Science.gov

Sample records for diagnostic probe system

  1. Evaluation of the NDP (neutron diagnostic probe) system

    SciTech Connect

    Pentaleri, E.A.; Eisen, Y.Y.

    1990-12-01

    The neutron diagnostic probe (NDP), an explosive detection system developed by Consolidated Controls Corporation and based on the associated-alpha-particle technique, was evaluated. Although many problems were found with the prototype system that make it useless for most practical applications, the NDP system may be considered a successful proof-of-principle for the basic explosive detection system design. In addition to evaluating the design and performance of the present system, models were developed to estimate the performance that might reasonably be expected from full scale systems of different conceptual design. Specific examples involved various types of bulk and sheet explosives contained in a suitcase and a large crate. Also considered were the effects of innocuous materials surrounding explosives in different scenarios, including the deliberate use of shielding materials as a countermeasure to detection. 11 refs., 46 figs., 24 tabs.

  2. PROcess Based Diagnostics PROBE

    NASA Technical Reports Server (NTRS)

    Clune, T.; Schmidt, G.; Kuo, K.; Bauer, M.; Oloso, H.

    2013-01-01

    Many of the aspects of the climate system that are of the greatest interest (e.g., the sensitivity of the system to external forcings) are emergent properties that arise via the complex interplay between disparate processes. This is also true for climate models most diagnostics are not a function of an isolated portion of source code, but rather are affected by multiple components and procedures. Thus any model-observation mismatch is hard to attribute to any specific piece of code or imperfection in a specific model assumption. An alternative approach is to identify diagnostics that are more closely tied to specific processes -- implying that if a mismatch is found, it should be much easier to identify and address specific algorithmic choices that will improve the simulation. However, this approach requires looking at model output and observational data in a more sophisticated way than the more traditional production of monthly or annual mean quantities. The data must instead be filtered in time and space for examples of the specific process being targeted.We are developing a data analysis environment called PROcess-Based Explorer (PROBE) that seeks to enable efficient and systematic computation of process-based diagnostics on very large sets of data. In this environment, investigators can define arbitrarily complex filters and then seamlessly perform computations in parallel on the filtered output from their model. The same analysis can be performed on additional related data sets (e.g., reanalyses) thereby enabling routine comparisons between model and observational data. PROBE also incorporates workflow technology to automatically update computed diagnostics for subsequent executions of a model. In this presentation, we will discuss the design and current status of PROBE as well as share results from some preliminary use cases.

  3. Advanced development of particle beam probe diagnostic systems

    SciTech Connect

    Hickok, R.L.; Crowley, T.P.; Connor, K.A.

    1990-11-01

    This progress report covers the period starting with the approval to go ahead with the 2 MeV heavy ion beam probe (HIBP) for TEXT Upgrade to the submission of the grant renewal proposal. During this period the co-principal investigators, R. L. Hickok and T. P. Crowley have each devoted 45% of their time to this Grant. Their effort has been almost exclusively devoted to the design and fabrication of the 2 MeV HIBP system. The 1989 report that described the advantages of a 2 MeV HIBP for TEXT Upgrade compared to the existing 0.5 MeV HIBP and outlined the design of the 2 MeV system is attached as Appendix A. Since the major effort under the renewal proposal will be the continued fabrication, installation and operation of the 2 MeV system on TEXT Upgrade, we describe some of the unique results that have been obtained with the 0.5 MeV system on TEXT. For completeness, we also include the preliminary operation of the 160 keV HIBP on ATF. We present the present fabrication status of the 2 MeV system with the exception of the electrostatic energy analyzer. The energy analyzer which is designed to operate with 400 kV on the top plate is a major development effort and is treated separately. Included in this section are the results obtained with a prototype no guard ring analyzer, the conceptual design for the 2 MeV analyzer, the status of the high voltage testing of full size analyzer systems and backup plans if it turns out that it is impossible to hold 400 kV on an analyzer this size.

  4. Development of Simple Designs of Multitip Probe Diagnostic Systems for RF Plasma Characterization

    PubMed Central

    Naz, M. Y.; Shukrullah, S.; Ghaffar, A.; Rehman, N. U.

    2014-01-01

    Multitip probes are very useful diagnostics for analyzing and controlling the physical phenomena occurring in low temperature discharge plasmas. However, DC biased probes often fail to perform well in processing plasmas. The objective of the work was to deduce simple designs of DC biased multitip probes for parametric study of radio frequency plasmas. For this purpose, symmetric double probe, asymmetric double probe, and symmetric triple probe diagnostic systems and their driving circuits were designed and tested in an inductively coupled plasma (ICP) generated by a 13.56 MHz radio frequency (RF) source. Using I-V characteristics of these probes, electron temperature, electron number density, and ion saturation current was measured as a function of input power and filling gas pressure. An increasing trend was noticed in electron temperature and electron number density for increasing input RF power whilst a decreasing trend was evident in these parameters when measured against filling gas pressure. In addition, the electron energy probability function (EEPF) was also studied by using an asymmetric double probe. These studies confirmed the non-Maxwellian nature of the EEPF and the presence of two groups of the energetic electrons at low filling gas pressures. PMID:24683326

  5. Development of simple designs of multitip probe diagnostic systems for RF plasma characterization.

    PubMed

    Naz, M Y; Shukrullah, S; Ghaffar, A; Rehman, N U

    2014-01-01

    Multitip probes are very useful diagnostics for analyzing and controlling the physical phenomena occurring in low temperature discharge plasmas. However, DC biased probes often fail to perform well in processing plasmas. The objective of the work was to deduce simple designs of DC biased multitip probes for parametric study of radio frequency plasmas. For this purpose, symmetric double probe, asymmetric double probe, and symmetric triple probe diagnostic systems and their driving circuits were designed and tested in an inductively coupled plasma (ICP) generated by a 13.56 MHz radio frequency (RF) source. Using I-V characteristics of these probes, electron temperature, electron number density, and ion saturation current was measured as a function of input power and filling gas pressure. An increasing trend was noticed in electron temperature and electron number density for increasing input RF power whilst a decreasing trend was evident in these parameters when measured against filling gas pressure. In addition, the electron energy probability function (EEPF) was also studied by using an asymmetric double probe. These studies confirmed the non-Maxwellian nature of the EEPF and the presence of two groups of the energetic electrons at low filling gas pressures. PMID:24683326

  6. A compact and portable PC-based Gundestrup-Langmuir probe diagnostic system

    SciTech Connect

    Sicard, P.; Boucher, C.; Litnovsky, A.; St-Germain, J.-P.

    2005-01-01

    A compact Gundestrup-Langmuir probe diagnostics system capable of data acquisition as well as data analysis was conceived at INRS-EMT, Canada, and used at IPP-FZJ, Germany. Data acquisition and analysis can be done with this system using several types of probes (Langmuir, double-Langmuir, Mach, Gundestrup,...). The versatility as to the different types of probe that one can use and the relative small size of the whole system makes it advantageous. Using a laptop computer makes the system small size and highly portable. The system acquires data at 1000 scans/s at 12 bit resolution on two probe systems simultaneously, using a total of 12 input channels. Bias is done by a DAC-ADC card and is amplified to give a {+-}100 V sweeping range. Measured temperatures ranged from 0.75 eV to 6.0 eV with densities observed as low as 1x10{sup 10} cm{sup -3} up to 5x10{sup 11} cm{sup -3}, which are the range of conditions to be found in our experimental device. This system is also easy to reproduce since the hardware is commercially available and the scripts can be duplicated and modified according to the specifics of the hardware.

  7. A compact and portable PC-based Gundestrup-Langmuir probe diagnostic system

    NASA Astrophysics Data System (ADS)

    Sicard, P.; Boucher, C.; Litnovsky, A.; St-Germain, J.-P.

    2005-01-01

    A compact Gundestrup-Langmuir probe diagnostics system capable of data acquisition as well as data analysis was conceived at INRS-EMT, Canada, and used at IPP-FZJ, Germany. Data acquisition and analysis can be done with this system using several types of probes (Langmuir, double-Langmuir, Mach, Gundestrup,…). The versatility as to the different types of probe that one can use and the relative small size of the whole system makes it advantageous. Using a laptop computer makes the system small size and highly portable. The system acquires data at 1000scans/s at 12bit resolution on two probe systems simultaneously, using a total of 12 input channels. Bias is done by a DAC-ADC card and is amplified to give a ±100V sweeping range. Measured temperatures ranged from 0.75eVto6.0eV with densities observed as low as 1×1010cm-3 up to 5×1011cm-3, which are the range of conditions to be found in our experimental device. This system is also easy to reproduce since the hardware is commercially available and the scripts can be duplicated and modified according to the specifics of the hardware.

  8. Advanced development of particle-beam-probe diagnostic systems. Technical progress report, 1 July 1980-30 April 1981

    SciTech Connect

    Hickok, R.L.; Jennings, W.C.; Woo, J.T.; Connor, K.A.

    1981-05-01

    The heavy ion beam probe system on the RENTOR tokamak has been reinstalled with considerably improved performance. The heavy neutral beam probe system on the ALEX baseball facility has demonstrated the capability of measuring space potential in minimum-B geometry. A large amount of data were obtained from the highly successful TMX beam probe system and are presently being analyzed. Technological improvements were made on both the RENTOR and ALEX diagnostic systems, new ion sources and extraction configurations were investigated, and the superiority of off-line processing techniques for beam probe data has been demonstrated. The development of high energy probing beams for application to major confinement experiments has been initiated and cross-over sweep systems to improve spatial resolution, differential pumping, and reduce energy requirements have been designed.

  9. An ion thruster internal discharge chamber electrostatic probe diagnostic technique using a high-speed probe positioning system.

    PubMed

    Herman, Daniel A; Gallimore, Alec D

    2008-01-01

    Extensive resources have been allocated to diagnose and minimize lifetime-limiting factors in gridded ion thrusters. While most of this effort has focused on grid erosion, results from wear tests indicate that discharge cathode erosion may also play an important role in limiting the lifetime of ring-cusp ion thrusters proposed for future large flagship missions. The detailed characterization of the near-cathode discharge plasma is essential for mitigating discharge cathode erosion. However, severe difficulty is encountered when attempting to measure internal discharge plasma parameters during thruster operation with conventional probing techniques. These difficulties stem from the high-voltage, high-density discharge cathode plume, which is a hostile environment for probes. A method for interrogating the discharge chamber plasma of a working ion thruster over a two-dimensional grid is demonstrated. The high-speed axial reciprocating probe positioning system is used to minimize thruster perturbation during probe insertion and to reduce heating of the probe. Electrostatic probe measurements from a symmetric double Langmuir probe are presented over a two-dimensional spatial array in the near-discharge cathode assembly region of a 30-cm-diameter ring-cusp ion thruster. Electron temperatures, 2-5 eV, and number density contours, with a maximum of 8 x 10(12) cm(-3) on centerline, are measured. These data provide detailed electron temperature and number density contours which, when combined with plasma potential measurements, may shed light on discharge cathode erosion processes and the effect of thruster operating conditions on erosion rates. PMID:18248026

  10. An ion thruster internal discharge chamber electrostatic probe diagnostic technique using a high-speed probe positioning system

    SciTech Connect

    Herman, Daniel A.; Gallimore, Alec D.

    2008-01-15

    Extensive resources have been allocated to diagnose and minimize lifetime-limiting factors in gridded ion thrusters. While most of this effort has focused on grid erosion, results from wear tests indicate that discharge cathode erosion may also play an important role in limiting the lifetime of ring-cusp ion thrusters proposed for future large flagship missions. The detailed characterization of the near-cathode discharge plasma is essential for mitigating discharge cathode erosion. However, severe difficulty is encountered when attempting to measure internal discharge plasma parameters during thruster operation with conventional probing techniques. These difficulties stem from the high-voltage, high-density discharge cathode plume, which is a hostile environment for probes. A method for interrogating the discharge chamber plasma of a working ion thruster over a two-dimensional grid is demonstrated. The high-speed axial reciprocating probe positioning system is used to minimize thruster perturbation during probe insertion and to reduce heating of the probe. Electrostatic probe measurements from a symmetric double Langmuir probe are presented over a two-dimensional spatial array in the near-discharge cathode assembly region of a 30-cm-diameter ring-cusp ion thruster. Electron temperatures, 2-5 eV, and number density contours, with a maximum of 8x10{sup 12} cm{sup -3} on centerline, are measured. These data provide detailed electron temperature and number density contours which, when combined with plasma potential measurements, may shed light on discharge cathode erosion processes and the effect of thruster operating conditions on erosion rates.

  11. Nucleic acid probes in diagnostic medicine

    NASA Technical Reports Server (NTRS)

    Oberry, Phillip A.

    1991-01-01

    The need for improved diagnostic procedures is outlined and variations in probe technology are briefly reviewed. A discussion of the application of probe technology to the diagnosis of disease in animals and humans is presented. A comparison of probe versus nonprobe diagnostics and isotopic versus nonisotopic probes is made and the current state of sequence amplification is described. The current market status of nucleic acid probes is reviewed with respect to their diagnostic application in human and veterinary medicine. Representative product examples are described and information on probes being developed that offer promise as future products is discussed.

  12. The development of a universal diagnostic probe system for Tokamak fusion test reactor

    NASA Technical Reports Server (NTRS)

    Mastronardi, R.; Cabral, R.; Manos, D.

    1982-01-01

    The Tokamak Fusion Test Reactor (TFTR), the largest such facility in the U.S., is discussed with respect to instrumentation in general and mechanisms in particular. The design philosophy and detailed implementation of a universal probe mechanism for TFTR is discussed.

  13. Daily Fill Factor Variation as a Diagnostic Probe of Multijunction Concentrator Systems During Outdoor Operation

    SciTech Connect

    McMahon, W. E.; Emery, K. E.; Friedman, D. J.; Ottoson, L.; Young, M. S.; Ward, J. S.; Kramer, C. M.; Duda, A.; Kurtz, S.

    2007-01-01

    The work presented here is for GaInP2/GaAs tandem cells, but the conclusions are equally valid for GaInP2/GaAs/Ge triple-junction cells. Optimizing a concentrator system which uses multijunction solar cells is challenging because: (a) the conditions are variable, so the solar cells rarely operate under optimal conditions and (b) the conditions are not controlled, so any design problems are difficult to characterize. Any change in the spectral content of direct-beam sunlight as it passes through the concentrator optics is of particular interest, as it can reduce the performance of multijunction cells and is difficult to characterize.

  14. LightUp probes in clinical diagnostics.

    PubMed

    Leijon, Mikael; Mousavi-Jazi, Mehrdad; Kubista, Mikael

    2006-01-01

    The LightUp Probe technology has now matured and reached the phase where it has been implemented in commercial reagent kits, i.e. the ReSSQ product line. Several properties of the LightUp probes make them particularly suitable for clinical settings. For instance, extraordinary shelf life and a chemical stability that allows convenient fridge storage. The origin of the higher stability of LightUp probe kits compared to others, based on alternative probe technologies, is partly the relatively good stability of cyanine dyes but also the resistance towards nucleases and proteases of the synthetic DNA analogue peptide nucleic acid that is used as the sequence recognizing element in LightUp probes. It is clear from recent trends in the PCR amplification hardware technology that the instrumentation is becoming more flexible and less adapted for dedicated probe chemistries. This will pave the way for increased standardization in the field of DNA diagnostics and the development of cross-platform assays. In the present review the LightUp technology will briefly be presented and discussed. The utility of the technology will be illustrated by examples from cytomegalovirus quantification and monitoring of the viral load of the SARS Coronavirus. An example of cancer diagnostics by detection of altered gene expression patterns will also be shown. PMID:16466783

  15. Materials analysis and particle probe: a compact diagnostic system for in situ analysis of plasma-facing components (invited).

    PubMed

    Taylor, C N; Heim, B; Gonderman, S; Allain, J P; Yang, Z; Kaita, R; Roquemore, A L; Skinner, C H; Ellis, R A

    2012-10-01

    The objective of the materials analysis particle probe (MAPP) in NSTX is to enable prompt and direct analysis of plasma-facing components exposed to plasma discharges. MAPP allows multiple samples to be introduced to the level of the plasma-facing surface without breaking vacuum and analyzed using X-ray photoelectron spectroscopy (XPS), ion-scattering and direct recoil spectroscopy, and thermal desorption spectroscopy (TDS) immediately following the plasma discharge. MAPP is designed to operate as a diagnostic within the ∼12 min NSTX minimum between-shot time window to reveal fundamental plasma-surface interactions. Initial calibration demonstrates MAPP's XPS and TDS capabilities. PMID:23126877

  16. Materials analysis and particle probe: A compact diagnostic system for in situ analysis of plasma-facing components (invited)

    SciTech Connect

    Taylor, C. N.; Heim, B.; Gonderman, S.; Allain, J. P.; Yang, Z.; Kaita, R.; Roquemore, A. L.; Skinner, C. H.; Ellis, R. A.

    2012-10-15

    The objective of the materials analysis particle probe (MAPP) in NSTX is to enable prompt and direct analysis of plasma-facing components exposed to plasma discharges. MAPP allows multiple samples to be introduced to the level of the plasma-facing surface without breaking vacuum and analyzed using X-ray photoelectron spectroscopy (XPS), ion-scattering and direct recoil spectroscopy, and thermal desorption spectroscopy (TDS) immediately following the plasma discharge. MAPP is designed to operate as a diagnostic within the {approx}12 min NSTX minimum between-shot time window to reveal fundamental plasma-surface interactions. Initial calibration demonstrates MAPP's XPS and TDS capabilities.

  17. Comparative analyses of plasma probe diagnostics techniques

    SciTech Connect

    Godyak, V. A.; Alexandrovich, B. M.

    2015-12-21

    The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much as an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range.

  18. Molecular diagnostics: future probe-based strategies.

    PubMed

    Marsh, Peter; Cardy, Donald L N

    2004-01-01

    Nucleic acid amplification technologies (NAATs) represent powerful tools in clinical microbiology, particularly in areas where traditional culture-based methods alone prove insufficient. A notable advantage is in reducing the time from taking samples to reporting results. This, and the specificity and sensitivity imparted by NAATs, can help to improve patient care. Both thermal and isothermal NAATs have been adapted to aid diagnosis in clinical laboratories. Current molecular diagnostic assays are generally high-tech, and are expensive to buy and perform. Easy-to-use NAATs are beginning to appear, not only facilitating acceptable throughput in clinical laboratories, but also allowing tests to move out of the laboratory, closer to the point of care. Demand for simpler, miniaturized equipment and assays, and the trend toward personalized medicine, is leading towards the development of fully integrated automation and home-use kits. The integration of diverse disciplines, such as genomics, molecular biology, microelectromechanical systems, microfluidics, microfabrication, and organic chemistry, is behind the emerging DNA microarray technology. Development of DNA microchips allows the simultaneous detection of potentially thousands of target sequences, not only favoring high throughput, but also the potential for genotyping patient subsets with respect to their response to particular drug types (pharmakogenomics). It is envisaged that the future of probe-based technologies will see the development of fully integrated assays and devices suitable for nonskilled users. PMID:15148419

  19. A comparative study of electrical probe techniques for plasma diagnostics

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.

    1972-01-01

    Techniques for using electrical probes for plasma diagnostics are reviewed. Specific consideration is given to the simple Langmuir probe, the symmetric double probe of Johnson and Malter, the variable-area probe of Fetz and Oeschsner, and a floating probe technique. The advantages and disadvantages of each technique are discussed.

  20. A simple and cost-effective molecular diagnostic system and DNA probes synthesized by light emitting diode photolithography

    NASA Astrophysics Data System (ADS)

    Oleksandrov, Sergiy; Kwon, Jung Ho; Lee, Ki-chang; Sujin-Ku; Paek, Mun Cheol

    2014-09-01

    This work introduces a novel chip to be used in the future as a simple and cost-effective method for creating DNA arrays using light emission diode (LED) photolithography. The DNA chip platform contains 24 independent reaction sites, which allows for the testing of a corresponding amount of patients' samples in hospital. An array of commercial UV LEDs and lens systems was combined with a microfluidic flow system to provide patterning of 24 individual reaction sites, each with 64 independent probes. Using the LED array instead of conventional laser exposure systems or micro-mirror systems significantly reduces the cost of equipment. The microfluidic system together with microfluidic flow cells drastically reduces the amount of used reagents, which is important due to the high cost of commercial reagents. The DNA synthesis efficiency was verified by fluorescence labeling and conventional hybridization.

  1. Ion beam probe diagnostic system. Technical progress report, 1 January 1979-30 June 1980. RPDL report No. 80-17

    SciTech Connect

    Hickok, R L; Jennings, W C; Woo, J T; Connor, K A

    1980-07-01

    Tokomak plasmas suitable for diagnostic development were produced during this period in RENTOR following technological improvements in the vacuum chamber and discharge cleaning systems. Secondary ion signals were obtained from the heavy ion beam probe on RENTOR leading to initial estimates of the plasma space potential, which appears to vary by several hundred volts during the plasma pulse. The principle of measuring space potential in a minimum-B geometry was established using an ion gun mounted at the center of the ALEX baseball coil. The neutral beam probe was installed for measuring the space potential using actual secondary ion signals from a hollow cathode arc in ALEX and preliminary tests have begun. The ion beam test stand was significantly altered to allow more flexibility in testing energy analyzers, ion guns, and ion focusing concepts.

  2. Development of an otolaryngological interferometric fiber optic diagnostic probe

    NASA Astrophysics Data System (ADS)

    Conerty, Michelle D.; Castracane, James; Saravia, Eduardo; Parnes, Steven M.; Cacace, Anthony T.

    1992-08-01

    Current medical instrumentation research at InterScience, Inc. is aimed at utilizing state of the art electro-optics in the development of a diagnostic fiber optic instrument capable of quantifying vibration patterns in real time. This work is in collaboration with the Division of Otolaryngology of the Albany Medical College. The innovative diagnostic probe system design involves the miniaturization of an electronic speckle pattern interferometry (ESPI) system through the use of fiber optic elements coupled with high speed image acquisition from a solid state matrix detector. Subsequent frame by frame processing produces a high quality three-dimensional spatial representation of the vibrational pattern. The diagnostic probe system is being developed for quantitative tympanic membrane and vocal cord vibration analysis. The significance of the introduction of this instrument to the medical community is the contribution it could make in the efficiency and effectiveness of the diagnosis of otolaryngological disorders. Specific applications include the evaluation of tympanosclerosis, stiffness related middle ear disorders, ossicular chain abnormalities, tympanic membrane replacement, vocal dysphonias, and early detection of laryngeal carcinomas, cysts, and phenomenological properties of mucosal wave dynamics. The current instrumentation research is focused on the production of a prototype system for clinical trials. This research is based in ESPI optical system development and miniaturization, system hardware and software development, and clinical design of the probe heads within anatomical limitations. Significant advantages of this diagnostic tool over currently used instrumentation and procedures are the real time capabilities of the instrument, the ability to quantify the vibrational pattern in time and space, and the possibility of establishing a database of patient history and disorder characteristics. Once fully developed and integrated into the clinical

  3. Galileo Probe Battery System

    NASA Technical Reports Server (NTRS)

    Dagarin, B. P.; Taenaka, R. K.; Stofel, E. J.

    1997-01-01

    The conclusions of the Galileo probe battery system are: the battery performance met mission requirements with margin; extensive ground-based and flight tests of batteries prior to probe separation from orbiter provided good prediction of actual entry performance at Jupiter; and the Li-SO2 battery was an important choice for the probe's main power.

  4. Plasma diagnostic techniques using particle beam probes

    SciTech Connect

    Jennings, W C

    1980-07-01

    A brief overview is given of particle beam probing. The fundamental concepts common to all techniques are discussed as well as the design considerations for choosing a particular diagnostic technique. The capabilities of existing and proposed techniques, and the present status of the techniques in major magnetic confinement geometries is also presented. Techniques which involve the injection of a beam of neutral particles into the plasma are then considered. The techniques of beam attenuation, beam scattering, and active charge exchange using a beam of light particles such as hydrogen or helium are first presented. Optical measurements of the Zeeman splitting of the radiation from a neutral lithium beam is then discussed, including a new proposal for significantly improving this technique through the addition of a dye laser. Two techniques involving the injection of heavy neutral particles are then presented, and the section concludes with two proposed techniques for measuring the properties of the alpha particles produced from actual fusion reactions. The diagnostic techniques which are based upon the injection of a beam of charged particles into the plasma are next described. The advantages and limitations of these techniques in comparison with the neutral techniques are discussed, followed by a description of specific techniques.

  5. Polarimetry diagnostic on OMEGA EP using a 10-ps, 263-nm probe beam

    SciTech Connect

    Davies, A. Haberberger, D.; Boni, R.; Ivancic, S.; Brown, R.; Froula, D. H.

    2014-11-15

    A polarimetry diagnostic was built and characterized for magnetic-field measurements in laser-plasma experiments on the OMEGA EP laser. This diagnostic was built into the existing 4ω (263-nm) probe system that employs a 10-ps laser pulse collected with an f/4 imaging system. The diagnostic measures the rotation of the probe beam's polarization. The polarimeter uses a Wollaston prism to split the probe beam into orthogonal polarization components. Spatially localized intensity variations between images indicate polarization rotation. Magnetic fields can be calculated by combining the polarimetry data with the measured plasma density profile obtained from angular filter refractometry.

  6. Note: Refined possibilities for plasma probe diagnostics

    NASA Astrophysics Data System (ADS)

    Masherov, P. E.; Riaby, V. A.; Abgaryan, V. K.

    2016-08-01

    In an earlier publication, the ion mass determination technique was proposed using the Langmuir probe measurement results for low-pressure Maxwellian plasmas and their analysis, based on the Bohm effect and the Child-Boguslavsky-Langmuir (CBL) probe sheath model, allowing for probe sheath thickness and ion mass evaluations after the Bohm coefficient CBCyl ≈ 1.13 for cylindrical probes had been determined. In the present study, the step-front sheath model, being physically closer to the reality of gas discharge plasmas, was considered in order to correct the CBL sheath model results. At this stage, more real Bohm coefficient (CBCyl ≈ 1.23) for cylindrical probes was found to provide a more reliable method of probe sheath thickness and ion mass determination.

  7. Note: Refined possibilities for plasma probe diagnostics.

    PubMed

    Masherov, P E; Riaby, V A; Abgaryan, V K

    2016-08-01

    In an earlier publication, the ion mass determination technique was proposed using the Langmuir probe measurement results for low-pressure Maxwellian plasmas and their analysis, based on the Bohm effect and the Child-Boguslavsky-Langmuir (CBL) probe sheath model, allowing for probe sheath thickness and ion mass evaluations after the Bohm coefficient CBCyl ≈ 1.13 for cylindrical probes had been determined. In the present study, the step-front sheath model, being physically closer to the reality of gas discharge plasmas, was considered in order to correct the CBL sheath model results. At this stage, more real Bohm coefficient (CBCyl ≈ 1.23) for cylindrical probes was found to provide a more reliable method of probe sheath thickness and ion mass determination. PMID:27587177

  8. High-frequency Probing Diagnostic for Hall Current Plasma Thrusters

    SciTech Connect

    A.A. Litvak; Y. Raitses; N.J. Fisch

    2001-10-25

    High-frequency oscillations (1-100 MHz) in Hall thrusters have apparently eluded significant experimental scrutiny. A diagnostic setup, consisting of a single Langmuir probe, a special shielded probe connector-positioner, and an electronic impedance-matching circuit, was successfully built and calibrated. Through simultaneous high-frequency probing of the Hall thruster plasma at multiple locations, high-frequency plasma waves have been identified and characterized for various thruster operating conditions.

  9. Shock wave diagnostics using fluorescent dye probes

    NASA Astrophysics Data System (ADS)

    Banishev, Alexandr; Christensen, James; Dlott, Dana

    2015-06-01

    Fluorescent probes are highly developed, and have found increasing use in a wide variety of applications. We have studied shock compression of various materials with embedded dye probes used as high speed probes of pressure and temperature. Under the right conditions, dye emission can be used to make a map of the pressure distribution in shocked microstructured materials with high time (1 ns) and space (1 micrometer) resolution. In order to accomplish this goal, we started by studying shock compression of PMMA polymer with rhodamine 6G dye (R6G), as a function of shock pressure and shock duration. We observed the shock-induced spectral redshift and the shock-induced intensity loss. We investigated the fundamental mechanisms of R6G response to pressure. We showed that the time response of a dye probe is limited by its photophysical behavior under shock. We developed superemissive ultrafast dye probes by embedding R6G in a silica nanoparticle. More recently, we have searched for dye probes that have better responses. For instance, we have found that the dye Nile Red embedded in the right polymer matrix has 1.7 times larger pressure-induced redshift than R6G.

  10. 2D potential measurements by applying automatic beam adjustment system to heavy ion beam probe diagnostic on the Large Helical Devicea)

    NASA Astrophysics Data System (ADS)

    Shimizu, A.; Ido, T.; Kurachi, M.; Makino, R.; Nishiura, M.; Kato, S.; Nishizawa, A.; Hamada, Y.

    2014-11-01

    Two-dimensional potential profiles in the Large Helical Device (LHD) were measured with heavy ion beam probe (HIBP). To measure the two-dimensional profile, the probe beam energy has to be changed. However, this task is not easy, because the beam transport line of LHD-HIBP system is very long (˜20 m), and the required beam adjustment consumes much time. To reduce the probe beam energy adjustment time, an automatic beam adjustment system has been developed. Using this system, required time to change the probe beam energy is dramatically reduced, such that two-dimensional potential profiles were able to be successfully measured with HIBP by changing the probe beam energy shot to shot.

