Sample records for developing fuel cell

  1. Development of PEM fuel cell technology at international fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  2. Status of commercial fuel cell powerplant system development

    NASA Technical Reports Server (NTRS)

    Warshay, Marvin

    1987-01-01

    The primary focus is on the development of commercial Phosphoric Acid Fuel Cell (PAFC) powerplant systems because the PAFC, which has undergone extensive development, is currently the closest fuel cell system to commercialization. Shorter discussions are included on the high temperature fuel cell systems which are not as mature in their development, such as the Molten Carbonate Fuel Cell (MCFC) and the Solid Oxide Fuel Cell (SOFC). The alkaline and the Solid Polymer Electrolyte (SPE) fuel cell systems, are also included, but their discussions are limited to their prospects for commercial development. Currently, although the alkaline fuel cell continues to be used for important space applications there are no commercial development programs of significant size in the USA and only small efforts outside. The market place for fuel cells and the status of fuel cell programs in the USA receive extensive treatment. The fuel cell efforts outside the USA, especially the large Japanese programs, are also discussed.

  3. Fuel Cell Development and Test Laboratory | Energy Systems Integration

    Science.gov Websites

    Facility | NREL Fuel Cell Development and Test Laboratory Fuel Cell Development and Test Laboratory The Energy System Integration Facility's Fuel Cell Development and Test Laboratory supports fuel a fuel cell test in the Fuel Cell Development and Test Laboratory. Capability Hubs The Fuel Cell

  4. Unitized Regenerative Fuel Cell System Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2003-01-01

    Unitized Regenerative Fuel Cells (URFC) have recently been developed by several fuel cell manufacturers. These manufacturers have concentrated their efforts on the development of the cell stack technology itself, and have not up to this point devoted much effort to the design and development of the balance of plant. A fuel cell technology program at the Glenn Research Center (GRC) that has as its goal the definition and feasibility testing of the URFC system balance of plant. Besides testing the feasibility, the program also intends to minimize the system weight, volume, and parasitic power as its goal. The design concept currently being developed uses no pumps to circulate coolant or reactants, and minimizes the ancillary components to only the oxygen and hydrogen gas storage tanks, a water storage tank, a loop heat pipe to control the temperature and two pressure control devices to control the cell stack pressures during operation. The information contained in this paper describes the design and operational concepts employed in this concept. The paper also describes the NASA Glenn research program to develop this concept and test its feasibility.

  5. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1982-01-01

    The phosphoric acid fuel cell module (stack) development which culminated in an 80 cell air-cooled stack with separated gas cooling and treed cooling plates is described. The performance of the 80 cell stack was approx. 100 mV per cell higher than that attained during phase 1. The components and materials performed stably for over 8000 hours in a 5 cell stack. The conceptual design of a fuel conditioning system is described.

  6. Combustion Characterization and Model Fuel Development for Micro-tubular Flame-assisted Fuel Cells.

    PubMed

    Milcarek, Ryan J; Garrett, Michael J; Baskaran, Amrish; Ahn, Jeongmin

    2016-10-02

    Combustion based power generation has been accomplished for many years through a number of heat engine systems. Recently, a move towards small scale power generation and micro combustion as well as development in fuel cell research has created new means of power generation that combine solid oxide fuel cells with open flames and combustion exhaust. Instead of relying upon the heat of combustion, these solid oxide fuel cell systems rely on reforming of the fuel via combustion to generate syngas for electrochemical power generation. Procedures were developed to assess the combustion by-products under a wide range of conditions. While theoretical and computational procedures have been developed for assessing fuel-rich combustion exhaust in these applications, experimental techniques have also emerged. The experimental procedures often rely upon a gas chromatograph or mass spectrometer analysis of the flame and exhaust to assess the combustion process as a fuel reformer and means of heat generation. The experimental techniques developed in these areas have been applied anew for the development of the micro-tubular flame-assisted fuel cell. The protocol discussed in this work builds on past techniques to specify a procedure for characterizing fuel-rich combustion exhaust and developing a model fuel-rich combustion exhaust for use in flame-assisted fuel cell testing. The development of the procedure and its applications and limitations are discussed.

  7. Strategic Partnerships in Fuel Cell Development

    ERIC Educational Resources Information Center

    Diab, Dorey

    2006-01-01

    This article describes how forming strategic alliances with universities, emerging technology companies, the state of Ohio, the federal government, and the National Science Foundation, has enabled Stark State College to develop a $5.5 million Fuel Cell Prototyping Center and establish a Fuel Cell Technology program to promote economic development…

  8. Advanced PEFC development for fuel cell powered vehicles

    NASA Astrophysics Data System (ADS)

    Kawatsu, Shigeyuki

    Vehicles equipped with fuel cells have been developed with much progress. Outcomes of such development efforts include a Toyota fuel cell electric vehicle (FCEV) using hydrogen as the fuel which was developed and introduced in 1996, followed by another Toyota FCEV using methanol as the fuel, developed and introduced in 1997. In those Toyota FCEVs, a fuel cell system is installed under the floor of each RAV4L, to sports utility vehicle. It has been found that the CO concentration in the reformed gas of methanol reformer can be reduced to 100 ppm in wide ranges of catalyst temperature and gas flow rate, by using the ruthenium (Ru) catalyst as the CO selective oxidizer, instead of the platinum (Pt) catalyst known from some time ago. It has been also found that a fuel cell performance equivalent to that with pure hydrogen can be ensured even in the reformed gas with the carbon monoxide (CO) concentration of 100 ppm, by using the Pt-Ru (platinum ruthenium alloy) electrocatalyst as the anode electrocatalyst of a polymer electrolyte fuel cell (PEFC), instead of the Pt electrocatalyst known from some time ago.

  9. Development of an alkaline fuel cell subsystem

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A two task program was initiated to develop advanced fuel cell components which could be assembled into an alkaline power section for the Space Station Prototype (SSP) fuel cell subsystem. The first task was to establish a preliminary SSP power section design to be representative of the 200 cell Space Station power section. The second task was to conduct tooling and fabrication trials and fabrication of selected cell stack components. A lightweight, reliable cell stack design suitable for the SSP regenerative fuel cell power plant was completed. The design meets NASA's preliminary requirements for future multikilowatt Space Station missions. Cell stack component fabrication and tooling trials demonstrated cell components of the SSP stack design of the 1.0 sq ft area can be manufactured using techniques and methods previously evaluated and developed.

  10. Development of a lightweight fuel cell vehicle

    NASA Astrophysics Data System (ADS)

    Hwang, J. J.; Wang, D. Y.; Shih, N. C.

    This paper described the development of a fuel cell system and its integration into the lightweight vehicle known as the Mingdao hydrogen vehicle (MHV). The fuel cell system consists of a 5-kW proton exchange membrane fuel cell (PEMFC), a microcontroller and other supported components like a compressed hydrogen cylinder, blower, solenoid valve, pressure regulator, water pump, heat exchanger and sensors. The fuel cell not only propels the vehicle but also powers the supporting components. The MHV performs satisfactorily over a hundred-kilometer drive thus validating the concept of a fuel cell powered zero-emission vehicle. Measurements further show that the fuel cell system has an efficiency of over 30% at the power consumption for vehicle cruise, which is higher than that of a typical internal combustion engine. Tests to improve performance such as speed enhancement, acceleration and fuel efficiency will be conducted in the future work. Such tests will consist of hybridizing with a battery pack.

  11. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1982-01-01

    The efforts performed to develop a phosphoric acid fuel cell (PAFC) stack design having a 10 kW power rating for operation at higher than atmospheric pressure based on the existing Mark II design configuration are described. The work involves: (1) Performance of pertinent functional analysis, trade studies and thermodynamic cycle analysis for requirements definition and system operating parameter selection purposes, (2) characterization of fuel cell materials and components, and performance testing and evaluation of the repeating electrode components, (3) establishment of the state-of-the-art manufacturing technology for all fuel cell components at Westinghouse and the fabrication of short stacks of various sites, and (4) development of a 10 kW PAFC stack design for higher pressure operation utilizing the top down systems engineering approach.

  12. Fuel Cell Research and Development for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Hoberecht, Mark; Loyselle, Patricia; Burke, Kenneth; Bents, David; Farmer, Serene; Kohout, Lisa

    2006-01-01

    NASA has been using fuel cell systems since the early days of space flight. Polymer Exchange Membrane Fuel cells provided the primary power for the Gemini and Apollo missions and more recently, alkaline fuel cells serve as the primary power source for the Space Shuttle. NASA's current investments in fuel cell technology support both Exploration and Aeronautics programs. This presentation provides an overview of NASA's fuel cell development programs.

  13. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1981-01-01

    A phosphoric acid fuel cell (PAFC) stack design having a 10 kW power rating for operation at higher than atmospheric pressure based on the existing Mark II design configuration is described. Functional analysis, trade studies and thermodynamic cycle analysis for requirements definition and system operating parameter selection purposes were performed. Fuel cell materials and components, and performance testing and evaluation of the repeating electrode components were characterized. The state of the art manufacturing technology for all fuel cell components and the fabrication of short stacks of various sites were established. A 10 kW PAFC stack design for higher pressure operation utilizing the top down systems engineering aproach was developed.

  14. Development of advanced fuel cell system

    NASA Technical Reports Server (NTRS)

    Grevstad, P. E.

    1972-01-01

    Weight, life and performance characteristics optimization of hydrogen-oxygen fuel cell power systems were considered. A promising gold alloy cathode catalyst was identified and tested in a cell for 5,000 hours. The compatibility characteristics of candidate polymer structural materials were measured after exposure to electrolyte and water vapor for 8,000 hours. Lightweight cell designs were prepared and fabrication techniques to produce them were developed. Testing demonstrated that predicted performance was achieved. Lightweight components for passive product water removal and evaporative cooling of cells were demonstrated. Systems studies identified fuel cell powerplant concepts for meeting the requirements of advanced spacecraft.

  15. Hydrogen-bromine fuel cell advance component development

    NASA Technical Reports Server (NTRS)

    Charleston, Joann; Reed, James

    1988-01-01

    Advanced cell component development is performed by NASA Lewis to achieve improved performance and longer life for the hydrogen-bromine fuel cells system. The state-of-the-art hydrogen-bromine system utilizes the solid polymer electrolyte (SPE) technology, similar to the SPE technology developed for the hydrogen-oxygen fuel cell system. These studies are directed at exploring the potential for this system by assessing and evaluating various types of materials for cell parts and electrode materials for Bromine-hydrogen bromine environment and fabricating experimental membrane/electrode-catalysts by chemical deposition.

  16. Monolithic solid oxide fuel cell development

    NASA Technical Reports Server (NTRS)

    Myles, K. M.; Mcpheeters, C. C.

    1989-01-01

    The feasibility of the monolithic solid oxide fuel cell (MSOFC) concept has been proven, and the performance has been dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials have been minimized, thus allowing successful fabrication of the MSOFC with few defects. The MSOFC shows excellent promise for development into a practical power source for many applications from stationary power, to automobile propulsion, to space pulsed power.

  17. Fuel cell development for transportation: Catalyst development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doddapaneni, N.

    1996-04-01

    Fuel cells are being considered as alternate power sources for transportation and stationary applications. With proton exchange membrane (PEM) fuel cells the fuel crossover to cathodes causes severe thermal management and cell voltage drop due to oxidation of fuel at the platinized cathodes. The main goal of this project was to design, synthesize, and evaluate stable and inexpensive transition metal macrocyclic catalysts for the reduction of oxygen and be electrochemically inert towards anode fuels such as hydrogen and methanol.

  18. Monolithic Solid Oxide Fuel Cell development

    NASA Technical Reports Server (NTRS)

    Myles, K. M.; Mcpheeters, C. C.

    1989-01-01

    The Monolithic Solid Oxide Fuel Cell (MSOFC) is an oxide-ceramic structure in which appropriate electronic and ionic conductors are fabricated in a honeycomb shape similar to a block of corrugated paperboard. These electronic and ionic conductors are arranged to provide short conduction paths to minimize resistive losses. The power density achievable with the MSOFC is expected to be about 8 kW/kg or 4 kW/L, at fuel efficienceis over 50 percent, because of small cell size and low resistive losses in the materials. The MSOFC operates in the range of 700 to 1000 C, at which temperatures rapid reform of hydrocarbon fuels is expected within the nickel-YSZ fuel channels. Tape casting and hot roll calendering are used to fabricate the MSOFC structure. The performance of the MSOFC has improved significantly during the course of development. The limitation of this system, based on materials resistance alone without interfacial resistances, is 0.093 ohm-sq cm area-specific resistance (ASR). The current typical performance of MSOFC single cells is characterized by ASRs of about 0.4 to 0.5 ohm-sq cm. With further development the ASR is expected to be reduced below 0.2 ohm-sq cm, which will result in power levels greater than 1.4 W/sq cm. The feasibility of the MSOFC concept was proven, and the performance was dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials were minimized. As a result of good matching of these properties, the MSOFC structure was successfully fabricated with few defects, and the system shows excellent promise for development into a practical power source.

  19. Development of Passive Fuel Cell Thermal Management Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony

    2011-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. The passive thermal management system relies on heat conduction within the cooling plate to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack rather than using a pumped loop cooling system to convectively remove the heat. Using the passive approach eliminates the need for a coolant pump and other cooling loop components which reduces fuel cell system mass and improves overall system reliability. Previous analysis had identified that low density, ultra-high thermal conductivity materials would be needed for the cooling plates in order to achieve the desired reductions in mass and the highly uniform thermal heat sink for each cell within a fuel cell stack. A pyrolytic graphite material was identified and fabricated into a thin plate using different methods. Also a development project with Thermacore, Inc. resulted in a planar heat pipe. Thermal conductivity tests were done using these materials. The results indicated that lightweight passive fuel cell cooling is feasible.

  20. Fuel Cell/Reformers Technology Development

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA Glenn Research Center is interested in developing Solid Oxide Fuel Cell for use in aerospace applications. Solid oxide fuel cell requires hydrogen rich feed stream by converting commercial aviation jet fuel in a fuel processing process. The grantee's primary research activities center on designing and constructing a test facility for evaluating injector concepts to provide optimum feeds to fuel processor; collecting and analyzing literature information on fuel processing and desulfurization technologies; establishing industry and academic contacts in related areas; providing technical support to in-house SOFC-based system studies. Fuel processing is a chemical reaction process that requires efficient delivery of reactants to reactor beds for optimum performance, i.e., high conversion efficiency and maximum hydrogen production, and reliable continuous operation. Feed delivery and vaporization quality can be improved by applying NASA's expertise in combustor injector design. A 10 KWe injector rig has been designed, procured, and constructed to provide a tool to employ laser diagnostic capability to evaluate various injector concepts for fuel processing reactor feed delivery application. This injector rig facility is now undergoing mechanical and system check-out with an anticipated actual operation in July 2004. Multiple injector concepts including impinging jet, venturi mixing, discrete jet, will be tested and evaluated with actual fuel mixture compatible with reforming catalyst requirement. Research activities from September 2002 to the closing of this collaborative agreement have been in the following areas: compiling literature information on jet fuel reforming; conducting autothermal reforming catalyst screening; establishing contacts with other government agencies for collaborative research in jet fuel reforming and desulfurization; providing process design basis for the build-up of injector rig facility and individual injector design.

  1. Development of advanced fuel cell system, phase 2

    NASA Technical Reports Server (NTRS)

    Handley, L. M.; Meyer, A. P.; Bell, W. F.

    1973-01-01

    A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Development and characterization of a very stable gold alloy catalyst was continued from Phase I of the program. A polymer material for fabrication of cell structural components was identified and its long term compatibility with the fuel cell environment was demonstrated in cell tests. Full scale partial cell stacks, with advanced design closed cycle evaporative coolers, were tested. The characteristics demonstrated in these tests verified the feasibility of developing the engineering model system concept into an advanced lightweight long life powerplant.

  2. Fuel cells

    NASA Astrophysics Data System (ADS)

    Hooie, D. T.; Harrington, B. C., III; Mayfield, M. J.; Parsons, E. L.

    1992-07-01

    The primary objective of DOE's Fossil Energy Fuel Cell program is to fund the development of key fuel cell technologies in a manner that maximizes private sector participation and in a way that will give contractors the opportunity for a competitive posture, early market entry, and long-term market growth. This summary includes an overview of the Fuel Cell program, an elementary explanation of how fuel cells operate, and a synopsis of the three major fuel cell technologies sponsored by the DOE/Fossil Energy Phosphoric Acid Fuel Cell program, the Molten Carbonate Fuel Cell program, and the Solid Oxide Fuel Cell program.

  3. Regenerative Fuel Cells for Space Power and Energy Conversion (NaBH4/H2O2 Fuel Cell Development)

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Miley, George H.; Luo, Nie; Burton, Rodney; Mather, Joseph; Hawkins, Glenn; Byrd, Ethan; Gu, Lifeng; Shrestha, Prajakti Joshi

    2006-01-01

    A viewgraph presentation describing hydrogen peroxide and sodium borohydride development is shown. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Fuel Cell Comparisons; 4) MEA Optimization; 5) 500-Watt Stack Testing; 6) System Modeling: Fuel Cell Power Source for Lunar Rovers; and 7) Conclusions

  4. Strong, Tough Glass Composites Developed for Solid Oxide Fuel Cell Seals

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.

    2005-01-01

    A fuel cell is an electrochemical device that continuously converts the chemical energy of a fuel directly into electrical energy. It consists of an electrolyte, an anode, and a cathode. Various types of fuel cells are available, such as direct methanol fuel cells, alkaline fuel cells, proton-exchange-membrane fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, and solid oxide fuel cells (SOFCs). The salient features of an SOFC are all solid construction and high-temperature electrochemical-reaction-based operation, resulting in clean, efficient power generation from a variety of fuels. SOFCs are being developed for a broad range of applications, such as portable electronic devices, automobiles, power generation, and aeronautics.

  5. Battery and Fuel Cell Development for NASA's Constellation Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2009-01-01

    NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EY A) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  6. Battery and Fuel Cell Development for NASA's Exploration Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Reid, Concha M.

    2009-01-01

    NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EVA) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  7. Development of Passive Fuel Cell Thermal Management Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian J.; Colozza, Anthony J.

    2010-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates that could conduct the heat, provide a sufficiently uniform temperature heat sink for each cell of the fuel cell stack, and be substantially lighter than the conventional thermal management approach. Tests were run with different materials to evaluate the design approach to a heat exchanger that could interface with the edges of the passive cooling plates. Measurements were made during fuel cell operation to determine the temperature of individual cooling plates and also to determine the temperature uniformity from one cooling plate to another.

  8. Challenges in developing direct carbon fuel cells.

    PubMed

    Jiang, Cairong; Ma, Jianjun; Corre, Gael; Jain, Sneh L; Irvine, John T S

    2017-05-22

    A direct carbon fuel cell (DCFC) can produce electricity with both superior electrical efficiency and fuel utilisation compared to all other types of fuel cells. Although the first DCFC prototype was proposed in 1896, there was, until the 1970s, little sustained effort to investigate further, because of technology development issues. Interest in DCFCs has recently been reinvigorated as a possible method of replacing conventional coal-fired power plants to meet the demands for lower CO 2 emissions, and indeed for efficient utilisation of waste derived chars. In this article, recent developments in direct carbon conversion are reviewed, with the principal emphasis on the materials involved. The development of electrolytes, anodes and cathodes as well as fuel sources is examined. The activity and chemical stability of the anode materials are a critical concern addressed in the development of new materials. Redox media of molten carbonate or molten metal facilitating the transportation of ions offer promising possibilities for carbon oxidation. The suitability of different carbon fuels in various DCFC systems, in terms of crystal structure, surface properties, impurities and particle size, is also discussed. We explore the influence of a variety of parameters on the electrochemical performance of DCFCs, with regard to their open circuit voltage, power output and lifetime. The challenges faced in developing DCFCs are summarised, and potential prospects of the system are outlined.

  9. Hydrogen and Fuel Cell Basics | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Hydrogen and Fuel Cell Basics Hydrogen and Fuel Cell Basics NREL researchers are working to unlock the potential of hydrogen as a fuel and to advance fuel cell technologies for automobiles, equipment basics of NREL's hydrogen and fuel cell research and development. Fuel cell electric vehicles (FCEVs

  10. Development of a 5 kW Prototype Coal-Based Fuel Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Steven S.C.; Mirzababaei, Jelvehnaz; Rismanchian, Azadeh

    2014-01-20

    The University of Akron Fuel Cell Laboratory pioneered the development of a laboratory scale coal-based fuel cell, which allows the direct use of high sulfur content coal as fuel. The initial research and coal fuel cell technology development (“Coal-based Fuel Cell,” S. S. C. Chuang, PCT Int. Appl. 2006, i.e., European Patent Application, 35 pp. CODEN: PIXXD2 WO 2006028502 A2 20060316) have demonstrated that it is feasible to electrochemically oxidize carbon to CO2, producing electricity. The key innovative concept of this coal-based fuel cell technology is that carbon in coal can be converted through an electrochemical oxidation reaction into manageablemore » carbon dioxide, efficiently generating electricity without involving coal gasification, reforming, and water-gas shift reaction. This study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO 2 product produced can further react with carbon to initiate the secondary reaction. A carbon injection system was developed to inject the solid fuel without bringing air into the anode chamber; a fuel cell stack was developed and tested to demonstrate the feasibility of the fuel cell stack. Further improvement of anode catalyst activity and durability is needed to bring this novel coal fuel cell to a highly efficient, super clean, multi-use electric generation technology, which promises to provide low cost electricity by expanding the utilization of U.S. coal supplies and relieving our dependence on foreign oil.« less

  11. Development of advanced fuel cell system

    NASA Technical Reports Server (NTRS)

    Gitlow, B.; Meyer, A. P.; Bell, W. F.; Martin, R. E.

    1978-01-01

    An experimental program was conducted continuing the development effort to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. These advanced technology cells operate with passive water removal which contributes to a lower system weight and extended operating life. Endurance evaluation of two single cells and two, two-cell plaques was continued. Three new test articles were fabricated and tested. A single cell completed 7038 hours of endurance testing. This cell incorporated a Fybex matrix, hybrid-frame, PPF anode, and a 90 Au/10 Pt cathode. This configuration was developed to extend cell life. Two cell plaques with dedicated flow fields and manifolds for all fluids did not exhibit the cell-to-cell electrolyte transfer that limited the operating life of earlier multicell plaques.

  12. Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |

    Science.gov Websites

    NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation

  13. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1981-01-01

    The design features and plans for fabrication of Stacks 564 and 800 are described. The results of the OS/IES loop testing of Stack 562, endurance testing of Stack 560 and the post test analysis of Stack 561 are reported. Progress on construction and modification of the fuel cell test facilities and the 10 kW reformer test station is described. Efforts to develop the technical data base for the fuel conditioning system included vendor contacts, packed bed heat transfer tests, development of the BOLTAR computer program, and work on the detailed design of the 10 kW reformer are described.

  14. Alkaline fuel cells for the regenerative fuel cell energy storage system

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1983-01-01

    The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.

  15. Fuel Cell Technology Status Analysis | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Technology Status Analysis Fuel Cell Technology Status Analysis Get Involved Fuel cell developers interested in collaborating with NREL on fuel cell technology status analysis should send an email to NREL's Technology Validation Team at techval@nrel.gov. NREL's analysis of fuel cell technology provides objective

  16. Fuel processors for fuel cell APU applications

    NASA Astrophysics Data System (ADS)

    Aicher, T.; Lenz, B.; Gschnell, F.; Groos, U.; Federici, F.; Caprile, L.; Parodi, L.

    The conversion of liquid hydrocarbons to a hydrogen rich product gas is a central process step in fuel processors for auxiliary power units (APUs) for vehicles of all kinds. The selection of the reforming process depends on the fuel and the type of the fuel cell. For vehicle power trains, liquid hydrocarbons like gasoline, kerosene, and diesel are utilized and, therefore, they will also be the fuel for the respective APU systems. The fuel cells commonly envisioned for mobile APU applications are molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Since high-temperature fuel cells, e.g. MCFCs or SOFCs, can be supplied with a feed gas that contains carbon monoxide (CO) their fuel processor does not require reactors for CO reduction and removal. For PEMFCs on the other hand, CO concentrations in the feed gas must not exceed 50 ppm, better 20 ppm, which requires additional reactors downstream of the reforming reactor. This paper gives an overview of the current state of the fuel processor development for APU applications and APU system developments. Furthermore, it will present the latest developments at Fraunhofer ISE regarding fuel processors for high-temperature fuel cell APU systems on board of ships and aircrafts.

  17. Nonhumidified High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kinder, James D.

    2005-01-01

    Fuel cells are being considered for a wide variety of aerospace applications. One of the most versatile types of fuel cells is the proton-exchange-membrane (PEM) fuel cell. PEM fuel cells can be easily scaled to meet the power and space requirements of a specific application. For example, small 100-W PEM fuel cells are being considered for personal power for extravehicular activity suit applications, whereas larger PEM fuel cells are being designed for primary power in airplanes and in uninhabited air vehicles. Typically, PEM fuel cells operate at temperatures up to 80 C. To increase the efficiency and power density of the fuel cell system, researchers are pursuing methods to extend the operating temperature of the PEM fuel cell to 180 C. The most widely used membranes in PEM fuel cells are Nafion 112 and Nafion 117--sulfonated perfluorinated polyethers that were developed by DuPont. In addition to their relatively high cost, the properties of these membranes limit their use in a PEM fuel cell to around 80 C. The proton conductivity of Nafion membranes significantly decreases above 80 C because the membrane dehydrates. The useful operating range of Nafion-based PEM fuel cells can be extended to over 100 C if ancillary equipment, such as compressors and humidifiers, is added to maintain moisture levels within the membrane. However, the addition of these components reduces the power density and increases the complexity of the fuel cell system.

  18. Development of a Soldier-Portable Fuel Cell Power System, Part I: A Bread-Board Methanol Fuel Processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palo, Daniel R.; Holladay, Jamelyn D.; Rozmiarek, Robert T.

    A 15-We portable power system is being developed for the US Army, comprised of a hydrogen-generating fuel reformer coupled to a hydrogen-converting fuel cell. As a first phase of this project, a methanol steam reformer system was developed and demonstrated. The reformer system included a combustor, two vaporizers, and a steam-reforming reactor. The device was demonstrated as a thermally independent unit over the range of 14 to 80 Wt output. Assuming a 14-day mission life and an ultimate 1-kg fuel processor/fuel cell assembly, a base case was chosen to illustrate the expected system performance. Operating at 13 We, the systemmore » yielded a fuel processor efficiency of 45% (LHV of H2 out/LHV of fuel in) and an estimated net efficiency of 22% (assuming a fuel cell efficiency of 48%). The resulting energy density of 720 W-hr/kg is several times the energy density of the best lithium-ion batteries. Some immediate areas of improvement in thermal management also have been identified and an integrated fuel processor is under development. The final system will be a hybrid, containing a fuel reformer, fuel cell, and rechargeable battery. The battery will provide power for startup and added capacity for times of peak power demand.« less

  19. Cationic Polymers Developed for Alkaline Fuel Cell Applications

    DTIC Science & Technology

    2015-01-20

    into five categories: proton exchange membrane fuel cell ( PEMFC ), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), solid oxide fuel...SOFC and PAFC belong to high temperature fuel cell, which can be applied in stationary power generation. PEMFC and AFC belong to low temperature fuel...function of the polymer electrolyte is to serve as electrolyte to transport ions between electrodes. PEMFC uses a polymer as electrolyte and works

  20. Fuel cell-fuel cell hybrid system

    DOEpatents

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  1. NREL Develops High-Speed Scanner to Monitor Fuel Cell Material Defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-09-01

    This highlight describes results of recent work in which polymer electrolyte membrane fuel cell electrodes with intentionally introduced known defects were imaged and analyzed using a fuel cell scanner recently developed at NREL. The highlight is being developed for the September 2015 Alliance S&T Board meeting.

  2. Development of molten carbonate fuel cells for power generation

    NASA Astrophysics Data System (ADS)

    1980-04-01

    The broad and comprehensive program included elements of system definition, cell and system modeling, cell component development, cell testing in pure and contaminated environments, and the first stages of technology scale up. Single cells, with active areas of 45 sq cm and 582 sq cm, were operated at 650 C and improved to state of the art levels through the development of cell design concepts and improved electrolyte and electrode components. Performance was shown to degrade by the presence of fuel contaminants, such as sulfur and chlorine, and due to changes in electrode structure. Using conventional hot press fabrication techniques, electrolyte structures up to 20" x 20" were fabricated. Promising approaches were developed for nonhot pressed electrolyte structure fabrication and a promising electrolyte matrix material was identified. This program formed the basis for a long range effort to realize the benefits of molten carbonate fuel cell power plants.

  3. Fuels processing for transportation fuel cell systems

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Ahmed, S.

    Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

  4. Development of a soldier-portable fuel cell power system. Part I: A bread-board methanol fuel processor

    NASA Astrophysics Data System (ADS)

    Palo, Daniel R.; Holladay, Jamie D.; Rozmiarek, Robert T.; Guzman-Leong, Consuelo E.; Wang, Yong; Hu, Jianli; Chin, Ya-Huei; Dagle, Robert A.; Baker, Eddie G.

    A 15-W e portable power system is being developed for the US Army that consists of a hydrogen-generating fuel reformer coupled to a proton-exchange membrane fuel cell. In the first phase of this project, a methanol steam reformer system was developed and demonstrated. The reformer system included a combustor, two vaporizers, and a steam reforming reactor. The device was demonstrated as a thermally independent unit over the range of 14-80 W t output. Assuming a 14-day mission life and an ultimate 1-kg fuel processor/fuel cell assembly, a base case was chosen to illustrate the expected system performance. Operating at 13 W e, the system yielded a fuel processor efficiency of 45% (LHV of H 2 out/LHV of fuel in) and an estimated net efficiency of 22% (assuming a fuel cell efficiency of 48%). The resulting energy density of 720 Wh/kg is several times the energy density of the best lithium-ion batteries. Some immediate areas of improvement in thermal management also have been identified, and an integrated fuel processor is under development. The final system will be a hybrid, containing a fuel reformer, a fuel cell, and a rechargeable battery. The battery will provide power for start-up and added capacity for times of peak power demand.

  5. Emerging Fuel Cell Technology Being Developed: Offers Many Benefits to Air Vehicles

    NASA Technical Reports Server (NTRS)

    Walker, James F.; Civinskas, Kestutis C.

    2004-01-01

    Fuel cells, which have recently received considerable attention for terrestrial applications ranging from automobiles to stationary power generation, may enable new aerospace missions as well as offer fuel savings, quiet operations, and reduced emissions for current and future aircraft. NASA has extensive experience with fuel cells, having used them on manned space flight systems over four decades. Consequently, the NASA Glenn Research Center has initiated an effort to investigate and develop fuel cell technologies for multiple aerospace applications. Two promising fuel cell types are the proton exchange membrane (PEM) and solid oxide fuel cell (SOFC). PEM technology, first used on the Gemini spacecraft in the sixties, remained unutilized thereafter until the automotive industry recently recognized the potential. PEM fuel cells are low-temperature devices offering quick startup time but requiring relatively pure hydrogen fuel. In contrast, SOFCs operate at high temperatures and tolerate higher levels of impurities. This flexibility allows SOFCs to use hydrocarbon fuels, which is an important factor considering our current liquid petroleum infrastructure. However, depending on the specific application, either PEM or SOFC can be attractive. As only NASA can, the Agency is pursuing fuel cell technology for civil uninhabited aerial vehicles (UAVs) because it offers enhanced scientific capabilities, including enabling highaltitude, long-endurance missions. The NASA Helios aircraft demonstrated altitudes approaching 100,000 ft using solar power in 2001, and future plans include the development of a regenerative PEM fuel cell to provide nighttime power. Unique to NASA's mission, the high-altitude aircraft application requires the PEM fuel cell to operate on pure oxygen, instead of the air typical of terrestrial applications.

  6. Development Status of PEM Non-Flow-Through Fuel Cell System Technology for NASA Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.; Jakupca, Ian J.

    2011-01-01

    Today s widespread development of proton-exchange-membrane (PEM) fuel cell technology for commercial users owes its existence to NASA, where fuel cell technology saw its first applications. Beginning with the early Gemini and Apollo programs, and continuing to this day with the Shuttle Orbiter program, fuel cells have been a primary source of electrical power for many NASA missions. This is particularly true for manned missions, where astronauts are able to make use of the by-product of the fuel cell reaction, potable water. But fuel cells also offer advantages for unmanned missions, specifically when power requirements exceed several hundred watts and primary batteries are not a viable alternative. In recent years, NASA s Exploration Technology Development Program (ETDP) funded the development of fuel cell technology for applications that provide both primary power and regenerative fuel cell energy storage for planned Exploration missions that involved a return to the moon. Under this program, the Altair Lunar Lander was a mission requiring fuel cell primary power. There were also various Lunar Surface System applications requiring regenerative fuel cell energy storage, in which a fuel cell and electrolyzer combine to form an energy storage system with hydrogen, oxygen, and water as common reactants. Examples of these systems include habitat modules and large rovers. In FY11, the ETDP has been replaced by the Enabling Technology Development and Demonstration Program (ETDDP), with many of the same technology goals and requirements applied against NASA s revised Exploration portfolio.

  7. Fueling dreams of grandeur: Fuel cell research and development and the pursuit of the technological panacea, 1940--2005

    NASA Astrophysics Data System (ADS)

    Eisler, Matthew Nicholas

    The record of fuel cell research and development is one of the great enigmas in the history of science and technology. For years, this electrochemical power source, which combines hydrogen and oxygen to produce electricity and waste water, excited the imaginations of researchers in many countries. Because fuel cells directly convert chemical into electrical energy, people have long believed them exempt from the so-called Carnot cycle limitation on heat engines, which dictates that such devices must operate at less than 100 per cent efficiency owing to the randomization of energy as heat. Fuel cells have thus struck some scientists and engineers as the "magic bullet" of energy technologies. This dissertation explores why people have not been able to develop a cheap, durable commercial fuel cell despite more than 50 years of concerted effort since the end of Second World War. I argue this is so mainly because expectations have always been higher than the knowledge base. I investigate fuel cell research and development communities as central nodes of expectation generation. They have functioned as a nexus where the physical realities of fuel cell technology meet external factors, those political, economic and cultural pressures that create a "need" for a "miracle" power source. The unique economic exigencies of these communities have shaped distinct material practices that have done much to inform popular ideas of the capabilities of fuel cell technology. After the Second World War, the fuel cell was relatively unknown in industrial and governmental science and technology circles. Researchers in most leading industrialized countries, above all the United States, sought to raise the technology's profile through dramatic demonstrations in reductive circumstances, employing notional fuel cells using pure hydrogen and oxygen. Researchers paid less attention to cost and durability, concentrating on increasing power output, a criterion that could be met relatively easily in

  8. Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Cells A hydrogen-powered fuel cell electric vehicle driving past NREL's hydrogen fueling station NREL's hydrogen and fuel cell research and development (R&D) focuses on developing, integrating, and demonstrating hydrogen production and delivery, hydrogen storage, and fuel cell technologies for transportation

  9. A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development

    NASA Astrophysics Data System (ADS)

    Ogden, Joan M.; Steinbugler, Margaret M.; Kreutz, Thomas G.

    All fuel cells currently being developed for near term use in electric vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, or hydrocarbon fuels derived from crude oil (e.g., gasoline, diesel, or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, we present modeling results comparing three leading options for fuel storage onboard fuel cell vehicles: (a) compressed gas hydrogen storage, (b) onboard steam reforming of methanol, (c) onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. We have developed a fuel cell vehicle model, including detailed models of onboard fuel processors. This allows us to compare the vehicle performance, fuel economy, weight, and cost for various vehicle parameters, fuel storage choices and driving cycles. The infrastructure requirements are also compared for gaseous hydrogen, methanol and gasoline, including the added costs of fuel production, storage, distribution and refueling stations. The delivered fuel cost, total lifecycle cost of transportation, and capital cost of infrastructure development are estimated for each alternative. Considering both vehicle and infrastructure issues, possible fuel strategies leading to the commercialization of fuel cell vehicles are discussed.

  10. NASA Glenn Research Center Electrochemistry Branch Battery and Fuel Cell Development Overview

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2011-01-01

    This presentation covers an overview of NASA Glenn s history and heritage in the development of electrochemical systems for aerospace applications. Current developments related to batteries and fuel cells are addressed. Specific areas of focus are Li-ion batteries and Polymer Electrolyte Membrane Fuel cells systems and their development for future Exploration missions.

  11. Recent developments in microbial fuel cell technologies for sustainable bioenergy.

    PubMed

    Watanabe, Kazuya

    2008-12-01

    Microbial fuel cells (MFCs) are devices that exploit microbial catabolic activities to generate electricity from a variety of materials, including complex organic waste and renewable biomass. These sources provide MFCs with a great advantage over chemical fuel cells that can utilize only purified reactive fuels (e.g., hydrogen). A developing primary application of MFCs is its use in the production of sustainable bioenergy, e.g., organic waste treatment coupled with electricity generation, although further technical developments are necessary for its practical use. In this article, recent advances in MFC technologies that can become fundamentals for future practical MFC developments are summarized. Results of recent studies suggest that MFCs will be of practical use in the near future and will become a preferred option among sustainable bioenergy processes.

  12. Cell module and fuel conditioner development

    NASA Astrophysics Data System (ADS)

    Hoover, D. Q., Jr.

    1980-01-01

    Components for the first 5 cell stack (no cooling plates) of the MK-2 design were fabricated. Preliminary specfications and designs for the components of a 23 cell MK-1 stack with four DIGAS cooling plates were developed. The MK-2 was selected as a bench mark design and a preliminary design of the facilities required for high rate manufacture of fuel cell modules was developed. Two stands for testing 5 cell stacks were built and design work for modifying existing stands and building new stands for 23 and 80 cell stacks was initiated. Design and procurement of components and materials for the catalyst test stand were completed and construction initiated. Work on the specifications of pipeline gas, tap water and recovered water and definition of equipment required for treatment was initiated. An innovative geometry for the reformer was conceived and modifications of the computer program to be used in its design were stated.

  13. Fuel cell status -- 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirschenhofer, J.H.

    1995-12-31

    Fuel cells are finally coming into their own. A world that 10 years ago was unaware of the concept can now witness approximately 200 of the units in operation in 15 countries. As a result, an increasing number of utility planners and decision makers are asking how do fuel cells fit into their future. While the fuel cell concept is simple, determining which type of fuel cell to use for stationary power generation may prove taxing. Admittedly, the complexity of fuel cell development coupled with the amount of subject material and claims-versus-reality may seem overwhelming. This paper is intended tomore » provide a road map of major fuel cell development in the United States, focusing on what has been done recently and what is expected in the near future.« less

  14. Fuel cells: principles, types, fuels, and applications.

    PubMed

    Carrette, L; Friedrich, K A; Stimming, U

    2000-12-15

    During the last decade, fuel cells have received enormous attention from research institutions and companies as novel electrical energy conversion systems. In the near future, they will see application in automotive propulsion, distributed power generation, and in low power portable devices (battery replacement). This review gives an introduction into the fundamentals and applications of fuel cells: Firstly, the environmental and social factors promoting fuel cell development are discussed, with an emphasis on the advantages of fuel cells compared to the conventional techniques. Then, the main reactions, which are responsible for the conversion of chemical into electrical energy in fuel cells, are given and the thermodynamic and kinetic fundamentals are stated. The theoretical and real efficiencies of fuel cells are also compared to that of internal combustion engines. Next, the different types of fuel cells and their main components are explained and the related material issues are presented. A section is devoted to fuel generation and storage, which is of paramount importance for the practical aspects of fuel cell use. Finally, attention is given to the integration of the fuel cells into complete systems. © 2000 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  15. Nanofluidic fuel cell

    NASA Astrophysics Data System (ADS)

    Lee, Jin Wook; Kjeang, Erik

    2013-11-01

    Fuel cells are gaining momentum as a critical component in the renewable energy mix for stationary, transportation, and portable power applications. State-of-the-art fuel cell technology benefits greatly from nanotechnology applied to nanostructured membranes, catalysts, and electrodes. However, the potential of utilizing nanofluidics for fuel cells has not yet been explored, despite the significant opportunity of harnessing rapid nanoscale reactant transport in close proximity to the reactive sites. In the present article, a nanofluidic fuel cell that utilizes fluid flow through nanoporous media is conceptualized and demonstrated for the first time. This transformative concept captures the advantages of recently developed membraneless and catalyst-free fuel cell architectures paired with the enhanced interfacial contact area enabled by nanofluidics. When compared to previously reported microfluidic fuel cells, the prototype nanofluidic fuel cell demonstrates increased surface area, reduced activation overpotential, superior kinetic characteristics, and moderately enhanced fuel cell performance in the high cell voltage regime with up to 14% higher power density. However, the expected mass transport benefits in the high current density regime were constrained by high ohmic cell resistance, which could likely be resolved through future optimization studies.

  16. Fuel Cell Vehicle Basics | NREL

    Science.gov Websites

    Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics Researchers are developing fuel cells that can be silver four-door sedan being driven on a roadway and containing the words "hydrogen fuel cell electric" across the front and rear doors. This prototype hydrogen fuel cell electric vehicle was

  17. NASA's PEM Fuel Cell Power Plant Development Program for Space Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.

    2008-01-01

    A three-center NASA team led by the Glenn Research Center in Cleveland, Ohio is completing a five-year PEM fuel cell power plant development program for future space applications. The focus of the program has been to adapt commercial PEM fuel cell technology for space applications by addressing the key mission requirements of using pure oxygen as an oxidant and operating in a multi-gravity environment. Competing vendors developed breadboard units in the 1 to 5 kW power range during the first phase of the program, and a single vendor developed a nominal 10-kW engineering model power pant during the second phase of the program. Successful performance and environmental tests conducted by NASA established confidence that PEM fuel cell technology will be ready to meet the electrical power needs of future space missions.

  18. Micro-Tubular Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kimble, Michael C.; Anderson, Everett B.; Jayne, Karen D.; Woodman, Alan S.

    2004-01-01

    Micro-tubular fuel cells that would operate at power levels on the order of hundreds of watts or less are under development as alternatives to batteries in numerous products - portable power tools, cellular telephones, laptop computers, portable television receivers, and small robotic vehicles, to name a few examples. Micro-tubular fuel cells exploit advances in the art of proton-exchange-membrane fuel cells. The main advantage of the micro-tubular fuel cells over the plate-and-frame fuel cells would be higher power densities: Whereas the mass and volume power densities of low-pressure hydrogen-and-oxygen-fuel plate-and-frame fuel cells designed to operate in the targeted power range are typically less than 0.1 W/g and 0.1 kW/L, micro-tubular fuel cells are expected to reach power densities much greater than 1 W/g and 1 kW/L. Because of their higher power densities, micro-tubular fuel cells would be better for powering portable equipment, and would be better suited to applications in which there are requirements for modularity to simplify maintenance or to facilitate scaling to higher power levels. The development of PEMFCs has conventionally focused on producing large stacks of cells that operate at typical power levels >5 kW. The usual approach taken to developing lower-power PEMFCs for applications like those listed above has been to simply shrink the basic plate-and-frame configuration to smaller dimensions. A conventional plate-and-frame fuel cell contains a membrane/electrode assembly in the form of a flat membrane with electrodes of the same active area bonded to both faces. In order to provide reactants to both electrodes, bipolar plates that contain flow passages are placed on both electrodes. The mass and volume overhead of the bipolar plates amounts to about 75 percent of the total mass and volume of a fuel-cell stack. Removing these bipolar plates in the micro-tubular fuel cell significantly increases the power density.

