Science.gov

Sample records for diagnostic signature development

  1. Electrical signature analysis (ESA) developments at the Oak Ridge Diagnostics Applied Research Center

    SciTech Connect

    Haynes, H.D.

    1995-07-01

    Since 1985, researchers at the Oak Ridge National Laboratory (ORNL) have developed and patented several novel signal conditioning and signature analysis methods that have exploited the intrinsic abilities of conventional electric motors and generators to act as transducers. By using simple nonintrusive sensors such as clamp-on current and voltage probes, these new diagnostic techniques provide an improved means of detecting small time-dependent load and speed variations generated anywhere within an electromechanical system and converting them into revealing signatures that can be used to detect equipment degradation and incipient failures. These developments have been grouped under the general name of electrical signature analysis (ESA) and together provide a breakthrough in the ability to detect, analyze, and correct unwanted changes in process conditions or the presence of abnormalities in electrical and electromechanical equipment. Typical diagnostic information provided by ESA is comparable to that provided by conventional vibration analysis in that both time waveform and frequency spectrum signatures may be produced. The primary benefit of ESA is that an extensive range of diagnostic information can be obtained from a single transducer that may be installed several hundred feet or more from the monitored device on its electrical lines supplying input power (e.g., to a motor) or carrying output power (e.g., from a generator); thus, ESA is truly remote and nonintrusive.

  2. Developing composite signatures

    NASA Astrophysics Data System (ADS)

    Hawley, Chadwick T.; Carpenter, Tom; Cappelaere, Patrice G.; Frye, Stu; Lemoigne-Stewart, Jacqueline J.; Mandle, Dan; Montgomery, Sarah; Williams-Bess, Autumn

    2011-06-01

    A composite signature is a group of signatures that are related in such a way to more completely or further define a target or operational endeavor at a higher fidelity. This paper explores the merits of using composite signatures, in lieu of waiting for opportunities for the more elusive diagnostic signatures, to satisfy key essential elements of information Keywords: signature, composite signature, civil disaster (EEI) associated with civil disaster-related problems. It discusses efforts to refine composite signature development methodology and quantify the relative value of composite vs. diagnostic signatures. The objectives are to: 1) investigate and develop innovative composite signatures associated with civil disasters, including physical, chemical and pattern/behavioral; 2) explore the feasibility of collecting representative composite signatures using current and emerging intelligence, surveillance, and reconnaissance (ISR) collection architectures leveraging civilian and commercial architectures; and 3) collaborate extensively with scientists and engineers from U.S. government organizations and laboratories, the defense industry, and academic institutions.

  3. Draft versus finished sequence data for DNA and protein diagnostic signature development

    SciTech Connect

    Gardner, S N; Lam, M W; Smith, J R; Torres, C L; Slezak, T R

    2004-10-29

    Sequencing pathogen genomes is costly, demanding careful allocation of limited sequencing resources. We built a computational Sequencing Analysis Pipeline (SAP) to guide decisions regarding the amount of genomic sequencing necessary to develop high-quality diagnostic DNA and protein signatures. SAP uses simulations to estimate the number of target genomes and close phylogenetic relatives (near neighbors, or NNs) to sequence. We use SAP to assess whether draft data is sufficient or finished sequencing is required using Marburg and variola virus sequences. Simulations indicate that intermediate to high quality draft with error rates of 10{sup -3}-10{sup -5} ({approx} 8x coverage) of target organisms is suitable for DNA signature prediction. Low quality draft with error rates of {approx} 1% (3x to 6x coverage) of target isolates is inadequate for DNA signature prediction, although low quality draft of NNs is sufficient, as long as the target genomes are of high quality. For protein signature prediction, sequencing errors in target genomes substantially reduce the detection of amino acid sequence conservation, even if the draft is of high quality. In summary, high quality draft of target and low quality draft of NNs appears to be a cost-effective investment for DNA signature prediction, but may lead to underestimation of predicted protein signatures.

  4. Diagnostic marker signature for esophageal cancer from transcriptome analysis.

    PubMed

    Warnecke-Eberz, Ute; Metzger, Ralf; Hölscher, Arnulf H; Drebber, Uta; Bollschweiler, Elfriede

    2016-05-01

    Esophageal cancer is often diagnosed at an advanced stage. Diagnostic markers are needed for achieving a cure in esophageal cancer detecting and treating tumor cells earlier. In patients with locally advanced squamous cell carcinoma of the esophagus (ESCC), we profiled the gene expression of ESCC compared to corresponding normal biopsies for diagnostic markers by genome microarrays. Profiling of gene expression identified 4844 genes differentially expressed, 2122 upregulated and 2722 downregulated in ESCC. Twenty-three overexpressed candidates with best scores from significance analysis have been selected for further analysis by TaqMan low-density array-technique using a validation cohort of 40 patients. The verification rate was 100 % for ESCC. Twenty-two markers were additionally overexpressed in adenocarcinoma of the esophagus (EAC). The markers significantly overexpressed already in earlier tumor stages (pT1-2) of both histological subtypes (n = 19) have been clustered in a "diagnostic signature": PLA2G7, PRAME, MMP1, MMP3, MMP12, LIlRB2, TREM2, CHST2, IGFBP2, IGFBP7, KCNJ8, EMILIN2, CTHRC1, EMR2, WDR72, LPCAT1, COL4A2, CCL4, and SNX10. The marker signature will be translated to clinical practice to prove its diagnostic impact. This diagnostic signature may contribute to the earlier detection of tumor cells, with the aim to complement clinical techniques resulting in the development of better detection of concepts of esophageal cancer for earlier therapy and more favorite prognosis. PMID:26631031

  5. Failure Modes and Diagnostic Signatures Working Group - Ignition Diagnostics Requirements Update

    SciTech Connect

    Cerjan, C; Haan, S; Hatchett, S; Koch, J

    2007-03-26

    We have performed an initial assessment of the sensitivity of various expected ignition diagnostic signatures to ignition failure modes using one and two-dimensional hydrodynamics simulations and post-processed simulated diagnostic output. As a result of this assessment, we recommend several changes to the current requirements for the ignition diagnostic suite. These recommendations are summarized in Table 1.

  6. Developments in Signature Process Control

    NASA Astrophysics Data System (ADS)

    Keller, L. B.; Dominski, Marty

    1993-01-01

    Developments in the adaptive process control technique known as Signature Process Control for Advanced Composites (SPCC) are described. This computer control method for autoclave processing of composites was used to develop an optimum cure cycle for AFR 700B polyamide and for an experimental poly-isoimide. An improved process cycle was developed for Avimid N polyamide. The potential for extending the SPCC technique to pre-preg quality control, press modeling, pultrusion and RTM is briefly discussed.

  7. Diagnostic Development on NSTX

    SciTech Connect

    A.L. Roquemore; D. Johnson; R. Kaita; et al

    1999-12-16

    Diagnostics are described which are currently installed or under active development for the newly commissioned NSTX device. The low aspect ratio (R/a less than or equal to 1.3) and low toroidal field (0.1-0.3T) used in this device dictate adaptations in many standard diagnostic techniques. Technical summaries of each diagnostic are given, and adaptations, where significant, are highlighted.

  8. Approaches to uncovering cancer diagnostic and prognostic molecular signatures

    PubMed Central

    Hong, Shengjun; Huang, Yi; Cao, Yaqiang; Chen, Xingwei; Han, Jing-Dong J

    2014-01-01

    The recent rapid development of high-throughput technology enables the study of molecular signatures for cancer diagnosis and prognosis at multiple levels, from genomic and epigenomic to transcriptomic. These unbiased large-scale scans provide important insights into the detection of cancer-related signatures. In addition to single-layer signatures, such as gene expression and somatic mutations, integrating data from multiple heterogeneous platforms using a systematic approach has been proven to be particularly effective for the identification of classification markers. This approach not only helps to uncover essential driver genes and pathways in the cancer network that are responsible for the mechanisms of cancer development, but will also lead us closer to the ultimate goal of personalized cancer therapy. PMID:27308330

  9. Development of Companion Diagnostics

    PubMed Central

    Mankoff, David A.; Edmonds, Christine E.; Farwell, Michael D.; Pryma, Daniel A.

    2016-01-01

    The goal of individualized and targeted treatment and precision medicine requires the assessment of potential therapeutic targets to direct treatment selection. The biomarkers used to direct precision medicine, often termed companion diagnostics, for highly targeted drugs have thus far been almost entirely based on in vitro assay of biopsy material. Molecular imaging companion diagnostics offer a number of features complementary to those from in vitro assay, including the ability to measure the heterogeneity of each patient’s cancer across the entire disease burden and to measure early changes in response to treatment. We discuss the use of molecular imaging methods as companion diagnostics for cancer therapy with the goal of predicting response to targeted therapy and measuring early (pharmacodynamic) response as an indication of whether the treatment has “hit” the target. We also discuss considerations for probe development for molecular imaging companion diagnostics, including both small-molecule probes and larger molecules such as labeled antibodies and related constructs. We then describe two examples where both predictive and pharmacodynamic molecular imaging markers have been tested in humans: endocrine therapy for breast cancer and human epidermal growth factor receptor type 2–targeted therapy. The review closes with a summary of the items needed to move molecular imaging companion diagnostics from early studies into multicenter trials and into the clinic. PMID:26687857

  10. Diagnostics development plan for ZR.

    SciTech Connect

    Hanson, David Lester

    2003-09-01

    The Z Refurbishment (ZR) Project is a program to upgrade the Z machine at SNL with modern durable pulsed power technology, providing additional shot capacity and improved reliability as well as advanced capabilities for both pulsed x-ray production and high pressure generation. The development of enhanced diagnostic capabilities is an essential requirement for ZR to meet critical mission needs. This report presents a comprehensive plan for diagnostic instrument and infrastructure development for the first few years of ZR operation. The focus of the plan is on: (1) developing diagnostic instruments with high spatial and temporal resolution, capable of low noise operation and survival in the severe EMP, bremsstrahlung, and blast environments of ZR; and (2) providing diagnostic infrastructure improvements, including reduced diagnostic trigger signal jitter, more and flexible diagnostic line-of-sight access, and the capability for efficient exchange of diagnostics with other laboratories. This diagnostic plan is the first step in an extended process to provide enhanced diagnostic capabilities for ZR to meet the diverse programmatic needs of a broad range of defense, energy, and general science programs of an international user community into the next decade.

  11. Mass spectrometric signatures of the blood plasma metabolome for disease diagnostics

    PubMed Central

    LOKHOV, PETR G.; BALASHOVA, ELENA E.; VOSKRESENSKAYA, ANNA A.; TRIFONOVA, OXANA P.; MASLOV, DMITRY L.; ARCHAKOV, ALEXANDER I.

    2016-01-01

    In metabolomics, a large number of small molecules can be detected in a single run. However, metabolomic data do not include the absolute concentrations of each metabolite. Generally, mass spectrometry analyses provide metabolite concentrations that are derived from mass peak intensities, and the peak intensities are strictly dependent on the type of mass spectrometer used, as well as the technical characteristics, options and protocols applied. To convert mass peak intensities to actual concentrations, calibration curves have to be generated for each metabolite, and this represents a significant challenge depending on the number of metabolites that are detected and involved in metabolome-based diagnostics. To overcome this limitation, and to facilitate the development of diagnostic tests based on metabolomics, mass peak intensities may be expressed in quintiles. The present study demonstrates the advantage of this approach. The examples of diagnostic signatures, which were designed in accordance to this approach, are provided for lung and prostate cancer (leading causes of mortality due to cancer in developed countries) and impaired glucose tolerance (which precedes type 2 diabetes, the most common endocrinology disease worldwide). PMID:26870348

  12. HF-Doppler diagnostics of ionospheric signatures of neutral and ionized components coupling

    NASA Astrophysics Data System (ADS)

    Depuev, V.

    It is considered that ionospheric wave-like disturbances are signature of the passage of atmospheric waves propagating from below. HF-Doppler diagnostics of mid-latitude F region electron density irregularities was carried out for determination of temporal characteristics of such disturbances and their helio-, geophysical conditions dependences.

  13. Development of Asset Fault Signatures for Prognostic and Health Management in the Nuclear Industry

    SciTech Connect

    Vivek Agarwal; Nancy J. Lybeck; Randall Bickford; Richard Rusaw

    2014-06-01

    Proactive online monitoring in the nuclear industry is being explored using the Electric Power Research Institute’s Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software. The FW-PHM Suite is a set of web-based diagnostic and prognostic tools and databases that serves as an integrated health monitoring architecture. The FW-PHM Suite has four main modules: Diagnostic Advisor, Asset Fault Signature (AFS) Database, Remaining Useful Life Advisor, and Remaining Useful Life Database. This paper focuses on development of asset fault signatures to assess the health status of generator step-up generators and emergency diesel generators in nuclear power plants. Asset fault signatures describe the distinctive features based on technical examinations that can be used to detect a specific fault type. At the most basic level, fault signatures are comprised of an asset type, a fault type, and a set of one or more fault features (symptoms) that are indicative of the specified fault. The AFS Database is populated with asset fault signatures via a content development exercise that is based on the results of intensive technical research and on the knowledge and experience of technical experts. The developed fault signatures capture this knowledge and implement it in a standardized approach, thereby streamlining the diagnostic and prognostic process. This will support the automation of proactive online monitoring techniques in nuclear power plants to diagnose incipient faults, perform proactive maintenance, and estimate the remaining useful life of assets.

  14. Component-Level Electronic-Assembly Repair (CLEAR) Spacecraft Circuit Diagnostics by Analog and Complex Signature Analysis

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Wade, Raymond P.; Izadnegahdar, Alain

    2011-01-01

    The Component-Level Electronic-Assembly Repair (CLEAR) project at the NASA Glenn Research Center is aimed at developing technologies that will enable space-flight crews to perform in situ component-level repair of electronics on Moon and Mars outposts, where there is no existing infrastructure for logistics spares. These technologies must provide effective repair capabilities yet meet the payload and operational constraints of space facilities. Effective repair depends on a diagnostic capability that is versatile but easy to use by crew members that have limited training in electronics. CLEAR studied two techniques that involve extensive precharacterization of "known good" circuits to produce graphical signatures that provide an easy-to-use comparison method to quickly identify faulty components. Analog Signature Analysis (ASA) allows relatively rapid diagnostics of complex electronics by technicians with limited experience. Because of frequency limits and the growing dependence on broadband technologies, ASA must be augmented with other capabilities. To meet this challenge while preserving ease of use, CLEAR proposed an alternative called Complex Signature Analysis (CSA). Tests of ASA and CSA were used to compare capabilities and to determine if the techniques provided an overlapping or complementary capability. The results showed that the methods are complementary.

  15. Evaluation of Signature Erosion in Ebola Virus Due to Genomic Drift and Its Impact on the Performance of Diagnostic Assays.

    PubMed

    Sozhamannan, Shanmuga; Holland, Mitchell Y; Hall, Adrienne T; Negrón, Daniel A; Ivancich, Mychal; Koehler, Jeffrey W; Minogue, Timothy D; Campbell, Catherine E; Berger, Walter J; Christopher, George W; Goodwin, Bruce G; Smith, Michael A

    2015-06-01

    Genome sequence analyses of the 2014 Ebola Virus (EBOV) isolates revealed a potential problem with the diagnostic assays currently in use; i.e., drifting genomic profiles of the virus may affect the sensitivity or even produce false-negative results. We evaluated signature erosion in ebolavirus molecular assays using an in silico approach and found frequent potential false-negative and false-positive results. We further empirically evaluated many EBOV assays, under real time PCR conditions using EBOV Kikwit (1995) and Makona (2014) RNA templates. These results revealed differences in performance between assays but were comparable between the old and new EBOV templates. Using a whole genome approach and a novel algorithm, termed BioVelocity, we identified new signatures that are unique to each of EBOV, Sudan virus (SUDV), and Reston virus (RESTV). Interestingly, many of the current assay signatures do not fall within these regions, indicating a potential drawback in the past assay design strategies. The new signatures identified in this study may be evaluated with real-time reverse transcription PCR (rRT-PCR) assay development and validation. In addition, we discuss regulatory implications and timely availability to impact a rapidly evolving outbreak using existing but perhaps less than optimal assays versus redesign these assays for addressing genomic changes. PMID:26090727

  16. Evaluation of Signature Erosion in Ebola Virus Due to Genomic Drift and Its Impact on the Performance of Diagnostic Assays

    PubMed Central

    Sozhamannan, Shanmuga; Holland, Mitchell Y.; Hall, Adrienne T.; Negrón, Daniel A.; Ivancich, Mychal; Koehler, Jeffrey W.; Minogue, Timothy D.; Campbell, Catherine E.; Berger, Walter J.; Christopher, George W.; Goodwin, Bruce G.; Smith, Michael A.

    2015-01-01

    Genome sequence analyses of the 2014 Ebola Virus (EBOV) isolates revealed a potential problem with the diagnostic assays currently in use; i.e., drifting genomic profiles of the virus may affect the sensitivity or even produce false-negative results. We evaluated signature erosion in ebolavirus molecular assays using an in silico approach and found frequent potential false-negative and false-positive results. We further empirically evaluated many EBOV assays, under real time PCR conditions using EBOV Kikwit (1995) and Makona (2014) RNA templates. These results revealed differences in performance between assays but were comparable between the old and new EBOV templates. Using a whole genome approach and a novel algorithm, termed BioVelocity, we identified new signatures that are unique to each of EBOV, Sudan virus (SUDV), and Reston virus (RESTV). Interestingly, many of the current assay signatures do not fall within these regions, indicating a potential drawback in the past assay design strategies. The new signatures identified in this study may be evaluated with real-time reverse transcription PCR (rRT-PCR) assay development and validation. In addition, we discuss regulatory implications and timely availability to impact a rapidly evolving outbreak using existing but perhaps less than optimal assays versus redesign these assays for addressing genomic changes. PMID:26090727

  17. Lipidome signatures in early bovine embryo development.

    PubMed

    Sudano, Mateus J; Rascado, Tatiana D S; Tata, Alessandra; Belaz, Katia R A; Santos, Vanessa G; Valente, Roniele S; Mesquita, Fernando S; Ferreira, Christina R; Araújo, João P; Eberlin, Marcos N; Landim-Alvarenga, Fernanda D C

    2016-07-15

    Mammalian preimplantation embryonic development is a complex, conserved, and well-orchestrated process involving dynamic molecular and structural changes. Understanding membrane lipid profile fluctuation during this crucial period is fundamental to address mechanisms governing embryogenesis. Therefore, the aim of the present work was to perform a comprehensive assessment of stage-specific lipid profiles during early bovine embryonic development and associate with the mRNA abundance of lipid metabolism-related genes (ACSL3, ELOVL5, and ELOVL6) and with the amount of cytoplasmic lipid droplets. Immature oocytes were recovered from slaughterhouse-derived ovaries, two-cell embryos, and eight- to 16-cell embryos, morula, and blastocysts that were in vitro produced under different environmental conditions. Lipid droplets content and mRNA transcript levels for ACSL3, ELOVL5, and ELOVL6, monitored by lipid staining and quantitative polymerase chain reaction, respectively, increased at morula followed by a decrease at blastocyst stage. Relative mRNA abundance changes of ACSL3 were closely related to cytoplasmic lipid droplet accumulation. Characteristic dynamic changes of phospholipid profiles were observed during early embryo development and related to unsaturation level, acyl chain length, and class composition. ELOVL5 and ELOVL6 mRNA levels were suggestive of overexpression of membrane phospholipids containing elongated fatty acids with 16, 18, and 20 carbons. In addition, putative biomarkers of key events of embryogenesis, embryo lipid accumulation, and elongation were identified. This study provides a comprehensive description of stage-specific lipidome signatures and proposes a mechanism to explain its potential relationship with the fluctuation of both cytoplasmic lipid droplets content and mRNA levels of lipid metabolism-related genes during early bovine embryo development. PMID:27107972

  18. A new 12-gene diagnostic biomarker signature of melanoma revealed by integrated microarray analysis

    PubMed Central

    Liu, Wanting

    2013-01-01

    Genome-wide microarray technology has facilitated the systematic discovery of diagnostic biomarkers of cancers and other pathologies. However, meta-analyses of published arrays often uncover significant inconsistencies that hinder advances in clinical practice. Here we present an integrated microarray analysis framework, based on a genome-wide relative significance (GWRS) and genome-wide global significance (GWGS) model. When applied to five microarray datasets on melanoma published between 2000 and 2011, this method revealed a new signature of 200 genes. When these were linked to so-called ‘melanoma driver’ genes involved in MAPK, Ca2+, and WNT signaling pathways we were able to produce a new 12-gene diagnostic biomarker signature for melanoma (i.e., EGFR, FGFR2, FGFR3, IL8, PTPRF, TNC, CXCL13, COL11A1, CHP2, SHC4, PPP2R2C, and WNT4). We have begun to experimentally validate a subset of these genes involved in MAPK signaling at the protein level, including CXCL13, COL11A1, PTPRF and SHC4 and found these to be over-expressed in metastatic and primary melanoma cells in vitro and in situ compared to melanocytes cultured from healthy skin epidermis and normal healthy human skin. While SHC4 has been reported previously to be associated to melanoma, this is the first time CXCL13, COL11A1, and PTPRF have been associated with melanoma on experimental validation. Our computational evaluation indicates that this 12-gene biomarker signature achieves excellent diagnostic power in distinguishing metastatic melanoma from normal skin and benign nevus. Further experimental validation of the role of these 12 genes in a new signaling network may provide new insights into the underlying biological mechanisms driving the progression of melanoma. PMID:23638386

  19. New developments in malaria diagnostics

    PubMed Central

    Versteeg, Inge; Migchelsen, Stephanie J; González, Iveth J; Perkins, Mark D; Mens, Petra F; Schallig, Henk DFH

    2012-01-01

    Currently available rapid diagnostic tests (RDTs) for malaria show large variation in sensitivity and specificity, and there are concerns about their stability under field conditions. To improve current RDTs, monoclonal antibodies (mAbs) for novel malaria antigens have been developed and screened for their possible use in new diagnostic tests. Three antigens, glutamate rich protein (GLURP), dihydrofolate reductase-thymidylate synthase (DHFR-TS) and heme detoxification protein (HDP), were selected based on literature searches. Recombinant antigens were produced and used to immunize mice. Antibody-producing cell lines were subsequently selected and the resulting antibodies were screened for specificity against Plasmodium falciparum and Plasmodium vivax. The most optimal antibody couples were selected based on antibody affinity (expressed as dissociation constants, KD) and detection limit of crude antigen extract from P. falciparum 3D7 culture. The highest affinity antibodies have KD values of 0.10 nM ± 0.014 (D5) and 0.068 ± 0.015 nM (D6) for DHFR-TS mAbs, 0.10 ± 0.022 nM (H16) and 0.21 ± 0.022 nM (H18) for HDP mAbs and 0.11 ± 0.028 nM (G23) and 0.33 ± 0.093 nM (G22) for GLURP mAbs. The newly developed antibodies performed at least as well as commercially available histidine rich protein antibodies (KD of 0.16 ± 0.13 nM for PTL3 and 1.0 ± 0.049 nM for C1–13), making them promising reagents for further test development. PMID:22327435

  20. Digital gene expression signatures for maize development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-wide expression signatures detect specific perturbations in developmental programs and contribute to functional resolution of key regulatory networks. In maize (Zea mays) inflorescences, mutations in the RAMOSA (RA) genes affect determinacy of axillary meristems and thus alter branching patt...

