Science.gov

Sample records for development architectural design

  1. Architectural design for resilience

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Deters, Ralph; Zhang, W. J.

    2010-05-01

    Resilience has become a new nonfunctional requirement for information systems. Many design decisions have to be made at the architectural level in order to deliver an information system with the resilience property. This paper discusses the relationships between resilience and other architectural properties such as scalability, reliability, and consistency. A corollary is derived from the CAP theorem, and states that it is impossible for a system to have all three properties of consistency, resilience and partition-tolerance. We present seven architectural constraints for resilience. The constraints are elicited from good architectural practices for developing reliable and fault-tolerant systems and the state-of-the-art technologies in distributed computing. These constraints provide a comprehensive reference for architectural design towards resilience.

  2. Terrestrial Planet Finder Interferometer: Architecture, Mission Design, and Technology Development

    NASA Technical Reports Server (NTRS)

    Henry, Curt

    2004-01-01

    This slide presentation represents an overview progress report about the system design and technology development of two interferometer concepts studied for the Terrestrial Planet Finder (TPF) project. The two concepts are a structurally-connected interferometer (SCI) intended to fulfill minimum TPF science goals and a formation-flying interferometer (FFI) intended to fulfill full science goals. Described are major trades, analyses, and technology experiments completed. Near term plans are also described. This paper covers progress since August 2003

  3. Terrestrial Planet Finder Interferometer: Architecture, Mission Design and Technology Development

    NASA Technical Reports Server (NTRS)

    Henry, Curt; Lay, Oliver; Aung, MiMi; Gunter, Steven M.; Dubovitsky, Serge; Blackwood, Gary

    2004-01-01

    This overview paper is a progress report about the system design and technology development of two interferometer concepts studied for the Terrestrial Planet Finder (TPF) project. The two concepts are a structurally-connected interferometer (SCI) intended to fulfill minimum TPF science goals and a formation-flying interferometer (FFI) intended to fulfill full science goals. Described are major trades, analyses, and technology experiments completed. Near term plans are also described. This paper covers progress since August 2003 and serves as an update to a paper presented at that month's SPIE conference, 'Techniques and Instrumentation for Detection of Exoplanets.

  4. Architecture, Design, and Development of an HTML/JavaScript Web-Based Group Support System.

    ERIC Educational Resources Information Center

    Romano, Nicholas C., Jr.; Nunamaker, Jay F., Jr.; Briggs, Robert O.; Vogel, Douglas R.

    1998-01-01

    Examines the need for virtual workspaces and describes the architecture, design, and development of GroupSystems for the World Wide Web (GSWeb), an HTML/JavaScript Web-based Group Support System (GSS). GSWeb, an application interface similar to a Graphical User Interface (GUI), is currently used by teams around the world and relies on user…

  5. Software Architecture Design Reasoning

    NASA Astrophysics Data System (ADS)

    Tang, Antony; van Vliet, Hans

    Despite recent advancements in software architecture knowledge management and design rationale modeling, industrial practice is behind in adopting these methods. The lack of empirical proofs and the lack of a practical process that can be easily incorporated by practitioners are some of the hindrance for adoptions. In particular, the process to support systematic design reasoning is not available. To rectify this issue, we propose a design reasoning process to help architects cope with an architectural design environment where design concerns are cross-cutting and diversified.We use an industrial case study to validate that the design reasoning process can help improve the quality of software architecture design. The results have indicated that associating design concerns and identifying design options are important steps in design reasoning.

  6. Development and Application of the Collaborative Optimization Architecture in a Multidisciplinary Design Environment

    NASA Technical Reports Server (NTRS)

    Braun, R. D.; Kroo, I. M.

    1995-01-01

    Collaborative optimization is a design architecture applicable in any multidisciplinary analysis environment but specifically intended for large-scale distributed analysis applications. In this approach, a complex problem is hierarchically de- composed along disciplinary boundaries into a number of subproblems which are brought into multidisciplinary agreement by a system-level coordination process. When applied to problems in a multidisciplinary design environment, this scheme has several advantages over traditional solution strategies. These advantageous features include reducing the amount of information transferred between disciplines, the removal of large iteration-loops, allowing the use of different subspace optimizers among the various analysis groups, an analysis framework which is easily parallelized and can operate on heterogenous equipment, and a structural framework that is well-suited for conventional disciplinary organizations. In this article, the collaborative architecture is developed and its mathematical foundation is presented. An example application is also presented which highlights the potential of this method for use in large-scale design applications.

  7. Flexible weapons architecture design

    NASA Astrophysics Data System (ADS)

    Pyant, William C., III

    Present day air-delivered weapons are of a closed architecture, with little to no ability to tailor the weapon for the individual engagement. The closed architectures require weaponeers to make the target fit the weapon instead of fitting the individual weapons to a target. The concept of a flexible weapons aims to modularize weapons design using an open architecture shell into which different modules are inserted to achieve the desired target fractional damage while reducing cost and civilian casualties. This thesis shows that the architecture design factors of damage mechanism, fusing, weapons weight, guidance, and propulsion are significant in enhancing weapon performance objectives, and would benefit from modularization. Additionally, this thesis constructs an algorithm that can be used to design a weapon set for a particular target class based on these modular components.

  8. Developing a New Framework for Integration and Teaching of Computer Aided Architectural Design (CAAD) in Nigerian Schools of Architecture

    ERIC Educational Resources Information Center

    Uwakonye, Obioha; Alagbe, Oluwole; Oluwatayo, Adedapo; Alagbe, Taiye; Alalade, Gbenga

    2015-01-01

    As a result of globalization of digital technology, intellectual discourse on what constitutes the basic body of architectural knowledge to be imparted to future professionals has been on the increase. This digital revolution has brought to the fore the need to review the already overloaded architectural education curriculum of Nigerian schools of…

  9. Interior Design in Architectural Education

    ERIC Educational Resources Information Center

    Gurel, Meltem O.; Potthoff, Joy K.

    2006-01-01

    The domain of interiors constitutes a point of tension between practicing architects and interior designers. Design of interior spaces is a significant part of architectural profession. Yet, to what extent does architectural education keep pace with changing demands in rendering topics that are identified as pertinent to the design of interiors?…

  10. Situating universal design architecture: designing with whom?

    PubMed Central

    Jones, Paul

    2014-01-01

    Abstract Purpose: To respond to growing calls for a theoretical unpacking of Universal Design (UD), a disparate movement cohering around attempts to design spaces and technologies that seek to allow use by all people (to the fullest extent possible). The on-going embedding of UD into architectural practice and pedagogy represents an opportune juncture at which to draw learning from other distinct-but-related transformatory architectural movements. Methods: Sociological-theoretical commentary. Results: UD has to date, and necessarily, been dominated by the practice contexts from which it emerged. Appealing as a short-hand for description of “designing-for-all”, in most cases UD has come to stand in as a term to signal a general intent in this direction and as an umbrella term for the range of technical design resources that have been developed under these auspices. There remains a fundamental ambivalence vis-à-vis the question of users’ power/capacity to influence decision-making in the design process in UD; technically-oriented typologies of bodies predominate in influential UD architectural accounts. Conclusions: UD represents rich technical and pedagogical resources for those architects committed to transforming the existing built environment so as to be less hostile to a wide range of users. However, within UD, unpacking the social role of the professional architect vis-à-vis a variety of publics is an important, but hitherto underdeveloped, challenge; issues concerning professional-citizen power relations continue to animate parallel architectural politics, and UD can both contribute and draw much from these on-going explorations. Implications for RehabilitationUniversal Design (UD) architecture shares a close affinity with rehabilitation practice, with the creation of built environments that allow use by individuals with a wide range of capacities a priority for both.While an effective communicative “bridge” between professions, UD’s deployment

  11. A Systems Engineering Approach to Architecture Development

    NASA Technical Reports Server (NTRS)

    Di Pietro, David A.

    2015-01-01

    Architecture development is often conducted prior to system concept design when there is a need to determine the best-value mix of systems that works collectively in specific scenarios and time frames to accomplish a set of mission area objectives. While multiple architecture frameworks exist, they often require use of unique taxonomies and data structures. In contrast, this paper characterizes architecture development using terminology widely understood within the systems engineering community. Using a notional civil space architecture example, it employs a multi-tier framework to describe the enterprise level architecture and illustrates how results of lower tier, mission area architectures integrate into the enterprise architecture. It also presents practices for conducting effective mission area architecture studies, including establishing the trade space, developing functions and metrics, evaluating the ability of potential design solutions to meet the required functions, and expediting study execution through the use of iterative design cycles.

  12. A Systems Engineering Approach to Architecture Development

    NASA Technical Reports Server (NTRS)

    Di Pietro, David A.

    2015-01-01

    Architecture development is often conducted prior to system concept design when there is a need to determine the best-value mix of systems that works collectively in specific scenarios and time frames to accomplish a set of mission area objectives. While multiple architecture frameworks exist, they often require use of unique taxonomies and data structures. In contrast, this paper characterizes architecture development using terminology widely understood within the systems engineering community. Using a notional civil space architecture example, it employs a multi-tier framework to describe the enterprise level architecture and illustrates how results of lower tier, mission area architectures integrate into the enterprise architecture. It also presents practices for conducting effective mission area architecture studies, including establishing the trade space, developing functions and metrics, evaluating the ability of potential design solutions to meet the required functions, and expediting study execution through the use of iterative design cycles

  13. A Systems Engineering Approach to Architecture Development

    NASA Technical Reports Server (NTRS)

    Di Pietro, David A.

    2014-01-01

    Architecture development is conducted prior to system concept design when there is a need to determine the best-value mix of systems that works collectively in specific scenarios and time frames to accomplish a set of mission area objectives. While multiple architecture frameworks exist, they often require use of unique taxonomies and data structures. In contrast, this presentation characterizes architecture development using terminology widely understood within the systems engineering community. Using a notional civil space architecture example, it employs a multi-tier framework to describe the enterprise level architecture and illustrates how results of lower tier, mission area architectures integrate into the enterprise architecture. It also presents practices for conducting effective mission area architecture studies, including establishing the trade space, developing functions and metrics, evaluating the ability of potential design solutions to meet the required functions, and expediting study execution through the use of iterative design cycles.

  14. Effective software design and development for the new graph architecture HPC machines.

    SciTech Connect

    Dechev, Damian

    2012-03-01

    Software applications need to change and adapt as modern architectures evolve. Nowadays advancement in chip design translates to increased parallelism. Exploiting such parallelism is a major challenge in modern software engineering. Multicore processors are about to introduce a significant change in the way we design and use fundamental data structures. In this work we describe the design and programming principles of a software library of highly concurrent scalable and nonblocking data containers. In this project we have created algorithms and data structures for handling fundamental computations in massively multithreaded contexts, and we have incorporated these into a usable library with familiar look and feel. In this work we demonstrate the first design and implementation of a wait-free hash table. Our multiprocessor data structure design allows a large number of threads to concurrently insert, remove, and retrieve information. Non-blocking designs alleviate the problems traditionally associated with the use of mutual exclusion, such as bottlenecks and thread-safety. Lock-freedom provides the ability to share data without some of the drawbacks associated with locks, however, these designs remain susceptible to starvation. Furthermore, wait-freedom provides all of the benefits of lock-free synchronization with the added assurance that every thread makes progress in a finite number of steps. This implies deadlock-freedom, livelock-freedom, starvation-freedom, freedom from priority inversion, and thread-safety. The challenges of providing the desirable progress and correctness guarantees of wait-free objects makes their design and implementation difficult. There are few wait-free data structures described in the literature. Using only standard atomic operations provided by the hardware, our design is portable; therefore, it is applicable to a variety of data-intensive applications including the domains of embedded systems and supercomputers.Our experimental

  15. Lighting in Architectural Design.

    ERIC Educational Resources Information Center

    Phillips, Derek

    The primary function of this book is to treat the topic of lighting design in such a manner as to bridge the gap between architects and illuminating engineers. The work is divided into three parts: Part I, Principles of Design, offers information and analysis of how natural and artificial lighting affects building design, how illumination levels…

  16. Software design by reusing architectures

    NASA Technical Reports Server (NTRS)

    Bhansali, Sanjay; Nii, H. Penny

    1992-01-01

    Abstraction fosters reuse by providing a class of artifacts that can be instantiated or customized to produce a set of artifacts meeting different specific requirements. It is proposed that significant leverage can be obtained by abstracting software system designs and the design process. The result of such an abstraction is a generic architecture and a set of knowledge-based, customization tools that can be used to instantiate the generic architecture. An approach for designing software systems based on the above idea are described. The approach is illustrated through an implemented example, and the advantages and limitations of the approach are discussed.

  17. Space station data system analysis/architecture study. Task 2: Options development, DR-5. Volume 2: Design options

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The primary objective of Task 2 is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This includes: (1) the establishment of option categories that are most likely to influence Space Station Data System (SSDS) definition; (2) the identification of preferred options in each category; and (3) the characterization of these options with respect to performance attributes, constraints, cost and risk. This volume contains the options development for the design category. This category comprises alternative structures, configurations and techniques that can be used to develop designs that are responsive to the SSDS requirements. The specific areas discussed are software, including data base management and distributed operating systems; system architecture, including fault tolerance and system growth/automation/autonomy and system interfaces; time management; and system security/privacy. Also discussed are space communications and local area networking.

  18. Parallel machine architecture and compiler design facilities

    NASA Technical Reports Server (NTRS)

    Kuck, David J.; Yew, Pen-Chung; Padua, David; Sameh, Ahmed; Veidenbaum, Alex

    1990-01-01

    The objective is to provide an integrated simulation environment for studying and evaluating various issues in designing parallel systems, including machine architectures, parallelizing compiler techniques, and parallel algorithms. The status of Delta project (which objective is to provide a facility to allow rapid prototyping of parallelized compilers that can target toward different machine architectures) is summarized. Included are the surveys of the program manipulation tools developed, the environmental software supporting Delta, and the compiler research projects in which Delta has played a role.

  19. Lunar Navigation Architecture Design Considerations

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  20. Energy Conservation through Architectural Design

    ERIC Educational Resources Information Center

    Thomson, Robert C., Jr.

    1977-01-01

    Describes a teaching unit designed to create in students an awareness of and an appreciation for the possibilities for energy conservation as they relate to architecture. It is noted that the unit can be adapted for use in many industrial programs and with different teaching methods due to the variety of activities that can be used. (Editor/TA)

  1. Refinery burner simulation design architecture summary.

    SciTech Connect

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  2. Architectural design for space tourism

    NASA Astrophysics Data System (ADS)

    Martinez, Vera

    2009-01-01

    The paper describes the main issues for the design of an appropriately planned habitat for tourists in space. Due study and analysis of the environment of space stations (ISS, MIR, Skylab) delineate positive and negative aspects of architectonical design. Analysis of the features of architectonical design for touristic needs and verification of suitability with design for space habitat. Space tourism environment must offer a high degree of comfort and suggest correct behavior of the tourists. This is intended for the single person as well as for the group. Two main aspects of architectural planning will be needed: the design of the private sphere and the design of the public sphere. To define the appearance of environment there should be paid attention to some main elements like the materiality of surfaces used; the main shapes of areas and the degree of flexibility and adaptability of the environment to specific needs.

  3. Software Architectures Expressly Designed to Promote Open Source Development: Using the Hyrax Data Server as a Case Study

    NASA Astrophysics Data System (ADS)

    Gallagher, J.; West, P.; Potter, N.; Johnson, M.

    2009-12-01

    Data providers are continually looking for new, faster, and more functional ways of providing data to researchers in varying scientific communities. To help achieve this, OPeNDAP has developed a modular framework that provides the ability to pick and choose existing module plug-ins, as well as develop new module plug-ins, to construct customizable data servers. The data server framework uses the Data Access Protocol as the basis of its network interface, so any client application that can read that protocol can read data from one of these servers. In this poster/presentation we explore three new capabilities recently developed using new plug-in modules and how the framework's architecture enables considerable economy of design and implementation for those plug-in modules. The three capabilities are to return data packaged in a specific file format, regardless of the original format in which the data were stored; combining an existing data set with new metadata information without modifying the original data; and building and returning an RDF representation for data. In all cases these new features are independent of the data's native storage format, meaning that they will work both with all of the existing format modules as well as modules as yet undeveloped. In addition, we discuss how this architecture has characteristics that are very desirable for a highly distributed open source project where individual developers have minimal (or no) person-to-person contact. Such a design enables a project to make the most of open source development's strengths.

  4. Open architecture design and approach for the Integrated Sensor Architecture (ISA)

    NASA Astrophysics Data System (ADS)

    Moulton, Christine L.; Krzywicki, Alan T.; Hepp, Jared J.; Harrell, John; Kogut, Michael

    2015-05-01

    Integrated Sensor Architecture (ISA) is designed in response to stovepiped integration approaches. The design, based on the principles of Service Oriented Architectures (SOA) and Open Architectures, addresses the problem of integration, and is not designed for specific sensors or systems. The use of SOA and Open Architecture approaches has led to a flexible, extensible architecture. Using these approaches, and supported with common data formats, open protocol specifications, and Department of Defense Architecture Framework (DoDAF) system architecture documents, an integration-focused architecture has been developed. ISA can help move the Department of Defense (DoD) from costly stovepipe solutions to a more cost-effective plug-and-play design to support interoperability.

  5. Network architecture functional description and design

    SciTech Connect

    Stans, L.; Bencoe, M.; Brown, D.; Kelly, S.; Pierson, L.; Schaldach, C.

    1989-05-25

    This report provides a top level functional description and design for the development and implementation of the central network to support the next generation of SNL, Albuquerque supercomputer in a UNIX{reg sign} environment. It describes the network functions and provides an architecture and topology.

  6. Healthy Eating Design Guidelines for School Architecture

    PubMed Central

    Huang, Terry T-K; Sorensen, Dina; Davis, Steven; Frerichs, Leah; Brittin, Jeri; Celentano, Joseph; Callahan, Kelly

    2013-01-01

    We developed a new tool, Healthy Eating Design Guidelines for School Architecture, to provide practitioners in architecture and public health with a practical set of spatially organized and theory-based strategies for making school environments more conducive to learning about and practicing healthy eating by optimizing physical resources and learning spaces. The design guidelines, developed through multidisciplinary collaboration, cover 10 domains of the school food environment (eg, cafeteria, kitchen, garden) and 5 core healthy eating design principles. A school redesign project in Dillwyn, Virginia, used the tool to improve the schools’ ability to adopt a healthy nutrition curriculum and promote healthy eating. The new tool, now in a pilot version, is expected to evolve as its components are tested and evaluated through public health and design research. PMID:23449281

  7. Design and Development of an Equipotential Voltage Reference (Grounding) System for a Low-Cost Rapid-Development Modular Spacecraft Architecture

    NASA Technical Reports Server (NTRS)

    Lukash, James A.; Daley, Earl

    2011-01-01

    This work describes the design and development effort to adapt rapid-development space hardware by creating a ground system using solutions of low complexity, mass, & cost. The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft is based on the modular common spacecraft bus architecture developed at NASA Ames Research Center. The challenge was building upon the existing modular common bus design and development work and improving the LADEE spacecraft design by adding an Equipotential Voltage Reference (EVeR) system, commonly referred to as a ground system. This would aid LADEE in meeting Electromagnetic Environmental Effects (E3) requirements, thereby making the spacecraft more compatible with itself and its space environment. The methods used to adapt existing hardware are presented, including provisions which may be used on future spacecraft.

  8. Design and descriptive tools for systolic architectures

    SciTech Connect

    Lewis, P.S.

    1984-01-01

    Automated design and descriptive tools are essential for the practical application of highly parallel special-purpose hardware such as systolic arrays. The use of special-purpose hardware can greatly increase the capabilities of signal processing systems. However, the more limited applications base makes design costs a critical factor in determining technical and economic viability. Systolic systems can be described at several levels of abstraction, each of which has unique descriptive requirements. This paper focuses on the descriptive issues involved at the system architectural level. Tools at this level must bridge the gap between logic- and circuit-oriented computer-aided design tools and algorithmic descriptions of systolic architectures. Traditionally, hardware description languages (HDLs) have been used at this level to describe conventional computer architectures. Systolic architectures, however, have different requirements. This paper examines these requirements and develops a set of criteria for evaluating HDLs. Four popular HDLs are evaluated and their strengths and weaknesses noted. The final section of the paper summarizes ongoing efforts at Los Alamos to develop a systolic array HDL based on the CONLAN family of languages.

  9. Design and descriptive tools for systolic architectures

    SciTech Connect

    Lewis, P.S.

    1984-01-01

    Automated design and descriptive tools are essential for the practical application of highly parallel special-purpose hardware such as systolic arrays. The use of special-purpose hardware can greatly increase the capabilities of signal processing systems. However, the more limited applications base makes design costs a critical factor in determining technical and economic viability. Systolic systems can be described at several levels of abstraction, each of which has unique descriptive requirements. This paper focuses on the descriptive issues involved at the system architectural level. Tools at this level must bridge the gap between logic- and circuit-oriented computer-aided design tools and algorithmic descriptions of systolic architectures. Traditionally, hardware description languages (HDLs) have been used at this level to describe conventional computer architectures. Systolic architectures, however, have different requirements. This paper examines these requirements and develops a set of criteria for evaluating HDLs. Four popular DHLs are evaluated and their strengths and weaknesses noted. The final section of the paper summarizes ongoing efforts at Los Alamos to develop a systolic array HDL based on the CONLAN family of languages. 14 references.

  10. Architecture and data processing alternatives for Tse computer. Volume 1: Tse logic design concepts and the development of image processing machine architectures

    NASA Technical Reports Server (NTRS)

    Rickard, D. A.; Bodenheimer, R. E.

    1976-01-01

    Digital computer components which perform two dimensional array logic operations (Tse logic) on binary data arrays are described. The properties of Golay transforms which make them useful in image processing are reviewed, and several architectures for Golay transform processors are presented with emphasis on the skeletonizing algorithm. Conventional logic control units developed for the Golay transform processors are described. One is a unique microprogrammable control unit that uses a microprocessor to control the Tse computer. The remaining control units are based on programmable logic arrays. Performance criteria are established and utilized to compare the various Golay transform machines developed. A critique of Tse logic is presented, and recommendations for additional research are included.

  11. Cost Effective Development of Usable Systems: Gaps between HCI and Software Architecture Design

    NASA Astrophysics Data System (ADS)

    Folmer, Eelke; Bosch, Jan

    A software product with poor usability is likely to fail in a highly competitive market; therefore software developing organizations are paying more and more attention to ensuring the usability of their software. Practice, however, shows that product quality (which includes usability among others) is not that high as it could be. Studies of software projects (Pressman, 2001) reveal that organizations spend a relative large amount of money and effort on fixing usability problems during late stage development. Some of these problems could have been detected and fixed much earlier. This avoidable rework leads to high costs and because during development different tradeoffs have to be made, for example between cost and quality leads to systems with less than optimal usability. This problem has been around for a couple of decades especially after software engineering (SE) and human computer interaction (HCI) became disciplines on their own. While both disciplines developed themselves, several gaps appeared which are now receiving increased attention in research literature. Major gaps of understanding, both between suggested practice and how software is actually developed in industry, but also between the best practices of each of the fields have been identified (Carrol et al, 1994, Bass et al, 2001, Folmer and Bosch, 2002). In addition, there are gaps in the fields of differing terminology, concepts, education, and methods.

  12. Rational design of helical architectures

    PubMed Central

    Chakrabarti, Dwaipayan; Fejer, Szilard N.; Wales, David J.

    2009-01-01

    Nature has mastered the art of creating complex structures through self-assembly of simpler building blocks. Adapting such a bottom-up view provides a potential route to the fabrication of novel materials. However, this approach suffers from the lack of a sufficiently detailed understanding of the noncovalent forces that hold the self-assembled structures together. Here we demonstrate that nature can indeed guide us, as we explore routes to helicity with achiral building blocks driven by the interplay between two competing length scales for the interactions, as in DNA. By characterizing global minima for clusters, we illustrate several realizations of helical architecture, the simplest one involving ellipsoids of revolution as building blocks. In particular, we show that axially symmetric soft discoids can self-assemble into helical columnar arrangements. Understanding the molecular origin of such spatial organisation has important implications for the rational design of materials with useful optoelectronic applications.

  13. Verifying Architectural Design Rules of the Flight Software Product Line

    NASA Technical Reports Server (NTRS)

    Ganesan, Dharmalingam; Lindvall, Mikael; Ackermann, Chris; McComas, David; Bartholomew, Maureen

    2009-01-01

    This paper presents experiences of verifying architectural design rules of the NASA Core Flight Software (CFS) product line implementation. The goal of the verification is to check whether the implementation is consistent with the CFS architectural rules derived from the developer's guide. The results indicate that consistency checking helps a) identifying architecturally significant deviations that were eluded during code reviews, b) clarifying the design rules to the team, and c) assessing the overall implementation quality. Furthermore, it helps connecting business goals to architectural principles, and to the implementation. This paper is the first step in the definition of a method for analyzing and evaluating product line implementations from an architecture-centric perspective.

  14. Reflective Subjects in Kant and Architectural Design Education

    ERIC Educational Resources Information Center

    Rawes, Peg

    2007-01-01

    In architectural design education, students develop drawing, conceptual, and critical skills which are informed by their ability to reflect upon the production of ideas in design processes and in the urban, environmental, social, historical, and cultural context that define architecture and the built environment. Reflective actions and thinking…

  15. Teaching Creative Thinking through Architectural Design

    ERIC Educational Resources Information Center

    Jeon, Kijeong; Cotner, Teresa L.

    2010-01-01

    Art and art education are open to broader definitions in the twenty-first century. It is time that teachers seriously think about including built environment design in K-12 art education. The term "built environment" includes interior design, architecture, landscape architecture, and urban planning. Due to increased exposure to built environment…

  16. Teaching Computer Aided Architectural Design at UCLA.

    ERIC Educational Resources Information Center

    Mitchell, William J.

    This brief overview includes a rationale for the program and describes course goals and objectives, curriculum content, teaching methods and materials, staffing, and problems of integrating computer aided design with traditional architectural curricula at the School of Architecture and Urban Planning at UCLA. A list of texts for use in teaching…

  17. Developing a Distributed Computing Architecture at Arizona State University.

    ERIC Educational Resources Information Center

    Armann, Neil; And Others

    1994-01-01

    Development of Arizona State University's computing architecture, designed to ensure that all new distributed computing pieces will work together, is described. Aspects discussed include the business rationale, the general architectural approach, characteristics and objectives of the architecture, specific services, and impact on the university…

  18. Physical Activity Design Guidelines for School Architecture.

    PubMed

    Brittin, Jeri; Sorensen, Dina; Trowbridge, Matthew; Lee, Karen K; Breithecker, Dieter; Frerichs, Leah; Huang, Terry

    2015-01-01

    Increasing children's physical activity at school is a national focus in the U.S. to address childhood obesity. While research has demonstrated associations between aspects of school environments and students' physical activity, the literature currently lacks a synthesis of evidence to serve as a practical, spatially-organized resource for school designers and decision-makers, as well as to point to pertinent research opportunities. This paper describes the development of a new practical tool: Physical Activity Design Guidelines for School Architecture. Its aims are to provide architects and designers, as well as school planners, educators, and public health professionals, with strategies for making K-12 school environments conducive to healthy physical activity, and to engage scientists in transdisciplinary perspectives toward improved knowledge of the school environment's impact. We used a qualitative review process to develop evidence-based and theory-driven school design guidelines that promote increased physical activity among students. The design guidelines include specific strategies in 10 school design domains. Implementation of the guidelines is expected to enable students to adopt healthier physical activity behaviors. The tool bridges a translational gap between research and environmental design practice, and may contribute to setting new industry and education standards. PMID:26230850

  19. Physical Activity Design Guidelines for School Architecture

    PubMed Central

    Brittin, Jeri; Sorensen, Dina; Trowbridge, Matthew; Lee, Karen K.; Breithecker, Dieter; Frerichs, Leah; Huang, Terry

    2015-01-01

    Increasing children’s physical activity at school is a national focus in the U.S. to address childhood obesity. While research has demonstrated associations between aspects of school environments and students’ physical activity, the literature currently lacks a synthesis of evidence to serve as a practical, spatially-organized resource for school designers and decision-makers, as well as to point to pertinent research opportunities. This paper describes the development of a new practical tool: Physical Activity Design Guidelines for School Architecture. Its aims are to provide architects and designers, as well as school planners, educators, and public health professionals, with strategies for making K-12 school environments conducive to healthy physical activity, and to engage scientists in transdisciplinary perspectives toward improved knowledge of the school environment’s impact. We used a qualitative review process to develop evidence-based and theory-driven school design guidelines that promote increased physical activity among students. The design guidelines include specific strategies in 10 school design domains. Implementation of the guidelines is expected to enable students to adopt healthier physical activity behaviors. The tool bridges a translational gap between research and environmental design practice, and may contribute to setting new industry and education standards. PMID:26230850

  20. Framework design and development of an informatics architecture for a systems biology approach to traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Alaoui, Adil; Kim, Dongkyu; Levine, Betty; Cleary, Kevin; Federoff, Howard J.; Mhyre, Timothy

    2010-03-01

    Traumatic Brain Injury (TBI) is a problem of major medical and socioeconomic significance, although the pathogenesis of its sequelae is not completely understood. As part of a large, multi-center project to study mild and moderate TBI, a database and informatics system to integrate a wide-range of clinical, biological, and imaging data is being developed. This database constitutes a systems-based approach to TBI with the goals of developing and validating biomarker panels that might be used to diagnose brain injury, predict clinical outcome, and eventually develop improved therapeutics. This paper presents the architecture for an informatics system that stores the disparate data types and permits easy access to the data for analysis.

  1. Three Program Architecture for Design Optimization

    NASA Technical Reports Server (NTRS)

    Miura, Hirokazu; Olson, Lawrence E. (Technical Monitor)

    1998-01-01

    In this presentation, I would like to review historical perspective on the program architecture used to build design optimization capabilities based on mathematical programming and other numerical search techniques. It is rather straightforward to classify the program architecture in three categories as shown above. However, the relative importance of each of the three approaches has not been static, instead dynamically changing as the capabilities of available computational resource increases. For example, we considered that the direct coupling architecture would never be used for practical problems, but availability of such computer systems as multi-processor. In this presentation, I would like to review the roles of three architecture from historical as well as current and future perspective. There may also be some possibility for emergence of hybrid architecture. I hope to provide some seeds for active discussion where we are heading to in the very dynamic environment for high speed computing and communication.

  2. Nanomagnet Logic: Architectures, design, and benchmarking

    NASA Astrophysics Data System (ADS)

    Kurtz, Steven J.

    Nanomagnet Logic (NML) is an emerging technology being studied as a possible replacement or supplementary device for Complimentary Metal-Oxide-Semiconductor (CMOS) Field-Effect Transistors (FET) by the year 2020. NML devices offer numerous potential advantages including: low energy operation, steady state non-volatility, radiation hardness and a clear path to fabrication and integration with CMOS. However, maintaining both low-energy operation and non-volatility while scaling from the device to the architectural level is non-trivial as (i) nearest neighbor interactions within NML circuits complicate the modeling of ensemble nanomagnet behavior and (ii) the energy intensive clock structures required for re-evaluation and NML's relatively high latency challenge its ability to offer system-level performance wins against other emerging nanotechnologies. Thus, further research efforts are required to model more complex circuits while also identifying circuit design techniques that balance low-energy operation with steady state non-volatility. In addition, further work is needed to design and model low-power on-chip clocks while simultaneously identifying application spaces where NML systems (including clock overhead) offer sufficient energy savings to merit their inclusion in future processors. This dissertation presents research advancing the understanding and modeling of NML at all levels including devices, circuits, and line clock structures while also benchmarking NML against both scaled CMOS and tunneling FETs (TFET) devices. This is accomplished through the development of design tools and methodologies for (i) quantifying both energy and stability in NML circuits and (ii) evaluating line-clocked NML system performance. The application of these newly developed tools improves the understanding of ideal design criteria (i.e., magnet size, clock wire geometry, etc.) for NML architectures. Finally, the system-level performance evaluation tool offers the ability to

  3. Expanding color design methods for architecture and allied disciplines

    NASA Astrophysics Data System (ADS)

    Linton, Harold E.

    2002-06-01

    The color design processes of visual artists, architects, designers, and theoreticians included in this presentation reflect the practical role of color in architecture. What the color design professional brings to the architectural design team is an expertise and rich sensibility made up of a broad awareness and a finely tuned visual perception. This includes a knowledge of design and its history, expertise with industrial color materials and their methods of application, an awareness of design context and cultural identity, a background in physiology and psychology as it relates to human welfare, and an ability to problem-solve and respond creatively to design concepts with innovative ideas. The broadening of the definition of the colorists's role in architectural design provides architects, artists and designers with significant opportunities for continued professional and educational development.

  4. C-Band Airport Surface Communications System Standards Development. Phase II Final Report. Volume 1: Concepts of Use, Initial System Requirements, Architecture, and AeroMACS Design Considerations

    NASA Technical Reports Server (NTRS)

    Hall, Edward; Isaacs, James; Henriksen, Steve; Zelkin, Natalie

    2011-01-01

    This report is provided as part of ITT s NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: New ATM Requirements-Future Communications, C-Band and L-Band Communications Standard Development and was based on direction provided by FAA project-level agreements for New ATM Requirements-Future Communications. Task 7 included two subtasks. Subtask 7-1 addressed C-band (5091- to 5150-MHz) airport surface data communications standards development, systems engineering, test bed and prototype development, and tests and demonstrations to establish operational capability for the Aeronautical Mobile Airport Communications System (AeroMACS). Subtask 7-2 focused on systems engineering and development support of the L-band digital aeronautical communications system (L-DACS). Subtask 7-1 consisted of two phases. Phase I included development of AeroMACS concepts of use, requirements, architecture, and initial high-level safety risk assessment. Phase II builds on Phase I results and is presented in two volumes. Volume I (this document) is devoted to concepts of use, system requirements, and architecture, including AeroMACS design considerations. Volume II describes an AeroMACS prototype evaluation and presents final AeroMACS recommendations. This report also describes airport categorization and channelization methodologies. The purposes of the airport categorization task were (1) to facilitate initial AeroMACS architecture designs and enable budgetary projections by creating a set of airport categories based on common airport characteristics and design objectives, and (2) to offer high-level guidance to potential AeroMACS technology and policy development sponsors and service providers. A channelization plan methodology was developed because a common global methodology is needed to assure seamless interoperability among diverse AeroMACS services potentially supplied by multiple service providers.

  5. Energy principles in architectural design

    SciTech Connect

    Dean, E.

    1981-01-01

    A foundation of basic information pertaining to design and energy use in buildings is presented with emphasis on principles and concepts rather than applications of particular solution. Energy impacts of landforms and topography, vegetation, wind and ventilation, and sun on planning and designing the site are discused. General design considerations involving passive heating, cooling, and lighting systems are detailed. For the design of active building systems, heating, cooling, lighting, and HVAC systems are described. (MCW)

  6. The Influence of Study and Travel Abroad on the Personal and Professional Development of Students in Architecture Design Programs

    ERIC Educational Resources Information Center

    Culver, Lyle D.

    2011-01-01

    International travel has significant implications on the study of architecture. This study analyzed ways in which undergraduate and graduate students benefited from the experience of international travel and study abroad. Taken from the perspective of 15 individuals who were currently or had been architecture students at the University of Miami…

  7. Energy Conscious Design in Schools of Architecture

    ERIC Educational Resources Information Center

    Villecco, Marguerite

    1977-01-01

    Major findings are summarized of an investigation of energy design teaching in schools of architecture, which led to recommendations described in this article addressed to theoretical and inspirational models of design teaching, rather than to technical courses. Available from: ACSA, 1735 New York Ave., Washington, D.C. 20006. (Author/LBH)

  8. Thermal design trades for SAFIR architecture concepts

    NASA Technical Reports Server (NTRS)

    Yorke, Harold W.; Paine, Christopher; Bradford, Matt; Dragovan, Mark; Nash, Al; Dooley, Jennifer; Lawrence, Charles

    2004-01-01

    SAFIR is a IO-meter, 4 K space telescope optimized for wavelengths between 20 microns and 1 mm. The combination of aperture diameter and telescope temperature will provide a raw sensitivity improvement of more than a factor of 1000 over presently-planned missions. The sensitivity will be comparable to that of the JWST and ALMA, but at the critical far-IR wavelengths where much of the universe's radiative energy has emerged since the origin of stars and galaxies. We examine several of the critical technologies for SAFIR which enable the large cold aperture, and present results of studies examining the telescope optics and the spacecraft thermal architecture. Both the method by which the aperture is filled, and the overall optical design for the telescope can impact the potential scientific return of SAFIR. Thermal architecture that goes far beyond the sunshades developed for the James Webb Space Telescope will be necessary to achieve the desired sensitivity of SAFIR. By combining active and passive cooling at critical points within the observatory, a significant reduction of the required level of active cooling can be obtained.

  9. Enterprise Information Architecture for Mission Development

    NASA Technical Reports Server (NTRS)

    Dutra, Jayne

    2007-01-01

    This slide presentation reviews the concept of an information architecture to assist in mission development. The integrate information architecture will create a unified view of the information using metadata and the values (i.e., taxonomy).

  10. A supportive architecture for CFD-based design optimisation

    NASA Astrophysics Data System (ADS)

    Li, Ni; Su, Zeya; Bi, Zhuming; Tian, Chao; Ren, Zhiming; Gong, Guanghong

    2014-03-01

    Multi-disciplinary design optimisation (MDO) is one of critical methodologies to the implementation of enterprise systems (ES). MDO requiring the analysis of fluid dynamics raises a special challenge due to its extremely intensive computation. The rapid development of computational fluid dynamic (CFD) technique has caused a rise of its applications in various fields. Especially for the exterior designs of vehicles, CFD has become one of the three main design tools comparable to analytical approaches and wind tunnel experiments. CFD-based design optimisation is an effective way to achieve the desired performance under the given constraints. However, due to the complexity of CFD, integrating with CFD analysis in an intelligent optimisation algorithm is not straightforward. It is a challenge to solve a CFD-based design problem, which is usually with high dimensions, and multiple objectives and constraints. It is desirable to have an integrated architecture for CFD-based design optimisation. However, our review on existing works has found that very few researchers have studied on the assistive tools to facilitate CFD-based design optimisation. In the paper, a multi-layer architecture and a general procedure are proposed to integrate different CFD toolsets with intelligent optimisation algorithms, parallel computing technique and other techniques for efficient computation. In the proposed architecture, the integration is performed either at the code level or data level to fully utilise the capabilities of different assistive tools. Two intelligent algorithms are developed and embedded with parallel computing. These algorithms, together with the supportive architecture, lay a solid foundation for various applications of CFD-based design optimisation. To illustrate the effectiveness of the proposed architecture and algorithms, the case studies on aerodynamic shape design of a hypersonic cruising vehicle are provided, and the result has shown that the proposed architecture

  11. Collaboration within Student Design Teams Participating in Architectural Design Competitions

    ERIC Educational Resources Information Center

    Erbil, Livanur; Dogan, Fehmi

    2012-01-01

    This paper investigates design collaboration with reference to convergent and divergent idea generation processes in architectural design teams entering a design competition. Study of design teams offer a unique opportunity to investigate how creativity is fostered through collaborative work. While views of creativity often relate creativity to…

  12. Architectural Drafting. Curriculum Development. Bulletin 1779.

    ERIC Educational Resources Information Center

    Eppler, Thomas

    This teaching guide is designed to aid high school vocational education teachers in teaching a course in architectural drafting for students who plan to become architects, interior designers and decorators, architectural draftspersons, landscape engineers, building contractors, building estimators, real estate persons or appraisers, and others.…

  13. ACOUSTICS IN ARCHITECTURAL DESIGN, AN ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS.

    ERIC Educational Resources Information Center

    DOELLE, LESLIE L.

    THE PURPOSE OF THIS ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS WAS--(1) TO COMPILE A CLASSIFIED BIBLIOGRAPHY, INCLUDING MOST OF THOSE PUBLICATIONS ON ARCHITECTURAL ACOUSTICS, PUBLISHED IN ENGLISH, FRENCH, AND GERMAN WHICH CAN SUPPLY A USEFUL AND UP-TO-DATE SOURCE OF INFORMATION FOR THOSE ENCOUNTERING ANY ARCHITECTURAL-ACOUSTIC DESIGN…

  14. Computational architecture for integrated controls and structures design

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Park, K. C.

    1989-01-01

    To facilitate the development of control structure interaction (CSI) design methodology, a computational architecture for interdisciplinary design of active structures is presented. The emphasis of the computational procedure is to exploit existing sparse matrix structural analysis techniques, in-core data transfer with control synthesis programs, and versatility in the optimization methodology to avoid unnecessary structural or control calculations. The architecture is designed such that all required structure, control and optimization analyses are performed within one program. Hence, the optimization strategy is not unduly constrained by cold starts of existing structural analysis and control synthesis packages.

  15. COG Software Architecture Design Description Document

    SciTech Connect

    Buck, R M; Lent, E M

    2009-09-21

    This COG Software Architecture Design Description Document describes the organization and functionality of the COG Multiparticle Monte Carlo Transport Code for radiation shielding and criticality calculations, at a level of detail suitable for guiding a new code developer in the maintenance and enhancement of COG. The intended audience also includes managers and scientists and engineers who wish to have a general knowledge of how the code works. This Document is not intended for end-users. This document covers the software implemented in the standard COG Version 10, as released through RSICC and IAEA. Software resources provided by other institutions will not be covered. This document presents the routines grouped by modules and in the order of the three processing phases. Some routines are used in multiple phases. The routine description is presented once - the first time the routine is referenced. Since this is presented at the level of detail for guiding a new code developer, only the routines invoked by another routine that are significant for the processing phase that is being detailed are presented. An index to all routines detailed is included. Tables for the primary data structures are also presented.

  16. Design and Analysis of Architectures for Structural Health Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi; Sixto, S. L. (Technical Monitor)

    2002-01-01

    During the two-year project period, we have worked on several aspects of Health Usage and Monitoring Systems for structural health monitoring. In particular, we have made contributions in the following areas. 1. Reference HUMS architecture: We developed a high-level architecture for health monitoring and usage systems (HUMS). The proposed reference architecture is shown. It is compatible with the Generic Open Architecture (GOA) proposed as a standard for avionics systems. 2. HUMS kernel: One of the critical layers of HUMS reference architecture is the HUMS kernel. We developed a detailed design of a kernel to implement the high level architecture.3. Prototype implementation of HUMS kernel: We have implemented a preliminary version of the HUMS kernel on a Unix platform.We have implemented both a centralized system version and a distributed version. 4. SCRAMNet and HUMS: SCRAMNet (Shared Common Random Access Memory Network) is a system that is found to be suitable to implement HUMS. For this reason, we have conducted a simulation study to determine its stability in handling the input data rates in HUMS. 5. Architectural specification.

  17. Specification, Design, and Analysis of Advanced HUMS Architectures

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi

    2004-01-01

    During the two-year project period, we have worked on several aspects of domain-specific architectures for HUMS. In particular, we looked at using scenario-based approach for the design and designed a language for describing such architectures. The language is now being used in all aspects of our HUMS design. In particular, we have made contributions in the following areas. 1) We have employed scenarios in the development of HUMS in three main areas. They are: (a) To improve reusability by using scenarios as a library indexing tool and as a domain analysis tool; (b) To improve maintainability by recording design rationales from two perspectives - problem domain and solution domain; (c) To evaluate the software architecture. 2) We have defined a new architectural language called HADL or HUMS Architectural Definition Language. It is a customized version of xArch/xADL. It is based on XML and, hence, is easily portable from domain to domain, application to application, and machine to machine. Specifications written in HADL can be easily read and parsed using the currently available XML parsers. Thus, there is no need to develop a plethora of software to support HADL. 3) We have developed an automated design process that involves two main techniques: (a) Selection of solutions from a large space of designs; (b) Synthesis of designs. However, the automation process is not an absolute Artificial Intelligence (AI) approach though it uses a knowledge-based system that epitomizes a specific HUMS domain. The process uses a database of solutions as an aid to solve the problems rather than creating a new design in the literal sense. Since searching is adopted as the main technique, the challenges involved are: (a) To minimize the effort in searching the database where a very large number of possibilities exist; (b) To develop representations that could conveniently allow us to depict design knowledge evolved over many years; (c) To capture the required information that aid the

  18. Biomorphic architectures for autonomous Nanosat designs

    NASA Technical Reports Server (NTRS)

    Hasslacher, Brosl; Tilden, Mark W.

    1995-01-01

    Modern space tool design is the science of making a machine both massively complex while at the same time extremely robust and dependable. We propose a novel nonlinear control technique that produces capable, self-organizing, micron-scale space machines at low cost and in large numbers by parallel silicon assembly. Experiments using biomorphic architectures (with ideal space attributes) have produced a wide spectrum of survival-oriented machines that are reliably domesticated for work applications in specific environments. In particular, several one-chip satellite prototypes show interesting control properties that can be turned into numerous application-specific machines for autonomous, disposable space tasks. We believe that the real power of these architectures lies in their potential to self-assemble into larger, robust, loosely coupled structures. Assembly takes place at hierarchical space scales, with different attendant properties, allowing for inexpensive solutions to many daunting work tasks. The nature of biomorphic control, design, engineering options, and applications are discussed.

  19. A layered architecture for critical database design

    SciTech Connect

    Chisholm, G.H.; Swietlik, C.E.

    1997-12-31

    Integrity, security, and safety are desired properties of database systems destined for use in critical applications. These properties are desirable because they determine a system`s credibility. However, demonstrating that a system does, in fact, preserve these properties when implemented is a difficult task. The difficulty depends on the complexity of the associated design. The authors explore architectural paradigms that have been demonstrated to reduce system complexity and, thus, reduce the cost associated with certifying that the above properties are present in the final implementation. The approach is based on the tenet that the design is divided into multiple layers. The critical functions and data make up the bottom layer, where the requirements for integrity, security, and safety are most rigid. Certification is dependent on the use of formal methods to specify and analyze the system. Appropriate formal methods are required to support certification that multiple properties are present in the final implementation. These methods must assure a rigid mapping from the top-level specification down through the implementation details. Application of a layered architecture reduces the scope of the design that must be formally specified and analyzed. This paper describes a generic, layered architecture and a formal model for specification and analysis of complex systems that require rigid integrity security, and safety properties.

  20. ELISA, a demonstrator environment for information systems architecture design

    NASA Technical Reports Server (NTRS)

    Panem, Chantal

    1994-01-01

    This paper describes an approach of reusability of software engineering technology in the area of ground space system design. System engineers have lots of needs similar to software developers: sharing of a common data base, capitalization of knowledge, definition of a common design process, communication between different technical domains. Moreover system designers need to simulate dynamically their system as early as possible. Software development environments, methods and tools now become operational and widely used. Their architecture is based on a unique object base, a set of common management services and they host a family of tools for each life cycle activity. In late '92, CNES decided to develop a demonstrative software environment supporting some system activities. The design of ground space data processing systems was chosen as the application domain. ELISA (Integrated Software Environment for Architectures Specification) was specified as a 'demonstrator', i.e. a sufficient basis for demonstrations, evaluation and future operational enhancements. A process with three phases was implemented: system requirements definition, design of system architectures models, and selection of physical architectures. Each phase is composed of several activities that can be performed in parallel, with the provision of Commercial Off the Shelves Tools. ELISA has been delivered to CNES in January 94, currently used for demonstrations and evaluations on real projects (e.g. SPOT4 Satellite Control Center). It is on the way of new evolutions.

  1. Designed 3D architectures of high-temperature superconductors.

    PubMed

    Green, David C; Lees, Martin R; Hall, Simon R

    2013-04-14

    Self-supporting superconducting replicas of pasta shapes are reported, yielding products of differing 3D architectures. Functioning high-temperature superconductor wires are developed and refined from replicas of spaghetti, demonstrating a unique sol-gel processing technique for the design and synthesis of novel macroscopic morphologies of complex functional materials. PMID:23388857

  2. "Building Dancing": Dance within the Context of Architectural Design Pedagogy

    ERIC Educational Resources Information Center

    Ersoy, Zehra

    2011-01-01

    Recent theoretical and technological developments redefine the discipline of architecture substantially. Current day approaches in design pedagogy focus on personal and bodily experiences of the "subject" and the need for investigating new ways and methods to enhance awareness of spatial experiences is inevitable. In order to establish a heuristic…

  3. Nova control system: goals, architecture, and system design

    SciTech Connect

    Suski, G.J.; Duffy, J.M.; Gritton, D.G.; Holloway, F.W.; Krammen, J.R.; Ozarski, R.G.; Severyn, J.R.; Van Arsdall, P.J.

    1982-05-19

    The control system for the Nova laser must operate reliably in a harsh pulse power environment and satisfy requirements of technical functionality, flexibility, maintainability and operability. It is composed of four fundamental subsystems: Power Conditioning, Alignment, Laser Diagnostics, and Target Diagnostics, together with a fifth, unifying subsystem called Central Controls. The system architecture utilizes a collection of distributed microcomputers, minicomputers, and components interconnected through high speed fiber optic communications systems. The design objectives, development strategy and architecture of the overall control system and each of its four fundamental subsystems are discussed. Specific hardware and software developments in several areas are also covered.

  4. FRACSAT: Automated design synthesis for future space architectures

    NASA Astrophysics Data System (ADS)

    Mackey, R.; Uckun, S.; Do, Minh; Shah, J.

    This paper describes the algorithmic basis and development of FRACSAT (FRACtionated Spacecraft Architecture Toolkit), a new approach to conceptual design, cost-benefit analysis, and detailed trade studies for space systems. It provides an automated capability for exploration of candidate spacecraft architectures, leading users to near-optimal solutions with respect to user-defined requirements, risks, and program uncertainties. FRACSAT utilizes a sophisticated planning algorithm (PlanVisioner) to perform a quasi-exhaustive search for candidate architectures, constructing candidates from an extensible model-based representation of space system components and functions. These candidates are then evaluated with emphasis on the business case, computing the expected design utility and system costs as well as risk, presenting the user with a greatly reduced selection of candidates. The user may further refine the search according to cost or benefit uncertainty, adaptability, or other performance metrics as needed.

  5. Architecture for space habitats. Role of architectural design in planning artificial environment for long time manned space missions

    NASA Astrophysics Data System (ADS)

    Martinez, Vera

    2007-02-01

    The paper discusses concepts about the role of architecture in the design of space habitats and the development of a general evaluation criteria of architectural design contribution. Besides the existing feasibility studies, the general requisites, the development studies, and the critical design review which are mainly based on the experience of human space missions and the standards of the NASA-STD-3000 manual and which analyze and evaluate the relation between man and environment and between man and machine mainly in its functionality, there is very few material about design of comfort and wellbeing of man in space habitat. Architecture for space habitat means the design of an artificial environment with much comfort in an "atmosphere" of wellbeing. These are mainly psychological effects of human factors which are very important in the case of a long time space mission. How can the degree of comfort and "wellbeing atmosphere" in an artificial environment be measured? How can the quality of the architectural contribution in space design be quantified? Definition of a criteria catalogue to reach a larger objectivity in architectural design evaluation. Definition of constant parameters as a result of project necessities to quantify the quality of the design. Architectural design analysis due the application and verification within the parameters and consequently overlapping and evaluating results. Interdisciplinary work between architects, astronautics, engineers, psychologists, etc. All the disciplines needed for planning a high quality habitat for humans in space. Analysis of the principles of well designed artificial environment. Good quality design for space architecture is the result of the interaction and interrelation between many different project necessities (technological, environmental, human factors, transportation, costs, etc.). Each of this necessities is interrelated in the design project and cannot be evaluated on its own. Therefore, the design

  6. Design of an integrated airframe/propulsion control system architecture

    NASA Technical Reports Server (NTRS)

    Cohen, Gerald C.; Lee, C. William; Strickland, Michael J.; Torkelson, Thomas C.

    1990-01-01

    The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that uses both reliability and performance. A detailed account is given for the testing associated with a subset of the architecture and concludes with general observations of applying the methodology to the architecture.

  7. Nonexpert Evaluations on Architectural Design Creativity across Cultures

    ERIC Educational Resources Information Center

    Hong, Seung Wan; Lee, Jae Seung

    2015-01-01

    This article examines the relationship between cultural differences and the nonexpert evaluations of architectural design creativity. In study I, Caucasian Americans (N = 126) and East Asians (N = 137), who did not major in architecture and urban design, evaluated the novelty and appropriateness of 5 unusual architectural shapes, selected by 5…

  8. Understanding the Lunar System Architecture Design Space

    NASA Technical Reports Server (NTRS)

    Arney, Dale C.; Wilhite, Alan W.; Reeves, David M.

    2013-01-01

    Based on the flexible path strategy and the desire of the international community, the lunar surface remains a destination for future human exploration. This paper explores options within the lunar system architecture design space, identifying performance requirements placed on the propulsive system that performs Earth departure within that architecture based on existing and/or near-term capabilities. The lander crew module and ascent stage propellant mass fraction are primary drivers for feasibility in multiple lander configurations. As the aggregation location moves further out of the lunar gravity well, the lunar lander is required to perform larger burns, increasing the sensitivity to these two factors. Adding an orbit transfer stage to a two-stage lunar lander and using a large storable stage for braking with a one-stage lunar lander enable higher aggregation locations than Low Lunar Orbit. Finally, while using larger vehicles enables a larger feasible design space, there are still feasible scenarios that use three launches of smaller vehicles.

  9. Architecture, Infrastructure, and Broadband Civic Network Design: An Institutional View

    NASA Astrophysics Data System (ADS)

    Venkatesh, Murali; Chango, Mawaki

    Cultural values frame architectures, and architectures motivate infrastructures — by which we mean the foundational telecommunications and Internet access services that software applications depend on. Design is the social process that realizes architectural elements in an infrastructure. This process is often a conflicted one where transformative visions confront the realities of entrenched power, where innovation confronts pressure from institutionalized interests and practices working to resist change and reproduce the status quo in the design outcome. We use this viewpoint to discuss design aspects of the Urban-net, a broadband civic networking case. Civic networks are embodiments of distinctive technological configurations and forms of social order. In choosing some technological configurations over others, designers are favoring some social structural configurations over alternatives. To the extent that a civic network sets out to reconfigure the prevailing social order (as was the case in the Urban-net project considered here), the design process becomes the arena where challengers of the prevailing order encounter its defenders. In this case, the defenders prevailed and the design that emerged was conservative and reproduced the status quo. What steps can stakeholders take so that the project’s future development is in line with the original aim of structural change? We outline two strategies. We argue the importance of articulating cultural desiderata in an architecture that stakeholders can use to open up the infrastructure to new constituents and incremental change. Next, we argue the importance of designing the conditions of design. The climate in which social interactions occur can powerfully shape design outcomes, but this does not usually figure in stakeholders’ design concerns.

  10. Design and develop a video conferencing framework for real-time telemedicine applications using secure group-based communication architecture.

