step increase of volume flux

    NASA Astrophysics Data System (ADS)

    Chaudhury, Rafeed A.; Herrmann, Marcus; Frakes, David H.; Adrian, Ronald J.

    2015-01-01

    Laminar flows starting up from rest in round tubes are relevant to numerous industrial and biomedical applications. The two most common types are flows driven by an abruptly imposed constant pressure gradient or by an abruptly imposed constant volume flux. Analytical solutions are available for transient, fully developed flows, wherein streamwise development over the entrance length is absent (Szymanski in J de Mathématiques Pures et Appliquées 11:67-107, 1932; Andersson and Tiseth in Chem Eng Commun 112(1):121-133, 1992, respectively). They represent the transient responses of flows in tubes that are very long compared with the entrance length, a condition that is seldom satisfied in biomedical tube networks. This study establishes the entrance (development) length and development time of starting laminar flow in a round tube of finite length driven by a piston pump that produces a step change from zero flow to a constant volume flux for Reynolds numbers between 500 and 3,000. The flows are examined experimentally, using stereographic particle image velocimetry and computationally using computational fluid dynamics, and are then compared with the known analytical solutions for fully developed flow conditions in infinitely long tubes. Results show that step function volume flux start-up flows reach steady state and fully developed flow five times more quickly than those driven by a step function pressure gradient, a 500 % change when compared with existing estimates. Based on these results, we present new, simple guidelines for achieving experimental flows that are fully developed in space and time in realistic (finite) tube geometries. To a first approximation, the time to achieve steady spatially developing flow is nearly equal to the time needed to achieve steady, fully developed flow. Conversely, the entrance length needed to achieve fully developed transient flow is approximately equal to the length needed to achieve fully developed steady flow. Beyond this

  10. Thermal laminarization of a stratified pipe flow

    SciTech Connect

    Oras, J.J.; Kasza, K.E.

    1984-01-01

    The present work constitutes a new program that grew out of a scoping assessment by ANL to determine the propensity for pipe stratification to occur in the reactor outlet nozzles and hot-leg piping of a generic LMFBR during events producing reverse pipe flow. This paper focuses on the role that thermal buoyancy plays relative to being able to laminarize a turbulent stratified shear zone in a horizontal pipe. The preceeding can influence the behavior of a pipe stratified-backflow-recirculation zone (cold plenum water down into the hot pipe flow) which developes as the result of a temperature difference between the pipe flow and the plenum.

  11. Study on transient local entropy generation in pulsating fully developed laminar flow through an externally heated pipe

    NASA Astrophysics Data System (ADS)

    Yapıcı, Hüseyin; Kayataş, Nesrin; Baştürk, Gamze; Kahraman, Nafiz

    2006-11-01

    This study presents the investigation of transient local entropy generation rate in pulsating fully developed laminar flow through an externally heated pipe. The flow inlet to the pipe is considered as pulsating at a constant period and amplitude (only the velocity oscillates). The simulations are extended to include different pulsating flow cases (sinusoidal flow, step flow, and saw-down flow). To determine the effects of the mean velocity, the period and the amplitude of the pulsating flow on the entropy generation rate, the pulsating flow is examined for various cases of these parameters. Two-dimensional flow and temperature fields are computed numerically with the help of the fluent computational fluid dynamics (CFD) code. In addition to this CFD code, a computer program has been developed to calculate numerically the entropy generation and other thermodynamic parameters by using the results of the calculations performed for the flow and temperature fields. In all investigated cases, the irreversibility due to the heat transfer dominates. The step flow constitutes the highest temperature (about 919 K) and generates the highest total entropy rate (about 0.033 W/K) within the pipe. The results of this study indicate that in the considered situations, the inverse of square of temperature (1/ T 2) is more dominant on the entropy generation than the temperature gradients, and that the increase of the mean velocity of the pulsating flow has an adverse effect on the ratio of the useful energy transfer rate to irreversibility rate.

  12. Subsonic natural-laminar-flow airfoils

    NASA Technical Reports Server (NTRS)

    Somers, Dan M.

    1992-01-01

    An account is given of the development history of natural laminar-flow (NLF) airfoil profiles under guidance of an experimentally well-verified theoretical method for the design of airfoils suited to virtually all subcritical applications. This method, the Eppler Airfoil Design and Analysis Program, contains a conformal-mapping method for airfoils having prescribed velocity-distribution characteristics, as well as a panel method for the analysis of potential flow about given airfoils and a boundary-layer method. Several of the NLF airfoils thus obtained are discussed.

  13. On Possible Similarity Solutions for Three-Dimensional Incompressible Laminar Boundary-Layer Flows Over Developable Surfaces and with Proportional Mainstream Velocity Components

    NASA Technical Reports Server (NTRS)

    Hansen, Arthur G.

    1958-01-01

    Analysis is presented on the possible similarity solutions of the three-dimensional, laminar, incompressible, boundary-layer equations referred to orthogonal, curvilinear coordinate systems. Requirements of the existence of similarity solutions are obtained for the following: flow over developable surface and flow over non-developable surfaces with proportional mainstream velocity components.

  14. Laminar and turbulent flow in water

    NASA Astrophysics Data System (ADS)

    Riveros, H. G.; Riveros-Rosas, D.

    2010-05-01

    There are many ways to visualize flow, either for laminar or turbulent flows. A very convincing way to show laminar and turbulent flows is by the perturbations on the surface of a beam of water coming out of a cylindrical tube. Photographs, taken with a flash, show the nature of the flow of water in pipes. They clearly show the difference between turbulent and laminar flow, and let, in an accessible way, data be taken to analyse the conditions under which both flows are present. We found research articles about turbulence measurements, using sophisticated equipment, but they do not use the perturbation of the free surface of the flowing liquid to show or measure the turbulence.

  15. Conditions for laminar flow in geophysical vortices

    NASA Astrophysics Data System (ADS)

    Fiedler, Brian H.

    1989-01-01

    The sufficient condition for inviscid, helical instability at large wavenumbers is applied to solutions for columnar vortices arising from the vortical flow of an end-wall boundary layer. The end-wall vortex arising from the laminar boundary layer under a potential vortex will be unstable at sufficiently high Reynolds number. Hoewever, if the end-wall boundary layer is turbulent, the end-wall vortex can be stable and laminar even at very high Reynolds number; therefore, stable, laminar tornadoes and waterspouts are suggested as theoretical possibilities.

  16. Design of fuselage shapes for natural laminar flow

    NASA Technical Reports Server (NTRS)

    Dodbele, S. S.; Vandam, C. P.; Vijgen, P. M. H. W.

    1986-01-01

    Recent technological advances in airplane construction techniques and materials allow for the production of aerodynamic surfaces without significant waviness and roughness, permitting long runs of natural laminar flow (NLF). The present research effort seeks to refine and validate computational design tools for use in the design of axisymmetric and nonaxisymmetric natural-laminar-flow bodies. The principal task of the investigation involves fuselage body shaping using a computational design procedure. Analytical methods were refined and exploratory calculations conducted to predict laminar boundary-layer on selected body shapes. Using a low-order surface-singularity aerodynamic analysis program, pressure distribution, boundary-layer development, transition location and drag coefficient have been obtained for a number of body shapes including a representative business-aircraft fuselage. Extensive runs of laminar flow were predicted in regions of favorable pressure gradient on smooth body surfaces. A computational design procedure was developed to obtain a body shape with minimum drag having large extent of NLF.

  17. Design of fuselage shapes for natural laminar flow

    NASA Astrophysics Data System (ADS)

    Dodbele, S. S.; Vandam, C. P.; Vijgen, P. M. H. W.

    1986-03-01

    Recent technological advances in airplane construction techniques and materials allow for the production of aerodynamic surfaces without significant waviness and roughness, permitting long runs of natural laminar flow (NLF). The present research effort seeks to refine and validate computational design tools for use in the design of axisymmetric and nonaxisymmetric natural-laminar-flow bodies. The principal task of the investigation involves fuselage body shaping using a computational design procedure. Analytical methods were refined and exploratory calculations conducted to predict laminar boundary-layer on selected body shapes. Using a low-order surface-singularity aerodynamic analysis program, pressure distribution, boundary-layer development, transition location and drag coefficient have been obtained for a number of body shapes including a representative business-aircraft fuselage. Extensive runs of laminar flow were predicted in regions of favorable pressure gradient on smooth body surfaces. A computational design procedure was developed to obtain a body shape with minimum drag having large extent of NLF.

  18. Continental Lower-crustal Flow: Channel Flow and Laminar Flow

    NASA Astrophysics Data System (ADS)

    LI, Dewei

    Numerous geological, geophysical and geochemical investigations and finite element modeling indicate that crustal flow layers exist in the continental crust. Both channel flow model and laminar flow model have been created to explain the flow laws and flow mechanisms. As revealed by the channel flow model, a low-viscosity channel in middle to lower crust in orogen or plateau with thick crust and high elevation would flow outward from mountain root in response to lateral pressure gradient resulted from topographic loading or to denudation. However, according to the laminar flow model proposed based on investigation of the Qinghai-Tibet plateau, circulative movement of crustal lithologies with different rheological properties between basin and orogen would occur, under the driving forces resulted from dehydration and melting of subduction plate on active continental margin and from thermal energy related to upwelling and diapiring of intercontinental mantle plume or its gravitational interactions. Similarly, when driven by gravity, the softened or melted substances of the lower crust in a basin would flow laterally toward adjacent mountain root, which would result in a thinned basin crust and a thickened orogenic crust. Partially melted magma within the thickened orogenic lower crust would cause vertical movement of metamorphic rocks of lower to middle crust due to density inversion, and the vertical main stress induced by thermal underplating of lower crust would in turn lead to formation of metamorphic core complexes and low-angle detachment fault systems. Lateral spreading of uplifting mountain due to gravitation potential would result in thrust fault systems on the border between mountain and basin. Meanwhile, detritus produced synchronously by intense erosion of uplifting mountain would be transported and deposited along the marginal deep depression in the foreland basin dragged by lower crust flow. Channel flow is similar to laminar flow in a variety of aspects

  19. Analytical investigation of fully developed laminar flow in tubes with heat transfer with fluid properties variable along the radius

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G

    1951-01-01

    Relations were analytically obtained for the prediction of radial distributions of velocity and temperature for fully developed laminar flow of gases and of liquid metals in tubes with fluid properties variable along the radius. The relations are applicable to both heating and cooling of the fluid. By use of the relations for velocity and temperature distributions, relations were obtained among Nusselt number, friction parameter, and ratio of wall to bulk temperature. The Nusselt number and friction parameter were found to be independent of Reynolds number and Prandtl number. The effects of ratio of wall to bulk temperature on Nusselt number and friction parameter could be eliminated by evaluating the fluid properties at specified temperatures in the fluid.

  20. Wing Leading Edge Joint Laminar Flow Tests

    NASA Technical Reports Server (NTRS)

    Drake, Aaron; Westphal, Russell V.; Zuniga, Fanny A.; Kennelly, Robert A., Jr.; Koga, Dennis J.

    1996-01-01

    An F-104G aircraft at NASA's Dryden Flight Research Center has been equipped with a specially designed and instrumented test fixture to simulate surface imperfections of the type likely to be present near the leading edge on the wings of some laminar flow aircraft. The simulated imperfections consisted of five combinations of spanwise steps and gaps of various sizes. The unswept fixture yielded a pressure distribution similar to that of some laminar flow airfoils. The experiment was conducted at cruise conditions typical for business-jets and light transports: Mach numbers were in the range 0.5-0.8, and unit Reynolds numbers were 1.5-2.5 million per foot. Skin friction measurements indicated that laminar flow was often maintained for some distance downstream of the surface imperfections. Further work is needed to more precisely define transition location and to extend the experiments to swept-wing conditions and a broader range of imperfection geometries.

  1. Natural Laminar Flow Design for Wings with Moderate Sweep

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.; Lynde, Michelle N.

    2016-01-01

    A new method for the aerodynamic design of wings with natural laminar flow is under development at the NASA Langley Research Center. The approach involves the addition of new flow constraints to an existing knowledge-based design module for use with advanced flow solvers. The uniqueness of the new approach lies in the tailoring of target pressure distributions to achieve laminar flow on transonic wings with leading-edge sweeps and Reynolds numbers typical of current transports. The method is demonstrated on the Common Research Model configuration at critical N-factor levels representative of both flight and high-Reynolds number wind tunnel turbulence levels. The design results for the flight conditions matched the target extent of laminar flow very well. The design at wind tunnel conditions raised some design issues that prompted further improvements in the method, but overall has given promising results.

  2. Brief history of laminar flow clean room systems

    SciTech Connect

    Whitfield, W J

    1981-01-01

    This paper reviews the development and evolution of laminar flow clean rooms and hoods and describes the underlying principles and rationales associated with development of this type of clean room system and Federal Standard No. 209. By the mid 1970's, over a thousand hospitals in the US had installed laminar flow equipment in operating rooms. During the past several years a great deal of attention has been focused on conserving energy in clean rooms. Some gains in energy conservation have been achieved by improved design, off hours shutdown, and closer evaluation of requirements for clean rooms. By the early 1970's, the laminar flow principle had been carried from the Laboratory and applied to production hardware to create a mature industry producing and marketing a variety of laminar flow equipment in less than 10 years time. This achievement was made possible by literally dozens of persons in industry, government, military, and private individuals who developed hardware, added numerous innovations, and had the foresight to apply the technology to many fields other than industrial clean rooms. Now, with laminar flow devices available, class 100 levels are readily achievable and maintained, and at the same time require fewer operating restrictions than previously possible.

  3. Laminar flow control SPF/08 feasibility demonstration

    NASA Technical Reports Server (NTRS)

    Ecklund, R. C.; Williams, N. R.

    1981-01-01

    The feasibility of applying superplastic forming/diffusion bonding (SPF/DB) technology to laminar flow control (LFC) system concepts was demonstrated. Procedures were developed to produce smooth, flat titanium panels, using thin -0.016 inch sheets, meeting LFC surface smoothness requirements. Two large panels 28 x 28 inches were fabricated as final demonstration articles. The first was flat on the top and bottom sides demonstrating the capability of the tooling and the forming and diffusion bonding procedures to produce flat, defect free surfaces. The second panel was configurated for LFC porous panel treatment by forming channels with dimpled projections on the top side. The projections were machined away leaving holes extending into the panel. A perforated titanium sheet was adhesively bonded over this surface to complete the LFC demonstration panel. The final surface was considered flat enough to meet LFC requirements for a jet transport aircraft in cruising flight.

  4. Toward a laminar-flow-control transport

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1978-01-01

    Analyses were conducted to define a practical design for an advanced technology laminar flow control (LRC) transport for initial passenger operation in the early 1990's. Mission requirements, appropriate design criteria, and level of technology for the study aircraft were defined. The characteristics of the selected configuration were established, aircraft and LFC subsystems compatible with the mission requirements were defined, and the aircraft was evaluated in terms of fuel efficiency. A wing design integrating the LFC ducting and metering system into advanced composite wing structure was developed, manufacturing procedures for the surface panel design were established, and environmental and structural testing of surface panel components were conducted. Test results revealed a requirement for relatively minor changes in the manufacturing procedures employed, but have shown the general compatibility of both the selected design and the use of composite materials with the requirements of LFC wing surface panels.

  5. Laminar Entrained Flow Reactor (Fact Sheet)

    SciTech Connect

    Not Available

    2014-02-01

    The Laminar Entrained Flow Reactor (LEFR) is a modular, lab scale, single-user reactor for the study of catalytic fast pyrolysis (CFP). This system can be employed to study a variety of reactor conditions for both in situ and ex situ CFP.

  6. Laminar flow control, 1976 - 1982: A selected annotated bibliography

    NASA Technical Reports Server (NTRS)

    Tuttle, M. H.; Maddalon, D. V.

    1982-01-01

    Laminar Flow Control technology development has undergone tremendous progress in recent years as focused research efforts in materials, aerodynamics, systems, and structures have begun to pay off. A virtual explosion in the number of research papers published on this subject has occurred since interest was first stimulated by the 1976 introduction of NASA's Aircraft Energy Efficiency Laminar Flow Control Program. The purpose of this selected bibliography is to list available, unclassified laminar flow (both controlled and natural) research completed from about 1975 to mid 1982. Some earlier pertinent reports are included but listed separately in the Appendix. Reports listed herein emphasize aerodynamics and systems studies, but some structures work is also summarized. Aerodynamic work is mainly limited to the subsonic and transonic sped regimes. Because wind-tunnel flow qualities, such as free stream disturbance level, play such an important role in boundary-layer transition, much recent research has been done in this area and it is also included.

  7. Radiative interactions in laminar duct flows

    NASA Technical Reports Server (NTRS)

    Trivedi, P. A.; Tiwari, S. N.

    1990-01-01

    Analyses and numerical procedures are presented for infrared radiative energy transfer in gases when other modes of energy transfer occur simultaneously. Two types of geometries are considered, a parallel plate duct and a circular duct. Fully developed laminar incompressible flows of absorbing-emitting species in black surfaced ducts are considered under the conditions of uniform wall heat flux. The participating species considered are OH, CO, CO2, and H2O. Nongray as well as gray formulations are developed for both geometries. Appropriate limiting solutions of the governing equations are obtained and conduction-radiation interaction parameters are evaluated. Tien and Lowder's wide band model correlation was used in nongray formulation. Numerical procedures are presented to solve the integro-differential equations for both geometries. The range of physical variables considered are 300 to 2000 K for temperature, 0.1 to 100.0 atm for pressure, and 0.1 to 100 cm spacings between plates/radius of the tube. An extensive parametric study based on nongray formulation is presented. Results obtained for different flow conditions indicate that the radiative interactions can be quite significant in fully developed incompressible flows.

  8. Development of the technology for the fabrication of reliable laminar flow control panels

    NASA Technical Reports Server (NTRS)

    Weiss, D. D.; Lindh, D. V.

    1977-01-01

    Various configurations of porous, perforated and slotted materials were flow tested to determine if they would meet the LFC surface smoothness and flow requirements. The candidate materials were then tested for susceptibility to clogging and for resistance to corrosion. Of the materials tested, perforated titanium, porous polyimide, and slotted assemblies demonstrated a much greater resistance to clogging than other porous materials.

  9. Laminar Flow in the Ocean Ekman Layer

    NASA Astrophysics Data System (ADS)

    Woods, J. T. H.

    INTRODUCTION THE EFFECT OF A STABLE DENSITY GRADIENT THE FATAL FLAW FLOW VISUALIZATION THE DISCOVERY OF LAMINAR FLOW FINE STRUCTURE WAVE-INDUCED SHEAR INSTABILITY BILLOW TURBULENCE REVERSE TRANSITION REVISED PARADIGM ONE-DIMENSIONAL MODELLING OF THE UPPER OCEAN DIURNAL VARIATION BUOYANT CONVECTION BILLOW TURBULENCE IN THE DIURNAL THERMOCLINE CONSEQUENCES FOR THE EKMAN CURRENT PROFILE SOLAR RADIATION APPLICATIONS Slippery Seas of Acapulco Pollution Afternoon Effect in Sonar Patchiness Fisheries Climate DISCUSSION CONCLUSION REFERENCES

  10. Smoothed Two-Dimensional Edges for Laminar Flow

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Liu, C. H.; Martin, G. L.; Domack, C. S.; Obara, C. J.; Hassan, A.; Gunzburger, M. D.; Nicolaides, R. A.

    1986-01-01

    New concept allows passive method for installing flaps, slats, iceprotection equipment, and other leading-edge devices on natural-laminar-flow (NLF) wings without causing loss of laminar flow. Two-dimensional roughness elements in laminar boundary layers strategically shaped to increase critical (allowable) height of roughness. Facilitates installation of leading-edge devices by practical manufacturing methods.

  11. Natural laminar flow hits smoother air

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1985-01-01

    Natural laminar flow (NLF) may be attained in aircraft with lower cost, weight, and maintenance penalties than active flow laminarization by means of a slot suction system. A high performance general aviation jet aircraft possessing a moderate degree of NLF over wing, fuselage, empennage and engine nacelles will accrue a 24 percent reduction in total aircraft drag in the cruise regime. NASA-Langley has conducted NLF research centered on the use of novel airfoil profiles as well as composite and milled aluminum alloy construction methods which minimize three-dimensional aerodynamic surface roughness and waviness. It is noted that higher flight altitudes intrinsically reduce unit Reynolds numbers, thereby minimizing turbulence for a given cruise speed.

  12. Insect contamination protection for laminar flow surfaces

    NASA Technical Reports Server (NTRS)

    Croom, Cynthia C.; Holmes, Bruce J.

    1986-01-01

    The ability of modern aircraft surfaces to achieve laminar flow was well-accepted in recent years. Obtaining the maximum benefit of laminar flow for aircraft drag reduction requires maintaining minimum leading-edge contamination. Previously proposed insect contamination prevention methods have proved impractical due to cost, weight, or inconvenience. Past work has shown that insects will not adhere to water-wetted surfaces, but the large volumes of water required for protection rendered such a system impractical. The results of a flight experiment conducted by NASA to evaluate the performance of a porous leading-edge fluid discharge ice protection system operated as an insect contamination protections system are presented. In addition, these flights explored the environmental and atmospheric conditions most suitable for insect accumulation.

  13. Research in Natural Laminar Flow and Laminar-Flow Control, part 2

    NASA Technical Reports Server (NTRS)

    Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)

    1987-01-01

    Part 2 of the Symposium proceedings includes papers addressing various topics in basic wind tunnel research/techniques and computational transitional research. Specific topics include: advanced measurement techniques; laminar flow control; Tollmien-Schlichting wave characteristics; boundary layer transition; flow visualization; wind tunnel tests; flight tests; boundary layer equations; swept wings; and skin friction.

  14. Application of laminar flow control to supersonic transport configurations

    NASA Technical Reports Server (NTRS)

    Parikh, P. G.; Nagel, A. L.