  1. Current developments in salivary diagnostics

    PubMed Central

    Foley, Joseph D; Bailey, Alison L; Campell, Charles L; Humphries, Roger L; Christodoulides, Nicolaos; Floriano, Pierre N; Simmons, Glennon; Bhagwandin, Bryon; Jacobson, James W; Redding, Spencer W; Ebersole, Jeffrey L; McDevitt, John T

    2010-01-01

    Salivary diagnostics is an emerging field that has progressed through several important developments in the past decade, including the publication of the human salivary proteome and the infusion of federal funds to integrate nanotechnologies and microfluidic engineering concepts into developing compact point-of-care devices for rapid analysis of this secretion. In this article, we discuss some of these developments and their relevance to the prognosis, diagnosis and management of periodontitis, as an oral target, and cardiovascular disease, as a systemic example for the potential of these biodiagnostics. Our findings suggest that several biomarkers are associated with distinct biological stages of these diseases and demonstrate promise as practical biomarkers in identifying and managing periodontal disease, and acute myocardial infarction. The majority of these studies have progressed through biomarker discovery, with the identified molecules requiring more robust clinical studies to enable substantive validation for disease diagnosis. It is predicted that with continued advances in this field the use of a combination of biomarkers in multiplex panels is likely to yield accurate screening tools for these diagnoses in the near future. PMID:20387312

  2. Current developments in salivary diagnostics.

    PubMed

    Miller, Craig S; Foley, Joseph D; Bailey, Alison L; Campell, Charles L; Humphries, Roger L; Christodoulides, Nicolaos; Floriano, Pierre N; Simmons, Glennon; Bhagwandin, Bryon; Jacobson, James W; Redding, Spencer W; Ebersole, Jeffrey L; McDevitt, John T

    2010-02-01

    Salivary diagnostics is an emerging field that has progressed through several important developments in the past decade, including the publication of the human salivary proteome and the infusion of federal funds to integrate nanotechnologies and microfluidic engineering concepts into developing compact point-of-care devices for rapid analysis of this secretion. In this article, we discuss some of these developments and their relevance to the prognosis, diagnosis and management of periodontitis, as an oral target, and cardiovascular disease, as a systemic example for the potential of these biodiagnostics. Our findings suggest that several biomarkers are associated with distinct biological stages of these diseases and demonstrate promise as practical biomarkers in identifying and managing periodontal disease, and acute myocardial infarction. The majority of these studies have progressed through biomarker discovery, with the identified molecules requiring more robust clinical studies to enable substantive validation for disease diagnosis. It is predicted that with continued advances in this field the use of a combination of biomarkers in multiplex panels is likely to yield accurate screening tools for these diagnoses in the near future. PMID:20387312

  3. Immune-Signatures for Lung Cancer Diagnostics: Evaluation of Protein Microarray Data Normalization Strategies

    PubMed Central

    Brezina, Stefanie; Soldo, Regina; Kreuzhuber, Roman; Hofer, Philipp; Gsur, Andrea; Weinhaeusel, Andreas

    2015-01-01

    New minimal invasive diagnostic methods for early detection of lung cancer are urgently needed. It is known that the immune system responds to tumors with production of tumor-autoantibodies. Protein microarrays are a suitable highly multiplexed platform for identification of autoantibody signatures against tumor-associated antigens (TAA). These microarrays can be probed using 0.1 mg immunoglobulin G (IgG), purified from 10 µL of plasma. We used a microarray comprising recombinant proteins derived from 15,417 cDNA clones for the screening of 100 lung cancer samples, including 25 samples of each main histological entity of lung cancer, and 100 controls. Since this number of samples cannot be processed at once, the resulting data showed non-biological variances due to “batch effects”. Our aim was to evaluate quantile normalization, “distance-weighted discrimination” (DWD), and “ComBat” for their effectiveness in data pre-processing for elucidating diagnostic immune-signatures. “ComBat” data adjustment outperformed the other methods and allowed us to identify classifiers for all lung cancer cases versus controls and small-cell, squamous cell, large-cell, and adenocarcinoma of the lung with an accuracy of 85%, 94%, 96%, 92%, and 83% (sensitivity of 0.85, 0.92, 0.96, 0.88, 0.83; specificity of 0.85, 0.96, 0.96, 0.96, 0.83), respectively. These promising data would be the basis for further validation using targeted autoantibody tests.

  4. Developing Score Reports for Cognitive Diagnostic Assessments

    ERIC Educational Resources Information Center

    Roberts, Mary Roduta; Gierl, Mark J.

    2010-01-01

    This paper presents a framework to provide a structured approach for developing score reports for cognitive diagnostic assessments ("CDAs"). Guidelines for reporting and presenting diagnostic scores are based on a review of current educational test score reporting practices and literature from the area of information design. A sample diagnostic…

  5. A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool

    PubMed Central

    Manterola, Lorea; Guruceaga, Elizabeth; Pérez-Larraya, Jaime Gállego; González-Huarriz, Marisol; Jauregui, Patricia; Tejada, Sonia; Diez-Valle, Ricardo; Segura, Victor; Samprón, Nicolás; Barrena, Cristina; Ruiz, Irune; Agirre, Amaia; Ayuso, Ángel; Rodríguez, Javier; González, Álvaro; Xipell, Enric; Matheu, Ander; López de Munain, Adolfo; Tuñón, Teresa; Zazpe, Idoya; García-Foncillas, Jesús; Paris, Sophie; Delattre, Jean Yves; Alonso, Marta M.

    2014-01-01

    Background Glioblastoma multiforme (GBM) is the most frequent malignant brain tumor in adults, and its prognosis remains dismal despite intensive research and therapeutic advances. Diagnostic biomarkers would be clinically meaningful to allow for early detection of the tumor and for those cases in which surgery is contraindicated or biopsy results are inconclusive. Recent findings show that GBM cells release microvesicles that contain a select subset of cellular proteins and RNA. The aim of this hypothesis-generating study was to assess the diagnostic potential of miRNAs found in microvesicles isolated from the serum of GBM patients. Methods To control disease heterogeneity, we used patients with newly diagnosed GBM. In the discovery stage, PCR-based TaqMan Low Density Arrays followed by individual quantitative reverse transcriptase polymerase chain reaction were used to test the differences in the miRNA expression levels of serum microvesicles among 25 GBM patients and healthy controls paired by age and sex. The detected noncoding RNAs were then validated in another 50 GBM patients. Results We found that the expression levels of 1 small noncoding RNA (RNU6-1) and 2 microRNAs (miR-320 and miR-574-3p) were significantly associated with a GBM diagnosis. In addition, RNU6-1 was consistently an independent predictor of a GBM diagnosis. Conclusions Altogether our results uncovered a small noncoding RNA signature in microvesicles isolated from GBM patient serum that could be used as a fast and reliable differential diagnostic biomarker. PMID:24435880

  6. Economic challenges associated with tuberculosis diagnostic development

    PubMed Central

    Hanrahan, Colleen F.; Shah, Maunank

    2015-01-01

    Tuberculosis remains a global health crisis in part due to underdiagnosis. Technological innovations are needed to improve diagnostic test accuracy and reduce the reliance on expensive laboratory infrastructure. However, there are significant economic challenges impeding the development and implementation of new diagnostics. The aim of this piece is to examine the current state of TB diagnostics, outline the unmet needs for new tests, and detail the economic challenges associated with development of new tests from the perspective of developers, policy makers and implementers. PMID:24766367

  7. Diagnostic and Prognostic Utility of a DNA Hypermethylated Gene Signature in Prostate Cancer

    PubMed Central

    Vijayaraghavan, Aadhitthya; Chen, Gengbo; Lim, Pei Li; Tay, Kae-Jack; Chang, Michelle; Low, John Soon Wah; Joshi, Adita; Huang, Hong Hong; Kalaw, Emarene; Tan, Puay Hoon; Hsieh, Wen-Son; Yong, Wei Peng; Alumkal, Joshi

    2014-01-01

    We aimed to identify a prostate cancer DNA hypermethylation microarray signature (denoted as PHYMA) that differentiates prostate cancer from benign prostate hyperplasia (BPH), high from low-grade and lethal from non-lethal cancers. This is a non-randomized retrospective study in 111 local Asian men (87 prostate cancers and 24 BPH) treated from 1995 to 2009 in our institution. Archival prostate epithelia were laser-capture microdissected and genomic DNA extracted and bisulfite-converted. Samples were profiled using Illumina GoldenGate Methylation microarray, with raw data processed by GenomeStudio. A classification model was generated using support vector machine, consisting of a 55-probe DNA methylation signature of 46 genes. The model was independently validated on an internal testing dataset which yielded cancer detection sensitivity and specificity of 95.3% and 100% respectively, with overall accuracy of 96.4%. Second validation on another independent western cohort yielded 89.8% sensitivity and 66.7% specificity, with overall accuracy of 88.7%. A PHYMA score was developed for each sample based on the state of methylation in the PHYMA signature. Increasing PHYMA score was significantly associated with higher Gleason score and Gleason primary grade. Men with higher PHYMA scores have poorer survival on univariate (p = 0.0038, HR = 3.89) and multivariate analyses when controlled for (i) clinical stage (p = 0.055, HR = 2.57), and (ii) clinical stage and Gleason score (p = 0.043, HR = 2.61). We further performed bisulfite genomic sequencing on 2 relatively unknown genes to demonstrate robustness of the assay results. PHYMA is thus a signature with high sensitivity and specificity for discriminating tumors from BPH, and has a potential role in early detection and in predicting survival. PMID:24626295

  8. The Development of Articulatory Signatures in Children

    ERIC Educational Resources Information Center

    Singh, Latika; Singh, Nandini C.

    2008-01-01

    The ability to perceive and produce sounds at multiple time scales is a skill necessary for the acquisition of language. Unlike speech perception, which develops early in life, the production of speech sounds starts at a few months and continues into late childhood with the development of speech-motor skills. Though there is detailed information…

  9. Metabolic Signature Profiling as a Diagnostic and Prognostic Tool in Pediatric Plasmodium falciparum Malaria

    PubMed Central

    Surowiec, Izabella; Orikiiriza, Judy; Karlsson, Elisabeth; Nelson, Maria; Bonde, Mari; Kyamanwa, Patrick; Karenzi, Ben; Bergström, Sven; Trygg, Johan; Normark, Johan

    2015-01-01

    Background. Accuracy in malaria diagnosis and staging is vital to reduce mortality and post infectious sequelae. In this study, we present a metabolomics approach to diagnostic staging of malaria infection, specifically Plasmodium falciparum infection in children. Methods. A group of 421 patients between 6 months and 6 years of age with mild and severe states of malaria with age-matched controls were included in the study, 107, 192, and 122, individuals, respectively. A multivariate design was used as basis for representative selection of 20 patients in each category. Patient plasma was subjected to gas chromatography-mass spectrometry analysis, and a full metabolite profile was produced from each patient. In addition, a proof-of-concept model was tested in a Plasmodium berghei in vivo model where metabolic profiles were discernible over time of infection. Results. A 2-component principal component analysis revealed that the patients could be separated into disease categories according to metabolite profiles, independently of any clinical information. Furthermore, 2 subgroups could be identified in the mild malaria cohort who we believe represent patients with divergent prognoses. Conclusions. Metabolite signature profiling could be used both for decision support in disease staging and prognostication. PMID:26110164

  10. Chaos concepts as diagnostic tools for assessing rotating machinery vibration signatures

    SciTech Connect

    Adams, M.L.; Loparo, K.A.

    1996-06-01

    Chaos content in measured vibration signals is of some practical importance in rotordynamical systems. Of particular interest is the relationship between the occurrence of determinsite chaos and the diagnosis of mechanical failures in rotating machinery. Two nonlinear rotordynamical systems were studied using simulation and various forms of subharmonic, quasiperiodic and chaotic vibrations were observed. Different routes into and out of chaos show important signs for wear assessment and failure prediction. Experimental test facilities are currently under development and the next steps involve experimental verification of the simulation results and the development of signal processing techniques for extracting the dynamical features of the vibration signatures from measured time series data. {copyright} {ital 1996 American Institute of Physics.}

  11. Strengths and limitations of microarray-based phenotype prediction: lessons learned from the IMPROVER Diagnostic Signature Challenge

    PubMed Central

    Tarca, Adi L.; Lauria, Mario; Unger, Michael; Bilal, Erhan; Boue, Stephanie; Kumar Dey, Kushal; Hoeng, Julia; Koeppl, Heinz; Martin, Florian; Meyer, Pablo; Nandy, Preetam; Norel, Raquel; Peitsch, Manuel; Rice, Jeremy J.; Romero, Roberto; Stolovitzky, Gustavo; Talikka, Marja; Xiang, Yang; Zechner, Christoph

    2013-01-01

    Motivation: After more than a decade since microarrays were used to predict phenotype of biological samples, real-life applications for disease screening and identification of patients who would best benefit from treatment are still emerging. The interest of the scientific community in identifying best approaches to develop such prediction models was reaffirmed in a competition style international collaboration called IMPROVER Diagnostic Signature Challenge whose results we describe herein. Results: Fifty-four teams used public data to develop prediction models in four disease areas including multiple sclerosis, lung cancer, psoriasis and chronic obstructive pulmonary disease, and made predictions on blinded new data that we generated. Teams were scored using three metrics that captured various aspects of the quality of predictions, and best performers were awarded. This article presents the challenge results and introduces to the community the approaches of the best overall three performers, as well as an R package that implements the approach of the best overall team. The analyses of model performance data submitted in the challenge as well as additional simulations that we have performed revealed that (i) the quality of predictions depends more on the disease endpoint than on the particular approaches used in the challenge; (ii) the most important modeling factor (e.g. data preprocessing, feature selection and classifier type) is problem dependent; and (iii) for optimal results datasets and methods have to be carefully matched. Biomedical factors such as the disease severity and confidence in diagnostic were found to be associated with the misclassification rates across the different teams. Availability: The lung cancer dataset is available from Gene Expression Omnibus (accession, GSE43580). The maPredictDSC R package implementing the approach of the best overall team is available at www.bioconductor.org or http://bioinformaticsprb.med.wayne.edu/. Contact

  12. Sparse Modeling Reveals miRNA Signatures for Diagnostics of Inflammatory Bowel Disease

    PubMed Central

    Degenhardt, Frauke; Szymczak, Silke; Du, Zhipei; Elsharawy, Abdou; Keller, Andreas; Schreiber, Stefan; Franke, Andre

    2015-01-01

    The diagnosis of inflammatory bowel disease (IBD) still remains a clinical challenge and the most accurate diagnostic procedure is a combination of clinical tests including invasive endoscopy. In this study we evaluated whether systematic miRNA expression profiling, in conjunction with machine learning techniques, is suitable as a non-invasive test for the major IBD phenotypes (Crohn's disease (CD) and ulcerative colitis (UC)). Based on microarray technology, expression levels of 863 miRNAs were determined for whole blood samples from 40 CD and 36 UC patients and compared to data from 38 healthy controls (HC). To further discriminate between disease-specific and general inflammation we included miRNA expression data from other inflammatory diseases (inflammation controls (IC): 24 chronic obstructive pulmonary disease (COPD), 23 multiple sclerosis, 38 pancreatitis and 45 sarcoidosis cases) as well as 70 healthy controls from previous studies. Classification problems considering 2, 3 or 4 groups were solved using different types of penalized support vector machines (SVMs). The resulting models were assessed regarding sparsity and performance and a subset was selected for further investigation. Measured by the area under the ROC curve (AUC) the corresponding median holdout-validated accuracy was estimated as ranging from 0.75 to 1.00 (including IC) and 0.89 to 0.98 (excluding IC), respectively. In combination, the corresponding models provide tools for the distinction of CD and UC as well as CD, UC and HC with expected classification error rates of 3.1 and 3.3%, respectively. These results were obtained by incorporating not more than 16 distinct miRNAs. Validated target genes of these miRNAs have been previously described as being related to IBD. For others we observed significant enrichment for IBD susceptibility loci identified in earlier GWAS. These results suggest that the proposed miRNA signature is of relevance for the etiology of IBD. Its diagnostic value

  13. Diagnostic value of a plasma microRNA signature in gastric cancer: a microRNA expression analysis

    PubMed Central

    Zhou, Xin; Zhu, Wei; Li, Hai; Wen, Wei; Cheng, Wenfang; Wang, Fang; Wu, Yinxia; Qi, Lianwen; Fan, Yong; Chen, Yan; Ding, Yin; Xu, Jing; Qian, Jiaqi; Huang, Zebo; Wang, Tongshan; Zhu, Danxia; Shu, Yongqian; Liu, Ping

    2015-01-01

    The differential expression of microRNAs (miRNAs) in plasma of gastric cancer (GC) patients may serve as a diagnostic biomarker. A total of 33 miRNAs were identified through the initial screening phase (3 GC pools vs. 1 normal control (NC) pool) using quantitative reverse transcription polymerase chain reaction (qRT-PCR) based Exiqon panel (miRCURY-Ready-to-Use-PCR-Human-panel-I + II-V1.M). By qRT-PCR, these miRNAs were further assessed in training (30 GC VS. 30 NCs) and testing stages (71 GC VS. 61 NCs). We discovered a plasma miRNA signature including five up-regulated miRNAs (miR-185, miR-20a, miR-210, miR-25 and miR-92b), and this signature was evaluated to be a potential diagnostic marker of GC. The areas under the receiver operating characteristic curve of the signature were 0.86, 0.74 and 0.87 for the training, testing and the external validation stages (32 GC VS. 18 NCs), respectively. The five miRNAs were consistently dysregulated in GC tissues (n = 30). Moreover, miR-185 was decreased while miR-20a, miR-210 and miR-92b were increased in arterial plasma (n = 38). However, none of the miRNAs in the exosomes showed different expression between 10 GC patients and 10 NCs. In conclusion, we identified a five-miRNA signature in the peripheral plasma which could serve as a non-invasive biomarker in detection of GC. PMID:26059512

  14. Peripheral Blood Cell Gene Expression Diagnostic for Identifying Symptomatic Transthyretin Amyloidosis Patients: Male and Female Specific Signatures

    PubMed Central

    Kurian, Sunil M.; Novais, Marta; Whisenant, Thomas; Gelbart, Terri; Buxbaum, Joel N.; Kelly, Jeffery W.; Coelho, Teresa; Salomon, Daniel R.