  19. American fuel cell market development

    NASA Astrophysics Data System (ADS)

    Gillis, E. A.

    1992-01-01

    Over the past three decades several attempts have been made to introduce fuel cells into commercial markets. The prospective users recognized the attractive features of fuel cells, however they were unwilling to pay a premium for the features other than the easily-calculated fuel cost savings. There was no accepted method for a user to calculate and the accrue the economic value of the other features. The situation is changing. The Clean Air Act signed into law by President Bush on November 15, 1990, mandates a nation wide reduction in SO 2, NO x and ozone emissions. This law affects specific utilities for SO 2 reduction, and specific regions of the country for NO x and ozone reductions — the latter affecting the utility-, industrial- and transportation-sectors in these regions. The Act does not direct how the reductions are to be achieved; but it specifically establishes a trading market for emission allowances whereby an organization that reduces emissions below its target can sell its unused allowance to another organization. In addition to the Clean Air Act, there are other environmental issues emerging such as controls on CO 2 emissions, possible expansion of the list of controlled emissions, mandated use of alternative fuels in specific transportation districts and restrictions on electrical transmission systems. All of these so-called 'environmental externalities' are now recognized as having a real cost that can be quantified, and factored in to calculations to determine the relative economic standing of various technologies. This in turn justifies a premium price for fuel cells hence the renewed interest in the technology by the utility and transportation market segments.

  20. The Development of Fuel Cell Technology for NASA's Human Spaceflight Program

    NASA Technical Reports Server (NTRS)

    Scott, John H.

    2007-01-01

    My task this morning is to review the history and current direction of fuel cell technology development for NASA's human spaceflight program and to compare it to the directions being taken in that field for The Hydrogen Economy. The concept of "The Hydrogen Economy" involves many applications for fuel cells, but for today's discussion, I'll focus on automobiles.

  1. Multi-fuel reformers for fuel cells used in transportation. Phase 1: Multi-fuel reformers

    NASA Astrophysics Data System (ADS)

    1994-05-01

    DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

  2. Fuel Cell Development for NASA's Human Exploration Program: Benchmarking with "The Hydrogen Economy"

    NASA Technical Reports Server (NTRS)

    Scott, John H.

    2007-01-01

    The theoretically high efficiency and low temperature operation of hydrogen-oxygen fuel cells has motivated them to be the subject of much study since their invention in the 19th Century, but their relatively high life cycle costs kept them as a "solution in search of a problem" for many years. The first problem for which fuel cells presented a truly cost effective solution was that of providing a power source for NASA's human spaceflight vehicles in the 1960 s. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. This development program continues to place its highest priorities on requirements for minimum system mass and maximum durability and reliability. These priorities drive fuel cell power plant design decisions at all levels, even that of catalyst support. However, since the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of commercial applications. This investment is bringing about notable advances in fuel cell technology, but, as these development efforts place their highest priority on requirements for minimum life cycle cost and field safety, these advances are yielding design solutions quite different at almost every level from those needed for spacecraft applications. This environment thus presents both opportunities and challenges for NASA's Human Exploration Program

  3. Development and characterization of direct ethanol fuel cells using alkaline anion-exchange membranes

    NASA Astrophysics Data System (ADS)

    Lim, Peck Cheng

    2009-08-01

    Alkaline membrane fuel cell (AMFC) is a relatively new fuel cell technology that is generating considerable interests. It offers the electrocatalytic advantages of conventional alkaline fuel cells, and the manufacturing and cost advantages of solid polymer electrolyte fuel cells. This project was carried out to develop and characterize high performance membrane electrode assemblies (MEAs) for all-solid-state AMFCs. The primary fuel of interests is ethanol, but hydrogen was used in the development stages to facilitate the diagnostic and evaluation of the fuel cell performance. In the preliminary investigation, AMFC was assembled using off-the-shelf electrodes and anion-exchange membrane (AEM). It was found that the performance of AMFC operating on ethanol fuel was limited by a large high-frequency resistance (HFR) value. The advantage of using non-toxic ethanol fuel was also compromised by the need to add hydrazine and potassium hydroxide to the fuel blend. Subsequently, a high performance MEA was developed for an all-solid-state AMFC, in which liquid electrolyte or other additives were not required during the operation of the fuel cell. Ionomer was incorporated in the formulation of catalyst ink, and the catalyst ink was directly coated on the anion-exchange membrane (AEM). An ionomer content of 20 wt.% was found to be the optimum amount required in the catalyst layers. It was demonstrated that the AMFC generated a maximum power density of 365 mW/cm2 and 213 mW/cm 2 with the use of hydrogen/oxygen and hydrogen/pure air, respectively. The performance of the AMFC was also found to be influenced by exposure to carbon dioxide in the air. Hence, the CCMs were pre-treated in potassium hydroxide solution and pure oxygen was used to condition the fuel cell to maximize the power output from the AMFCs. Although satisfactory performance was demonstrated in the AMFC, its stability during cell operation remains a major issue. The poor stability was attributed to degradation of

  4. Fuel economy of hybrid fuel-cell vehicles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  5. Development and Experimental Evaluation of Passive Fuel Cell Thermal Control

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Jakupca, Ian J.; Castle, Charles H.; Burke, Kenneth A.

    2014-01-01

    To provide uniform cooling for a fuel cell stack, a cooling plate concept was evaluated. This concept utilized thin cooling plates to extract heat from the interior of a fuel cell stack and move this heat to a cooling manifold where it can be transferred to an external cooling fluid. The advantages of this cooling approach include a reduced number of ancillary components and the ability to directly utilize an external cooling fluid loop for cooling the fuel cell stack. A number of different types of cooling plates and manifolds were developed. The cooling plates consisted of two main types; a plate based on thermopyrolytic graphite (TPG) and a planar (or flat plate) heat pipe. The plates, along with solid metal control samples, were tested for both thermal and electrical conductivity. To transfer heat from the cooling plates to the cooling fluid, a number of manifold designs utilizing various materials were devised, constructed, and tested. A key aspect of the manifold was that it had to be electrically nonconductive so it would not short out the fuel cell stack during operation. Different manifold and cooling plate configurations were tested in a vacuum chamber to minimize convective heat losses. Cooling plates were placed in the grooves within the manifolds and heated with surface-mounted electric pad heaters. The plate temperature and its thermal distribution were recorded for all tested combinations of manifold cooling flow rates and heater power loads. This testing simulated the performance of the cooling plates and manifold within an operational fuel cell stack. Different types of control valves and control schemes were tested and evaluated based on their ability to maintain a constant temperature of the cooling plates. The control valves regulated the cooling fluid flow through the manifold, thereby controlling the heat flow to the cooling fluid. Through this work, a cooling plate and manifold system was developed that could maintain the cooling plates

  6. Planar Solid-Oxide Fuel Cell Research and Development

    DTIC Science & Technology

    2013-03-28

    electrolyte membrane ( PEM ) fuel cells ", Applied Surface Sei., 227 (2004) 56-72. [10] Grujicic, M., and Chittajallu, K. M., "Optimization of the...cathode geometry in polymer electrolyte membrane ( PEM ) fuel cells ", Chem. Eng. Sei., 59 (2004) 5883-5895. 36 [11] Anderson, W.K., Newman, J.C., Whitfield...M., Djilali, N, Suleman, A., "Optimization of a planar self-breathing PEM fuel cell cathode", AIAA 2006-6917, 11th AIAA/ISSMO Multidisciplinary

  7. New High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kinder, James D.

    2004-01-01

    Fuel cells are receiving a considerable amount of attention for potential use in a variety of areas, including the automotive industry, commercial power generation, and personal electronics. Research at the NASA Glenn Research Center has focused on the development of fuel cells for use in aerospace power systems for aircraft, unmanned air vehicles, and space transportation systems. These applications require fuel cells with higher power densities and better durability than what is required for nonaerospace uses. In addition, membrane cost is a concern for any fuel cell application. The most widely used membrane materials for proton exchange membrane (PEM) fuel cells are based on sulfonated perfluorinated polyethers, typically Nafion 117, Flemion, or Aciplex. However, these polymers are costly and do not function well at temperatures above 80 C. At higher temperatures, conventional membrane materials dry out and lose their ability to conduct protons, essential for the operation of the fuel cell. Increasing the operating temperature of PEM fuel cells from 80 to 120 C would significantly increase their power densities and enhance their durability by reducing the susceptibility of the electrode catalysts to carbon monoxide poisoning. Glenn's Polymers Branch has focused on developing new, low-cost membranes that can operate at these higher temperatures. A new series of organically modified siloxane (ORMOSIL) polymers were synthesized for use as membrane materials in a high-temperature PEM fuel cell. These polymers have an organic portion that can allow protons to transport through the polymer film and a cross-linked silica network that gives the polymers dimensional stability. These flexible xerogel polymer films are thermally stable, with decomposition onset as high as 380 C. Two types of proton-conducting ORMOSIL films have been produced: (1) NASA-A, which can coordinate many highly acid inorganic salts that facilitate proton conduction and (2) NASA-B, which has been

  8. Developing and Demonstrating the Next-Generation Fuel Cell Electric Bus Made in America

    DOT National Transportation Integrated Search

    2012-02-01

    The Federal Transit Administrations (FTA) National Fuel Cell Bus Program (NFCBP) focuses on developing commercially viable fuel cell bus technologies. CALSTART is one of three non-profit consortia chosen to manage projects competitively selected u...

  9. Fuel cells for commercial energy

    NASA Astrophysics Data System (ADS)

    Huppmann, Gerhard; Weisse, Eckart; Bischoff, Manfred

    1990-04-01

    The development of various types of fuel cells is described. Advantges and drawbacks are considered for alkaline fuel cells, phosphoric acid fuel cells, and molten carbonate fuel cells. It is shown that their modular construction is particularly adapted to power heat systems. A comparison which is largely in favor of fuel cells, is made between coal, oil, natural gas power stations, and fuel cells. Safety risks in operation are also compared with those of conventional power stations. Fuel cells are particularly suited for dwellings, shopping centers, swimming pools, other sporting installations, and research facilities, whose high current and heat requirements can be covered by power heat coupling.

  10. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    DOEpatents

    Ruka, Roswell J [Pittsburgh, PA; Basel, Richard A [Pittsburgh, PA; Zhang, Gong [Murrysville, PA

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  11. Development of planar solid oxide fuel cells for power generation applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minh, N.Q.

    1996-04-01

    Planar solid oxide fuel cells (SOFCs) are presently being developed for a variety of electric power generation application. The planar design offers simple cell geometry, high power density, and multiple fabrication and gas manifolding options. Planar SOFC technology has received much attention recently, and significant progress has been made in this area. Recent effort at AlliedSignal has focused on the development of high-performance, lightweight planar SOFCs, having thin-electrolyte films, that can be operated efficiently at reduced temperatures (< 1000{degrees}C). The advantages of reduced-temperature operation include wider material choice (including use of metallic interconnects), expected longer cell life, reduced thermal stress,more » improved reliability, and reduced fuel cell cost. The key aspect in the development of thin-film SIFCs is to incorporate the thin electrolyte layer into the desired structure of cells in a manner that yields the required characteristics. AlliedSignal has developed a simple and cost-effective method based on tape calendering for the fabrication of thin-electrolyte SOFCs. Thin-electrolyte cells made by tape calendering have shown extraordinary performance, e.g., producing more than 500mW/cm{sup 2} at 700{degrees}C and 800mW/cm{sup 2} at 800{degrees}C with hydrogen as fuel and air is oxidant. thin-electrolyte single cells have been incorporated into a compliant metallic stack structure and operated at reduced and operated at reduced-temperature conditions.« less

  12. 2009 Fuel Cell Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincent, Bill; Gangi, Jennifer; Curtin, Sandra

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States aremore » investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.« less

  13. Full scale phosphoric acid fuel cell stack technology development

    NASA Technical Reports Server (NTRS)

    Christner, L.; Faroque, M.

    1984-01-01

    The technology development for phosphoric acid fuel cells is summarized. The preparation, heat treatment, and characterization of carbon composites used as bipolar separator plates are described. Characterization included resistivity, porosity, and electrochemical corrosion. High density glassy carbon/graphite composites performed well in long-term fuel cell endurance tests. Platinum alloy cathode catalysts and low-loaded platinum electrodes were evaluated in 25 sq cm cells. Although the alloys displayed an initial improvement, some of this improvement diminished after a few thousand hours of testing. Low platinum loading (0.12 mg/sq cm anodes and 0.3 mg/sq cm cathodes) performed nearly as well as twice this loading. A selectively wetproofed anode backing paper was tested in a 5 by 15 inch three-cell stack. This material may provide for acid volume expansion, acid storage, and acid lateral distribution.

  14. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E.T.; James P. Meagher; Prasad Apte

    2002-12-31

    This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but wasmore » delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.« less

  15. Electrolytes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Fergus, Jeffrey W.

    The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed.

  16. Unitized Regenerative Fuel Cell System Gas Dryer/Humidifier Analytical Model Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian

    2004-01-01

    A lightweight Unitized Regenerative Fuel Cell (URFC) Energy Storage System concept is being developed at the NASA Glenn Research Center (GRC). This Unitized Regenerative Fuel Cell System (URFCS) is unique in that it uses Regenerative Gas Dryers/Humidifiers (RGD/H) that are mounted on the surface of the gas storage tanks that act as the radiators for thermal control of the Unitized Regenerative Fuel Cell System (URFCS). As the gas storage tanks cool down during URFCS charging the RGD/H dry the hydrogen and oxygen gases produced by electrolysis. As the gas storage tanks heat up during URFCS discharging, the RGD/H humidify the hydrogen and oxygen gases used by the fuel cell. An analytical model was developed to simulate the URFCS RGD/H. The model is in the form of a Microsoft (registered trademark of Microsoft Corporation) Excel worksheet that allows the investigation of the RGD/H performance. Finite Element Analysis (FEA) modeling of the RGD/H and the gas storage tank wall was also done to analyze spatial temperature distribution within the RGD/H and the localized tank wall. Test results obtained from the testing of the RGD/H in a thermal vacuum environment were used to corroborate the analyses.

  17. Fuel Cells for Society

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Through a SBIR contract with Lewis Research Center, ElectroChem, Inc. developed a hydrogen/oxygen fuel cell. The objective for Lewis Research Center's collaboration with ElectroChem was to develop a fuel cell system that could deliver 200-W (minimum) approximately to 10kWh of electrical energy.

  18. Liquid fuel cells.

    PubMed

    Soloveichik, Grigorii L

    2014-01-01

    The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  19. Fuel Exhaling Fuel Cell.

    PubMed

    Manzoor Bhat, Zahid; Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Varhade, Swapnil; Gautam, Manu; Thotiyl, Musthafa Ottakam

    2018-01-18

    State-of-the-art proton exchange membrane fuel cells (PEMFCs) anodically inhale H 2 fuel and cathodically expel water molecules. We show an unprecedented fuel cell concept exhibiting cathodic fuel exhalation capability of anodically inhaled fuel, driven by the neutralization energy on decoupling the direct acid-base chemistry. The fuel exhaling fuel cell delivered a peak power density of 70 mW/cm 2 at a peak current density of 160 mA/cm 2 with a cathodic H 2 output of ∼80 mL in 1 h. We illustrate that the energy benefits from the same fuel stream can at least be doubled by directing it through proposed neutralization electrochemical cell prior to PEMFC in a tandem configuration.

  20. Carbonate fuel cells: Milliwatts to megawatts

    NASA Astrophysics Data System (ADS)

    Farooque, M.; Maru, H. C.

    The carbonate fuel cell power plant is an emerging high efficiency, ultra-clean power generator utilizing a variety of gaseous, liquid, and solid carbonaceous fuels for commercial and industrial applications. The primary mover of this generator is a carbonate fuel cell. The fuel cell uses alkali metal carbonate mixtures as electrolyte and operates at ∼650 °C. Corrosion of the cell hardware and stability of the ceramic components have been important design considerations in the early stages of development. The material and electrolyte choices are founded on extensive fundamental research carried out around the world in the 60s and early 70s. The cell components were developed in the late 1970s and early 1980s. The present day carbonate fuel cell construction employs commonly available stainless steels. The electrodes are based on nickel and well-established manufacturing processes. Manufacturing process development, scale-up, stack tests, and pilot system tests dominated throughout the 1990s. Commercial product development efforts began in late 1990s leading to prototype field tests beginning in the current decade leading to commercial customer applications. Cost reduction has been an integral part of the product effort. Cost-competitive product designs have evolved as a result. Approximately half a dozen teams around the world are pursuing carbonate fuel cell product development. The power plant development efforts to date have mainly focused on several hundred kW (submegawatt) to megawatt-class plants. Almost 40 submegawatt units have been operating at customer sites in the US, Europe, and Asia. Several of these units are operating on renewable bio-fuels. A 1 MW unit is operating on the digester gas from a municipal wastewater treatment plant in Seattle, Washington (US). Presently, there are a total of approximately 10 MW capacity carbonate fuel cell power plants installed around the world. Carbonate fuel cell products are also being developed to operate on

  1. Research and development issues for molten carbonate fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krumpelt, M.

    1996-04-01

    This paper describes issues pertaining to the development of molten carbonate fuel cells. In particular, the corrosion resistance and service life of nickel oxide cathodes is described. The resistivity of lithium oxide/iron oxides and improvement with doping is addressed.

  2. Developing RCM Strategy for Hydrogen Fuel Cells Utilizing On Line E-Condition Monitoring

    NASA Astrophysics Data System (ADS)

    Baglee, D.; Knowles, M. J.

    2012-05-01

    Fuel cell vehicles are considered to be a viable solution to problems such as carbon emissions and fuel shortages for road transport. Proton Exchange Membrane (PEM) Fuel Cells are mainly used in this purpose because they can run at low temperatures and have a simple structure. Yet high maintenance costs and the inherent dangers of maintaining equipment using hydrogen are two main issues which need to be addressed. The development of appropriate and efficient strategies is currently lacking with regard to fuel cell maintenance. A Reliability Centered Maintenance (RCM) approach offers considerable benefit to the management of fuel cell maintenance since it includes an identification and consideration of the impact of critical components. Technological developments in e-maintenance systems, radio-frequency identification (RFID) and personal digital assistants (PDAs) have proven to satisfy the increasing demand for improved reliability, efficiency and safety. RFID technology is used to store and remotely retrieve electronic maintenance data in order to provide instant access to up-to-date, accurate and detailed information. The aim is to support fuel cell maintenance decisions by developing and applying a blend of leading-edge communications and sensor technology including RFID. The purpose of this paper is to review and present the state of the art in fuel cell condition monitoring and maintenance utilizing RCM and RFID technologies. Using an RCM analysis critical components and fault modes are identified. RFID tags are used to store the critical information, possible faults and their cause and effect. The relationship between causes, faults, symptoms and long term implications of fault conditions are summarized. Finally conclusions are drawn regarding suggested maintenance strategies and the optimal structure for an integrated, cost effective condition monitoring and maintenance management system.

  3. Develop and test fuel cell powered on-site integrated total energy systems: Phase 3: Full-scale power plant development

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The development of a commercially viable and cost-effective phospheric acid fuel cell powered on-site integrated energy system (OS/IES) is described. The fuel cell offers energy efficients in the range of 35-40% of the higher heating value of available fuels in the form of electrical energy. In addition, by utilizing the thermal energy generated for heating, ventilating and air-conditioning (HVAC), a fuel cell OS/IES could provide total energy efficiencies in the neighborhood of 80%. Also, the Engelhard fuel cell OS/IES offers the important incentive of replacing imported oil with domestically produced methanol, including coal-derived methanol.

  4. Liquid fuel cells

    PubMed Central

    2014-01-01

    Summary The advantages of liquid fuel cells (LFCs) over conventional hydrogen–oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented. PMID:25247123

  5. 1986 fuel cell seminar: Program and abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1986-10-01

    Ninety nine brief papers are arranged under the following session headings: gas industry's 40 kw program, solid oxide fuel cell technology, phosphoric acid fuel cell technology, molten carbonate fuel cell technology, phosphoric acid fuel cell systems, power plants technology, fuel cell power plant designs, unconventional fuels, fuel cell application and economic assessments, and plans for commerical development. The papers are processed separately for the data base. (DLC)

  6. Gas cooled fuel cell systems technology development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1986-01-01

    The work performed during the Second Logical Unit of Work of a multi-year program designed to develop a phosphoric acid fuel cell (PAFC) for electric utility power plant application is discussed. The Second Logical Unit of Work, which covers the period May 14, 1983 through May 13, 1984, was funded by the U.S. Department of Energy, Office of Fossil Energy, Morgantown Energy Technology Center, and managed by the NASA Lewis Research Center.

  7. Development of molten carbonate fuel cell technology at M-C Power Corporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dilger, D.

    1996-04-01

    M-C Power Corporation was founded in 1987 with the mission to further develop and subsequently commercialize molten carbonate fuel cells (MCFC). The technology chosen for commercialization was initially developed by the Institute of Gas technology (IGT). At the center of this MCFC technology is the Internally Manifolded Heat EXchange (IMHEX) separator plate design. The IMHEX technology design provides several functions within one component assembly. These functions include integrating the gas manifold structure into the fuel cell stack, separating the fuel gas stream from the oxidant gas stream, providing the required electrical contact between cells to achieve desired power output, andmore » removing excess heat generated in the electrochemical process. Development of this MCFC technology from lab-scale sizes too a commercial area size of 1m{sup 2} has focused our efforts an demonstrating feasibility and evolutionary progress. The development effort will culminate in a proof-of-concept- 250kW power plant demonstration in 1996. The remainder of our commercialization program focuses upon lowering the costs associated with the MCFC power plant system in low production volumes.« less

  8. Fuel Cells

    ERIC Educational Resources Information Center

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  9. Development of advanced fuel cell system, phase 3

    NASA Technical Reports Server (NTRS)

    Handley, L. M.; Meyer, A. P.; Bell, W. F.

    1975-01-01

    A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Gradual wetting of the anode structure and subsequent long-term performance loss was determined to be caused by deposition of a silicon-containing material on the anode. This deposit was attributed to degradation of the asbestos matrix, and attention was therefore placed on development of a substitute matrix of potassium titanate. An 80 percent gold 20 percent platinum catalyst cathode was developed which has the same performance and stability as the standard 90 percent gold - 10 percent platinum cathode but at half the loading. A hybrid polysulfone/epoxy-glass fiber frame was developed which combines the resistance to the cell environment of pure polysulfone with the fabricating ease of epoxy-glass fiber laminate. These cell components were evaluated in various configurations of full-size cells. The ways in which the baseline engineering model system would be modified to accommodate the requirements of the space tug application are identified.

  10. Long life Regenerative Fuel Cell technology development plan

    NASA Technical Reports Server (NTRS)

    Littman, Franklin D.; Cataldo, Robert L.; Mcelroy, James F.; Stedman, Jay K.

    1992-01-01

    This paper summarizes a technology roadmap for completing advanced development of a Proton Exchange Membrane (PEM) Regenerative Fuel Cell (RFC) to meet long life (20,000 hrs at 50 percent duty cycle) mobile or portable power system applications on the surface of the moon and Mars. Development of two different sized RFC power system modules is included in this plan (3 and 7.5 kWe). A conservative approach was taken which includes the development of a Ground Engineering System, Qualification Unit, and Flight Unit. This paper includes a concept description, technology assessment, development issues, development tasks, and development schedule.

  11. Massachusetts Fuel Cell Bus Project: Demonstrating a Total Transit Solution for Fuel Cell Electric Buses in Boston

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Federal Transit Administration's National Fuel Cell Bus Program focuses on developing commercially viable fuel cell bus technologies. Nuvera is leading the Massachusetts Fuel Cell Bus project to demonstrate a complete transit solution for fuel cell electric buses that includes one bus and an on-site hydrogen generation station for the Massachusetts Bay Transportation Authority (MBTA). A team consisting of ElDorado National, BAE Systems, and Ballard Power Systems built the fuel cell electric bus, and Nuvera is providing its PowerTap on-site hydrogen generator to provide fuel for the bus.

  12. Fuel Cell Seminar, 1992: Program and abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-31

    This year`s theme, ``Fuel Cells: Realizing the Potential,`` focuses on progress being made toward commercial manufacture and use of fuel cell products. Fuel cell power plants are competing for market share in some applications and demonstrations of market entry power plants are proceeding for additional applications. Development activity on fuel cells for transportation is also increasing; fuel cell products have potential in energy and transportation industries, with very favorable environmental impacts. This Seminar has the purpose of fostering communication by providing a forum for the international community interested in development, application, and business opportunities related fuel cells. Over 190 technicalmore » papers are included, the majority being processed for the data base.« less

  13. Development of inexpensive metal macrocyclic complexes for use in fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doddapaneni, N.; Ingersoll, D.; Kosek, J.A.

    Several metal macrocyclic complexes were synthesized for use as catalysts in fuel cells. An initial evaluation of their ability to catalyze the fuel cell reactions were completed. Based on this initial evaluation, one metal macrocyclic catalyst was selected and long-term stability testing in a fuel cell was initiated. The fuel cell employing this catalyst was operated continuously for one year with little signs of catalyst degradation. The effect of synthetic reformates on the performance of the catalyst in the fuel cell environment also demonstrated high tolerance of this catalyst for common contaminants and poisons.

  14. NASA's Planned Fuel Cell Development Activities for 2009 and Beyond in Support of the Exploration Vision

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.

    2010-01-01

    NASA s Energy Storage Project is one of many technology development efforts being implemented as part of the Exploration Technology Development Program (ETDP), under the auspices of the Exploration Systems Mission Directorate (ESMD). The Energy Storage Project is a focused technology development effort to advance lithium-ion battery and proton-exchange-membrane fuel cell (PEMFC) technologies to meet the specific power and energy storage needs of NASA Exploration missions. The fuel cell portion of the project has as its focus the development of both primary fuel cell power systems and regenerative fuel cell (RFC) energy storage systems, and is led by the NASA Glenn Research Center (GRC) in partnership with the Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), the Kennedy Space Center (KSC), academia, and industrial partners. The development goals are to improve stack electrical performance, reduce system mass and parasitic power requirements, and increase system life and reliability.

  15. PEM regenerative fuel cells

    NASA Technical Reports Server (NTRS)

    Swette, Larry L.; Laconti, Anthony B.; Mccatty, Stephen A.

    1993-01-01

    This paper will update the progress in developing electrocatalyst systems and electrode structures primarily for the positive electrode of single-unit solid polymer proton exchange membrane (PEM) regenerative fuel cells. The work was done with DuPont Nafion 117 in complete fuel cells (40 sq cm electrodes). The cells were operated alternately in fuel cell mode and electrolysis mode at 80 C. In fuel cell mode, humidified hydrogen and oxygen were supplied at 207 kPa (30 psi); in electrolysis mode, water was pumped over the positive electrode and the gases were evolved at ambient pressure. Cycling data will be presented for Pt-Ir catalysts and limited bifunctional data will be presented for Pt, Ir, Ru, Rh, and Na(x)Pt3O4 catalysts as well as for electrode structure variations.

  16. 2008 Fuel Cell Technologies Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DOE

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States aremore » investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.« less

  17. Catalysis in high-temperature fuel cells.

    PubMed

    Föger, K; Ahmed, K

    2005-02-17

    Catalysis plays a critical role in solid oxide fuel cell systems. The electrochemical reactions within the cell--oxygen dissociation on the cathode and electrochemical fuel combustion on the anode--are catalytic reactions. The fuels used in high-temperature fuel cells, for example, natural gas, propane, or liquid hydrocarbons, need to be preprocessed to a form suitable for conversion on the anode-sulfur removal and pre-reforming. The unconverted fuel (economic fuel utilization around 85%) is commonly combusted using a catalytic burner. Ceramic Fuel Cells Ltd. has developed anodes that in addition to having electrochemical activity also are reactive for internal steam reforming of methane. This can simplify fuel preprocessing, but its main advantage is thermal management of the fuel cell stack by endothermic heat removal. Using this approach, the objective of fuel preprocessing is to produce a methane-rich fuel stream but with all higher hydrocarbons removed. Sulfur removal can be achieved by absorption or hydro-desulfurization (HDS). Depending on the system configuration, hydrogen is also required for start-up and shutdown. Reactor operating parameters are strongly tied to fuel cell operational regimes, thus often limiting optimization of the catalytic reactors. In this paper we discuss operation of an authothermal reforming reactor for hydrogen generation for HDS and start-up/shutdown, and development of a pre-reformer for converting propane to a methane-rich fuel stream.

  18. Development of biologically modified anodes for energy harvesting using microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Sumner, James J.; Ganguli, Rahul; Chmelka, Brad

    2012-06-01

    Biological fuel cells hold promise as an alternative energy source to batteries for unattended ground sensor applications due to the fact that they can be extremely long lived. This lifetime can be extended over batteries by scavenging fuel from the deployed environment. Microbial fuel cells (MFC) are one class of such sources that produce usable energy from small organic compounds (i.e. sugars, alcohols, organic acids, and biopolymers) which can be easily containerized or scavenged from the environment. The use of microorganisms as the anodic catalysts is what makes these systems unique from other biofuel cell designs. One of the main drawbacks of engineering a sensor system powered by an MFC is that power densities and current flux are extremely low in currently reported systems. The power density is limited by the mass transfer of the fuel source to the catalyst, the metabolism of the microbial catalysts and the electron transfer from the organism to the anode. This presentation will focus on the development of a new style of microbially-modified anodes which will increase power density to a level where a practical power source can be engineered. This is being achieved by developing a three dimensional matrix as an artificial, conductive biofilm. These artificial biofilms will allow the capture of a consortium of microbes designed for efficient metabolism of the available fuel source. Also it will keep the microbes close to the electrode allowing ready access by fuel and providing a low resistance passage of the liberated electrons from fuel oxidation.

  19. Development of a Microchannel High Temperature Recuperator for Fuel Cell Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukas, Michael

    This report summarizes the progress made in development of microchannel recuperators for high temperature fuel cell/turbine hybrid systems for generation of clean power at very high efficiencies. Both Solid Oxide Fuel Cell/Turbine (SOFC/T) and Direct FuelCell/Turbine (DFC/T) systems employ an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell’s byproduct heat in a Brayton cycle. Features of the SOFC/T and DFC/T systems include: electrical efficiencies of up to 65% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design,more » and potential cost competitiveness with existing combined cycle power plants. Project work consisted of candidate material selection from FuelCell Energy (FCE) and Pacific Northwest National Laboratory (PNNL) institutional databases as well as from industrial and academic literature. Candidate materials were then downselected and actual samples were tested under representative environmental conditions resulting in further downselection. A microchannel thermal-mechanical model was developed to calculate overall device cost to be later used in developing a final Tier 1 material candidate list. Specifications and operating conditions were developed for both SOFC/T and DFC/T systems. This development included system conceptualization and progression to process flow diagrams (PFD’s) including all major equipment. Material and energy balances were then developed for the two types of systems which were then used for extensive sensitivity studies that used high temperature recuperator (HTR) design parameters (e.g., operating temperature) as inputs and calculated overall system parameters (e.g., system efficiency). The results of the sensitivity studies determined the final HTR design temperatures, pressure drops, and gas compositions. The results also established operating conditions and

  20. Fuel Cell and Hydrogen Technology Validation | Hydrogen and Fuel Cells |

    Science.gov Websites

    NREL Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation The NREL technology validation team works on validating hydrogen fuel cell electric vehicles; hydrogen fueling infrastructure; hydrogen system components; and fuel cell use in early market applications such as

  1. Development of Advanced Fuel Cell System (Phase 4)

    NASA Technical Reports Server (NTRS)

    Meyer, A. P.; Bell, W. F.

    1976-01-01

    A multiple-task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. During Phase 4, the lowest stabilized degradation rate observed in all the testing completed during four phases of the program, 1 microvolt/hour, was demonstrated. This test continues after 5,000 hours of operation. The cell incorporates a PPf anode, a 90Au/10Pt cathode, a hybrid frame, and a Fybex matrix. These elements were developed under this program to extend cell life. The result demonstrated that the 80Au/20Pt cathode is as stable as a 90Au/10Pt cathode of twice the precious metal loading, was confirmed in full-scale cells. A hybrid frame two-cell plaque with dedicated flow fields and manifolds for all fluids was demonstrated to prevent the cell-to cell electrolyte transfer that limited the endurance of multicell plaques. At the conclusion of Phase 4, more than 90,900 hours of testing had been completed and twelve different cell designs had been evaluated. A technology base has been established which is ready for evaluation at the powerplant level.

  2. Simulation of a 250 kW diesel fuel processor/PEM fuel cell system

    NASA Astrophysics Data System (ADS)

    Amphlett, J. C.; Mann, R. F.; Peppley, B. A.; Roberge, P. R.; Rodrigues, A.; Salvador, J. P.

    Polymer-electrolyte membrane (PEM) fuel cell systems offer a potential power source for utility and mobile applications. Practical fuel cell systems use fuel processors for the production of hydrogen-rich gas. Liquid fuels, such as diesel or other related fuels, are attractive options as feeds to a fuel processor. The generation of hydrogen gas for fuel cells, in most cases, becomes the crucial design issue with respect to weight and volume in these applications. Furthermore, these systems will require a gas clean-up system to insure that the fuel quality meets the demands of the cell anode. The endothermic nature of the reformer will have a significant affect on the overall system efficiency. The gas clean-up system may also significantly effect the overall heat balance. To optimize the performance of this integrated system, therefore, waste heat must be used effectively. Previously, we have concentrated on catalytic methanol-steam reforming. A model of a methanol steam reformer has been previously developed and has been used as the basis for a new, higher temperature model for liquid hydrocarbon fuels. Similarly, our fuel cell evaluation program previously led to the development of a steady-state electrochemical fuel cell model (SSEM). The hydrocarbon fuel processor model and the SSEM have now been incorporated in the development of a process simulation of a 250 kW diesel-fueled reformer/fuel cell system using a process simulator. The performance of this system has been investigated for a variety of operating conditions and a preliminary assessment of thermal integration issues has been carried out. This study demonstrates the application of a process simulation model as a design analysis tool for the development of a 250 kW fuel cell system.

  3. What utility companies should known about fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirschenhofer, J.H.; Weinstein, R.E.

    1996-11-01

    Fuel cells are warming up. A world that ten years ago was unaware of the concept now can witness approximately 200 fuel cell units operating in 15 countries. An increasing number of utility company planners and decision makers have begun to ask whether fuel cells might fit into their future. While the fuel cell concept is simple, determining which type of fuel cell to consider may prove taxing. The multiplicity of fuel cells and their development programs, coupled with the amount of subject material and claims-versus-reality, may seem complex. Also to be reckoned with is the changing utility environment thatmore » might portend well for distributed generation with technologies such as fuel cells. This paper provides a road map of major fuel cell development in the US. It offers some views about the impact of the changing utility environment on fuel cells.« less

  4. National Fuel Cell Technology Evaluation Center | Hydrogen and Fuel Cells |

    Science.gov Websites

    NREL National Fuel Cell Technology Evaluation Center National Fuel Cell Technology Evaluation Center The National Fuel Cell Technology Evaluation Center (NFCTEC) at NREL's Energy Systems Integration Cell Technology Evaluation Center to process and analyze data for a variety of hydrogen and fuel cell

  5. Characterization of Thermal and Mechanical Properties of Polypropylene-Based Composites for Fuel Cell Bipolar Plates and Development of Educational Tools in Hydrogen and Fuel Cell Technologies

    ERIC Educational Resources Information Center

    Lopez Gaxiola, Daniel

    2011-01-01

    In this project we developed conductive thermoplastic resins by adding varying amounts of three different carbon fillers: carbon black (CB), synthetic graphite (SG) and multi-walled carbon nanotubes (CNT) to a polypropylene matrix for application as fuel cell bipolar plates. This component of fuel cells provides mechanical support to the stack,…

  6. An Overview of Stationary Fuel Cell Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DR Brown; R Jones

    1999-03-23

    Technology developments occurring in the past few years have resulted in the initial commercialization of phosphoric acid (PA) fuel cells. Ongoing research and development (R and D) promises further improvement in PA fuel cell technology, as well as the development of proton exchange membrane (PEM), molten carbonate (MC), and solid oxide (SO) fuel cell technologies. In the long run, this collection of fuel cell options will be able to serve a wide range of electric power and cogeneration applications. A fuel cell converts the chemical energy of a fuel into electrical energy without the use of a thermal cycle ormore » rotating equipment. In contrast, most electrical generating devices (e.g., steam and gas turbine cycles, reciprocating engines) first convert chemical energy into thermal energy and then mechanical energy before finally generating electricity. Like a battery, a fuel cell is an electrochemical device, but there are important differences. Batteries store chemical energy and convert it into electrical energy on demand, until the chemical energy has been depleted. Depleted secondary batteries may be recharged by applying an external power source, while depleted primary batteries must be replaced. Fuel cells, on the other hand, will operate continuously, as long as they are externally supplied with a fuel and an oxidant.« less

  7. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications

    PubMed Central

    Houchins, Cassidy; Kleen, Greg J.; Spendelow, Jacob S.; Kopasz, John; Peterson, David; Garland, Nancy L.; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C.

    2012-01-01

    Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed. PMID:24958432

  8. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications.

    PubMed

    Houchins, Cassidy; Kleen, Greg J; Spendelow, Jacob S; Kopasz, John; Peterson, David; Garland, Nancy L; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C

    2012-12-18

    Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed.

  9. Solid electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Isaacs, H. S.

    Progress in the development of functioning solid electrolyte fuel cells is summarized. The solid electrolyte cells perform at 1000 C, a temperature elevated enough to indicate high efficiencies are available, especially if the cell is combined with a steam generator/turbine system. The system is noted to be sulfur tolerant, so coal containing significant amounts of sulfur is expected to yield satisfactory performances with low parasitic losses for gasification and purification. Solid oxide systems are electrically reversible, and are usable in both fuel cell and electrolysis modes. Employing zirconium and yttrium in the electrolyte provides component stability with time, a feature not present with other fuel cells. The chemical reactions producing the cell current are reviewed, along with materials choices for the cathodes, anodes, and interconnections.

  10. Connecticut Nutmeg Fuel Cell Bus Project : Demonstrating Advanced-Design Hybrid Fuel Cell Buses in Connecticut

    DOT National Transportation Integrated Search

    2011-07-01

    The Federal Transit Administrations (FTA) National Fuel Cell Bus Program (NFCBP) focuses on developing commercially viable fuel cell bus technologies. The Northeast Advanced Vehicle Consortium (NAVC) is one of three non-profit consortia chosen to ...

  11. World wide IFC phosphoric acid fuel cell implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J.M. Jr

    1996-04-01

    International Fuel Cells, a subsidary of United technologies Corporation, is engaged in research and development of all types of fuel cell technologies and currently manufactures alkaline fuel cell power plants for the U.S. manned space flight program and natural gas fueled stationary power plants using phosphoric acid fuel cells. This paper describes the phosphoric acid fuel cell power plants.

  12. Fuel cells for low power applications

    NASA Astrophysics Data System (ADS)

    Heinzel, A.; Hebling, C.; Müller, M.; Zedda, M.; Müller, C.

    Electronic devices show an ever-increasing power demand and thus, require innovative concepts for power supply. For a wide range of power and energy capacity, membrane fuel cells are an attractive alternative to conventional batteries. The main advantages are the flexibility with respect to power and capacity achievable with different devices for energy conversion and energy storage, the long lifetime and long service life, the good ecological balance, very low self-discharge. Therefore, the development of fuel cell systems for portable electronic devices is an attractive, although also a challenging, goal. The fuel for a membrane fuel cell might be hydrogen from a hydride storage system or methanol/water as a liquid alternative. The main differences between the two systems are the much higher power density for hydrogen fuel cells, the higher energy density per weight for the liquid fuel, safety aspects and infrastructure for fuel supply for hydride materials. For different applications, different system designs are required. High power cells are required for portable computers, low power methanol fuel cells required for mobile phones in hybrid systems with batteries and micro-fuel cells are required, e.g. for hand held PCs in the sub-Watt range. All these technologies are currently under development. Performance data and results of simulations and experimental investigations will be presented.

  13. Solid oxide fuel cell generator with removable modular fuel cell stack configurations

    DOEpatents

    Gillett, James E.; Dederer, Jeffrey T.; Zafred, Paolo R.; Collie, Jeffrey C.

    1998-01-01

    A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack.

  14. Organic fuel cells and fuel cell conducting sheets

    DOEpatents

    Masel, Richard I.; Ha, Su; Adams, Brian

    2007-10-16

    A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.

  15. Hydrogen fuel cell engines and related technologies

    DOT National Transportation Integrated Search

    2001-12-01

    The manual documents the first training course developed on the use of hydrogen fuel cells in transportation. The manual contains eleven modules covering hydrogen properties, use and safety; fuel cell technology and its systems, fuel cell engine desi...

  16. 2009 Fuel Cell Market Report, November 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States aremore » investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.« less

  17. Development of composite membrane materials for fuel cells

    NASA Astrophysics Data System (ADS)

    Lebedeva, O. V.; Chesnokova, A. N.; Pozhidaev, Yu N.; Maksimenko, S. D.; Malakhova, E. A.; Raskulova, T. V.

    2018-03-01

    This study is devoted to the development and investigation of composite membrane materials for fuel cells. Proton conductive membranes consisting of silica and various low- and high-molecular organic compounds have been prepared by the sol-gel method. The synthesized membranes are characterized by proton conductivity (up to 10-2 S/cm), ion-exchange capacity (1.84-3.5 meq/g), thermal stability (260 – 400 °C), and tensile modulus (128 - 322 MPa).

  18. Miniaturized biological and electrochemical fuel cells: challenges and applications.

    PubMed

    Yang, Jie; Ghobadian, Sasan; Goodrich, Payton J; Montazami, Reza; Hashemi, Nastaran

    2013-09-14

    This paper discusses the fundamentals and developments of miniaturized fuel cells, both biological and electrochemical. An overview of microfluidic fuel cells, miniaturized microbial fuel cells, enzymatic biofuel cells, and implanted biofuel cells in an attempt to provide green energy and to power implanted microdevices is provided. Also, the challenges and applications of each type of fuel cell are discussed in detail. Most recent developments in fuel cell technologies such as novel catalysts, compact designs, and fabrication methods are reviewed.

  19. Development of porous carbon foam polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Jin; Cunningham, Nicolas

    In order to prove the feasibility of using porous carbon foam material in a polymer electrolyte membrane fuel cell (PEMFC), a single PEMFC is constructed with a piece of 80PPI (pores per linear inch) Reticulated Vitreous Carbon (RVC) foam at a thickness of 3.5 mm employed in the cathode flow-field. The cell performance of such design is compared with that of a conventional fuel cell with serpentine channel design in the cathode and anode flow-fields. Experimental results show that the RVC foam fuel cell not only produces comparative power density to, but also offers interesting benefits over the conventional fuel cell. A 250 h long term test conducted on a RVC foam fuel cell shows that the durability and performance stability of the material is deemed to be acceptable. Furthermore, a parametric study is conducted on single RVC foam fuel cells. Effect of geometrical and material parameters of the RVC foam such as PPI and thickness and operating conditions such as pressure, temperature, and stoichiometric ratio of the reactant gases on the cell performance is experimentally investigated in detail. The single cell with the 80PPI RVC foam exhibits the best performance, especially if the thinnest foam (3.5 mm) is used. The cell performance improves with increasing the operating gauge pressure from 0 kPa to 80 kPa and the operating temperature from 40 °C to 60 °C, but deteriorates as it further increases to 80 °C. The cell performance improves as the stoichiometric ratio of air increases from 1.5 to 4.5; however, the improvement becomes marginal when it is raised above 3.0. On the other hand, changing the stoichiometric ratio of hydrogen does not have a significant impact on the cell performance.