    1990-01-01

    The feasibility and impact of implementing a laminar flow control system on a supersonic transport configuration were investigated. A hybrid laminar flow control scheme consisting of suction controlled and natural laminar flow was developed for a double-delta type wing planform. The required suction flow rates were determined from boundary layer stability analyses using representative wing pressure distributions. A preliminary design of structural modifications needed to accommodate suction through a perforated titanium skin was carried out together with the ducting and systems needed to collect, compress and discharge the suction air. The benefits of reduced aerodynamic drag were weighed against the weight, volume and power requirement penalties of suction system installation in a mission performance and sizing program to assess the net benefits. The study showed a feasibility of achieving significant laminarization of the wing surface by use of a hybrid scheme, leading to an 8.2 percent reduction in the cruise drag. This resulted in an 8.5 percent reduction in the maximum takeoff weight and a 12 percent reduction in the fuel burn after the inclusion of the LFC system installation penalties. Several research needs were identified for a resolution of aerodynamics, structural and systems issues before these potential benefits could be realized in a practical system.

  15. Development of multiphase Navier-Stokes simulation capability for turbulent gas flow over laminar liquid for Cartesian grids

    NASA Astrophysics Data System (ADS)

    Miao, Sha; Hendrickson, Kelli; Liu, Yuming; Subramani, Hariprasad

    2015-11-01

    This work presents a novel and efficient Cartesian-grid based simulation capability for the study of an incompressible, turbulent gas layer over a liquid flow with disparate Reynolds numbers in two phases. This capability couples a turbulent gas-flow solver and a liquid-layer based on a second-order accurate Boundary Data Immersion Method (BDIM) at the deformable interface. The turbulent gas flow solver solves the incompressible Navier-Stokes equations via direct numerical simulation or through turbulence closure (unsteady Reynolds-Averaged Navier-Stokes Models) for Reynolds numbers O(106). In this application, a laminar liquid layer solution is obtained from depth-integrated Navier-Stokes equations utilizing shallow water wave assumptions. The immersed boundary method (BDIM) enforces the coupling at the deformable interface, the boundary conditions to turbulence closure equations and defines the domain geometry on the Cartesian grid. Validations are made for the turbulent gas channel flow over high-viscosity liquid. This simulation capability can be applied to problems in the oil and industrial sector such as channel and pipe flows with heavy oils as well as wind wave generation in shallow waters. Sponsored by the Chevron Energy Technology Company.

  16. Design Considerations for Laminar Flow Control Aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.; Bennett, J. A.

    1976-01-01

    A study was conducted to investigate major design considerations involved in the application of laminar flow control to the wings and empennage of long range subsonic transport aircraft compatible with initial operation in 1985. For commercial transports with a design mission range of 10,186 km (5500 n mil) and a payload of 200 passengers, parametric configuration analyses were conducted to evaluate the effect of aircraft performance, operational, and geometric parameters on fuel efficiency. Study results indicate that major design goals for aircraft optimization include maximization of aspect ratio and wing loading and minimization of wing sweep consistent with wing volume and airport performance requirements.

  17. Flow/Soot-Formation Interactions in Nonbuoyant Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Dai, Z.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.

    2002-01-01

    This is the final report of a research program considering interactions between flow and soot properties within laminar diffusion flames. Laminar diffusion flames were considered because they provide model flame systems that are far more tractable for theoretical and experimental studies than more practical turbulent diffusion flames. In particular, understanding the transport and chemical reaction processes of laminar flames is a necessary precursor to understanding these processes in practical turbulent flames and many aspects of laminar diffusion flames have direct relevance to turbulent diffusion flames through application of the widely recognized laminar flamelet concept of turbulent diffusion flames. The investigation was divided into three phases, considering the shapes of nonbuoyant round laminar jet diffusion flames in still air, the shapes of nonbuoyant round laminar jet diffusion flames in coflowing air, and the hydrodynamic suppression of soot formation in laminar diffusion flames.

  18. Possible coseismic laminar and non-laminar flow along subduction megathrusts

    NASA Astrophysics Data System (ADS)

    Ujiie, K.; Noguchi, K.; Saito, T.; Tsutsumi, A.

    2014-12-01

    Coseismic deformation mechanisms during subduction earthquakes remained unclear other than frictional melting recorded in pseudotachylytes. However, the recent mineralogical studies in the shallow plate-boundary thrust in the Nankai subduction zone and the underplating-related duplex-fault zone in the Shimanto accretionary complex exhumed from 4-6 km depth have identified increased heating along the 2 mm-thick, clay-rich fault gouge and the few-centimeters-thick, basalt-derived ultracataclasite, respectively. The microstructures of the fault gouge are characterized by strong preferred orientation of clay particles along the gouge, while those of the ultracataclasite show the random fabric. High-velocity friction experiments were conducted on the disaggregated fault rocks under wet (water-saturated) conditions at different normal stresses, using the rotary shear frictional testing apparatus. The results show the rapid slip weakening with low peak and steady-state shear stress, and a very small slip weakening distance and fracture energy, suggesting the ease of earthquake rupture propagation through the fault materials. The steady-state shear stress is almost independent of normal stress, indicating that the gouge behaved like a fluid during high-velocity shearing. The microstructures after the experiments are marked by the development of foliated zone in the gouge layer, but the random fabric develops in the outermost region of the circular gouge layer. Given the nearly independence of steady-state shear stress on normal stress and the increase in the rotation velocity from the center of the rotation axis during the rotary shear, the change from foliated zone to non-foliated, random fabric in the circular gouge layer could represent the change from laminar to non-laminar (or turbulent) flow associated with the increase in the Reynolds number. The implications for the fault rocks are that the development of foliated and non-foliated zones may represent coseismic

  19. The effect of twisted-tape width on heat transfer and pressure drop for fully developed laminar flow

    SciTech Connect

    Chakroun, W.M.; Al-Fahed, S.F.

    1996-07-01

    A series of experiments was conducted to study the effect of twisted-tape width on the heat transfer and pressure drop with laminar flow in tubes. Data for three twisted-tape wavelengths, each with five different widths, have been collected with constant wall temperature boundary condition. Correlations for the friction factor and Nusselt number are also available. The correlations predict the experimental data to within 10 to 15 percent for the heat transfer and friction factor, respectively. The presence of the twisted tape has caused the friction factor to increase by a factor of 3 to 7 depending on Reynolds number and the twisted-tape geometry. Heat transfer results have shown an increase of 1.5 to 3 times that of plain tubes depending on the flow conditions and the twisted-tape geometry. The width shows no effect on friction factor and heat transfer in the low range of Reynolds number but has a more pronounced effect on heat transfer at the higher range of Reynolds number. It is recommended to use loose-fit tapes for low Reynolds number flows instead of tight-fit in the design of heat exchangers because they are easier to install and remove for cleaning purposes.

  20. Preliminary aerodynamic design considerations for advanced laminar flow aircraft configurations

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph L., Jr.; Yip, Long P.; Jordan, Frank L., Jr.

    1986-01-01

    Modern composite manufacturing methods have provided the opportunity for smooth surfaces that can sustain large regions of natural laminar flow (NLF) boundary layer behavior and have stimulated interest in developing advanced NLF airfoils and improved aircraft designs. Some of the preliminary results obtained in exploratory research investigations on advanced aircraft configurations at the NASA Langley Research Center are discussed. Results of the initial studies have shown that the aerodynamic effects of configuration variables such as canard/wing arrangements, airfoils, and pusher-type and tractor-type propeller installations can be particularly significant at high angles of attack. Flow field interactions between aircraft components were shown to produce undesirable aerodynamic effects on a wing behind a heavily loaded canard, and the use of properly designed wing leading-edge modifications, such as a leading-edge droop, offset the undesirable aerodynamic effects by delaying wing stall and providing increased stall/spin resistance with minimum degradation of laminar flow behavior.

  1. Flight research on natural laminar flow applications

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Obara, Clifford J.

    1992-01-01

    Natural laminar flow (NLF) is clearly one of the most potentially attractive drag reduction technologies by virtue of its relative simplicity. NLF is achieved passively, that is, by design of surface shapes to produce favorable pressure gradients. However, it is not without its challenges and limitations. This chapter describes the significant challenges to achieving and maintaining NLF and documents certain of the limitations for practical applications. A brief review of the history and of more recent NLF flight experiments is given, followed by a summary of lessons learned which are pertinent to future applications. The chapter also summarizes important progress in test techniques, particularly in flow visualization and hot-film techniques for boundary-layer measurements in flight.

  2. Base pressure in laminar supersonic flow.

    NASA Technical Reports Server (NTRS)

    Messiter, A. F.; Hough, G. R.; Feo, A.

    1973-01-01

    An asymptotic description is proposed for supersonic laminar flow over a wedge or a backward-facing step, for large Reynolds number and for a base or step height which is small compared with the boundary-layer length. The analysis is carried out for adiabatic wall conditions and a viscosity coefficient proportional to temperature. In a particular limit corresponding to a very thick boundary layer, a similarity law is obtained for the base pressure. For a thinner boundary layer an asymptotic form for the base pressure is obtained which shows the dependence on the parameters explicitly and which permits good agreement with experiment. This latter result is based on an inviscid-flow approximation for the corner expansion and for reattachment with viscous forces important primarily in a thin sublayer about the dividing streamline. A prediction of the pressure distribution at reattachment is given and the result is compared with experimental pressure distributions.

  3. CNSFV code development, virtual zone Navier-Stokes computations of oscillating control surfaces and computational support of the laminar flow supersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Klopfer, Goetz H.

    1993-01-01

    The work performed during the past year on this cooperative agreement covered two major areas and two lesser ones. The two major items included further development and validation of the Compressible Navier-Stokes Finite Volume (CNSFV) code and providing computational support for the Laminar Flow Supersonic Wind Tunnel (LFSWT). The two lesser items involve a Navier-Stokes simulation of an oscillating control surface at transonic speeds and improving the basic algorithm used in the CNSFV code for faster convergence rates and more robustness. The work done in all four areas is in support of the High Speed Research Program at NASA Ames Research Center.

  4. Laminar flow test installation in the Boeing Research Wind Tunnel

    NASA Technical Reports Server (NTRS)

    George-Falvy, Dezso

    1990-01-01

    This paper describes the initial wind tunnels tests in the 5- by 8-ft Boeing Research Wind Tunnel of a near full-scale (20-foot chord) swept wing section having laminar flow control (LFC) by slot suction over its first 30 percent chord. The model and associated test apparatus were developed for use as a testbed for LFC-related experimentation in support of preliminary design studies done under contract with the National Aeronautics and Space Administration. This paper contains the description of the model and associated test apparatus as well as the results of the initial test series in which the proper functioning of the test installation was demonstrated and new data were obtained on the sensitivity of suction-controlled laminar flow to surface protuberances in the presence of crossflow due to sweep.

  5. Co-laminar flow cells for electrochemical energy conversion

    NASA Astrophysics Data System (ADS)

    Goulet, Marc-Antoni; Kjeang, Erik

    2014-08-01

    In this review, we present the major developments in the evolution of 'membraneless' microfluidic electrochemical cells which utilize co-laminar flow to minimize reactant mixing while producing electrical power in a compact form. Categorization of devices according to reactant phases is suggested, with further differentiation being subject to fabrication method and function, namely multi-layer sandwich structures for medium-power cell stacks and single-layer monolithic cells for low-power on-chip applications. Power density metrics reveal that recent co-laminar flow cells compare favourably with conventional membrane-based electrochemical cells and that further optimization of device architecture could be expedited through standardized testing. Current research trends indicate that co-laminar flow cell technology for power generation is growing rapidly and finding additional use as an analytical and education tool. Practical directions and recommendations for further research are provided, with the intention to guide scientific advances and technology development toward ultimate pairing with commercial applications.

  6. Design optimization of natural laminar flow bodies in compressible flow

    NASA Technical Reports Server (NTRS)

    Dodbele, Simha S.

    1992-01-01

    An optimization method has been developed to design axisymmetric body shapes such as fuselages, nacelles, and external fuel tanks with increased transition Reynolds numbers in subsonic compressible flow. The new design method involves a constraint minimization procedure coupled with analysis of the inviscid and viscous flow regions and linear stability analysis of the compressible boundary-layer. In order to reduce the computer time, Granville's transition criterion is used to predict boundary-layer transition and to calculate the gradients of the objective function, and linear stability theory coupled with the e(exp n)-method is used to calculate the objective function at the end of each design iteration. Use of a method to design an axisymmetric body with extensive natural laminar flow is illustrated through the design of a tiptank of a business jet. For the original tiptank, boundary layer transition is predicted to occur at a transition Reynolds number of 6.04 x 10(exp 6). For the designed body shape, a transition Reynolds number of 7.22 x 10(exp 6) is predicted using compressible linear stability theory coupled with the e(exp n)-method.

  7. Gliding Swifts Attain Laminar Flow over Rough Wings

    PubMed Central

    Lentink, David; de Kat, Roeland

    2014-01-01

    Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1–2% of chord length on the upper surface—10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13%) of their total area during glides that maximize flight distance and duration—similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation) before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance. PMID:24964089

  8. Gliding swifts attain laminar flow over rough wings.

    PubMed

    Lentink, David; de Kat, Roeland

    2014-01-01

    Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1-2% of chord length on the upper surface--10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13%) of their total area during glides that maximize flight distance and duration--similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation) before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance. PMID:24964089

  9. Laminar flow of two miscible fluids in a simple network

    NASA Astrophysics Data System (ADS)

    Karst, Casey M.; Storey, Brian D.; Geddes, John B.

    2013-03-01

    When a fluid comprised of multiple phases or constituents flows through a network, nonlinear phenomena such as multiple stable equilibrium states and spontaneous oscillations can occur. Such behavior has been observed or predicted in a number of networks including the flow of blood through the microcirculation, the flow of picoliter droplets through microfluidic devices, the flow of magma through lava tubes, and two-phase flow in refrigeration systems. While the existence of nonlinear phenomena in a network with many inter-connections containing fluids with complex rheology may seem unsurprising, this paper demonstrates that even simple networks containing Newtonian fluids in laminar flow can demonstrate multiple equilibria. The paper describes a theoretical and experimental investigation of the laminar flow of two miscible Newtonian fluids of different density and viscosity through a simple network. The fluids stratify due to gravity and remain as nearly distinct phases with some mixing occurring only by diffusion. This fluid system has the advantage that it is easily controlled and modeled, yet contains the key ingredients for network nonlinearities. Experiments and 3D simulations are first used to explore how phases distribute at a single T-junction. Once the phase separation at a single junction is known, a network model is developed which predicts multiple equilibria in the simplest of networks. The existence of multiple stable equilibria is confirmed experimentally and a criterion for existence is developed. The network results are generic and could be applied to or found in different physical systems.

  10. The NASA Langley laminar flow control airfoil experiment

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Pride, J. D.

    1982-01-01

    A large chord swept supercritical LFC airfoil has been constructed for NASA-Langley's research program to determine the compatibility of supercritical airfoils with suction laminarization and to establish a technology base for future transport designs. Features include a high design Mach number and shock-free flow, as well as the minimization of the laminarization suction through a choice of airfoil geometry and pressure distribution. Two suction surface concepts and a variety of hybrid suction concepts involving combinations of natural and forced laminar flow are to be investigated. The test facility has been modified to insure achievement of required flow quality and transonic interference-free flow over the yawed LFC airfoil.

  11. Inductively coupled plasma torch with laminar flow cooling

    DOEpatents

    Rayson, Gary D.; Shen, Yang

    1991-04-30

    An improved inductively coupled gas plasma torch. The torch includes inner and outer quartz sleeves and tubular insert snugly fitted between the sleeves. The insert includes outwardly opening longitudinal channels. Gas flowing through the channels of the insert emerges in a laminar flow along the inside surface of the outer sleeve, in the zone of plasma heating. The laminar flow cools the outer sleeve and enables the torch to operate at lower electrical power and gas consumption levels additionally, the laminar flow reduces noise levels in spectroscopic measurements of the gaseous plasma.

  12. Laminar flow heat transfer downstream from U-bends

    NASA Astrophysics Data System (ADS)

    Abdelmessih, Amanie Nassif

    1987-05-01

    The laminar flow heat transfer downstream from the unheated, vertical bends in horizontal U-tubes with electrically heated straight tube sections was investigated. For each test section, local axial and peripheral wall temperatures were measured and the local peripheral heat transfer coefficients at the various locations were calculated. The investigation permitted a better understanding of the interaction of the primary, secondary and tertiary flow patterns, i.e., the combination of forced and natural convection with the centrifugal effects. Also, a correlation was developed, which predicts the heat transfer coefficient downstream from an unheated U-bend, and which can be extended to straight tubes.

  13. F-111 TACT natural laminar flow glove flight results

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.; Steers, L. L.; Trujillo, B.

    1981-01-01

    Improvements in cruise efficiency on the order of 15 to 40% are obtained by increasing the extent of laminar flow over lifting surfaces. Two methods of achieving laminar flow are being considered, natural laminar flow and laminar flow control. Natural laminar flow (NLF) relies primarily on airfoil shape while laminar flow control involves boundary layer suction or blowing with mechanical devices. The extent of natural laminar flow that could be achieved with consistency in a real flight environment at chord Reynolds numbers in the range of 30 x 10(6) power was evaluated. Nineteen flights were conducted on the F-111 TACT airplane having a NLF airfoil glove section. The section consists of a supercritical airfoil providing favorable pressure gradients over extensive portions of the upper and lower surfaces of the wing. Boundary layer measurements were obtained over a range of wing leading edge sweep angles at Mach numbers from 0.80 to 0.85. Data were obtained for natural transition and for a range of forced transition locations over the test airfoil.

  14. Natural laminar flow airfoil analysis and trade studies

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An analysis of an airfoil for a large commercial transport cruising at Mach 0.8 and the use of advanced computer techniques to perform the analysis are described. Incorporation of the airfoil into a natural laminar flow transport configuration is addressed and a comparison of fuel requirements and operating costs between the natural laminar flow transport and an equivalent turbulent flow transport is addressed.

  15. Laminar Flow Control Leading Edge Systems in Simulated Airline Service

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.; Maddalon, D. V.; Fisher, D. F.

    1988-01-01

    Achieving laminar flow on the wings of a commercial transport involves difficult problems associated with the wing leading edge. The NASA Leading Edge Flight Test Program has made major progress toward the solution of these problems. The effectiveness and practicality of candidate laminar flow leading edge systems were proven under representative airline service conditions. This was accomplished in a series of simulated airline service flights by modifying a JetStar aircraft with laminar flow leading edge systems and operating it out of three commercial airports in the United States. The aircraft was operated as an airliner would under actual air traffic conditions, in bad weather, and in insect infested environments.

  16. Measurements of laminar and turbulent flow in a curved duct with thin inlet boundary layers

    NASA Technical Reports Server (NTRS)

    Taylor, A. M. K. P.; Whitelaw, J. H.; Yianneskis, M.

    1981-01-01

    Laser Doppler velocimetry was used to measure the laminar and turbulent flow in a 90 deg square bend of strong curvature. The boundary layers at the inlet to the bend were approximately 25 percent and 15 percent of the hydraulic diameter for the laminar and turbulent flows, respectively. The development of the pressure driven secondary motion is more rapid for laminar flow: the maximum cross stream component measured was 60 percent of the bulk velocity in contrast to 40 percent for turbulent flow. The streamwise isotachs show that, for laminar flow, large velocities are found progressively nearer to the outer radius of the bend and along the sidewalls. For turbulent flow, the isotachs move towards the inner radius until about 60 deg around the bend where strong secondary motion results in a similar redistribution. Turbulence level and shear stress measurements are also presented.

  17. Assessment of the National Transonic Facility for Laminar Flow Testing

    NASA Technical Reports Server (NTRS)

    Crouch, Jeffrey D.; Sutanto, Mary I.; Witkowski, David P.; Watkins, A. Neal; Rivers, Melissa B.; Campbell, Richard L.

    2010-01-01

    A transonic wing, designed to accentuate key transition physics, is tested at cryogenic conditions at the National Transonic Facility at NASA Langley. The collaborative test between Boeing and NASA is aimed at assessing the facility for high-Reynolds number testing of configurations with significant regions of laminar flow. The test shows a unit Reynolds number upper limit of 26 M/ft for achieving natural transition. At higher Reynolds numbers turbulent wedges emanating from the leading edge bypass the natural transition process and destroy the laminar flow. At lower Reynolds numbers, the transition location is well correlated with the Tollmien-Schlichting-wave N-factor. The low-Reynolds number results suggest that the flow quality is acceptable for laminar flow testing if the loss of laminar flow due to bypass transition can be avoided.

  18. A perspective of laminar-flow control. [aircraft energy efficiency program

    NASA Technical Reports Server (NTRS)

    Braslow, A. L.; Muraca, R. J.

    1978-01-01

    A historical review of the development of laminar flow control technology is presented with reference to active laminar boundary-layer control through suction, the use of multiple suction slots, wind-tunnel tests, continuous suction, and spanwise contamination. The ACEE laminar flow control program is outlined noting the development of three-dimensional boundary-layer codes, cruise-noise prediction techniques, airfoil development, and leading-edge region cleaning. Attention is given to glove flight tests and the fabrication and testing of wing box designs.

  19. Laminar flow in a recess of a hydrostatic bearing

    NASA Technical Reports Server (NTRS)

    San Andres, Luis A.; Velthuis, Johannes F. M.

    1992-01-01

    The flow in a recess of a hydrostatic journal bearing is studied in detail. The Navier-Stokes equations for the laminar flow of an incompressible liquid are solved numerically in a two-dimensional plane of a typical bearing recess. Pressure- and shear-induced flows, as well as a combination of these two flow conditions, are analyzed. Recess friction, pressure-ram effects at discontinuities in the flow region, and film entrance pressure loss effects are calculated. Entrance pressure loss coefficients over a forward-facing step are presented as functions of the mean flow Reynolds number for pure-pressure and shear-induced laminar flows.

  20. A flight test of laminar flow control leading-edge systems

    NASA Technical Reports Server (NTRS)

    Fischer, M. C.; Wright, A. S., Jr.; Wagner, R. D.