    PubMed

    Mat Kiah, M L; Al-Bakri, S H; Zaidan, A A; Zaidan, B B; Hussain, Muzammil

    2014-10-01

    One of the applications of modern technology in telemedicine is video conferencing. An alternative to traveling to attend a conference or meeting, video conferencing is becoming increasingly popular among hospitals. By using this technology, doctors can help patients who are unable to physically visit hospitals. Video conferencing particularly benefits patients from rural areas, where good doctors are not always available. Telemedicine has proven to be a blessing to patients who have no access to the best treatment. A telemedicine system consists of customized hardware and software at two locations, namely, at the patient's and the doctor's end. In such cases, the video streams of the conferencing parties may contain highly sensitive information. Thus, real-time data security is one of the most important requirements when designing video conferencing systems. This study proposes a secure framework for video conferencing systems and a complete management solution for secure video conferencing groups. Java Media Framework Application Programming Interface classes are used to design and test the proposed secure framework. Real-time Transport Protocol over User Datagram Protocol is used to transmit the encrypted audio and video streams, and RSA and AES algorithms are used to provide the required security services. Results show that the encryption algorithm insignificantly increases the video conferencing computation time. PMID:25199651

  11. Millimeterwave Space Power Grid architecture development 2012

    NASA Astrophysics Data System (ADS)

    Komerath, Narayanan; Dessanti, Brendan; Shah, Shaan

    This is an update of the Space Power Grid architecture for space-based solar power with an improved design of the collector/converter link, the primary heater and the radiator of the active thermal control system. The Space Power Grid offers an evolutionary approach towards TeraWatt-level Space-based solar power. The use of millimeter wave frequencies (around 220GHz) and Low-Mid Earth Orbits shrinks the size of the space and ground infrastructure to manageable levels. In prior work we showed that using Brayton cycle conversion of solar power allows large economies of scale compared to the linear mass-power relationship of photovoltaic conversion. With high-temperature materials permitting 3600 K temperature in the primary heater, over 80 percent cycle efficiency was shown with a closed helium cycle for the 1GW converter satellite which formed the core element of the architecture. Work done since the last IEEE conference has shown that the use of waveguides incorporated into lighter-than-air antenna platforms, can overcome the difficulties in transmitting millimeter wave power through the moist, dense lower atmosphere. A graphene-based radiator design conservatively meets the mass budget for the waste heat rejection system needed for the compressor inlet temperature. Placing the ultralight Mirasol collectors in lower orbits overcomes the solar beam spot size problem of high-orbit collection. The architecture begins by establishing a power exchange with terrestrial renewable energy plants, creating an early revenue generation approach with low investment. The approach allows for technology development and demonstration of high power millimeter wave technology. A multinational experiment using the International Space Station and another power exchange satellite is proposed to gather required data and experience, thus reducing the technical and policy risks. The full-scale architecture deploys pairs of Mirasol sunlight collectors and Girasol 1 GW converter satellites t

  12. The Architectural and Interior Design Planning Process.

    ERIC Educational Resources Information Center

    Cohen, Elaine

    1994-01-01

    Explains the planning process in designing effective library facilities and discusses library building requirements that result from electronic information technologies. Highlights include historical structures; Americans with Disabilities Act; resource allocation; electrical power; interior spaces; lighting; design development; the roles of…

  13. A Concept Transformation Learning Model for Architectural Design Learning Process

    ERIC Educational Resources Information Center

    Wu, Yun-Wu; Weng, Kuo-Hua; Young, Li-Ming

    2016-01-01

    Generally, in the foundation course of architectural design, much emphasis is placed on teaching of the basic design skills without focusing on teaching students to apply the basic design concepts in their architectural designs or promoting students' own creativity. Therefore, this study aims to propose a concept transformation learning model to…

  14. Use of the Collaborative Optimization Architecture for Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Braun, R. D.; Moore, A. A.; Kroo, I. M.

    1996-01-01

    Collaborative optimization is a new design architecture specifically created for large-scale distributed-analysis applications. In this approach, problem is decomposed into a user-defined number of subspace optimization problems that are driven towards interdisciplinary compatibility and the appropriate solution by a system-level coordination process. This decentralized design strategy allows domain-specific issues to be accommodated by disciplinary analysts, while requiring interdisciplinary decisions to be reached by consensus. The present investigation focuses on application of the collaborative optimization architecture to the multidisciplinary design of a single-stage-to-orbit launch vehicle. Vehicle design, trajectory, and cost issues are directly modeled. Posed to suit the collaborative architecture, the design problem is characterized by 5 design variables and 16 constraints. Numerous collaborative solutions are obtained. Comparison of these solutions demonstrates the influence which an priori ascent-abort criterion has on development cost. Similarly, objective-function selection is discussed, demonstrating the difference between minimum weight and minimum cost concepts. The operational advantages of the collaborative optimization

  15. An Information Technology Architecture for Pharmaceutical Research and Development

    PubMed Central

    Klingler, Daniel E.; Jaffe, Marvin E.

    1990-01-01

    Rationale for and development of an information technology architecture are presented. The architectural approach described produces a technology environment that is integrating, flexible, robust, productive, and future-oriented. Issues accompanying architecture development and potential impediments to success are discussed.

  16. 38. PHOTOCOPY OF ARCHITECTURAL WASH DRAWING OF CANNELTON MILL 'designed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. PHOTOCOPY OF ARCHITECTURAL WASH DRAWING OF CANNELTON MILL 'designed by Tefft' COURTESY JOHN HAY LIBRARY, BROWN UNIVERSITY - Cannelton Cotton Mill, Front & Fourth Streets, Cannelton, Perry County, IN

  17. An open systems architecture for development of a physician's workstation.

    PubMed Central

    Young, C. Y.; Tang, P. C.; Annevelink, J.

    1991-01-01

    We are developing a physician's workstation consisting of highly integrated information management tools for use by physicians in patient care. We have designed and implemented an open systems, client/server architecture as a development platform which allows new applications to be easily added to the system. Applications cooperate by exchanging messages via a broadcast message server. PMID:1807649

  18. Building Structure Design as an Integral Part of Architecture: A Teaching Model for Students of Architecture

    ERIC Educational Resources Information Center

    Unay, Ali Ihsan; Ozmen, Cengiz

    2006-01-01

    This paper explores the place of structural design within undergraduate architectural education. The role and format of lecture-based structure courses within an education system, organized around the architectural design studio is discussed with its most prominent problems and proposed solutions. The fundamental concept of the current teaching…

  19. Developing a taxonomy for mission architecture definition

    NASA Technical Reports Server (NTRS)

    Neubek, Deborah J.

    1990-01-01

    The Lunar and Mars Exploration Program Office (LMEPO) was tasked to define candidate architectures for the Space Exploration Initiative to submit to NASA senior management and an externally constituted Outreach Synthesis Group. A systematic, structured process for developing, characterizing, and describing the alternate mission architectures, and applying this process to future studies was developed. The work was done in two phases: (1) national needs were identified and categorized into objectives achievable by the Space Exploration Initiative; and (2) a program development process was created which both hierarchically and iteratively describes the program planning process.

  20. Brain architecture: a design for natural computation.

    PubMed

    Kaiser, Marcus

    2007-12-15

    Fifty years ago, John von Neumann compared the architecture of the brain with that of the computers he invented and which are still in use today. In those days, the organization of computers was based on concepts of brain organization. Here, we give an update on current results on the global organization of neural systems. For neural systems, we outline how the spatial and topological architecture of neuronal and cortical networks facilitates robustness against failures, fast processing and balanced network activation. Finally, we discuss mechanisms of self-organization for such architectures. After all, the organization of the brain might again inspire computer architecture. PMID:17855223

  1. Fast underdetermined BSS architecture design methodology for real time applications.

    PubMed

    Mopuri, Suresh; Reddy, P Sreenivasa; Acharyya, Amit; Naik, Ganesh R

    2015-01-01

    In this paper, we propose a high speed architecture design methodology for the Under-determined Blind Source Separation (UBSS) algorithm using our recently proposed high speed Discrete Hilbert Transform (DHT) targeting real time applications. In UBSS algorithm, unlike the typical BSS, the number of sensors are less than the number of the sources, which is of more interest in the real time applications. The DHT architecture has been implemented based on sub matrix multiplication method to compute M point DHT, which uses N point architecture recursively and where M is an integer multiples of N. The DHT architecture and state of the art architecture are coded in VHDL for 16 bit word length and ASIC implementation is carried out using UMC 90 - nm technology @V DD = 1V and @ 1MHZ clock frequency. The proposed architecture implementation and experimental comparison results show that the DHT design is two times faster than state of the art architecture. PMID:26737514

  2. Virtual environment architecture for rapid application development

    NASA Technical Reports Server (NTRS)

    Grinstein, Georges G.; Southard, David A.; Lee, J. P.

    1993-01-01

    We describe the MITRE Virtual Environment Architecture (VEA), a product of nearly two years of investigations and prototypes of virtual environment technology. This paper discusses the requirements for rapid prototyping, and an architecture we are developing to support virtual environment construction. VEA supports rapid application development by providing a variety of pre-built modules that can be reconfigured for each application session. The modules supply interfaces for several types of interactive I/O devices, in addition to large-screen or head-mounted displays.

  3. An OER Architecture Framework: Needs and Design

    ERIC Educational Resources Information Center

    Khanna, Pankaj; Basak, P. C.

    2013-01-01

    This paper describes an open educational resources (OER) architecture framework that would bring significant improvements in a well-structured and systematic way to the educational practices of distance education institutions of India. The OER architecture framework is articulated with six dimensions: pedagogical, technological, managerial,…

  4. Design of the ARES Mars Airplane and Mission Architecture

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Wright, Henry S.; Croom, Mark A.; Levine, Joel S.; Spencer, David A.

    2006-01-01

    Significant technology advances have enabled planetary aircraft to be considered as viable science platforms. Such systems fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Recent efforts have produced mature mission and flight system concepts, ready for flight project implementation. This paper summarizes the development of a Mars airplane mission architecture that balances science, implementation risk and cost. Airplane mission performance, flight system design and technology maturation are described. The design, analysis and testing completed demonstrates the readiness of this science platform for use in a Mars flight project.

  5. Designing Next Generation Massively Multithreaded Architectures for Irregular Applications

    SciTech Connect

    Tumeo, Antonino; Secchi, Simone; Villa, Oreste

    2012-08-31

    Irregular applications, such as data mining or graph-based computations, show unpredictable memory/network access patterns and control structures. Massively multi-threaded architectures with large node count, like the Cray XMT, have been shown to address their requirements better than commodity clusters. In this paper we present the approaches that we are currently pursuing to design future generations of these architectures. First, we introduce the Cray XMT and compare it to other multithreaded architectures. We then propose an evolution of the architecture, integrating multiple cores per node and next generation network interconnect. We advocate the use of hardware support for remote memory reference aggregation to optimize network utilization. For this evaluation we developed a highly parallel, custom simulation infrastructure for multi-threaded systems. Our simulator executes unmodified XMT binaries with very large datasets, capturing effects due to contention and hot-spotting, while predicting execution times with greater than 90% accuracy. We also discuss the FPGA prototyping approach that we are employing to study efficient support for irregular applications in next generation manycore processors.

  6. PathCase-SB architecture and database design

    PubMed Central

    2011-01-01

    Background Integration of metabolic pathways resources and regulatory metabolic network models, and deploying new tools on the integrated platform can help perform more effective and more efficient systems biology research on understanding the regulation in metabolic networks. Therefore, the tasks of (a) integrating under a single database environment regulatory metabolic networks and existing models, and (b) building tools to help with modeling and analysis are desirable and intellectually challenging computational tasks. Description PathCase Systems Biology (PathCase-SB) is built and released. The PathCase-SB database provides data and API for multiple user interfaces and software tools. The current PathCase-SB system provides a database-enabled framework and web-based computational tools towards facilitating the development of kinetic models for biological systems. PathCase-SB aims to integrate data of selected biological data sources on the web (currently, BioModels database and KEGG), and to provide more powerful and/or new capabilities via the new web-based integrative framework. This paper describes architecture and database design issues encountered in PathCase-SB's design and implementation, and presents the current design of PathCase-SB's architecture and database. Conclusions PathCase-SB architecture and database provide a highly extensible and scalable environment with easy and fast (real-time) access to the data in the database. PathCase-SB itself is already being used by researchers across the world. PMID:22070889

  7. Design and Architecture of Collaborative Online Communities: A Quantitative Analysis

    ERIC Educational Resources Information Center

    Aviv, Reuven; Erlich, Zippy; Ravid, Gilad

    2004-01-01

    This paper considers four aspects of online communities. Design, mechanisms, architecture, and the constructed knowledge. We hypothesize that different designs of communities drive different mechanisms, which give rise to different architectures, which in turn result in different levels of collaborative knowledge construction. To test this chain…

  8. Mathematical Aspects of Educating Architecture Designers: A College Study

    ERIC Educational Resources Information Center

    Verner, I. M.; Maor, S.

    2005-01-01

    This paper considers a second-year Mathematical Aspects in Architectural Design course, which relies on a first-year mathematics course and offers mathematical learning as part of hands-on practice in architecture design studio. The 16-hour course consisted of seminar presentations of mathematics concepts, their application to covering the plane…

  9. Exploration Space Suit Architecture: Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.

    2010-01-01

    This paper picks up where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars (Hill, Johnson, IEEEAC paper #1209) left off in the development of a space suit architecture that is modular in design and interfaces and could be reconfigured to meet the mission or during any given mission depending on the tasks or destination. This paper will walk though the continued development of a space suit system architecture, and how it should evolve to meeting the future exploration EVA needs of the United States space program. In looking forward to future US space exploration and determining how the work performed to date in the CxP and how this would map to a future space suit architecture with maximum re-use of technology and functionality, a series of thought exercises and analysis have provided a strong indication that the CxP space suit architecture is well postured to provide a viable solution for future exploration missions. Through the destination environmental analysis that is presented in this paper, the modular architecture approach provides the lowest mass, lowest mission cost for the protection of the crew given any human mission outside of low Earth orbit. Some of the studies presented here provide a look and validation of the non-environmental design drivers that will become every-increasingly important the further away from Earth humans venture and the longer they are away. Additionally, the analysis demonstrates a logical clustering of design environments that allows a very focused approach to technology prioritization, development and design that will maximize the return on investment independent of any particular program and provide architecture and design solutions for space suit systems in time or ahead of being required for any particular manned flight program in the future. The new approach to space suit design and interface definition the discussion will show how the architecture is very adaptable to programmatic and funding changes with

  10. Architecture and Development: Two Case Studies

    ERIC Educational Resources Information Center

    Bechhoefer, William B.

    1975-01-01

    An American Fulbright lecturer finds lessons learned about the growth of architectural education in Tunisia and Afghanistan relevant for other developing nations. He emphasizes the responsibility that accompanies the imposition of a foreign system: recognition of local variations from the model and evaluation of programs and curriculum responsive…

  11. Applications of an architecture design and assessment system (ADAS)

    NASA Technical Reports Server (NTRS)

    Gray, F. Gail; Debrunner, Linda S.; White, Tennis S.

    1988-01-01

    A new Architecture Design and Assessment System (ADAS) tool package is introduced, and a range of possible applications is illustrated. ADAS was used to evaluate the performance of an advanced fault-tolerant computer architecture in a modern flight control application. Bottlenecks were identified and possible solutions suggested. The tool was also used to inject faults into the architecture and evaluate the synchronization algorithm, and improvements are suggested. Finally, ADAS was used as a front end research tool to aid in the design of reconfiguration algorithms in a distributed array architecture.

  12. Architecture independent environment for developing engineering software on MIMD computers

    NASA Technical Reports Server (NTRS)

    Valimohamed, Karim A.; Lopez, L. A.

    1990-01-01

    Engineers are constantly faced with solving problems of increasing complexity and detail. Multiple Instruction stream Multiple Data stream (MIMD) computers have been developed to overcome the performance limitations of serial computers. The hardware architectures of MIMD computers vary considerably and are much more sophisticated than serial computers. Developing large scale software for a variety of MIMD computers is difficult and expensive. There is a need to provide tools that facilitate programming these machines. First, the issues that must be considered to develop those tools are examined. The two main areas of concern were architecture independence and data management. Architecture independent software facilitates software portability and improves the longevity and utility of the software product. It provides some form of insurance for the investment of time and effort that goes into developing the software. The management of data is a crucial aspect of solving large engineering problems. It must be considered in light of the new hardware organizations that are available. Second, the functional design and implementation of a software environment that facilitates developing architecture independent software for large engineering applications are described. The topics of discussion include: a description of the model that supports the development of architecture independent software; identifying and exploiting concurrency within the application program; data coherence; engineering data base and memory management.

  13. Human Exploration of Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2010-01-01

    This paper provides a summary of the Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.

  14. Human Exploration of Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.; Hoffman, Stephen J.; Beaty, David W.

    2009-01-01

    This paper provides a summary of the 2007 Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration including how Constellation systems can be used. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.

  15. Designing Domain-Specific HUMS Architectures: An Automated Approach

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi; Agarwal, Neha; Kumar, Pramod; Sundaram, Parthiban

    2004-01-01

    The HUMS automation system automates the design of HUMS architectures. The automated design process involves selection of solutions from a large space of designs as well as pure synthesis of designs. Hence the whole objective is to efficiently search for or synthesize designs or parts of designs in the database and to integrate them to form the entire system design. The automation system adopts two approaches in order to produce the designs: (a) Bottom-up approach and (b) Top down approach. Both the approaches are endowed with a Suite of quantitative and quantitative techniques that enable a) the selection of matching component instances, b) the determination of design parameters, c) the evaluation of candidate designs at component-level and at system-level, d) the performance of cost-benefit analyses, e) the performance of trade-off analyses, etc. In short, the automation system attempts to capitalize on the knowledge developed from years of experience in engineering, system design and operation of the HUMS systems in order to economically produce the most optimal and domain-specific designs.

  16. Human Exploration of Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2009-01-01

    This document reviews the Design Reference Architecture (DRA) for human exploration of Mars. The DRA represents the current best strategy for human missions. The DRA is not a formal plan, but provides a vision and context to tie current systems and technology developments to potential missions to Mars, and it also serves as a benchmark against which alternative architectures can be measured. The document also reviews the objectives and products of the 2007 study that was to update NASA's human Mars mission reference architecture, assess strategic linkages between lunar and Mars strategies, develop an understanding of methods for reducing cost/risk of human missions through investment in research, technology development and synergy with other exploration plans. There is also a review of the process by which the DRA will continue to be refined. The unique capacities of human exploration is reviewed. The possible goals and objectives of the first three human missions are presented, along with the recommendation that the mission involve a long stay visiting multiple sites.The deployment strategy is outlined and diagrammed including the pre-deployment of the many of the material requirements, and a six crew travel to Mars on a six month trajectory. The predeployment and the Orion crew vehicle are shown. The ground operations requirements are also explained. Also the use of resources found on the surface of Mars is postulated. The Mars surface exploration strategy is reviewed, including the planetary protection processes that are planned. Finally a listing of the key decisions and tenets is posed.

  17. Architectural Design and the Learning Environment: A Framework for School Design Research

    ERIC Educational Resources Information Center

    Gislason, Neil

    2010-01-01

    This article develops a theoretical framework for studying how instructional space, teaching and learning are related in practice. It is argued that a school's physical design can contribute to the quality of the learning environment, but several non-architectural factors also determine how well a given facility serves as a setting for teaching…

  18. Undergraduate courses for enhancing design ability in naval architecture

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Yeul; Ku, Namkug; Cha, Ju-Hwan

    2013-09-01

    Contemporary lectures in undergraduate engineering courses typically focus on teaching major technical knowledge-based theories in a limited time. Therefore, most lectures do not allow the students to gain understanding of how the theories are applied, especially in Naval Architecture and Ocean Engineering departments. Shipyards require students to acquire practical ship design skills in undergraduate courses. To meet this requirement, two lectures are organized by the authors; namely, "Planning Procedure of Naval Architecture & Ocean Engineering" (PNAOE) and "Innovative Ship Design" (ISD). The concept of project-based and collaborative learning is applied in these two lectures. In the PNAOE lecture, sophomores receive instruction in the designing and building of model ships, and the students' work is evaluated in a model ship contest. This curriculum enables students to understand the concepts of ship design and production. In the ISD lecture, seniors learn how to develop their creative ideas about ship design and communicate with members of group. They are encouraged to cooperate with others and understand the ship design process. In the capstone design course, students receive guidance to facilitate understanding of how the knowledge from their sophomore or junior classes, such as fluid mechanics, statics, and dynamics, can be applied to practical ship design. Students are also encouraged to compete in the ship design contest organized by the Society of Naval Architects of Korea. Moreover, the effectiveness of project-based and collaborative learning for enhancing interest in the shipbuilding Industry and understanding the ship design process is demonstrated by citing the PNAOE and ISD lectures as examples.

  19. Satellite ATM Networks: Architectures and Guidelines Developed

    NASA Technical Reports Server (NTRS)

    vonDeak, Thomas C.; Yegendu, Ferit

    1999-01-01

    An important element of satellite-supported asynchronous transfer mode (ATM) networking will involve support for the routing and rerouting of active connections. Work published under the auspices of the Telecommunications Industry Association (http://www.tiaonline.org), describes basic architectures and routing protocol issues for satellite ATM (SATATM) networks. The architectures and issues identified will serve as a basis for further development of technical specifications for these SATATM networks. Three ATM network architectures for bent pipe satellites and three ATM network architectures for satellites with onboard ATM switches were developed. The architectures differ from one another in terms of required level of mobility, supported data rates, supported terrestrial interfaces, and onboard processing and switching requirements. The documentation addresses low-, middle-, and geosynchronous-Earth-orbit satellite configurations. The satellite environment may require real-time routing to support the mobility of end devices and nodes of the ATM network itself. This requires the network to be able to reroute active circuits in real time. In addition to supporting mobility, rerouting can also be used to (1) optimize network routing, (2) respond to changing quality-of-service requirements, and (3) provide a fault tolerance mechanism. Traffic management and control functions are necessary in ATM to ensure that the quality-of-service requirements associated with each connection are not violated and also to provide flow and congestion control functions. Functions related to traffic management were identified and described. Most of these traffic management functions will be supported by on-ground ATM switches, but in a hybrid terrestrial-satellite ATM network, some of the traffic management functions may have to be supported by the onboard satellite ATM switch. Future work is planned to examine the tradeoffs of placing traffic management functions onboard a satellite as

  20. Candida Biofilms: Development, Architecture, and Resistance

    PubMed Central

    CHANDRA, JYOTSNA; MUKHERJEE, PRANAB K.

    2015-01-01

    Intravascular device–related infections are often associated with biofilms (microbial communities encased within a polysaccharide-rich extracellular matrix) formed by pathogens on the surfaces of these devices. Candida species are the most common fungi isolated from catheter-, denture-, and voice prosthesis–associated infections and also are commonly isolated from contact lens–related infections (e.g., fungal keratitis). These biofilms exhibit decreased susceptibility to most antimicrobial agents, which contributes to the persistence of infection. Recent technological advances have facilitated the development of novel approaches to investigate the formation of biofilms and identify specific markers for biofilms. These studies have provided extensive knowledge of the effect of different variables, including growth time, nutrients, and physiological conditions, on biofilm formation, morphology, and architecture. In this article, we will focus on fungal biofilms (mainly Candida biofilms) and provide an update on the development, architecture, and resistance mechanisms of biofilms. PMID:26350306

  1. Writing as a Tool in Teaching Sketching: Implications for Architectural Design Education

    ERIC Educational Resources Information Center

    Soygenis, Sema; Soygenis, Murat; Erktin, Emine

    2010-01-01

    This article discusses the process of a study designed to develop university students' sketching skills in schools of architecture. Acknowledging the relationship between cognition and writing, it aims to investigate the role of writing in learning sketching among architecture students and to examine how students regulate their thoughts by writing…

  2. Development of a clinical data architecture.

    PubMed Central

    Beeler, G. W.; Gibbons, P. S.; Chute, C. G.

    1992-01-01

    This paper presents a methodology for developing a data architecture for clinical medicine. The methodology uses an object-oriented analysis approach that takes advantage of the domain expertise of practicing physicians. The resulting high-level data model combines a structured, event-based model of clinical information with the process-oriented structures usually associated with problem lists and practice protocols. PMID:1482875

  3. Generative design in architecture using an expert system

    NASA Astrophysics Data System (ADS)

    Gullichsen, E.; Chang, E.

    The mathematician-architect Christopher Alexander has devised a theory of objective architectural design. He believes that all architectural forms can be described as interacting patterns, all possible relationships of which are governed by generative rules. These form a pattern language' capable of generating forms appropriate for a given environmental context. The complexity of interaction among these rules leads to difficulties in their representation by conventional methods. Here, a Prolog-based expert system is presented which implements Alexander's design methodology to produce perspective views of partially and fully differentiated 3-dimensional architectural forms.

  4. Science Hybrid Orbiter and Lunar Relay (SCHOLR) Architecture and Design

    NASA Technical Reports Server (NTRS)

    Trase, Kathryn K.; Barch, Rachel A.; Chaney, Ryan E.; Coulter, Rachel A.; Gao, Hui; Huynh, David P.; Iaconis, Nicholas A.; MacMillan, Todd S.; Pitner, Gregory M.; Schwab, Devin T.

    2011-01-01

    Considered both a stepping-stone to deep space and a key to unlocking the mysteries of planetary formation, the Moon offers a unique opportunity for scientific study. Robotic precursor missions are being developed to improve technology and enable new approaches to exploration. Robots, lunar landers, and satellites play significant roles in advancing science and technologies, offering close range and in-situ observations. Science and exploration data gathered from these nodes and a lunar science satellite is intended to support future human expeditions and facilitate future utilization of lunar resources. To attain a global view of lunar science, the nodes will be distributed over the lunar surface, including locations on the far side of the Moon. Given that nodes on the lunar far side do not have direct line-of-sight for Earth communications, the planned presence of such nodes creates the need for a lunar communications relay satellite. Since the communications relay capability would only be required for a small portion of the satellite s orbit, it may be possible to include communication relay components on a science spacecraft. Furthermore, an integrated satellite has the potential to reduce lunar surface mission costs. A SCience Hybrid Orbiter and Lunar Relay (SCHOLR) is proposed to accomplish scientific goals while also supporting the communications needs of landers on the far side of the Moon. User needs and design drivers for the system were derived from the anticipated needs of future robotic and lander missions. Based on these drivers and user requirements, accommodations for communications payload aboard a science spacecraft were developed. A team of interns identified and compared possible SCHOLR architectures. The final SCHOLR architecture was analyzed in terms of orbiter lifetime, lunar surface coverage, size, mass, power, and communications data rates. This paper presents the driving requirements, operational concept, and architecture views for SCHOLR

  5. DNA Nanotechnology-- Architectures Designed with DNA

    NASA Astrophysics Data System (ADS)

    Han, Dongran

    As the genetic information storage vehicle, deoxyribonucleic acid (DNA) molecules are essential to all known living organisms and many viruses. It is amazing that such a large amount of information about how life develops can be stored in these tiny molecules. Countless scientists, especially some biologists, are trying to decipher the genetic information stored in these captivating molecules. Meanwhile, another group of researchers, nanotechnologists in particular, have discovered that the unique and concise structural features of DNA together with its information coding ability can be utilized for nano-construction efforts. This idea culminated in the birth of the field of DNA nanotechnology which is the main topic of this dissertation. The ability of rationally designed DNA strands to self-assemble into arbitrary nanostructures without external direction is the basis of this field. A series of novel design principles for DNA nanotechnology are presented here, from topological DNA nanostructures to complex and curved DNA nanostructures, from pure DNA nanostructures to hybrid RNA/DNA nanostructures. As one of the most important and pioneering fields in controlling the assembly of materials (both DNA and other materials) at the nanoscale, DNA nanotechnology is developing at a dramatic speed and as more and more construction approaches are invented, exciting advances will emerge in ways that we may or may not predict.

  6. Enabling Rapid Naval Architecture Design Space Exploration

    NASA Technical Reports Server (NTRS)

    Mueller, Michael A.; Dufresne, Stephane; Balestrini-Robinson, Santiago; Mavris, Dimitri

    2011-01-01

    Well accepted conceptual ship design tools can be used to explore a design space, but more precise results can be found using detailed models in full-feature computer aided design programs. However, defining a detailed model can be a time intensive task and hence there is an incentive for time sensitive projects to use conceptual design tools to explore the design space. In this project, the combination of advanced aerospace systems design methods and an accepted conceptual design tool facilitates the creation of a tool that enables the user to not only visualize ship geometry but also determine design feasibility and estimate the performance of a design.

  7. Mars Design Reference Architecture 5.0 Study: Executive Summary

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2008-01-01

    The NASA Mars Design Reference Architecture 5.0 Study seeks to update its long term goals and objective for human exploration missions; flight and surface systems for human missions and supporting infrastructure; operational concept for human and robotic exploration of Mars; key challenges including risk and cost drivers; and, its development schedule options. It additionally seeks to assess strategic linkages between lunar and Mars strategies and develop and understanding of methods for reducing the cost/risk of human Mars missions through investment in research, technology development, and synergy with other exploration plans. Recommendations are made regarding conjunction class (long-stay) missions which are seen as providing the best balance of cost, risk, and performance. Additionally, this study reviews entry, descent, and landing challenges; in-space transportation systems; launch vehicle and Orion assessments; risk and risk mitigation; key driving requirements and challenges; and, lunar linkages.

  8. New Course Design: Classification Schemes and Information Architecture.

    ERIC Educational Resources Information Center

    Weinberg, Bella Hass

    2002-01-01

    Describes a course developed at St. John's University (New York) in the Division of Library and Information Science that relates traditional classification schemes to information architecture and Web sites. Highlights include functional aspects of information architecture, that is, the way content is structured; assignments; student reactions; and…

  9. Dismantling the Built Drawing: Working with Mood in Architectural Design

    ERIC Educational Resources Information Center

    Teal, Randall

    2010-01-01

    From the late Middle Ages onward an emphasis on the rational and the technical aspects of design and design drawing gained hold of architectural practice. In this transformation, the phenomenon of mood has been frequently overlooked or seen as something to be added on to a design; yet the fundamental grounding of mood, as described in Martin…

  10. Information Architecture without Internal Theory: An Inductive Design Process.

    ERIC Educational Resources Information Center

    Haverty, Marsha

    2002-01-01

    Suggests that information architecture design is primarily an inductive process, partly because it lacks internal theory and partly because it is an activity that supports emergent phenomena (user experiences) from basic design components. Suggests a resemblance to Constructive Induction, a design process that locates the best representational…

  11. Human friendly architectural design for a small Martian base

    NASA Astrophysics Data System (ADS)

    Kozicki, J.; Kozicka, J.

    2011-12-01

    The manned mission to Mars is expected to last almost three years. A human factor must be taken seriously into account in such a long-term mission. A big comfortable habitat can help to overcome sociopsychological problems, that occur in ICEs (Isolated and Confined Environments). Authors have come forward to this issue and have developed a Martian base design as a human friendly habitat. The project is based on researches of extreme conditions on Mars, architecture in ICEs and contemporary building technologies. The base consists of five modules: a Central Module (CM), an Agriculture Dome (AD), a Residential Dome (RD), a Laboratory Dome (LD) and a Garage (G). Each element has its own functional purpose. The CM is a metal capsule similar to the Reference Mission module (RM, NASA, 1997). Domes are inflatable multilayer structures, which interiors are "open planned". Interiors can be arranged and divided into rooms by using modular partition walls designed by authors.

  12. Development of x-ray laser architectural components

    SciTech Connect

    Wan, A.S.; Da Silva, L.B.; Moreno, J.C.

    1994-06-01

    This paper describes the recent experimental and computational development of short-pulse, enhanced-coherence, and high-brilliance x-ray lasers (XRLs). The authors will describe the development of an XRL cavity by injecting laser photons back into an amplifying XRL plasma. Using a combination of LASNEX/GLF/SPECTRE-BEAM3 codes, they obtained good agreement with experimental results. They will describe the adaptive spatial filtering technique used to design small-aperture shaped XRLs with near diffraction-limited output. Finally they will discuss issues concerning the development of high-brilliance XRL architecture, with emphasis on scaling the XRL aperture. Combining these advances in XRL architectural components allows them to develop a short-pulse, high-brilliance, coherent XRL suitable for applications in areas such as biological holography, plasma interferometry, and nonlinear optics.

  13. Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 2: Army fault tolerant architecture design and analysis

    NASA Technical Reports Server (NTRS)

    Harper, R. E.; Alger, L. S.; Babikyan, C. A.; Butler, B. P.; Friend, S. A.; Ganska, R. J.; Lala, J. H.; Masotto, T. K.; Meyer, A. J.; Morton, D. P.

    1992-01-01

    Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions.

  14. Design and evaluation of cellular power converter architectures

    NASA Astrophysics Data System (ADS)

    Perreault, David John

    Power electronic technology plays an important role in many energy conversion and storage applications, including machine drives, power supplies, frequency changers and UPS systems. Increases in performance and reductions in cost have been achieved through the development of higher performance power semiconductor devices and integrated control devices with increased functionality. Manufacturing techniques, however, have changed little. High power is typically achieved by paralleling multiple die in a sing!e package, producing the physical equivalent of a single large device. Consequently, both the device package and the converter in which the device is used continue to require large, complex mechanical structures, and relatively sophisticated heat transfer systems. An alternative to this approach is the use of a cellular power converter architecture, which is based upon the parallel connection of a large number of quasi-autonomous converters, called cells, each of which is designed for a fraction of the system rating. The cell rating is chosen such that single-die devices in inexpensive packages can be used, and the cell fabricated with an automated assembly process. The use of quasi-autonomous cells means that system performance is not compromised by the failure of a cell. This thesis explores the design of cellular converter architectures with the objective of achieving improvements in performance, reliability, and cost over conventional converter designs. New approaches are developed and experimentally verified for highly distributed control of cellular converters, including methods for ripple cancellation and current-sharing control. The performance of these techniques are quantified, and their dynamics are analyzed. Cell topologies suitable to the cellular architecture are investigated, and their use for systems in the 5-500 kVA range is explored. The design, construction, and experimental evaluation of a 6 kW cellular switched-mode rectifier is also addressed

  15. Simulation system architecture design for generic communications link

    NASA Technical Reports Server (NTRS)

    Tsang, Chit-Sang; Ratliff, Jim

    1986-01-01

    This paper addresses a computer simulation system architecture design for generic digital communications systems. It addresses the issues of an overall system architecture in order to achieve a user-friendly, efficient, and yet easily implementable simulation system. The system block diagram and its individual functional components are described in detail. Software implementation is discussed with the VAX/VMS operating system used as a target environment.

  16. An Update on Design Tools for Optimization of CMC 3D Fiber Architectures

    NASA Technical Reports Server (NTRS)

    Lang, J.; DiCarlo, J.

    2012-01-01

    Objective: Describe and up-date progress for NASA's efforts to develop 3D architectural design tools for CMC in general and for SIC/SiC composites in particular. Describe past and current sequential work efforts aimed at: Understanding key fiber and tow physical characteristics in conventional 2D and 3D woven architectures as revealed by microstructures in the literature. Developing an Excel program for down-selecting and predicting key geometric properties and resulting key fiber-controlled properties for various conventional 3D architectures. Developing a software tool for accurately visualizing all the key geometric details of conventional 3D architectures. Validating tools by visualizing and predicting the Internal geometry and key mechanical properties of a NASA SIC/SIC panel with a 3D orthogonal architecture. Applying the predictive and visualization tools toward advanced 3D orthogonal SiC/SIC composites, and combining them into a user-friendly software program.

  17. Reducing Development and Operations Costs using NASA's "GMSEC" Systems Architecture

    NASA Technical Reports Server (NTRS)

    Smith, Dan; Bristow, John; Crouse, Patrick

    2007-01-01

    This viewgraph presentation reviews the role of Goddard Mission Services Evolution Center (GMSEC) in reducing development and operation costs in handling the massive data from NASA missions. The goals of GMSEC systems architecture development are to (1) Simplify integration and development, (2)Facilitate technology infusion over time, (3) Support evolving operational concepts, and (4) All for mix of heritage, COTS and new components. First 3 missions (i.e., Tropical Rainforest Measuring Mission (TRMM), Small Explorer (SMEX) missions - SWAS, TRACE, SAMPEX, and ST5 3-Satellite Constellation System) each selected a different telemetry and command system. These results show that GMSEC's message-bus component-based framework architecture is well proven and provides significant benefits over traditional flight and ground data system designs. The missions benefit through increased set of product options, enhanced automation, lower cost and new mission-enabling operations concept options .

  18. Motivation for Creativity in Architectural Design and Engineering Design Students: Implications for Design Education

    ERIC Educational Resources Information Center

    Casakin, Hernan; Kreitler, Shulamith

    2010-01-01

    The investigation reported here dealt with the study of motivation for creativity. The goals were to assess motivation for creativity in architectural design and engineering design students based on the Cognitive Orientation theory which defines motivation as a function of a set of belief types, themes, and groupings identified as relevant for the…

  19. Pipelined CPU Design with FPGA in Teaching Computer Architecture

    ERIC Educational Resources Information Center

    Lee, Jong Hyuk; Lee, Seung Eun; Yu, Heon Chang; Suh, Taeweon

    2012-01-01

    This paper presents a pipelined CPU design project with a field programmable gate array (FPGA) system in a computer architecture course. The class project is a five-stage pipelined 32-bit MIPS design with experiments on the Altera DE2 board. For proper scheduling, milestones were set every one or two weeks to help students complete the project on…

  20. All-Electric Concepts for Architecture. NECA Electrical Design Guidelines.

    ERIC Educational Resources Information Center

    National Electrical Contractors Association, Washington, DC.

    In this monograph dealing with the suitability of electrically powered systems to emerging architectural trends, emphasis is upon the relationship of mechanical systems to overall building design. Topics discussed are--(1) All Electric Systems are Right for the Times, (2) Electric Systems Enlarge Freedom of Design, (3) Approaching the Question:…

  1. Design of an integrated airframe/propulsion control system architecture

    NASA Technical Reports Server (NTRS)

    Cohen, Gerald C.; Lee, C. William; Strickland, Michael J.

    1990-01-01

    The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that used both reliability and performance tools. An account is given of the motivation for the final design and problems associated with both reliability and performance modeling. The appendices contain a listing of the code for both the reliability and performance model used in the design.

  2. The Case for Architectural-Design Competitions

    ERIC Educational Resources Information Center

    Lewis, Roger K.

    2009-01-01

    A well-publicized design competition is especially beneficial for universities. It allows them to enhance fund raising and stimulate design consciousness among students, the faculty, and even members of the surrounding community. Yet universities rarely conduct competitions, and instead select architects for major projects through a multistep,…

  3. Technical Reference Suite Addressing Challenges of Providing Assurance for Fault Management Architectural Design

    NASA Technical Reports Server (NTRS)

    Fitz, Rhonda; Whitman, Gerek

    2016-01-01

    Research into complexities of software systems Fault Management (FM) and how architectural design decisions affect safety, preservation of assets, and maintenance of desired system functionality has coalesced into a technical reference (TR) suite that advances the provision of safety and mission assurance. The NASA Independent Verification and Validation (IV&V) Program, with Software Assurance Research Program support, extracted FM architectures across the IV&V portfolio to evaluate robustness, assess visibility for validation and test, and define software assurance methods applied to the architectures and designs. This investigation spanned IV&V projects with seven different primary developers, a wide range of sizes and complexities, and encompassed Deep Space Robotic, Human Spaceflight, and Earth Orbiter mission FM architectures. The initiative continues with an expansion of the TR suite to include Launch Vehicles, adding the benefit of investigating differences intrinsic to model-based FM architectures and insight into complexities of FM within an Agile software development environment, in order to improve awareness of how nontraditional processes affect FM architectural design and system health management. The identification of particular FM architectures, visibility, and associated IV&V techniques provides a TR suite that enables greater assurance that critical software systems will adequately protect against faults and respond to adverse conditions. Additionally, the role FM has with regard to strengthened security requirements, with potential to advance overall asset protection of flight software systems, is being addressed with the development of an adverse conditions database encompassing flight software vulnerabilities. Capitalizing on the established framework, this TR suite provides assurance capability for a variety of FM architectures and varied development approaches. Research results are being disseminated across NASA, other agencies, and the

  4. SOA Security Aspects in Web-based Architectural Design

    NASA Astrophysics Data System (ADS)

    Shaikh, Asadullah; Ali, Shccraz; Memon, Nasrullah; Karampelas, Panagiotis

    Distributed web-based applications have been progressively increasing in number and scale over the past decades. There is an intensification of the need for security frameworks in the era of web-based applications when wc refer to distributed tclcmcdicinc interoperability architectures. In contrast. Service Oriented Architecture (SOA) is gaining popularity day by day when wc specially consider the web applications. SOA is playing a major role to maintain the security standards of distributed applications. This paper proposes a secure web-based architectural design by using the standards of SOA for distributed web application that maintains the interoperability and data integration through certain secure channels. Wc have created CRUD (Create, Read, Update, Delete) operations that has an implication on our own created web services and wc propose a secure architecture that is implemented on CRUD operations.

  5. Architectural design of flue gas continuous emission monitoring system

    NASA Astrophysics Data System (ADS)

    Zhou, Hongfu; Jiang, Liangzhong; Tang, Yong; Yao, Xifan

    2008-10-01

    The paper presents the architectural design of flue gas continuous emission monitoring system, which uses computer, acquisition card and serial port communication card as hardware in the flue gas continuous emission monitoring system. In the CEMS, continuous emission monitoring system, it monitors dust in the flue gas, SO2, NOX, and some parameter on the flue gas emission, which includes mass flow, pressure, and temperature. For the software in the monitoring system, the research designs monitoring program in VC++, and realizes flue gas monitor with the architecture.

  6. System design document U-AVLIS control system architecture

    SciTech Connect

    Viebeck, P.G.

    1994-02-16

    This document describes the architecture of the integrated control system for the U-AVLIS process. It includes an overview of the major control system components and their interfaces to one another. Separate documents are utilized to fully describe each component mentioned herein. The purpose of this document is to introduce the reader to the integrated U-AVLIS control system. It describes the philosophy of the control system architecture and how all of the control system components are integrated. While the other System Design Documents describe in detail the design of individual control system components, this document puts those components into their correct context within the entire integrated control system.

  7. Development of the Brain's Functional Network Architecture

    PubMed Central

    Power, Jonathan D.; Petersen, Steven E.; Schlaggar, Bradley L.

    2013-01-01

    A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks. PMID:20976563

  8. SpaceWire model development technology for satellite architecture.

    SciTech Connect

    Eldridge, John M.; Leemaster, Jacob Edward; Van Leeuwen, Brian P.

    2011-09-01

    Packet switched data communications networks that use distributed processing architectures have the potential to simplify the design and development of new, increasingly more sophisticated satellite payloads. In addition, the use of reconfigurable logic may reduce the amount of redundant hardware required in space-based applications without sacrificing reliability. These concepts were studied using software modeling and simulation, and the results are presented in this report. Models of the commercially available, packet switched data interconnect SpaceWire protocol were developed and used to create network simulations of data networks containing reconfigurable logic with traffic flows for timing system distribution.

  9. How Juries Assess Universal Design in Norwegian Architectural School Competitions.

    PubMed

    Houck, Leif D

    2016-01-01

    This paper investigates how architectural school competition juries assess Universal Design. The method used is a case study of 18 recent architectural school competitions in Norway. The results show that most competition briefs ask for Universal Designed buildings. In 8 of the 18 cases, Universal Design is mentioned as an assessment criterion. In 11 of the 18 cases, Universal Design is commented on by the juries in the jury reports, but only in 3 of the cases, do the juries assess this aspect consistently on every competition project. The overall impression is that some amount of uncertainty looms concerning how Universal Design should be assessed in the competition stage. Based on the findings, future juries should concentrate on orientation and overview prior to technicalities and details. PMID:27534308

  10. The Integration of Interior Architecture Education with Digital Design Approaches

    ERIC Educational Resources Information Center

    Yazicioglu, Deniz Ayse

    2011-01-01

    It is inevitable that as a result of progress in technology and the changes in the ways with which design is conceived, interior architecture schools should be updated according to these requirements and that new educational processes should be tried out. It is for this reason that the scope and aim of this study have been determined as being the…

  11. SHELTER THROUGH ARCHITECTURAL DESIGN, THE SHIELDING REQUIREMENTS INFLUENCE ON FORM.

    ERIC Educational Resources Information Center

    Office of Civil Defense (DOD), Washington, DC.

    FALLOUT PROTECTION CAN BE PROVIDED BY CAREFUL ARRANGEMENT OF ARCHITECTURAL ELEMENTS WITHOUT SPECIFIC FACILITIES FOR THEIR PURPOSE AND WITHOUT INTERFERING WITH NORMAL SPACE USE. CHARACTERISTICS OF RADIATION ARE DISCUSSED AND ILLUSTRATED PRINCIPLES OF SHIELDING DESIGN WITH RESPECT TO DISTANCE, GEOMETRY, AND TIME ARE GIVEN. (JT)

  12. Design Guidelines for New Generation Network Architecture

    NASA Astrophysics Data System (ADS)

    Harai, Hiroaki; Fujikawa, Kenji; Kafle, Ved P.; Miyazawa, Takaya; Murata, Masayuki; Ohnishi, Masaaki; Ohta, Masataka; Umezawa, Takeshi

    Limitations are found in the recent Internet because a lot of functions and protocols are patched to the original suite of layered protocols without considering global optimization. This reveals that end-to-end argument in the original Internet was neither sufficient for the current societal network and nor for a sustainable network of the future. In this position paper, we present design guidelines for a future network, which we call the New Generation Network, which provides the inclusion of diverse human requirements, reliable connection between the real-world and virtual network space, and promotion of social potentiality for human emergence. The guidelines consist of the crystal synthesis, the reality connection, and the sustainable & evolutional guidelines.

  13. Development of a modular integrated control architecture for flexible manipulators. Final report

    SciTech Connect

    Burks, B.L.; Battiston, G.

    1994-12-08

    In April 1994, ORNL and SPAR completed the joint development of a manipulator controls architecture for flexible structure controls under a CRADA between the two organizations. The CRADA project entailed design and development of a new architecture based upon the Modular Integrated Control Architecture (MICA) previously developed by ORNL. The new architecture, dubbed MICA-II, uses an object-oriented coding philosophy to provide a highly modular and expandable architecture for robotic manipulator control. This architecture can be readily ported to control of many different manipulator systems. The controller also provides a user friendly graphical operator interface and display of many forms of data including system diagnostics. The capabilities of MICA-II were demonstrated during oscillation damping experiments using the Flexible Beam Experimental Test Bed at Hanford.

  14. Design Description of the X-33 Avionics Architecture

    NASA Technical Reports Server (NTRS)

    Reichenfeld, Curtis J.; Jones, Paul G.

    1999-01-01

    In this paper, we provide a design description of the X-33 avionics architecture. The X-33 is an autonomous Single Stage to Orbit (SSTO) launch vehicle currently being developed by Lockheed Martin for NASA as a technology demonstrator for the VentureStar Reusable Launch Vehicle (RLV). The X-33 avionics provides autonomous control of die vehicle throughout takeoff, ascent, descent, approach, landing, rollout, and vehicle safing. During flight the avionics provides communication to the range through uplinked commands and downlinked telemetry. During pre-launch and post-safing activities, the avionics provides interfaces to ground support consoles that perform vehicle flight preparations and maintenance. The X-33 Avionics is a hybrid of centralized and distributed processing elements connected by three dual redundant Mil-Std 1553 data buses. These data buses are controlled by a central processing suite located in the avionics bay and composed of triplex redundant Vehicle Mission Computers (VMCs). The VMCs integrate mission management, guidance, navigation, flight control, subsystem control and redundancy management functions. The vehicle sensors, effectors and subsystems are interfaced directly to the centralized VMCs as remote terminals or through dual redundant Data Interface Units (DIUs). The DIUs are located forward and aft of the avionics bay and provide signal conditioning, health monitoring, low level subsystem control and data interface functions. Each VMC is connected to all three redundant 1553 data buses for monitoring and provides a complete identical data set to the processing algorithms. This enables bus faults to be detected and reconfigured through a voted bus control configuration. Data is also shared between VMCs though a cross channel data link that is implemented in hardware and controlled by AlliedSignal's Fault Tolerant Executive (FTE). The FTE synchronizes processors within the VMC and synchronizes redundant VMCs to each other. The FTE provides

  15. Computer-Aided Design of Organic Host Architectures for Selective Chemosensors

    SciTech Connect

    Hay, Benjamin; Bryantsev, Vyacheslav S.

    2009-01-01

    Selective organic hosts provide the foundation for the development of many types of sensors. The deliberate design of host molecules with predetermined selectivity, however, remains a challenge in supramolecular chemistry. To address this issue we have developed a de novo structure-based design approach for the unbiased construction of complementary host architectures. This chapter summarizes recent progress including improvements on a computer software program, HostDesigner, specifically tailored to discover host architectures for small guest molecules. HostDesigner is capable of generating and evaluating millions of candidate structures in minutes on a desktop personal computer, allowing a user to rapidly identify three-dimensional architectures that are structurally organized for binding a targeted guest species. The efficacy of this computational methodology is illustrated with a search for cation hosts containing aliphatic ether oxygen groups and anion hosts containing urea groups.

  16. The Space House TM : Space Technologies in Architectural Design

    NASA Astrophysics Data System (ADS)

    Gampe, F.; Raitt, D.

    2002-01-01

    The word "space" has always been associated with and had a profound impact upon architectural design. Until relatively recently, however, the term has been used in a different sense to that understood by the aerospace community - for them, space was less abstract, more concrete and used in the context of space flight and space exploration, rather than, say, an empty area or space requiring to be filled by furniture. However, the two senses of the word space have now converged to some extent. Interior designers and architects have been involved in designing the interior of Skylab, the structure of the International Space Station, and futuristic space hotels. Today, architects are designing, and builders are building, houses, offices and other structures which incorporate a plethora of new technologies, materials and production processes in an effort not only to introduce innovative and adventurous ideas but also in an attempt to address environmental and social issues. Foremost among these new technologies and materials being considered today are those that have been developed for and by the space industry. This paper examines some of these space technologies, such as energy efficient solar cells, durable plastics, air and water filtration techniques, which have been adapted to both provide power while reducing energy consumption, conserve resources and so on. Several of these technologies have now been employed by the European Space Agency to develop a Space House TM - the first of its kind, which will be deployed not so much on planets like Mars, but rather here on Earth. The Space House TM, which exhibits many innovative features such as high strength light-weight carbon composites, active noise-damped, (glass and plastic) windows, low-cost solar arrays and latent heat storage, air and water purification systems will be described.

  17. Research and design of circulation course resources architecture

    NASA Astrophysics Data System (ADS)

    Song, Jiangong; Feng, Wenquan; Zhang, Jizhong

    2012-04-01

    In this paper, a new concept that is Circulation Course Resources (CCR) is introduced, which means the course resources circulating from the students listening in classroom lecture, camera shooting, video coding, video storage, video server to the students learning from VOD. The creating course video system and network-teaching system as parts of CCR architecture are presented separately. To connect the two systems, a middle system defined as Bridge System is designed and modeled with UML. The core application design of the Bridge System is expressed by the classes design and main database design. The functions of Bridge System include making the course videos flowing from one system to another automatically and converting the important data of the two systems into uniform format. The CCR architecture has been put into action and achieved satisfied results.

  18. Design of Power System Architectures for Small Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Subramonian, Rama; Dias, Lakshman G.

    1996-01-01

    The objective of this research is to perform a trade study on several candidate power system architectures for small spacecrafts to be used in NASA's new millennium program. Three initial candidate architectures have been proposed by NASA and two other candidate architectures have been proposed by Howard University. Howard University is currently conducting the necessary analysis, synthesis, and simulation needed to perform the trade studies and arrive at the optimal power system architecture. Statistical, sensitivity and tolerant studies has been performed on the systems. It is concluded from present studies that certain components such as the series regulators, buck-boost converters and power converters can be minimized while retaining the desired functionality of the overall architecture. This in conjunction with battery scalability studies and system efficiency studies have enabled us to develop more economic architectures. Future studies will include artificial neural networks and fuzzy logic to analyze the performance of the systems. Fault simulation studies and fault diagnosis studies using EMTP and artificial neural networks will also be conducted.

  19. An hierarchical system architecture for automated design, fabrication, and repair

    NASA Technical Reports Server (NTRS)

    Cliff, R. A.

    1981-01-01

    The architecture of an automated system which has the following properties is described: (1) if it is presented with a final product specification (within its capabilities) it will do the detailed design (all the way down to the raw materials if need be) and then produce that product; (2) if a faulty final product is presented to the system, it will repair it. Interesting extensions of this architecture would be the ability to add fabricator nodes when required and the ability to add entire ranks when required. This sort of system would be a useful component of a self-replicating system (used in space exploration).

  20. Integrity Constraint Monitoring in Software Development: Proposed Architectures

    NASA Technical Reports Server (NTRS)

    Fernandez, Francisco G.

    1997-01-01

    In the development of complex software systems, designers are required to obtain from many sources and manage vast amounts of knowledge of the system being built and communicate this information to personnel with a variety of backgrounds. Knowledge concerning the properties of the system, including the structure of, relationships between and limitations of the data objects in the system, becomes increasingly more vital as the complexity of the system and the number of knowledge sources increases. Ensuring that violations of these properties do not occur becomes steadily more challenging. One approach toward managing the enforcement or system properties, called context monitoring, uses a centralized repository of integrity constraints and a constraint satisfiability mechanism for dynamic verification of property enforcement during program execution. The focus of this paper is to describe possible software architectures that define a mechanism for dynamically checking the satisfiability of a set of constraints on a program. The next section describes the context monitoring approach in general. Section 3 gives an overview of the work currently being done toward the addition of an integrity constraint satisfiability mechanism to a high-level program language, SequenceL, and demonstrates how this model is being examined to develop a general software architecture. Section 4 describes possible architectures for a general constraint satisfiability mechanism, as well as an alternative approach that, uses embedded database queries in lieu of an external monitor. The paper concludes with a brief summary outlining the, current state of the research and future work.

  1. Development of an unmanned maritime system reference architecture

    NASA Astrophysics Data System (ADS)

    Duarte, Christiane N.; Cramer, Megan A.; Stack, Jason R.

    2014-06-01

    The concept of operations (CONOPS) for unmanned maritime systems (UMS) continues to envision systems that are multi-mission, re-configurable and capable of acceptable performance over a wide range of environmental and contextual variability. Key enablers for these concepts of operation are an autonomy module which can execute different mission directives and a mission payload consisting of re-configurable sensor or effector suites. This level of modularity in mission payloads enables affordability, flexibility (i.e., more capability with future platforms) and scalability (i.e., force multiplication). The modularity in autonomy facilitates rapid technology integration, prototyping, testing and leveraging of state-of-the-art advances in autonomy research. Capability drivers imply a requirement to maintain an open architecture design for both research and acquisition programs. As the maritime platforms become more stable in their design (e.g. unmanned surface vehicles, unmanned underwater vehicles) future developments are able to focus on more capable sensors and more robust autonomy algorithms. To respond to Fleet needs, given an evolving threat, programs will want to interchange the latest sensor or a new and improved algorithm in a cost effective and efficient manner. In order to make this possible, the programs need a reference architecture that will define for technology providers where their piece fits and how to successfully integrate. With these concerns in mind, the US Navy established the Unmanned Maritime Systems Reference Architecture (UMS-RA) Working Group in August 2011. This group consists of Department of Defense and industry participants working the problem of defining reference architecture for autonomous operations of maritime systems. This paper summarizes its efforts to date.

  2. Architectural Design for a Mars Communications and Navigation Orbital Infrastructure

    NASA Technical Reports Server (NTRS)

    Ceasrone R. J.; Hastrup, R. C.; Bell, D. J.; Roncoli, R. B.; Nelson, K.