    2016-01-01

    Background: Early diagnosis of familial transthyretin (TTR) amyloid diseases remains challenging because of variable disease penetrance. Currently, patients must have an amyloid positive tissue biopsy to be eligible for disease-modifying therapies. Endomyocardial biopsies are typically amyloid positive when cardiomyopathy is suspected, but this disease manifestation is generally diagnosed late. Early diagnosis is often difficult because patients exhibit apparent symptoms of polyneuropathy, but have a negative amyloid biopsy. Thus, there is a pressing need for an additional early diagnostic strategy for TTR-aggregation-associated polyneuropathy and cardiomyopathy. Methods and Findings: Global peripheral blood cell mRNA expression profiles from 263 tafamidis-treated and untreated V30M Familiar Amyloid Neuropathy patients, asymptomatic V30M carriers, and healthy, age- and sex-matched controls without TTR mutations were used to differentiate symptomatic from asymptomatic patients. We demonstrate that blood cell gene expression patterns reveal sex-independent, as well as male- and female-specific inflammatory signatures in symptomatic FAP patients, but not in asymptomatic carriers. These signatures differentiated symptomatic patients from asymptomatic V30M carriers with >80% accuracy. There was a global downregulation of the eIF2 pathway and its associated genes in all symptomatic FAP patients. We also demonstrated that the molecular scores based on these signatures significantly trended toward normalized values in an independent cohort of 46 FAP patients after only 3 months of tafamidis treatment. Conclusions: This study identifies novel molecular signatures that differentiate symptomatic FAP patients from asymptomatic V30M carriers as well as affected males and females. We envision using this approach, initially in parallel with amyloid biopsies, to identify individuals who are asymptomatic gene carriers that may convert to FAP patients. Upon further validation

  15. Diagnostic Development for ST Plasmas on NSTX

    SciTech Connect

    D. Johnson; NSTX Team

    2003-06-16

    Spherical tokamaks (STs) have much lower aspect ratio (a/R) and lower toroidal magnetic field, relative to tokamaks and stellarators. This paper will highlight some of the challenges and opportunities these features pose in the diagnosis of ST plasmas on the National Spherical Torus Experiment (NSTX), and discuss some of the corresponding diagnostic development that is underway. The low aspect ratio necessitates a small center stack, with tight space constraints and large thermal excursions, complicating the design of magnetic sensors in this region. The toroidal magnetic field on NSTX is less than or equal to 0.6 T, making it impossible to use ECE as a good monitor of electron temperature. A promising new development for diagnosing electron temperature is electron Bernstein wave (EBW) radiometry, which is currently being pursued on NSTX. A new high-resolution charge exchange recombination spectroscopy system is being installed. Since non-inductive current initiation and sustainment ar e top-level NSTX research goals, measurements of the current profile J(R) are essential to many planned experiments. On NSTX several modifications are planned to adapt the MSE technique to lower field, and two novel MSE systems are being prototyped. Several high speed 2-D imaging techniques are being developed, for viewing both visible and x-ray emission. The toroidal field is comparable to the poloidal field at the outside plasma edge, producing a large field pitch (>50{sup o}) at the outer mid-plane. The large shear in pitch angle makes some fluctuation diagnostics like beam emission spectroscopy very difficult, while providing a means of achieving spatial localization for microwave scattering investigations of high-k turbulence, which are predicted to be virulent for NSTX plasmas. A brief description of several of these techniques will be given in the context of the current NSTX diagnostic set.

  16. Intense diagnostic neutral beam development for ITER

    SciTech Connect

    Rej, D.J.; Henins, I.; Fonck, R.J.; Kim, Y.J.

    1992-05-01

    For the next-generation, burning tokamak plasmas such as ITER, diagnostic neutral beams and beam spectroscopy will continue to be used to determine a variety of plasma parameters such as ion temperature, rotation, fluctuations, impurity content, current density profile, and confined alpha particle density and energy distribution. Present-day low-current, long-pulse beam technology will be unable to provide the required signal intensities because of higher beam attenuation and background bremsstrahlung radiation in these larger, higher-density plasmas. To address this problem, we are developing a short-pulse, intense diagnostic neutral beam. Protons or deuterons are accelerated using magnetic-insulated ion-diode technology, and neutralized in a transient gas cell. A prototype 25-kA, 100-kV, 1-{mu}s accelerator is under construction at Los Alamos. Initial experiments will focus on ITER-related issues of beam energy distribution, current density, pulse length, divergence, propagation, impurity content, reproducibility, and maintenance.

  17. Intense diagnostic neutral beam development for ITER

    SciTech Connect

    Rej, D.J.; Henins, I. ); Fonck, R.J.; Kim, Y.J. . Dept. of Nuclear Engineering and Engineering Physics)

    1992-01-01

    For the next-generation, burning tokamak plasmas such as ITER, diagnostic neutral beams and beam spectroscopy will continue to be used to determine a variety of plasma parameters such as ion temperature, rotation, fluctuations, impurity content, current density profile, and confined alpha particle density and energy distribution. Present-day low-current, long-pulse beam technology will be unable to provide the required signal intensities because of higher beam attenuation and background bremsstrahlung radiation in these larger, higher-density plasmas. To address this problem, we are developing a short-pulse, intense diagnostic neutral beam. Protons or deuterons are accelerated using magnetic-insulated ion-diode technology, and neutralized in a transient gas cell. A prototype 25-kA, 100-kV, 1-{mu}s accelerator is under construction at Los Alamos. Initial experiments will focus on ITER-related issues of beam energy distribution, current density, pulse length, divergence, propagation, impurity content, reproducibility, and maintenance.

  18. Development of visual diagnostic expertise in pathology.

    PubMed Central

    Crowley, R. S.; Naus, G. J.; Friedman, C. P.

    2001-01-01

    In this study, we use methods from information-processing to explore the visual diagnostic processes of novice, intermediate, and expert pathologists. Subjects were asked to examine and interpret a set of slides while we collected think-aloud verbal protocols and captured on digital video the actual visual data they examined from the microscope. We performed an in-depth combined video and protocol-based analysis of processes and errors occurring as the task was performed. Additionally, we collected measures of accuracy, certainty, and difficulty for all cases. Our preliminary analysis identified significant differences between groups in all three major aspects of this task: searching skills, perceptual skills and cognitive/reasoning skills. We describe the implications of our preliminary cognitive task analysis on the design of a developing intelligent educational system in Pathology. PMID:11825167

  19. Plasma Diagnostics Development for Advanced Rocket Engines

    NASA Astrophysics Data System (ADS)

    Glover, Timothy; Kittrell, Carter; Chan, Anthony; Chang-Diaz, Franklin

    2000-10-01

    The VASIMR (Variable Specific Impulse Magnetoplasma Rocket) engine is a next-generation rocket engine under development at the Johnson Space Center's Advanced Space Propulsion Laboratory. With an exhaust velocity up to 50 times that of chemical rocket engines such as the Space Shuttle Main Engine, the VASIMR concept promises fast, efficient interplanetary flight. Rice University has participated in VASIMR research since 1996 and at present is developing two new diagnostic probes: a retarding potential analyzer to measure the velocity of ions in the rocket's exhaust, and a moveable optical probe to examine the spectrum of the rocket's helicon plasma source. In support of the probe development, a test facility is under construction at Rice, consisting of a small electric rocket engine firing into a 2-m vacuum chamber. This engine, the MPD (magnetoplasmadynamic) thruster, dates from the 1960's and provides a well-characterized source plasma for testing of the probes under development. We present details of the ion energy analyzer and the facility under construction at Rice.

  20. Experimental developments towards an ITER thermography diagnostic

    NASA Astrophysics Data System (ADS)

    Reichle, R.; Brichard, B.; Escourbiac, F.; Gardarein, J. L.; Hernandez, D.; Le Niliot, C.; Rigollet, F.; Serra, J. J.; Badie, J. M.; van Ierschot, S.; Jouve, M.; Martinez, S.; Ooms, H.; Pocheau, C.; Rauber, X.; Sans, J. L.; Scheer, E.; Berghmans, F.; Decréton, M.

    2007-06-01

    In the course of the development of a concept for a spectrally resolving thermography diagnostic for the ITER divertor using optical fibres experimental development work has been carried out in three different areas. Firstly ZrF4 fibres and hollow fibres (silica capillaries with internal AG/AgJ coating) were tested in a Co60 irradiation facility under γ irradiation up to doses of 5 kGy and 27 kGy, respectively. The ZrF4 fibres suffered more radiation induced degradation (>1 db/m) then the hollow fibres (0-0.4 db/m). Secondly multi-colour pyroreflectometry is being developed towards tokamak applicability. The emissivity and temperature of tungsten samples were measured in the range of 700-1500 °C. The angular working range for off normal observation of the method was 20-30°. The working distance of the method has been be increased from cm to the m range. Finally, encouraging preliminary results have been obtained concerning the application of pulsed and modulated active thermography.

  1. Diagnostic potential of plasma microRNA signatures in patients with deep-vein thrombosis.

    PubMed

    Wang, Xiao; Sundquist, Kristina; Elf, Johan L; Strandberg, Karin; Svensson, Peter J; Hedelius, Anna; Palmer, Karolina; Memon, Ashfaque A; Sundquist, Jan; Zöller, Bengt

    2016-08-01

    For excluding deep-vein thrombosis (DVT), a negative D-dimer and low clinical probability are used to rule out DVT. Circulating microRNAs (miRNAs) are stably present in the plasma, serum and other body fluids. Their diagnostic function has been investigated in many diseases but not in DVT. The aims of present study were to assess the diagnostic ability of plasma miRNAs in DVT and to examine their correlation with known markers of hypercoagulability, such as D-dimer and APC-PCI complex. Plasma samples were obtained from 238 patients (aged 16-95 years) with suspected DVT included in a prospective multicentre management study (SCORE). We first performed miRNA screening of plasma samples from three plasma pools containing plasma from 12 patients with DVT and three plasma pools containing plasma from 12 patients without DVT using a microRNA Ready-to-use PCR Panel comprising 742 miRNA primer sets. Thirteen miRNAs that differentially expressed were further investigated by quantitative real-time (qRT)-PCR in the entire cohort. The plasma level of miR-424-5p (p=0.01) were significantly higher, whereas the levels of miR-136-5p (p=0.03) were significantly lower in DVT patients compared to patients without DVT. Receiver-operating characteristic curve analysis showed the area under the curve (AUC) values of 0.63 for miR-424-5p and 0.60 for miR-136-5p. The plasma level of miR-424-5p was associated with both D-dimer and APC-PCI complex levels (p<0.0001 and p=0.001, respectively). In conclusions, these findings indicate that certain miRNAs are associated with DVT and markers of hypercoagulability, though their diagnostic abilities are probably too low. PMID:27197074

  2. Developments in laboratory diagnostics for isocyanate asthma

    PubMed Central

    Wisnewski, Adam V.

    2011-01-01

    Purpose of review Isocyanates, reactive chemicals used to generate polyurethane, are a leading cause of occupational asthma worldwide. Workplace exposure is the best-recognized risk factor for disease development, but is challenging to monitor. Clinical diagnosis and differentiation of isocyanates as the cause of asthma can be difficult. The gold-standard test, specific inhalation challenge, is technically and economically demanding, and is thus only available in a few specialized centers in the world. With the increasing use of isocyanates, efficient laboratory tests for isocyanate asthma and exposure are urgently needed. Recent findings The review focuses on literature published in 2005 and 2006. Over 150 articles, identified by searching PubMed using keywords ‘diphenylmethane’, ‘toluene’ or ‘hexamethylene diisocyanate’, were screened for relevance to isocyanate asthma diagnostics. New advances in understanding isocyanate asthma pathogenesis are described, which help improve conventional radioallergosorbent and enzyme-linked immunosorbent assay approaches for measuring isocyanate-specific IgE and IgG. Newer immunoassays, based on cellular responses and discovery science readouts are also in development. Summary Contemporary laboratory tests that measure isocyanate-specific human IgE and IgG are of utility in diagnosing a subset of workers with isocyanate asthma, and may serve as a biomarker of exposure in a larger proportion of occupationally exposed workers. PMID:17351466

  3. Microbial signatures in post-infectious irritable bowel syndrome – toward patient stratification for improved diagnostics and treatment

    PubMed Central

    Jalanka, Jonna; Salonen, Anne; Fuentes, Susana; de Vos, Willem M

    2015-01-01

    Irritable bowel syndrome (IBS) is a multifactorial and heterogeneous disorder estimated to affect over 10% of the Western population. A subset of the patients reports the start of the disease after an episode of gastroenteritis. The alterations in the intestinal microbiota of the post-infectious IBS (PI-IBS) patients were recently investigated in a British cohort and shown to differentiate from the healthy controls and resemble that of diarrhea-predominant IBS (IBS-D) patients. The altered 27 genus-like groups created a microbial signature, which could be used to objectively stratify patients and healthy controls. In this addendum, we combine the microbiota data derived from the British cohort with that of a recently reported Swedish PI-IBS cohort. Remarkably, robust and reproducible microbiota signatures were observed in these PI-IBS patients. We discuss these results with attention on the emerging role of microbiota in the classification, development and treatment of PI-IBS. PMID:26512631

  4. Molecular signature of salivary gland tumors: potential use as diagnostic and prognostic marker.

    PubMed

    Fonseca, Felipe Paiva; Sena Filho, Marcondes; Altemani, Albina; Speight, Paul M; Vargas, Pablo Agustin

    2016-02-01

    Salivary gland tumors are a highly heterogeneous group of lesions with diverse microscopic appearances and variable clinical behavior. The use of clinical and histological parameters to predict patient prognosis and survival rates has been of limited utility, and the search for new biomarkers that could not only aid in a better understanding of their pathogenesis but also be reliable auxiliaries for prognostic determination and useful diagnostic tools has been performed in the last decades with very exciting results. Hence, gene rearrangements such as CRTC1-MAML2 in mucoepidermoid carcinomas have shown excellent specificity, and more than that, it has been strongly correlated with low-grade tumors and consequently with an increased survival rate and better prognosis of patients affected by neoplasms carrying this translocation. Moreover, MYB-NFIB and EWSR1-ATF1 gene fusions were shown to be specifically found in cases of adenoid cystic carcinomas and hyalinizing clear cell carcinomas, respectively, in the context of salivary gland tumors, becoming reliable diagnostic tools for these entities and potential therapeutic targets for future therapeutic protocols. Finally, the identification of ETV6-NTRK3 in cases previously diagnosed as uncommon acinic cell carcinomas, cystadenocarcinomas, and adenocarcinomas not otherwise specified led to the characterization of a completely new and now widely accepted entity, including, therefore, mammary analogue secretory carcinoma in the list of well-recognized salivary gland carcinomas. Thus, further molecular investigations of salivary gland tumors are warranted, and the recognition of other genetic abnormalities can lead to the acknowledgment of new entities and the acquirement of reliable biomarkers. PMID:25990369

  5. Transcriptomic markers meet the real world: finding diagnostic signatures of corticosteroid treatment in commercial beef samples

    PubMed Central

    2012-01-01

    Background The use of growth-promoters in beef cattle, despite the EU ban, remains a frequent practice. The use of transcriptomic markers has already proposed to identify indirect evidence of anabolic hormone treatment. So far, such approach has been tested in experimentally treated animals. Here, for the first time commercial samples were analyzed. Results Quantitative determination of Dexamethasone (DEX) residues in the urine collected at the slaughterhouse was performed by Liquid Chromatography-Mass Spectrometry (LC-MS). DNA-microarray technology was used to obtain transcriptomic profiles of skeletal muscle in commercial samples and negative controls. LC-MS confirmed the presence of low level of DEX residues in the urine of the commercial samples suspect for histological classification. Principal Component Analysis (PCA) on microarray data identified two clusters of samples. One cluster included negative controls and a subset of commercial samples, while a second cluster included part of the specimens collected at the slaughterhouse together with positives for corticosteroid treatment based on thymus histology and LC-MS. Functional analysis of the differentially expressed genes (3961) between the two groups provided further evidence that animals clustering with positive samples might have been treated with corticosteroids. These suspect samples could be reliably classified with a specific classification tool (Prediction Analysis of Microarray) using just two genes. Conclusions Despite broad variation observed in gene expression profiles, the present study showed that DNA-microarrays can be used to find transcriptomic signatures of putative anabolic treatments and that gene expression markers could represent a useful screening tool. PMID:23110699

  6. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  7. Electrical signature analysis applications for non-intrusive automotive alternator diagnostics

    SciTech Connect

    Ayers, C.W.

    1996-03-01

    Automotive alternators are designed to supply power for automobile engine ignition systems as well as charge the storage battery. This product is used in a large market where consumers are concerned with acoustic noise and vibration that comes from the unit. as well as overall quality and dependability. Alternators and generators in general are used in industries other than automotive, such as transportation and airline industries and in military applications. Their manufacturers are interested in pursuing state-of-the-art methods to achieve higher quality and reduced costs. Preliminary investigations of non-intrusive diagnostic techniques utilizing the inherent voltage signals of alternators have been performed with promising results. These techniques are based on time and frequency domain analyses of specially conditioned signals taken from several alternators under various test conditions. This paper discusses investigations that show correlations of the alternator output voltage to airborne noise production. In addition these signals provide insight into internal magnetic characteristics that relate to design and/or assembly problems.

  8. New developments in APSTNG neutron probe diagnostics

    SciTech Connect

    Rhodes, E.; Dickerman, C.E.

    1995-12-31

    The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) show potential to allow the associated-particle diagnostic method to be moved out of the laboratory into field applications. The APSTNG interrogates the inspected object with 14-MeV neutrons generated from the deuterium-tritium reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra of resulting neutron reactions identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles separate the prompt and delayed gamma-ray spectra and can yield a separate coarse tomographic image of each identified nuclide, from a single orientation. Chemical substances are identified by comparing relative spectral line intensities with ratios of elements in reference compounds. The high-energy neutrons and gamma-rays penetrate large objects and dense materials. The gamma-ray dector and neutron generator can be located on the same side of the interrogated object, so spaces behind walls and other confirmed areas can be inspected. No collimators or radiation shielding are needed, the neutron generator is relatively simple and small, and commercial-grade electronics are employed. A complete system could be transported in an automotive van. Proof-of-concept laboratory experiments have been successfully performed for simulated nuclear, chemical warfare, and conventional munitions. Inspection applications have been investigated for presence of cocaine in propane tanks, uranium and plutonium smuggling, and radioactive and toxic waste characterization. An advanced APSTNG tube is being designed and constructed that will be transportable and rugged, yield a substantial neutron output increase, and provide sufficiently improved lifetime to allow operation at more than an order of magnitude increase in neutron flux.

  9. Diagnostics Systems for Permanent Hall Thrusters Development

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall

  10. Experimental study of ELF signatures developed by ballistic missile launch

    SciTech Connect

    Peglow, S.G.; Rynne, T.M.

    1993-04-08

    The Lawrence Livermore National Laboratory (Livermore, CA) and SARA, Inc. participated in the ATMD missile launch activities that occurred at WSMR during January 1993. These tests involved the launch of Lance missiles with a subsequent direction of F-15Es into the launch area for subsequent detection and simulated destruction of redeployed missile launchers, LLNL and SARA deployed SARN`s ELF sensors and various data acquisition systems for monitoring of basic phenomena. On 25 January 1993, a single missile launch allowed initial measurements of the phenomena and an assessment of appropriate sensor sensitivity settings as well as the appropriateness of the sensor deployment sites (e.g., with respect to man-made ELF sources such as power distributions and communication lines). On 27 January 1993, a measurement of a double launch of Lance missiles was performed. This technical report covers the results of the analysis of latter measurements. An attempt was made to measure low frequency electromagnetic signatures that may be produced during a missile launch. Hypothetical signature production mechanisms include: (1) Perturbations of the earth geo-potential during the launch of the missile. This signature may arise from the interaction of the ambient electric field with the conducting body of the missile as well as the partially ionized exhaust plume. (2) Production of spatial, charge sources from triboelectric-like mechanisms. Such effects may occur during the initial interaction of the missile plume with the ground material and lead to an initial {open_quotes}spike{close_quotes} output, Additionally, there may exist charge transfer mechanisms produced during the exhausting of the burnt fuel oxidizer.

  11. [Current situation and challenges in companion diagnostics development].