  20. Solid oxide fuel cell generator with removable modular fuel cell stack configurations

    DOEpatents

    Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.

    1998-04-21

    A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.

  1. DOE perspective on fuel cells in transportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kost, R.

    1996-04-01

    Fuel cells are one of the most promising technologies for meeting the rapidly growing demand for transportation services while minimizing adverse energy and environmental impacts. This paper reviews the benefits of introducing fuel cells into the transportation sector; in addition to dramatically reduced vehicle emissions, fuel cells offer the flexibility than use petroleum-based or alternative fuels, have significantly greater energy efficiency than internal combustion engines, and greatly reduce noise levels during operation. The rationale leading to the emphasis on proton-exchange-membrane fuel cells for transportation applications is reviewed as are the development issues requiring resolution to achieve adequate performance, packaging, andmore » cost for use in automobiles. Technical targets for power density, specific power, platinum loading on the electrodes, cost, and other factors that become increasingly more demanding over time have been established. Fuel choice issues and pathways to reduced costs and to a renewable energy future are explored. One such path initially introduces fuel cell vehicles using reformed gasoline while-on-board hydrogen storage technology is developed to the point of allowing adequate range (350 miles) and refueling convenience. This scenario also allows time for renewable hydrogen production technologies and the required supply infrastructure to develop. Finally, the DOE Fuel Cells in Transportation program is described. The program, whose goal is to establish the technology for fuel cell vehicles as rapidly as possible, is being implemented by means of the United States Fuel Cell Alliance, a Government-industry alliance that includes Detroit`s Big Three automakers, fuel cell and other component suppliers, the national laboratories, and universities.« less

  2. The TMI regenerable solid oxide fuel cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.

    1995-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC

  3. The TMI regenerable solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Cable, Thomas L.

    1995-04-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC

  4. Process Developed for Fabricating Engineered Pore Structures for High- Fuel-Utilization Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Sofie, Stephen W.; Cable, Thomas L.; Salamone, Sam M.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have tremendous commercial potential because of their high efficiency, high energy density, and flexible fuel capability (ability to use fossil fuels). The drive for high-power-utilizing, ultrathin electrolytes (less than 10 microns), has placed an increased demand on the anode to provide structural support, yet allow sufficient fuel entry for sustained power generation. Concentration polarization, a condition where the fuel demand exceeds the supply, is evident in all commercial-based anode-supported cells, and it presents a significant roadblock to SOFC commercialization.

  5. European opportunities for fuel cell commercialisation

    NASA Astrophysics Data System (ADS)

    Gibbs, C. E.; Steel, M. C. F.

    1992-01-01

    The European electricity market is changing. This paper will look at the background to power generation in Europe and highlight the recent factors which have entered the market to promote change. The 1990s seem to offer great possibilities for fuel cell commercialisation. Awareness of environmental problems has never been greater and there is growing belief that fuel cell technology can contribute to solving some of these problems. Issues which have caused the power industry in Europe to re-think its methods of generation include: concern over increasing carbon dioxide emissions and their contribution to the greenhouse effect; increasing SO x and NO x emissions and the damage cause by acid rain; the possibility of adverse effects on health caused by high voltage transmission lines; environmental restrictions to the expansion of hydroelectric schemes; public disenchantment with nuclear power following the Chernobyl accident; avoidance of dependence on imported oil following the Gulf crisis and a desire for fuel flexibility. All these factors are hastening the search for clean, efficient, modular power generators which can be easily sited close to the electricity consumer and operated using a variety of fuels. It is not only the power industry which is changing. A tightening of the legislation concerning emissions from cars is encouraging European auto companies to develop electric vehicles, some of which may be powered by fuel cells. Political changes, such as the opening up of Eastern Europe will also expand the market for low-emission, efficient power plants as attempts are made to develop and clean up that region. Many Europeans organisations are re-awakening their interest, or strengthening their activities, in the area of fuel cells because of the increasing opportunities offered by the European market. While some companies have chosen to buy, test and demonstrate Japanese or American fuel cell stacks with the aim of gaining operational experience and

  6. NASA's PEM Fuel Cell Power Plant Development Program for Space Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark

    2006-01-01

    NASA embarked on a PEM fuel cell power plant development program beginning in 2001. This five-year program was conducted by a three-center NASA team of Glenn Research Center (lead), Johnson Space Center, and Kennedy Space Center. The program initially was aimed at developing hardware for a Reusable Launch Vehicle (RLV) application, but more recently had shifted to applications supporting the NASA Exploration Program. The first phase of the development effort, to develop breadboard hardware in the 1-5 kW power range, was conducted by two competing vendors. The second phase of the effort, to develop Engineering Model hardware at the 10 kW power level, was conducted by the winning vendor from the first phase of the effort. Both breadboard units and the single engineering model power plant were delivered to NASA for independent testing. This poster presentation will present a summary of both phases of the development effort, along with a discussion of test results of the PEM fuel cell engineering model under simulated mission conditions.

  7. CERDEC Fuel Cell Team: Military Transitions for Soldier Fuel Cells

    DTIC Science & Technology

    2008-10-27

    Fuel Cell (DMFC) (PEO Soldier) Samsung: 20W DMFC (CRADA) General Atomics & Jadoo: 50W Ammonia Borane Fueled PEMFC Current Fuel Cell Team Efforts...Continued Ardica: 20W Wearable PEMFC operating on Chemical Hydrides Spectrum Brands w/ Rayovac: Hydrogen Generators and Alkaline Fuel Cells for AA...100W Ammonia Borane fueled PEMFC Ultralife: 150W sodium borohydride fueled PEMFC Protonex: 250W RMFC and Power Manager (ARO) NanoDynamics: 250W SOFC

  8. Fuel cell power plant economic and operational considerations

    NASA Technical Reports Server (NTRS)

    Lance, J. R.

    1984-01-01

    Fuel cell power plants intended for electric utility and cogeneration applications are now in the design and construction stage. This paper describes economic and operational considerations being used in the development and design of plants utilizing air cooled phosphoric acid fuel cells. Fuel cell power plants have some unique characteristics relative to other types of power plants. As a result it was necessary to develop specific definitions of the fuel cell power plant characteristics in order to perform cost of electricity calculations. This paper describes these characteristics and describes the economic analyses used in the Westinghouse fuel cell power plant program.

  9. Proceedings of the Fuel Cells `97 Review Meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Federal Energy Technology Center (FETC) sponsored the Fuel Cells '97 Review Meeting on August 26-28, 1997, in Morgantown, West Virginia. The purpose of the meeting was to provide an annual forum for the exchange of ideas and discussion of results and plans related to the research on fuel cell power systems. The total of almost 250 conference participants included engineers and scientists representing utilities, academia, and government from the U.S. and eleven other countries: Canada, China, India, Iran, Italy, Japan, Korea, Netherlands, Russia, Taiwan, and the United Kingdom. On first day, the conference covered the perspectives of sponsors andmore » end users, and the progress reports of fuel-cell developers. Papers covered phosphoric, carbonate, and solid oxide fuel cells for stationary power applications. On the second day, the conference covered advanced research in solid oxide and other fuel cell developments. On the third day, the conference sponsored a workshop on advanced research and technology development. A panel presentation was given on fuel cell opportunities. Breakout sessions with group discussions followed this with fuel cell developers, gas turbine vendors, and consultants.« less

  10. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. Themore » unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.« less

  11. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1981-01-01

    The test results of and post test analysis of Stack 559 are reported. The design features and construction status of Stacks 560, 561, 562 and 563 are described. The measurements of cell materials compressibility are rationalized and summarized and an explanation of their uses is given. Preliminary results of a manifold material/coating survey are given. The results of shift converter catalyst performance tests and reforming catalyst aging tests are reported. State points for full load and part load operation of the fuel conditioning subsystem tabulated. Work on the data base for the fuel conditioner ancillary subsystems is summarized.

  12. Durability of PEM Fuel Cell Membranes

    NASA Astrophysics Data System (ADS)

    Huang, Xinyu; Reifsnider, Ken

    Durability is still a critical limiting factor for the commercialization of polymer electrolyte membrane (PEM) fuel cells, a leading energy conversion technology for powering future hydrogen fueled automobiles, backup power systems (e.g., for base transceiver station of cellular networks), portable electronic devices, etc. Ionic conducting polymer (ionomer) electrolyte membranes are the critical enabling materials for the PEM fuel cells. They are also widely used as the central functional elements in hydrogen generation (e.g., electrolyzers), membrane cell for chlor-alkali production, etc. A perfluorosulfonic acid (PFSA) polymer with the trade name Nafion® developed by DuPont™ is the most widely used PEM in chlor-alkali cells and PEM fuel cells. Similar PFSA membranes have been developed by Dow Chemical, Asahi Glass, and lately Solvay Solexis. Frequently, such membranes serve the dual function of reactant separation and selective ionic conduction between two otherwise separate compartments. For some applications, the compromise of the "separation" function via the degradation and mechanical failure of the electrolyte membrane can be the life-limiting factor; this is particularly the case for PEM in hydrogen/oxygen fuel cells.

  13. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  14. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  15. Advances in fuel cell vehicle design

    NASA Astrophysics Data System (ADS)

    Bauman, Jennifer

    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied

  16. Hydrogen-Oxygen PEM Regenerative Fuel Cell Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Scullin, Vincent J.; Chang, B. J.; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.

    2006-01-01

    The closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) at NASA Glenn Research Center has demonstrated multiple back to back contiguous cycles at rated power, and round trip efficiencies up to 52 percent. It is the first fully closed cycle regenerative fuel cell ever demonstrated (entire system is sealed: nothing enters or escapes the system other than electrical power and heat). During FY2006 the system has undergone numerous modifications and internal improvements aimed at reducing parasitic power, heat loss and noise signature, increasing its functionality as an unattended automated energy storage device, and in-service reliability. It also serves as testbed towards development of a 600 W-hr/kg flight configuration, through the successful demonstration of lightweight fuel cell and electrolyser stacks and supporting components. The RFC has demonstrated its potential as an energy storage device for aerospace solar power systems such as solar electric aircraft, lunar and planetary surface installations; any airless environment where minimum system weight is critical. Its development process continues on a path of risk reduction for the flight system NASA will eventually need for the manned lunar outpost.

  17. Alternative Fuels Data Center: Fuel Cell Electric Vehicles

    Science.gov Websites

    Cell Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Google Bookmark Alternative Fuels

  18. Fuel cell systems program plan, FY 1990

    NASA Astrophysics Data System (ADS)

    1989-10-01

    A principal goal of the Office of Fossil Energy is to increase the utilization of domestic fuels in an environmentally benign manner, through the development and transfer to the private sector of advanced energy conversion technology. Successful efforts to achieve this goal contribute to the stability and reliability of reasonably priced energy supplies, enhance the competitiveness of domestic fuels and energy technologies in domestic and international markets, and contribute to the development of cost effective strategies for control of acid rain and global warming. Several advanced energy conversion technologies are now under development by DOE which can help to achieve these objectives. Fuel cells are among those technologies. This report briefly describes fuel cell technology and the program plan of U.S. DOE fuel cell program.

  19. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahadevan, Kathyayani

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationarymore » generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).« less

  20. Development Of A Solid Oxide Fuel Cell Stack By Delphi And Battelle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukerjee, Subhasish; Shaffer, Steven J.; Zizelman, James

    2003-01-20

    Delphi and Battelle are developing a Solid Oxide Fuel Cell (SOFC) stack for transportation and residential applications. This paper describes the status of development of the Generation 2 stack and key progress made in addressing some of the challenges in this technology.

  1. Fuel cell arrangement

    DOEpatents

    Isenberg, A.O.

    1987-05-12

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber. 3 figs.

  2. Fuel cell arrangement

    DOEpatents

    Isenberg, Arnold O.

    1987-05-12

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber.

  3. Techno-Economic Analysis of Scalable Coal-Based Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Steven S. C.

    Researchers at The University of Akron (UA) have demonstrated the technical feasibility of a laboratory coal fuel cell that can economically convert high sulfur coal into electricity with near zero negative environmental impact. Scaling up this coal fuel cell technology to the megawatt scale for the nation’s electric power supply requires two key elements: (i) developing the manufacturing technology for the components of the coal-based fuel cell, and (ii) long term testing of a kW scale fuel cell pilot plant. This project was expected to develop a scalable coal fuel cell manufacturing process through testing, demonstrating the feasibility of buildingmore » a large-scale coal fuel cell power plant. We have developed a reproducible tape casting technique for the mass production of the planner fuel cells. Low cost interconnect and cathode current collector material was identified and current collection was improved. In addition, this study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO 2 product produced can further react with carbon to initiate the secondary reactions. One important secondary reaction is the reaction of carbon with CO 2 to produce CO. We found CO and carbon can be electrochemically oxidized simultaneously inside of the anode porous structure and on the surface of anode for producing electricity. Since CH 4 produced from coal during high temperature injection of coal into the anode chamber can cause severe deactivation of Ni-anode, we have studied how CH 4 can interact with CO 2 to produce in the anode chamber. CO produced was found able to inhibit coking and allow the rate of anode deactivation to be decreased. An injection system was developed to inject the solid carbon and coal fuels without bringing air into the anode chamber. Five planner fuel cells connected in a series configuration and tested. Extensive studies on the planner fuels and stack revealed that the planner fuel

  4. Solid Oxide Fuel Cell Seal Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Bansal, Narottam P.; Dynys, Fred W.; Lang, Jerry; Daniels, Christopher C.; Palko, Joeseph L.; Choi, S. R.

    2004-01-01

    Researchers at NASA GRC are confronting the seal durability challenges of Solid Oxide Fuel Cells by pursuing an integrated and multidisciplinary development effort incorporating thermo-structural analyses, advanced materials, experimentation, and novel seal design concepts. The successful development of durable hermetic SOFC seals is essential to reliably producing the high power densities required for aerospace applications.

  5. Development of Novel PEM Membrane and Multiphase CD Modeling of PEM Fuel Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. J. Berry; Susanta Das

    2009-12-30

    To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtainedmore » from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance. To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance

  6. The Development of Fuel Cell Technology for Electric Power Generation - From Spacecraft Applications to the Hydrogen Economy

    NASA Technical Reports Server (NTRS)

    Scott, John H.

    2005-01-01

    The fuel cell uses a catalyzed reaction between a fuel and an oxidizer to directly produce electricity. Its high theoretical efficiency and low temperature operation made it a subject of much study upon its invention ca. 1900, but its relatively high life cycle costs kept it as "solution in search of a problem" for its first half century. The first problem for which fuel cells presented a cost effective solution was, starting in the 1960's that of a power source for NASA's manned spacecraft. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. However, starting in the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of terrestrial applications. This investment is bringing about notable advances in fuel cell technology, but these advances are often in directions quite different from those needed for NASA spacecraft applications. This environment thus presents both opportunities and challenges for NASA's manned space program.

  7. Develop and test fuel cell powered on-site integrated total energy systems: Phase 3, full-scale power plant development

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.

    1985-01-01

    Two 25 cell stacks of the 13 inch x 23 inch cell size (about 4kW) remain on test after 4000 hours and 2900 hours, respectively, using simulated reformate fuel. These tests are focusing on the durability of fuel cell stack components developed through the end of 1983. Also, these stacks are serving as forerunners of a 25kW stack that will contain 175 cells of the same size and will employ the same technology base. The stack technology development program has focused on a new, low cost bipolar plate edge seal technique and evaluation of advanced cathode catalysts, an electrolyte replenishment system, and nonmetallic cooling plates in small stacks.

  8. Development and design of experiments optimization of a high temperature proton exchange membrane fuel cell auxiliary power unit with onboard fuel processor

    NASA Astrophysics Data System (ADS)

    Karstedt, Jörg; Ogrzewalla, Jürgen; Severin, Christopher; Pischinger, Stefan

    In this work, the concept development, system layout, component simulation and the overall DOE system optimization of a HT-PEM fuel cell APU with a net electric power output of 4.5 kW and an onboard methane fuel processor are presented. A highly integrated system layout has been developed that enables fast startup within 7.5 min, a closed system water balance and high fuel processor efficiencies of up to 85% due to the recuperation of the anode offgas burner heat. The integration of the system battery into the load management enhances the transient electric performance and the maximum electric power output of the APU system. Simulation models of the carbon monoxide influence on HT-PEM cell voltage, the concentration and temperature profiles within the autothermal reformer (ATR) and the CO conversion rates within the watergas shift stages (WGSs) have been developed. They enable the optimization of the CO concentration in the anode gas of the fuel cell in order to achieve maximum system efficiencies and an optimized dimensioning of the ATR and WGS reactors. Furthermore a DOE optimization of the global system parameters cathode stoichiometry, anode stoichiometry, air/fuel ratio and steam/carbon ratio of the fuel processing system has been performed in order to achieve maximum system efficiencies for all system operating points under given boundary conditions.

  9. Fuel Cell/Electrochemical Cell Voltage Monitor

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo

    2012-01-01

    A concept has been developed for a new fuel cell individual-cell-voltage monitor that can be directly connected to a multi-cell fuel cell stack for direct substack power provisioning. It can also provide voltage isolation for applications in high-voltage fuel cell stacks. The technology consists of basic modules, each with an 8- to 16-cell input electrical measurement connection port. For each basic module, a power input connection would be provided for direct connection to a sub-stack of fuel cells in series within the larger stack. This power connection would allow for module power to be available in the range of 9-15 volts DC. The relatively low voltage differences that the module would encounter from the input electrical measurement connection port, coupled with the fact that the module's operating power is supplied by the same substack voltage input (and so will be at similar voltage), provides for elimination of high-commonmode voltage issues within each module. Within each module, there would be options for analog-to-digital conversion and data transfer schemes. Each module would also include a data-output/communication port. Each of these ports would be required to be either non-electrical (e.g., optically isolated) or electrically isolated. This is necessary to account for the fact that the plurality of modules attached to the stack will normally be at a range of voltages approaching the full range of the fuel cell stack operating voltages. A communications/ data bus could interface with the several basic modules. Options have been identified for command inputs from the spacecraft vehicle controller, and for output-status/data feeds to the vehicle.

  10. Fuel Cell Electric Vehicle Evaluations | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Electric Vehicle Evaluations Fuel Cell Electric Vehicle Evaluations NREL's technology validation include commercial FCEVs for the first time. Current fuel cell electric vehicle evaluations build on the seven-year FCEV Learning Demonstration and focus on fuel cell stack durability and efficiency, vehicle

  11. Center for Fuel Cell Research and Applications development phase. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    The deployment and operation of clean power generation is becoming critical as the energy and transportation sectors seek ways to comply with clean air standards and the national deregulation of the utility industry. However, for strategic business decisions, considerable analysis is required over the next few years to evaluate the appropriate application and value added from this emerging technology. To this end the Houston Advanced Research Center (HARC) is proposing a three-year industry-driven project that centers on the creation of ``The Center for Fuel Cell Research and Applications.`` A collaborative laboratory housed at and managed by HARC, the Center willmore » enable a core group of six diverse participating companies--industry participants--to investigate the economic and operational feasibility of proton-exchange-membrane (PEM) fuel cells in a variety of applications (the core project). This document describes the unique benefits of a collaborative approach to PEM applied research, among them a shared laboratory concept leading to cost savings and shared risks as well as access to outstanding research talent and lab facilities. It also describes the benefits provided by implementing the project at HARC, with particular emphasis on HARC`s history of managing successful long-term research projects as well as its experience in dealing with industry consortia projects. The Center is also unique in that it will not duplicate the traditional university role of basic research or that of the fuel cell industry in developing commercial products. Instead, the Center will focus on applications, testing, and demonstration of fuel cell technology.« less

  12. Fuel cells feasibility

    NASA Technical Reports Server (NTRS)

    Schonfeld, D.; Charng, T.

    1981-01-01

    The technical and economic status of fuel cells is assessed with emphasis on their potential benefits to the Deep Space Network. The fuel cell, what it is, how it operates, and what its outputs are, is reviewed. Major technical problems of the fuel cell and its components are highlighted. Due to these problems and economic considerations it is concluded that fuel cells will not become commercially viable until the early 1990s.

  13. Fuel cell commercialization — beyond the 'Notice of Market Opportunity for Fuel Cells' (NOMO)

    NASA Astrophysics Data System (ADS)

    Serfass, J. A.; Glenn, D. R.

    1992-01-01

    The Notice of Market Opportunity for Fuel Cells (NOMO) was released in Oct. 1988 by the American Public Power Association. Its goal was to identify a manufacturer for commercializing a multi-megawatt fuel cell power plant with attractive cost and performance characteristics, supported by a realistic, yet aggressive commercialization plan, leading to mid-1990s application. Energy Research Corporation's program to commercialize its 2-MW internal-reforming carbonate fuel cell was selected. The program was refined in the development of the Principles and Framework for Commercializing Direct Fuel Cell Power Plants, which defines buyer responsibilities for promotion and coordination of information development, supplier responsibilities for meeting certain milestones and for sharing the results of success in a royalty agreement, and risk management features. Twenty-three electric and gas utilities in the US and Canada have joined the Fuel Cell Commercialization Group to support the buyers' obligations in this program. The City of Santa Clara, CA; Electric Power Research Institute; Los Angeles Department of Water and Power; Southern California Gas Company; Southern California Edison; National Rural Electric Cooperative Association; and Pacific Gas & Electric, have formed the Santa Clara Demonstration Group to build the first 2-MW power plant. The preliminary design for this demonstration is nearly complete. Integrated testing of a 20-kW stack with the complete balance-of-plant, has been successfully accomplished by Pacific Gas & Electric at its test facility in San Ramon, CA.

  14. Evaluation of Fuel Cell Operation and Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Mark; Gemmen, Randall; Richards, George

    The concepts of area specific resistance (ASR) and degradation are developed for different fuel cell operating modes. The concepts of exergetic efficiency and entropy production were applied to ASR and degradation. It is shown that exergetic efficiency is a time-dependent function useful describing the thermal efficiency of a fuel cell and the change in thermal efficiency of a degrading fuel cell. Entropy production was evaluated for the cases of constant voltage operation and constant current operation of the fuel cell for a fuel cell undergoing ohmic degradation. It was discovered that the Gaussian hypergeometric function describes the cumulative entropy andmore » electrical work produced by fuel cells operating at constant voltage. The Gaussian hypergeometric function is found in many applications in modern physics. This paper builds from and is an extension of several papers recently published by the authors in the Journal of The Electrochemical Society (ECS), ECS Transactions, Journal of Power Sources, and the Journal of Fuel Cell Science and Technology.« less

  15. Internal reforming fuel cell assembly with simplified fuel feed

    DOEpatents

    Farooque, Mohammad; Novacco, Lawrence J.; Allen, Jeffrey P.

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  16. Mathematical modeling of solid oxide fuel cells

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi; Maloney, Thomas M.

    1988-01-01

    Development of predictive techniques, with regard to cell behavior, under various operating conditions is needed to improve cell performance, increase energy density, reduce manufacturing cost, and to broaden utilization of various fuels. Such technology would be especially beneficial for the solid oxide fuel cells (SOFC) at it early demonstration stage. The development of computer models to calculate the temperature, CD, reactant distributions in the tubular and monolithic SOFCs. Results indicate that problems of nonuniform heat generation and fuel gas depletion in the tubular cell module, and of size limitions in the monolithic (MOD 0) design may be encountered during FC operation.

  17. Review of cell performance in anion exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Dekel, Dario R.

    2018-01-01

    Anion exchange membrane fuel cells (AEMFCs) have recently received increasing attention since in principle they allow for the use of non-precious metal catalysts, which dramatically reduces the cost per kilowatt of power in fuel cell devices. Until not long ago, the main barrier in the development of AEMFCs was the availability of highly conductive anion exchange membranes (AEMs); however, improvements on this front in the past decade show that newly developed AEMs have already reached high levels of conductivity, leading to satisfactory cell performance. In recent years, a growing number of research studies have reported AEMFC performance results. In the last three years, new records in performance were achieved. Most of the literature reporting cell performance is based on hydrogen-AEMFCs, although an increasing number of studies have also reported the use of fuels others than hydrogen - such as alcohols, non-alcohol C-based fuels, as well as N-based fuels. This article reviews the cell performance and performance stability achieved in AEMFCs through the years since the first reports in the early 2000s.

  18. Proton Exchange Membrane (PEM) Fuel Cells for Space Applications

    NASA Technical Reports Server (NTRS)

    Bradley, Karla

    2004-01-01

    This presentation will provide a summary of the PEM fuel cell development at the National Aeronautics and Space Administration, Johnson Space Center (NASA, JSC) in support of future space applications. Fuel cells have been used for space power generation due to their high energy storage density for multi-day missions. The Shuttle currently utilizes the alkaline fuel cell technology, which has highly safe and reliable performance. However, the alkaline technology has a limited life due to the corrosion inherent to the alkaline technology. PEM fuel cells are under development by industry for transportation, residential and commercial stationary power applications. NASA is trying to incorporate some of this stack technology development in the PEM fuel cells for space. NASA has some unique design and performance parameters which make developing a PEM fuel cell system more challenging. Space fuel cell applications utilize oxygen, rather than air, which yields better performance but increases the hazard level. To reduce the quantity of reactants that need to be flown in space, NASA also utilizes water separation and reactant recirculation. Due to the hazards of utilizing active components for recirculation and water separation, NASA is trying to develop passive recirculation and water separation methods. However, the ability to develop recirculation components and water separators that are gravity-independent and successfully operate over the full range of power levels is one of the greatest challenges to developing a safe and reliable PEM fuel cell system. PEM stack, accessory component, and system tests that have been performed for space power applications will be discussed.

  19. NASA's First Year Progress with Fuel Cell Advanced Development in Support of the Exploration Vision

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark

    2007-01-01

    NASA Glenn Research Center (GRC), in collaboration with Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), Kennedy Space Center (KSC), and industry partners, is leading a proton-exchange-membrane fuel cell (PEMFC) advanced development effort to support the vision for Exploration. This effort encompasses the fuel cell portion of the Energy Storage Project under the Exploration Technology Development Program, and is directed at multiple power levels for both primary and regenerative fuel cell systems. The major emphasis is the replacement of active mechanical ancillary components with passive components in order to reduce mass and parasitic power requirements, and to improve system reliability. A dual approach directed at both flow-through and non flow-through PEMFC system technologies is underway. A brief overview of the overall PEMFC project and its constituent tasks will be presented, along with in-depth technical accomplishments for the past year. Future potential technology development paths will also be discussed.

  20. Hydrogen Fuel Cell Engines and Related Technologies

    NASA Astrophysics Data System (ADS)

    2001-12-01

    The Hydrogen Fuel Cell Engines and Related Technologies report documents the first training course ever developed and made available to the transportation community and general public on the use hydrogen fuel cells in transportation. The course is designed to train a new generation of technicians in gaining a more complete understanding of the concepts, procedures, and technologies involved with hydrogen fuel cell use in transportation purposes. The manual contains 11 modules (chapters). The first eight modules cover (1) hydrogen properties, use and safety; and (2) fuel cell technology and its systems, fuel cell engine design and safety, and design and maintenance of a heavy duty fuel cell bus engine. The different types of fuel cells and hybrid electric vehicles are presented, however, the system descriptions and maintenance procedures focus on proton-exchange-membrane (PEM) fuel cells with respect to heavy duty transit applications. Modules 9 and 10 are intended to provide a better understanding of the acts, codes, regulations and guidelines concerning the use of hydrogen, as well as the safety guidelines for both hydrogen maintenance and fueling facilities. Module 11 presents a glossary and conversions.

  1. Microfluidic fuel cell systems

    NASA Astrophysics Data System (ADS)

    Ho, Bernard; Kjeang, Erik

    2011-06-01

    A microfluidic fuel cell is a microfabricated device that produces electrical power through electrochemical reactions involving a fuel and an oxidant. Microfluidic fuel cell systems exploit co-laminar flow on the microscale to separate the fuel and oxidant species, in contrast to conventional fuel cells employing an ion exchange membrane for this function. Since 2002 when the first microfluidic fuel cell was invented, many different fuels, oxidants, and architectures have been investigated conceptually and experimentally. In this mini-review article, recent advancements in the field of microfluidic fuel cell systems are documented, with particular emphasis on design, operation, and performance. The present microfluidic fuel cell systems are categorized by the fluidic phases of the fuel and oxidant streams, featuring gaseous/gaseous, liquid/gaseous, and liquid/liquid systems. The typical cell configurations and recent contributions in each category are analyzed. Key research challenges and opportunities are highlighted and recommendations for further work are provided.

  2. Phosphoric Acid Fuel Cell Technology Status

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; King, R. B.; Prokopius, P. R.

    1981-01-01

    A review of the current phosphoric acid fuel cell system technology development efforts is presented both for multimegawatt systems for electric utility applications and for multikilowatt systems for on-site integrated energy system applications. Improving fuel cell performance, reducing cost, and increasing durability are the technology drivers at this time. Electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, and fuel selection are discussed.

  3. Development of a Solid-Oxide Fuel Cell/Gas Turbine Hybrid System Model for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Freeh, Joshua E.; Pratt, Joseph W.; Brouwer, Jacob

    2004-01-01

    Recent interest in fuel cell-gas turbine hybrid applications for the aerospace industry has led to the need for accurate computer simulation models to aid in system design and performance evaluation. To meet this requirement, solid oxide fuel cell (SOFC) and fuel processor models have been developed and incorporated into the Numerical Propulsion Systems Simulation (NPSS) software package. The SOFC and reformer models solve systems of equations governing steady-state performance using common theoretical and semi-empirical terms. An example hybrid configuration is presented that demonstrates the new capability as well as the interaction with pre-existing gas turbine and heat exchanger models. Finally, a comparison of calculated SOFC performance with experimental data is presented to demonstrate model validity. Keywords: Solid Oxide Fuel Cell, Reformer, System Model, Aerospace, Hybrid System, NPSS

  4. Study and development of sulfated zirconia based proton exchange fuel cell membranes

    NASA Astrophysics Data System (ADS)

    Kemp, Brittany Wilson

    With the increasing consumption of energy, fuel cells are among the most promising alternatives to fossil fuels, provided some technical challenges are overcome. Proton exchange membrane fuel cells (PEMFCs) have been investigated and improvements have been made, but the problem with NafionRTM, the main membrane for PEMFCs, has not been solved. NafionRTM restricts the membranes from operating at higher temperatures, thus preventing them from working in small electronics. The problem is to develop a novel fuel cell membrane that performs comparably to NafionRTM in PEMFCs. The membranes were fabricated by applying sulfated zirconia, via template wetting, to porous alumina membranes. The fabricated membranes showed a proton conductivity of 0.016 S/cm in comparison to the proton conductivity of Nafion RTM (0.05 S/cm). Both formic acid and methanol had a lower crossover flux through the sulfated zirconia membranes (formic acid- 2.89x10 -7 mols/cm2s and methanol-1.78x10-9 mols/cm2s) than through NafionRTM (formic acid-2.03x10 -8 mols/cm2s methanol-2.42x10-6 mols/cm 2s), indicating that a sulfated zirconia PEMFC may serve as a replacement for NafionRTM.

  5. Demonstration of Passive Fuel Cell Thermal Management Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  6. The TMI Regenerative Solid Oxide Fuel Cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.; Ruhl, Robert C.; Petrik, Michael

    1996-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. Systems generally consist of photovoltaic solar arrays which operate (during sunlight cycles) to provide system power and regenerate fuel (hydrogen) via water electrolysis and (during dark cycles) fuel cells convert hydrogen into electricity. Common configurations use two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Reliability, power to weight and power to volume ratios could be greatly improved if both power production (fuel cells) and power storage (electrolysis) functions can be integrated into a single unit. The solid oxide fuel cell (SOFC) based design integrates fuel cell and electrolyzer functions and potentially simplifies system requirements. The integrated fuel cell/electrolyzer design also utilizes innovative gas storage concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H20 electrode (SOFC anode/electrolyzer cathode) materials for regenerative fuel cells. Tests have shown improved cell performance in both fuel and electrolysis modes in reversible fuel cell tests. Regenerative fuel cell efficiencies, ratio of power out (fuel cell mode) to power in (electrolyzer mode), improved from 50 percent using conventional electrode materials to over 80 percent. The new materials will allow a single SOFC system to operate as both the electolyzer and fuel cell. Preliminary system designs have also been developed to show the technical feasibility of using the design for space applications requiring high energy storage efficiencies and high specific energy. Small space systems also have potential for dual-use, terrestrial applications.

  7. High temperature tubular solid oxide fuel cell development

    NASA Astrophysics Data System (ADS)

    Ray, E. R.

    Important to the development commercialization of any new technology is a field test program. This is a mutually beneficial program for both the developer and the prospective user. The developer is able to acquire valuable field operating experience that is not available in a laboratory while the user has the opportunity to become familiar with the new technology and gains a working knowledge of it through hands-on experience. Westinghouse, recognizing these benefits, initiated a program in 1986 by supplying a 400 W SOFC generator to Tennessee Valley Authority. This generator operated for approximately 1,760 hours and was constructed of twenty-four 30 cm thick-wall PST cells. In 1987, three, 3 kW SOFC generators were installed and operated at the facilities of the Tokyo Gas Company and the Osaka Gas Company. At Osaka Gas, two generators were used. First a training generator, operated for 2900 hours before it was replaced on a preplanned schedule with the second generator. The second generator operated for 3,600 hours. Tokyo Gas generator was operated for 4,900 hours. These generators had a 98 percent availability and measured NO(x) levels of less than 1.3 ppm. The 3 kW SOFC generators were constructed of 144 36 cm thick-wall PST cells. The 3 kW generators, as was the TVA generator, were fueled with hydrogen and carbon monoxide. The next major milestone in the field unit program was reached in early 1992 with the delivery to the UTILITIES, a consortium of the Kansai Electric Power company, the Tokyo Gas Company, and the Osaka Gas Company, of a natural gas fueled all electric SOFC system. This system is rated at a nominal 25 kW dc with a peak capacity of 40 kW dc. The NO(x) was measured at less than 0.3 ppM (corrected to 15 percent oxygen). The system consists of 1152 cells (thin-wall PST) of 50 cm active length, manufactured at the PPMF. Cells are contained in two independently controlled and operated generators.

  8. Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Voecks, G. E.

    1985-01-01

    In proposed fuel-cell system, methanol converted to hydrogen in two places. External fuel processor converts only part of methanol. Remaining methanol converted in fuel cell itself, in reaction at anode. As result, size of fuel processor reduced, system efficiency increased, and cost lowered.

  9. Development of a Space-Rated Proton Exchange Membrane Fuel Cell

    NASA Technical Reports Server (NTRS)

    Hoffman, William C., III; Vasquez, Arturo; Lazaroff, Scott M.; Downey, Michael G.

    1999-01-01

    Power systems for human spacecraft have historically included fuel cells due to the superior energy density they offer over battery systems depending on mission length and power consumption. As space exploration focuses on the evolution of reusable spacecraft and also considers planetary exploration power system requirements, fuel cells continue to be a factor in the potential system solutions.

  10. Fuel cell energy storage for Space Station enhancement

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1990-01-01

    Viewgraphs on fuel cell energy storage for space station enhancement are presented. Topics covered include: power profile; solar dynamic power system; photovoltaic battery; space station energy demands; orbiter fuel cell power plant; space station energy storage; fuel cell system modularity; energy storage system development; and survival power supply.

  11. Publications | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    , and demonstration activities in hydrogen and fuel cells. NREL Publications Database Access the full library of our publications. Search the database View all NREL publications about hydrogen and fuel cell research. Transportation and Hydrogen Newsletter Get semi-monthly updates on NREL's research, development

  12. Develop and test fuel cell powered on-site integrated total energy systems: Phase 3, full-scale power plant development

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.

    1985-01-01

    A 25 cell stack of the 13 inch x 23 inch cell size (about 4kW) remains on test after 6000 hours, using simulated reformate fuel. A similar stack was previously shut down after 7000 hours on load. These tests were carried out for the purpose of assessing the durability of fuel cell stack components developed through the end of 1983. In light of the favorable results obtained, a 25kW stack that will contain 175 cells of the same size is being constructed using the same technology base. The components for the 25kW stack have been completed. A methanol steam reformer with a design output equivalent to 50kW has been constructed to serve as a hydrogen generator for the 25kW stack. This reformer and the balance of the fuel processing sub system are currently being tested and debugged. The stack technology development program focused on cost reduction in bipolar plates, nonmetallic cooling plates, and current collecting plates; more stable cathode catalyst support materials; more corrosion resistant metal hardware; and shutdown/start up tolerance.

  13. Alternative Fuels Data Center: Fuel Cell Electric Vehicle Emissions

    Science.gov Websites

    Cell Electric Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Electric Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Electric Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicle Emissions

  14. Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies

    NASA Astrophysics Data System (ADS)

    1994-03-01

    This report documents a portion of the work performed on Multi-fuel Reformers for Fuel Cells Used in Transportation. One objective of this program is to develop advanced fuel processing systems to reform methanol, ethanol, natural gas, and other hydrocarbons into hydrogen for use in transportation fuel cell systems, while a second objective is to develop better systems for on-board hydrogen storage. This report examines techniques and technology available for storage of pure hydrogen on board a vehicle as pure hydrogen of hydrides. The report focuses separately on near and far-term technologies, with particular emphasis on the former. Development of lighter, more compact near-term storage systems is recommended to enhance competitiveness and simplify fuel cell design. The far-term storage technologies require substantial applied research in order to become serious contenders.

  15. Fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A program to advance the technology for a cost-effective hydrogen/oxygen fuel cell system for future manned spacecraft is discussed. The evaluation of base line design concepts and the development of product improvements in the areas of life, power, specific weight and volume, versatility of operation, field maintenance and thermal control were conducted from the material and component level through the fabrication and test of an engineering model of the fuel cell system. The program was to be accomplished in a 13 month period.

  16. Phosphoric acid electric utility fuel cell technology development

    NASA Astrophysics Data System (ADS)

    Breault, R. D.; Briggs, T. A.; Congdon, J. V.; Demarche, T. E.; Gelting, R. L.; Goller, G. J.; Luoma, W. L.; McCloskey, M. W.; Mientek, A. P.; Obrien, J. J.

    1991-04-01

    The major objective of this effort was the advancement of cell and stack technology required to meet performance and cost criteria for fabrication and operation of a prototype large area, full height phosphoric acid fuel cell stack. The performance goal for the cell stack corresponded to a power density of 150 wsf, and the manufactured cost goal was a 510 $/kW reduction (in 1981 dollars) compared to existing 3.7 ft.(exp 2) active area cell stacks.

  17. Lowering the temperature of solid oxide fuel cells.

    PubMed

    Wachsman, Eric D; Lee, Kang Taek

    2011-11-18

    Fuel cells are uniquely capable of overcoming combustion efficiency limitations (e.g., the Carnot cycle). However, the linking of fuel cells (an energy conversion device) and hydrogen (an energy carrier) has emphasized investment in proton-exchange membrane fuel cells as part of a larger hydrogen economy and thus relegated fuel cells to a future technology. In contrast, solid oxide fuel cells are capable of operating on conventional fuels (as well as hydrogen) today. The main issue for solid oxide fuel cells is high operating temperature (about 800°C) and the resulting materials and cost limitations and operating complexities (e.g., thermal cycling). Recent solid oxide fuel cells results have demonstrated extremely high power densities of about 2 watts per square centimeter at 650°C along with flexible fueling, thus enabling higher efficiency within the current fuel infrastructure. Newly developed, high-conductivity electrolytes and nanostructured electrode designs provide a path for further performance improvement at much lower temperatures, down to ~350°C, thus providing opportunity to transform the way we convert and store energy.

  18. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP Vmore » Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat

  19. Unitized Regenerative Fuel Cell System Gas Storage-Radiator Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupta, Ian

    2005-01-01

    High-energy-density regenerative fuel cell systems that are used for energy storage require novel approaches to integrating components in order to preserve mass and volume. A lightweight unitized regenerative fuel cell (URFC) energy storage system concept is being developed at the NASA Glenn Research Center. This URFC system minimizes mass by using the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The waste heat generated by the URFC stack during charging and discharging is transferred from the cell stack to the surface of each tank by loop heat pipes, which are coiled around each tank and covered with a thin layer of thermally conductive carbon composite. The thin layer of carbon composite acts as a fin structure that spreads the heat away from the heat pipe and across the entire tank surface. Two different-sized commercial-grade composite tanks were constructed with integral heat pipes and tested in a thermal vacuum chamber to examine the feasibility of using the storage tanks as system radiators. The storage tank-radiators were subjected to different steady-state heat loads and varying heat load profiles. The surface emissivity and specific heat capacity of each tank were calculated. In the future, the results will be incorporated into a model that simulates the performance of similar radiators using lightweight, spacerated carbon composite tanks.

  20. The Direct Methanol Liquid-Feed Fuel Cell

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald

    1997-01-01

    Until the early 1990's the idea of a practical direct methanol fuel cell from transportation and other applications was just that, an idea. Several types of fuel cells that operate under near ambient conditions were under development.

  1. Fuel cell system

    DOEpatents

    Early, Jack; Kaufman, Arthur; Stawsky, Alfred

    1982-01-01

    A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.

  2. Lightweight fuel cell powerplant components program

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1980-01-01

    A lightweight hydrogen-oxygen alkaline fuel cell incorporated into the design of a lightweight fuel cell powerplant (LFCP) was analytically and experimentally developed. The powerplant operates with passive water removal which contributes to a lower system weight and extended operating life. A preliminary LFCP specification and design table were developed along with a lightweight power section for the LFCP design, consisting of repeating two-cell modules was designed. Two, four-cell modules were designed incorporating 0.508 sq ft active area space shuttle technology fuel cells. Over 1,200 hours of single-cell and over 8,800 hours of two-cell module testing was completed. The 0.25 sq ft active area lightweight cell design was shown to be capable of operating on propellant purity reactants out to a current density of 600ASF. Endurance testing of the two-cell module configuration exceeded the 2,500-hour LFCP voltage requirements out to 3700-hours. A two-cell module capable of operating at increased reactant pressure completed 1000 hours of operation at a 30 psia reactant pressure. A lightweight power section consisting of fifteen, two-cell modules connected electrically in series was fabricated.

  3. Develop and test fuel cell powered on site integrated total energy sysems: Phase 3: Full-scale power plant development

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Olson, B.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.

    1986-01-01

    A 25-cell stack of the 13 inch x 23 inch cell size (about 4kW) remains on test after 8300 hours, using simulated reformate fuel. A similar stack was previously shut down after 7000 hours on load. These tests have been carried out for the purpose of assessing the durability of fuel cell stack components developed through the end of 1983. A 25kW stack containing 175 cells of the same size and utilizing a technology base representative of the 25-cell stacks has been constructed and is undergoing initial testing. A third 4kW stack is being prepared, and this stack will incorporate several new technology features.