    1999-01-01

    The planet Mars has become the focus of an intensive series of missions that span decades of time, a wide array of international agencies and an evolution from robotics to humans. The number of missions to Mars at any one time, and over a period of time, is unprecedented in the annals of space exploration. To meet the operational needs of this exploratory fleet will require the implementation of new architectural concepts for communications and navigation. To this end, NASA's Jet Propulsion Laboratory has begun to define and develop a Mars communications and navigation orbital infrastructure. This architecture will make extensive use of assets at Mars, as well as use of traditional Earth-based assets, such as the Deep Space Network, DSN. Indeed, the total system can be thought of as an extension of DSN nodes and services to the Mars in-situ region. The concept has been likened to the beginnings of an interplanetary Internet that will bring the exploration of Mars right into our living rooms. The paper will begin with a high-level overview of the concept for the Mars communications and navigation infrastructure. Next, the mission requirements will be presented. These will include the relatively near-term needs of robotic landers, rovers, ascent vehicles, balloons, airplanes, and possibly orbiting, arriving and departing spacecraft. Requirements envisioned for the human exploration of Mars will also be described. The important Mars orbit design trades on telecommunications and navigation capabilities will be summarized, and the baseline infrastructure will be described. A roadmap of NASA's plan to evolve this infrastructure over time will be shown. Finally, launch considerations and delivery to Mars will be briefly treated.

  3. Designing bioinspired composite reinforcement architectures via 3D magnetic printing

    PubMed Central

    Martin, Joshua J.; Fiore, Brad E.; Erb, Randall M.

    2015-01-01

    Discontinuous fibre composites represent a class of materials that are strong, lightweight and have remarkable fracture toughness. These advantages partially explain the abundance and variety of discontinuous fibre composites that have evolved in the natural world. Many natural structures out-perform the conventional synthetic counterparts due, in part, to the more elaborate reinforcement architectures that occur in natural composites. Here we present an additive manufacturing approach that combines real-time colloidal assembly with existing additive manufacturing technologies to create highly programmable discontinuous fibre composites. This technology, termed as ‘3D magnetic printing', has enabled us to recreate complex bioinspired reinforcement architectures that deliver enhanced material performance compared with monolithic structures. Further, we demonstrate that we can now design and evolve elaborate reinforcement architectures that are not found in nature, demonstrating a high level of possible customization in discontinuous fibre composites with arbitrary geometries. PMID:26494282

  4. System design in an evolving system-of-systems architecture and concept of operations

    NASA Astrophysics Data System (ADS)

    Rovekamp, Roger N., Jr.

    Proposals for space exploration architectures have increased in complexity and scope. Constituent systems (e.g., rovers, habitats, in-situ resource utilization facilities, transfer vehicles, etc) must meet the needs of these architectures by performing in multiple operational environments and across multiple phases of the architecture's evolution. This thesis proposes an approach for using system-of-systems engineering principles in conjunction with system design methods (e.g., Multi-objective optimization, genetic algorithms, etc) to create system design options that perform effectively at both the system and system-of-systems levels, across multiple concepts of operations, and over multiple architectural phases. The framework is presented by way of an application problem that investigates the design of power systems within a power sharing architecture for use in a human Lunar Surface Exploration Campaign. A computer model has been developed that uses candidate power grid distribution solutions for a notional lunar base. The agent-based model utilizes virtual control agents to manage the interactions of various exploration and infrastructure agents. The philosophy behind the model is based both on lunar power supply strategies proposed in literature, as well as on the author's own approaches for power distribution strategies of future lunar bases. In addition to proposing a framework for system design, further implications of system-of-systems engineering principles are briefly explored, specifically as they relate to producing more robust cross-cultural system-of-systems architecture solutions.

  5. Minimalist design of water-soluble cross-[beta] architecture

    SciTech Connect

    Biancalana, Matthew; Makabe, Koki; Koide, Shohei

    2010-08-13

    Demonstrated successes of protein design and engineering suggest significant potential to produce diverse protein architectures and assemblies beyond those found in nature. Here, we describe a new class of synthetic protein architecture through the successful design and atomic structures of water-soluble cross-{beta} proteins. The cross-{beta} motif is formed from the lamination of successive {beta}-sheet layers, and it is abundantly observed in the core of insoluble amyloid fibrils associated with protein-misfolding diseases. Despite its prominence, cross-{beta} has been designed only in the context of insoluble aggregates of peptides or proteins. Cross-{beta}'s recalcitrance to protein engineering and conspicuous absence among the known atomic structures of natural proteins thus makes it a challenging target for design in a water-soluble form. Through comparative analysis of the cross-{beta} structures of fibril-forming peptides, we identified rows of hydrophobic residues ('ladders') running across {beta}-strands of each {beta}-sheet layer as a minimal component of the cross-{beta} motif. Grafting a single ladder of hydrophobic residues designed from the Alzheimer's amyloid-{beta} peptide onto a large {beta}-sheet protein formed a dimeric protein with a cross-{beta} architecture that remained water-soluble, as revealed by solution analysis and x-ray crystal structures. These results demonstrate that the cross-{beta} motif is a stable architecture in water-soluble polypeptides and can be readily designed. Our results provide a new route for accessing the cross-{beta} structure and expanding the scope of protein design.

  6. Technical Reference Suite Addressing Challenges of Providing Assurance for Fault Management Architectural Design

    NASA Technical Reports Server (NTRS)

    Fitz, Rhonda; Whitman, Gerek

    2016-01-01

    Research into complexities of software systems Fault Management (FM) and how architectural design decisions affect safety, preservation of assets, and maintenance of desired system functionality has coalesced into a technical reference (TR) suite that advances the provision of safety and mission assurance. The NASA Independent Verification and Validation (IVV) Program, with Software Assurance Research Program support, extracted FM architectures across the IVV portfolio to evaluate robustness, assess visibility for validation and test, and define software assurance methods applied to the architectures and designs. This investigation spanned IVV projects with seven different primary developers, a wide range of sizes and complexities, and encompassed Deep Space Robotic, Human Spaceflight, and Earth Orbiter mission FM architectures. The initiative continues with an expansion of the TR suite to include Launch Vehicles, adding the benefit of investigating differences intrinsic to model-based FM architectures and insight into complexities of FM within an Agile software development environment, in order to improve awareness of how nontraditional processes affect FM architectural design and system health management.

  7. Space Power Program, Instrumentation and Control System Architecture, Pre-conceptual Design, for Information

    SciTech Connect

    JM Ross

    2005-10-20

    The purpose of this letter is to forward the Prometheus preconceptual Instrumentation and Control (I&C) system architecture (Enclosure (1)) to NR for information as part of the Prometheus closeout work. The preconceptual 1&C system architecture was considered a key planning document for development of the I&C system for Project Prometheus. This architecture was intended to set the technical approach for the entire I&C system. It defines interfaces to other spacecraft systems, defines hardware blocks for future development, and provides a basis for accurate cost and schedule estimates. Since the system requirements are not known at this time, it was anticipated that the architecture would evolve as the design of the reactor module was matured.

  8. IXV avionics architecture: Design, qualification and mission results

    NASA Astrophysics Data System (ADS)

    Succa, Massimo; Boscolo, Ilario; Drocco, Alessandro; Malucchi, Giovanni; Dussy, Stephane

    2016-07-01

    The paper details the IXV avionics presenting the architecture and the constituting subsystems and equipment. It focuses on the novelties introduced, such as the Ethernet-based protocol for the experiment data acquisition system, and on the synergy with Ariane 5 and Vega equipment, pursued in order to comply with the design-to-cost requirement for the avionics system development. Emphasis is given to the adopted model philosophy in relation to OTS/COTS items heritage and identified activities necessary to extend the qualification level to be compliant with the IXV environment. Associated lessons learned are identified. Then, the paper provides the first results and interpretation from the flight recorders telemetry, covering the behavior of the Data Handling System, the quality of telemetry recording and real-time/delayed transmission, the performance of the batteries and the Power Protection and Distribution Unit, the ground segment coverage during visibility windows and the performance of the GNC sensors (IMU and GPS) and actuators. Finally, some preliminary tracks of the IXV follow on are given, introducing the objectives of the Innovative Space Vehicle and the necessary improvements to be developed in the frame of PRIDE.

  9. Evolving concepts of lunar architecture: The potential of subselene development

    NASA Technical Reports Server (NTRS)

    Daga, Andrew W.; Daga, Meryl A.; Wendel, Wendel R.

    1992-01-01

    In view of the superior environmental and operational conditions that are thought to exist in lava tubes, popular visions of permanent settlements built upon the lunar surface may prove to be entirely romantic. The factors that will ultimately come together to determine the design of a lunar base are complex and interrelated, and they call for a radical architectural solution. Whether lunar surface-deployed superstructures can answer these issues is called into question. One particularly troublesome concern in any lunar base design is the need for vast amounts of space, and the ability of man-made structures to provide such volumes in a reliable pressurized habitat is doubtful. An examination of several key environmental design issues suggests that the alternative mode of subselene development may offer the best opportunity for an enduring and humane settlement.

  10. Architectural design of heterogeneous metallic nanocrystals--principles and processes.

    PubMed

    Yu, Yue; Zhang, Qingbo; Yao, Qiaofeng; Xie, Jianping; Lee, Jim Yang

    2014-12-16

    CONSPECTUS: Heterogeneous metal nanocrystals (HMNCs) are a natural extension of simple metal nanocrystals (NCs), but as a research topic, they have been much less explored until recently. HMNCs are formed by integrating metal NCs of different compositions into a common entity, similar to the way atoms are bonded to form molecules. HMNCs can be built to exhibit an unprecedented architectural diversity and complexity by programming the arrangement of the NC building blocks ("unit NCs"). The architectural engineering of HMNCs involves the design and fabrication of the architecture-determining elements (ADEs), i.e., unit NCs with precise control of shape and size, and their relative positions in the design. Similar to molecular engineering, where structural diversity is used to create more property variations for application explorations, the architectural engineering of HMNCs can similarly increase the utility of metal NCs by offering a suite of properties to support multifunctionality in applications. The architectural engineering of HMNCs calls for processes and operations that can execute the design. Some enabling technologies already exist in the form of classical micro- and macroscale fabrication techniques, such as masking and etching. These processes, when used singly or in combination, are fully capable of fabricating nanoscopic objects. What is needed is a detailed understanding of the engineering control of ADEs and the translation of these principles into actual processes. For simplicity of execution, these processes should be integrated into a common reaction system and yet retain independence of control. The key to architectural diversity is therefore the independent controllability of each ADE in the design blueprint. The right chemical tools must be applied under the right circumstances in order to achieve the desired outcome. In this Account, after a short illustration of the infinite possibility of combining different ADEs to create HMNC design

  11. Designing Capital-Intensive Systems with Architectural and Operational Flexibility Using a Screening Model

    NASA Astrophysics Data System (ADS)

    Lin, Jijun; de Weck, Olivier; de Neufville, Richard; Robinson, Bob; MacGowan, David

    Development of capital intensive systems, such as offshore oil platforms or other industrial infrastructure, generally requires a significant amount of capital investment under various resource, technical, and market uncertainties. It is a very challenging task for development co-owners or joint ventures because important decisions, such as system architectures, have to be made while uncertainty remains high. This paper develops a screening model and a simulation framework to quickly explore the design space for complex engineering systems under uncertainty allowing promising strategies or architectures to be identified. Flexibility in systems’ design and operation is proposed as a proactive means to enable systems to adapt to future uncertainty. Architectural and operational flexibility can improve systems’ lifecycle value by mitigating downside risks and capturing upside opportunities. In order to effectively explore different flexible strategies addressing a view of uncertainty which changes with time, a computational framework based on Monte Carlo simulation is proposed in this paper. This framework is applied to study flexible development strategies for a representative offshore petroleum project. The complexity of this problem comes from multi-domain uncertainties, large architectural design space, and structure of flexibility decision rules. The results demonstrate that architectural and operational flexibility can significantly improve projects’ Expected Net Present Value (ENPV), reduce downside risks, and improve upside gains, compared to adopting an inflexible strategy appropriate to the view of uncertainty at the start of the project. In this particular case study, the most flexible strategy improves ENPV by 85% over an inflexible base case.

  12. Learning Design and Service-Oriented Architectures: A Mutual Dependency?

    ERIC Educational Resources Information Center

    McAndrew, Patrick; Weller, Martin; Barrett-Baxendale, Mark

    2006-01-01

    This paper looks at how the concept of reusability has gained currency in e-learning. Initial attention was focused on reuse of content, but recently attention has focused on reusable software tools and reusable activity structures. The former has led to the proposal of service-oriented architectures, and the latter has seen the development of the…

  13. Rule-based graph theory to enable exploration of the space system architecture design space

    NASA Astrophysics Data System (ADS)

    Arney, Dale Curtis

    The primary goal of this research is to improve upon system architecture modeling in order to enable the exploration of design space options. A system architecture is the description of the functional and physical allocation of elements and the relationships, interactions, and interfaces between those elements necessary to satisfy a set of constraints and requirements. The functional allocation defines the functions that each system (element) performs, and the physical allocation defines the systems required to meet those functions. Trading the functionality between systems leads to the architecture-level design space that is available to the system architect. The research presents a methodology that enables the modeling of complex space system architectures using a mathematical framework. To accomplish the goal of improved architecture modeling, the framework meets five goals: technical credibility, adaptability, flexibility, intuitiveness, and exhaustiveness. The framework is technically credible, in that it produces an accurate and complete representation of the system architecture under consideration. The framework is adaptable, in that it provides the ability to create user-specified locations, steady states, and functions. The framework is flexible, in that it allows the user to model system architectures to multiple destinations without changing the underlying framework. The framework is intuitive for user input while still creating a comprehensive mathematical representation that maintains the necessary information to completely model complex system architectures. Finally, the framework is exhaustive, in that it provides the ability to explore the entire system architecture design space. After an extensive search of the literature, graph theory presents a valuable mechanism for representing the flow of information or vehicles within a simple mathematical framework. Graph theory has been used in developing mathematical models of many transportation and

  14. Weaving time into system architecture: satellite cost per operational day and optimal design lifetime

    NASA Astrophysics Data System (ADS)

    Saleh, Joseph H.; Hastings, Daniel E.; Newman, Dava J.

    2004-03-01

    An augmented perspective on system architecture is proposed (diachronic) that complements the traditional views on system architecture (synchronic). This paper proposes to view in a system architecture the flow of service (or utility) that the system will provide over its design lifetime. It suggests that the design lifetime is a fundamental component of system architecture although one cannot see it or touch it. Consequently, cost, utility, and value per unit time metrics are introduced. A framework is then developed that identifies optimal design lifetimes for complex systems in general, and space systems in particular, based on this augmented perspective of system architecture and on these metrics. It is found that an optimal design lifetime for a satellite exists, even in the case of constant expected revenues per day over the system's lifetime, and that it changes substantially with the expected Time to Obsolescence of the system and the volatility of the market the system is serving in the case of a commercial venture. The analysis thus proves that it is essential for a system architect to match the design lifetime with the dynamical characteristics of the environment the system is/will be operating in. It is also shown that as the uncertainty in the dynamical characteristics of the environment the system is operating in increases, the value of having the option to upgrade, modify, or extend the lifetime of a system at a later point in time increases depending on how events unfold.

  15. Franz Kafka in the Design Studio: A Hermeneutic-Phenomenological Approach to Architectural Design Education

    ERIC Educational Resources Information Center

    Hisarligil, Beyhan Bolak

    2012-01-01

    This article demonstrates the outcomes of taking a hermeneutic phenomenological approach to architectural design and discusses the potentials for imaginative reasoning in design education. This study tests the use of literature as a verbal form of art and design and the contribution it can make to imaginative design processes--which are all too…

  16. Designer crops: optimal root system architecture for nutrient acquisition.

    PubMed

    Kong, Xiangpei; Zhang, Maolin; De Smet, Ive; Ding, Zhaojun

    2014-12-01

    Plant root systems are highly plastic in response to environmental stimuli. Improved nutrient acquisition can increase fertilizer use efficiency and is critical for crop production. Recent analyses of field-grown crops highlighted the importance of root system architecture (RSA) in nutrient acquisition. This indicated that it is feasible in practice to exploit genotypes or mutations giving rise to optimal RSA for crop design in the future, especially with respect to plant breeding for infertile soils. PMID:25450041

  17. Embodiment and enculturation: the future of architectural design.

    PubMed

    Mallgrave, Harry F

    2015-01-01

    A half-century ago the Dutch architect Aldo van Eyck encouraged designers to think about "space and time" not as abstractions in themselves but rather as cultural events better approached through the medium of "place and occasion." Van Eyck made this point on the basis of his own travels and through his extensive readings in cultural anthropology, and his prescience is only now acquiring the credibility that it deserves through the work of a multitude of interdisciplinary researchers. Phenomenologists argue that we are embodied organisms-acting-within-environments, and these inhabiting abodes are constructed of both material and cultural dimensions. We are thus preeminently social in our range of self-consciousness, and intensely ceremonial in every facet of our being. Evolutionary psychologists and anthropologists are currently locating the origin and development of our most basic social behaviors far in our pre-human past; neuroscientists are today modeling our social circuits in the deepest reaches of our brains. Architecture would gain much from an updated cultural theory grounded in these new models of human existence. PMID:26441773

  18. Embodiment and enculturation: the future of architectural design

    PubMed Central

    Mallgrave, Harry F.

    2015-01-01

    A half-century ago the Dutch architect Aldo van Eyck encouraged designers to think about “space and time” not as abstractions in themselves but rather as cultural events better approached through the medium of “place and occasion.” Van Eyck made this point on the basis of his own travels and through his extensive readings in cultural anthropology, and his prescience is only now acquiring the credibility that it deserves through the work of a multitude of interdisciplinary researchers. Phenomenologists argue that we are embodied organisms-acting-within-environments, and these inhabiting abodes are constructed of both material and cultural dimensions. We are thus preeminently social in our range of self-consciousness, and intensely ceremonial in every facet of our being. Evolutionary psychologists and anthropologists are currently locating the origin and development of our most basic social behaviors far in our pre-human past; neuroscientists are today modeling our social circuits in the deepest reaches of our brains. Architecture would gain much from an updated cultural theory grounded in these new models of human existence. PMID:26441773

  19. Designing an artificial pancreas architecture: the AP@home experience.

    PubMed

    Lanzola, Giordano; Toffanin, Chiara; Di Palma, Federico; Del Favero, Simone; Magni, Lalo; Bellazzi, Riccardo

    2015-12-01

    The latest achievements in sensor technologies for blood glucose level monitoring, pump miniaturization for insulin delivery, and the availability of portable computing devices are paving the way toward the artificial pancreas as a treatment for diabetes patients. This device encompasses a controller unit that oversees the administration of insulin micro-boluses and continuously drives the pump based on blood glucose readings acquired in real time. In order to foster the research on the artificial pancreas and prepare for its adoption as a therapy, the European Union in 2010 funded the AP@home project, following a series of efforts already ongoing in the USA. This paper, authored by members of the AP@home consortium, reports on the technical issues concerning the design and implementation of an architecture supporting the exploitation of an artificial pancreas platform. First a PC-based platform was developed by the authors to prove the effectiveness and reliability of the algorithms responsible for insulin administration. A mobile-based one was then adopted to improve the comfort for the patients. Both platforms were tested on real patients, and a description of the goals, the achievements, and the major shortcomings that emerged during those trials is also reported in the paper. PMID:25430423

  20. Architectural design of the science complex at Elizabeth City State University

    NASA Technical Reports Server (NTRS)

    Jahromi, Soheila

    1993-01-01

    This paper gives an overall view of the architectural design process and elements in taking an idea from conception to execution. The project presented is an example for this process. Once the need for a new structure is established, an architect studies the requirements, opinions and limits in creating a structure that people will exist in, move through, and use. Elements in designing a building include factors such as volume and surface, light and form changes of scale and view, movement and stasis. Some of the other factors are functions and physical conditions of construction. Based on experience, intuition, and boundaries, an architect will utilize all elements in creating a new building. In general, the design process begins with studying the spatial needs which develop into an architectural program. A comprehensive and accurate architectural program is essential for having a successful building. The most attractive building which does not meet the functional needs of its users has failed at the primary reason for its existence. To have a good program an architect must have a full understanding of the daily functions that will take place in the building. The architectural program along with site characteristics are among a few of the important guidelines in studying the form, adjacencies, and circulation for the structure itself and also in relation to the adjacent structures. Conceptual studies are part of the schematic design, which is the first milestone in the design process. The other reference points are design development and construction documents. At each milestone, review and coordination with all the consultants is established, and the user is essential in refining the project. In design development phase, conceptual diagrams take shape, and architectural, structural, mechanical, and electrical systems are developed. The final phase construction documents convey all the information required to construct the building. The design process and elements

  1. GridOPTICS(TM): A Design for Plug-and-Play Smart Grid Software Architecture

    SciTech Connect

    Gorton, Ian; Liu, Yan; Yin, Jian

    2012-06-03

    As the smart grid becomes reality, software architectures for integrating legacy systems with new innovative approaches for grid management are needed. These architectures must exhibit flexibility, extensibility, interoperability and scalability. In this position paper, we describe our preliminary work to design such an architecture, known as GridOPTICS, that will enable the deployment and integration of new software tools in smart grid operations. Our preliminary design is based upon use cases from PNNL’s Future Power Grid Initiative, which is a developing a collection of advanced software technologies for smart grid management and control. We describe the motivations for GridOPTICS, and the preliminary design that we are currently prototyping for several distinct use cases.

  2. Information Model Driven Semantic Framework Architecture and Design for Distributed Data Repositories

    NASA Astrophysics Data System (ADS)

    Fox, P. A.; Semantic eScience Framework Team

    2011-12-01

    In Earth and space science, the steady evolution away from isolated and single purpose data 'systems' toward systems of systems, data ecosystems, or data frameworks that provide access to highly heterogeneous data repositories is picking up in pace. As a result, common informatics approaches are being sought for how newer architectures are developed and/or implemented. In particular, a clear need to have a repeatable method for modeling, implementing and evolving the information architectures has emerged and one that goes beyond traditional software design. This presentation outlines new component design approaches bases in sets of information model and semantic encodings for mediation.

  3. Using an Integrated Distributed Test Architecture to Develop an Architecture for Mars

    NASA Technical Reports Server (NTRS)

    Othon, William L.

    2016-01-01

    The creation of a crew-rated spacecraft architecture capable of sending humans to Mars requires the development and integration of multiple vehicle systems and subsystems. Important new technologies will be identified and matured within each technical discipline to support the mission. Architecture maturity also requires coordination with mission operations elements and ground infrastructure. During early architecture formulation, many of these assets will not be co-located and will required integrated, distributed test to show that the technologies and systems are being developed in a coordinated way. When complete, technologies must be shown to function together to achieve mission goals. In this presentation, an architecture will be described that promotes and advances integration of disparate systems within JSC and across NASA centers.

  4. Architecture-Centric Development in Globally Distributed Projects

    NASA Astrophysics Data System (ADS)

    Sauer, Joachim

    In this chapter architecture-centric development is proposed as a means to strengthen the cohesion of distributed teams and to tackle challenges due to geographical and temporal distances and the clash of different cultures. A shared software architecture serves as blueprint for all activities in the development process and ties them together. Architecture-centric development thus provides a plan for task allocation, facilitates the cooperation of globally distributed developers, and enables continuous integration reaching across distributed teams. Advice is also provided for software architects who work with distributed teams in an agile manner.

  5. Architectural Design Drives the Biogeography of Indoor Bacterial Communities

    PubMed Central

    O’Connor, Timothy K.; Mhuireach, Gwynne; Northcutt, Dale; Kline, Jeff; Moriyama, Maxwell; Brown, G. Z.; Bohannan, Brendan J. M.; Green, Jessica L.

    2014-01-01

    Background Architectural design has the potential to influence the microbiology of the built environment, with implications for human health and well-being, but the impact of design on the microbial biogeography of buildings remains poorly understood. In this study we combined microbiological data with information on the function, form, and organization of spaces from a classroom and office building to understand how design choices influence the biogeography of the built environment microbiome. Results Sequencing of the bacterial 16S gene from dust samples revealed that indoor bacterial communities were extremely diverse, containing more than 32,750 OTUs (operational taxonomic units, 97% sequence similarity cutoff), but most communities were dominated by Proteobacteria, Firmicutes, and Deinococci. Architectural design characteristics related to space type, building arrangement, human use and movement, and ventilation source had a large influence on the structure of bacterial communities. Restrooms contained bacterial communities that were highly distinct from all other rooms, and spaces with high human occupant diversity and a high degree of connectedness to other spaces via ventilation or human movement contained a distinct set of bacterial taxa when compared to spaces with low occupant diversity and low connectedness. Within offices, the source of ventilation air had the greatest effect on bacterial community structure. Conclusions Our study indicates that humans have a guiding impact on the microbial biodiversity in buildings, both indirectly through the effects of architectural design on microbial community structure, and more directly through the effects of human occupancy and use patterns on the microbes found in different spaces and space types. The impact of design decisions in structuring the indoor microbiome offers the possibility to use ecological knowledge to shape our buildings in a way that will select for an indoor microbiome that promotes our

  6. Architectural design and simulation of a virtual memory

    NASA Technical Reports Server (NTRS)

    Kwok, G.; Chu, Y.

    1971-01-01

    Virtual memory is an imaginary main memory with a very large capacity which the programmer has at his disposal. It greatly contributes to the solution of the dynamic storage allocation problem. The architectural design of a virtual memory is presented which implements by hardware the idea of queuing and scheduling the page requests to a paging drum in such a way that the access of the paging drum is increased many times. With the design, an increase of up to 16 times in page transfer rate is achievable when the virtual memory is heavily loaded. This in turn makes feasible a great increase in the system throughput.

  7. Today's architectural mirror: interiors, buildings, and solar designs

    SciTech Connect

    Heyne, P.

    1982-01-01

    An architect explains why the mirror is one of today's most popular architectural materials, covering building interiors as well as exteriors. She uses over 200 illustrations, and gives an historical rundown on the mirror's use throughout history, mirror lore, mirror fabrication, and design techniques. The glass building clad in one-way mirrors is analyzed in terms of energy pluses and minuses, as well as aesthetics. The best designers are imparting scale to the surface, combining mirrors with other materials, experimenting with various shapes, and cautiously handling reflected shapes. 42 references.

  8. Robust circuit & architecture design in the nanoscale regime

    NASA Astrophysics Data System (ADS)

    Ashraf, Rehman

    Silicon based integrated circuit (IC) technology is approaching its physical limits. For sub 10nm technology nodes, the carbon nanotube (CNT) based field effect transistor has emerged as a promising device because of its excellent electronic properties. One of the major challenges faced by the CNT technology is the unwanted growth of metallic tubes. At present, there is no known CNT fabrication technology which allows the fabrication of 100% semiconducting CNTs. The presence of metallic tubes creates a short between the drain and source terminals of the transistor and has a detrimental impact on the delay, static power and yield of CNT based gates. This thesis will address the challenge of designing robust carbon nanotube based circuits in the presence of metallic tubes. For a small percentage of metallic tubes, circuit level solutions are proposed to increase the functional yield of CNT based gates in the presence of metallic tubes. Accurate analytical models with less than a 3% inaccuracy rate are developed to estimate the yield of CNT based circuit for a different percentage of metallic tubes and different drive strengths of logic gates. Moreover, a design methodology is developed for yield-aware carbon nanotube based circuits in the presence of metallic tubes using different CNFET transistor configurations. Architecture based on regular logic bricks with underlying hybrid CNFET configurations are developed which gives better trade-offs in terms of performance, power, and functional yield. In the case when the percentage of metallic tubes is large, the proposed circuit level techniques are not sufficient. Extra processing techniques must be applied to remove the metallic tubes. The tube removal techniques have trade-offs, as the removal process is not perfect and removes semiconducting tubes in addition to removing unwanted metallic tubes. As a result, stochastic removal of tubes from the drive and fanout gate(s) results in large variation in the performance of

  9. ARCHITECTURAL DESIGN CRITERIA FOR F-BLOCK METAL ION SEQUESTERING AGENTS

    EPA Science Inventory

    The objective of this project is to provide the means to optimize ligand architecture for f-block metal recognition. Our strategy builds on an innovative and successful molecular modeling approach in developing polyether ligand design criteria for the alkali and alkaline earth ca...

  10. Do Performance-Based Codes Support Universal Design in Architecture?

    PubMed

    Grangaard, Sidse; Frandsen, Anne Kathrine

    2016-01-01

    The research project 'An analysis of the accessibility requirements' studies how Danish architectural firms experience the accessibility requirements of the Danish Building Regulations and it examines their opinions on how future regulative models can support innovative and inclusive design - Universal Design (UD). The empirical material consists of input from six workshops to which all 700 Danish Architectural firms were invited, as well as eight group interviews. The analysis shows that the current prescriptive requirements are criticized for being too homogenous and possibilities for differentiation and zoning are required. Therefore, a majority of professionals are interested in a performance-based model because they think that such a model will support 'accessibility zoning', achieving flexibility because of different levels of accessibility in a building due to its performance. The common understanding of accessibility and UD is directly related to buildings like hospitals and care centers. When the objective is both innovative and inclusive architecture, the request of a performance-based model should be followed up by a knowledge enhancement effort in the building sector. Bloom's taxonomy of educational objectives is suggested as a tool for such a boost. The research project has been financed by the Danish Transport and Construction Agency. PMID:27534292

  11. Alternate architectures and technologies for Intelsat type DSI design

    NASA Astrophysics Data System (ADS)

    Keelty, J. M.; Hatzigeorgiou, S.

    1983-01-01

    The architectural choices in the unit design have to do with the amount of storage and the type of storage in the unit, the type of high-speed interface, the type of echo-protection features, the FEC encoding, and the degree of human interface for testing and maintenance. Since the interpolation process takes time, the unit is by necessity memory-oriented, and an efficient choice of memory architecture is cardinal. The two principal design choices are referred to as 'oorder and storage' and 'storage and order.' Store-and-order implies storage of data on all received channels (regardless of whether they are to be processed), followed by data routing for selected channels. Order-and-store implies immediate selection of the traffic to be processed. The architecture is also affected by the choice of interface between the DSI (digital speech interpolation) and the 'satellite' side equipment. Although the principal choice is between word- and bit-oriented data transmission, tradeoffs exist involving handshaking for control signals as well.

  12. Architectural Exploration and Design Methodologies of Photonic Interconnection Networks

    NASA Astrophysics Data System (ADS)

    Chan, Jong Wu

    Photonic technology is becoming an increasingly attractive solution to the problems facing today's electronic chip-scale interconnection networks. Recent progress in silicon photonics research has enabled the demonstration of all the necessary optical building blocks for creating extremely high-bandwidth density and energy-efficient links for on- and off-chip communications. From the feasibility and architecture perspective however, photonics represents a dramatic paradigm shift from traditional electronic network designs due to fundamental differences in how electronics and photonics function and behave. As a result of these differences, new modeling and analysis methods must be employed in order to properly realize a functional photonic chip-scale interconnect design. In this work, we present a methodology for characterizing and modeling fundamental photonic building blocks which can subsequently be combined to form full photonic network architectures. We also describe a set of tools which can be utilized to assess the physical-layer and system-level performance properties of a photonic network. The models and tools are integrated in a novel open-source design and simulation environment called PhoenixSim. Next, we leverage PhoenixSim for the study of chip-scale photonic networks. We examine several photonic networks through the synergistic study of both physical-layer metrics and system-level metrics. This holistic analysis method enables us to provide deeper insight into architecture scalability since it considers insertion loss, crosstalk, and power dissipation. In addition to these novel physical-layer metrics, traditional system-level metrics of bandwidth and latency are also obtained. Lastly, we propose a novel routing architecture known as wavelength-selective spatial routing. This routing architecture is analogous to electronic virtual channels since it enables the transmission of multiple logical optical channels through a single physical plane (i.e. the

  13. A "Knowledge Trading Game" for Collaborative Design Learning in an Architectural Design Studio

    ERIC Educational Resources Information Center

    Wang, Wan-Ling; Shih, Shen-Guan; Chien, Sheng-Fen

    2010-01-01

    Knowledge-sharing and resource exchange are the key to the success of collaborative design learning. In an architectural design studio, design knowledge entails learning efforts that need to accumulate and recombine dispersed and complementary pieces of knowledge. In this research, firstly, "Knowledge Trading Game" is proposed to be a way for…

  14. Specification and Design of Electrical Flight System Architectures with SysML

    NASA Technical Reports Server (NTRS)

    McKelvin, Mark L., Jr.; Jimenez, Alejandro

    2012-01-01

    Modern space flight systems are required to perform more complex functions than previous generations to support space missions. This demand is driving the trend to deploy more electronics to realize system functionality. The traditional approach for the specification, design, and deployment of electrical system architectures in space flight systems includes the use of informal definitions and descriptions that are often embedded within loosely coupled but highly interdependent design documents. Traditional methods become inefficient to cope with increasing system complexity, evolving requirements, and the ability to meet project budget and time constraints. Thus, there is a need for more rigorous methods to capture the relevant information about the electrical system architecture as the design evolves. In this work, we propose a model-centric approach to support the specification and design of electrical flight system architectures using the System Modeling Language (SysML). In our approach, we develop a domain specific language for specifying electrical system architectures, and we propose a design flow for the specification and design of electrical interfaces. Our approach is applied to a practical flight system.

  15. FPGA wavelet processor design using language for instruction-set architectures (LISA)

    NASA Astrophysics Data System (ADS)

    Meyer-Bäse, Uwe; Vera, Alonzo; Rao, Suhasini; Lenk, Karl; Pattichis, Marios

    2007-04-01

    The design of an microprocessor is a long, tedious, and error-prone task consisting of typically three design phases: architecture exploration, software design (assembler, linker, loader, profiler), architecture implementation (RTL generation for FPGA or cell-based ASIC) and verification. The Language for instruction-set architectures (LISA) allows to model a microprocessor not only from instruction-set but also from architecture description including pipelining behavior that allows a design and development tool consistency over all levels of the design. To explore the capability of the LISA processor design platform a.k.a. CoWare Processor Designer we present in this paper three microprocessor designs that implement a 8/8 wavelet transform processor that is typically used in today's FBI fingerprint compression scheme. We have designed a 3 stage pipelined 16 bit RISC processor (NanoBlaze). Although RISC μPs are usually considered "fast" processors due to design concept like constant instruction word size, deep pipelines and many general purpose registers, it turns out that DSP operations consume essential processing time in a RISC processor. In a second step we have used design principles from programmable digital signal processor (PDSP) to improve the throughput of the DWT processor. A multiply-accumulate operation along with indirect addressing operation were the key to achieve higher throughput. A further improvement is possible with today's FPGA technology. Today's FPGAs offer a large number of embedded array multipliers and it is now feasible to design a "true" vector processor (TVP). A multiplication of two vectors can be done in just one clock cycle with our TVP, a complete scalar product in two clock cycles. Code profiling and Xilinx FPGA ISE synthesis results are provided that demonstrate the essential improvement that a TVP has compared with traditional RISC or PDSP designs.

  16. Designing Crop Simulation Web Service with Service Oriented Architecture Principle

    NASA Astrophysics Data System (ADS)

    Chinnachodteeranun, R.; Hung, N. D.; Honda, K.

    2015-12-01

    Crop simulation models are efficient tools for simulating crop growth processes and yield. Running crop models requires data from various sources as well as time-consuming data processing, such as data quality checking and data formatting, before those data can be inputted to the model. It makes the use of crop modeling limited only to crop modelers. We aim to make running crop models convenient for various users so that the utilization of crop models will be expanded, which will directly improve agricultural applications. As the first step, we had developed a prototype that runs DSSAT on Web called as Tomorrow's Rice (v. 1). It predicts rice yields based on a planting date, rice's variety and soil characteristics using DSSAT crop model. A user only needs to select a planting location on the Web GUI then the system queried historical weather data from available sources and expected yield is returned. Currently, we are working on weather data connection via Sensor Observation Service (SOS) interface defined by Open Geospatial Consortium (OGC). Weather data can be automatically connected to a weather generator for generating weather scenarios for running the crop model. In order to expand these services further, we are designing a web service framework consisting of layers of web services to support compositions and executions for running crop simulations. This framework allows a third party application to call and cascade each service as it needs for data preparation and running DSSAT model using a dynamic web service mechanism. The framework has a module to manage data format conversion, which means users do not need to spend their time curating the data inputs. Dynamic linking of data sources and services are implemented using the Service Component Architecture (SCA). This agriculture web service platform demonstrates interoperability of weather data using SOS interface, convenient connections between weather data sources and weather generator, and connecting

  17. Design, Development and Pre-Flight Testing of the Communications, Navigation, and Networking Reconfigurable Testbed (Connect) to Investigate Software Defined Radio Architecture on the International Space Station

    NASA Technical Reports Server (NTRS)

    Over, Ann P.; Barrett, Michael J.; Reinhart, Richard C.; Free, James M.; Cikanek, Harry A., III

    2011-01-01

    The Communication Navigation and Networking Reconfigurable Testbed (CoNNeCT) is a NASA-sponsored mission, which will investigate the usage of Software Defined Radios (SDRs) as a multi-function communication system for space missions. A softwaredefined radio system is a communication system in which typical components of the system (e.g., modulators) are incorporated into software. The software-defined capability allows flexibility and experimentation in different modulation, coding and other parameters to understand their effects on performance. This flexibility builds inherent redundancy and flexibility into the system for improved operational efficiency, real-time changes to space missions and enhanced reliability/redundancy. The CoNNeCT Project is a collaboration between industrial radio providers and NASA. The industrial radio providers are providing the SDRs and NASA is designing, building and testing the entire flight system. The flight system will be integrated on the Express Logistics Carrier (ELC) on the International Space Station (ISS) after launch on the H-IIB Transfer Vehicle in 2012. This paper provides an overview of the technology research objectives, payload description, design challenges and pre-flight testing results.

  18. Explorations in Teaching Sustainable Design: A Studio Experience in Interior Design/Architecture

    ERIC Educational Resources Information Center

    Gurel, Meltem O.

    2010-01-01

    This article argues that a design studio can be a dynamic medium to explore the creative potential of the complexity of sustainability from its technological to social ends. The study seeks to determine the impact of an interior design/architecture studio experience that was initiated to teach diverse meanings of sustainability and to engage the…

  19. A spatially augmented reality sketching interface for architectural daylighting design.

    PubMed

    Sheng, Yu; Yapo, Theodore C; Young, Christopher; Cutler, Barbara

    2011-01-01

    We present an application of interactive global illumination and spatially augmented reality to architectural daylight modeling that allows designers to explore alternative designs and new technologies for improving the sustainability of their buildings. Images of a model in the real world, captured by a camera above the scene, are processed to construct a virtual 3D model. To achieve interactive rendering rates, we use a hybrid rendering technique, leveraging radiosity to simulate the interreflectance between diffuse patches and shadow volumes to generate per-pixel direct illumination. The rendered images are then projected on the real model by four calibrated projectors to help users study the daylighting illumination. The virtual heliodon is a physical design environment in which multiple designers, a designer and a client, or a teacher and students can gather to experience animated visualizations of the natural illumination within a proposed design by controlling the time of day, season, and climate. Furthermore, participants may interactively redesign the geometry and materials of the space by manipulating physical design elements and see the updated lighting simulation. PMID:21071786

  20. Optimal architectural design of parallel and hybrid manipulators

    NASA Astrophysics Data System (ADS)

    Pittens, Kenneth H.

    A study is presented of the optimial design of a class of six degree of freedom (DOF) closed-chain manipulators consisting of serial branches, each with joints acting in parallel on a common end effector. Dexterity measures based on instantaneous kinematic characteristics of the manipulator are used as the primary objective in isolating optimum designs. The fully parallel Stewart platform is first examined and a two-parameter family of optimal configurations is shown to exist. A unique optimum Stewart platform architecture is isolated from those possessing optimum local dexterity. The resulting optimum manipulator architecture is one in which the dimensions of the base are twice those of the platform and the linear actuator attachment points at the base and the platform meet in alternating pairs. Hybrid manipulators are then examined. A specific hybrid chain structure is selected from possible six-DOF structures for further investigation. A class of serial chain branches suitable for this structure is defined and it is shown that only five unique branch structures belong to the kinematically simple class. A novel approach to manipulator configuration optimization for optimal local dexterity objectives is introduced and applied to find optimal configurations of hybrid manipulators utilizing the previously identified branch structures.

  1. On the design of multimedia software and future system architectures

    NASA Astrophysics Data System (ADS)

    de With, Peter H. N.; Jaspers, Egbert G.

    2004-04-01

    A principal challenge for reducing the cost for designing complex systems-on-chip is to pursue more generic systems for a broad range of products. For this purpose, we explore three new architectural concepts for state-of-art video applications. First, we discuss a reusable scalable hardware architecture employing a hierarchical communication network fitting with the natural hierarchy of the application. In a case study, we show that MPEG streaming in DTV occurs at high level, while subsystems communicate at lower levels. The second concept is a software design that scales over a number of processors to enable reuse over a range of VLSI process technologies. We explore this via an H.264 decoder implementation scaling nearly linearly over up to eight processors by applying data partitioning. The third topic is resource-scalability, which is required to satisfy realtime constraints in a system with a high amount of shared resources. An example complexity-scalable MPEG-2 coder scales the required cycle budget with a factor of three, in parallel with a smooth degradation of quality.

  2. Critical early mission design considerations for lunar data systems architecture

    NASA Technical Reports Server (NTRS)

    Hei, Donald J., Jr.; Stephens, Elaine

    1992-01-01

    This paper outlines recent early mission design activites for a lunar data systems architecture. Each major functional element is shown to be strikingly similar when viewed in a common reference system. While this similarity probably deviates with lower levels of decomposition, the sub-functions can always be arranged into similar and dissimilar categories. Similar functions can be implemented as objects - implemented once and reused several times like today's advanced integrated circuits. This approach to mission data systems, applied to other NASA programs, may result in substantial agency implementation and maintenance savings. In today's zero-sum-game budgetary environment, this approach could help to enable a lunar exploration program in the next decade. Several early mission studies leading to such an object-oriented data systems design are recommended.

  3. Teledesic Global Wireless Broadband Network: Space Infrastructure Architecture, Design Features and Technologies

    NASA Technical Reports Server (NTRS)

    Stuart, James R.

    1995-01-01

    The Teledesic satellites are a new class of small satellites which demonstrate the important commercial benefits of using technologies developed for other purposes by U.S. National Laboratories. The Teledesic satellite architecture, subsystem design features, and new technologies are described. The new Teledesic satellite manufacturing, integration, and test approaches which use modern high volume production techniques and result in surprisingly low space segment costs are discussed. The constellation control and management features and attendant software architecture features are addressed. After briefly discussing the economic and technological impact on the USA commercial space industries of the space communications revolution and such large constellation projects, the paper concludes with observations on the trend toward future system architectures using networked groups of much smaller satellites.

  4. Architectural design of a secure forensic state psychiatric hospital.

    PubMed

    Dvoskin, Joel A; Radomski, Steven J; Bennett, Charles; Olin, Jonathan A; Hawkins, Robert L; Dotson, Linda A; Drewnicky, Irene N

    2002-01-01

    This article describes the architectural design of a secure forensic state psychiatric hospital. The project combined input from staff at all levels of the client organization, outside consultants, and a team of experienced architects. The design team was able to create a design that maximized patient dignity and privacy on one hand, and the ability of staff to observe all patient activity on the other. The design centers around 24-bed units, broken into smaller living wings of eight beds each. Each eight-bed living wing has its own private bathrooms (two) and showers (two), as well as a small living area solely reserved for these eight patients and their guests. An indoor-outdoor dayroom allows patients to go outside whenever they choose, while allowing staff to continue observing them. The heart of the facility is a large treatment mall, designed to foster the acquisition of social, emotional, cognitive, and behavioral skills that will help patients to safely return to their communities. PMID:12239707

  5. Architectures of small satellite programs in developing countries

    NASA Astrophysics Data System (ADS)

    Wood, Danielle; Weigel, Annalisa

    2014-04-01

    Global participation in space activity is growing as satellite technology matures and spreads. Countries in Africa, Asia and Latin America are creating or reinvigorating national satellite programs. These countries are building local capability in space through technological learning. This paper analyzes implementation approaches in small satellite programs within developing countries. The study addresses diverse examples of approaches used to master, adapt, diffuse and apply satellite technology in emerging countries. The work focuses on government programs that represent the nation and deliver services that provide public goods such as environmental monitoring. An original framework developed by the authors examines implementation approaches and contextual factors using the concept of Systems Architecture. The Systems Architecture analysis defines the satellite programs as systems within a context which execute functions via forms in order to achieve stakeholder objectives. These Systems Architecture definitions are applied to case studies of six satellite projects executed by countries in Africa and Asia. The architectural models used by these countries in various projects reveal patterns in the areas of training, technical specifications and partnership style. Based on these patterns, three Archetypal Project Architectures are defined which link the contextual factors to the implementation approaches. The three Archetypal Project Architectures lead to distinct opportunities for training, capability building and end user services.

  6. Signalling design and architecture for a proposed mobile satellite network

    NASA Technical Reports Server (NTRS)

    Yan, T.-Y.; Cheng, U.; Wang, C.

    1990-01-01

    In a frequency-division/demand-assigned multiple-access (FD/DAMA) architecture, each mobile subscriber must make a connection request to the Network Management Center before transmission for either open-end or closed-end services. Open-end services are for voice calls and long file transfer and are processed on a blocked-call-cleared basis. Closed-end services are for transmitting burst data and are processed on a first-come first-served basis. This paper presents the signalling design and architecture for non-voice services of an FD/DAMA mobile satellite network. The connection requests are made through the recently proposed multiple channel collision resolution scheme which provides a significantly higher throughput than the traditional slotted ALOHA scheme. For non-voice services, it is well known that retransmissions are necessary to ensure the delivery of a message in its entirety from the source to destination. Retransmission protocols for open-end and closed-end data transfer are investigated. The signal structure for the proposed network is derived from X-25 standards with appropriate modifications. The packet types and their usages are described in this paper.

  7. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam

    2013-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This space suit system architecture and technologies required based on human exploration (EVA) destinations will be discussed, and how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and nonenvironmental design drivers that will become increasingly important as humans venture farther from Earth. The presentation of destination environmental data demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.

  8. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam

    2013-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars1 left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This paper addresses the space suit system architecture and technologies required based on human exploration (EVA) destinations, and describes how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and non-environmental design drivers that will become increasingly important as humans venture farther from Earth. This paper demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.

  9. Overview and Software Architecture of the Copernicus Trajectory Design and Optimization System

    NASA Technical Reports Server (NTRS)

    Williams, Jacob; Senent, Juan S.; Ocampo, Cesar; Mathur, Ravi; Davis, Elizabeth C.

    2010-01-01

    The Copernicus Trajectory Design and Optimization System represents an innovative and comprehensive approach to on-orbit mission design, trajectory analysis and optimization. Copernicus integrates state of the art algorithms in optimization, interactive visualization, spacecraft state propagation, and data input-output interfaces, allowing the analyst to design spacecraft missions to all possible Solar System destinations. All of these features are incorporated within a single architecture that can be used interactively via a comprehensive GUI interface, or passively via external interfaces that execute batch processes. This paper describes the Copernicus software architecture together with the challenges associated with its implementation. Additionally, future development and planned new capabilities are discussed. Key words: Copernicus, Spacecraft Trajectory Optimization Software.

  10. Open System Architecture design for planet surface systems

    NASA Technical Reports Server (NTRS)

    Petri, D. A.; Pieniazek, L. A.; Toups, L. D.

    1992-01-01

    The Open System Architecture is an approach to meeting the needs for flexibility and evolution of the U.S. Space Exploration Initiative program of the manned exploration of the solar system and its permanent settlement. This paper investigates the issues that future activities of the planet exploration program must confront, defines the basic concepts that provide the basis for establishing an Open System Architecture, identifies the appropriate features of such an architecture, and discusses examples of Open System Architectures.

  11. System level design and power analysis of architectures for SATD calculus in the H.264/AVC

    NASA Astrophysics Data System (ADS)

    Massimo, Conti; Coppari, Francesco; Orcioni, Simone; Vece, Giovanni B.

    2005-06-01

    The new generation of video coding standards (H.264/MPEG Advanced Video Codec) addresses the requirements of a network-friendly and scalable video representation, and increasing by a factor of two the compression efficiency of the current technology. The H.264 uses the SATD metric for the calculus of the prediction error. The SATD procedure may be called about 1 million times during the visualization of a 352x288 pixel video sequence of 10 seconds. Therefore the accurate design of a dedicated hardware for the SATD is relevant in the performance of the complete codec. This paper presents four architectures described in SystemC for the VLSI implementation of the calculus of the SATD metric. The performances of the architectures in terms of signal to noise ratio and power dissipation have been evaluated using a new SystemC library developed by the authors for the estimation of power consumption in a SystemC description of the architecture. Comparisons have been performed for different values of the number of bits of the internal representation for the four architectures. Four standard video sequences (Akiyo, Stefan, Mobile&calendar, Container) have been used to test the performance of the architectures.

  12. An architecture for designing fuzzy logic controllers using neural networks

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1991-01-01

    Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.

  13. Bauhaus, Crown Hall, FAU: A Comparative Investigation of the Curriculum Design in Schools of Architecture

    ERIC Educational Resources Information Center

    Mulrooney, Sarah

    2009-01-01

    One of the central themes addressed by this paper is the design of the curriculum for architectural education using three schools of architecture: the Bauhaus in Dessau, Crown Hall in Chicago and the Faculty of Architecture and Urbanism (FAU) in Sao Paulo. It also reflects on the practices in other schools such as Frank Lloyd Wright's Taliesin…

  14. Architectural development of an advanced EVA Electronic System

    NASA Technical Reports Server (NTRS)

    Lavelle, Joseph

    1992-01-01

    An advanced electronic system for future EVA missions (including zero gravity, the lunar surface, and the surface of Mars) is under research and development within the Advanced Life Support Division at NASA Ames Research Center. As a first step in the development, an optimum system architecture has been derived from an analysis of the projected requirements for these missions. The open, modular architecture centers around a distributed multiprocessing concept where the major subsystems independently process their own I/O functions and communicate over a common bus. Supervision and coordination of the subsystems is handled by an embedded real-time operating system kernel employing multitasking software techniques. A discussion of how the architecture most efficiently meets the electronic system functional requirements, maximizes flexibility for future development and mission applications, and enhances the reliability and serviceability of the system in these remote, hostile environments is included.

  15. Demand Activated Manufacturing Architecture (DAMA) supply chain collaboration development methodology

    SciTech Connect

    PETERSEN,MARJORIE B.; CHAPMAN,LEON D.

    2000-03-15

    The Demand Activated Manufacturing Architecture (DAMA) project during the last five years of work with the U.S. Integrated Textile Complex (retail, apparel, textile, and fiber sectors) has developed an inter-enterprise supply chain collaboration development methodology. The goal of this methodology is to enable a supply chain to work more efficiently and competitively. The outcomes of this methodology include: (1) A definitive description and evaluation of the role of business cultures and supporting business organizational structures in either inhibiting or fostering change to a more competitive supply chain; (2) ``As-Is'' and proposed ``To-Be'' supply chain business process models focusing on information flows and decision-making; and (3) Software tools that enable and support a transition to a more competitive supply chain, which results form a business driven rather than technologically driven approach to software design. This methodology development will continue in FY00 as DAMA engages companies in the soft goods industry in supply chain research and implementation of supply chain collaboration.

  16. Functional Architecture of the Retina: Development and Disease

    PubMed Central

    Hoon, Mrinalini; Okawa, Haruhisa; Santina, Luca Della; Wong, Rachel O.L.

    2014-01-01

    Structure and function are highly correlated in the vertebrate retina, a sensory tissue that is organized into cell layers with microcircuits working in parallel and together to encode visual information. All vertebrate retinas share a fundamental plan, comprising five major neuronal cell classes with cell body distributions and connectivity arranged in stereotypic patterns. Conserved features in retinal design have enabled detailed analysis and comparisons of structure, connectivity and function across species. Each species, however, can adopt structural and/or functional retinal specializations, implementing variations to the basic design in order to satisfy unique requirements in visual function. Recent advances in molecular tools, imaging and electrophysiological approaches have greatly facilitated identification of the cellular and molecular mechanisms that establish the fundamental organization of the retina and the specializations of its microcircuits during development. Here, we review advances in our understanding of how these mechanisms act to shape structure and function at the single cell level, to coordinate the assembly of cell populations, and to define their specific circuitry. We also highlight how structure is rearranged and function is disrupted in disease, and discuss current approaches to re-establish the intricate functional architecture of the retina. PMID:24984227

  17. Documentation of Software Architecture from a Knowledge Management Perspective - Design Representation

    NASA Astrophysics Data System (ADS)

    Kruchten, Philippe

    In this chapter we survey how architects have represented architectural knowledge and in particular architectural design. This has evolved over the last 3 decades, from very intuitive and informal, to very structured, abstract and formal, from simple diagrams and metaphors, design notations, and specific languages. As our understanding of architectural knowledge evolved, the importance of design rationale and the decision process became more and more prominent. There is however a constant through this evolution: the systematic use of metaphors.

  18. Approach for Mitigating Pressure Garment Design Risks in a Mobile Lunar Surface Systems Architecture

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay

    2009-01-01

    The stated goals of the 2004 Vision for Space Exploration focus on establishing a human presence throughout the solar system beginning with the establishment of a permanent human presence on the Moon. However, the precise objectives to be accomplished on the lunar surface and the optimal system architecture to achieve those objectives have been a topic of much debate since the inception of the Constellation Program. There are two basic styles of system architectures being traded at the Programmatic level: a traditional large outpost that would focus on techniques for survival off our home planet and a greater depth of exploration within one area, or a mobile approach- akin to a series of nomadic camps- that would allow greater breadth of exploration opportunities. The traditional outpost philosophy is well within the understood pressure garment design space with respect to developing interfaces and operational life cycle models. The mobile outpost, however, combines many unknowns with respect to pressure garment performance and reliability that could dramatically affect the cost and schedule risks associated with the Constellation space suit system. This paper provides an overview of the concepts being traded for a mobile architecture from the operations and hardware implementation perspective, describes the primary risks to the Constellation pressure garment associated with each of the concepts, and summarizes the approach necessary to quantify the pressure garment design risks to enable the Constellation Program to make informed decisions when deciding on an overall lunar surface systems architecture.

  19. Architectures for Developing Multiuser, Immersive Learning Scenarios

    ERIC Educational Resources Information Center

    Nadolski, Rob J.; Hummel, Hans G. K.; Slootmaker, Aad; van der Vegt, Wim

    2012-01-01

    Multiuser immersive learning scenarios hold strong potential for lifelong learning as they can support the acquisition of higher order skills in an effective, efficient, and attractive way. Existing virtual worlds, game development platforms, and game engines only partly cater for the proliferation of such learning scenarios as they are often…

  20. GNC Architecture Design for ARES Simulation. Revision 3.0. Revision 3.0

    NASA Technical Reports Server (NTRS)

    Gay, Robert

    2006-01-01

    The purpose of this document is to describe the GNC architecture and associated interfaces for all ARES simulations. Establishing a common architecture facilitates development across the ARES simulations and provides an efficient mechanism for creating an end-to-end simulation capability. In general, the GNC architecture is the frame work in which all GNC development takes place, including sensor and effector models. All GNC software applications have a standard location within the architecture making integration easier and, thus more efficient.