    PubMed

    Nishida, Miwa

    2014-12-01

    The personalized health care, it is defined as a medical care which provide the optimal therapy for each individual in consideration of a patient's individual difference, such as a genetic background and a physiological state. A companion diagnosis to stratify a patient appropriately is essential for the spread of personalized health care, and it is important that a companion diagnostic reagent used for the companion diagnosis is properly developed and clinically applied. However, as for the development of companion diagnostics and pharmaceuticals that require it, there are still many challenges such as its business model of cooperation of diagnostics companies and pharmaceutical companies, also, the regulations related to companion diagnostics. Furthermore, even in clinical practice, there are many issues such as the way of reimbursement for companion diagnostics and also the handling of laboratory developed test (LDT) as companion diagnostics. These are issues that should continue to discuss with industry, government and academia. In this report, from the point of view of a diagnostics company, we discuss the various challenges in clinical applications from the development of companion diagnostics. PMID:25596043

  12. Diagnostics Systems for Permanent Hall Thrusters Development

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall

  13. The Diagnostic Use of Immunohistochemical Surrogates for Signature Molecular Genetic Alterations in Gliomas.

    PubMed

    Tanboon, Jantima; Williams, Erik A; Louis, David N

    2016-01-01

    A number of key mutations that affect treatment and prognosis have been identified in human gliomas. Two major ways to identify these mutations in a tumor sample are direct interrogation of the mutated DNA itself and immunohistochemistry to assess the effects of the mutated genes on proteins. Immunohistochemistry is an affordable, robust, and widely available technology that has been in place for decades. For this reason, the use of immunohistochemical approaches to assess molecular genetic changes has become an essential component of state-of-the-art practice. In contrast, even though DNA sequencing technologies are undergoing rapid development, many medical centers do not have access to such methodologies and may be thwarted by the relatively high costs of sending out such tests to reference laboratories. This review summarizes the current experience using immunohistochemistry of glioma samples to identify mutations in IDH1, TP53, ATRX, histone H3 genes, BRAF, EGFR, MGMT, CIC, and FUBP1 as well as guidelines for prudent use of DNA sequencing as a supplemental method. PMID:26671986

  14. A GENE SIGNATURE OF NON-HEALING VENOUS ULCERS: POTENTIAL DIAGNOSTIC MARKERS

    PubMed Central

    Charles, Carlos A.; Tomic-Canic, Marjana; Vincek, Vladimir; Nassiri, Mehdi; Stojadinovic, Olivera; Eaglstein, William H.; Kirsner, Robert S.

    2016-01-01

    Background Venous leg ulcers are responsible for more than half of all lower extremity ulcerations. Significant interest has been focused on understanding the physiologic basis upon which patients fail to heal with standard therapy. Objective This study uses complementary DNA microarray analysis of tissue samples from healing and non-healing venous leg ulcers to identify the genetic expression profiles from these dichotomous populations. Methods Ulcer size and chronicity, factors that have been identified as prognostic indicators for healing, were used to distribute venous leg ulcers as healing versus non-healing. Punch biopsy samples were obtained from the wound edge and wound bed of all venous leg ulcers. The top fifteen genes with differential expression greater than twofold between the two populations of wounds (p < 0.05) were reported. Results Significant differences were demonstrated in the expression of a diverse collection of genes, with particular differences demonstrated by genes coding for structural epidermal proteins, genes associated with hyperproliferation and tissue injury, as well as transcription factors. Limitations Small sample size may mitigate potential clinical implications of findings. Conclusions The genetic expression profiles displayed here may have implications for the development of novel therapies for chronic venous leg ulcers, and may also serve as prognostic indicators for wound healing. PMID:18718692

  15. Diagnostic development and support of MHD test facilities

    SciTech Connect

    Not Available

    1990-01-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL's computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. 9 figs., 1 tab.

  16. Diagnostic development and support of MHD test facilities

    SciTech Connect

    Not Available

    1990-01-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for MHD power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL's computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. 25 figs., 6 tabs.

  17. Chemical signatures and new drug targets for gametocytocidal drug development

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Tanaka, Takeshi Q.; Magle, Crystal T.; Huang, Wenwei; Southall, Noel; Huang, Ruili; Dehdashti, Seameen J.; McKew, John C.; Williamson, Kim C.; Zheng, Wei

    2014-01-01

    Control of parasite transmission is critical for the eradication of malaria. However, most antimalarial drugs are not active against P. falciparum gametocytes, responsible for the spread of malaria. Consequently, patients can remain infectious for weeks after the clearance of asexual parasites and clinical symptoms. Here we report the identification of 27 potent gametocytocidal compounds (IC50 < 1 μM) from screening 5,215 known drugs and compounds. All these compounds were active against three strains of gametocytes with different drug sensitivities and geographical origins, 3D7, HB3 and Dd2. Cheminformatic analysis revealed chemical signatures for P. falciparum sexual and asexual stages indicative of druggability and suggesting potential targets. Torin 2, a top lead compound (IC50 = 8 nM against gametocytes in vitro), completely blocked oocyst formation in a mouse model of transmission. These results provide critical new leads and potential targets to expand the repertoire of malaria transmission-blocking reagents.

  18. DIAGNOSTIC TOOL DEVELOPMENT AND APPLICATION THROUGH REGIONAL CASE STUDIES

    EPA Science Inventory

    Case studies are a useful vehicle for developing and testing conceptual models, classification systems, diagnostic tools and models, and stressor-response relationships. Furthermore, case studies focused on specific places or issues of interest to the Agency provide an excellent ...

  19. Diagnostic training for nuclear plant personnel. Volume 1. Courseware development

    SciTech Connect

    Johnson, W.B.; Maddox, M.E.; Rouse, W.B.; Kiel, G.C.

    1985-01-01

    The need and potential for improved diagnostic training in the nuclear industry are considered. Via the results of on-site interviews and mailed opinionnaires, it is concluded that the industry has a strong desire for improved diagnostic training, as well as definite opinions regarding the knowledge, skills, and experiences that this training should provide. A conceptual framework for acquisition of diagnostic proficiency is presented and, in conjunction with consideration of fundamental human abilities and limitations, used to support the assertion that simulation-oriented computer-based instruction is an appropriate agent of diagnostic training. An analytical top-down process for developing this approach to diagnostic training is presented and illustrated by synthesizing prototype courseware for diesel generator operations and maintenance personnel.

  20. Development of novel fuel ion ratio diagnostic techniques

    SciTech Connect

    Korsholm, S. B.; Stejner, M.; Bindslev, H.; Furtula, V.; Leipold, F.; Meo, F.; Michelsen, P. K.; Moseev, D.; Nielsen, S. K.; Salewski, M.; Conroy, S.; Ericsson, G.; Gorini, G.; Tardocchi, M.; Hellermann, M. von; Lischtschenko, O.; Delabie, E.; Jaspers, R. J. E.

    2010-10-15

    To overcome the challenge of measuring the fuel ion ratio in the core ({rho}<0.3) of ITER, a coordinated effort aiming at developing diagnostic techniques has been initiated. The investigated techniques are novel uses or further development of existing methods such as charge exchange recombination spectrometry, neutron spectrometry, and collective Thomson scattering. An overview of the work on the three diagnostic techniques is presented.

  1. Plasma Proteomic Profiling in Hereditary Breast Cancer Reveals a BRCA1-Specific Signature: Diagnostic and Functional Implications

    PubMed Central

    Scumaci, Domenica; Tammè, Laura; Fiumara, Claudia Vincenza; Pappaianni, Giusi; Concolino, Antonio; Leone, Emanuela; Faniello, Maria Concetta; Quaresima, Barbara; Ricevuto, Enrico; Costanzo, Francesco Saverio; Cuda, Giovanni

    2015-01-01

    Background Breast cancer (BC) is a leading cause of death among women. Among the major risk factors, an important role is played by familial history of BC. Germ-line mutations in BRCA1/2 genes account for most of the hereditary breast and/or ovarian cancers. Gene expression profiling studies have disclosed specific molecular signatures for BRCA1/2-related breast tumors as compared to sporadic cases, which might help diagnosis and clinical follow-up. Even though, a clear hallmark of BRCA1/2-positive BC is still lacking. Many diseases are correlated with quantitative changes of proteins in body fluids. Plasma potentially carries important information whose knowledge could help to improve early disease detection, prognosis, and response to therapeutic treatments. The aim of this study was to develop a comprehensive approach finalized to improve the recovery of specific biomarkers from plasma samples of subjects affected by hereditary BC. Methods To perform this analysis, we used samples from patients belonging to highly homogeneous population previously reported. Depletion of high abundant plasma proteins, 2D gel analysis, liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analysis were used into an integrated approach to investigate tumor-specific changes in the plasma proteome of BC patients and healthy family members sharing the same BRCA1 gene founder mutation (5083del19), previously reported by our group, with the aim to identify specific signatures. Results The comparative analysis of the experimental results led to the identification of gelsolin as the most promising biomarker. Conclusions Further analyses, performed using a panel of breast cancer cell lines, allowed us to further elucidate the signaling network that might modulate the expression of gelsolin in breast cancer. PMID:26061043

  2. Diagnostics Development for the Ignition Experiment Ignitor

    NASA Astrophysics Data System (ADS)

    Pizzicaroli, G.; Bombarda, F.; Licciulli, A.; Fersini, M.; Diso, D.; Kroegler, H.

    2008-11-01

    The Ignitor experiment is designed to reach ignition conditions. The short, but intense neutron flux will pose challenging conditions for diagnostics, such as magnetic sensors or bolometers, in direct proximity, or in direct view, of the plasma. An R&D program is in progress to manufacture mineral insulated magnetic coils with a reduced sensitivity to radiation effects. A double layer, MgO insulated Ni coil has been produced and tested. The wire is wound on an alumina core and the coil is housed in an alumina box for high refractoriness and minimum vacuum degassing. A lanthanide glass ceramic has been used as sealant for the box. At the same time, alternative methods to provide critical plasma position information during the high performance discharges in Ignitor are being explored. For example, the radiation emitted at the plasma edge by Mo^+14 can be monitored by means of a soft X- ray spectrometer equipped with a GEM detector, which allows high counting rates (> 1 MHz) and provides good energy resolution and flexibility of design. A 10x10 cm^2 multichannel prototype with its associated fast read-out system is being assembled. A layout of the complete spectrometer compatible with the Ignitor port design has been carried out, and the bolometer system design has been updated.

  3. Development of a synthetic phase contrast imaging diagnostic

    SciTech Connect

    Rost, J. C.; Lin, L.; Porkolab, M.

    2010-06-15

    A ''synthetic diagnostic'' has been developed to calculate the expected experimental response of phase contrast imaging (PCI), a scattering diagnostic used to measure density fluctuations in laboratory plasmas, to a tokamak discharge modeled with the GYRO nonlinear gyrokinetic code [J. Candy and R. Waltz, J. Comput. Phys. 186, 545 (2003)]. The synthetic PCI includes the spatial response of the experimental diagnostic, primarily implemented as a line integral of plasma density along the beam path, and the minimum and maximum wavenumber response resulting from the detection scheme. The synthetic PCI can be used for comparisons between GYRO and experiment as well as studies of the PCI response.

  4. Development of a synthetic phase contrast imaging diagnostic

    NASA Astrophysics Data System (ADS)

    Rost, J. C.; Lin, L.; Porkolab, M.

    2010-06-01

    A "synthetic diagnostic" has been developed to calculate the expected experimental response of phase contrast imaging (PCI), a scattering diagnostic used to measure density fluctuations in laboratory plasmas, to a tokamak discharge modeled with the GYRO nonlinear gyrokinetic code [J. Candy and R. Waltz, J. Comput. Phys. 186, 545 (2003)]. The synthetic PCI includes the spatial response of the experimental diagnostic, primarily implemented as a line integral of plasma density along the beam path, and the minimum and maximum wavenumber response resulting from the detection scheme. The synthetic PCI can be used for comparisons between GYRO and experiment as well as studies of the PCI response.

  5. Diagnostic development and support of MHD (magnetohydrodynamics) test facilities

    SciTech Connect

    Not Available

    1989-07-01

    Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for HRSR support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with MHD Energy Center computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. MSU personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.

  6. Planning and developing a diagnostic imaging center.

    PubMed

    Meehan, Margaret J; Whelton, Dianne G

    2004-12-01

    The convergence of an aging population, new technology, and an increasing number of clinical applications and reimbursements has created a favorable environment for ambulatory imaging centers. From a patient's perspective, features such as easy access, parking, appointment availability, and a setting that caters to outpatients are attractive compared with the hospital environment. Before embarking on a venture, the execution of a careful, thorough planning process, from the inception of the idea to the opening, is vital to success. This article provides guidance on the process by discussing the process of determining whether a project is feasible; developing a business plan that will measure potential success; locating, financing, and planning space; contractor selection and project management; and planning operations. PMID:17411733

  7. Emission Signatures from Sub-parsec Binary Supermassive Black Holes. I. Diagnostic Power of Broad Emission Lines

    NASA Astrophysics Data System (ADS)

    Nguyen, Khai; Bogdanović, Tamara

    2016-09-01

    Motivated by advances in observational searches for sub-parsec supermassive black hole binaries (SBHBs) made in the past few years, we develop a semi-analytic model to describe spectral emission-line signatures of these systems. The goal of this study is to aid the interpretation of spectroscopic searches for binaries and to help test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this work, we present the methodology and a comparison of the preliminary model with the data. We model SBHB accretion flows as a set of three accretion disks: two mini-disks that are gravitationally bound to the individual black holes and a circumbinary disk. Given a physically motivated parameter space occupied by sub-parsec SBHBs, we calculate a synthetic database of nearly 15 million broad optical emission-line profiles and explore the dependence of the profile shapes on characteristic properties of SBHBs. We find that the modeled profiles show distinct statistical properties as a function of the semimajor axis, mass ratio, eccentricity of the binary, and the degree of alignment of the triple disk system. This suggests that the broad emission-line profiles from SBHB systems can in principle be used to infer the distribution of these parameters and as such merit further investigation. Calculated profiles are more morphologically heterogeneous than the broad emission lines in observed SBHB candidates and we discuss improved treatment of radiative transfer effects, which will allow a direct statistical comparison of the two groups.

  8. Development of a New Diagnostic System for Human Liver Diseases Based on Conventional Ultrasonic Diagnostic Equipment

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tsuneo; Nakazawa, Toshihiro; Harada, Akimitsu; Sato, Hiroaki; Maruyama, Yukio; Sato, Sojun

    2001-05-01

    In this paper, the authors present the experimental results of using a quantitative ultrasonic diagnosis technique for human liver diseases using the fractal dimension (FD) of the shape of the power spectra (PS) of RF signals. We have developed an experimental system based on a conventional ultrasonic diagnostic system. As a result, we show that normal livers, fatty livers and liver cirrhosis can be identified using the FD values.

  9. Guidelines for the Development of an Effective Diagnostic System.

    ERIC Educational Resources Information Center

    Morreau, Lanny; And Others

    Described is the diagnostic teaching model developed by the Illinois Regional Resource Center to provide assessment and programing for children with unexplained handicaps. The model is explained to involve a multidisciplinary approach and to include six basic components: referals, information gathering, diagnosis, prescription, consultation, and…

  10. Progress of development of Thomson scattering diagnostic system on COMPASS

    SciTech Connect

    Bilkova, P.; Melich, R.; Aftanas, M.; Boehm, P.; Sestak, D.; Jares, D.; Weinzettl, V.; Stoeckel, J.; Hron, M.; Panek, R.; Walsh, M. J.

    2010-10-15

    A new Thomson scattering diagnostic system has been designed and is being built now on the COMPASS tokamak at the Institute of Plasma Physics ASCR in Prague (IPP Prague) in the Czech Republic. This contribution focuses on design, development, and installation of the light collection and detection system. High spatial resolution of 3 mm will be achieved by a combination of design of collection optics and connected polychromators. Imaging characteristics of both core and edge plasma collection objectives are described and fiber backplane design is presented. Several calibration procedures are discussed. The operational deployment of the Thomson scattering diagnostic is planned by the end of 2010.

  11. ToxCast: Developing Predictive Signatures of Chemically Induced Toxicity (Developing Predictive Bioactivity Signatures from ToxCasts HTS Data)

    EPA Science Inventory

    ToxCast, the United States Environmental Protection Agency’s chemical prioritization research program, is developing methods for utilizing computational chemistry, bioactivity profiling and toxicogenomic data to predict potential for toxicity and prioritize limited testing resour...

  12. Developing a self-diagnostic system for piezoelectric sensors

    NASA Technical Reports Server (NTRS)

    Flanagan, Patrick M.; Atherton, William J.

    1990-01-01

    Measurement techniques for developing a self-diagnostic system for piezoelectric sensors are presented. The self-diagnostic system uses two types of measurement techniques based on passive and active evaluation of the piezoelectric element. Both hard and soft failures can be detected by this system. Hard failures such as loss of sensor signal and change in sensor output resistance are determined by monitoring the sensor's output resistance, voltage or current. These are passive measurements of the sensor's output condition. Soft failures include changes in sensor calibration and mounting conditions. Soft failures are detected by measuring structural/electrical impedance of the piezoelectric sensor. Active measurement techniques are used to calculate changes in piezoelectric element properties related to soft failures. This paper describes the general operating principles of a self-diagnostic system and discusses the design of an active/passive measurement technique required for this system to function. Experimental results using two types of piezoelectric accelerometers are presented.

  13. Longitudinal shower development and its signature at observation level

    NASA Astrophysics Data System (ADS)

    Chitnis, V. R.; Bhat, P. N.

    2002-03-01

    From a study of Cverenkov photon arrival times at various core distances at the observation level it has already been established that the photon front is well fitted with a spherical surface traveling at the speed of light and originating from a fixed point on the shower axis. The radius of curvature as measured at the observation level has been found to be roughly equal to the height of shower maximum from the observation level. In the present work we study the relationship between the radius of curvature of the shower fromt (R), the height of electron maximum (he), the Cverenkov photon maximum (hCv) and the average production height of Cverenkov photons (h-). Cverenkov pulse width (w) has always ben used as a parameter to study cascade development especially at tens of PeV energies. We discuss the relation between the w and he at TeV energies for gamma-ray and proton primaries.

  14. FY-93 noncontacting acoustic ultrasonic signature analysis development

    SciTech Connect

    Tow, D.M.; Rodriguez, J.G.; Williamson, R.L.; Blackwood, L.G.

    1994-04-01

    A noncontacting, long-standoff inspection system with proven capabilities in container fill identification has been under development at the Idaho National Engineering Laboratory. The system detects subtle change in container vibration characteristics caused by differences in the physical properties of the fill materials. A container is inspected by acoustically inducting it to vibrate and sensing the vibrational response with a laser vibrometer. A standoff distance of several meters is feasible. In previous work the system proved to be a reliable means of distinguishing between munitions with a variety of chemical fills. During FY-93, the system was modified to improve performance and simplify operation. Other FY-93 accomplishments include progress in modeling the vibrational characteristics of containers and refinements to the statistical classification algorithms. Progress was also made in identifying other applications for this technology.

  15. Development of an otolaryngological interferometric fiber optic diagnostic probe

    NASA Astrophysics Data System (ADS)

    Conerty, Michelle D.; Castracane, James; Saravia, Eduardo; Parnes, Steven M.; Cacace, Anthony T.

    1992-08-01

    Current medical instrumentation research at InterScience, Inc. is aimed at utilizing state of the art electro-optics in the development of a diagnostic fiber optic instrument capable of quantifying vibration patterns in real time. This work is in collaboration with the Division of Otolaryngology of the Albany Medical College. The innovative diagnostic probe system design involves the miniaturization of an electronic speckle pattern interferometry (ESPI) system through the use of fiber optic elements coupled with high speed image acquisition from a solid state matrix detector. Subsequent frame by frame processing produces a high quality three-dimensional spatial representation of the vibrational pattern. The diagnostic probe system is being developed for quantitative tympanic membrane and vocal cord vibration analysis. The significance of the introduction of this instrument to the medical community is the contribution it could make in the efficiency and effectiveness of the diagnosis of otolaryngological disorders. Specific applications include the evaluation of tympanosclerosis, stiffness related middle ear disorders, ossicular chain abnormalities, tympanic membrane replacement, vocal dysphonias, and early detection of laryngeal carcinomas, cysts, and phenomenological properties of mucosal wave dynamics. The current instrumentation research is focused on the production of a prototype system for clinical trials. This research is based in ESPI optical system development and miniaturization, system hardware and software development, and clinical design of the probe heads within anatomical limitations. Significant advantages of this diagnostic tool over currently used instrumentation and procedures are the real time capabilities of the instrument, the ability to quantify the vibrational pattern in time and space, and the possibility of establishing a database of patient history and disorder characteristics. Once fully developed and integrated into the clinical

  16. Developing epigenetic diagnostics and therapeutics for brain disorders

    PubMed Central

    Qureshi, Irfan A.; Mehler, Mark F.

    2013-01-01

    Perturbations in epigenetic mechanisms have emerged as cardinal features in the molecular pathology of major classes of brain disorders. We therefore highlight evidence which suggests that specific epigenetic signatures measurable in central—and possibly even in peripheral tissues—have significant value as translatable biomarkers for screening, early diagnosis, and prognostication; developing molecularly targeted medicines; and monitoring disease progression and treatment responses. We also draw attention to existing and novel therapeutic approaches directed at epigenetic factors and mechanisms, including strategies for modulating enzymes that write and erase DNA methylation and histone/chromatin marks; protein-protein interactions responsible for reading epigenetic marks; and non-coding RNA pathways. PMID:24145019

  17. Development of Multigene Expression Signature Maps at the Protein Level from Digitized Immunohistochemistry Slides

    PubMed Central

    Metzger, Gregory J.; Dankbar, Stephen C.; Henriksen, Jonathan; Rizzardi, Anthony E.; Rosener, Nikolaus K.; Schmechel, Stephen C.