  11. 2D potential measurements by applying automatic beam adjustment system to heavy ion beam probe diagnostic on the Large Helical Device

    SciTech Connect

    Shimizu, A. Ido, T.; Kato, S.; Hamada, Y.; Kurachi, M.; Makino, R.; Nishiura, M.; Nishizawa, A.

    2014-11-15

    Two-dimensional potential profiles in the Large Helical Device (LHD) were measured with heavy ion beam probe (HIBP). To measure the two-dimensional profile, the probe beam energy has to be changed. However, this task is not easy, because the beam transport line of LHD-HIBP system is very long (∼20 m), and the required beam adjustment consumes much time. To reduce the probe beam energy adjustment time, an automatic beam adjustment system has been developed. Using this system, required time to change the probe beam energy is dramatically reduced, such that two-dimensional potential profiles were able to be successfully measured with HIBP by changing the probe beam energy shot to shot.

  12. SERS gene probe for DNA diagnostics

    NASA Astrophysics Data System (ADS)

    Stokes, David L.; Allain, Leonardo R.; Isola, Narayana R.; Vo-Dinh, Tuan

    2003-07-01

    We describe the development of a surface-enhanced Raman scattering gene (SERGen) probe technology for rapid screening for diseases and pathogens through DNA hybridization assays. The technology combines the use of gene probes labeled with SERS-active markers, and nanostructured metallic platforms for inducing the SERS effect. As a result, SERGen-based methods can offer the spectral selectivity and sensitivity of SERS as well as the molecular specificity of DNA sequence hybridization. Furthermore, these new probe s preclude the use of radioactive labels. As illustrated herein, SERGen probes have been used as primers in polymerase chain reaction (PCR) amplifications of specific DNA sequences, hence further boosting the sensitivity of the technology. We also describe several approaches to developing SERS-active DNA assay platforms, addressing the challenges of making the SERGen technology accessible and practical for clinical settings. The usefulness of the SERGen approach has been demonstrated in the detection of HIV, BRCA1 breast cancer, and BAX genes. There is great potential for the use of numerous SERGen probes for multiplexed detection of multiple biological targets.

  13. New developments in APSTNG neutron probe diagnostics

    SciTech Connect

    Rhodes, E.; Dickerman, C.E.

    1995-12-31

    The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) show potential to allow the associated-particle diagnostic method to be moved out of the laboratory into field applications. The APSTNG interrogates the inspected object with 14-MeV neutrons generated from the deuterium-tritium reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra of resulting neutron reactions identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles separate the prompt and delayed gamma-ray spectra and can yield a separate coarse tomographic image of each identified nuclide, from a single orientation. Chemical substances are identified by comparing relative spectral line intensities with ratios of elements in reference compounds. The high-energy neutrons and gamma-rays penetrate large objects and dense materials. The gamma-ray dector and neutron generator can be located on the same side of the interrogated object, so spaces behind walls and other confirmed areas can be inspected. No collimators or radiation shielding are needed, the neutron generator is relatively simple and small, and commercial-grade electronics are employed. A complete system could be transported in an automotive van. Proof-of-concept laboratory experiments have been successfully performed for simulated nuclear, chemical warfare, and conventional munitions. Inspection applications have been investigated for presence of cocaine in propane tanks, uranium and plutonium smuggling, and radioactive and toxic waste characterization. An advanced APSTNG tube is being designed and constructed that will be transportable and rugged, yield a substantial neutron output increase, and provide sufficiently improved lifetime to allow operation at more than an order of magnitude increase in neutron flux.

  14. Optimal probe selection in diagnostic search

    NASA Technical Reports Server (NTRS)

    Bhandari, Inderpal S.; Simon, Herbert A.; Siewiorek, Daniel P.

    1990-01-01

    Probe selection (PS) in machine diagnosis is viewed as a collection of models that apply under specific conditions. This makes it possible for three polynomial-time optimal algorithms to be developed for simplified PS models that allow different probes to have different costs. The work is compared with the research of Simon and Kadane (1975), who developed a collection of models for optimal problem-solving search. The relationship between these models and the three newly developed algorithms for PS is explored. Two of the algorithms are unlike the ones discussed by Simon and Kadane. The third cannot be related to the problem-solving models.

  15. Heterodyne laser diagnostic system

    DOEpatents

    Globig, Michael A.; Johnson, Michael A.; Wyeth, Richard W.

    1990-01-01

    The heterodyne laser diagnostic system includes, in one embodiment, an average power pulsed laser optical spectrum analyzer for determining the average power of the pulsed laser. In another embodiment, the system includes a pulsed laser instantaneous optical frequency measurement for determining the instantaneous optical frequency of the pulsed laser.

  16. Probing the Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  17. Materials analysis and particle probe: A compact diagnostic system for in situ analysis of plasma-facing components (invited)a)

    NASA Astrophysics Data System (ADS)

    Taylor, C. N.; Heim, B.; Gonderman, S.; Allain, J. P.; Yang, Z.; Kaita, R.; Roquemore, A. L.; Skinner, C. H.; Ellis, R. A.

    2012-10-01

    The objective of the materials analysis particle probe (MAPP) in NSTX is to enable prompt and direct analysis of plasma-facing components exposed to plasma discharges. MAPP allows multiple samples to be introduced to the level of the plasma-facing surface without breaking vacuum and analyzed using X-ray photoelectron spectroscopy (XPS), ion-scattering and direct recoil spectroscopy, and thermal desorption spectroscopy (TDS) immediately following the plasma discharge. MAPP is designed to operate as a diagnostic within the ˜12 min NSTX minimum between-shot time window to reveal fundamental plasma-surface interactions. Initial calibration demonstrates MAPP's XPS and TDS capabilities.

  18. Process Diagnostics and Monitoring Using the Multipole Resonance Probe (MRP)

    NASA Astrophysics Data System (ADS)

    Harhausen, J.; Awakowicz, P.; Brinkmann, R. P.; Foest, R.; Lapke, M.; Musch, T.; Mussenbrock, T.; Oberrath, J.; Ohl, A.; Rolfes, I.; Schulz, Ch.; Storch, R.; Styrnoll, T.

    2011-10-01

    In this contribution we present the application of the MRP in an industrial plasma ion assisted deposition (PIAD) chamber (Leybold optics SYRUS-pro). The MRP is a novel plasma diagnostic which is suitable for an industrial environment - which means that the proposed method is robust, calibration free, and economical, and can be used for ideal and reactive plasmas alike. In order to employ the MRP as process diagnostics we mounted the probe on a manipulator to obtain spatially resolved information on the electron density and temperature. As monitoring tool the MRP is installed at a fixed position. Even during the deposition process it provides stable measurement results while other diagnostic methods, e.g. the Langmuir probe, may suffer from dielectric coatings. In this contribution we present the application of the MRP in an industrial plasma ion assisted deposition (PIAD) chamber (Leybold optics SYRUS-pro). The MRP is a novel plasma diagnostic which is suitable for an industrial environment - which means that the proposed method is robust, calibration free, and economical, and can be used for ideal and reactive plasmas alike. In order to employ the MRP as process diagnostics we mounted the probe on a manipulator to obtain spatially resolved information on the electron density and temperature. As monitoring tool the MRP is installed at a fixed position. Even during the deposition process it provides stable measurement results while other diagnostic methods, e.g. the Langmuir probe, may suffer from dielectric coatings. Funded by the German Ministry for Education and Research (BMBF, Fkz. 13N10462).

  19. Langmuir probe diagnostic suite in the C-2 field-reversed configuration

    SciTech Connect

    Roche, T. Armstrong, S.; Knapp, K.; Slepchenkov, M.; Sun, X.

    2014-11-15

    Several in situ probes have been designed and implemented into the diagnostic array of the C-2 field-reversed configuration (FRC) at Tri Alpha Energy [M. Tuszewski et al. (the TAE Team), Phys. Rev. Lett. 108, 255008 (2012)]. The probes are all variations on the traditional Langmuir probe. They include linear arrays of triple probes, linear arrays of single-tipped swept probes, a multi-faced Gundestrup probe, and an ion-sensitive probe. The probes vary from 5 to 7 mm diameter in size to minimize plasma perturbations. They also have boron nitride outer casings that prevent unwanted electrical breakdown and reduce the introduction of impurities. The probes are mounted on motorized linear-actuators allowing for programmatic scans of the various plasma parameters over the course of several shots. Each probe has a custom set of electronics that allows for measurement of the desired signals. High frequency ( > 5MHz) analog optical-isolators ensure that plasma parameters can be measured at sub-microsecond time scales while providing electrical isolation between machine and data acquisition systems. With these probes time-resolved plasma parameters (temperature, density, spatial potential, flow, and electric field) can be directly/locally measured in the FRC jet and edge/scrape-off layer.

  20. Traversing probe system

    DOEpatents

    Mashburn, Douglas N.; Stevens, Richard H.; Woodall, Harold C.

    1977-01-01

    This invention comprises a rotatable annular probe-positioner which carries at least one radially disposed sensing probe, such as a Pitot tube having a right-angled tip. The positioner can be coaxially and rotatably mounted within a compressor casing or the like and then actuated to orient the sensing probe as required to make measurements at selected stations in the annulus between the positioner and compressor casing. The positioner can be actuated to (a) selectively move the probe along its own axis, (b) adjust the yaw angle of the right-angled probe tip, and (c) revolve the probe about the axis common to the positioner and casing. A cam plate engages a cam-follower portion of the probe and normally rotates with the positioner. The positioner includes a first-motor-driven ring gear which effects slidable movement of the probe by rotating the positioner at a time when an external pneumatic cylinder is actuated to engage the cam plate and hold it stationary. When the pneumatic cylinder is not actuated, this ring gear can be driven to revolve the positioner and thus the probe to a desired circumferential location about the above-mentioned common axis. A second motor-driven ring gear included in the positioner can be driven to rotate the probe about its axis, thus adjusting the yaw angle of the probe tip. The positioner can be used in highly corrosive atmosphere, such as gaseous uranium hexafluoride.

  1. Micro-Particles as Electrostatic Probes for Plasma Sheath Diagnostic

    SciTech Connect

    Wolter, Matthias; Haass, Moritz; Ockenga, Taalke; Kersten, Holger; Blazec, Joseph; Basner, Ralf

    2008-09-07

    An interesting aspect in the research of complex (dusty) plasmas is the experimental study of the interaction of micro-particles of different sizes with the surrounding plasma for diagnostic purpose. In the plasma micro-disperse particles are negatively charged and confined in the sheath. The particles are trapped by an equilibrium of gravity, electric field force and ion drag force. From the behavior, local electric fields can be determined, e.g. particles are used as electrostatic probes. In combination with additional measurements of the plasma parameters with Langmuir probes and thermal probes as well as by comparison with an analytical sheath model, the structure of the sheath can be described. In the present work we focus on the behavior of micro-particles of different sizes and several plasma parameters e.g. the gas pressure and the rf-power.

  2. Thioaptamer Diagnostic System (TDS)

    NASA Technical Reports Server (NTRS)

    Yang, Xianbin

    2015-01-01

    AM Biotechnologies, LLC, in partnership with Sandia National Laboratories, has developed a diagnostic device that quickly detects sampled biomarkers. The TDS quickly quantifies clinically relevant biomarkers using only microliters of a single sample. The system combines ambient-stable, long shelf-life affinity assays with handheld, microfluidic gel electrophoresis affinity assay quantification technology. The TDS is easy to use, operates in microgravity, and permits simultaneous quantification of 32 biomarkers. In Phase I of the project, the partners demonstrated that a thioaptamer assay used in the microfluidic instrument could quantify a specific biomarker in serum in the low nanomolar range. The team also identified novel affinity agents to bone-specific alkaline phosphatase (BAP) and demonstrated their ability to detect BAP with the microfluidic instrument. In Phase II, AM Biotech expanded the number of ambient affinity agents and demonstrated a TDS prototype. In the long term, the clinical version of the TDS will provide a robust, flight-tested diagnostic capability for space exploration missions.

  3. Adaptive Embedded Digital System for Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    González, Angel; Rodríguez, Othoniel; Mangual, Osvaldo; Ponce, Eduardo; Vélez, Xavier

    2014-05-01

    An Adaptive Embedded Digital System to perform plasma diagnostics using electrostatic probes was developed at the Plasma Engineering Laboratory at Polytechnic University of Puerto Rico. The system will replace the existing instrumentation at the Laboratory, using reconfigurable hardware to minimize the equipment and software needed to perform diagnostics. The adaptability of the design resides on the possibility of replacing the computational algorithm on the fly, allowing to use the same hardware for different probes. The system was prototyped using Very High Speed Integrated Circuits Hardware Description Language (VHDL) into an Field Programmable Gate Array (FPGA) board. The design of the Embedded Digital System includes a Zero Phase Digital Filter, a Derivative Unit, and a Computational Unit designed using the VHDL-2008 Support Library. The prototype is able to compute the Plasma Electron Temperature and Density from a Single Langmuir probe. The system was tested using real data previously acquired from a single Langmuir probe. The plasma parameters obtained from the embedded system were compared with results computed using matlab yielding excellent matching. The new embedded system operates on 4096 samples versus 500 on the previous system, and completes its computations in 26 milliseconds compared with about 15 seconds on the previous system.

  4. Cathodic protection diagnostic expert system

    SciTech Connect

    Van Blaricum, V.L.; Kumar, A.; Park, Y.T.

    1994-12-31

    A knowledge-based diagnostic system called CP Diagnostic has been developed for troubleshooting sacrificial and impressed current cathodic protection systems. The expert system is designed to work in conjunction with the CP Diagnostic database system, which stores inventory and field measurement information for CP systems and flags problem areas. When a malfunction is detected, the expert system queries the user and the companion inventory and field measurement databases to determine its symptoms. The system will be described and examples of troubleshooting using the system will be presented.

  5. Flush-mounted probe diagnostics for argon glow discharge plasma

    SciTech Connect

    Xu, Liang Cao, Jinxiang; Liu, Yu; Wang, Jian; Du, Yinchang; Zheng, Zhe; Zhang, Xiao; Wang, Pi; Zhang, Jin; Li, Xiao; Qin, Yongqiang; Zhao, Liang

    2014-09-15

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges. These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.

  6. System diagnostic builder

    NASA Technical Reports Server (NTRS)

    Nieten, Joseph L.; Burke, Roger

    1992-01-01

    The System Diagnostic Builder (SDB) is an automated software verification and validation tool using state-of-the-art Artificial Intelligence (AI) technologies. The SDB is used extensively by project BURKE at NASA-JSC as one component of a software re-engineering toolkit. The SDB is applicable to any government or commercial organization which performs verification and validation tasks. The SDB has an X-window interface, which allows the user to 'train' a set of rules for use in a rule-based evaluator. The interface has a window that allows the user to plot up to five data parameters (attributes) at a time. Using these plots and a mouse, the user can identify and classify a particular behavior of the subject software. Once the user has identified the general behavior patterns of the software, he can train a set of rules to represent his knowledge of that behavior. The training process builds rules and fuzzy sets to use in the evaluator. The fuzzy sets classify those data points not clearly identified as a particular classification. Once an initial set of rules is trained, each additional data set given to the SDB will be used by a machine learning mechanism to refine the rules and fuzzy sets. This is a passive process and, therefore, it does not require any additional operator time. The evaluation component of the SDB can be used to validate a single software system using some number of different data sets, such as a simulator. Moreover, it can be used to validate software systems which have been re-engineered from one language and design methodology to a totally new implementation.

  7. Langmuir probe diagnostics of plasma in high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P.; Kewlani, H.; Mishra, L.; Mittal, K. C.; Patil, D. S.

    2013-07-15

    A high current Electron Cyclotron Resonance (ECR) proton ion source has been developed for low energy high intensity proton accelerator at Bhabha Atomic Research Centre. Langmuir probe diagnostics of the plasma generated in this proton ion source is performed using Langmuir probe. The diagnostics of plasma in the ion source is important as it determines beam parameters of the ion source, i.e., beam current, emittance, and available species. The plasma parameter measurement in the ion source is performed in continuously working and pulsed mode using hydrogen as plasma generation gas. The measurement is performed in the ECR zone for operating pressure and microwave power range of 10{sup −4}–10{sup −3} mbar and 400–1000 W. An automated Langmuir probe diagnostics unit with data acquisition system is developed to measure these parameters. The diagnostics studies indicate that the plasma density and plasma electron temperature measured are in the range 5.6 × 10{sup 10} cm{sup −3} to 3.8 × 10{sup 11} cm{sup −3} and 4–14 eV, respectively. Using this plasma, ion beam current of tens of mA is extracted. The variations of plasma parameters with microwave power, gas pressure, and radial location of the probe have been studied.

  8. New diagnostic systems on HL-2A

    SciTech Connect

    Ding, X. T.; Zhou, Y.; Deng, Z. C.; Xiao, W. W.; Liu, Z. T.; Shi, Z. B.; Yan, L. W.; Hong, W. Y.; Yang, Q. W.

    2006-10-15

    Three new diagnostic systems have been presented in this article: (1) the pulse molecular beam injection as a modulated particle source and microwave reflectometry for investigation of the particle transport, (2) a new three-step electrostatic probe array for zonal flow studying, and (3) eight-channel laser interferometer with 6 m HCN laser for electron density profile measurement with good spatial resolution. The main experimental results have also been shown briefly.

  9. Tissue classification and diagnostics using a fiber probe for combined Raman and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Anand, Suresh; Rossari, Susanna; Sturiale, Alessandro; Giordano, Flavio; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Tonelli, Francesco; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.

    2015-03-01

    Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnostic purposes on various tissues in a good agreement with common routine histology. This study included skin, brain and bladder tissues and in particular the classification of: malignant melanoma against melanocytic lesions and healthy skin; urothelial carcinoma against healthy bladder mucosa; brain tumor against dysplastic brain tissue. The diagnostic capabilities were determined using a cross-validation method with a leave-one-out approach, finding very high sensitivity and specificity for all the examined tissues. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.

  10. Tissue classification and diagnostics using a fiber probe for combined Raman and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Anand, Suresh; Crisci, Alfonso; Giordano, Flavio; Rossari, Susanna; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.

    2015-07-01

    Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnostic purposes on various tissues in a good agreement with common routine histology. This study included skin, brain and bladder tissues and in particular the classification of: malignant melanoma against melanocytic lesions and healthy skin; urothelial carcinoma against healthy bladder mucosa; brain tumor against dysplastic brain tissue. The diagnostic capabilities were determined using a cross-validation method with a leave-one-out approach, finding very high sensitivity and specificity for all the examined tissues. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.

  11. Modeling Formamide Denaturation of Probe-Target Hybrids for Improved Microarray Probe Design in Microbial Diagnostics

    PubMed Central

    Yilmaz, L. Safak; Loy, Alexander; Wright, Erik S.; Wagner, Michael; Noguera, Daniel R.

    2012-01-01

    Application of high-density microarrays to the diagnostic analysis of microbial communities is challenged by the optimization of oligonucleotide probe sensitivity and specificity, as it is generally unfeasible to experimentally test thousands of probes. This study investigated the adjustment of hybridization stringency using formamide with the idea that sensitivity and specificity can be optimized during probe design if the hybridization efficiency of oligonucleotides with target and non-target molecules can be predicted as a function of formamide concentration. Sigmoidal denaturation profiles were obtained using fluorescently labeled and fragmented 16S rRNA gene amplicon of Escherichia coli as the target with increasing concentrations of formamide in the hybridization buffer. A linear free energy model (LFEM) was developed and microarray-specific nearest neighbor rules were derived. The model simulated formamide melting with a denaturant m-value that increased hybridization free energy (ΔG°) by 0.173 kcal/mol per percent of formamide added (v/v). Using the LFEM and specific probe sets, free energy rules were systematically established to predict the stability of single and double mismatches, including bulged and tandem mismatches. The absolute error in predicting the position of experimental denaturation profiles was less than 5% formamide for more than 90 percent of probes, enabling a practical level of accuracy in probe design. The potential of the modeling approach for probe design and optimization is demonstrated using a dataset including the 16S rRNA gene of Rhodobacter sphaeroides as an additional target molecule. The LFEM and thermodynamic databases were incorporated into a computational tool (ProbeMelt) that is freely available at http://DECIPHER.cee.wisc.edu. PMID:22952791

  12. Cathodic protection diagnostic expert system

    SciTech Connect

    Van Blaricum, V.L.; Kumar, A. ); Park, Y.T. . Dept. of Computer Science)

    1994-12-01

    A knowledge-based diagnostic system has been developed for troubleshooting cathodic protection systems. The expert system is designed to work in conjunction with a database that stores inventory and field measurement information and flags problem areas. The system is described, and examples of troubleshooting using the system are presented.

  13. PEGylated hybrid ytterbia nanoparticles as high-performance diagnostic probes for in vivo magnetic resonance and X-ray computed tomography imaging with low systemic toxicity

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Pu, Fang; Liu, Jianhua; Jiang, Liyan; Yuan, Qinghai; Li, Zhengqiang; Ren, Jinsong; Qu, Xiaogang

    2013-05-01

    Novel nanoparticulate contrast agents with low systemic toxicity and inexpensive character have exhibited more advantages over routinely used small molecular contrast agents for the diagnosis and prognosis of disease. Herein, we designed and synthesized PEGylated hybrid ytterbia nanoparticles as high-performance nanoprobes for X-ray computed tomography (CT) imaging and magnetic resonance (MR) imaging both in vitro and in vivo. These well-defined nanoparticles were facile to prepare and cost-effective, meeting the criteria as a biomedical material. Compared with routinely used Iobitridol in clinic, our PEG-Yb2O3:Gd nanoparticles could provide much significantly enhanced contrast upon various clinical voltages ranging from 80 kVp to 140 kVp owing to the high atomic number and well-positioned K-edge energy of ytterbium. By the doping of gadolinium, our nanoparticulate contrast agent could perform perfect MR imaging simultaneously, revealing similar organ enrichment and bio-distribution with the CT imaging results. The super improvement in imaging efficiency was mainly attributed to the high content of Yb and Gd in a single nanoparticle, thus making these nanoparticles suitable for dual-modal diagnostic imaging with a low single-injection dose. In addition, detailed toxicological study in vitro and in vivo indicated that uniformly sized PEG-Yb2O3:Gd nanoparticles possessed excellent biocompatibility and revealed overall safety.Novel nanoparticulate contrast agents with low systemic toxicity and inexpensive character have exhibited more advantages over routinely used small molecular contrast agents for the diagnosis and prognosis of disease. Herein, we designed and synthesized PEGylated hybrid ytterbia nanoparticles as high-performance nanoprobes for X-ray computed tomography (CT) imaging and magnetic resonance (MR) imaging both in vitro and in vivo. These well-defined nanoparticles were facile to prepare and cost-effective, meeting the criteria as a biomedical material

  14. Mach flow angularity probes for scramjet engine flow path diagnostics

    SciTech Connect

    Jalbert, P.A.; Hiers, R.S. Jr.

    1993-12-31

    Mach-flow angularity (MFA) probes were developed for use in scramjet flow path probe rakes. Prototype probes were fabricated to demonstrate the assembly processes (numerical control machining, furnace brazing, and electron beam welding). Tests of prototype probes confirmed the thermal durability margins and life cycle. Selected probes were calibrated in air at Mach numbers from 1.75 to 6.0. Acceptance criteria for the production probes stressed thermal durability and pressure (and, consequently, Mach number) measurement quality. This new water-cooled MFA probe has 0.397-cm shaft diameter and is capable of withstanding heat fluxes of 2.724 kW/sq cm.

  15. Fiberoptic probe and system for spectral measurements

    DOEpatents

    Dai, S.; Young, J.P.

    1998-10-13

    A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 12 figs.

  16. Fiberoptic probe and system for spectral measurements

    DOEpatents

    Dai, Sheng; Young, Jack P.

    1998-01-01

    A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.

  17. Magnetic-probe diagnostics for railgun plasma armatures

    SciTech Connect

    Parker, J.V.

    1989-06-01

    Magnetic probes were employed on the first plasma armature railgun experiments, and they have been used continuously since then for position determination and qualitative determination of the armature current. In the last few years, improvements in experimental technique and analysis have permitted more accurate measurements of the plasma-armature current distribution. This paper reviews the various probe configurations in use today and presents analytic approximations for the dependence of the probe signal on probe location and railgun geometry. Rail current and armature current probes are compared and contrasted with respect to resolution and accuracy. Further improvements in measurement accuracy are predicted for close-spaced magnetic-probe arrays.

  18. Monoclonals and DNA probes in diagnostic and preventative medicine

    SciTech Connect

    Gallo, R.C.; Della Povta, G.; Albertini, A.

    1987-01-01

    This book contains 24 selections. Some of the titles are: Use of DNA Probes for Prenatal and Carrier Diagnosis of Hemophilia and Fragile X Mental Retardation; The Application of DNA Probes to Diagnosis and Research of Duchenne Muscular Dystrophy: Clinical Trial, New Probes and Deletion Mapping; Molecular Genetics of the Human Collagens; Molecular Genetics of Human Steroid 21-Hydroxylase Genes; Detection of Hepatitis B Virus DNA and Hepatitis Delta Virus RNA: Implications in Diagnosis and Pathogenesis; and DNA Probes to Evaluate the Possible Association of Papovaviruses with Human Tumors.

  19. Nucleic acid probes as a diagnostic method for tick-borne hemoparasites of veterinary importance.

    PubMed

    Figueroa, J V; Buening, G M

    1995-03-01

    An increased number of articles on the use of nucleic acid-based hybridization techniques for diagnostic purposes have been recently published. This article reviews nucleic acid-based hybridization as an assay to detect hemoparasite infections of economic relevance in veterinary medicine. By using recombinant DNA techniques, selected clones containing inserts of Anaplasma, Babesia, Cowdria or Theileria genomic DNA sequences have been obtained, and they are now available to be utilized as specific, highly sensitive DNA or RNA probes to detect the presence of the hemoparasite DNA in an infected animal. Either in an isotopic or non-isotopic detection system, probes have allowed scientists to test for--originally in samples collected from experimentally infected animals and later in samples collected in the field--the presence of hemoparasites during the prepatent, patent, convalescent, and chronic periods of the infection in the host. Nucleic acid probes have given researchers the opportunity to carry out genomic analysis of parasite DNA to differentiate hemoparasite species and to identify genetically distinct populations among and within isolates, strains and clonal populations. Prevalence of parasite infection in the tick vector can now be accomplished more specifically with the nucleic acid probes. Lately, with the advent of the polymerase chain reaction technique, small numbers of hemoparasites can be positively identified in the vertebrate host and tick vector. These techniques can be used to assess the veterinary epidemiological situation in a particular geographical region for the planning of control measures. PMID:7597795

  20. Note: The expansion of possibilities for plasma probe diagnostics

    NASA Astrophysics Data System (ADS)

    Masherov, P. E.; Riaby, V. A.; Abgaryan, V. K.

    2016-05-01

    The determination of ion mass for low-pressure Maxwellian plasmas has been proposed. It can be done using Langmuir probe measurements and the Bohm formula for the ion current density to a floating probe, due to this formula's reliance on ion mass. This goal was achieved by accurate measurements of xenon plasma parameters in the inductive discharge at pressure p = 2 ṡ 10-3 Torr using the Plasma Sensors VGPS-12 probe station with the cylindrical Langmuir probes. The analysis of measurement data showed that in these conditions, the Bohm effect was valid with engineering-level precision, resulting in the experimental Bohm coefficient CBCyl ≈ 1.13 for cylindrical probes.

  1. Note: The expansion of possibilities for plasma probe diagnostics.

    PubMed

    Masherov, P E; Riaby, V A; Abgaryan, V K

    2016-05-01

    The determination of ion mass for low-pressure Maxwellian plasmas has been proposed. It can be done using Langmuir probe measurements and the Bohm formula for the ion current density to a floating probe, due to this formula's reliance on ion mass. This goal was achieved by accurate measurements of xenon plasma parameters in the inductive discharge at pressure p = 2 ⋅ 10(-3) Torr using the Plasma Sensors VGPS-12 probe station with the cylindrical Langmuir probes. The analysis of measurement data showed that in these conditions, the Bohm effect was valid with engineering-level precision, resulting in the experimental Bohm coefficient CBCyl ≈ 1.13 for cylindrical probes. PMID:27250479

  2. Enhancements to the Compact Helical System fast ion loss probe

    SciTech Connect

    Darrow, D.S.; Isobe, M.; Kondo, T.; Sasao, M.; the CHS Group

    1999-01-01

    A scintillator-based fast ion loss probe has been used to measure 40 keV neutral beam ion loss from Compact Helical System plasmas. Modifications have recently been made to the probe to expand the range of gyroradius covered and to increase the probe acceptance at low pitch angles. In addition, a lamp has been installed inside the probe to facilitate calibration of the scintillator position within the field of view of the video camera. Finally, a Faraday cup structure, integral with the scintillator, has been added to allow direct measurement of the ion current to the probe. This last feature allows much easier absolute calibration of the diagnostic. {copyright} {ital 1999 American Institute of Physics.}

  3. Double Langmuir probe diagnostic of a resonant cavity microwave discharge

    SciTech Connect

    McColl, W.; Brooks, C.; Brake, M.L. )

    1993-07-01

    An Asmussen resonant cavity operating at 2.45 GHz provides the basis for the application of probe theory to a microwave discharge. A double Langmuir probe is inserted into a discharge produced by a microwave resonant cavity. Typical operating pressures range from 0.5 to 50 Torr in helium, with continuous wave microwave powers ranging from 60 to 120 W at 2.45 GHz. Typical probe data indicates electron densities in the range of 10[sup 11]--10[sup 12] cm[sup [minus]3] with electron temperatures of 5 to 20 eV. The probe data is compared with the results of a model based upon the electromagnetics of the discharge.