  1. The development of brain network architecture.

    PubMed

    Wierenga, Lara M; van den Heuvel, Martijn P; van Dijk, Sarai; Rijks, Yvonne; de Reus, Marcel A; Durston, Sarah

    2016-02-01

    Brain connectivity shows protracted development throughout childhood and adolescence, and, as such, the topology of brain networks changes during this period. The complexity of these changes with development is reflected by regional differences in maturation. This study explored age-related changes in network topology and regional developmental patterns during childhood and adolescence. We acquired two sets of Diffusion Weighted Imaging-scans and anatomical T1-weighted scans. The first dataset included 85 typically developing individuals (53 males; 32 females), aged between 7 and 23 years and was acquired on a Philips Achieva 1.5 Tesla scanner. A second dataset (N = 38) was acquired on a different (but identical) 1.5 T scanner and was used for independent replication of our results. We reconstructed whole brain networks using tractography. We operationalized fiber tract development as changes in mean diffusivity and radial diffusivity with age. Most fibers showed maturational changes in mean and radial diffusivity values throughout childhood and adolescence, likely reflecting increasing white matter integrity. The largest age-related changes were observed in association fibers within and between the frontal and parietal lobes. Furthermore, there was a simultaneous age-related decrease in average path length (P < 0.0001), increase in node strength (P < 0.0001) as well as network clustering (P = 0.001), which may reflect fine-tuning of topological organization. These results suggest a sequential maturational model where connections between unimodal regions strengthen in childhood, followed by connections from these unimodal regions to association regions, while adolescence is characterized by the strengthening of connections between association regions within the frontal and parietal cortex. Hum Brain Mapp 37:717-729, 2016. © 2015 Wiley Periodicals, Inc. PMID:26595445

  2. Influence of school architecture and design on healthy eating: a review of the evidence.

    PubMed

    Frerichs, Leah; Brittin, Jeri; Sorensen, Dina; Trowbridge, Matthew J; Yaroch, Amy L; Siahpush, Mohammad; Tibbits, Melissa; Huang, Terry T-K

    2015-04-01

    We examined evidence regarding the influence of school physical environment on healthy-eating outcomes. We applied a systems perspective to examine multiple disciplines' theoretical frameworks and used a mixed-methods systematic narrative review method, considering both qualitative and quantitative sources (published through March 2014) for inclusion. We developed a causal loop diagram from 102 sources identified. We found evidence of the influence of many aspects of a school's physical environment on healthy-eating outcomes. The causal loop diagram highlights multilevel and interrelated factors and elucidates the specific roles of design and architecture in encouraging healthy eating within schools. Our review highlighted the gaps in current evidence and identified areas of research needed to refine and expand school architecture and design strategies for addressing healthy eating. PMID:25713964

  3. Shape-morphing composites with designed micro-architectures

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jennifer N.; Zhu, Cheng; Duoss, Eric B.; Wilson, Thomas S.; Spadaccini, Christopher M.; Lewicki, James P.

    2016-06-01

    Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designed for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. The ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices.

  4. Shape-morphing composites with designed micro-architectures.

    PubMed

    Rodriguez, Jennifer N; Zhu, Cheng; Duoss, Eric B; Wilson, Thomas S; Spadaccini, Christopher M; Lewicki, James P

    2016-01-01

    Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designed for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. The ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices. PMID:27301435

  5. Shape-morphing composites with designed micro-architectures

    PubMed Central

    Rodriguez, Jennifer N.; Zhu, Cheng; Duoss, Eric B.; Wilson, Thomas S.; Spadaccini, Christopher M.; Lewicki, James P.

    2016-01-01

    Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designed for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. The ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices. PMID:27301435

  6. Development of a Conceptual Structure for Architectural Solar Energy Systems.

    ERIC Educational Resources Information Center

    Ringel, Robert F.

    Solar subsystems and components were identified and conceptual structure was developed for architectural solar energy heating and cooling systems. Recent literature related to solar energy systems was reviewed and analyzed. Solar heating and cooling system, subsystem, and component data were compared for agreement and completeness. Significant…

  7. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; Korona, F. Adam; McFarland, Shane

    2012-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars [1] left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This paper will address the space suit system architecture and technologies required based upon human exploration extravehicular activity (EVA) destinations, and describe how they should evolve to meet the future exploration EVA needs of the US human space flight program.1, 2, 3 In looking forward to future US space exploration to a space suit architecture with maximum reuse of technology and functionality across a range of mission profiles and destinations, a series of exercises and analyses have provided a strong indication that the Constellation Program (CxP) space suit architecture is postured to provide a viable solution for future exploration missions4. The destination environmental analysis presented in this paper demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew given any human mission outside of low-Earth orbit (LEO). Additionally, some of the high-level trades presented here provide a review of the environmental and non-environmental design drivers that will become increasingly important the farther away from Earth humans venture. This paper demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, independent of any particular program, and provide architecture and design solutions for space suit systems in time or ahead of need dates for any particular crewed flight program in the future. The approach to space suit design and interface definition discussion will show how the architecture is very adaptable to programmatic and funding changes with

  8. Robotic control architecture development for automated nuclear material handling systems

    SciTech Connect

    Merrill, R.D.; Hurd, R.; Couture, S.; Wilhelmsen, K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) is engaged in developing automated systems for handling materials for mixed waste treatment, nuclear pyrochemical processing, and weapon components disassembly. In support of these application areas there is an extensive robotic development program. This paper will describe the portion of this effort at LLNL devoted to control system architecture development, and review two applications currently being implemented which incorporate these technologies.

  9. Innovation in Deep Space Habitat Interior Design: Lessons Learned From Small Space Design in Terrestrial Architecture

    NASA Technical Reports Server (NTRS)

    Simon, Matthew A.; Toups, Larry

    2014-01-01

    Increased public awareness of carbon footprints, crowding in urban areas, and rising housing costs have spawned a 'small house movement' in the housing industry. Members of this movement desire small, yet highly functional residences which are both affordable and sensitive to consumer comfort standards. In order to create comfortable, minimum-volume interiors, recent advances have been made in furniture design and approaches to interior layout that improve both space utilization and encourage multi-functional design for small homes, apartments, naval, and recreational vehicles. Design efforts in this evolving niche of terrestrial architecture can provide useful insights leading to innovation and efficiency in the design of space habitats for future human space exploration missions. This paper highlights many of the cross-cutting architectural solutions used in small space design which are applicable to the spacecraft interior design problem. Specific solutions discussed include reconfigurable, multi-purpose spaces; collapsible or transformable furniture; multi-purpose accommodations; efficient, space saving appliances; stowable and mobile workstations; and the miniaturization of electronics and computing hardware. For each of these design features, descriptions of how they save interior volume or mitigate other small space issues such as confinement stress or crowding are discussed. Finally, recommendations are provided to provide guidance for future designs and identify potential collaborations with the small spaces design community.

  10. 36 CFR 910.15 - New development design.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.15 New development design. (a) All new development shall represent the best contemporary architectural and urban planning...

  11. 36 CFR 910.15 - New development design.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.15 New development design. (a) All new development shall represent the best contemporary architectural and urban planning...

  12. 36 CFR 910.15 - New development design.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.15 New development design. (a) All new development shall represent the best contemporary architectural and urban planning...

  13. 36 CFR 910.15 - New development design.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.15 New development design. (a) All new development shall represent the best contemporary architectural and urban planning concepts. (b) Where...

  14. Development of economically viable, highly integrated, highly modular SEGIS architecture.

    SciTech Connect

    Enslin, Johan; Hamaoui, Ronald; Gonzalez, Sigifredo; Haddad, Ghaith; Rustom, Khalid; Stuby, Rick; Kuran, Mohammad; Mark, Evlyn; Amarin, Ruba; Alatrash, Hussam; Bower, Ward Isaac; Kuszmaul, Scott S.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali

    2012-03-01

    Initiated in 2008, the SEGIS initiative is a partnership involving the U.S. DOE, Sandia National Laboratories, private sector companies, electric utilities, and universities. Projects supported under the initiative have focused on the complete-system development of solar technologies, with the dual goal of expanding renewable PV applications and addressing new challenges of connecting large-scale solar installations in higher penetrations to the electric grid. Petra Solar, Inc., a New Jersey-based company, received SEGIS funds to develop solutions to two of these key challenges: integrating increasing quantities of solar resources into the grid without compromising (and likely improving) power quality and reliability, and moving the design from a concept of intelligent system controls to successful commercialization. The resulting state-of-the art technology now includes a distributed photovoltaic (PV) architecture comprising AC modules that not only feed directly into the electrical grid at distribution levels but are equipped with new functions that improve voltage stability and thus enhance overall grid stability. This integrated PV system technology, known as SunWave, has applications for 'Power on a Pole,' and comes with a suite of technical capabilities, including advanced inverter and system controls, micro-inverters (capable of operating at both the 120V and 240V levels), communication system, network management system, and semiconductor integration. Collectively, these components are poised to reduce total system cost, increase the system's overall value and help mitigate the challenges of solar intermittency. Designed to be strategically located near point of load, the new SunWave technology is suitable for integration directly into the electrical grid but is also suitable for emerging microgrid applications. SunWave was showcased as part of a SEGIS Demonstration Conference at Pepco Holdings, Inc., on September 29, 2011, and is presently undergoing

  15. Hardware architecture design of a fast global motion estimation method

    NASA Astrophysics Data System (ADS)

    Liang, Chaobing; Sang, Hongshi; Shen, Xubang

    2015-12-01

    VLSI implementation of gradient-based global motion estimation (GME) faces two main challenges: irregular data access and high off-chip memory bandwidth requirement. We previously proposed a fast GME method that reduces computational complexity by choosing certain number of small patches containing corners and using them in a gradient-based framework. A hardware architecture is designed to implement this method and further reduce off-chip memory bandwidth requirement. On-chip memories are used to store coordinates of the corners and template patches, while the Gaussian pyramids of both the template and reference frame are stored in off-chip SDRAMs. By performing geometric transform only on the coordinates of the center pixel of a 3-by-3 patch in the template image, a 5-by-5 area containing the warped 3-by-3 patch in the reference image is extracted from the SDRAMs by burst read. Patched-based and burst mode data access helps to keep the off-chip memory bandwidth requirement at the minimum. Although patch size varies at different pyramid level, all patches are processed in term of 3x3 patches, so the utilization of the patch-processing circuit reaches 100%. FPGA implementation results show that the design utilizes 24,080 bits on-chip memory and for a sequence with resolution of 352x288 and frequency of 60Hz, the off-chip bandwidth requirement is only 3.96Mbyte/s, compared with 243.84Mbyte/s of the original gradient-based GME method. This design can be used in applications like video codec, video stabilization, and super-resolution, where real-time GME is a necessity and minimum memory bandwidth requirement is appreciated.

  16. Using a cognitive architecture to examine what develops.

    PubMed

    Jones, G; Ritter, F E; Wood, D J

    2000-03-01

    Different theories of development propose alternative mechanisms by which development occurs. Cognitive architectures can be used to examine the influence of each proposed mechanism of development while keeping all other mechanisms constant. An ACT-R computational model that matched adult behavior in solving a 21-block pyramid puzzle was created. The model was modified in three ways that corresponded to mechanisms of development proposed by developmental theories. The results showed that all the modifications (two of capacity and one of strategy choice) could approximate the behavior of 7-year-old children on the task. The strategy-choice modification provided the closest match on the two central measures of task behavior (time taken per layer, r = .99, and construction attempts per layer, r = .73). Modifying cognitive architectures is a fruitful way to compare and test potential developmental mechanisms, and can therefore help in specifying "what develops." PMID:11273427

  17. Advanced information processing system: The Army Fault-Tolerant Architecture detailed design overview

    NASA Technical Reports Server (NTRS)

    Harper, Richard E.; Babikyan, Carol A.; Butler, Bryan P.; Clasen, Robert J.; Harris, Chris H.; Lala, Jaynarayan H.; Masotto, Thomas K.; Nagle, Gail A.; Prizant, Mark J.; Treadwell, Steven

    1994-01-01

    The Army Avionics Research and Development Activity (AVRADA) is pursuing programs that would enable effective and efficient management of large amounts of situational data that occurs during tactical rotorcraft missions. The Computer Aided Low Altitude Night Helicopter Flight Program has identified automated Terrain Following/Terrain Avoidance, Nap of the Earth (TF/TA, NOE) operation as key enabling technology for advanced tactical rotorcraft to enhance mission survivability and mission effectiveness. The processing of critical information at low altitudes with short reaction times is life-critical and mission-critical necessitating an ultra-reliable/high throughput computing platform for dependable service for flight control, fusion of sensor data, route planning, near-field/far-field navigation, and obstacle avoidance operations. To address these needs the Army Fault Tolerant Architecture (AFTA) is being designed and developed. This computer system is based upon the Fault Tolerant Parallel Processor (FTPP) developed by Charles Stark Draper Labs (CSDL). AFTA is hard real-time, Byzantine, fault-tolerant parallel processor which is programmed in the ADA language. This document describes the results of the Detailed Design (Phase 2 and 3 of a 3-year project) of the AFTA development. This document contains detailed descriptions of the program objectives, the TF/TA NOE application requirements, architecture, hardware design, operating systems design, systems performance measurements and analytical models.

  18. Algorithm architecture co-design for ultra low-power image sensor

    NASA Astrophysics Data System (ADS)

    Laforest, T.; Dupret, A.; Verdant, A.; Lattard, D.; Villard, P.

    2012-03-01

    In a context of embedded video surveillance, stand alone leftbehind image sensors are used to detect events with high level of confidence, but also with a very low power consumption. Using a steady camera, motion detection algorithms based on background estimation to find regions in movement are simple to implement and computationally efficient. To reduce power consumption, the background is estimated using a down sampled image formed of macropixels. In order to extend the class of moving objects to be detected, we propose an original mixed mode architecture developed thanks to an algorithm architecture co-design methodology. This programmable architecture is composed of a vector of SIMD processors. A basic RISC architecture was optimized in order to implement motion detection algorithms with a dedicated set of 42 instructions. Definition of delta modulation as a calculation primitive has allowed to implement algorithms in a very compact way. Thereby, a 1920x1080@25fps CMOS image sensor performing integrated motion detection is proposed with a power estimation of 1.8 mW.

  19. EChO fine guidance sensor design and architecture

    NASA Astrophysics Data System (ADS)

    Ottensamer, Roland; Rataj, Miroslaw; Schrader, Jan-Rutger; Ferstl, Roman; Güdel, Manuel; Kerschbaum, Franz; Luntzer, Armin

    2014-08-01

    EChO, the Exoplanet Characterization Observatory, is an M-class candidate in the ESA Comic Vision programme. It will provide high resolution, multi-wavelength spectroscopic observations of exoplanets, measure their atmospheric composition, temperature and albedo. The scientific payload is a spectrometer covering the 0.4-11 micron waveband. High photometric stability over a time scale of about 10 hours is one of the most stringent requirements of the EChO mission. As a result, fine pointing stability relative to the host star is mandatory. This will be achieved through a Fine Guidance Sensor (FGS), a separate photometric channel that uses a fraction of the target star signal from the optical channel. The main task of the FGS is to ensure the centering, focusing and guiding of the satellite, but it will also provide supplemental high-precision astrometry and photometry of the target to ground for de-trending the spectra and complementary science. In this paper we give an overview of the current architectural design of the FGS subsystem and discuss related requirements as well as the expected performance.

  20. Implementing Change in Architectural Design in Elementary School Art Education in Slovenia

    ERIC Educational Resources Information Center

    Batic, Janja

    2014-01-01

    This article reports on a study of the effects of an action research project that aimed to improve the practice of teaching art in elementary schools in Slovenia. The specific focus was on the planning and execution of art tasks relating to architectural design. The planned improvements were based on the process of architectural design from…

  1. Assessment Focus in Studio: What Is Most Prominent in Architecture, Art and Design?

    ERIC Educational Resources Information Center

    de La Harpe, Barbara; Peterson, J. Fiona; Frankham, Noel; Zehner, Robert; Neale, Douglas; Musgrave, Elizabeth; McDermott, Ruth

    2009-01-01

    What can be learned about assessment from what educators in the creative practices focus their studio publications on? What should form the focus of assessment in architecture, art and design studios? In this article we draw on 118 journal articles on studio published over the last decade in three disciplines; architecture, art and design to…

  2. Development of the nuclear weapons complex EP architecture

    SciTech Connect

    Murray, C.; Halbleib, L.

    1996-07-01

    The Nuclear Weapons Guidance Team is an interagency committee led by Earl Whiteman, DOE that chartered the generation of EP40100, Concurrent Qualification and its successor EP401099, Concurrent Engineering and Qualification. As this new philosophy of concurrent operations has evolved and as implementation has been initiated, conflicts and insufficiencies in the remaining Engineering Procedures (EPs) have become more apparent. At the Guidance Team meeting in November 1995, this issue was explored and several approaches were considered. It was concluded at this meeting, that a smaller set of interagency EPs described in a hierarchical system could provide the necessary interagency direction to support complex-wide implementation. This set consolidates many existing EP processes where consistency and commonality are critical to success of the extended enterprise. The Guidance Team subsequently chartered an interagency team to initiate development activity associated with the envisioned new EP set. This team had participation from seven Nuclear Weapons Complex (NWC) sites as well as DOE/AL and DP-14 (team members are acknowledged later in this report). Per the Guidance Team, this team, referred to as the Architecture Subcommittee, was to map out and define an EP Architecture for the interagency EPs, make recommendations regarding a more agile process for EP approval and suggest an aggressive timeline to develop the combined EPs. The Architecture Subcommittee was asked to brief their output at the February Guidance Team meeting. This SAND report documents the results of the Architecture Subcommittee`s recommendations.

  3. Design and simulation of an intelligent mass-storage architecture

    SciTech Connect

    Penaloza, M.A.

    1989-01-01

    This dissertation presents the design of an Intelligent Mass Storage Architecture (IMSA) that not only increases the disk 1/0 bandwidth but also provides database transparency and data consistency. The database transparency characteristic relieves a host system from the overhead incurred in accessing and maintaining the physical database on disk devices. The data consistency characteristic refers to the capability of IMSA in evaluating a set of integrity constraints (IC's) that represent semantic rules required to preserve the consistency of the database. This evaluation is performed by specialized filter processors. This dissertation presents: (a) a precise definition of any filter operation by means of a canonical filter form, (b) the analysis of the different types of IC's that might be defined in a database, (c) the inclusion of IC's and the selection and projection operations within the filter concept, (d) the integration of these IC's and query filters, (e) the simplification of IC's into'cheaper' IC's by using several simplification techniques, and (f) the evaluation of these filters by hardware. IMSA is composed of several units which are structured as a hierarchical organization. Parallelism, concurrency, dataflow execution, disk cache memory, and multiport memories are the main concepts and techniques used and/or inspired by the design of IMSA. These techniques and the hierarchical structure contribute to its efficiency. IMSA's performance was analyzed using simulation and analytical models. It was compared with four different host system configurations. The results from these two models showed a considerable advantage of IMSA over any of the host configurations with respect to the evaluation of IC's and query filters.

  4. Design of a hybrid switching architecture for avionic WDM platforms

    NASA Astrophysics Data System (ADS)

    Huang, Jin; Qiu, Kun; Xu, Bo; Ling, Yun

    2014-01-01

    A novel hybrid switching architecture using optical circuit switching for intra-subnet communication and fiber channel (FC) for inter-subnet communication is proposed. The proposed scheme utilizes small-size arrayed waveguide grating routers (AWGRs) and legacy FC switches to construct the large-scale avionic network, thus has the potential of the lower latency, the satisfactory network bandwidth and the lower power consumption. The simulation results verify that the proposed architecture outperforms FC switched architecture in terms of real time performance and power consumption.

  5. The Design of a Fault-Tolerant COTS-Based Bus Architecture

    NASA Technical Reports Server (NTRS)

    Chau, Savio N.; Alkalai, Leon; Burt, John B.; Tai, Ann T.

    1999-01-01

    In this paper, we report our experiences and findings on the design of a fault-tolerant bus architecture comprised of two COTS buses, the IEEE 1394 and the 12C. This fault-tolerant bus is the backbone system bus for the avionics architecture of the X2000 program at the Jet Propulsion Laboratory. COTS buses are attractive because of the availability of low cost commercial products. However, they are not specifically designed for highly reliable applications such as long-life deep-space missions. The X2000 design team has devised a multi-level fault tolerance approach to compensate for this shortcoming of COTS buses. First, the approach enhances the fault tolerance capabilities of the IEEE 1394 and 12 C buses by adding a layer of fault handling hardware and software. Second, algorithms are developed to enable the IEEE 1394 and the 12 C buses assist each other to isolate and recovery from faults. Third, the set of IEEE 1394 and 12 C buses is duplicated to further enhance system reliability. The X2000 design team has paid special attention to guarantee that all fault tolerance provisions will not cause the bus design to deviate from the commercial standard specifications. Otherwise, the economic attractiveness of using COTS will be diminished. The hardware and software design of the X2000 fault-tolerant bus are being implemented and flight hardware will be delivered to the ST4 and Europa Orbiter missions.

  6. Architectural design proposal for a Martian base to continue NASA Mars Design Reference Mission

    NASA Astrophysics Data System (ADS)

    Kozicki, Janek

    The issue of extraterrestrial bases has recently been a very vivid one. There are orbital stations currently existing and humans will travel to Mars around 2030. They will need stations established there, which will provide them the proper living conditions. Firstly, it might be a small module brought from Earth (e.g. NASA Mars Design Reference Mission module (DRM)), in later stages equivalents of Earth houses may be built from local resources. The goal of this paper is to propose an architectural design for an intermediate stage — for a larger habitable unit transported from Earth. It is inspired by terrestrial portable architecture ideas. A pneumatic structure requires small volume during transportation. However, it provides large habitable space after deployment. It is designed for transport by DRM transportation module and its deployment is considerable easy and brief. An architectural solution analogous to a terrestrial house with a studio and a workshop was assumed. Its form was a result of technical and environmental limitations, and the need for an ergonomic interior. The spatial placement of following zones was carefully considered: residential, agricultural and science, as well as a garage with a workshop, transportation routes, and a control and communication center. The issues of Life Support System, energy, food, water and waste recycling were also discussed. This Martian base was designed to be crewed by a team of eight people to stay on Mars for at least 1.5 year. An Open Plan architectural solution was assumed in pneumatic modules, with a high level of modularity. Walls of standardized sizes with zip-fasteners allow free rearrangement of the interior to adapt to a new situation (e.g. damage of one of the pneumatic modules or a psychological ,,need of a change"). The architectural design focuses on ergonomic and psychological aspects of longer stay in hostile Martian environment. This solution provides Martian crew with a comfortable habitable

  7. A Federated Design for a Neurobiological Simulation Engine: The CBI Federated Software Architecture

    PubMed Central

    Cornelis, Hugo; Coop, Allan D.; Bower, James M.

    2012-01-01

    Simulator interoperability and extensibility has become a growing requirement in computational biology. To address this, we have developed a federated software architecture. It is federated by its union of independent disparate systems under a single cohesive view, provides interoperability through its capability to communicate, execute programs, or transfer data among different independent applications, and supports extensibility by enabling simulator expansion or enhancement without the need for major changes to system infrastructure. Historically, simulator interoperability has relied on development of declarative markup languages such as the neuron modeling language NeuroML, while simulator extension typically occurred through modification of existing functionality. The software architecture we describe here allows for both these approaches. However, it is designed to support alternative paradigms of interoperability and extensibility through the provision of logical relationships and defined application programming interfaces. They allow any appropriately configured component or software application to be incorporated into a simulator. The architecture defines independent functional modules that run stand-alone. They are arranged in logical layers that naturally correspond to the occurrence of high-level data (biological concepts) versus low-level data (numerical values) and distinguish data from control functions. The modular nature of the architecture and its independence from a given technology facilitates communication about similar concepts and functions for both users and developers. It provides several advantages for multiple independent contributions to software development. Importantly, these include: (1) Reduction in complexity of individual simulator components when compared to the complexity of a complete simulator, (2) Documentation of individual components in terms of their inputs and outputs, (3) Easy removal or replacement of unnecessary or

  8. A federated design for a neurobiological simulation engine: the CBI federated software architecture.

    PubMed

    Cornelis, Hugo; Coop, Allan D; Bower, James M

    2012-01-01

    Simulator interoperability and extensibility has become a growing requirement in computational biology. To address this, we have developed a federated software architecture. It is federated by its union of independent disparate systems under a single cohesive view, provides interoperability through its capability to communicate, execute programs, or transfer data among different independent applications, and supports extensibility by enabling simulator expansion or enhancement without the need for major changes to system infrastructure. Historically, simulator interoperability has relied on development of declarative markup languages such as the neuron modeling language NeuroML, while simulator extension typically occurred through modification of existing functionality. The software architecture we describe here allows for both these approaches. However, it is designed to support alternative paradigms of interoperability and extensibility through the provision of logical relationships and defined application programming interfaces. They allow any appropriately configured component or software application to be incorporated into a simulator. The architecture defines independent functional modules that run stand-alone. They are arranged in logical layers that naturally correspond to the occurrence of high-level data (biological concepts) versus low-level data (numerical values) and distinguish data from control functions. The modular nature of the architecture and its independence from a given technology facilitates communication about similar concepts and functions for both users and developers. It provides several advantages for multiple independent contributions to software development. Importantly, these include: (1) Reduction in complexity of individual simulator components when compared to the complexity of a complete simulator, (2) Documentation of individual components in terms of their inputs and outputs, (3) Easy removal or replacement of unnecessary or

  9. Investigation of network architecture development and properties in thermoset matrices

    NASA Astrophysics Data System (ADS)

    Swanson, Jeremy Owen

    Matrices employed in composite materials directly influence overall composite properties. In all thermoset materials, molecular level interactions and transformations during cure result in heterogeneous architecture. Variability in connectivity results from the often dramatic spatial and topological changes that occur during the crosslinking process. Compatibility (fillers, pigments, additives), temperature gradients and reactivity differences in the precursors only serve to increase the complexity of network formation. The objective of the research herein is to characterize and understand the relationships between cure conditions, conversion, connectivity, network architecture and properties in glassy thermosetting matrix resins. In this research, epoxy and vinyl ester resins (VERs) were characterized to identify controlling factors in the development of network architecture and understand how they affect the mechanical properties. VERs cure under low temperature conditions (< 50°C) via redox catalysis resulted in vitrification limiting conversion with resulting glass transition temperatures (Tgs) approximately 15°C above the cure temperature. Subsequently, in situ ligand exchange altered the activity of the metal catalyst, and the reduced connectivity of the resulting networks translated into a 30% reduction in stiffness above Tg. Network architecture was further manipulated by changing the chemical composition of the backbone. Incorporation of POSS nanoparticles into VERs resulted in changes to initial network development, with higher levels of conversion prior to vitrification. 3,3'-DDS was cured with a variety of epoxies and examined for conversion, connectivity and mechanical properties. Comparison with 4,4'-DDS revealed significant correlations between molecular level structure and properties. The research established relationships between cure conditions, conversion, connectivity and properties in glassy thermosetting matrix resins. Specifically, the

  10. Development of a satellite structural architecture for operationally responsive space

    NASA Astrophysics Data System (ADS)

    Arritt, Brandon J.; Buckley, Steven J.; Ganley, Jeffrey M.; Welsh, Jeffry S.; Henderson, Benjamin K.; Lyall, M. Eric; Williams, Andrew D.; Preble, Jeffrey C.; DiPalma, John; Mehle, Greg; Roopnarine, R.

    2008-03-01

    The Air Force Research Laboratory/Space Vehicles Directorate (AFRL/RV) is developing a satellite structural architecture in support of the Department of Defense's Operationally Responsive Space (ORS) initiative. Such a structural architecture must enable rapid Assembly, Integration, and Test (AI&T) of the satellite, accommodate multiple configurations (to include structural configurations, components, and payloads), and incorporate structurally integrated thermal management and electronics, while providing sufficient strength, stiffness, and alignment accuracy. The chosen approach will allow a wide range of satellite structures to be assembled from a relatively small set of structural components. This paper details the efforts of AFRL, and its contractors, to develop the technology necessary to realize these goals.

  11. Environmental Designs for Reading from Imaging Workstations: Ergonomic and Architectural Features

    NASA Astrophysics Data System (ADS)

    Horii, Steven C.; Horii, Howard N.; Mun, Seong K.; Benson, Harold R.; Zeman, Robert K.

    1989-05-01

    Despite the rapid progress made in the electronic design of imaging workstations for medicine, much less effort has gone into the design of environments in which such systems will be used. Based on studies of radiologist film reading sessions, considerable time will be spent working at such viewing systems. If the rooms in which the workstations are placed are not conducive to comfortable work, it will certainly not favor electronic viewing over film reading. In examining existing reading environments, it is also apparent that they are not optimum, even for film. Since some of the problems for film and electronic viewing overlap, such as heat generation (by the alternators, viewboxes, or workstation electronics) and glare from light sources, it should be possible to develop solutions which are applicable to both environments or to rooms which will feature both viewing systems. This paper will discuss some of the approaches to designing environments in which viewing of images is supported by the room architecture and engineering and not degraded by it. To illustrate these points, a design based on the constraint of a real room size and available architectural materials will be developed.

  12. A two-dimensional advanced systolic array and its arithmetic architecture and design

    SciTech Connect

    Jun, M.S.

    1989-01-01

    The rapid advances in the very large scale integrated (VLSI) technology has created a flurry of research in designing future computer architectures. Many methods have been developed for parallel processing of algorithms by directly mapping them onto parallel architectures. We present new methodologies for design of systolic arrays and asynchronous arrays that implement recursive algorithms efficiently. Using the new methods, we develop a systolic array with very simple local interconnection for matrix multiplication which achieves optimal performance without using any undesirable properties such as preloading input data or global broadcasting. We prove the correctness of the matrix multiplication algorithms on the systolic array with space-time parameters. The implementations of the algorithms can be easily proved and can be systolically expanded. We also develop a multi-purpose built-in logic for asynchronous self-test (BLAST) modules in processing elements. An asynchronous array for matrix multiplication which can speed up the total computation time significantly is also presented. To demonstrate the power of the proposed systolic array, the array will be applied to the shortest path problem by using the partitioned mapping approach which will be the key to extend the computational capacity of VLSI architectures with fixed size. The utilization of partitioning algorithms can overcome difficulties in the management of a large-size graph. To achieve the highest possible computation speed of the systolic array, we develop a prefix carry-lookahead adder/subtractor which achieves the maximal possible parallelism. The new carry-lookahead design leads to a high-speed adders/subtractors with regular layout. The time complexity is 2log{sub 2}n - 1 while the Brent-Kung's scheme has 4log{sub 2}n.

  13. An Architectural Design System Based on Computer Graphics.

    ERIC Educational Resources Information Center

    MacDonald, Stephen L.; Wehrli, Robert

    The recent developments in computer hardware and software are presented to inform architects of this design tool. Technical advancements in equipment include--(1) cathode ray tube displays, (2) light pens, (3) print-out and photo copying attachments, (4) controls for comparison and selection of images, (5) chording keyboards, (6) plotters, and (7)…

  14. Baseband-processed SS-TDMA communication system architecture and design concepts

    NASA Technical Reports Server (NTRS)

    Attwood, S.; Sabourin, D.

    1982-01-01

    The architecture and system design for a commercial satellite communications system planned for the 1990's was developed by Motorola for NASA's Lewis Research Center. The system provides data communications between individual users via trunking and customer premises service terminals utilizing a central switching satellite operating in a time-division multiple-access (TDMA) mode. The major elements of the design incorporating baseband processing include: demand-assigned multiple access reservation protocol, spectral utilization, system synchronization, modulation technique and forward error control implementation. Motorola's baseband processor design, which is being proven in a proof-of-concept advanced technology development, will perform data regeneration and message routing for individual users on-board the spacecraft.

  15. Baseband-processed SS-TDMA communication system architecture and design concepts

    NASA Astrophysics Data System (ADS)

    Attwood, S.; Sabourin, D.

    The architecture and system design for a commercial satellite communications system planned for the 1990's was developed by Motorola for NASA's Lewis Research Center. The system provides data communications between individual users via trunking and customer premises service terminals utilizing a central switching satellite operating in a time-division multiple-access (TDMA) mode. The major elements of the design incorporating baseband processing include: demand-assigned multiple access reservation protocol, spectral utilization, system synchronization, modulation technique and forward error control implementation. Motorola's baseband processor design, which is being proven in a proof-of-concept advanced technology development, will perform data regeneration and message routing for individual users on-board the spacecraft.

  16. Rational design of alpha-helical tandem repeat proteins with closed architectures

    PubMed Central

    Doyle, Lindsey; Hallinan, Jazmine; Bolduc, Jill; Parmeggiani, Fabio; Baker, David; Stoddard, Barry L.; Bradley, Philip

    2015-01-01

    Tandem repeat proteins, which are formed by repetition of modular units of protein sequence and structure, play important biological roles as macromolecular binding and scaffolding domains, enzymes, and building blocks for the assembly of fibrous materials1,2. The modular nature of repeat proteins enables the rapid construction and diversification of extended binding surfaces by duplication and recombination of simple building blocks3,4. The overall architecture of tandem repeat protein structures – which is dictated by the internal geometry and local packing of the repeat building blocks – is highly diverse, ranging from extended, super-helical folds that bind peptide, DNA, and RNA partners5–9, to closed and compact conformations with internal cavities suitable for small molecule binding and catalysis10. Here we report the development and validation of computational methods for de novo design of tandem repeat protein architectures driven purely by geometric criteria defining the inter-repeat geometry, without reference to the sequences and structures of existing repeat protein families. We have applied these methods to design a series of closed alpha-solenoid11 repeat structures (alpha-toroids) in which the inter-repeat packing geometry is constrained so as to juxtapose the N- and C-termini; several of these designed structures have been validated by X-ray crystallography. Unlike previous approaches to tandem repeat protein engineering12–20, our design procedure does not rely on template sequence or structural information taken from natural repeat proteins and hence can produce structures unlike those seen in nature. As an example, we have successfully designed and validated closed alpha-solenoid repeats with a left-handed helical architecture that – to our knowledge – is not yet present in the protein structure database21. PMID:26675735

  17. Rational design of α-helical tandem repeat proteins with closed architectures.

    PubMed

    Doyle, Lindsey; Hallinan, Jazmine; Bolduc, Jill; Parmeggiani, Fabio; Baker, David; Stoddard, Barry L; Bradley, Philip

    2015-12-24

    Tandem repeat proteins, which are formed by repetition of modular units of protein sequence and structure, play important biological roles as macromolecular binding and scaffolding domains, enzymes, and building blocks for the assembly of fibrous materials. The modular nature of repeat proteins enables the rapid construction and diversification of extended binding surfaces by duplication and recombination of simple building blocks. The overall architecture of tandem repeat protein structures--which is dictated by the internal geometry and local packing of the repeat building blocks--is highly diverse, ranging from extended, super-helical folds that bind peptide, DNA, and RNA partners, to closed and compact conformations with internal cavities suitable for small molecule binding and catalysis. Here we report the development and validation of computational methods for de novo design of tandem repeat protein architectures driven purely by geometric criteria defining the inter-repeat geometry, without reference to the sequences and structures of existing repeat protein families. We have applied these methods to design a series of closed α-solenoid repeat structures (α-toroids) in which the inter-repeat packing geometry is constrained so as to juxtapose the amino (N) and carboxy (C) termini; several of these designed structures have been validated by X-ray crystallography. Unlike previous approaches to tandem repeat protein engineering, our design procedure does not rely on template sequence or structural information taken from natural repeat proteins and hence can produce structures unlike those seen in nature. As an example, we have successfully designed and validated closed α-solenoid repeats with a left-handed helical architecture that--to our knowledge--is not yet present in the protein structure database. PMID:26675735

  18. Analog circuit design and implementation of an adaptive resonance theory (ART) neural network architecture

    NASA Astrophysics Data System (ADS)

    Ho, Ching S.; Liou, Juin J.; Georgiopoulos, Michael; Heileman, Gregory L.; Christodoulou, Christos G.

    1993-09-01

    This paper presents an analog circuit implementation for an adaptive resonance theory neural network architecture, called the augmented ART-1 neural network (AART1-NN). The AART1-NN is a modification of the popular ART1-NN, developed by Carpenter and Grossberg, and it exhibits the same behavior as the ART1-NN. The AART1-NN is a real-time model, and has the ability to classify an arbitrary set of binary input patterns into different clusters. The design of the AART1-NN model. The circuit is implemented by utilizing analog electronic components, such as, operational amplifiers, transistors, capacitors, and resistors. The implemented circuit is verified using the PSpice circuit simulator, running on Sun workstations. Results obtained from the PSpice circuit simulation compare favorably with simulation results produced by solving the differential equations numerically. The prototype system developed here can be used as a building block for larger AART1-NN architectures, as well as for other types of ART architectures that involve the AART1-NN model.

  19. Design and reliability analysis of DP-3 dynamic positioning control architecture

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Wan, Lei; Jiang, Da-Peng; Xu, Yu-Ru

    2011-12-01

    As the exploration and exploitation of oil and gas proliferate throughout deepwater area, the requirements on the reliability of dynamic positioning system become increasingly stringent. The control objective ensuring safety operation at deep water will not be met by a single controller for dynamic positioning. In order to increase the availability and reliability of dynamic positioning control system, the triple redundancy hardware and software control architectures were designed and developed according to the safe specifications of DP-3 classification notation for dynamically positioned ships and rigs. The hardware redundant configuration takes the form of triple-redundant hot standby configuration including three identical operator stations and three real-time control computers which connect each other through dual networks. The function of motion control and redundancy management of control computers were implemented by software on the real-time operating system VxWorks. The software realization of task loose synchronization, majority voting and fault detection were presented in details. A hierarchical software architecture was planed during the development of software, consisting of application layer, real-time layer and physical layer. The behavior of the DP-3 dynamic positioning control system was modeled by a Markov model to analyze its reliability. The effects of variation in parameters on the reliability measures were investigated. The time domain dynamic simulation was carried out on a deepwater drilling rig to prove the feasibility of the proposed control architecture.

  20. Hardware additions to microprocessor architecture aid software development

    NASA Technical Reports Server (NTRS)

    Sievers, M. W.

    1976-01-01

    An address trap (breakpoint) mechanism and last-in-first-out (LIFO) address stack are suggested as two additions to the basic microprocessor architecture whose functions are solely to aid the programmer. These devices provide the programmer with the ability to specify address breakpoints and to trace program execution back through N instructions, where N is the depth of the stack. Both devices, plus interface logic and buffering, have been designed for an INTEL 8080-based system using approximately 25 integrated-circuit packages.

  1. Development of the network architecture of the Canadian MSAT system

    NASA Technical Reports Server (NTRS)

    Davies, N. George; Shoamanesh, Alireza; Leung, Victor C. M.

    1988-01-01

    A description is given of the present concept for the Canadian Mobile Satellite (MSAT) System and the development of the network architecture which will accommodate the planned family of three categories of service: a mobile radio service (MRS), a mobile telephone service (MTS), and a mobile data service (MDS). The MSAT satellite will have cross-strapped L-band and Ku-band transponders to provide communications services between L-band mobile terminals and fixed base stations supporting dispatcher-type MRS, gateway stations supporting MTS interconnections to the public telephone network, data hub stations supporting the MDS, and the network control center. The currently perceived centralized architecture with demand assignment multiple access for the circuit switched MRS, MTS and permanently assigned channels for the packet switched MDS is discussed.

  2. A multiagent architecture for developing medical information retrieval agents.

    PubMed

    Walczak, Steven

    2003-10-01

    Information that is available on the world wide web (WWW) is already more vast than can be comprehensibly studied by individuals and this quantity is increasing at a staggering pace. The quality of service delivered by physicians is dependent on the availability of current information. The agent paradigm offers a means for enabling physicians to filter information and retrieve only information that is relevant to current patient treatments. As with many specialized domains, agent-based information retrieval in medical domains must satisfy several domain-dependent constraints. A multiple agent architecture is developed and described in detail to efficiently provide agent-based information retrieval from the WWW and other explicit information resources. A simulation of the proposed multiple agent architecture shows a 97% decrease in information overload and an 85% increase in information relevancy over existing meta-search tools (with even larger gains over standard search engines). PMID:14584625

  3. New IRCMOS architecture applied to uncooled microbolometers developed at LETI

    NASA Astrophysics Data System (ADS)

    Simoens, F.; Tchagaspanian, M.; Arnaud, A.; Imperinetti, P.; Chammings, G.; Yon, J. J.; Tissot, J. L.

    2007-04-01

    Thermal imaging market is today more and more attracted by systems with "instant-on" and low power consumption. Therefore the "TECless" operation of uncooled microbolometer detectors, that is where no Peltier module is needed, is the major step to fulfill the market requirement. In order to fulfill this trend, LETI/SLIR is working on a new IRCMOS architecture. This new design is based on a differential reading implemented with current mirrors that simultaneously reduces focal plane temperature sensitivity and simplifies the detector driving. An IRCMOS prototype (320 x 240 with a pitch of 25 μm) has been designed, processed, and characterized. This paper presents an overall view of this new design and the preliminary characterization results got from this focal plane array.

  4. 41 CFR 102-76.25 - What standards must Federal agencies meet in providing architectural and interior design services?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... applicable to Federal buildings in 10 CFR part 435. ... Federal agencies meet in providing architectural and interior design services? 102-76.25 Section 102-76.25... What standards must Federal agencies meet in providing architectural and interior design...

  5. Developmental Design of Synthetic Bacterial Architectures by Morphogenetic Engineering.

    PubMed

    Pascalie, Jonathan; Potier, Martin; Kowaliw, Taras; Giavitto, Jean-Louis; Michel, Olivier; Spicher, Antoine; Doursat, René

    2016-08-19

    Synthetic biology is an emerging scientific field that promotes the standardized manufacturing of biological components without natural equivalents. Its goal is to create artificial living systems that can meet various needs in health care or energy domains. While most works are focused on the individual bacterium as a chemical reactor, our project, SynBioTIC, addresses a novel and more complex challenge: shape engineering; that is, the redesign of natural morphogenesis toward a new kind of developmental 3D printing. Potential applications include organ growth, natural computing in biocircuits, or future vegetal houses. To create in silico multicellular organisms that exhibit specific shapes, we construe their development as an iterative process combining fundamental collective phenomena such as homeostasis, patterning, segmentation, and limb growth. Our numerical experiments rely on the existing Escherichia coli simulator Gro, a physicochemical computation platform offering reaction-diffusion and collision dynamics solvers. The synthetic bioware of our model executes a set of rules, or genome, in each cell. Cells can differentiate into several predefined types associated with specific actions (divide, emit signal, detect signal, die). Transitions between types are triggered by conditions involving internal and external sensors that detect various protein levels inside and around the cell. Indirect communication between bacteria is relayed by morphogen diffusion and the mechanical constraints of 2D packing. Starting from a single bacterium, the overall architecture emerges in a purely endogenous fashion through a series of developmental stages, inlcuding proliferation, differentiation, morphogen diffusion, and synchronization. The genome can be parametrized to control the growth and features of appendages individually. As exemplified by the L and T shapes that we obtain, certain precursor cells can be inhibited while others can create limbs of varying size

  6. Mobile Technology and CAD Technology Integration in Teaching Architectural Design Process for Producing Creative Product

    ERIC Educational Resources Information Center

    Bin Hassan, Isham Shah; Ismail, Mohd Arif; Mustafa, Ramlee

    2011-01-01

    The purpose of this research is to examine the effect of integrating the mobile and CAD technology on teaching architectural design process for Malaysian polytechnic architectural students in producing a creative product. The website is set up based on Caroll's minimal theory, while mobile and CAD technology integration is based on Brown and…

  7. Sense of Place: Understanding Architectural and Landscape Design through a Layering of Visual Representations

    ERIC Educational Resources Information Center

    Baker, Kate

    2014-01-01

    The context-free "object building," the sculptural form, reigned in schools of architecture for decades. As we are finally moving on from 20th century modernism, there is an urgency to re-place buildings within their contexts. All too often, students with a background in the discipline of architecture, struggle to design buildings that…

  8. Design and Parametric Sizing of Deep Space Habitats Supporting NASA'S Human Space Flight Architecture Team

    NASA Technical Reports Server (NTRS)

    Toups, Larry; Simon, Matthew; Smitherman, David; Spexarth, Gary

    2012-01-01

    NASA's Human Space Flight Architecture Team (HAT) is a multi-disciplinary, cross-agency study team that conducts strategic analysis of integrated development approaches for human and robotic space exploration architectures. During each analysis cycle, HAT iterates and refines the definition of design reference missions (DRMs), which inform the definition of a set of integrated capabilities required to explore multiple destinations. An important capability identified in this capability-driven approach is habitation, which is necessary for crewmembers to live and work effectively during long duration transits to and operations at exploration destinations beyond Low Earth Orbit (LEO). This capability is captured by an element referred to as the Deep Space Habitat (DSH), which provides all equipment and resources for the functions required to support crew safety, health, and work including: life support, food preparation, waste management, sleep quarters, and housekeeping.The purpose of this paper is to describe the design of the DSH capable of supporting crew during exploration missions. First, the paper describes the functionality required in a DSH to support the HAT defined exploration missions, the parameters affecting its design, and the assumptions used in the sizing of the habitat. Then, the process used for arriving at parametric sizing estimates to support additional HAT analyses is detailed. Finally, results from the HAT Cycle C DSH sizing are presented followed by a brief description of the remaining design trades and technological advancements necessary to enable the exploration habitation capability.

  9. Career Development by Design.

    ERIC Educational Resources Information Center

    Hanna, Sharon L.

    This book is intended to guide the reader in the process of designing his or her career and achieving it. Chapter 1 begins with a look at self: developing areas of self, personality type, self-concept, and self-efficacy, making positive personality changes, sharpening basic skills, and evaluating career potential. Chapter 2 explores developing…

  10. Lifelong Learning in Architectural Design Studio: The Learning Contract Approach

    ERIC Educational Resources Information Center

    Hassanpour, B.; Che-Ani, A. I.; Usman, I. M. S.; Johar, S.; Tawil, N. M.

    2015-01-01

    Avant-garde educational systems are striving to find lifelong learning methods. Different fields and majors have tested a variety of proposed models and found varying difficulties and strengths. Architecture is one of the most critical areas of education because of its special characteristics, such as learning by doing and complicated evaluation…

  11. Predictors of Future Performance in Architectural Design Education

    ERIC Educational Resources Information Center

    Roberts, A. S.

    2007-01-01

    The link between academic performance in secondary education and the subsequent performance of students studying architecture at university level is commonly questioned by educators and admissions tutors. This paper investigates the potential for using measures of cognitive style and spatial ability as predictors of future potential in…

  12. Design of a polymer thermoelectric generator using radial architecture

    NASA Astrophysics Data System (ADS)

    Menon, Akanksha K.; Yee, Shannon K.

    2016-02-01

    Thermoelectric generators (TEGs) are solid-state heat engines consisting of p-type and n-type semiconductors that convert heat into electricity via the Seebeck effect. Conducting polymers are a viable alternative with intrinsic advantages over their inorganic counterparts, since they are abundant, flexible as thick-films, and have reduced manufacturing costs due to solution processing. Furthermore, polymers have an inherently low thermal conductivity, thus affording them the option of forgoing some heat exchanger costs. Current examples of polymer TE devices have been limited to traditional flat-plate geometries with power densities on the μW/cm2 scale, where their potential is not fully realized. Herein, we report a novel radial device architecture and model the improved performance of polymer-based TEG based on this architecture. Our radial architecture accommodates a fluid as the heat source and can operate under natural convection alone due to heat spreading. Analytical heat transfer and electrical models are presented that optimize the device for maximum power density, and for the first time we obtain the geometry matching condition that maximizes the efficiency. We predict high power densities of ˜1 mW/cm2 using state-of-the-art polymer TEs subjected to a temperature difference of 100 K, which is nearly 1000× higher than polymer flat-plate architectures reported in literature.

  13. Translating Vision into Design: A Method for Conceptual Design Development

    NASA Technical Reports Server (NTRS)

    Carpenter, Joyce E.

    2003-01-01

    One of the most challenging tasks for engineers is the definition of design solutions that will satisfy high-level strategic visions and objectives. Even more challenging is the need to demonstrate how a particular design solution supports the high-level vision. This paper describes a process and set of system engineering tools that have been used at the Johnson Space Center to analyze and decompose high-level objectives for future human missions into design requirements that can be used to develop alternative concepts for vehicles, habitats, and other systems. Analysis and design studies of alternative concepts and approaches are used to develop recommendations for strategic investments in research and technology that support the NASA Integrated Space Plan. In addition to a description of system engineering tools, this paper includes a discussion of collaborative design practices for human exploration mission architecture studies used at the Johnson Space Center.

  14. Application-specific coarse-grained reconfigurable array: architecture and design methodology

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Liu, Dongpei; Zhang, Jianfeng; Liu, Hengzhu

    2015-06-01

    Coarse-grained reconfigurable arrays (CGRAs) have shown potential for application in embedded systems in recent years. Numerous reconfigurable processing elements (PEs) in CGRAs provide flexibility while maintaining high performance by exploring different levels of parallelism. However, a difference remains between the CGRA and the application-specific integrated circuit (ASIC). Some application domains, such as software-defined radios (SDRs), require flexibility with performance demand increases. More effective CGRA architectures are expected to be developed. Customisation of a CGRA according to its application can improve performance and efficiency. This study proposes an application-specific CGRA architecture template composed of generic PEs (GPEs) and special PEs (SPEs). The hardware of the SPE can be customised to accelerate specific computational patterns. An automatic design methodology that includes pattern identification and application-specific function unit generation is also presented. A mapping algorithm based on ant colony optimisation is provided. Experimental results on the SDR target domain show that compared with other ordinary and application-specific reconfigurable architectures, the CGRA generated by the proposed method performs more efficiently for given applications.

  15. Designing a Distributed Systems Architecture Testbed for Real-Time Power Grid Systems

    SciTech Connect

    Liu, Yan; Gorton, Ian; Chen, Yousu; Jin, Shuangshuang

    2011-07-09

    Power engineers who are striving to improve real-time attribute of power grid applications are ill equipped with software engineering methods and tools that allow them to rigorously evaluate their designs, taken into account data communication, geographic locations, and high performance computing capacity. This paper presents a technical approach to designing a testbed for embedding real-time monitoring and computation functionalities into the power grid system. The approach focuses on integrating the parallel computational models with the data management infrastructure for near-real time power grid state estimation. We study and summarize various forces and requirements that drive the design decisions in the distributed systems architecture. Given the continental scale of the power grid, it is important for the testbed to be extensible and scalable within a complex topology of physical entities, controlled by an overlaid network of power utilities and regulatory balancing authorities. This paper outlines the technical steps, and software toolkits to develop this testbed.

  16. Design Principles for the Information Architecture of a SMET Education Digital Library.

    ERIC Educational Resources Information Center

    Dong, Andy; Agogino, Alice M.

    This implementation paper introduces principles for the information architecture of an educational digital library, principles that address the distinction between designing digital libraries for education and designing digital libraries for information retrieval in general. Design is a key element of any successful product. Good designers and…

  17. 76 FR 28333 - Electric Engineering, Architectural Services, Design Policies and Construction Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... Engineering, Architectural Services, Design Policies and Construction Standards AGENCY: Rural Utilities.... Executive Order 12988 This proposed rule has been reviewed under Executive Order 12988, Civil Justice Reform... forms of contracts promulgated by RUS for construction, procurement, engineering services...

  18. Information architecture considerations in designing a comprehensive tuberculosis enterprise system in Western Kenya.

    PubMed

    Gichoya, Judy; Pearce, Chris; Wickramasinghe, Nilmini

    2013-01-01

    Kenya ranks among the twenty-two countries that collectively contribute about 80% of the world's Tuberculosis cases; with a 50-200 fold increased risk of tuberculosis in HIV infected persons versus non-HIV hosts. Contemporaneously, there is an increase in mobile penetration and its use to support healthcare throughout Africa. Many are skeptical that such m-health solutions are unsustainable and not scalable. We seek to design a scalable, pervasive m-health solution for Tuberculosis care to become a use case for sustainable and scalable health IT in limited resource settings. We combine agile design principles and user-centered design to develop the architecture needed for this initiative. Furthermore, the architecture runs on multiple devices integrated to deliver functionality critical for successful Health IT implementation in limited resource settings. It is anticipated that once fully implemented, the proposed m-health solution will facilitate superior monitoring and management of Tuberculosis and thereby reduce the alarming statistic regarding this disease in this region. PMID:23920894

  19. Data Warehouse Design from HL7 Clinical Document Architecture Schema.

    PubMed

    Pecoraro, Fabrizio; Luzi, Daniela; Ricci, Fabrizio L

    2015-01-01

    This paper proposes a semi-automatic approach to extract clinical information structured in a HL7 Clinical Document Architecture (CDA) and transform it in a data warehouse dimensional model schema. It is based on a conceptual framework published in a previous work that maps the dimensional model primitives with CDA elements. Its feasibility is demonstrated providing a case study based on the analysis of vital signs gathered during laboratory tests. PMID:26152975

  20. Development of a space universal modular architecture (SUMO)

    NASA Astrophysics Data System (ADS)

    Collins, Bernie F.

    This concept paper proposes that the space community should develop and implement a universal standard for spacecraft modularity - to improve interoperability of spacecraft components. Pursuing a global industry consensus standard for open and modular spacecraft architecture will encourage trade, remove standards-related market barriers, and in the long run increase both value provided to customers and profitability of the space industrial sector. This concept paper sets out: (1) the goals for a SUMO standard and how it will benefit the space community; (2) background on spacecraft modularity and existing related standards; (3) the proposed technical scope of the current standardization effort; and (4) an approach for creating a SUMO standard.

  1. A Tool for Managing Software Architecture Knowledge

    SciTech Connect

    Babar, Muhammad A.; Gorton, Ian

    2007-08-01

    This paper describes a tool for managing architectural knowledge and rationale. The tool has been developed to support a framework for capturing and using architectural knowledge to improve the architecture process. This paper describes the main architectural components and features of the tool. The paper also provides examples of using the tool for supporting wellknown architecture design and analysis methods.

  2. Architectural design criteria for f-block metal sequestering agents. 1997 annual progress report

    SciTech Connect

    Hay, B.P.; Paine, R.T.; Roundhill, D.M.

    1997-06-01

    'The objective of this project is to provide the means to optimize ligand architecture for f-block metal recognition. The authors strategy builds on an innovative and successful molecular modeling approach in developing polyether ligand design criteria for the alkali and alkaline earth cations. The hypothesis underlying this proposal is that differences in metal ion binding with multidentate ligands bearing the same number and type of donor groups are primarily attributable to intramolecular steric factors. The authors propose quantifying these steric factors through the application of molecular mechanics models. The proposed research involves close integration of theoretical and experimental chemistry. The experimental work entails synthesizing novel ligands and experimentally determining structures and binding constants for metal ion complexation by series of ligands in which architecture is systematically varied. The theoretical work entails using electronic structure calculations to parameterize a molecular mechanics force field for a range of metal ions and ligand types. The resulting molecular mechanics force field will be used to predict low-energy structures for unidentate, bidentate, and multidentate ligands and their metal complexes through conformational searches. Results will be analyzed to assess the relative importance of several steric factors including optimal M-L length, optimal geometry at the metal center, optimal geometry at the donor atoms (complementarity), and conformation prior to binding (preorganization). An accurate set of criteria for the design of ligand architecture will be obtained from these results. These criteria will enable researchers to target ligand structures for synthesis and thereby dramatically reduce the time and cost associated with metal-specific ligand development.'