    2012-01-01

    Molecular classification of diseases based on multigene expression signatures is increasingly used for diagnosis, prognosis, and prediction of response to therapy. Immunohistochemistry (IHC) is an optimal method for validating expression signatures obtained using high-throughput genomics techniques since IHC allows a pathologist to examine gene expression at the protein level within the context of histologically interpretable tissue sections. Additionally, validated IHC assays may be readily implemented as clinical tests since IHC is performed on routinely processed clinical tissue samples. However, methods have not been available for automated n-gene expression profiling at the protein level using IHC data. We have developed methods to compute expression level maps (signature maps) of multiple genes from IHC data digitized on a commercial whole slide imaging system. Areas of cancer for these expression level maps are defined by a pathologist on adjacent, co-registered H&E slides, allowing assessment of IHC statistics and heterogeneity within the diseased tissue. This novel way of representing multiple IHC assays as signature maps will allow the development of n-gene expression profiling databases in three dimensions throughout virtual whole organ reconstructions. PMID:22438942

  18. An easy-to-use diagnostic system development shell

    NASA Technical Reports Server (NTRS)

    Tsai, L. C.; Ross, J. B.; Han, C. Y.; Wee, W. G.

    1987-01-01

    The Diagnostic System Development Shell (DSDS), an expert system development shell for diagnostic systems, is described. The major objective of building the DSDS is to create a very easy to use and friendly environment for knowledge engineers and end-users. The DSDS is written in OPS5 and CommonLisp. It runs on a VAX/VMS system. A set of domain independent, generalized rules is built in the DSDS, so the users need not be concerned about building the rules. The facts are explicitly represented in a unified format. A powerful check facility which helps the user to check the errors in the created knowledge bases is provided. A judgement facility and other useful facilities are also available. A diagnostic system based on the DSDS system is question driven and can call or be called by other knowledge based systems written in OPS5 and CommonLisp. A prototype diagnostic system for diagnosing a Philips constant potential X-ray system has been built using the DSDS.

  19. Authentication of animal signatures in traditional Chinese medicine of Lingyang Qingfei Wan using routine molecular diagnostic assays.

    PubMed

    Cao, Meng; Wang, Jikun; Yao, Lu; Xie, Suhua; Du, Jing; Zhao, Xingbo

    2014-01-01

    Lingyang Qingfei Wan produced by Beijing TongRenTang is a long-standing and popular medicine in China and international pharmaceutical markets. Concerns continue to be raised about the legality of usage of saiga antelope, which was defined as endangered species by Convention on International Trade in Endangered Species of Wild Fauna and Flora legislation and internal legislation in China. Therefore, the alternative pill in which substitutes saiga antelope with goat in the formula of Lingyang Qingfei Wan was developed. In order to authenticate the origin of animal contents in Lingyang Qingfei Wan and its alternative pill, molecular diagnostic assay was utilized by mtDNA polymorphism analysis. Four universal primer pairs containing mtDNA 12SrRNA, 16SrRNA, cytochrome b gene and cytochrome oxidase I were employed to obtain species-specific sequences of saiga antelope and goat, and multiple species-specific primer pairs for saiga antelope and goat were used to identify the animal origin in patent pills according to nucleotide polymorphisms between the two species. In additions, alternative techniques were attempted surrounding dilemmas of low concentration of target DNAs and presence of PCR-inhibitory substances in organic ingredients within complex pill. Results revealed that all species-specific primers could be successfully used for authentication of animal origin within complex pill, and sample preprocessing was critical during experimental manipulation. Internal positive control was an efficient and cost-effective way to assist in monitoring the potential interference from inhibitory substances which existed in the highly processed pills. PMID:24445529

  20. Advanced Diagnostics for Developing High-Brightness Electron Beams

    SciTech Connect

    Ben-Zvi, I.; Babzien, M.; Malone, R.; Wang, X.-J.; Yakimenko, V.

    1998-11-24

    The production of high-brightness particle beams calls for the development of advanced beam diagnostics. High brightness beams, meaning beams with a high density in phase space, are important for many applications, such as short-wavelength Free-Electron Lasers and advanced accelerator systems. A diagnostic that provides detailed information on the density distribution of the electron bunch in multi-dimensional phase-space is an essential tool for obtaining small emittance at a high charge. This diagnostic system has been developed at Brookhaven National Laboratory. One component of the system is the measurement of a slice emittance which provides a measurement of transverse beam properties (such as emittance) as a function of the longitudinal position. Changing the laser pulse profile of a photocathode RF gun has been suggested as one way to achieve non-linear emittance compensation and improve the brightness and that can be diagnosed by the slice emittance system. The other element of the diagnostic is the tomographic reconstruction of the transverse phase. In our work we give special attention to the accuracy of the phase space reconstruction and present an analysis using a transport line with nine focusing magnets and techniques to control the optical functions and phases. This high precision phase space tomography together with the ability to modify the radial charge distribution of the electron beam presents an opportunity to improve the emittance and apply non-linear radial emittance corrections. Combining the slice emittance and tomography diagnostics leads to an unprecedented visualization of phase space distributions in 5 dimensional phase-space and an opportunity to perform high-order emittance corrections. This should lead to great improvements in the beam brightness.

  1. ADVANCED DIAGNOSTICS FOR DEVELOPING HIGH-BRIGHTNESS ELECTRON BEAMS.

    SciTech Connect

    BEN-ZVI,I.

    1998-11-24

    The production of high-brightness particle beams calls for the development of advanced beam diagnostics. High brightness beams, meaning beams with a high density in phase space, are important for many applications, such as short-wavelength Free-Electron Lasers and advanced accelerator systems. A diagnostic that provides detailed information on the density distribution of the electron bunch in multi-dimensional phase-space is an essential tool for obtaining small emittance at a high charge. This diagnostic system has been developed at Brookhaven National Laboratory. One component of the system is the measurement of a slice emittance which provides a measurement of transverse beam properties (such as emittance) as a function of the longitudinal position. Changing the laser pulse profile of a photocathode RF gun has been suggested as one way to achieve non-linear emittance compensation and improve the brightness and that can be diagnosed by the slice emittance system. The other element of the diagnostic is the tomographic reconstruction of the transverse phase. In our work we give special attention to the accuracy of the phase space reconstruction and present an analysis using a transport line with nine focusing magnets and techniques to control the optical functions and phases. This high precision phase space tomography together with the ability to modify the radial charge distribution of the electron beam presents an opportunity to improve the emittance and apply non-linear radial emittance corrections. Combining the slice emittance and tomography diagnostics leads to an unprecedented visualization of phase space distributions in 5 dimensional phase-space and an opportunity to perform high-order emittance corrections. This should lead to great improvements in the beam brightness.

  2. Edge plasma and current profile diagnostic development. Final report

    SciTech Connect

    McChesney, J.M.

    1997-05-01

    This is the final report covering the research conducted under DOE Grant No. DE-FG03-92ER54150 entitled ``Edge Plasma and Current Profile Diagnostic Development.`` It is intended to summarize the investigation and will go into somewhat more detail regarding the aims, techniques, and results of the project research than the standard technical progress reports submitted previously. During the course of this work the authors developed and implemented an atomic beam-based diagnostic technique for investigating edge plasma density behavior on the TEXT Tokamak. The project required the modification of the existing 100 keV TEXT lithium beam to operate at 20--30 keV and the addition of a new 20 detector chain to collect the fluorescence emissions. The modifications were completed and experimental density profiles were unfolded using a new inversion technique.

  3. Development of Synthetic Diagnostics for use in Validation

    NASA Astrophysics Data System (ADS)

    Lemmon, Danielle; Woodruff, Simon; Romero-Talamas, Carlos A.; O'Bryan, John; Darpa Spheromak Team

    2015-11-01

    Synthetic diagnostics are reproductions of experimental measurements obtained from simulation data, taking the same spatial averages (point, line, plane or volume) as in the experiment. This reduction of data facilitates meaningful direct quantitative comparisons which then allows for validation of simulation results. We demonstrate the development with data sets produced by highly spatially and temporally resolved NIMROD simulations with reference to the spheromak concept under development at UMBC. We present here results from a set of synthetic diagnostics that are scripted in Octave. Quantities such as magnetic field, temperature, and density are visually represented by color-coded graphs and movies to demonstrate how these quantities change over time. We discuss errors that enter into the computation of the quantities. Work performed under DARPA grant N66001-14-1-4044.

  4. Background review for diagnostic test development for Zika virus infection

    PubMed Central

    Charrel, Rémi N; Leparc-Goffart, Isabelle; Pas, Suzan; de Lamballerie, Xavier; Koopmans, Marion; Reusken, Chantal

    2016-01-01

    Abstract Objective To review the state of knowledge about diagnostic testing for Zika virus infection and identify areas of research needed to address the current gaps in knowledge. Methods We made a non-systematic review of the published literature about Zika virus and supplemented this with information from commercial diagnostic test kits and personal communications with researchers in European preparedness networks. The review covered current knowledge about the geographical spread, pathogen characteristics, life cycle and infection kinetics of the virus. The available molecular and serological tests and biosafety issues are described and discussed in the context of the current outbreak strain. Findings We identified the following areas of research to address current knowledge gaps: (i) an urgent assessment of the laboratory capacity and capability of countries to detect Zika virus; (ii) rapid and extensive field validation of the available molecular and serological tests in areas with and without Zika virus transmission, with a focus on pregnant women; (iii) monitoring the genomic diversity of circulating Zika virus strains; (iv) prospective studies into the virus infection kinetics, focusing on diagnostic sampling (specimen types, combinations and timings); and (v) developing external quality assessments for molecular and serological testing, including differential diagnosis for similar viruses and symptom clusters. The availability of reagents for diagnostic development (virus strains and antigens, quantified viral ribonucleic acid) needs to be facilitated. Conclusion An international laboratory response is needed, including preparation of protocols for prospective studies to address the most pressing information needs. PMID:27516635

  5. Development of laser-aided plasma diagnostics and related technology

    SciTech Connect

    Kawahata, K.; Akiyama, T.; Pavlichenko, R.; Tanaka, K.; Nakayama, K.; Okajima, S.

    2008-03-12

    Laser-aided plasma diagnostics, aiming for establishment of reliable density measurement in next step magnetically confined fusion devices, are under development at the National Institute for Fusion Science. A new type of two color laser (57.2/47.6-{mu}m CH{sub 3}OD) interferometer has been developed and its original function, vibration subtraction, was confirmed in a test stand. The line integrated density measurements by the polarimeter were demonstrated at Compact Helical System by the Cotton-Mouton polarimeter and at the LHD by the Faraday rotation polarimeter.

  6. Development of a multiarray biosensor for DNA diagnostics

    SciTech Connect

    Vo-Dinh, T.; Isola, N.; Alarie, J.P.; Landis, D.; Griffin, G.D.; Allison, S.

    1998-11-01

    This work involves the development and evaluation of a multiarray biosensor for DNA diagnostics. The evaluation of various system components developed for the biosensor is discussed. The DNA probes labeled with visible and near infrared (NIR) dyes are evaluated. The detection system uses a two-dimensional charge-coupled device (CCD). Examples of application of gene probes in DNA hybridization experiments and in biomedical diagnosis (detection of the p53 cancer gene) are presented to illustrate the usefulness and potential of the biosensor device.

  7. Development of new malaria diagnostics: matching performance and need.

    PubMed

    Bell, David; Fleurent, Alessandra E; Hegg, Michael C; Boomgard, John D; McConnico, Caitlin C

    2016-01-01

    Despite advances in diagnostic technology, significant gaps remain in access to malaria diagnosis. Accurate diagnosis and misdiagnosis leads to unnecessary waste of resources, poor disease management, and contributes to a cycle of poverty in low-resourced communities. Despite much effort and investment, few new technologies have reached the field in the last 30 years aside from lateral flow assays. This suggests that much diagnostic development effort has been misdirected, and/or that there are fundamental blocks to introduction of new technologies. Malaria diagnosis is a difficult market; resources are broadly donor-dependent, health systems in endemic countries are frequently weak, and the epidemiology of malaria and priorities of malaria programmes and donors are evolving. Success in diagnostic development will require a good understanding of programme gaps, and the sustainability of markets to address them. Targeting assay development to such clearly defined market requirements will improve the outcomes of product development funding. Six market segments are identified: (1) case management in low-resourced countries, (2) parasite screening for low density infections in elimination programmes, (3) surveillance for evidence of continued transmission, (4) clinical research and therapeutic efficacy monitoring, (5) cross-checking for microscopy quality control, and (6) returned traveller markets distinguished primarily by resource availability. While each of these markets is potentially compelling from a public health standpoint, size and scale are highly variable and continue to evolve. Consequently, return on investment in research and development may be limited, highlighting the need for potentially significant donor involvement or the introduction of novel business models to overcome prohibitive economics. Given the rather specific applications, a well-defined set of stakeholders will need to be on board for the successful introduction and scaling of any new

  8. Development of a new virtual diagnostic for V3FIT

    SciTech Connect

    Trevisan, G. L. Terranova, D.; Cianciosa, M. R.; Hanson, J. D.

    2014-12-15

    The determination of plasma equilibria from diagnostic information is a fundamental issue. V3FIT is a fully three-dimensional reconstruction code capable of solving the inverse problem using both magnetic and kinetic measurements. It uses VMEC as core equilibrium solver and supports both free- and fixed-boundary reconstruction approaches. In fixed-boundary mode VMEC does not use explicit information about currents in external coils, even though it has important effects on the shape of the safety factor profile. Indeed, the edge safety factor influences the reversal position in RFP plasmas, which then determines the position of the m = 0 island chain and the edge transport properties. In order to exploit such information a new virtual diagnostic has been developed, that thanks to Ampère's law relates the external current through the center of the torus to the circulation of the toroidal magnetic field on the outermost flux surface. The reconstructions that exploit the new diagnostic are indeed found to better interpret the experimental data with respect to edge physics.

  9. Development of a Transient Acoustic Boundary Element Method to Predict the Noise Signature of Swimming Fish

    NASA Astrophysics Data System (ADS)

    Wagenhoffer, Nathan; Moored, Keith; Jaworski, Justin

    2015-11-01

    Animals have evolved flexible wings and fins to efficiently and quietly propel themselves through the air and water. The design of quiet and efficient bio-inspired propulsive concepts requires a rapid, unified computational framework that integrates three essential features: the fluid mechanics, the elastic structural response, and the noise generation. This study focuses on the development, validation, and demonstration of a transient, two-dimensional acoustic boundary element solver accelerated by a fast multipole algorithm. The resulting acoustic solver is used to characterize the acoustic signature produced by a vortex street advecting over a NACA 0012 airfoil, which is representative of vortex-body interactions that occur in schools of swimming fish. Both 2S and 2P canonical vortex streets generated by fish are investigated over the range of Strouhal number 0 . 2 < St < 0 . 4 , and the acoustic signature of the airfoil is quantified. This study provides the first estimate of the noise signature of a school of swimming fish. Lehigh University CORE Grant.

  10. Diagnostic development for determining the joint temperature/soot statistics in hydrocarbon-fueled pool fires : LDRD final report.

    SciTech Connect

    Casteneda, Jaime N.; Frederickson, Kraig; Grasser, Thomas W.; Hewson, John C.; Kearney, Sean Patrick; Luketa, Anay Josephine

    2009-09-01

    A joint temperature/soot laser-based optical diagnostic was developed for the determination of the joint temperature/soot probability density function (PDF) for hydrocarbon-fueled meter-scale turbulent pool fires. This Laboratory Directed Research and Development (LDRD) effort was in support of the Advanced Simulation and Computing (ASC) program which seeks to produce computational models for the simulation of fire environments for risk assessment and analysis. The development of this laser-based optical diagnostic is motivated by the need for highly-resolved spatio-temporal information for which traditional diagnostic probes, such as thermocouples, are ill-suited. The in-flame gas temperature is determined from the shape of the nitrogen Coherent Anti-Stokes Raman Scattering (CARS) signature and the soot volume fraction is extracted from the intensity of the Laser-Induced Incandescence (LII) image of the CARS probed region. The current state of the diagnostic will be discussed including the uncertainty and physical limits of the measurements as well as the future applications of this probe.

  11. Latest Diagnostic Electronics Development for the PROSCAN Proton Accelerator

    SciTech Connect

    Duperrex, P.A.; Frei, U.; Gamma, G.; Mueller, U.; Rezzonico, L.

    2004-11-10

    New VME-based diagnostic electronics are being developed for PROSCAN, a proton accelerator for medical application presently under construction at PSI. One new development is a VME-based multi-channel logarithmic amplifier for converting current to voltage (LogIV). The LogIV boards are used for measuring current from the multiple wire (harp) profile monitors. The LogIV calibration method, current dependant bandwidth and temperature stability are presented. Another development is a BPM front end, based on the newest digital receiver techniques. Features of this new system are the remote control of the preamplifier stage and the continuous monitoring of each individual signal overall gain. Characteristics of the developed prototype are given.

  12. Development of the Diagnostic Expert System for Tea Processing

    NASA Astrophysics Data System (ADS)

    Yoshitomi, Hitoshi; Yamaguchi, Yuichi

    A diagnostic expert system for tea processing which can presume the cause of the defect of the processed tea was developed to contribute to the improvement of tea processing. This system that consists of some programs can be used through the Internet. The inference engine, the core of the system adopts production system which is well used on artificial intelligence, and is coded by Prolog as the artificial intelligence oriented language. At present, 176 rules for inference have been registered on this system. The system will be able to presume better if more rules are added to the system.

  13. Towards the development of multilevel-multiagent diagnostic aids

    SciTech Connect

    Stratton, R.C.; Jarrell, D.B.

    1991-10-01

    Presented here is our methodology for developing automated aids for diagnosing faults in complex systems. We have designed these aids as multilevel-multiagent diagnostic aids based on principles that should be generally applicable to any complex system. In this methodology, multilevel'' refers to information models described at successful levels of abstraction that are tied together in such a way that reasoning is directed to the appropriate level as determined by the problem solving requirements. The concept of multiagent'' refers to the method of information processing within the multilevel model network; each model in the network is an independent information processor, i.e., an intelligent agent. 19 refs., 15 figs., 9 tabs.

  14. The evolving field of biodefence: therapeutic developments and diagnostics.

    PubMed

    Burnett, James C; Henchal, Erik A; Schmaljohn, Alan L; Bavari, Sina

    2005-04-01

    The threat of bioterrorism and the potential use of biological weapons against both military and civilian populations has become a major concern for governments around the world. For example, in 2001 anthrax-tainted letters resulted in several deaths, caused widespread public panic and exerted a heavy economic toll. If such a small-scale act of bioterrorism could have such a huge impact, then the effects of a large-scale attack would be catastrophic. This review covers recent progress in developing therapeutic countermeasures against, and diagnostics for, such agents. PMID:15803193

  15. Development of Doppler Global Velocimetry as a Flow Diagnostics Tool

    NASA Technical Reports Server (NTRS)

    Meyers, James F.

    1995-01-01

    The development of Doppler global velocimetry is described from its inception to its use as a flow diagnostics tool. Its evolution is traced from an elementary one-component laboratory prototype, to a full three-component configuration operating in a wind tunnel at focal distances exceeding 15 m. As part of the developmental process, several wind tunnel flow field investigations were conducted. These included supersonic flow measurements about an oblique shock, subsonic and supersonic measurements of the vortex flow above a delta wing, and three-component measurements of a high-speed jet.

  16. Development of wide area environment accelerator operation and diagnostics method

    NASA Astrophysics Data System (ADS)

    Uchiyama, Akito; Furukawa, Kazuro

    2015-08-01

    Remote operation and diagnostic systems for particle accelerators have been developed for beam operation and maintenance in various situations. Even though fully remote experiments are not necessary, the remote diagnosis and maintenance of the accelerator is required. Considering remote-operation operator interfaces (OPIs), the use of standard protocols such as the hypertext transfer protocol (HTTP) is advantageous, because system-dependent protocols are unnecessary between the remote client and the on-site server. Here, we have developed a client system based on WebSocket, which is a new protocol provided by the Internet Engineering Task Force for Web-based systems, as a next-generation Web-based OPI using the Experimental Physics and Industrial Control System Channel Access protocol. As a result of this implementation, WebSocket-based client systems have become available for remote operation. Also, as regards practical application, the remote operation of an accelerator via a wide area network (WAN) faces a number of challenges, e.g., the accelerator has both experimental device and radiation generator characteristics. Any error in remote control system operation could result in an immediate breakdown. Therefore, we propose the implementation of an operator intervention system for remote accelerator diagnostics and support that can obviate any differences between the local control room and remote locations. Here, remote-operation Web-based OPIs, which resolve security issues, are developed.