    1983-01-01

    NASA's program for development of a laminar flow technology base for application to commercial transports has made significant progress since its inception in 1976. Current efforts are focused on development of practical reliable systems for the leading-edge region where the most difficult problems in applying laminar flow exist. Practical solutions to these problems will remove many concerns about the ultimate practicality of laminar flow. To address these issues, two contractors performed studies, conducted development tests, and designed and fabricated fully functional leading-edge test articles for installation on the NASA JetStar aircraft. Systems evaluation and performance testing will be conducted to thoroughly evaluate all system capabilities and characteristics. A simulated airline service flight test program will be performed to obtain the operational sensitivity, maintenance, and reliability data needed to establish that practical solutions exist for the difficult leading-edge area of a future commercial transport employing laminar flow control.

  1. Application of natural laminar flow to a supersonic transport concept

    NASA Technical Reports Server (NTRS)

    Fuhrmann, Henri D.

    1993-01-01

    Results are presented of a preliminary investigation into an application of supersonic natural laminar flow (NLF) technology for a high speed civil transport (HSCT) configuration. This study focuses on natural laminar flow without regard to suction devices which are required for laminar flow control (LFC) or hybrid laminar flow control (HLFC). An HSCT design is presented with a 70 deg inboard leading-edge sweep and a 20 deg leading-edge outboard crank to obtain NLF over the outboard crank section. This configuration takes advantage of improved subsonic performance and NLF on the low-sweep portion of the wing while minimizing the wave drag and induced drag penalties associated with low-sweep supersonic cruise aircraft. In order to assess the benefits of increasing natural laminar flow wetted area, the outboard low-sweep wing area is parametrically increased. Using a range of supersonic natural laminar flow transition Reynolds numbers, these aircraft are then optimized and sized for minimum take-off gross weight (TOGW) subject to mission constraints. Results from this study indicate reductions in TOGW for the NLF concepts, due mainly to reductions in wing area and total wing weight. Furthermore, significant reductions in block fuel are calculated throughout the range of transition Reynolds numbers considered. Observations are made on the benefits of unsweeping the wingtips with all turbulent flow.

  2. Transient radiative energy transfer in incompressible laminar flows

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Singh, D. J.

    1987-01-01

    Analysis and numerical procedures are presented to investigate the transient radiative interactions of nongray absorbing-emitting species in laminar fully-developed flows between two parallel plates. The particular species considered are OH, CO, CO2, and H2O and different mixtures of these. Transient and steady-state results are obtained for the temperaure distribution and bulk temperature for different plate spacings, wall temperatures, and pressures. Results, in general, indicate that the rate of radiative heating can be quite high during earlier times. This information is useful in designing thermal protection systems for transient operations.

  3. Selected experiments in laminar flow: An annotated bibliography

    NASA Technical Reports Server (NTRS)

    Drake, Aaron; Kennelly, Robert A., Jr.

    1992-01-01

    Since the 1930s, there have been attempts to reduce drag on airplanes by delaying laminar to turbulent boundary layer transition. Experiments conducted during the 1940's, while successful in delaying transition, were discouraging because of the careful surface preparation necessary to meet roughness and waviness requirements. The resulting lull in research lasted nearly 30 years. By the late 1970s, airframe construction techniques had advanced sufficiently that the high surface quality required for natural laminar flow (NLF) and laminar flow control (LFC) appeared possible on production aircraft. As a result, NLF and LFC research became widespread. This report is an overview of that research. The experiments summarized herein were selected for their applicability to small transonic aircraft. Both flight and wind tunnel tests are included. The description of each experiment is followed by corresponding references. Part One summarizes NLF experiments; Part Two deals with LFC and hybrid laminar flow control (HLFC) experiments.

  4. Direct numerical simulation from laminar to fully-developed turbulence in spatially evolving pipe flow and flat plate boundary layer

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.; Baltzer, Jon R.; Hickey, Jean-Pierre

    2013-11-01

    Direct numerical simulations of spatially evolving pipe flow and boundary layer have been performed. The pipe is 250R long, the flow Reynolds number is 6000 and 8000, and the calculation used up to 1.7 billion grid points. Pipe inlet disturbance is from a very-thin wire ring placed at different radial locations. It is found that energy norm in the flow downstream of such disturbance can grow exponentially with axial distance. The boundary layer's momentum thickness Reynolds number develops from 80 to 3000 with a free-stream turbulence intensity decaying from 3 percent to 0.8 percent. Its mesh has 4 billion grid points. Good quantitative agreement with experimental data is obtained. In both the pipe flow and the boundary layer, under these inlet disturbances, Lambda vortex, hairpin packet, infant turbulent spot, mature turbulent spot, and hairpin forest occur naturally and sequentially. Passive scalar was also introduced in the simulation in a manner analogous to the color band experiment of Osborne Reynolds.

  5. Direct numerical simulation of laminar-turbulent flow over a flat plate at hypersonic flow speeds

    NASA Astrophysics Data System (ADS)

    Egorov, I. V.; Novikov, A. V.

    2016-06-01

    A method for direct numerical simulation of a laminar-turbulent flow around bodies at hypersonic flow speeds is proposed. The simulation is performed by solving the full three-dimensional unsteady Navier-Stokes equations. The method of calculation is oriented to application of supercomputers and is based on implicit monotonic approximation schemes and a modified Newton-Raphson method for solving nonlinear difference equations. By this method, the development of three-dimensional perturbations in the boundary layer over a flat plate and in a near-wall flow in a compression corner is studied at the Mach numbers of the free-stream of M = 5.37. In addition to pulsation characteristic, distributions of the mean coefficients of the viscous flow in the transient section of the streamlined surface are obtained, which enables one to determine the beginning of the laminar-turbulent transition and estimate the characteristics of the turbulent flow in the boundary layer.

  6. Radiotracers application to determine laminar flow at a pipe

    SciTech Connect

    Ramirez-Garcia, F.P.; Cortes-Islas, E. )

    1988-06-01

    To measure gas flow in a gas venting line in an Oil Refinery the method of two points and iodine-131 labelled methyl iodide molecule was used. Forty-four complete sets of data were obtained corresponding to measurements performed in the gas venting line. Conditions of laminar and semi-turbulent flow were found. In the case of laminar flow measurement it was necessary to construct an injection equipment, consisting of a tubing with five slits to simultaneously inject the tracer into the gas stream at different points. For the laminar flow is obtained the transversal distribution of fluid velocities. The mean flow of the gas transported by the line under study was determined, and its standard deviation was calculated.

  7. High-flaps for natural laminar flow airfoils

    NASA Technical Reports Server (NTRS)

    Morgan, Harry L.

    1986-01-01

    A review of the NACA and NASA low-drag airfoil research is presented with particular emphasis given to the development of mechanical high-lift flap systems and their application to general aviation aircraft. These flap systems include split, plain, single-slotted, and double-slotted trailing-edge flaps plus slat and Krueger leading-edge devices. The recently developed continuous variable-camber high-lift mechanism is also described. The state-of-the-art of theoretical methods for the design and analysis of multi-component airfoils in two-dimensional subsonic flow is discussed, and a detailed description of the Langley MCARF (Multi-Component Airfoil Analysis Program) computer code is presented. The results of a recent effort to design a single- and double-slotted flap system for the NASA high speed natural laminar flow (HSNLF) (1)-0213 airfoil using the MCARF code are presented to demonstrate the capabilities and limitations of the code.

  8. An Approach to the Constrained Design of Natural Laminar Flow Airfoils

    NASA Technical Reports Server (NTRS)

    Green, Bradford E.

    1997-01-01

    A design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. After obtaining the initial airfoil's pressure distribution at the design lift coefficient using an Euler solver coupled with an integral turbulent boundary layer method, the calculations from a laminar boundary layer solver are used by a stability analysis code to obtain estimates of the transition location (using N-Factors) for the starting airfoil. A new design method then calculates a target pressure distribution that will increase the laminar flow toward the desired amount. An airfoil design method is then iteratively used to design an airfoil that possesses that target pressure distribution. The new airfoil's boundary layer stability characteristics are determined, and this iterative process continues until an airfoil is designed that meets the laminar flow requirement and as many of the other constraints as possible.

  9. Computational Analysis of the G-III Laminar Flow Glove

    NASA Technical Reports Server (NTRS)

    Malik, Mujeeb R.; Liao, Wei; Lee-Rausch, Elizabeth M.; Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan

    2011-01-01

    Under NASA's Environmentally Responsible Aviation Project, flight experiments are planned with the primary objective of demonstrating the Discrete Roughness Elements (DRE) technology for passive laminar flow control at chord Reynolds numbers relevant to transport aircraft. In this paper, we present a preliminary computational assessment of the Gulfstream-III (G-III) aircraft wing-glove designed to attain natural laminar flow for the leading-edge sweep angle of 34.6deg. Analysis for a flight Mach number of 0.75 shows that it should be possible to achieve natural laminar flow for twice the transition Reynolds number ever achieved at this sweep angle. However, the wing-glove needs to be redesigned to effectively demonstrate passive laminar flow control using DREs. As a by-product of the computational assessment, effect of surface curvature on stationary crossflow disturbances is found to be strongly stabilizing for the current design, and it is suggested that convex surface curvature could be used as a control parameter for natural laminar flow design, provided transition occurs via stationary crossflow disturbances.

  10. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, Mike; Banks, Dan; Garzon, Andres; Matisheck, Jason

    2014-01-01

    IR thermography was used to characterize the transition front on a S-NLF test article at chord Reynolds numbers in excess of 30 million Changes in transition due to Mach number, Reynolds number, and surface roughness were investigated - Regions of laminar flow in excess of 80% chord at chord Reynolds numbers greater than 14 million IR thermography clearly showed the transition front and other flow features such as shock waves impinging upon the surface A series of parallel oblique shocks, of yet unknown origin, were found to cause premature transition at higher Reynolds numbers. NASA has a current goal to eliminate barriers to the development of practical supersonic transport aircraft Drag reduction through the use of supersonic natural laminar flow (S-NLF) is currently being explored as a means of increasing aerodynamic efficiency - Tradeoffs work best for business jet class at M<2 Conventional high-speed designs minimize inviscid drag at the expense of viscous drag - Existence of strong spanwise pressure gradient leads to crossflow (CF) while adverse chordwise pressure gradients amplifies and Tollmien-Schlichting (TS) instabilities Aerion Corporation has patented a S-NLF wing design (US Patent No. 5322242) - Low sweep to control CF - dp/dx < 0 on both wing surfaces to stabilize TS - Thin wing with sharp leading edge to minimize wave drag increase due to reduction in sweep NASA and Aerion have partnered to study S-NLF since 1999 Series of S-NLF experiments flown on the NASA F-15B research test bed airplane Infrared (IR) thermography used to characterize transition - Non-intrusive, global, good spatial resolution - Captures significant flow features well

  11. Roughness and waviness requirements for laminar flow surfaces

    NASA Technical Reports Server (NTRS)

    Obara, Clifford J.; Holmes, Bruce J.

    1986-01-01

    Many modern metal and composite airframe manufacturing techniques can provide surface smoothness which is compatible with natural laminar flow (NLF) requirements. An important consideration is manufacturing roughness of the surface in the form of steps and gaps perpendicular to the freestream. The principal challenge to the design and manufacture of laminar flow surfaces today appears to be in the installation of leading-edge panels on wing, nacelle, and empennage surfaces. A similar challenge is in the installation of access panels, doors, windows, fuselage noses, and engine nacelles. Past work on roughness and waviness manufacturing tolerances and comparisons with more recent experiments are reviewed.

  12. Application of stability theory to laminar flow control

    NASA Technical Reports Server (NTRS)

    Hefner, J. N.; Bushnell, D. M.

    1979-01-01

    The paper summarizes the state-of-the-art for application of stability theory to laminar flow control using suction, wall temperature and/or favorable pressure gradient ('natural laminar flow'). Discussions include current LFC problem areas requiring stability analyses, methods of relating stability theory to transition with results from data and theory comparisons available thus far, and a summary of low disturbance data available for theory calibration on swept wings. Critical issues highlighted are problems peculiar to suction LFC on high performance transonic wings and application of the e-to-the-n-power method to both low and high speed flight data.

  13. Progress Toward Efficient Laminar Flow Analysis and Design

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.; Campbell, Matthew L.; Streit, Thomas

    2011-01-01

    A multi-fidelity system of computer codes for the analysis and design of vehicles having extensive areas of laminar flow is under development at the NASA Langley Research Center. The overall approach consists of the loose coupling of a flow solver, a transition prediction method and a design module using shell scripts, along with interface modules to prepare the input for each method. This approach allows the user to select the flow solver and transition prediction module, as well as run mode for each code, based on the fidelity most compatible with the problem and available resources. The design module can be any method that designs to a specified target pressure distribution. In addition to the interface modules, two new components have been developed: 1) an efficient, empirical transition prediction module (MATTC) that provides n-factor growth distributions without requiring boundary layer information; and 2) an automated target pressure generation code (ATPG) that develops a target pressure distribution that meets a variety of flow and geometry constraints. The ATPG code also includes empirical estimates of several drag components to allow the optimization of the target pressure distribution. The current system has been developed for the design of subsonic and transonic airfoils and wings, but may be extendable to other speed ranges and components. Several analysis and design examples are included to demonstrate the current capabilities of the system.

  14. Flight tests of a supersonic natural laminar flow airfoil

    NASA Astrophysics Data System (ADS)

    Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.

    2015-06-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80 inch (203 cm) chord and 40 inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The test article was designed with a leading edge sweep of effectively 0° to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate that the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, was similar to that of subsonic natural laminar flow wings.

  15. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Banks, Daniel W.; Garzon, G. A.; Matisheck, J. R.

    2015-01-01

    A flight-test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane (McDonnell Douglas Corporation, now The Boeing Company, Chicago, Illinois). The test article was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.

  16. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.

    2014-01-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The wing was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.

  17. Computational Optimization of a Natural Laminar Flow Experimental Wing Glove

    NASA Technical Reports Server (NTRS)

    Hartshom, Fletcher

    2012-01-01

    Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.

  18. Application of superplastically formed and diffusion bonded aluminum to a laminar flow control leading edge

    NASA Technical Reports Server (NTRS)

    Goodyear, M. D.

    1987-01-01

    NASA sponsored the Aircraft Energy Efficiency (ACEE) program in 1976 to develop technologies to improve fuel efficiency. Laminar flow control was one such technology. Two approaches for achieving laminar flow were designed and manufactured under NASA sponsored programs: the perforated skin concept used at McDonnell Douglas and the slotted design used at Lockheed-Georgia. Both achieved laminar flow, with the slotted design to a lesser degree (JetStar flight test program). The latter design had several fabrication problems concerning springback and adhesive flow clogging the air flow passages. The Lockheed-Georgia Company accomplishments is documented in designing and fabricating a small section of a leading edge article addressing a simpler fabrication method to overcome the previous program's manufacturing problems, i.e., design and fabrication using advanced technologies such as diffusion bonding of aluminum, which has not been used on aerospace structures to date, and the superplastic forming of aluminum.

  19. Method and apparatus for detecting laminar flow separation and reattachment

    NASA Technical Reports Server (NTRS)

    Stack, John P. (Inventor); Mangalam, Sivaramakrishnan M. (Inventor)

    1989-01-01

    The invention is a method and apparatus for detecting laminar flow separation and flow reattachment of a fluid stream by simultaneously sensing and comparing a plurality of output signals, each representing the dynamic shear stress at one of an equal number of sensors spaced along a straight line on the surface of an airfoil or the like that extends parallel to the fluid stream. The output signals are concurrently compared to detect the sensors across which a reversal in phase of said output signal occurs, said detected sensors being in the region of laminar separation or reattachment. The novelty in this invention is the discovery and use of the phase reversal phenomena to detect laminar separation and attachment of a fluid stream from any surface such as an airfoil supported therein.

  20. Laminar/turbulent oscillating flow in circular pipes

    NASA Astrophysics Data System (ADS)

    Ahn, Kyung H.; Ibrahim, Mounir B.

    1992-12-01

    A two-dimensional oscillating flow analysis was conducted simulating the gas flow inside Stirling engine heat exchangers. Both laminar and turbulent oscillating pipe flow were investigated numerically for Re(max) = 1920 (Va = 80), 10,800 (Va = 272), 19,300 (Va = 272), and 60,800 (Va = 126). The results are compared with experimental results of previous investigators. Predictions of the flow regime are also checked by comparing velocity amplitudes and phase difference with those from laminar theory and quasi-steady profile. A high Reynolds number k-epsilon turbulence model was used for turbulent oscillating pipe flow. Finally, the performance of the k-epsilon model was evaluated to explore the applicability of quasi-steady turbulent models to unsteady oscillating flow analysis.

  1. Heat Transfer to Longitudinal Laminar Flow Between Cylinders

    NASA Technical Reports Server (NTRS)

    Sparrow, Ephraim M.; Loeffler, Albert L. Jr.; Hubbard, H. A.

    1960-01-01

    Consideration is given to the fully developed heat transfer characteristics for longitudinal laminar flow between cylinders arranged in an equilateral triangular array. The analysis is carried out for the condition of uniform heat transfer per unit length. Solutions are obtained for the temperature distribution, and from these, Nusselt numbers are derived for a wide range of spacing-to-diameter ratios. It is found that as the spacing ratio increases, so also does the wall-to-bulk temperature difference for a fixed heat transfer per unit length. Corresponding to a uniform surface temperature around the circumference of a cylinder, the circumferential variation of the local heat flux is computed. For spacing ratios of 1.5 - 2.0 and greater, uniform peripheral wall temperature and uniform peripheral heat flux are simultaneously achieved. A simplified analysis which neglects circumferential variations is also carried out, and the results are compared with those from the more exact formulation.

  2. Application of porous materials for laminar flow control

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1978-01-01

    Fairly smooth porous materials were elected for study Doweave; Fibermetal; Dynapore; and perforated titanium sheet. Factors examined include: surface smoothness; suction characteristics; porosity; surface impact resistance; and strain compatibility. A laminar flow control suction glove arrangement was identified with material combinations compatible with thermal expansion and structural strain.

  3. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, Alfred W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  4. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, A.W.

    1984-04-16

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

  5. The Prospects for Laminar Flow on Hypersonic Airplanes

    NASA Technical Reports Server (NTRS)

    Seiff, Alvin

    1958-01-01

    The factors which affect the extent of laminar flow on airplanes for hypersonic flight are discussed on the basis of the available data. Factors considered include flight Reynolds number, surface roughness, angle of attack, angle of leading-edge sweepback, and aerodynamic interference. Test data are presented for one complete configuration.

  6. Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces

    SciTech Connect

    Brauner, N.; Rovinsky, J.; Maron, D.M.

    1995-09-01

    The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the `flow monograms` describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the `interface monograms`, whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system `operational monogram`. The `operational monogram` enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop.

  7. F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Fischer, Michael C.

    1999-01-01

    The F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment was part of the NASA High-Speed Research Program. The goal of the experiment was to demonstrate extensive laminar flow, to validate computational fluid dynamics (CFD) codes and design methodology, and to establish laminar flow control design criteria. Topics include the flight test hardware and design, airplane modification, the pressure and suction distributions achieved, the laminar flow achieved, and the data analysis and code correlation.

  8. Laminar Flow Supersonic Wind Tunnel primary air injector

    NASA Technical Reports Server (NTRS)

    Smith, Brooke Edward

    1993-01-01

    This paper describes the requirements, design, and prototype testing of the flex-section and hinge seals for the Laminar Flow Supersonic Wind Tunnel Primary Injector. The supersonic atmospheric primary injector operates between Mach 1.8 and Mach 2.2 with mass-flow rates of 62 to 128 lbm/s providing the necessary pressure reduction to operate the tunnel in the desired Reynolds number (Re) range.

  9. Incomplete mixing and reactions in laminar shear flow

    NASA Astrophysics Data System (ADS)

    Paster, A.; Aquino, T.; Bolster, D.

    2015-07-01

    Incomplete mixing of reactive solutes is well known to slow down reaction rates relative to what would be expected from assuming perfect mixing. In purely diffusive systems, for example, it is known that small initial fluctuations in reactant concentrations can lead to reactant segregation, which in the long run can reduce global reaction rates due to poor mixing. In contrast, nonuniform flows can enhance mixing between interacting solutes. Thus, a natural question arises: Can nonuniform flows sufficiently enhance mixing to restrain incomplete mixing effects and, if so, under what conditions? We address this question by considering a specific and simple case, namely, a laminar pure shear reactive flow. Two solution approaches are developed: a Lagrangian random walk method and a semianalytical solution. The results consistently highlight that if shear effects in the system are not sufficiently strong, incomplete mixing effects initially similar to purely diffusive systems will occur, slowing down the overall reaction rate. Then, at some later time, dependent on the strength of the shear, the system will return to behaving as if it were well mixed, but represented by a reduced effective reaction rate.

  10. Boundary layer stability analysis of a natural laminar flow glove on the F-111 TACT airplane

    NASA Technical Reports Server (NTRS)

    Runyan, L. J.; Steers, L. L.

    1980-01-01

    A natural laminar flow airfoil has been developed as a part of the aircraft energy efficiency program. A NASA flight program incorporating this airfoil into partial wing gloves on the F-111 TACT airplane was scheduled to start in May, 1980. In support of this research effort, an extensive boundary layer stability analysis of the partial glove has been conducted. The results of that analysis show the expected effects of wing leading-edge sweep angle, Reynolds number, and compressibility on boundary layer stability and transition. These results indicate that it should be possible to attain on the order of 60% laminar flow on the upper surface and 50% laminar flow on the lower surface for sweep angles of at least 20 deg, chord Reynolds numbers of 25 x 10 to the 6th and Mach numbers from 0.81 to 0.85.

  11. An approach to the constrained design of natural laminar flow airfoils

    NASA Technical Reports Server (NTRS)

    Green, Bradford Earl

    1995-01-01

    A design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. After obtaining the initial airfoil's pressure distribution at the design lift coefficient using an Euler solver coupled with an integml turbulent boundary layer method, the calculations from a laminar boundary layer solver are used by a stability analysis code to obtain estimates of the transition location (using N-Factors) for the starting airfoil. A new design method then calculates a target pressure distribution that will increase the larninar flow toward the desired amounl An airfoil design method is then iteratively used to design an airfoil that possesses that target pressure distribution. The new airfoil's boundary layer stability characteristics are determined, and this iterative process continues until an airfoil is designed that meets the laminar flow requirement and as many of the other constraints as possible.