  3. Developing Architectures and Technologies for an Evolvable NASA Space Communication Infrastructure

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Hayden, Jeffrey

    2004-01-01

    Space communications architecture concepts play a key role in the development and deployment of NASA's future exploration and science missions. Once a mission is deployed, the communication link to the user needs to provide maximum information delivery and flexibility to handle the expected large and complex data sets and to enable direct interaction with the spacecraft and experiments. In human and robotic missions, communication systems need to offer maximum reliability with robust two-way links for software uploads and virtual interactions. Identifying the capabilities to cost effectively meet the demanding space communication needs of 21st century missions, proper formulation of the requirements for these missions, and identifying the early technology developments that will be needed can only be resolved with architecture design. This paper will describe the development of evolvable space communication architecture models and the technologies needed to support Earth sensor web and collaborative observation formation missions; robotic scientific missions for detailed investigation of planets, moons, and small bodies in the solar system; human missions for exploration of the Moon, Mars, Ganymede, Callisto, and asteroids; human settlements in space, on the Moon, and on Mars; and great in-space observatories for observing other star systems and the universe. The resulting architectures will enable the reliable, multipoint, high data rate capabilities needed on demand to provide continuous, maximum coverage of areas of concentrated activities, such as in the vicinity of outposts in-space, on the Moon or on Mars.

  4. SensoTube: A Scalable Hardware Design Architecture for Wireless Sensors and Actuators Networks Nodes in the Agricultural Domain.

    PubMed

    Piromalis, Dimitrios; Arvanitis, Konstantinos

    2016-01-01

    Wireless Sensor and Actuators Networks (WSANs) constitute one of the most challenging technologies with tremendous socio-economic impact for the next decade. Functionally and energy optimized hardware systems and development tools maybe is the most critical facet of this technology for the achievement of such prospects. Especially, in the area of agriculture, where the hostile operating environment comes to add to the general technological and technical issues, reliable and robust WSAN systems are mandatory. This paper focuses on the hardware design architectures of the WSANs for real-world agricultural applications. It presents the available alternatives in hardware design and identifies their difficulties and problems for real-life implementations. The paper introduces SensoTube, a new WSAN hardware architecture, which is proposed as a solution to the various existing design constraints of WSANs. The establishment of the proposed architecture is based, firstly on an abstraction approach in the functional requirements context, and secondly, on the standardization of the subsystems connectivity, in order to allow for an open, expandable, flexible, reconfigurable, energy optimized, reliable and robust hardware system. The SensoTube implementation reference model together with its encapsulation design and installation are analyzed and presented in details. Furthermore, as a proof of concept, certain use cases have been studied in order to demonstrate the benefits of migrating existing designs based on the available open-source hardware platforms to SensoTube architecture. PMID:27527180

  5. An Empirical Assessment of Metaphor Use in the Design Studio: Analysis, Reflection and Restructuring of Architectural Design

    ERIC Educational Resources Information Center

    Casakin, Hernan

    2012-01-01

    This investigation was concerned with the use of metaphors in architectural design education. Reasoning by means of metaphors helps to understand a design situation in terms of a remote concept normally not associated with it. By juxtaposing the known with the unknown in an unusual way, metaphors can enhance design problem solving. The goal of…

  6. Residential Solar Design Review: A Manual on Community Architectural Controls and Solar Energy Use.

    ERIC Educational Resources Information Center

    Jaffe, Martin; Erley, Duncan

    Presented are architectural design issues associated with solar energy use, and procedures for design review committees to consider in examining residential solar installation in light of existing aesthetic goals for their communities. Recommended design review criteria include the type of solar system being used and the ways in which the system…

  7. Methods that May Stimulate Creativity and Their Use in Architectural Design Education

    ERIC Educational Resources Information Center

    Kowaltowski, Doris C. C. K.; Bianchi, Giovana; Teixeira de Paiva, Valeria

    2010-01-01

    The architectural design process is based on a creative phase where creativity is highly valued. Although the literature on creativity is rich in ways to stimulate the decision-making process, these tools are rarely formally present in the building design process. To further the discussion on creativity and design education this paper presents a…

  8. The Status of Graphical Presentation in Interior/Architectural Design Education

    ERIC Educational Resources Information Center

    Gurel, Meltem O.; Basa, Inci

    2004-01-01

    This article argues that interior/architectural design education favours a dominance of final presentation over the design process in the studio environment, particularly in the evaluation of a project. It suggests that the appeal of design juries for pleasant drawings, which may shift the emphasis from the project itself to its representation,…

  9. Designing a Utopia: An Architectural Studio Experience on David Harvey's "Edilia"

    ERIC Educational Resources Information Center

    Yesilkaya, Nese Gurallar

    2008-01-01

    The design of a utopia was devised as a studio project in order to bring critical thinking into the design studio and to stimulate creativity. By suggesting a utopia, the pedagogical aim was to improve progressive thinking and critical thought in the design education of architectural students -- and also future architects. From this perspective,…

  10. A Project-Based Learning Approach to Programmable Logic Design and Computer Architecture

    ERIC Educational Resources Information Center

    Kellett, C. M.

    2012-01-01

    This paper describes a course in programmable logic design and computer architecture as it is taught at the University of Newcastle, Australia. The course is designed around a major design project and has two supplemental assessment tasks that are also described. The context of the Computer Engineering degree program within which the course is…

  11. Wind Evaluation Breadboard: mechanical design and analysis, control architecture, dynamic model, and performance simulation

    NASA Astrophysics Data System (ADS)

    Reyes García-Talavera, Marcos; Viera, Teodora; Núñez, Miguel; Zuluaga, Pablo; Ronquillo, Bernardo; Ronquillo, Mariano; Brunetto, Enzo; Quattri, Marco; Castro, Javier; Hernández, Elvio

    2008-07-01

    The Wind Evaluation Breadboard (WEB) for the European Extremely Large Telescope (ELT) is a primary mirror and telescope simulator formed by seven segments simulators, including position sensors, electromechanical support systems and support structures. The purpose of the WEB is to evaluate the performance of the control of wind buffeting disturbance on ELT segmented mirrors using an electro-mechanical set-up which simulates the real operational constrains applied to large segmented mirrors. The instrument has been designed and developed by IAC, ALTRAN, JUPASA and ESO, with FOGALE responsible of the Edge Sensors, and TNO of the Position Actuators. This paper describes the mechanical design and analysis, the control architecture, the dynamic model generated based on the Finite Element Model and the close loop performance achieved in simulations. A comparison in control performance between segments modal control and actuators local control is also presented.

  12. Effects of designed PLLA and 50:50PLGA scaffold architectures on bone formation in vivo

    PubMed Central

    Saito, Eiji; Liao, Elly E.; Hu, Wei-Wen; Krebsbach, Paul H.; Hollister, Scott J.

    2015-01-01

    Biodegradable porous scaffolds have been investigated as an alternative approach to current metal, ceramic, and polymer bone graft substitutes for lost or damaged bone tissues. Although there have been many studies investigating the effects of scaffold architecture on bone formation, many of these scaffolds were fabricated using conventional methods, such as salt leaching and phase separation, and were constructed without designed architecture. To study the effects of both designed architecture and material on bone formation, we designed and fabricated three types of porous scaffold architecture from two biodegradable materials, poly (L-lactic acid) (PLLA) and 50:50Poly (lactic-co-glycolic acid) (PLGA) using image based design and indirect solid freeform fabrication techniques, seeded them with bone morphogenic protein-7 transduced human gingival fibroblasts and implanted them subcutaneously into mice for 4 and 8 weeks. Micro-computed tomography data confirmed that the fabricated porous scaffolds replicated the designed architectures. Histological analysis revealed that the 50:50PLGA scaffolds degraded and did not maintain their architecture after 4 weeks. The PLLA scaffolds maintained their architecture at both time points and showed improved bone ingrowth which followed the internal architecture of the scaffolds. Mechanical properties of both PLLA and 50:50PLGA scaffolds decreased, but PLLA scaffolds maintained greater mechanical properties than 50:50PLGA after implantation. The increase of mineralized tissue helped to support mechanical properties of bone tissue and scaffold constructs from 4 to 8 weeks. The results indicated the importance of choice of scaffold materials and computationally designed scaffolds to control tissue formation and mechanical properties for desired bone tissue regeneration. PMID:22162220

  13. Design of a real-time wind turbine simulator using a custom parallel architecture

    NASA Technical Reports Server (NTRS)

    Hoffman, John A.; Gluck, R.; Sridhar, S.

    1995-01-01

    The design of a new parallel-processing digital simulator is described. The new simulator has been developed specifically for analysis of wind energy systems in real time. The new processor has been named: the Wind Energy System Time-domain simulator, version 3 (WEST-3). Like previous WEST versions, WEST-3 performs many computations in parallel. The modules in WEST-3 are pure digital processors, however. These digital processors can be programmed individually and operated in concert to achieve real-time simulation of wind turbine systems. Because of this programmability, WEST-3 is very much more flexible and general than its two predecessors. The design features of WEST-3 are described to show how the system produces high-speed solutions of nonlinear time-domain equations. WEST-3 has two very fast Computational Units (CU's) that use minicomputer technology plus special architectural features that make them many times faster than a microcomputer. These CU's are needed to perform the complex computations associated with the wind turbine rotor system in real time. The parallel architecture of the CU causes several tasks to be done in each cycle, including an IO operation and the combination of a multiply, add, and store. The WEST-3 simulator can be expanded at any time for additional computational power. This is possible because the CU's interfaced to each other and to other portions of the simulation using special serial buses. These buses can be 'patched' together in essentially any configuration (in a manner very similar to the programming methods used in analog computation) to balance the input/ output requirements. CU's can be added in any number to share a given computational load. This flexible bus feature is very different from many other parallel processors which usually have a throughput limit because of rigid bus architecture.

  14. On-board B-ISDN fast packet switching architectures. Phase 2: Development. Proof-of-concept architecture definition report

    NASA Technical Reports Server (NTRS)

    Shyy, Dong-Jye; Redman, Wayne

    1993-01-01

    For the next-generation packet switched communications satellite system with onboard processing and spot-beam operation, a reliable onboard fast packet switch is essential to route packets from different uplink beams to different downlink beams. The rapid emergence of point-to-point services such as video distribution, and the large demand for video conference, distributed data processing, and network management makes the multicast function essential to a fast packet switch (FPS). The satellite's inherent broadcast features gives the satellite network an advantage over the terrestrial network in providing multicast services. This report evaluates alternate multicast FPS architectures for onboard baseband switching applications and selects a candidate for subsequent breadboard development. Architecture evaluation and selection will be based on the study performed in phase 1, 'Onboard B-ISDN Fast Packet Switching Architectures', and other switch architectures which have become commercially available as large scale integration (LSI) devices.

  15. The role of falsification in the development of cognitive architectures: insights from a lakatosian analysis.

    PubMed

    Cooper, Richard P

    2007-05-01

    It has been suggested that the enterprise of developing mechanistic theories of the human cognitive architecture is flawed because the theories produced are not directly falsifiable. Newell attempted to sidestep this criticism by arguing for a Lakatosian model of scientific progress in which cognitive architectures should be understood as theories that develop over time. However, Newell's own candidate cognitive architecture adhered only loosely to Lakatosian principles. This paper reconsiders the role of falsification and the potential utility of Lakatosian principles in the development of cognitive architectures. It is argued that a lack of direct falsifiability need not undermine the scientific development of a cognitive architecture if broadly Lakatosian principles are adopted. Moreover, it is demonstrated that the Lakatosian concepts of positive and negative heuristics for theory development and of general heuristic power offer methods for guiding the development of an architecture and for evaluating the contribution and potential of an architecture's research program. PMID:21635306

  16. 36 CFR 1193.23 - Product design, development, and evaluation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Product design, development, and evaluation. 1193.23 Section 1193.23 Parks, Forests, and Public Property ARCHITECTURAL AND... § 1193.23 Product design, development, and evaluation. (a) Manufacturers shall evaluate the...

  17. 36 CFR 1193.23 - Product design, development, and evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Product design, development, and evaluation. 1193.23 Section 1193.23 Parks, Forests, and Public Property ARCHITECTURAL AND... § 1193.23 Product design, development, and evaluation. (a) Manufacturers shall evaluate the...

  18. 36 CFR 1193.23 - Product design, development, and evaluation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Product design, development, and evaluation. 1193.23 Section 1193.23 Parks, Forests, and Public Property ARCHITECTURAL AND... § 1193.23 Product design, development, and evaluation. (a) Manufacturers shall evaluate the...

  19. Developing Integrated Taxonomies for a Tiered Information Architecture

    NASA Technical Reports Server (NTRS)

    Dutra, Jayne E.

    2006-01-01

    This viewgraph presentation reviews the concept of developing taxonomies for an information architecture. In order to assist people in accessing information required to access information and retrieval, including cross repository searching, a system of nested taxonomies is being developed. Another facet of this developmental project is collecting and documenting attributes about people, to allow for several uses: access management, i.e., who are you and what can you see?; targeted content delivery i.e., what content helps you get your work done?; w ork force planning i.e., what skill sets do you have that we can appl y to work?; and IT Services i.e., How can we provision you with the proper IT services?

  20. Theory, design, and simulation of GASP: A block data flow architecture for gallium arsenide supercomputers

    SciTech Connect

    Fouts, D.J.

    1990-01-01

    The advantages and disadvantages of using high-speed gallium arsenide (GaAs) logic for implementing digital systems are reviewed. A set of design guidelines is presented for systems that will be constructed with high-speed technologies such as GaAs and silicon emitter coupled logic (ECL). A new class of computer and digital system architectures, known as functionally modular architectures, is defined and explained. Functionally modular architectures are ideal for implementation in GaAs because they adhere to the design guidelines. GASP, a new, functionally modular, block data flow computer architecture is then described. SPICE simulations indicate that if constructed with existing GaAs IC technology, parts of GASP could run at a clock speed of 1 GHz, with the rest of the architecture using a 500 MHz clock. The new architecture uses data flow techniques at a program block level, which allows efficient execution of parallel programs while maintaining reasonably good performance on sequential programs. A simulation study of the architecture's best case and worst case performance is presented. Simulations of GASP executing a highly parallel program indicate that an instruction execution rate of over 30,000 MIPS can be attained with a 65 processor system.

  1. Image restoration in multisensor missile seeker environments for design of intelligent integrated processing architectures

    NASA Astrophysics Data System (ADS)

    Sundareshan, Malur K.; Pang, Ho-Yuen; Amphay, Sengvieng A.; Sundstrom, Bryce M.

    1997-10-01

    Two major factors that could limit successful implementations of image restoration and superresolution algorithms in missile seeker applications are, (i) lack of accurate knowledge of sensor point spread function (PSF) parameters, and (ii) noise-induced artifacts in the restoration process. The robustness properties of a recently developed blind iterative Maximum Likelihood (ML) restoration algorithm to inaccuracies in sensor PSF are established in this paper. Two modifications to this algorithm that successfully equip it to suppress artifacts resulting from the presence of high frequency noise components are outlined. Performance evaluation studies with 1D and 2D signals are included to demonstrate that these algorithms have superresolution capabilities while possessing also attractive robustness and artifact suppression properties. The algorithms developed here hence contribute to efficient designs of intelligent integrated processing architectures for smart weapon applications.

  2. Design, architecture and application of nanorobotics in oncology.

    PubMed

    Saxena, S; Pramod, B J; Dayananda, B C; Nagaraju, K

    2015-01-01

    Oncologists all over the globe, relentlessly research on methodologies for detection of cancer and precise localization of cancer therapeutics with minimal adverse effects on healthy tissues. Since the previous decade, the fast growing research in nanotechnology has shown promising possibilities for achieving this dream of every oncologist.Nanorobots (or nanobots) are typical devices ranging in size from 0.1 to 10 μm and constructed of nanoscale or molecular components. Robots will augment the surgeon's motor performance, diagnostic capability and sensations with haptics and augmented reality. The article here aims in briefly describing the architecture of the nanorobots and their role in oncotherapy. Although, research into nanorobots is still in its preliminary stages, the promise of such technology is endless. PMID:26853420

  3. Designing a meta-level architecture in Java for adaptive parallelism by mobile software agents

    NASA Astrophysics Data System (ADS)

    Dominic, Stephen Victor

    Adaptive parallelism refers to a parallel computation that runs on a pool of processors that may join or withdraw from a running computation. In this dissertation, a functional system of agents and agent behaviors for adaptive parallelism is developed. Software agents have the properties of robustness and have capacity for fault-tolerance. Adaptation and fault-tolerance emerge from the interaction of self-directed autonomous software agents for a parallel computation application. The multi-agent system can be considered an object-oriented system with a higher-level architectural component, i.e., a meta level for agent behavior. The meta-level object architecture is based on patterns of behavior and communication for mobile agents, which are developed to support cooperative problem solving in a distributed-heterogeneous computing environment. Although parallel processing is a suggested application domain for mobile agents implemented in the Java language, the development of robust agent behaviors implemented in an efficient manner is an active research area. Performance characteristics for three versions of a pattern recognition problem are used to demonstrate a linear speed-up with efficiency that is compared to research using a traditional client-server protocol in the C language. The best ideas from existing approaches to adaptive parallelism are used to create a single general-purpose paradigm that overcomes problems associated with nodefailure, the use of a single-centralized or shared resource, requirements for clients to actively join a computation, and a variety of other limitations that are associated with existing systems. The multi-agent system, and experiments, show how adaptation and parallelism can be exploited by a meta-architecture for a distributed-scientific application that is of particular interest to design of signal-processing ground stations. To a large extent the framework separates concern for algorithmic design from concern for where and

  4. Applied Nuclear Accountability Systems: A Case Study in the System Architecture and Development of NuMAC

    SciTech Connect

    Campbell, Andrea Beth

    2004-07-01

    This is a case study of the NuMAC nuclear accountability system developed at a private fuel fabrication facility. This paper investigates nuclear material accountability and safeguards by researching expert knowledge applied in the system design and development. Presented is a system developed to detect and deter the theft of weapons grade nuclear material. Examined is the system architecture that includes: issues for the design and development of the system; stakeholder issues; how the system was built and evolved; software design, database design, and development tool considerations; security and computing ethics. (author)

  5. Moral architecture: the influence of the York Retreat on asylum design.

    PubMed

    Edginton, B

    1997-06-01

    Institutional and architectural history places the asylum alongside the prison and other institutional types whose architectural characteristics emphasized confinement and control. This history obfuscates important differences in how ideas about treatment were represented in the particular design of these institutions; in other words, how the structure of a place became part of its discourse. What becomes obvious in nineteenth-century, asylum architecture is the influence of a small Yorkshire private asylum built by a Quaker, William Tuke, in 1796. The York Retreat, in form, solidified the ideas of 'moral treatment' in design and in turn assumed an exalted character in the design of late nineteenth-century asylums. Every researcher working in the field of the history of insanity acknowledges the importance of this event and its impact on the discourse of insanity for the century to follow. Few however talk about how its unique design was incorporated as part of this discourse. PMID:10671006

  6. Exploring Gigabyte Datasets in Real Time: Architectures, Interfaces and Time-Critical Design

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Gerald-Yamasaki, Michael (Technical Monitor)

    1998-01-01

    Architectures and Interfaces: The implications of real-time interaction on software architecture design: decoupling of interaction/graphics and computation into asynchronous processes. The performance requirements of graphics and computation for interaction. Time management in such an architecture. Examples of how visualization algorithms must be modified for high performance. Brief survey of interaction techniques and design, including direct manipulation and manipulation via widgets. talk discusses how human factors considerations drove the design and implementation of the virtual wind tunnel. Time-Critical Design: A survey of time-critical techniques for both computation and rendering. Emphasis on the assignment of a time budget to both the overall visualization environment and to each individual visualization technique in the environment. The estimation of the benefit and cost of an individual technique. Examples of the modification of visualization algorithms to allow time-critical control.

  7. Hidden Realities inside PBL Design Processes: Is Consensus Design an Impossible Clash of Interest between the Individual and the Collective, and Is Architecture Its First Victim?

    ERIC Educational Resources Information Center

    Pihl, Ole

    2015-01-01

    How do architecture students experience the contradictions between the individual and the group at the Department of Architecture and Design of Aalborg University? The Problem-Based Learning model has been extensively applied to the department's degree programs in coherence with the Integrated Design Process, but is a group-based architecture and…

  8. Interactive Universal Design Kiosks: Explanations About Social Inclusion Features in Architectural Design.

    PubMed

    Guimarães, Marcelo Pinto; Picceli, Angélica Fátima Baldin; Sabino, Paulo Roberto

    2016-01-01

    This paper details a set of self-supporting and illuminated panels that work together but independently in order to emphasize the explanation of building features and activities that are based on Universal Design guidelines. The exhibition is based on two structures that are arranged in semi-circles (A and B). They are integrated to form a carpeted path where the visitor will be gradually exposed to the concepts related to the principles of Universal Design. Following the sequence of three-dimensional objects and swivelling box elements that support the tactile information on the subject, it is expected that visitors become familiar with each of the principles being demonstrated. Operated by a control system consisting of keys with colour signage, textures and high relief, the panel on the control table allows the user to choose information about paired relationships between some of seven principles contained in printed images about the architectural design on the set of panels. The effectiveness of the composition can be verified by the time people remain enough to hear, see and touch the kiosks for all the information, or by successive visits users make to the setting. PMID:27534281

  9. The Visible Nulling Coronagraph--Architecture Definition and Technology Development

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Levine, B. Martin; Wallace, J. Kent; Liu, Duncan T.; Schmidtlin, Edouard; Serabyn, Eugene; Mennesson, Bertrand; Green, Joseph J.; Aguayo, Francisco; Fregoso, S. Felipe; Lane, Benjamin F.; Samuele, Rocco; Tuttle, Carl

    2005-01-01

    This paper describes the advantages of visible direct detection and spectroscopy of Earth-like extrasolar planets using a nulling coronagraph instrument behind a moderately sized single aperture space telescope. Our concept synthesizes a nulling interferometer by shearing the telescope pupil, with the resultant producing a deep null. We describe nulling configurations that also include methods to mitigate stellar leakage, such as spatial filtering by a coherent array of single mode fibers, and post-starlight suppression wavefront sensing and control. With diffraction limited telescope optics and similar quality components in the optical train (lambda/20), suppression of the starlight to 1e-10 is readily achievable. We describe key features of the architecture and analysis, present latest results of laboratory measurements demonstrating achievable null depth and component development, and discuss future key technical milestones.

  10. Multi-Mission System Architecture Platform: Design and Verification of the Remote Engineering Unit

    NASA Technical Reports Server (NTRS)

    Sartori, John

    2005-01-01

    The Multi-Mission System Architecture Platform (MSAP) represents an effort to bolster efficiency in the spacecraft design process. By incorporating essential spacecraft functionality into a modular, expandable system, the MSAP provides a foundation on which future spacecraft missions can be developed. Once completed, the MSAP will provide support for missions with varying objectives, while maintaining a level of standardization that will minimize redesign of general system components. One subsystem of the MSAP, the Remote Engineering Unit (REU), functions by gathering engineering telemetry from strategic points on the spacecraft and providing these measurements to the spacecraft's Command and Data Handling (C&DH) subsystem. Before the MSAP Project reaches completion, all hardware, including the REU, must be verified. However, the speed and complexity of the REU circuitry rules out the possibility of physical prototyping. Instead, the MSAP hardware is designed and verified using the Verilog Hardware Definition Language (HDL). An increasingly popular means of digital design, HDL programming provides a level of abstraction, which allows the designer to focus on functionality while logic synthesis tools take care of gate-level design and optimization. As verification of the REU proceeds, errors are quickly remedied, preventing costly changes during hardware validation. After undergoing the careful, iterative processes of verification and validation, the REU and MSAP will prove their readiness for use in a multitude of spacecraft missions.

  11. One Approach to Senior Level Design in Naval Architecture and Marine Engineering. Report 09-92.

    ERIC Educational Resources Information Center

    Colella, Kurt J.

    The United States Coast Guard Academy has integrated a successful senior-level ship design course sequence into an undergraduate engineering curriculum in order to achieve specifically desired academic and professional outcomes. The Naval Architecture and Marine Engineering (NAME) curriculum discussed is designed to allow for efficient use of…

  12. 36 CFR 1281.4 - What are the architectural and design standards for Presidential libraries?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and design standards for Presidential libraries? 1281.4 Section 1281.4 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION NARA FACILITIES PRESIDENTIAL LIBRARY FACILITIES § 1281.4 What are the architectural and design standards for Presidential libraries? The Archivist...

  13. 36 CFR 1281.4 - What are the architectural and design standards for Presidential libraries?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and design standards for Presidential libraries? 1281.4 Section 1281.4 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION NARA FACILITIES PRESIDENTIAL LIBRARY FACILITIES § 1281.4 What are the architectural and design standards for Presidential libraries? The Archivist...

  14. 36 CFR 1281.4 - What are the architectural and design standards for Presidential libraries?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and design standards for Presidential libraries? 1281.4 Section 1281.4 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION NARA FACILITIES PRESIDENTIAL LIBRARY FACILITIES § 1281.4 What are the architectural and design standards for Presidential libraries? The Archivist...

  15. 36 CFR 1281.4 - What are the architectural and design standards for Presidential libraries?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... design standards for Presidential libraries? 1281.4 Section 1281.4 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION NARA FACILITIES PRESIDENTIAL LIBRARY FACILITIES § 1281.4 What are the architectural and design standards for Presidential libraries? The Archivist is required by...

  16. 36 CFR 1281.4 - What are the architectural and design standards for Presidential libraries?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and design standards for Presidential libraries? 1281.4 Section 1281.4 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION NARA FACILITIES PRESIDENTIAL LIBRARY FACILITIES § 1281.4 What are the architectural and design standards for Presidential libraries? The Archivist...

  17. Cultural Symbolism behind the Architectural Design of Mounds Park All-Nations Magnet School.

    ERIC Educational Resources Information Center

    Pewewardy, Cornell; May, Paul G.

    1992-01-01

    The architectural design of Mounds Park All-Nations Magnet School (St. Paul, Minnesota) incorporates cultural symbols representing the Native American worldview and Medicine Wheel Circle beliefs, as well as design elements from aboriginal housing styles, and colors and sculptured elements that reinforce the relationship of nature to building. (SV)

  18. Developing the architecture for the Climate Information Portal for Copernicus

    NASA Astrophysics Data System (ADS)

    Som de Cerff, Wim; Thijsse, Peter; Plieger, Maarten; Pascoe, Stephen; Jukes, Martin; Leadbetter, Adam; Goosen, Hasse; de Vreede, Ernst

    2015-04-01

    environment and society, but will develop an end to end processing chain (indicator toolkit), from comprehensive information on the climate state through to highly aggregated decision relevant products. This processing chain will be demonstrated within three thematic areas: water, rural and urban. Indicators of climate change and climate change impact will be provided, and a toolkit to update and post process the collection of indicators will be integrated into the portal. For the indicators three levels (Tiers) have been loosely defined: Tier 1: field summarising properties of the climate system; e.g. temperature change; Tier 2: expressed in terms of environmental properties outside the climate system; e.g. flooding change; Tier 3: expressed in social and economic impact. For the architecture, CLIPC has two interlocked themes: 1. Harmonised access to climate datasets derived from models, observations and re-analyses 2. A climate impact toolkit to evaluate, rank and aggregate indicators For development of the CLIPC architecture an Agile 'storyline' approach is taken. The storyline is a real world use case and consists of producing a Tier 3 indicator (Urban Heat Vulnerability) and making it available through the CLIPC infrastructure for a user group. In this way architecture concepts can be directly tested and improved. Also, the produced indicator can be shown to users to refine requirements. Main components of the CLIPC architecture are 1) Data discovery and access, 2) Data processing, 3) Data visualization, 4) Knowledge base and 5) User Management. The Data discovery and access component main challenge is to provide harmonized access to various sources of climate data (ngEO, EMODNET/SeaDataNet, ESGF, MyOcean). The discovery service concept will be provided using a CLIPC data and data product catalogue and via a structured data search on selected infrastructures, using NERC vocabulary services and mappings. Data processing will be provided using OGC WPS services, linking

  19. Programmable Optoelectronic Multiprocessors: Design, Performance and CAD Development

    NASA Astrophysics Data System (ADS)

    Kiamilev, Fouad Eskender

    1992-01-01

    This thesis describes the development of Programmable Optoelectronic Multiprocessor (POEM) architectures and systems. POEM systems combine simple electronic processing elements with free-space optical interconnects to implement high-performance, massively-parallel computers. POEM architectures are fundamentally different from architectures used in conventional VLSI systems. Novel system partitioning and processing element design methods have been developed to ensure efficient implementation of POEM architectures with optoelectronic technology. The main contributions of this thesis are: architecture and software design for the POEM prototype built at UCSD; detailed technology design-tradeoff and comparison studies for POEM interconnection networks; and application of the VHSIC Hardware Description Language (VHDL) to the design, simulation, and synthesis of POEM computers. A general-purpose POEM SIMD parallel computer architecture has been designed for symbolic computing applications. A VHDL simulation of this architecture was written to test the POEM hardware running parallel programs prior to prototype fabrication. Detailed performance comparison of this architecture with all-optical computing, based on symbolic substitution, has also been carried out to show that POEMs offer higher computational efficiency. A detailed technological design of a packet-switched POEM multistage interconnection network system has been performed. This design uses optically interconnected stages of K x K electronic switching elements, where K is a variable parameter, called grain-size, that determines the ratio of optics to electronics in the system. A thorough cost and performance comparison between this design and existing VLSI implementations was undertaken to show that the POEM approach offers better scalability and higher performance. The grain-size was optimized, showing that switch sizes of 16 x 16 to 256 x 256 provide maximum performance/cost. The effects of varying

  20. Architecture and Children: Learning Environments and Design Education.

    ERIC Educational Resources Information Center

    Taylor, Anne, Ed.; Muhlberger, Joe, Ed.

    1998-01-01

    This issue addresses (1) growing international interest in learning environments and their effects on behavior, and (2) design education, an integrated model for visual-spatial lifelong learning. It focuses on this new and emerging integrated field which integrates elements in education, new learning environment design, and the use of more two-…

  1. Resilient Monitoring Systems: Architecture, Design, and Application to Boiler/Turbine Plant

    SciTech Connect

    Garcia, Humberto E.; Lin, Wen-Chiao; Meerkov, Semyon M.; Ravichandran, Maruthi T.

    2014-11-01

    Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this work is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliency is quantified using Kullback-Leibler divergence, and is shown to be sufficiently high in all scenarios considered.

  2. Resilient Monitoring Systems: Architecture, Design, and Application to Boiler/Turbine Plant

    DOE PAGESBeta

    Garcia, Humberto E.; Lin, Wen-Chiao; Meerkov, Semyon M.; Ravichandran, Maruthi T.

    2014-11-01

    Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this work is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliencymore » is quantified using Kullback-Leibler divergence, and is shown to be sufficiently high in all scenarios considered.« less

  3. GTAG: architecture and design of miniature transmitter with position logging for radio telemetry

    NASA Astrophysics Data System (ADS)

    Řeřucha, Šimon; Bartonička, Tomáš; Jedlička, Petr

    2011-10-01

    The radio telemetry is a well-known technique used within zoological research to exploit the behaviour of animal species. A usage of GPS for a frequent and precise position recording gives interesting possibility for a further enhancement of this method. We present our proposal of an architecture and design concepts of telemetry transmitter with GPS module, called GTAG, that is suited for study of the Egyptian fruit bat (Rousettus aegyptiacus). The model group we study set particular constrains, especially the weight limit (9 g) and prevention of any power resources recharging technique. We discuss the aspect of physical realization and the energyconsumption issues. We have developed a reference implementation that has been already deployed during telemetry sessions and we evaluate the experience and compare the estimated performance of our device to a real data.

  4. Design and implementation of workflow engine for service-oriented architecture

    NASA Astrophysics Data System (ADS)

    Peng, Shuqing; Duan, Huining; Chen, Deyun

    2009-04-01

    As computer network is developed rapidly and in the situation of the appearance of distribution specialty in enterprise application, traditional workflow engine have some deficiencies, such as complex structure, bad stability, poor portability, little reusability and difficult maintenance. In this paper, in order to improve the stability, scalability and flexibility of workflow management system, a four-layer architecture structure of workflow engine based on SOA is put forward according to the XPDL standard of Workflow Management Coalition, the route control mechanism in control model is accomplished and the scheduling strategy of cyclic routing and acyclic routing is designed, and the workflow engine which adopts the technology such as XML, JSP, EJB and so on is implemented.

  5. Resilient monitoring systems: architecture, design, and application to boiler/turbine plant.

    PubMed

    Garcia, Humberto E; Lin, Wen-Chiao; Meerkov, Semyon M; Ravichandran, Maruthi T

    2014-11-01

    Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this paper is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliency is quantified based on the Kullback-Leibler divergence and shown to be sufficiently high in all scenarios considered. PMID:24816628

  6. NDARC-NASA Design and Analysis of Rotorcraft Theoretical Basis and Architecture

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2010-01-01

    The theoretical basis and architecture of the conceptual design tool NDARC (NASA Design and Analysis of Rotorcraft) are described. The principal tasks of NDARC are to design (or size) a rotorcraft to satisfy specified design conditions and missions, and then analyze the performance of the aircraft for a set of off-design missions and point operating conditions. The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated. The aircraft attributes are obtained from the sum of the component attributes. NDARC provides a capability to model general rotorcraft configurations, and estimate the performance and attributes of advanced rotor concepts. The software has been implemented with low-fidelity models, typical of the conceptual design environment. Incorporation of higher-fidelity models will be possible, as the architecture of the code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis and optimization.

  7. RELAP5-3D Architectural Developments in 2004

    SciTech Connect

    Dr. George L. Mesina

    2004-08-01

    Currently, RELAP5 is undergoing a transformation that will replace much of its coding with equivalent structured Fortran 90 coding. Four efforts are underway to modernize the code architecture of RELAP5-3D. These are parallelization, vectorization, code restructuring, and conversion to Fortran 90. The first two improve code run speed via on computer platforms of certain architectures. These code modifications have little effect on normal code performance on non-vector and non-parallel computers because they are mostly done with compiler directives. The third and fourth efforts involve considerable rewriting of the source code. The third code improvement effort addresses code readability and maintainability. These are being greatly enhanced by application of a Fortran code-restructuring tool. The fourth effort is conversion to Fortran 90. The bulk of the coding is being rewritten in Fortran 90. This is a ground up reworking of the coding that begins with completely reorganizing the underlying database and continues with the source code. It will reach every part of RELAP5-3D. Each of these efforts is discussed in detail in a different section. Section 1 relates background information. Section 2 covers the parallelization effort. Section 3 covers the efforts to vectorize the code. Section 4 covers the code restructuring. Section 5 covers the Fortran 90 effort. Outline Background: longevity, maintenance & development, reliability, speed Parallelization: KAI to OpenMP, previous work & current, domain decomposition, done. Vectorization: Speed - Fed init, vectors in PCs, INL Cray SV1, R5 Phant, EXV, results. Code Restructuring: Reason to restructure, study of restruct, For Study: what it does, Fortran 90: Modernization -

  8. Architectural Design for the Global Legal Information Network

    NASA Technical Reports Server (NTRS)

    Kalpakis, Konstantinos

    1999-01-01

    In this report, we provide a summary of our activities regarding the goals, requirements analysis, design, and prototype implementation for the Global Legal Information Network, a joint effort between the Law Library of Congress and NASA.

  9. Application developer's tutorial for the CSM testbed architecture

    NASA Technical Reports Server (NTRS)

    Underwood, Phillip; Felippa, Carlos A.

    1988-01-01

    This tutorial serves as an illustration of the use of the programmer interface on the CSM Testbed Architecture (NICE). It presents a complete, but simple, introduction to using both the GAL-DBM (Global Access Library-Database Manager) and CLIP (Command Language Interface Program) to write a NICE processor. Familiarity with the CSM Testbed architecture is required.

  10. DAsHER CD: Developing a Data-Oriented Human-Centric Enterprise Architecture for EarthCube

    NASA Astrophysics Data System (ADS)

    Yang, C. P.; Yu, M.; Sun, M.; Qin, H.; Robinson, E.

    2015-12-01

    One of the biggest challenges that face Earth scientists is the resource discovery, access, and sharing in a desired fashion. EarthCube is targeted to enable geoscientists to address the challenges by fostering community-governed efforts that develop a common cyberinfrastructure for the purpose of collecting, accessing, analyzing, sharing and visualizing all forms of data and related resources, through the use of advanced technological and computational capabilities. Here we design an Enterprise Architecture (EA) for EarthCube to facilitate the knowledge management, communication and human collaboration in pursuit of the unprecedented data sharing across the geosciences. The design results will provide EarthCube a reference framework for developing geoscience cyberinfrastructure collaborated by different stakeholders, and identifying topics which should invoke high interest in the community. The development of this EarthCube EA framework leverages popular frameworks, such as Zachman, Gartner, DoDAF, and FEAF. The science driver of this design is the needs from EarthCube community, including the analyzed user requirements from EarthCube End User Workshop reports and EarthCube working group roadmaps, and feedbacks or comments from scientists obtained by organizing workshops. The final product of this Enterprise Architecture is a four-volume reference document: 1) Volume one is this document and comprises an executive summary of the EarthCube architecture, serving as an overview in the initial phases of architecture development; 2) Volume two is the major body of the design product. It outlines all the architectural design components or viewpoints; 3) Volume three provides taxonomy of the EarthCube enterprise augmented with semantics relations; 4) Volume four describes an example of utilizing this architecture for a geoscience project.

  11. Architectural design of diamond-like carbon coatings for long-lasting joint replacements.

    PubMed

    Liu, Yujing; Zhao, Xiaoli; Zhang, Lai-Chang; Habibi, Daryoush; Xie, Zonghan

    2013-07-01

    Surface engineering through the application of super-hard, low-friction coatings as a potential approach for increasing the durability of metal-on-metal replacements is attracting significant attention. In this study innovative design strategies are proposed for the development of diamond-like-carbon (DLC) coatings against the damage caused by wear particles on the joint replacements. Finite element modeling is used to analyze stress distributions induced by wear particles of different sizes in the newly-designed coating in comparison to its conventional monolithic counterpart. The critical roles of architectural design in regulating stress concentrations and suppressing crack initiation within the coatings is elucidated. Notably, the introduction of multilayer structure with graded modulus is effective in modifying the stress field and reducing the magnitude and size of stress concentrations in the DLC diamond-like-carbon coatings. The new design is expected to greatly improve the load-carrying ability of surface coatings on prosthetic implants, in addition to the provision of damage tolerance through crack arrest. PMID:23623097

  12. Architectural Tops

    ERIC Educational Resources Information Center

    Mahoney, Ellen

    2010-01-01

    The development of the skyscraper is an American story that combines architectural history, economic power, and technological achievement. Each city in the United States can be identified by the profile of its buildings. The design of the tops of skyscrapers was the inspiration for the students in the author's high-school ceramic class to develop…

  13. MicroRNAs as regulators of root development and architecture.

    PubMed

    Khan, Ghazanfar A; Declerck, Marie; Sorin, Céline; Hartmann, Caroline; Crespi, Martin; Lelandais-Brière, Christine

    2011-09-01

    MicroRNAs (miRNAs) are post-transcriptional regulators of growth and development in both plants and animals. In plants, roots play essential roles in their anchorage to the soil as well as in nutrient and water uptake. In this review, we present recent advances made in the identification of miRNAs involved in embryonic root development, radial patterning, vascular tissue differentiation and formation of lateral organs (i.e., lateral and adventitious roots and symbiotic nitrogen-fixing nodules in legumes). Certain mi/siRNAs target members of the Auxin Response Factors family involved in auxin homeostasis and signalling and participate in complex regulatory loops at several crucial stages of root development. Other miRNAs target and restrict the action of various transcription factors that control root-related processes in several species. Finally, because abiotic stresses, which include nutrient or water deficiencies, generally modulate root growth and branching, we summarise the action of certain miRNAs in response to these stresses that may be involved in the adaptation of the root system architecture to the soil environment. PMID:21607657

  14. PLANNING, PROGRAMMING, DESIGNING THE COMMUNITY COLLEGE, PROCEEDINGS OF A CONFERENCE SPONSORED BY THE COLLEGE OF ARCHITECTURE AND URBAN PLANNING AND THE CENTER FOR THE DEVELOPMENT OF COMMUNITY COLLEGE EDUCATION (UNIVERSITY OF WASHINGTON, APRIL 24-25, 1967).

    ERIC Educational Resources Information Center

    SONDALLE, MARVIN P.

    PARTICIPANTS AT THIS CONFERENCE DEFINED THE ESSENTIAL MAJOR STEPS IN FACILITY PLANNING FOR A NEW CAMPUS AS SITE SELECTION, FINANCIAL PROGRAMMING, CAMPUS PLANNING, AND CONSTRUCTION. THEY ALSO AGREED THAT THE COLLEGE ADMINISTRATION AND THE ARCHITECTURAL STAFF MUST WORK TOGETHER AT EVERY STAGE OF THE PROGRAM. PRESENT TECHNIQUES OF ENROLLMENT…

  15. Developing the architecture for the Climate Information Portal for Copernicus

    NASA Astrophysics Data System (ADS)

    Som de Cerff, Wim; Thijsse, Peter; Plieger, Maarten; Pascoe, Stephen; Jukes, Martin; Leadbetter, Adam; Goosen, Hasse; de Vreede, Ernst

    2015-04-01

    environment and society, but will develop an end to end processing chain (indicator toolkit), from comprehensive information on the climate state through to highly aggregated decision relevant products. This processing chain will be demonstrated within three thematic areas: water, rural and urban. Indicators of climate change and climate change impact will be provided, and a toolkit to update and post process the collection of indicators will be integrated into the portal. For the indicators three levels (Tiers) have been loosely defined: Tier 1: field summarising properties of the climate system; e.g. temperature change; Tier 2: expressed in terms of environmental properties outside the climate system; e.g. flooding change; Tier 3: expressed in social and economic impact. For the architecture, CLIPC has two interlocked themes: 1. Harmonised access to climate datasets derived from models, observations and re-analyses 2. A climate impact toolkit to evaluate, rank and aggregate indicators For development of the CLIPC architecture an Agile 'storyline' approach is taken. The storyline is a real world use case and consists of producing a Tier 3 indicator (Urban Heat Vulnerability) and making it available through the CLIPC infrastructure for a user group. In this way architecture concepts can be directly tested and improved. Also, the produced indicator can be shown to users to refine requirements. Main components of the CLIPC architecture are 1) Data discovery and access, 2) Data processing, 3) Data visualization, 4) Knowledge base and 5) User Management. The Data discovery and access component main challenge is to provide harmonized access to various sources of climate data (ngEO, EMODNET/SeaDataNet, ESGF, MyOcean). The discovery service concept will be provided using a CLIPC data and data product catalogue and via a structured data search on selected infrastructures, using NERC vocabulary services and mappings. Data processing will be provided using OGC WPS services, linking

  16. Advanced Design and Implementation of a Control Architecture for Long Range Autonomous Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Martin-Alvarez, A.; Hayati, S.; Volpe, R.; Petras, R.

    1999-01-01

    An advanced design and implementation of a Control Architecture for Long Range Autonomous Planetary Rovers is presented using a hierarchical top-down task decomposition, and the common structure of each design is presented based on feedback control theory. Graphical programming is presented as a common intuitive language for the design when a large design team is composed of managers, architecture designers, engineers, programmers, and maintenance personnel. The whole design of the control architecture consists in the classic control concepts of cyclic data processing and event-driven reaction to achieve all the reasoning and behaviors needed. For this purpose, a commercial graphical tool is presented that includes the mentioned control capabilities. Messages queues are used for inter-communication among control functions, allowing Artificial Intelligence (AI) reasoning techniques based on queue manipulation. Experimental results show a highly autonomous control system running in real time on top the JPL micro-rover Rocky 7 controlling simultaneously several robotic devices. This paper validates the sinergy between Artificial Intelligence and classic control concepts in having in advanced Control Architecture for Long Range Autonomous Planetary Rovers.

  17. Architecture and design of a 500-MHz gallium-arsenide processing element for a parallel supercomputer

    NASA Technical Reports Server (NTRS)

    Fouts, Douglas J.; Butner, Steven E.

    1991-01-01

    The design of the processing element of GASP, a GaAs supercomputer with a 500-MHz instruction issue rate and 1-GHz subsystem clocks, is presented. The novel, functionally modular, block data flow architecture of GASP is described. The architecture and design of a GASP processing element is then presented. The processing element (PE) is implemented in a hybrid semiconductor module with 152 custom GaAs ICs of eight different types. The effects of the implementation technology on both the system-level architecture and the PE design are discussed. SPICE simulations indicate that parts of the PE are capable of being clocked at 1 GHz, while the rest of the PE uses a 500-MHz clock. The architecture utilizes data flow techniques at a program block level, which allows efficient execution of parallel programs while maintaining reasonably good performance on sequential programs. A simulation study of the architecture indicates that an instruction execution rate of over 30,000 MIPS can be attained with 65 PEs.

  18. Architecture for Education: New School Designs from the Chicago Competition.

    ERIC Educational Resources Information Center

    Robbins, Mark; Moelis, Cindy S.; Clarke, Pamela H.; Hendrickson, Jamie; Nowaczewski, Jeanne L.; Haar, Sharon

    This volume documents the work that resulted from the Chicago Public Schools Design Competition, explaining research and policies underlying the competition's criteria. The volume has three parts. Book 1, "The Chicago Experience," written by the competition's organizers, describes the competition's process and explains how it allowed community…

  19. Peeling the Onion: Okapi System Architecture and Software Design Issues.

    ERIC Educational Resources Information Center

    Jones, S.; And Others

    1997-01-01

    Discusses software design issues for Okapi, an information retrieval system that incorporates both search engine and user interface and supports weighted searching, relevance feedback, and query expansion. The basic search system, adjacency searching, and moving toward a distributed system are discussed. (Author/LRW)

  20. Hybrid Architectures and Their Impact on Intelligent Design

    NASA Technical Reports Server (NTRS)

    Kandel, Abe

    1996-01-01

    In this presentation we investigate a novel framework for the design of autonomous fuzzy intelligent systems. The system integrates the following modules into a single autonomous entity: (1) a fuzzy expert system; (2) artificial neural network; (3) genetic algorithm; and (4) case-base reasoning. We describe the integration of these units into one intelligent structure and discuss potential applications.

  1. Adaptation of pancreatic islet cyto-architecture during development

    NASA Astrophysics Data System (ADS)

    Striegel, Deborah A.; Hara, Manami; Periwal, Vipul

    2016-04-01

    Plasma glucose in mammals is regulated by hormones secreted by the islets of Langerhans embedded in the exocrine pancreas. Islets consist of endocrine cells, primarily α, β, and δ cells, which secrete glucagon, insulin, and somatostatin, respectively. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Varying demands and available nutrients during development produce changes in the local connectivity of β cells in an islet. We showed in earlier work that graph theory provides a framework for the quantification of the seemingly stochastic cyto-architecture of β cells in an islet. To quantify the dynamics of endocrine connectivity during development requires a framework for characterizing changes in the probability distribution on the space of possible graphs, essentially a Fokker-Planck formalism on graphs. With large-scale imaging data for hundreds of thousands of islets containing millions of cells from human specimens, we show that this dynamics can be determined quantitatively. Requiring that rearrangement and cell addition processes match the observed dynamic developmental changes in quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that there is a transient shift in preferred connectivity for β cells between 1–35 weeks and 12–24 months.

  2. Adaptation of pancreatic islet cyto-architecture during development.

    PubMed

    Striegel, Deborah A; Hara, Manami; Periwal, Vipul

    2016-01-01

    Plasma glucose in mammals is regulated by hormones secreted by the islets of Langerhans embedded in the exocrine pancreas. Islets consist of endocrine cells, primarily α, β, and δ cells, which secrete glucagon, insulin, and somatostatin, respectively. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Varying demands and available nutrients during development produce changes in the local connectivity of β cells in an islet. We showed in earlier work that graph theory provides a framework for the quantification of the seemingly stochastic cyto-architecture of β cells in an islet. To quantify the dynamics of endocrine connectivity during development requires a framework for characterizing changes in the probability distribution on the space of possible graphs, essentially a Fokker-Planck formalism on graphs. With large-scale imaging data for hundreds of thousands of islets containing millions of cells from human specimens, we show that this dynamics can be determined quantitatively. Requiring that rearrangement and cell addition processes match the observed dynamic developmental changes in quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that there is a transient shift in preferred connectivity for β cells between 1-35 weeks and 12-24 months. PMID:27063927

  3. Developing a scalable modeling architecture for studying survivability technologies

    NASA Astrophysics Data System (ADS)

    Mohammad, Syed; Bounker, Paul; Mason, James; Brister, Jason; Shady, Dan; Tucker, David

    2006-05-01

    To facilitate interoperability of models in a scalable environment, and provide a relevant virtual environment in which Survivability technologies can be evaluated, the US Army Research Development and Engineering Command (RDECOM) Modeling Architecture for Technology Research and Experimentation (MATREX) Science and Technology Objective (STO) program has initiated the Survivability Thread which will seek to address some of the many technical and programmatic challenges associated with the effort. In coordination with different Thread customers, such as the Survivability branches of various Army labs, a collaborative group has been formed to define the requirements for the simulation environment that would in turn provide them a value-added tool for assessing models and gauge system-level performance relevant to Future Combat Systems (FCS) and the Survivability requirements of other burgeoning programs. An initial set of customer requirements has been generated in coordination with the RDECOM Survivability IPT lead, through the Survivability Technology Area at RDECOM Tank-automotive Research Development and Engineering Center (TARDEC, Warren, MI). The results of this project are aimed at a culminating experiment and demonstration scheduled for September, 2006, which will include a multitude of components from within RDECOM and provide the framework for future experiments to support Survivability research. This paper details the components with which the MATREX Survivability Thread was created and executed, and provides insight into the capabilities currently demanded by the Survivability faculty within RDECOM.

  4. An Experimental Study in an Architectural Design Studio: The Search for Three-Dimensional Form and Aesthetics through Clay

    ERIC Educational Resources Information Center

    Yamacli, Rusen; Ozen, Aysegul; Tokman, Leyla Yekdane

    2005-01-01

    In architectural design education, the main objective is to help students, especially first-year students, improve their design ideas, creativity, perception of three dimensions and ways of expressing them. Thus, as an embedded concept in architecture, art has been emphasized here as a design method. In other words, the necessary help to enable…

  5. Using an Analogical Thinking Model as an Instructional Tool to Improve Student Cognitive Ability in Architecture Design Learning Process

    ERIC Educational Resources Information Center

    Wu, Yun-Wu; Weng, Kuo-Hua

    2013-01-01

    Lack of creativity is a problem often plaguing students from design-related departments. Therefore, this study is intended to incorporate analogical thinking in the education of architecture design to enhance students' learning and their future career performance. First, this study explores the three aspects of architecture design curricula,…

  6. Judicious use of custom development in an open source component architecture

    NASA Astrophysics Data System (ADS)

    Bristol, S.; Latysh, N.; Long, D.; Tekell, S.; Allen, J.

    2014-12-01

    Modern software engineering is not as much programming from scratch as innovative assembly of existing components. Seamlessly integrating disparate components into scalable, performant architecture requires sound engineering craftsmanship and can often result in increased cost efficiency and accelerated capabilities if software teams focus their creativity on the edges of the problem space. ScienceBase is part of the U.S. Geological Survey scientific cyberinfrastructure, providing data and information management, distribution services, and analysis capabilities in a way that strives to follow this pattern. ScienceBase leverages open source NoSQL and relational databases, search indexing technology, spatial service engines, numerous libraries, and one proprietary but necessary software component in its architecture. The primary engineering focus is cohesive component interaction, including construction of a seamless Application Programming Interface (API) across all elements. The API allows researchers and software developers alike to leverage the infrastructure in unique, creative ways. Scaling the ScienceBase architecture and core API with increasing data volume (more databases) and complexity (integrated science problems) is a primary challenge addressed by judicious use of custom development in the component architecture. Other data management and informatics activities in the earth sciences have independently resolved to a similar design of reusing and building upon established technology and are working through similar issues for managing and developing information (e.g., U.S. Geoscience Information Network; NASA's Earth Observing System Clearing House; GSToRE at the University of New Mexico). Recent discussions facilitated through the Earth Science Information Partners are exploring potential avenues to exploit the implicit relationships between similar projects for explicit gains in our ability to more rapidly advance global scientific cyberinfrastructure.

  7. Design for Effective Staff Development.

    ERIC Educational Resources Information Center

    Seagren, Alan T.

    This paper presents a model for designing an effective staff development program. The rationale, philosophy, and instructional design utilized in the instructional Staff Development (ISD) program provides the basis for the design presented. The ISD program was conceptualized, developed, pilot tested, and field tested as a cooperative research…

  8. Internet-Protocol-Based Satellite Bus Architecture Designed

    NASA Technical Reports Server (NTRS)

    Slywczak, Richard A.

    2004-01-01

    NASA is designing future complex satellite missions ranging from single satellites and constellations to space networks and sensor webs. These missions require more interoperability, autonomy, and coordination than previous missions; in addition, a desire exists to have scientists retrieve data directly from the satellite rather than a central distribution source. To meet these goals, NASA has been studying the possibility of extending the Transmission Control Protocol/Internet Protocol (TCP/IP) suite for spacebased applications.

  9. The Design of a Fault-Tolerant COTS-Based Bus Architecture for Space Applications

    NASA Technical Reports Server (NTRS)

    Chau, Savio N.; Alkalai, Leon; Tai, Ann T.

    2000-01-01

    The high-performance, scalability and miniaturization requirements together with the power, mass and cost constraints mandate the use of commercial-off-the-shelf (COTS) components and standards in the X2000 avionics system architecture for deep-space missions. In this paper, we report our experiences and findings on the design of an IEEE 1394 compliant fault-tolerant COTS-based bus architecture. While the COTS standard IEEE 1394 adequately supports power management, high performance and scalability, its topological criteria impose restrictions on fault tolerance realization. To circumvent the difficulties, we derive a "stack-tree" topology that not only complies with the IEEE 1394 standard but also facilitates fault tolerance realization in a spaceborne system with limited dedicated resource redundancies. Moreover, by exploiting pertinent standard features of the 1394 interface which are not purposely designed for fault tolerance, we devise a comprehensive set of fault detection mechanisms to support the fault-tolerant bus architecture.

  10. Integrating Computer Architectures into the Design of High-Performance Controllers

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.; Leyland, Jane A.; Warmbrodt, William

    1986-01-01

    Modern control systems must typically perform real-time identification and control, as well as coordinate a host of other activities related to user interaction, on-line graphics, and file management. This paper discusses five global design considerations that are useful to integrate array processor, multimicroprocessor, and host computer system architecture into versatile, high-speed controllers. Such controllers are capable of very high control throughput, and can maintain constant interaction with the non-real-time or user environment. As an application example, the architecture of a high-speed, closed-loop controller used to actively control helicopter vibration will be briefly discussed. Although this system has been designed for use as the controller for real-time rotorcraft dynamics and control studies in a wind-tunnel environment, the control architecture can generally be applied to a wide range of automatic control applications.