  17. X-ray diagnostic developments in the perspective of DEMO

    NASA Astrophysics Data System (ADS)

    Pacella, D.; Romano, A.; Gabellieri, L.; Causa, F.; Murtas, F.; Claps, G.; Choe, W.; Lee, S. H.; Jang, S.; Jang, J.; Hong, J.; Jeon, T.; Lee, H.

    2014-08-01

    Soft X-ray diagnostics at present are not adequate for a burning plasma experiment, neither in term of hardware nor as diagnostic conception. Detectors have to be radiation tolerant, easily shielded, with low sensitivity to neutrons and gammas and with energy discrimination. Layout and viewing capability should be more flexible, thanks to the use also of optical devices, going toward a configuration intermediate between discrete tomography and pure imaging. The general conception of these diagnostics should therefore evolve in the direction of pattern recognition for a real time feedback. This work is focused on the diagnostic developments undertaken at the ENEA- Frascati X-ray Laboratory, following in particular three directions: gas detector for fast and advanced high density tomography, C-MOS solid state imaging detectors for slow control and X-ray polycapillary optics. GEM gas detectors in photon counting mode (noise free) were developed in the range 1-30 keV having high efficiency, high time resolution (up to microseconds), energy discrimination in bands and optical flexibility. Discrimination of X-rays, neutrons and gammas has been demonstrated, thanks to the combination of intrinsic gain and discrimination thresholds, at neutron fluxes (107 n/s*cm2) comparable with the expected ones at the ports of ITER. GEM detectors are also extremely flexible in the design, allowing optimization of the measurements and solutions for shielding or minimization of the effect of background radiation. Two solid state C-MOS imagers working in photon counting mode, one based on Si semiconductor (Medipix-2, range 5-30 keV) and the other one having a CdTe sensor (Pixirad, range 2-100 keV) have been characterized in laboratory. C-MOS imagers have features and performances thoroughly complementary to the GEM detector and, thanks to their higher pixel density, could be used as remote imaging detectors coupled to optics. X-ray polycapillary lenses have been therefore studied in the

  18. X-ray diagnostic developments in the perspective of DEMO

    SciTech Connect

    Pacella, D.; Romano, A.; Gabellieri, L.; Causa, F.; Murtas, F.; Claps, G.; Choe, W.; Lee, S. H.; Jang, S.; Jang, J.; Hong, J.; Jeon, T.; Lee, H.

    2014-08-21

    Soft X-ray diagnostics at present are not adequate for a burning plasma experiment, neither in term of hardware nor as diagnostic conception. Detectors have to be radiation tolerant, easily shielded, with low sensitivity to neutrons and gammas and with energy discrimination. Layout and viewing capability should be more flexible, thanks to the use also of optical devices, going toward a configuration intermediate between discrete tomography and pure imaging. The general conception of these diagnostics should therefore evolve in the direction of pattern recognition for a real time feedback. This work is focused on the diagnostic developments undertaken at the ENEA- Frascati X-ray Laboratory, following in particular three directions: gas detector for fast and advanced high density tomography, C-MOS solid state imaging detectors for slow control and X-ray polycapillary optics. GEM gas detectors in photon counting mode (noise free) were developed in the range 1-30 keV having high efficiency, high time resolution (up to microseconds), energy discrimination in bands and optical flexibility. Discrimination of X-rays, neutrons and gammas has been demonstrated, thanks to the combination of intrinsic gain and discrimination thresholds, at neutron fluxes (10{sup 7} n/s*cm{sup 2}) comparable with the expected ones at the ports of ITER. GEM detectors are also extremely flexible in the design, allowing optimization of the measurements and solutions for shielding or minimization of the effect of background radiation. Two solid state C-MOS imagers working in photon counting mode, one based on Si semiconductor (Medipix-2, range 5-30 keV) and the other one having a CdTe sensor (Pixirad, range 2-100 keV) have been characterized in laboratory. C-MOS imagers have features and performances thoroughly complementary to the GEM detector and, thanks to their higher pixel density, could be used as remote imaging detectors coupled to optics. X-ray polycapillary lenses have been therefore

  19. A 6 gene signature identifies the risk of developing cirrhosis in patients with chronic hepatitis B.

    PubMed

    Xu, Ming-Yi; Qu, Ying; Li, Zhenghong; Li, Fei; Xiao, Chun-Yang; Lu, Lun-Gen

    2016-01-01

    Clinical factors and liver biopsy cannot accurately predict the risk of developing cirrhosis in chronic hepatitis B (CHB).This study was to develop a predictive gene signature for cirrhosis in CHB patients. A total of 183 untreated CHB patients were enrolled. GeneChip, significant analysis of microarray (SAM) and prediction analysis of microarray (PAM) were used to select predictor genes (PGs) in liver tissues. The Cirrhosis Risk Score (CRS) was calculated based on 6 PG variables and the predictive value of CRS was evaluated. Firstly differentially expressed genes were filtered from a genome scan and SAM, and 87 significant genes were selected for the signature building. Secondly a signature consisting of 6 PGs (CD24, CXCL6, EHF, ITGBL1, LUM and SOX9) most predictive for cirrhosis risk in CHB patients was developed in the selection set (n=40) by use of PAM and PCR approach. Finally the CRS was calculated to estimate the risk of developing cirrhosis and then tested in validation cohort (n=143). The area under the ROC curves (AUROC) of the CRS was 0.944 and exceeded to 6 PGs and clinical factors. A low CRS cutoff of 6.43 to identify low-risk patients would misclassify only 8.16% of high-risk patients, while a high cutoff of 8.32 to identify high-risk patients would misclassify 0% of low-risk patients. So CRS is a better predictor than clinical factors in differentiating high-risk versus low-risk for cirrhosis and application of CRS in clinical practice could help to reduce the rate of liver biopsy in patients with CHB. PMID:26709788

  20. Metallic radionuclides in the development of diagnostic and therapeutic radiopharmaceuticals.

    PubMed

    Bhattacharyya, Sibaprasad; Dixit, Manish

    2011-06-21

    Metallic radionuclides are the mainstay of both diagnostic and therapeutic radiopharmaceuticals. Therapeutic nuclear medicine is less advanced but has tremendous potential if the radionuclide is accurately targeted. Great interest exists in the field of inorganic chemistry for developing target specific radiopharmaceuticals based on radiometals for non-invasive disease detection and cancer radiotherapy. This perspective will focus on the nuclear properties of a few important radiometals and their recent applications to developing radiopharmaceuticals for imaging and therapy. Other topics for discussion will include imaging techniques, radiotherapy, analytical techniques, and radiation safety. The ultimate goal of this perspective is to introduce inorganic chemists to the field of nuclear medicine and radiopharmaceutical development, where many applications of fundamental inorganic chemistry can be found. PMID:21541393

  1. Metallic radionuclides in the development of diagnostic and therapeutic radiopharmaceuticals†

    PubMed Central

    Dixit, Manish

    2013-01-01

    Metallic radionuclides are the mainstay of both diagnostic and therapeutic radiopharmaceuticals. Therapeutic nuclear medicine is less advanced but has tremendous potential if the radionuclide is accurately targeted. Great interest exists in the field of inorganic chemistry for developing target specific radiopharmaceuticals based on radiometals for non-invasive disease detection and cancer radiotherapy. This perspective will focus on the nuclear properties of a few important radiometals and their recent applications to developing radiopharmaceuticals for imaging and therapy. Other topics for discussion will include imaging techniques, radiotherapy, analytical techniques, and radiation safety. The ultimate goal of this perspective is to introduce inorganic chemists to the field of nuclear medicine and radiopharmaceutical development, where many applications of fundamental inorganic chemistry can be found. PMID:21541393

  2. Diagnostic signature of low-energy secondary electron emission at the boundary of a partially-ionized plasma

    NASA Astrophysics Data System (ADS)

    Demidov, V. I.; Adams, S. F.; Kaganovich, I. D.; Koepke, M. E.; Kurlyandskaya, I. P.

    2015-09-01

    Effects of secondary electron emission (SEE) from a solid surface in contact with plasma are important for conducting and interpreting plasma experiments and modeling. Those effects are especially strong for contaminated surfaces. Measurements of SEE reported here are conducted in a plasma having a nearly mono-energetic population of electrons that is energetically well resolved and separated from a broader-energy-range electron population. By performing the SEE measurement in an afterglow or afterglow-like plasma, we take advantage of the nearly mono-energetic electron population that arises in ionizing plasma-chemical reactions, such as binary like-particle collisions of metastable atoms. We demonstrate a diagnostic method for measuring the low-energy electron absorption coefficient across the broader energy range and the effects of contamination on the swept-bias probe characteristic trace. A part of this research was performed while VID held a National Research Council Research Associateship Award at AFRL.

  3. Toward development of a surface enhanced Raman scattering (SERS) based cancer diagnostic immunoassay panel

    PubMed Central

    Granger, Jennifer H.; Firpo, Matthew A.; Mulvihill, Sean J.; Porter, Marc D.

    2012-01-01

    Proteomic analyses of readily obtained human fluids (e.g., serum, urine, and saliva) indicate that the diagnosis of complex diseases will be enhanced by the simultaneous measurement of multiple biomarkers from such samples. This paper describes the development of a nanoparticle-based multiplexed platform that has the potential for simultaneous readout of large numbers of biomolecules. For this purpose, we have chosen pancreatic adenocarcinoma (PA) as a test bed for diagnosis and prognosis. PA is a devastating form of cancer in which an estimated 86% of diagnoses resulted in death in the United States in 2010. The high mortality rate is due, in part, to the asymptomatic development of the disease and the dearth of sensitive diagnostics available for early detection. One promising route lies in the development of a serum biomarker panel that can generate a signature unique to early stage PA. We describe the design and development of a proof-of-concept PA biomarker immunoassay array coupled with surface enhanced Raman scattering (SERS) as a sensitive readout method. PMID:23150876

  4. Toward development of a surface-enhanced Raman scattering (SERS)-based cancer diagnostic immunoassay panel.

    PubMed

    Granger, Jennifer H; Granger, Michael C; Firpo, Matthew A; Mulvihill, Sean J; Porter, Marc D

    2013-01-21

    Proteomic analyses of readily obtained human fluids (e.g., serum, urine, and saliva) indicate that the diagnosis of complex diseases will be enhanced by the simultaneous measurement of multiple biomarkers from such samples. This paper describes the development of a nanoparticle-based multiplexed platform that has the potential for simultaneous read-out of large numbers of biomolecules. For this purpose, we have chosen pancreatic adenocarcinoma (PA) as a test bed for diagnosis and prognosis. PA is a devastating form of cancer in which an estimated 86% of diagnoses resulted in death in the United States in 2010. The high mortality rate is due, in part, to the asymptomatic development of the disease and the dearth of sensitive diagnostics available for early detection. One promising route lies in the development of a serum biomarker panel that can generate a signature unique to early stage PA. We describe the design and development of a proof-of-concept PA biomarker immunoassay array coupled with surface-enhanced Raman scattering (SERS) as a sensitive readout method. PMID:23150876

  5. Dietary zinc deficiency fuels esophageal cancer development by inducing a distinct inflammatory signature

    PubMed Central

    Taccioli, C; Chen, H; Jiang, Y; Liu, XP; Huang, K; Smalley, KJ; Farber, JL; Croce, CM; Fong, LY

    2011-01-01

    Chronic inflammation is implicated in the pathogenesis of esophageal squamous cell cancer (ESCC). The causes of inflammation in ESCC, however, are undefined. Dietary zinc-deficiency (ZD) increases the risk of ESCC. We have previously shown that short-term ZD (6 weeks) in rats induces overexpression of the proinflammatory mediators S100a8 and S100a9 in the esophageal mucosa with accompanying esophageal epithelial hyperplasia. Here we report that prolonged ZD (21 weeks) in rats amplified this inflammation that when combined with non-carcinogenic low doses of the environmental carcinogen N-nitrosomethylbenzylamine (NMBA) elicited a 66.7% (16/24) incidence of ESCC. With zinc-sufficiency NMBA produced no cancers (0/21) (P<0.001). At tumor endpoint, the neoplastic ZD esophagus as compared with zinc-sufficient esophagus had an inflammatory gene signature with upregulation of numerous cancer-related inflammation genes (CXC and CC chemokines, chemokine receptors, cytokines, and Cox-2) in addition to S100a8 and S100a9. This signature was already activated in the earlier dysplastic stage. Additionally, time-course bioinformatics analysis of expression profiles at tumor endpoint and prior to NMBA exposure revealed that this sustained inflammation was due to ZD rather than carcinogen exposure. Importantly, zinc replenishment reversed this inflammatory signature at both the dysplastic and neoplastic stages of ESCC development, and prevented cancer formation. Thus, the molecular definition of ZD-induced inflammation as a critical factor in ESCC development has important clinical implications with regard to development and prevention of this deadly disease. PMID:22179833

  6. Development, Use and Implications of Diagnostic Creativity Assessment App, RDCA--Reisman Diagnostic Creativity Assessment

    ERIC Educational Resources Information Center

    Reisman, Fredricka; Keiser, Larry; Otti, Obinna

    2016-01-01

    The Reisman Diagnostic Creativity Assessment (RDCA) is a free online self-report creativity assessment that provides immediate feedback to the user and is diagnostic, rather than predictive, with the focus on making the user aware of creative strengths and weaknesses. Several engineering and teacher education studies have included the RDCA over a…

  7. A comparison between maritime field observations and photosimulation for developing and validating visible signature evaluation tools

    NASA Astrophysics Data System (ADS)

    Culpepper, Joanne B.; Wheaton, Vivienne C.; Shao, Q. T.; Furnell, Alistair

    2015-10-01

    Over the past 50 years, the majority of detection models used to assess visible signatures have been developed and validated using static imagery. Some of these models are the German developed CAMAELEON (CAMou age Assessment by Evaluation of Local Energy Spatial Frequency and OrieNtation) model and the U.S. Army's Night Vision and Electronic Sensors Directorate (NVESD) ACQUIRE and TTP (Targeting Task Performance) models. All these models gathered the necessary human observer data for development and validation from static images in photosimulation experiments. In this paper, we compare the results of a field observation trial to a static photosimulation experiment. The probability of detection obtained from the field observation trial was compared to the detection probability obtained from the static photosimulation trial. The comparison showed good correlation between the field trial and the static image photosimulation detection probabilities, where a Spearman correlation coefficient of 0.59 was calculated. The photosimulation detection task was found to be significantly harder than the field observation detection task, suggesting that to use static image photosimulation to develop and validate maritime visible signature evaluation tools may need correction to represent detection in field observations.

  8. Defining the genomic signature of totipotency and pluripotency during early human development.

    PubMed

    Galan, Amparo; Diaz-Gimeno, Patricia; Poo, Maria Eugenia; Valbuena, Diana; Sanchez, Eva; Ruiz, Veronica; Dopazo, Joaquin; Montaner, David; Conesa, Ana; Simon, Carlos

    2013-01-01

    The genetic mechanisms governing human pre-implantation embryo development and the in vitro counterparts, human embryonic stem cells (hESCs), still remain incomplete. Previous global genome studies demonstrated that totipotent blastomeres from day-3 human embryos and pluripotent inner cell masses (ICMs) from blastocysts, display unique and differing transcriptomes. Nevertheless, comparative gene expression analysis has revealed that no significant differences exist between hESCs derived from blastomeres versus those obtained from ICMs, suggesting that pluripotent hESCs involve a new developmental progression. To understand early human stages evolution, we developed an undifferentiation network signature (UNS) and applied it to a differential gene expression profile between single blastomeres from day-3 embryos, ICMs and hESCs. This allowed us to establish a unique signature composed of highly interconnected genes characteristic of totipotency (61 genes), in vivo pluripotency (20 genes), and in vitro pluripotency (107 genes), and which are also proprietary according to functional analysis. This systems biology approach has led to an improved understanding of the molecular and signaling processes governing human pre-implantation embryo development, as well as enabling us to comprehend how hESCs might adapt to in vitro culture conditions. PMID:23614026

  9. Development and implementation of thermal signature testing protocol of auxiliary power unit (APU) and diesel tractor

    NASA Astrophysics Data System (ADS)

    Jenkins, Chelsea L.; Bourne, Stefanie M.; Rowley, Matthew J.; Miles, Jonathan J.

    2004-04-01

    Thermal signature may be one of the defining factors in determining the applicability of fuel cell auxiliary power unit (APU) technology in military applications. Thermal characterization is important for military applications given that identification and detection may be accomplished through observation of its thermal signature. The operating modes and power takeoff operations of a vehicle will likely determine the thermal profile. The objective of our study was to develop and implement a protocol for quantifying the thermal characteristics of a methanol fuel cell and an idling tractor engine under representative characteristic operations. APU thermal characteristics are a special case for which standardized testing procedures do not presently exist. A customized testing protocol was developed and applied that is specific to an APU-equipped vehicle. Initial testing was conducted on the methanol APU-equipped Freightliner tractor using a high-performance radiometric infrared system. The APU profile calls for a series of infrared images to be collected at three different viewing angles and two different elevations under various loads. The diesel engine was studied in a similar fashion using seven different viewing angles and two different elevations. Raw data collected according to the newly developed methodology provided the opportunity for computer analysis and thermal profiling of both the fuel cell and the diesel engine.

  10. Development and Validation of a Novel Platform-Independent Metastasis Signature in Human Breast Cancer

    PubMed Central

    Speers, Corey; Liu, Meilan; Wilder-Romans, Kari; Lawrence, Theodore S.; Pierce, Lori J.; Feng, Felix Y.

    2015-01-01

    Purpose The molecular drivers of metastasis in breast cancer are not well understood. Therefore, we sought to identify the biological processes underlying distant progression and define a prognostic signature for metastatic potential in breast cancer. Experimental design In vivo screening for metastases was performed using Chick Chorioallantoic Membrane assays in 21 preclinical breast cancer models. Expressed genes associated with metastatic potential were identified using high-throughput analysis. Correlations with biological function were determined using the Database for Annotation, Visualization and Integrated Discovery. Results We identified a broad range of metastatic potential that was independent of intrinsic breast cancer subtypes. 146 genes were significantly associated with metastasis progression and were linked to cancer-related biological functions, including cell migration/adhesion, Jak-STAT, TGF-beta, and Wnt signaling. These genes were used to develop a platform-independent gene expression signature (M-Sig), which was trained and subsequently validated on 5 independent cohorts totaling nearly 1800 breast cancer patients with all p-values < 0.005 and hazard ratios ranging from approximately 2.5 to 3. On multivariate analysis accounting for standard clinicopathologic prognostic variables, M-Sig remained the strongest prognostic factor for metastatic progression, with p-values < 0.001 and hazard ratios > 2 in three different cohorts. Conclusion M-Sig is strongly prognostic for metastatic progression, and may provide clinical utility in combination with treatment prediction tools to better guide patient care. In addition, the platform-independent nature of the signature makes it an excellent research tool as it can be directly applied onto existing, and future, datasets. PMID:25974184

  11. Development of a diagnostic aid for bacterial infection in wounds

    NASA Astrophysics Data System (ADS)

    Pisanelli, A. M.; Persaud, K. C.; Bailey, A.; Stuczen, M.; Duncan, R.; Dunn, K.

    2009-05-01

    Infection of wounds during hospitalisation often induces morbidity and sometimes mortality. The delay in patient recovery and subsequent increased length of hospital stay also has economic consequences. Standard techniques for microbiological detection are surface swabbing and wound biopsy culture. Surface swabbing is the most commonly used technique mainly because is quite inexpensive and is not invasive but can give only a representation of surface infection and analysis is also time consuming. Infected wounds are often characterised by an offensive odour that can be used as a diagnostic parameter. We report the results obtained by examining swabs and dressings taken from patients using a gas sensor array instrument developed as part of an EU funded project WOUNDMONITOR.

  12. Development of terahertz laser diagnostics for electron density measurements

    SciTech Connect

    Kawahata, K.; Akiyama, T.; Tanaka, K.; Nakayama, K.; Okajima, S.

    2008-10-15

    A two color laser interferometer using terahertz laser sources is under development for high performance operation on the large helical device and for future burning plasma experiments such as ITER. Through investigation of terahertz laser sources, we have achieved high power simultaneous oscillations at 57.2 and 47.6 {mu}m of a CH{sub 3}OD laser pumped by a cw 9R(8) CO{sub 2} laser line. The laser wavelength around 50 {mu}m is the optimum value for future fusion devices from the consideration of the beam refraction effect and signal-to-noise ratio for an expected phase shift due to plasma. In this article, recent progress of the terahertz laser diagnostics, especially in mechanical vibration compensation by using a two color laser operation and terahertz laser beam transmission through a dielectric waveguide, will be presented.