  12. Parametric study on laminar flow for finite wings at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Garcia, Joseph Avila

    1994-01-01

    Laminar flow control has been identified as a key element in the development of the next generation of High Speed Transports. Extending the amount of laminar flow over an aircraft will increase range, payload, and altitude capabilities as well as lower fuel requirements, skin temperature, and therefore the overall cost. A parametric study to predict the extent of laminar flow for finite wings at supersonic speeds was conducted using a computational fluid dynamics (CFD) code coupled with a boundary layer stability code. The parameters investigated in this study were Reynolds number, angle of attack, and sweep. The results showed that an increase in angle of attack for specific Reynolds numbers can actually delay transition. Therefore, higher lift capability, caused by the increased angle of attack, as well as a reduction in viscous drag, due to the delay in transition, can be expected simultaneously. This results in larger payload and range.

  13. Advanced stability analysis for laminar flow control

    NASA Technical Reports Server (NTRS)

    Orszag, S. A.

    1981-01-01

    Five classes of problems are addressed: (1) the extension of the SALLY stability analysis code to the full eighth order compressible stability equations for three dimensional boundary layer; (2) a comparison of methods for prediction of transition using SALLY for incompressible flows; (3) a study of instability and transition in rotating disk flows in which the effects of Coriolis forces and streamline curvature are included; (4) a new linear three dimensional instability mechanism that predicts Reynolds numbers for transition to turbulence in planar shear flows in good agreement with experiment; and (5) a study of the stability of finite amplitude disturbances in axisymmetric pipe flow showing the stability of this flow to all nonlinear axisymmetric disturbances.

  14. Enhanced mixing in laminar flows using ultrahydrophobic surfaces.

    PubMed

    Ou, Jia; Moss, Geoffrey R; Rothstein, Jonathan P

    2007-07-01

    Under laminar, microscale flow conditions, rapid mixing can be difficult to achieve. In these low Reynolds number flows, mixing rates are governed by molecular diffusion, and in the absence of enhanced mixing techniques, mixing lengths and residence times can be much longer than most applications will allow. A number of active mixing techniques have been developed to improve mixing; however, they can be complex to implement and expensive to fabricate. In this paper, we describe a passive mixing method that utilizes a series of ultrahydrophobic surfaces. Our previous experiments have demonstrated that a shear-free air-water interface supported between hydrophobic microridges results in large slip velocities along these ultrahydrophobic surfaces, and significant drag reduction. By aligning the microridges and therefore the air-water interface at an oblique angle to the flow direction, a secondary flow is generated, which is shown to efficiently stretch and fold the fluid elements and reduce the mixing length by more than an order of magnitude compared to that of a smooth microchannel. The designs of the ultrahydrophobic surfaces were optimized through experiments and numerical simulations. A Y-shaped channel was used to bring two streams of water together, one tagged with a fluorescent dye. A confocal microscope was used to measure fluorescence intensity and dye concentration. Quantitative agreement between the experiments and the numerical simulations was achieved for both the flow patterns and degree of mixing. Increasing the angle of the microridges was found to reduce the mixing length up to a critical angle of about 60 degrees , beyond which the mixing length was found to increase with further increases to the angle of the microridge. The mixing enhancement was found to be much less sensitive to changes in microridge width or separation. PMID:17677560

  15. Digital data acquisition and preliminary instrumentation study for the F-16 laminar flow control vehicle

    NASA Technical Reports Server (NTRS)

    Ostowari, Cyrus

    1992-01-01

    Preliminary studies have shown that maintenance of laminar flow through active boundary-layer control is viable. Current research activity at NASA Langley and NASA Dryden is utilizing the F-16XL-1 research vehicle fitted with a laminar-flow suction glove that is connected to a vacuum manifold in order to create and control laminar flow at supersonic flight speeds. This experimental program has been designed to establish the feasibility of obtaining laminar flow at supersonic speeds with highly swept wing and to provide data for computational fluid dynamics (CFD) code calibration. Flight experiments conducted as supersonic speeds have indicated that it is possible to achieve laminar flow under controlled suction at flight Mach numbers greater than 1. Currently this glove is fitted with a series of pressure belts and flush mounted hot film sensors for the purpose of determining the pressure distributions and the extent of laminar flow region past the stagnation point. The present mode of data acquisition relies on out-dated on board multi-channel FM analogue tape recorder system. At the end of each flight, the analogue data is digitized through a long laborious process and then analyzed. It is proposed to replace this outdated system with an on board state-of-the-art digital data acquisition system capable of a through put rate of up to 1 MegaHertz. The purpose of this study was three-fold: (1) to develop a simple algorithm for acquiring data via 2 analogue-to-digital convertor boards simultaneously (total of 32 channels); (2) to interface hot-film/wire anemometry instrumentation with a PCAT type computer; and (3) to characterize the frequency response of a flush mounted film sensor. A brief description of each of the above tasks along with recommendations are given.

  16. The pulsating laminar flow in a rectangular channel

    NASA Astrophysics Data System (ADS)

    Valueva, E. P.; Purdin, M. S.

    2015-11-01

    The finite difference method is used to solve the task of the developed pulsating laminar flow in a rectangular channel. The optimum of the difference scheme parameters was determined. Data on the amplitude and phase of the longitudinal velocity oscillations, the hydraulic and friction drag coefficients, the shear stress on the wall have been obtained. Using the dimensionless value of the frequency pulsations two characteristic regimes — the quasisteady-state regime and the high-frequency regime have been identified. In the quasi-steady-state regime, the values of all hydrodynamic quantities at each instant of time correspond to the velocity value averaged over the cross section at a given moment of time. It is shown that in the high-frequency regime, the dependences on the dimensionless oscillation frequency of oscillating components of hydrodynamic quantities are identical for rectilinear channels with a different cross-sectional form (round pipe, flat and a rectangular channels). The effect of the aspect ratio of the rectangular channel sides channel on the pulsating flow dynamics has been analyzed.

  17. Laminar-flow heat transfer downstream from U-bends

    SciTech Connect

    Abdelmessih, A.N

    1987-01-01

    The laminar-flow heat transfer downstream from the unheated, vertical bends in horizontal U-tubes with electrically heated straight tube sections was investigated. Four U-tubes with curvature ratios of 4.84, 7.66, 12.35, and 25.36 were studied. Distilled water and almost-pure ethylene glycol solutions (water content 1 to 5%) were the test fluids. For each test section, local axial and peripheral wall temperatures were measured, and the local peripheral heat-transfer coefficients at the various locations were calculated. The experiments covered the local bulk Reynolds number range of 120 to 2500. The local bulk Prandtl number varied between 4 and 110, while the Grashof number ranged from 2500 to 1,130,000. The uniform wall heat flux ranged from 900 to 4230 Btu/hr.sq.ft (3.12 to 13.33 KW/sq.m.). This investigation permitted a better understanding of the interaction of the primary, secondary, and tertiary flow patterns. Also, a correlation was developed that predicts the heat-transfer coefficient downstream from an unheated U-bend and that can be extended to straight tubes.

  18. Laminar and turbulent nozzle-jet flows and their acoustic near-field

    SciTech Connect

    Bühler, Stefan; Obrist, Dominik; Kleiser, Leonhard

    2014-08-15

    We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re{sub D} = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.

  19. Ground vibration test of the laminar flow control JStar airplane

    NASA Technical Reports Server (NTRS)

    Kehoe, M. W.; Cazier, F. W., Jr.; Ellison, J. F.

    1985-01-01

    A ground vibration test was conducted on a Lockheed JetStar airplane that had been modified for the purpose of conducting laminar flow control experiments. The test was performed prior to initial flight flutter tests. Both sine-dwell and single-point-random excitation methods were used. The data presented include frequency response functions and a comparison of mode frequencies and mode shapes from both methods.

  20. Impact of pre-transplant pulmonary infection developed in horizontal laminar flow unit on the outcome of subsequent allogeneic hematopoietic stem cell transplantation

    PubMed Central

    He, Gan-Lin; Chang, Ying-Jun; Xu, Lan-Ping; Zhang, Xiao-Hui; Wang, Yu; Liu, Kai-Yan

    2016-01-01

    Background So far, there is very little literature on how pre-transplant pulmonary infection developed in horizontal laminar flow unit (HLFU) affects outcomes of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Methods A retrospective analysis was performed on allo-HSCT recipients who were diagnosed with pre-transplant pulmonary infection developed in HLFU between January 2012 and December 2012. Various tests were analyzed to evaluate the overall survival (OS) and pulmonary infection rate after allo-HSCT. Results Among 317 patients who received allo-HSCT from related donors, 7 cases of human leukocyte antigen (HLA)-haploidentical transplantation reported a fever, cough, and other symptoms before transplantation. Chest radiography findings showed pulmonary infection, and the C-reactive protein (CRP) level was higher than normal, which confirmed pulmonary infection (incidence rate 2.21%). The Breslow test suggested that the early survival rate was lower in the group with pre-transplant pulmonary infection than in the group without pre-transplant pulmonary infection (OS: 28.4 vs. 42.4 months; P=0.023); the early survival rate was lower in patients with a pulmonary infection accompanied by bilateral pleural effusion than in patients without pleural effusion (OS: 1.5 vs. 36.3 months; P=0.010). In the first month after transplantation, the difference in the CD4CD45RO+CD45RA- and CD4CD45RO-CD45RA+ between the groups with and without pre-transplant pulmonary infection was statistically significant (P<0.05). Patients with pre-transplant pulmonary infection who survived >3 years had a higher rate of pulmonary infection in the first 2 months after allo-HSCT than those without pre-transplant pulmonary infection [100% (5/5 patients) vs. 38.1% (118/310); χ2=5.542, P=0.019]. Conclusions Development of pre-transplant pulmonary infection in the HLFU in patients with hematological malignancies who receive HLA-haploidentical HSCT is associated with an increased risk

  1. Acoustic effects on profile drag of a laminar flow airfoil

    NASA Astrophysics Data System (ADS)

    Shearin, John G.; Jones, Michael G.; Baals, Robert A.

    1987-09-01

    A two-dimensional laminar flow airfoil (NLF-0414) was subjected to high-intensity sound (pure tones and white noise) over a frequency range of 2 to 5 kHz, while immersed in a flow of 240 ft/sec (Rn of 3 million) in a quiet flow facility. Using a wake-rake, wake dynamic pressures were determined and the deficit in momentum was used to calculate a two dimensional drag coefficient. Significant increases in drag were observed when the airfoil was subjected to the high intensity sound at critical sound frequencies. However, the increased drag was not accompanied by movement of the transition location.

  2. Natural laminar flow wing for supersonic conditions: Wind tunnel experiments, flight test and stability computations

    NASA Astrophysics Data System (ADS)

    Vermeersch, Olivier; Yoshida, Kenji; Ueda, Yoshine; Arnal, Daniel

    2015-11-01

    In the framework of next supersonic transport airplane generation, the Japan Aerospace eXploration Agency (JAXA) has developed a new natural laminar flow highly swept wing. The design has been experimentally validated firstly in a supersonic wind tunnel and secondly accomplishing flight test. These experimental data were then analyzed and completed by numerical stability analyses in a joint research program between Onera and JAXA. At the design condition, for a Mach number M=2 at an altitude of h=18 km, results have confirmed the laminar design of the wing due to a strong attenuation of cross-flow instabilities ensuring an extended laminar zone. As the amplification of disturbances inside the boundary layer and transition process is very sensitive to external parameters, the impact of wall roughness of the models and the influence of Reynolds number on transition process have been carefully analyzed.

  3. Feasibility and benefits of laminar flow control on supersonic cruise airplanes

    NASA Technical Reports Server (NTRS)

    Powell, A. G.; Agrawal, S.; Lacey, T. R.

    1989-01-01

    An evaluation was made of the applicability and benefits of laminar flow control (LFC) technology to supersonic cruise airplanes. Ancillary objectives were to identify the technical issues critical to supersonic LFC application, and to determine how those issues can be addressed through flight and wind-tunnel testing. Vehicle types studied include a Mach 2.2 supersonic transport configuration, a Mach 4.0 transport, and two Mach 2-class fighter concepts. Laminar flow control methodologies developed for subsonic and transonic wing laminarization were extended and applied. No intractible aerodynamic problems were found in applying LFC to airplanes of the Mach 2 class, even ones of large size. Improvements of 12 to 17 percent in lift-drag ratios were found. Several key technical issues, such as contamination avoidance and excresence criteria were identified. Recommendations are made for their resolution. A need for an inverse supersonic wing design methodology is indicated.

  4. Biomimetic structures for fluid drag reduction in laminar and turbulent flows.

    PubMed

    Jung, Yong Chae; Bhushan, Bharat

    2010-01-27

    Biomimetics allows one to mimic nature to develop materials and devices of commercial interest for engineers. Drag reduction in fluid flow is one of the examples found in nature. In this study, nano, micro, and hierarchical structures found in lotus plant surfaces, as well as shark skin replica and a rib patterned surface to simulate shark skin structure were fabricated. Drag reduction efficiency studies on the surfaces were systematically carried out using water flow. An experimental flow channel was used to measure the pressure drop in laminar and turbulent flows, and the trends were explained in terms of the measured and predicted values by using fluid dynamics models. The slip length for various surfaces in laminar flow was also investigated based on the measured pressure drop. For comparison, the pressure drop for various surfaces was also measured using air flow. PMID:21386280

  5. Boundary Layer Theory. Part 1; Laminar Flows

    NASA Technical Reports Server (NTRS)

    Schlichting, H.

    1949-01-01

    The purpose of this presentation is to give you a survey of a field of aerodynamics which has for a number of years been attracting an ever growing interest. The subject is the theory of flows with friction, and, within that field, particularly the theory of friction layers, or boundary layers. As you know, a great many considerations of aerodynamics are based on the so-called ideal fluid, that is, the frictionless incompressible fluid. By neglect of compressibility and friction the extensive mathematical theory of the ideal fluid (potential theory) has been made possible.

  6. Model of Transition from Laminar to Turbulent Flow

    NASA Astrophysics Data System (ADS)

    Kanda, Hidesada

    2001-11-01

    For circular pipe flows, a model of transition from laminar to turbulent flow has already been proposed and the minimum critical Reynolds number of approximately 2040 was obtained (Kanda, 1999). In order to prove the validity of the model, another verification is required. Thus, for plane Poiseuille flow, results of previous investigations were studied, focusing on experimental data on the critical Reynolds number Rc, the entrance length, and the transition length. Consequently, concerning the natural transition, it was confirmed from the experimental data that (i) the transition occurs in the entrance region, (ii) Rc increases as the contraction ratio in the inlet section increases, and (iii) the minimum Rc is obtained when the contraction ratio is the smallest or one, and there is no-bellshaped entrance or straight parallel plates. Its value exists in the neighborhood of 1300, based on the channel height and the average velocity. Although, for Hagen-Poiseuille flow, the minimum Rc is approximately 2000, based on the pipe diameter and the average velocity, there seems to be no significant difference in the transition from laminar to turbulent flow between Hagen-Poiseuille flow and plane Poiseuille flow (Kanda, 2001). Rc is determined by the shape of the inlet. Kanda, H., 1999, Proc. of ASME Fluids Engineering Division - 1999, FED-Vol. 250, pp. 197-204. Kanda, H., 2001, Proc. of ASME Fluids Engineering Division - 2001.

  7. Characteristics of electrohydrodynamic roll structures in laminar planar Couette flow

    NASA Astrophysics Data System (ADS)

    Kourmatzis, Agisilaos; Shrimpton, John S.

    2016-02-01

    The behaviour of an incompressible dielectric liquid subjected to a laminar planar Couette flow with unipolar charge injection is investigated numerically in two dimensions. The computations show new morphological characteristics of roll structures that arise in this forced electro-convection problem. The charge and velocity magnitude distributions between the two parallel electrodes are discussed as a function of the top wall velocity and the EHD Rayleigh number, T for the case of strong charge injection. A wide enough parametric space is investigated such that the observed EHD roll structures progress through three regimes. These regimes are defined by the presence of a single or double-roll free convective structure as observed elsewhere (Vazquez et al 2008 J. Phys. D 41 175303), a sheared or stretched roll structure, and finally by a regime where the perpendicular velocity gradient is sufficient to prevent the generation of a roll. These three regimes have been delineated as a function of the wall to ionic drift velocity {{U}\\text{W}}/κ E , and the T number. In the stretched regime, an increase in {{U}\\text{W}}/κ E can reduce charge and momentum fluctuations whilst in parallel de-stratify charge in the region between the two electrodes. The stretched roll regime is also characterised by a substantial influence of {{U}\\text{W}}/κ E on the steady development time, however in the traditional non-stretched roll structure regime, no influence of {{U}\\text{W}}/κ E on the development time is noted.

  8. Natural laminar flow experiments on modern airplane surfaces

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Obara, C. J.; Yip, L. P.

    1984-01-01

    Flight and wind-tunnel natural laminar flow experiments have been conducted on various lifting and nonlifting surfaces of several airplanes at unit Reynolds numbers between 0.63 x 10 to the 6th power/ft and 3.08 x 10 to the 6th power/ft, at Mach numbers from 0.1 to 0.7, and at lifting surface leading-edge sweep angles from 0 deg to 63 deg. The airplanes tested were selected to provide relatively stiff skin conditions, free from significant roughness and waviness, on smooth modern production-type airframes. The observed transition locations typically occurred downstream of the measured or calculated pressure peak locations for the test conditions involved. No discernible effects on transition due to surface waviness were observed on any of the surfaces tested. None of the measured heights of surface waviness exceeded the empirically predicted allowable surface waviness. Experimental results consistent with spanwise contamination criteria were observed. Large changes in flight-measured performance and stability and control resulted from loss of laminar flow by forced transition. Rain effects on the laminar boundary layer caused stick-fixed nose-down pitch-trim changes in two of the airplanes tested. No effect on transition was observed for flight through low-altitude liquid-phase clouds. These observations indicate the importance of fixed-transition tests as a standard flight testing procedure for modern smooth airframes.

  9. Natural laminar flow and airplane stability and control

    NASA Technical Reports Server (NTRS)

    Vandam, Cornelis P.

    1986-01-01

    Location and mode of transition from laminar to turbulent boundary layer flow have a dominant effect on the aerodynamic characteristics of an airfoil section. The influences of these parameters on the sectional lift and drag characteristics of three airfoils are examined. Both analytical and experimental results demonstrate that when the boundary layer transitions near the leading edge as a result of surface roughness, extensive trailing-edge separation of the turbulent boundary layer may occur. If the airfoil has a relatively sharp leading-edge, leading-edge stall due to laminar separation can occur after the leading-edge suction peak is formed. These two-dimensional results are used to examine the effects of boundary layer transition behavior on airplane longitudinal and lateral-directional stability and control.

  10. Frost Growth and Densification in Laminar Flow Over Flat Surfaces

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2011-01-01

    One-dimensional frost growth and densification in laminar flow over flat surfaces has been theoretically investigated. Improved representations of frost density and effective thermal conductivity applicable to a wide range of frost circumstances have been incorporated. The validity of the proposed model considering heat and mass diffusion in the frost layer is tested by a comparison of the predictions with data from various investigators for frost parameters including frost thickness, frost surface temperature, frost density and heat flux. The test conditions cover a range of wall temperature, air humidity ratio, air velocity, and air temperature, and the effect of these variables on the frost parameters has been exemplified. Satisfactory agreement is achieved between the model predictions and the various test data considered. The prevailing uncertainties concerning the role air velocity and air temperature on frost development have been elucidated. It is concluded that that for flat surfaces increases in air velocity have no appreciable effect on frost thickness but contribute to significant frost densification, while increase in air temperatures results in a slight increase the frost thickness and appreciable frost densification.

  11. Formation of a laminar electron flow for 300 GHz high-power pulsed gyrotron

    SciTech Connect

    Yamaguchi, Yuusuke; Tatematsu, Yoshinori; Saito, Teruo; Ikeda, Ryosuke; Mudiganti, Jagadish C.; Ogawa, Isamu; Idehara, Toshitaka

    2012-11-15

    This paper describes the design of a triode magnetron injection gun for use in a 200 kW, 300 GHz gyrotron. As power and frequency increase, the performance of the gyrotron becomes quite sensitive to the quality of the electron beam. Formation of a laminar electron flow is essential for the realization of a high quality beam with a small velocity spread. In this study, a new method is developed for a quantitative evaluation of the laminarity and is applied to optimize the electrode design. The laminarity depends not only on conventional design parameters such as the cathode slant angle but also on the spatial distribution of the electric field along the beam trajectory. In the optimized design, the velocity pitch factors, {alpha}, larger than 1.2 are obtained at 65 kV, 10 A with spreads, {Delta}{alpha}, less than 5%.

  12. Formation of a laminar electron flow for 300 GHz high-power pulsed gyrotron

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuusuke; Tatematsu, Yoshinori; Saito, Teruo; Ikeda, Ryosuke; Mudiganti, Jagadish C.; Ogawa, Isamu; Idehara, Toshitaka

    2012-11-01

    This paper describes the design of a triode magnetron injection gun for use in a 200 kW, 300 GHz gyrotron. As power and frequency increase, the performance of the gyrotron becomes quite sensitive to the quality of the electron beam. Formation of a laminar electron flow is essential for the realization of a high quality beam with a small velocity spread. In this study, a new method is developed for a quantitative evaluation of the laminarity and is applied to optimize the electrode design. The laminarity depends not only on conventional design parameters such as the cathode slant angle but also on the spatial distribution of the electric field along the beam trajectory. In the optimized design, the velocity pitch factors, α, larger than 1.2 are obtained at 65 kV, 10 A with spreads, Δα, less than 5%.