  4. DDS: The Dental Diagnostic Simulation System.

    ERIC Educational Resources Information Center

    Tira, Daniel E.

    The Dental Diagnostic Simulation (DDS) System provides an alternative to simulation systems which represent diagnostic case studies of relatively limited scope. It may be used to generate simulated case studies in all of the dental specialty areas with case materials progressing through the gamut of the diagnostic process. The generation of a…

  5. Potential measurements with heavy ion beam probe system on LHD

    SciTech Connect

    Shimizu, A.; Nishiura, M.; Kato, S.; Ido, T.; Toi, K.; Nakamura, S.

    2010-10-15

    The heavy ion beam probe system in the Large Helical Device (LHD) was improved as follows. At first, the additional new sweeper was installed into the diagnostic port to extend the observable region. By using this sweeper, the potential profile was measured in a wider minor radius range than in previous experiments, in the case of outward shifted magnetic configuration of LHD. Next, the real time control system was installed to control the probe beam orbit for measuring the potential in plasma with large plasma current. In this system, a digital signal processor was used to control the probe beam in real time. The system worked well in the fixed position observation mode. In the sweeping mode for profile measurement, this control system became unstable. The details of this system and the experimental results are reported in this article.

  6. Potential measurements with heavy ion beam probe system on LHD.

    PubMed

    Shimizu, A; Ido, T; Nakamura, S; Toi, K; Nishiura, M; Kato, S

    2010-10-01

    The heavy ion beam probe system in the Large Helical Device (LHD) was improved as follows. At first, the additional new sweeper was installed into the diagnostic port to extend the observable region. By using this sweeper, the potential profile was measured in a wider minor radius range than in previous experiments, in the case of outward shifted magnetic configuration of LHD. Next, the real time control system was installed to control the probe beam orbit for measuring the potential in plasma with large plasma current. In this system, a digital signal processor was used to control the probe beam in real time. The system worked well in the fixed position observation mode. In the sweeping mode for profile measurement, this control system became unstable. The details of this system and the experimental results are reported in this article. PMID:21033999

  7. Compact endocavity diagnostic probes for nuclear radiation detection

    DOEpatents

    Cui, Yonggang; James, Ralph; Bolotnikov, Aleksey

    2014-08-26

    This invention relates to the field of radiation imaging. In particular, the invention relates to an apparatus and a method for imaging tissue or an inanimate object using a novel probe that has an integrated solid-state semiconductor detector and complete readout electronics circuitry.

  8. Three axis velocity probe system

    DOEpatents

    Fasching, George E.; Smith, Jr., Nelson S.; Utt, Carroll E.

    1992-01-01

    A three-axis velocity probe system for determining three-axis positional velocities of small particles in fluidized bed systems and similar applications. This system has a sensor head containing four closely-spaced sensing electrodes of small wires that have flat ends to establish a two axis plane, e.g. a X-Y plane. Two of the sensing electrodes are positioned along one of the axes and the other two are along the second axis. These four sensing electrodes are surrounded by a guard electrode, and the outer surface is a ground electrode and support member for the sensing head. The electrodes are excited by, for example, sinusoidal voltage having a peak-to-peak voltage of up to 500 volts at a frequency of 2 MHz. Capacitive currents flowing between the four sensing electrodes and the ground electrode are influenced by the presence and position of a particle passing the sensing head. Any changes in these currents due to the particle are amplified and synchronously detected to produce positional signal values that are converted to digital form. Using these digital forms and two values of time permit generation of values of the three components of the particle vector and thus the total velocity vector.

  9. Heavy ion beam probe advances from the first installation of the diagnostic on an RFP (invited)

    SciTech Connect

    Demers, D. R.; Fimognari, P. J.

    2012-10-15

    Heavy ion beam probes have been installed on a variety of toroidal devices, but the first and only application on a reversed field pinch is the diagnostic on the Madison Symmetric Torus. Simultaneous measurements of spatially localized equilibrium potential and fluctuations of density and potential, previously inaccessible in the core of the reversed field pinch (RFP), are now attainable. These measurements reflect the unique strength of the heavy ion beam probe (HIBP) diagnostic. They will help determine the characteristics and evolution of electrostatic fluctuations and their role in transport, and determine the relation of the interior electric field and flows. Many aspects of the RFP present original challenges to HIBP operation and inference of plasma quantities. The magnetic field contributes to a number of the issues: the comparable magnitudes of the toroidal and poloidal fields and edge reversal result in highly three-dimensional beam trajectories; partial generation of the magnetic field by plasma current cause it and hence the beam trajectories to vary with time; and temporal topology and amplitude changes are common. Associated complications include strong ultraviolet radiation and elevated particle losses that can alter functionality of the electrostatic systems and generate noise on the detectors. These complexities have necessitated the development of new operation and data analysis techniques: the implementation of primary and secondary beamlines, adoption of alternative beam steering methods, development of higher precision electrostatic system models, refinement of trajectory calculations and sample volume modeling, establishment of stray particle and noise reduction methods, and formulation of alternative data analysis techniques. These innovative methods and the knowledge gained with this system are likely to translate to future HIBP operation on large scale stellarators and tokamaks.

  10. Optical diagnostic suite (schlieren, interferometry, and grid image refractometry) on OMEGA EP using a 10-ps, 263-nm probe beam

    SciTech Connect

    Froula, D. H.; Boni, R.; Bedzyk, M.; Craxton, R. S.; Ehrne, F.; Ivancic, S.; Jungquist, R.; Shoup, M. J.; Theobald, W.; Weiner, D.; Kugland, N. L.; Rushford, M. C.

    2012-10-15

    A 10-ps, 263-nm (4{omega}) laser is being built to probe plasmas produced on the OMEGA EP [J. H. Kelly, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. E. Kessler, S. J. Loucks, D. N. Maywar, R. L. McCrory et al., J. Phys. IV France 133, 75-80 (2006)]. A suite of optical diagnostics (schlieren, interferometry, and grid image refractometry) has been designed to diagnose and characterize a wide variety of plasmas. Light scattered by the probe beam is collected by an f/4 catadioptric telescope and a transport system is designed to image with a near-diffraction-limited resolution ({approx}1 -{mu}m full width at half maximum) over a 5-mm field of view to a diagnostic table. The transport system provides a contrast greater than 1 : 10{sup 4} with respect to all wavelengths outside of the 263 {+-} 2 nm measurement range.

  11. Optical diagnostic suite (schlieren, interferometry, and grid image refractometry) on OMEGA EP using a 10-ps, 263-nm probe beam.

    PubMed

    Froula, D H; Boni, R; Bedzyk, M; Craxton, R S; Ehrne, F; Ivancic, S; Jungquist, R; Shoup, M J; Theobald, W; Weiner, D; Kugland, N L; Rushford, M C

    2012-10-01

    A 10-ps, 263-nm (4ω) laser is being built to probe plasmas produced on the OMEGA EP [J. H. Kelly, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. E. Kessler, S. J. Loucks, D. N. Maywar, R. L. McCrory et al., J. Phys. IV France 133, 75-80 (2006)]. A suite of optical diagnostics (schlieren, interferometry, and grid image refractometry) has been designed to diagnose and characterize a wide variety of plasmas. Light scattered by the probe beam is collected by an f/4 catadioptric telescope and a transport system is designed to image with a near-diffraction-limited resolution (~1 - μm full width at half maximum) over a 5-mm field of view to a diagnostic table. The transport system provides a contrast greater than 1 : 10(4) with respect to all wavelengths outside of the 263 ± 2 nm measurement range. PMID:23127030

  12. [Companion diagnostics and reimbursement system].

    PubMed

    Tazawa, Yoshiaki

    2013-05-01

    Recently, Companion Diagnostics (CoDx) have been gaining importance to promote personalized medicine in order to improve the safety and cost effectiveness of therapy. In July 2011, the FDA published draft guidance for the development of CoDx, which recommends the co-development of CoDx and new drugs as the best practice, and then the FDA approved vemurafenib and the BRAF-V600-E gene mutation assay simultaneously as a typical example of the co-development of a new drug and its CoDx. Considering medical needs for multiple biomarker assays to select the right assay from various therapeutic candidates, more complicated assay technologies such as DNA sequencing will be required for CoDx in the near future. However, since it is quite difficult to standardize the validation process and manage test quality under the current regulatory criteria of in-vitro diagnostics using advanced and/or complicated assay technologies, the clinical use of laboratory-developed tests (LDT) should be recommended in order to avoid biomarker test lag. On the other hand, the current reimbursement system is not always suitable to assess the clinical and technological value of CoDx and it should be revised to encourage the development of CoDx. Although Health Technology Assessment (HTA) is a potential method to assess the value of CoDx, it is not easy to define appropriate indicators for CoDx because its clinical utility and cost effectiveness are completely dependent on the performance and value of available therapy. It is also suggested that the price and/or insurance rate of CoDx should be included in the price of the drug; however, there is no good solution to how to pay for CoDx with negative results for all therapies. It is said that the concept of personalized medicine with advanced technologies is a destructive innovation that could markedly change the current structure and system of medications; therefore, it is essential to create a quite new regulatory and reimbursement system to

  13. Chapter 8: The Diagnostic Systems in the FTU

    SciTech Connect

    Tudisco, O.; Apruzzese, G.M.; Buratti, P.; Cantarini, L.; Canton, A.; Carraro, L.; Cocilovo, V.; Angelis, R. de; Benedetti, M. de; Esposito, B.; Gabellieri, L.; Giovannozzi, E.; Granucci, G.; Grosso, L.A.; Grosso, G.; Innocente, P.; Kroegler, H.; Leigheb, M.; Monari, G.; Pacella, D.; Panaccione, L.; Pericoli-Ridolfini, V.; Pizzicaroli, G.; Podda, S.; Puiatti, M.E.; Rocchi, G.; Sibio, A.; Simonetto, A.; Smeulders, P.; Tartari, U.; Tartoni, N.; Tilia, B.; Valisa, M.; Zanza, V.; Zerbini, M.

    2004-05-15

    The design of diagnostics for the Frascati Tokamak Upgrade (FTU) is challenging because of the compactness of the machine (8-cm-wide ports) and the low operating temperatures requiring the presence of a cryostat. Nevertheless, a rather complete diagnostic system has been progressively installed. The basic systems include a set of magnetic probes, various visible and ultraviolet spectrometers, electron cyclotron emission (ECE) for electron temperature profiles measurements and electron tails monitoring, far-infrared and CO{sub 2} interferometry, X-ray (soft and hard) measurements, a multichord neutron diagnostics (with different type detectors), and a Thomson scattering system. Some diagnostics specific to the FTU physics program have been used such as microwave reflectometry for turbulence studies, edge-scanning Langmuir probes for radio-frequency coupling assessment, oblique ECE, and a fast electron bremsstrahlung (FEB) camera for lower hybrid current drive-induced fast electron tails.These systems are briefly reviewed in this paper. Further developments including a scanning CO{sub 2} laser two-color interferometer, two FEB cameras for tomographic analysis, a motional Stark effect system, and a collective Thomson scattering system are also described.

  14. Scintillator probe diagnostic for high energy particles escaped from Large Helical Device

    SciTech Connect

    Nishiura, M.; Isobe, M.; Saida, T.; Sasao, M.; Darrow, D.S.

    2004-10-01

    A scintillator probe for escaping fast ion diagnostics has been developed in the Large Helical Device. This probe is capable of traveling across a divertor leg and sweeping the aperture angle rotationally with respect to the axis of the probe shaft. Pitch angle and gyro radius resolutions are estimated numerically by using a Monte Carlo orbit simulation. The result shows that the detector has sufficient resolution in pitch angle and gyro radius for our target plasmas. Under the neutral beam injected plasma, a signal derived from fast ions was obtained on the scintillator plate and analyzed by using the recorded camera image.

  15. Non-contact high resolution Bessel beam probe for diagnostic imaging of cornea and trabecular meshwork region in eye

    NASA Astrophysics Data System (ADS)

    Murukeshan, V. M.; Jesmond, Hong Xun J.; Shinoj, V. K.; Baskaran, M.; Tin, Aung

    2015-07-01

    Primary angle closure glaucoma is a major form of disease that causes blindness in Asia and worldwide. In glaucoma, irregularities in the ocular aqueous outflow system cause an elevation in intraocular pressure (IOP) with subsequent death of retinal ganglion cells, resulting in loss of vision. High resolution visualization of the iridocorneal angle region has great diagnostic value in understanding the disease condition which enables monitoring of surgical interventions that decrease IOP. None of the current diagnostic techniques such as goniophotography, ultrasound biomicroscopy (UBM), anterior segment optical coherence tomography (AS-OCT) and RetCam™ can image with molecular specificity and required spatial resolution that can delineate the trabecular meshwork structures. This paper in this context proposes new concepts and methodology using Bessel beams based illumination and imaging for such diagnostic ocular imaging applications. The salient features using Bessel beams instead of the conventional Gaussian beam, and the optimization challenges in configuring the probe system will be illustrated with porcine eye samples.

  16. Superparamagnetic nanoparticles as targeted probes for diagnostic and therapeutic applications.

    PubMed

    Xu, Chenjie; Sun, Shouheng

    2009-08-01

    Superparamagnetic nanoparticles (NPs) have been attractive for medical diagnostics and therapeutics due to their unique magnetic properties and their ability to interact with various biomolecules of interest. The solution phase based chemical synthesis provides a near precise control on NP size, and monodisperse magnetic NPs with standard deviation in diameter of less than 10% are now routinely available. Upon controlled surface functionalization and coupling with fragments of DNA strands, proteins, peptides or antibodies, these NPs can be well-dispersed in biological solutions and used for drug delivery, magnetic separation, magnetic resonance imaging contrast enhancement and magnetic fluid hyperthermia. This Perspective reviews the common syntheses and controlled surface functionalization of monodisperse Fe(3)O(4)-based superparamagnetic NPs. It further outlines the exciting application potentials of these NPs in magnetic resonance imaging and drug delivery. PMID:20449070

  17. Novel optical spectroscopy system for breast cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Shakhova, Natalia; Turchin, Ilya; Kamensky, Vladislav; Sergeeva, Ekaterina; Golubyatnikov, German; Da Silva, Luiz; Kasthuri, Usha; Pavlycheva, Irina; Smetanina, Svetlana; Artifeksova, Anna; Belkov, Sergey; Kochemasov, Gennady

    2007-02-01

    We report on development of minimally invasive system for immediate diagnostics of breast cancer and on the results of its pilot clinical testing. The system designed by BioTelligent Inc is based on analysis of optical diffusion spectra (ODS) measured by a probe inserted into breast tissue during standard punch biopsy. Analysis of scattered spectra aimed to distinction of benign tumors from malignant ones is done by original procedure of data processing. Clinical testing of the created diagnostic system has been performed by classification of spectra collected from 146 patients with previously detected mammary neoplasms. The data of ODS study in each patient have been compared to the results of histology. The proposed technique has to date demonstrated sensitivity of 96%, specificity of 80% and diagnostic accuracy of 88%. These values are expected to improve as the data sets continue to grow and more sophisticated data processing is employed.

  18. Microwave probe diagnostic for the lower hybrid multijunction antenna on TdeV

    SciTech Connect

    Jacquet, P.; Demers, Y.; Chaudron, G.A.; Glaude, V.; Cote, A.; Dube, A.; Mireault, R.; Robert, A.; Vachon, L.

    1997-02-01

    On the TdeV tokamak a microwave probe diagnostic enables direct measurement of the electromagnetic fields in ten reduced waveguides of the lower hybrid current drive multijunction antenna. In each instrumented reduced waveguide, the local field is measured at two different locations by probes through coupling holes located in the narrow wall of the waveguides. The amplitude and phase of the signals are measured with a multichannel heterodyne circuit and are used to calculate the incident and reflected fields at the antenna mouth. The probes are under vacuum and they are bakeable up to the maximum operating temperature of the antenna ({ital T}=350{degree}C). They are calibrated at room temperature but the evolution of their characteristic with temperature is taken into account in the data analysis. Typical accuracies of the field measurements at the grill mouth are: {plus_minus}9{percent} for the amplitude and {plus_minus}6{degree} for the phase. The probe diagnostic has been operating reliably for the last two years and the probes do not appear to perturb the operation of the antenna nor to reduce its power handling capability. Comparisons of the probe measurements with calculations from the multijunction antenna modeling code SWAN show that the code is accurate for low rf power densities at the antenna mouth. {copyright} {ital 1997 American Institute of Physics.}

  19. Heavy ion beam probe systems for tight aspect ratio tokamaks

    SciTech Connect

    Melnikov, A.V.; Zimeleva, L.G.; Krupnik, L.I.; Nedzelskij, I.S.; Trofimenko, Y.V.; Minaev, V.B.

    1997-01-01

    We discuss the specific features of the application of heavy ion beam probe (HIBP) systems to tight aspect ratio tokamaks. We present and compare the HIBP projects for the TUMAN-3, GLOBUS, and COMPASS, where the inner part of the plasma is not available for regular chord diagnostics, so the HIBP becomes very desirable. All existing tight aspect ratio facilities and projects have a low (less than 1.9 T) toroidal field that requires a comparatively low beam energy range. The natural elongation and triangularity in tight aspect ratio tokamaks require an accurate calculation of the three-dimensional magnetic field for probing optimization. In comparison with traditional tokamaks, the detector grids have a wider energy interval. In general, the trajectories and detector grids for tight aspect ratio tokamaks become similar to the stellarator ones. Traditional and new probing schemes are suggested and discussed. {copyright} {ital 1997 American Institute of Physics.}

  20. Application of peptide displaying phage as a novel diagnostic probe for human lung adenocarcinoma.

    PubMed

    Lee, Kyoung Jin; Lee, Jae Hee; Chung, Hye Kyung; Ju, Eun Jin; Song, Si Yeol; Jeong, Seong-Yun; Choi, Eun Kyung

    2016-04-01

    Despite the increasing lung cancer-associated death rate, its therapy has been constrained by impasse of early diagnosis. To apply non-invasive imaging for potential cancer diagnosis system, we screened human lung adenocarcinoma-specific peptides using the phage display technique. For in vivo phage-displayed peptide screening, M13 phage library displaying 2.9 × 10(9) random peptides was injected through tail vein to lung adenocarcinoma cell-derived xenograft mouse model. Through four rounds of biopanning, a specific peptide sequence (CAKATCPAC) was screened out with the highest frequency and was named as Pep-1, and it was analyzed for its targeting ability as an imaging probe by in vitro competitive assay to test its cell-binding ability, immunohistochemical detection in the tumor tissue, and in vivo NIR fluorescent optical imaging. The specificity of Pep-1 toward lung cancer was ensured by in vivo imaging using xenograft animals of various cancer types. The results suggest that Pep-1 is a promising diagnostic lead molecule for rapid and accurate detection of human lung adenocarcinoma. In addition, it was found that the targeting ability was much enhanced by ionizing radiation in both cell-derived and patient-derived lung adenocarcinoma xenografts, suggesting the possibility of applying Pep-1 for prognostic diagnosis after radiotherapy. Taken together, this study suggests that Pep-1 possesses a specific-targeting ability for human lung adenocarcinoma and that this peptide could be directly used as a clinically applicable imaging probe. PMID:26759016

  1. Diagnostics principle of microwave cut-off probe for measuring absolute electron density

    SciTech Connect

    Jun, Hyun-Su

    2014-08-15

    A generalized diagnostics principle of microwave cut-off probe is presented with a full analytical solution. In previous studies on the microwave cut-off measurement of weakly ionized plasmas, the cut-off frequency ω{sub c} of a given electron density is assumed to be equal to the plasma frequency ω{sub p} and is predicted using electromagnetic simulation or electric circuit model analysis. However, for specific plasma conditions such as highly collisional plasma and a very narrow probe tip gap, it has been found that ω{sub c} and ω{sub p} are not equal. To resolve this problem, a generalized diagnostics principle is proposed by analytically solving the microwave cut-off condition Re[ε{sub r,eff}(ω = ω{sub c})] = 0. In addition, characteristics of the microwave cut-off condition are theoretically tested for correct measurement of the absolute electron density.

  2. Characterization of Fiber Optic CMM Probe System

    SciTech Connect

    K.W.Swallow

    2007-05-15

    This report documents a study completed on the fiber optic probe system that is a part of the Werth optical CMM. This study was necessary due to a lack of documentation from the vendor for the proper use and calibration of the fiber probe, and was performed in support of the Lithographie Galvanoformung Abformung (LIGA) development program at the FM&T. As a result of this study, a better understanding of the fiber optic probe has been developed, including guidelines for its proper use and calibration.

  3. A recommender system for medical imaging diagnostic.

    PubMed

    Monteiro, Eriksson; Valente, Frederico; Costa, Carlos; Oliveira, José Luís

    2015-01-01

    The large volume of data captured daily in healthcare institutions is opening new and great perspectives about the best ways to use it towards improving clinical practice. In this paper we present a context-based recommender system to support medical imaging diagnostic. The system relies on data mining and context-based retrieval techniques to automatically lookup for relevant information that may help physicians in the diagnostic decision. PMID:25991188

  4. Matched dipole probe for magnetized low electron density laboratory plasma diagnostics

    SciTech Connect

    Rafalskyi, Dmytro; Aanesland, Ane

    2015-07-15

    In this paper, a diagnostic method for magnetized and unmagnetized laboratory plasma is proposed, based on impedance measurements of a short matched dipole. The range of the measured electron densities is limited to low density plasmas (10{sup 12}–10{sup 15 }m{sup −3}), where other diagnostic methods have strong limitations on the magnetic field strength and topology, plasma dimensions, and boundary conditions. The method is designed for use in both large- and small-dimension plasma (<10 cm) without or with strong non-homogeneous magnetic field, which can be undefined within the probe size. The design of a matched dipole probe allows to suppress the sheath resonance effects and to reach high sensitivity at relatively small probe dimensions. Validation experiments are conducted in both magnetized (B ∼ 170 G) and unmagnetized (B = 0) low density (7 × 10{sup 12 }m{sup −3}–7 × 10{sup 13 }m{sup −3}) low pressure (1 mTorr) 10 cm scale plasmas. The experimentally measured data show very good agreement with an analytical theory both for a non-magnetized and a magnetized case. The electron density measured by the matched dipole and Langmuir probes in the range of 7 × 10{sup 12 }m{sup −3}–7 × 10{sup 13 }m{sup −3} show less than 30% difference. An experimentally measured tolerance/uncertainty of the dipole probe method is estimated to ±1% for plasma densities above 2 × 10{sup 13 }m{sup −3}. A spatial resolution is estimated from the experiments to be about 3d, where d is the dipole diameter. The diagnostic method is also validated by comparing the measured plasma impedance curves with results of analytical modelling.

  5. Diagnostics of wear in aeronautical systems

    NASA Technical Reports Server (NTRS)

    Wedeven, L. D.

    1979-01-01

    The use of appropriate diagnostic tools for aircraft oil wetted components is reviewed, noting that it can reduce direct operating costs through reduced unscheduled maintenance, particularly in helicopter engine and transmission systems where bearing failures are a significant cost factor. Engine and transmission wear modes are described, and diagnostic methods for oil and wet particle analysis, the spectrometric oil analysis program, chip detectors, ferrography, in-line oil monitor and radioactive isotope tagging are discussed, noting that they are effective over a limited range of particle sizes but compliment each other if used in parallel. Fine filtration can potentially increase time between overhauls, but reduces the effectiveness of conventional oil monitoring techniques so that alternative diagnostic techniques must be used. It is concluded that the development of a diagnostic system should be parallel and integral with the development of a mechanical system.

  6. TFTR diagnostic control and data acquisition system

    NASA Astrophysics Data System (ADS)

    Sauthoff, N. R.; Daniels, R. E.

    1985-05-01

    General computerized control and data-handling support for TFTR diagnostics is presented within the context of the Central Instrumentation, Control and Data Acquisition (CICADA) System. Procedures, hardware, the interactive man-machine interface, event-driven task scheduling, system-wide arming and data acquisition, and a hierarchical data base of raw data and results are described. Similarities in data structures involved in control, monitoring, and data acquisition afford a simplification of the system functions, based on ``groups'' of devices. Emphases and optimizations appropriate for fusion diagnostic system designs are provided. An off-line data reduction computer system is under development.

  7. TFTR diagnostic control and data acquisition system

    SciTech Connect

    Sauthoff, N.R.; Daniels, R.E.; PPL Computer Division

    1985-05-01

    General computerized control and data-handling support for TFTR diagnostics is presented within the context of the Central Instrumentation, Control and Data Acquisition (CICADA) System. Procedures, hardware, the interactive man--machine interface, event-driven task scheduling, system-wide arming and data acquisition, and a hierarchical data base of raw data and results are described. Similarities in data structures involved in control, monitoring, and data acquisition afford a simplification of the system functions, based on ''groups'' of devices. Emphases and optimizations appropriate for fusion diagnostic system designs are provided. An off-line data reduction computer system is under development.

  8. SSME Post Test Diagnostic System: Systems Section

    NASA Technical Reports Server (NTRS)

    Bickmore, Timothy

    1995-01-01

    An assessment of engine and component health is routinely made after each test firing or flight firing of a Space Shuttle Main Engine (SSME). Currently, this health assessment is done by teams of engineers who manually review sensor data, performance data, and engine and component operating histories. Based on review of information from these various sources, an evaluation is made as to the health of each component of the SSME and the preparedness of the engine for another test or flight. The objective of this project - the SSME Post Test Diagnostic System (PTDS) - is to develop a computer program which automates the analysis of test data from the SSME in order to detect and diagnose anomalies. This report primarily covers work on the Systems Section of the PTDS, which automates the analyses performed by the systems/performance group at the Propulsion Branch of NASA Marshall Space Flight Center (MSFC). This group is responsible for assessing the overall health and performance of the engine, and detecting and diagnosing anomalies which involve multiple components (other groups are responsible for analyzing the behavior of specific components). The PTDS utilizes several advanced software technologies to perform its analyses. Raw test data is analyzed using signal processing routines which detect features in the data, such as spikes, shifts, peaks, and drifts. Component analyses are performed by expert systems, which use 'rules-of-thumb' obtained from interviews with the MSFC data analysts to detect and diagnose anomalies. The systems analysis is performed using case-based reasoning. Results of all analyses are stored in a relational database and displayed via an X-window-based graphical user interface which provides ranked lists of anomalies and observations by engine component, along with supporting data plots for each.

  9. Research support for plasma diagnostics on Elmo Bumpy Torus - development of a multichannel Hall-probe based diamagnetic diagnostic instrument and observation and modeling of EBT electron rings. Final report, October 1, 1982-September 30, 1983

    SciTech Connect

    Carpenter, K.H.; Booker, R.H.

    1983-10-01

    Use of multiple Hall effect probes is a cost effective way to observe diamagnetic fields from the hot electron rings in the Elmo Bumpy Torus device at several locations simultaneously. A special diagnostic instrument has been developed having six Hall probe channels with the sensitivity and stability needed for the diamagnetic measurements. The instrument uses an AC carrier system with isolation transformers located remotely from the instrument and near the probe locations. Details of instrument design as well as operating instructions for it are included in this report.

  10. Investigation of implosion dynamics and magnetic fields in 1-MA wire arrays by optical probing diagnostics

    NASA Astrophysics Data System (ADS)

    Laca, P. J.; Sarkisov, G. S.

    2005-10-01

    Multiframe optical probing diagnostics were applied for the investigation of implosion dynamics and magnetic fields in z-pinch plasma of wire arrays and x-pinches at the Nevada Terawatt Facility (NTF). Five shadow frames per shot, with a long 34-ns or short 9-ns pulse train, presents fine details of plasma evolution in the wire array. A Faraday rotation diagnostic consists of identical shadow and Faraday channels, shearing air-wedge interferometer, and schlieren channel. Evolution of the wire array z-pinch in different regimes of implosion was investigated. Fast dynamics of bubbles in plasma streams were studied in detail. A current in the plasma column of Al wire arrays and magnetic bubbles were found by the Faraday rotation diagnostic.

  11. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak.

    PubMed

    Xu, J C; Wang, L; Xu, G S; Luo, G N; Yao, D M; Li, Q; Cao, L; Chen, L; Zhang, W; Liu, S C; Wang, H Q; Jia, M N; Feng, W; Deng, G Z; Hu, L Q; Wan, B N; Li, J; Sun, Y W; Guo, H Y

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability. PMID:27587120

  12. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Xu, J. C.; Wang, L.; Xu, G. S.; Luo, G. N.; Yao, D. M.; Li, Q.; Cao, L.; Chen, L.; Zhang, W.; Liu, S. C.; Wang, H. Q.; Jia, M. N.; Feng, W.; Deng, G. Z.; Hu, L. Q.; Wan, B. N.; Li, J.; Sun, Y. W.; Guo, H. Y.