  13. Diagnostics development for the Electric Propulsion Orbital Platform

    NASA Technical Reports Server (NTRS)

    Ruyten, Wilhelmus M.; Friedly, V. J.; Litchford, R. J.

    1993-01-01

    We describe the development of the diagnostics systems for the first flight of the Electric Propulsion Orbital Platform (EPOP), which will center around the in-flight characterization of a 1.8 kW hydrogen arcjet system. In particular, we discuss a spacecraft communications experiment involving ground-to-spacecraft communications of the EPOP carrier; electrical probe measurements in the arcjet plume; and spectrally resolved plume imaging measurements of the same plume. The communications experiment is designed to measure small noise on the communications link which results from arcjet operation. The other two measurements primarily serve the purpose of characterization of the plume plasma. These measurements will be compared to similar measurements performed in a ground chamber to establish whether systematic differences exist between ground-based and in-flight performance of the arcjet system.

  14. Development of neutron spectrometer toward deuterium plasma diagnostics in LHD

    SciTech Connect

    Tomita, H.; Iwai, H.; Iguchi, T.; Kawarabayashi, J.; Isobe, M.; Konno, C.

    2010-10-15

    Neutron spectrometer based on coincident counting of associated particles has been developed for deuterium plasma diagnostics on Large Helical Device (LHD) at the National Institute for Fusion Science. Efficient detection of 2.5 MeV neutron with high energy resolution would be achievable by coincident detection of a scattered neutron and a recoiled proton associated with an elastic scattering of incident neutron in a plastic scintillator as a radiator. The calculated neutron spectra from deuterium plasma heated by neutral beam injection indicate that the energy resolution of better than 7% is required for the spectrometer to evaluate energetic deuterium confinement. By using a prototype of the proposed spectrometer, the energy resolution of 6.3% and the detection efficiency of 3.3x10{sup -7} count/neutron were experimentally demonstrated for 2.5 MeV monoenergetic neutron, respectively.

  15. Development of neutron spectrometer toward deuterium plasma diagnostics in LHD.

    PubMed

    Tomita, H; Iwai, H; Iguchi, T; Isobe, M; Kawarabayashi, J; Konno, C

    2010-10-01

    Neutron spectrometer based on coincident counting of associated particles has been developed for deuterium plasma diagnostics on Large Helical Device (LHD) at the National Institute for Fusion Science. Efficient detection of 2.5 MeV neutron with high energy resolution would be achievable by coincident detection of a scattered neutron and a recoiled proton associated with an elastic scattering of incident neutron in a plastic scintillator as a radiator. The calculated neutron spectra from deuterium plasma heated by neutral beam injection indicate that the energy resolution of better than 7% is required for the spectrometer to evaluate energetic deuterium confinement. By using a prototype of the proposed spectrometer, the energy resolution of 6.3% and the detection efficiency of 3.3×10(-7) count/neutron were experimentally demonstrated for 2.5 MeV monoenergetic neutron, respectively. PMID:21033835

  16. Arrayed Diagnostic Development on the HyperV Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Brockington, Samuel; Case, Andrew; Messer, Sarah; Bomgardner, Richard; Witherspoon, F. D.

    2008-11-01

    The sparkgap injected plasma accelerator is one of several coaxial railguns constructed at HyperV to accelerate dense plasmas to high velocities. A circumferential array of 112 high voltage tungsten electrodes ablates polyethylene to form and inject a toroidally shaped plasma into the annular breech at the rear of the accelerator. A pulse forming network then applies several hundred kiloamps to the coaxial electrodes to accelerate the plasma. A 4-chord laser deflectometer and a 32-sensor fast photodiode array are being developed to help resolve the structure, density, and velocity of the accelerated plasma jet for different accelerator parameters. We present details of the diagnostic designs and initial data. Work supported by the U.S. DOE Office of Fusion Energy Sciences.

  17. Development of a nine spatial point, multipulse Thomson scattering diagnostic.

    PubMed

    Glass, F; Deng, B H; Garate, E; Gornostaeva, O; Schroeder, J

    2010-10-01

    A Thomson scattering diagnostic has been developed for the C-2 field-reversed configuration device. Based on a multipulse ruby laser, the system measures the electron temperature at nine spatial points. These points are chosen from 22 selectable positions covering r≈1-41 cm. Twin collection lenses couple the scattered photons to nine optical fiber pairs. Extra fiber lengths delay the signals from different spatial points relative to each other, allowing up to three points to be analyzed by a single polychromator. The polychromator, using compact photomultipliers as detectors, has six spectral channels covering the range of 685-725 nm and is able to estimate electron temperatures of ≈10-200 eV. The photomultiplier output signals are recorded by digital storage oscilloscopes integrated with the main MDSplus database, with temperature and error estimates generated automatically at the conclusion of each plasma discharge. PMID:21033861

  18. Co-Development of Diagnostic Vectors to Support Targeted Therapies and Theranostics: Essential Tools in Personalized Cancer Therapy

    PubMed Central

    Nicolaides, Nicholas C.; O’Shannessy, Daniel J.; Albone, Earl; Grasso, Luigi

    2014-01-01

    Novel technologies are being developed to improve patient therapy through the identification of targets and surrogate molecular signatures that can help direct appropriate treatment regimens for efficacy and drug safety. This is particularly the case in oncology whereby patient tumor and biofluids are routinely isolated and analyzed for genetic, immunohistochemical, and/or soluble markers to determine if a predictive biomarker signature (i.e., mutated gene product, differentially expressed protein, altered cell surface antigen, etc.) exists as a means for selecting optimal treatment. These biomarkers may be drug-specific targets and/or differentially expressed nucleic acids, proteins, or cell lineage profiles that can directly affect the patient’s disease tissue or immune response to a therapeutic regimen. Improvements in diagnostics that can prescreen predictive response biomarker profiles will continue to optimize the ability to enhance patient therapy via molecularly defined disease-specific treatment. Conversely, patients lacking predictive response biomarkers will no longer needlessly be exposed to drugs that are unlikely to provide clinical benefit, thereby enabling patients to pursue other therapeutic options and lowering overall healthcare costs by avoiding futile treatment. While patient molecular profiling offers a powerful tool to direct treatment options, the difficulty in identifying disease-specific targets or predictive biomarker signatures that stratify a significant fraction within a disease indication remains challenging. A goal for drug developers is to identify and implement new strategies that can rapidly enable the development of beneficial disease-specific therapies for broad patient-specific targeting without the need of tedious predictive biomarker discovery and validation efforts, currently a bottleneck for development timelines. Successful strategies may gain an advantage by employing repurposed, less-expensive existing agents while

  19. Development of polymer 'chips' used in medical diagnostics

    SciTech Connect

    Brush, Zachary G; Schultz, Laura M; Vanness, Justin W; Farinholt, Kevin M; Sarles, Stephen; Leo, Donald

    2011-01-26

    In recent years, there has been growing interest in creating bio-inspired devices that feature artificial bilayer lipid membranes (BLM), or lipid bilayers. These membranes can be tailored to mimic the structure and transport properties of cellular walls and can be used to selectively transport ions and other species between aqueous volumes. One application of this research is the formation of a standardized BLM contained within a portable and disposable housing for use in medical diagnostics. This concept utilizes a flexible polymer 'chip' that has internal compartments for housing both an organic solvent and an aqueous solution, which contains phospholipid molecules, proteins, and specific analyte molecules. The formation of a BLM within the chip enables integration of the chip into an electronic reader to perform diagnostic measurements of the sample. A key element of the bilayer formation process requires a single aqueous volume to first be separated into multiple volumes such that it can then be reattached to form a bilayer at the interface. This process, called the regulated attachment method, relies on the geometry of the deformable 'chip' to separate and reattach the aqueous contents held inside by opening and closing an aperture that divides adjacent compartments through the application of mechanical force. The purpose of this research is to develop an optimized chip that provides a controllable method for initially separating the aqueous phase via dynamic excitation. This study focuses on two specific aspects: designing an efficient excitation method for separating the aqueous volume, and optimizing the geometry of the chip to decrease the required input energy and better target the location and duration of the separation. Finite Element (FE) models are used to optimize the chip geometry and to identify suitable excitation signals. A series of experimental studies are also presented to validate the FE models.

  20. Development of polymer 'chips' used in medical diagnostics

    SciTech Connect

    Brush, Zachary G; Schultz, Laura M; Vanness, Justin W; Farinholt, Kevin M; Sarles, Stephen; Leo, Donald

    2010-11-03

    In recent years, there has been growing interest in creating bio-inspired devices that feature artificial bilayer lipid membranes (BLM), or lipid bilayers. These membranes can be tailored to mimic the structure and transport properties of cellular walls and can be used to selectively transport ions and other species between aqueous volumes. One application of this research is the formation of a standardized BLM contained within a portable and disposable housing for use in medical diagnostics. This concept utilizes a flexible polymer 'chip' that has internal compartments for housing both an organic solvent and an aqueous solution, which contains phospholipid molecules, proteins, and specific analyte molecules. The formation of a BLM within the chip enables integration of the chip into an electronic reader to perform diagnostic measurements of the sample. A key element of the bilayer formation process requires a single aqueous volume to first be separated into multiple volumes such that it can then be reattached to form a bilayer at the interface. This process, called the regulated attachment method, relies on the geometry of the deformable 'chip' to separate and reattach the aqueous contents held inside by opening and closing an aperture that divides adjacent compartments through the application of mechanical force. The purpose of this research is to develop an optimized chip that provides a controllable method for initially separating the aqueous phase via dynamic excitation. This study focuses on two specific aspects: designing an efficient excitation method for separating the aqueous volume, and optimizing the geometry of the chip to decrease the required input energy and better target the location and duration of the separation. Finite Element (FE) models are used to optimize the chip geometry and to identify suitable excitation signals. A series of experimental studies are also presented to validate the FE models.

  1. Laser metrology — a diagnostic tool in automotive development processes

    NASA Astrophysics Data System (ADS)

    Beeck, Manfred-Andreas; Hentschel, Werner

    2000-08-01

    Laser measurement techniques are widely used in automotive development processes. Applications at Volkswagen are presented where laser metrology works as a diagnostic tool for analysing and optimising complex coupled processes inside and between automotive components and structures such as the reduction of a vehicle's interior or outer acoustic noise, including brake noise, and the combustion analysis for diesel and gasoline engines to further reduce fuel consumption and pollution. Pulsed electronic speckle pattern interferometry (ESPI) and holographic interferometry are used for analysing the knocking behaviour of modern engines and for correct positioning of knocking sensors. Holographic interferometry shows up the vibrational behaviour of brake components and their interaction during braking, and allows optimisation for noise-free brake systems. Scanning laser vibrometry analyses structure-born noise of a whole car body for the optimisation of its interior acoustical behaviour.Modern engine combustion concepts such as in direct-injection (DI) gasoline and diesel engines benefit from laser diagnostic tools which permit deeper insight into the in-cylinder processes such as flow generation, fuel injection and spray formation, atomisation and mixing, ignition and combustion, and formation and reduction of pollutants. The necessary optical access inside a cylinder is realised by so-called 'transparent engines' allowing measurements nearly during the whole engine cycle. Measurement techniques and results on double-pulse particle image velocimetry (PIV) with a frequency-doubled YAG laser for in-cylinder flow analysis are presented, as well as Mie-scattering on droplets using a copper vapour laser combined with high-speed filming, and laser-induced fluorescence (LIF) with an excimer laser for spray and fuel vapour analysis.

  2. Development of a diagnostic polymersome system for potential imaging delivery.

    PubMed

    Huang, Wen-Chia; Chen, Yung-Chu; Hsu, Yuan-Hung; Hsieh, Wen-Yuan; Chiu, Hsin-Cheng

    2015-04-01

    In order to enhance visualization of soft tissues, a dual-imaging diagnostic polymersome system featured with highly hydrated multilamellar wall structure capable of simultaneously embedding a hydrophobic near-infrared fluorophore, Cy5.5, and a paramagnetic probe, gadolinium (Gd(III)) cations was developed. The polymersomes were obtained from the self-assembly of lipid-containing copolymer, poly(acrylic acid-co-distearin acrylate), in aqueous solution. The Cy5.5 and Gd(III) species were loaded into polymersomes via hydrophobic association (loading efficiency of Cy5.5 ca 74%) and electrostatic complexation (Gd(III) 83%), respectively. The Cy5.5/Gd(III)-loaded polymersomes (CGLPs) have shown excellent payload confinement, reduced dilution effect on assembly dissociation and decreased protein/salt-induced colloidal aggregation. Owing to the highly hydrated structure of vesicular membrane, the superior contrast enhancement of CGLPs in magnetic resonance (MR) imaging was obtained as a result of prolonged rotational correlation time of Gd(III) cations and fast water exchange from Gd(III) to bulk solution. The CGLPs exhibit a 15-fold higher longitudinal relaxivity value (ca 60 mM(-1) s(-1)) than that (4 mM(-1) s(-1)) of the commercial contrast agent, Magnevist, in phosphate buffered saline. The in vivo characterization demonstrates that CGLPs exhibit a signal-to-noise ratio in T1-weighted MR image contrast similar to that of Magnevist, yet with a Gd dose 5-fold lower. An excellent contrast in NIR imaging at tumor site was attained following the intravenous injection of GGLPs into Tramp-C1 tumor-bearing mice (C57BL/6). Along with their non-toxicity at the dose used, these results demonstrate the great potential of the CGLPs as an advanced diagnostic nanodevice. PMID:25731095

  3. Development of optical diagnostics for performance evaluation of arcjet thrusters

    NASA Technical Reports Server (NTRS)

    Cappelli, Mark A.

    1995-01-01

    Laser and optical emission-based measurements have been developed and implemented for use on low-power hydrogen arcjet thrusters and xenon-propelled electric thrusters. In the case of low power hydrogen arcjets, these laser induce fluorescence measurements constitute the first complete set of data that characterize the velocity and temperature field of such a device. The research performed under the auspices of this NASA grant includes laser-based measurements of atomic hydrogen velocity and translational temperature, ultraviolet absorption measurements of ground state atomic hydrogen, Raman scattering measurements of the electronic ground state of molecular hydrogen, and optical emission based measurements of electronically excited atomic hydrogen, electron number density, and electron temperature. In addition, we have developed a collisional-radiative model of atomic hydrogen for use in conjunction with magnetohydrodynamic models to predict the plasma radiative spectrum, and near-electrode plasma models to better understand current transfer from the electrodes to the plasma. In the final year of the grant, a new program aimed at developing diagnostics for xenon plasma thrusters was initiated, and results on the use of diode lasers for interrogating Hall accelerator plasmas has been presented at recent conferences.

  4. Signatures support program

    NASA Astrophysics Data System (ADS)

    Hawley, Chadwick T.

    2009-05-01

    The Signatures Support Program (SSP) leverages the full spectrum of signature-related activities (collections, processing, development, storage, maintenance, and dissemination) within the Department of Defense (DOD), the intelligence community (IC), other Federal agencies, and civil institutions. The Enterprise encompasses acoustic, seismic, radio frequency, infrared, radar, nuclear radiation, and electro-optical signatures. The SSP serves the war fighter, the IC, and civil institutions by supporting military operations, intelligence operations, homeland defense, disaster relief, acquisitions, and research and development. Data centers host and maintain signature holdings, collectively forming the national signatures pool. The geographically distributed organizations are the authoritative sources and repositories for signature data; the centers are responsible for data content and quality. The SSP proactively engages DOD, IC, other Federal entities, academia, and industry to locate signatures for inclusion in the distributed national signatures pool and provides world-wide 24/7 access via the SSP application.

  5. Sequencing Needs for Viral Diagnostics

    SciTech Connect

    Gardner, S N; Lam, M; Mulakken, N J; Torres, C L; Smith, J R; Slezak, T

    2004-01-26

    We built a system to guide decisions regarding the amount of genomic sequencing required to develop diagnostic DNA signatures, which are short sequences that are sufficient to uniquely identify a viral species. We used our existing DNA diagnostic signature prediction pipeline, which selects regions of a target species genome that are conserved among strains of the target (for reliability, to prevent false negatives) and unique relative to other species (for specificity, to avoid false positives). We performed simulations, based on existing sequence data, to assess the number of genome sequences of a target species and of close phylogenetic relatives (''near neighbors'') that are required to predict diagnostic signature regions that are conserved among strains of the target species and unique relative to other bacterial and viral species. For DNA viruses such as variola (smallpox), three target genomes provide sufficient guidance for selecting species-wide signatures. Three near neighbor genomes are critical for species specificity. In contrast, most RNA viruses require four target genomes and no near neighbor genomes, since lack of conservation among strains is more limiting than uniqueness. SARS and Ebola Zaire are exceptional, as additional target genomes currently do not improve predictions, but near neighbor sequences are urgently needed. Our results also indicate that double stranded DNA viruses are more conserved among strains than are RNA viruses, since in most cases there was at least one conserved signature candidate for the DNA viruses and zero conserved signature candidates for the RNA viruses.

  6. Diagnostics for first plasma and development plan on KSTAR

    SciTech Connect

    Lee, J. H.; Na, H. K.; Lee, S. G.; Bak, J. G.; Seo, D. C.; Seo, S. H.; Oh, S. T.; Ko, W. H.; Chung, J.; Nam, Y. U.; Lee, K. D.; Ka, E. M.; Oh, Y. K.; Kwon, M.; Jeong, S. H.

    2010-06-15

    The first plasma with target values of the plasma current and the pulse duration was finally achieved on June 13, 2008 in the Korea Superconducting Tokamak Advanced Research (KSTAR). The diagnostic systems played an important role in achieving successful first plasma operation for the KSTAR tokamak. The employed plasma diagnostic systems for the KSTAR first plasma including the magnetic diagnostics, millimeter-wave interferometer, inspection illuminator, H{sub {alpha}}, visible spectrometer, filterscope, and electron cyclotron emission (ECE) radiometer have provided the main plasma parameters, which are essential for the plasma generation, control, and physics understanding. Improvements to the first diagnostic systems and additional diagnostics including an x-ray imaging crystal spectrometer, reflectometer, ECE radiometer, resistive bolometer, and soft x-ray array are scheduled to be added for the next KSTAR experimental campaign in 2009.

  7. Diagnostics for first plasma and development plan on KSTAR.

    PubMed

    Lee, J H; Na, H K; Lee, S G; Bak, J G; Seo, D C; Seo, S H; Oh, S T; Ko, W H; Chung, J; Nam, Y U; Lee, K D; Ka, E M; Oh, Y K; Kwon, M; Jeong, S H

    2010-06-01

    The first plasma with target values of the plasma current and the pulse duration was finally achieved on June 13, 2008 in the Korea Superconducting Tokamak Advanced Research (KSTAR). The diagnostic systems played an important role in achieving successful first plasma operation for the KSTAR tokamak. The employed plasma diagnostic systems for the KSTAR first plasma including the magnetic diagnostics, millimeter-wave interferometer, inspection illuminator, H(alpha), visible spectrometer, filterscope, and electron cyclotron emission (ECE) radiometer have provided the main plasma parameters, which are essential for the plasma generation, control, and physics understanding. Improvements to the first diagnostic systems and additional diagnostics including an x-ray imaging crystal spectrometer, reflectometer, ECE radiometer, resistive bolometer, and soft x-ray array are scheduled to be added for the next KSTAR experimental campaign in 2009. PMID:20590236

  8. Microfluidic based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in sera of prostate cancer patients

    PubMed Central

    Moltzahn, Felix; Olshen, Adam B.; Baehner, Lauren; Peek, Andrew; Fong, Lawrence; Stöppler, Hubert; Simko, Jeffry; Hilton, Joan F.; Carroll, Peter; Blelloch, Robert

    2010-01-01

    Recent prostate specific antigen (PSA) based screening trials indicate an urgent need for novel and non-invasive biomarker identification strategies to improve the prediction of prostate cancer behavior. Non-coding microRNAs (miRNAs) in the serum and plasma have been shown to have potential as non-invasive markers for physiological and pathological conditions. To identify serum miRNAs that diagnose and correlate with prognosis of prostate cancer, we developed a multiplex quantitative reverse transcription PCR (qRT-PCR) method involving purification of multiplex PCR products followed by uniplex analysis on a microfluidics chip to evaluate 384 human miRNAs. Using Dgcr8 and Dicer knockout (small RNA - deficient) mouse ES cells (mESC) as the benchmark, we confirmed the validity of our technique, while uncovering a significant lack of accuracy in previously published methods. Profiling 48 sera from healthy men and untreated prostate cancer patients with differing CAPRA (Cancer of the Prostate Risk Assessment) scores, we identified miRNA signatures that allow to diagnose cancer patients and correlate with prognosis. These serum signatures include oncogenic and tumor suppressive miRNAs suggesting functional roles in prostate cancer progression. PMID:21098088

  9. Facility for intense diagnostic neutral beam (IDNB) development

    SciTech Connect

    Kasik, R.J.; Hinckley, W.B.; Bartsch, R.R.; Rej, D.J.; Henins, I.; Greenly, J.B.