  11. Building a prototype of a Martian base in Poland, an architectural design overview and progress report

    NASA Astrophysics Data System (ADS)

    Kozicki, Janek

    This talk focuses on recent advances in the construction of a prototype 1000 m2 Martian out-post for 8 inhabitants. The architectural design for such a Martian base has been presented previously on COSPAR 2008, the presentation being entitled ,,Architectural design proposal for a Martian base to continue NASA Mars Design Reference Mission". The presentation was welcomed with warm interest by various institutions, some of which offered help in building a prototype such as providing the building site or funding. This year's oral presentation will focus on a progress report and will briefly describe the architectural design. The architectural design is inspired by terrestrial pneumatic architecture. It has small volume, can be easily transported and provides a large habitable space. An architectural solution analo-gous to a terrestrial house with a studio and a workshop was assumed. The spatial placement of the following zones was carefully considered: residential, agricultural and science, as well as garage and workshop. Further attention was paid to transportation routes and a control and communications center. The issues of a life support system, energy, food, water and waste recycling were also discussed. This Martian base was designed to be crewed by a team of eight people to stay on Mars for at least one and a half year. An Open Plan architectural solution was assumed, with a high level of modularity. Walls of standardized sizes with zip-fasteners allow free rearrangement of the interior to adapt to a new situation. The prototype of such a Polish-origin Martian outpost will be used in a manner similar to MDRS or FMARS but to a larger extent. The prototype's design itself will be tested and corrected to achieve a design which can be used on Mars. The procedure of unfolding the pneumatic modules and floor leveling will be tested. The 1000 m2 interior will be used for various simulation exercises: socio-psychological testing, interior arrangement experiments

  12. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage.

    PubMed

    Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang; Yuan, Changzhou; Lou, Xiong Wen David

    2012-10-01

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part "how to design superior electrode architectures". In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. PMID:22912066

  13. Architecture for VLSI design of Reed-Solomon encoders

    NASA Technical Reports Server (NTRS)

    Liu, K. Y.

    1982-01-01

    A description is given of the logic structure of the universal VLSI symbol-slice Reed-Solomon (RS) encoder chip, from a group of which an RS encoder may be constructed through cascading and proper interconnection. As a design example, it is shown that an RS encoder presently requiring approximately 40 discrete CMOS ICs may be replaced by an RS encoder consisting of four identical, interconnected VLSI RS encoder chips, offering in addition to greater compactness both a lower power requirement and greater reliability.

  14. Architecture for VLSI design of Reed-Solomon encoders

    NASA Technical Reports Server (NTRS)

    Liu, K. Y.

    1981-01-01

    The logic structure of a universal VLSI chip called the symbol-slice Reed-Solomon (RS) encoder chip is discussed. An RS encoder can be constructed by cascading and properly interconnecting a group of such VLSI chips. As a design example, it is shown that a (255,223) RD encoder requiring around 40 discrete CMOS ICs may be replaced by an RS encoder consisting of four identical interconnected VLSI RS encoder chips. Besides the size advantage, the VLSI RS encoder also has the potential advantages of requiring less power and having a higher reliability.

  15. A Web Centric Architecture for Deploying Multi-Disciplinary Engineering Design Processes

    NASA Technical Reports Server (NTRS)

    Woyak, Scott; Kim, Hongman; Mullins, James; Sobieszczanski-Sobieski, Jaroslaw

    2004-01-01

    There are continuous needs for engineering organizations to improve their design process. Current state of the art techniques use computational simulations to predict design performance, and optimize it through advanced design methods. These tools have been used mostly by individual engineers. This paper presents an architecture for achieving results at an organization level beyond individual level. The next set of gains in process improvement will come from improving the effective use of computers and software within a whole organization, not just for an individual. The architecture takes advantage of state of the art capabilities to produce a Web based system to carry engineering design into the future. To illustrate deployment of the architecture, a case study for implementing advanced multidisciplinary design optimization processes such as Bi-Level Integrated System Synthesis is discussed. Another example for rolling-out a design process for Design for Six Sigma is also described. Each example explains how an organization can effectively infuse engineering practice with new design methods and retain the knowledge over time.

  16. Development of the Neurochemical Architecture of the Central Complex

    PubMed Central

    Boyan, George S.; Liu, Yu

    2016-01-01

    The central complex represents one of the most conspicuous neuroarchitectures to be found in the insect brain and regulates a wide repertoire of behaviors including locomotion, stridulation, spatial orientation and spatial memory. In this review article, we show that in the grasshopper, a model insect system, the intricate wiring of the fan-shaped body (FB) begins early in embryogenesis when axons from the first progeny of four protocerebral stem cells (called W, X, Y, Z, respectively) in each brain hemisphere establish a set of tracts to the primary commissural system. Decussation of subsets of commissural neurons at stereotypic locations across the brain midline then establishes a columnar neuroarchitecture in the FB which is completed during embryogenesis. Examination of the expression patterns of various neurochemicals in the central complex including neuropeptides, a neurotransmitter and the gas nitric oxide (NO), show that these appear progressively and in a substance-specific manner during embryogenesis. Each neuroactive substance is expressed by neurons located at stereotypic locations in a given central complex lineage, confirming that the stem cells are biochemically multipotent. The organization of axons expressing the various neurochemicals within the central complex is topologically related to the location, and hence birthdate, of the neurons within the lineages. The neurochemical expression patterns within the FB are layered, and so reflect the temporal topology present in the lineages. This principle relates the neuroanatomical to the neurochemical architecture of the central complex and so may provide insights into the development of adaptive behaviors.

  17. Design trade-offs in ADC architectures dedicated to uncooled focal plane arrays

    NASA Astrophysics Data System (ADS)

    Robert, P.; Dupont, B.; Pochic, D.

    2008-04-01

    This paper presents two different architectures for the design of Analog to Digital Converters specifically adapted to infrared bolometric image sensors. Indeed, the increasing demand for integrated functions in uncooled readout circuits leads to on-chip ADC design as an interface between the internal analog core and the digital processing electronics. However specifying an on-chip ADC dedicated to focal plane array raises many questions about its architecture and its performance requirements. We will show that two architecture approaches are needed to cover the different sensor features in terms of array size and frame speed. A monolithic 14 bits ADC with a pipeline architecture, and a column 13 bits ADC with an original dual-ramp architecture, will be described. Finally, we will show measurement results to confirm the monolithic ADC is suitable for small array, as 160 x 120 with low frame speed, while a column ADC is more compliant for higher array, as 640 x 480 with a 60 Hz frame speed or 1024 x 768 arrays.

  18. Shifting Engagements in Figured Worlds: Middle School Mathematics Students' Participation in an Architectural Design Project

    ERIC Educational Resources Information Center

    Jurow, A. Susan

    2005-01-01

    Project-based curricula have the potential to engage students' interests. But how do students become interested in the goals of a project? This article documents how a group of 8th-grade students participated in an architectural design project called the Antarctica Project. The project is based on the imaginary premise that students need to design…

  19. The Architecture of Peer Assessment: Do Academically Successful Students Make Good Teammates in Design Assignments?

    ERIC Educational Resources Information Center

    Tucker, Richard

    2013-01-01

    This paper considers the relationship between architecture and construction management students' overall academic abilities (as measured by Weighted Average Marks [WAMs]), their peer ratings for contributions to team design assignments (as measured by an online Self-and-Peer-Assessment [SAPA] tool), and their specific abilities as building…

  20. Towards Designing an Integrated Architecture for NEO Characterization, Mitigation, Scientific Evaluation, and Resource Utilization

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.; LaPointe, Michael; Wilks, Rod; Allen, Brian

    2009-01-01

    This poster reviews the planning and design for an integrated architecture for characterization, mitigation, scientific evaluation and resource utilization of near earth objects. This includes tracks to observe and characterize the nature of the threat posed by a NEO, and deflect if a significant threat is posed. The observation stack can also be used for a more complete scientific analysis of the NEO.

  1. Energy Conservation and Solar Retrofitting for Existing Buildings in Oregon: An Architectural Design Class Project.

    ERIC Educational Resources Information Center

    Oregon Univ., Eugene. School of Architecture and Allied Arts.

    Five privately owned homes and two university owned homes were examined by architecture students in order to formulate design alternatives to fit the houses with solar collection, storage, and control devices for supplementing domestic space and/or water heating. General principles advanced include why energy conservation and solar retrofitting…

  2. Computer Aided Design of Ka-Band Waveguide Power Combining Architectures for Interplanetary Spacecraft

    NASA Technical Reports Server (NTRS)

    Vaden, Karl R.

    2006-01-01

    Communication systems for future NASA interplanetary spacecraft require transmitter power ranging from several hundred watts to kilowatts. Several hybrid junctions are considered as elements within a corporate combining architecture for high power Ka-band space traveling-wave tube amplifiers (TWTAs). This report presents the simulated transmission characteristics of several hybrid junctions designed for a low loss, high power waveguide based power combiner.

  3. Information Architecture for the Web: The IA Matrix Approach to Designing Children's Portals.

    ERIC Educational Resources Information Center

    Large, Andrew; Beheshti, Jamshid; Cole, Charles

    2002-01-01

    Presents a matrix that can serve as a tool for designing the information architecture of a Web portal in a logical and systematic manner. Highlights include interfaces; metaphors; navigation; interaction; information retrieval; and an example of a children's Web portal to provide access to museum information. (Author/LRW)

  4. A Parallel Trade Study Architecture for Design Optimization of Complex Systems

    NASA Technical Reports Server (NTRS)

    Kim, Hongman; Mullins, James; Ragon, Scott; Soremekun, Grant; Sobieszczanski-Sobieski, Jaroslaw

    2005-01-01

    Design of a successful product requires evaluating many design alternatives in a limited design cycle time. This can be achieved through leveraging design space exploration tools and available computing resources on the network. This paper presents a parallel trade study architecture to integrate trade study clients and computing resources on a network using Web services. The parallel trade study solution is demonstrated to accelerate design of experiments, genetic algorithm optimization, and a cost as an independent variable (CAIV) study for a space system application.

  5. Space station needs, attributes, and architectural options: Technology development

    NASA Technical Reports Server (NTRS)

    Robert, A. C.

    1983-01-01

    The technology development of the space station is examined as it relates to space station growth and equipment requirements for future missions. Future mission topics are refined and used to establish a systems data base. Technology for human factors engineering, space maintenance, satellite design, and laser communications and tracking is discussed.

  6. New architecture for TECless operation of uncooled microbolometers developed at LETI

    NASA Astrophysics Data System (ADS)

    Simoens, F.; Tchagaspanian, M.; Arnaud, A.; Imperinetti, P.; Chammings, G.; Yon, J. J.; Tissot, J. L.; Destefanis, Gérard

    2008-03-01

    Thermal imaging market is today more and more attracted by systems with "instant-on" and low power consumption. "TECless" operation of uncooled microbolometer detectors, that is where no Peltier module is needed, is one of the major features required by the market. In order to fulfill this demand, LETI/SLIR is developing and optimizing a new IRCMOS architecture based on a differential reading implemented with current mirrors. This design simultaneously reduces focal plane temperature sensitivity and simplifies the detector driving. An IRCMOS prototype (320 × 240 with a pitch of 25 μm) has been designed, processed, and characterized. This paper presents an overall view of this new design and the latest characterization results of the prototype.

  7. NUDGING FOR HEALTH: ON PUBLIC POLICY AND DESIGNING CHOICE ARCHITECTURE

    PubMed Central

    Quigley, Muireann

    2013-01-01

    There have been recent policy moves aimed at encouraging individuals to lead healthier lives. The Cabinet Office has set up a ‘nudge unit’ with health as one of its priorities and behavioural approaches have started to be integrated into health-related domestic policy in a number of areas. Behavioural research has shown that that the way the environment is constructed can shape a person's choices within it. Thus, it is hoped that, by using insights from such research, people can be nudged towards making decisions which are better for their health. This article outlines how nudges can be conceived of as part of an expanding arsenal of health-affecting regulatory tools being used by the Government and addresses some concerns which have been expressed regarding behavioural research-driven regulation and policy. In particular, it makes the case that, regardless of new regulatory and policy strategies, we cannot escape the myriad of influences which surround us. As such, we can view our health-affecting decisions as already being in some sense shaped and constructed. Further, it argues we may in fact have reason to prefer sets of health-affecting options which have been intentionally designed by the state, rather than those that stem from other sources or result from random processes. Even so, in closing, this article draws attention to the largely unanswered questions about how behavioural research translates into policy and regulatory initiatives. PMID:24081425

  8. Nudging for health: on public policy and designing choice architecture.

    PubMed

    Quigley, Muireann

    2013-01-01

    There have been recent policy moves aimed at encouraging individuals to lead healthier lives. The Cabinet Office has set up a 'nudge unit' with health as one of its priorities and behavioural approaches have started to be integrated into health-related domestic policy in a number of areas. Behavioural research has shown that that the way the environment is constructed can shape a person's choices within it. Thus, it is hoped that, by using insights from such research, people can be nudged towards making decisions which are better for their health. This article outlines how nudges can be conceived of as part of an expanding arsenal of health-affecting regulatory tools being used by the Government and addresses some concerns which have been expressed regarding behavioural research-driven regulation and policy. In particular, it makes the case that, regardless of new regulatory and policy strategies, we cannot escape the myriad of influences which surround us. As such, we can view our health-affecting decisions as already being in some sense shaped and constructed. Further, it argues we may in fact have reason to prefer sets of health-affecting options which have been intentionally designed by the state, rather than those that stem from other sources or result from random processes. Even so, in closing, this article draws attention to the largely unanswered questions about how behavioural research translates into policy and regulatory initiatives. PMID:24081425

  9. End-to-end interoperability and workflows from building architecture design to one or more simulations

    DOEpatents

    Chao, Tian-Jy; Kim, Younghun

    2015-02-10

    An end-to-end interoperability and workflows from building architecture design to one or more simulations, in one aspect, may comprise establishing a BIM enablement platform architecture. A data model defines data entities and entity relationships for enabling the interoperability and workflows. A data definition language may be implemented that defines and creates a table schema of a database associated with the data model. Data management services and/or application programming interfaces may be implemented for interacting with the data model. Web services may also be provided for interacting with the data model via the Web. A user interface may be implemented that communicates with users and uses the BIM enablement platform architecture, the data model, the data definition language, data management services and application programming interfaces to provide functions to the users to perform work related to building information management.

  10. Information architecture. Volume 3: Guidance

    SciTech Connect

    1997-04-01

    The purpose of this document, as presented in Volume 1, The Foundations, is to assist the Department of Energy (DOE) in developing and promulgating information architecture guidance. This guidance is aimed at increasing the development of information architecture as a Departmentwide management best practice. This document describes departmental information architecture principles and minimum design characteristics for systems and infrastructures within the DOE Information Architecture Conceptual Model, and establishes a Departmentwide standards-based architecture program. The publication of this document fulfills the commitment to address guiding principles, promote standard architectural practices, and provide technical guidance. This document guides the transition from the baseline or defacto Departmental architecture through approved information management program plans and budgets to the future vision architecture. This document also represents another major step toward establishing a well-organized, logical foundation for the DOE information architecture.

  11. The ATLAS EventIndex: architecture, design choices, deployment and first operation experience

    NASA Astrophysics Data System (ADS)

    Barberis, D.; Cárdenas Zárate, S. E.; Cranshaw, J.; Favareto, A.; Fernández Casaní, Á.; Gallas, E. J.; Glasman, C.; González de la Hoz, S.; Hřivnáč, J.; Malon, D.; Prokoshin, F.; Salt Cairols, J.; Sánchez, J.; Többicke, R.; Yuan, R.

    2015-12-01

    The EventIndex is the complete catalogue of all ATLAS events, keeping the references to all files that contain a given event in any processing stage. It replaces the TAG database, which had been in use during LHC Run 1. For each event it contains its identifiers, the trigger pattern and the GUIDs of the files containing it. Major use cases are event picking, feeding the Event Service used on some production sites, and technical checks of the completion and consistency of processing campaigns. The system design is highly modular so that its components (data collection system, storage system based on Hadoop, query web service and interfaces to other ATLAS systems) could be developed separately and in parallel during LSI. The EventIndex is in operation for the start of LHC Run 2. This paper describes the high-level system architecture, the technical design choices and the deployment process and issues. The performance of the data collection and storage systems, as well as the query services, are also reported.

  12. Service Oriented Robotic Architecture for Space Robotics: Design, Testing, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Fluckiger, Lorenzo Jean Marc E; Utz, Hans Heinrich

    2013-01-01

    This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at the NASA Ames Research Center. SORA relies on proven software engineering methods and technologies applied to space robotics. Based on a Service Oriented Architecture and robust middleware, SORA encompasses on-board robot control and a full suite of software tools necessary for remotely operated exploration missions. SORA has been eld tested in numerous scenarios of robotic lunar and planetary exploration. The experiments conducted by IRG with SORA exercise a large set of the constraints encountered in space applications: remote robotic assets, ight relevant science instruments, distributed operations, high network latencies and unreliable or intermittent communication links. In this paper, we present the results of these eld tests in regard to the developed architecture, and discuss its bene ts and limitations.

  13. Architectural Kansei of ‘Wall’ in The Façade Design by Le Corbusier

    NASA Astrophysics Data System (ADS)

    Sendai, Shoichiro

    The purpose of this paper is to discuss the modern architect Le Corbusier's architectural Kansei (sensibility) on wall in site environment through the analysis of his façade design, using Œuvres complètes (1910-1965, 8 vols., Les éditions d'architecture, Artemis, Zurich) and Le Corbusier Archives (1982-1984, 32 vols., Garland Publishing, Inc. and Fondation Le Corbusier, New York, London, Paris). At first, I arrange five façade types, according to the explanation by Le Corbusier ; ‘fenêtre en longueur (strip window)’, ‘pan de verre (glass wall)’, ‘brise-soleil (sun-breaker)’, ‘loggia’ and ‘claustra’. Through the analysis of the relationship between these types and the design process of each building, we find that Le Corbusier's façade design includes the affirmation and the negation of the ‘wall’ at the same time. In fact, the nature of façade modification during design process is divers: increase in transparency, decrease in transparency and spatialization of façade. That means, Le Corbusier studied the environmental condition by these façade types, and tried to realize the phenomenal openness. This trial bases on the function of architectural Kansei as correspondence between body and environment beyond the physical design.

  14. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity.

    PubMed

    Lin, Cheng Yu; Kikuchi, Noboru; Hollister, Scott J

    2004-05-01

    An often-proposed tissue engineering design hypothesis is that the scaffold should provide a biomimetic mechanical environment for initial function and appropriate remodeling of regenerating tissue while concurrently providing sufficient porosity for cell migration and cell/gene delivery. To provide a systematic study of this hypothesis, the ability to precisely design and manufacture biomaterial scaffolds is needed. Traditional methods for scaffold design and fabrication cannot provide the control over scaffold architecture design to achieve specified properties within fixed limits on porosity. The purpose of this paper was to develop a general design optimization scheme for 3D internal scaffold architecture to match desired elastic properties and porosity simultaneously, by introducing the homogenization-based topology optimization algorithm (also known as general layout optimization). With an initial target for bone tissue engineering, we demonstrate that the method can produce highly porous structures that match human trabecular bone anisotropic stiffness using accepted biomaterials. In addition, we show that anisotropic bone stiffness may be matched with scaffolds of widely different porosity. Finally, we also demonstrate that prototypes of the designed structures can be fabricated using solid free-form fabrication (SFF) techniques. PMID:15046991

  15. Integrating Design Disciplines: Understanding the Potential for and Factors Affecting the Success of Interdisciplinary Design Education for Architecture and Landscape Architecture

    ERIC Educational Resources Information Center

    Koo, Tae Seo

    2012-01-01

    Interdisciplinary design education is becoming more important as design disciplines need various perspectives and solutions. However, only a limited amount of research has been done in regard to interdisciplinary design education. The goal of this study is to begin to answer the question about how designers and researchers develop and improve…

  16. The Role of Falsification in the Development of Cognitive Architectures: Insights from a Lakatosian Analysis

    ERIC Educational Resources Information Center

    Cooper, Richard P.

    2007-01-01

    It has been suggested that the enterprise of developing mechanistic theories of the human cognitive architecture is flawed because the theories produced are not directly falsifiable. Newell attempted to sidestep this criticism by arguing for a Lakatosian model of scientific progress in which cognitive architectures should be understood as theories…

  17. INO340 telescope control system: hardware design and development

    NASA Astrophysics Data System (ADS)

    Jafarzadeh, Asghar; Ravanmehr, Reza

    2014-07-01

    In order to meet high image quality requirements of the INO340 telescope, one of the significant issues is the design and development of the Telescope Control System (TCS) architecture. The architecture of TCS is designed based on distributed control system configuration, which consists of four major subsystems: Telescope Control System supervisor (TCSS), Dome Control System (DCS), Mount Control System (MCS), and Active Optic System (AOS). Another system which plays important role in the hardware architecture is Interlock System (ILS), which is responsible for safety of staff, telescope and data. ILS architecture is also designed, using distributed system method based on the fail-safe PLCs. All subsystems of TCS are designed with an adequate safety subsystem, which are responsible for the safety of the subsystem and communicates through reliable lines with the main controller, placed in control room. In this paper, we explain the innovative architecture of Telescope Control System together with Interlock System and in brief show the interface control issues between different subsystems.

  18. Development of an ease-of-use remote healthcare system architecture using RFID and networking technologies.

    PubMed

    Lin, Shih-Sung; Hung, Min-Hsiung; Tsai, Chang-Lung; Chou, Li-Ping

    2012-12-01

    The study aims to provide an ease-of-use approach for senior patients to utilize remote healthcare systems. An ease-of-use remote healthcare system (RHS) architecture using RFID (Radio Frequency Identification) and networking technologies is developed. Specifically, the codes in RFID tags are used for authenticating the patients' ID to secure and ease the login process. The patient needs only to take one action, i.e. placing a RFID tag onto the reader, to automatically login and start the RHS and then acquire automatic medical services. An ease-of-use emergency monitoring and reporting mechanism is developed as well to monitor and protect the safety of the senior patients who have to be left alone at home. By just pressing a single button, the RHS can automatically report the patient's emergency information to the clinic side so that the responsible medical personnel can take proper urgent actions for the patient. Besides, Web services technology is used to build the Internet communication scheme of the RHS so that the interoperability and data transmission security between the home server and the clinical server can be enhanced. A prototype RHS is constructed to validate the effectiveness of our designs. Testing results show that the proposed RHS architecture possesses the characteristics of ease to use, simplicity to operate, promptness in login, and no need to preserve identity information. The proposed RHS architecture can effectively increase the willingness of senior patients who act slowly or are unfamiliar with computer operations to use the RHS. The research results can be used as an add-on for developing future remote healthcare systems. PMID:22382524

  19. Architectural design for a low cost FPGA-based traffic signal detection system in vehicles

    NASA Astrophysics Data System (ADS)

    López, Ignacio; Salvador, Rubén; Alarcón, Jaime; Moreno, Félix

    2007-05-01

    In this paper we propose an architecture for an embedded traffic signal detection system. Development of Advanced Driver Assistance Systems (ADAS) is one of the major trends of research in automotion nowadays. Examples of past and ongoing projects in the field are CHAMELEON ("Pre-Crash Application all around the vehicle" IST 1999-10108), PREVENT (Preventive and Active Safety Applications, FP6-507075, http://www.prevent-ip.org/) and AVRT in the US (Advanced Vision-Radar Threat Detection (AVRT): A Pre-Crash Detection and Active Safety System). It can be observed a major interest in systems for real-time analysis of complex driving scenarios, evaluating risk and anticipating collisions. The system will use a low cost CCD camera on the dashboard facing the road. The images will be processed by an Altera Cyclone family FPGA. The board does median and Sobel filtering of the incoming frames at PAL rate, and analyzes them for several categories of signals. The result is conveyed to the driver. The scarce resources provided by the hardware require an architecture developed for optimal use. The system will use a combination of neural networks and an adapted blackboard architecture. Several neural networks will be used in sequence for image analysis, by reconfiguring a single, generic hardware neural network in the FPGA. This generic network is optimized for speed, in order to admit several executions within the frame rate. The sequence will follow the execution cycle of the blackboard architecture. The global, blackboard architecture being developed and the hardware architecture for the generic, reconfigurable FPGA perceptron will be explained in this paper. The project is still at an early stage. However, some hardware implementation results are already available and will be offered in the paper.

  20. Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures.

    PubMed

    Yu, Yanhao; Li, Jianye; Geng, Dalong; Wang, Jialiang; Zhang, Lushuai; Andrew, Trisha L; Arnold, Michael S; Wang, Xudong

    2015-01-27

    Three-dimensional (3D) nanowire (NW) architectures are considered as superior electrode design for photovoltaic devices compared to NWs or nanoparticle systems in terms of improved large surface area and charge transport properties. In this paper, we report development of lead iodide perovskite solar cells based on a novel 3D TiO2 NW architectures. The 3D TiO2 nanostructure was synthesized via surface-reaction-limited pulsed chemical vapor deposition (SPCVD) technique that also implemented the Kirkendall effect for complete ZnO NW template conversion. It was found that the film thickness of 3D TiO2 can significantly influence the photovoltaic performance. Short-circuit current increased with the TiO2 length, while open-circuit voltage and fill factor decreased with the length. The highest power conversion efficiency (PCE) of 9.0% was achieved with ∼ 600 nm long 3D TiO2 NW structures. Compared to other 1D nanostructure arrays (TiO2 nanotubes, TiO2-coated ZnO NWs and ZnO NWs), 3D TiO2 NW architecture was able to achieve larger amounts of perovskite loading, enhanced light harvesting efficiency, and increased electron-transport property. Therefore, its PCE is 1.5, 2.3, and 2.8 times higher than those of TiO2 nanotubes, TiO2-coated ZnO NWs, and ZnO NWs, respectively. The unique morphological advantages, together with the largely suppressed hysteresis effect, make 3D hierarchical TiO2 a promising electrode selection in designing high-performance perovskite solar cells. PMID:25549153

  1. Development to integrate conceptual design tools and a CAD system

    NASA Astrophysics Data System (ADS)

    Torres, V. H.; Ríos, J.; Vizán, A.; Pérez, J. M.

    2012-04-01

    The information supported by PLM/CAD systems is mainly related to Embodiment and Detail Design Phases. Information related to the Conceptual Design Phase is mainly limited to requirement specification documents and system architecture diagram documents. This work aims helping in the integration of the Conceptual Design process and its associated information flow into a commercial software system. It proposes a development framework to integrate Quality Function Deployment, Axiomatic Design, and Failure Mode and Effects Analysis into a PLM/CAD system. This communication presents the methodology used in the development, the software development environment, the modeling of the proposed application and the first results of a pilot implementation.

  2. Distributed design tools: Mapping targeted design tools onto a Web-based distributed architecture for high-performance computing

    SciTech Connect

    Holmes, V.P.; Linebarger, J.M.; Miller, D.J.; Poore, C.A.

    1999-11-30

    Design Tools use a Web-based Java interface to guide a product designer through the design-to-analysis cycle for a specific, well-constrained design problem. When these Design Tools are mapped onto a Web-based distributed architecture for high-performance computing, the result is a family of Distributed Design Tools (DDTs). The software components that enable this mapping consist of a Task Sequencer, a generic Script Execution Service, and the storage of both data and metadata in an active, object-oriented database called the Product Database Operator (PDO). The benefits of DDTs include improved security, reliability, scalability (in both problem size and computing hardware), robustness, and reusability. In addition, access to the PDO unlocks its wide range of services for distributed components, such as lookup and launch capability, persistent shared memory for communication between cooperating services, state management, event notification, and archival of design-to-analysis session data.

  3. Design, fabrication and properties of novel architectures made from carbon nanotubes and nano-porous materials

    NASA Astrophysics Data System (ADS)

    Kaur, Sumanjeet

    Nanomaterials like carbon nanotubes (CNT) have numerous potential applications due to their unique electrical, thermal and mechanical properties. Building macroscopic architectures using these nanocomponents requires new approaches for organization or assembly of these components. This can be achieved by using various techniques like capillary-induced compaction, template-assisted growth and other synthesis techniques. The vertically aligned multiwalled carbon nanotube arrays were grown using chemical vapor deposition (CVD). Evaporation of liquid from such vertically aligned nanotube arrays induces the assembly of nanotubes into cellular patterns. The role of substrate and orientation of the carbon nanotube array was investigated and analyzed to gain more control over the pattern formation that could help in designing new structures. Electrical measurements on the CNT patterns before and after capillary-induced compaction revealed that compaction results in four-fold increase in electrical conductivity, making them a potential candidate for vertical interconnects. A new method to fabricate a syringe with nanopores by using anodization technique was demonstrated. Experimental parameters were investigated to control the dimension and morphology of the nanopores in the syringe. Capillary force was used to infiltrate and replicate the complete 3D architecture into polymers. The usefulness of syringe as a biological sampler (DNA-RNA separation) was demonstrated. Layered structure of exfoliated mica was used as a substrate for growth of CNTs. This resulted in novel layered hybrid architecture of mica and carbon nanotube arrays. Mechanical properties of such architectures were investigated. Such architectures could be very useful as foams. These simple techniques can be used to assemble nanoscale components into well-defined macroscopic architectures and thus broaden the range of applications where their unique properties can be put into use.

  4. Historical development of administration architecture in Malaysia (15th-21st century)

    NASA Astrophysics Data System (ADS)

    Mohidin, H. H. B.; Ismail, A. S.

    2014-02-01

    The main purpose of this paper is to document the development of the state administration building in Malaysia before and after the independence era, in relation to the evolutionary period of Malaysia's political, social and economic history. Multiple case study approach [19] is applied by referring to six prominent case studies to represent state administrative buildings from various phases of Malaysian history beginning from 14th century to 21st century as exemplar. Since this paper formulates new ways to approach and describes state administrative building design and factors that influence them, it uses interpretivism paradigm and (semiotics) as methodological approach to study the relationship between the building design and contextual elements. This paper, therefore, offers new insights, which not only add to knowledge in this field by widening and strengthening the understanding of state administrative architecture in Malaysia, but also are valuable for range of associated fields including architectural semiotics and non verbal communication. This is because this paper reveals deep understandings of the built form and material environment operating as a sign in a cultural and social context.

  5. Touring by Design: Using Information Architecture To Create a Virtual Library Tour.

    ERIC Educational Resources Information Center

    Kittelson, Pat; Jones, Sarah

    2002-01-01

    Describes the development of a Web-based virtual tour of the University of Otago (New Zealand) science library. Highlights include information literacy learning outcomes; information architecture, including information organization and navigation; integrating the tour into course work; and evaluation results. (LRW)

  6. Sustainability in the Architectural Design Studio: A Case Study of Designing On-Campus Academic Staff Housing in Konya and Izmir, Turkey

    ERIC Educational Resources Information Center

    Bala, Havva Alkan

    2010-01-01

    It is important to engender a "sustainable" architectural consciousness in the students who will be the next generation architects. In architectural education, design decisions taken during the early phases of the design process play an important role in ensuring concern for the sustainability issue. But, in general, all discussions about the site…

  7. Development of Innovative Design Processor

    SciTech Connect

    Park, Y.S.; Park, C.O.

    2004-07-01

    The nuclear design analysis requires time-consuming and erroneous model-input preparation, code run, output analysis and quality assurance process. To reduce human effort and improve design quality and productivity, Innovative Design Processor (IDP) is being developed. Two basic principles of IDP are the document-oriented design and the web-based design. The document-oriented design is that, if the designer writes a design document called active document and feeds it to a special program, the final document with complete analysis, table and plots is made automatically. The active documents can be written with ordinary HTML editors or created automatically on the web, which is another framework of IDP. Using the proper mix-up of server side and client side programming under the LAMP (Linux/Apache/MySQL/PHP) environment, the design process on the web is modeled as a design wizard style so that even a novice designer makes the design document easily. This automation using the IDP is now being implemented for all the reload design of Korea Standard Nuclear Power Plant (KSNP) type PWRs. The introduction of this process will allow large reduction in all reload design efforts of KSNP and provide a platform for design and R and D tasks of KNFC. (authors)

  8. Guidance and Control Architecture Design and Demonstration for Low Ballistic Coefficient Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Swei, Sean

    2014-01-01

    We propose to develop a robust guidance and control system for the ADEPT (Adaptable Deployable Entry and Placement Technology) entry vehicle. A control-centric model of ADEPT will be developed to quantify the performance of candidate guidance and control architectures for both aerocapture and precision landing missions. The evaluation will be based on recent breakthroughs in constrained controllability/reachability analysis of control systems and constrained-based energy-minimum trajectory optimization for guidance development operating in complex environments.

  9. Development and Flight Testing of an Adaptive Vehicle Health-Monitoring Architecture

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Taylor, B. Douglas; Brett, Rube R.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.

    2002-01-01

    On going development and testing of an adaptable vehicle health-monitoring architecture is presented. The architecture is being developed for a fleet of vehicles. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle, and, a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained expert system. The expert system is parameterized, which makes it adaptable to be trained to both a user's subject reasoning and existing quantitative analytic tools. Communication between all levels is done with wireless radio frequency interfaces. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear. The flight tests were performed to validate the following: the wireless radio frequency communication capabilities of the system, the hardware design, command and control; software operation and, data acquisition, storage and retrieval.

  10. Architectural and engineering design work for the Nevada Cancer Institute facility

    SciTech Connect

    Heather Murren, President

    2004-12-31

    The purpose of this project was to complete the architectural and engineering design, program planning, and other preliminary work necessary to construct the new Nevada Cancer Institute facility. These goals were accomplished with the construction of a new building of approximately 119,000 gross square feet. The facility houses the diagnostic and radio therapeutic treatment laboratories, radiation oncology treatment facility, physician offices, and clinical research areas.

  11. Preliminary design and implementation of the baseline digital baseband architecture for advanced deep space transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, T. M.; Yeh, H.-G.

    1993-01-01

    The baseline design and implementation of the digital baseband architecture for advanced deep space transponders is investigated and identified. Trade studies on the selection of the number of bits for the analog-to-digital converter (ADC) and optimum sampling schemes are presented. In addition, the proposed optimum sampling scheme is analyzed in detail. Descriptions of possible implementations for the digital baseband (or digital front end) and digital phase-locked loop (DPLL) for carrier tracking are also described.

  12. Design and Analysis of a Neuromemristive Reservoir Computing Architecture for Biosignal Processing.

    PubMed

    Kudithipudi, Dhireesha; Saleh, Qutaiba; Merkel, Cory; Thesing, James; Wysocki, Bryant

    2015-01-01

    Reservoir computing (RC) is gaining traction in several signal processing domains, owing to its non-linear stateful computation, spatiotemporal encoding, and reduced training complexity over recurrent neural networks (RNNs). Previous studies have shown the effectiveness of software-based RCs for a wide spectrum of applications. A parallel body of work indicates that realizing RNN architectures using custom integrated circuits and reconfigurable hardware platforms yields significant improvements in power and latency. In this research, we propose a neuromemristive RC architecture, with doubly twisted toroidal structure, that is validated for biosignal processing applications. We exploit the device mismatch to implement the random weight distributions within the reservoir and propose mixed-signal subthreshold circuits for energy efficiency. A comprehensive analysis is performed to compare the efficiency of the neuromemristive RC architecture in both digital(reconfigurable) and subthreshold mixed-signal realizations. Both Electroencephalogram (EEG) and Electromyogram (EMG) biosignal benchmarks are used for validating the RC designs. The proposed RC architecture demonstrated an accuracy of 90 and 84% for epileptic seizure detection and EMG prosthetic finger control, respectively. PMID:26869876

  13. H2, fixed architecture, control design for large scale systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1990-01-01

    The H2, fixed architecture, control problem is a classic linear quadratic Gaussian (LQG) problem whose solution is constrained to be a linear time invariant compensator with a decentralized processing structure. The compensator can be made of p independent subcontrollers, each of which has a fixed order and connects selected sensors to selected actuators. The H2, fixed architecture, control problem allows the design of simplified feedback systems needed to control large scale systems. Its solution becomes more complicated, however, as more constraints are introduced. This work derives the necessary conditions for optimality for the problem and studies their properties. It is found that the filter and control problems couple when the architecture constraints are introduced, and that the different subcontrollers must be coordinated in order to achieve global system performance. The problem requires the simultaneous solution of highly coupled matrix equations. The use of homotopy is investigated as a numerical tool, and its convergence properties studied. It is found that the general constrained problem may have multiple stabilizing solutions, and that these solutions may be local minima or saddle points for the quadratic cost. The nature of the solution is not invariant when the parameters of the system are changed. Bifurcations occur, and a solution may continuously transform into a nonstabilizing compensator. Using a modified homotopy procedure, fixed architecture compensators are derived for models of large flexible structures to help understand the properties of the constrained solutions and compare them to the corresponding unconstrained ones.

  14. Design and Analysis of a Neuromemristive Reservoir Computing Architecture for Biosignal Processing

    PubMed Central

    Kudithipudi, Dhireesha; Saleh, Qutaiba; Merkel, Cory; Thesing, James; Wysocki, Bryant

    2016-01-01

    Reservoir computing (RC) is gaining traction in several signal processing domains, owing to its non-linear stateful computation, spatiotemporal encoding, and reduced training complexity over recurrent neural networks (RNNs). Previous studies have shown the effectiveness of software-based RCs for a wide spectrum of applications. A parallel body of work indicates that realizing RNN architectures using custom integrated circuits and reconfigurable hardware platforms yields significant improvements in power and latency. In this research, we propose a neuromemristive RC architecture, with doubly twisted toroidal structure, that is validated for biosignal processing applications. We exploit the device mismatch to implement the random weight distributions within the reservoir and propose mixed-signal subthreshold circuits for energy efficiency. A comprehensive analysis is performed to compare the efficiency of the neuromemristive RC architecture in both digital(reconfigurable) and subthreshold mixed-signal realizations. Both Electroencephalogram (EEG) and Electromyogram (EMG) biosignal benchmarks are used for validating the RC designs. The proposed RC architecture demonstrated an accuracy of 90 and 84% for epileptic seizure detection and EMG prosthetic finger control, respectively. PMID:26869876

  15. Design and Field Experimentation of a Cooperative ITS Architecture Based on Distributed RSUs.

    PubMed

    Moreno, Asier; Osaba, Eneko; Onieva, Enrique; Perallos, Asier; Iovino, Giovanni; Fernández, Pablo

    2016-01-01

    This paper describes a new cooperative Intelligent Transportation System architecture that aims to enable collaborative sensing services. The main goal of this architecture is to improve transportation efficiency and performance. The system, which has been proven within the participation in the ICSI (Intelligent Cooperative Sensing for Improved traffic efficiency) European project, encompasses the entire process of capture and management of available road data. For this purpose, it applies a combination of cooperative services and methods for data sensing, acquisition, processing and communication amongst road users, vehicles, infrastructures and related stakeholders. Additionally, the advantages of using the proposed system are exposed. The most important of these advantages is the use of a distributed architecture, moving the system intelligence from the control centre to the peripheral devices. The global architecture of the system is presented, as well as the software design and the interaction between its main components. Finally, functional and operational results observed through the experimentation are described. This experimentation has been carried out in two real scenarios, in Lisbon (Portugal) and Pisa (Italy). PMID:27455277

  16. Design and Field Experimentation of a Cooperative ITS Architecture Based on Distributed RSUs †

    PubMed Central

    Moreno, Asier; Osaba, Eneko; Onieva, Enrique; Perallos, Asier; Iovino, Giovanni; Fernández, Pablo

    2016-01-01

    This paper describes a new cooperative Intelligent Transportation System architecture that aims to enable collaborative sensing services. The main goal of this architecture is to improve transportation efficiency and performance. The system, which has been proven within the participation in the ICSI (Intelligent Cooperative Sensing for Improved traffic efficiency) European project, encompasses the entire process of capture and management of available road data. For this purpose, it applies a combination of cooperative services and methods for data sensing, acquisition, processing and communication amongst road users, vehicles, infrastructures and related stakeholders. Additionally, the advantages of using the proposed system are exposed. The most important of these advantages is the use of a distributed architecture, moving the system intelligence from the control centre to the peripheral devices. The global architecture of the system is presented, as well as the software design and the interaction between its main components. Finally, functional and operational results observed through the experimentation are described. This experimentation has been carried out in two real scenarios, in Lisbon (Portugal) and Pisa (Italy). PMID:27455277

  17. The constraints satisfaction problem approach in the design of an architectural functional layout

    NASA Astrophysics Data System (ADS)

    Zawidzki, Machi; Tateyama, Kazuyoshi; Nishikawa, Ikuko

    2011-09-01

    A design support system with a new strategy for finding the optimal functional configurations of rooms for architectural layouts is presented. A set of configurations satisfying given constraints is generated and ranked according to multiple objectives. The method can be applied to problems in architectural practice, urban or graphic design-wherever allocation of related geometrical elements of known shape is optimized. Although the methodology is shown using simplified examples-a single story residential building with two apartments each having two rooms-the results resemble realistic functional layouts. One example of a practical size problem of a layout of three apartments with a total of 20 rooms is demonstrated, where the generated solution can be used as a base for a realistic architectural blueprint. The discretization of design space is discussed, followed by application of a backtrack search algorithm used for generating a set of potentially 'good' room configurations. Next the solutions are classified by a machine learning method (FFN) as 'proper' or 'improper' according to the internal communication criteria. Examples of interactive ranking of the 'proper' configurations according to multiple criteria and choosing 'the best' ones are presented. The proposed framework is general and universal-the criteria, parameters and weights can be individually defined by a user and the search algorithm can be adjusted to a specific problem.

  18. A domain-specific design architecture for composite material design and aircraft part redesign

    NASA Technical Reports Server (NTRS)

    Punch, W. F., III; Keller, K. J.; Bond, W.; Sticklen, J.

    1992-01-01

    Advanced composites have been targeted as a 'leapfrog' technology that would provide a unique global competitive position for U.S. industry. Composites are unique in the requirements for an integrated approach to designing, manufacturing, and marketing of products developed utilizing the new materials of construction. Numerous studies extending across the entire economic spectrum of the United States from aerospace to military to durable goods have identified composites as a 'key' technology. In general there have been two approaches to composite construction: build models of a given composite materials, then determine characteristics of the material via numerical simulation and empirical testing; and experience-directed construction of fabrication plans for building composites with given properties. The first route sets a goal to capture basic understanding of a device (the composite) by use of a rigorous mathematical model; the second attempts to capture the expertise about the process of fabricating a composite (to date) at a surface level typically expressed in a rule based system. From an AI perspective, these two research lines are attacking distinctly different problems, and both tracks have current limitations. The mathematical modeling approach has yielded a wealth of data but a large number of simplifying assumptions are needed to make numerical simulation tractable. Likewise, although surface level expertise about how to build a particular composite may yield important results, recent trends in the KBS area are towards augmenting surface level problem solving with deeper level knowledge. Many of the relative advantages of composites, e.g., the strength:weight ratio, is most prominent when the entire component is designed as a unitary piece. The bottleneck in undertaking such unitary design lies in the difficulty of the re-design task. Designing the fabrication protocols for a complex-shaped, thick section composite are currently very difficult. It is in

  19. Linking Humans to Data: Designing an Enterprise Architecture for EarthCube

    NASA Astrophysics Data System (ADS)

    Xu, C.; Yang, C.; Meyer, C. B.

    2013-12-01

    National Science Foundation (NSF)'s EarthCube is a strategic initiative towards a grand enterprise that holistically incorporates different geoscience research domains. The EarthCube as envisioned by NSF is a community-guided cyberinfrastructure (NSF 2011). The design of EarthCube enterprise architecture (EA) offers a vision to harmonize processes between the operations of EarthCube and its information technology foundation, the geospatial cyberinfrastructure. (Yang et al. 2010). We envision these processes as linking humans to data. We report here on fundamental ideas that would ultimately materialize as a conceptual design of EarthCube EA. EarthCube can be viewed as a meta-science that seeks to advance knowledge of the Earth through cross-disciplinary connections made using conventional domain-based earth science research. In order to build capacity that enables crossing disciplinary chasms, a key step would be to identify the cornerstones of the envisioned enterprise architecture. Human and data inputs are the two key factors to the success of EarthCube (NSF 2011), based upon which three hypotheses have been made: 1) cross disciplinary collaboration has to be achieved through data sharing; 2) disciplinary differences need to be articulated and captured in both computer and human understandable formats; 3) human intervention is crucial for crossing the disciplinary chasms. We have selected the Federal Enterprise Architecture Framework (FEAF, CIO Council 2013) as the baseline for the envisioned EarthCube EA, noting that the FEAF's deficiencies can be improved upon with inputs from three other popular EA frameworks. This presentation reports the latest on the conceptual design of an enterprise architecture in support of EarthCube.

  20. Error Propagation Analysis in the SAE Architecture Analysis and Design Language (AADL) and the EDICT Tool Framework

    NASA Technical Reports Server (NTRS)

    LaValley, Brian W.; Little, Phillip D.; Walter, Chris J.

    2011-01-01

    This report documents the capabilities of the EDICT tools for error modeling and error propagation analysis when operating with models defined in the Architecture Analysis & Design Language (AADL). We discuss our experience using the EDICT error analysis capabilities on a model of the Scalable Processor-Independent Design for Enhanced Reliability (SPIDER) architecture that uses the Reliable Optical Bus (ROBUS). Based on these experiences we draw some initial conclusions about model based design techniques for error modeling and analysis of highly reliable computing architectures.

  1. The Effects of Integrating Mobile and CAD Technology in Teaching Design Process for Malaysian Polytechnic Architecture Student in Producing Creative Product

    ERIC Educational Resources Information Center

    Hassan, Isham Shah; Ismail, Mohd Arif; Mustapha, Ramlee

    2010-01-01

    The purpose of this research is to examine the effect of integrating the digital media such as mobile and CAD technology on designing process of Malaysian polytechnic architecture students in producing a creative product. A website is developed based on Caroll's minimal theory, while mobile and CAD technology integration is based on Brown and…

  2. Universal Design and Continuing Professional Development for Architects: An Irish Case Study.

    PubMed

    Shea, Eoghan C O; Basnak, Megan; Bucholz, Merritt; Steinfeld, Edward

    2016-01-01

    The Tomar Resolution urged that all occupations working in the built environment be educated in the principles and measures of Universal Design in order to facilitate all people playing a full role in society. For Architects and Architectural Technologists, under-graduate education will continue to have a major role to play. At the same time in the Republic of Ireland, and in an ever-growing number of other jurisdictions, Continuous Professional Development (CPD) is a requirement for all Architects and Architectural Technologists and can significantly affect knowledge, skill and competence in a number of subjects including Universal Design. This paper looks at the results of a recent survey of Architects and Architectural Technologists practising in Ireland, architectural educators, and client bodies that sought to assess the following: 1. How inherent is Universal Design knowledge to current building design practice? 2. What are the current Universal Design education and training needs of Architects and Architectural Technologists practising in Ireland? 3. Which Universal Design themes and topics are of most interest to Architects and Architectural Technologists practising in Ireland? 4. To what extent does existing CPD for Architects and Architectural Technologists practising in Ireland address Universal Design topics? 5. What can motivate Architects and Architectural Technologists practising in Ireland to access Universal Design CPD? 6. What are the most effective means by which to deliver Universal Design CPD to Architects and Architectural Technologists practising in Ireland? The survey discussed in this paper is one phase of a longer study aimed at providing a research base for developing CPD in Universal Design for Architects and Architectural Technologists practising in Ireland. PMID:27534304

  3. Architecture Studio Archive: A Case Study in the Comprehensive Digital Capture and Repository of Student Design Work as an Aid to Teaching, Research, and Accreditation

    ERIC Educational Resources Information Center

    Anderson, Ross; Arndell, Michael; Christensen, Sten

    2009-01-01

    The "Architecture Studio Archive" pilot sought to form a comprehensive digital archive of the diverse student work conducted in the first year of the Bachelor of Design in Architecture Degree at the University of Sydney. The design studio is the primary vehicle for teaching architectural design. It is a locus for creative activity, with students…

  4. Design and architecture of the Mars relay network planning and analysis framework

    NASA Technical Reports Server (NTRS)

    Cheung, K. M.; Lee, C. H.

    2002-01-01

    In this paper we describe the design and architecture of the Mars Network planning and analysis framework that supports generation and validation of efficient planning and scheduling strategy. The goals are to minimize the transmitting time, minimize the delaying time, and/or maximize the network throughputs. The proposed framework would require (1) a client-server architecture to support interactive, batch, WEB, and distributed analysis and planning applications for the relay network analysis scheme, (2) a high-fidelity modeling and simulation environment that expresses link capabilities between spacecraft to spacecraft and spacecraft to Earth stations as time-varying resources, and spacecraft activities, link priority, Solar System dynamic events, the laws of orbital mechanics, and other limiting factors as spacecraft power and thermal constraints, (3) an optimization methodology that casts the resource and constraint models into a standard linear and nonlinear constrained optimization problem that lends itself to commercial off-the-shelf (COTS)planning and scheduling algorithms.

  5. Architecture for computer vision application development within the HORUS system

    NASA Astrophysics Data System (ADS)

    Eckstein, Wolfgang; Steger, Carsten T.

    1997-04-01

    An integrated program development environment for computer vision tasks is presented. The first component of the system is concerned with the visualization of 2D image data. This is done in an object-oriented manner. Programming of the visualization process is achieved by arranging the representations of iconic data in an interactively customizable hierarchy that establishes an intuitive flow of messages between data representations seen as objects. The visualization objects called displays, are designed for different levels of abstraction, starting from direct iconic representation down to numerical features, depending on the information needed. Two types of messages are passed between these displays, which yield a clear and intuitive semantics. The second component of the system is an interactive tool for rapid program development. It helps the user in selecting appropriate operators in many ways. For example, the system provides context sensitive selection of possible alternative operators as well as suitable successors and required predecessors. For the task of choosing appropriate parameters several alternatives exist. For example, the system provides default values as well as lists of useful values for al parameters of each operator. To achieve this, a knowledge base containing facts about the operators and their parameters is used. Second, through the tight coupling of the two system components, parameters can be determined quickly by data exploration within the visualization components.

  6. Architecture and design of third Qinshan nuclear power plant risk monitor

    SciTech Connect

    Wang, F.; Li, Y.; Wang, J.; Wang, J.; Hu, L.

    2012-07-01

    Risk monitor is a real-time analysis tool to determine the point-in-time risk based on actual plant configuration, which is an important application of PSA (Probabilistic Safety Assessment). In this study the status and development trend of risk monitor were investigated and a risk monitor named TQRM (Third Qinshan nuclear power plant Risk Monitor) was developed. The B/S architecture and the two key computing methods pre-solved and resolving PSA model method adopted in TQRM were introduced. The functions and technical features were also presented. Now TQRM has been on-line for more than one year and used in the operation and maintenance of TQNPP. The experience demonstrates that TQRM's results are accurate and real-time, the architecture is stable, and it could be extended and maintained conveniently for any other Risk-Informed Application. (authors)

  7. Software Architecture for Simultaneous Process Control and Software Development/Modification

    SciTech Connect

    Lenarduzzi, Roberto; Hileman, Michael S; McMillan, David E; Holmes Jr, William; Blankenship, Mark; Wilder, Terry

    2011-01-01

    A software architecture is described that allows modification of some application code sections while the remainder of the application continues executing. This architecture facilitates long term testing and process control because the overall process need not be stopped and restarted to allow modifications or additions to the software. A working implementation using National Instruments LabVIEW{trademark} sub-panel and shared variable features is described as an example. This architecture provides several benefits in both the program development and execution environments. The software is easier to maintain and it is not necessary to recompile the entire program after a modification.

  8. Space station data system analysis/architecture study. Task 2: Options development, DR-5. Volume 3: Programmatic options

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Task 2 in the Space Station Data System (SSDS) Analysis/Architecture Study is the development of an information base that will support the conduct of trade studies and provide sufficient data to make design/programmatic decisions. This volume identifies the preferred options in the programmatic category and characterizes these options with respect to performance attributes, constraints, costs, and risks. The programmatic category includes methods used to administrate/manage the development, operation and maintenance of the SSDS. The specific areas discussed include standardization/commonality; systems management; and systems development, including hardware procurement, software development and system integration, test and verification.

  9. Architectural Design Education: Designing a Library, Public Communication and Information Center in the Manufacturing Zone of Central Eskis, Ehir Turkey, a Case Study

    ERIC Educational Resources Information Center

    Caglar, Nur; Uludag, Zeynep

    2006-01-01

    It is a fact that architectural design education has become the focus of an extremely complicated set of issues and conscientious debates. Therefore, to extend and challenge educational understanding in architecture it becomes crucial to exchange pedagogical practices. In this article, a specific theoretical approach and teaching methodology,…

  10. Space station data system analysis/architecture study. Task 2: Options development DR-5. Volume 1: Technology options

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The second task in the Space Station Data System (SSDS) Analysis/Architecture Study is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This volume identifies the preferred options in the technology category and characterizes these options with respect to performance attributes, constraints, cost, and risk. The technology category includes advanced materials, processes, and techniques that can be used to enhance the implementation of SSDS design structures. The specific areas discussed are mass storage, including space and round on-line storage and off-line storage; man/machine interface; data processing hardware, including flight computers and advanced/fault tolerant computer architectures; and software, including data compression algorithms, on-board high level languages, and software tools. Also discussed are artificial intelligence applications and hard-wire communications.

  11. Design of a fault tolerant airborne digital computer. Volume 1: Architecture

    NASA Technical Reports Server (NTRS)

    Wensley, J. H.; Levitt, K. N.; Green, M. W.; Goldberg, J.; Neumann, P. G.

    1973-01-01

    This volume is concerned with the architecture of a fault tolerant digital computer for an advanced commercial aircraft. All of the computations of the aircraft, including those presently carried out by analogue techniques, are to be carried out in this digital computer. Among the important qualities of the computer are the following: (1) The capacity is to be matched to the aircraft environment. (2) The reliability is to be selectively matched to the criticality and deadline requirements of each of the computations. (3) The system is to be readily expandable. contractible, and (4) The design is to appropriate to post 1975 technology. Three candidate architectures are discussed and assessed in terms of the above qualities. Of the three candidates, a newly conceived architecture, Software Implemented Fault Tolerance (SIFT), provides the best match to the above qualities. In addition SIFT is particularly simple and believable. The other candidates, Bus Checker System (BUCS), also newly conceived in this project, and the Hopkins multiprocessor are potentially more efficient than SIFT in the use of redundancy, but otherwise are not as attractive.

  12. Design mobile satellite system architecture as an integral part of the cellular access digital network

    NASA Technical Reports Server (NTRS)

    Chien, E. S. K.; Marinho, J. A.; Russell, J. E., Sr.

    1988-01-01

    The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols.

  13. Progress on the design of a data push architecture for an array of optimized time tagging pixels

    SciTech Connect

    Shapiro, S.; Cords, D.; Mani, S.; Holbrook, B.; Atlas, E.

    1993-06-01

    A pixel array has been proposed which features a completely data driven architecture. A pixel cell has been designed that has been optimized for this readout. It retains the features of preceding designs which allow low noise operation, time stamping, analog signal processing, XY address recording, ghost elimination and sparse data transmission. The pixel design eliminates a number of problems inherent in previous designs, by the use of sampled data techniques, destructive readout, and current mode output drivers. This architecture and pixel design is directed at applications such as a forward spectrometer at the SSC, an e{sup +}e{sup {minus}} B factory at SLAC, and fixed target experiments at FNAL.