  4. Improved Round Trip Efficiency for Regenerative Fuel Cell Systems

    DTIC Science & Technology

    2012-05-11

    advanced components that enable closed-loop, zero emission, low signature energy storage. The system utilizes proton exchange membrane ( PEM ) fuel cell ...regenerative fuel cell (RFC) systems based on proton exchange membrane ( PEM ) technology. An RFC consists of a fuel cell powerplant, an electrolysis...based on an air independent, hydrogen-oxygen, PEM RFC is feasible within the near term if development efforts proceed forward. Fuel Cell

  5. Work with Us | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    agreements. Use our cutting-edge research facilities to develop, test, and evaluate hydrogen and fuel cell science behind emerging hydrogen and fuel cell technologies and develop, test, and validate new for qualified partners to participate in cooperative research and development agreement (CRADA

  6. Status of shuttle fuel cell technology program.

    NASA Technical Reports Server (NTRS)

    Rice, W. E.; Bell, D., III

    1972-01-01

    The hydrogen-oxygen fuel cell has been proved as an efficient and reliable electrical power supply for NASA manned-space-flight vehicles. It has thus ensured a role in the Space Shuttle Program as the primary electrical power supply for the Orbiter vehicle. The advanced fuel cell technology programs conducted under the management of the NASA Manned Spacecraft Center over the past two years have resulted in a high level of technical readiness in fuel cell power generation to support shuttle mission requirements. These programs have taken advantage of technological developments that have occurred since the designs were completed for the Gemini and Apollo fuel cells.

  7. Assessment of bio-fuel options for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with

  8. Operando fuel cell spectroscopy

    NASA Astrophysics Data System (ADS)

    Kendrick, Ian Michael

    The active state of a catalyst only exists during catalysis (1) provided the motivation for developing operando spectroscopic techniques. A polymer electrolyte membrane fuel cell (PEMFC) was designed to interface with commercially available instruments for acquisition of infrared spectra of the catalytic surface of the membrane electrode assembly (MEA) during normal operation. This technique has provided insight of the complex processes occurring at the electrode surface. Nafion, the solid electrolyte used in most modern-day polymer electrolyte membrane fuel cells (PEMFC), serves many purposes in fuel cell operation. However, there is little known of the interface between Nafion and the electrode surface. Previous studies of complex Stark tuning curves of carbon monoxide on the surface of a platinum electrode were attributed the co-adsorption of bisulfite ions originating from the 0.5M H2SO4 electrolyte used in the study(2). Similar tuning curves obtained on a fuel cell MEA despite the absence of supplemental electrolytes suggest the adsorption of Nafion onto platinum (3). The correlation of spectra obtained using attenuated total reflectance spectroscopy (ATR) and polarization modulated IR reflection-absorption spectroscopy (PM-IRRAS) to a theoretical spectrum generated using density functional theory (DFT) lead to development of a model of Nafion and platinum interaction which identified participation of the SO3- and CF3 groups in Nafion adsorption. The use of ethanol as a fuel stream in proton exchange membrane fuel cells provides a promising alternative to methanol. Relative to methanol, ethanol has a greater energy density, lower toxicity and can be made from the fermentation of biomass(4). Operando IR spectroscopy was used to study the oxidation pathway of ethanol and Stark tuning behavior of carbon monoxide on Pt, Ru, and PtRu electrodes. Potential dependent products such as acetaldehyde, acetic acid and carbon monoxide are identified as well as previously

  9. Development of the work on fuel cells in the Ministry for Atomic Energy of Russian Federation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lubovin, B.Y.; Novitski, E.Z.

    1996-04-01

    This paper describes research on fuel cells in the Russian Federation. The beginning of the practical work on fuel cells in Russia dates back to the 50`s and 60`s when the Ural Electrochemical Plant and the Ural Electromechanical Plant of the Ministry of Medium Machine-Building of the USSR, all Russian Research Institute of the power sources and many other institutes of the Ministry of Electrotechnical Industry of the USSR got to the development of the alkaline fuel cells for the spaceships according to the tasks of the SPC `Energy` and for the submarines on the tasks of the Ministry ofmore » Defense.« less

  10. Rejuvenation of automotive fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yu Seung; Langlois, David A.

    A process for rejuvenating fuel cells has been demonstrated to improve the performance of polymer exchange membrane fuel cells with platinum/ionomer electrodes. The process involves dehydrating a fuel cell and exposing at least the cathode of the fuel cell to dry gas (nitrogen, for example) at a temperature higher than the operating temperature of the fuel cell. The process may be used to prolong the operating lifetime of an automotive fuel cell.

  11. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1981-01-01

    The development of materials, cell components, and reformers for on site integrated energy systems is described. Progress includes: (1) heat-treatment of 25 sq cm, 350 sq cm and 1200 sq cm cell test hardware was accomplished. Performance of fuel cells is improved by using this material; (2) electrochemical and chemical corrosion rates of heat-treated and as-molded graphite/phenolic resin composites in phosphoric acid were determined; (3) three cell, 5 in. x 15 in. stacks operated for up to 10,000 hours and 12 in. x 17 in. five cell stacks were tested for 5,000 hours; (4) a three cell 5 in. x 15 in. stack with 0.12 mg Pt/sq cm anodes and 0.25 mg Pt/sq cm cathodes was operated for 4,500 hours; and (5) an ERC proprietary high bubble pressure matrix, MAT-1, was tested for up to 10,000 hours.

  12. Characterization Testing of the Teledyne Passive Breadboard Fuel Cell Powerplant

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    NASA's Exploration Technology Development Program (ETDP) is tasked with the development of enabling and enhancing technologies for NASA's exploration missions. As part of that initiative, the return to the Moon requires a reliable, efficient, and lightweight fuel cell powerplant system to provide power to the Altair Lunar Lander and for lunar surface systems. Fuel cell powerplants are made up of two basic parts; the fuel cell itself and the supporting ancillary subsystem. This subsystem is designed to deliver reactants to the fuel cell and remove product water and waste heat from the fuel cell. Typically, fuel cell powerplant ancillary subsystems rely upon pumps and active water separation techniques to accomplish these tasks for closed hydrogen/oxygen systems. In a typical system, these components are the largest contributors to the overall parasitic power load of the fuel cell powerplant. A potential step towards the development of an efficient lightweight power system is to maximize the use of "passive" or low-power ancillary components as a replacement to these high-power load components

  13. Fuel Cell Activities at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Fuel cells have a long history in space applications and may have potential application in aeronautics as well. A fuel cell is an electrochemical energy conversion device that directly transforms the chemical energy of a fuel and oxidant into electrical energy. Alkaline fuel cells have been the mainstay of the U.S. space program, providing power for the Apollo missions and the Space Shuttle. However, Proton Exchange Membrane (PEM) fuel cells offer potential benefits over alkaline systems and are currently under development for the next generation Reusable Launch Vehicle (RLV). Furthermore, primary and regenerative systems utilizing PEM technology are also being considered for future space applications such as surface power and planetary aircraft. In addition to these applications, the NASA Glenn Research Center is currently studying the feasibility of the use of both PEM and solid oxide fuel cells for low- or zero-emission electric aircraft propulsion. These types of systems have potential applications for high altitude environmental aircraft, general aviation and commercial aircraft, and high attitude airships. NASA Glenn has a unique set of capabilities and expertise essential to the successful development of advanced fuel cell power systems for space and aeronautics applications. NASA Glenn's role in past fuel cell development programs as well as current activities to meet these new challenges will be presented

  14. Fuel cell cassette with compliant seal

    DOEpatents

    Karl, Haltiner, Jr. J.; Anthony, Derose J.; Klotzbach, Darasack C.; Schneider, Jonathan R.

    2017-11-07

    A fuel cell cassette for forming a fuel cell stack along a fuel cell axis includes a cell retainer, a plate positioned axially to the cell retainer and defining a space axially with the cell retainer, and a fuel cell having an anode layer and a cathode layer separated by an electrolyte layer. The outer perimeter of the fuel cell is positioned in the space between the plate and the cell retainer, thereby retaining the fuel cell and defining a cavity between the cell retainer, the fuel cell, and the plate. The fuel cell cassette also includes a seal disposed within the cavity for sealing the edge of the fuel cell. The seal is compliant at operational temperatures of the fuel cell, thereby allowing lateral expansion and contraction of the fuel cell within the cavity while maintaining sealing at the edge of the fuel cell.

  15. DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, E.

    2012-05-01

    Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure HO due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operatingmore » temperatures to no more than 80°C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.« less

  16. Solid oxide fuel cell generator

    DOEpatents

    Di Croce, A. Michael; Draper, Robert

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row.

  17. Waste-to-Energy and Fuel Cell Technologies Overview

    DTIC Science & Technology

    2011-01-13

    Integration of stationary fuel cells with biomass gasification is a developing technology that is in need of demonstration. Innovation for Our...the PureCell®400 Innovation for Our Energy Future Gasification of wood wastes is another potential source of useful fuel gas. Wood waste... Gasification → Cleanup → Fuel Cell Gasification uses high temperature to convert cellulosic materials to fuel gas • Hydrogen (H2) • Carbon monoxide (CO

  18. Solid oxide fuel cell generator

    DOEpatents

    Di Croce, A.M.; Draper, R.

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.

  19. Alternative Fuels Data Center: Hydrogen Fuel Cell Electric Vehicle

    Science.gov Websites

    Data Center: Hydrogen Fuel Cell Electric Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Electric Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Electric Vehicle Availability on Twitter Bookmark Alternative

  20. Fuel cell generator

    DOEpatents

    Isenberg, Arnold O.

    1983-01-01

    High temperature solid oxide electrolyte fuel cell generators which allow controlled leakage among plural chambers in a sealed housing. Depleted oxidant and fuel are directly reacted in one chamber to combust remaining fuel and preheat incoming reactants. The cells are preferably electrically arranged in a series-parallel configuration.

  1. Fuel cells: A survey

    NASA Technical Reports Server (NTRS)

    Crowe, B. J.

    1973-01-01

    A survey of fuel cell technology and applications is presented. The operating principles, performance capabilities, and limitations of fuel cells are discussed. Diagrams of fuel cell construction and operating characteristics are provided. Photographs of typical installations are included.

  2. Fuel cell technology for lunar surface operations

    NASA Technical Reports Server (NTRS)

    Deronck, Henry J.

    1992-01-01

    Hydrogen-oxygen fuel cells have been shown, in several NASA and contractor studies, to be an enabling technology for providing electrical power for lunar bases, outposts, and vehicles. The fuel cell, in conjunction with similar electrolysis cells, comprises a closed regenerative energy storage system, commonly referred to as a regenerative fuel cell (RFC). For stationary applications, energy densities of 1,000 watt-hours per kilograms an order of magnitude over the best rechargeable batteries, have been projected. In this RFC, the coupled fuel cell and electrolyzer act as an ultra-light battery. Electrical energy from solar arrays 'charges' the system by electrolyzing water into hydrogen and oxygen. When an electrical load is applied, the fuel cell reacts the hydrogen and oxygen to 'discharge' usable power. Several concepts for utilizing RFC's, with varying degrees of integration, have been proposed, including both primary and backup roles. For mobile power needs, such as rovers, an effective configuration may be to have only the fuel cell located on the vehicle, and to use a central electrolysis 'gas station'. Two fuel cell technologies are prime candidates for lunar power system concepts: alkaline electrolyte and proton exchange membrane. Alkaline fuel cells have been developed to a mature production power unit in NASA's Space Shuttle Orbiter. Recent advances in materials offer to significantly improve durability to the level needed for extended lunar operations. Proton exchange membrane fuel cells are receiving considerable support for hydrospace and terrestrial transportation applications. This technology promises durability, simplicity, and flexibility.

  3. Fuel cell technology for lunar surface operations

    NASA Astrophysics Data System (ADS)

    Deronck, Henry J.

    1992-02-01

    Hydrogen-oxygen fuel cells have been shown, in several NASA and contractor studies, to be an enabling technology for providing electrical power for lunar bases, outposts, and vehicles. The fuel cell, in conjunction with similar electrolysis cells, comprises a closed regenerative energy storage system, commonly referred to as a regenerative fuel cell (RFC). For stationary applications, energy densities of 1,000 watt-hours per kilograms an order of magnitude over the best rechargeable batteries, have been projected. In this RFC, the coupled fuel cell and electrolyzer act as an ultra-light battery. Electrical energy from solar arrays 'charges' the system by electrolyzing water into hydrogen and oxygen. When an electrical load is applied, the fuel cell reacts the hydrogen and oxygen to 'discharge' usable power. Several concepts for utilizing RFC's, with varying degrees of integration, have been proposed, including both primary and backup roles. For mobile power needs, such as rovers, an effective configuration may be to have only the fuel cell located on the vehicle, and to use a central electrolysis 'gas station'. Two fuel cell technologies are prime candidates for lunar power system concepts: alkaline electrolyte and proton exchange membrane. Alkaline fuel cells have been developed to a mature production power unit in NASA's Space Shuttle Orbiter. Recent advances in materials offer to significantly improve durability to the level needed for extended lunar operations. Proton exchange membrane fuel cells are receiving considerable support for hydrospace and terrestrial transportation applications. This technology promises durability, simplicity, and flexibility.

  4. Proton-Exchange-Membrane Fuel Cell Powerplants Developed and Tested for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.; Pham, Nang T.

    2005-01-01

    Proton-exchange-membrane fuel cell (PEMFC) technology has received major attention for terrestrial applications, such as the automotive and residential markets, for the past 20 years. This attention has significantly advanced the maturity of the technology, resulting in ever more compact, efficient, reliable, and inexpensive PEMFC designs. In comparison to the terrestrial operating environment, the space operating environment is much more demanding. Microgravity to high-gravity loads and the need to use pure oxygen (rather than air) as the fuel cell oxidizer place more stringent demands on PEMFC technology. NASA and its partners from industry are leveraging terrestrial PEMFC advancements by conducting parallel space technology development for future exploration missions. A team from the NASA Glenn Research Center, NASA Johnson Space Center, and NASA Kennedy Space Center recently completed the first phase of a PEMFC powerplant development effort for exploration missions. The industry partners for this phase of the development effort were ElectroChem, Inc., and Teledyne Energy Systems, Inc. Under contract to Glenn, both of these industry partners successfully designed, fabricated, and tested a breadboard PEMFC powerplant in the 1- to 5-kW power range. These powerplants were based on existing company-proprietary fuel cell stack designs, combined with off-the-shelf components, which formed the balance of the powerplant design. Subsequent to the contractor development efforts, both powerplants were independently tested at Johnson to verify operational and performance characteristics, and to determine suitability for further technology development in the second phase of the NASA-led effort. Following the independent NASA testing, Teledyne Energy Systems, Inc., was selected to develop an engineering model PEMFC powerplant. This effort was initiated by the 2nd Generation Reusable Launch Vehicle (RLV) Program Office in 2001; it transitioned to the Next Generation Launch

  5. Proton-Exchange-Membrane Fuel Cell Powerplants Developed and Tested for Exploration Missions

    NASA Astrophysics Data System (ADS)

    Hoberecht, Mark A.; Pham, Nang T.

    2005-06-01

    Proton-exchange-membrane fuel cell (PEMFC) technology has received major attention for terrestrial applications, such as the automotive and residential markets, for the past 20 years. This attention has significantly advanced the maturity of the technology, resulting in ever more compact, efficient, reliable, and inexpensive PEMFC designs. In comparison to the terrestrial operating environment, the space operating environment is much more demanding. Microgravity to high-gravity loads and the need to use pure oxygen (rather than air) as the fuel cell oxidizer place more stringent demands on PEMFC technology. NASA and its partners from industry are leveraging terrestrial PEMFC advancements by conducting parallel space technology development for future exploration missions. A team from the NASA Glenn Research Center, NASA Johnson Space Center, and NASA Kennedy Space Center recently completed the first phase of a PEMFC powerplant development effort for exploration missions. The industry partners for this phase of the development effort were ElectroChem, Inc., and Teledyne Energy Systems, Inc. Under contract to Glenn, both of these industry partners successfully designed, fabricated, and tested a breadboard PEMFC powerplant in the 1- to 5-kW power range. These powerplants were based on existing company-proprietary fuel cell stack designs, combined with off-the-shelf components, which formed the balance of the powerplant design. Subsequent to the contractor development efforts, both powerplants were independently tested at Johnson to verify operational and performance characteristics, and to determine suitability for further technology development in the second phase of the NASA-led effort. Following the independent NASA testing, Teledyne Energy Systems, Inc., was selected to develop an engineering model PEMFC powerplant. This effort was initiated by the 2nd Generation Reusable Launch Vehicle (RLV) Program Office in 2001; it transitioned to the Next Generation Launch

  6. Recent Progress in Nanostructured Electrocatalysts for PEM Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Sheng; Shao, Yuyan; Yin, Geping

    2013-03-30

    Polymer electrolyte membrane (PEM) fuel cells are attracting much attention as promising clean power sources and an alternative to conventional internal combustion engines, secondary batteries, and other power sources. Much effort from government laboratories, industry, and academia has been devoted to developing PEM fuel cells, and great advances have been achieved. Although prototype cars powered by fuel cells have been delivered, successful commercialization requires fuel cell electrocatalysts, which are crucial components at the heart of fuel cells, meet exacting performance targets. In this review, we present a brief overview of the recent progress in fuel cell electrocatalysts, which involves catalystmore » supports, Pt and Pt-based electrocatalysts, and non-Pt electrocatalysts.« less

  7. Fuel cells and fuel cell catalysts

    DOEpatents

    Masel, Richard I.; Rice, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2006-11-07

    A direct organic fuel cell includes a formic acid fuel solution having between about 10% and about 95% formic acid. The formic acid is oxidized at an anode. The anode may include a Pt/Pd catalyst that promotes the direct oxidation of the formic acid via a direct reaction path that does not include formation of a CO intermediate.

  8. The fuel cell in space: Yesterday, today and tomorrow

    NASA Technical Reports Server (NTRS)

    Warshay, Marvin; Prokopius, Paul R.

    1989-01-01

    The past, present, and future of space fuel cell power systems is reviewed, starting with the first practical fuel cell by F.T. Bacon which led to the 1.5 kW Apollo alkaline fuel cell. However, the first fuel cell to be used for space power was the Gemini 1.0 kW Acid IEM fuel cell. The successor to the Apollo fuel cell is today's 12 kW Orbiter alkaline fuel cell whose technology is considerably different and considerably better than that of its ancestor, the Bacon cell. And in terms of specific weight there has been a steady improvement from the past to the present, from the close to 200 lb/kW of Apollo to the 20 lb/kW of the orbiter. For NASA future Lunar and Martian surface power requirements the regenerative fuel cell (RFC) energy storage system is enabling technology, with the alkaline and the PEM the leading RFC candidate systems. The U.S. Air Force continues to support fuel cell high power density technology development for its future short duration applications.

  9. Fuel dissipater for pressurized fuel cell generators

    DOEpatents

    Basel, Richard A.; King, John E.

    2003-11-04

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  10. Fuel cell sub-assembly

    DOEpatents

    Chi, Chang V.

    1983-01-01

    A fuel cell sub-assembly comprising a plurality of fuel cells, a first section of a cooling means disposed at an end of the assembly and means for connecting the fuel cells and first section together to form a unitary structure.

  11. Fuel Processor Development for a Soldier-Portable Fuel Cell System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palo, Daniel R.; Holladay, Jamie D.; Rozmiarek, Robert T.

    2002-01-01

    Battelle is currently developing a soldier-portable power system for the U.S. Army that will continuously provide 15 W (25 W peak) of base load electric power for weeks or months using a micro technology-based fuel processor. The fuel processing train consists of a combustor, two vaporizers, and a steam-reforming reactor. This paper describes the concept and experimental progress to date.

  12. Modelling and simulation of two-chamber microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Zeng, Yingzhi; Choo, Yeng Fung; Kim, Byung-Hong; Wu, Ping

    Microbial fuel cells (MFCs) offer great promise for simultaneous treatment of wastewater and energy recovery. While past research has been based extensively on experimental studies, modelling and simulation remains scarce. A typical MFC shares many similarities with chemical fuel cells such as direct ascorbic acid fuel cells and direct methanol fuel cells. Therefore, an attempt is made to develop a MFC model similar to that for chemical fuel cells. By integrating biochemical reactions, Butler-Volmer expressions and mass/charge balances, a MFC model based on a two-chamber configuration is developed that simulates both steady and dynamic behaviour of a MFC, including voltage, power density, fuel concentration, and the influence of various parameters on power generation. Results show that the cathodic reaction is the most significant limiting factor of MFC performance. Periodic changes in the flow rate of fuel result in a boost of power output; this offers further insight into MFC behaviour. In addition to a MFC fuelled by acetate, the present method is also successfully extended to using artificial wastewater (solution of glucose and glutamic acid) as fuel. Since the proposed modelling method is easy to implement, it can serve as a framework for modelling other types of MFC and thereby will facilitate the development and scale-up of more efficient MFCs.

  13. Molten Carbonate Fuel Cell Operation With Dual Fuel Flexibility

    DTIC Science & Technology

    2007-10-01

    electrolyte membrane fuel cell ( PEMFC ). At the higher operating temperature, fuel reforming of natural gas can occur internally, eliminating the need...oxygen PAFC Phosphoric Acid Fuel Cell PEMFC Polymer Electrolyte Membrane Fuel Cell PDS Propane Desulfurization System ppm parts per million psig

  14. Limitations of Commercializing Fuel Cell Technologies

    NASA Astrophysics Data System (ADS)

    Nordin, Normayati

    2010-06-01

    Fuel cell is the technology that, nowadays, is deemed having a great potential to be used in supplying energy. Basically, fuel cells can be categorized particularly by the kind of employed electrolyte. Several fuel cells types which are currently identified having huge potential to be utilized, namely, Solid Oxide Fuel Cells (SOFC), Molten Carbonate Fuel Cells (MCFC), Alkaline Fuel Cells (AFC), Phosphoric Acid Fuel Cells (PAFC), Polymer Electron Membrane Fuel Cell (PEMFC), Direct Methanol Fuel Cells (DMFC) and Regenerative Fuel Cells (RFC). In general, each of these fuel cells types has their own characteristics and specifications which assign the capability and suitability of them to be utilized for any particular applications. Stationary power generations and transport applications are the two most significant applications currently aimed for the fuel cell market. It is generally accepted that there are lots of advantages if fuel cells can be excessively commercialized primarily in context of environmental concerns and energy security. Nevertheless, this is a demanding task to be accomplished, as there is some gap in fuel cells technology itself which needs a major enhancement. It can be concluded, from the previous study, cost, durability and performance are identified as the main limitations to be firstly overcome in enabling fuel cells technology become viable for the market.

  15. American Fuel Cell Bus Project Evaluation. Second Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, Leslie; Post, Matthew

    2015-09-01

    This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses operating in the Coachella Valley area of California. The prototype AFCB was developed as part of the Federal Transit Administration's (FTA's) National Fuel Cell Bus Program. Through the non-profit consortia CALSTART, a team led by SunLine Transit Agency and BAE Systems developed a new fuel cell electric bus for demonstration. SunLine added two more AFCBs to its fleet in 2014 and another in 2015. FTA and the AFCB project team are collaborating with the U.S. Department of Energy (DOE) and DOE'smore » National Renewable Energy Laboratory to evaluate the buses in revenue service. This report summarizes the performance results for the buses through June 2015.« less

  16. Fuel cell with internal flow control

    DOEpatents

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun [Karnataka, IN

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  17. Molten carbonate fuel cell separator

    DOEpatents

    Nickols, Richard C.

    1986-09-02

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  18. Molten carbonate fuel cell separator

    DOEpatents

    Nickols, R.C.

    1984-10-17

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  19. Solid Polymer Electrolyte Fuel Cell Technology Program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Work is reported on phase 5 of the Solid Polymer Electrolyte (SPE) Fuel Cell Technology Development program. The SPE fuel cell life and performance was established at temperatures, pressures, and current densities significantly higher than those previously demonstrated in sub-scale hardware. Operation of single-cell Buildup No. 1 to establish life capabilities of the full-scale hardware was continued. A multi-cell full-scale unit (Buildup No. 2) was designed, fabricated, and test evaluated laying the groundwork for the construction of a reactor stack. A reactor stack was then designed, fabricated, and successfully test-evaluated to demonstrate the readiness of SPE fuel cell technology for future space applications.

  20. Battery and Fuel Cell Development Goals for the Lunar Surface and Lander

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.

    2008-01-01

    NASA is planning a return to the moon and requires advances in energy storage technology for its planned lunar lander and lunar outpost. This presentation describes NASA s overall mission goals and technical goals for batteries and fuel cells to support the mission. Goals are given for secondary batteries for the lander s ascent stage and suits for extravehicular activity on the lunar surface, and for fuel cells for the lander s descent stage and regenerative fuel cells for outpost power. An overall approach to meeting these goals is also presented.

  1. GATE Center for Automotive Fuel Cell Systems at Virginia Tech

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Douglas

    2011-09-30

    The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: Expanded and updated fuel cell and vehicle technologies education programs; Conducted industry directed research in three thrust areas development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; Published research results that provide industry with new knowledge whichmore » contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Tech's comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.« less

  2. Near-ambient solid polymer fuel cell

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.

    1993-01-01

    Fuel cells are extremely attractive for extraterrestrial and terrestrial applications because of their high energy conversion efficiency without noise or environmental pollution. Among the various fuel cell systems the advanced polymer electrolyte membrane fuel cells based on sulfonated fluoropolymers (e.g., Nafion) are particularly attractive because they are fairly rugged, solid state, quite conductive, of good chemical and thermal stability and show good oxygen reduction kinetics due to the low specific adsorption of the electrolyte on the platinum catalyst. The objective of this program is to develop a solid polymer fuel cell which can efficiently operate at near ambient temperatures without ancillary components for humidification and/or pressurization of the fuel or oxidant gases. During the Phase 1 effort we fabricated novel integral electrode-membrane structures where the dispersed platinum catalyst is precipitated within the Nafion ionomer. This resulted in electrode-membrane units without interfacial barriers permitting unhindered water diffusion from cathode to anode. The integral electrode-membrane structures were tested as fuel cells operating on H2 and O2 or air at 1 to 2 atm and 10 to 50 C without gas humidification. We demonstrated that cells with completely dry membranes could be self started at room temperature and subsequently operated on dry gas for extended time. Typical room temperature low pressure operation with unoptimized electrodes yielded 100 mA/cm(exp 2) at 0.5V and maximum currents over 300 mA/cm(exp 2) with low platinum loadings. Our results clearly demonstrate that operation of proton exchange membrane fuel cells at ambient conditions is feasible. Optimization of the electrode-membrane structure is necessary to assess the full performance potential but we expect significant gains in weight and volume power density for the system. The reduced complexity will make fuel cells also attractive for smaller and portable power supplies and as

  3. The study of integrated coal-gasifier molten carbonate fuel cell systems

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A novel integration concept for a coal-fueled coal gasifier-molten carbonate fuel cell power plant was studied. Effort focused on determining the efficiency potential of the concept, design, and development requirements of the processes in order to achieve the efficiency. The concept incorporates a methane producing catalytic gasifier of the type previously under development by Exxon Research and Development Corp., a reforming molten carbonate fuel cell power section of the type currently under development by United Technologies Corp., and a gasifier-fuel cell recycle loop. The concept utilizes the fuel cell waste heat, in the form of hydrogen and carbon monoxide, to generate additional fuel in the coal gasifier, thereby eliminating the use of both an O2 plant and a stream bottoming cycle from the power plant. The concept has the potential for achieving coal-pile-to-busbar efficiencies of 50-59%, depending on the process configuration and degree of process configuration and degree of process development requirements. This is significantly higher than any previously reported gasifier-molten carbonate fuel cell system.

  4. Fuel Cells | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    to develop fuel cells on campus. Does your campus support telecommunications networks where there is captures waste heat to generate hot water. Additionally, the exhaust carbon dioxide is routed to an energy conversion calculation methodologies. U.S. Department of Energy - Fuel Cell Animation: Provides an

  5. Direct hydrocarbon fuel cells

    DOEpatents

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  6. Fuel-Cell Water Separator

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth Alan; Fisher, Caleb; Newman, Paul

    2010-01-01

    The main product of a typical fuel cell is water, and many fuel-cell configurations use the flow of excess gases (i.e., gases not consumed by the reaction) to drive the resultant water out of the cell. This two-phase mixture then exits through an exhaust port where the two fluids must again be separated to prevent the fuel cell from flooding and to facilitate the reutilization of both fluids. The Glenn Research Center (GRC) has designed, built, and tested an innovative fuel-cell water separator that not only removes liquid water from a fuel cell s exhaust ports, but does so with no moving parts or other power-consuming components. Instead it employs the potential and kinetic energies already present in the moving exhaust flow. In addition, the geometry of the separator is explicitly intended to be integrated into a fuel-cell stack, providing a direct mate with the fuel cell s existing flow ports. The separator is also fully scalable, allowing it to accommodate a wide range of water removal requirements. Multiple separators can simply be "stacked" in series or parallel to adapt to the water production/removal rate. GRC s separator accomplishes the task of water removal by coupling a high aspect- ratio flow chamber with a highly hydrophilic, polyethersulfone membrane. The hydrophilic membrane readily absorbs and transports the liquid water away from the mixture while simultaneously resisting gas penetration. The expansive flow path maximizes the interaction of the water particles with the membrane while minimizing the overall gas flow restriction. In essence, each fluid takes its corresponding path of least resistance, and the two fluids are effectively separated. The GRC fuel-cell water separator has a broad range of applications, including commercial hydrogen-air fuel cells currently being considered for power generation in automobiles.

  7. Aircraft Fuel Cell Power Systems

    NASA Technical Reports Server (NTRS)

    Needham, Robert

    2004-01-01

    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  8. Ambient pressure fuel cell system

    DOEpatents

    Wilson, Mahlon S.

    2000-01-01

    An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.

  9. Hydrogen storage and fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Di-Jia

    2018-01-01

    Global warming and future energy supply are two major challenges facing American public today. To overcome such challenges, it is imperative to maximize the existing fuel utilization with new conversion technologies while exploring alternative energy sources with minimal environmental impact. Hydrogen fuel cell represents a next-generation energy-efficient technology in transportation and stationary power productions. In this presentation, a brief overview of the current technology status of on-board hydrogen storage and polymer electrolyte membrane fuel cell in transportation will be provided. The directions of the future researches in these technological fields, including a recent "big idea" of "H2@Scale" currently developed at the U. S. Department of Energy, will also be discussed.

  10. Proton exchange membrane fuel cell technology for transportation applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swathirajan, S.

    1996-04-01

    Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plantmore » was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.« less

  11. Fuel Cells: Reshaping the Future

    ERIC Educational Resources Information Center

    Toay, Leo

    2004-01-01

    In conjunction with the FreedomCAR (Cooperative Automotive Research) and Fuel Initiative, President George W. Bush has pledged nearly two billion dollars for fuel cell research. Chrysler, Ford, and General Motors have unveiled fuel cell demonstration vehicles, and all three of these companies have invested heavily in fuel cell research. Fuel cell…

  12. Grove Medal Address - investing in the fuel cell business

    NASA Astrophysics Data System (ADS)

    Rasul, Firoz

    Successful commercialization of fuel cells will require significant investment. To attract this funding, the objective must be commercially driven and the financing will have to be viewed as an investment in the business of fuel cells rather than just the funding of technology development. With the recent advancements in fuel cells and demonstrations of fuel cell power systems in stationary and transport applications, an industry has begun to emerge and it is attracting the attention of institutional and corporate investors, in addition to the traditional government funding. Although, the strategic importance of fuel cells as a versatile, efficient and cleaner power source of the future as well as an `engine' for economic growth and job creation has now been understood by several governments, major corporations have just begun to recognize the enormous potential of the fuel cell for it to become as ubiquitous for electrical power as the microprocessor has become for computing power. Viewed as a business, fuel cells must meet the commercial requirements of price competitiveness, productivity enhancement, performance and reliability, in addition to environmental friendliness. As fuel cell-based products exhibit commercial advantages over conventional power sources, the potential for higher profits and superior returns will attract the magnitude of investment needed to finance the development of products for the varied applications, the establishment of high volume manufacturing capabilities, and the creation of appropriate fuel and service infrastructures for these new products based on a revolutionary technology. Today, the fuel cell industry is well-positioned to offer the investing public opportunities to reap substantial returns through their participation at this early stage of growth of the industry.

  13. American Fuel Cell Bus Project Evaluation : Second Report

    DOT National Transportation Integrated Search

    2015-09-01

    This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses (FCEB) operating in the Coachella Valley area of California. The prototype AFCB was developed as part of the Federal Transit Admini...

  14. Development of Ni-Ba(Zr,Y)O3 cermet anodes for direct ammonia-fueled solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kazunari; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2017-10-01

    In this study, the availability of Ni-Ba(Zr,Y)O3-δ (BZY) cermet for the anode of direct ammonia-fueled solid oxide fuel cells (SOFCs) is evaluated. In this device, the anodes need to be active for the catalytic ammonia decomposition as well as the electrochemical hydrogen oxidation. In the catalytic activity test, ammonia decomposes completely over Ni-BZY at ca. 600 °C, while higher temperature is required to accomplish the complete decomposition over the conventional SOFC anode of Ni-yttria-stabilized zirconia cermet. The high activity of Ni-BZY is attributed to the high basicity of BZY and the high resistance to hydrogen poisoning effect. The electrochemical property of Ni-BZY anode is also evaluated with the anode-supported cell of Ni-BZY|BZY|Pt at 600-700 °C with feeding ammonia or hydrogen as a fuel. Since the residence time of ammonia fuel in the thick Ni-BZY anode is long, the difference in the cell performance between two fuels is relatively small. Furthermore, it is proved that the steam concentration in the fuel strongly affects the cell performance. We find that this factor is important to satisfy the above mentioned requirements for the anode of direct ammonia-fueled SOFCs. Throughout this study, it is concluded that Ni-BZY cermet will be a promising anode.

  15. Advances in direct oxidation methanol fuel cells

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Narayanan, S. R.; Vamos, E.; Frank, H.; Halpert, G.; Laconti, Anthony B.; Kosek, J.; Prakash, G. K. Surya; Olah, G. A.

    1993-01-01

    Fuel cells that can operate directly on fuels such as methanol are attractive for low to medium power applications in view of their low weight and volume relative to other power sources. A liquid feed direct methanol fuel cell has been developed based on a proton exchange membrane electrolyte and Pt/Ru and Pt catalyzed fuel and air/O2 electrodes, respectively. The cell has been shown to deliver significant power outputs at temperatures of 60 to 90 C. The cell voltage is near 0.5 V at 300 mA/cm(exp 2) current density and an operating temperature of 90 C. A deterrent to performance appears to be methanol crossover through the membrane to the oxygen electrode. Further improvements in performance appear possible by minimizing the methanol crossover rate.

  16. Fuel cell generator energy dissipator

    DOEpatents

    Veyo, Stephen Emery; Dederer, Jeffrey Todd; Gordon, John Thomas; Shockling, Larry Anthony

    2000-01-01

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

  17. Fuel processor for fuel cell power system

    DOEpatents

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  18. Fuel Cell Power Plants Renewable and Waste Fuels

    DTIC Science & Technology

    2011-01-13

    of FuelCell Energy, Inc. Fuels Resources for DFC • Natural Gas and LNG • Propane • Biogas (by Anaerobicnaerobic Digestion) - Municipal Waste...FUEL RESOURCES z NATURAL GAS z PROPANE z DFC H2 (50-60%) z ETHANOL zWASTE METHANE z BIOGAS z COAL GAS Diversity of Fuels plus High Efficiency...trademarks (®) of FuelCell Energy, Inc. DFC Advantages for Biogas • More power for given amount of biogas : Higher efficiency than

  19. Small Business Innovation Research Award Success Story: FuelCell Energy Inc.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-08-31

    This success story describes FuelCell Energy Inc., a small business that manufactures stationary fuel cells. In collaboration with Sustainable Innovations LLC, and with support from a Small Business Innovation Research (SBIR) Award from the U.S. Department of Energy's Fuel Cell Technologies Program, FuelCell Energy Inc. has developed a highly efficient solid state electrochemical hydrogen compressor.

  20. Tolerant chalcogenide cathodes of membraneless micro fuel cells.

    PubMed

    Gago, Aldo Saul; Gochi-Ponce, Yadira; Feng, Yong-Jun; Esquivel, Juan Pablo; Sabaté, Neus; Santander, Joaquin; Alonso-Vante, Nicolas

    2012-08-01

    The most critical issues to overcome in micro direct methanol fuel cells (μDMFCs) are the lack of tolerance of the platinum cathode and fuel crossover through the polymer membrane. Thus, two novel tolerant cathodes of a membraneless microlaminar-flow fuel cell (μLFFC), Pt(x)S(y) and CoSe(2), were developed. The multichannel structure of the system was microfabricated in SU-8 polymer. A commercial platinum cathode served for comparison. When using 5 M CH(3)OH as the fuel, maximum power densities of 6.5, 4, and 0.23 mW cm(-2) were achieved for the μLFFC with Pt, Pt(x)S(y), and CoSe(2) cathodes, respectively. The Pt(x)S(y) cathode outperformed Pt in the same fuel cell when using CH(3)OH at concentrations above 10 M. In a situation where fuel crossover is 100 %, that is, mixing the fuel with the reactant, the maximum power density of the micro fuel cell with Pt decreased by 80 %. However, for Pt(x)S(y) this decrease corresponded to 35 % and for CoSe(2) there was no change in performance. This result is the consequence of the high tolerance of the chalcogenide-based cathodes. When using 10 M HCOOH and a palladium-based anode, the μLFFC with a CoSe(2) cathode achieved a maxiumum power density of 1.04 mW cm(-2). This micro fuel cell does not contain either Nafion membrane or platinum. We report, for the first time, the evaluation of Pt(x)S(y)- and CoSe(2)-based cathodes in membraneless micro fuel cells. The results suggest the development of a novel system that is not size restricted and its operation is mainly based on the selectivity of its electrodes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fuel-cell powered unmanned ground vehicle

    NASA Astrophysics Data System (ADS)

    Meldrum, Jay S.; Green, Christopher A.; Gwaltney, Geoffrey D.; Bradley, Scott A.; Keith, Jason M.; Podlesak, Thomas F.

    2007-04-01

    The use of alternative energy technology for vehicle propulsion and auxiliary power is becoming more important. Work is being performed at Michigan Technological University's Keweenaw Research Center on an Army Research Laboratory cooperative agreement to develop two unmanned ground vehicles for military applications. A wide range of alternative energy technologies were investigated, and hydrogen-powered proton exchange membrane fuel cells were identified as the most appropriate alternative energy source. This is due to some development and commercialization which makes the technology "drop-in plug-in" for immediate use. We present research work on a small unmanned ground vehicle demonstration platform where the fuel cell is the only power source. We also present research work on the integration of a fuel cell onto a large existing platform. The dual-power capability of this vehicle can provide a modest level of propulsion in "engine-off mode" and may also be used to power directed energy devices which have applications in countermine and similar threat technologies.

  2. Fuel Cell Balance-of-Plant Reliability Testbed Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sproat, Vern; LaHurd, Debbie

    Reliability of the fuel cell system balance-of-plant (BoP) components is a critical factor that needs to be addressed prior to fuel cells becoming fully commercialized. Failure or performance degradation of BoP components has been identified as a life-limiting factor in fuel cell systems.1 The goal of this project is to develop a series of test beds that will test system components such as pumps, valves, sensors, fittings, etc., under operating conditions anticipated in real Polymer Electrolyte Membrane (PEM) fuel cell systems. Results will be made generally available to begin removing reliability as a roadblock to the growth of the PEMmore » fuel cell industry. Stark State College students participating in the project, in conjunction with their coursework, have been exposed to technical knowledge and training in the handling and maintenance of hydrogen, fuel cells and system components as well as component failure modes and mechanisms. Three test beds were constructed. Testing was completed on gas flow pumps, tubing, and pressure and temperature sensors and valves.« less

  3. Chitosan biopolymer for fuel cell applications.

    PubMed

    Ma, Jia; Sahai, Yogeshwar

    2013-02-15

    Fuel cell is an electrochemical device which converts chemical energy stored in a fuel into electrical energy. Fuel cells have been receiving attention due to its potential applicability as a good alternative power source. Recently, cost-effective and eco-friendly biopolymer chitosan has been extensively studied as a material for membrane electrolytes and electrodes in low to intermediate temperature hydrogen polymer electrolyte fuel cell, direct methanol fuel cell, alkaline fuel cell, and biofuel cell. This paper reviews structure and property of chitosan with respect to its applications in fuel cells. Recent achievements and prospect of its applications have also been included. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Fuel cell technology program contract summary report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A fuel cell technology program which was established to advance the state-of-the-art of hydrogen-oxygen fuel cells using the P and WA PC8B technology as the base is reported. The major tasks of this program consisted of (1) fuel cell system studies of a space shuttle powerplant conceptual design (designated engineering model -1, EM-1) supported by liaison with the space shuttle prime contractors; (2) component and subsystem technology advancement and; (3) a demonstrator powerplant test. Fuel cell system studies, with the EM-1 as the focal point of design activities, included determination of voltage regulation, specific reactant consumption, weight, voltage level and performance characteristics. These studies provided the basis for coordination activities with the space shuttle vehicle prime contractor. Interface information, on-board checkout and in-flight monitoring requirements, and development cost data were also provided as part of this activity. Even though the two vehicles primes had different voltage requirements (115 volts in one case and 28 volts in the other), it was concluded that either option could be provided in the fuel cell power system by the electrical hook-up of the cells in the stack.

  5. Fuel Cells for Space Science Applications

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2003-01-01

    Fuel cell technology has been receiving more attention recently as a possible alternative to the internal combustion engine for our automobile. Improvements in fuel cell designs as well as improvements in lightweight high-pressure gas storage tank technology make fuel cell technology worth a look to see if fuel cells can play a more expanded role in space missions. This study looks at the specific weight density and specific volume density of potential fuel cell systems as an alternative to primary and secondary batteries that have traditionally been used for space missions. This preliminary study indicates that fuel cell systems have the potential for energy densities of greater than 500 W-hr/kg, greater than 500W/kg and greater than 400 W-hr/liter, greater than 200 W/liter. This level of performance makes fuel cells attractive as high-power density, high-energy density sources for space science probes, planetary rovers and other payloads. The power requirements for these space missions are, in general, much lower than the power levels where fuel cells have been used in the past. Adaptation of fuel cells for space science missions will require down-sizing the fuel cell stack and making the fuel cell operate without significant amounts of ancillary equipment.

  6. Molten carbonate fuel cell

    DOEpatents

    Kaun, Thomas D.; Smith, James L.

    1987-01-01

    A molten electrolyte fuel cell with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas, the cell enclosures collectively providing an enclosure for the array and effectively avoiding the problems of electrolyte migration and the previous need for compression of stack components, the fuel cell further including an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  7. The Advantages of Non-Flow-Through Fuel Cell Power Systems for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark; Burke, Kenneth; Jakupca, Ian

    2011-01-01

    NASA has been developing proton-exchange-membrane (PEM) fuel cell power systems for the past decade, as an upgraded technology to the alkaline fuel cells which presently provide power for the Shuttle Orbiter. All fuel cell power systems consist of one or more fuel cell stacks in combination with appropriate balance-of-plant hardware. Traditional PEM fuel cells are characterized as flow-through, in which recirculating reactant streams remove product water from the fuel cell stack. NASA recently embarked on the development of non-flow-through fuel cell systems, in which reactants are dead-ended into the fuel cell stack and product water is removed by internal wicks. This simplifies the fuel cell power system by eliminating the need for pumps to provide reactant circulation, and mechanical water separators to remove the product water from the recirculating reactant streams. By eliminating these mechanical components, the resulting fuel cell power system has lower mass, volume, and parasitic power requirements, along with higher reliability and longer life. These improved non-flow-through fuel cell power systems therefore offer significant advantages for many aerospace applications.