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.

  13. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Shevchenko, Vladimir F.; Freethy, Simon J.; Huang, Billy K.; Vann, Roddy G. L.

    2014-08-01

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post-processing mode. SAMI can scan over 16 pre-programmed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a 'passive' imaging of plasma emission and also an 'active' imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structures. Both modes of operation show good performance in fusion plasma experiments on Mega Amp Spherical Tokamak (MAST). We have obtained the first ever 2-D images of BXO mode conversion windows. With active probing, first ever turbulence velocity maps have been obtained. We present an overview of the diagnostic and discuss recent results. In contrast to quasi-optical microwave imaging systems SAMI requires neither big aperture viewing ports nor large 2-D detector arrays to achieve the desired imaging resolution. The number of effective 'pixels' of the synthesized image is proportional to the number of receiving antennas squared. Thus only a small number of optimised antennas is sufficient for the majority of applications. Possible implementation of SAMI on ITERand DEMO is discussed.

  14. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    SciTech Connect

    Shevchenko, Vladimir F.; Freethy, Simon J.; Huang, Billy K.

    2014-08-21

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post-processing mode. SAMI can scan over 16 pre-programmed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a 'passive' imaging of plasma emission and also an 'active' imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structures. Both modes of operation show good performance in fusion plasma experiments on Mega Amp Spherical Tokamak (MAST). We have obtained the first ever 2-D images of BXO mode conversion windows. With active probing, first ever turbulence velocity maps have been obtained. We present an overview of the diagnostic and discuss recent results. In contrast to quasi-optical microwave imaging systems SAMI requires neither big aperture viewing ports nor large 2-D detector arrays to achieve the desired imaging resolution. The number of effective 'pixels' of the synthesized image is proportional to the number of receiving antennas squared. Thus only a small number of optimised antennas is sufficient for the majority of applications. Possible implementation of SAMI on ITERand DEMO is discussed.

  15. First mirrors for diagnostic systems of ITER

    NASA Astrophysics Data System (ADS)

    Litnovsky, A.; Voitsenya, V. S.; Costley, A.; Donné, A. J. H.; SWG on First Mirrors of the ITPA Topical Group on Diagnostics

    2007-08-01

    The majority of optical diagnostics presently foreseen for ITER will implement in-vessel metallic mirrors as plasma-viewing components. Mirrors are used for the observation of the plasma radiation in a very wide wavelength range: from about 1 nm up to a few mm. In the hostile ITER environment, mirrors are subject to erosion, deposition, particle implantation and other adverse effects which will change their optical properties, affecting the entire performance of the respective diagnostic systems. The Specialists Working Group (SWG) on first mirrors was established under the wings of the International Tokamak Physics Activity (ITPA) Topical Group (TG) on Diagnostics to coordinate and guide the investigations on diagnostic mirrors towards the development of optimal, robust and durable solutions for ITER diagnostic systems. The results of tests of various ITER-candidate mirror materials, performed in Tore-Supra, TEXTOR, DIII-D, TCV, T-10, TRIAM-1M and LHD under various plasma conditions, as well as an overview of laboratory investigations of mirror performance and mirror cleaning techniques are presented in the paper. The current tasks in the R&D of diagnostic mirrors will be addressed.

  16. High bandwidth vapor density diagnostic system

    DOEpatents

    Globig, Michael A.; Story, Thomas W.

    1992-01-01

    A high bandwidth vapor density diagnostic system for measuring the density of an atomic vapor during one or more photoionization events. The system translates the measurements from a low frequency region to a high frequency, relatively noise-free region in the spectrum to provide improved signal to noise ratio.

  17. The Multiple Resonance Probe: A Novel Device for Industry Compatible Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf Peter; Storch, Robert; Lapke, Martin; Oberrath, Jens; Schulz, Christian; Styrnoll, Tim; Zietz, Christian; Awakowicz, Peter; Musch, Thomas; Mussenbrock, Thomas; Rolfes, Ilona

    2012-10-01

    To be useful for the supervision or control of technical plasmas, a diagnostic method must be i) robust and stable, ii) insensitive to perturbation by the process, iii) itself not perturbing the process, iv) clearly and easily interpretable without the need for calibration, v) compliant with the requirements of process integration, and, last but not least, vi) economical in terms of investment, footprint, and maintenance. Plasma resonance spectroscopy, exploiting the natural ability of plasmas to resonate on or near the electron plasma frequency, provides a good basis for such an ``industry compatible'' plasma diagnostics. The contribution will describe the general idea of active plasma resonance spectroscopy and introduce a mathematical formalism for its analysis. It will then focus on the novel multipole resonance probe (MRP), where the excited resonances can be classified explicitly and the connection between the probe response and the desired electron density can be cast as a simple formula. The current state of the MRP project will be described, including the experimental characterization of a prototype in comparison with Langmuir probes, and the development of a specialized measurement circuit.

  18. Saturn Probe: Revealing Solar System Origins

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.

    2015-12-01

    Comparative studies of the gas giant and ice giant planets are needed to reliably discriminate among competing theories of the origin and evolution of giant planets and the solar system, but we lack critical measurements. A Saturn atmospheric entry probe mission would fill a vital part of that gap, allowing comparative studies of Jupiter and Saturn, providing the basis for later comparisons with the ice giants Uranus and Neptune, and informing studies of extrasolar planetary systems now being characterized. The Galileo Probe mission provided the first in situ studies of Jupiter's atmosphere. Similar measurements at Saturn, Uranus and Neptune would provide an important comparative planetology context for the Galileo results. Cassini's "Proximal Orbits" in 2017 will reveal Saturn's internal structure to complement the Juno mission's similar measurements at Jupiter. A Saturn entry probe, complementing the Galileo Probe investigations at Jupiter, would complete a solid basis for improved understanding of both Jupiter and Saturn, an important stepping stone to understanding Uranus and Neptune and solar system formation and evolution. The 2012 Decadal Survey ("DS") added Saturn Probe science objectives to NASA's New Frontiers Program: highest-priority Tier 1 objectives any New Frontiers implementation must achieve, and Tier 2, high priority but lower than Tier 1. A DS mission concept study using extremely conservative assumptions concluded that a Saturn Probe project could fit within New Frontiers resource constraints, giving a PI confidence that they could pursue some Tier 2 objectives, customizing for the proper balance of science return, science team composition, procured or contributed instruments, etc. Contributed instruments could significantly enhance the payload and the science team for greater science return. They also provide international collaboration opportunities, with science benefits well demonstrated by missions such as Cassini-Huygens and Rosetta.

  19. Outer planet entry probe system study. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    General mission considerations and science prospectus, which are of a general nature that applies to several or all planetary applications, are presented. Five probe systems are defined: nominal Jupiter probe system, and Jupiter probe-dedicated alternative probe system, Jupiter spacecraft radiation-compatible alternative probe system, Saturn probe system, and Saturn probe applicability for Uranus. Parametric analysis is summarized for mission analysis of a general nature, and then for specific missions to Jupiter, Saturn, Uranus, and Neptune. The program is also discussed from the hardware availability viewpoint and the aspect of commonality.

  20. Bay integrated power system control and diagnostics

    SciTech Connect

    Beierl, O.

    1996-03-01

    The paper presents new concepts for control and diagnostic systems for high voltage switchgear (123-kV and above). Air insulated and gas insulated (SF6) switchgear is considered. The new aspect is the integration of monitoring and diagnostic concepts in digital control and protection systems. Communication concepts for sensors and actuators with digital process busses at bay level are discussed. The paper covers integration concepts for circuit breaker monitoring (AIS, GIS) and for GIS the integration of on-line partial discharge measurement, on-line arc detection and on-line monitoring of the gas conditions. Finally, the advantages, disadvantages and the applicability of integrated diagnostic and control concepts are discussed by means of technical and commercial aspects.

  1. Wall current probe: A non-invasive in situ plasma diagnostic for space and time resolved current density distribution measurement

    SciTech Connect

    Baude, R.; Gaboriau, F.; Hagelaar, G. J. M.

    2013-08-15

    In the context of low temperature plasma research, we propose a wall current probe to determine the local charged particle fluxes flowing to the chamber walls. This non-intrusive planar probe consists of an array of electrode elements which can be individually biased and for which the current can be measured separately. We detail the probe properties and present the ability of the diagnostic to be used as a space and time resolved measurement of the ion and electron current density at the chamber walls. This diagnostic will be relevant to study the electron transport in magnetized low-pressure plasmas.

  2. Magnesium plasma diagnostics by heated probe and characterization of the Mg thin films deposited by thermionic vacuum arc technology

    NASA Astrophysics Data System (ADS)

    Vladoiu, Rodica; Mandes, Aurelia; Dinca Balan, Virginia; Prodan, Gabriel; Kudrna, Pavel; Tichý, Milan

    2015-06-01

    The aim of this paper is to report on magnesium plasma diagnostics and to investigate the properties of thin Mg films deposited on Si and glass substrates by using thermionic vacuum arc (TVA) technology. TVA is an original deposition method using a combination of anodic arc and powerful electron gun system (up to 600 W) for the growth of thin films from solid precursors under a vacuum of 10-6Torr. Due to the comparatively high deposition rate as well as comparatively high plasma potential—around 0.5 kV—plasma diagnostics were carried out by a heated probe that prevents layer deposition on the probe surface. The estimated value of electron density was in the order of 1.0  ×  1016m-3 and the electron temperature varied between 4  ×  104 and 1.2  ×  105 K (corresponding to two different discharge conditions). The thin Mg films were investigated using SEM images and TEM analyses provided with HR-TEM and SAED facilities. According to the SAED patterns the structure of the films can be indexed as two forms: hexagonal structure for Mg and cubic structure for MgO; the peak value of grain size distribution was 91.29 nm in diameter for Mg TVA/Si and 61.06 nm for Mg TVA/Gl.

  3. Multimodal optical biopsy probe to improve the safety and diagnostic yield of brain needle biopsies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Desroches, Joannie; Pichette, Julien; Goyette, Andréanne; Tremblay, Marie-Andrée.; Jermyn, Michael; Petrecca, Kevin; Leblond, Frédéric

    2016-03-01

    Brain needle biopsy (BNB) is performed to collect tissue when precise neuropathological diagnosis is required to provide information about tumor type, grade, and growth patterns. The principal risks associated with this procedure are intracranial hemorrhage (due to clipping blood vessels during tissue extraction), incorrect tumor typing/grading due to non-representative or non-diagnostic samples (e.g. necrotic tissue), and missing the lesion. We present an innovative device using sub-diffuse optical tomography to detect blood vessels and Raman spectroscopy to detect molecular differences between tissue types, in order to reduce the risks of misdiagnosis, incorrect tumour grading, and non-diagnostic samples. The needle probe integrates optical fibers directly onto the external cannula of a commercial BNB needle, and can perform measurements for both optical techniques through the same fibers. This integrated optical spectroscopy system uses diffuse reflectance signals to perform a 360-degree reconstruction of the tissue adjacent to the biopsy needle, based on the optical contrast associated with hemoglobin light absorption, thereby localizing blood vessels. Raman spectra measurements are also performed interstitially for tissue characterization. A detailed sensitivity of the system is presented to demonstrate that it can detect absorbers with diameters <300 µm located up to ˜2 mm from the biopsy needle core, for bulk optical properties consistent with brain tissue. Results from animal experiments are presented to validate blood vessel detection and Raman spectrum measurement without disruption of the surgical workflow. We also present phantom measurements of Raman spectra with the needle probe and a comparison with a clinically validated Raman spectroscopy probe.

  4. The EMMA Accelerator, a Diagnostic Systems Overview

    SciTech Connect

    Kalinin, A.; Berg, J.; Bliss, N. Cox, G.; Dufau, M.; Gallagher, A.; Hill, C.; Jones, J.; Ma, L.; McIntosh, P.; Muratori, B.; Oates, A.; Shepherd B.; Smith, R.; Hock, K.; Holder, D.; Ibison, M., Kirkman I.; Borrell, R.; Crisp, J.; Fellenz, B.; Wendt, M.

    2011-09-04

    The 'EMMA' Non-Scaling Fixed Field Alternating Gradient (ns-FFAG) international project is currently being commissioned at Daresbury Laboratory, UK. This accelerator has been equipped with a number of diagnostic systems to facilitate this. These systems include a novel time-domain-multiplexing BPM system, moveable screen systems, a time-of-flight instrument, Faraday cups, and injection/extraction tomography sections to analyze the single bunch beams. An upgrade still to implement includes the installation of wall current monitors. This paper gives an overview of these systems and shows some data and results from the diagnostics that have contributed to the successful demonstration of a serpentine acceleration by this novel accelerator.

  5. Systemic mastocytosis - a diagnostic challenge.

    PubMed

    Lladó, Ana Cristina Amorim Oliveira Gaia; Mihon, Claudia Elena; Silva, Madalena; Galzerano, Antonio

    2014-01-01

    Mastocytosis refers to a group of disorders characterized by the infiltration of clonally derived mast cells to the skin or extracutaneous tissues resulting in a heterogeneous clinical picture. It is a rare hematologic disorder in all its forms. The exact incidence is unknown; it affects patients of any age and males and females equally. Its molecular pathogenesis is incompletely understood. The clinical features of mastocytosis result from both chronic and episodic mast cell mediator release, signs and symptoms arising from diffuse or focal tissue infiltration, and, occasionally, the presence of an associated non-mast cell clonal hematologic disease. The histopathologic analysis is essential for definitive diagnosis but there is no curative treatment. The authors report a clinical case of a 72-year-old woman with no history of allergies, with bicytopenia, weight loss, and diffuse axial osteolytic lesions. This is a rare clinical case of aggressive systemic mastocytosis for which palliative treatment can improve survival and quality of life. A brief review of the literature about this pathology is also included. PMID:25031064

  6. Galileo probe battery system -- An update

    SciTech Connect

    Dagarin, B.P.; Taenaka, R.K.; Stofel, E.J.

    1996-11-01

    NASA`s Galileo 6-year trip to Jupiter is in its final phase. The mission consists of a Jovian Orbiter and an atmospheric entry Probe. The Probe is designed to coast autonomously for up to 190 days and turn itself on 6 hours prior to entry. It will then descend through the upper atmosphere for 50 to 75 minutes with the aid of an 8-foot parachute. This paper discusses sources of electrical power for the Probe and battery testing at the systems level. Described are the final production phase, qualification, and systems testing prior to and following launch, as well as decisions made regarding the Probe separation Li/SO{sub 2} battery configuration. In addition, the paper briefly describes the thermal battery verification program. The main power source comprises three Li/SO{sub 2} battery modules containing 13 D-sized cell strings per module. These modules are required to retain capacity for 7.5 years and support a 150-day clock, ending with a 7-hour mission sequence of increasing loads from 0.15 A to 9.5 A during the last 30 minutes. The main power source is supplemented by two thermal batteries (CaCrO{sub 4}-Ca), which will be used for firing the pyrotechnic initiators during the atmospheric entry.

  7. Building Systems Diagnostics and Predictive Maintenance

    SciTech Connect

    Katipamula, Srinivas; Pratt, Robert G.; Braun, J.

    2001-01-01

    There has been an increasing interest in the development of methods and tools for automated fault detection and diagnostics (FDD) of building systems and components in the 1990s. This chapter, written for the CRC Handbook for HVAC&R Engineering, will describe the status of these methods and and methodologies as applied to HVAC&R and building systems and present certain illustrative case studies.

  8. FIDEX: An expert system for satellite diagnostics

    NASA Technical Reports Server (NTRS)

    Durkin, John; Tallo, Donald; Petrik, Edward J.

    1991-01-01

    A Fault Isolation and Diagnostic Expert system (FIDEX) was developed for communication satellite diagnostics. It was designed specifically for the 30/20 GHz satellite transponder. The expert system was designed with a generic structure and features that make it applicable to other types of space systems. FIDEX is a frame based system that enjoys many of the inherent frame base features, such as hierarchy that describes the transponder's components, with other hierarchies that provide structural and fault information about the transponder. This architecture provides a flexible diagnostic structure and enhances maintenance of the system. FIDEX also includes an inexact reasoning technique and a primitive learning ability. Inexact reasoning was an important feature for this system due to the sparse number of sensors available to provide information on the transponder's performance. FIDEX can determine the most likely faulted component under the constraint of limited information. FIDEX learns about the most likely faults in the transponder by keeping a record of past established faults. FIDEX also has the ability to detect anomalies in the sensors that provide information on the transponders performance.

  9. Video integrated measurement system. [Diagnostic display devices

    SciTech Connect

    Spector, B.; Eilbert, L.; Finando, S.; Fukuda, F.

    1982-06-01

    A Video Integrated Measurement (VIM) System is described which incorporates the use of various noninvasive diagnostic procedures (moire contourography, electromyography, posturometry, infrared thermography, etc.), used individually or in combination, for the evaluation of neuromusculoskeletal and other disorders and their management with biofeedback and other therapeutic procedures. The system provides for measuring individual diagnostic and therapeutic modes, or multiple modes by split screen superimposition, of real time (actual) images of the patient and idealized (ideal-normal) models on a video monitor, along with analog and digital data, graphics, color, and other transduced symbolic information. It is concluded that this system provides an innovative and efficient method by which the therapist and patient can interact in biofeedback training/learning processes and holds considerable promise for more effective measurement and treatment of a wide variety of physical and behavioral disorders.

  10. Optical Diagnostic System for the TLS

    SciTech Connect

    Kuan, C. K.; Tseng, T. C.; Wang, D. J.; Hsiung, G. Y.; Perng, S. Y.; Tsai, Z. D.; Ueng, T. S.; Hsueh, H. P.; Chen, J. R.

    2007-01-19

    The Taiwan light source (TLS) uses a photon beam intensity system (Io monitor) to index the electron beam stability. This index combines the information of the fluctuations of electron beam position and size. For understanding the impact of these fluctuations to the electron beam instability, a set of the optical diagnostic system was installed in the TLS BL10 diagnostics beamline. This system includes the photon beam position monitor (PBPM), the beam size monitor (BSM) and the Io monitor. From the result, we concluded that about one-third impact of beam instability came from the fluctuation of electron beam position and about two-thirds impact of beam instability came from the fluctuation of electron beam size. The hardware configuration is described in this paper.

  11. Next generation of optical diagnostics for bladder cancer using probe-based confocal laser endomicroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jen-Jane; Chang, Timothy C.; Pan, Ying; Hsiao, Shelly T.; Mach, Kathleen E.; Jensen, Kristin C.; Liao, Joseph C.

    2012-02-01

    Real-time imaging with confocal laser endomicroscopy (CLE) probes that fit in standard endoscopes has emerged as a clinically feasible technology for optical biopsy of bladder cancer. Confocal images of normal, inflammatory, and neoplastic urothelium obtained with intravesical fluorescein can be differentiated by morphologic characteristics. We compiled a confocal atlas of the urinary tract using these diagnostic criteria to be used in a prospective diagnostic accuracy study. Patients scheduled to undergo transurethral resection of bladder tumor underwent white light cystoscopy (WLC), followed by CLE, and histologic confirmation of resected tissue. Areas that appeared normal by WLC were imaged and biopsied as controls. We imaged and prospectively analyzed 135 areas in 57 patients. We show that CLE improves the diagnostic accuracy of WLC for diagnosing benign tissue, low and high grade cancer. Interobserver studies showed a moderate level of agreement by urologists and nonclinical researchers. Despite morphologic differences between inflammation and cancer, real-time differentiation can still be challenging. Identification of bladder cancer-specific contrast agents could provide molecular specificity to CLE. By using fluorescently-labeled antibodies or peptides that bind to proteins expressed in bladder cancer, we have identified putative molecular contrast agents for targeted imaging with CLE. We describe one candidate agent - anti-CD47 - that was instilled into bladder specimens. The tumor and normal urothelium were imaged with CLE, with increased fluorescent signal demonstrated in areas of tumor compared to normal areas. Thus, cancer-specificity can be achieved using molecular contrast agents ex vivo in conjunction with CLE.

  12. Measuring the Accuracy of Diagnostic Systems

    NASA Astrophysics Data System (ADS)

    Swets, John A.

    1988-06-01

    Diagnostic systems of several kinds are used to distinguish between two classes of events, essentially ``signals'' and ``noise.'' For then, analysis in terms of the ``relative operating characteristic'' of signal detection theory provides a precise and valid measure of diagnostic accuracy. It is the only measure available that is uninfluenced by decision biases and prior probabilities, and it places the performances of diverse systems on a common, easily interpreted scale. Representative values of this measure are reported here for systems in medical imaging, materials testing, weather forecasting, information retrieval, polygraph lie detection, and aptitude testing. Though the measure itself is sound, the values obtained from tests of diagnostic systems often require qualification because the test data on which they are based are of unsure quality. A common set of problems in testing is faced in all fields. How well these problems are handled, or can be handled in a given field, determines the degree of confidence that can be placed in a measured value of accuracy. Some fields fare much better than others.

  13. Nike Facility Diagnostics and Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Chan, Yung; Aglitskiy, Yefim; Karasik, Max; Kehne, David; Obenschain, Steve; Oh, Jaechul; Serlin, Victor; Weaver, Jim

    2013-10-01

    The Nike laser-target facility is a 56-beam krypton fluoride system that can deliver 2 to 3 kJ of laser energy at 248 nm onto targets inside a two meter diameter vacuum chamber. Nike is used to study physics and technology issues related to laser direct-drive ICF fusion, including hydrodynamic and laser-plasma instabilities, material behavior at extreme pressures, and optical and x-ray diagnostics for laser-heated targets. A suite of laser and target diagnostics are fielded on the Nike facility, including high-speed, high-resolution x-ray and visible imaging cameras, spectrometers and photo-detectors. A centrally-controlled, distributed computerized data acquisition system provides robust data management and near real-time analysis feedback capability during target shots. Work supported by DOE/NNSA.

  14. Experience report with the Alignment Diagnostic System

    SciTech Connect

    Gassner, Georg; /SLAC

    2011-03-03

    Since 2009 an Alignment Diagnostic System (ADS) has been operating at the undulator of the new Linac Coherent Light Source at SLAC National Accelerator Laboratory. The undulator spans a distance of 132 meters and is structured into 33 segments. Each segment is equipped with four hydrostatic leveling sensors and four wire position monitors. This report describes the set up and reflects the experience gained with the ADS.

  15. Climate Model Diagnostic Analyzer Web Service System

    NASA Astrophysics Data System (ADS)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Li, J.; Zhang, J.; Wang, W.

    2015-12-01

    Both the National Research Council Decadal Survey and the latest Intergovernmental Panel on Climate Change Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with the synergistic use of global satellite observations in order to improve our weather and climate simulation and prediction capabilities. The abundance of satellite observations for fundamental climate parameters and the availability of coordinated model outputs from CMIP5 for the same parameters offer a great opportunity to understand and diagnose model biases in climate models. In addition, the Obs4MIPs efforts have created several key global observational datasets that are readily usable for model evaluations. However, a model diagnostic evaluation process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. In response, we have developed a novel methodology to diagnose model biases in contemporary climate models and implementing the methodology as a web-service based, cloud-enabled, provenance-supported climate-model evaluation system. The evaluation system is named Climate Model Diagnostic Analyzer (CMDA), which is the product of the research and technology development investments of several current and past NASA ROSES programs. The current technologies and infrastructure of CMDA are designed and selected to address several technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. In particular, we have three key technology components: (1) diagnostic analysis methodology; (2) web-service based, cloud-enabled technology; (3) provenance-supported technology. The diagnostic analysis methodology includes random forest feature importance ranking, conditional probability distribution function, conditional sampling, and time-lagged correlation map. We have implemented the

  16. Gravity Probe B gyroscope readout system

    NASA Astrophysics Data System (ADS)

    Muhlfelder, B.; Lockhart, J.; Aljabreen, H.; Clarke, B.; Gutt, G.; Luo, M.

    2015-11-01

    We describe the Gravity Probe B London-moment readout system successfully used on-orbit to measure two gyroscope spin axis drift rates predicted by general relativity. The system couples the magnetic signal of a spinning niobium-coated rotor into a low noise superconducting quantum interference device. We describe the multi-layered magnetic shield needed to attenuate external fields that would otherwise degrade readout performance. We discuss the ∼35 nrad/yr drift rate sensitivity that was achieved on-orbit.

  17. A Self-Diagnostic System for the M6 Accelerometer

    NASA Technical Reports Server (NTRS)

    Flanagan, Patrick M.; Lekki, John

    2001-01-01

    The design of a Self-Diagnostic (SD) accelerometer system for the Space Shuttle Main Engine is presented. This retrofit system connects diagnostic electronic hardware and software to the current M6 accelerometer system. This paper discusses the general operation of the M6 accelerometer SD system and procedures for developing and evaluating the SD system. Signal processing techniques using M6 accelerometer diagnostic data are explained. Test results include diagnostic data responding to changing ambient temperature, mounting torque and base mounting impedance.

  18. Outer planet entry probe system study. Volume 4: Common Saturn/Uranus probe studies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results are summarized of a common scientific probe study to explore the atmospheres of Saturn and Uranus. This was a three-month follow-on effort to the Outer Planet Entry Probe System study. The report presents: (1) a summary, conclusions and recommendations of this study, (2) parametric analysis conducted to support the two system definitions, (3) common Saturn/Uranus probe system definition using the Science Advisory Group's exploratory payload and, (4) common Saturn/Uranus probe system definition using an expanded science complement. Each of the probe system definitions consists of detailed discussions of the mission, science, system and subsystems including telecommunications, data handling, power, pyrotechnics, attitude control, structures, propulsion, thermal control and probe-to-spacecraft integration. References are made to the contents of the first three volumes where it is feasible to do so.

  19. Diagnostics of Fast Electrons within Castor Tokamak by Means of a Modified Cherenkov-Type Probe

    SciTech Connect

    Zebrowski, J.; Jakubowski, L.; Sadowski, M. J.; Malinowski, K.; Jakubowski, M.; Weinzettl, V.; Stockel, J.; Peterka, M.

    2008-03-19

    The paper reports on experimental studies performed within the CASTOR tokamak, which was operated at IPP in Prague, Czech Republic, during the last experimental campaign carried out in autumn 2006. The main aim was to implement a new diagnostic technique for measurements of energetic (>80 keV) electrons within the tokamak edge plasma region. The technique was based on the use of a Cherenkov-type probe similar to the first prototype detector, which was tested during the previous experiments with the CASTOR device. In particular, the distributions of fast electrons in a standard scenario at different values of plasma current I{sub p}, and toroidal magnetic field B{sub T} are determined.

  20. Diagnostic systems in DEMO: Engineering design issues

    SciTech Connect

    Todd, T. N.

    2014-08-21

    The diagnostic systems of DEMO that are mounted on or near the torus, whether intended for the monitoring and control functions of the engineering aspects or the physics behaviour of the machine, will have to be designed to suit the hostile nuclear environment. This will be necessary not just for their survival and correct functioning but also to satisfy the pertinent regulatory bodies, especially where any of them relate to machine protection or the prevention or mitigation of accidents foreseen in the safety case. This paper aims to indicate the more important of the reactor design considerations that are likely to apply to diagnostics for DEMO, drawn from experience on JET, the provisions in hand for ITER and modelling results for the wall erosion and neutron damage effects in DEMO.

  1. Diagnostic systems in DEMO: Engineering design issues

    NASA Astrophysics Data System (ADS)

    Todd, T. N.

    2014-08-01

    The diagnostic systems of DEMO that are mounted on or near the torus, whether intended for the monitoring and control functions of the engineering aspects or the physics behaviour of the machine, will have to be designed to suit the hostile nuclear environment. This will be necessary not just for their survival and correct functioning but also to satisfy the pertinent regulatory bodies, especially where any of them relate to machine protection or the prevention or mitigation of accidents foreseen in the safety case. This paper aims to indicate the more important of the reactor design considerations that are likely to apply to diagnostics for DEMO, drawn from experience on JET, the provisions in hand for ITER and modelling results for the wall erosion and neutron damage effects in DEMO.

  2. MicroProbe Small Unmanned Aerial System

    NASA Technical Reports Server (NTRS)

    Bland, Geoffrey; Miles, Ted

    2012-01-01

    The MicroProbe unmanned aerial system (UAS) concept incorporates twin electric motors mounted on the vehicle wing, thus enabling an aerodynamically and environmentally clean nose area for atmospheric sensors. A payload bay is also incorporated in the fuselage to accommodate remote sensing instruments. A key feature of this concept is lightweight construction combined with low flying speeds to minimize kinetic energy and associated hazards, as well as maximizing spatial resolution. This type of aerial platform is needed for Earth science research and environmental monitoring. There were no vehicles of this type known to exist previously.