  13. Expanding the Natural Laminar Flow Boundary for Supersonic Transports

    NASA Technical Reports Server (NTRS)

    Lynde, Michelle N.; Campbell, Richard L.

    2016-01-01

    A computational design and analysis methodology is being developed to design a vehicle that can support significant regions of natural laminar flow (NLF) at supersonic flight conditions. The methodology is built in the CDISC design module to be used in this paper with the flow solvers Cart3D and USM3D, and the transition prediction modules BLSTA3D and LASTRAC. The NLF design technique prescribes a target pressure distribution for an existing geometry based on relationships between modal instability wave growth and pressure gradients. The modal instability wave growths (both on- and off-axes crossflow and Tollmien-Schlichting) are balanced to produce a pressure distribution that will have a theoretical maximum NLF region for a given streamwise wing station. An example application is presented showing the methodology on a generic supersonic transport wingbody configuration. The configuration has been successfully redesigned to support significant regions of NLF (approximately 40% of the wing upper surface by surface area). Computational analysis predicts NLF with transition Reynolds numbers (ReT) as high as 36 million with 72 degrees of leading-edge sweep (?LE), significantly expanding the current boundary of ReT - ?LE combinations for NLF. This NLF geometry provides a total drag savings of 4.3 counts compared to the baseline wing-body configuration (approximately 5% of total drag). Off-design evaluations at near-cruise and low-speed, high-lift conditions are discussed, as well as attachment line contamination/transition concerns. This computational NLF design effort is a part of an ongoing cooperative agreement between NASA and JAXA researchers.

  14. Experimental investigation of flow instabilities in a laminar separation bubble

    NASA Astrophysics Data System (ADS)

    Simoni, D.; Ubaldi, M.; Zunino, P.

    2014-06-01

    The present paper reports the results of a detailed experimental study aimed at investigating the dynamics of a laminar separation bubble, from the origin of separation up to the breakdown to turbulence of the large scale coherent structures generated as a consequence of the Kelvin-Helmholtz instability process. Measurements have been performed along a flat plate installed within a double contoured test section, designed to produce an adverse pressure gradient typical of Ultra-High-Lift turbine blade profiles, which induces the formation of a laminar separation bubble at low Reynolds number condition. Measurements have been carried out by means of complementary techniques: hot-wire (HW) anemometry, Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV). The high accuracy 2-dimensional LDV results allow investigating reverse flow magnitude and both Reynolds normal and shear stress distributions along the separated flow region, while the high frequency response of the HW anemometer allows analyzing the amplification process of flow oscillations induced by instability mechanisms. PIV results complement the flow field analysis providing information on the generation and evolution of the large scale coherent structures shed as a consequence of the separated shear layer roll-up, through instantaneous velocity vector maps. The simultaneous analysis of the data obtained by means of the different measuring techniques allows an in depth view of the instability mechanisms involved in the transition/reattachment processes of the separated shear layer.

  15. Oscillating laminar electrokinetic flow in infinitely extended rectangular microchannels.

    PubMed

    Yang, J; Bhattacharyya, A; Masliyah, J H; Kwok, D Y

    2003-05-01

    This paper has addressed analytically the problem of laminar flow in microchannels with rectangular cross-section subjected to a time-dependent sinusoidal pressure gradient and a sinusoidal electric field. The analytical solution has been determined based on the Debye-Hückel approximation of a low surface potential at the channel wall. We have demonstrated that Onsager's principle of reciprocity is valid for this problem. Parametric studies of streaming potential have shown the dependence of the electroviscous effect not only on the Debye length, but also on the oscillation frequency and the microchannel width. Parametric studies of electroosmosis demonstrate that the flow rate decreases due to an increase in frequency. The obtained solutions for both the streaming potential and electroosmotic flows become those for flow between two parallel plates in the limit of a large aspect ratio. PMID:12725820

  16. Numerical simulation of laminar hypersonic flows about an ellipsoid

    NASA Astrophysics Data System (ADS)

    Riedelbauch, S.; Mueller, B.

    The laminar hypersonic flow about a double ellipsoid, which idealizes the nose and cockpit of a spacecraft, were numerically simulated. The calculation method solves the three dimensional thin layer Navier-Stokes equations in a conservative formulation on a surface oriented calculation grid using an implicit/explicit finite difference technique. The conservative formulation allows the correct calculation of embedded compression shocks, while the head wave was treated with a shock-fitting procedure. The calculated flow fields about the ellipsoid show shock-shock and shock-boundary layer interactions in connection with separated flow. Wall flow lines and heat transfer agree qualitatively very well with film-of-oil and thermographic pictures.

  17. Aircraft energy efficiency laminar flow control wing design study

    NASA Technical Reports Server (NTRS)

    Bonner, T. F., Jr.; Pride, J. D., Jr.; Fernald, W. W.

    1977-01-01

    An engineering design study was performed in which laminar flow control (LFC) was integrated into the wing of a commercial passenger transport aircraft. A baseline aircraft configuration was selected and the wing geometry was defined. The LFC system, with suction slots, ducting, and suction pumps was integrated with the wing structure. The use of standard aluminum technology and advanced superplastic formed diffusion bonded titanium technology was evaluated. The results of the design study show that the LFC system can be integrated with the wing structure to provide a structurally and aerodynamically efficient wing for a commercial transport aircraft.

  18. Manufacturing tolerances for natural laminar flow airframe surfaces

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Obara, C. J.; Martin, G. L.; Domack, C. S.

    1985-01-01

    Published aircraft surface waviness and boundary layer transition measurements imply that currently achievable low levels of surface waviness are compatible with the natural laminar flow (NLF) requirements of business and commuter aircraft, in the cases of both metallic and composite material airframes. The primary challenge to the manufacture of NLF-compatible surfaces is two-dimensional roughness in the form of steps and gaps at structural joints. Attention is presently given to recent NASA investigations of manufacturing tolerance requirements for NLF surfaces, including flight experiment results.

  19. Laminar flow control leading edge systems in simulated airline service

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.; Maddalon, D. V.; Fisher, D. F.

    1988-01-01

    The feasibility of two candidate leading-edge flow laminarization systems applicable to airline service was tested using representative airline operational conditions with respect to air traffic, weather, and airport insect infestation. One of the systems involved a perforated Ti alloy suction surface with about 1 million 0.0025-in. diameter holes drilled by electron beam, as well as a Krueger-type flap that offered protective shielding against insect impingement; the other supplied surface suction through a slotted Ti alloy skin with 27 spanwise slots on the upper and lower surface.

  20. Predicting Transition from Laminar to Turbulent Flow over a Surface

    NASA Technical Reports Server (NTRS)

    Rajnarayan, Dev (Inventor); Sturdza, Peter (Inventor)

    2016-01-01

    A prediction of whether a point on a computer-generated surface is adjacent to laminar or turbulent flow is made using a transition prediction technique. A plurality of instability modes are obtained, each defined by one or more mode parameters. A vector of regressor weights is obtained for the known instability growth rates in a training dataset. For an instability mode in the plurality of instability modes, a covariance vector is determined. A predicted local instability growth rate at the point is determined using the covariance vector and the vector of regressor weights. Based on the predicted local instability growth rate, an n-factor envelope at the point is determined.

  1. Heat Transfer Effects on Laminar Velocity Profiles in Pipe Flow

    NASA Astrophysics Data System (ADS)

    Powell, Robert; Jenkins, Thomas

    1998-11-01

    Heat Transfer Effects on Laminar Velocity Profiles in Pipe Flow. Robert L. Powell, Thomas P. Jenkins Department of Chemical Engineering & Materials Science University of California, Davis, CA 95616 Using laser Doppler velocimetry, we have measured the axial velocity profiles for steady, pressure driven, laminar flow of water in a circular tube. The flow was established in a one inch diameter seamless glass tube. The entry length prior to the measuring section was over one hundred diameters. Reynolds numbers in the range 500-2000 were used. Under conditions where the temperature difference between the fluid and the surroundings differed by as little as 0.2C, we found significant asymmetries in the velocity profiles. This asymmetry was most pronounced in the vertical plane. Varying the temperature difference moved the velocity maximum either above or below the centerline depending upon whether the fluid was warmer or cooler than the room. These results compare well to existing calculations. Using the available theory and our experiments it is possible to identify parameter ranges where non-ideal conditions(not parabolic velocity profiles) will be found. Supported by the EMSP Program of DOE.

  2. Method and applications of fiber synthesis using laminar flow

    NASA Astrophysics Data System (ADS)

    Burns, Bradley Justin

    A Laminar Flow Reactor (LFR) using the principles of hydrodynamic focusing was created and used to fabricate functional composite polymer fibers. These fibers had the ability to conduct or serve as a carrier for singlet oxygen-generating molecules. Critical to the process was designing an easy-to-fabricate, inexpensive device and developing a repeatable method that made efficient use of the materials. The initial designs used a planar layout and hydrodynamically focused in only one dimension while later versions switched to a two-fluid concentric design. Modeling was undertaken and verified for the different device layouts. Three types of conductive particles were embedded in the formed polymer: silver, indium tin oxide (ITO) and polyaniline. The polymer was also used as a carrier to two singlet oxygen generating molecules: Methylene Blue (MB) and perylene. Both were effective in killing Bacillus thuringiensis but MB leached from the fiber into the tested cell suspension. Perylene, which is not water soluble, did not leach out and was just as effective as MB. Research that was performed at ITT is also presented. A critical need exists to detect, identify, quantify, locate, and track virus and toxin aerosols to provide early warning during both light and dark conditions. The solution presented is a remote sensing technology using seeding particles. Seeding particles developed during this program provide specific identification of threat cloud content. When introduced to the threat cloud the seeders will bind specifically to the analyte of interest and upon interrogation from a stand off laser source will fluoresce. The fluorescent signal is detected from a distance using a long-range microscope and collection optics that allow detection of low concentrations of threat aerosols.

  3. Experimental and numerical analyses of laminar boundary-layer flow stability over an aircraft fuselage forebody

    NASA Technical Reports Server (NTRS)

    Vijgen, Paul M. H. W.; Holmes, Bruce J.

    1987-01-01

    Fuelled by a need to reduce viscous drag of airframes, significant advances have been made in the last decade to design lifting surface geometries with considerable amounts of laminar flow. In contrast to the present understanding of practical limits for natural laminar flow over lifting surfaces, limited experimental results are available examining applicability of natural laminar flow over axisymmetric and nonaxisymmetric fuselage shapes at relevantly high length Reynolds numbers. The drag benefits attainable by realizing laminar flow over nonlifting aircraft components such as fuselages and nacelles are shown. A flight experiment to investigate transition location and transition mode over the forward fuselage of a light twin engine propeller driven airplane is examined.

  4. Lateral Diffusion of Bedload Transport under Laminar Flow

    NASA Astrophysics Data System (ADS)

    Ortiz, C. P.; Houssais, M.; Purohit, P. K.; Durian, D. J.; Jerolmack, D. J.

    2014-12-01

    Lateral sediment transport is a key momentum-exchange mechanism to model equilibrium channel geometry and channel bar evolution. We study sediment transport from a statistical mechanical point of view akin to Furbish et al. 2012. This approach holds promise for linking grain-scale motion to macroscopic transport, but there are few data to definitively develop and test such models. We study an experimental model river, composed of monodisperse acrylic spheres dispersed in silicon oil, driven by a layer of fluid under steady shear. We choose to drive fluid flow in the laminar regime (Re < 1) to suppress fluid turbulence and isolate granular and bed structure controls. We use a refractive-index-matched laser scanning technique to observe the motion of particles at the surface of the bed as well as the particle dynamics below the surface. We study how the probability distribution of displacements varies as a function of distance from the bed surface and as a function of distance to the channel center. In the streamwise direction, in agreement with Furbish et al. 2012, we find that the dynamics can be decomposed into an advection and a diffusion term. In the lateral direction, we find a competition between diffusion and an elastic-like interaction with the bed. We study this lateral stochastic process and find a need to introduce two parameters to quantify this competition. The first parameter describes the tendency for particles to reside near the center of the channel and the second parameter describes the kinetic energy distribution of the particles. We study how the requisite averaging scales and ensemble sizes to achieve statistically convergent parameters, and we explore how these parameters depend on the driving rate.

  5. Convective heat transfer characteristics of laminar pulsating pipe air flow

    NASA Astrophysics Data System (ADS)

    Habib, M. A.; Attya, A. M.; Eid, A. I.; Aly, A. Z.

    Heat transfer characteristics to laminar pulsating pipe flow under different conditions of Reynolds number and pulsation frequency were experimentally investigated. The tube wall of uniform heat flux condition was considered. Reynolds number was varied from 780 to 1987 while the frequency of pulsation ranged from 1 to 29.5Hz. The results showed that the relative mean Nusselt number is strongly affected by pulsation frequency while it is slightly affected by Reynolds number. The results showed enhancements in the relative mean Nusselt number. In the frequency range of 1-4Hz, an enhancement up to 30% (at Reynolds number of 1366 and pulsation frequency of 1.4Hz) was obtained. In the frequency range of 17-25Hz, an enhancement up to 9% (at Reynolds number of 1366 and pulsation frequency of 17.5Hz) was indicated. The rate of enhancement of the relative mean Nusselt number decreased as pulsation frequency increased or as Reynolds number increased. A reduction in relative mean Nusselt number occurred outside these ranges of pulsation frequencies. A reduction in relative mean Nusselt number up to 40% for pulsation frequency range of 4.1-17Hz and a reduction up to 20% for pulsation frequency range of 25-29.5Hz for Reynolds numbers range of 780-1987 were considered. This reduction is directly proportional to the pulsation frequency. Empirical dimensionless equations have been developed for the relative mean Nusselt number that related to Reynolds number (750

  6. A Method for the Constrained Design of Natural Laminar Flow Airfoils

    NASA Technical Reports Server (NTRS)

    Green, Bradford E.; Whitesides, John L.; Campbell, Richard L.; Mineck, Raymond E.

    1996-01-01

    A fully automated iterative design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. Drag reductions have been realized using the design method over a range of Mach numbers, Reynolds numbers and airfoil thicknesses. The thrusts of the method are its ability to calculate a target N-Factor distribution that forces the flow to undergo transition at the desired location; the target-pressure-N-Factor relationship that is used to reduce the N-Factors in order to prolong transition; and its ability to design airfoils to meet lift, pitching moment, thickness and leading-edge radius constraints while also being able to meet the natural laminar flow constraint. The method uses several existing CFD codes and can design a new airfoil in only a few days using a Silicon Graphics IRIS workstation.

  7. Numerical simulation of laminar flow in a curved duct

    SciTech Connect

    Lopez, A.R.; Oberkampf, W.L.

    1995-01-01

    This paper describes numerical simulations that were performed to study laminar flow through a square duct with a 900 bend. The purpose of this work was two fold. First, an improved understanding was desired of the flow physics involved in the generation of secondary vortical flows in three-dimensions. Second, adaptive gridding techniques for structured grids in three- dimensions were investigated for the purpose of determining their utility in low Reynolds number, incompressible flows. It was also of interest to validate the commercial computer code CFD-ACE. Velocity predictions for both non-adaptive and adaptive grids are compared with experimental data. Flow visualization was used to examine the characteristics of the flow though the curved duct in order to better understand the viscous flow physics of this problem. Generally, moderate agreement with the experimental data was found but shortcomings in the experiment were demonstrated. The adaptive grids did not produce the same level of accuracy as the non-adaptive grid with a factor of four more grid points.

  8. Predicting Transition from Laminar to Turbulent Flow over a Surface

    NASA Technical Reports Server (NTRS)

    Rajnarayan, Dev (Inventor); Sturdza, Peter (Inventor)

    2013-01-01

    A prediction of whether a point on a computer-generated surface is adjacent to laminar or turbulent flow is made using a transition prediction technique. A plurality of boundary-layer properties at the point are obtained from a steady-state solution of a fluid flow in a region adjacent to the point. A plurality of instability modes are obtained, each defined by one or more mode parameters. A vector of regressor weights is obtained for the known instability growth rates in a training dataset. For each instability mode in the plurality of instability modes, a covariance vector is determined, which is the covariance of a predicted local growth rate with the known instability growth rates. Each covariance vector is used with the vector of regressor weights to determine a predicted local growth rate at the point. Based on the predicted local growth rates, an n-factor envelope at the point is determined.

  9. Stability theory applications to laminar-flow control

    NASA Technical Reports Server (NTRS)

    Malik, Mujeeb R.

    1987-01-01

    In order to design Laminar Flow Control (LFC) configurations, reliable methods are needed for boundary-layer transition predictions. Among the available methods, there are correlations based upon R sub e, shape factors, Goertler number and crossflow Reynolds number. The most advanced transition prediction method is based upon linear stability theory in the form of the e sup N method which has proven to be successful in predicting transition in two- and three-dimensional boundary layers. When transition occurs in a low disturbance environment, the e sup N method provides a viable design tool for transition prediction and LFC in both 2-D and 3-D subsonic/supersonic flows. This is true for transition dominated by either TS, crossflow, or Goertler instability. If Goertler/TS or crossflow/TS interaction is present, the e sup N will fail to predict transition. However, there is no evidence of such interaction at low amplitudes of Goertler and crossflow vortices.

  10. Heat transport in laminar flow of erythrocyte suspensions.

    PubMed

    Ahuja, A S

    1975-07-01

    Measurements of thermal conductivity were made in laminar flow of dog and turkey erythrocyte suspensions in a stainless stell tube of about 1 mm ID. These measurements were independent of the shear rate, showing that the red cell motion relative to plasma in flowing blood had no effect on the heat transfer. Measurements of thermal conductivity were further made in suspensions of polystyrene spheres of 100 mum and were found to be dependent upon the shear rate. The Graetz solution corresponding to uniform wall temperature was used for determining the value of thermal conductivity in an apparatus calibrated with tap water. The overall accuracy of the results is within 10%. A model based on the particle rotation with the entrained fluid is proposed. It is pointed out that the diffusion of platelets, red cells, and possibly plasma proteins (such as fibrinogen) will be augmented if they happen to be in the hydrodynamic field of rotating erythrocytes. PMID:1150598

  11. Technology developments for laminar boundary layer control on subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.; Maddalon, D. V.; Fischer, M. C.

    1984-01-01

    An overview of laminar flow control (LFC) technology developments is presented, along with a description of NASA's broadened program concerning laminar flow concepts for commercial transports. Topics covered include developments in LFC airfoils, wing surface panels, and leading-edge systems, as well as the effects of high altitude ice particles and insect impacts. It is suggested that the electron beam perforated titanium surface is superior to the Dynapore surface. The Douglas LFC wing design, the Krueger flap, the Lockheed, and the Douglas leading-edge concepts are covered. Future research includes an evaluation of a hybrid LFC concept, which combines LFC suction in the leading-edge region with natural laminar flow over the wing box.

  12. On laminar separation at a corner point in transonic flow

    NASA Astrophysics Data System (ADS)

    Ruban, A. I.; Turkyilmaz, I.

    2000-11-01

    The separation of the laminar boundary layer from a convex corner on a rigid body contour in transonic flow is studied based on the asymptotic analysis of the Navier Stokes equations at large values of the Reynolds number. It is shown that the flow in a small vicinity of the separation point is governed, as usual, by strong interaction between the boundary layer and the inviscid part of the flow. Outside the interaction region the Kármán Guderley equation describing transonic inviscid flow admits a self-similar solution with the pressure on the body surface being proportional to the cubic root of the distance from the separation point. Analysis of the boundary layer driven by this pressure shows that as the interaction region is approached the boundary layer splits into two parts: the near-wall viscous sublayer and the main body of the boundary layer where the flow is locally inviscid. It is interesting that contrary to what happens in subsonic and supersonic flows, the displacement effect of the boundary layer is primarily due to the inviscid part. The contribution of the viscous sublayer proves to be negligible to the leading order. Consequently, the flow in the interaction region is governed by the inviscid inviscid interaction. To describe this flow one needs to solve the Kármán Guderley equation for the potential flow region outside the boundary layer; the solution in the main part of the boundary layer was found in an analytical form, thanks to which the interaction between the boundary layer and external flow can be expressed via the corresponding boundary condition for the Kármán Guderley equation. Formulation of the interaction problem involves one similarity parameter which in essence is the Kármán Guderley parameter suitably modified for the flow at hand. The solution of the interaction problem has been constructed numerically.

  13. Oscillating laminar electrokinetic flow in infinitely extended circular microchannels.

    PubMed

    Bhattacharyya, A; Masliyah, J H; Yang, J

    2003-05-01

    This article addresses the problem of oscillating laminar electrokinetic liquid flow in an infinitely extended circular microchannel. Based on the Debye-Huckel approximation for low surface potential at the channel wall, a complex variable approach is used to obtain an analytical solution for the flow. The complex counterparts of the flow rate and the current are linearly dependent on the pressure gradient and the external electric field. This property is used to show that Onsager's principle of reciprocity continues to be valid (involving the complex quantities) for the stated problem. During oscillating pressure-driven flow, the electroviscous effect for a given value of the normalized reciprocal electrical double-layer (EDL) thickness is observed to attain a maximum at a certain normalized frequency. In general, an increasing normalized frequency results in a reduction of EDL effects, leading to (i). a volumetric flow rate in the case of streaming potential approaching that predicted by the theory without EDL effects, and (ii). a reduction in the volumetric flow rate in the case of electroosmosis. PMID:12725819

  14. The effect of mako sharkskin on laminar flow separation

    NASA Astrophysics Data System (ADS)

    Bradshaw, Michael; Lang, Amy; Motta, Philip; Habegger, Maria; Hueter, Robert

    2013-11-01

    Many animals possess effective performance enhancing mechanisms, such as the denticles found on the skin of the shortfin mako shark (Isurus oxyrinchus). The shortfin mako, one of the fastest sharks on the planet, is covered by small, tooth-like scales that vary in flexibility over the body. Previous biological findings have shown that the scales increase in flexibility from the leading to trailing edge over the pectoral fin as well as on various sections of the body. It is believed that the scale bristling may provide a mechanism for flow separation control that leads to decreased drag and increased maneuverability. This study involved testing a left pectoral fin of a shortfin mako shark as well as a cylinder with a sharkskin specimen applied circumferentially in a water tunnel facility under static, laminar conditions. Digital Particle Image Velocimetry (DPIV) was used to characterize the flow over the surfaces. Various Reynolds numbers were tested for both configurations, as well as several AOAs for the pectoral fin. The flow over the fin and cylinder were compared to a painted fin and a smooth PVC cylinder, respectively. The study found that the shark scales do, in fact, help to control flow separation. However, in order for the scales to bristle and trap the reversing flow, a certain magnitude of reversed flow and shear is required. This phenomenon seems to be most effective at near stall conditions and at higher Reynolds numbers. Support from REU grant 1062611 is greatfully acknowledged.