  8. Low contaminant formic acid fuel for direct liquid fuel cell

    DOEpatents

    Masel, Richard I [Champaign, IL; Zhu, Yimin [Urbana, IL; Kahn, Zakia [Palatine, IL; Man, Malcolm [Vancouver, CA

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  9. Fundamentals of fuel cell system integration

    NASA Astrophysics Data System (ADS)

    Krumpelt, Michael; Kumar, Romesh; Myles, Kevin M.

    1994-04-01

    Fuel cells are theoretically very efficient energy conversion devices that have the potential of becoming a commercial product for numerous uses in the civilian economy. We have analyzed several fuel cell system designs with regard to thermal and chemical integration of the fuel cell stack into the rest of the system. Thermal integration permits the use of the stack waste heat for the endothermic steps of fuel reforming. Chemical integration provides the steam needed for fuel reforming from the water produced by the electrochemical cell reaction. High-temperature fuel cells, such as the molten carbonate and the solid oxide fuel cells, permit this system integration in a relatively simple manner. Lower temperature fuel cells, such as the polymer electrolyte and phosphoric acid systems, require added system complexity to achieve such integration. The system economics are affected by capital and fuel costs and technical parameters, such as electrochemical fuel utilization, current density, and system complexity. At today's low fuel prices and the high fuel cell costs (in part, because of the low rates of production of the early prototypes), fuel cell systems are not cost competitive with conventional power generation. With the manufacture and sale of larger numbers of fuel cell systems, the total costs will decrease from the current several thousand dollars per kW, to perhaps less than $100 per kW as production volumes approa ch a million units per year.

  10. Fuel Cell Electric Bus Evaluations | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    . Transit Fleets: Current Status 2017, L. Eudy and M. Post (November 2017) Zero Emission Bay Area (ZEBA ) Fuel Cell Bus Demonstration Results: Sixth Report, L. Eudy, M. Post, and M. Jeffers (September 2017 2017) American Fuel Cell Bus Project Evaluation: Third Report, L. Eudy, M. Post, and M. Jeffers (May

  11. Developing and Implementing a Simple, Affordable Hydrogen Fuel Cell Laboratory in Introductory Chemistry

    ERIC Educational Resources Information Center

    Klara, Kristina; Hou, Ning; Lawman, Allison; Wu, Liheng; Morrill, Drew; Tente, Alfred; Wang, Li-Qiong

    2014-01-01

    A simple, affordable hydrogen proton exchange membrane (PEM) fuel cell laboratory was developed through a collaborative effort between faculty and undergraduate students at Brown University. It has been incorporated into the introductory chemistry curriculum and successfully implemented in a class of over 500 students per academic year for over 3…

  12. Fuel cell cooler-humidifier plate

    DOEpatents

    Vitale, Nicholas G.; Jones, Daniel O.

    2000-01-01

    A cooler-humidifier plate for use in a proton exchange membrane (PEM) fuel cell stack assembly is provided. The cooler-humidifier plate combines functions of cooling and humidification within the fuel cell stack assembly, thereby providing a more compact structure, simpler manifolding, and reduced reject heat from the fuel cell. Coolant on the cooler side of the plate removes heat generated within the fuel cell assembly. Heat is also removed by the humidifier side of the plate for use in evaporating the humidification water. On the humidifier side of the plate, evaporating water humidifies reactant gas flowing over a moistened wick. After exiting the humidifier side of the plate, humidified reactant gas provides needed moisture to the proton exchange membranes used in the fuel cell stack assembly. The invention also provides a fuel cell plate that maximizes structural support within the fuel cell by ensuring that the ribs that form the boundaries of channels on one side of the plate have ends at locations that substantially correspond to the locations of ribs on the opposite side of the plate.

  13. Final Report - Stationary and Emerging Market Fuel Cell System Cost Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contini, Vince; Heinrichs, Mike; George, Paul

    The U.S. Department of Energy (DOE) is focused on providing a portfolio of technology solutions to meet energy security challenges of the future. Fuel cells are a part of this portfolio of technology offerings. To help meet these challenges and supplement the understanding of the current research, Battelle has executed a five-year program that evaluated the total system costs and total ownership costs of two technologies: (1) an ~80 °C polymer electrolyte membrane fuel cell (PEMFC) technology and (2) a solid oxide fuel cell (SOFC) technology, operating with hydrogen or reformate for different applications. Previous research conducted by Battelle, andmore » more recently by other research institutes, suggests that fuel cells can offer customers significant fuel and emission savings along with other benefits compared to incumbent alternatives. For this project, Battelle has applied a proven cost assessment approach to assist the DOE Fuel Cell Technologies Program in making decisions regarding research and development, scale-up, and deployment of fuel cell technology. The cost studies and subsequent reports provide accurate projections of current system costs and the cost impact of state-of-the-art technologies in manufacturing, increases in production volume, and changes to system design on system cost and life cycle cost for several near-term and emerging fuel cell markets. The studies also provide information on types of manufacturing processes that must be developed to commercialize fuel cells and also provide insights into the optimization needed for use of off-the-shelf components in fuel cell systems. Battelle’s analysis is intended to help DOE prioritize investments in research and development of components to reduce the costs of fuel cell systems while considering systems optimization.« less

  14. A Novel Unitized Regenerative Proton Exchange Membrane Fuel Cell

    NASA Technical Reports Server (NTRS)

    Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.

    1996-01-01

    A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel single cell unitized regenerative fuel cell and results obtained on testing it are presented.

  15. 76 FR 4645 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... DEPARTMENT OF ENERGY Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Department...: This notice announces a meeting of the Hydrogen and Fuel Cell Technical Advisory Committee (HTAC). HTAC... Presentations HTAC Subcommittee Overviews HTAC Annual Report Development Stationary Fuel Cell Industry Analysis...

  16. Air Breathing Direct Methanol Fuel Cell

    DOEpatents

    Ren; Xiaoming

    2003-07-22

    A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

  17. High volumetric power density, non-enzymatic, glucose fuel cells.

    PubMed

    Oncescu, Vlad; Erickson, David

    2013-01-01

    The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.

  18. High volumetric power density, non-enzymatic, glucose fuel cells

    PubMed Central

    Oncescu, Vlad; Erickson, David

    2013-01-01

    The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an “oxygen depletion design” whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm−2) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm−3). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells. PMID:23390576

  19. Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Jeong, Kwi Seong; Oh, Byeong Soo

    The most promising vehicle engine that can overcome the problem of present internal combustion is the hydrogen fuel cell. Fuel cells are devices that change chemical energy directly into electrical energy without combustion. Pure fuel cell vehicles and fuel cell hybrid vehicles (i.e. a combination of fuel cell and battery) as energy sources are studied. Considerations of efficiency, fuel economy, and the characteristics of power output in hybridization of fuel cell vehicle are necessary. In the case of Federal Urban Driving Schedule (FUDS) cycle simulation, hybridization is more efficient than a pure fuel cell vehicle. The reason is that it is possible to capture regenerative braking energy and to operate the fuel cell system within a more efficient range by using battery. Life-cycle cost is largely affected by the fuel cell size, fuel cell cost, and hydrogen cost. When the cost of fuel cell is high, hybridization is profitable, but when the cost of fuel cell is less than 400 US$/kW, a pure fuel cell vehicle is more profitable.

  20. Analysis of regenerative fuel cells

    NASA Technical Reports Server (NTRS)

    Gross, S.

    1982-01-01

    The concept of a rechargeable fuel cell (RFC) system is considered. A newer type of rechargeable battery, the nickel hydrogen (Ni-H2) battery, is also evaluated. A review was made of past studies which showed large variations in weight, cost, and efficiency. Hydrogen-bromine and hydrogen-chlorine regenerable fuel cells were studied, and were found to have a potential for higher energy storage efficiency then the hydrogen-oxygen system. A reduction of up to 15 percent in solar array size may be possible as a result. These systems are not yet developed, but further study of them is recommended.

  1. Bipolar fuel cell

    DOEpatents

    McElroy, James F.

    1989-01-01

    The present invention discloses an improved fuel cell utilizing an ion transporting membrane having a catalytic anode and a catalytic cathode bonded to opposite sides of the membrane, a wet-proofed carbon sheet in contact with the cathode surface opposite that bonded to the membrane and a bipolar separator positioned in electrical contact with the carbon sheet and the anode of the adjacent fuel cell. Said bipolar separator and carbon sheet forming an oxidant flowpath, wherein the improvement comprises an electrically conductive screen between and in contact with the wet-proofed carbon sheet and the bipolar separator improving the product water removal system of the fuel cell.

  2. Development of Pt-Au-Graphene-Carbon Nanotube Composite for Fuel Cells and Biosensors Applications

    DTIC Science & Technology

    2011-02-11

    1 Project Title:- Development of Pt-Au- Graphene -Carbon nanotube composites for fuel cells and biosensors applications Objectives:- This...project addresses the architectures needed for the processing of Pt-Au- graphene -carbon nanotube (Pt-Au/f-G/f-CNT) nanocomposites and aims at the...cells:- Graphene and nitrogen doped graphene as catalyst support materials:- Graphene and nitrogen doped graphene have been used as a catalyst

  3. Technology Status: Fuel Cells and Electrolysis Cells

    NASA Technical Reports Server (NTRS)

    Mcbryar, H.

    1978-01-01

    The status of the baselined shuttle fuel cell as well as the acid membrane fuel cell and space-oriented water electrolysis technologies are presented. The more recent advances in the alkaline fuel cell technology area are the subject of a companion paper. A preliminary plan for the focusing of these technologies towards regenerative energy storage applications in the multi-hundred kilowatt range is also discussed.

  4. Molten carbonate fuel cell

    DOEpatents

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  5. Final Report - MEA and Stack Durability for PEM Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yandrasits, Michael A.

    2008-02-15

    Proton exchange membrane fuel cells are expected to change the landscape of power generation over the next ten years. For this to be realized one of the most significant challenges to be met for stationary systems is lifetime, where 40,000 hours of operation with less than 10% decay is desired. This project conducted fundamental studies on the durability of membrane electrode assemblies (MEAs) and fuel cell stack systems with the expectation that knowledge gained from this project will be applied toward the design and manufacture of MEAs and stack systems to meet DOE’s 2010 stationary fuel cell stack systems targets.more » The focus of this project was PEM fuel cell durability – understanding the issues that limit MEA and fuel cell system lifetime, developing mitigation strategies to address the lifetime issues and demonstration of the effectiveness of the mitigation strategies by system testing. To that end, several discoveries were made that contributed to the fundamental understanding of MEA degradation mechanisms. (1) The classically held belief that membrane degradation is solely due to end-group “unzipping” is incorrect; there are other functional groups present in the ionomer that are susceptible to chemical attack. (2) The rate of membrane degradation can be greatly slowed or possibly eliminated through the use of additives that scavenge peroxide or peroxyl radicals. (3) Characterization of GDL using dry gases is incorrect due to the fact that fuel cells operate utilizing humidified gases. The proper characterization method involves using wet gas streams and measuring capillary pressure as demonstrated in this project. (4) Not all Platinum on carbon catalysts are created equally – the major factor impacting catalyst durability is the type of carbon used as the support. (5) System operating conditions have a significant impact of lifetime – the lifetime was increased by an order of magnitude by changing the load profile while all other

  6. System design of a large fuel cell hybrid locomotive

    NASA Astrophysics Data System (ADS)

    Miller, A. R.; Hess, K. S.; Barnes, D. L.; Erickson, T. L.

    Fuel cell power for locomotives combines the environmental benefits of a catenary-electric locomotive with the higher overall energy efficiency and lower infrastructure costs of a diesel-electric. A North American consortium, a public-private partnership, is developing a prototype hydrogen-fueled fuel cell-battery hybrid switcher locomotive for urban and military-base rail applications. Switcher locomotives are used in rail yards for assembling and disassembling trains and moving trains from one point to another. At 127 tonnes (280,000 lb), continuous power of 250 kW from its (proton exchange membrane) PEM fuel cell prime mover, and transient power well in excess of 1 MW, the hybrid locomotive will be the heaviest and most powerful fuel cell land vehicle yet. This fast-paced project calls for completion of the vehicle itself near the end of 2007. Several technical challenges not found in the development of smaller vehicles arise when designing and developing such a large fuel cell vehicle. Weight, center of gravity, packaging, and safety were design factors leading to, among other features, the roof location of the lightweight 350 bar compressed hydrogen storage system. Harsh operating conditions, especially shock loads during coupling to railcars, require component mounting systems capable of absorbing high energy. Vehicle scale-up by increasing mass, density, or power presents new challenges primarily related to issues of system layout, hydrogen storage, heat transfer, and shock loads.

  7. NASA Glenn Research Center's Fuel Cell Stack, Ancillary and System Test and Development Laboratory

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia L.; Prokopius, Kevin P.; Becks, Larry A.; Burger, Thomas H.; Dick, Joseph F.; Rodriguez, George; Bremenour, Frank; Long, Zedock

    2011-01-01

    At the NASA Glenn Research Center, a fully operational fuel cell test and evaluation laboratory is available which is capable of evaluating fuel cell components and systems for future NASA missions. Components and subsystems of various types can be operated and monitored under a variety of conditions utilizing different reactants. This fuel cell facility can test the effectiveness of various component and system designs to meet NASA's needs.

  8. Proton Exchange Membrane (PEM) fuel Cell for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Hoffman, William C., III; Vasquez, Arturo; Lazaroff, Scott M.; Downey, Michael G.

    1999-01-01

    Development of a PEM fuel cell powerplant (PFCP) for use in the Space Shuttle offers multiple benefits to NASA. A PFCP with a longer design life than is delivered currently from the alkaline fuel will reduce Space Shuttle Program maintenance costs. A PFCP compatible with zero-gravity can be adapted for future NASA transportation and exploration programs. Also, the commercial PEM fuel cell industry ensures a competitive environment for select powerplant components. Conceptual designs of the Space Shuttle PFCP have resulted in identification of key technical areas requiring resolution prior to development of a flight system. Those technical areas include characterization of PEM fuel cell stack durability under operational conditions and water management both within and external to the stack. Resolution of the above issues is necessary to adequately control development, production, and maintenance costs for a PFCP.

  9. Unitized regenerative fuel cell system

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A. (Inventor)

    2008-01-01

    A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.

  10. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    PubMed Central

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored. PMID:24600326

  11. New applications for phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Stickles, R. P.; Breuer, C. T.

    1983-11-01

    New applications for phosphoric acid fuel cells were identified and evaluated. Candidates considered included all possibilities except grid connected electric utility applications, on site total energy systems, industrial cogeneration, opportunistic use of waste hydrogen, space and military applications, and applications smaller than 10 kW. Applications identified were screened, with the most promising subjected to technical and economic evaluation using a fuel cell and conventional power system data base developed in the study. The most promising applications appear to be the underground mine locomotive and the railroad locomotive. Also interesting are power for robotic submersibles and Arctic villages. The mine locomotive is particularly attractive since it is expected that the fuel cell could command a very high price and still be competitive with the conventionally used battery system. The railroad locomotive's attractiveness results from the (smaller) premium price which the fuel cell could command over the conventional diesel electric system based on its superior fuel efficiency, and on the large size of this market and the accompanying opportunities for manufacturing economy.

  12. New applications for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stickles, R. P.; Breuer, C. T.

    1983-01-01

    New applications for phosphoric acid fuel cells were identified and evaluated. Candidates considered included all possibilities except grid connected electric utility applications, on site total energy systems, industrial cogeneration, opportunistic use of waste hydrogen, space and military applications, and applications smaller than 10 kW. Applications identified were screened, with the most promising subjected to technical and economic evaluation using a fuel cell and conventional power system data base developed in the study. The most promising applications appear to be the underground mine locomotive and the railroad locomotive. Also interesting are power for robotic submersibles and Arctic villages. The mine locomotive is particularly attractive since it is expected that the fuel cell could command a very high price and still be competitive with the conventionally used battery system. The railroad locomotive's attractiveness results from the (smaller) premium price which the fuel cell could command over the conventional diesel electric system based on its superior fuel efficiency, and on the large size of this market and the accompanying opportunities for manufacturing economy.

  13. Advanced Fuel Cell System Thermal Management for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2009-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.

  14. Transport equations in an enzymatic glucose fuel cell

    NASA Astrophysics Data System (ADS)

    Jariwala, Soham; Krishnamurthy, Balaji

    2018-01-01

    A mathematical model is developed to study the effects of convective flux and operating temperature on the performance of an enzymatic glucose fuel cell with a membrane. The model assumes isothermal operating conditions and constant feed rate of glucose. The glucose fuel cell domain is divided into five sections, with governing equations describing transport characteristics in each region, namely - anode diffusion layer, anode catalyst layer (enzyme layer), membrane, cathode catalyst layer and cathode diffusion layer. The mass transport is assumed to be one-dimensional and the governing equations are solved numerically. The effects flow rate of glucose feed on the performance of the fuel cell are studied as it contributes significantly to the convective flux. The effects of operating temperature on the performance of a glucose fuel cell are also modeled. The cell performances are compared using cell polarization curves, which were found compliant with experimental observations.

  15. Silicon micro-fabricated miniature polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Kelley, Shawn Christopher

    2000-10-01

    The present thesis relates the design, fabrication, and testing of a unique type of silicon-based, miniature fuel cell. The fuel cell electrodes were constructed using standard silicon micro-fabrication techniques, and were used to construct miniature polymer electrolyte fuel cells (PEFCs) using NafionRTM. During testing, methanol and oxygen were the common reactants, but hydrogen and oxygen could be used as well. A novel form of an electrodeposited Pt:Ru alloy was developed for use as a methanol electrooxidation catalyst in the mini-PEFCs. An optimized mini-PEFC design was developed, tested, and compared with large PEFCs on the basis of performance. Mini-PEFC performance was equivalent to that of large PEFCs when scaled for active-area, but was limited by the function of the oxygen electrode. The rate of methanol crossover in a methanol/oxygen mini-PEFC was predicted using Fick's first law and the electrode chip feed-hole area. It was shown that the present mini-PEFC design could function as a fuel cell material test structure. Additionally, the mini-PEFCs were tested as two-cell stacks and as methanol sensors. The miniature, silicon-based PEFCs developed here successfully incorporate the essential aspects of a large PEFC in a smaller, simpler design.

  16. Fuel-cell engine stream conditioning system

    DOEpatents

    DuBose, Ronald Arthur

    2002-01-01

    A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  17. Demonstrating a Total Transit Solution for Fuel Cell Electric Buses in Boston

    DOT National Transportation Integrated Search

    2017-05-01

    The Federal Transit Administrations (FTA) National Fuel Cell Bus Program (NFCBP) focuses on developing commercially viable fuel cell bus technologies. Nuvera is leading the Massachusetts Fuel Cell Bus project to demonstrate a complete transit solu...

  18. Connections for solid oxide fuel cells

    DOEpatents

    Collie, Jeffrey C.

    1999-01-01

    A connection for fuel cell assemblies is disclosed. The connection includes compliant members connected to individual fuel cells and a rigid member connected to the compliant members. Adjacent bundles or modules of fuel cells are connected together by mechanically joining their rigid members. The compliant/rigid connection permits construction of generator fuel cell stacks from basic modular groups of cells of any desired size. The connections can be made prior to installation of the fuel cells in a generator, thereby eliminating the need for in-situ completion of the connections. In addition to allowing pre-fabrication, the compliant/rigid connections also simplify removal and replacement of sections of a generator fuel cell stack.

  19. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Ersoz, Atilla; Olgun, Hayati; Ozdogan, Sibel

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100 kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies.

  20. An Innovative Carbonate Fuel Cell Matrix, Abstract #188

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilmi, Abdelkader; Surendranath, Arun; Yuh, Chao-Yi

    2015-05-28

    The electrolyte matrix in direct carbonate fuel cell (DFC) is a microporous ceramic structure sandwiched between the electrodes to isolate the fuel from the oxidant, store electrolyte and facilitate ionic transport. FCE has advanced DFC electrolyte matrix over the years and demonstrated that the matrix meets the requirements for greater than 5 year life based on accelerated tests and field stack operations. However, development of advanced designs and materials that can further increase the performance and extend cell life will enable accelerated MCFC deployment. This paper will report the progress on the development of an unique and innovative matrix designmore » that offers numerous benefits to the carbonate fuel cell performance and durability. In addition, this paper will also review parameters that affect matrix material stability and approaches to extend cell life.« less

  1. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E.T. Robinson; John Sirman; Prasad Apte

    2005-05-01

    This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and inmore » International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.« less

  2. A comparison of sodium borohydride as a fuel for proton exchange membrane fuel cells and for direct borohydride fuel cells

    NASA Astrophysics Data System (ADS)

    Wee, Jung-Ho

    Two types of fuel cell systems using NaBH 4 aqueous solution as a fuel are possible: the hydrogen/air proton exchange membrane fuel cell (PEMFC) which uses onsite H 2 generated via the NaBH 4 hydrolysis reaction (B-PEMFC) at the anode and the direct borohydride fuel cell (DBFC) system which directly uses NaBH 4 aqueous solution at the anode and air at the cathode. Recently, research on these two types of fuel cells has begun to attract interest due to the various benefits of this liquid fuel for fuel cell systems for portable applications. It might therefore be relevant at this stage to evaluate the relative competitiveness of the two fuel cells. Considering their current technologies and the high price of NaBH 4, this paper evaluated and analyzed the factors influencing the relative favorability of each type of fuel cell. Their relative competitiveness was strongly dependent on the extent of the NaBH 4 crossover. When considering the crossover in DBFC systems, the total costs of the B-PEMFC system were the most competitive among the fuel cell systems. On the other hand, if the crossover problem were to be completely overcome, the total cost of the DBFC system generating six electrons (6e-DBFC) would be very similar to that of the B-PEMFC system. The DBFC system generating eight electrons (8e-DBFC) became even more competitive if the problem of crossover can be overcome. However, in this case, the volume of NaBH 4 aqueous solution consumed by the DBFC was larger than that consumed by the B-PEMFC.

  3. Turning Perspective in Photoelectrocatalytic Cells for Solar Fuels.

    PubMed

    Perathoner, Siglinda; Centi, Gabriele; Su, Dangsheng

    2016-02-19

    The development of new devices for the use and storage of solar energy is a key step to enable a new sustainable energy scenario. The route for direct solar-to-chemical energy transformation, especially to produce liquid fuels, represents a necessary element to realize transition from the actual energy infrastructure. Photoelectrocatalytic (PECa) devices for the production of solar fuels are a key element to enable this sustainable scenario. The development of PECa devices and related materials is of increasing scientific and applied interest. This concept paper introduces the need to turn the viewpoint of research in terms of PECa cell design and related materials with respect to mainstream activities in the field of artificial photosynthesis and leaves. As an example of a new possible direction, the concept of electrolyte-less cell design for PECa cells to produce solar fuels by reduction of CO2 is presented. The fundamental and applied development of new materials and electrodes for these cells should proceed fully integrated with PECa cell design and systematic analysis. A new possible approach to develop semiconductors with improved performances by using visible light is also shortly presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Impacts | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Impacts Impacts Read about NREL's impacts on innovations in hydrogen and fuel cell research and -Splitting Electrodes NREL Shows How Cyanobacteria Build Hydrogen-Producing Enzyme Fuel Cell Systems R&D -Speed Scanner to Monitor Fuel Cell Material Defects Making Fuel Cells Cleaner, Better, and Cheaper GM

  5. Fuel cell water transport

    DOEpatents

    Vanderborgh, Nicholas E.; Hedstrom, James C.

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  6. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells.

    PubMed

    Duan, Chuancheng; Kee, Robert J; Zhu, Huayang; Karakaya, Canan; Chen, Yachao; Ricote, Sandrine; Jarry, Angelique; Crumlin, Ethan J; Hook, David; Braun, Robert; Sullivan, Neal P; O'Hayre, Ryan

    2018-05-01

    Protonic ceramic fuel cells, like their higher-temperature solid-oxide fuel cell counterparts, can directly use both hydrogen and hydrocarbon fuels to produce electricity at potentially more than 50 per cent efficiency 1,2 . Most previous direct-hydrocarbon fuel cell research has focused on solid-oxide fuel cells based on oxygen-ion-conducting electrolytes, but carbon deposition (coking) and sulfur poisoning typically occur when such fuel cells are directly operated on hydrocarbon- and/or sulfur-containing fuels, resulting in severe performance degradation over time 3-6 . Despite studies suggesting good performance and anti-coking resistance in hydrocarbon-fuelled protonic ceramic fuel cells 2,7,8 , there have been no systematic studies of long-term durability. Here we present results from long-term testing of protonic ceramic fuel cells using a total of 11 different fuels (hydrogen, methane, domestic natural gas (with and without hydrogen sulfide), propane, n-butane, i-butane, iso-octane, methanol, ethanol and ammonia) at temperatures between 500 and 600 degrees Celsius. Several cells have been tested for over 6,000 hours, and we demonstrate excellent performance and exceptional durability (less than 1.5 per cent degradation per 1,000 hours in most cases) across all fuels without any modifications in the cell composition or architecture. Large fluctuations in temperature are tolerated, and coking is not observed even after thousands of hours of continuous operation. Finally, sulfur, a notorious poison for both low-temperature and high-temperature fuel cells, does not seem to affect the performance of protonic ceramic fuel cells when supplied at levels consistent with commercial fuels. The fuel flexibility and long-term durability demonstrated by the protonic ceramic fuel cell devices highlight the promise of this technology and its potential for commercial application.

  7. Fuel sensor-less control of a liquid feed fuel cell under dynamic loading conditions for portable power sources (II)

    NASA Astrophysics Data System (ADS)

    Chang, C. L.; Chen, C. Y.; Sung, C. C.; Liou, D. H.; Chang, C. Y.; Cha, H. C.

    This work presents a new fuel sensor-less control scheme for liquid feed fuel cells that is able to control the supply to a fuel cell system for operation under dynamic loading conditions. The control scheme uses cell-operating characteristics, such as potential, current, and power, to regulate the fuel concentration of a liquid feed fuel cell without the need for a fuel concentration sensor. A current integral technique has been developed to calculate the quantity of fuel required at each monitoring cycle, which can be combined with the concentration regulating process to control the fuel supply for stable operation. As verified by systematic experiments, this scheme can effectively control the fuel supply of a liquid feed fuel cell with reduced response time, even under conditions where the membrane electrolyte assembly (MEA) deteriorates gradually. This advance will aid the commercialization of liquid feed fuel cells and make them more adaptable for use in portable and automotive power units such as laptops, e-bikes, and handicap cars.

  8. 14 CFR 31.45 - Fuel cells.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel cells. 31.45 Section 31.45 Aeronautics... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.45 Fuel cells. If fuel cells are used, the fuel cells, their attachments, and related supporting structure must be shown by tests to be capable of...

  9. 14 CFR 31.45 - Fuel cells.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel cells. 31.45 Section 31.45 Aeronautics... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.45 Fuel cells. If fuel cells are used, the fuel cells, their attachments, and related supporting structure must be shown by tests to be capable of...

  10. 14 CFR 31.45 - Fuel cells.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel cells. 31.45 Section 31.45 Aeronautics... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.45 Fuel cells. If fuel cells are used, the fuel cells, their attachments, and related supporting structure must be shown by tests to be capable of...

  11. 14 CFR 31.45 - Fuel cells.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel cells. 31.45 Section 31.45 Aeronautics... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.45 Fuel cells. If fuel cells are used, the fuel cells, their attachments, and related supporting structure must be shown by tests to be capable of...

  12. 14 CFR 31.45 - Fuel cells.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel cells. 31.45 Section 31.45 Aeronautics... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.45 Fuel cells. If fuel cells are used, the fuel cells, their attachments, and related supporting structure must be shown by tests to be capable of...

  13. Organic fuel cell methods and apparatus

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Frank, Harvey A. (Inventor); Halpert, Gerald (Inventor); Surampudi, Subbarao (Inventor); Prakash, G. K. Surya (Inventor); Vamos, Eugene (Inventor); Olah, George A. (Inventor)

    2001-01-01

    A liquid organic fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.

  14. Organic fuel cell methods and apparatus

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Narayanan, Sekharipuram R. (Inventor); Vamos, Eugene (Inventor); Halpert, Gerald (Inventor); Olah, George A. (Inventor); Frank, Harvey A. (Inventor); Prakash, G. K. Surya (Inventor)

    2004-01-01

    A liquid organic, fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.

  15. Organic fuel cell methods and apparatus

    NASA Technical Reports Server (NTRS)

    Frank, Harvey A. (Inventor); Halpert, Gerald (Inventor); Surampudi, Subbarao (Inventor); Olah, George A. (Inventor); Vamos, Eugene (Inventor); Narayanan, Sekharipuram R. (Inventor); Prakash, G. K. Surya (Inventor)

    2008-01-01

    A liquid organic, fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.

  16. Utilizing a Segmented Fuel Cell to Study the Effects of Electrode Coating Irregularities on PEM Fuel Cell Initial Performance

    DOE PAGES

    Phillips, Adam; Ulsh, Michael; Porter, Jason; ...

    2017-04-27

    An understanding of the impact of coating irregularities on beginning of life polymer electrolyte fuel cell (PEMFC) performance is essential to develop and establish manufacturing tolerances for its components. Coating irregularities occurring in the fuel cell electrode can either possess acceptable process variations or potentially harmful defects. A segmented fuel cell (SFC) is employed to understand how 100% catalyst reduction irregularities ranging from 0.125 to 1 cm 2 in the cathode electrode of a 50 cm 2 sized cell impact spatial and total cell performance at dry and wet humidification conditions. Here, by analyzing the data in a differential formatmore » the local performance effects of irregularity sizes down to 0.25 cm 2 were detected in the current distribution of the cell. Slight total cell performance impacts, due to irregularity sizes of 0.5 and 1 cm 2, were observed under dry operation and high current densities.« less

  17. Utilizing a Segmented Fuel Cell to Study the Effects of Electrode Coating Irregularities on PEM Fuel Cell Initial Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Adam; Ulsh, Michael; Porter, Jason

    An understanding of the impact of coating irregularities on beginning of life polymer electrolyte fuel cell (PEMFC) performance is essential to develop and establish manufacturing tolerances for its components. Coating irregularities occurring in the fuel cell electrode can either possess acceptable process variations or potentially harmful defects. A segmented fuel cell (SFC) is employed to understand how 100% catalyst reduction irregularities ranging from 0.125 to 1 cm 2 in the cathode electrode of a 50 cm 2 sized cell impact spatial and total cell performance at dry and wet humidification conditions. Here, by analyzing the data in a differential formatmore » the local performance effects of irregularity sizes down to 0.25 cm 2 were detected in the current distribution of the cell. Slight total cell performance impacts, due to irregularity sizes of 0.5 and 1 cm 2, were observed under dry operation and high current densities.« less

  18. Experience curve development and cost reduction disaggregation for fuel cell markets in Japan and the US

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Max; Smith, Sarah J.; Sohn, Michael D.

    Technology learning rates can be dynamic quantities as a technology moves from early development to piloting and from low volume manufacturing to high volume manufacturing. This work describes a generalizable technology analysis approach for disaggregating observed technology cost reductions and presents results of this approach for one specific case study (micro-combined heat and power fuel cell systems in Japan). We build upon earlier reports that combine discussion of fuel cell experience curves and qualitative discussion of cost components by providing greater detail on the contributing mechanisms to observed cost reductions, which were not quantified in earlier reports. Greater standardization ismore » added to the analysis approach, which can be applied to other technologies. This paper thus provides a key linkage that has been missing from earlier literature on energy-related technologies by integrating the output of earlier manufacturing cost studies with observed learning rates to quantitatively estimate the different components of cost reduction including economies of scale and cost reductions due to product performance and product design improvements. This work also provides updated fuel cell technology price versus volume trends from the California Self-Generation Incentive Program, including extensive data for solid-oxide fuel cells (SOFC) reported here for the first time. The Japanese micro-CHP market is found to have a learning rate of 18% from 2005 to 2015, while larger SOFC fuel cell systems (200 kW and above) in the California market are found to have a flat (near-zero) learning rate, and these are attributed to a combination of exogenous, market, and policy factors.« less

  19. Study of catalysis for solid oxide fuel cells and direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Xirong

    Fuel cells offer the enticing promise of cleaner electricity with lower environmental impact than traditional energy conversion technologies. Driven by the interest in power sources for portable electronics, and distributed generation and automotive propulsion markets, active development efforts in the technologies of both solid oxide fuel cell (SOFC) and direct methanol fuel cell (DMFC) devices have achieved significant progress. However, current catalysts for fuel cells are either of low catalytic activity or extremely expensive, presenting a key barrier toward the widespread commercialization of fuel cell devices. In this thesis work, atomic layer deposition (ALD), a novel thin film deposition technique, was employed to apply catalytic Pt to SOFC, and investigate both Pt skin catalysts and Pt-Ru catalysts for methanol oxidation, a very important reaction for DMFC, to increase the activity and utilization levels of the catalysts while simultaneously reducing the catalyst loading. For SOFCs, we explored the use of ALD for the fabrication of electrode components, including an ultra-thin Pt film for use as the electrocatalyst, and a Pt mesh structure for a current collector for SOFCs, aiming for precise control over the catalyst loading and catalyst geometry, and enhancement in the current collect efficiency. We choose Pt since it has high chemical stability and excellent catalytic activity for the O2 reduction reaction and the H2 oxidation reaction even at low operating temperatures. Working SOFC fuel cells were fabricated with ALD-deposited Pt thin films as an electrode/catalyst layer. The measured fuel cell performance reveals that comparable peak power densities were achieved for ALD-deposited Pt anodes with only one-fifth of the Pt loading relative to a DC-sputtered counterpart. In addition to the continuous electrocatalyst layer, a micro-patterned Pt structure was developed via the technique of area selective ALD. By coating yttria-stabilized zirconia, a

  20. Engineering microbial fuels cells: recent patents and new directions.

    PubMed

    Biffinger, Justin C; Ringeisen, Bradley R

    2008-01-01

    Fundamental research into how microbes generate electricity within microbial fuel cells (MFCs) has far outweighed the practical application and large scale development of microbial energy harvesting devices. MFCs are considered alternatives to standard commercial polymer electrolyte membrane (PEM) fuel cell technology because the fuel supply does not need to be purified, ambient operating temperatures are maintained with biologically compatible materials, and the biological catalyst is self-regenerating. The generation of electricity during wastewater treatment using MFCs may profoundly affect the approach to anaerobic treatment technologies used in wastewater treatment as a result of developing this energy harvesting technology. However, the materials and engineering designs for MFCs were identical to commercial fuel cells until 2003. Compared to commercial fuel cells, MFCs will remain underdeveloped as long as low power densities are generated from the best systems. The variety of designs for MFCs has expanded rapidly in the last five years in the literature, but the patent protection has lagged behind. This review will cover recent and important patents relating to MFC designs and progress.

  1. Porous silicon-based direct hydrogen sulphide fuel cells.

    PubMed

    Dzhafarov, T D; Yuksel, S Aydin

    2011-10-01

    In this paper, the use of Au/porous silicon/Silicon Schottky type structure, as a direct hydrogen sulphide fuel cell is demonstrated. The porous silicon filled with hydrochlorid acid was developed as a proton conduction membrane. The Au/Porous Silicon/Silicon cells were fabricated by first creating the porous silicon layer in single-crystalline Si using the anodic etching under illumination and then deposition Au catalyst layer onto the porous silicon. Using 80 mM H2S solution as fuel the open circuit voltage of 0.4 V was obtained and maximum power density of 30 W/m2 at room temperature was achieved. These results demonstrate that the Au/Porous Silicon/Silicon direct hydrogen sulphide fuel cell which uses H2S:dH2O solution as fuel and operates at room temperature can be considered as the most promising type of low cost fuel cell for small power-supply units.

  2. A novel unitized regenerative proton exchange membrane fuel cell

    NASA Technical Reports Server (NTRS)

    Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.

    1995-01-01

    A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed in work performed at Lynntech. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel unitized regenerative fuel cell and results obtained on testing it will be presented.

  3. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Science.gov Websites

    market. As the market expands, fueling infrastructure and vehicle rollout will need to grow together Locations by State More Hydrogen Data | All Maps & Data Publications 2016 Vehicle Technologies Market Report State of the States: Fuel Cells in America 2016, 7th Edition 2014 Fuel Cell Technologies Market

  4. Yeast fuel cell: Application for desalination

    NASA Astrophysics Data System (ADS)

    Mardiana, Ummy; Innocent, Christophe; Cretin, Marc; Buchari, Buchari; Gandasasmita, Suryo

    2016-02-01

    Yeasts have been implicated in microbial fuel cells as biocatalysts because they are non-pathogenic organisms, easily handled and robust with a good tolerance in different environmental conditions. Here we investigated baker's yeast Saccharomyces cerevisiae through the oxidation of glucose. Yeast was used in the anolyte, to transfer electrons to the anode in the presence of methylene blue as mediator whereas K3Fe(CN)6 was used as an electron acceptor for the reduction reaction in the catholyte. Power production with biofuel cell was coupled with a desalination process. The maximum current density produced by the cell was 88 mA.m-2. In those conditions, it was found that concentration of salt was removed 64% from initial 0.6 M after 1-month operation. This result proves that yeast fuel cells can be used to remove salt through electrically driven membrane processes and demonstrated that could be applied for energy production and desalination. Further developments are in progress to improve power output to make yeast fuel cells applicable for water treatment.

  5. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Milewski, Jarosław; Bujalski, Wojciech; Lewandowski, Janusz

    2011-11-01

    Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC) are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV) for projects was estimated and commented.

  6. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Milewski, Jarosław; Bujalski, Wojciech; Lewandowski, Janusz

    2013-02-01

    Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC) are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV) for projects was estimated and commented.

  7. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  8. Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2008-10-21

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  9. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F [Oakland, CA; Cherepy, Nerine [Oakland, CA

    2011-08-16

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  10. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F [Oakland, CA; Cherepy, Nerine [Oakland, CA

    2012-01-24

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  11. Fuel Production from Seawater and Fuel Cells Using Seawater.

    PubMed

    Fukuzumi, Shunichi; Lee, Yong-Min; Nam, Wonwoo

    2017-11-23

    Seawater is the most abundant resource on our planet and fuel production from seawater has the notable advantage that it would not compete with growing demands for pure water. This Review focuses on the production of fuels from seawater and their direct use in fuel cells. Electrolysis of seawater under appropriate conditions affords hydrogen and dioxygen with 100 % faradaic efficiency without oxidation of chloride. Photoelectrocatalytic production of hydrogen from seawater provides a promising way to produce hydrogen with low cost and high efficiency. Microbial solar cells (MSCs) that use biofilms produced in seawater can generate electricity from sunlight without additional fuel because the products of photosynthesis can be utilized as electrode reactants, whereas the electrode products can be utilized as photosynthetic reactants. Another important source for hydrogen is hydrogen sulfide, which is abundantly found in Black Sea deep water. Hydrogen produced by electrolysis of Black Sea deep water can also be used in hydrogen fuel cells. Production of a fuel and its direct use in a fuel cell has been made possible for the first time by a combination of photocatalytic production of hydrogen peroxide from seawater and dioxygen in the air and its direct use in one-compartment hydrogen peroxide fuel cells to obtain electric power. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers

    NASA Technical Reports Server (NTRS)

    Baldwin, R.; Pham, M.; Leonida, A.; Mcelroy, J.; Nalette, T.

    1989-01-01

    Hydrogen-oxygen solid polymer electrolyte (SPE) fuel cells and SPE electrolyzers (products of Hamilton Standard) both use a Proton-Exchange Membrane (PEM) as the sole electrolyte. These solid electrolyte devices have been under continuous development for over 30 years. This experience has resulted in a demonstrated ten-year SPE cell life capability under load conditions. Ultimate life of PEM fuel cells and electrolyzers is primarily related to the chemical stability of the membrane. For perfluorocarbon proton exchange membranes an accurate measure of the membrane stability is the fluoride loss rate. Millions of cell hours have contributed to establishing a relationship between fluoride loss rates and average expected ultimate cell life. This relationship is shown. Several features have been introduced into SPE fuel cells and SPE electrolyzers such that applications requiring greater than or equal to 100,000 hours of life can be considered. Equally important as the ultimate life is the voltage stability of hydrogen-oxygen fuel cells and electrolyzers. Here again the features of SPE fuel cells and SPE electrolyzers have shown a cell voltage stability in the order of 1 microvolt per hour. That level of stability has been demonstrated for tens of thousands of hours in SPE fuel cells at up to 500 amps per square foot (ASF) current density.

  13. Microalgae-microbial fuel cell: A mini review.

    PubMed

    Lee, Duu-Jong; Chang, Jo-Shu; Lai, Juin-Yih

    2015-12-01

    Microalgae-microbial fuel cells (mMFCs) are a device that can convert solar energy to electrical energy via biological pathways. This mini-review lists new research and development works on microalgae processes, microbial fuel cell (MFC) processes, and their combined version, mMFC. The substantial improvement and technological advancement are highlighted, with a discussion on the challenges and prospects for possible commercialization of mMFC technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Integrated Fuel Cell/Coal Gasifier

    NASA Technical Reports Server (NTRS)

    Ferrall, J. F.

    1985-01-01

    Powerplant design with low-temperature coal gasifier coupled to highly-exothermic fuel cell for efficient production of dc power eliminates need for oxygen in gasifier and achieves high fuel efficiency with recycling of waste heat from fuel cell.

  15. The Fuel Cell Powered Club Car Carryall

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2005-01-01

    The NASA Glenn Research Center initiated development of the Fuel Cell Powered Club Car Carryall as a way to reduce pollution in industrial settings, reduce fossil fuel consumption and reduce operating costs for transportation systems. The Club Car Carryall provides an inexpensive approach to advance the state of the art in electric vehicle technology in a practical application. The project transfers space technology to terrestrial use via non-traditional partners, and provides power system data valuable for future aeronautics and space applications. The work was done under the Hybrid Power Management (HPM) Program. The Carryall is a state of the art, dedicated, electric utility vehicle. Hydrogen powered proton exchange membrane (PEM) fuel cells are the primary power source. Ultracapacitors were used for energy storage as long life, maintenance free operation, and excellent low temperature performance is essential. Metal hydride hydrogen storage was used to store hydrogen in a safe and efficient low-pressure solid form. The report concludes that the Fuel Cell Powered Club Car Carryall can provide excellent performance, and that the implementation of fuel cells in conjunction with ultracapacitors in the power system can provide significant reliability and performance improvements.

  16. Program for fundamental and applied research of fuel cells in VNIIEF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anisin, A.V.; Borisseonock, V.A.; Novitskii, Y.Z.

    1996-04-01

    According to VNIIEF the integral part of development of fuel cell power plants is fundamental and applied research. This paper describes areas of research on molten carbonate fuel cells. Topics include the development of mathematical models for porous electrodes, thin film electrolytes, the possibility of solid nickel anodes, model of activation polarization of anode, electrolyte with high solubility of oxygen. Other areas include research on a stationary mode of stack operation, anticorrosion coatings, impedance diagnostic methods, ultrasound diagnostics, radiation treatments, an air aluminium cell, and alternative catalysts for low temperature fuel cells.

  17. Alkaline RFC Space Station prototype - 'Next step Space Station'. [Regenerative Fuel Cells

    NASA Technical Reports Server (NTRS)

    Hackler, I. M.