  3. Development of a diagnostic DNA probe for xanthomonads causing bacterial spot of peppers and tomatoes.

    PubMed Central

    Kuflu, K M; Cuppels, D A

    1997-01-01

    Xanthomonas vesicatoria and Xanthomonas axonopodis pv. vesicatoria, causal agents for bacterial spot of tomatoes and peppers, are difficult to distinguish from other xanthomonads found on field-grown plants. A genomic subtraction technique with subtracter DNA from nonpathogenic epiphytic xanthomonads was used to enrich for sequences that could serve as diagnostic probes for these pathogens. A 1.75-kb PstI-NotI fragment (KK1750) that preferentially hybridized to X. vesicatoria DNA and X. axonopodis pv. vesicatoria DNA was identified and cloned into pBluescriptII KS+. It hybridized to 46 (89%) of the 52 geographically diverse bacterial spot-causing xanthomonad (bsx) strains included in this study. The six probe-negative strains were genotypically and pathologically distinct from the other bsx strains studied. Two of these strains, DC91-1 and DC91-2, resembled X. campestris pv. raphani in that they also infected radish plants. X. vesicatoria strains gave stronger hybridization signals than did most X. axonopodis pv. vesicatoria strains. In a survey of 110 non-bsx plant-associated bacteria, including 44 nonvesicatoria phytopathogenic xanthomonads and 43 epiphytic xanthomonad strains, only 8 were probe positive, but the responses were weak. Further testing revealed that one of these strains was actually a tomato pathogen. Pulsed-field gel electrophoresis and Southern blot analysis of 46 bsx strains indicated that KK1750 sequences could be either plasmid-borne (10.9%), chromosome-borne (43.4%), or present on both replicons (45.7%). KK1750, unique in its ability to hybridize to both X. axonopodis pv. vesicatoria and X. vesicatoria strains, should facilitate disease diagnosis for these important plant pathogens. PMID:9361433

  4. Diagnostic Systems for the Ignitor Experiment

    NASA Astrophysics Data System (ADS)

    Bombarda, F.; Giammanco, F.; Ignir International Collaboration

    2011-10-01

    The main purpose of the Ignitor experiment (R0 ≅ 1 . 32 m , a × b ≅ 0 . 47 × 0 . 83m2 ,BT <= 13 T ,Ip <= 11 MA) is that of establishing the reactor physics in regimes close to ignition (Te ≅Ti ≅ 11 keV ,n0 ≅1021m-3). The pulse evolution at the maximum machine parameters is characterized by a ramp-up phase of the plasma current of 4 s and 4 s of flat-top, which allow to reach fully relaxed current profiles. The set of baseline diagnostic systems includes, among others, the advanced neutron spectrometer originally proposed for Ignitor and later adopted on JET, Thomson Scattering, ECE, High Resolution X-ray Spectrometer. A Dispersion-Interferometer operating at 1 μm instead of the conventional Two-color Interferometer at 10 μm is being considered for plasma density measurements. The high plasma density and temperature, together with the use of tritium, impose some limitations on diagnostic systems based on NB injection, escaping particles or in direct connection with the high vacumm of the plasma chamber. The high neutron flux is also expected to challenge the systems more directly exposed to it, although the low fluences do not pose particular concerns on material survival. The conceptual design of the main diagnostic systems has been carried out and the present lay-out around the machine is shown. Sponsored in part by ENEA of Italy and by the U.S. D.O.E.

  5. High-throughput microarray technology in diagnostics of enterobacteria based on genome-wide probe selection and regression analysis

    PubMed Central

    2010-01-01

    Background The Enterobacteriaceae comprise a large number of clinically relevant species with several individual subspecies. Overlapping virulence-associated gene pools and the high overall genome plasticity often interferes with correct enterobacterial strain typing and risk assessment. Array technology offers a fast, reproducible and standardisable means for bacterial typing and thus provides many advantages for bacterial diagnostics, risk assessment and surveillance. The development of highly discriminative broad-range microbial diagnostic microarrays remains a challenge, because of marked genome plasticity of many bacterial pathogens. Results We developed a DNA microarray for strain typing and detection of major antimicrobial resistance genes of clinically relevant enterobacteria. For this purpose, we applied a global genome-wide probe selection strategy on 32 available complete enterobacterial genomes combined with a regression model for pathogen classification. The discriminative power of the probe set was further tested in silico on 15 additional complete enterobacterial genome sequences. DNA microarrays based on the selected probes were used to type 92 clinical enterobacterial isolates. Phenotypic tests confirmed the array-based typing results and corroborate that the selected probes allowed correct typing and prediction of major antibiotic resistances of clinically relevant Enterobacteriaceae, including the subspecies level, e.g. the reliable distinction of different E. coli pathotypes. Conclusions Our results demonstrate that the global probe selection approach based on longest common factor statistics as well as the design of a DNA microarray with a restricted set of discriminative probes enables robust discrimination of different enterobacterial variants and represents a proof of concept that can be adopted for diagnostics of a wide range of microbial pathogens. Our approach circumvents misclassifications arising from the application of virulence

  6. Development a diagnostic pan-dermatophyte TaqMan probe real-time PCR assay based on beta tubulin gene.

    PubMed

    Mirhendi, Hossein; Motamedi, Marjan; Makimura, Koichi; Satoh, Kazuo

    2016-08-01

    Early differentiation of dermatophytosis from other cutaneous mycoses is essential to avoid inaccurate therapy. DNA-based techniques including real-time PCR have increasingly been considered for detection of fungal elements in clinical specimens. In this study, after partial sequence analysis of beta tubulin (BT2) gene in 13 common and rare pathogenic dermatophyte species, a pan-dermatophyte primer and probe set was designed in a TaqMan probe-based PCR format. The sensitivity and specificity of the system was tested with 22 reference strains of dermatophytes, 234 positive clinical specimens, 32 DNA samples extracted from normal nails, several fungi other than dermatophytes and human DNAs. Analytical detection limit of the designed PCR on serially diluted DNAs of prepared recombinant plasmid indicated that only five molecules per sample are the minimum number for reliable detection by the assay. A total of 226 out of 234 (96.5%) DNAs extracted from clinical samples, but none of the 32 nail samples, from healthy volunteers were positive in PCR. The real-time PCR targeted beta tubulin gene established in this study could be a sensitive diagnostic tool which is significantly faster than the conventional culture method and should be useful in the clinical settings, in large-scale epidemiological studies and in clinical trials of antifungal therapy. PMID:27071371

  7. Efficient Probabilistic Diagnostics for Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole J.; Chavira, Mark; Cascio, Keith; Poll, Scott; Darwiche, Adnan; Uckun, Serdar

    2008-01-01

    We consider in this work the probabilistic approach to model-based diagnosis when applied to electrical power systems (EPSs). Our probabilistic approach is formally well-founded, as it based on Bayesian networks and arithmetic circuits. We investigate the diagnostic task known as fault isolation, and pay special attention to meeting two of the main challenges . model development and real-time reasoning . often associated with real-world application of model-based diagnosis technologies. To address the challenge of model development, we develop a systematic approach to representing electrical power systems as Bayesian networks, supported by an easy-to-use speci.cation language. To address the real-time reasoning challenge, we compile Bayesian networks into arithmetic circuits. Arithmetic circuit evaluation supports real-time diagnosis by being predictable and fast. In essence, we introduce a high-level EPS speci.cation language from which Bayesian networks that can diagnose multiple simultaneous failures are auto-generated, and we illustrate the feasibility of using arithmetic circuits, compiled from Bayesian networks, for real-time diagnosis on real-world EPSs of interest to NASA. The experimental system is a real-world EPS, namely the Advanced Diagnostic and Prognostic Testbed (ADAPT) located at the NASA Ames Research Center. In experiments with the ADAPT Bayesian network, which currently contains 503 discrete nodes and 579 edges, we .nd high diagnostic accuracy in scenarios where one to three faults, both in components and sensors, were inserted. The time taken to compute the most probable explanation using arithmetic circuits has a small mean of 0.2625 milliseconds and standard deviation of 0.2028 milliseconds. In experiments with data from ADAPT we also show that arithmetic circuit evaluation substantially outperforms joint tree propagation and variable elimination, two alternative algorithms for diagnosis using Bayesian network inference.

  8. Real time PV manufacturing diagnostic system

    SciTech Connect

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  9. Applying Diagnostics to Enhance Cable System Reliability (Cable Diagnostic Focused Initiative, Phase II)

    SciTech Connect

    Hartlein, Rick; Hampton, Nigel; Perkel, Josh; Hernandez, JC; Elledge, Stacy; del Valle, Yamille; Grimaldo, Jose; Deku, Kodzo

    2015-07-25

    The Cable Diagnostic Focused Initiative (CDFI) played a significant and powerful role in clarifying the concerns and understanding the benefits of performing diagnostic tests on underground power cable systems. This project focused on the medium and high voltage cable systems used in utility transmission and distribution (T&D) systems. While many of the analysis techniques and interpretations are applicable to diagnostics and cable systems outside of T&D, areas such as generating stations (nuclear, coal, wind, etc.) and other industrial environments were not the focus. Many large utilities in North America now deploy diagnostics or have changed their diagnostic testing approach as a result of this project. Previous to the CDFI, different diagnostic technology providers individually promoted their approach as the “the best” or “the only” means of detecting cable system defects.

  10. Gravity Probe B data system description

    NASA Astrophysics Data System (ADS)

    Bennett, Norman R.

    2015-11-01

    The Gravity Probe B data system, developed, integrated, and tested by Lockheed Missiles & Space Company, and later Lockheed Martin Corporation, included flight and ground command, control, and communications software. The development was greatly facilitated, conceptually and by the transfer of key personnel, through Lockheed’s earlier flight and ground test software development for the Hubble Space Telescope (HST). Key design challenges included the tight mission timeline (17 months, 9 days of on-orbit operation), the need to tune the system once on-orbit, and limited 2 Kbps real-time data rates and ground asset availability. The result was a completely integrated space vehicle and Stanford mission operations center, which successfully collected and archived 97% of the ‘guide star valid’ data to support the science analysis. Lessons learned and incorporated from the HST flight software development and on-orbit support experience, and Lockheed’s independent research and development effort, will be discussed.

  11. An inference engine for embedded diagnostic systems

    NASA Technical Reports Server (NTRS)

    Fox, Barry R.; Brewster, Larry T.

    1987-01-01

    The implementation of an inference engine for embedded diagnostic systems is described. The system consists of two distinct parts. The first is an off-line compiler which accepts a propositional logical statement of the relationship between facts and conclusions and produces data structures required by the on-line inference engine. The second part consists of the inference engine and interface routines which accept assertions of fact and return the conclusions which necessarily follow. Given a set of assertions, it will generate exactly the conclusions which logically follow. At the same time, it will detect any inconsistencies which may propagate from an inconsistent set of assertions or a poorly formulated set of rules. The memory requirements are fixed and the worst case execution times are bounded at compile time. The data structures and inference algorithms are very simple and well understood. The data structures and algorithms are described in detail. The system has been implemented on Lisp, Pascal, and Modula-2.

  12. On-line diagnostic system for power generators

    SciTech Connect

    Skormin, V.A.; Goodenough, G.S.; Huber, R.K.

    1996-12-31

    A novel approach to diagnostics of a power generator is developed. It utilizes readily available data acquired by the existing computer-based monitoring/control system. Diagnostic procedures detect various trends in the generator data and interpret these trends in the generator data and interpret these trends as changes in the generator performance caused by incipient failures. Results of trend analyses, subjected to statistical validation, facilitate failure prediction and identification thus providing the justification for service when needed. The procedures are incorporated in a diagnostic system implemented in a PC interfaced with the existing VAX-based process monitoring and control system. The diagnostic system provides graphical display of the diagnostic messages.

  13. C3H2 observations as a diagnostic probe for molecular clouds

    NASA Technical Reports Server (NTRS)

    Avery, L. W.

    1986-01-01

    Recently the three-membered ring molecule, cyclopropenylidene, C3H2, has been identified in the laboratory and detected in molecular clouds by Thaddeus, Vrtilek and Gottlieb (1985). This molecule is wide-spread throughout the Galaxy and has been detected in 25 separate sources including cold dust clouds, circumstellar envelopes, HII regions, and the spiral arms observed against the Cas supernova remnant. In order to evaluate the potential of C3H2 as a diagnostic probe for molecular clouds, and to attempt to identify the most useful transitions, statistical equilibrium calculations were carried out for the lowest 24 levels of the ortho species and the lowest 10 levels of the para species. Many of the sources observed by Matthews and Irvine (1985) show evidence of being optically thick in the 1(10)-1(01) line. Consequently, the effects of radiative trapping should be incorporated into the equilibrium calculations. This was done using the Large Velocity Gradient approximation for a spherical cloud of uniform density. Some results of the calculations for T(K)=10K are given. Figures are presented which show contours of the logarithm of the ratio of peak line brightness temperatures for ortho-para pairs of lines at similar frequencies. It appears that the widespread nature of C3H2, the relatively large strength of its spectral lines, and their sensitivity to density and molecular abundance combine to make this a useful molecule for probing physical conditions in molecular clouds. The 1(10)-1(01) and 2(20)-2(11) K-band lines may be especially useful in this regard because of the ease with which they are observed and their unusual density-dependent emission/absorption properties.

  14. Exploring the Hybridization Thermodynamics of Spherical Nucleic Acids to Tailor Probes for Diagnostic and Therapeutic Applications

    NASA Astrophysics Data System (ADS)

    Randeria, Pratik Shailesh

    Spherical nucleic acids (SNAs), three-dimensional nanoparticle conjugates composed of densely packed and highly oriented oligonucleotides around organic or inorganic nanoparticles, are an emergent class of nanostructures that show promise as single-entity agents for intracellular messenger RNA (mRNA) detection and gene regulation. SNAs exhibit superior biocompatibility and biological properties compared to linear oligonucleotides, enabling them to overcome many of the limitations of linear oligonucleotides for use in biomedical applications. However, the origins of these biologically attractive properties are not well understood. In this dissertation, the chemistry underlying one such property is studied in detail, and the findings are applied towards the rational design of more effective SNAs for diagnostic and therapeutic applications. Chapter 1 introduces the synthesis of SNAs, the unique properties that make them superior to linear nucleic acids for biomedicine, and previously studied applications of these structures. Chapter 2 focuses on quantitatively studying the impact of the chemical structure of the SNA on its ability to hybridize multiple complementary nucleic acids. This chapter lays the groundwork for understanding the factors that govern SNA hybridization thermodynamics and how to tailor SNAs to increase their binding affinity to target mRNA strands. Chapters 3 and 4 capitalize on this knowledge to engineer probes for intracellular mRNA detection and gene regulation applications. Chapter 3 reports the development of an SNA-based probe that can simultaneously report the expression level of two different mRNA transcripts in live cells and differentiate diseased cells from non-diseased cells. Chapter 4 investigates the use of topically-applied SNAs to down-regulate a critical mediator of impaired wound healing in diabetic mice to accelerate wound closure. This study represents the first topical therapeutic application of SNA nanotechnology to treat open

  15. Local thermoelectric probes of nonequilibrium quantum systems

    NASA Astrophysics Data System (ADS)

    Stafford, Charles

    A theory of local temperature and voltage measurement in an interacting quantum system far from equilibrium is developed. We prove that a steady-state measurement by a floating thermoelectric probe is unique if it exists. Furthermore, we show that a solution exists provided there is no net local population inversion. In the case of population inversion, the system may be assigned a (unique) negative temperature. An expression for the local entropy of a nonequilibrium quantum system is introduced that, together with the local temperature and voltage, allows for a complete analysis of the local thermodynamics of the thermoelectric processes in the system. The Clausius form of the second law and the third law are shown to hold exactly locally, while the zeroth and first laws are shown to be valid to leading order in the Sommerfeld expansion. The local quantum thermodynamics underlying the enhancement of thermoelectricity by quantum interference is discussed. Work supported by the U.S. Department of Energy, Office of Science, Award No. DE-SC0006699.

  16. Radio frequency-compensated Langmuir probe with auxiliary double probes

    SciTech Connect

    Oh, Se-Jin; Oh, Seung-Ju; Chung, Chin-Wook

    2010-09-15

    A radio frequency (rf) compensation design using auxiliary double probes connected in parallel with a main measurement probe was developed for Langmuir probe diagnostics. This probe structure can reduce the sheath impedance of the main probe. In our probe design, the sheath capacitance of the probe can be increased and its sheath resistance can be decreased with increasing dc bias differential voltage between the auxiliary double probes. The I-V characteristic curve and electron energy distribution functions measured by our probe system had sufficient rf compensation performance in inductively coupled plasmas.

  17. Radio frequency-compensated Langmuir probe with auxiliary double probes.

    PubMed

    Oh, Se-Jin; Oh, Seung-Ju; Chung, Chin-Wook

    2010-09-01

    A radio frequency (rf) compensation design using auxiliary double probes connected in parallel with a main measurement probe was developed for Langmuir probe diagnostics. This probe structure can reduce the sheath impedance of the main probe. In our probe design, the sheath capacitance of the probe can be increased and its sheath resistance can be decreased with increasing dc bias differential voltage between the auxiliary double probes. The I-V characteristic curve and electron energy distribution functions measured by our probe system had sufficient rf compensation performance in inductively coupled plasmas. PMID:20886976

  18. System control module diagnostic Expert Assistant

    NASA Technical Reports Server (NTRS)

    Flores, Luis M.; Hansen, Roger F.

    1990-01-01

    The Orbiter EXperiments (OEX) Program was established by NASA's Office of Aeronautics and Space Technology (OAST) to accomplish the precise data collection necessary to support a complete and accurate assessment of Space Transportation System (STS) Orbiter performance during all phases of a mission. During a mission, data generated by the various experiments are conveyed to the OEX System Control Module (SCM) which arranges for and monitors storage of the data on the OEX tape recorder. The SCM Diagnostic Expert Assistant (DEA) is an expert system which provides on demand advice to technicians performing repairs of a malfunctioning SCM. The DEA is a self-contained, data-driven knowledge-based system written in the 'C' Language Production System (CLIPS) for a portable micro-computer of the IBM PC/XT class. The DEA reasons about SCM hardware faults at multiple levels; the most detailed layer of encoded knowledge of the SCM is a representation of individual components and layouts of the custom-designed component boards.

  19. Thomson scattering diagnostic systems in ITER

    NASA Astrophysics Data System (ADS)

    Bassan, M.; Andrew, P.; Kurskiev, G.; Mukhin, E.; Hatae, T.; Vayakis, G.; Yatsuka, E.; Walsh, M.

    2016-01-01

    Thomson scattering (TS) is a proven diagnostic technique that will be implemented in ITER in three independent systems. The Edge TS will measure electron temperature Te and electron density ne profiles at high resolution in the region with r/a>0.8 (with a the minor radius). The Core TS will cover the region r/a<0.85 and shall be able to measure electron temperatures up to 40 keV . The Divertor TS will observe a segment of the divertor plasma more than 700 mm long and is designed to detect Te as low as 0.3 eV . The Edge and Core systems are primary contributors to Te and ne profiles. Both are installed in equatorial port 10 and very close together with the toroidal distance between the two laser beams of less than 600 mm at the first wall (~ 6° toroidal separation), a characteristic that should allow to reliably match the two profiles in the region 0.8systems installed, therefore substantial experience has been accumulated worldwide on practical methods for the optimization of the technique. However the ITER environment is imposing specific loads (e.g. gamma and neutron radiation, temperatures, disruption-induced stresses) and also access and reliability constraints that require new designs for many of the sub-systems. The challenges and the proposed solutions for all three TS systems are presented.

  20. Oxygen-18 tracer studies of enzyme reactions with radical/cation diagnostic probes

    SciTech Connect

    Moe, Luke A.; Fox, Brian G. . E-mail: bgfox@biochem.wisc.edu

    2005-12-09

    This review considers reactions of enzymes with the cyclopropanoid radical/cation diagnostic probes norcarane, 1,1-dimethylcyclopropane, and 1,1-diethylcyclopropane as elaborated by the use of {sup 18}O{sub 2} and {sup 18}OH{sub 2} to trace the origin of O-atoms incorporated during catalysis. The reactions of soluble and integral membrane diiron enzymes are summarized and compared to results obtained from cytochrome P450 studies. Norcarane proved to be an excellent substrate for the diiron enzyme toluene 4-monooxygenase and its engineered isoforms, with k {sub cat} and coupling between NADH utilization and total hydroxylated products comparable to that determined for toluene, the natural substrate. Results obtained with toluene 4-monooxygenase show that the un-rearranged and radical-rearranged alcohol products have a high percentage of O-atom incorporation (>80-95%) from O{sub 2}, while the cation-derived ring-expansion products have O-atom incorporation primarily derived from solvent water. Mechanistic possibilities accounting for this difference are discussed.

  1. Neuropsychiatric Systemic Lupus Erythematosus: A Diagnostic Conundrum

    PubMed Central

    Joseph, Vivek; Anil, Rahul; Aristy, Sary

    2016-01-01

    A 70-year-old man presented with complaints of rapid cognitive decline and new onset leukopenia. The patient had a 17-year history of refractory seizures. Detailed review of symptoms and investigations revealed the patient met American College of Rheumatology (ACR) diagnostic criteria for systemic lupus erythematosus (SLE). The patient had high titer ANA with a strongly positive dsDNA. Immunosuppressive therapy with hydroxychloroquine and mycophenolate mofetil led to significant improvement in cognition and seizures. Neuropsychiatric SLE should be considered a potential differential diagnosis for patients presenting with seizures or cognitive decline. Moreover, neuropsychiatric manifestations especially seizures are an early event in the disease course of SLE. Hence, we believe that early diagnosis of SLE by neuropsychiatric manifestations will not only lead to better control of CNS symptoms but early immunosuppressive therapy could control the progression of the underlying autoimmune disease.

  2. System of polarization phasometry of polycrystalline blood plasma networks in mammary gland pathology diagnostics

    NASA Astrophysics Data System (ADS)

    Zabolotna, Natalia I.; Oliinychenko, Bogdan P.; Radchenko, Kostiantyn O.; Krasnoshchoka, Anastasiia K.; Shcherba, Olga K.

    2015-09-01

    The polarizing phase meter system of polycrystalline networks of human blood plasma which is used for the mammary gland pathology diagnostics was proposed in this paper. Increasing the accuracy of the phase value determination was achieved using a combination of low coherent source of radiation and circularly polarized probing of biological object. Thus, high informativity of polarizing phase meter system for the diagnosis of breast pathology using the phase mapping of the human blood plasma films were determined, thereafter statistical, correlational, fractal structure analysis of the obtained phase maps was carried out and the quantitative criterias of the phase diagnostics and differentiation of the breast pathological conditions were determined too.

  3. Non-invasive probe diagnostic method for electron temperature and ion current density in atmospheric pressure plasma jet source

    SciTech Connect

    Kim, Young-Cheol; Kim, Yu-Sin; Lee, Hyo-Chang; Moon, Jun-Hyeon; Chung, Chin-Wook; Kim, Yunjung; Cho, Guangsup

    2015-08-15

    The electrical probe diagnostics are very hard to be applied to atmospheric plasmas due to severe perturbation by the electrical probes. To overcome this, the probe for measuring electron temperature and ion current density is indirectly contacted with an atmospheric jet source. The plasma parameters are obtained by using floating harmonic analysis. The probe is mounted on the quartz tube that surrounds plasma. When a sinusoidal voltage is applied to a probe contacting on a quartz tube, the electrons near the sheath at dielectric tube are collected and the probe current has harmonic components due to probe sheath nonlinearity. From the relation of the harmonic currents and amplitude of the sheath voltage, the electron temperature near the wall can be obtained with collisional sheath model. The electron temperatures and ion current densities measured at the discharge region are in the ranges of 2.7–3.4 eV and 1.7–5.2 mA/cm{sup 2} at various flow rates and input powers.

  4. 40 CFR 1033.112 - Emission diagnostics for SCR systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Emission diagnostics for SCR systems....112 Emission diagnostics for SCR systems. Engines equipped with SCR systems using separate reductant.... This section does not apply for SCR systems using the engine's fuel as the reductant. (a)...

  5. Embedding CLIPS in a database-oriented diagnostic system

    NASA Technical Reports Server (NTRS)

    Conway, Tim

    1990-01-01

    This paper describes the integration of C Language Production Systems (CLIPS) into a powerful portable maintenance aid (PMA) system used for flightline diagnostics. The current diagnostic target of the system is the Garrett GTCP85-180L, a gas turbine engine used as an Auxiliary Power Unit (APU) on some C-130 military transport aircraft. This project is a database oriented approach to a generic diagnostic system. CLIPS is used for 'many-to-many' pattern matching within the diagnostics process. Patterns are stored in database format, and CLIPS code is generated by a 'compilation' process on the database. Multiple CLIPS rule sets and working memories (in sequence) are supported and communication between the rule sets is achieved via the export and import commands. Work is continuing on using CLIPS in other portions of the diagnostic system and in re-implementing the diagnostic system in the Ada language.

  6. A Langmuir Probe Diagnostic for Use in Inhomogeneous, Time-Varying Plasmas Produced by High-Energy Laser Ablation

    SciTech Connect

    Patterson, J R; Emig, J A; Fournier, K B; Jenkins, P P; Trautz, K M; Seiler, S W; Davis, J F

    2012-05-01

    Langmuir probes (LP) are used extensively to characterize plasma environments produced by radio frequency, pulsed plasma thrusters, and laser ablation. We discuss here the development of a LP diagnostic to examine high-density, high-temperature inhomogeneous plasmas such as those that can be created at the University of Rochester's Laboratory for Laser Energetics OMEGA facility. We have configured our diagnostic to examine the velocity of the plasma expanding from the target. We observe velocities of approximately 16-17 cm/{micro}s, with individual LP currents displaying complex structures, perhaps due to the multiple atomic species and ionization states that exist.

  7. Study of new systems concepts for a Titan atmospheric probe

    NASA Technical Reports Server (NTRS)

    Bernard, Doug; Citron, Todd; Drean, Robert; Lewis, Scott; Lo, Martin; Mccarthy, John; Soderblom, Robert; Steffy, Dave; Vargas, Tina; Wolff, Marty

    1986-01-01

    Results of a systems concepts study for a Titan Probe were examined. The key tradeoffs performed are described in detail. Mass breakdown of each Probe subsystem or major element were given. The mission analysis performed to determine compliance with the high altitude sampling and descent time requirements are described. The baseline Descent Module design was derived. The element of the Probe System left on the Carrier after separation were described.

  8. Note: An advanced in situ diagnostic system for characterization of electric propulsion thrusters and ion beam sources.

    PubMed

    Bundesmann, C; Tartz, M; Scholze, F; Leiter, H J; Scortecci, F; Gnizdor, R Y; Neumann, H

    2010-04-01

    We present an advanced diagnostic system for in situ characterization of electric propulsion thrusters and ion beam sources. The system uses a high-precision five-axis positioning system with a modular setup and the following diagnostic tools: a telemicroscopy head for optical imaging, a triangular laser head for surface profile scanning, a pyrometer for temperature scanning, a Faraday probe for current density mapping, and an energy-selective mass spectrometer for beam characterization (energy and mass distribution, composition). The capabilities of our diagnostic system are demonstrated with a Hall effect thruster SPT-100D EM1. PMID:20441379

  9. E-probe Diagnostic Nucleic acid Analysis (EDNA): A theoretical approach for handling of next generation sequencing data for diagnostics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are many plant pathogen-specific diagnostic assays, based on PCR and immune-detection. However, the ability to test for large numbers of pathogens simultaneously is lacking. Next generation sequencing (NGS) allows one to detect all organisms within a given sample, but has computational limitat...

  10. Study of ablation and implosion stages in wire arrays using coupled ultraviolet and X-ray probing diagnostics

    NASA Astrophysics Data System (ADS)

    Anderson, A. A.; Ivanov, V. V.; Astanovitskiy, A. L.; Papp, D.; Wiewior, P. P.; Chalyy, O.

    2015-11-01

    Star and cylindrical wire arrays were studied using laser probing and X-ray radiography at the 1-MA Zebra pulse power generator at the University of Nevada, Reno. The Leopard laser provided backlighting, producing a laser plasma from a Si target which emitted an X-ray probing pulse at the wavelength of 6.65 Å. A spherically bent quartz crystal imaged the backlit wires onto X-ray film. Laser probing diagnostics at the wavelength of 266 nm included a 3-channel polarimeter for Faraday rotation diagnostic and two-frame laser interferometry with two shearing interferometers to study the evolution of the plasma electron density at the ablation and implosion stages. Dynamics of the plasma density profile in Al wire arrays at the ablation stage were directly studied with interferometry, and expansion of wire cores was measured with X-ray radiography. The magnetic field in the imploding plasma was measured with the Faraday rotation diagnostic, and current was reconstructed.

  11. Study of ablation and implosion stages in wire arrays using coupled ultraviolet and X-ray probing diagnostics

    SciTech Connect

    Anderson, A. A.; Ivanov, V. V.; Astanovitskiy, A. L.; Wiewior, P. P.; Chalyy, O.; Papp, D.

    2015-11-15

    Star and cylindrical wire arrays were studied using laser probing and X-ray radiography at the 1-MA Zebra pulse power generator at the University of Nevada, Reno. The Leopard laser provided backlighting, producing a laser plasma from a Si target which emitted an X-ray probing pulse at the wavelength of 6.65 Å. A spherically bent quartz crystal imaged the backlit wires onto X-ray film. Laser probing diagnostics at the wavelength of 266 nm included a 3-channel polarimeter for Faraday rotation diagnostic and two-frame laser interferometry with two shearing interferometers to study the evolution of the plasma electron density at the ablation and implosion stages. Dynamics of the plasma density profile in Al wire arrays at the ablation stage were directly studied with interferometry, and expansion of wire cores was measured with X-ray radiography. The magnetic field in the imploding plasma was measured with the Faraday rotation diagnostic, and current was reconstructed.