  15. Aerodynamic study of a small wind turbine with emphasis on laminar and transition flows

    NASA Astrophysics Data System (ADS)

    Niculescu, M. L.; Cojocaru, M. G.; Crunteanu, D. E.

    2016-06-01

    The wind energy is huge but unfortunately, wind turbines capture only a little part of this enormous green energy. Furthermore, it is impossible to put multi megawatt wind turbines in the cities because they generate a lot of noise and discomfort. Instead, it is possible to install small Darrieus and horizontal-axis wind turbines with low tip speed ratios in order to mitigate the noise as much as possible. Unfortunately, the flow around this wind turbine is quite complex because the run at low Reynolds numbers. Therefore, this flow is usually a mixture of laminar, transition and laminar regimes with bubble laminar separation that is very difficult to simulate from the numerical point of view. Usually, transition and laminar regimes with bubble laminar separation are ignored. For this reason, this paper deals with laminar and transition flows in order to provide some brightness in this field.

  16. Air Flow in a Separating Laminar Boundary Layer

    NASA Technical Reports Server (NTRS)

    Schubauer, G B

    1936-01-01

    The speed distribution in a laminar boundary layer on the surface of an elliptic cylinder, of major and minor axes 11.78 and 3.98 inches, respectively, has been determined by means of a hot-wire anemometer. The direction of the impinging air stream was parallel to the major axis. Special attention was given to the region of separation and to the exact location of the point of separation. An approximate method, developed by K. Pohlhausen for computing the speed distribution, the thickness of the layer, and the point of separation, is described in detail; and speed-distribution curves calculated by this method are presented for comparison with experiment.

  17. Lecture Series "Boundary Layer Theory". Part I - Laminar Flows. Part 1; Laminar Flows

    NASA Technical Reports Server (NTRS)

    Schlichting, H.

    1949-01-01

    In the lecture series starting today author want to give a survey of a field of aerodynamics which has for a number of years been attracting an ever growing interest. The subject is the theory of flows with friction, and, within that field, particularly the theory of friction layers, or boundary layers. A great many considerations of aerodynamics are based on the ideal fluid, that is the frictionless incompressibility and fluid. By neglect of compressibility and friction the extensive mathematical theory of the ideal fluid, (potential theory) has been made possible. Actual liquids and gases satisfy the condition of incomressibility rather well if the velocities are not extremely high or, more accurately, if they are small in comparison with sonic velocity. For air, for instance, the change in volume due to compressibility amounts to about 1 percent for a velocity of 60 meters per second. The hypothesis of absence of friction is not satisfied by any actual fluid; however, it is true that most technically important fluids, for instance air and water, have a very small friction coefficient and therefore behave in many cases almost like the ideal frictionless fluid. Many flow phenomena, in particular most cases of lift, can be treated satisfactorily, - that is, the calculations are in good agreement with the test results, -under the assumption of frictionless fluid. However, the calculations with frictionless flow show a very serious deficiency; namely, the fact, known as d'Alembert's paradox, that in frictionless flow each body has zero drag whereas in actual flow each body experiences a drag of greater or smaller magnitude. For a long time the theory has been unable to bridge this gap between the theory of frictionless flow and the experimental findings about actual flow. The cause of this fundamental discrepancy is the viscosity which is neglected in the theory of ideal fluid; however, in spite of its extraordinary smallness it is decisive for the course of the flow

  18. Advanced natural laminar flow airfoil with high lift to drag ratio

    NASA Technical Reports Server (NTRS)

    Viken, Jeffrey K.; Pfenninger, Werner; Mcghee, Robert J.

    1986-01-01

    An experimental verification of a high performance natural laminar flow (NLF) airfoil for low speed and high Reynolds number applications was completed in the Langley Low Turbulence Pressure Tunnel (LTPT). Theoretical development allowed for the achievement of 0.70 chord laminar flow on both surfaces by the use of accelerated flow as long as tunnel turbulence did not cause upstream movement of transition with increasing chord Reynolds number. With such a rearward pressure recovery, a concave type deceleration was implemented. Two-dimensional theoretical analysis indicated that a minimum profile drag coefficient of 0.0026 was possible with the desired laminar flow at the design condition. With the three-foot chord two-dimensional model constructed for the LTPT experiment, a minimum profile drag coefficient of 0.0027 was measured at c sub l = 0.41 and Re sub c = 10 x 10 to the 6th power. The low drag bucket was shifted over a considerably large c sub l range by the use of the 12.5 percent chord trailing edge flap. A two-dimensional lift to drag ratio (L/D) was 245. Surprisingly high c sub l max values were obtained for an airfoil of this type. A 0.20 chort split flap with 60 deg deflection was also implemented to verify the airfoil's lift capabilities. A maximum lift coefficient of 2.70 was attained at Reynolds numbers of 3 and 6 million.

  19. Numerical Solutions of Supersonic and Hypersonic Laminar Compression Corner Flows

    NASA Technical Reports Server (NTRS)

    Hung, C. M.; MacCormack, R. W.

    1976-01-01

    An efficient time-splitting, second-order accurate, numerical scheme is used to solve the complete Navier-Stokes equations for supersonic and hypersonic laminar flow over a two-dimensional compression corner. A fine, exponentially stretched mesh spacing is used in the region near the wall for resolving the viscous layer. Good agreement is obtained between the present computed results and experimental measurement for a Mach number of 14.1 and a Reynolds number of 1.04 x 10(exp 5) with wedge angles of 15 deg, 18 deg, and 24 deg. The details of the pressure variation across the boundary layer are given, and a correlation between the leading edge shock and the peaks in surface pressure and heat transfer is observed.

  20. GASP cloud encounter statistics - Implications for laminar flow control flight

    NASA Technical Reports Server (NTRS)

    Jasperson, W. H.; Nastrom, G. D.; Davis, R. E.; Holdeman, J. D.

    1984-01-01

    The cloud observation archive from the NASA Global Atmospheric Sampling Program (GASP) is analyzed in order to derive the probability of cloud encounter at altitudes normally flown by commercial airliners, for application to a determination of the feasability of Laminar Flow Control (LFC) on long-range routes. The probability of cloud encounter is found to vary significantly with season. Several meteorological circulation features are apparent in the latitudinal distribution of cloud cover. The cloud encounter data are shown to be consistent with the classical midlatitude cyclone model with more clouds encountered in highs than in lows. Aircraft measurements of route-averaged time-in-clouds fit a gamma probability distribution model which is applied to estimate the probability of extended cloud encounter, and the associated loss of LFC effectiveness along seven high-density routes. The probability is demonstrated to be low.

  1. Computational wing design studies relating to natural laminar flow

    NASA Technical Reports Server (NTRS)

    Waggoner, Edgar G.

    1986-01-01

    Two research studies are described which directly relate to the application of natural laminar flow (NLF) technology to transonic transport-type wing planforms. Each involved using state-of-the-art computational methods to design three-dimensional wing contours which generate significant runs of favorable pressure gradients. The first study supported the Variable Sweep Transition Flight Experiment and involves design of a full-span glove which extends from the leading edge to the spoiler hinge line on the upper surface of an F-14 outer wing panel. A wing was designed computationally for a corporate transport aircraft in the second study. The resulting wing design generated favorable pressure gradients from the leading edge aft to the mid-chord on both upper and lower surfaces at the cruise design point. Detailed descriptions of the computational design approach are presented along with the various constraints imposed on each of the designs.

  2. Postfragmentation density function for bacterial aggregates in laminar flow

    NASA Astrophysics Data System (ADS)

    Byrne, Erin; Bortz, David M.; Dzul, Steve; Solomon, Michael; Younger, John

    2011-04-01

    The postfragmentation probability density of daughter flocs is one of the least well-understood aspects of modeling flocculation. We use three-dimensional positional data of Klebsiella pneumoniae bacterial flocs in suspension and the knowledge of hydrodynamic properties of a laminar flow field to construct a probability density function of floc volumes after a fragmentation event. We provide computational results which predict that the primary fragmentation mechanism for large flocs is erosion. The postfragmentation probability density function has a strong dependence on the size of the original floc and indicates that most fragmentation events result in clumps of one to three bacteria eroding from the original floc. We also provide numerical evidence that exhaustive fragmentation yields a limiting density inconsistent with the log-normal density predicted in the literature, most likely due to the heterogeneous nature of K. pneumoniae flocs. To support our conclusions, artificial flocs were generated and display similar postfragmentation density and exhaustive fragmentation.

  3. Characteristics of laminar flow past a sphere in uniform shear

    NASA Astrophysics Data System (ADS)

    Kim, Dongjoo; Choi, Hyungseok; Choi, Haecheon

    2005-10-01

    Numerical simulations are performed to investigate the characteristics of laminar flow past a sphere in uniform shear. The Reynolds numbers considered are Re =300, 425, and 480 based on the inlet center velocity uc and sphere diameter d. The nondimensional shear rate K of inlet uniform shear is varied from 0 to 0.15, where K =∣∇u∣d/uc (∣∇u∣) and ∣∇u∣ is the shear rate at inlet. For all Reynolds numbers investigated, the head of the hairpin vortex loop is always located on the high-velocity side in uniform shear. The flow maintains planar symmetry at Re =300. At Re =425 and 480, the temporal variation in the azimuthal angle of the hairpin vortex formation appearing in the uniform inlet flow is greatly reduced in uniform shear, but the flows still keep asymmetry for most inlet shear rates. However, in the cases of K =0.075 and 0.1, at Re =425, the flows become planar symmetric and their characteristics of formation and evolution of the hairpin vortex loops are different from those of asymmetric flows. In most cases, except the instances showing planar symmetry at Re =425, the Strouhal number and time-averaged drag and lift coefficients increase with increasing inlet shear rate. On the other hand, for K =0.075 and 0.1, showing planar symmetry at Re =425, three different vortices are shed in the wake, resulting in three distinct peak frequencies. Finally, a hysteresis phenomenon switching from planar symmetry to asymmetry (or vice versa) depending on the initial condition is observed at Re =425 and 450, implying that small variations in the flow or initial conditions change the flow field at these Reynolds numbers.

  4. Demonstration of a plasma mirror based on a laminar flow water film

    SciTech Connect

    Panasenko, Dmitriy; Shu, Anthony; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Toth, Csaba; Leemans, Wim

    2011-07-22

    A plasma mirror based on a laminar water film with low flow speed 0.5-2 cm/s has been developed and characterized, for use as an ultrahigh intensity optical reflector. The use of flowing water as atarget surface automatically results in each laser pulse seeing a new interaction surface and avoids the need for mechanical scanning of the target surface. In addition, the breakdown of water does notproduce contaminating debris that can be deleterious to vacuum chamber conditions and optics, such as is the case when using conventional solid targets. The mirror exhibits 70percent reflectivity, whilemaintaining high-quality of the reflected spot.

  5. Computational model for optimizing longitudinal fin heat transfer in laminar internal flows

    SciTech Connect

    Landram, C.S.

    1990-11-01

    Optimal configurations are identified, based on a numerical model, for fully developed laminar internal flows whose base boundary walls have perpendicular fins extending longitudinally into the fluid. The optimum coolant flow channel, formed between each fin, has an aspect ratio dependent on the coolant to wall thermal conductivity ratio and on the fin to channel width ratio, which is optimally about unity. A base thickness exists which minimizes the base hot-spot temperature, and its value is dependent on the fin to channel width ratio. 8 refs., 9 figs., 2 tabs.

  6. Formation of Roll-Waves on Thin Laminar Flow down an Inclined Plane Wall

    NASA Astrophysics Data System (ADS)

    Tougou, Hirohumi

    1980-02-01

    The linear stability of periodic permanent roll-wave trains on thin laminar flow of a viscous fluid down an inclined plane wall has been investigated analytically on the basis of a hydraulic model. The analytical result is here confirmed by following numerically the time development of a periodic initial disturbance superimposed upon a basic steady parallel flow into a stable or unstable permanent roll-wave train. Furthermore, it is shown that roll-waves can be generated successively from a localized initial disturbance.

  7. Application of laminar flow control to high-bypass-ratio turbofan engine nacelles

    NASA Technical Reports Server (NTRS)

    Wie, Y. S.; Collier, F. S., Jr.; Wagner, R. D.

    1991-01-01

    Recently, the concept of the application of hybrid laminar flow to modern commercial transport aircraft was successfully flight tested on a Boeing 757 aircraft. In this limited demonstration, in which only part of the upper surface of the swept wing was designed for the attainment of laminar flow, significant local drag reduction was measured. This paper addresses the potential application of this technology to laminarize the external surface of large, modern turbofan engine nacelles which may comprise as much as 5-10 percent of the total wetted area of future commercial transports. A hybrid-laminar-flow-control (HLFC) pressure distribution is specified and the corresponding nacelle geometry is computed utilizing a predictor/corrector design method. Linear stability calculations are conducted to provide predictions of the extent of the laminar boundary layer. Performance studies are presented to determine potential benefits in terms of reduced fuel consumption.

  8. Application of Laminar Flow Control Technology to Long-Range Transport Design

    NASA Technical Reports Server (NTRS)

    Gratzer, L. B.; George-Falvy, D.

    1978-01-01

    The impact of laminar flow control (LFC) technology on aircraft structural design concepts and systems was discussed and the corresponding benefits were shown in terms of performance and fuel economy. Specific topics discussed include: (1) recent advances in laminar boundary layer development and stability analysis techniques in terms of suction requirements and wing suction surface design; (2) validation of theory and realistic simulation of disturbances and off-design conditions by wind tunnel testing; (3) compatibility of aerodynamic design of airfoils and wings with LFC requirements; (4) structural alternatives involving advanced alloys or composites in combinations made possible by advanced materials processing and manufacturing techniques; (5) addition of suction compressor and drive units and their location on the aircraft; and (6) problems associated with operation of LFC aircraft, including accumulation of insects at low altitudes and environmental considerations.

  9. Supersonic quiet-tunnel development for laminar-turbulent transition research

    NASA Technical Reports Server (NTRS)

    Schneider, Steven P.

    1995-01-01

    This grant supported research into quiet-flow supersonic wind-tunnels, between February 1994 and February 1995. Quiet-flow nozzles operate with laminar nozzle-wall boundary layers, in order to provide low-disturbance flow for studies of laminar-turbulent transition under conditions comparable to flight. Major accomplishments include: (1) development of the Purdue Quiet-Flow Ludwieg Tube, (2) computational evaluation of the square nozzle concept for quiet-flow nozzles, and (3) measurement of the presence of early transition on the flat sidewalls of the NASA LaRC Mach 3.5 supersonic low-disturbance tunnel. Since items (1) and (2) are described in the final report for companion grant NAG1-1133, only item (3) is described here. A thesis addressing the development of square nozzles for high-speed, low-disturbance wind tunnels is included as an appendix.

  10. LAMINAR FLOW ELEMENT: ITS USE AS A FLOW STANDARD

    EPA Science Inventory

    A standard device to measure flows accurately and precisely was required by the U.S. Environmental Protection Agency (EPA) to establish an air pollution field auditing system capable of generating pollutant concentrations in the parts per million and parts per billion range. he e...

  11. Flux change in viscous laminar flow under oscillating boundary condition

    NASA Astrophysics Data System (ADS)

    Ueda, R.; Mikada, H.; Goto, T.; Takekawa, J.

    2012-12-01

    The behavior of interstitial fluid is one of major interest in earth sciences in terms of the exploitation of water resources, the initiation of earthquakes, enhanced oil recovery (EOR), etc. Seismic waves are often known to increase the flux of interstitial fluid but the relationship between the flux and propagating seismic waves have not been well investigated in the past, although seismic stimulation has been applied in the oil industry for enhanced oil recovery (EOR). Many observations indicated that seismic waves could stimulate the oil production due to lowering of apparent viscosity coefficient, to the coalescence and/or the dispersion of droplets of a phase in multiphase fluids. However, the detailed mechanism of seismic stimulation has not been fully understood, either. In this study, We attempt to understand the mechanism of the flux change in viscous laminar flow under oscillating boundary condition for the simulation of interstitial flow. Here, we analyze a monophase flow in a pore throat. We first assume a Hagen-Poiseuille flow of incompressible fluid through a pore-throat in a porous medium. We adopt the Lattice Boltzmann method (LBM) in which the motion of fluid is simulated through the variation of velocity distribution function representing the distribution of discrete particle velocities. We use an improved incompressible LBKG model (d2q9i) proposed in Zou et. al. (1995) to accurately accommodate the boundary conditions of pressure and velocity in the Hagen-Poiseuille flow. We also use an half-way bounce back boundary condition as the velocity boundary condition. Also, we assume a uniform pressure (density) difference between inlet and outlet flow, and the density difference could initiate the flow in our simulation. The oscillating boundary condition is given by the body force acting on fluid particles. In this simulation, we found that the flux change is negligible under small amplitude of oscillation in both horizontal and vertical directions

  12. Design and fabrication of large suction panels with perforated surfaces for laminar flow control testing in a transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Poppen, W. A., Jr.

    1986-01-01

    Considerable progress has been made in the development of perforated suction surface material for laminar flow control applications. Electron-beam perforated titaniuum skin was used as the suction surface. Critical issues related to suction panel manufacturing were identified and largely resolved. The final product included fabrication of a 7-foot chord by 7-foot span perforated laminar flow control wind tunnel model. Techniques used can be adapted to modern aircraft production lines. The report includes details on panel instrumentation and other features required for testing in a transonic pressure tunnel.

  13. Aircraft energy efficiency laminar flow control glove flight conceptual design study

    NASA Technical Reports Server (NTRS)

    Wright, A. S.

    1979-01-01

    A laminar flow control glove applied to the wing of a short to medium range jet transport with aft mounted engines was designed. A slotted aluminum glove concept and a woven stainless steel mesh porous glove concept suction surfaces were studied. The laminar flow control glove and a dummy glove with a modified supercritical airfoil, ducting, modified wing leading and trailing edges, modified flaps, and an LFC trim tab were applied to the wing after slot spacing suction parameters, and compression power were determined. The results show that a laminar flow control glove can be applied to the wing of a jet transport with an appropriate suction system installed.

  14. Summary of past experience in natural laminar flow and experimental program for resilient leading edge

    NASA Technical Reports Server (NTRS)

    Carmichael, B. H.

    1979-01-01

    The potential of natural laminar flow for significant drag reduction and improved efficiency for aircraft is assessed. Past experience with natural laminar flow as reported in published and unpublished data and personal observations of various researchers is summarized. Aspects discussed include surface contour, waviness, and smoothness requirements; noise and vibration effects on boundary layer transition, boundary layer stability criteria; flight experience with natural laminar flow and suction stabilized boundary layers; and propeller slipstream, rain, frost, ice and insect contamination effects on boundary layer transition. The resilient leading edge appears to be a very promising method to prevent leading edge insect contamination.

  15. Calculation of laminar and turbulent boundary layers for two-dimensional time-dependent flows

    NASA Technical Reports Server (NTRS)

    Cebeci, T.

    1977-01-01

    A general method for computing laminar and turbulent boundary layers for two-dimensional time-dependent flows is presented. The method uses an eddy-viscosity formulation to model the Reynolds shear-stress term and a very efficient numerical method to solve the governing equations. The model was applied to steady two-dimensional and three-dimensional flows and was shown to give good results. A discussion of the numerical method and the results obtained by the present method for both laminar and turbulent flows are discussed. Based on these results, the method is efficient and suitable for solving time-dependent laminar and turbulent boundary layers.

  16. Validity of classical scaling laws in laminar channel flow with periodic spacer-like obstacles

    NASA Astrophysics Data System (ADS)

    Rohlfs, Wilko; Lienhard, John H.

    2015-11-01

    Laminar channel flows with periodic obstacles occur in different technical applications involving heat and mass transfer. They are present in membrane technologies such as electro-dialysis or spirally wound membrane modules. For process design, classical scaling laws of heat and mass transfer are typically used. The laws scale the transfer (Sherwood) number, Sh , to the hydrodynamic Reynolds, Re , the fluid specific Schmidt number, Sc , and to some dimensionless geometric parameters, G, in a classical form like Sh = CReα ScβGγ . However, the validity of those classical scaling laws is limited to the region where the concentration boundary layer develops as it is well known that the transfer numbers approach a constant (Reynolds and Schmidt independent) value in the developed region of a laminar channel flow. This study examines numerically the validity of the scaling laws if the channel flow is interrupted periodically by cylindrical obstacles of different size and separation distance. In the developed region, a Schmidt and Reynolds number dependency is found and associated to wall-normal flow induced by the obstacles, for which this dependency varies with obstacle size and separation distance. Funding for WR was provided by the German Academic Exchange Service DAAD.

  17. Distributed acoustic receptivity in laminar flow control configurations

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan

    1992-01-01

    A model problem related to distributed receptivity to free-stream acoustic waves in laminar flow control (LFC) configurations is studied, within the Orr-Sommerfield framework, by a suitable extension of the Goldstein-Ruban theory for receptivity due to localized disturbances on the airfoil surface. The results, thus, complement the earlier work on the receptivity produced by local variations in the surface suction and/or surface admittance. In particular, we show that the cumulative effect of the distributed receptivity can be substantially larger than that of a single, isolated suction strip or slot. Furthermore, even if the receptivity is spread out over very large distances, the most effective contributions come from a relatively short region in vicinity of the lower branch of the neutral stability curve. The length scale of this region is intermediate to that of the mean of these two length scales. Finally, it is found that the receptivity is effectively dominated by a narrow band of Fourier components from the wall-suction and admittance distributions, roughly corresponding to a detuning of less than ten percent with respect to the neutral instability wavenumber at the frequency under consideration. The results suggest that the drop-off in receptivity magnitudes away from the resonant wavenumber is nearly independent of the frequency parameter.