    1986-01-01

    The regenerative fuel cell, a candidate technology for the Space Station's energy storage system, is described. An advanced development program was initiated to design, manufacture, and integrate a regenerative fuel cell Space Station prototype (RFC SSP). The RFC SSP incorporates long-life fuel cell technology, increased cell area for the fuel cells, and high voltage cell stacks for both units. The RFC SSP's potential for integration with the Space Station's life support and propulsion systems is discussed.

  18. Fuel cell power trains for road traffic

    NASA Astrophysics Data System (ADS)

    Höhlein, Bernd; Biedermann, Peter; Grube, Thomas; Menzer, Reinhard

    Legal regulations, especially the low emission vehicle (LEV) laws in California, are the driving forces for more intensive technological developments with respect to a global automobile market. In the future, high efficient vehicles at very low emission levels will include low temperature fuel cell systems (e.g., polymer electrolyte fuel cell (PEFC)) as units of hydrogen-, methanol- or gasoline-based electric power trains. In the case of methanol or gasoline/diesel, hydrogen has to be produced on-board using heated steam or partial oxidation reformers as well as catalytic burners and gas cleaning units. Methanol could also be used for direct electricity generation inside the fuel cell (direct methanol fuel cell (DMFC)). The development potentials and the results achieved so far for these concepts differ extremely. Based on the experience gained so far, the goals for the next few years include cost and weight reductions as well as optimizations in terms of the energy management of power trains with PEFC systems. At the same time, questions of fuel specification, fuel cycle management, materials balances and environmental assessment will have to be discussed more intensively. On the basis of process engineering analyses for net electricity generation in PEFC-powered power trains as well as on assumptions for both electric power trains and vehicle configurations, overall balances have been carried out. They will lead not only to specific energy demand data and specific emission levels (CO 2, CO, VOC, NO x) for the vehicle but will also present data of its full fuel cycle (FFC) in comparison to those of FFCs including internal combustion engines (ICE) after the year 2005. Depending on the development status (today or in 2010) and the FFC benchmark results, the advantages of balances results of FFC with PEFC vehicles are small in terms of specific energy demand and CO 2 emissions, but very high with respect to local emission levels.

  19. Role of fuel cells in industrial cogeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camara, E.H.

    Work at the Institute of Gas Technology on fuel cell technology for commercial application has focused on phosphoric acid (PAFC), molten carbonate (MCFC), and solid oxide (SOFC) fuel cells. The author describes the status of the three technologies, and concludes that the MCFC in particular can efficiently supply energy in industrial cogeneration applications. The four largest industrial markets are primary metals, chemicals, food, and wood products, which collectively represent a potential market of 1000 to 1500 MEe annual additions. At $700 to $900/kW, fuel cells can successfully compete with other advanced systems. An increase in research and development support wouldmore » be in the best interest of industry and the nation. 1 reference, 5 figures, 5 tables.« less

  20. OTEC to hydrogen fuel cells - A solar energy breakthrough

    NASA Astrophysics Data System (ADS)

    Roney, J. R.

    Recent advances in fuel cell technology and development are discussed, which will enhance the Ocean Thermal Energy Conversion (OTEC)-hydrogen-fuel cell mode of energy utilization. Hydrogen obtained from the ocean solar thermal resources can either be liquified or converted to ammonia, thus providing a convenient mode of transport, similar to that of liquid petroleum. The hydrogen fuel cell can convert hydrogen to electric power at a wide range of scale, feeding either centralized or distributed systems. Although this system of hydrogen energy production and delivery has been examined with respect to the U.S.A., the international market, and especially developing countries, may represent the greatest opportunity for these future generating units.

  1. Nonlinear observer designs for fuel cell power systems

    NASA Astrophysics Data System (ADS)

    Gorgun, Haluk

    A fuel cell is an electrochemical device that combines hydrogen and oxygen, with the aid of electro-catalysts, to produce electricity. A fuel cell consists of a negatively charged anode, a positively charged cathode and an electrolyte, which transports protons or ions. A low temperature fuel cell has an electrical potential of about 0.7 Volt when generating a current density of 300--500 mA/cm2. Practical fuel cell power systems will require a combination of several cells in series (a stack) to satisfy the voltage requirements of specific applications. Fuel cells are suitable for a potentially wide variety of applications, from stationary power generation in the range of hundreds of megawatts to portable electronics in the range of a couple of watts. Efficient operation of a fuel cell system requires advanced feedback control designs. Reliable measurements from the system are necessary to implement such designs. However, most of the commercially available sensors do not operate properly in the reformate and humidified gas streams in fuel cell systems. Sensors working varying degrees of success are too big and costly, and sensors that are potentially low cost are not reliable or do not have the required life time [28]. Observer designs would eliminate sensor needs for measurements, and make feedback control implementable. Since the fuel cell system dynamics are highly nonlinear, observer design is not an easy task. In this study we aim to develop nonlinear observer design methods applicable to fuel cell systems. In part I of the thesis we design an observer to estimate the hydrogen partial pressure in the anode channel. We treat inlet partial pressure as an unknown slowly varying parameter and develop an adaptive observer that employs a nonlinear voltage injection term. However in this design Fuel Processing System (FPS) dynamics are not modelled, and their effect on the anode dynamics are treated as plant uncertainty. In part II of the thesis we study the FPS

  2. MEMS-based thin-film fuel cells

    DOEpatents

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2003-10-28

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  3. Interconnection of bundled solid oxide fuel cells

    DOEpatents

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  4. Annular feed air breathing fuel cell stack

    DOEpatents

    Wilson, Mahlon S.; Neutzler, Jay K.

    1997-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. The fuel distribution manifold is formed from a hydrophilic-like material to redistribute water produced by fuel and oxygen reacting at the cathode. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  5. System level modeling and component level control of fuel cells

    NASA Astrophysics Data System (ADS)

    Xue, Xingjian

    This dissertation investigates the fuel cell systems and the related technologies in three aspects: (1) system-level dynamic modeling of both PEM fuel cell (PEMFC) and solid oxide fuel cell (SOFC); (2) condition monitoring scheme development of PEM fuel cell system using model-based statistical method; and (3) strategy and algorithm development of precision control with potential application in energy systems. The dissertation first presents a system level dynamic modeling strategy for PEM fuel cells. It is well known that water plays a critical role in PEM fuel cell operations. It makes the membrane function appropriately and improves the durability. The low temperature operating conditions, however, impose modeling difficulties in characterizing the liquid-vapor two phase change phenomenon, which becomes even more complex under dynamic operating conditions. This dissertation proposes an innovative method to characterize this phenomenon, and builds a comprehensive model for PEM fuel cell at the system level. The model features the complete characterization of multi-physics dynamic coupling effects with the inclusion of dynamic phase change. The model is validated using Ballard stack experimental result from open literature. The system behavior and the internal coupling effects are also investigated using this model under various operating conditions. Anode-supported tubular SOFC is also investigated in the dissertation. While the Nernst potential plays a central role in characterizing the electrochemical performance, the traditional Nernst equation may lead to incorrect analysis results under dynamic operating conditions due to the current reverse flow phenomenon. This dissertation presents a systematic study in this regard to incorporate a modified Nernst potential expression and the heat/mass transfer into the analysis. The model is used to investigate the limitations and optimal results of various operating conditions; it can also be utilized to perform the

  6. Fuel-Cell Drivers Wanted

    ERIC Educational Resources Information Center

    Clark, Todd; Jones, Rick

    2004-01-01

    While the political climate seems favorable for the development of fuel-cell vehicles for personal transportation, the market's demand may not be so favorable. Nonetheless, middle level students will be the next generation of drivers and voters, and they need to be able to make informed decisions regarding the nation's energy and transportation…

  7. Fuel cell electric power production

    DOEpatents

    Hwang, Herng-Shinn; Heck, Ronald M.; Yarrington, Robert M.

    1985-01-01

    A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

  8. Space Shuttle Upgrades: Long Life Alkaline Fuel Cell

    NASA Technical Reports Server (NTRS)

    McCurdy, Kerri

    2004-01-01

    NASA has utilized the alkaline fuel cell technology to provide electrical power for manned launch vehicles such as Gemini, Apollo, and the Space Shuttle. The current Shuttle alkaline fuel cells are procured from UTC Fuel Cells, a United Technologies Company. The alkaline fuel cells are very reliable but the operating life is limited to 2600 hours due to voltage degradation of the individual cells. The main limiting factor in the life of the cells is corrosion of the cell's fiberglass/epoxy frame by the aqueous potassium hydroxide electrolyte. To reduce operating costs, the orbiter program office approved the Long Life Alkaline Fuel Cell (LLAFC) program as a shuttle upgrade in 1999 to increase the operating life of the fuel cell powerplant to 5000 hours. The LLAFC program incorporates improving the cell by extending the length of the corrosion path, which reduces the cell frame corrosion. UTCFC performed analysis to understand the fundamental mechanisms that drive the cell frame corrosion. The analysis indicated that the corrosion path started along the bond line between the cathode and the cell frame. Analysis also showed that the oxygen available at the cathode, the catalyst on the electrode, and the electrode substrate all supported or intensified the corrosion. The new cell design essentially doubled the corrosion path to mitigate the problem. A 10-cell stack was tested for 5000 hours during the development phase of this program to verify improved cell performance. A complete 96-cell stack was then tested for 5000 hours during the full manned-space qualification phase of this program. Additional upgrades to the powerplant under this program are: replacing the aluminum body in the pressure regulator with stainless steel to reduce corrosion, improving stack insulator plate with improved resistance to stress failure and improved temperature capability, and replacing separator plate elastomer seals with a more durable material and improved seal retention.

  9. Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borup, Rodney; Meyers, Jeremy; Pivovar, Bryan

    Rod Borup is a Team Leader in the fuel cell program at Los Alamos National Lab in Los Alamos, New Mexico. He received his B.S.E. in Chemical Engineering from the University of Iowa in 1988 and his Ph.D. from the University of Washington in 1993. He has worked on fuel cell technology since 1994, working in the areas of hydrogen production and PEM fuel cell stack components. He has been awarded 12 U.S. patents, authored over 40 papers related to fuel cell technology, and presented over 50 oral papers at national meetings. His current main research area is related tomore » water transport in PEM fuel cells and PEM fuel cell durability. Recently, he was awarded the 2005 DOE Hydrogen Program R&D Award for the most significant R&D contribution of the year for his team's work in fuel cell durability and was the Principal Investigator for the 2004 Fuel Cell Seminar (San Antonio, TX, USA) Best Poster Award. Jeremy Meyers is an Assistant Professor of materials science and engineering and mechanical engineering at the University of Texas at Austin, where his research focuses on the development of electrochemical energy systems and materials. Prior to joining the faculty at Texas, Jeremy worked as manager of the advanced transportation technology group at UTC Power, where he was responsible for developing new system designs and components for automotive PEM fuel cell power plants. While at UTC Power, Jeremy led several customer development projects and a DOE-sponsored investigation into novel catalysts and membranes for PEM fuel cells. Jeremy has coauthored several papers on key mechanisms of fuel cell degradation and is a co-inventor of several patents. In 2006, Jeremy and several colleagues received the George Mead Medal, UTC's highest award for engineering achievement, and he served as the co-chair of the Gordon Research Conference on fuel cells. Jeremy received his Ph.D. in Chemical Engineering from the University of California at Berkeley and holds a Bachelor's Degree

  10. PLATINUM AND FUEL CELLS

    EPA Science Inventory

    Platinum requirements for fuel cell vehicles (FCVS) have been identified as a concern and possible problem with FCV market penetration. Platinum is a necessary component of the electrodes of fuel cell engines that power the vehicles. The platinum is deposited on porous electrodes...

  11. PEM fuel cell bipolar plate material requirements for transportation applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borup, R.L.; Stroh, K.R.; Vanderborgh, N.E.

    1996-04-01

    Cost effective bipolar plates are currently under development to help make proton exchange membrane (PEM) fuel cells commercially viable. Bipolar plates separate individual cells of the fuel cell stack, and thus must supply strength, be electrically conductive, provide for thermal control of the fuel stack, be a non-porous materials separating hydrogen and oxygen feed streams, be corrosion resistant, provide gas distribution for the feed streams and meet fuel stack cost targets. Candidate materials include conductive polymers and metal plates with corrosion resistant coatings. Possible metals include aluminium, titanium, iron/stainless steel and nickel.

  12. Microfabrication of microchannels for fuel cell plates.

    PubMed

    Jang, Ho Su; Park, Dong Sam

    2010-01-01

    Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of microchannel technology. In this study, the conventional method of chemical etching and the mechanical machining method of micro end milling were used for the microfabrication of microchannel for fuel cell separators. The two methods were compared in terms of their performance in the fabrication with regards to dimensional errors, flatness, straightness, and surface roughness. Following microchannel fabrication, the powder blasting technique is introduced to improve the coating performance of the catalyst on the surface of the microchannel. Experimental results show that end milling can remarkably increase the fabrication performance and that surface treatment by powder blasting can improve the performance of catalyst coating.

  13. Microfabrication of Microchannels for Fuel Cell Plates

    PubMed Central

    Jang, Ho Su; Park, Dong Sam

    2010-01-01

    Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of microchannel technology. In this study, the conventional method of chemical etching and the mechanical machining method of micro end milling were used for the microfabrication of microchannel for fuel cell separators. The two methods were compared in terms of their performance in the fabrication with regards to dimensional errors, flatness, straightness, and surface roughness. Following microchannel fabrication, the powder blasting technique is introduced to improve the coating performance of the catalyst on the surface of the microchannel. Experimental results show that end milling can remarkably increase the fabrication performance and that surface treatment by powder blasting can improve the performance of catalyst coating. PMID:22315533

  14. Annular feed air breathing fuel cell stack

    DOEpatents

    Wilson, Mahlon S.

    1996-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  15. National fuel cell bus program : proterra fuel cell hybrid bus report, Columbia demonstration.

    DOT National Transportation Integrated Search

    2011-10-01

    This report summarizes the experience and early results from a fuel cell bus demonstration funded by the Federal Transit Administration (FTA) under the National Fuel Cell Bus Program. A team led by the Center for Transportation and the Environment an...

  16. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    1999-01-01

    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  17. Fuel cell system modeling for solid oxide fuel cell/gas turbine hybrid power plants, Part I: Modeling and simulation framework

    NASA Astrophysics Data System (ADS)

    Leucht, Florian; Bessler, Wolfgang G.; Kallo, Josef; Friedrich, K. Andreas; Müller-Steinhagen, H.

    A sustainable future power supply requires high fuel-to-electricity conversion efficiencies even in small-scale power plants. A promising technology to reach this goal is a hybrid power plant in which a gas turbine (GT) is coupled with a solid oxide fuel cell (SOFC). This paper presents a dynamic model of a pressurized SOFC system consisting of the fuel cell stack with combustion zone and balance-of-plant components such as desulphurization, humidification, reformer, ejector and heat exchangers. The model includes thermal coupling between the different components. A number of control loops for fuel and air flows as well as power management are integrated in order to keep the system within the desired operation window. Models and controls are implemented in a MATLAB/SIMULINK environment. Different hybrid cycles proposed earlier are discussed and a preferred cycle is developed. Simulation results show the prospects of the developed modeling and control system.

  18. MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jie Guan; Atul Verma; Nguyen Minh

    2003-04-01

    This document summarizes the technical progress from September 2002 to March 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. The causes have been identified for the unstable open circuit voltage (OCV) and low performance exhibited by the anode-supported lanthanum gallate based cells from the earlier development. Promising results have been obtained in the area of synthesis of electrolyte and cathode powders, which showed excellent sintering and densification at low temperatures. The fabrication of cells using tapecalendering process for anode-supported thin lanthanum gallate electrolyte cells and their performance optimizationmore » is in progress.« less

  19. Anhydrous Proton-Conducting Membranes for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Yen, Shiao-Pin S.

    2005-01-01

    Polymeric electrolyte membranes that do not depend on water for conduction of protons are undergoing development for use in fuel cells. Prior polymeric electrolyte fuel-cell membranes (e.g., those that contain perfluorosulfonic acid) depend on water and must be limited to operation below a temperature of 125 C because they retain water poorly at higher temperatures. In contrast, the present developmental anhydrous membranes are expected to function well at temperatures up to 200 C. The developmental membranes exploit a hopping-and-reorganization proton- conduction process that can occur in the solid state in organic amine salts and is similar to a proton-conduction process in a liquid. This process was studied during the 1970s, but until now, there has been no report of exploiting organic amine salts for proton conduction in fuel cells.

  20. Solid oxide MEMS-based fuel cells

    DOEpatents

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  1. Solid polymer MEMS-based fuel cells

    DOEpatents

    Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Pleasant Hill, CA

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  2. High power density yeast catalyzed microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  3. Variable area fuel cell process channels

    DOEpatents

    Kothmann, Richard E.

    1981-01-01

    A fuel cell arrangement having a non-uniform distribution of fuel and oxidant flow paths, on opposite sides of an electrolyte matrix, sized and positioned to provide approximately uniform fuel and oxidant utilization rates, and cell conditions, across the entire cell.

  4. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Deangelis; Rich Depuy; Debashis Dey

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale upmore » strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.« less

  5. Microstructured Electrolyte Membranes to Improve Fuel Cell Performance

    NASA Astrophysics Data System (ADS)

    Wei, Xue

    Fuel cells, with the advantages of high efficiency, low greenhouse gas emission, and long lifetime are a promising technology for both portable power and stationary power sources. The development of efficient electrolyte membranes with high ionic conductivity, good mechanical durability and dense structure at low cost remains a challenge to the commercialization of fuel cells. This thesis focuses on exploring novel composite polymer membranes and ceramic electrolytes with the microstructure engineered to improve performance in direct methanol fuel cells (DMFCs) and solid oxide fuel cells (SOFCs), respectively. Polymer/particle composite membranes hold promise to meet the demands of DMFCs at lower cost. The structure of composite membranes was controlled by aligning proton conducting particles across the membrane thickness under an applied electric field. The field-induced structural changes caused the membranes to display an enhanced water uptake, proton conductivity, and methanol permeability in comparison to membranes prepared without an applied field. Although both methanol permeability and proton conductivity are enhanced by the applied field, the permeability increase is relatively lower than the proton conductivity improvement, which results in enhanced proton/methanol selectivity and improved DMFC performance. Apatite ceramics are a new class of fast ion conductors being studied as alternative SOFC electrolytes in the intermediate temperature range. An electrochemical/hydrothermal deposition method was developed to grow fully dense apatite membranes containing well-developed crystals with c-axis alignment to promote ion conductivity. Hydroxyapatite seed crystals were first deposited onto a metal substrate electrochemically. Subsequent ion substitution during the hydrothermal growth process promoted the formation of dense, fully crystalline films with microstructure optimal for ion transport. The deposition parameters were systematically investigated, such as

  6. Regenerative Hydrogen-oxygen Fuel Cell-electrolyzer Systems for Orbital Energy Storage

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1984-01-01

    Fuel cells have found application in space since Gemini. Over the years technology advances have been factored into the mainstream hardware programs. Performance levels and service lives have been gradually improving. More recently, the storage application for fuel cell-electrolyzer combinations are receiving considerable emphasis. The regenerative system application described here is part of a NASA Fuel Cell Program which was developed to advance the fuel cell and electrolyzer technology required to satisfy the identified power generation and energy storage need of the Agency for space transportation and orbital applications to the year 2000.

  7. Microbial fuel cells: From fundamentals to applications. A review.

    PubMed

    Santoro, Carlo; Arbizzani, Catia; Erable, Benjamin; Ieropoulos, Ioannis

    2017-07-15

    In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.

  8. Microbial fuel cells: From fundamentals to applications. A review

    NASA Astrophysics Data System (ADS)

    Santoro, Carlo; Arbizzani, Catia; Erable, Benjamin; Ieropoulos, Ioannis

    2017-07-01

    In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.

  9. Fuel cell stack arrangements

    DOEpatents

    Kothmann, Richard E.; Somers, Edward V.

    1982-01-01

    Arrangements of stacks of fuel cells and ducts, for fuel cells operating with separate fuel, oxidant and coolant streams. An even number of stacks are arranged generally end-to-end in a loop. Ducts located at the juncture of consecutive stacks of the loop feed oxidant or fuel to or from the two consecutive stacks, each individual duct communicating with two stacks. A coolant fluid flows from outside the loop, into and through cooling channels of the stack, and is discharged into an enclosure duct formed within the loop by the stacks and seals at the junctures at the stacks.

  10. Mathematical Modeling and Optimization Studies on Development of Fuel Cells for Multifarious Applications

    DTIC Science & Technology

    2010-05-12

    multicomponent steady-state model for liquid -feed solid polymer electrolyte DBFCs. These fuel cells use sodium borohydride (NaBH4) in alkaline media...layers, diffusion layers and the polymer electrolyte membrane for a liquid feed DBFC. Diffusion of reactants within and between the pores is accounted...projected for futuristic portable applications. In this project we developed a three- dimensional, multicomponent steady-state model for liquid -feed solid

  11. Transport Studies and Modeling in PEM Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittelsteadt, Cortney K.; Xu, Hui; Brawn, Shelly

    2014-07-30

    This project’s aim was to develop fuel cell components (i.e. membranes, gas-diffusion media (GDM), bipolar plates and flow fields) that possess specific properties (i.e. water transport and conductivity). A computational fluid dynamics model was developed to elucidate the effect of certain parameters on these specific properties. Ultimately, the model will be used to determine sensitivity of fuel cell performance to component properties to determine limiting components and to guide research. We have successfully reached our objectives and achieved most of the milestones of this project. We have designed and synthesized a variety of hydrocarbon block polymer membranes with lower equivalentmore » weight, structure, chemistry, phase separation and process conditions. These membranes provide a broad selection with optimized water transport properties. We have also designed and constructed a variety of devices that are capable of accurately measuring the water transport properties (water uptake, water diffusivity and electro-osmatic drag) of these membranes. These transport properties are correlated to the membranes’ structures derived from X-ray and microscopy techniques to determine the structure-property relationship. We successfully integrated hydrocarbon membrane MEAs with a current distribution board (CBD) to study the impact of hydrocarbon membrane on water transport in fuel cells. We have designed and fabricated various GDM with varying substrate, diffusivity and micro-porous layers (MPL) and characterized their pore structure, tortuosity and hydrophobicity. We have derived a universal chart (MacMullin number as function of wet proofing and porosity) that can be used to characterize various GDM. The abovementioned GDMs have been evaluated in operating fuel cells; their performance is correlated to various pore structure, tortuosity and hydrophobicity of the GDM. Unfortunately, determining a universal relationship between the MacMullin number and these

  12. Low cost, lightweight fuel cell elements

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor)

    2001-01-01

    New fuel cell elements for use in liquid feed fuel cells are provided. The elements including biplates and endplates are low in cost, light in weight, and allow high efficiency operation. Electrically conductive elements are also a part of the fuel cell elements.

  13. Phosphoric acid fuel cell power plant system performance model and computer program

    NASA Technical Reports Server (NTRS)

    Alkasab, K. A.; Lu, C. Y.

    1984-01-01

    A FORTRAN computer program was developed for analyzing the performance of phosphoric acid fuel cell power plant systems. Energy mass and electrochemical analysis in the reformer, the shaft converters, the heat exchangers, and the fuel cell stack were combined to develop a mathematical model for the power plant for both atmospheric and pressurized conditions, and for several commercial fuels.

  14. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, Leslie; Post, Matthew; Gikakis, Christina

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. Various stakeholders, including FCEB developers, transit agencies, and system integrators, have expressed the value of this annual status report, which provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. The annual status report tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. Themore » 2015 summary results primarily focus on the most recent year for each demonstration, from August 2014 through July 2015. The results for these buses account for more than 1,045,000 miles traveled and 83,000 hours of fuel cell power system operation. The primary results presented in the report are from two demonstrations of fuel-cell-dominant bus designs: the Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California and the American Fuel Cell Bus Project at SunLine Transit Agency in California.« less

  15. Benchmarking the expected stack manufacturing cost of next generation, intermediate-temperature protonic ceramic fuel cells with solid oxide fuel cell technology

    NASA Astrophysics Data System (ADS)

    Dubois, Alexis; Ricote, Sandrine; Braun, Robert J.

    2017-11-01

    Recent progress in the performance of intermediate temperature (500-600 °C) protonic ceramic fuel cells (PCFCs) has demonstrated both fuel flexibility and increasing power density that approach commercial application requirements. These developments may eventually position the technology as a viable alternative to solid oxide fuel cells (SOFCs) and molten carbonate fuel cells (MCFCs). The PCFCs investigated in this work are based on a BaZr0.8Y0.2O3-δ (BZY20) thin electrolyte supported by BZY20/Ni porous anodes, and a triple conducting cathode material comprised of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY0.1). These cells are prepared using a low-cost solid-state reactive sintering (SSRS) process, and are capable of power densities of 0.156 W cm-2 at 500 °C operating directly from methane fuel. We develop a manufacturing cost model to estimate the Nth generation production costs of PCFC stack technology using high volume manufacturing processes and compare them to the state-of-the-art in SOFC technology. The low-cost cell manufacturing enabled by the SSRS technique compensates for the lower PCFC power density and the trade-off between operating temperature and efficiency enables the use of lower-cost stainless steel materials. PCFC stack production cost estimates are found to be as much as 27-37% lower at 550 °C than SOFCs operating at 800 °C.

  16. Fuel cell programs in the United States for stationary power applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, M.

    1996-04-01

    The Department of Energy (DOE), Office of Fossil Energy, is participating with the private sector in sponsoring the development of molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) technologies for application in the utility, commercial and industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by the Office of Fossil Energy in previous years and is now being commercialized by the private sector. Private sector participants with the Department of Energy include the Electric Power Research Institute (EPRI), the Gas Research institute (GRI), electric and gas utilities, universities, manufacturing companies and their suppliers. through continued governmentmore » and private sector support, fuel cell systems are emerging power generation technologies which are expected to have significant worldwide impacts. An industry with annual sales of over a billion dollars is envisioned early in the 21st century. PAFC power plants have begun to enter the marketplace and MCFC and SOFC power plants are expected to be ready to enter the marketplace in the late 1990s. In support of the efficient and effective use of our natural resources, the fuel cell program seeks to increase energy efficiency and economic effectiveness of power generation. This is to be accomplished through effectiveness of power generation. This is accomplished through the development and commercialization of cost-effective, efficient and environmentally desirable fuel cell systems which will operate on fossil fuels in multiple and end use sectors.« less

  17. Analysis and optimization of solid oxide fuel cell-based auxiliary power units using a generic zero-dimensional fuel cell model

    NASA Astrophysics Data System (ADS)

    Göll, S.; Samsun, R. C.; Peters, R.

    Fuel-cell-based auxiliary power units can help to reduce fuel consumption and emissions in transportation. For this application, the combination of solid oxide fuel cells (SOFCs) with upstream fuel processing by autothermal reforming (ATR) is seen as a highly favorable configuration. Notwithstanding the necessity to improve each single component, an optimized architecture of the fuel cell system as a whole must be achieved. To enable model-based analyses, a system-level approach is proposed in which the fuel cell system is modeled as a multi-stage thermo-chemical process using the "flowsheeting" environment PRO/II™. Therein, the SOFC stack and the ATR are characterized entirely by corresponding thermodynamic processes together with global performance parameters. The developed model is then used to achieve an optimal system layout by comparing different system architectures. A system with anode and cathode off-gas recycling was identified to have the highest electric system efficiency. Taking this system as a basis, the potential for further performance enhancement was evaluated by varying four parameters characterizing different system components. Using methods from the design and analysis of experiments, the effects of these parameters and of their interactions were quantified, leading to an overall optimized system with encouraging performance data.

  18. Durability and performance optimization of cathode materials for fuel cells

    NASA Astrophysics Data System (ADS)

    Colon-Mercado, Hector Rafael

    The primary objective of this dissertation is to develop an accelerated durability test (ADT) for the evaluation of cathode materials for fuel cells. The work has been divided in two main categories, namely high temperature fuel cells with emphasis on the Molten Carbonate Fuel Cell (MCFC) cathode current collector corrosion problems and low temperature fuel cells in particular Polymer Electrolyte Fuel Cell (PEMFC) cathode catalyst corrosion. The high operating temperature of MCFC has given it benefits over other fuel cells. These include higher efficiencies (>50%), faster electrode kinetics, etc. At 650°C, the theoretical open circuit voltage is established, providing low electrode overpotentials without requiring any noble metal catalysts and permitting high electrochemical efficiency. The waste heat is generated at sufficiently high temperatures to make it useful as a co-product. However, in order to commercialize the MCFC, a lifetime of 40,000 hours of operation must be achieved. The major limiting factor in the MCFC is the corrosion of cathode materials, which include cathode electrode and cathode current collector. In the first part of this dissertation the corrosion characteristics of bare, heat-treated and cobalt coated titanium alloys were studied using an ADT and compared with that of state of the art current collector material, SS 316. PEMFCs are the best choice for a wide range of portable, stationary and automotive applications because of their high power density and relatively low-temperature operation. However, a major impediment in the commercialization of the fuel cell technology is the cost involved due to the large amount of platinum electrocatalyst used in the cathode catalyst. In an effort to increase the power and decrease the cathode cost in polymer electrolyte fuel cell (PEMFC) systems, Pt-alloy catalysts were developed to increase its activity and stability. Extensive research has been conducted in the area of new alloy development and

  19. A natural-gas fuel processor for a residential fuel cell system

    NASA Astrophysics Data System (ADS)

    Adachi, H.; Ahmed, S.; Lee, S. H. D.; Papadias, D.; Ahluwalia, R. K.; Bendert, J. C.; Kanner, S. A.; Yamazaki, Y.

    A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500 kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor - namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor - were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing ∼48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored.

  20. Fuel cell tubes and method of making same

    DOEpatents

    Borglum, Brian P.

    1999-11-30

    A method of manufacturing porous ceramic tubes for fuel cells with improved properties and higher manufacturing yield is disclosed. The method involves extruding a closed end fuel cell tube, such as an air electrode of a solid oxide fuel cell, in which the closed end also functions as the sintering support. The resultant fuel cell tube has a superior porosity distribution which allows improved diffusion of oxygen at the closed end of the tube during operation of the fuel cell. Because this region has the highest current density, performance enhancement and improved reliability of the fuel cell tube result. Furthermore, the higher manufacturing yield associated with the present method decreases the overall fuel cell cost. A method of manufacturing porous ceramic tubes for fuel cells with improved properties and higher manufacturing yield is disclosed. The method involves extruding a closed end fuel cell tube, such as an air electrode of a solid oxide fuel cell, in which the closed end also functions as the sintering support. The resultant fuel cell tube has a superior porosity distribution which allows improved diffusion of oxygen at the closed end of the tube during operation of the fuel cell. Because this region has the highest current density, performance enhancement and improved reliability of the fuel cell tube result. Furthermore, the higher manufacturing yield associated with the present method decreases the overall fuel cell cost.

  1. Fuel cell system for transportation applications

    DOEpatents

    Kumar, Romesh; Ahmed, Shabbir; Krumpelt, Michael; Myles, Kevin M.

    1993-01-01

    A propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.

  2. Fuel cell system for transportation applications

    DOEpatents

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1993-09-28

    A propulsion system is described for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell and receives hydrogen-containing fuel from the fuel tank and uses water and air for partially oxidizing and reforming the fuel in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor. 3 figures.

  3. Regenerative fuel cell study

    NASA Technical Reports Server (NTRS)

    Wynveen, R. A.; Schubert, F. H.

    1972-01-01

    The completion of the study is reported for the regenerative fuel cell subsystem (RFCS) as an energy storage process for use aboard the space shuttle launched modular space station (MSS). The MSS mission requirements, and RFCS are discussed, and a comparison between RFCS and a nickel cadmium battery subsystem is presented. Development costs are also discussed.

  4. Water reactive hydrogen fuel cell power system

    DOEpatents

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  5. Water reactive hydrogen fuel cell power system

    DOEpatents

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  6. Tilted fuel cell apparatus

    DOEpatents

    Cooper, John F.; Cherepy, Nerine; Krueger, Roger L.

    2005-04-12

    Bipolar, tilted embodiments of high temperature, molten electrolyte electrochemical cells capable of directly converting carbon fuel to electrical energy are disclosed herein. The bipolar, tilted configurations minimize the electrical resistance between one cell and others connected in electrical series. The tilted configuration also allows continuous refueling of carbon fuel.

  7. A membraneless single compartment abiotic glucose fuel cell

    NASA Astrophysics Data System (ADS)

    Slaughter, Gymama; Sunday, Joshua

    2014-09-01

    A simple energy harvesting strategy has been developed to selectively catalyze glucose in the presence of oxygen in a glucose/O2 fuel cell. The anode consists of an abiotic catalyst Al/Au/ZnO, in which ZnO seed layer was deposited on the surface of Al/Au substrate using hydrothermal method. The cathode is constructed from a single rod of platinum with an outer diameter of 500 μm. The abiotic glucose fuel cell was studied in phosphate buffer solution (pH 7.4) containing 5 mM glucose at a temperature of 22 °C. The cell is characterized according to its open-circuit voltage, polarization profile, and power density plot. Under these conditions, the abiotic glucose fuel cell possesses an open-circuit voltage of 840 mV and delivered a maximum power density of 16.2 μW cm-2 at a cell voltage of 495 mV. These characteristics are comparable to biofuel cell utilizing a much more complex system design. Such low-cost lightweight abiotic catalyzed glucose fuel cells have a great promise to be optimized, miniaturized to power bio-implantable devices.

  8. Recent Advances in High-Performance Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Chun, W.; Valdez, T. I.; Jeffries-Nakamura, B.; Frank, H.; Surumpudi, S.; Halpert, G.; Kosek, J.; Cropley, C.; La Conti, A. B.; hide

    1996-01-01

    Direct methanol fuel cells for portable power applications have been advanced significantly under DARPA- and ARO-sponsored programs over the last five years. A liquid-feed, direct methanol fuel cell developed under these programs, employs a proton exchange membrane as electrolyte and operates on aqueous solutions of methanol with air or oxygen as the oxidant.

  9. Fuel cell stack monitoring and system control

    DOEpatents

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2005-01-25

    A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell. Other polarization curves may be generated and used for fuel cell stack monitoring based on different operating pressures, temperatures, hydrogen quantities.

  10. Hybrid Power Management Program Evaluated Fuel Cell/Ultracapacitor Combinations and Developed Other New Applications

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2004-01-01

    In fiscal year 2003, the continuation of the Hybrid Power Management (HPM) Program through NASA Glenn Research Center's Commercial Technology Office resulted in several new successful applications of this pioneering technology. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors, fuel cells, and photovoltaics. HPM has extremely wide potential, with applications from nanowatts to megawatts--including power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy. Fuel cells provide excellent efficiency and energy density, but do not have good power density. In contrast, ultracapacitors have excellent power density and virtually unlimited cycle life. To improve the power density of the fuel cell, the combination of fuel cells and ultracapacitors was evaluated.

  11. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor)

    2009-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous. The fuel cell system also comprises a fuel supplying part including a meter which meters an amount of fuel which is used by the fuel cell, and controls the supply of fuel based on said metering.

  12. Aerosol feed direct methanol fuel cell

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor)

    2002-01-01

    Improvements to fuel cells include introduction of the fuel as an aerosol of liquid fuel droplets suspended in a gas. The particle size of the liquid fuel droplets may be controlled for optimal fuel cell performance by selection of different aerosol generators or by separating droplets based upon size using a particle size conditioner.

  13. Electrolyser and fuel cells, key elements for energy and life support

    NASA Astrophysics Data System (ADS)

    Bockstahler, Klaus; Funke, Helmut; Lucas, Joachim

    Both, Electrolyser and Fuel Cells are key elements for regenerative energy and life support systems. Electrolyser technology is originally intended for oxygen production in manned space habitats and in submarines, through splitting water into hydrogen and oxygen. Fuel cells serve for energy production through the reaction, triggered in the presence of an electrolyte, between a fuel and an oxidant. Now combining both technologies i.e. electrolyser and fuel cell makes it a Regenerative Fuel Cell System (RFCS). In charge mode, i.e. with energy supplied e.g. by solar cells, the electrolyser splits water into hydrogen and oxygen being stored in tanks. In discharge mode, when power is needed but no energy is available, the stored gases are converted in the fuel cell to generate electricity under the formation of water that is stored in tanks. Rerouting the water to the electrolyser makes it a closed-loop i.e. regenerative process. Different electrolyser and fuel cell technologies are being evolved. At Astrium emphasis is put on the development of an RFCS comprised of Fixed Alkaline Electrolyser (FAE) and Fuel Cell (AFC) as such technology offers a high electrical efficiency and thus reduced system weight, which is important in space applications. With increasing power demand and increasing discharge time an RFCS proves to be superior to batteries. Since the early technology development multiple design refinements were done at Astrium, funded by the European Space Agency ESA and the German National Agency DLR as well as based on company internal R and T funding. Today a complete RFCS energy system breadboard is established and the operational behavior of the system is being tested. In parallel the electrolyser itself is subject to design refinement and testing in terms of oxygen production in manned space habitats. In addition essential features and components for process monitoring and control are being developed. The present results and achievements and the dedicated

  14. Method of improving fuel cell performance by removing at least one metal oxide contaminant from a fuel cell electrode

    DOEpatents

    Kim, Yu Seung [Los Alamos, NM; Choi, Jong-Ho [Los Alamos, NM; Zelenay, Piotr [Los Alamos, NM

    2009-08-18

    A method of removing contaminants from a fuel cell catalyst electrode. The method includes providing a getter electrode and a fuel cell catalyst electrode having at least one contaminant to a bath and applying a voltage sufficient to drive the contaminant from the fuel cell catalyst electrode to the getter electrode. Methods of removing contaminants from a membrane electrode assembly of a fuel cell and of improving performance of a fuel cell are also provided.

  15. Fuel cell stack monitoring and system control

    DOEpatents

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2004-02-17

    A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell.

  16. Fuel cells for vehicle applications in cars - bringing the future closer

    NASA Astrophysics Data System (ADS)

    Panik, Ferdinand

    Among all alternative drive systems, the fuel cell electric propulsion system has the highest potential to compete with the internal combustion engine. For this reason, Daimler-Benz AG has entered into a co-operative alliance with Ballard Power Systems, with the objectives of bringing fuel cell vehicles to the market. Apart from the fuel cell itself, fuel cell vehicles require comprehensive system technology to provide fuel and air supply, cooling, energy management, electric and electronic functions. The system technology determines to a large extent the cost, weight, efficiency, performance and overall customer benefit of fuel cell vehicles. Hence, Daimler-Benz and Ballard are pooling their expertise in fuel cell system technology in a joint company, with the aim of bringing their fuel cell vehicular systems to the stage of maturity required for market entry as early as possible. Hydrogen-fuelled zero-emission fuel cell transit `buses' will be the first market segment addressed, with an emphasis on the North American and European markets. The first buses are already scheduled for delivery to customers in late 1997. Since a liquid fuel like methanol is easier to handle in passenger cars, fuel reforming technologies are developed and will shortly be demonstrated in a prototype, as well. The presentation will cover concepts of fuel cell vehicles with an emphasis on system technology, the related testing procedures and results as well as an outline of market entry strategies.

  17. U.S. Army PEM fuel cell programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, A.S.; Jacobs, R.

    The United States Army has identified the need for lightweight power sources to provide the individual soldier with continuous power for extended periods without resupply. Due to the high cost of primary batteries and the high weight of rechargeable batteries, fuel cell technology is being developed to provide a power source for the individual soldier, sensors, communications equipment and other various applications in the Army. Current programs are in the tech base area and will demonstrate Proton Exchange Membrane (PEM) Fuel Cell Power Sources with low weight and high energy densities. Fuel Cell Power Sources underwent user evaluations in 1996more » that showed a power source weight reduction of 75%. The quiet operation along with the ability to refuel much like an engine was well accepted by the user and numerous applications were investigated. These programs are now aimed at further weight reduction for applications that are weight critical; system integration that will demonstrate a viable military power source; refining the user requirements; and planning for a transition to engineering development.« less

  18. DOE Hydrogen & Fuel Cell Overview

    DTIC Science & Technology

    2011-01-13

    Overview of Combined Heat+Power PowerElectricity Natural Gas Heat + Cooling Natural Gas or Biogas ...Fuel Cell Technologies Program eere.energy.gov Source: US DOE 10/2010 Biogas Benefits: Preliminary Analysis Stationary fuel...with the national grid. Source: US DOE 1/2011 6 | Fuel Cell Technologies Program eere.energy.gov Biogas Resource Example

  19. Residential Fuel Cell Demonstration Handbook

    NASA Astrophysics Data System (ADS)

    Torrero, E.; McClelland, R.

    2002-07-01

    This report is a guide for rural electric cooperatives engaged in field testing of equipment and in assessing related application and market issues. Dispersed generation and its companion fuel cell technology have attracted increased interest by rural electric cooperatives and their customers. In addition, fuel cells are a particularly interesting source because their power quality, efficiency, and environmental benefits have now been coupled with major manufacturer development efforts. The overall effort is structured to measure the performance, durability, reliability, and maintainability of these systems, to identify promising types of applications and modes of operation, and to assess the related prospect for future use. In addition, technical successes and shortcomings will be identified by demonstration participants and manufacturers using real-world experience garnered under typical operating environments.

  20. Preventing CO poisoning in fuel cells

    DOEpatents

    Gottesfeld, Shimshon

    1990-01-01

    Proton exchange membrane (PEM) fuel cell performance with CO contamination of the H.sub.2 fuel stream is substantially improved by injecting O.sub.2 into the fuel stream ahead of the fuel cell. It is found that a surface reaction occurs even at PEM operating temperatures below about 100.degree. C. to oxidatively remove the CO and restore electrode surface area for the H.sub.2 reaction to generate current. Using an O.sub.2 injection, a suitable fuel stream for a PEM fuel cell can be formed from a methanol source using conventional reforming processes for producing H.sub.2.

  1. Development of low-loading, carbon monoxide tolerant PEM fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Haug, Andrew Thomas

    This work discusses the problems of, and potential solutions to, high catalyst cost of and carbon monoxide (CO) poisoning of the proton-exchange membrane fuel cell (PEMFC). As this is a comprehensive work, background on fuel cells and specifically PEMFCs is first presented. A discussion of the current status of PEMFCs is presented showing ongoing work for stationary, transportation, portable and military applications. This leads into two of the more significant problems preventing widespread commercialization of PEMFC technology: poisoning of the catalyst by CO and the cost of the catalyst. A thorough examination of CO poisoning of the PEMFC anode is presented from how CO comes to be present in the feed stream of the PEMFC anode to how it then poisons the PEMFC anode. The first work presented here describes the development of a novel CO tolerant anode (the Ruthenium filter). It shows that by placing a layer of carbon-supported Ruthenium catalyst between the Pt catalyst and the anode flow field to form a filter, tolerance to CO will be increased relative to a Pt:Ru alloy when oxygen is added to the anode fuel stream. Secondly, after an introduction to catalyst preparation techniques used today and a brief discussion of catalyst-cost in PEMFCs, it is shown how sputter-deposition technology may be used to create more kinetically active PEMFC catalyst electrodes versus standard ink-based techniques. The technologies of the Ru filter and sputter-deposition are then combined to create a low-loading, CO tolerant anode for the PEMFC. In the final work, the effect of the airbleed on CO oxidation is then modeled. In the concluding chapter, it is shown how the work presented can lead the PEMFC closer to large-scale commercialization. The Appendix A provides a detailed method by which PEMFC MEAs were manufactured using catalyst inks. This method served as the basis for all original works presented. Appendix B--F provide further background and information on the mathematical

  2. Novel carbon-ion fuel cells. Quarterly technical report, April--June 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cocks, F.H.