  12. Evaluating Detection and Diagnostic Decision Support Systems for Bioterrorism Response

    PubMed Central

    Sundaram, Vandana; McDonald, Kathryn M.; Smith, Wendy M.; Szeto, Herbert; Schleinitz, Mark D.; Owens, Douglas K.

    2004-01-01

    We evaluated the usefulness of detection systems and diagnostic decision support systems for bioterrorism response. We performed a systematic review by searching relevant databases (e.g., MEDLINE) and Web sites for reports of detection systems and diagnostic decision support systems that could be used during bioterrorism responses. We reviewed over 24,000 citations and identified 55 detection systems and 23 diagnostic decision support systems. Only 35 systems have been evaluated: 4 reported both sensitivity and specificity, 13 were compared to a reference standard, and 31 were evaluated for their timeliness. Most evaluations of detection systems and some evaluations of diagnostic systems for bioterrorism responses are critically deficient. Because false-positive and false-negative rates are unknown for most systems, decision making on the basis of these systems is seriously compromised. We describe a framework for the design of future evaluations of such systems. PMID:15078604

  13. A diagnostic expert system for digital circuits

    NASA Astrophysics Data System (ADS)

    Backlund, R. W.; Wilson, J. D.

    1992-04-01

    A scheme is presented for a diagnostic expert system which is capable of troubleshooting a faulty digital circuit or producing a reduced test vector set for a non-faulty digital circuit. It is based on practical fault-finding logic and utilizes artificial intelligence techniques. The program uses expert knowledge comprised of two components: that which is contained within the program in the form of rules and heuristics, and that which is derived from the circuit under test in the form of specific device information. Using both forward and backward tracking algorithms, signal paths comprised of device and gate interconnections are identified from each output pin to the primary input pins which have effect on them. Beginning at the output, the program proceeds to validate each device in each signal path by forward propagating test values through the device to the output, and backward propagating the same values to the primary inputs. All devices in the circuit are monitored for each test applied and their performance is recorded. Device or gate validation occurs when the recorded history shows that a device has been toggled successfully through all necessary states. When run on a circuit which does not contain a fault, the program determines a reduced test vector set for that circuit.

  14. SOPROLIFE System: An Accurate Diagnostic Enhancer

    PubMed Central

    Zeitouny, Mona; Feghali, Mireille; Nasr, Assaad; Abou-Samra, Philippe; Saleh, Nadine; Bourgeois, Denis; Farge, Pierre

    2014-01-01

    Objectives. The aim of this study was to evaluate a light-emitting diode fluorescence tool, the SOPROLIFE light-induced fluorescence evaluator, and compare it to the international caries detection and assessment system-II (ICDAS-II) in the detection of occlusal caries. Methods. A total of 219 permanent posterior teeth in 21 subjects, with age ranging from 15 to 65 years, were examined. An intraclass correlation coefficient (ICC) was computed to assess the reliability between the two diagnostic methods. Results. The results showed a high reliability between the two methods (ICC = 0.92; IC = 0.901–0.940; P < 0.001). The SOPROLIFE blue fluorescence mode had a high sensitivity (87%) and a high specificity (99%) when compared to ICDAS-II. Conclusion. Compared to the most used visual method in the diagnosis of occlusal caries lesions, the finding from this study suggests that SOPROLIFE can be used as a reproducible and reliable assessment tool. At a cut-off point, categorizing noncarious lesions and visual change in enamel, SOPROLIFE shows a high sensitivity and specificity. We can conclude that financially ICDAS is better than SOPROLIFE. However SOPROLIFE is easier for clinicians since it is a simple evaluation of images. Finally in terms of efficiency SOPROLIFE is not superior to ICDAS but tends to be equivalent with the same advantages. PMID:25401161

  15. Systematic Benchmarking of Diagnostic Technologies for an Electrical Power System

    NASA Technical Reports Server (NTRS)

    Kurtoglu, Tolga; Jensen, David; Poll, Scott

    2009-01-01

    Automated health management is a critical functionality for complex aerospace systems. A wide variety of diagnostic algorithms have been developed to address this technical challenge. Unfortunately, the lack of support to perform large-scale V&V (verification and validation) of diagnostic technologies continues to create barriers to effective development and deployment of such algorithms for aerospace vehicles. In this paper, we describe a formal framework developed for benchmarking of diagnostic technologies. The diagnosed system is the Advanced Diagnostics and Prognostics Testbed (ADAPT), a real-world electrical power system (EPS), developed and maintained at the NASA Ames Research Center. The benchmarking approach provides a systematic, empirical basis to the testing of diagnostic software and is used to provide performance assessment for different diagnostic algorithms.

  16. Beyond Sedna: Probing the Distant Solar System

    NASA Astrophysics Data System (ADS)

    Schwamb, Megan E.

    This thesis presents studies in observational planetary astronomy probing the structure of the Kuiper belt and beyond. The discovery of Sedna on a highly eccentric orbit beyond Neptune challenges our understanding of the solar system and suggests the presence of a population of icy bodies residing past the Kuiper belt. With a perihelion of 76 AU, Sedna is well beyond the reach of the gas-giants and could not be scattered onto its highly eccentric orbit from interactions with Neptune alone. Sedna's aphelion at ˜1000 AU is too far from the edge of the solar system to feel the perturbing effects of passing stars or galactic tides in the present-day solar neighborhood. Sedna must have been emplaced in its orbit at an earlier time when massive unknown bodies were present in or near the solar system. The orbits of distant Sedna-like bodies are dynamically frozen and serve as the relics of their formation process. We have performed two surveys to search for additional members of the Sedna population. In order to find the largest and brightest Sedna-like bodies we have searched ˜12,000 deg² within +/-30 degrees of the ecliptic to a limiting R magnitude of 21.3 using the QUEST camera on the 1.2m Samuel Oschin Telescope. To search for the fainter, more common members of this distant class of solar system bodies, we have performed an deep survey using the Subaru Prime Focus Camera on the 8.2m Subaru telescope covering 43 deg² to a limiting R magnitude of 25.3. Searching over a two-night baseline, we were sensitive to motions out to distances of approximately 1000 AU. We present the results of these surveys. We discuss the implications for a distant Sedna-like population beyond the Kuiper belt and discuss future prospects for detecting and studying these distant bodies, focusing in particular on the constraints we can place on the embedded stellar cluster environment the early Sun may have been born in, where the location and distribution of Sedna-like orbits sculpted by

  17. Measuring the Accuracy of Diagnostic Systems.

    ERIC Educational Resources Information Center

    Swets, John A.

    1988-01-01

    Discusses the relative operating characteristic analysis of signal detection theory as a measure of diagnostic accuracy. Reports representative values of this measure in several fields. Compares how problems in these fields are handled. (CW)

  18. REDEX - The ranging equipment diagnostic expert system

    NASA Technical Reports Server (NTRS)

    Luczak, Edward C.; Gopalakrishnan, K.; Zillig, David J.

    1989-01-01

    REDEX, an advanced prototype expert system that diagnoses hardware failures in the Ranging Equipment (RE) at NASA's Ground Network tracking stations is described. REDEX will help the RE technician identify faulty circuit cards or modules that must be replaced, and thereby reduce troubleshooting time. It features a highly graphical user interface that uses color block diagrams and layout diagrams to illustrate the location of a fault. A semantic network knowledge representation technique was used to model the design structure of the RE. A catalog of generic troubleshooting rules was compiled to represent heuristics that are applied in diagnosing electronic equipment. Specific troubleshooting rules were identified to represent additional diagnostic knowledge that is unique to the RE. Over 50 generic and 250 specific troubleshooting rules have been derived. REDEX is implemented in Prolog on an IBM PC AT-compatible workstation. Block diagram graphics displays are color-coded to identify signals that have been monitored or inferred to have nominal values, signals that are out of tolerance, and circuit cards and functions that are diagnosed as faulty. A hypertext-like scheme is used to allow the user to easily navigate through the space of diagrams and tables. Over 50 graphic and tabular displays have been implemented. REDEX is currently being evaluated in a stand-alone mode using simulated RE fault scenarios. It will soon be interfaced to the RE and tested in an online environment. When completed and fielded, REDEX will be a concrete example of the application of expert systems technology to the problem of improving performance and reducing the lifecycle costs of operating NASA's communications networks in the 1990s.

  19. REDEX: The ranging equipment diagnostic expert system

    NASA Technical Reports Server (NTRS)

    Luczak, Edward C.; Gopalakrishnan, K.; Zillig, David J.

    1989-01-01

    REDEX, an advanced prototype expert system that diagnoses hardware failures in the Ranging Equipment (RE) at NASA's Ground Network tracking stations is described. REDEX will help the RE technician identify faulty circuit cards or modules that must be replaced, and thereby reduce troubleshooting time. It features a highly graphical user interface that uses color block diagrams and layout diagrams to illustrate the location of a fault. A semantic network knowledge representation technique was used to model the design structure of the RE. A catalog of generic troubleshooting rules was compiled to represent heuristics that are applied in diagnosing electronic equipment. Specific troubleshooting rules were identified to represent additional diagnostic knowledge that is unique to the RE. Over 50 generic and 250 specific troubleshooting rules have been derived. REDEX is implemented in Prolog on an IBM PC AT-compatible workstation. Block diagram graphics displays are color-coded to identify signals that have been monitored or inferred to have nominal values, signals that are out of tolerance, and circuit cards and functions that are diagnosed as faulty. A hypertext-like scheme is used to allow the user to easily navigate through the space of diagrams and tables. Over 50 graphic and tabular displays have been implemented. REDEX is currently being evaluated in a stand-alone mode using simulated RE fault scenarios. It will soon be interfaced to the RE and tested in an online environment. When completed and fielded, REDEX will be a concrete example of the application of expert systems technology to the problem of improving performance and reducing the lifecycle costs of operating NASA's communications networks in the 1990's.

  20. Development of a diagnostic polymersome system for potential imaging delivery.

    PubMed

    Huang, Wen-Chia; Chen, Yung-Chu; Hsu, Yuan-Hung; Hsieh, Wen-Yuan; Chiu, Hsin-Cheng

    2015-04-01

    In order to enhance visualization of soft tissues, a dual-imaging diagnostic polymersome system featured with highly hydrated multilamellar wall structure capable of simultaneously embedding a hydrophobic near-infrared fluorophore, Cy5.5, and a paramagnetic probe, gadolinium (Gd(III)) cations was developed. The polymersomes were obtained from the self-assembly of lipid-containing copolymer, poly(acrylic acid-co-distearin acrylate), in aqueous solution. The Cy5.5 and Gd(III) species were loaded into polymersomes via hydrophobic association (loading efficiency of Cy5.5 ca 74%) and electrostatic complexation (Gd(III) 83%), respectively. The Cy5.5/Gd(III)-loaded polymersomes (CGLPs) have shown excellent payload confinement, reduced dilution effect on assembly dissociation and decreased protein/salt-induced colloidal aggregation. Owing to the highly hydrated structure of vesicular membrane, the superior contrast enhancement of CGLPs in magnetic resonance (MR) imaging was obtained as a result of prolonged rotational correlation time of Gd(III) cations and fast water exchange from Gd(III) to bulk solution. The CGLPs exhibit a 15-fold higher longitudinal relaxivity value (ca 60 mM(-1) s(-1)) than that (4 mM(-1) s(-1)) of the commercial contrast agent, Magnevist, in phosphate buffered saline. The in vivo characterization demonstrates that CGLPs exhibit a signal-to-noise ratio in T1-weighted MR image contrast similar to that of Magnevist, yet with a Gd dose 5-fold lower. An excellent contrast in NIR imaging at tumor site was attained following the intravenous injection of GGLPs into Tramp-C1 tumor-bearing mice (C57BL/6). Along with their non-toxicity at the dose used, these results demonstrate the great potential of the CGLPs as an advanced diagnostic nanodevice. PMID:25731095

  1. Measurement and contouring of micro-scale objects through integrated transillumination in a flexible fiber probe system

    NASA Astrophysics Data System (ADS)

    Mohankumar, Valiyambath Krishnan; Sathiyamoorthy, Krishnan; Murukeshan, Vadakke M.

    2012-07-01

    High-resolution measurement and contouring of objects with micro-scale sizes have been two of the research challenges in many areas, such as nondestructive testing and imaging, imaging of artifacts in MEMS, and lab-on-chip devices, as well as in biomedical imaging. In this context, we use a transillumination incorporated fiber probe imaging system to enable imaging of the targeted object in a single shot. It also enables positioning of the probe system to the region of interest for further fine analysis, thereby reducing the long scanning time faced by conventional approaches. The capability of the developed probe is illustrated using standard USAF resolution chart and fluorescent microspheres as test targets. The probe system has axial and lateral resolutions of about 16 μm and 144 lp/mm, respectively. This proposed probe scheme can potentially be employed as a viable diagnostic imaging methodology.

  2. Climate Model Diagnostic Analyzer Web Service System

    NASA Astrophysics Data System (ADS)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2014-12-01

    We have developed a cloud-enabled web-service system that empowers physics-based, multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks. The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the observational datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation, (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs, and (3) ECMWF reanalysis outputs for several environmental variables in order to supplement observational datasets. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, (4) the calculation of difference between two variables, and (5) the conditional sampling of one physical variable with respect to another variable. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use, avoiding the hassle of local software installation and environment incompatibility. CMDA will be used as an educational tool for the summer school organized by JPL's Center for Climate Science in 2014. In order to support 30+ simultaneous users during the school, we have deployed CMDA to the Amazon cloud environment. The cloud-enabled CMDA will provide each student with a virtual machine while the user interaction with the system will remain the same

  3. Flexible temperature probe for biological systems

    NASA Technical Reports Server (NTRS)

    Haro, P. J.; Winget, C.; Beljan, J. R.

    1973-01-01

    Probe is sufficiently flexible so that it can be worn comfortably for long periods of time, but relatively rigid to permit easy insertion. Body and electrical leads of small thermistor are imbedded in flexible fluorosilicone matrix contained in vinyl plastic tubing.

  4. Observational constraints of stellar collapse: Diagnostic probes of nature's extreme matter experiment

    SciTech Connect

    Fryer, Chris L. Even, Wesley; Grefenstette, Brian W.; Wong, Tsing-Wai

    2014-04-15

    Supernovae are Nature's high-energy, high density laboratory experiments, reaching densities in excess of nuclear densities and temperatures above 10 MeV. Astronomers have built up a suite of diagnostics to study these supernovae. If we can utilize these diagnostics, and tie them together with a theoretical understanding of supernova physics, we can use these cosmic explosions to study the nature of matter at these extreme densities and temperatures. Capitalizing on these diagnostics will require understanding a wide range of additional physics. Here we review the diagnostics and the physics neeeded to use them to learn about the supernova engine, and ultimate nuclear physics.

  5. [A positioning method of ultrasound probe in MR system].

    PubMed

    Wei, Bo; Shen, Guofeng; Chen, Sheng; Zhu, Mengyuan; Su, Zhiqiang; Chen, Yazhu

    2013-05-01

    This paper provides a method of positioning the ultrasound probe in MR system. Machining 6 slots or cylinder perpendicular to the ultrasound probe surface on the edge of ultrasound probe as markers, 12 central cylinder ends are chosen as positioning points. By calculating these positioning points' coordinates in MR's coordinate system, the coordinate transformation between the ultrasound and MR coordinate system can be computed. Furthermore, by taking advantage of redundant information, calculating errors can be reduced and the precision can be improved. PMID:24015606

  6. Climate Model Diagnostic Analyzer Web Service System

    NASA Astrophysics Data System (ADS)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2013-12-01

    The latest Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with newly available global observations. The traditional approach to climate model evaluation, which compares a single parameter at a time, identifies symptomatic model biases and errors but fails to diagnose the model problems. The model diagnosis process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. To address these challenges, we are developing a parallel, distributed web-service system that enables the physics-based multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks (i.e., Flask, Gunicorn, and Tornado). The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation and (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, and (4) the calculation of difference between two variables. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use

  7. Characterizing Water Quenching Systems with a Quench Probe

    NASA Astrophysics Data System (ADS)

    Ferguson, B. Lynn; Li, Zhichao; Freborg, Andrew M.

    2014-12-01

    Quench probes have been used effectively to characterize the quality of quenchants for many years. For this purpose, a variety of commercial probes, as well as the necessary data acquisition system for determining the time-temperature data for a set of standardized test conditions, are available for purchase. The type of information obtained from such probes provides a good basis for comparing media, characterizing general cooling capabilities, and checking media condition over time. However, these data do not adequately characterize the actual production quenching process in terms of heat transfer behavior in many cases, especially when high temperature gradients are present. Faced with the need to characterize water quenching practices, including conventional and intensive practices, a quench probe was developed. This paper describes that probe, the data collection system, the data gathered for both intensive quenching and conventional water quenching, and the heat transfer coefficients determined for these processes. Process sensitivities are investigated and highlight some intricacies of quenching.

  8. A Compact Fiber Optic Eye Diagnostic System

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Suh, Kwang I.; Dubin, Stephen; Dellavecchia, Michael A.

    1995-01-01

    A new fiber optic probe developed for determining transport properties of sub-micron particles in fluid experiments in a microgravity environment has been applied to study different parts of an eye. The probe positioned in front of an eye, delivers a low power (approximately few microW) light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like materials in the vitreous humor. In a clinical setting, the probe can be mounted on a standard slit-lamp apparatus simply using a Hruby lens holder. The capability of detecting cataracts, both nuclear and cortical, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to 'dissolve' or slow down the cataract formation before the surgery becomes necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber and their complications, e.g., posterior vitreous detachment and diabetic retinopathy.

  9. A Compact Fiber Optic Eye Diagnostics System

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Suh, Kwang I.; DellaVecchia, Michael A.; Dubin, Stephen; Zigler, J. Samuel, Jr.

    1995-01-01

    A new fiber optic probe development for determining transport properties of sub-micron particles in fluids experiments in a microgravity environment has been applied to study different parts of the eye. The probe positioned in front of an eye, delivers a low power (approximately a few mu W) light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like material in the vitreous humor. For a clinical use, the probe is mounted on a standard slit-lamp apparatus simply using Hruby lens holder. The capability of detecting cataracts, both nuclear and cortical, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to 'dissolve' or slow down the cataract formation before the surgery becomes necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber and their complications, e.g., posterior vitreous detachment and diabetic retinopathy.

  10. A compact fiber optic eye diagnostic system

    NASA Astrophysics Data System (ADS)

    Ansari, Rafat R.; Suh, Kwang I.; Dubin, Stephen; Della Vecchia, Michael A.

    1996-03-01

    A new fiber optic probe developed for determining transport properties of sub-micron particles in fluids experiments in a microgravity environment has been applied to study different parts of an eye. The probe positioned in front of an eye, delivers a low power (˜few μW) light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like material in the vitreous humor. In a clinical setting, the probe can be mounted on a standard slit-lamp apparatus simply using a Hruby lens holder. The capability of detecting cataracts, both nuclear and cortical, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to ``dissolve'' or slow down the cataract formation before the surgery becomes necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber and their complications, e.g., posterior vitreous detachment and diabetic retinopathy.

  11. A compact fiber optic eye diagnostic system

    NASA Astrophysics Data System (ADS)

    Ansari, Rafat R.; Suh, Kwang I.; Dubin, Stephen; Dellavecchia, Michael A.

    1995-11-01

    A new fiber optic probe developed for determining transport properties of sub-micron particles in fluid experiments in a microgravity environment has been applied to study different parts of an eye. The probe positioned in front of an eye, delivers a low power (approximately few microW) light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like materials in the vitreous humor. In a clinical setting, the probe can be mounted on a standard slit-lamp apparatus simply using a Hruby lens holder. The capability of detecting cataracts, both nuclear and cortical, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to 'dissolve' or slow down the cataract formation before the surgery becomes necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber and their complications, e.g., posterior vitreous detachment and diabetic retinopathy.

  12. Numerical experiment to estimate the validity of negative ion diagnostic using photo-detachment combined with Langmuir probing

    SciTech Connect

    Oudini, N.; Sirse, N.; Ellingboe, A. R.; Benallal, R.; Taccogna, F.; Bendib, A.

    2015-07-15

    This paper presents a critical assessment of the theory of photo-detachment diagnostic method used to probe the negative ion density and electronegativity α = n{sub -}/n{sub e}. In this method, a laser pulse is used to photo-detach all negative ions located within the electropositive channel (laser spot region). The negative ion density is estimated based on the assumption that the increase of the current collected by an electrostatic probe biased positively to the plasma is a result of only the creation of photo-detached electrons. In parallel, the background electron density and temperature are considered as constants during this diagnostics. While the numerical experiments performed here show that the background electron density and temperature increase due to the formation of an electrostatic potential barrier around the electropositive channel. The time scale of potential barrier rise is about 2 ns, which is comparable to the time required to completely photo-detach the negative ions in the electropositive channel (∼3 ns). We find that neglecting the effect of the potential barrier on the background plasma leads to an erroneous determination of the negative ion density. Moreover, the background electron velocity distribution function within the electropositive channel is not Maxwellian. This is due to the acceleration of these electrons through the electrostatic potential barrier. In this work, the validity of the photo-detachment diagnostic assumptions is questioned and our results illustrate the weakness of these assumptions.

  13. Target diagnostic system for the National Ignition Facility (NIF)

    SciTech Connect

    Leeper, R.J.; Chandler, G.A.; Cooper, G.W.; Derzon, M.S.

    1996-07-01

    A review of recent progress on the design of a diagnostic system proposed for ignition target experiments on the National Ignition Facility (NIF) will be presented. This diagnostic package contains an extensive suite of optical, x-ray, gamma-ray, and neutron diagnostics that enable measurements of the performance of both direct and indirect driven NIF targets. The philosophy used in designing all of the diagnostics in the set has emphasized redundant and independent measurement of fundamental physical quantities relevant to the operation of the NIF target. A unique feature of these diagnostics is that they are being designed to be capable of operating, in the high radiation, EMP, and debris backgrounds expected on the NIF facility. The diagnostic system proposed can be categorized into three broad areas: laser characterization, hohlraum characterization, and capsule performance diagnostics. The operating principles of a representative instrument from each class of diagnostic employed in this package will be summarized and illustrated with data obtained in recent prototype diagnostic tests.

  14. 40 CFR 1033.112 - Emission diagnostics for SCR systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Emission diagnostics for SCR systems. 1033.112 Section 1033.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Emission Standards and Related Requirements § 1033.112 Emission diagnostics for SCR...

  15. 40 CFR 1033.112 - Emission diagnostics for SCR systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Emission diagnostics for SCR systems. 1033.112 Section 1033.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Emission Standards and Related Requirements § 1033.112 Emission diagnostics for SCR...

  16. Diagnostics Systems for Permanent Hall Thrusters Development

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall

  17. Adaptation and validation of E-probe diagnostic nucleic acid analysis for detection of Escherichia coli O157:H7 in metagenomic data of complex food matrices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne pathogens are an increasing problem threatening the US food supply. The need for rapid sensitive diagnostic tools that can address multiple types and taxonomic classes of foodbourne pathogens is growing. This paper describes the adaptation of E-probe Diagnostic Nucleic acid Analysis (EDNA)...

  18. A Universal Spring-Probe System for Reliable Probing of Electrochemical Lab-on-a-Chip Devices

    PubMed Central

    Lee, Moon-Keun; Lee, Tae Jae; Choi, Ho Woon; Shin, Su Jeong; Park, Jung Youn; Lee, Seok Jae

    2014-01-01

    For achieve sensitivity in lab-on-a-chip electrochemical detection, more reliable probing methods are required, especially for repeated measurements. Spring-probes are a promising candidate method which can replace needle-like probes and alligator clips that usually produce scratches on the surface of gold electrodes due to the strong physical contacts needed for electrochemical measurements. The superior reliability of amperometric measurements by a spring-probe system was compared with results by conventional probing methods. We demonstrated that a universal spring-probe system would be potentially suitable to achieve high performance in lab-on-a-chip devices using electrochemical detection. PMID:24406857

  19. Built-In Diagnostics (BID) Of Equipment/Systems

    NASA Technical Reports Server (NTRS)

    Granieri, Michael N.; Giordano, John P.; Nolan, Mary E.

    1995-01-01

    Diagnostician(TM)-on-Chip (DOC) technology identifies faults and commands systems reconfiguration. Smart microcontrollers operating in conjunction with other system-control circuits, command self-correcting system/equipment actions in real time. DOC microcontroller generates commands for associated built-in test equipment to stimulate unit of equipment diagnosed, collects and processes response data obtained by built-in test equipment, and performs diagnostic reasoning on response data, using diagnostic knowledge base derived from design data.

  20. Qualitative model-based diagnostics for rocket systems

    NASA Technical Reports Server (NTRS)

    Maul, William; Meyer, Claudia; Jankovsky, Amy; Fulton, Christopher

    1993-01-01

    A diagnostic software package is currently being developed at NASA LeRC that utilizes qualitative model-based reasoning techniques. These techniques can provide diagnostic information about the operational condition of the modeled rocket engine system or subsystem. The diagnostic package combines a qualitative model solver with a constraint suspension algorithm. The constraint suspension algorithm directs the solver's operation to provide valuable fault isolation information about the modeled system. A qualitative model of the Space Shuttle Main Engine's oxidizer supply components was generated. A diagnostic application based on this qualitative model was constructed to process four test cases: three numerical simulations and one actual test firing. The diagnostic tool's fault isolation output compared favorably with the input fault condition.

  1. Advances in associated-particle neutron probe diagnostics for substance detection

    NASA Astrophysics Data System (ADS)

    Rhodes, Edgar A.; Dickerman, Charles E.; Frey, Manfred

    1995-09-01

    The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) shows potential to allow the associated-particle diagnostic method to be moved out of the laboratory into field applications. The APSTNG interrogates the inspected object with 14-MeV neutrons generated from the deuterium-tritium reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra of resulting neutron reactions identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles can yield a separate course tomographic image of each identified nuclide, from a single orientation. Chemical substances are identified by comparing relative spectral line intensities with ratios of elements in reference compounds. The high-energy neutrons and gamma-rays penetrate large objects and dense materials. Generally, no collimators or radiation shielding are needed. Proof-of-concept laboratory experiments have been successfully performed for simulated nuclear, chemical warfare, and conventional munitions. Most recently, inspection applications have been investigated for radioactive waste characterization, presence of cocaine in propane tanks, and uranium and plutonium smuggling. Based on lessons learned with the present APSTNG system, an advanced APSTNG tube (along with improved high voltage supply and control units) is being designed and fabricated that will be transportable and rugged, yield a substantial neutron output increase, and provide sufficiently improved lifetime to allow operation at more than an order of magnitude increase in neutron flux.

  2. Advances in associated-particle sealed-tube neutron probe diagnostics for substance detection

    SciTech Connect

    Rhodes, E.; Dickerman, C.E.; Frey, M.

    1995-07-01

    The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) shows potential to allow the associated-particle diagnostic method to be moved out of the laboratory into field applications. The APSTNG interrogates the inspected object with 14-MeV neutrons generated from the deuterium-tritium reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra of resulting neutron reactions identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles can yield a separate coarse tomographic image of each identified nuclide, from a single orientation. Chemical substances are identified by comparing relative spectral line intensities with ratios of elements in reference compounds. The high-energy neutrons and gamma-rays penetrate large objects and dense materials. Generally no collimators or radiation shielding are needed. Proof-of-concept laboratory experiments have been successfully performed for simulated nuclear, chemical warfare, and conventional munitions. Most recently, inspection applications have been investigated for radioactive waste characterization, presence of cocaine in propane tanks, and uranium and plutonium smuggling. Based on lessons learned with the present APSTNG system, an advanced APSTNG tube (along with improved high voltage supply and control units) is being designed and fabricated that will be transportable and rugged, yield a substantial neutron output increase, and provide sufficiently improved lifetime to allow operation at more than an order of magnitude increase in neutron flux.

  3. Complex interferometry potential in case of sufficiently stable diagnostic system

    NASA Astrophysics Data System (ADS)

    Kalal, M.

    2016-06-01

    Classical interferometry is one of the key methods among active optical diagnostics. Its more advanced version, which allows recording and subsequent reconstruction of up to three sets of data using just one data object —a complex interferogram—was developed in the past and became known as complex interferometry. Employing this diagnostics, not only the usual phase shift, but also the amplitude of the probing beam as well as the fringe contrast (leading directly to the phase shift time derivative) can be reconstructed simultaneously from such a complex interferogram. In this paper it will be demonstrated that even in the case of a not particularly good diagnostic beam quality these three quantities can be reconstructed with a high degree of accuracy provided both the diagnostic beam as well as the corresponding optical line feature a reasonable stability. Such stability requirement is important as in an ideal case four shots need to be gradually recorded (one by one): the signal complex interferogram, the reference interferogram as well as the intensity structures of the signal and reference part of the diagnostic beam. Two examples of complex interferograms obtained in experiments will be analyzed: the laser produced plasma (spark in the air) and the high pressure gas jet. A general ray-tracing based iterative algorithm will be outlined in order to increase a precision of the index of refraction spatial profile taking into account refraction effects (omitted in the Abel inversion) and employing the original reconstructed phase shift and amplitude.