  18. Prediction of Laminar and Turbulent Boundary Layer Flow Separation in V/STOL Engine Inlets

    NASA Technical Reports Server (NTRS)

    Chou, D. C.; Luidens, R. W.; Stockman, N. O.

    1977-01-01

    A description is presented of the development of the boundary layer on the lip and diffuser surface of a subsonic inlet at arbitrary operating conditions of mass flow rate, free stream velocity and incidence angle. Both laminar separation on the lip and turbulent separation in the diffuser are discussed. The agreement of the theoretical results with model experimental data illustrates the capability of the theory to predict separation. The effects of throat Mach number, inlet size, and surface roughness on boundary layer development and separation are illustrated.

  19. Prediction of laminar and turbulent boundary layer flow separation in V/STOL engine inlets

    NASA Technical Reports Server (NTRS)

    Chou, D. C.; Luidens, R. W.; Stockman, N. O.

    1977-01-01

    The paper provides a theoretical description of the development of the boundary layer on the lip and diffuser surface of a subsonic inlet at arbitrary operating conditions of mass flow rate, freestream velocity and incidence angle. Both laminar separation on the lip and turbulent separation in the diffuser are discussed. The agreement of the theoretical results with model experimental data illustrates the capability of the theory to predict separation. The effects of throat Mach number, inlet size, and surface roughness on boundary-layer development and separation are illustrated.

  20. Finite volume and finite element methods applied to 3D laminar and turbulent channel flows

    SciTech Connect

    Louda, Petr; Příhoda, Jaromír; Sváček, Petr; Kozel, Karel

    2014-12-10

    The work deals with numerical simulations of incompressible flow in channels with rectangular cross section. The rectangular cross section itself leads to development of various secondary flow patterns, where accuracy of simulation is influenced by numerical viscosity of the scheme and by turbulence modeling. In this work some developments of stabilized finite element method are presented. Its results are compared with those of an implicit finite volume method also described, in laminar and turbulent flows. It is shown that numerical viscosity can cause errors of same magnitude as different turbulence models. The finite volume method is also applied to 3D turbulent flow around backward facing step and good agreement with 3D experimental results is obtained.

  1. F-16XL Supersonic Laminar Flow Test Flight

    NASA Video Gallery

    An F-16XL aircraft was used by the Dryden Flight Research Center, Edwards, California, in a NASA-wide program to improve laminar airflow on aircraft flying at sustained supersonic speeds. It was th...

  2. Fabrication of a graphite/epoxy composite leading edge for laminar flow control

    NASA Technical Reports Server (NTRS)

    Beall, R. T.

    1980-01-01

    Lockheed, under NASA contract, has recently completed the first phase of a program to evaluate laminar flow control concepts for transport aircraft. Achievement of laminar flow over a wing surface requires a system of slots, metering holes, ducts and pumps to be used to remove the turbulent air adjacent to the surface. This requirement poses severe restrictions on conventional metallic structure. Graphite/epoxy composite with its unique properties appears to be the material that might solve the very complex structural problems associated with a laminar flow control aircraft. A six-foot span graphite/epoxy test article incorporating provisions for leading edge cleaning, deicing and laminar flow control was designed, fabricated and tested.

  3. Laminar boundary layer in conditions of natural transition to turbulent flow

    NASA Technical Reports Server (NTRS)

    Polyakov, N. F.

    1986-01-01

    Results of experimental study of regularities of a natural transition of a laminar boundary layer to a turbulent layer at low subsonic air flow velocities are presented, analyzed and compared with theory and model experiments.

  4. Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove

    NASA Technical Reports Server (NTRS)

    Bui, Trong

    2013-01-01

    This is the presentation related to the paper of the same name describing Reynolds Averaged Navier Stokes (RANS) computational Fluid Dynamics (CFD) analysis of low speed stall aerodynamics of a swept wing with a laminar flow wing glove.

  5. Cloud particle effects on laminar flow and instrumentation for their measurement aboard a NASA LFC aircraft

    NASA Technical Reports Server (NTRS)

    Davis, R. E.; Fischer, M. C.

    1983-01-01

    Fuel costs account now for approximately 60 percent of the direct operating costs of airlines and future commercial transport will utilize advanced technologies for saving fuel on the basis of drag reduction. Laminar flow control (LFC) represents such an advanced technology. A new laminar flow wing on a reconfigured WB-66 aircraft was tested in the X-21 flight program. The tests confirmed that extensive laminar flow could be achieved at subsonic transport cruise conditions. Factors affecting adversely the maintenance of laminar flow were found to be related to ice particles encountered during the penetration of cirrus clouds or haze. The present investigation is concerned with the effect of ice particles on LFC, taking into account the results obtained in the Leading Edge Flight Test (LEFT) being conducted by NASA. Attention is given to ice particle measurements in the LEFT program.

  6. Current Evidence for the Use of Laminar Flow in Reducing Infection Rates in Total Joint Arthroplasty

    PubMed Central

    James, M; Khan, W.S; Nannaparaju, M.R; Bhamra, J.S; Morgan-Jones, R

    2015-01-01

    Since the introduction of laminar air flow in orthopaedic theatres by Sir John Charnley, it has widely become accepted as the standard during orthopaedic procedures such as joint arthroplasty. We present a review of available current literature for the use of laminar flow operating theatre ventilation during total joint arthroplasty and examines the effectiveness of laminar flow ventilated operating theatres in preventing post-operative wound infection. Results of our findings suggest that while bacterial and air particulate is reduced by laminar air flow systems, there is no conclusive effect on the reduction of post-operative wound infections following total joint arthroplasty. We conclude that a combination of strict aseptic technique, prophylactic antibiotics and good anaesthetic control during surgery remains crucial to reduce post-operative surgical infections. PMID:26587068

  7. A laminar flow unit for the care of critically ill newborn infants

    PubMed Central

    Perez, Jose MR; Golombek, Sergio G; Fajardo, Carlos; Sola, Augusto

    2013-01-01

    Introduction Medical and nursing care of newborns is predicated on the delicate control and balance of several vital parameters. Closed incubators and open radiant warmers are the most widely used devices for the care of neonates in intensive care; however, several well-known limitations of these devises have not been resolved. The use of laminar flow is widely used in many fields of medicine, and may have applications in neonatal care. Objective To describe the neonatal laminar flow unit, a new equipment we designed for care of ill newborns. Methods The idea, design, and development of this device was completed in Sao Paulo, Brazil. The unit is an open mobile bed designed with the objective of maintaining the advantages of the incubator and radiant warmer, while overcoming some of their inherent shortcomings; these shortcomings include noise, magnetic fields and acrylic barriers in incubators, and lack of isolation and water loss through skin in radiant warmers. The unit has a pump that aspirates environmental air which is warmed by electrical resistance and decontaminated with High Efficiency Particulate Air Filter (HEPA) filters (laminar flow). The flow is directed by an air flow directioner. The unit has an embedded humidifier to increase humidity in the infant’s microenvironment and a servo control mechanism for regulation of skin temperature. Results The laminar flow unit is open and facilitates access of care providers and family, which is not the case in incubators. It provides warming by convection at an air velocity of 0.45 m/s, much faster than an incubator (0.1 m/s). The system provides isolation 1000 class (less than 1,000 particles higher than 0.3 micron per cubic feet at all times). This is much more protection than an incubator provides and more than radiant warmers, which have no isolation whatsoever. Additionally, it provides humidification of the newborn’s microenvironment (about 60% relative humidity), which is impossible with a radiant

  8. A preliminary design study on an acoustic muffler for the laminar flow transition research apparatus

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. L.

    1984-01-01

    An acoustic muffler design of a research tool for studying laminar flow and the mechanisms of transition, the Laminar Flow and Transition Research Apparatus (LFTRA) is investigated. Since the presence of acoustic pressure fluctuations is known to affect transition, low background noise levels in the test section of the LFTRA are mandatory. The difficulties and tradeoffs of various muffler design concepts are discussed and the most promising candidates are emphasized.

  9. Active control of instabilities in laminar boundary-layer flow. Part 1: An overview

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Erlebacher, Gordon; Hussaini, M. Yousuff

    1994-01-01

    This paper (the first in a series) focuses on using active-control methods to maintain laminar flow in a region of the flow in which the natural instabilities, if left unattended, lead to turbulent flow. The authors review previous studies that examine wave cancellation (currently the most prominent method) and solve the unsteady, nonlinear Navier-Stokes equations to evaluate this method of controlling instabilities. It is definitely shown that instabilities are controlled by the linear summation of waves (i.e., wave cancellation). Although a mathematically complete method for controlling arbitrary instabilities has been developed (but not yet tested), the review, duplication, and physical explanation of previous studies are important steps for providing an independent verification of those studies, for establishing a framework for subsequent work which will involve automated transition control, and for detailing the phenomena by which the automated studies can be used to expand knowledge of flow control.

  10. The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil - Drag equations

    NASA Technical Reports Server (NTRS)

    Brooks, Cuyler W., Jr.; Harris, Charles D.; Harvey, William D.

    1989-01-01

    The Langley Research Center has designed a swept, supercritical airfoil incorporating Laminar Flow Control for testing at transonic speeds. Analytical expressions have been developed and an evaluation made of the experimental section drag, composed of suction drag and wake drag, using theoretical design information and experimental data. The analysis shows that, although the sweep-induced boundary-layer crossflow influence on the wake drag is too large to be ignored and there is not a practical method for evaluating these crossflow effects on the experimental wake data, the conventional unswept 2-D wake-drag computation used in the reduction of the experimental data is at worst 10 percent too high.

  11. Evaluation of laminar flow control systems concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1983-01-01

    An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings and reduced direct operating cost benefits would result from using LFC.

  12. Evaluation of laminar flow control systems for subsonic commercial transport aircraft: Executive summary

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1982-01-01

    An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings.

  13. Preliminary design characteristics of a subsonic business jet concept employing laminar flow control

    NASA Technical Reports Server (NTRS)

    Turriziani, R. V.; Lovell, W. A.; Price, J. E.; Quartero, C. B.; Washburn, G. F.

    1978-01-01

    Aircraft configurations were developed with laminar flow control (LFC) and without LFC. The LFC configuration had approximately eleven percent less parasite drag and a seven percent increase in the maximum lift-to drag ratio. Although these aerodynamic advantages were partially offset by the additional weight of the LFC system, the LFC aircraft burned from six to eight percent less fuel for comparable missions. For the trans-atlantic design mission with the gross weight fixed, the LFC configuration would carry a greater payload for ten percent fuel per passenger mile.

  14. A computational study of laminar and turbulent flows in rotating rectangular ducts

    NASA Astrophysics Data System (ADS)

    Asan, Habip

    This work is concerned with fully developed incompressible laminar and turbulent flows through rectangular straight ducts rotating in an orthogonal mode. The Navier-Stokes equations are solved by the finite volume method for low to high rotation rates. Solutions are obtained for aspect ratios 1, 2, and 3. For laminar flow, predictions have been performed for Reynolds number of 2000 and for turbulent flow the computations were carried out for a Reynolds number of 20000. The standard k-epsilon model is used to model the turbulence. Low rotational speeds cause the formation of a pair of symmetric vortices on the cross-section. At higher rotational speeds, a more complex four-vortex structure develops. The transition point depends on the cross-sectional geometry. Moreover, over a range of Rossby numbers, either two- or four-vortex solutions are possible. The rotation leads to significant differences between the values of friction factor and Nusselt number on the suction and pressure sides of the duct.

  15. Status report on a natural laminar-flow nacelle flight experiment

    NASA Technical Reports Server (NTRS)

    Hastings, Earl C., Jr.; Faust, G. K.; Mungur, Parma; Obara, Clifford J.; Dodbele, S. S.; Schoenster, James A.; Jones, Michael G.

    1987-01-01

    The natural laminar flow (NLF) nacelle experiment is part of a drag reduction production program, and has the dual objectives of studying the extent of NLF on full scale nacelles in a flight environment and the effect of acoustic disturbance on the location of transition on the nacelle surface. The experiment is being conducted in two phases: (1) an NLF fairing was flown on a full scale Citation nacelle to develop the experiment technique and establish feasibility; (2) full scale, flow through, NLF nacelles located below the right wing of an experimental NASA OV-1 aircraft are evaluated. The measurements of most interest are the static pressure distribution and transition location on the nacelle surface, and the fluctuating pressure levels associated with the noise sources. Data are collected in combinations of acoustic frequencies and sound pressure levels. The results of phase 2 tests to date indicate that on shape GE2, natural laminar flow was maintained as far aft as the afterbody joint at 50 percent of the nacelle length. An aft facing step at this joint caused premature transition at this station. No change was observed in the transition pattern when the noise sources were operated.

  16. Method and apparatus for detecting laminar flow separation and reattachment

    NASA Technical Reports Server (NTRS)

    Stack, John P. (Inventor); Mangalam, Sivaramakrishnan M. (Inventor)

    1990-01-01

    The invention is a method and apparatus for simultaneously detecting laminar separation and reattachment of a fluid stream such as an airstream from and to the upper surface of an airfoil by simultaneously sensing and comparing a plurality of output signals. Each signal represents the dynamic shear stress at one of an equal number of sensors spaced along a straight line on the surface of the airfoil that extends parallel to the airstream. The output signals are simultaneously compared to detect the sensors across which a reversal in phase of said output signal occurs, said detected sensors being in the region of laminar separation or reattachment.

  17. Stability analysis for laminar flow control, part 1

    NASA Technical Reports Server (NTRS)

    Benney, D. J.; Orszag, S. A.

    1977-01-01

    The basic equations for the stability analysis of flow over three dimensional swept wings are developed and numerical methods for their solution are surveyed. The equations for nonlinear stability analysis of three dimensional disturbances in compressible, three dimensional, nonparallel flows are given. Efficient and accurate numerical methods for the solution of the equations of stability theory were surveyed and analyzed.

  18. Hybrid laminar flow control tests in the Boeing Research Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Parikh, P. G.; Lund, D. W.; George-Falvy, D.; Nagel, A. L.

    1990-01-01

    The hybrid laminar flow control (HLFC) concept has undergone wind tunnel testing at near full-scale Reynolds number on an infinite wing of 30-deg sweep on which boundary-layer suction was furnished over the first 20 percent of chord of the upper surface. Depending on the external pressure distribution, the HLFC extended the laminarity of the boundary layer as far back as 45 percent of chord; this corresponds to a transition Reynolds number of about 11 million. The maximum chordwise extent of laminar run was found to be insensitive to the suction level over a wide range.

  19. Topologically Derived Separation Conditions for Two- and Three-Dimensional Laminar Flows

    NASA Technical Reports Server (NTRS)

    Tobak, Murray; Davis, Sanford S. (Technical Monitor)

    1996-01-01

    Topological concepts are used to derive separation conditions for two- and three-dimensional laminar flows. The result for two-dimensional flow reproduces the form of the well-known Stratford criterion. An extension makes the form applicable to the symmetry plane of a three-dimensional flow.

  20. Certification aspects of airplanes which may operate with significant natural laminar flow

    NASA Technical Reports Server (NTRS)

    Gabriel, Edward A.; Tankesley, Earsa L.

    1986-01-01

    Recent research by NASA indicates that extensive natural laminar flow (NLF) is attainable on modern high performance airplanes currently under development. Modern airframe construction methods and materials, such as milled aluminum skins, bonded aluminum skins, and composite materials, offer the potential for production of aerodynamic surfaces having waviness and roughness below the values which are critical for boundary layer transition. Areas of concern with the certification aspects of Natural Laminar Flow (NLF) are identified to stimulate thought and discussion of the possible problems. During its development, consideration has been given to the recent research information available on several small business and experimental airplanes and the certification and operating rules for general aviation airplanes. The certification considerations discussed are generally applicable to both large and small airplanes. However, from the information available at this time, researchers expect more extensive NLF on small airplanes because of their lower operating Reynolds numbers and cleaner leading edges (due to lack of leading-edge high lift devices). Further, the use of composite materials for aerodynamic surfaces, which will permit incorporation of NLF technology, is currently beginning to appear in small airplanes.

  1. A combined PHREEQC-2/parallel fracture model for the simulation of laminar/non-laminar flow and contaminant transport with reactions

    NASA Astrophysics Data System (ADS)

    Masciopinto, Costantino; Volpe, Angela; Palmiotta, Domenico; Cherubini, Claudia

    2010-09-01

    A combination of a parallel fracture model with the PHREEQC-2 geochemical model was developed to simulate sequential flow and chemical transport with reactions in fractured media where both laminar and turbulent flows occur. The integration of non-laminar flow resistances in one model produced relevant effects on water flow velocities, thus improving model prediction capabilities on contaminant transport. The proposed conceptual model consists of 3D rock-blocks, separated by horizontal bedding plane fractures with variable apertures. Particle tracking solved the transport equations for conservative compounds and provided input for PHREEQC-2. For each cluster of contaminant pathways, PHREEQC-2 determined the concentration for mass-transfer, sorption/desorption, ion exchange, mineral dissolution/precipitation and biodegradation, under kinetically controlled reactive processes of equilibrated chemical species. Field tests have been performed for the code verification. As an example, the combined model has been applied to a contaminated fractured aquifer of southern Italy in order to simulate the phenol transport. The code correctly fitted the field available data and also predicted a possible rapid depletion of phenols as a result of an increased biodegradation rate induced by a simulated artificial injection of nitrates, upgradient to the sources.

  2. A combined PHREEQC-2/parallel fracture model for the simulation of laminar/non-laminar flow and contaminant transport with reactions.

    PubMed

    Masciopinto, Costantino; Volpe, Angela; Palmiotta, Domenico; Cherubini, Claudia

    2010-09-20

    A combination of a parallel fracture model with the PHREEQC-2 geochemical model was developed to simulate sequential flow and chemical transport with reactions in fractured media where both laminar and turbulent flows occur. The integration of non-laminar flow resistances in one model produced relevant effects on water flow velocities, thus improving model prediction capabilities on contaminant transport. The proposed conceptual model consists of 3D rock-blocks, separated by horizontal bedding plane fractures with variable apertures. Particle tracking solved the transport equations for conservative compounds and provided input for PHREEQC-2. For each cluster of contaminant pathways, PHREEQC-2 determined the concentration for mass-transfer, sorption/desorption, ion exchange, mineral dissolution/precipitation and biodegradation, under kinetically controlled reactive processes of equilibrated chemical species. Field tests have been performed for the code verification. As an example, the combined model has been applied to a contaminated fractured aquifer of southern Italy in order to simulate the phenol transport. The code correctly fitted the field available data and also predicted a possible rapid depletion of phenols as a result of an increased biodegradation rate induced by a simulated artificial injection of nitrates, upgradient to the sources. PMID:20701994

  3. F-15B in flight showing Supersonic Natural Laminar Flow (SS-NLF) experiment attached vertically to t

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In-flight photo of the F-15B equipped with the Supersonic Natural Laminar Flow (SS-NLF) experiment. During four research flights, laminar flow was achieved over 80 percent of the test wing at speeds approaching Mach 2. This was accomplished as the sole result of the shape of the wing, without the use of suction gloves, such as on the F-16XL. Laminar flow is a condition in which air passes over a wing in smooth layers, rather than being turbulent The greater the area of laminar flow, the lower the amount of friction drag on the wing, thus increasing an aircraft's range and fuel economy. Increasing the area of laminar flow on a wing has been the subject of research by engineers since the late 1940s, but substantial success has proven elusive. The SS-NLF experiment was intended to provide engineers with the data by which to design natural laminar flow wings.

  4. Towards transition modelling for supersonic laminar flow control based on spanwise periodic roughness elements.

    PubMed

    Choudhari, Meelan; Chang, Chau-Lyan; Jiang, Li

    2005-05-15

    Laminar flow control (LFC) is one of the key enabling technologies for quiet and efficient supersonic aircraft. Recent work at Arizona State University (ASU) has led to a novel concept for passive LFC, which employs distributed leading edge roughness to limit the growth of naturally dominant crossflow instabilities in a swept-wing boundary layer. Predicated on nonlinear modification of the mean boundary-layer flow via controlled receptivity, the ASU concept requires a holistic prediction approach that accounts for all major stages within transition in an integrated manner. As a first step in developing an engineering methodology for the design and optimization of roughness-based supersonic LFC, this paper reports on canonical findings related to receptivity plus linear and nonlinear development of stationary crossflow instabilities on a Mach 2.4, 73 degrees swept airfoil with a chord Reynolds number of 16.3 million. PMID:16105770

  5. Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments.

    PubMed

    Ge, Liang; Leo, Hwa-Liang; Sotiropoulos, Fotis; Yoganathan, Ajit P

    2005-10-01

    Time-accurate, fully 3D numerical simulations and particle image velocity laboratory experiments are carried out for flow through a fully open bileaflet mechanical heart valve under steady (nonpulsatile) inflow conditions. Flows at two different Reynolds numbers, one in the laminar regime and the other turbulent (near-peak systole flow rate), are investigated. A direct numerical simulation is carried out for the laminar flow case while the turbulent flow is investigated with two different unsteady statistical turbulence modeling approaches, unsteady Reynolds-averaged Navier-Stokes (URANS) and detached-eddy simulation (DES) approach. For both the laminar and turbulent cases the computed mean velocity profiles are in good overall agreement with the measurements. For the turbulent simulations, however, the comparisons with the measurements demonstrate clearly the superiority of the DES approach and underscore its potential as a powerful modeling tool of cardiovascular flows at physiological conditions. The study reveals numerous previously unknown features of the flow. PMID:16248308

  6. A novel micropreconcentrator employing a laminar flow patterned heater for micro gas chromatography

    NASA Astrophysics Data System (ADS)

    Tian, W.-C.; Wu, T. H.; Lu, C.-J.; Chen, W. R.; Sheen, H. J.