    1996-11-01

    This report presents research to develop a new type of of fuel cell using a solid electrolyte that transports carbon ions. This new class of fuel cell would use solid C dissolved in molten metal (carbide) as a fuel reservoir and anode; thus expensive gas or liquid fuel would not be required. Thermodynamic efficiency of carbon-ion fuel cells is reviewed, as are electrolyte crystal structures (oxide and fluorite carbides). The sequence of laboratory research procedures for developing a solid C-ion electrolyte and to determine the ionic conductivity of C ions therein is outlined; results of the laboratory research to datemore » are summarized, including XRD analysis of crystal structures and transition temperatures of carbides (La, Ce, Be, Al) and SIMS of carbon isotopes.« less

  3. Solar energy powered microbial fuel cell with a reversible bioelectrode.

    PubMed

    Strik, David P B T B; Hamelers, Hubertus V M; Buisman, Cees J N

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel cells is the pH membrane gradient which reduces cell voltage and power output. This problem is caused by acid production at the anode, alkaline production at the cathode, and the nonspecific proton exchange through the membrane. Here we report a solution for a new kind of solar energy powered microbial fuel cell via development of a reversible bioelectrode responsible for both biocatalyzed anodic and cathodic electron transfer. Anodic produced protons were used for the cathodic reduction reaction which held the formation of a pH membrane gradient. The microbial fuel cell continuously generated electricity and repeatedly reversed polarity dependent on aeration or solar energy exposure. Identified organisms within biocatalyzing biofilm of the reversible bioelectrode were algae, (cyano)bacteria and protozoa. These results encourage application of solar energy powered microbial fuel cells.

  4. Fuel cell applied research: Electrocatalysis and materials

    NASA Astrophysics Data System (ADS)

    Srinivasan, S.; Isaacs, H.; McBreen, J.; Ogrady, W. E.; Olender, H.; Olmer, L. J.; Schouler, E. J. L.; Adzic, R. R.

    1980-03-01

    The effect of underpotential deposited metal layers on the electrocatalysis of fuel cell reactions is studied. The potential for developing organic compound/air fuel cells using underpotential deposited Pb adatoms to enhance the electrocatalysis of the fuel electrode is explored. The effects of adsorbed layers of Pb, Tl and Bi on formic acid and methanol oxidation on platinum in 85 percent H3PO4 were investigated. The effect of crystal orientation on formic acid oxidation on platinum in 1 M CHlO2 was investigated. The kinetics of the oxygen reduction and evolution reactions at the electrode (metal or oxide) solid electrolyte (yttria stabilized zirconia) interface were investigated using ac and dc techniques.

  5. Fuel cell generator

    DOEpatents

    Makiel, Joseph M.

    1985-01-01

    A high temperature solid electrolyte fuel cell generator comprising a housing means defining a plurality of chambers including a generator chamber and a combustion products chamber, a porous barrier separating the generator and combustion product chambers, a plurality of elongated annular fuel cells each having a closed end and an open end with the open ends disposed within the combustion product chamber, the cells extending from the open end through the porous barrier and into the generator chamber, a conduit for each cell, each conduit extending into a portion of each cell disposed within the generator chamber, each conduit having means for discharging a first gaseous reactant within each fuel cell, exhaust means for exhausting the combustion product chamber, manifolding means for supplying the first gaseous reactant to the conduits with the manifolding means disposed within the combustion product chamber between the porous barrier and the exhaust means and the manifolding means further comprising support and bypass means for providing support of the manifolding means within the housing while allowing combustion products from the first and a second gaseous reactant to flow past the manifolding means to the exhaust means, and means for flowing the second gaseous reactant into the generator chamber.

  6. 1990 fuel cell seminar: Program and abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-31

    This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.

  7. Open end protection for solid oxide fuel cells

    DOEpatents

    Zafred, Paolo R.; Dederer, Jeffrey T.; Tomlins, Gregory W.; Toms, James M.; Folser, George R.; Schmidt, Douglas S.; Singh, Prabhakar; Hager, Charles A.

    2001-01-01

    A solid oxide fuel cell (40) having a closed end (44) and an open end (42) operates in a fuel cell generator (10) where the fuel cell open end (42) of each fuel cell contains a sleeve (60, 64) fitted over the open end (42), where the sleeve (60, 64) extends beyond the open end (42) of the fuel cell (40) to prevent degradation of the interior air electrode of the fuel cell by fuel gas during operation of the generator (10).

  8. Air-Independent Solid Oxide Fuel Cells for NASA's LOX-CH4 Landers

    NASA Technical Reports Server (NTRS)

    Ryan, Abigail C.; Araghi, Koorosh R.; Farmer, Serene C.

    2013-01-01

    Gemini, Apollo, and Space Shuttle used fuel cells as main power source for vehicle and water source for life support and thermal PEM (Gemini) and Alkaline (Apollo, Shuttle) fuel cells were used Ideal for short (less than 3 weeks) missions when the required O2 and H2 can be launched with the vehicle. New missions that might require long-duration stays in orbit or at a habitat, cannot rely on the availability of pure reactants but should also aim to be sun-independent - a problem for which Solid Oxide Fuel Cells might be the answer. Recently, NASA has investigated & developed LOX/CH4-propelled landers (Altair, MORPHEUS). In order to preserve mission flexibility, fuel cells are being studied as a potential power source. Much of NASA's fuel cell development has been focused on creating a dead-headed, non-flow through PEM fuel cells which would weigh less and be more reliable than the existing Alkaline and PEM technology; however, LOX/CH4 as a propellant introduces SOFCs as a power option due to their ability to accept those reactants without much reforming.

  9. General Motors Partners with NREL to Reduce Automotive Fuel Cell Costs |

    Science.gov Websites

    Reduce Automotive Fuel Cell Costs General Motors (GM) is partnering with NREL on a multiyear , multimillion-dollar joint research and development effort to lower the cost of automotive fuel cell stacks

  10. Fuel Cell Buses in U.S. Transit Fleets : Current Status 2014

    DOT National Transportation Integrated Search

    2014-12-03

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. Various stakeholders, including d...

  11. Back-Up/ Peak Shaving Fuel Cell System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staudt, Rhonda L.

    2008-05-28

    This Final Report covers the work executed by Plug Power from 8/11/03 – 10/31/07 statement of work for Topic 2: advancing the state of the art of fuel cell technology with the development of a new generation of commercially viable, stationary, Back-up/Peak-Shaving fuel cell systems, the GenCore II. The Program cost was $7.2 M with the Department of Energy share being $3.6M and Plug Power’s share being $3.6 M. The Program started in August of 2003 and was scheduled to end in January of 2006. The actual program end date was October of 2007. A no cost extension was grated.more » The Department of Energy barriers addressed as part of this program are: Technical Barriers for Distributed Generation Systems: o Durability o Power Electronics o Start up time Technical Barriers for Fuel Cell Components: o Stack Material and Manufacturing Cost o Durability o Thermal and water management Background The next generation GenCore backup fuel cell system to be designed, developed and tested by Plug Power under the program is the first, mass-manufacturable design implementation of Plug Power’s GenCore architected platform targeted for battery and small generator replacement applications in the telecommunications, broadband and UPS markets. The next generation GenCore will be a standalone, H2 in-DC-out system. In designing the next generation GenCore specifically for the telecommunications market, Plug Power is teaming with BellSouth Telecommunications, Inc., a leading industry end user. The final next generation GenCore system is expected to represent a market-entry, mass-manufacturable and economically viable design. The technology will incorporate: • A cost-reduced, polymer electrolyte membrane (PEM) fuel cell stack tailored to hydrogen fuel use • An advanced electrical energy storage system • A modular, scalable power conditioning system tailored to market requirements • A scaled-down, cost-reduced balance of plant (BOP) • Network Equipment Building Standards

  12. Performance of a Fuel-Cell-Powered, Small Electric Airplane Assessed

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    2004-01-01

    Rapidly emerging fuel-cell-power technologies may be used to launch a new revolution of electric propulsion systems for light aircraft. Future small electric airplanes using fuel cell technologies hold the promise of high reliability, low maintenance, low noise, and - with the exception of water vapor - zero emissions. An analytical feasibility and performance assessment was conducted by NASA Glenn Research Center's Airbreathing Systems Analysis Office of a fuel-cell-powered, propeller-driven, small electric airplane based on a model of the MCR-01 two-place kitplane (Dyn'Aero, Darois, France). This assessment was conducted in parallel with an ongoing effort by the Advanced Technology Products Corporation and the Foundation for Advancing Science and Technology Education. Their project - partially funded by a NASA grant - is to design, build, and fly the first manned, continuously propelled, nongliding electric airplane. In our study, an analytical performance model of a proton exchange membrane (PEM) fuel cell propulsion system was developed and applied to a notional, two-place light airplane modeled after the MCR-01 kitplane. The PEM fuel cell stack was fed pure hydrogen fuel and humidified ambient air via a small automotive centrifugal supercharger. The fuel cell performance models were based on chemical reaction analyses calibrated with published data from the fledgling U.S. automotive fuel cell industry. Electric propeller motors, rated at two shaft power levels in separate assessments, were used to directly drive a two-bladed, variable-pitch propeller. Fuel sources considered were compressed hydrogen gas and cryogenic liquid hydrogen. Both of these fuel sources provided pure, contaminant-free hydrogen for the PEM cells.

  13. Review of Fuel Cell Technologies for Military Land Vehicles

    DTIC Science & Technology

    2014-09-01

    fuel cell technologies for APUs are Proton Exchange Membrane Fuel Cells ( PEMFC ), direct methanol fuel cells and Solid Oxide Fuel Cells (SOFC). The...6 4.2 Proton Exchange Membrane Fuel Cells ( PEMFC ...OEM Original Equipment Manufacturer PEM Proton Exchange Membrane PEMFC Proton Exchange Membrane Fuel Cell SOFC Solid Oxide Fuel Cell TRL Technical

  14. Proton exchange membrane fuel cells for space and electric vehicle applications: From basic research to technology development

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Mukerjee, Sanjeev; Parthasarathy, A.; CesarFerreira, A.; Wakizoe, Masanobu; Rho, Yong Woo; Kim, Junbom; Mosdale, Renaut A.; Paetzold, Ronald F.; Lee, James

    1994-01-01

    The proton exchange membrane fuel cell (PEMFC) is one of the most promising electrochemical power sources for space and electric vehicle applications. The wide spectrum of R&D activities on PEMFC's, carried out in our Center from 1988 to date, is as follows (1) Electrode Kinetic and Electrocatalysis of Oxygen Reduction; (2) Optimization of Structures of Electrodes and of Membrane and Electrode Assemblies; (3) Selection and Evaluation of Advanced Proton Conducting Membranes and of Operating Conditions to Attain High Energy Efficiency; (4) Modeling Analysis of Fuel Cell Performance and of Thermal and Water Management; and (5) Engineering Design and Development of Multicell Stacks. The accomplishments on these tasks may be summarized as follows: (1) A microelectrode technique was developed to determine the electrode kinetic parameters for the fuel cell reactions and mass transport parameters for the H2 and O2 reactants in the proton conducting membrane. (2) High energy efficiencies and high power densities were demonstrated in PEMFCs with low platinum loading electrodes (0.4 mg/cm(exp 2) or less), advanced membranes and optimized structures of membrane and electrode assemblies, as well as operating conditions. (3) The modeling analyses revealed methods to minimize mass transport limitations, particularly with air as the cathodic reactant; and for efficient thermal and water management. (4) Work is in progress to develop multi-kilowatt stacks with the electrodes containing low platinum loadings.

  15. Technology status: Batteries and fuel cells

    NASA Technical Reports Server (NTRS)

    Fordyce, J. S.

    1978-01-01

    The current status of research and development programs on batteries and fuel cells and the technology goals being pursued are discussed. Emphasis is placed upon those technologies relevant to earth orbital electric energy storage applications.

  16. The Role of Innovation Regimes and Policy for Creating Radical Innovations: Comparing Some Aspects of Fuel Cells and Hydrogen Technology Development with the Development of Internet and GSM

    ERIC Educational Resources Information Center

    Godoe, Helge

    2006-01-01

    Telegraphy, the distant ancestor of Internet and GSM (Global System for Mobile Communications), was invented by Samuel Morse in 1838. One year later, William Grove invented the fuel cell. Although numerous highly successful innovations stemming from telegraphy may be observed, the development of fuel cells has been insignificant, slow, and erratic…

  17. Utilization of methanol for polymer electrolyte fuel cells in mobile systems

    NASA Astrophysics Data System (ADS)

    Schmidt, V. M.; Brockerhoff, P.; Hohlein, B.; Menzer, R.; Stimming, U.

    1994-04-01

    The constantly growing volume of road traffic requires the introduction of new vehicle propulsion systems with higher efficiency and drastically reduced emission rates. As part of the fuel cell programme of the Research Centre Julich a vehicle propulsion system with methanol as secondary energy carrier and a polymer electrolyte membrane fuel cell (PEMFC) as the main component for energy conversion is developed. The fuel gas is produced by a heterogeneously catalyzed steam reforming reaction in which methanol is converted to H2, CO and CO2. The required energy is provided by the catalytic conversion of methanol for both heating up the system and reforming methanol. The high CO content of the fuel gas requires further processing of the gas or the development of new electrocatalysts for the anode. Various Pt-Ru alloys show promising behaviour as CO-tolerant anodes. The entire fuel cell system is discussed in terms of energy and emission balances. The development of important components is described and experimental results are discussed.

  18. Flexible interconnects for fuel cell stacks

    DOEpatents

    Lenz, David J.; Chung, Brandon W.; Pham, Ai Quoc

    2004-11-09

    An interconnect that facilitates electrical connection and mechanical support with minimal mechanical stress for fuel cell stacks. The interconnects are flexible and provide mechanically robust fuel cell stacks with higher stack performance at lower cost. The flexible interconnects replace the prior rigid rib interconnects with flexible "fingers" or contact pads which will accommodate the imperfect flatness of the ceramic fuel cells. Also, the mechanical stress of stacked fuel cells will be smaller due to the flexibility of the fingers. The interconnects can be one-sided or double-sided.

  19. Solid oxide fuel cell generator

    DOEpatents

    Draper, Robert; George, Raymond A.; Shockling, Larry A.

    1993-01-01

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

  20. Energy harvesting by implantable abiotically catalyzed glucose fuel cells

    NASA Astrophysics Data System (ADS)

    Kerzenmacher, S.; Ducrée, J.; Zengerle, R.; von Stetten, F.

    Implantable glucose fuel cells are a promising approach to realize an autonomous energy supply for medical implants that solely relies on the electrochemical reaction of oxygen and glucose. Key advantage over conventional batteries is the abundant availability of both reactants in body fluids, rendering the need for regular replacement or external recharging mechanisms obsolete. Implantable glucose fuel cells, based on abiotic catalysts such as noble metals and activated carbon, have already been developed as power supply for cardiac pacemakers in the late-1960s. Whereas, in vitro and preliminary in vivo studies demonstrated their long-term stability, the performance of these fuel cells is limited to the μW-range. Consequently, no further developments have been reported since high-capacity lithium iodine batteries for cardiac pacemakers became available in the mid-1970s. In recent years research has been focused on enzymatically catalyzed glucose fuel cells. They offer higher power densities than their abiotically catalyzed counterparts, but the limited enzyme stability impedes long-term application. In this context, the trend towards increasingly energy-efficient low power MEMS (micro-electro-mechanical systems) implants has revived the interest in abiotic catalysts as a long-term stable alternative. This review covers the state-of-the-art in implantable abiotically catalyzed glucose fuel cells and their development since the 1960s. Different embodiment concepts are presented and the historical achievements of academic and industrial research groups are critically reviewed. Special regard is given to the applicability of the concept as sustainable micro-power generator for implantable devices.

  1. Carbonate fuel cell system with thermally integrated gasification

    DOEpatents

    Steinfeld, G.; Meyers, S.J.; Lee, A.

    1996-09-10

    A fuel cell system is described which employs a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell. 2 figs.

  2. Automated assembling of single fuel cell units for use in a fuel cell stack

    NASA Astrophysics Data System (ADS)

    Jalba, C. K.; Muminovic, A.; Barz, C.; Nasui, V.

    2017-05-01

    The manufacturing of PEMFC stacks (POLYMER ELEKTROLYT MEMBRAN Fuel Cell) is nowadays still done by hand. Over hundreds of identical single components have to be placed accurate together for the construction of a fuel cell stack. Beside logistic problems, higher total costs and disadvantages in weight the high number of components produce a higher statistic interference because of faulty erection or material defects and summation of manufacturing tolerances. The saving of costs is about 20 - 25 %. Furthermore, the total weight of the fuel cells will be reduced because of a new sealing technology. Overall a one minute cycle time has to be aimed per cell at the manufacturing of these single components. The change of the existing sealing concept to a bonded sealing is one of the important requisites to get an automated manufacturing of single cell units. One of the important steps for an automated gluing process is the checking of the glue application by using of an image processing system. After bonding the single fuel cell the sealing and electrical function can be checked, so that only functional and high qualitative cells can get into further manufacturing processes.

  3. Hydrogen generation from natural gas for the fuel cell systems of tomorrow

    NASA Astrophysics Data System (ADS)

    Dicks, Andrew L.

    In most cases hydrogen is the preferred fuel for use in the present generation of fuel cells being developed for commercial applications. Of all the potential sources of hydrogen, natural gas offers many advantages. It is widely available, clean, and can be converted to hydrogen relatively easily. When catalytic steam reforming is used to generate hydrogen from natural gas, it is essential that sulfur compounds in the natural gas are removed upstream of the reformer and various types of desulfurisation processes are available. In addition, the quality of fuel required for each type of fuel cell varies according to the anode material used, and the cell temperature. Low temperature cells will not tolerate high concentrations of carbon monoxide, whereas the molten fuel cell (MCFC) and solid oxide fuel cell (SOFC) anodes contain nickel on which it is possible to electrochemically oxidise carbon monoxide directly. The ability to internally reform fuel gas is a feature of the MCFC and SOFC. Internal reforming can give benefits in terms of increased electrical efficiency owing to the reduction in the required cell cooling and therefore parasitic system losses. Direct electrocatalysis of hydrocarbon oxidation has been the elusive goal of fuel cell developers over many years and recent laboratory results are encouraging. This paper reviews the principal methods of converting natural gas into hydrogen, namely catalytic steam reforming, autothermic reforming, pyrolysis and partial oxidation; it reviews currently available purification techniques and discusses some recent advances in internal reforming and the direct use of natural gas in fuel cells.

  4. Hydrogen Fuel Cell Vehicle Fuel Economy Testing at the U.S. EPA National Vehicle and Fuel Emissions Laboratory (SAE Paper 2004-01-2900)

    EPA Science Inventory

    The introduction of hydrogen fuel cell vehicles and their new technology has created the need for development of new fuel economy test procedures and safety procedures during testing. The United States Environmental Protection Agency-National Vehicle Fuels and Emissions Laborato...

  5. 3D visualization of membrane failures in fuel cells

    NASA Astrophysics Data System (ADS)

    Singh, Yadvinder; Orfino, Francesco P.; Dutta, Monica; Kjeang, Erik

    2017-03-01

    Durability issues in fuel cells, due to chemical and mechanical degradation, are potential impediments in their commercialization. Hydrogen leak development across degraded fuel cell membranes is deemed a lifetime-limiting failure mode and potential safety issue that requires thorough characterization for devising effective mitigation strategies. The scope and depth of failure analysis has, however, been limited by the 2D nature of conventional imaging. In the present work, X-ray computed tomography is introduced as a novel, non-destructive technique for 3D failure analysis. Its capability to acquire true 3D images of membrane damage is demonstrated for the very first time. This approach has enabled unique and in-depth analysis resulting in novel findings regarding the membrane degradation mechanism; these are: significant, exclusive membrane fracture development independent of catalyst layers, localized thinning at crack sites, and demonstration of the critical impact of cracks on fuel cell durability. Evidence of crack initiation within the membrane is demonstrated, and a possible new failure mode different from typical mechanical crack development is identified. X-ray computed tomography is hereby established as a breakthrough approach for comprehensive 3D characterization and reliable failure analysis of fuel cell membranes, and could readily be extended to electrolyzers and flow batteries having similar structure.

  6. Impact of hydrogen SAE J2601 fueling methods on fueling time of light-duty fuel cell electric vehicles

    DOE PAGES

    Reddi, Krishna; Elgowainy, Amgad; Rustagi, Neha; ...

    2017-05-16

    Hydrogen fuel cell electric vehicles (HFCEVs) are zero-emission vehicles (ZEVs) that can provide drivers a similar experience to conventional internal combustion engine vehicles (ICEVs), in terms of fueling time and performance (i.e. power and driving range). The Society of Automotive Engineers (SAE) developed fueling protocol J2601 for light-duty HFCEVs to ensure safe vehicle fills while maximizing fueling performance. This study employs a physical model that simulates and compares the fueling performance of two fueling methods, known as the “lookup table” method and the “MC formula” method, within the SAE J2601 protocol. Both the fueling methods provide fast fueling of HFCEVsmore » within minutes, but the MC formula method takes advantage of active measurement of precooling temperature to dynamically control the fueling process, and thereby provides faster vehicle fills. Here, the MC formula method greatly reduces fueling time compared to the lookup table method at higher ambient temperatures, as well as when the precooling temperature falls on the colder side of the expected temperature window for all station types. Although the SAE J2601 lookup table method is the currently implemented standard for refueling hydrogen fuel cell vehicles, the MC formula method provides significant fueling time advantages in certain conditions; these warrant its implementation in future hydrogen refueling stations for better customer satisfaction with fueling experience of HFCEVs.« less

  7. Impact of hydrogen SAE J2601 fueling methods on fueling time of light-duty fuel cell electric vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddi, Krishna; Elgowainy, Amgad; Rustagi, Neha

    Hydrogen fuel cell electric vehicles (HFCEVs) are zero-emission vehicles (ZEVs) that can provide drivers a similar experience to conventional internal combustion engine vehicles (ICEVs), in terms of fueling time and performance (i.e. power and driving range). The Society of Automotive Engineers (SAE) developed fueling protocol J2601 for light-duty HFCEVs to ensure safe vehicle fills while maximizing fueling performance. This study employs a physical model that simulates and compares the fueling performance of two fueling methods, known as the “lookup table” method and the “MC formula” method, within the SAE J2601 protocol. Both the fueling methods provide fast fueling of HFCEVsmore » within minutes, but the MC formula method takes advantage of active measurement of precooling temperature to dynamically control the fueling process, and thereby provides faster vehicle fills. Here, the MC formula method greatly reduces fueling time compared to the lookup table method at higher ambient temperatures, as well as when the precooling temperature falls on the colder side of the expected temperature window for all station types. Although the SAE J2601 lookup table method is the currently implemented standard for refueling hydrogen fuel cell vehicles, the MC formula method provides significant fueling time advantages in certain conditions; these warrant its implementation in future hydrogen refueling stations for better customer satisfaction with fueling experience of HFCEVs.« less

  8. Fuel Cell Buses in U.S. Transit Fleets : Current Status 2015

    DOT National Transportation Integrated Search

    2015-12-01

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of ...

  9. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2017

    DOT National Transportation Integrated Search

    2017-11-01

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of ...

  10. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2016

    DOT National Transportation Integrated Search

    2016-11-01

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of ...

  11. Fuel cell design and assembly

    DOEpatents

    Myerhoff, Alfred

    1984-01-01

    The present invention is directed to a novel bipolar cooling plate, fuel cell design and method of assembly of fuel cells. The bipolar cooling plate used in the fuel cell design and method of assembly has discrete opposite edge and means carried by the plate defining a plurality of channels extending along the surface of the plate toward the opposite edges. At least one edge of the channels terminates short of the edge of the plate defining a recess for receiving a fastener.

  12. Fuel cell gas management system

    DOEpatents

    DuBose, Ronald Arthur

    2000-01-11

    A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  13. Alternative Sources of Energy - An Introduction to Fuel Cells

    USGS Publications Warehouse

    Merewether, E.A.

    2003-01-01

    Fuel cells are important future sources of electrical power and could contribute to a reduction in the amount of petroleum imported by the United States. They are electrochemical devices similar to a battery and consist of a container, an anode, a cathode, catalysts, an intervening electrolyte, and an attached electrical circuit. In most fuel cell systems, hydrogen is supplied to the anode and oxygen to the cathode which results in the production of electricity, water, and heat. Fuel cells are comparatively efficient and reliable, have no moving parts, operate without combustion, and are modular and scale-able. Their size and shape are flexible and adaptable. In operation, they are nearly silent, are relatively safe, and generally do not pollute the environment. During recent years, scientists and engineers have developed and refined technologies relevant to a variety of fuel cells. Types of fuel cells are commonly identified by the composition of their electrolyte, which could be either phosphoric acid, an alkaline solution, a molten carbonate, a solid metal oxide, or a solid polymer membrane. The electrolyte in stationary power plants could be phosphoric acid, molten carbonates, or solid metal oxides. For vehicles and smaller devices, the electrolyte could be an alkaline solution or a solid polymer membrane. For most fuel cell systems, the fuel is hydrogen, which can be extracted by several procedures from many hydrogen-bearing substances, including alcohols, natural gas (mainly methane), gasoline, and water. There are important and perhaps unresolved technical problems associated with using fuel cells to power vehicles. The catalysts required in several systems are expensive metals of the platinum group. Moreover, fuel cells can freeze and not work in cold weather and can be damaged by impacts. Storage tanks for the fuels, particularly hydrogen, must be safe, inexpensive, of a reasonable size, and contain a supply sufficient for a trip of several hundred miles

  14. Metrology for Fuel Cell Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stocker, Michael; Stanfield, Eric

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. Themore » objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.« less

  15. Jet fuel based high pressure solid oxide fuel cell system

    NASA Technical Reports Server (NTRS)

    Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)

    2013-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  16. Jet Fuel Based High Pressure Solid Oxide Fuel Cell System

    NASA Technical Reports Server (NTRS)

    Srinivasan, Hari (Inventor); Hardin, Larry (Inventor); Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Dasgupta, Arindam (Inventor); Bayt, Robert (Inventor)

    2015-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  17. Compact fuel cell

    DOEpatents

    Jacobson, Craig; DeJonghe, Lutgard C.; Lu, Chun

    2010-10-19

    A novel electrochemical cell which may be a solid oxide fuel cell (SOFC) is disclosed where the cathodes (144, 140) may be exposed to the air and open to the ambient atmosphere without further housing. Current collector (145) extends through a first cathode on one side of a unit and over the unit through the cathode on the other side of the unit and is in electrical contact via lead (146) with housing unit (122 and 124). Electrical insulator (170) prevents electrical contact between two units. Fuel inlet manifold (134) allows fuel to communicate with internal space (138) between the anodes (154 and 156). Electrically insulating members (164 and 166) prevent the current collector from being in electrical contact with the anode.

  18. Fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A fuel cell technology program was established to advance the state-of-the art of hydrogen oxygen fuel cells using low temperature, potassium hydroxide electrolyte technology as the base. Cell and component testing confirmed that low temperature, potassium hydroxide electrolyte technology is compatible with the requirements of the space shuttle Phase B contractors. Testing of the DM-1 powerplant demonstrated all of the important requirements of the shuttle except operating life. Testing also identified DM-1 powerplant life limiting mechanisms; hydrogen pump gear wear and pressurization of the cell stack over its design limits.

  19. Multi-stage fuel cell system method and apparatus

    DOEpatents

    George, Thomas J.; Smith, William C.

    2000-01-01

    A high efficiency, multi-stage fuel cell system method and apparatus is provided. The fuel cell system is comprised of multiple fuel cell stages, whereby the temperatures of the fuel and oxidant gas streams and the percentage of fuel consumed in each stage are controlled to optimize fuel cell system efficiency. The stages are connected in a serial, flow-through arrangement such that the oxidant gas and fuel gas flowing through an upstream stage is conducted directly into the next adjacent downstream stage. The fuel cell stages are further arranged such that unspent fuel and oxidant laden gases too hot to continue within an upstream stage because of material constraints are conducted into a subsequent downstream stage which comprises a similar cell configuration, however, which is constructed from materials having a higher heat tolerance and designed to meet higher thermal demands. In addition, fuel is underutilized in each stage, resulting in a higher overall fuel cell system efficiency.

  20. Fuel cell integrated with steam reformer

    DOEpatents

    Beshty, Bahjat S.; Whelan, James A.

    1987-01-01

    A H.sub.2 -air fuel cell integrated with a steam reformer is disclosed wherein a superheated water/methanol mixture is fed to a catalytic reformer to provide a continuous supply of hydrogen to the fuel cell, the gases exhausted from the anode of the fuel cell providing the thermal energy, via combustion, for superheating the water/methanol mixture.

  1. Status of solid polymer electrolyte fuel cell technology and potential for transportation applications

    NASA Astrophysics Data System (ADS)

    McElroy, J. F.; Nuttall, L. J.

    The solid polymer electrolyte (SPE) fuel cell represents the first fuel cell technology known to be used operationally. Current activities are mainly related to the development of a space regenerative fuel cell system for energy storage on board space stations, or other large orbiting vehicles and platforms. During 1981, a study was performed to determine the feasibility of using SPE fuel cells for automotive or other vehicular applications, using methanol as the fuel. The results of this study were very encouraging. Details concerning a conceptual automotive fuel cell power plant study are discussed, taking into account also a layout of major components for compact passenger car installation.

  2. Fuel Cell Buses in U.S. Transit Fleets : Current Status 2012

    DOT National Transportation Integrated Search

    2012-11-12

    This report is the sixth in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The repo...

  3. Fuel Cell Buses in U.S. Transit Fleets : Current Status 2013

    DOT National Transportation Integrated Search

    2013-12-01

    This report is the seventh in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. This r...

  4. Prolonging fuel cell stack lifetime based on Pontryagin's Minimum Principle in fuel cell hybrid vehicles and its economic influence evaluation

    NASA Astrophysics Data System (ADS)

    Zheng, C. H.; Xu, G. Q.; Park, Y. I.; Lim, W. S.; Cha, S. W.

    2014-02-01

    The lifetime of fuel cell stacks is a major issue currently, especially for automotive applications. In order to take into account the lifetime of fuel cell stacks while considering the fuel consumption minimization in fuel cell hybrid vehicles (FCHVs), a Pontryagin's Minimum Principle (PMP)-based power management strategy is proposed in this research. This strategy has the effect of prolonging the lifetime of fuel cell stacks. However, there is a tradeoff between the fuel cell stack lifetime and the fuel consumption when this strategy is applied to an FCHV. Verifying the positive economic influence of this strategy is necessary in order to demonstrate its superiority. In this research, the economic influence of the proposed strategy is assessed according to an evaluating cost which is dependent on the fuel cell stack cost, the hydrogen cost, the fuel cell stack lifetime, and the lifetime prolonging impact on the fuel cell stack. Simulation results derived from the proposed power management strategy are also used to evaluate the economic influence. As a result, the positive economic influence of the proposed PMP-based power management strategy is proved for both current and future FCHVs.

  5. Fuel cell power supply with oxidant and fuel gas switching

    DOEpatents

    McElroy, James F.; Chludzinski, Paul J.; Dantowitz, Philip

    1987-01-01

    This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation.

  6. Fuel cell power supply with oxidant and fuel gas switching

    DOEpatents

    McElroy, J.F.; Chludzinski, P.J.; Dantowitz, P.

    1987-04-14

    This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation. 2 figs.

  7. Solar Airplanes and Regenerative Fuel Cells

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    2007-01-01

    A solar electric aircraft with the potential to "fly forever" has captured NASA's interest, and the concept for such an aircraft was pursued under Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project. Feasibility of this aircraft happens to depend on the successful development of solar power technologies critical to NASA's Exploration Initiatives; hence, there was widespread interest throughout NASA to bring these technologies to a flight demonstration. The most critical is an energy storage system to sustain mission power during night periods. For the solar airplane, whose flight capability is already limited by the diffuse nature of solar flux and subject to latitude and time of year constraints, the feasibility of long endurance flight depends on a storage density figure of merit better than 400-600 watt-hr per kilogram. This figure of merit is beyond the capability of present day storage technologies (other than nuclear) but may be achievable in the hydrogen-oxygen regenerative fuel cell (RFC). This potential has led NASA to undertake the practical development of a hydrogen-oxygen regenerative fuel cell, initially as solar energy storage for a high altitude UAV science platform but eventually to serve as the primary power source for NASAs lunar base and other planet surface installations. Potentially the highest storage capacity and lowest weight of any non-nuclear device, a flight-weight RFC aboard a solar-electric aircraft that is flown continuously through several successive day-night cycles will provide the most convincing demonstration that this technology's widespread potential has been realized. In 1998 NASA began development of a closed cycle hydrogen oxygen PEM RFC under the Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project and continued its development, originally for a solar electric airplane flight, through FY2005 under the Low Emissions Alternative Power (LEAP) project. Construction of

  8. Thermofluid Modeling of Fuel Cells

    NASA Astrophysics Data System (ADS)

    Young, John B.

    2007-01-01

    Fuel cells offer the prospect of silent electrical power generation at high efficiency with near-zero pollutant emission. Many materials and fabrication problems have now been solved and attention has shifted toward system modeling, including the fluid flows that supply the cells with hydrogen and oxygen. This review describes the current thermofluid modeling capabilities for proton exchange membrane fuel cells (PEMFCs) and solid oxide fuel cells (SOFCs), the most promising candidates for commercial exploitation. Topics covered include basic operating principles and stack design, convective-diffusive flow in porous solids, special modeling issues for PEMFCs and SOFCs, and the use of computational fluid dynamics (CFD) methods.

  9. Effect of compressive force on PEM fuel cell performance

    NASA Astrophysics Data System (ADS)

    MacDonald, Colin Stephen

    Polymer electrolyte membrane (PEM) fuel cells possess the potential, as a zero-emission power source, to replace the internal combustion engine as the primary option for transportation applications. Though there are a number of obstacles to vast PEM fuel cell commercialization, such as high cost and limited durability, there has been significant progress in the field to achieve this goal. Experimental testing and analysis of fuel cell performance has been an important tool in this advancement. Experimental studies of the PEM fuel cell not only identify unfiltered performance response to manipulation of variables, but also aid in the advancement of fuel cell modelling, by allowing for validation of computational schemes. Compressive force used to contain a fuel cell assembly can play a significant role in how effectively the cell functions, the most obvious example being to ensure proper sealing within the cell. Compression can have a considerable impact on cell performance beyond the sealing aspects. The force can manipulate the ability to deliver reactants and the electrochemical functions of the cell, by altering the layers in the cell susceptible to this force. For these reasons an experimental study was undertaken, presented in this thesis, with specific focus placed on cell compression; in order to study its effect on reactant flow fields and performance response. The goal of the thesis was to develop a consistent and accurate general test procedure for the experimental analysis of a PEM fuel cell in order to analyse the effects of compression on performance. The factors potentially affecting cell performance, which were a function of compression, were identified as: (1) Sealing and surface contact; (2) Pressure drop across the flow channel; (3) Porosity of the GDL. Each factor was analysed independently in order to determine the individual contribution to changes in performance. An optimal degree of compression was identified for the cell configuration in

  10. Design and Development of a 30 Watt Solid Polymer Electrolyte Fuel Cell Power Source Fueled with Calcium Hydride.

    DTIC Science & Technology

    1978-12-12

    hydri de and its integration with the fuel cell. I The combination of the SPE cel l with a hydride fuel offers -- comparedto batteries -- increased...demand changes without intermediate storage of hydrogen gas. In order to control the reacti on with water the hydri de is contained in a cartridge. The use

  11. Lightweight Stacks of Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Valdez, Thomas

    2004-01-01

    An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.

  12. Electrolytes for Hydrocarbon Air Fuel Cells.

    DTIC Science & Technology

    1981-01-01

    finding an electrolyte with sufficient electrochemical activity and stability to replace phosphoric acid in direct oxidation fuel cells. Commercially...and stability to replace phosphoric acid in direct oxidation fuel cells. Commercially available materials received prime consideration. However, ECO’s...was to obtain an electrolyte with sufficient electrochemical activity and stability to replace phosphoric acid in direct oxidation fuel cells. This

  13. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, Leslie; Post, Matthew; Jeffers, Matthew

    This report, published annually, summarizes the progress of fuel cell electric bus development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. Funding for this effort is provided by the U.S. Department of Energy's Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy and by the U.S. Department of Transportation's Federal Transit Administration. The 2016 summary results primarily focus on the most recent year for each demonstration, from August 2015 through Julymore » 2016. The results for these buses account for more than 550,000 miles traveled and 59,500 hours of fuel cell power system operation. The primary results presented in the report are from three demonstrations of two different fuel-cell-dominant bus designs: Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California; American Fuel Cell Bus Project at SunLine Transit Agency in California; and American Fuel Cell Bus Project at the University of California at Irvine.« less

  14. High specific power, direct methanol fuel cell stack

    DOEpatents

    Ramsey, John C [Los Alamos, NM; Wilson, Mahlon S [Los Alamos, NM

    2007-05-08

    The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

  15. Distillate fuel-oil processing for phosphoric acid fuel cell power plants

    NASA Astrophysics Data System (ADS)

    1980-02-01

    Efforts to develop distillate oil steam reforming processes are reviewed, and the applicability of these processes for integration with the fuel cell are discussed. The development efforts can be grouped into the following processing approaches: high temperature steam reforming; autothermal reforming; autothermal gasification; and ultra desulfurization followed by steam reforming. Sulfur in the feed is a problem in the process development.

  16. Fuel Cell Technologies Office FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    The Fuel Cell Technologies Office develops technologies to enable fuel cells to be competitive in diverse applications, with a focus on light-duty vehicles (at less than $40/kW) and to enable renewable hydrogen to be cost-competitive with gasoline (at less than $4 per gallon gasoline equivalent (gge), delivered and dispensed).

  17. ELECTROCHEMISTRY AND ON-CELL REFORMATION MODELING FOR SOLID OXIDE FUEL CELL STACKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Recknagle, Kurtis P.; Jarboe, Daniel T.; Johnson, Kenneth I.

    2007-01-16

    ABSTRACT Providing adequate and efficient cooling schemes for solid-oxide-fuel-cell (SOFC) stacks continues to be a challenge coincident with the development of larger, more powerful stacks. The endothermic steam-methane reformation reaction can provide cooling and improved system efficiency when performed directly on the electrochemically active anode. Rapid kinetics of the endothermic reaction typically causes a localized temperature depression on the anode near the fuel inlet. It is desirable to extend the endothermic effect over more of the cell area and mitigate the associated differences in temperature on the cell to alleviate subsequent thermal stresses. In this study, modeling tools validated formore » the prediction of fuel use, on-cell methane reforming, and the distribution of temperature within SOFC stacks, are employed to provide direction for modifying the catalytic activity of anode materials to control the methane conversion rate. Improvements in thermal management that can be achieved through on-cell reforming is predicted and discussed. Two operating scenarios are considered: one in which the methane fuel is fully pre-reformed, and another in which a substantial percentage of the methane is reformed on-cell. For the latter, a range of catalytic activity is considered and the predicted thermal effects on the cell are presented. Simulations of the cell electrochemical and thermal performance with and without on-cell reforming, including structural analyses, show a substantial decrease in thermal stresses for an on-cell reforming case with slowed methane conversion.« less

  18. System Regulates the Water Contents of Fuel-Cell Streams

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo; Lazaroff, Scott

    2005-01-01

    An assembly of devices provides for both humidification of the reactant gas streams of a fuel cell and removal of the product water (the water generated by operation of the fuel cell). The assembly includes externally-sensing forward-pressure regulators that supply reactant gases (fuel and oxygen) at variable pressures to ejector reactant pumps. The ejector supply pressures depend on the consumption flows. The ejectors develop differential pressures approximately proportional to the consumption flow rates at constant system pressure and with constant flow restriction between the mixer-outlet and suction ports of the ejectors. For removal of product water from the circulating oxygen stream, the assembly includes a water/gas separator that contains hydrophobic and hydrophilic membranes. The water separator imposes an approximately constant flow restriction, regardless of the quality of the two-phase flow that enters it from the fuel cell. The gas leaving the water separator is nearly 100 percent humid. This gas is returned to the inlet of the fuel cell along with a quantity of dry incoming oxygen, via the oxygen ejector, thereby providing some humidification.

  19. Fuel Cells Utilizing Oxygen From Air at Low Pressures

    NASA Technical Reports Server (NTRS)

    Cisar, Alan; Boyer, Chris; Greenwald, Charles

    2006-01-01

    A fuel cell stack has been developed to supply power for a high-altitude aircraft with a minimum of air handling. The fuel cell is capable of utilizing oxygen from ambient air at low pressure with no need for compression. For such an application, it is advantageous to take oxygen from the air (in contradistinction to carrying a supply of oxygen onboard), but it is a challenging problem to design a fuel-cell stack of reasonable weight that can generate sufficient power while operating at reduced pressures. The present fuel-cell design is a response to this challenge. The design features a novel bipolar plate structure in combination with a gas-diffusion structure based on a conductive metal core and a carbon gas-diffusion matrix. This combination makes it possible for the flow fields in the stack to have a large open fraction (ratio between open volume and total volume) to permit large volumes of air to flow through with exceptionally low backpressure. Operations at reduced pressure require a corresponding increase in the volume of air that must be handled to deliver the same number of moles of oxygen to the anodes. Moreover, the increase in the open fraction, relative to that of a comparable prior fuel-cell design, reduces the mass of the stack. The fuel cell has been demonstrated to operate at a power density as high as 105 W/cm2 at an air pressure as low as 2 psia (absolute pressure 14 kPa), which is the atmospheric pressure at an altitude of about 50,000 ft ( 15.2 km). The improvements in the design of this fuel cell could be incorporated into designs of other fuel cells to make them lighter in weight and effective at altitudes higher than those of prior designs. Potential commercial applications for these improvements include most applications now under consideration for fuel cells.

  20. Gold Nanoparticles-Enhanced Proton Exchange Membrane (PEM) Fuel Cell

    NASA Astrophysics Data System (ADS)

    Li, Hongfei; Pan, Cheng; Liu, Ping; Zhu, Yimei; Adzic, Radoslav; Rafailovich, Miriam

    Proton exchange membrane fuel cells have drawn great attention and been taken as a promising alternated energy source. One of the reasons hamper the wider application of PEM fuel cell is the catalytic poison effect from the impurity of the gas flow. Haruta has predicted that gold nanoparticles that are platelet shaped and have direct contact with the metal oxide substrate to be the perfect catalysts of the CO oxidization, yet the synthesis method is difficult to apply in the Fuel Cell. In our approach, thiol-functionalized gold nanoparticles were synthesized through two-phase method developed by Brust et al. We deposit these Au particles with stepped surface directly onto the Nafion membrane in the PEM fuel cell by Langmuir-Blodgett method, resulting in over 50% enhancement of the efficiency of the fuel cell. DFT calculations were conducted to understand the theory of this kind of enhancement. The results indicated that only when the particles were in direct surface contact with the membrane, where AuNPs attached at the end of the Nafion side chains, it could reduce the energy barrier for the CO oxidation that could happen at T<300K.