  14. The Automated Instrumentation and Monitoring System (AIMS): Design and Architecture. 3.2

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Schmidt, Melisa; Schulbach, Cathy; Bailey, David (Technical Monitor)

    1997-01-01

    Whether a researcher is designing the 'next parallel programming paradigm', another 'scalable multiprocessor' or investigating resource allocation algorithms for multiprocessors, a facility that enables parallel program execution to be captured and displayed is invaluable. Careful analysis of such information can help computer and software architects to capture, and therefore, exploit behavioral variations among/within various parallel programs to take advantage of specific hardware characteristics. A software tool-set that facilitates performance evaluation of parallel applications on multiprocessors has been put together at NASA Ames Research Center under the sponsorship of NASA's High Performance Computing and Communications Program over the past five years. The Automated Instrumentation and Monitoring Systematic has three major software components: a source code instrumentor which automatically inserts active event recorders into program source code before compilation; a run-time performance monitoring library which collects performance data; and a visualization tool-set which reconstructs program execution based on the data collected. Besides being used as a prototype for developing new techniques for instrumenting, monitoring and presenting parallel program execution, AIMS is also being incorporated into the run-time environments of various hardware testbeds to evaluate their impact on user productivity. Currently, the execution of FORTRAN and C programs on the Intel Paragon and PALM workstations can be automatically instrumented and monitored. Performance data thus collected can be displayed graphically on various workstations. The process of performance tuning with AIMS will be illustrated using various NAB Parallel Benchmarks. This report includes a description of the internal architecture of AIMS and a listing of the source code.

  15. Architecture & Environment

    ERIC Educational Resources Information Center

    Erickson, Mary; Delahunt, Michael

    2010-01-01

    Most art teachers would agree that architecture is an important form of visual art, but they do not always include it in their curriculums. In this article, the authors share core ideas from "Architecture and Environment," a teaching resource that they developed out of a long-term interest in teaching architecture and their fascination with the…

  16. Robust Software Architecture for Robots

    NASA Technical Reports Server (NTRS)

    Aghazanian, Hrand; Baumgartner, Eric; Garrett, Michael

    2009-01-01

    Robust Real-Time Reconfigurable Robotics Software Architecture (R4SA) is the name of both a software architecture and software that embodies the architecture. The architecture was conceived in the spirit of current practice in designing modular, hard, realtime aerospace systems. The architecture facilitates the integration of new sensory, motor, and control software modules into the software of a given robotic system. R4SA was developed for initial application aboard exploratory mobile robots on Mars, but is adaptable to terrestrial robotic systems, real-time embedded computing systems in general, and robotic toys.

  17. Destination Deimos: A Design Reference Architecture for Initial Human Exploration of the Mars System

    NASA Technical Reports Server (NTRS)

    Logan, James S.; Adamo, D. R.

    2011-01-01

    The two biggest challenges to successful human operations in interplanetary space are flight dynamics, constrained by the cold hard physics of the rocket equation, and bioastronautics, the psychophysiological realities of human adaptation, or lack thereof, to the deep space environment. Without substantial innovation in project/mission architecture and vehicle design, human exploration of the Mars system could be problematic for decades. Although a human landing on Mars is inevitable, humans-in-the-loop telerobotic exploration from the outer Martian moon Deimos is the best way to begin. Precursor robotic missions for reconnaissance and local site preparation will be required.

  18. Human Exploration of Mars Design Reference Architecture 5.0, Addendum #2

    NASA Technical Reports Server (NTRS)

    Drake, Bret G. (Editor); Watts Kevin D. (Editor)

    2014-01-01

    This report serves as the second Addendum to NASA-SP-2009-566, "Human Exploration of Mars Design Reference Architecture 5.0." The data and descriptions contained within this Addendum capture some of the key assessments and studies produced since publication of the original document, predominately covering those conducted from 2009 through 2012. The assessments and studies described herein are for the most part independent stand-alone contributions. Effort has not been made to assimilate the findings to provide an updated integrated strategy. That is a recognized future effort. This report should not be viewed as constituting a formal plan for the human exploration of Mars.

  19. An Experiment in the Use of Computer-Based Education to Teach Energy Considerations in Architectural Design.

    ERIC Educational Resources Information Center

    Arumi, Francisco N.

    Computer programs capable of describing the thermal behavior of buildings are used to help architectural students understand environmental systems. The Numerical Simulation Laboratory at the Architectural School of the University of Texas at Austin was developed to provide the necessary software capable of simulating the energy transactions…

  20. Medical complications of intra-hospital patient transports: implications for architectural design and research.

    PubMed

    Ulrich, Roger S; Zhu, Xuemei

    2007-01-01

    Literature on healthcare architecture and evidence-based design has rarely considered explicitly that patient outcomes may be worsened by intra-hospital transport (IHT), which is defined as transport of patients within the hospital. The article focuses on the effects of IHTs on patient complications and outcomes, and the implications of such impacts for designing safer, better hospitals. A review of 22 scientific studies indicates that IHTs are subject to a wide range of complications, many of which occur frequently and have distinctly detrimental effects on patient stability and outcomes. The research suggests that higher patient acuity and longer transport durations are associated with more frequent and serious IHT-related complications and outcome effects. It appears no rigorous research has compared different hospital designs and layouts with respect to having possibly differential effects on transport-related complications and worsened outcomes. Nonetheless, certain design implications can be extracted from the existing research literature, including the importance of minimizing transport delays due to restricted space and congestion, and creating layouts that shorten IHT times for high-acuity patients. Limited evidence raises the possibility that elevator-dependent vertical building layouts may increase susceptibility to transport delays that worsen complications. The strong evidence indicating that IHTs trigger complications and worsen outcomes suggests a powerful justification for adopting acuity-adaptable rooms and care models that substantially reduce transports. A program of studies is outlined to address gaps in knowledge.Key WordsPatient transports, transports within hospitals, patient safety, evidence-based design, hospital design, healthcare architecture, intra-hospital transport complications, acuity-adaptable care, elevators, outcomes. PMID:21157716

  1. 41 CFR 102-76.25 - What standards must Federal agencies meet in providing architectural and interior design services?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... applicable to Federal buildings in 10 CFR part 435. ... Federal agencies meet in providing architectural and interior design services? 102-76.25 Section 102-76.25...) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 76-DESIGN AND CONSTRUCTION Design and Construction §...

  2. 41 CFR 102-76.25 - What standards must Federal agencies meet in providing architectural and interior design services?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... applicable to Federal buildings in 10 CFR part 435. ... Federal agencies meet in providing architectural and interior design services? 102-76.25 Section 102-76.25...) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 76-DESIGN AND CONSTRUCTION Design and Construction §...

  3. Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures.

    PubMed

    Afshar, M; Anaraki, A Pourkamali; Montazerian, H; Kadkhodapour, J

    2016-09-01

    Since the advent of additive manufacturing techniques, triply periodic minimal surfaces have emerged as a novel tool for designing porous scaffolds. Whereas scaffolds are expected to provide multifunctional performance, spatially changing pore patterns have been a promising approach to integrate mechanical characteristics of different architectures into a unique scaffold. Smooth morphological variations are also frequently seen in nature particularly in bone and cartilage structures and can be inspiring for designing of artificial tissues. In this study, we carried out experimental and numerical procedures to uncover the mechanical properties and deformation mechanisms of linearly graded porosity scaffolds for two different mathematically defined pore structures. Among TPMS-based scaffolds, P and D surfaces were subjected to gradient modeling to explore the mechanical responses for stretching and bending dominated deformations, respectively. Moreover, the results were compared to their corresponding uniform porosity structures. Mechanical properties were found to be by far greater for the stretching dominated structure (P-Surface). For bending dominated architecture (D-Surface), although there was no global fracture for uniform structures, graded structure showed a brittle fracture at 0.08 strain. A layer by layer deformation mechanism for stretching dominated structure was observed. For bending dominated scaffolds, deformation was accompanied by development of 45° shearing bands. Finite element simulations were also performed and the results showed a good agreement with the experimental observations. PMID:27281165

  4. Data handling electronics architecture and design for 450-nm to 2.35-μm hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Kassighian, Arlen; Dantes, Didier; Giunta, D.; Neveu, C.; Scandelli, Luca

    1997-08-01

    Undertaken by the European Space Agency (ESA-ESTEC), HIRIS (high resolution imaging spectrometer) instrument study program includes signal processing and instrument overall data handling design concept. HIRIS is an hyperspectral imager to be implemented on a low earth orbit type satellite. The instrument is a pushbroom operating around 800 km altitude sun-synchronous orbit with 40 m sub satellite spatial sampling, 30 km swath variable by plus or minus 30 degrees and a spectral coverage from 450 nm to 2350 nm at 10 nm average spectral sampling. One of the major critical areas is therefore to develop, manufacture and integrate a full detection chain, including front-end electronics, preamplifiers and video chains (analog processing), and radiometric correction devices and compression algorithm implementation (digital processing). Taking into account imaging mission and system constraints, a data handling architecture has been selected, based on the video processing standardization, what ever the focal plane design is. The off- line processing architecture leads to an optimization of the budgets while integrating the overall digital processing imposed by mission performances fulfillment. With an input data flow near 320 Mbps, the overall data handling delivers through the output formatter a 100 Mbps data flow to the ground after having performed the required on board processing (gain correction, offset correction, needed compression and encoding implementation).

  5. The planning coordinator: A design architecture for autonomous error recovery and on-line planning of intelligent tasks

    NASA Technical Reports Server (NTRS)

    Farah, Jeffrey J.

    1992-01-01

    Developing a robust, task level, error recovery and on-line planning architecture is an open research area. There is previously published work on both error recovery and on-line planning; however, none incorporates error recovery and on-line planning into one integrated platform. The integration of these two functionalities requires an architecture that possesses the following characteristics. The architecture must provide for the inclusion of new information without the destruction of existing information. The architecture must provide for the relating of pieces of information, old and new, to one another in a non-trivial rather than trivial manner (e.g., object one is related to object two under the following constraints, versus, yes, they are related; no, they are not related). Finally, the architecture must be not only a stand alone architecture, but also one that can be easily integrated as a supplement to some existing architecture. This thesis proposal addresses architectural development. Its intent is to integrate error recovery and on-line planning onto a single, integrated, multi-processor platform. This intelligent x-autonomous platform, called the Planning Coordinator, will be used initially to supplement existing x-autonomous systems and eventually replace them.

  6. Development and Industrialization of InGaN/GaN LEDs on Patterned Sapphire Substrates for Low Cost Emitter Architecture

    SciTech Connect

    Flemish, Joseph; Soer, Wouter

    2015-11-30

    Patterned sapphire substrate (PSS) technology has proven to be an effective approach to improve efficacy and reduce cost of light-emitting diodes (LEDs). The volume emission from the transparent substrate leads to high package efficiency, while the simple and robust architecture of PSS-based LEDs enables low cost. PSS substrates have gained wide use in mid-power LEDs over the past years. In this project, Lumileds has developed and industrialized PSS and epitaxy technology for high- power flip-chip LEDs to bring these benefits to a broader range of applications and accelerate the adoption of energy-efficient solid-state lighting (SSL). PSS geometries were designed for highly efficient light extraction in a flip-chip architecture and high-volume manufacturability, and corresponding sapphire patterning and epitaxy manufacturing processes were integrally developed. Concurrently, device and package architectures were developed to take advantage of the PSS flip-chip die in different types of products that meet application needs. The developed PSS and epitaxy technology has been fully implemented in manufacturing at Lumileds’ San Jose, CA location, and incorporated in illumination-grade LED products that have been successfully introduced to the market, including LUXEON Q and LUXEON FlipChip White.

  7. Architectures and Design for Next-Generation Hybrid Circuit/Packet Networks

    NASA Astrophysics Data System (ADS)

    Vadrevu, Sree Krishna Chaitanya

    Internet traffic is increasing rapidly at an annual growth rate of 35% with aggregate traffic exceeding several Exabyte's per month. The traffic is also becoming heterogeneous in bandwidth and quality-of-service (QoS) requirements with growing popularity of cloud computing, video-on-demand (VoD), e-science, etc. Hybrid circuit/packet networks which can jointly support circuit and packet services along with the adoption of high-bit-rate transmission systems form an attractive solution to address the traffic growth. 10 Gbps and 40 Gbps transmission systems are widely deployed in telecom backbone networks such as Comcast, AT&T, etc., and network operators are considering migration to 100 Gbps and beyond. This dissertation proposes robust architectures, capacity migration strategies, and novel service frameworks for next-generation hybrid circuit/packet architectures. In this dissertation, we study two types of hybrid circuit/packet networks: a) IP-over-WDM networks, in which the packet (IP) network is overlaid on top of the circuit (optical WDM) network and b) Hybrid networks in which the circuit and packet networks are deployed side by side such as US DoE's ESnet. We investigate techniques to dynamically migrate capacity between the circuit and packet sections by exploiting traffic variations over a day, and our methods show that significant bandwidth savings can be obtained with improved reliability of services. Specifically, we investigate how idle backup circuit capacity can be used to support packet services in IP-over-WDM networks, and similarly, excess capacity in packet network to support circuit services in ESnet. Control schemes that enable our mechanisms are also discussed. In IP-over-WDM networks, with upcoming 100 Gbps and beyond, dedicated protection will induce significant under-utilization of backup resources. We investigate design strategies to loan idle circuit backup capacity to support IP/packet services. However, failure of backup circuits will

  8. Architectural Considerations for an Educational Research Center for Child Development (ERCCD).

    ERIC Educational Resources Information Center

    Linder, Ronald

    Architectural considerations and recommendations to facilitate the work of an Educational Research Center for Child Development are presented. The purposes of the center are to demonstrate model programs for children, train student and child development professionals, and facilitate and disseminate research on young children. Program…

  9. The development of microbatteries based on three-dimensional architectures for autonomous micro devices

    NASA Astrophysics Data System (ADS)

    Min, Hong-Seok

    2007-12-01

    The goal of fabricating three-dimensional (3D) microbatteries is to improve upon the performance of 2D microbatteries or thin-film batteries by reconfiguring existing materials in a more advanced architecture. 3D battery architectures offer a new approach for miniaturized power sources. These batteries are designed to have a small areal foot print and yet provide sufficient power and energy density to operate autonomous MEMS devices. The more convenient approaches for fabricating such batteries are based on micromachining techniques such as electrodeposition of high aspect ratio metal rods in an array configuration. Three types of three-dimensional microbatteries were fabricated and characterized: Ni-Zn, zinc-air, and Ag-Zn. These different types of microbatteries use different chemistries but all have the common feature of an out-of-plane array of micro-post electrodes. A 3D Ni-Zn microbattery was fabricated and demonstrated proper charge-discharge behavior for the first few cycles. The development of 3D zinc-air microbattery showed high discharge capability under various discharge conditions. Furthermore, performance of 3D zinc-air microbattery was demonstrated by successfully powering an electronic device. During discharge, the 3D zinc-air microbattery exhibited an electrode reaction which formed hollow ZnO electrodes by the Kirkendall effect. This electrode reaction strongly supports the functionality of the 3D microbattery. The fabrication of the Ag-Zn microbattery was accomplished by Ag electrode formation, separator coating, and Zn sedimentation. Due to imperfections in the separator coating, the 3D Ag-Zn microbattery had electrical shorts.

  10. Architecture Design for the Space Situational Awareness System in the Preparedness Plan for Space Hazards of Republic of Korea

    NASA Astrophysics Data System (ADS)

    Choi, E.; Cho, S.; Shin, S.; Park, J.; Kim, J.; Kim, D.

    The threat posed by asteroids and comets has become one of the important issues. Jinju meteorite discovered in March 2014 has expanded the interest of the people of the fall of the natural space objects. Furthermore, the growing quantity of space debris is a serious threat to satellites and other spacecraft, which risk being damaged or even destroyed. In May of 2014, Korea established the preparedness plan for space hazards according to the space development promotion act which is amended to take action with respect to hazards from space. This plan is largely composed of 3 items such as system, technology and infrastructure. System is included the establishment and management of national space hazards headquarters at risk situation. Korea Astronomy and Space Science Institute (KASI) was designated as a space environment monitoring agency under the ministry of science, ICT and future planning (MSIP). Technology is supposed to develop the space situational awareness system that can monitor and detect space objects. For infrastructure, research and development of core technology will be promoted for capabilities improvement of space hazards preparedness such as software tools, application and data systems. This paper presents the architectural design for building space situational awareness system. The trade-off study of space situational awareness system for the Korea situation was performed. The results have shown the proposed architectural design. The baseline architecture is composed of Integrated Analysis System and Space Objects Monitoring System. Integrated Analysis System collects the status data from Space Objects Monitoring System and analyzes the space risk information through a data processing. For Space Objects Monitoring System, the all-sky surveillance camera, array radar and meteoroid surveillance sensor networks were considered. This system focuses on not only the threat of a large artificial satellite and natural space objects such as asteroids that

  11. Effects of Spatial Experiences & Cognitive Styles in the Solution Process of Space-Based Design Problems in the First Year of Architectural Design Education

    ERIC Educational Resources Information Center

    Erkan Yazici, Yasemin

    2013-01-01

    There are many factors that influence designers in the architectural design process. Cognitive style, which varies according to the cognitive structure of persons, and spatial experience, which is created with spatial data acquired during life are two of these factors. Designers usually refer to their spatial experiences in order to find solutions…

  12. Constellation Program Design Challenges as Opportunities for Educational Outreach and Workforce Development for Senior Design Classes

    NASA Technical Reports Server (NTRS)

    Trevino, Robert C.

    2009-01-01

    The Texas Space Grant Consortium (TSGC) and the Exploration Systems Mission Directorate (ESMD) both have programs that present design challenges for university senior design classes that offer great opportunities for educational outreach and workforce development. These design challenges have been identified by NASA engineers and researchers as real design problems faced by the Constellation Program in its exploration missions and architecture. Student teams formed in their senior design class select and then work on a design challenge for one or two semesters. The senior design class follows the requirements set by their university, but it must also comply with the Accreditation Board for Engineering and Technology (ABET) in order to meet the class academic requirements. Based on a one year fellowship at a TSGC university under the NASA Administrator's Fellowship Program (NAFP) and several years of experience, results and metrics are presented on the NASA Design Challenge Program.

  13. A Phobos-Deimos Mission as an Element of the NASA Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2011-01-01

    NASA has conducted a series of mission studies over the past 25 years examining the eventual exploration of the surface of Mars by humans. The latest version of this evolutionary series of design reference missions/architectures - Design Reference Architecture 5 or DRA-5 - was completed in 2007. This paper examines the implications of including a human mission to explore the moons of Mars and teleoperate robots in various locations, but not to land the human crews on Mars, as an element of this reference architecture. Such a mission has been proposed several times during this same 25 year evolution leading up to the completion of DRA-5 primarily as a mission of testing the in-space vehicles and operations while surface vehicles and landers are under development. But such a precursor or test mission has never been explicitly included as an element of this Architecture. This paper will first summarize the key features of the DRA-5 to provide context for the remainder of the assessment. This will include a description of the in-space vehicles that would be the subject of a shakedown test during the Mars orbital mission. A decision tree will be used to illustrate the factors that will be analyzed, and the sequence in which they will be addressed, for this assessment. The factors that will be analyzed include the type of interplanetary transfer orbit (opposition class versus conjunction class), the type of parking orbit (circular versus elliptical), and the type of propulsion technology (high thrust chemical versus nuclear thermal rocket). The manner in which each of these factors impacts an individual mission will be described. In addition to the direct impact of these factors, additional considerations impacting crew health and overall programmatic outcomes will be discussed. Numerical results for each of the factors in the decision tree will be grouped with derived qualitative impacts from crew health and programmatic consideration. These quantitative and qualitative

  14. Macro- and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing.

    PubMed

    Reed, Stephanie; Lau, Grace; Delattre, Benjamin; Lopez, David Don; Tomsia, Antoni P; Wu, Benjamin M

    2016-03-01

    While many tissue-engineered constructs aim to treat cartilage defects, most involve chondrocyte or stem cell seeding on scaffolds. The clinical application of cell-based techniques is limited due to the cost of maintaining cellular constructs on the shelf, potential immune response to allogeneic cell lines, and autologous chondrocyte sources requiring biopsy from already diseased or injured, scarce tissue. An acellular scaffold that can induce endogenous influx and homogeneous distribution of native stem cells from bone marrow holds great promise for cartilage regeneration. This study aims to develop such an acellular scaffold using designed, channeled architecture that simultaneously models the native zones of articular cartilage and subchondral bone. Highly porous, hydrophilic chitosan-alginate (Ch-Al) scaffolds were fabricated in three-dimensionally printed (3DP) molds designed to create millimeter scale macro-channels. Different polymer preform casting techniques were employed to produce scaffolds from both negative and positive 3DP molds. Macro-channeled scaffolds improved cell suspension distribution and uptake overly randomly porous scaffolds, with a wicking volumetric flow rate of 445.6 ± 30.3 mm(3) s(-1) for aqueous solutions and 177 ± 16 mm(3) s(-1) for blood. Additionally, directional freezing was applied to Ch-Al scaffolds, resulting in lamellar pores measuring 300 μm and 50 μm on the long and short axes, thus creating micrometer scale micro-channels. After directionally freezing Ch-Al solution cast in 3DP molds, the combined macro- and micro-channeled scaffold architecture enhanced cell suspension uptake beyond either macro- or micro-channels alone, reaching a volumetric flow rate of 1782.1 ± 48 mm(3) s(-1) for aqueous solutions and 440.9 ± 0.5 mm(3) s(-1) for blood. By combining 3DP and directional freezing, we can control the micro- and macro-architecture of Ch-Al to drastically improve cell influx into and distribution within the scaffold

  15. The Joyful Aging Club: An Example of Universal Design Practice on Architectural and Urban Settings.

    PubMed

    Guimarães, Marcelo Pinto; Picceli, Angelica Baldin; Pereira, Carolina Furtado

    2016-01-01

    Universal Design is a very simple idea that is based on complex decisions and it involves user satisfaction during performance of activities and socially inclusive interaction. Generally, the design guidelines for application in architecture requires that both students and professionals explore their imagination about the situations in which the design of a certain building becomes more pleasant and inviting than simply accessible to the needs of people with permanent and temporary disabilities. In this paper, the aim is to discuss peculiar aspects in the design of a three storey building that make it special. The result of technical solutions create environments that are not restricted to the boundaries of a site. It also encompasses the street, the crossing, the corner square and traffic signals and marks beside some accessible parking areas. The building design is an academic exploration of potential usage to an actual site. It belongs to an institution for social network of people aging above sixty-five year old. PMID:27534307

  16. Development of the Design Laboratory.

    ERIC Educational Resources Information Center

    Silla, Harry

    1986-01-01

    Describes the design laboratory at the Stevens Institute of Technology (SIT). Considers course objectives, design projects, project structure, mechanical design, project management, and laboratory operation. This laboratory complements SIT's course in process design, giving students a complete design experience. (JN)

  17. Design and evaluation of a Stochastic Optimal Feed-forward and Feedback Technology (SOFFT) flight control architecture

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.; Proffitt, Melissa S.

    1994-01-01

    This paper describes the design and evaluation of a stochastic optimal feed-forward and feedback technology (SOFFT) control architecture with emphasis on the feed-forward controller design. The SOFFT approach allows the designer to independently design the feed-forward and feedback controllers to meet separate objectives and then integrate the two controllers. The feed-forward controller has been integrated with an existing high-angle-of-attack (high-alpha) feedback controller. The feed-forward controller includes a variable command model with parameters selected to satisfy level 1 flying qualities with a high-alpha adjustment to achieve desired agility guidelines, a nonlinear interpolation approach that scales entire matrices for approximation of the plant model, and equations for calculating feed-forward gains developed for perfect plant-model tracking. The SOFFT design was applied to a nonlinear batch simulation model of an F/A-18 aircraft modified for thrust vectoring. Simulation results show that agility guidelines are met and that the SOFFT controller filters undesired pilot-induced frequencies more effectively during a tracking task than a flight controller that has the same feedback control law but does not have the SOFFT feed-forward control.

  18. Development of Network-based Communications Architectures for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Slywczak, Richard A.

    2007-01-01

    Since the Vision for Space Exploration (VSE) announcement, NASA has been developing a communications infrastructure that combines existing terrestrial techniques with newer concepts and capabilities. The overall goal is to develop a flexible, modular, and extensible architecture that leverages and enhances terrestrial networking technologies that can either be directly applied or modified for the space regime. In addition, where existing technologies leaves gaps, new technologies must be developed. An example includes dynamic routing that accounts for constrained power and bandwidth environments. Using these enhanced technologies, NASA can develop nodes that provide characteristics, such as routing, store and forward, and access-on-demand capabilities. But with the development of the new infrastructure, challenges and obstacles will arise. The current communications infrastructure has been developed on a mission-by-mission basis rather than an end-to-end approach; this has led to a greater ground infrastructure, but has not encouraged communications between space-based assets. This alone provides one of the key challenges that NASA must encounter. With the development of the new Crew Exploration Vehicle (CEV), NASA has the opportunity to provide an integration path for the new vehicles and provide standards for their development. Some of the newer capabilities these vehicles could include are routing, security, and Software Defined Radios (SDRs). To meet these needs, the NASA/Glenn Research Center s (GRC) Network Emulation Laboratory (NEL) has been using both simulation and emulation to study and evaluate these architectures. These techniques provide options to NASA that directly impact architecture development. This paper identifies components of the infrastructure that play a pivotal role in the new NASA architecture, develops a scheme using simulation and emulation for testing these architectures and demonstrates how NASA can strengthen the new infrastructure by

  19. Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage

    PubMed Central

    Xue, Yuhua; Ding, Yong; Niu, Jianbing; Xia, Zhenhai; Roy, Ajit; Chen, Hao; Qu, Jia; Wang, Zhong Lin; Dai, Liming

    2015-01-01

    One-dimensional (1D) carbon nanotubes (CNTs) and 2D single-atomic layer graphene have superior thermal, electrical, and mechanical properties. However, these nanomaterials exhibit poor out-of-plane properties due to the weak van der Waals interaction in the transverse direction between graphitic layers. Recent theoretical studies indicate that rationally designed 3D architectures could have desirable out-of-plane properties while maintaining in-plane properties by growing CNTs and graphene into 3D architectures with a seamless nodal junction. However, the experimental realization of seamlessly-bonded architectures remains a challenge. We developed a strategy of creating 3D graphene-CNT hollow fibers with radially aligned CNTs (RACNTs) seamlessly sheathed by a cylindrical graphene layer through a one-step chemical vapor deposition using an anodized aluminum wire template. By controlling the aluminum wire diameter and anodization time, the length of the RACNTs and diameter of the graphene hollow fiber can be tuned, enabling efficient energy conversion and storage. These fibers, with a controllable surface area, meso-/micropores, and superior electrical properties, are excellent electrode materials for all-solid-state wire-shaped supercapacitors with poly(vinyl alcohol)/H2SO4 as the electrolyte and binder, exhibiting a surface-specific capacitance of 89.4 mF/cm2 and length-specific capacitance up to 23.9 mF/cm, — one to four times the corresponding record-high capacities reported for other fiber-like supercapacitors. Dye-sensitized solar cells, fabricated using the fiber as a counter electrode, showed a power conversion efficiency of 6.8% and outperformed their counterparts with an expensive Pt wire counter electrode by a factor of 2.5. These novel fiber-shaped graphene-RACNT energy conversion and storage devices are so flexible they can be woven into fabrics as power sources. PMID:26601246

  20. Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage.

    PubMed

    Xue, Yuhua; Ding, Yong; Niu, Jianbing; Xia, Zhenhai; Roy, Ajit; Chen, Hao; Qu, Jia; Wang, Zhong Lin; Dai, Liming

    2015-09-01

    One-dimensional (1D) carbon nanotubes (CNTs) and 2D single-atomic layer graphene have superior thermal, electrical, and mechanical properties. However, these nanomaterials exhibit poor out-of-plane properties due to the weak van der Waals interaction in the transverse direction between graphitic layers. Recent theoretical studies indicate that rationally designed 3D architectures could have desirable out-of-plane properties while maintaining in-plane properties by growing CNTs and graphene into 3D architectures with a seamless nodal junction. However, the experimental realization of seamlessly-bonded architectures remains a challenge. We developed a strategy of creating 3D graphene-CNT hollow fibers with radially aligned CNTs (RACNTs) seamlessly sheathed by a cylindrical graphene layer through a one-step chemical vapor deposition using an anodized aluminum wire template. By controlling the aluminum wire diameter and anodization time, the length of the RACNTs and diameter of the graphene hollow fiber can be tuned, enabling efficient energy conversion and storage. These fibers, with a controllable surface area, meso-/micropores, and superior electrical properties, are excellent electrode materials for all-solid-state wire-shaped supercapacitors with poly(vinyl alcohol)/H2SO4 as the electrolyte and binder, exhibiting a surface-specific capacitance of 89.4 mF/cm(2) and length-specific capacitance up to 23.9 mF/cm, - one to four times the corresponding record-high capacities reported for other fiber-like supercapacitors. Dye-sensitized solar cells, fabricated using the fiber as a counter electrode, showed a power conversion efficiency of 6.8% and outperformed their counterparts with an expensive Pt wire counter electrode by a factor of 2.5. These novel fiber-shaped graphene-RACNT energy conversion and storage devices are so flexible they can be woven into fabrics as power sources. PMID:26601246

  1. Generic POCC architectures

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This document describes a generic POCC (Payload Operations Control Center) architecture based upon current POCC software practice, and several refinements to the architecture based upon object-oriented design principles and expected developments in teleoperations. The current-technology generic architecture is an abstraction based upon close analysis of the ERBS, COBE, and GRO POCC's. A series of three refinements is presented: these may be viewed as an approach to a phased transition to the recommended architecture. The third refinement constitutes the recommended architecture, which, together with associated rationales, will form the basis of the rapid synthesis environment to be developed in the remainder of this task. The document is organized into two parts. The first part describes the current generic architecture using several graphical as well as tabular representations or 'views.' The second part presents an analysis of the generic architecture in terms of object-oriented principles. On the basis of this discussion, refinements to the generic architecture are presented, again using a combination of graphical and tabular representations.

  2. Development of a Thermal Control Architecture for the Mars Exploration Rovers

    NASA Astrophysics Data System (ADS)

    Novak, Keith S.; Phillips, Charles J.; Birur, Gajanana C.; Sunada, Eric T.; Pauken, Michael T.

    2003-01-01

    In May and June of 2003, the National Aeronautics and Space Administration (NASA) will launch two roving science vehicles on their way to Mars. They will land on Mars in January and February of 2004 and carry out 90-Sol missions. This paper addresses the thermal design architecture of the Mars Exploration Rover (MER) developed for Mars surface operations. The surface atmosphere temperature on Mars can vary from 0°C in the heat of the day to -100°C in the early morning, prior to sunrise. Heater usage at night must be minimized in order to conserve battery energy. The desire to minimize nighttime heater energy led to a design in which all temperature sensitive electronics and the battery were placed inside a well-insulated (carbon-opacified aerogel lined) Warm Electronics Box (WEB). In addition, radioisotope heater units (RHU's, non-electric heat sources) were mounted on the battery and electronics inside the WEB. During the Martian day, the electronics inside the WEB dissipate a large amount of energy (over 710 W*hrs). This heat energy raises the internal temperatures inside the WEB. Hardware items that have similar temperature limits were conductively coupled together to share heat and concentrate thermal mass. Thermal mass helped to minimize temperature increases in the hot case (with maximum internal dissipation) and minimize temperature decreases in the cold case (with minimum internal dissipation). In order to prevent the battery from exceeding its maximum allowable flight temperature, wax-actuated passive thermal switches were placed between the battery and an external radiator. This paper discusses the design philosophies and system requirements that resulted in a successful Mars rover thermal design.

  3. New design concepts for energy-conserving buildings. Results of a national competition among students in schools of architecture

    SciTech Connect

    1982-01-01

    The National Student Competition in Energy Conscious Design held among professional schools of architecture in 1976 is documented. Fifty-five schools participated, submitting 115 entries; twelve were chosen as finalists. Details are presented on the twelve winning designs and excerpts from the remaining 103 entries are published. (MCW)

  4. Power Requirements for The NASA Mars Design Reference Architecture (DRA) 5.0

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    2009-01-01

    This paper summarizes the power systems analysis results from NASA s recent Mars DRA 5.0 study which examined three architecture options and resulting mission requirements for a human Mars landing mission in the post-2030 timeframe. DRA 5.0 features a long approximately 500 day surface stay split mission using separate cargo and crewed Mars transfer vehicles. Two cargo flights, utilizing minimum energy trajectories, pre-deploy a cargo lander to the surface and a habitat lander into a 24-hour elliptical Mars parking orbit where it remains until the arrival of the crew during the next mission opportunity approximately 26 months later. The pre-deployment of cargo poses unique challenges for set-up and emplacement of surface assets that results in the need for self or robotically deployed designs. Three surface architecture options were evaluated for breadth of science content, extent of exploration range/capability and variations in system concepts and technology. This paper describes the power requirements for the surface operations of the three mission options, power system analyses including discussion of the nuclear fission, solar photovoltaic and radioisotope concepts for main base power and long range mobility.

  5. Parallel software requirements to the design of a general architecture: application to the image processing

    NASA Astrophysics Data System (ADS)

    Bonnin, Patrick J.; Hoeltzener-Douarin, Brigitte; Aubin, N.; Cartier, S.; Porcher, Thierry; Fiorini, P.; Zavidovique, Bertrand

    1993-10-01

    A great number of parallel computer architectures have been proposed, whether they are SIMD machines (Single Instruction Multiple Data) with lots of quite simple processors, or MIMD machines (Multiple Instruction Multiple Data) containing few, but powerful processors. Each one claims to offer some kind of an optimality at the hardware level. But implementing parallel image processing algorithms to make them run in real time will remain a real challenge; it addresses rather the control of communication networks between processors (message passing, circuit switching..) or the computing model (e.g. data parallel model). In that respect, our goal here is to point out some algorithmic needs to distribute image processing operators. They will be translated first in terms of programming models, more general then image processing applications, and then as hardware properties of the processor network. In that way, we do not design yet another parallel machine dedicated to image processing, but a more general parallel architecture which one will be able to efficiently implement different kinds of programming models.

  6. Collection Development "Universal Design": Design for Everyone

    ERIC Educational Resources Information Center

    Felix, Lisa

    2008-01-01

    As the first wave of baby boomers hit their "golden years," there is a growing demand for housing that meets their changing physical needs. The older and disabled population face a lot of physical challenges in a traditional home. Before homeowners can modify their houses, they must first understand the key design terminology involved.…

  7. Architectural design of the pelvic floor is consistent with muscle functional subspecialization

    PubMed Central

    Tuttle, Lori J.; Nguyen, Olivia T.; Cook, Mark S.; Alperin, Marianna; Shah, Sameer B.; Ward, Samuel R.

    2014-01-01

    Introduction and hypothesis Skeletal muscle architecture is the strongest predictor of a muscle’s functional capacity. The purpose of this study was to define the architectural properties of the deep muscles of the female pelvic floor (PFMs) to elucidate their structure–function relationships. Methods PFMs coccygeus (C), iliococcygeus (IC), and pubovisceral (PV) were harvested en bloc from ten fixed human cadavers (mean age 85 years, range 55–102). Fundamental architectural parameters of skeletal muscles [physiological cross-sectional area (PCSA), normalized fiber length, and sarcomere length (Ls)] were determined using validated methods. PCSA predicts muscle-force production, and normalized fiber length is related to muscle excursion. These parameters were compared using repeated measures analysis of variance (ANOVA) with post hoc t tests, as appropriate. Significance was set to α=0.05. Results PFMs were thinner than expected based on data reported from imaging studies and in vivo palpation. Significant differences in fiber length were observed across PFMs: C=5.29±0.32 cm, IC=7.55±0.46 cm, PV=10.45±0.67 cm (p<0.001). Average Ls of all PFMs was short relative to the optimal Ls of 2.7 µm of other human skeletal muscles: C=2.05±0.02 µm, IC=2.02±0.02 µm, PC/PR=2.07±0.01 µm (p=<0.001 compared with 2.7 µm; p=0.15 between PFMs, power=0.46). Average PCSA was very small compared with other human muscles, with no significant difference between individual PFMs: C=0.71±0.06 cm2, IC=0.63±0.04 cm2, PV=0.59±0.05 cm2 (p=0.21, power=0.27). Overall, C had shortest fibers, making it a good stabilizer. PV demonstrated the longest fibers, suggesting that it functions to produce large excursions. Conclusions PFM design shows individual muscles demonstrating differential architecture, corresponding to specialized function in the pelvic floor. PMID:23903821

  8. Design of an Area-Efficient and Low-Power Hierarchical NoC Architecture Based on Circuit Switching

    NASA Astrophysics Data System (ADS)

    Kim, Woo Joo; Lee, Sung Hee; Hwang, Sun Young

    This paper presents a hierarchical NoC architecture to support GT (Guaranteed Throughput) signals to process multimedia data in embedded systems. The architecture provides a communication environment that meets the diverse conditions of communication constraints among IPs in power and area. With a system based on packet switching, which requires storage/control circuits to support GT signals, it is hard to satisfy design constraints in area, scalability and power consumption. This paper proposes a hierarchical 4 × 4 × 4 mesh-type NoC architecture based on circuit switching, which is capable of processing GT signals requiring high throughput. The proposed NoC architecture shows reduction in area by 50.2% and in power consumption by 57.4% compared with the conventional NoC architecture based on circuit switching. These figures amount to by 72.4% and by 86.1%, when compared with an NoC architecture based on packet switching. The proposed NoC architecture operates in the maximum throughput of 19.2Gb/s.

  9. Genetic architecture and regulatory networks in oilseed development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic analysis of global gene expression level variation provides evidence for transcriptional regulators and gene network relationships. Plant seeds are an important source of oil and protein, and a genome-wide assessment of transcriptional regulation during seed development offers insight into t...

  10. Electrical Grounding Architecture for Unmanned Spacecraft

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This handbook is approved for use by NASA Headquarters and all NASA Centers and is intended to provide a common framework for consistent practices across NASA programs. This handbook was developed to describe electrical grounding design architecture options for unmanned spacecraft. This handbook is written for spacecraft system engineers, power engineers, and electromagnetic compatibility (EMC) engineers. Spacecraft grounding architecture is a system-level decision which must be established at the earliest point in spacecraft design. All other grounding design must be coordinated with and be consistent with the system-level architecture. This handbook assumes that there is no one single 'correct' design for spacecraft grounding architecture. There have been many successful satellite and spacecraft programs from NASA, using a variety of grounding architectures with different levels of complexity. However, some design principles learned over the years apply to all types of spacecraft development. This handbook summarizes those principles to help guide spacecraft grounding architecture design for NASA and others.

  11. Intrauterine Growth Restriction Alters Mouse Intestinal Architecture during Development.

    PubMed

    Fung, Camille M; White, Jessica R; Brown, Ashley S; Gong, Huiyu; Weitkamp, Jörn-Hendrik; Frey, Mark R; McElroy, Steven J

    2016-01-01

    Infants with intrauterine growth restriction (IUGR) are at increased risk for neonatal and lifelong morbidities affecting multiple organ systems including the intestinal tract. The underlying mechanisms for the risk to the intestine remain poorly understood. In this study, we tested the hypothesis that IUGR affects the development of goblet and Paneth cell lineages, thus compromising the innate immunity and barrier functions of the epithelium. Using a mouse model of maternal thromboxane A2-analog infusion to elicit maternal hypertension and resultant IUGR, we tested whether IUGR alters ileal maturation and specifically disrupts mucus-producing goblet and antimicrobial-secreting Paneth cell development. We measured body weights, ileal weights and ileal lengths from birth to postnatal day (P) 56. We also determined the abundance of goblet and Paneth cells and their mRNA products, localization of cellular tight junctions, cell proliferation, and apoptosis to interrogate cellular homeostasis. Comparison of the murine findings with human IUGR ileum allowed us to verify observed changes in the mouse were relevant to clinical IUGR. At P14 IUGR mice had decreased ileal lengths, fewer goblet and Paneth cells, reductions in Paneth cell specific mRNAs, and decreased cell proliferation. These findings positively correlated with severity of IUGR. Furthermore, the decrease in murine Paneth cells was also seen in human IUGR ileum. IUGR disrupts the normal trajectory of ileal development, particularly affecting the composition and secretory products of the epithelial surface of the intestine. We speculate that this abnormal intestinal development may constitute an inherent "first hit", rendering IUGR intestine susceptible to further injury, infection, or inflammation. PMID:26745886

  12. Intrauterine Growth Restriction Alters Mouse Intestinal Architecture during Development

    PubMed Central

    Brown, Ashley S.; Gong, Huiyu; Weitkamp, Jörn-Hendrik; Frey, Mark R.; McElroy, Steven J.

    2016-01-01

    Infants with intrauterine growth restriction (IUGR) are at increased risk for neonatal and lifelong morbidities affecting multiple organ systems including the intestinal tract. The underlying mechanisms for the risk to the intestine remain poorly understood. In this study, we tested the hypothesis that IUGR affects the development of goblet and Paneth cell lineages, thus compromising the innate immunity and barrier functions of the epithelium. Using a mouse model of maternal thromboxane A2-analog infusion to elicit maternal hypertension and resultant IUGR, we tested whether IUGR alters ileal maturation and specifically disrupts mucus-producing goblet and antimicrobial-secreting Paneth cell development. We measured body weights, ileal weights and ileal lengths from birth to postnatal day (P) 56. We also determined the abundance of goblet and Paneth cells and their mRNA products, localization of cellular tight junctions, cell proliferation, and apoptosis to interrogate cellular homeostasis. Comparison of the murine findings with human IUGR ileum allowed us to verify observed changes in the mouse were relevant to clinical IUGR. At P14 IUGR mice had decreased ileal lengths, fewer goblet and Paneth cells, reductions in Paneth cell specific mRNAs, and decreased cell proliferation. These findings positively correlated with severity of IUGR. Furthermore, the decrease in murine Paneth cells was also seen in human IUGR ileum. IUGR disrupts the normal trajectory of ileal development, particularly affecting the composition and secretory products of the epithelial surface of the intestine. We speculate that this abnormal intestinal development may constitute an inherent “first hit”, rendering IUGR intestine susceptible to further injury, infection, or inflammation. PMID:26745886

  13. GNC architecture for autonomous robotic capture of a non-cooperative target: Preliminary concept design

    NASA Astrophysics Data System (ADS)

    Jankovic, Marko; Paul, Jan; Kirchner, Frank

    2016-04-01

    Recent studies of the space debris population in low Earth orbit (LEO) have concluded that certain regions have already reached a critical density of objects. This will eventually lead to a cascading process called the Kessler syndrome. The time may have come to seriously consider active debris removal (ADR) missions as the only viable way of preserving the space environment for future generations. Among all objects in the current environment, the SL-8 (Kosmos 3M second stages) rocket bodies (R/Bs) are some of the most suitable targets for future robotic ADR missions. However, to date, an autonomous relative navigation to and capture of an non-cooperative target has never been performed. Therefore, there is a need for more advanced, autonomous and modular systems that can cope with uncontrolled, tumbling objects. The guidance, navigation and control (GNC) system is one of the most critical ones. The main objective of this paper is to present a preliminary concept of a modular GNC architecture that should enable a safe and fuel-efficient capture of a known but uncooperative target, such as Kosmos 3M R/B. In particular, the concept was developed having in mind the most critical part of an ADR mission, i.e. close range proximity operations, and state of the art algorithms in the field of autonomous rendezvous and docking. In the end, a brief description of the hardware in the loop (HIL) testing facility is made, foreseen for the practical evaluation of the developed architecture.

  14. Approach to design neural cryptography: A generalized architecture and a heuristic rule

    NASA Astrophysics Data System (ADS)

    Mu, Nankun; Liao, Xiaofeng; Huang, Tingwen

    2013-06-01

    Neural cryptography, a type of public key exchange protocol, is widely considered as an effective method for sharing a common secret key between two neural networks on public channels. How to design neural cryptography remains a great challenge. In this paper, in order to provide an approach to solve this challenge, a generalized network architecture and a significant heuristic rule are designed. The proposed generic framework is named as tree state classification machine (TSCM), which extends and unifies the existing structures, i.e., tree parity machine (TPM) and tree committee machine (TCM). Furthermore, we carefully study and find that the heuristic rule can improve the security of TSCM-based neural cryptography. Therefore, TSCM and the heuristic rule can guide us to designing a great deal of effective neural cryptography candidates, in which it is possible to achieve the more secure instances. Significantly, in the light of TSCM and the heuristic rule, we further expound that our designed neural cryptography outperforms TPM (the most secure model at present) on security. Finally, a series of numerical simulation experiments are provided to verify validity and applicability of our results.

  15. Architecture for a Web-based clinical information system that keeps the design open and the access closed.

    PubMed Central

    Cimino, J. J.; Sengupta, S.; Clayton, P. D.; Patel, V. L.; Kushniruk, A.; Huang, X.

    1998-01-01

    We are developing the Patient Clinical Information System (PatCIS) project at Columbia-Presbyterian Medical Center to provide patients with access to health information, including their own medical records (permitting them to contribute selected aspects to the record), educational materials and automated decision support. The architecture of the system allows for multiple, independent components which make use of central services for managing security and usage logging functions. The design accommodates a variety of data entry, data display and decision support tools and provides facilities for tracking system usage and questionnaires. The user interface minimizes hypertext-related disorientation and cognitive overload; our success in this regard is the subject of on-going evaluation. Images Figure 1 PMID:9929194

  16. Techniques for developing reliability-oriented optimal microgrid architectures

    NASA Astrophysics Data System (ADS)

    Patra, Shashi B.

    2007-12-01

    Alternative generation technologies such as fuel cells, micro-turbines, solar etc. have been the focus of active research in the past decade. These energy sources are small and modular. Because of these advantages, these sources can be deployed effectively at or near locations where they are actually needed, i.e. in the distribution network. This is in contrast to the traditional electricity generation which has been "centralized" in nature. The new technologies can be deployed in a "distributed" manner. Therefore, they are also known as Distributed Energy Resources (DER). It is expected that the use of DER, will grow significantly in the future. Hence, it is prudent to interconnect the energy resources in a meshed or grid-like structure, so as to exploit the reliability and economic benefits of distributed deployment. These grids, which are smaller in scale but similar to the electric transmission grid, are known as "microgrids". This dissertation presents rational methods of building microgrids optimized for cost and subject to system-wide and locational reliability guarantees. The first method is based on dynamic programming and consists of determining the optimal interconnection between microsources and load points, given their locations and the rights of way for possible interconnections. The second method is based on particle swarm optimization. This dissertation describes the formulation of the optimization problem and the solution methods. The applicability of the techniques is demonstrated in two possible situations---design of a microgrid from scratch and expansion of an existing distribution system.

  17. Perspectives on Architecture and Children.

    ERIC Educational Resources Information Center

    Taylor, Anne

    1989-01-01

    Describes a new system for teaching architectural education known as Architectural Design Education. States that this system, developed by Anne Taylor and George Vlastos, introduces students to the problem solving process, integrates creative activities with traditional disciplines, and enhances students' and teachers' ability to relate to their…

  18. Learning Environment: An Architectural Interpretation of a New Designs Archetype High School.

    ERIC Educational Resources Information Center

    Jilk, Bruce A.; And Others

    The New Designs for the Comprehensive High School project used the break-the-mold design-down process to develop a prototype high school. The basic building block of this design is the personal workstation, not the classroom. Combining the personal workstation with the desire for teaming leads to the idea of a small, flexible group space that…

  19. Design and evaluation of a service oriented architecture for paperless ICU tarification.

    PubMed

    Steurbaut, Kristof; Colpaert, Kirsten; Van Hoecke, Sofie; Steurbaut, Sabrina; Danneels, Chris; Decruyenaere, Johan; De Turck, Filip

    2012-06-01

    The computerization of Intensive Care Units provides an overwhelming amount of electronic data for both medical and financial analysis. However, the current tarification, which is the process to tick and count patients' procedures, is still a repetitive, time-consuming process on paper. Nurses and secretaries keep track manually of the patients' medical procedures. This paper describes the design methodology and implementation of automated tarification services. In this study we investigate if the tarification can be modeled in service oriented architecture as a composition of interacting services. Services are responsible for data collection, automatic assignment of records to physicians and application of rules. Performance is evaluated in terms of execution time, cost evaluation and return on investment based on tracking of real procedures. The services provide high flexibility in terms of maintenance, integration and rules support. It is shown that services offer a more accurate, less time-consuming and cost-effective tarification. PMID:20922467

  20. ''Beauty of Wholeness and Beauty of Partiality.'' New Terms Defining the Concept of Beauty in Architecture in Terms of Sustainability and Computer Aided Design

    ERIC Educational Resources Information Center

    Farid, Ayman A.; Zaghloul, Weaam M.; Dewidar, Khaled M.

    2014-01-01

    The great shift in sustainability and computer aided design in the field of architecture caused a remarkable change in the architecture philosophy, new aspects of beauty and aesthetic values are being introduced, and traditional definitions for beauty cannot fully cover this aspects, which causes a gap between; new architecture works criticism and…

  1. Systematic design of transmitter and receiver architectures for flexible filter bank multi-carrier signals

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Esteban; López-Salcedo, José A.; Seco-Granados, Gonzalo

    2014-12-01

    Multi-carrier (MC) signaling is currently in the forefront of a myriad of systems, either wired or wireless, due to its high spectral efficiency, simple equalization, and robustness in front of multipath and narrowband interference sources. Despite its widespread deployment, the design of efficient architectures for MC systems becomes a challenging task when adopting filter bank multi-carrier (FBMC) modulation due to the inclusion of band-limited shaping pulses into the signal model. The reason to employ these pulses is the numerous improvements they offer in terms of performance, such as providing higher spectral confinement and no frequency overlap between adjacent subcarriers. These attributes lead to a reduced out-of-band power emission and a higher effective throughput. The latter is indeed possible by removing the need of cyclic prefix, which is in charge of preserving orthogonality among subcarriers in conventional MC systems. Nevertheless, the potential benefits of FBMC modulations are often obscured when it comes to an implementation point of view. In order to circumvent this limitation, the present paper provides a unified framework to describe all FBMC signals in which both signal design and implementation criteria are explicitly combined. In addition to this, we introduce the concept of flexible FBMC signals that, unlike their traditional MC counterparts, do not impose restrictions on the signal parameters (i.e., symbol rate, carrier spacing, or sampling frequency). Moreover, our framework also proposes a methodology that overcomes the implementation issues that characterize FBMC systems and allows us to derive simple, efficient, and time-invariant transmitter and receiver architectures.

  2. Developing Designer Identity through Reflection

    ERIC Educational Resources Information Center

    Tracey, Monica W.; Hutchinson, Alisa

    2013-01-01

    As designers utilize design thinking while moving through a design space between problem and solution, they must rely on design intelligence, precedents, and intuition in order to arrive at meaningful and inventive outcomes. Thus, instructional designers must constantly re-conceptualize their own identities and what it means to be a designer.…

  3. Review of Programs: Architecture; Architectural Technology; Landscape Architecture; Interior Design; Construction and Construction Technology; Building Construction; Urban and Regional Planning. Report to the Board of Regents, State University System of Florida.

    ERIC Educational Resources Information Center

    McMinn, William G.

    This report is an update of a report on the development and status of various programs in architecture and related fields in the State University System of Florida, a report that was submitted to the Board of Regents in May 1983. The objectives of this updated report, like those of the earlier one, are to review the anticipated needs of the…

  4. Directed Assembly and Development of Material-Free Tissues with Complex Architectures.

    PubMed

    Vrij, Erik; Rouwkema, Jeroen; LaPointe, Vanessa; van Blitterswijk, Clemens; Truckenmüller, Roman; Rivron, Nicolas

    2016-06-01

    Material-free tissues are assembled using solely cells. Microstructured hydrogel templates and high content screening allow the formation of centimeter-scale tissues with precise architectures. Similar to developing tissues, these contract autonomously, controllably shift shape, self-scaffold by secreting extracellular matrix, and undergo morphogenesis. PMID:27000493

  5. How the Timing and Quality of Early Experiences Influence the Development of Brain Architecture

    ERIC Educational Resources Information Center

    Fox, Sharon E.; Levitt, Pat; Nelson, Charles A., III.

    2010-01-01

    Early life events can exert a powerful influence on both the pattern of brain architecture and behavioral development. In this study a conceptual framework is provided for considering how the structure of early experience gets "under the skin." The study begins with a description of the genetic framework that lays the foundation for brain…

  6. The Intranet as a Cognitive Architecture for Training and Education: Basic Assumptions and Development Issues.

    ERIC Educational Resources Information Center

    Seffah, Ahmed; Bouchard, Robert Maurice

    This paper makes basic assumptions regarding the development of an intranet architecture that will actively promote the cognitive apprenticeship of a new community of learners. The authors consider the intranet as a dynamic and virtual environment in which individuals may communicate, share resources, and reciprocally generate and organize…

  7. CAPTAN: A hardware architecture for integrated data acquisition, control, and analysis for detector development

    SciTech Connect

    Turqueti, Marcos; Rivera, Ryan A.; Prosser, Alan; Andresen, Jeffry; Chramowicz, John; /Fermilab

    2008-11-01

    The Electronic Systems Engineering Department of the Computing Division at the Fermi National Accelerator Laboratory has developed a data acquisition system flexible and powerful enough to meet the needs of a variety of high energy physics applications. The system described in this paper is called CAPTAN (Compact And Programmable daTa Acquisition Node) and its architecture and capabilities are presented in detail here. The three most important characteristics of this system are flexibility, versatility and scalability. These three main features are supported by key architectural features; a vertical bus that permits the user to stack multiple boards, a gigabit Ethernet link that permits high speed communications to the system and the core group of boards that provide specific capabilities for the system. In this paper, we describe the system architecture, give an overview of its capabilities and point out possible applications.

  8. An integrated decision-making framework for transportation architectures: Application to aviation systems design

    NASA Astrophysics Data System (ADS)

    Lewe, Jung-Ho

    The National Transportation System (NTS) is undoubtedly a complex system-of-systems---a collection of diverse 'things' that evolve over time, organized at multiple levels, to achieve a range of possibly conflicting objectives, and never quite behaving as planned. The purpose of this research is to develop a virtual transportation architecture for the ultimate goal of formulating an integrated decision-making framework. The foundational endeavor begins with creating an abstraction of the NTS with the belief that a holistic frame of reference is required to properly study such a multi-disciplinary, trans-domain system. The culmination of the effort produces the Transportation Architecture Field (TAF) as a mental model of the NTS, in which the relationships between four basic entity groups are identified and articulated. This entity-centric abstraction framework underpins the construction of a virtual NTS couched in the form of an agent-based model. The transportation consumers and the service providers are identified as adaptive agents that apply a set of preprogrammed behavioral rules to achieve their respective goals. The transportation infrastructure and multitude of exogenous entities (disruptors and drivers) in the whole system can also be represented without resorting to an extremely complicated structure. The outcome is a flexible, scalable, computational model that allows for examination of numerous scenarios which involve the cascade of interrelated effects of aviation technology, infrastructure, and socioeconomic changes throughout the entire system.

  9. Green Architecture

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Ho

    Today, the environment has become a main subject in lots of science disciplines and the industrial development due to the global warming. This paper presents the analysis of the tendency of Green Architecture in France on the threes axes: Regulations and Approach for the Sustainable Architecture (Certificate and Standard), Renewable Materials (Green Materials) and Strategies (Equipments) of Sustainable Technology. The definition of 'Green Architecture' will be cited in the introduction and the question of the interdisciplinary for the technological development in 'Green Architecture' will be raised up in the conclusion.

  10. Space Station Freedom Solar Array design development

    SciTech Connect

    Winslow, C. )

    1993-01-01

    The design of Space Station Freedom's Solar Array (SSFSA) is reviewed highlighting the key design performance goals, challenges, design description, and development testing objectives, results and plans. Study results are discussed which illustrate many of the more important design decision.