  4. Laboratory Information Systems in Molecular Diagnostics: Why Molecular Diagnostics Data are Different.

    PubMed

    Lee, Roy E; Henricks, Walter H; Sirintrapun, Sahussapont J

    2016-03-01

    Molecular diagnostic testing presents new challenges to information management that are yet to be sufficiently addressed by currently available information systems for the molecular laboratory. These challenges relate to unique aspects of molecular genetic testing: molecular test ordering, informed consent issues, diverse specimen types that encompass the full breadth of specimens handled by traditional anatomic and clinical pathology information systems, data structures and data elements specific to molecular testing, varied testing workflows and protocols, diverse instrument outputs, unique needs and requirements of molecular test reporting, and nuances related to the dissemination of molecular pathology test reports. By satisfactorily addressing these needs in molecular test data management, a laboratory information system designed for the unique needs of molecular diagnostics presents a compelling reason to migrate away from the current paper and spreadsheet information management that many molecular laboratories currently use. This paper reviews the issues and challenges of information management in the molecular diagnostics laboratory. PMID:26849819

  5. Target Diagnostic Control System Implementation for the National Ignition Facility

    SciTech Connect

    Shelton, R T; Kamperschroer, J H; Lagin, L J; Nelson, J R; O'Brien, D W

    2010-05-12

    The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics. Many diagnostics are being developed by collaborators at other sites, but ad hoc controls could lead to unreliable and costly operations. A Diagnostic Control System (DCS) framework for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the DCS architecture each instrument is interfaced to a low-cost Windows XP processor and Java application. Each instrument is aggregated with others as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. DCS instruments are reusable by replication with reconfiguration for specific diagnostics in XML. Advantages include minimal application code, easy testing, and high reliability. Collaborators save costs by assembling diagnostics with existing DCS instruments. This talk discusses target diagnostic instrumentation used on NIF and presents the DCS architecture and framework.

  6. Resilient Actions in the Diagnostic Process and System Performance

    PubMed Central

    Smith, Michael W.; Giardina, Traber Davis; Murphy, Daniel R.; Laxmisan, Archana; Singh, Hardeep

    2013-01-01

    Objectives Systemic issues can adversely affect the diagnostic process. Many system-related barriers can be masked by ‘resilient’ actions of frontline providers (ie, actions supporting the safe delivery of care in the presence of pressures that the system cannot readily adapt to). We explored system barriers and resilient actions of primary care providers (PCPs) in the diagnostic evaluation of cancer. Methods We conducted a secondary data analysis of interviews of PCPs involved in diagnostic evaluation of 29 lung and colorectal cancer cases. Cases covered a range of diagnostic timeliness and were analyzed to identify barriers for rapid diagnostic evaluation, and PCPs’ actions involving elements of resilience addressing those barriers. We rated these actions according to whether they were usual or extraordinary for typical PCP work. Results Resilient actions and associated barriers were found in 59% of the cases, in all ranges of timeliness, with 40% involving actions rated as beyond typical. Most of the barriers were related to access to specialty services and coordination with patients. Many of the resilient actions involved using additional communication channels to solicit cooperation from other participants in the diagnostic process. Discussion Diagnostic evaluation of cancer involves several resilient actions by PCPs targeted at system deficiencies. PCPs’ actions can sometimes mitigate system barriers to diagnosis, and thereby impact the sensitivity of ‘downstream’ measures (eg, delays) in detecting barriers. While resilient actions might enable providers to mitigate system deficiencies in the short run, they can be resource intensive and potentially unsustainable. They complement, rather than substitute for, structural remedies to improve system performance. Measures to detect and fix system performance issues targeted by these resilient actions could facilitate diagnostic safety. PMID:23813210

  7. 40 CFR 1033.112 - Emission diagnostics for SCR systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... diagnostic system must monitor reductant quality and tank levels and alert operators to the need to refill... computer memory all incidents of engine operation with inadequate reductant injection or reductant...

  8. 40 CFR 1033.112 - Emission diagnostics for SCR systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diagnostic system must monitor reductant quality and tank levels and alert operators to the need to refill... computer memory all incidents of engine operation with inadequate reductant injection or reductant...

  9. Diagnostic for Plasma Enhanced Chemical Vapor Deposition and Etch Systems

    NASA Technical Reports Server (NTRS)

    Cappelli, Mark A.

    1999-01-01

    concentration, temperature, ion energy distribution, and electron number density. A wide variety of diagnostic techniques are under development through this consortium grant to measure these parameters. including molecular beam mass spectrometry (MBMS). Fourier transform infrared (FTIR) spectroscopy, broadband ultraviolet (UV) absorption spectroscopy, a compensated Langmuir probe. Additional diagnostics. Such as microwave interferometry and microwave absorption for measurements of plasma density and radical concentrations are also planned.

  10. Magnetic dipole discharges. II. Cathode and anode spot discharges and probe diagnostics

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.; Ionita, C.; Schrittwieser, R.

    2013-08-15

    The high current regime of a magnetron-type discharge has been investigated. The discharge uses a permanent magnet as a cold cathode which emits secondary electrons while the chamber wall or a grounded electrode serves as the anode. As the discharge voltage is increased, the magnet develops cathode spots, which are short duration arcs that provide copious electrons to increase the discharge current dramatically. Short (1 μs), high current (200 A) and high voltage (750 V) discharge pulses are produced in a relaxation instability between the plasma and a charging capacitor. Spots are also observed on a negatively biased plane Langmuir probe. The probe current pulses are as large as those on the magnet, implying that the high discharge current does not depend on the cathode surface area but on the properties of the spots. The fast current pulses produce large inductive voltages, which can reverse the electrical polarity of the magnet and temporarily operate it as an anode. The discharge current may also oscillate at the frequency determined by the charging capacitor and the discharge circuit inductance. Each half cycle of high-current current pulses exhibits a fast (≃10 ns) current rise when a spot is formed. It induces high frequency (10–100 MHz) transients and ringing oscillations in probes and current circuits. Most probes behave like unmatched antennas for the electromagnetic pulses of spot discharges. Examples are shown to distinguish the source of oscillations and some rf characteristics of Langmuir probes.

  11. Virtual probing system for medical volume data

    NASA Astrophysics Data System (ADS)

    Xiao, Yongfei; Fu, Yili; Wang, Shuguo

    2007-12-01

    Because of the huge computation in 3D medical data visualization, looking into its inner data interactively is always a problem to be resolved. In this paper, we present a novel approach to explore 3D medical dataset in real time by utilizing a 3D widget to manipulate the scanning plane. With the help of the 3D texture property in modern graphics card, a virtual scanning probe is used to explore oblique clipping plane of medical volume data in real time. A 3D model of the medical dataset is also rendered to illustrate the relationship between the scanning-plane image and the other tissues in medical data. It will be a valuable tool in anatomy education and understanding of medical images in the medical research.

  12. Diagnostics Systems for Permanent Hall Thrusters Development

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall

  13. Probing Gravitational Sensitivity in Biological Systems Using Magnetic Body Forces

    NASA Technical Reports Server (NTRS)

    Guevorkian, Karine; Wurzel, Sam; Mihalusova, Mariana; Valles, Jim

    2003-01-01

    At Brown University, we are developing the use of magnetic body forces as a means to simulate variable gravity body forces on biological systems. This tool promises new means to probe gravi-sensing and the gravi-response of biological systems. It also has the potential as a technique for screening future systems for space flight experiments.

  14. A CMUT probe for medical ultrasonography: from microfabrication to system integration.

    PubMed

    Savoia, Alessandro Stuart; Calianov, Giosuè; Pappalardo, Massimo

    2012-06-01

    Medical ultrasonography is a powerful and cost-effective diagnostic technique. To date, high-end medical imaging systems are able to efficiently implement real-time image formation techniques that can dramatically improve the diagnostic capabilities of ultrasound. Highly performing and thermally efficient ultrasound probes are then required to successfully enable the most advanced techniques. In this context, ultrasound transducer technology is the current limiting factor. Capacitive micromachined ultrasonic transducers (CMUTs) are micro-electro-mechanical systems (MEMS)-based devices that have been widely recognized as a valuable alternative to piezoelectric transducer technology in a variety of medical imaging applications. Wideband operation, good thermal efficiency, and low fabrication cost, especially for those applications requiring high-volume production of small-area dice, are strength factors that may justify the adoption of this MEMS technology in the medical ultrasound imaging field. This paper presents the design, development, fabrication, and characterization of a 12-MHz ultrasound probe for medical imaging, based on a CMUT array. The CMUT array is microfabricated and packed using a novel fabrication concept specifically conceived for imaging transducer arrays. The performance of the developed probe is optimized by including analog front-end reception electronics. Characterization and imaging results are used to assess the performance of CMUTs with respect to conventional piezoelectric transducers. PMID:22711408

  15. Ophthalmic diagnostics using a new dynamic light scattering fiber optic probe

    NASA Astrophysics Data System (ADS)

    Ansari, Rafat R.; Suh, Kwang I.; Dellavecchia, Michael A.; Dubin, Stephen

    1995-11-01

    A new fiber optic probe is developed to study different parts of the eye. The probe positioned in front of an eye, delivers a low power light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like material in the vitreous humor. We report alpha-crystalline size distributions, as a function of penetration depth, inside the lens and hyaluronic acid molecular size distribution in the vitreous body. In a clinical setting, the probe can be mounted on a slit-lamp apparatus simply by using a H-ruby lens holder. The capability of detecting cataracts, both nuclear and peripheral, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to 'dissolve' or slow down the cataract formation before surgery is necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber, e.g., posterior vitreous detachment.

  16. Ophthalmic diagnostics using a new dynamic light scattering fiber optic probe

    NASA Astrophysics Data System (ADS)

    Ansari, Rafat R.; Suh, Kwang I.; DellaVecchia, Michael A.; Dubin, Stephen

    1996-01-01

    A new fiber optic probe is developed to study different parts of the eye. The probe positioned in front of an eye, delivers a low power light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like material in the vitreous humor. We report alpha-crystalline size distributions, as a function of penetration depth, inside the lens and hyaluronic acid molecular size distribution in the vitreous body. In a clinical setting, the probe can be mounted on a slit- lamp apparatus simply by using a H-ruby lens holder. The capability of detecting cataracts, both nuclear and peripheral, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to 'dissolve' or slow down the cataract formation before surgery is necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber, e.g., posterior vitreous detachment.

  17. Ophthalmic Diagnostics Using a New Dynamic Light Scattering Fiber Optic Probe

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Suh, Kwang I.; Dellavecchia, Michael A.; Dubin, Stephen

    1995-01-01

    A new fiber optic probe is developed to study different parts of the eye. The probe positioned in front of an eye, delivers a low power light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like material in the vitreous humor. We report alpha-crystalline size distributions, as a function of penetration depth, inside the lens and hyaluronic acid molecular size distribution in the vitreous body. In a clinical setting, the probe can be mounted on a slit-lamp apparatus simply by using a H-ruby lens holder. The capability of detecting cataracts, both nuclear and peripheral, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to 'dissolve' or slow down the cataract formation before surgery is necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber, e.g., posterior vitreous detachment.

  18. Langmuir probe diagnostics of an atmospheric pressure, vortex-stabilized nitrogen plasma jet

    SciTech Connect

    Prevosto, L.; Mancinelli, B. R.; Kelly, H.

    2012-09-15

    Langmuir probe measurements in an atmospheric pressure direct current (dc) plasma jet are reported. Sweeping probes were used. The experiment was carried out using a dc non-transferred arc torch with a rod-type cathode and an anode of 5 mm diameter. The torch was operated at a nominal power level of 15 kW with a nitrogen flow rate of 25 Nl min{sup -1}. A flat ion saturation region was found in the current-voltage curve of the probe. The ion saturation current to a cylindrical probe in a high-pressure non local thermal equilibrium (LTE) plasma was modeled. Thermal effects and ionization/recombination processes inside the probe perturbed region were taken into account. Averaged radial profiles of the electron and heavy particle temperatures as well as the electron density were obtained. An electron temperature around 11 000 K, a heavy particle temperature around 9500 K and an electron density of about 4 Multiplication-Sign 10{sup 22} m{sup -3}, were found at the jet centre at 3.5 mm downstream from the torch exit. Large deviations from kinetic equilibrium were found throughout the plasma jet. The electron and heavy particle temperature profiles showed good agreement with those reported in the literature by using spectroscopic techniques. It was also found that the temperature radial profile based on LTE was very close to that of the electrons. The calculations have shown that this method is particularly useful for studying spraying-type plasma jets characterized by electron temperatures in the range 9000-14 000 K.

  19. Screening metagenomic data for viruses using the E-Probe Diagnostic Nucleic Acid Assay (EDNA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are many plant pathogen-specific diagnostic assays, based on PCR and immune-detection. However, the ability to test for large numbers of pathogens simultaneously is lacking. Next generation sequencing (NGS) allows one to detect all organisms within a given sample, but has computational limitat...

  20. Dynamic Force Sensing Using an Optically Trapped Probing System.

    PubMed

    Huang, Yanan; Cheng, Peng; Menq, Chia-Hsiang

    2011-12-01

    This paper presents the design of an adaptive observer that is implemented to enable real-time dynamic force sensing and parameter estimation in an optically trapped probing system. According to the principle of separation of estimation and control, the design of this observer is independent of that of the feedback controller when operating within the linear range of the optical trap. Dynamic force sensing, probe steering/clamping, and Brownian motion control can, therefore, be developed separately and activated simultaneously. The adaptive observer utilizes the measured motion of the trapped probe and input control effort to recursively estimate the probe-sample interaction force in real time, along with the estimation of the probing system's trapping bandwidth. This capability is very important to achieving accurate dynamic force sensing in a time-varying process, wherein the trapping dynamics is nonstationary due to local variations of the surrounding medium. The adaptive estimator utilizes the Kalman filter algorithm to compute the time-varying gain in real time and minimize the estimation error for force probing. A series of experiments are conducted to validate the design of and assess the performance of the adaptive observer. PMID:24382944

  1. Situ soil sampling probe system with heated transfer line

    DOEpatents

    Robbat, Jr., Albert

    2002-01-01

    The present invention is directed both to an improved in situ penetrometer probe and to a heated, flexible transfer line. The line and probe may be implemented together in a penetrometer system in which the transfer line is used to connect the probe to a collector/analyzer at the surface. The probe comprises a heater that controls a temperature of a geologic medium surrounding the probe. At least one carrier gas port and vapor collection port are located on an external side wall of the probe. The carrier gas port provides a carrier gas into the geologic medium, and the collection port captures vapors from the geologic medium for analysis. In the transfer line, a flexible collection line that conveys a collected fluid, i.e., vapor, sample to a collector/analyzer. A flexible carrier gas line conveys a carrier gas to facilitate the collection of the sample. A system heating the collection line is also provided. Preferably the collection line is electrically conductive so that an electrical power source can generate a current through it so that the internal resistance generates heat.

  2. Developing a self-diagnostic system for piezoelectric sensors

    NASA Technical Reports Server (NTRS)

    Flanagan, Patrick M.; Atherton, William J.

    1990-01-01

    Measurement techniques for developing a self-diagnostic system for piezoelectric sensors are presented. The self-diagnostic system uses two types of measurement techniques based on passive and active evaluation of the piezoelectric element. Both hard and soft failures can be detected by this system. Hard failures such as loss of sensor signal and change in sensor output resistance are determined by monitoring the sensor's output resistance, voltage or current. These are passive measurements of the sensor's output condition. Soft failures include changes in sensor calibration and mounting conditions. Soft failures are detected by measuring structural/electrical impedance of the piezoelectric sensor. Active measurement techniques are used to calculate changes in piezoelectric element properties related to soft failures. This paper describes the general operating principles of a self-diagnostic system and discusses the design of an active/passive measurement technique required for this system to function. Experimental results using two types of piezoelectric accelerometers are presented.

  3. Development of a New Diagnostic System for Human Liver Diseases Based on Conventional Ultrasonic Diagnostic Equipment

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tsuneo; Nakazawa, Toshihiro; Harada, Akimitsu; Sato, Hiroaki; Maruyama, Yukio; Sato, Sojun

    2001-05-01

    In this paper, the authors present the experimental results of using a quantitative ultrasonic diagnosis technique for human liver diseases using the fractal dimension (FD) of the shape of the power spectra (PS) of RF signals. We have developed an experimental system based on a conventional ultrasonic diagnostic system. As a result, we show that normal livers, fatty livers and liver cirrhosis can be identified using the FD values.

  4. Benchmarking Diagnostic Algorithms on an Electrical Power System Testbed

    NASA Technical Reports Server (NTRS)

    Kurtoglu, Tolga; Narasimhan, Sriram; Poll, Scott; Garcia, David; Wright, Stephanie

    2009-01-01

    Diagnostic algorithms (DAs) are key to enabling automated health management. These algorithms are designed to detect and isolate anomalies of either a component or the whole system based on observations received from sensors. In recent years a wide range of algorithms, both model-based and data-driven, have been developed to increase autonomy and improve system reliability and affordability. However, the lack of support to perform systematic benchmarking of these algorithms continues to create barriers for effective development and deployment of diagnostic technologies. In this paper, we present our efforts to benchmark a set of DAs on a common platform using a framework that was developed to evaluate and compare various performance metrics for diagnostic technologies. The diagnosed system is an electrical power system, namely the Advanced Diagnostics and Prognostics Testbed (ADAPT) developed and located at the NASA Ames Research Center. The paper presents the fundamentals of the benchmarking framework, the ADAPT system, description of faults and data sets, the metrics used for evaluation, and an in-depth analysis of benchmarking results obtained from testing ten diagnostic algorithms on the ADAPT electrical power system testbed.

  5. Solar Power System Design for the Solar Probe+ Mission

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Schmitz, Paul C.; Kinnison, James; Fraeman, Martin; Roufberg, Lew; Vernon, Steve; Wirzburger, Melissa

    2008-01-01

    Solar Probe+ is an ambitious mission proposed to the solar corona, designed to make a perihelion approach of 9 solar radii from the surface of the sun. The high temperature, high solar flux environment makes this mission a significant challenge for power system design. This paper summarizes the power system conceptual design for the solar probe mission. Power supplies considered included nuclear, solar thermoelectric generation, solar dynamic generation using Stirling engines, and solar photovoltaic generation. The solar probe mission ranges from a starting distance from the sun of 1 AU, to a minimum distance of about 9.5 solar radii, or 0.044 AU, from the center of the sun. During the mission, the solar intensity ranges from one to about 510 times AM0. This requires power systems that can operate over nearly three orders of magnitude of incident intensity.

  6. Advanced Diagnostic System on Earth Observing One

    NASA Technical Reports Server (NTRS)

    Hayden, Sandra C.; Sweet, Adam J.; Christa, Scott E.; Tran, Daniel; Shulman, Seth

    2004-01-01

    In this infusion experiment, the Livingstone 2 (L2) model-based diagnosis engine, developed by the Computational Sciences division at NASA Ames Research Center, has been uploaded to the Earth Observing One (EO-1) satellite. L2 is integrated with the Autonomous Sciencecraft Experiment (ASE) which provides an on-board planning capability and a software bridge to the spacecraft's 1773 data bus. Using a model of the spacecraft subsystems, L2 predicts nominal state transitions initiated by control commands, monitors the spacecraft sensors, and, in the case of failure, isolates the fault based on the discrepant observations. Fault detection and isolation is done by determining a set of component modes, including most likely failures, which satisfy the current observations. All mode transitions and diagnoses are telemetered to the ground for analysis. The initial L2 model is scoped to EO-1's imaging instruments and solid state recorder. Diagnostic scenarios for EO-1's nominal imaging timeline are demonstrated by injecting simulated faults on-board the spacecraft. The solid state recorder stores the science images and also hosts: the experiment software. The main objective of the experiment is to mature the L2 technology to Technology Readiness Level (TRL) 7. Experiment results are presented, as well as a discussion of the challenging technical issues encountered. Future extensions may explore coordination with the planner, and model-based ground operations.

  7. 3D-Spectroscopy of Extragalactic Planetary Nebulae as Diagnostic Probes for Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Kelz, A.; Monreal-Ibero, A.; Roth, M. M.; Sandin, C.; Schönberner, D.; Steffen, M.

    In addition to study extragalactic stellar populations in their integrated light, the detailed analysis of individual resolved objects has become feasible, mainly for luminous giant stars and for extragalactic planetary nebulae (XPNe) in nearby galaxies. A recently started project at the Astrophysical Institute Potsdam (AIP), called ``XPN--Physics'', aims to verify if XPNe are useful probes to measure the chemical abundances of their parent stellar population. The project involves theoretical and observational work packages.

  8. Design of a multi-needle Langmuir probe system

    NASA Astrophysics Data System (ADS)

    Bekkeng, T. A.; Jacobsen, K. S.; Bekkeng, J. K.; Pedersen, A.; Lindem, T.; Lebreton, J.-P.; Moen, J. I.

    2010-08-01

    The main goal of this work was to develop a Langmuir probe instrument for sounding rockets capable of performing high-speed absolute electron density measurements, and thereby be able to detect sub-meter ionospheric plasma density structures. The system comprises four cylindrical probes with a diameter of 0.51 mm and a length of 25 mm, each operated at a different fixed bias voltage in the electron saturation region. The probe diameter was chosen significantly less than the Debye shielding length to avoid complex sheath effects but large enough to ensure a probe area sufficiently large to accurately measure the electron currents drawn by the probes (in the range 1 nA to 1 µA). The crucial feature of the University of Oslo's multi-needle Langmuir probe (m-NLP) is that it is possible to determine the electron density without the need to know the spacecraft potential and the electron temperature Te. The m-NLP instrument covers a density range from ne = 109 m-3 to 1012 m-3, with sampling rates up to 9 kHz. The m-NLP instrument was successfully tested on the ICI-2 (Investigation of Cusp Irregularities) sounding rocket flight from Svalbard on 5 December 2008.

  9. Performance of fault-tolerant diagnostics in the hypercube systems

    SciTech Connect

    Ghafoor, A.; Sole, P.

    1989-08-01

    In this paper, they introduce the concept of fault-tolerant self-diagnosis for distributed systems and show that there exists a performance tradeoff between the complexity of a self-diagnostic algorithm and the level of fault tolerance inherited by the algorithm. For the study, they select hypercube systems and show that designing an optimal algorithm for such systems has an equivalent coding theory formulation which belongs to the class of NP-hard problems. Subsequently, they propose an ''efficient'' diagnostic scheme for these systems and study the performance tradeoff of the proposed algorithm which is based on a combinatorial structure called Hadamard matrix. The authors make an essential use of its properties of symmetrical partitioning and covering in hypercube networks. Using known translate weight distributions, they evaluated the tradeoff between the fault tolerance and traffic complexity of the proposed diagnostic algorithm for hypercubes of small sizes. An interesting compromise is exhibited for the hypercube with an arbitrary size.

  10. Saliva as a diagnostic tool for oral and systemic diseases

    PubMed Central

    Javaid, Mohammad A.; Ahmed, Ahad S.; Durand, Robert; Tran, Simon D.

    2015-01-01

    Early disease detection is not only vital to reduce disease severity and prevent complications, but also critical to increase success rate of therapy. Saliva has been studied extensively as a potential diagnostic tool over the last decade due to its ease and non-invasive accessibility along with its abundance of biomarkers, such as genetic material and proteins. This review will update the clinician on recent advances in salivary biomarkers to diagnose autoimmune diseases (Sjogren's syndrome, cystic fibrosis), cardiovascular diseases, diabetes, HIV, oral cancer, caries and periodontal diseases. Considering their accuracy, efficacy, ease of use and cost effectiveness, salivary diagnostic tests will be available in dental offices. It is expected that the advent of sensitive and specific salivary diagnostic tools and the establishment of defined guidelines and results following rigorous testing will allow salivary diagnostics to be used as chair-side tests for several oral and systemic diseases in the near future. PMID:26937373

  11. Electron cyclotron resonant heating (ECRH) diagnostic system on TMX

    SciTech Connect

    Coffield, F.E.; Griffin, D.H.

    1981-10-20

    The ECRH diagnostics system monitors the net power delivered to the plasma by four 200-kW gyrotron oscillators, the frequency of each gyrotron, and some operating parameters of the gyrotron power supply system. The combination CAMAC- and GPIB-based data acquisition system is under desktop computer control that provides the capability for data conversion and display. The data acquisition system is also interfaced to the main computer system that acquires and archives the data.

  12. Surface moisture measurement system electromagnetic induction probe calibration technique

    SciTech Connect

    Crowe, R.D., Westinghouse Hanford

    1996-07-08

    The Surface Moisture Measurement System (SMMS) is designed to measure the moisture concentration near the surfaces of the wastes located in the Hanford Site tank farms. This document describes a calibration methodology to demonstrate that the Electromagnetic Induction (EMI) moisture probe meets relevant requirements in the `Design Requirements Document (DRD) for the Surface Moisture Measurement System.` The primary purpose of the experimental tests described in this methodology is to make possible interpretation of EMI in-tank surface probe data to estimate the surface moisture.

  13. An easy-to-use diagnostic system development shell

    NASA Technical Reports Server (NTRS)

    Tsai, L. C.; Ross, J. B.; Han, C. Y.; Wee, W. G.

    1987-01-01

    The Diagnostic System Development Shell (DSDS), an expert system development shell for diagnostic systems, is described. The major objective of building the DSDS is to create a very easy to use and friendly environment for knowledge engineers and end-users. The DSDS is written in OPS5 and CommonLisp. It runs on a VAX/VMS system. A set of domain independent, generalized rules is built in the DSDS, so the users need not be concerned about building the rules. The facts are explicitly represented in a unified format. A powerful check facility which helps the user to check the errors in the created knowledge bases is provided. A judgement facility and other useful facilities are also available. A diagnostic system based on the DSDS system is question driven and can call or be called by other knowledge based systems written in OPS5 and CommonLisp. A prototype diagnostic system for diagnosing a Philips constant potential X-ray system has been built using the DSDS.

  14. DECISION-SUPPORT SYSTEM FOR DIAGNOSTICS RESEARCH

    EPA Science Inventory

    In Phase 1 of this research, we will identify existing tools, methods, and models available to support establishment of cause-effect relationships. In Phase 2, we will investigate existing decision support systems and produce an appropriate decision support system design. Based ...

  15. Electrically heated particulate filter diagnostic systems and methods

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2009-09-29

    A system that diagnoses regeneration of an electrically heated particulate filter is provided. The system generally includes a grid module that diagnoses a fault of the grid based on at least one of a current signal and a voltage signal. A diagnostic module at least one of sets a fault status and generates a warning signal based on the fault of the grid.

  16. Probing CPT violation in B systems

    SciTech Connect

    Kundu, Anirban; Patra, Sunando Kumar; Nandi, Soumitra

    2010-04-01

    We discuss how a possible violation of the combined symmetry CPT in the B meson system can be investigated at the LHC. We show how a tagged and an untagged analysis of the decay modes of both B{sub d} and B{sub s} mesons can lead not only to a possible detection of a CPT-violating new physics but also to an understanding of its precise nature. The implication of CPT violation to a large mixing phase in the B{sub s} system is also discussed.

  17. SA-SVM based automated diagnostic system for skin cancer

    NASA Astrophysics Data System (ADS)

    Masood, Ammara; Al-Jumaily, Adel

    2015-03-01

    Early diagnosis of skin cancer is one of the greatest challenges due to lack of experience of general practitioners (GPs). This paper presents a clinical decision support system aimed to save time and resources in the diagnostic process. Segmentation, feature extraction, pattern recognition, and lesion classification are the important steps in the proposed decision support system. The system analyses the images to extract the affected area using a novel proposed segmentation method H-FCM-LS. The underlying features which indicate the difference between melanoma and benign lesions are obtained through intensity, spatial/frequency and texture based methods. For classification purpose, self-advising SVM is adapted which showed improved classification rate as compared to standard SVM. The presented work also considers analyzed performance of linear and kernel based SVM on the specific skin lesion diagnostic problem and discussed corresponding findings. The best diagnostic rates obtained through the proposed method are around 90.5 %.

  18. Fault diagnostic system for a mobile robot

    NASA Astrophysics Data System (ADS)

    Nikam, Umesh; Hall, Ernest L.

    1997-09-01

    This paper describes the development of a robot fault diagnosis system (RFDS). Though designed ostensibly for the University of Cincinnati's autonomous, unmanned, mobile robot for a national competition, it has the flexibility to be adapted for industrial applications as well. Using a top-down approach the robot is sub-divided into different functional units, such as the vision guidance system, the ultrasonic obstacle avoidance system, the steering mechanism, the speed control system, the braking system and the power unit. The techniques of potential failure mode and effects analysis (PFMEA) are used to analyze faults, their visible symptoms, and probable causes and remedies. The relationships obtained therefrom are mapped in a database framework. This is then coded in a user-friendly interactive Visual BasicTM program that guides the user to the likely cause(s) of failure through a question-answer format. A provision is made to ensure better accuracy of the system by incorporating historical data on failures as it becomes available. The RFDS thus provides a handy trouble-shooting tool that cuts down the time involved in diagnosing failures in the complex robot consisting of mechanical, electric, electronic and optical systems. This has been of great help in diagnosing failures and ensuring maximum performance from the robot during the contest in the face of pressure of the competition and the outdoor conditions.