  1. Indirect-fired gas turbine dual fuel cell power cycle

    DOEpatents

    Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  2. Fuel Cells: Status and Technical/Economic Needs

    NASA Technical Reports Server (NTRS)

    Rambach, Glenn

    1996-01-01

    The need for fuel cell and alternative fuels has become increasingly important in that the U.S. spends 1 billion dollars per week to import oil, and is expected to import 80-100 billion per year in oil by the year 2010. These imports account for half of our oil supply. If 20% of the U.S. vehicle fleet were powered by fuel cells there would be: an offset 1.1 million barrels of oil per day; and a reduction of 2 million tons per year of regulated air pollutants. Fueling fuel cells with hydrogen from reformed natural gas results in more than 90% reduction in regulated emissions, and a 70% reduction in CO2, a greenhouse gas. And fueling fuel cells with hydrogen from renewables (wind, solar geothermal, hydro) results in total elimination of all emissions. When fuel cells become commercialized: they will improve America's economic competitiveness; and the regions where they are produced will benefit economically.

  3. Use of multi-functional flexible micro-sensors for in situ measurement of temperature, voltage and fuel flow in a proton exchange membrane fuel cell.

    PubMed

    Lee, Chi-Yuan; Chan, Pin-Cheng; Lee, Chung-Ju

    2010-01-01

    Temperature, voltage and fuel flow distribution all contribute considerably to fuel cell performance. Conventional methods cannot accurately determine parameter changes inside a fuel cell. This investigation developed flexible and multi-functional micro sensors on a 40 μm-thick stainless steel foil substrate by using micro-electro-mechanical systems (MEMS) and embedded them in a proton exchange membrane fuel cell (PEMFC) to measure the temperature, voltage and flow. Users can monitor and control in situ the temperature, voltage and fuel flow distribution in the cell. Thereby, both fuel cell performance and lifetime can be increased.

  4. Modular fuel-cell stack assembly

    DOEpatents

    Patel, Pinakin [Danbury, CT; Urko, Willam [West Granby, CT

    2008-01-29

    A modular multi-stack fuel-cell assembly in which the fuel-cell stacks are situated within a containment structure and in which a gas distributor is provided in the structure and distributes received fuel and oxidant gases to the stacks and receives exhausted fuel and oxidant gas from the stacks so as to realize a desired gas flow distribution and gas pressure differential through the stacks. The gas distributor is centrally and symmetrically arranged relative to the stacks so that it itself promotes realization of the desired gas flow distribution and pressure differential.

  5. Demonstration of optimum fuel-to-moderator ratio in a PWR unit fuel cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltus, M.A.; Pozsgai, C.

    1992-01-01

    Nuclear engineering students at The Pennsylvania State University develop scaled-down [[approx]350 MW(thermal)] pressurized water reactors (PWRs) using actual plants as references. The design criteria include maintaining the clad temperature below 2200[degree]F, fuel temperature below melting point, sufficient departure from nucleate boiling ratio (DNBR) margin, a beginning-of-life boron concentration that yields a negative moderator temperature coefficient, an adequate cycle power production (330 effective full-power days), and a batch loading scheme that is economical. The design project allows for many degrees of freedom (e.g., assembly number, pitch and height and batch enrichments) so that each student's result is unique. The iterative naturemore » of the design process is stressed in the course. The LEOPARD code is used for the unit cell depletion, critical boron, and equilibrium xenon calculations. Radial two-group diffusion equations are solved with the TWIDDLE-DEE code. The steady-state ZEBRA thermal-hydraulics program is used for calculating DNBR. The unit fuel cell pin radius and pitch (fuel-to-moerator ratio) for the scaled-down design, however, was set equal to the already optimized ratio for the reference PWR. This paper describes an honors project that shows how the optimum fuel-to-moderator ratio is found for a unit fuel cell shown in terms of neutron economics. This exercise illustrates the impact of fuel-to-moderator variations on fuel utilization factor and the effect of assuming space and energy separability.« less

  6. Application of the monolithic solid oxide fuel cell to space power systems

    NASA Astrophysics Data System (ADS)

    Myles, Kevin M.; Bhattacharyya, Samit K.

    1991-01-01

    The monolithic solid-oxide fuel cell (MSOFC) is a promising electrochemical power generation device that is currently under development at Argonne National Laboratory. The extremely high power density of the MSOFC leads to MSOFC systems that have sufficiently high energy densities that they are excellent candidates for a number of space missions. The fuel cell can also be operated in reverse, if it can be coupled to an external power source, to regenerate the fuel and oxidant from the water product. This feature further enhances the potential mission applications of the MSOFC. In this paper, the current status of the fuel cell development is presented—the focus being on fabrication and currently achievable performance. In addition, a specific example of a space power system, featuring a liquid metal cooled fast spectrum nuclear reactor and a monolithic solid oxide fuel cell, is presented to demonstrate the features of an integrated system.

  7. Yttria-stabilized zirconia solid oxide electrolyte fuel cells: Monolithic solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    1990-10-01

    The monolithic solid oxide fuel cell (MSOFC) is currently under development for a variety of applications including coal-based power generation. The MSOFC is a design concept that places the thin components of a solid oxide fuel cell in lightweight, compact, corrugated structure, and so achieves high efficiency and excellent performance simultaneously with high power density. The MSOFC can be integrated with coal gasification plants and is expected to have high overall efficiency in the conversion of the chemical energy of coal to electrical energy. This report describes work aimed at: (1) assessing manufacturing costs for the MSOFC and system costs for a coal-based plant; (2) modifying electrodes and electrode/electrolyte interfaces to improve the electrochemical performance of the MSOFC; and (3) testing the performance of the MSOFC on hydrogen and simulated coal gas. Manufacturing costs for both the coflow and crossflow MSOFC's were assessed based on the fabrication flow charts developed by direct scaleup of tape calendering and other laboratory processes. Integrated coal-based MSOFC systems were investigated to determine capital costs and costs of electricity. Design criteria were established for a coal-fueled 200-Mw power plant. Four plant arrangements were evaluated, and plant performance was analyzed. Interfacial modification involved modification of electrodes and electrode/electrolyte interfaces to improve the MSOFC electrochemical performance. Work in the cathode and cathode/electrolyte interface was concentrated on modification of electrode porosity, electrode morphology, electrode material, and interfacial bonding. Modifications of the anode and anode/electrolyte interface included the use of additives and improvement of nickel distribution. Single cells have been tested for their electrochemical performance. Performance data were typically obtained with humidified H2 or simulated coal gas and air or oxygen.

  8. Thin-Film Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex

    2009-01-01

    The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.

  9. Nanocrystalline cerium oxide materials for solid fuel cell systems

    DOEpatents

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  10. Miniature ceramic fuel cell

    DOEpatents

    Lessing, Paul A.; Zuppero, Anthony C.

    1997-06-24

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

  11. Advanced technology for extended endurance alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Martin, R. A.

    1987-01-01

    Advanced components have been developed for alkaline fuel cells with a view to the satisfaction of NASA Space Station design requirements for extended endurance. The components include a platinum-on-carbon catalyst anode, a potassium titanate-bonded electrolyte matrix, a lightweight graphite electrolyte reservoir plate, a gold-plated nickel-perforated foil electrode substrate, a polyphenylene sulfide cell edge frame material, and a nonmagnesium cooler concept. When incorporated into the alkaline fuel cell unit, these components are expected to yield regenerative operation in a low earth orbit Space Station with a design life greater than 5 years.

  12. Fuel cell system with combustor-heated reformer

    DOEpatents

    Pettit, William Henry

    2000-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

  13. Bonded polyimide fuel cell package

    DOEpatents

    Morse, Jeffrey D.; Jankowski, Alan; Graff, Robert T.; Bettencourt, Kerry

    2010-06-08

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  14. Bronx Zoo Fuel Cell Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang Pham

    A 200 kW Fuel Cell has been installed in the Lion House, Bronx Zoo, NY. The Fuel Cell is a 200 kW phosphoric acid type manufactured by United Technologies Corporation (UTC) and will provide thermal energy at 725,000 Btu/hr.

  15. Modeling two-phase flow in PEM fuel cell channels

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Basu, Suman; Wang, Chao-Yang

    2008-05-01

    This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M2 formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels.

  16. Enhanced methanol utilization in direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2001-10-02

    The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

  17. Intermediate-sized natural gas fueled carbonate fuel cell power plants

    NASA Astrophysics Data System (ADS)

    Sudhoff, Frederick A.; Fleming, Donald K.

    1994-04-01

    This executive summary of the report describes the accomplishments of the joint US Department of Energy's (DOE) Morgantown Energy Technology Center (METC) and M-C POWER Corporation's Cooperative Research and Development Agreement (CRADA) No. 93-013. This study addresses the intermediate power plant size between 2 megawatt (MW) and 200 MW. A 25 MW natural-gas, fueled-carbonate fuel cell power plant was chosen for this purpose. In keeping with recent designs, the fuel cell will operate under approximately three atmospheres of pressure. An expander/alternator is utilized to expand exhaust gas to atmospheric conditions and generate additional power. A steam-bottoming cycle is not included in this study because it is not believed to be cost effective for this system size. This study also addresses the simplicity and accuracy of a spreadsheet-based simulation with that of a full Advanced System for Process Engineering (ASPEN) simulation. The personal computer can fully utilize the simple spreadsheet model simulation. This model can be made available to all users and is particularly advantageous to the small business user.

  18. First responder training: Supporting commercialization of hydrogen and fuel cell technologies

    DOE PAGES

    Barilo, N. F.; Hamilton, J. J.; Weiner, S. C.

    2017-03-01

    A properly trained first responder community is critical to the successful introduction of hydrogen fuel cell applications and their transformation in how we use energy. Providing resources with accurate information and current knowledge is essential to the delivery of effective hydrogen and fuel cell-related first responder training. Furthermore, the California Fuel Cell Partnership and the Pacific Northwest National Laboratory have over 15 years of experience in developing and delivering hydrogen safety-related first responder training materials and programs. A National Hydrogen and Fuel Cell Emergency Response Training Resource was recently released (http://h2tools.org/fr/nt/). This training resource serves the delivery of a varietymore » of training regimens. Associated materials are adaptable for different training formats, ranging from high-level overview presentations to more comprehensive classroom training. Our paper presents what has been learned from the development and delivery of hydrogen safety-related first responder training programs (online, classroom, hands-on) by the respective organizations. We discussed the collaborative strategy being developed for enhancing training materials and methods for greater accessibility based on stakeholder input.« less

  19. First responder training: Supporting commercialization of hydrogen and fuel cell technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barilo, N. F.; Hamilton, J. J.; Weiner, S. C.

    A properly trained first responder community is critical to the successful introduction of hydrogen fuel cell applications and their transformation in how we use energy. Providing resources with accurate information and current knowledge is essential to the delivery of effective hydrogen and fuel cell-related first responder training. Furthermore, the California Fuel Cell Partnership and the Pacific Northwest National Laboratory have over 15 years of experience in developing and delivering hydrogen safety-related first responder training materials and programs. A National Hydrogen and Fuel Cell Emergency Response Training Resource was recently released (http://h2tools.org/fr/nt/). This training resource serves the delivery of a varietymore » of training regimens. Associated materials are adaptable for different training formats, ranging from high-level overview presentations to more comprehensive classroom training. Our paper presents what has been learned from the development and delivery of hydrogen safety-related first responder training programs (online, classroom, hands-on) by the respective organizations. We discussed the collaborative strategy being developed for enhancing training materials and methods for greater accessibility based on stakeholder input.« less

  20. Fuel cell power plants for automotive applications

    NASA Astrophysics Data System (ADS)

    McElroy, J. F.

    1983-02-01

    While the Solid Polymer Electrolyte (SPE) fuel cell has until recently not been considered competitive with such commercial and industrial energy systems as gas turbine generators and internal combustion engines, electrical current density improvements have markedly improved the capital cost/kW output rating performance of SPE systems. Recent studies of SPE fuel cell applicability to vehicular propulsion have indicated that with adequate development, a powerplant may be produced which will satisfy the performance, size and weight objectives required for viable electric vehicles, and that the cost for such a system would be competitive with alternative advanced power systems.

  1. Regenerative Fuel Cell Test Rig at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.; Scullin, Vincent J.; Bents, David J.

    2003-01-01

    The regenerative fuel cell development effort at Glenn Research Center (GRC) involves the integration of a dedicated fuel cell and electrolyzer into an energy storage system test rig. The test rig consists of a fuel cell stack, an electrolysis stack, cooling pumps, a water transfer pump, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, interconnecting tubing, nitrogen purge provisions, and instrumentation for control and monitoring purposes. The regenerative fuel cell (RFC) thus formed is a completely closed system which is capable of autonomous cyclic operation. The test rig provides direct current (DC) load and DC power supply to simulate power consumption and solar power input. In addition, chillers are used as the heat sink to dissipate the waste heat from the electrochemical stack operation. Various vents and nitrogen (N2) sources are included in case inert purging is necessary to safe the RFC test rig.

  2. Design and Operation of an Electrochemical Methanol Concentration Sensor for Direct Methanol Fuel Cell Systems

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Valdez, T. I.; Chun, W.

    2000-01-01

    The development of a 150-Watt packaged power source based on liquid feed direct methanol fuel cells is being pursued currently at the Jet propulsion Laboratory for defense applications. In our studies we find that the concentration of methanol in the fuel circulation loop affects the electrical performance and efficiency the direct methanol fuel cell systems significantly. The practical operation of direct methanol fuel cell systems, therefore, requires accurate monitoring and control of methanol concentration. The present paper reports on the principle and demonstration of an in-house developed electrochemical sensor suitable for direct methanol fuel cell systems.

  3. FUEL CELL ENERGY RECOVERY FROM LANDFILL GAS

    EPA Science Inventory

    International Fuel Cells Corporation is conducting a US Environmental Protection Agency (EPA) sponsored program to demonstrate energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The US EPA is interested in fuel cells for this application b...

  4. Energy 101: Fuel Cell Technology

    ScienceCinema

    None

    2018-05-30

    Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

  5. Vehicle Technologies and Fuel Cell Technologies Office Research and Development Programs: Prospective Benefits Assessment Report for Fiscal Year 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, T. S.; Birky, A.; Gohlke, David

    Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies Offices of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy invest in early-stage research of advanced batteries and electrification, engines and fuels, materials, and energy-efficient mobility systems; hydrogen production, delivery, and storage; and fuel cell technologies. This report documents the estimated benefits of successful development and implementation of advanced vehicle technologies. It presents a comparison of a scenario with completely successful implementation of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies (the Program Success case) to a future in whichmore » there is no contribution after Fiscal Year 2017 by the VTO or FCTO to these technologies (the No Program case). Benefits were attributed to individual program technology areas, which included FCTO research and development and the VTO programs of electrification, advanced combustion engines and fuels, and materials technology. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 24% to 30% higher than in the No Program case, while fuel economy for on-road medium- and heavy-duty vehicle stock could be as much as 13% higher. The resulting petroleum savings in 2035 were estimated to be as high as 1.9 million barrels of oil per day, and reductions in greenhouse gas emissions were estimated to be as high as 320 million metric tons of carbon dioxide equivalent per year. Projections of light-duty vehicle adoption indicate that although advanced-technology vehicles may be somewhat more expensive to purchase, the fuel savings result in a net reduction of consumer cost. In 2035, reductions in annual fuel expenditures for vehicles (both light- and heavy-duty) are projected to range from $86 billion to $109 billion (2015$), while the projected increase in new

  6. Materials Challenges for Automotive PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Gasteiger, Hubert

    2004-03-01

    Over the past few years, significant R efforts aimed at meeting the challenging cost and performance targets required for the use of Polymer Electrolyte Membrane (PEM) fuel cells in automotive applications. Besides engineering advances in bipolar plate materials and design, the optimization of membrane-electrode assemblies (MEAs) was an important enabler in reducing the cost and performance gaps towards commercial viability for the automotive market. On the one hand, platinum loadings were reduced from several mgPt/cm2MEA [1] to values of 0.5-0.6 mgPt/cm2MEA in current applications and loadings as low as 0.25 mgPt/cm2MEA have been demonstrated on the research level [2]. On the other hand, implementation of thin membranes (20-30 micrometer) [3, 4] as well as improvements in diffusion medium materials, essentially doubled the achievable power density of MEAs to ca. 0.9 W/cm2MEA (at 0.65 V) [5], thereby not only reducing the size of a PEMFC fuel cell system, but also reducing its overall materials cost (controlled to a large extent by membrane and Pt-catalyst cost). While this demonstrated a clear path towards automotive applications, a renewed focus of R efforts is now required to develop materials and fundamental materials understanding to assure long-term durability of PEM fuel cells. This presentation therefore will discuss the state-of-the-art knowledge of catalyst, catalyst-support, and membrane degradation mechanisms. In the area of Pt-catalysts, experience with phosphoric acid fuel cells (PAFCs) has shown that platinum sintering leads to long-term performance losses [6]. While this is less critical at the lower PEMFC operating temperatures (<100C) compared to PAFCs (>200C), very little is known about the dependence of Pt-sintering on temperature, cell voltage, and catalyst type (i.e., Pt versus Pt-alloys) and will be discussed here. Similarly, carbon-support corrosion can contribute significantly to voltage degradation in PAFCs [7], and even in the PEMFC

  7. Fuel cell added value for early market applications

    NASA Astrophysics Data System (ADS)

    Hardman, Scott; Chandan, Amrit; Steinberger-Wilckens, Robert

    2015-08-01

    Fuel Cells are often considered in the market place as just power providers. Whilst fuel cells do provide power, there are additional beneficial characteristics that should be highlighted to consumers. Due to the high price premiums associated with fuel cells, added value features need to be exploited in order to make them more appealing and increase unit sales and market penetration. This paper looks at the approach taken by two companies to sell high value fuel cells to niche markets. The first, SFC Energy, has a proven track record selling fuel cell power providers. The second, Bloom Energy, is making significant progress in the US by having sold its Energy Server to more than 40 corporations including Wal-Mart, Staples, Google, eBay and Apple. Further to these current markets, two prospective added value applications for fuel cells are discussed. These are fuel cells for aircraft APUs and fuel cells for fire prevention. These two existing markets and two future markets highlight that fuel cells are not just power providers. Rather, they can be used as solutions to many needs, thus being more cost effective by replacing a number of incumbent systems at the same time.

  8. Pt/Pd electrocatalyst electrons for fuel cells

    DOEpatents

    Stonehart, P.

    1981-11-03

    This invention relates to improved electrochemical cells and to novel electrodes for use therein. In particular, the present invention comprises a fuel cell used primarily for the consumption of impure hydrogen fuels containing carbon monoxide or carbonaceous fuels where the electrode in contact with the fuel is not substantially poisoned by carbon monoxide. The anode of the fuel cell comprises a Pd/Pt alloy supported on a graphitized or partially graphitized carbon material. Fuel cells which comprise as essential elements a fuel electrode, an oxidizing electrode, and an electrolyte between said electrodes are devices for the direct production of electricity through the electrochemical combustion of a fuel and oxidant. These devices are recognized for their high efficiency as energy conversion units, since unlike conventional combustion engines, they are not subject to the limitations of the Carnot heat cycle. It is the primary object of the present invention to provide an electrode having high electrochemical activity for an electrochemical cell. It is another object of the present invention to provide an electrode having an electro-catalyst which is highly resistant to the corrosive environment of an electrochemical cell.

  9. More Than 1,000 Fuel Cell Units Deployed Through DOE ARRA Funding (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This NREL Hydrogen and Fuel Cell Technical Highlight describes how early market end users are operating 1,111 fuel cell units at 301 sites in 20 states with funding from the U.S. Department of Energy Fuel Cell Technologies Program and analysis by NREL. The American Recovery and Reinvestment Act (ARRA) funded the deployment of approximately 1,000 fuel cell systems in key early markets to accelerate the commercialization and deployment of fuel cells and fuel cell manufacturing, installation, maintenance, and support services. In support of the ARRA fuel cell deployment objectives, NREL analyzes and validates the technology in real-world applications, reports onmore » the technology status, and facilitates the development of fuel cell technologies, manufacturing, and operations in strategic markets-including material handling equipment, backup power, and stationary power-where fuel cells can compete with conventional technologies. NREL is validating hydrogen and fuel cell systems in real-world settings through data collection, analysis, and reporting. The fuel cell and infrastructure analysis provides an independent, third-party assessment that focuses on fuel cell system and hydrogen infrastructure performance, operation, maintenance, use, and safety. An objective of the ARRA fuel cell project-to deploy approximately 1,000 fuel cell systems in key early markets - has been met in two years. By the end of 2011, 504 material handling equipment (MHE) fuel cell units were operating at 8 facilities and 607 backup power fuel cell units were operating at 293 sites. MHE and backup power are two markets where fuel cells are capable of meeting the operating demands, and deployments can be leveraged to accelerate fuel cell commercialization.« less

  10. Anion exchange membrane fuel cell modelling

    NASA Astrophysics Data System (ADS)

    Fragiacomo, P.; Astorino, E.; Chippari, G.; De Lorenzo, G.; Czarnetzki, W. T.; Schneider, W.

    2018-04-01

    A parametric model predicting the performance of a solid polymer electrolyte, anion exchange membrane fuel cell (AEMFC), has been developed, in Matlab environment, based on interrelated electrical and thermal models. The electrical model proposed is developed by modelling an AEMFC open-circuit output voltage, irreversible voltage losses along with a mass balance, while the thermal model is based on the energy balance. The proposed model of the AEMFC stack estimates its dynamic behaviour, in particular the operating temperature variation for different discharge current values. The results of the theoretical fuel cell (FC) stack are reported and analysed in order to highlight the FC performance and how it varies by changing the values of some parameters such as temperature and pressure. Both the electrical and thermal FC models were validated by comparing the model results with experimental data and the results of other models found in the literature.

  11. Advanced Catalysts for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R.; Whitacre, Jay; Valdez, T. I.

    2006-01-01

    This viewgraph presentation reviews the development of catalyst for Fuel Cells. The objectives of the project are to reduce the cost of stack components and reduce the amount of precious metal used in fuel cell construction. A rapid combinatorial screening technique based on multi-electrode thin film array has been developed and validated for identifying catalysts for oxygen reduction; focus shifted from methanol oxidation in FY05 to oxygen reduction in FY06. Multi-electrode arrays of thin film catalysts of Pt-Ni and Pt-Ni-Zr have been deposited. Pt-Ni and have been characterized electrochemically and structurally. Pt-Ni-Zr and Pt-Ni films show higher current density and onset potential compared to Pt. Electrocatalytic activity and onset potential are found to be strong function of the lattice constant. Thin film Pt(59)Ni(39)Zr(2) can provide 10 times the current density of thin film Pt. Thin film Pt(59)Ni(39)Zr(2) also shows 65mV higher onset potential than Pt.

  12. Intermediate Temperature Hybrid Fuel Cell System for the Conversion of Natural to Electricity and Liquid Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krause, Theodore

    This goal of this project was to develop a new hybrid fuel cell technology that operates directly on natural gas or biogas to generate electrical energy and to produce ethane or ethylene from methane, the main component of natural gas or biogas, which can be converted to a liquid fuel or high-value chemical using existing process technologies. By taking advantage of the modularity and scalability of fuel cell technology, this combined fuel cell/chemical process technology targets the recovery of stranded natural gas available at the well pad or biogas produced at waste water treatment plants and municipal landfills by convertingmore » it to a liquid fuel or chemical. By converting the stranded gas to a liquid fuel or chemical, it can be cost-effectively transported to market thus allowing the stranded natural gas or biogas to be monetized instead of flared, producing CO2, a greenhouse gas, because the volumes produced at these locations are too small to be economically recovered using current gas-to-liquids process technologies.« less

  13. Compliant fuel cell system

    DOEpatents

    Bourgeois, Richard Scott [Albany, NY; Gudlavalleti, Sauri [Albany, NY

    2009-12-15

    A fuel cell assembly comprising at least one metallic component, at least one ceramic component and a structure disposed between the metallic component and the ceramic component. The structure is configured to have a lower stiffness compared to at least one of the metallic component and the ceramic component, to accommodate a difference in strain between the metallic component and the ceramic component of the fuel cell assembly.

  14. 40 CFR 600.304-12 - Fuel economy label-special requirements for hydrogen fuel cell vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for hydrogen fuel cell vehicles. 600.304-12 Section 600.304-12 Protection of Environment... MOTOR VEHICLES Fuel Economy Labeling § 600.304-12 Fuel economy label—special requirements for hydrogen fuel cell vehicles. Fuel economy labels for hydrogen fuel cell vehicles must meet the specifications...

  15. 40 CFR 600.304-12 - Fuel economy label-special requirements for hydrogen fuel cell vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for hydrogen fuel cell vehicles. 600.304-12 Section 600.304-12 Protection of Environment... MOTOR VEHICLES Fuel Economy Labeling § 600.304-12 Fuel economy label—special requirements for hydrogen fuel cell vehicles. Fuel economy labels for hydrogen fuel cell vehicles must meet the specifications...

  16. 40 CFR 600.304-12 - Fuel economy label-special requirements for hydrogen fuel cell vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for hydrogen fuel cell vehicles. 600.304-12 Section 600.304-12 Protection of Environment... MOTOR VEHICLES Fuel Economy Labeling § 600.304-12 Fuel economy label—special requirements for hydrogen fuel cell vehicles. Fuel economy labels for hydrogen fuel cell vehicles must meet the specifications...

  17. Defining the Operational Conditions for High Temperature Polymer Fuel Cells in Naval Environments

    DTIC Science & Technology

    2008-12-31

    benefits of both Proton Exchange Membrane Fuel Cells ( PEMFCs ) and phosphoric acid fuel cell technologies: a solid polymer electrolyte, the PBI...membrane, but with higher temperature (160°C) operation. PBI membrane technology is far less developed than that for PEMFCs , but it is rapidly emerging as...how air contaminants affect the properties of proton exchange membrane fuel cells ( PEMFCs ). PEMFCs operate at 80 °C, and are the present choice of fuel

  18. Hydroxide Self-Feeding High-Temperature Alkaline Direct Formate Fuel Cells.

    PubMed

    Li, Yinshi; Sun, Xianda; Feng, Ying

    2017-05-22

    Conventionally, both the thermal degradation of the anion-exchange membrane and the requirement of additional hydroxide for fuel oxidation reaction hinder the development of the high-temperature alkaline direct liquid fuel cells. The present work addresses these two issues by reporting a polybenzimidazole-membrane-based direct formate fuel cell (DFFC). Theoretically, the cell voltage of the high-temperature alkaline DFFC can be as high as 1.45 V at 90 °C. It has been demonstrated that a proof-of-concept alkaline DFFC without adding additional hydroxide yields a peak power density of 20.9 mW cm -2 , an order of magnitude higher than both alkaline direct ethanol fuel cells and alkaline direct methanol fuel cells, mainly because the hydrolysis of formate provides enough OH - ions for formate oxidation reaction. It was also found that this hydroxide self-feeding high-temperature alkaline DFFC shows a stable 100 min constant-current discharge at 90 °C, proving the conceptual feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Modelling and validation of Proton exchange membrane fuel cell (PEMFC)

    NASA Astrophysics Data System (ADS)

    Mohiuddin, A. K. M.; Basran, N.; Khan, A. A.

    2018-01-01

    This paper is the outcome of a small scale fuel cell project. Fuel cell is an electrochemical device that converts energy from chemical reaction to electrical work. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the different types of fuel cell, which is more efficient, having low operational temperature and fast start up capability results in high energy density. In this study, a mathematical model of 1.2 W PEMFC is developed and simulated using MATLAB software. This model describes the PEMFC behaviour under steady-state condition. This mathematical modeling of PEMFC determines the polarization curve, power generated, and the efficiency of the fuel cell. Simulation results were validated by comparing with experimental results obtained from the test of a single PEMFC with a 3 V motor. The performance of experimental PEMFC is little lower compared to simulated PEMFC, however both results were found in good agreement. Experiments on hydrogen flow rate also been conducted to obtain the amount of hydrogen consumed to produce electrical work on PEMFC.

  20. Heated transportable fuel cell cartridges

    DOEpatents

    Lance, Joseph R.; Spurrier, Francis R.

    1985-01-01

    A fuel cell stack protective system is made where a plurality of fuel cells, each containing liquid electrolyte subject to crystallization, is enclosed by a containing vessel, and where at least one electric heater is placed in the containing vessel and is capable of preventing electrolyte crystallization.

  1. Fuel Cells: Power System Option for Space Research

    NASA Astrophysics Data System (ADS)

    Shaneeth, M.; Mohanty, Surajeet

    2012-07-01

    Fuel Cells are direct energy conversion devices and, thereby, they deliver electrical energy at very high efficiency levels. Hydrogen and Oxygen gases are electrochemically processed, producing clean electric power with water as the only by product. A typical, Fuel Cell based power system involve a Electrochemical power converter, gas storage and management systems, thermal management systems and relevant control units. While there exists different types of Fuel cells, Proton Exchange Membrane (PEM) Fuel Cells are considered as the most suitable one for portable applications. Generally, Fuel Cells are considered as the primary power system option in space missions requiring high power ( > 5kW) and long durations and also where water is a consumable, such as manned missions. This is primarily due to the advantage that fuel cell based power systems offer, in terms of specific energy. Fuel cells have the potential to attain specific energy > 500Wh/kg, specific power >500W/kg, energy density > 400Whr/L and also power density > 200 W/L. This apart, a fuel cell system operate totally independent of sun light, whereas as battery based system is fully dependent on the same. This uniqueness provides added flexibility and capabilities to the missions and modularity for power system. High power requiring missions involving reusable launch vehicles, manned missions etc are expected to be richly benefited from this. Another potential application of Fuel Cell would be interplanetary exploration. Unpredictable and dusty atmospheres of heavenly bodies limits sun light significantly and there fuel cells of different types, eg, Bio-Fuel Cells, PEMFC, DMFCs would be able to work effectively. Manned or unmanned lunar out post would require continuous power even during extra long lunar nights and high power levels are expected. Regenerative Fuel Cells, a combination of Fuel Cells and Electrolysers, are identified as strong candidate. While application of Fuel Cells in high power

  2. Use of Multi-Functional Flexible Micro-Sensors for in situ Measurement of Temperature, Voltage and Fuel Flow in a Proton Exchange Membrane Fuel Cell

    PubMed Central

    Lee, Chi-Yuan; Chan, Pin-Cheng; Lee, Chung-Ju

    2010-01-01

    Temperature, voltage and fuel flow distribution all contribute considerably to fuel cell performance. Conventional methods cannot accurately determine parameter changes inside a fuel cell. This investigation developed flexible and multi-functional micro sensors on a 40 μm-thick stainless steel foil substrate by using micro-electro-mechanical systems (MEMS) and embedded them in a proton exchange membrane fuel cell (PEMFC) to measure the temperature, voltage and flow. Users can monitor and control in situ the temperature, voltage and fuel flow distribution in the cell. Thereby, both fuel cell performance and lifetime can be increased. PMID:22163545

  3. Test results for fuel cell operation on anaerobic digester gas

    NASA Astrophysics Data System (ADS)

    Spiegel, R. J.; Preston, J. L.

    EPA, in conjunction with ONSI, embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the process of treating sewage anaerobically to reduce solids. ADG is primarily comprised of methane (57-66%), carbon dioxide (33-39%), nitrogen (1-10%), and a small amount of oxygen (<0.5%). Additionally, ADG contains trace amounts of fuel cell catalyst contaminants consisting of sulfur-bearing compounds (principally hydrogen sulfide) and halogen compounds (chlorides). The project has addressed two major issues: development of a cleanup system to remove fuel cell contaminants from the gas and testing/assessing of a modified ONSI PC25 C fuel cell power plant operating on the cleaned, but dilute, ADG. Results to date demonstrate that the ADG fuel cell power plant can, depending on the energy content of the gas, produce electrical output levels close to full power (200 kW) with measured air emissions comparable to those obtained by a natural gas fuel cell. The cleanup system results show that the hydrogen sulfide levels are reduced to below 10 ppbv and halides to approximately 30 ppbv.

  4. Modular fuel-cell stack assembly

    DOEpatents

    Patel, Pinakin

    2010-07-13

    A fuel cell assembly having a plurality of fuel cells arranged in a stack. An end plate assembly abuts the fuel cell at an end of said stack. The end plate assembly has an inlet area adapted to receive an exhaust gas from the stack, an outlet area and a passage connecting the inlet area and outlet area and adapted to carry the exhaust gas received at the inlet area from the inlet area to the outlet area. A further end plate assembly abuts the fuel cell at a further opposing end of the stack. The further end plate assembly has a further inlet area adapted to receive a further exhaust gas from the stack, a further outlet area and a further passage connecting the further inlet area and further outlet area and adapted to carry the further exhaust gas received at the further inlet area from the further inlet area to the further outlet area.

  5. Vapor feed direct methanol fuel cells with passive thermal-fluids management system

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Faghri, Amir

    The present paper describes a novel technology that can be used to manage methanol and water in miniature direct methanol fuel cells (DMFCs) without the need for a complex micro-fluidics subsystem. At the core of this new technology is a unique passive fuel delivery system that allows for fuel delivery at an adjustable rate from a reservoir to the anode. Furthermore, the fuel cell is designed for both passive water management and effective carbon dioxide removal. The innovative thermal management mechanism is the key for effective operation of the fuel cell system. The vapor feed DMFC reached a power density of 16.5 mW cm -2 at current density of 60 mA cm -2. A series of fuel cell prototypes in the 0.5 W range have been successfully developed. The prototypes have demonstrated long-term stable operation, easy fuel delivery control and are scalable to larger power systems. A two-cell stack has successfully operated for 6 months with negligible degradation.

  6. Market Transformation | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    deployment sites Develop techno-economic assessment tools, deployment tools, and business cases for various fuel cell applications Collect and evaluate data from deployment projects to verify the business cases

  7. Analysis of long-time operation of micro-cogeneration unit with fuel cell

    NASA Astrophysics Data System (ADS)

    Patsch, Marek; Čaja, Alexander

    2015-05-01

    Micro-cogeneration is cogeneration with small performance, with maximal electric power up to 50 kWe. On the present, there are available small micro-cogeneration units with small electric performance, about 1 kWe, which are usable also in single family houses or flats. These micro-cogeneration units operate on principle of conventional combustion engine, Stirling engine, steam engine or fuel cell. Micro-cogeneration units with fuel cells are new progressive developing type of units for single family houses. Fuel cell is electrochemical device which by oxidation-reduction reaction turn directly chemical energy of fuel to electric power, secondary products are pure water and thermal energy. The aim of paper is measuring and evaluation of operation parameters of micro-cogeneration unit with fuel cell which uses natural gas as a fuel.

  8. High Performance Fuel Cell and Electrolyzer Membrane Electrode Assemblies (MEAs) for Space Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Billings, Keith J.; Kisor, Adam; Bennett, William R.; Jakupca, Ian J.; Burke, Kenneth; Hoberecht, Mark A.

    2012-01-01

    Regenerative fuel cells provide a pathway to energy storage system development that are game changers for NASA missions. The fuel cell/ electrolysis MEA performance requirements 0.92 V/ 1.44 V at 200 mA/cm2 can be met. Fuel Cell MEAs have been incorporated into advanced NFT stacks. Electrolyzer stack development in progress. Fuel Cell MEA performance is a strong function of membrane selection, membrane selection will be driven by durability requirements. Electrolyzer MEA performance is catalysts driven, catalyst selection will be driven by durability requirements. Round Trip Efficiency, based on a cell performance, is approximately 65%.

  9. Self Regulating Fiber Fuel Cell

    DTIC Science & Technology

    2010-08-16

    12000 68.2 77.4 24/7 Extreme Rigid liquid hydrogen fuel cell Medis 68 X 97 X 57 20000 53.2 108.1 Fiber Fuel Cell Flexible Individual fiber Honeywell...which allows hydrogen and water vapor to permeate freely but prevents liquids from entering or fuel particles from escaping. The SPM permeability...S is the solubility and D is the diffusivity. Solubility and diffusivity data vs. pressure for hydrogen in Nafion is not available in the literature

  10. Solid oxide fuel cell with monolithic core

    DOEpatents

    McPheeters, Charles C.; Mrazek, Franklin C.

    1988-01-01

    A solid oxide fuel cell in which fuel and oxidant gases undergo an electrochemical reaction to produce an electrical output includes a monolithic core comprised of a corrugated conductive sheet disposed between upper and lower generally flat sheets. The corrugated sheet includes a plurality of spaced, parallel, elongated slots which form a series of closed, linear, first upper and second lower gas flow channels with the upper and lower sheets within which a fuel gas and an oxidant gas respectively flow. Facing ends of the fuel cell are generally V-shaped and provide for fuel and oxidant gas inlet and outlet flow, respectively, and include inlet and outlet gas flow channels which are continuous with the aforementioned upper fuel gas and lower oxidant gas flow channels. The upper and lower flat sheets and the intermediate corrugated sheet are preferably comprised of ceramic materials and are securely coupled together such as by assembly in the green state and sintering together during firing at high temperatures. A potential difference across the fuel cell, or across a stacked array of similar fuel cells, is generated when an oxidant gas such as air and a fuel such as hydrogen gas is directed through the fuel cell at high temperatures, e.g., between 700.degree. C. and 1100.degree. C.

  11. Analytic Methods for Benchmarking Hydrogen and Fuel Cell Technologies; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, Marc; Saur, Genevieve; Ramsden, Todd

    2015-05-28

    This presentation summarizes NREL's hydrogen and fuel cell analysis work in three areas: resource potential, greenhouse gas emissions and cost of delivered energy, and influence of auxiliary revenue streams. NREL's hydrogen and fuel cell analysis projects focus on low-­carbon and economic transportation and stationary fuel cell applications. Analysis tools developed by the lab provide insight into the degree to which bridging markets can strengthen the business case for fuel cell applications.

  12. Regenerative fuel cell study for satellites in GEO orbit

    NASA Technical Reports Server (NTRS)

    Levy, Alexander; Vandine, Leslie L.; Stedman, James K.

    1987-01-01

    Summarized are the results of a 12-month study to identify high performance regenerative hydrogen-oxygen fuel cell concepts for geosynchronous satellite application. Emphasis was placed on concepts with the potential for high energy density (W-hr/lb) and passive means for water and heat management to maximize system reliability. Both polymer membrane and alkaline electrolyte fuel cells were considered, with emphasis on the alkaline cell because of its high performance, advanced state of development, and proven ability to operate in a launch and space environment. Three alkaline system concepts were studied. The first, the integrated design, utilized a configuration in which the fuel cell and electrolysis cells are alternately stacked inside a pressure vessel. Product water is transferred by diffusion during electrolysis and waste heat is conducted through the pressure wall, thus using completely passive means for transfer and control. The second alkaline system, the dedicated design, uses a separate fuel cell and electrolysis stack so that each unit can be optimized in size and weight based on its orbital operating period. The third design was a dual function stack configuration, in which each cell can operate in both fuel cell and electrolysis mode, thus eliminating the need for two separate stacks and associated equipment. Results indicate that using near term technology energy densities between 46 and 52 W-hr/lb can be achieved at efficiencies of 55 percent. System densities of 115 W-hr/lb are contemplated.

  13. Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer

    DOEpatents

    Dederer, J.T.; Hager, C.A.

    1998-03-31

    An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier. 10 figs.

  14. Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer

    DOEpatents

    Dederer, Jeffrey T.; Hager, Charles A.

    1998-01-01

    An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier.

  15. Autonomous, Retrievable, Deep Sea Microbial Fuel Cell

    NASA Astrophysics Data System (ADS)

    Richter, K.

    2014-12-01

    Microbial fuel cells (MFCs) work by providing bacteria in anaerobic sediments with an electron acceptor (anode) that stimulates metabolism of organic matter. The buried anode is connected via control circuitry to a cathode exposed to oxygen in the overlying water. During metabolism, bacteria release hydrogen ions into the sediment and transfer electrons extra-cellularly to the anode, which eventually reduce dissolved oxygen at the cathode, forming water. The open circuit voltage is approximately 0.8 v. The voltage between electrodes is operationally kept at 0.4 v with a potentiastat. The current is chiefly limited by the rate of microbial metabolism at the anode. The Office of Naval Research has encouraged development of microbial fuel cells in the marine environment at a number of academic and naval institutions. Earlier work in shallow sediments of San Diego Bay showed that the most important environmental parameters that control fuel cell power output in San Diego Bay were total organic carbon in the sediment and seasonal water temperature. Current MFC work at SPAWAR includes extension of microbial fuel cell tests to the deep sea environment (>1000 m) and, in parallel, testing microbial fuel cells in the laboratory under deep sea conditions. One question we are asking is whether MFC power output from deep water sediments repressurized and chilled in the laboratory comparable to those measured in situ. If yes, mapping the power potential of deep sea sediments may be made much easier, requiring sediment grabs and lab tests rather than deployment and retrieval of fuel cells. Another question we are asking is whether in situ temperature and total organic carbon in the deep sea sediment can predict MFC power. If yes, then we can make use of the large collection of publicly available, deep sea oceanographic measurements to make these predictions, foregoing expensive work at sea. These regressions will be compared to those derived from shallow water measurements.

  16. Cathode for molten carbonate fuel cell

    DOEpatents

    Kaun, Thomas D.; Mrazek, Franklin C.

    1990-01-01

    A porous sintered cathode for a molten carbonate fuel cell and method of making same, the cathode including a skeletal structure of a first electronically conductive material slightly soluble in the electrolyte present in the molten carbonate fuel cell covered by fine particles of a second material of possibly lesser electronic conductivity insoluble in the electrolyte present in the molten carbonate fuel cell, the cathode having a porosity in the range of from about 60% to about 70% at steady-state cell operating conditions consisting of both macro-pores and micro-pores.

  17. Alkaline polymer electrolyte fuel cells stably working at 80 °C

    NASA Astrophysics Data System (ADS)

    Peng, Hanqing; Li, Qihao; Hu, Meixue; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2018-06-01

    Alkaline polymer electrolyte fuel cells are a new class of polymer electrolyte fuel cells that fundamentally enables the use of nonprecious metal catalysts. The cell performance mostly relies on the quality of alkaline polymer electrolytes, including the ionic conductivity and the chemical/mechanical stability. For a long time, alkaline polymer electrolytes are thought to be too weak in stability to allow the fuel cell to be operated at elevated temperatures, e.g., above 60 °C. In the present work, we report a progress in the state-of-the-art alkaline polymer electrolyte fuel cell technology. By using a newly developed alkaline polymer electrolyte, quaternary ammonia poly (N-methyl-piperidine-co-p-terphenyl), which simultaneously possesses high ionic conductivity and excellent chemical/mechanical stability, the fuel cell can now be stably operated at 80 °C with high power density. The peak power density reaches ca. 1.5 W/cm2 at 80 °C with Pt/C catalysts used in both the anode and the cathode. The cell works stably in a period of study over 100 h.

  18. Titanium dioxide in fuel cell technology: An overview

    NASA Astrophysics Data System (ADS)

    Abdullah, N.; Kamarudin, S. K.

    2015-03-01

    Fuel cell technology is one of the alternative energy sources for the next generation. Although this technology has proven to be one of the main methods for producing new energy sources, fuel cell technology still has some problems that hinder fuel cell commercialization. Recently, new ideas on titanium dioxide are introduced as potential solution in several applications in fuel cell technology. Thus, this article presents an overview on the applications of titanium dioxide and highlights the unique properties and benefits of titanium dioxide in fuel cell technology.

  19. Composite fuel cell membranes

    DOEpatents

    Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

    1997-08-05

    A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  20. Composite fuel cell membranes

    DOEpatents

    Plowman, Keith R.; Rehg, Timothy J.; Davis, Larry W.; Carl, William P.; Cisar, Alan J.; Eastland, Charles S.

    1997-01-01

    A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.