  11. AGING SYSTEM DESIGN DEVELOPMENT STRATEGY

    SciTech Connect

    J. Beesley

    2005-02-07

    This plan provides an overview, work to date, and the path forward for the design development strategy of the Aging cask for aging commercial spent nuclear fuel (CSNF) at the Yucca Mountain Project (YMP) repository site. Waste for subsurface emplacement at the repository includes US Department of Energy (DOE) high-level radioactive waste (HLW), DOE SNF, commercial fuel in dual-purpose canisters (DPCs), uncanistered bare fuel, naval fuel, and other waste types. Table 1-1 lists the types of radioactive materials that may be aged at YMP, and those materials that will not be placed in an aging cask or module. This plan presents the strategy for design development of the Aging system. The Aging system will not handle naval fuel, DOE HLW, MCOs, or DOE SNF since those materials will be delivered to the repository in a state and sequence that allows them to be placed into waste packages for emplacement. Some CSNF from nuclear reactors, especially CSNF that is thermally too hot for emplacement underground, will need to be aged at the repository.

  12. Model-based system-of-systems engineering for space-based command, control, communication, and information architecture design

    NASA Astrophysics Data System (ADS)

    Sindiy, Oleg V.

    This dissertation presents a model-based system-of-systems engineering (SoSE) approach as a design philosophy for architecting in system-of-systems (SoS) problems. SoS refers to a special class of systems in which numerous systems with operational and managerial independence interact to generate new capabilities that satisfy societal needs. Design decisions are more complicated in a SoS setting. A revised Process Model for SoSE is presented to support three phases in SoS architecting: defining the scope of the design problem, abstracting key descriptors and their interrelations in a conceptual model, and implementing computer-based simulations for architectural analyses. The Process Model enables improved decision support considering multiple SoS features and develops computational models capable of highlighting configurations of organizational, policy, financial, operational, and/or technical features. Further, processes for verification and validation of SoS models and simulations are also important due to potential impact on critical decision-making and, thus, are addressed. Two research questions frame the research efforts described in this dissertation. The first concerns how the four key sources of SoS complexity---heterogeneity of systems, connectivity structure, multi-layer interactions, and the evolutionary nature---influence the formulation of SoS models and simulations, trade space, and solution performance and structure evaluation metrics. The second question pertains to the implementation of SoSE architecting processes to inform decision-making for a subset of SoS problems concerning the design of information exchange services in space-based operations domain. These questions motivate and guide the dissertation's contributions. A formal methodology for drawing relationships within a multi-dimensional trade space, forming simulation case studies from applications of candidate architecture solutions to a campaign of notional mission use cases, and

  13. Design and Multicentric Implementation of a Generic Software Architecture for Patient Recruitment Systems Re-Using Existing HIS Tools and Routine Patient Data

    PubMed Central

    Trinczek, B.; Köpcke, F.; Leusch, T.; Majeed, R.W.; Schreiweis, B.; Wenk, J.; Bergh, B.; Ohmann, C.; Röhrig, R.; Prokosch, H.U.; Dugas, M.

    2014-01-01

    Summary Objective (1) To define features and data items of a Patient Recruitment System (PRS); (2) to design a generic software architecture of such a system covering the requirements; (3) to identify implementation options available within different Hospital Information System (HIS) environments; (4) to implement five PRS following the architecture and utilizing the implementation options as proof of concept. Methods Existing PRS were reviewed and interviews with users and developers conducted. All reported PRS features were collected and prioritized according to their published success and user’s request. Common feature sets were combined into software modules of a generic software architecture. Data items to process and transfer were identified for each of the modules. Each site collected implementation options available within their respective HIS environment for each module, provided a prototypical implementation based on available implementation possibilities and supported the patient recruitment of a clinical trial as a proof of concept. Results 24 commonly reported and requested features of a PRS were identified, 13 of them prioritized as being mandatory. A UML version 2 based software architecture containing 5 software modules covering these features was developed. 13 data item groups processed by the modules, thus required to be available electronically, have been identified. Several implementation options could be identified for each module, most of them being available at multiple sites. Utilizing available tools, a PRS could be implemented in each of the five participating German university hospitals. Conclusion A set of required features and data items of a PRS has been described for the first time. The software architecture covers all features in a clear, well-defined way. The variety of implementation options and the prototypes show that it is possible to implement the given architecture in different HIS environments, thus enabling more sites to

  14. Architecture design of motion estimation for ITU-T H.263

    NASA Astrophysics Data System (ADS)

    Ku, Chung-Wei; Lin, Gong-Sheng; Chen, Liang-Gee; Lee, Yung-Ping

    1997-01-01

    Digitalized video and audio system has become the trend of the progress in multimedia, because it provides great performance in quality and feasibility of processing. However, as the huge amount of information is needed while the bandwidth is limitted, data compression plays an important role in the system. Say, for a 176 x 144 monochromic sequence with 10 frames/sec frame rate, the bandwidth is about 2Mbps. This wastes much channel resource and limits the applications. MPEG (moving picttre ezpert groip) standardizes the video codec scheme, and it performs high compression ratio while providing good quality. MPEG-i is used for the frame size about 352 x 240 and 30 frames per second, and MPEG-2 provides scalibility and can be applied on scenes with higher definition, say HDTV (high definition television). On the other hand, some applications concerns the very low bit-rate, such as videophone and video-conferencing. Because the channel bandwidth is much limitted in telephone network, a very high compression ratio must be required. ITU-T announced the H.263 video coding standards to meet the above requirements.8 According to the simulation results of TMN-5,22 it outperforms 11.263 with little overhead of complexity. Since wireless communication is the trend in the near future, low power design of the video codec is an important issue for portable visual telephone. Motion estimation is the most computation consuming parts in the whole video codec. About 60% of the computation is spent on this parts for the encoder. Several architectures were proposed for efficient processing of block matching algorithms. In this paper, in order to meet the requirements of 11.263 and the expectation of low power consumption, a modified sandwich architecture in21 is proposed. Based on the parallel processing philosophy, low power is expected and the generation of either one motion vector or four motion vectors with half-pixel accuracy is achieved concurrently. In addition, we will

  15. High-speed, automatic controller design considerations for integrating array processor, multi-microprocessor, and host computer system architectures

    NASA Technical Reports Server (NTRS)

    Jacklin, S. A.; Leyland, J. A.; Warmbrodt, W.

    1985-01-01

    Modern control systems must typically perform real-time identification and control, as well as coordinate a host of other activities related to user interaction, online graphics, and file management. This paper discusses five global design considerations which are useful to integrate array processor, multimicroprocessor, and host computer system architectures into versatile, high-speed controllers. Such controllers are capable of very high control throughput, and can maintain constant interaction with the nonreal-time or user environment. As an application example, the architecture of a high-speed, closed-loop controller used to actively control helicopter vibration is briefly discussed. Although this system has been designed for use as the controller for real-time rotorcraft dynamics and control studies in a wind tunnel environment, the controller architecture can generally be applied to a wide range of automatic control applications.

  16. Robot Electronics Architecture

    NASA Technical Reports Server (NTRS)

    Garrett, Michael; Magnone, Lee; Aghazarian, Hrand; Baumgartner, Eric; Kennedy, Brett

    2008-01-01

    An electronics architecture has been developed to enable the rapid construction and testing of prototypes of robotic systems. This architecture is designed to be a research vehicle of great stability, reliability, and versatility. A system according to this architecture can easily be reconfigured (including expanded or contracted) to satisfy a variety of needs with respect to input, output, processing of data, sensing, actuation, and power. The architecture affords a variety of expandable input/output options that enable ready integration of instruments, actuators, sensors, and other devices as independent modular units. The separation of different electrical functions onto independent circuit boards facilitates the development of corresponding simple and modular software interfaces. As a result, both hardware and software can be made to expand or contract in modular fashion while expending a minimum of time and effort.

  17. A web-services architecture designed for intermittent connectivity to support medical response to disasters.

    PubMed

    Brown, Steve; Griswold, William; Lenert, Leslie A

    2005-01-01

    To support mobile computing systems for first responders at mass casualty sites, as part of the WIISARD (Wireless Internet Information System for Medical Response in Disasters) project, we have developed a data architecture to gracefully handle an environment with frequent network failure and, multiple writers that also supports rapid dissemination of updates that could be critical to the safety of responders. This is accomplished by allowing for a subset of the overall information available in a disaster scene to be cached locally on a responder's device and locally modified with or without network access. When the network is available, the local subset of the model is automatically synchronized with a server that contains the full model, and conflicts are resolved. When changes from a device are committed, the changes are instantly sent to any connected devices where the local subset would be modified by the changes. PMID:16779191

  18. Designing an Innovative Data Architecture for the Los Angeles Data Resource (LADR)

    PubMed Central

    Mukherjee, Sukrit; Jenders, Robert A.; Delta, Sebastien

    2016-01-01

    The Los Angeles Data Resource (LADR) is a joint project of major Los Angeles health care provider organizations that help clinical investigators to explore the size of potential research study cohorts using operational clinical data across all participating institutions. The Charles R. Drew University of Medicine and Science (CDU) LADR team sought to develop an innovative data architecture that would aggregate de-identified clinical data from safety-net providers in the community into CDU LADR node which in turn would be federated with the other nodes of LADR for a shared view in a way that was never available before. This led to a self-service system to assess patients matching study criteria at each medical center and to search patients by demographics, ICD-9 codes, lab results and medications. PMID:26262354

  19. Designing an Innovative Data Architecture for the Los Angeles Data Resource (LADR).

    PubMed

    Mukherjee, Sukrit; Jenders, Robert A; Delta, Sebastien

    2015-01-01

    The Los Angeles Data Resource (LADR) is a joint project of major Los Angeles health care provider organizations. The LADR helps clinical investigators to explore the size of potential research study cohorts using operational clinical data across all participating institutions. The Charles R. Drew University of Medicine and Science (CDU) LADR team sought to develop an innovative data architecture that would aggregate de-identified clinical data from safety-net providers in the community into CDU LADR node. This in turn would be federated with the other nodes of LADR for a shared view in a way that was never available before. This led to a self-service system to assess patients matching study criteria at each medical center and to search patients by demographics, ICD-9 codes, lab results and medications. PMID:26262354

  20. Hyper-interspersed NANO/MEMS - Architecture design for new concepts in miniature robotics for space exploration

    NASA Astrophysics Data System (ADS)

    Santoli, Salvatore

    1999-05-01

    Launch weight and volume requirements are substantially decreased by reduction of probe size in exploration mission systems, as mass and volume both scale as the third power of system size. Accordingly, the already quite developed MEMS (Micro Electro Mechanical System) technology, that offers low cost, small, light weight, and increasingly reliable devices through durability and redundancy, is strongly attractive as a near-term technology for significantly reducing the cost to launch and operate space systems. It is shown that the final goal of MEMS technology, i.e. the merging through solid state microdcvices of the functions of sensing, computation, communication and actuation, can lead to a new, biomimetic kind of miniature robotics, particularly suitable for planetary exploration, through molecular mono- electronics/MEMS integration jointly with a hyper-interspersed architecture made up of autonomous units embodying sensors, information processors and actuators. The problem tackled here concerns the basic design of such miniature robots, from some μm to insect size, featuring finely structured intelligent autonomous parts as smart skins, sensory and manipulating members working on the analogue external reality and communicating with their inner molecular level nondiscrete pseudo-analogue information processing networks. The (mesoscopic network)/MEMS units are shown to embody a quantum mechanical/macroscopic world connection, in which the nondiscrete molecular devices allow the automaton parts to perform very complex, fast information processing operations as metaphores of bionic functions like learning, attention, and decision making under uncertain conditions, this last due to the stochasticity inherent in the quantum network. Flexible architectures instead of von Neumann type rigid architectures in addition to hyper-interspersion of autonomous units can be realized through such nano/MEMS devices, and the μm — cm size of the whole robots and their organs

  1. Evaluation of architectures for an ASP MPEG-4 decoder using a system-level design methodology

    NASA Astrophysics Data System (ADS)

    Garcia, Luz; Reyes, Victor; Barreto, Dacil; Marrero, Gustavo; Bautista, Tomas; Nunez, Antonio

    2005-06-01

    Trends in multimedia consumer electronics, digital video and audio, aim to reach users through low-cost mobile devices connected to data broadcasting networks with limited bandwidth. An emergent broadcasting network is the digital audio broadcasting network (DAB) which provides CD quality audio transmission together with robustness and efficiency techniques to allow good quality reception in motion conditions. This paper focuses on the system-level evaluation of different architectural options to allow low bandwidth digital video reception over DAB, based on video compression techniques. Profiling and design space exploration techniques are applied over the ASP MPEG-4 decoder in order to find out the best HW/SW partition given the application and platform constraints. An innovative SystemC-based system-level design tool, called CASSE, is being used for modelling, exploration and evaluation of different ASP MPEG-4 decoder HW/SW partitions. System-level trade offs and quantitative data derived from this analysis are also presented in this work.

  2. Architectural design of a ground-based deep-space optical reception antenna

    NASA Technical Reports Server (NTRS)

    Kerr, E. L.

    1989-01-01

    An architectural design of a ground-based antenna (telescope) for receiving optical communications from deep space is presented. Physical and optical parameters, and their effect on the performance and cost considerations, are described. The channel capacity of the antenna is 100 kbits/s from Saturn and 5 Mbits/s from Mars. A novel sunshade is designed to permit optical communication even when the deep-space laser source is as close to the sun as 12 deg. Inserts in the tubes of the sunshade permit operations at solar elongations as small as 6 or 3 deg. The Nd:YAG source laser and the Fraunhofer filter (a narrow-band predetection optical filter) are tuned to match the Doppler shifts of the source and background. A typical Saturn-to-earth data link can reduce its source power requirement from 8.2 W to 2 W of laser output by employing a Fraunhofer filter instead of a conventional multilayer dielectric filter.

  3. Designing and Operating Through Compromise: Architectural Analysis of CKMS for the Advanced Metering Infrastructure

    SciTech Connect

    Duren, Mike; Aldridge, Hal; Abercrombie, Robert K; Sheldon, Frederick T

    2013-01-01

    Compromises attributable to the Advanced Persistent Threat (APT) highlight the necessity for constant vigilance. The APT provides a new perspective on security metrics (e.g., statistics based cyber security) and quantitative risk assessments. We consider design principals and models/tools that provide high assurance for energy delivery systems (EDS) operations regardless of the state of compromise. Cryptographic keys must be securely exchanged, then held and protected on either end of a communications link. This is challenging for a utility with numerous substations that must secure the intelligent electronic devices (IEDs) that may comprise complex control system of systems. For example, distribution and management of keys among the millions of intelligent meters within the Advanced Metering Infrastructure (AMI) is being implemented as part of the National Smart Grid initiative. Without a means for a secure cryptographic key management system (CKMS) no cryptographic solution can be widely deployed to protect the EDS infrastructure from cyber-attack. We consider 1) how security modeling is applied to key management and cyber security concerns on a continuous basis from design through operation, 2) how trusted models and key management architectures greatly impact failure scenarios, and 3) how hardware-enabled trust is a critical element to detecting, surviving, and recovering from attack.

  4. Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Howard, David; Perry,Jay; Sargusingh, Miriam; Toomarian, Nikzad

    2016-01-01

    NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  5. Comparison of the effects of 23-gauge and 25-gauge microincision vitrectomy blade designs on incision architecture

    PubMed Central

    Inoue, Makoto; Abulon, Dina Joy K; Hirakata, Akito

    2014-01-01

    Purpose To compare the effects of different 23- and 25-gauge microincision vitrectomy trocar cannula entry systems on incision architecture. Methods We tested one ridged microvitreoretinal (MVR), one non-ridged MVR, one pointed beveled, and one round-tipped beveled blade (n=10 per blade design per incision type). Each blade’s straight and oblique incision architecture was assessed in a silicone disc simulating the sclera. Wound leakage under pressure and endoscopic observations were conducted on sclerotomy sites of isolated porcine eyes (n=4 per blade design) after simulated vitrectomy. Results Differences in blade design created distinct incision architecture. Incisions were linear with the ridged MVR blade, flattened “M-shaped” with the non-ridged MVR blade, asymmetrical chevron-shaped with the pointed beveled blade, and curved with the round-tipped beveled blade. With the exception of oblique entry incision thickness, both MVR blade designs created thinner incisions than the beveled blades at entry and exit sites. Only the ridged MVR blade created incisions with no leakage. Vitreous incarceration was observed with all trocar cannula systems. Conclusion Wound closure in porcine eyes was similar with all blades despite differences in incision architecture. Wound leakage occurred at low to moderate infusion pressures with most blades; no wound leakage was observed with ridged MVR blades. PMID:25429201

  6. Architectural and Functional Design and Evaluation of E-Learning VUIS Based on the Proposed IEEE LTSA Reference Model.

    ERIC Educational Resources Information Center

    O'Droma, Mairtin S.; Ganchev, Ivan; McDonnell, Fergal

    2003-01-01

    Presents a comparative analysis from the Institute of Electrical and Electronics Engineers (IEEE) Learning Technology Standards Committee's (LTSC) of the architectural and functional design of e-learning delivery platforms and applications, e-learning course authoring tools, and learning management systems (LMSs), with a view of assessing how…

  7. Development of a small single-ring OpenPET prototype with a novel transformable architecture.

    PubMed

    Tashima, Hideaki; Yoshida, Eiji; Inadama, Naoko; Nishikido, Fumihiko; Nakajima, Yasunori; Wakizaka, Hidekatsu; Shinaji, Tetsuya; Nitta, Munetaka; Kinouchi, Shoko; Suga, Mikio; Haneishi, Hideaki; Inaniwa, Taku; Yamaya, Taiga

    2016-02-21

    The single-ring OpenPET (SROP), for which the detector arrangement has a cylinder shape cut by two parallel planes at a slant angle to form an open space, is our original proposal for in-beam PET. In this study, we developed a small prototype of an axial-shift type SROP (AS-SROP) with a novel transformable architecture for a proof-of-concept. In the AS-SROP, detectors originally forming a cylindrical PET are axially shifted little by little. We designed the small AS-SROP prototype for 4-layer depth-of-interaction detectors arranged in a ring diameter of 250 mm. The prototype had two modes: open and closed. The open mode formed the SROP with the open space of 139 mm and the closed mode formed a conventional cylindrical PET. The detectors were simultaneously moved by a rotation handle allowing them to be transformed between the two modes. We evaluated the basic performance of the developed prototype and carried out in-beam imaging tests in the HIMAC using (11)C radioactive beam irradiation. As a result, we found the open mode enabled in-beam PET imaging at a slight cost of imaging performance; the spatial resolution and sensitivity were 2.6 mm and 5.1% for the open mode and 2.1 mm and 7.3% for the closed mode. We concluded that the AS-SROP can minimize the decrease of resolution and sensitivity, for example, by transforming into the closed mode immediately after the irradiation while maintaining the open space only for the in-beam PET measurement. PMID:26854528

  8. Development of a small single-ring OpenPET prototype with a novel transformable architecture

    NASA Astrophysics Data System (ADS)

    Tashima, Hideaki; Yoshida, Eiji; Inadama, Naoko; Nishikido, Fumihiko; Nakajima, Yasunori; Wakizaka, Hidekatsu; Shinaji, Tetsuya; Nitta, Munetaka; Kinouchi, Shoko; Suga, Mikio; Haneishi, Hideaki; Inaniwa, Taku; Yamaya, Taiga

    2016-02-01

    The single-ring OpenPET (SROP), for which the detector arrangement has a cylinder shape cut by two parallel planes at a slant angle to form an open space, is our original proposal for in-beam PET. In this study, we developed a small prototype of an axial-shift type SROP (AS-SROP) with a novel transformable architecture for a proof-of-concept. In the AS-SROP, detectors originally forming a cylindrical PET are axially shifted little by little. We designed the small AS-SROP prototype for 4-layer depth-of-interaction detectors arranged in a ring diameter of 250 mm. The prototype had two modes: open and closed. The open mode formed the SROP with the open space of 139 mm and the closed mode formed a conventional cylindrical PET. The detectors were simultaneously moved by a rotation handle allowing them to be transformed between the two modes. We evaluated the basic performance of the developed prototype and carried out in-beam imaging tests in the HIMAC using 11C radioactive beam irradiation. As a result, we found the open mode enabled in-beam PET imaging at a slight cost of imaging performance; the spatial resolution and sensitivity were 2.6 mm and 5.1% for the open mode and 2.1 mm and 7.3% for the closed mode. We concluded that the AS-SROP can minimize the decrease of resolution and sensitivity, for example, by transforming into the closed mode immediately after the irradiation while maintaining the open space only for the in-beam PET measurement.

  9. Architectural study of the design and operation of advanced force feedback manual controllers

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert; Kim, Whee-Kuk

    1990-01-01

    A teleoperator system consists of a manual controller, control hardware/software, and a remote manipulator. It was employed in either hazardous or unstructured, and/or remote environments. In teleoperation, the main-in-the-loop is the central concept that brings human intelligence to the teleoperator system. When teleoperation involves contact with an uncertain environment, providing the feeling of telepresence to the human operator is one of desired characteristics of the teleoperator system. Unfortunately, most available manual controllers in bilateral or force-reflecting teleoperator systems can be characterized by their bulky size, high costs, or lack of smoothness and transparency, and elementary architectures. To investigate other alternatives, a force-reflecting, 3 degree of freedom (dof) spherical manual controller is designed, analyzed, and implemented as a test bed demonstration in this research effort. To achieve an improved level of design to meet criteria such as compactness, portability, and a somewhat enhanced force-reflecting capability, the demonstration manual controller employs high gear-ratio reducers. To reduce the effects of the inertia and friction on the system, various force control strategies are applied and their performance investigated. The spherical manual controller uses a parallel geometry to minimize inertial and gravitational effects on its primary task of transparent information transfer. As an alternative to the spherical 3-dof manual controller, a new conceptual (or parallel) spherical 3-dof module is introduced with a full kinematic analysis. Also, the resulting kinematic properties are compared to those of other typical spherical 3-dof systems. The conceptual design of a parallel 6-dof manual controller and its kinematic analysis is presented. This 6-dof manual controller is similar to the Stewart Platform with the actuators located on the base to minimize the dynamic effects. Finally, a combination of the new 3-dof and 6-dof

  10. The Impact of Building Information Modeling on the Architectural Design Process

    NASA Astrophysics Data System (ADS)

    Moreira, P. F.; Silva, Neander F.; Lima, Ecilamar M.

    Many benefits of Building Information Modeling, BIM, have been suggested by several authors and by software vendors. In this paper we describe an experiment in which two groups of designers were observed developing an assigned design task. One of the groups used a BIM system, while the other used a standard computer-aided drafting system. The results show that some of the promises of BIM hold true, such as consistency maintenance and error avoidance in the design documentation process. Other promises such as changing the design process itself seemed also promising but they need more research to determine to greater extent the depth of such changes.

  11. All-optical cross-bar network architecture using TOAD based interferometric switch and designing of reconfigurable logic unit

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanay

    2011-12-01

    The design of all-optical 2 × 2 Terahertz Optical Asymmetric Demultiplexer (TOAD) based interferometric switch is proposed and described in this manuscript. Numerical simulation has been done to achieve the performance of the switch. Using this 2 × 2 TOAD based switch, cross-bar network architecture is designed. A reconfigurable logic unit is also proposed in this manuscript, which can perform 16-Boolean logical operations.

  12. Model-Based Systems Engineering With the Architecture Analysis and Design Language (AADL) Applied to NASA Mission Operations

    NASA Technical Reports Server (NTRS)

    Munoz Fernandez, Michela Miche

    2014-01-01

    The potential of Model Model Systems Engineering (MBSE) using the Architecture Analysis and Design Language (AADL) applied to space systems will be described. AADL modeling is applicable to real-time embedded systems- the types of systems NASA builds. A case study with the Juno mission to Jupiter showcases how this work would enable future missions to benefit from using these models throughout their life cycle from design to flight operations.

  13. ARES I Upper Stage Subsystems Design and Development

    NASA Technical Reports Server (NTRS)

    Frate, David T.; Senick, Paul F.; Tolbert, Carol M.

    2011-01-01

    From 2005 through early 2011, NASA conducted concept definition, design, and development of the Ares I launch vehicle. The Ares I was conceived to serve as a crew launch vehicle for beyond-low-Earth-orbit human space exploration missions as part of the Constellation Program Architecture. The vehicle was configured with a single shuttle-derived solid rocket booster first stage and a new liquid oxygen/liquid hydrogen upper stage, propelled by a single, newly developed J-2X engine. The Orion Crew Exploration Vehicle was to be mated to the forward end of the Ares I upper stage through an interface with fairings and a payload adapter. The vehicle design passed a Preliminary Design Review in August 2008, and was nearing the Critical Design Review when efforts were concluded as a result of the Constellation Program s cancellation. At NASA Glenn Research Center, four subsystems were developed for the Ares I upper stage. These were thrust vector control (TVC) for the J-2X, electrical power system (EPS), purge and hazardous gas (P&HG), and development flight instrumentation (DFI). The teams working each of these subsystems achieved 80 percent or greater design completion and extensive development testing. These efforts were extremely successful representing state-of-the-art technology and hardware advances necessary to achieve Ares I reliability, safety, availability, and performance requirements. This paper documents the designs, development test activity, and results.

  14. Modular design, application architecture, and usage of a self-service model for enterprise data delivery: The Duke Enterprise Data Unified Content Explorer (DEDUCE)

    PubMed Central

    Horvath, Monica M.; Rusincovitch, Shelley A.; Brinson, Stephanie; Shang, Howard C.; Evans, Steve; Ferranti, Jeffrey M.

    2015-01-01

    Purpose Data generated in the care of patients are widely used to support clinical research and quality improvement, which has hastened the development of self-service query tools. User interface design for such tools, execution of query activity, and underlying application architecture have not been widely reported, and existing tools reflect a wide heterogeneity of methods and technical frameworks. We describe the design, application architecture, and use of a self-service model for enterprise data delivery within Duke Medicine. Methods Our query platform, the Duke Enterprise Data Unified Content Explorer (DEDUCE), supports enhanced data exploration, cohort identification, and data extraction from our enterprise data warehouse (EDW) using a series of modular environments that interact with a central keystone module, Cohort Manager (CM). A data-driven application architecture is implemented through three components: an application data dictionary, the concept of “smart dimensions”, and dynamically-generated user interfaces. Results DEDUCE CM allows flexible hierarchies of EDW queries within a grid-like workspace. A cohort “join” functionality allows switching between filters based on criteria occurring within or across patient encounters. To date, 674 users have been trained and activated in DEDUCE, and logon activity shows a steady increase, with variability between months. A comparison of filter conditions and export criteria shows that these activities have different patterns of usage across subject areas. Conclusions Organizations with sophisticated EDWs may find that users benefit from development of advanced query functionality, complimentary to the user interfaces and infrastructure used in other well-published models. Driven by its EDW context, the DEDUCE application architecture was also designed to be responsive to source data and to allow modification through alterations in metadata rather than programming, allowing an agile response to source

  15. Implementation and design of a teleoperation system based on a VMEBUS/68020 pipelined architecture

    NASA Technical Reports Server (NTRS)

    Lee, Thomas S.

    1989-01-01

    A pipelined control design and architecture for a force-feedback teleoperation system that is being implemented at the Jet Propulsion Laboratory and which will be integrated with the autonomous portion of the testbed to achieve share control is described. At the local site, the operator sees real-time force/torque displays and moves two 6-degree of freedom (dof) force-reflecting hand-controllers as his hands feel the contact force/torques generated at the remote site where the robots interact with the environment. He also uses a graphical user menu to monitor robot states and specify system options. The teleoperation software is written in the C language and runs on MC68020-based processor boards in the VME chassis, which utilizes a real-time operating system; the hardware is configured to realize a four-stage pipeline configuration. The environment is very flexible, such that the system can easily be configured as a stand-alone facility for performing independent research in human factors, force control, and time-delayed systems.

  16. Designing and Implementing a Distributed System Architecture for the Mars Rover Mission Planning Software (Maestro)

    NASA Technical Reports Server (NTRS)

    Goldgof, Gregory M.

    2005-01-01

    Distributed systems allow scientists from around the world to plan missions concurrently, while being updated on the revisions of their colleagues in real time. However, permitting multiple clients to simultaneously modify a single data repository can quickly lead to data corruption or inconsistent states between users. Since our message broker, the Java Message Service, does not ensure that messages will be received in the order they were published, we must implement our own numbering scheme to guarantee that changes to mission plans are performed in the correct sequence. Furthermore, distributed architectures must ensure that as new users connect to the system, they synchronize with the database without missing any messages or falling into an inconsistent state. Robust systems must also guarantee that all clients will remain synchronized with the database even in the case of multiple client failure, which can occur at any time due to lost network connections or a user's own system instability. The final design for the distributed system behind the Mars rover mission planning software fulfills all of these requirements and upon completion will be deployed to MER at the end of 2005 as well as Phoenix (2007) and MSL (2009).

  17. Bioactive glass as precursor of designed-architecture scaffolds for tissue engineering.

    PubMed

    Padilla, S; Sánchez-Salcedo, S; Vallet-Regí, M

    2007-04-01

    In this work, the conditions to obtain concentrated and fluid suspensions from a bioactive glass (55-SiO(2); 41-CaO; 4-P(2)O(5); mol %) were investigated. The influence of the heat treatment of the glass on the specific surface area, solubility, bioactivity, and finally on their dispersion characteristics was studied. Zeta potential and viscosity measurements were carried out, and based on the obtained results, the best dispersant was selected. The optimum concentration of dispersant, maximum content of solid and time of mixing were also investigated. Slurries containing 50 vol % could be obtained calcining the glass at 1100 degrees C and using Darvan 811 (sodium polyacrylate) as dispersant. Scaffolds with designed architecture were prepared from these suspensions combining the gelcasting method and the stereolithography technique. A polymeric negative (replica of the desired structure) was previously obtained by stereolithography. The slurry was cast into the molds and then polymerized (gelcasting method). The negative was eliminated by heat treatment. After sintering at 1300 degrees C, scaffolds with interconnected porosity and three-dimensional channels of 400-470 microm and macropores of 1.4 microm were obtained. PMID:17120207

  18. Architecture, design, and numerical simulation of a code/pulse-position-swapping (CPPS) direct translating receiver

    NASA Astrophysics Data System (ADS)

    Mendez, Antonio J.; Hernandez, Vincent J.; Bennett, Corey V.; Gagliardi, Robert M.

    2011-03-01

    Code/pulse-position-swapping (CPPS) is a communications scheme that substitutes pulse-position-modulation (PPM) symbols with optical-code-division-access (O-CDMA) codes. CPPS retains the multiple bits per symbol communication of M-ary PPM and the asynchronous multiple access of O-CDMA. Additionally, CPPS has the advantages of granular communications, common electrical bandwidth for all users independent of data rates, compatibility with free-space or guided (fiber and waveguide) communication links, and compatibility with intensity modulation/direct detection. The transmitted symbols (codes) of CPPS are translated from a deserialized bit stream that has been divided into words of length log2M. Thus the receivers associate the detected symbol with the original bit sequence by means of an electronically implemented look-up-table (LUT). This paper describes the architecture and design of a direct translating receiver based on map-coding, which uses optical processing to output the transmitted bit sequence without the need for a LUT. Analyses and computations characterize the receiver concept in terms of bit errors (mistranslations).

  19. Genetic architecture of the pro-inflammatory state in an extended twin-family design.

    PubMed

    Neijts, Melanie; van Dongen, Jenny; Kluft, Cornelis; Boomsma, Dorret I; Willemsen, Gonneke; de Geus, Eco J C

    2013-10-01

    In this study we examined the genetic architecture of variation in the pro-inflammatory state, using an extended twin-family design. Within the Netherlands Twin Register Biobank, fasting Tumor Necrosis Factor-α (TNF-α), Interleukin-6 (IL-6), C-Reactive Protein (CRP), and fibrinogen levels were available for 3,534 twins, 1,568 of their non-twin siblings, and 2,227 parents from 3,095 families. Heritability analyses took into account the effects of current and recent illness, anti-inflammatory medication, female sex hormone status, age, sex, body mass index, smoking status, month of data collection, and batch processing. Moderate broad-sense heritability was found for all inflammatory parameters (39%, 21%, 45%, and 46% for TNF-α, IL-6, CRP and fibrinogen, respectively). For all parameters, the remaining variance was explained by unique environmental influences and not by environment shared by family members. There was no resemblance between spouses for any of the inflammatory parameters, except for fibrinogen. Also, there was no evidence for twin-specific effects. A considerable part of genetic variation was explained by non-additive genetic effects for TNF-α, CRP, and fibrinogen. For IL-6, all genetic variance was additive. This study may have implications for future genome-wide association studies by setting a clear numerical target for genome-wide screens that aim to find genetic variants regulating the levels of these pro-inflammatory markers. PMID:23953347

  20. Aviation Safety Program: Weather Accident Prevention (WxAP) Development of WxAP System Architecture And Concepts of Operation

    NASA Technical Reports Server (NTRS)

    Grantier, David

    2003-01-01

    This paper presents viewgraphs on the development of the Weather Accident Prevention (WxAP) System architecture and Concept of Operation (CONOPS) activities. The topics include: 1) Background Information on System Architecture/CONOPS Activity; 2) Activity Work in Progress; and 3) Anticipated By-Products.

  1. Communications System Architecture Development for Air Traffic Management and Aviation Weather Information Dissemination

    NASA Technical Reports Server (NTRS)

    Gallagher, Seana; Olson, Matt; Blythe, Doug; Heletz, Jacob; Hamilton, Griff; Kolb, Bill; Homans, Al; Zemrowski, Ken; Decker, Steve; Tegge, Cindy

    2000-01-01

    This document is the NASA AATT Task Order 24 Final Report. NASA Research Task Order 24 calls for the development of eleven distinct task reports. Each task was a necessary exercise in the development of comprehensive communications systems architecture (CSA) for air traffic management and aviation weather information dissemination for 2015, the definition of the interim architecture for 2007, and the transition plan to achieve the desired End State. The eleven tasks are summarized along with the associated Task Order reference. The output of each task was an individual task report. The task reports that make up the main body of this document include Task 5, Task 6, Task 7, Task 8, Task 10, and Task 11. The other tasks provide the supporting detail used in the development of the architecture. These reports are included in the appendices. The detailed user needs, functional communications requirements and engineering requirements associated with Tasks 1, 2, and 3 have been put into a relational database and are provided electronically.

  2. Development of the Lymphoma Enterprise Architecture Database: a caBIG Silver level compliant system.

    PubMed

    Huang, Taoying; Shenoy, Pareen J; Sinha, Rajni; Graiser, Michael; Bumpers, Kevin W; Flowers, Christopher R

    2009-01-01

    Lymphomas are the fifth most common cancer in United States with numerous histological subtypes. Integrating existing clinical information on lymphoma patients provides a platform for understanding biological variability in presentation and treatment response and aids development of novel therapies. We developed a cancer Biomedical Informatics Grid (caBIG) Silver level compliant lymphoma database, called the Lymphoma Enterprise Architecture Data-system (LEAD), which integrates the pathology, pharmacy, laboratory, cancer registry, clinical trials, and clinical data from institutional databases. We utilized the Cancer Common Ontological Representation Environment Software Development Kit (caCORE SDK) provided by National Cancer Institute's Center for Bioinformatics to establish the LEAD platform for data management. The caCORE SDK generated system utilizes an n-tier architecture with open Application Programming Interfaces, controlled vocabularies, and registered metadata to achieve semantic integration across multiple cancer databases. We demonstrated that the data elements and structures within LEAD could be used to manage clinical research data from phase 1 clinical trials, cohort studies, and registry data from the Surveillance Epidemiology and End Results database. This work provides a clear example of how semantic technologies from caBIG can be applied to support a wide range of clinical and research tasks, and integrate data from disparate systems into a single architecture. This illustrates the central importance of caBIG to the management of clinical and biological data. PMID:19492074

  3. Design And Implementation Of A Multi-Sensor Fusion Algorithm On A Hypercube Computer Architecture

    NASA Astrophysics Data System (ADS)

    Glover, Charles W.

    1990-03-01

    A multi-sensor integration (MSI) algorithm written for sequential single processor computer architecture has been transformed into a concurrent algorithm and implemented in parallel on a multi-processor hypercube computer architecture. This paper will present the philosophy and methodologies used in the decomposition of the sequential MSI algorithm, and its transformation into a parallel MSI algorithm. The parallel MSI algorithm was implemented on a NCUBETM hypercube computer. The performance of the parallel MSI algorithm has been measured and compared against its sequential counterpart by running test case scenarios through a simulation program. The simulation program allows the user to define the trajectories of all players in the scenario, and to pick the sensor suites of the players and their operating characteristics. For example, an air-to-air engagement scenario was used as one of the test cases. In this scenario, two friend aircrafts were being attacked by six foe aircraft in a pincer maneuver. Both the friend and foe aircrafts launch missiles at several different time points in the engagement. The sensor suites on each aircraft are dual mode RADAR, dual mode IRST, and ESM sensors. The modes of the sensors are switched as needed throughout the scenario. The RADAR sensor is used only intermittently, thus most of the MSI information is obtained from passive sensing. The maneuvers in this scenario caused aircraft and missile to constantly fly in and out of sensors field-of-view (F0V). This resulted in the MSI algorithm to constantly reacquire, initiate, and delete new tracks as it tracked all objects in the scenario. The objective was to determine performance of the parallel MSI algorithm in such a complex environment, and to determine how many multi-processors (nodes) of the hypercube could be effectively used by an aircraft in such an environment. For the scenario just discussed, a 4-node hypercube was found to be the optimal size and a factor two in speedup

  4. A Methodology for the Design and Verification of Globally Asynchronous/Locally Synchronous Architectures

    NASA Technical Reports Server (NTRS)

    Miller, Steven P.; Whalen, Mike W.; O'Brien, Dan; Heimdahl, Mats P.; Joshi, Anjali

    2005-01-01

    Recent advanced in model-checking have made it practical to formally verify the correctness of many complex synchronous systems (i.e., systems driven by a single clock). However, many computer systems are implemented by asynchronously composing several synchronous components, where each component has its own clock and these clocks are not synchronized. Formal verification of such Globally Asynchronous/Locally Synchronous (GA/LS) architectures is a much more difficult task. In this report, we describe a methodology for developing and reasoning about such systems. This approach allows a developer to start from an ideal system specification and refine it along two axes. Along one axis, the system can be refined one component at a time towards an implementation. Along the other axis, the behavior of the system can be relaxed to produce a more cost effective but still acceptable solution. We illustrate this process by applying it to the synchronization logic of a Dual Fight Guidance System, evolving the system from an ideal case in which the components do not fail and communicate synchronously to one in which the components can fail and communicate asynchronously. For each step, we show how the system requirements have to change if the system is to be implemented and prove that each implementation meets the revised system requirements through modelchecking.

  5. Emulating an MIMD architecture

    SciTech Connect

    Su Bogong; Grishman, R.

    1982-01-01

    As part of a research effort in parallel processor architecture and programming, the ultracomputer group at New York University has performed extensive simulation of parallel programs. To speed up these simulations, a parallel processor emulator, using the microprogrammable Puma computer system previously designed and built at NYU, has been developed. 8 references.

  6. Development of a structured observational method for the systematic assessment of school food-choice architecture.

    PubMed

    Ozturk, Orgul D; McInnes, Melayne M; Blake, Christine E; Frongillo, Edward A; Jones, Sonya J

    2016-01-01

    The objective of this study is to develop a structured observational method for the systematic assessment of the food-choice architecture that can be used to identify key points for behavioral economic intervention intended to improve the health quality of children's diets. We use an ethnographic approach with observations at twelve elementary schools to construct our survey instrument. Elements of the structured observational method include decision environment, salience, accessibility/convenience, defaults/verbal prompts, number of choices, serving ware/method/packaging, and social/physical eating environment. Our survey reveals important "nudgeable" components of the elementary school food-choice architecture, including precommitment and default options on the lunch line. PMID:26654767

  7. Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Lehao; Xie, Fan; Lyu, Jing; Zhao, Tingkai; Li, Tiehu; Choi, Bong Gill

    2016-07-01

    Tin (Sn) has long been considered to be a promising replacement anode material for graphite in next-generation lithium-ion batteries (LIBs), because of its attractive comprehensive advantages of high gravimetric/volumetric capacities, environmental benignity, low cost, high safety, etc. However, Sn-based anodes suffer from severe capacity fading resulting mainly from their large volume expansions/contractions during lithiation/delithiation and subsequent pulverization, coalescence, delamination from current collectors, and poor Li+/electron transport. To circumvent these issues, a number of extraordinary architectures from nanostructures to anchored, layered/sandwich, core-shell, porous and even integrated structures have been exquisitely constructed to enhance the cycling performance. To cater for the rapid development of Sn-based anodes, we summarize the advances made in structural design principles, fabrication methods, morphological features and battery performance with focus on material structures. In addition, we identify the associated challenges and problems presented by recently-developed anodes and offer suggestions and perspectives for facilitating their practical implementations in next-generation LIBs.

  8. A development architecture for serious games using BCI (brain computer interface) sensors.

    PubMed

    Sung, Yunsick; Cho, Kyungeun; Um, Kyhyun

    2012-01-01

    Games that use brainwaves via brain-computer interface (BCI) devices, to improve brain functions are known as BCI serious games. Due to the difficulty of developing BCI serious games, various BCI engines and authoring tools are required, and these reduce the development time and cost. However, it is desirable to reduce the amount of technical knowledge of brain functions and BCI devices needed by game developers. Moreover, a systematic BCI serious game development process is required. In this paper, we present a methodology for the development of BCI serious games. We describe an architecture, authoring tools, and development process of the proposed methodology, and apply it to a game development approach for patients with mild cognitive impairment as an example. This application demonstrates that BCI serious games can be developed on the basis of expert-verified theories. PMID:23202227

  9. A Development Architecture for Serious Games Using BCI (Brain Computer Interface) Sensors

    PubMed Central

    Sung, Yunsick; Cho, Kyungeun; Um, Kyhyun

    2012-01-01

    Games that use brainwaves via brain–computer interface (BCI) devices, to improve brain functions are known as BCI serious games. Due to the difficulty of developing BCI serious games, various BCI engines and authoring tools are required, and these reduce the development time and cost. However, it is desirable to reduce the amount of technical knowledge of brain functions and BCI devices needed by game developers. Moreover, a systematic BCI serious game development process is required. In this paper, we present a methodology for the development of BCI serious games. We describe an architecture, authoring tools, and development process of the proposed methodology, and apply it to a game development approach for patients with mild cognitive impairment as an example. This application demonstrates that BCI serious games can be developed on the basis of expert-verified theories. PMID:23202227

  10. Jupiter Europa Orbiter Architecture Definition Process

    NASA Technical Reports Server (NTRS)

    Rasmussen, Robert; Shishko, Robert

    2011-01-01

    The proposed Jupiter Europa Orbiter mission, planned for launch in 2020, is using a new architectural process and framework tool to drive its model-based systems engineering effort. The process focuses on getting the architecture right before writing requirements and developing a point design. A new architecture framework tool provides for the structured entry and retrieval of architecture artifacts based on an emerging architecture meta-model. This paper describes the relationships among these artifacts and how they are used in the systems engineering effort. Some early lessons learned are discussed.

  11. Neural Architectures for Control

    NASA Technical Reports Server (NTRS)

    Peterson, James K.

    1991-01-01

    The cerebellar model articulated controller (CMAC) neural architectures are shown to be viable for the purposes of real-time learning and control. Software tools for the exploration of CMAC performance are developed for three hardware platforms, the MacIntosh, the IBM PC, and the SUN workstation. All algorithm development was done using the C programming language. These software tools were then used to implement an adaptive critic neuro-control design that learns in real-time how to back up a trailer truck. The truck backer-upper experiment is a standard performance measure in the neural network literature, but previously the training of the controllers was done off-line. With the CMAC neural architectures, it was possible to train the neuro-controllers on-line in real-time on a MS-DOS PC 386. CMAC neural architectures are also used in conjunction with a hierarchical planning approach to find collision-free paths over 2-D analog valued obstacle fields. The method constructs a coarse resolution version of the original problem and then finds the corresponding coarse optimal path using multipass dynamic programming. CMAC artificial neural architectures are used to estimate the analog transition costs that dynamic programming requires. The CMAC architectures are trained in real-time for each obstacle field presented. The coarse optimal path is then used as a baseline for the construction of a fine scale optimal path through the original obstacle array. These results are a very good indication of the potential power of the neural architectures in control design. In order to reach as wide an audience as possible, we have run a seminar on neuro-control that has met once per week since 20 May 1991. This seminar has thoroughly discussed the CMAC architecture, relevant portions of classical control, back propagation through time, and adaptive critic designs.

  12. VEGA--an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming.

    PubMed

    Pedretti, Alessandro; Villa, Luigi; Vistoli, Giulio

    2004-03-01

    In this paper we present the expandability and flexibility features of the VEGA program (downloadable free of charge at http://www.ddl.unimi.it), for the development of custom applications, using it as a multipurpose graphical environment. VEGA can be customized using both plug-in architecture and script programming. The first is useful to add new features and functions, using homemade routines, written with the VEGA Plug-in Development Kit (SDK). With the second approach it is possible to design scripts in VEGA, using the REBOL language, in order to (1) add new functions or customize existing ones; (2) automate common procedures; and (3) allow network communications, by creating a bridge between VEGA and other applications (or other PCs) through the TCP/IP protocol. PMID:15368917

  13. Software architecture and design of the web services facilitating climate model diagnostic analysis

    NASA Astrophysics Data System (ADS)

    Pan, L.; Lee, S.; Zhang, J.; Tang, B.; Zhai, C.; Jiang, J. H.; Wang, W.; Bao, Q.; Qi, M.; Kubar, T. L.; Teixeira, J.

    2015-12-01

    Climate model diagnostic analysis is a computationally- and data-intensive task because it involves multiple numerical model outputs and satellite observation data that can both be high resolution. We have built an online tool that facilitates this process. The tool is called Climate Model Diagnostic Analyzer (CMDA). It employs the web service technology and provides a web-based user interface. The benefits of these choices include: (1) No installation of any software other than a browser, hence it is platform compatable; (2) Co-location of computation and big data on the server side, and small results and plots to be downloaded on the client side, hence high data efficiency; (3) multi-threaded implementation to achieve parallel performance on multi-core servers; and (4) cloud deployment so each user has a dedicated virtual machine. In this presentation, we will focus on the computer science aspects of this tool, namely the architectural design, the infrastructure of the web services, the implementation of the web-based user interface, the mechanism of provenance collection, the approach to virtualization, and the Amazon Cloud deployment. As an example, We will describe our methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks (i.e., Flask, Gunicorn, and Tornado). Another example is the use of Docker, a light-weight virtualization container, to distribute and deploy CMDA onto an Amazon EC2 instance. Our tool of CMDA has been successfully used in the 2014 Summer School hosted by the JPL Center for Climate Science. Students had positive feedbacks in general and we will report their comments. An enhanced version of CMDA with several new features, some requested by the 2014 students, will be used in the 2015 Summer School soon.

  14. Dryland Wheat Domestication Changed the Development of Aboveground Architecture for a Well-Structured Canopy

    PubMed Central

    Li, Pu-Fang; Cheng, Zheng-Guo; Ma, Bao-Luo; Palta, Jairo A.; Kong, Hai-Yan; Mo, Fei; Wang, Jian-Yong; Zhu, Ying; Lv, Guang-Chao; Batool, Asfa; Bai, Xue; Li, Feng-Min; Xiong, You-Cai

    2014-01-01

    We examined three different-ploidy wheat species to elucidate the development of aboveground architecture and its domesticated mechanism under environment-controlled field conditions. Architecture parameters including leaf, stem, spike and canopy morphology were measured together with biomass allocation, leaf net photosynthetic rate and instantaneous water use efficiency (WUEi). Canopy biomass density was decreased from diploid to tetraploid wheat, but increased to maximum in hexaploid wheat. Population yield in hexaploid wheat was higher than in diploid wheat, but the population fitness and individual competition ability was higher in diploid wheats. Plant architecture was modified from a compact type in diploid wheats to an incompact type in tetraploid wheats, and then to a more compact type of hexaploid wheats. Biomass accumulation, population yield, harvest index and the seed to leaf ratio increased from diploid to tetraploid and hexaploid, associated with heavier specific internode weight and greater canopy biomass density in hexaploid and tetraploid than in diploid wheat. Leaf photosynthetic rate and WUEi were decreased from diploid to tetraploid and increased from tetraploid to hexaploid due to more compact leaf type in hexaploid and diploid than in tetraploid. Grain yield formation and WUEi were closely associated with spatial stance of leaves and stems. We conclude that the ideotype of dryland wheats could be based on spatial reconstruction of leaf type and further exertion of leaf photosynthetic rate. PMID:25181037

  15. Developing a real-time emulation of multiresolutional control architectures for complex, discrete-event systems

    SciTech Connect

    Davis, W.J.; Macro, J.G.; Brook, A.L.

    1996-12-31

    This paper first discusses an object-oriented, control architecture and then applies the architecture to produce a real-time software emulator for the Rapid Acquisition of Manufactured Parts (RAMP) flexible manufacturing system (FMS). In specifying the control architecture, the coordinated object is first defined as the primary modeling element. These coordinated objects are then integrated into a Recursive, Object-Oriented Coordination Hierarchy. A new simulation methodology, the Hierarchical Object-Oriented Programmable Logic Simulator, is then employed to model the interactions among the coordinated objects. The final step in implementing the emulator is to distribute the models of the coordinated objects over a network of computers and to synchronize their operation to a real-time clock. The paper then introduces the Hierarchical Subsystem Controller as an intelligent controller for the coordinated object. The proposed approach to intelligent control is then compared to the concept of multiresolutional semiosis that has been developed by Dr. Alex Meystel. Finally, the plans for implementing an intelligent controller for the RAMP FMS are discussed.

  16. Cybersecurity Protection: Design Science Research toward an Intercloud Transparent Bridge Architecture (ICTOBRA)

    ERIC Educational Resources Information Center

    Wilson, Joe M.

    2013-01-01

    This dissertation uses design science research and engineering to develop a cloud-based simulator for modeling next-generation cybersecurity protection frameworks in the United States. The claim is made that an agile and neutral framework extending throughout the cyber-threat plane is needed for critical infrastructure protection (CIP). This…

  17. Similarities and Differences in the Academic Education of Software Engineering and Architectural Design Professionals

    ERIC Educational Resources Information Center

    Hazzan, Orit; Karni, Eyal

    2006-01-01

    This article focuses on the similarities and differences in the academic education of software engineers and architects. The rationale for this work stems from our observation, each from the perspective of her or his own discipline, that these two professional design and development processes share some similarities. A pilot study was performed,…

  18. Development and Genetic Control of Plant Architecture and Biomass in the Panicoid Grass, Setaria

    PubMed Central

    Mauro-Herrera, Margarita; Doust, Andrew N.

    2016-01-01

    The architecture of a plant affects its ability to compete for light and to respond to environmental stresses, thus affecting overall fitness and productivity. Two components of architecture, branching and height, were studied in 182 F7 recombinant inbred lines (RILs) at the vegetative, flowering and mature developmental stages in the panicoid C4 model grass system, Setaria. The RIL population was derived from a cross between domesticated S. italica (foxtail millet) and its wild relative S. viridis (green foxtail). In both field and greenhouse trials the wild parent was taller initially, started branching earlier, and flowered earlier, while the domesticated parent was shorter initially, but flowered later, producing a robust tall plant architecture with more nodes and leaves on the main culm and few or no branches. Biomass was highly correlated with height of the plant and number of nodes on the main culm, and generally showed a negative relationship with branch number. However, several of the RILs with the highest biomass in both trials were significantly more branched than the domesticated parent of the cross. Quantitative trait loci (QTL) analyses indicate that both height and branching are controlled by multiple genetic regions, often with QTL for both traits colocalizing in the same genomic regions. Genomic positions of several QTL colocalize with QTL in syntenic regions in other species and contain genes known to control branching and height in sorghum, maize, and switchgrass. Included in these is the ortholog of the rice SD-1 semi-dwarfing gene, which underlies one of the major Setaria height QTL. Understanding the relationships between height and branching patterns in Setaria, and their genetic control, is an important step to gaining a comprehensive knowledge of the development and genetic regulation of panicoid grass architecture. PMID:26985990

  19. Development Of A Three-Dimensional Circuit Integration Technology And Computer Architecture

    NASA Astrophysics Data System (ADS)

    Etchells, R. D.; Grinberg, J.; Nudd, G. R.

    1981-12-01

    This paper is the first of a series 1,2,3 describing a range of efforts at Hughes Research Laboratories, which are collectively referred to as "Three-Dimensional Microelectronics." The technology being developed is a combination of a unique circuit fabrication/packaging technology and a novel processing architecture. The packaging technology greatly reduces the parasitic impedances associated with signal-routing in complex VLSI structures, while simultaneously allowing circuit densities orders of magnitude higher than the current state-of-the-art. When combined with the 3-D processor architecture, the resulting machine exhibits a one- to two-order of magnitude simultaneous improvement over current state-of-the-art machines in the three areas of processing speed, power consumption, and physical volume. The 3-D architecture is essentially that commonly referred to as a "cellular array", with the ultimate implementation having as many as 512 x 512 processors working in parallel. The three-dimensional nature of the assembled machine arises from the fact that the chips containing the active circuitry of the processor are stacked on top of each other. In this structure, electrical signals are passed vertically through the chips via thermomigrated aluminum feedthroughs. Signals are passed between adjacent chips by micro-interconnects. This discussion presents a broad view of the total effort, as well as a more detailed treatment of the fabrication and packaging technologies themselves. The results of performance simulations of the completed 3-D processor executing a variety of algorithms are also presented. Of particular pertinence to the interests of the focal-plane array community is the simulation of the UNICORNS nonuniformity correction algorithms as executed by the 3-D architecture.

  20. Development and Genetic Control of Plant Architecture and Biomass in the Panicoid Grass, Setaria.

    PubMed

    Mauro-Herrera, Margarita; Doust, Andrew N

    2016-01-01

    The architecture of a plant affects its ability to compete for light and to respond to environmental stresses, thus affecting overall fitness and productivity. Two components of architecture, branching and height, were studied in 182 F7 recombinant inbred lines (RILs) at the vegetative, flowering and mature developmental stages in the panicoid C4 model grass system, Setaria. The RIL population was derived from a cross between domesticated S. italica (foxtail millet) and its wild relative S. viridis (green foxtail). In both field and greenhouse trials the wild parent was taller initially, started branching earlier, and flowered earlier, while the domesticated parent was shorter initially, but flowered later, producing a robust tall plant architecture with more nodes and leaves on the main culm and few or no branches. Biomass was highly correlated with height of the plant and number of nodes on the main culm, and generally showed a negative relationship with branch number. However, several of the RILs with the highest biomass in both trials were significantly more branched than the domesticated parent of the cross. Quantitative trait loci (QTL) analyses indicate that both height and branching are controlled by multiple genetic regions, often with QTL for both traits colocalizing in the same genomic regions. Genomic positions of several QTL colocalize with QTL in syntenic regions in other species and contain genes known to control branching and height in sorghum, maize, and switchgrass. Included in these is the ortholog of the rice SD-1 semi-dwarfing gene, which underlies one of the major Setaria height QTL. Understanding the relationships between height and branching patterns in Setaria, and their genetic control, is an important step to gaining a comprehensive knowledge of the development and genetic regulation of panicoid grass architecture. PMID:26985990