  19. Wire-rope emplacement of diagnostics systems

    SciTech Connect

    Burden, W.L.

    1982-05-07

    The study reported here was initiated to determine if, with the Cable Downhole System (CDS) currently under development, there is an advantage to using continuous wire rope to lower the emplacement package to the bottom of the hole. A baseline design using two wire ropes as well as several alternatives are discussed in this report. It was concluded that the advantages of the wire-rope emplacement system do not justify the cost of converting to such a system, especially for LLNL's maximum emplacement package weights.

  20. Integrated real-time fracture-diagnostics instrumentation system

    SciTech Connect

    Engi, D

    1983-01-01

    The use of an integrated, real-time fracture-diagnostics instrumentation system for the control of the fracturing treatment during massive hydraulic fracturing is proposed. The proposed system consists of four subsystems: an internal-fracture-pressure measurement system, a fluid-flow measurement system, a borehole seismic system, and a surface-electric-potential measurement system. This use of borehole seismic and surface-electric-potential measurements, which are essentially away-from-the-wellbore measurements, in conjunction with the use of the more commonly used types of measurements, i.e., at-the-wellbore pressure and fluid-flow measurements, is a distinctive feature of the composite real-time diagnostics system. Currently, the real-time capabilities of the individual subsystems are being developed, and the problems associated with their integration into a complete, computer-linked instrumentation system are being addressed. 2 figures.

  1. Correlating Log Messages for System Diagnostics

    SciTech Connect

    Gunasekaran, Raghul; Dillow, David A; Shipman, Galen M; Maxwell, Don E; Hill, Jason J; Park, Byung H; Geist, Al

    2010-01-01

    In large-scale computing systems, the sheer volume of log data generated presents daunting challenges for debugging and monitoring of these systems. The Oak Ridge Leadership Computing Facility s premier simulation platform, the Cray XT5 known as Jaguar, can generate a few hundred thousand log entries in less than a minute for many system level events. Determining the root cause of such system events requires analyzing and interpretation of a large number of log messages. Most often, the log messages are best understood when they are interpreted collectively rather than individually. In this paper, we present our approach to interpreting log messages by identifying their commonalities and grouping them into clusters. Given a set of log messages within a time interval, we group the messages based on source, target, and/or error type, and correlate the messages with hardware and application information. We monitor the Lustre log messages in the XT5 console log and show that such grouping of log messages assists in detecting the source of system events. By intelligent grouping and correlation of events in the log, we are able to provide system administrators with meaningful information in a concise format for root cause analysis.

  2. Reactor coolant pump monitoring and diagnostic system

    SciTech Connect

    Singer, R.M.; Gross, K.C.; Walsh, M. ); Humenik, K.E. )

    1990-01-01

    In order to reliably and safely operate a nuclear power plant, it is necessary to continuously monitor the performance of numerous subsystems to confirm that the plant state is within its prescribed limits. An important function of a properly designed monitoring system is the detection of incipient faults in all subsystems (with the avoidance of false alarms) coupled with an information system that provides the operators with fault diagnosis, prognosis of fault progression and recommended (either automatic or prescriptive) corrective action. In this paper, such a system is described that has been applied to reactor coolant pumps. This system includes a sensitive pattern-recognition technique based upon the sequential probability ratio test (SPRT) that detects incipient faults from validated signals, an expert system embodying knowledge bases on pump and sensor performance, extensive hypertext files containing operating and emergency procedures as well as pump and sensor information and a graphical interface providing the operator with easily perceived information on the location and character of the fault as well as recommended corrective action. This system is in the prototype stage and is currently being validated utilizing data from a liquid-metal cooled fast reactor (EBR-II). 3 refs., 4 figs.

  3. A sequential decision-theoretic model for medical diagnostic system.

    PubMed

    Li, Aiping; Jin, Songchang; Zhang, Lumin; Jia, Yan

    2015-01-01

    Although diagnostic expert systems using a knowledge base which models decision-making of traditional experts can provide important information to non-experts, they tend to duplicate the errors made by experts. Decision-Theoretic Model (DTM) is therefore very useful in expert system since they prevent experts from incorrect reasoning under uncertainty. For the diagnostic expert system, corresponding DTM and arithmetic are studied and a sequential diagnostic decision-theoretic model based on Bayesian Network is given. In the model, the alternative features are categorized into two classes (including diseases features and test features), then an arithmetic for prior of test is provided. The different features affect other features weights are also discussed. Bayesian Network is adopted to solve uncertainty presentation and propagation. The model can help knowledge engineers model the knowledge involved in sequential diagnosis and decide evidence alternative priority. A practical example of the models is also presented: at any time of the diagnostic process the expert is provided with a dynamically updated list of suggested tests in order to support him in the decision-making problem about which test to execute next. The results show it is better than the traditional diagnostic model which is based on experience. PMID:26410326

  4. The oral-systemic connection: role of salivary diagnostics

    NASA Astrophysics Data System (ADS)

    Malamud, Daniel

    2013-05-01

    Utilizing saliva instead of blood for diagnosis of both local and systemic health is a rapidly emerging field. Recognition of oral-systemic interrelationships for many diseases has fostered collaborations between medicine and dentistry, and many of these collaborations rely on salivary diagnostics. The oral cavity is easily accessed and contains most of the analytes present in blood. Saliva and mucosal transudate are generally utilized for oral diagnostics, but gingival crevicular fluid, buccal swabs, dental plaque and volatiles may also be useful depending on the analyte being studied. Examples of point-of-care devices capable of detecting HIV, TB, and Malaria targets are being developed and discussed in this overview.

  5. Progress of development of Thomson scattering diagnostic system on COMPASS

    SciTech Connect

    Bilkova, P.; Melich, R.; Aftanas, M.; Boehm, P.; Sestak, D.; Jares, D.; Weinzettl, V.; Stoeckel, J.; Hron, M.; Panek, R.; Walsh, M. J.

    2010-10-15

    A new Thomson scattering diagnostic system has been designed and is being built now on the COMPASS tokamak at the Institute of Plasma Physics ASCR in Prague (IPP Prague) in the Czech Republic. This contribution focuses on design, development, and installation of the light collection and detection system. High spatial resolution of 3 mm will be achieved by a combination of design of collection optics and connected polychromators. Imaging characteristics of both core and edge plasma collection objectives are described and fiber backplane design is presented. Several calibration procedures are discussed. The operational deployment of the Thomson scattering diagnostic is planned by the end of 2010.

  6. Facial-paralysis diagnostic system based on 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Khairunnisaa, Aida; Basah, Shafriza Nisha; Yazid, Haniza; Basri, Hassrizal Hassan; Yaacob, Sazali; Chin, Lim Chee

    2015-05-01

    The diagnostic process of facial paralysis requires qualitative assessment for the classification and treatment planning. This result is inconsistent assessment that potential affect treatment planning. We developed a facial-paralysis diagnostic system based on 3D reconstruction of RGB and depth data using a standard structured-light camera - Kinect 360 - and implementation of Active Appearance Models (AAM). We also proposed a quantitative assessment for facial paralysis based on triangular model. In this paper, we report on the design and development process, including preliminary experimental results. Our preliminary experimental results demonstrate the feasibility of our quantitative assessment system to diagnose facial paralysis.

  7. Diagnostic system monitors gearboxes at hydro plant

    SciTech Connect

    1995-06-01

    This article describes how, by applying real-time, tooth-by-tooth vibration ``imaging,`` this system detects gear-tooth defects -- such as pitting and cracking. To keep Swan Falls hydroelectric generating station in service, Idaho Power Co constructed a new two-unit, open-pit-turbine powerhouse. Swan Falls, Kuna, Idaho, the oldest on the Snake River, services southern Idaho and parts of Oregon -- one of 17 hydroelectric plants maintained by the utility. The hydro units use speed increasers (gearboxes) so higher-speed generators are possible. To monitor these gearboxes, engineers at Swan Falls required a continuous on-line predictive maintenance system. The system monitors the planetary step-up gearboxes in the two main 12.5-MW pit turbine/generators. In some Idaho Power plants with a similar hydro turbine/generator design, the gearboxes have experienced major failures, leading to hundreds of thousands of dollars in collateral damage.

  8. Automatic system for corneal ulcer diagnostic

    NASA Astrophysics Data System (ADS)

    Ventura, Liliane; de Sousa, Sidney J. F.

    1997-05-01

    Corneal Ulcer is a very common disease in agricultural countries and it is responsible for 10% of the blindness causes. One of the main aspects to be observed in these cases is the increasing or decreasing of the affected area. We have been developing an automatic optical system in order to evaluate the affected area (the ulcer) to be implemented in a public hospital (400 patients per week are analyzed). The optical system is implemented in a Slit Lamp and connected to a CCD detector. The image is displayed in a PC monitor by a commercial frame grabber and a dedicated software for determining the area of the ulcer has been developed.

  9. Ureteral stones due to systemic mastocytosis: diagnostic and therapeutic characteristics.

    PubMed

    Molderings, Gerhard J; Solleder, Gerold; Kolck, Ulrich W; Homann, Jürgen; Schröder, Detlev; von Kügelgen, Ivar; Vorreuther, Roland

    2009-08-01

    Urolithiasis is expected to cause a considerable complication in patients with systemic mastocytosis. The aim of the present report is to demonstrate that due to pathological activation and irritability of mast cells, special features in the diagnostic investigation and therapy of urolithiasis have to be considered in patients with systemic mastocytosis. The clinical presentation, diagnostic investigation and therapeutic procedure of urolithiasis in a patient with systemic mastocytosis are described. Urolithiasis may be a significant complication of systemic mastocytosis. Non-contrast CT is the main tool for diagnosing urolithiasis after a detailed history and clinical exam. Patients with systemic mastocytosis should receive a premedication composed of a glucocorticoid and H(1)- and H(2)-histamine receptor antagonists. An increased vulnerability of mucosal tissues is expected in patients with systemic mastocytosis that may limit the options of operative and postoperative therapy. Opioids should be used cautiously for analgesia in patients with systemic mastocytosis. PMID:19513706

  10. Note: Folded optical system for narrow forward looking probe

    SciTech Connect

    Hou, Hsuan-Chao; Hah, Dooyoung; Kim, Jeonghwan; Feldman, M.

    2014-02-15

    An optical system is described in which a laser beam makes three passes through a single graded index lens, forming a focus along the optic axis. It has important applications in endoscopic probes, where the forward looking characteristic permits the avoidance of obstacles and the narrow structure makes it minimally invasive.

  11. Design study for electronic system for Jupiter Orbit Probe (JOP)

    NASA Technical Reports Server (NTRS)

    Elero, B. P., Jr.; Carignan, G. R.

    1978-01-01

    The conceptual design of the Jupiter probe spectrometer is presented. Block and circuit diagrams are presented along with tabulated parts lists. Problem areas are considered to be (1) the schedule, (2) weight limitations for the electronic systems, and (3) radiation hardness of the electronic devices.

  12. Yet another plasma diagnostic with He-like triplet: Probing energetic electrons behind SNR shocks with ASTRO-H SXS

    NASA Astrophysics Data System (ADS)

    Sawada, Makoto; Kaastra, Jelle

    We present a new X-ray line diagnostic to probe energetic electrons behind SNR shocks. SNR shocks are believed to be acceleration sites of the Galactic cosmic rays up to knee energy. In the early stage of acceleration, particles must have sufficient energies to cross the shock to enter diffusive shock acceleration. This requires supra-thermal energies for electrons, however, we currently do not know how electrons depart from the thermal pool to attain such energies. Hence observational constraints on the amount and energy distribution of supra-thermal electrons are awaited. Here we propose a new X-ray line diagnostic using the He-like triplet to detect and characterise the energy distribution of supra-thermal electrons. We simulate X-ray spectra of SNR plasma interacting with energetic electrons and find that the forbidden line of the He-like triplet is enhanced via inner-shell ionisation process of Li-like ions. Such an effect can be precisely measured by high-resolution spectroscopy with the coming ASTRO-H SXS instrument.

  13. STATUS OF VARIOUS SNS DIAGNOSTIC SYSTEMS

    SciTech Connect

    Blokland, Willem; Purcell, J David; Patton, Jeff; Pelaia II, Tom; Sundaram, Madhan; Pennisi, Terry R

    2007-01-01

    The Spallation Neutron Source (SNS) accelerator systems are ramping up to deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. Enhancements or additions have been made to several instrument systems to support the ramp up in intensity, improve reliability, and/or add functionality. The Beam Current Monitors now support increased rep rates, the Harp system now includes charge density calculations for the target, and a new system has been created to collect data for the beam accounting and present the data over the web and to the operator consoles. The majority of the SNS beam instruments are PC-based and their configuration files are now managed through the Oracle relational database. A new version for the wire scanner software was developed to add features to correlate the scan with beam loss, parking in the beam, and measuring the longitudinal beam current. This software is currently being tested. This paper also includes data from the selected instruments.

  14. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames.

    PubMed

    Vargas, Alex M; Gülder, Ömer L

    2016-05-01

    Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminar diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame. PMID:27250464

  15. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames

    NASA Astrophysics Data System (ADS)

    Vargas, Alex M.; Gülder, Ömer L.

    2016-05-01

    Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminar diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame.

  16. A large distributed digital camera system for accelerator beam diagnostics

    NASA Astrophysics Data System (ADS)

    Catani, L.; Cianchi, A.; Di Pirro, G.; Honkavaara, K.

    2005-07-01

    Optical diagnostics, providing images of accelerated particle beams using radiation emitted by particles impinging a radiator, typically a fluorescent screen, has been extensively used, especially on electron linacs, since the 1970's. Higher intensity beams available in the last decade allow extending the use of beam imaging techniques to perform precise measurements of important beam parameters such as emittance, energy, and energy spread using optical transition radiation (OTR). OTR-based diagnostics systems are extensively used on the superconducting TESLA Test Facility (TTF) linac driving the vacuum ultraviolet free electron laser (VUV-FEL) at the Deutsches Elektronen-Synchrotron facility. Up to 30 optical diagnostic stations have been installed at various positions along the 250-m-long linac, each equipped with a high-performance digital camera. This paper describes the new approach to the design of the hardware and software setups required by the complex topology of such a distributed camera system.

  17. A specialized framework for Medical Diagnostic Knowledge Based Systems.

    PubMed Central

    Lanzola, G.; Stefanelli, M.

    1991-01-01

    To have a knowledge based system (KBS) exhibiting an intelligent behavior, it must be endowed even with knowledge able to represent the expert's strategies, other than with domain knowledge. The elicitation task is inherently difficult for strategic knowledge, because strategy is often tacit, and, even when it has been made explicit, it is not an easy task to describe it in a form that may be directly translated and implemented into a program. This paper describes a Specialized Framework for Medical Diagnostic Knowledge Based Systems able to help an expert in the process of building KBSs in a medical domain. The framework is based on an epistemological model of diagnostic reasoning which has proved to be helpful in describing the diagnostic process in terms of the tasks by which it is composed of. PMID:1807566

  18. Improved detection of Tritrichomonas foetus in bovine diagnostic specimens using a novel probe-based real time PCR assay.

    PubMed

    McMillen, Lyle; Lew, Ala E

    2006-11-01

    A Tritrichomonas foetus-specific 5' Taq nuclease assay using a 3' minor groove binder-DNA probe (TaqMan MGB) targeting conserved regions of the internal transcribed spacer-1 (ITS-1) was developed and compared to established diagnostic procedures. Specificity of the assay was evaluated using bovine venereal microflora and a range of related trichomonad species. Assay sensitivity was evaluated with log(10) dilutions of known numbers of cells, and compared to that for microscopy following culture (InPouch TF test kit) and the conventional TFR3-TFR4 PCR assay. The 5' Taq nuclease assay detected a single cell per assay from smegma or mucus which was 2500-fold or 250-fold more sensitive than microscopy following selective culture from smegma or mucus respectively, and 500-fold more sensitive than culture followed by conventional PCR assay. The sensitivity of the conventional PCR assay was comparable to the 5' Taq nuclease assay when testing purified DNA extracted from clinical specimens, whereas the 5' Taq nuclease assay sensitivity improved using crude cell lysates, which were not suitable as template for the conventional PCR assay. Urine was evaluated as a diagnostic specimen providing improved and equivalent levels of T. foetus detection in spiked urine by both microscopy following culture and direct 5' Taq nuclease detection, respectively, compared with smegma and mucus, however inconclusive results were obtained with urine samples from the field study. Diagnostic specimens (n=159) were collected from herds with culture positive animals and of the 14 animals positive by 5' Taq nuclease assay, 3 were confirmed by selective culture/microscopy detection (Fisher's exact test P<0.001). The 5' Taq nuclease assay described here demonstrated superior sensitivity to traditional culture/microscopy and offers advantages over the application of conventional PCR for the detection of T. foetus in clinical samples. PMID:16860481

  19. Automatic system for corneal ulcer diagnostic: II

    NASA Astrophysics Data System (ADS)

    Ventura, Liliane; Chiaradia, Caio; Faria de Sousa, Sidney J.

    1998-06-01

    Corneal Ulcer is a deepithelization of the cornea and it is a very common disease in agricultural countries. The clinician most used parameter in order to identify a favorable ulcer evolution is the regress of the affected area. However, this kind of evaluation is subjective, once just the horizontal and vertical axes are measured based on a graduated scale and the affected area is estimated. Also, the registration of the disease is made by photographs. In order to overcome the subjectiveness and to register the images in a more accessible way (hard disks, floppy disks, etc.), we have developed an automatic system in order to evaluate the affected area (the ulcer). An optical system is implemented in a Slit Lamp (SL) and connected to a CCD detector. The image is displayed in PC monitor by a commercial frame grabber and a dedicated software for determining the area of the ulcer (precision of 20 mm) has been developed.

  20. Dendritic Phosphorescent Probes for Oxygen Imaging in Biological Systems

    PubMed Central

    Lebedev, Artem Y.; Cheprakov, Andrei V.; Sakadžić, Sava; Boas, David A.; Wilson, David F.; Vinogradov, Sergei A.

    2009-01-01

    Oxygen levels in biological systems can be measured by the phosphorescence quenching method using probes with controllable quenching parameters and defined biodistributions. We describe a general approach to the construction of phosphorescent nanosensors with tunable spectral characteristics, variable degrees of quenching, and a high selectivity for oxygen. The probes are based on bright phosphorescent Pt and Pd complexes of porphyrins and symmetrically π-extended porphyrins (tetrabenzoporphyrins and tetranaphthoporphyrins). π-Extension of the core macrocycle allows tuning of the spectral parameters of the probes in order to meet the requirements of a particular imaging application (e.g., oxygen tomography versus planar microscopic imaging). Metalloporphyrins are encapsulated into poly(arylglycine) dendrimers, which fold in aqueous environments and create diffusion barriers for oxygen, making it possible to regulate the sensitivity and the dynamic range of the method. The periphery of the dendrimers is modified with poly(ethylene glycol) residues, which enhance the probe’s solubility, diminish toxicity, and help prevent interactions of the probes with the biological environment. The probe’s parameters were measured under physiological conditions and shown to be unaffected by the presence of biomacromolecules. The performance of the probes was demonstrated in applications, including in vivo microscopy of vascular pO2 in the rat brain. PMID:20072726

  1. Comparison of emerging diagnostic tools for large commercial HVAC systems

    SciTech Connect

    Friedman, Hannah; Piette, Mary Ann

    2001-04-06

    Diagnostic software tools for large commercial buildings are being developed to help detect and diagnose energy and other performance problems with building operations. These software applications utilize energy management control system (EMCS) trend log data. Due to the recent development of diagnostic tools, there has been little detailed comparison among the tools and a limited awareness of tool capabilities by potential users. Today, these diagnostic tools focus mainly on air handlers, but the opportunity exists for broadening the scope of the tools to include all major parts of heating, cooling, and ventilation systems in more detail. This paper compares several tools in the following areas: (1) Scope, intent, and background; (2) Data acquisition, pre-processing, and management; (3) Problems detected; (4) Raw data visualization; (5) Manual and automated diagnostic methods and (6) Level of automation. This comparison is intended to provide practitioners and researchers with a picture of the current state of diagnostic tools. There is tremendous potential for these tools to help improve commercial building energy and non-energy performance.

  2. Alignment and diagnostics on the National Ignition Facility laser system

    SciTech Connect

    Bliss, E S; Boege, S J; Boyd, B; Demaret, R D; Feldman, M; Gates, A J; Holdener, F R; Hollis, J; Knopp, C F; McCarville, T J; Miller-Kamm; Rivera, W E; Salmon, J T; Severyn, J R; Thompson, C E; V J; Wang, D Y; Zacharias, R A

    1999-07-01

    The NIF laser system will be capable of delivering 1.8MJ of 351nm energy in 192 beams. Diagnostics instruments must measure beam energy, power vs. time, wavefront quality, and beam intensity profile to characterize laser performance. Alignment and beam diagnostics are also used to set the laser up for the high power shots and to isolate problems when performance is less than expected. Alignment and beam diagnostics are multiplexed to keep the costs under control. At the front-end the beam is aligned and diagnosed in an input sensor package. The output 1053nm beam is sampled by collecting a 0.1% reflection from an output beam sampler and directing it to the output sensor package (OSP). The OSP also gets samples from final focus lens reflection and samples from the transport spatial filter pinhole plane. The output 351nm energy is measured by a calorimeter collecting the signal from an off-axis diffractive beam-sampler. Detailed information on the focused beam in the high-energy target focal plane region is gathered in the precision diagnostics. This paper describes the design of the alignment and diagnostics on the NIF laser system.

  3. Label-free capacitive diagnostics: exploiting local redox probe state occupancy.

    PubMed

    Lehr, Joshua; Hobnouse, George C; Fernandes, Flávio C Bedatty; Bueno, Paulo R; Davis, Jason J

    2014-03-01

    An electrode surface confined redox group contributes to a substantial potential-dependent interfacial charging that can be sensitively probed and frequency-resolved by impedance-derived capacitance spectroscopy. In utilizing the sensitivity of this charging fingerprint to redox group environment, one can seek to generate derived sensory configurations. Exemplified here through the generation of mixed molecular films comprising ferrocene and antibody receptors to two clinically important targets, the label-free methodology is able to report on human prostatic acid phosphatase (PAP), a tumor marker, with a limit of detection of 11 pM and C-reactive protein with a limit of detection of 28 pM. Both assays exhibit linear ranges encompassing those of clinical value. PMID:24491045

  4. A method for knowledge acquisition in diagnostic expert system.

    PubMed

    Li, Weishi; Li, Aiping; Li, Shudong

    2015-01-01

    Knowledge acquisition plays very important role in the diagnostic expert system. It usually takes a long period to acquire disease knowledge using the traditional methods. To solve this problem, this paper describes relations between rough set theory and rule-based description of diseases, which corresponds to the process of knowledge acquisition of diagnostic expert system. Then the exclusive rules, inclusive rules and disease images of disease are built based on the PDES diagnosis model, and the definition of probability rule is put forward. At last, the paper presents the rule-based automated induction reasoning method, including exhaustive search, post-processing procedure, estimation for statistic test and the bootstrap and resampling methods. We also introduce automated induction of the rule-based description, which is used in our diseases diagnostic expert system. The experimental results not only show that rough set theory gives a very suitable framework to represent processes of uncertain knowledge extraction, but also that this method induces diagnostic rules correctly. This method can act as the assistant tool for development of diagnosis expert system, and has an extensive application in intelligent information systems. PMID:26410329

  5. Development of the Diagnostic Expert System for Tea Processing

    NASA Astrophysics Data System (ADS)

    Yoshitomi, Hitoshi; Yamaguchi, Yuichi

    A diagnostic expert system for tea processing which can presume the cause of the defect of the processed tea was developed to contribute to the improvement of tea processing. This system that consists of some programs can be used through the Internet. The inference engine, the core of the system adopts production system which is well used on artificial intelligence, and is coded by Prolog as the artificial intelligence oriented language. At present, 176 rules for inference have been registered on this system. The system will be able to presume better if more rules are added to the system.

  6. Spacelab Life Sciences-1 electrical diagnostic expert system

    NASA Technical Reports Server (NTRS)

    Kao, C. Y.; Morris, W. S.

    1989-01-01

    The Spacelab Life Sciences-1 (SLS-1) Electrical Diagnostic (SLED) expert system is a continuous, real time knowledge-based system to monitor and diagnose electrical system problems in the Spacelab. After fault isolation, the SLED system provides corrective procedures and advice to the ground-based console operator. The SLED system updates its knowledge about the status of Spacelab every 3 seconds. The system supports multiprocessing of malfunctions and allows multiple failures to be handled simultaneously. Information which is readily available via a mouse click includes: general information about the system and each component, the electrical schematics, the recovery procedures of each malfunction, and an explanation of the diagnosis.

  7. Spacelab Life Sciences-1 electrical diagnostics expert system

    NASA Technical Reports Server (NTRS)

    Kao, Cheng Y.; Morris, William S.

    1989-01-01

    The Spacelab Life Sciences-1 (SLS-1) Electrical Diagnostic (SLED) expert system is a continuous real time knowledge-based system to monitor and diagnose electrical system problems in the Spacelab. After fault isolation, the SLED system provides corrective procedures and advice to the ground-based console operator. The SLED system updates its knowledge about the status of Spacelab every 3 seconds. The system supports multiprocessing of malfunctions and allows multiple failures to be handled simultaneously. Information which is readily available via a mouse click includes: general information about the system and each component, the electrical schematics, the recovery procedures of each malfunction, and an explanation of the diagnosis.

  8. Method and system for diagnostics of apparatus

    NASA Technical Reports Server (NTRS)

    Gorinevsky, Dimitry (Inventor)

    2012-01-01

    Proposed is a method, implemented in software, for estimating fault state of an apparatus outfitted with sensors. At each execution period the method processes sensor data from the apparatus to obtain a set of parity parameters, which are further used for estimating fault state. The estimation method formulates a convex optimization problem for each fault hypothesis and employs a convex solver to compute fault parameter estimates and fault likelihoods for each fault hypothesis. The highest likelihoods and corresponding parameter estimates are transmitted to a display device or an automated decision and control system. The obtained accurate estimate of fault state can be used to improve safety, performance, or maintenance processes for the apparatus.

  9. [Diagnostic imaging of central nervous system vasculitis].

    PubMed

    Yokota, Hajime; Yamada, Kei

    2015-03-01

    Vasculitis involving the central nervous system presents with infarction and hemorrhage, which are often nonspecific findings. Laboratory examinations are essential for diagnosis of vasculitis in addition to comprehensive and systematic review of the clinical course. Although most findings tend to be nonspecific, enhancement and thickening of the vascular wall indicate vasculitis. Visualization of the vascular wall requires selection of the appropriate imaging modality and mode of image acquisition. Contrast-enhanced CT, MRI, and FDG-PET are useful for visualizing large vessel vasculitis, while CT, MRI, and angiography are effective for medium vessel vasculitis. The use of ultrasound is limited to evaluating vessels on the body surface. Although relatively thick vessels can be demonstrated by angiography, complete survey of small vessels is difficult. Here, we summarize the characteristics of each imaging modality and imaging findings of typical vasculitides-Takayasu arteritis, giant cell arteritis, ANCA-associated vasculitis, Behçet's disease, primary angiitis of the CNS, and vasculitis associated with systemic disease. Differential diagnoses are also shown, including infective endocarditis, tuberculous meningitis, Ehlers-Danlos syndrome, and reversible cerebral vasoconstriction syndrome. PMID:25846439

  10. Probing peripheral and central cholinergic system responses.

    PubMed Central

    Naranjo, C A; Fourie, J; Herrmann, N; Lanctôt, K L; Birt, C; Yau, K K

    2000-01-01

    OBJECTIVE: The pharmacological response to drugs that act on the cholinergic system of the iris has been used to predict deficits in central cholinergic functioning due to diseases such as Alzheimer's disease, yet correlations between central and peripheral responses have not been properly studied. This study assessed the effect of normal aging on (1) the tropicamide-induced increase in pupil diameter, and (2) the reversal of this effect with pilocarpine. Scopolamine was used as a positive control to detect age-dependent changes in central cholinergic functioning in the elderly. DESIGN: Randomized double-blind controlled trial. PARTICIPANTS: Ten healthy elderly (mean age 70) and 9 young (mean age 33) volunteers. INTERVENTIONS: Pupil diameter was monitored using a computerized infrared pupillometer over 4 hours. The study involved 4 sessions. In 1 session, tropicamide (20 microL, 0.01%) was administered to one eye and placebo to the other. In another session, tropicamide (20 microL, 0.01%) was administered to both eyes, followed 23 minutes later by the application of pilocarpine (20 microL, 0.1%) to one eye and placebo to the other. All eye drops were given in a randomized order. In 2 separate sessions, a single dose of scopolamine (0.5 mg, intravenously) or placebo was administered, and the effects on word recall were measured using the Buschke Selective Reminding Test over 2 hours. OUTCOME MEASURES: Pupil size at time points after administration of tropicamide and pilocarpine; scopolamine-induced impairment in word recall. RESULTS: There was no significant difference between elderly and young volunteers in pupillary response to tropicamide at any time point (p > 0.05). The elderly group had a significantly greater pilocarpine-induced net decrease in pupil size 85, 125, 165 and 215 minutes after administration, compared with the young group (p < 0.05). Compared with the young group, the elderly group had greater scopolamine-induced impairment in word recall 60, 90