    2012-06-01

    A simple micromachined process based on one photomask is developed for a novel micropreconcentrator (µPCT) used in a micro gas chromatograph (µGC). Unique thick silver heating microstructures with a high surface area for microheater of µPCT are fabricated by combining the microfluidic laminar flow technique and the Tollens’ reaction within a microchannel. Silver deposition using this laminar flow patterning technique provides a higher deposition rate and easier microfabrication compared to conventional micromachined technologies for thick metal microstructures (>200 µm). An amorphous and porous carbon film that functions as an adsorbent is grown on microheaters inside the microchannel. The µPCT can be heated to >300 °C rapidly by applying a constant electrical power of ˜1 W with a heating rate of 10 °C s-1. Four volatile organic compounds, acetone, benzene, toluene and xylene, are collected through the proposed novel µPCTs and separated successfully using a 17 m long gas chromatography column. The peak widths at half height (PWHHs) of the four compounds are relatively narrow (<6 s), and the minimum PWHH of 3.75 s is obtained for acetone. The preconcentration factors are >38 000 for benzene and toluene.

  7. A History of Suction-Type Laminar Flow Control with Emphasis on Flight Research

    NASA Technical Reports Server (NTRS)

    Braslow, Albert L.

    1999-01-01

    Laminar-flow control is an area of aeronautical research that has a long history at NASA's Langley Research Center, Dryden Flight Research Center, their predecessor organizations, and elsewhere. In this monograph, the author, who spent much of his career at Langley working with this research, presents a history of that portion of laminar-flow technology known as active laminar-flow control, which employs suction of a small quantity of air through airplane surfaces. This important technique offers the potential for significant reduction in drag and, thereby, for large increases in range or reductions in fuel usage for aircraft. For transport aircraft, the reductions in fuel consumed as a result of laminar-flow control may equal 30 percent of present consumption. Given such potential, it is obvious that active laminar-flow control with suction is an important technology. In this study, the author covers the early history of the subject and brings the story all the way to the mid-1990s with an emphasis on flight research, much of which has occurred at Dryden. This is an important monograph that not only encapsulates a lot of history in a brief compass but also does so in language that is accessible to non-technical readers. NASA is publishing it in a format that will enable it to reach the wide audience the subject deserves.

  8. Boundary-Layer Transition Results from the F-16XL-2 Supersonic Laminar Flow Control Experiment

    NASA Technical Reports Server (NTRS)

    Marshall, Laurie A.

    1999-01-01

    A variable-porosity suction glove has been flown on the F-16XL-2 aircraft to demonstrate the feasibility of this technology for the proposed High-Speed Civil Transport (HSCT). Boundary-layer transition data have been obtained on the titanium glove primarily at Mach 2.0 and altitudes of 53,000-55,000 ft. The objectives of this supersonic laminar flow control flight experiment have been to achieve 50- to 60-percent-chord laminar flow on a highly swept wing at supersonic speeds and to provide data to validate codes and suction design. The most successful laminar flow results have not been obtained at the glove design point (Mach 1.9 at an altitude of 50,000 ft). At Mach 2.0 and an altitude of 53,000 ft, which corresponds to a Reynolds number of 22.7 X 10(exp 6), optimum suction levels have allowed long runs of a minimum of 46-percent-chord laminar flow to be achieved. This paper discusses research variables that directly impact the ability to obtain laminar flow and techniques to correct for these variables.

  9. Cloud particle effects on laminar flow in the NASA LEFT program - Preliminary results. [Leading Edge Flight Test

    NASA Technical Reports Server (NTRS)

    Davis, R. E.; Fischer, M. C.; Fisher, D. F.; Young, R.

    1986-01-01

    Laminar flow offers the promise of significant fuel savings on future commercial transport aircraft, but laminar flow can be lost while encountering clouds or haze at cruise conditions. To quantify the effect of cloud particles on laminar flow during typical airline operating conditions, and evaluate candidate cloud particle detection instrument concepts for future laminar flow aircraft, two types of cloud particle detectors are being flown aboard a NASA JetStar aircraft in the Leading Edge Flight Test (LEFT) program. The instrumentation is described, and preliminary results and conclusions are presented.

  10. History of Suction-Type Laminar-Flow Control with Emphasis on Flight Resrearch: Monographs in Aerospace History Number 13

    NASA Technical Reports Server (NTRS)

    Braslow, A. L.

    1999-01-01

    The paper contains the following sections: Foreword; Preface; Laminar-Flow Control Concepts and Scope of Monograph; Early Research on Suction-Type Laminar-Flow Control (Research from the 1930s through the War Years; Research from after World War II to the Mid-1960s); Post X-21 Research on Suction-Type Laminar-Flow Control; Status of Laminar-Flow Control Technology in the Mid-1990s; Glossary; Document 1-Aeronautics Panel, AACB, R&D Review, Report of the Subpanel on Aeronautic Energy Conservation/Fuels; Document 2-Report of Review Group on X-21A Laminar Flow Control Program; Document 3-Langley Research Center Announcement, Establishment of Laminar Flow Control Working Group; Document 4-Intercenter Agreement for Laminar Flow Control Leading Edge Glove Flights, LaRC and DFRC; Document 5-Flight Report NLF-144, of AFTIF-111 Aircraft with the TACT Wing Modified by a Natural Laminar Flow Glove; Document 6-Flight Record, F-16XL Supersonic Laminar Flow Control Aircraft; Index; and About the Author.

  11. Design and Experimental Results for a Natural-Laminar-Flow Airfoil for General Aviation Applications

    NASA Technical Reports Server (NTRS)

    Somers, D. M.

    1981-01-01

    A natural-laminar-flow airfoil for general aviation applications, the NLF(1)-0416, was designed and analyzed theoretically and verified experimentally in the Langley Low-Turbulence Pressure Tunnel. The basic objective of combining the high maximum lift of the NASA low-speed airfoils with the low cruise drag of the NACA 6-series airfoils was achieved. The safety requirement that the maximum lift coefficient not be significantly affected with transition fixed near the leading edge was also met. Comparisons of the theoretical and experimental results show excellent agreement. Comparisons with other airfoils, both laminar flow and turbulent flow, confirm the achievement of the basic objective.

  12. Experimental study of the laminar-turbulent transition of a concave wall in a parallel flow

    NASA Technical Reports Server (NTRS)

    Bippes, H.

    1978-01-01

    The instability of the laminar boundary layer flow along a concave wall was studied. Observations of these three-dimensional boundary layer phenomena were made using the hydrogen-bubble visualization technique. With the application of stereo-photogrammetric methods in the air-water system it was possible to investigate the flow processes qualitatively and quantitatively. In the case of a concave wall of sufficient curvature, a primary instability occurs first in the form of Goertler vortices with wave lengths depending upon the boundary layer thickness and the wall curvature. At the onset the amplification rate is in agreement with the linear theory. Later, during the non-linear amplification stage, periodic spanwise vorticity concentrations develop in the low velocity region between the longitudinal vortices. Then a meandering motion of the longitudinal vortex streets subsequently ensues, leading to turbulence.

  13. Low-Disturbance Flow Characteristics of the NASA-Ames Laminar Flow Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.; Davis, Sanford S. (Technical Monitor)

    1994-01-01

    A unique, low-disturbance (quiet) supersonic wind tunnel has been commissioned at the NASA-Ames Fluid Mechanics Laboratory (FML) to support Supersonic Laminar Flow Control (SLFC) research. Known as the Laminar Flow Supersonic Wind Tunnel (LFSWT), this tunnel is designed to operate at potential cruise Mach numbers and unit Reynolds numbers (Re) of the High Speed Civil Transport (HSCT). The need to better understand the receptivity of the transition phenomena on swept (HSCT) wings to attachment-line contamination and cross-flows has provided the impetus for building the LFSWT. Low-disturbance or "quiet" wind tunnels are known to be an essential part of any meaningful boundary layer transition research. In particular, the receptivity of supersonic boundary layers to wind tunnel disturbances can significantly alter the transition phenomena under investigation on a test model. Consequently, considerable effort has gone into the design of the LFSWT to provide quiet flow. The paper describes efforts to quantify the low-disturbance flows in the LFSWT operating at Mach 1.6, as a precursor to transition research on wing models. The research includes: (1) Flow measurements in both the test section and settling chamber of the LFSWT, using a full range of measurement techniques; (2) Study of the state of the test section boundary layer so far by using a single hot-wire mounted above the floor centerline, with and without boundary layer trips fitted at the test section entrance; (3) The effect of flow quality of unsteady supersonic diffuser flow, joint steps and gaps, and wall vibration.

  14. Study of laminar-turbulent flow transition under pulsatile conditions in a constricted channel

    NASA Astrophysics Data System (ADS)

    Khair, Abul; Wang, Bing-Chen; Kuhn, David C. S.

    2015-10-01

    In this paper, direct numerical simulation is performed to investigate a pulsatile flow in a constricted channel to gain physical insights into laminar-turbulent-laminar flow transitions. An in-house computer code is used to conduct numerical simulations based on available high-performance shared memory parallel computing facilities. The Womersley number tested is fixed to 10.5 and the Reynolds number varies from 500 to 2000. The influences of the degree of stenosis and pulsatile conditions on flow transitions and structures are investigated. In the region upstream of the stenosis, the flow pattern is primarily laminar. Immediately after the stenosis, the flow recirculates under an adverse streamwise pressure gradient, and the flow pattern transitions from laminar to turbulent. In the region far downstream of the stenosis, the flow becomes re-laminarised. The physical characteristics of the flow field have been thoroughly analysed in terms of the mean streamwise velocity, turbulence kinetic energy, viscous wall shear stresses, wall pressure and turbulence kinetic energy spectra.

  15. Summary of Transition Results From the F-16XL-2 Supersonic Laminar Flow Control Experiment

    NASA Technical Reports Server (NTRS)

    Marshall, Laurie A.

    2000-01-01

    A variable-porosity suction glove has been flown on the F-16XL-2 aircraft to demonstrate the feasibility of this technology for the proposed High-Speed Civil Transport. Boundary-layer transition data on the titanium glove primarily have been obtained at speeds of Mach 2.0 and altitudes of 15,240-16,764 m (50,000-55,000 ft). The objectives of this flight experiment have been to achieve 0.50-0.60 chord laminar flow on a highly swept wing at supersonic speeds and to provide data to validate codes and suction design. The most successful laminar flow results have not been obtained at the glove design point, a speed of Mach 1.9 at an altitude of 15,240 m (50,000 ft); but rather at a speed of Mach 2.0 and an altitude of 16,154 m (53,000 ft). Laminar flow has been obtained to more than 0.46 wing chord at a Reynolds number of 22.7 x 10(exp 6). A turbulence diverter has been used to initially obtain a laminar boundary layer at the attachment line. A lower-surface shock fence was required to block an inlet shock from the wing leading edge. This paper discusses research variables that directly impact the ability to obtain laminar flow and techniques to correct for these variables.

  16. Flight investigation of natural laminar flow on the Bellanca Skyrocket II

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Obara, C. J.; Gregorek, G. M.; Hoffman, M. J.; Freuhler, R. J.

    1983-01-01

    Two major concerns have inhibited the use of natural laminar flow (NLF) for viscous drag reduction on production aircraft. These are the concerns of achieveability of NLF on practical airframe surfaces, and maintainability in operating environments. Previous research in this area left a mixture of positive and negative conclusions regarding these concerns. While early (pre-1950) airframe construction methods could not achieve NLF criteria for waviness, several modern construction methods (composites for example) can achieve the required smoothness. This paper presents flight experiment data on the achieveability and maintainability of NLF on a high-performance, single-propeller, composite airplane, the Bellanca Skyrocket II. The significant contribution of laminar flow to the performance of this airplane was measured. Observations of laminar flow in the propeller slipstream are discussed, as are the effects of insect contamination on the wing. These observations have resulted in a new appreciation of the operational feasibility for achieving and maintaining NLF on modern airframe surfaces.

  17. High Reynolds Number Hybrid Laminar Flow Control (HLFC) Flight Experiment. Report 2; Aerodynamic Design

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This document describes the aerodynamic design of an experimental hybrid laminar flow control (HLFC) wing panel intended for use on a Boeing 757 airplane to provide a facility for flight research on high Reynolds number HLFC and to demonstrate practical HLFC operation on a full-scale commercial transport airplane. The design consists of revised wing leading edge contour designed to produce a pressure distribution favorable to laminar flow, definition of suction flow requirements to laminarize the boundary layer, provisions at the inboard end of the test panel to prevent attachment-line boundary layer transition, and a Krueger leading edge flap that serves both as a high lift device and as a shield to prevent insect accretion on the leading edge when the airplane is taking off or landing.

  18. Numerical solution of inviscid and viscous laminar and turbulent flow around the airfoil

    NASA Astrophysics Data System (ADS)

    Slouka, Martin; Kozel, Karel

    2016-03-01

    This work deals with the 2D numerical solution of inviscid compressible flow and viscous compressible laminar and turbulent flow around the profile. In a case of turbulent flow algebraic Baldwin-Lomax model is used and compared with Wilcox k-omega model. Calculations are done for NACA 0012 and RAE 2822 airfoil profile for the different angles of upstream flow. Numerical results are compared and discussed with experimental data.

  19. A flight test investigation of certification requirements for laminar-flow general aviation airplanes

    NASA Technical Reports Server (NTRS)

    Manuel, Gregory S.; Doty, Wayne A.

    1990-01-01

    A modified T210R general aviation aircraft incorporating natural laminar flow (NLF) technology has been subjected to flight tests in order to evaluate its stability and control characteristics. Attention is given to this aircraft's ability to meet certification requirements with significant NLF, as well as with the boundary-layer transition fixed near the leading edge. It is established that the large regions of NLF achieved yielded a significant cruise performance enhancement; loss of laminar flow did not result in significant changes in the stability and control characteristics of the aircraft. FAR Part 23 certification requirements were met.

  20. Start of fluidization of a bulk granular material in laminar flow

    SciTech Connect

    Rozhdestvenskii, O.I.; Bednyakov, G.E.; Zayats, E.I.; Kirillov, I.N.; Serebryakova, T.V.

    1982-04-20

    This report examines the usage and transformation of an equation of the form Re/sub cr/=Ar(1400+5.22/Ar) which is used in design calculations for determination of the velocity of the start of fluidization of a granular material bearing initial voidage e/sub o/=0.4. Variations of the Reynold's number corresponding to the Critical Fluidization velocity at various voidages of the granular bed and different values of the Archimedes number in laminar flow are presented. Results indicate that the equation cannot be recommended for use even for rough estimates of the bulk materials in laminar flow.

  1. Theoretical investigation of maintaining the boundary layer of revolution laminar using suction slits in incompressible flow

    NASA Technical Reports Server (NTRS)

    Thiede, P.

    1978-01-01

    The transition of the laminar boundary layer into the turbulent state, which results in an increased drag, can be avoided by sucking of the boundary layer particles near the wall. The technically-interesting case of sucking the particles using individual slits is investigated for bodies of revolution in incompressible flow. The results of the variational calculations show that there is an optimum suction height, where the slot separations are maximum. Combined with favorable shaping of the body, it is possible to keep the boundary layer over bodies of revolution laminar at high Reynolds numbers using relatively few suction slits and small amounts of suction flow.

  2. Evaluation of Laminar Flow Control System Concepts for Subsonic Commercial Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1980-01-01

    Alternatives in the design of laminar flow control (LFC) subsonic commerical transport aircraft for opeation in the 1980's period were studied. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12, 038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatices in the areas of aerodynamics, structures and materials, LFC systems, leading-edge region cleaning, and integration of auxiliary systems were studied. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in DOC but provides descreases of 8.2% in gross weight and 21.7% in fuel consumption.

  3. Generation and development of small-amplitude disturbances in a laminar boundary layer in the presence of an acoustic field

    NASA Technical Reports Server (NTRS)

    Kachanov, Y. S.; Kozlov, V. V.; Levchenko, V. Y.

    1985-01-01

    A low-turbulence subsonic wind tunnel was used to study the influence of acoustic disturbances on the development of small sinusoidal oscillations (Tollmien-Schlichting waves) which constitute the initial phase of turbulent transition. It is found that acoustic waves propagating opposite to the flow generate vibrations of the model (plate) in the flow. Neither the plate vibrations nor the acoustic field itself have any appreciable influence on the stability of the laminar boundary layer. The influence of an acoustic field on laminar boundary layer disturbances is limited to the generation of Tollmien-Schlichting waves at the leading-edge of the plate.

  4. Spraying Powder Materials by the High-Enthalpy Laminar Plasma Flow

    SciTech Connect

    Khutsishvili, M.; Kikvadze, L.

    2008-03-19

    One of the most promising engineering solutions of the problem of spraying powder materials is the proposed method of plasma spraying by the laminar plasma jet. Laminar plasma flow is characterized by small jet angle divergence; the powder particles are penetrated and accelerated mainly in the axial direction. The molten powder particles are transported almost to the surface of a treated work-piece inside the laminar plasma flow in an atmosphere of the plasma-forming gas with the acceleration on the entire transfer area, which leads to an increase in the particles velocity, a decrease of their oxidability, an increase in the powder deposition efficiency, density, adhesion strength with the surface to be coated.

  5. DRE-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Malik, Mujeeb; Liao, Wei; Li, Fe; Choudhari, Meelan

    2013-01-01

    Nonlinear parabolized stability equations and secondary instability analyses are used to provide a computational assessment of the potential use of the discrete roughness elements (DRE) technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural laminar flow airfoil with a leading-edge sweep angle of 34.6deg, free-stream Mach number of 0.75 and chord Reynolds numbers of 17 x 10(exp 6), 24 x 10(exp 6) and 30 x 10(exp 6) suggest that DRE could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small wavelength stationary crossflow disturbances (i.e., DRE) also suppresses the growth of most amplified traveling crossflow disturbances.

  6. Nacelle/pylon/wing integration on a transport model with a natural laminar flow nacelle

    NASA Technical Reports Server (NTRS)

    Lamb, M.; Aabeyounis, W. K.; Patterson, J. C., Jr.

    1985-01-01

    Tests were conducted in the Langley 16-Foot Transonic Tunnel at free-stream Mach numbers from 0.70 to 0.82 and angles of attack from -2.5 deg to 4.0 deg to determine if nacelle/pylon/wing integration affects the achievement of natural laminar flow on a long-duct flow-through nacelle for a high-wing transonic transport configuration. In order to fully assess the integration effect on a nacelle designed to achieve laminar flow, the effects of fixed and free nacelle transitions as well as nacelle longitudinal position and pylon contouring were obtained. The results indicate that the ability to achieve laminar flow on the nacelle is not significantly altered by nacelle/pylon/wing integration. The increment in installed drag between free and fixed transition for the nacelles on symmetrical pylons is essentially the calculated differences between turbulent and laminar flow on the nacelles. The installed drag of the contoured pylon is less than that of the symmetrical pylon. The installed drag for the nacelles in a rearward position is greater than that for the nacelles in a forward position.

  7. Laminar flow of viscoelastic fluids in rectangular ducts with heat transfer: A finite element analysis

    SciTech Connect

    Syrjaelae, S.

    1998-02-01

    A numerical study on the laminar flow and heat transfer behavior of viscoelastic fluids in rectangular ducts is conducted using the finite element approach. A Criminale-Ericksen-Fibley relation is applied to describe the viscoelastic character of the fluid, and a hydrodynamically and thermally fully developed flow with the H1 thermal boundary condition is considered. The finite element procedure employed yields essentially mesh-independent predictions with a fairly moderate computational effort. Computed results are presented and discussed in terms of the secondary flow field, the temperature field, the friction factor and the Nusselt number. In particular it is shown that the presence of a secondary flow markedly alters the temperature field and results in a substantial heat transfer enhancement with all duct aspect ratios considered. The significant heat transfer enhancement as a consequence of fluid elasticity, with virtually no pressure drop increase, is an interesting phenomenon that certainly has application potential in various industrial processes involving fluid flow and heat transfer.

  8. Pore-scale simulation of laminar flow through porous media

    NASA Astrophysics Data System (ADS)

    Piller, M.; Casagrande, D.; Schena, G.; Santini, M.

    2014-04-01

    The experimental investigation of flow through porous media is inherently difficult due to the lack of optical access. The recent developments in the fields of X-ray micro-tomography (micro-CT hereafter), digital sample reconstruction by image-processing techniques and fluid-dynamics simulation, together with the increasing power of super-computers, allow to carry out pore-scale simulations through digitally-reconstructed porous samples. The scientific relevance of pore-scale simulations lies in the possibility of upscaling the pore-level data, yielding volume-averaged quantities useful for practical purposes. One of the best-known examples of upscaling is the calculation of absolute and relative permeability of reservoir rocks. This contribution presents a complete work-flow for setting up pore-scale simulations, starting from the micro-CT of a (in general small) porous sample. Relevant applications are discussed in order to reveal the potential of the proposed methodology.

  9. Evaluation of laminar flow control system concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A two-year study conducted to establish a basis for industry decisions on the application of laminar flow control (LFC) to future commercial transports was presented. Areas of investigation included: (1) mission definition and baseline selection; (2) concepts evaluations; and (3) LFC transport configuration selection and component design. The development and evaluation of competing design concepts was conducted in the areas of aerodynamics, structures and materials, and systems. The results of supporting wind tunnel and laboratory testing on a full-scale LFC wing panel, suction surface opening concepts and structural samples were included. A final LFC transport was configured in incorporating the results of concept evaluation studies and potential performance improvements were assessed. Remaining problems together with recommendations for future research are discussed.

  10. Evaluation of laminar flow control system concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Results of a 2-year study are reported which were carried out to extend the development of laminar flow control (LFC) technology and evaluate LFC systems concepts. The overall objective of the LFC program is to provide a sound basis for industry decisions on the application of LFC to future commercial transports. The study was organized into major tasks to support the stated objectives through application of LFC systems concepts to a baseline LFC transport initially generated for the study. Based on competitive evaluation of these concepts, a final selection was made for incorporation into the final design of an LFC transport which also included other advanced technology elements appropriate to the 1990 time period.