    1993-08-01

    An intense, pulsed neutral beam source is under development for use as a probe beam on hot, burning plasmas such as in the international thermonuclear experimental reactor (ITER) which is presently in the planning stage. A pulsed, neutral hydrogen beam of 10s of kilo amperes of current can have an alpha particle, charge-exchange-recombination-spectroscopy (alpha-CHERS) signal-to-noise ratio of {approximately} 10. This beam would allow the measurement, on a single pulse of a few hundred nanoseconds duration, of the local alpha particle distribution function as well as other features of the tokamak plasma such as current density profile, impurity density, and microturbulence spectrum. The cross-sections for the CHERS diagnostic dictate operation with proton energies greater than {approximately}50keV. A pulsed neutral hydrogen source of this voltage and intensity can be achieved by neutralizing the ion flux from a magnetized ion-diode. The cross-sections for attachment and stripping, when coupled with scaling from Child-Langmiur, space-charge-limited, ion-current flow imply operation below - 100keV for maximum neutral fluence. The development of a flashover-anode, ion source for forthcoming evaluation of a neutralizing section is described below. This source operates in the accelerator voltage range 70 to 100keV. Eventually, the flashover-anode, magnetized ion-diode will be replaced with a plasma-anode, magnetized ion-diode.

  10. New optical, acoustic, and electrical diagnostics for the developing world

    NASA Astrophysics Data System (ADS)

    Neale, S. L.; Witte, C.; Bourquin, Y.; Kremer, C.; Menachery, A.; Zhang, Y.; Wilson, R.; Reboud, J.; Cooper, J. M.

    2012-03-01

    Infectious diseases cause 10 million deaths each year worldwide, accounting for ~60% of all deaths of children aged 5- 14. Although these deaths arise primarily through pneumonia, TB, malaria and HIV, there are also the so called "neglected diseases" such as sleeping sickness and bilharzia, which have a devastating impact on rural communities, in sub-Sahara Africa. There, the demands for a successful Developing World diagnostic are particularly rigorous, requiring low cost instrumentation with low power consumption (there is often no fixed power infrastructure). In many cases, the levels of infection within individuals are also sufficiently low that instruments must show extraordinary sensitivity, with measurements being made in blood or saliva. In this talk, a description of these demands will be given, together with a review of some of the solutions that have been developed, which include using acoustics, optics and electrotechnologies, and their combinations to manipulate the fluid samples. In one example, we show how to find a single trypanosome, as the causative agent of sleeping sickness.

  11. Uncertainty in hydrological signatures

    NASA Astrophysics Data System (ADS)

    Westerberg, I. K.; McMillan, H. K.

    2015-09-01

    Information about rainfall-runoff processes is essential for hydrological analyses, modelling and water-management applications. A hydrological, or diagnostic, signature quantifies such information from observed data as an index value. Signatures are widely used, e.g. for catchment classification, model calibration and change detection. Uncertainties in the observed data - including measurement inaccuracy and representativeness as well as errors relating to data management - propagate to the signature values and reduce their information content. Subjective choices in the calculation method are a further source of uncertainty. We review the uncertainties relevant to different signatures based on rainfall and flow data. We propose a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrate it in two catchments for common signatures including rainfall-runoff thresholds, recession analysis and basic descriptive signatures of flow distribution and dynamics. Our intention is to contribute to awareness and knowledge of signature uncertainty, including typical sources, magnitude and methods for its assessment. We found that the uncertainties were often large (i.e. typical intervals of ±10-40 % relative uncertainty) and highly variable between signatures. There was greater uncertainty in signatures that use high-frequency responses, small data subsets, or subsets prone to measurement errors. There was lower uncertainty in signatures that use spatial or temporal averages. Some signatures were sensitive to particular uncertainty types such as rating-curve form. We found that signatures can be designed to be robust to some uncertainty sources. Signature uncertainties of the magnitudes we found have the potential to change the conclusions of hydrological and ecohydrological analyses, such as cross-catchment comparisons or inferences about dominant processes.

  12. Uncertainty in hydrological signatures

    NASA Astrophysics Data System (ADS)

    Westerberg, I. K.; McMillan, H. K.

    2015-04-01

    Information about rainfall-runoff processes is essential for hydrological analyses, modelling and water-management applications. A hydrological, or diagnostic, signature quantifies such information from observed data as an index value. Signatures are widely used, including for catchment classification, model calibration and change detection. Uncertainties in the observed data - including measurement inaccuracy and representativeness as well as errors relating to data management - propagate to the signature values and reduce their information content. Subjective choices in the calculation method are a further source of uncertainty. We review the uncertainties relevant to different signatures based on rainfall and flow data. We propose a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrate it in two catchments for common signatures including rainfall-runoff thresholds, recession analysis and basic descriptive signatures of flow distribution and dynamics. Our intention is to contribute to awareness and knowledge of signature uncertainty, including typical sources, magnitude and methods for its assessment. We found that the uncertainties were often large (i.e. typical intervals of ±10-40% relative uncertainty) and highly variable between signatures. There was greater uncertainty in signatures that use high-frequency responses, small data subsets, or subsets prone to measurement errors. There was lower uncertainty in signatures that use spatial or temporal averages. Some signatures were sensitive to particular uncertainty types such as rating-curve form. We found that signatures can be designed to be robust to some uncertainty sources. Signature uncertainties of the magnitudes we found have the potential to change the conclusions of hydrological and ecohydrological analyses, such as cross-catchment comparisons or inferences about dominant processes.

  13. Surface Diagnostics in Tribology Technology and Advanced Coatings Development

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This paper discusses the methodologies used for surface property measurement of thin films and coatings, lubricants, and materials in the field of tribology. Surface diagnostic techniques include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, stylus profilometry, x-ray diffraction, electron diffraction, Raman spectroscopy, Rutherford backscattering, elastic recoil spectroscopy, and tribology examination. Each diagnostic technique provides specific measurement results in its own unique way. In due course it should be possible to coordinate the different pieces of information provided by these diagnostic techniques into a coherent self-consistent description of the surface properties. Examples are given on the nature and character of thin diamond films.

  14. Anonymous Signatures Revisited

    NASA Astrophysics Data System (ADS)

    Saraswat, Vishal; Yun, Aaram

    We revisit the notion of the anonymous signature, first formalized by Yang, Wong, Deng and Wang [10], and then further developed by Fischlin [4] and Zhang and Imai [11]. We present a new formalism of anonymous signature, where instead of the message, a part of the signature is withheld to maintain anonymity. We introduce the notion unpretendability to guarantee infeasibility for someone other than the correct signer to pretend authorship of the message and signature. Our definition retains applicability for all previous applications of the anonymous signature, provides stronger security, and is conceptually simpler. We give a generic construction from any ordinary signature scheme, and also show that the short signature scheme by Boneh and Boyen [2] can be naturally regarded as such a secure anonymous signature scheme according to our formalism.

  15. Development of Nanoscale Approaches for Ovarian Cancer Therapeutics and Diagnostics

    PubMed Central

    Engelberth, Sarah A.; Hempel, Nadine; Bergkvist, Magnus

    2014-01-01

    Ovarian cancer is the deadliest of all gynecological cancers and the fifth leading cause of death due to cancer in women. This is largely due to late-stage diagnosis, poor prognosis related to advanced-stage disease, and the high recurrence rate associated with development of chemoresistance. Survival statistics have not improved significantly over the last three decades, highlighting the fact that improved therapeutic strategies and early detection require substantial improvements. Here, we review and highlight nanotechnology-based approaches that seek to address this need. The success of Doxil, a PEGylated liposomal nanoencapsulation of doxorubicin, which was approved by the FDA for use on recurrent ovarian cancer, has paved the way for the current wave of nanoparticle formulations in drug discovery and clinical trials. We discuss and summarize new nanoformulations that are currently moving into clinical trials and highlight novel nanotherapeutic strategies that have shown promising results in preclinical in vivo studies. Further, the potential for nanomaterials in diagnostic imaging techniques and the ability to leverage nanotechnology for early detection of ovarian cancer are also discussed. PMID:25271436

  16. Development of advanced strain diagnostic techniques for reactor environments.

    SciTech Connect

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  17. Development of diagnostic tools for the EUV spectral range

    NASA Astrophysics Data System (ADS)

    Mann, Klaus R.; Kranzusch, Sebastian; Eckert, G.; Peth, Christian; Schaefer, Bernd

    2002-07-01

    The successful implementation of EUV lithography systems strongly relies both on the efficiency of the employed optical components and the precise control of the relevant source parameters. Utilizing a laser-based plasma source for the generation of 13nm radiation, metrology for comprehensive characterization of EUV radiation and the related optics is developed at Laser-Laboratorium Goettingen. A soft X-ray plasma is produced with the help of a Nd:YAG laser which is focused into a pulsed xenon or oxygen gas jet. The alternate use of these two target gases accomplishes either a very intense broadband emission (Xe), or a less intense narrow-band line emission (O2) at the wavelength of 13nm. Additional filtering with the help of Mo/Si mirrors yields quasi-monochromatic 13nm radiation, as needed for testing of optical components, especially reflectometry. The performance of the EUV source is monitored with respect to source diameter, emission characteristics, and 13nm conversion efficiency by the help of different diagnostic tools, including EUV sensitive pin-hole cameras, photo-diodes and an EUV spectrometer. Moreover, first wavefront measurements of EUV radiation are performed with the help of a Hartmann wavefront analyzer, which was sensibilized for 13nm radiation.

  18. ITER diagnostic systems in development in Ioffe Institute

    SciTech Connect

    Petrov, M.; Afanasyev, V.; Petrov, S.; Mironov, M.; Mukhin, E.; Tolstyakov, S.; Chugunov, I.; Shevelev, A.

    2014-08-21

    Three diagnostic systems are being developed in Ioffe Institute for ITER. Those are Neutral Particle Analysis (NPA), Thomson Scattering in Divertor (TSD) and Gamma Spectroscopy (GS). The main objective of NPA in ITER is to measure D/T fuel ration in plasma on the basis of measurement of neutralized fluxes of D and T ions [1]. Fuel ratio is one of the key parameters needed by ITER control system to provide the optimal conditions in plasma and the most effective plasma burning. Another objective is to measure the distribution function of fast ions (including alpha particles) generated as a result of the additional heating and nuclear fusion reactions. Thomson Scattering in Divertor (TSD) [2] will be used to measure electron temperature and density in the scrape-off layer in outer leg of ITER divertor. The main task of TSD is to protect the machine from divertor overloading. Gamma Spectroscopy (GS) [3] is based on the measurement of spectral lines of MeV range gammas generated in nuclear reactions in plasma. 2-D gamma-ray emission measurements give valuable information on the confined alpha particles in DT plasma. They also provide important information on the location of MeV range runaway electron beams in ITER plasma. For all three cases the physical basis and instrumentation are presented. The simple NPA version for measurements of D/T ratio in DEMO is also briefly described.

  19. Development of a computer technique for the prediction of transport aircraft flight profile sonic boom signatures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Coen, Peter G.

    1991-01-01

    A new computer technique for the analysis of transport aircraft sonic boom signature characteristics was developed. This new technique, based on linear theory methods, combines the previously separate equivalent area and F function development with a signature propagation method using a single geometry description. The new technique was implemented in a stand-alone computer program and was incorporated into an aircraft performance analysis program. Through these implementations, both configuration designers and performance analysts are given new capabilities to rapidly analyze an aircraft's sonic boom characteristics throughout the flight envelope.

  20. Plasma synthesis of silicon nanocrystals: Development and diagnostics

    NASA Astrophysics Data System (ADS)

    Bapat, Ameya

    Single-crystal semiconductor nanoparticles are suitable for single nanoparticle electronic devices. Low-pressure silane-argon plasmas are interesting due to their ability to synthesize silicon nanoparticles. The plasma described here is a capacitively-coupled, rotating filamentary plasma instability, composed of a number of plasma globules each ˜3mm in diameter. The 13.56 MHz, 200W RF plasma is operated at ˜2Torr in 5% silane diluted in helium and argon. This discharge can reproducibly synthesize monodisperse, single-crystal, cube-shaped silicon nanoparticles ˜35nm in size. These particles are used to fabricate a single nanoparticle transistor device. Process diagnostics are reported which help understand particle nucleation and growth in this unique plasma. Particle extraction studies are done along the length of the reactor. It is shown that particles nucleate and quickly form ˜300nm, amorphous, cauliflower-shape particles 50mm upstream of the RF electrode. These undergo crystallization in the plasma to form ˜90nm single crystalline spheres which undergo further reduction in size to 35nm cubes collected downstream. The plasma instability is characterized by plasma density and electron temperature measurements. Measurements are reported inside and outside the globules of the filamentary plasma. Density measurements are done using an electrostatic capacitance probe. Electron temperature measurements are done using optical emission spectroscopy. Experimentally measured emission line intensities are compared to those calculated using a model that accounts for ground-state excitation as well as excitation from metastable states. Using measured density and temperature it is found that particles get close to the melting point but do not melt. Low-temperature hydrogen-mediated crystallization as observed in a:Si-H thin films is proposed as a likely mechanism for particle crystallization. Polarization-sensitive light scattering diagnostics are reported. Scattering

  1. Development of the ITER magnetic diagnostic set and specification

    SciTech Connect

    Vayakis, G.; Delhom, D.; Encheva, A.; Giacomin, T.; Jones, L.; Patel, K. M.; Portales, M.; Prieto, D.; Simrock, S.; Snipes, J. A.; Udintsev, V. S.; Watts, C.; Winter, A.; Zabeo, L.; Arshad, S.; Perez-Lasala, M.; Sartori, F.

    2012-10-15

    ITER magnetic diagnostics are now in their detailed design and R and D phase. They have passed their conceptual design reviews and a working diagnostic specification has been prepared aimed at the ITER project requirements. This paper highlights specific design progress, in particular, for the in-vessel coils, steady state sensors, saddle loops and divertor sensors. Key changes in the measurement specifications, and a working concept of software and electronics are also outlined.

  2. Developments in FTICR-MS and Its Potential for Body Fluid Signatures

    PubMed Central

    Nicolardi, Simone; Bogdanov, Bogdan; Deelder, André M.; Palmblad, Magnus; van der Burgt, Yuri E. M.

    2015-01-01

    Fourier transform mass spectrometry (FTMS) is the method of choice for measurements that require ultra-high resolution. The establishment of Fourier transform ion cyclotron resonance (FTICR) MS, the availability of biomolecular ionization techniques and the introduction of the Orbitrap™ mass spectrometer have widened the number of FTMS-applications enormously. One recent example involves clinical proteomics using FTICR-MS to discover and validate protein biomarker signatures in body fluids such as serum or plasma. These biological samples are highly complex in terms of the type and number of components, their concentration range, and the structural identity of each species, and thus require extensive sample cleanup and chromatographic separation procedures. Clearly, such an elaborate and multi-step sample preparation process hampers high-throughput analysis of large clinical cohorts. A final MS read-out at ultra-high resolution enables the analysis of a more complex sample and can thus simplify upfront fractionations. To this end, FTICR-MS offers superior ultra-high resolving power with accurate and precise mass-to-charge ratio (m/z) measurement of a high number of peptides and small proteins (up to 20 kDa) at isotopic resolution over a wide mass range, and furthermore includes a wide variety of fragmentation strategies to characterize protein sequence and structure, including post-translational modifications (PTMs). In our laboratory, we have successfully applied FTICR “next-generation” peptide profiles with the purpose of cancer disease classifications. Here we will review a number of developments and innovations in FTICR-MS that have resulted in robust and routine procedures aiming for ultra-high resolution signatures of clinical samples, exemplified with state-of-the-art examples for serum and saliva. PMID:26580595

  3. Developments in FTICR-MS and Its Potential for Body Fluid Signatures.

    PubMed

    Nicolardi, Simone; Bogdanov, Bogdan; Deelder, André M; Palmblad, Magnus; van der Burgt, Yuri E M

    2015-01-01

    Fourier transform mass spectrometry (FTMS) is the method of choice for measurements that require ultra-high resolution. The establishment of Fourier transform ion cyclotron resonance (FTICR) MS, the availability of biomolecular ionization techniques and the introduction of the Orbitrap™ mass spectrometer have widened the number of FTMS-applications enormously. One recent example involves clinical proteomics using FTICR-MS to discover and validate protein biomarker signatures in body fluids such as serum or plasma. These biological samples are highly complex in terms of the type and number of components, their concentration range, and the structural identity of each species, and thus require extensive sample cleanup and chromatographic separation procedures. Clearly, such an elaborate and multi-step sample preparation process hampers high-throughput analysis of large clinical cohorts. A final MS read-out at ultra-high resolution enables the analysis of a more complex sample and can thus simplify upfront fractionations. To this end, FTICR-MS offers superior ultra-high resolving power with accurate and precise mass-to-charge ratio (m/z) measurement of a high number of peptides and small proteins (up to 20 kDa) at isotopic resolution over a wide mass range, and furthermore includes a wide variety of fragmentation strategies to characterize protein sequence and structure, including post-translational modifications (PTMs). In our laboratory, we have successfully applied FTICR "next-generation" peptide profiles with the purpose of cancer disease classifications. Here we will review a number of developments and innovations in FTICR-MS that have resulted in robust and routine procedures aiming for ultra-high resolution signatures of clinical samples, exemplified with state-of-the-art examples for serum and saliva. PMID:26580595

  4. Shatter cones: Diagnostic impact signatures

    NASA Technical Reports Server (NTRS)

    Mchone, J. F.; Dietz, R. S.

    1988-01-01

    Uniquely fractured target rocks known as shatter cones are associated with more than one half the world's 120 or so presently known impact structures. Shatter cones are a form of tensile rock failure in which a positive conical plug separates from a negative outer cup or mold and delicate ornaments radiating from an apex are preserved on surfaces of both portions. Although distinct, shatter cones are sometimes confused with other striated geologic features such as ventifacts, stylolites, cone-in-cone, slickensides, and artificial blast plumes. Complete cones or solitary cones are rare, occurrences are usually as swarms in thoroughly fractured rock. Shatter cones may form in a zone where an expanding shock wave propagating through a target decays to form an elastic wave. Near this transition zone, the expanding primary wave may strike a pebble or other inhomogeneity whose contrasting transmission properties produce a scattered secondary wave. Interference between primary and secondary scattered waves produce conical stress fields with axes perpendicular to the plane of an advancing shock front. This model supports mechanism capable of producing such shatter cone properties as orientation, apical clasts, lithic dependence, and shock pressure zonation. Although formational mechanics are still poorly understood, shatter cones have become the simplest geologic field criterion for recognizing astroblemes (ancient terrestrial impact structures).

  5. A Quantitative Assessment of Factors Affecting the Technological Development and Adoption of Companion Diagnostics.

    PubMed

    Luo, Dee; Smith, James A; Meadows, Nick A; Schuh, A; Manescu, Katie E; Bure, Kim; Davies, Benjamin; Horne, Rob; Kope, Mike; DiGiusto, David L; Brindley, David A

    2015-01-01

    Rapid innovation in (epi)genetics and biomarker sciences is driving a new drug development and product development pathway, with the personalized medicine era dominated by biologic therapeutics and companion diagnostics. Companion diagnostics (CDx) are tests and assays that detect biomarkers and specific mutations to elucidate disease pathways, stratify patient populations, and target drug therapies. CDx can substantially influence the development and regulatory approval for certain high-risk biologics. However, despite the increasingly important role of companion diagnostics in the realization of personalized medicine, in the USA, there are only 23 Food and Drug Administration (FDA) approved companion diagnostics on the market for 11 unique indications. Personalized medicines have great potential, yet their use is currently constrained. A major factor for this may lie in the increased complexity of the companion diagnostic and corresponding therapeutic development and adoption pathways. Understanding the market dynamics of companion diagnostic/therapeutic (CDx/Rx) pairs is important to further development and adoption of personalized medicine. Therefore, data collected on a variety of factors may highlight incentives or disincentives driving the development of companion diagnostics. Statistical analysis for 36 hypotheses resulted in two significant relationships and 34 non-significant relationships. The sensitivity of the companion diagnostic was the only factor that significantly correlated with the price of the companion diagnostic. This result indicates that while there is regulatory pressure for the diagnostic and pharmaceutical industry to collaborate and co-develop companion diagnostics for the approval of personalized therapeutics, there seems to be a lack of parallel economic collaboration to incentivize development of companion diagnostics. PMID:26858745

  6. A Quantitative Assessment of Factors Affecting the Technological Development and Adoption of Companion Diagnostics

    PubMed Central

    Luo, Dee; Smith, James A.; Meadows, Nick A.; Schuh, A.; Manescu, Katie E.; Bure, Kim; Davies, Benjamin; Horne, Rob; Kope, Mike; DiGiusto, David L.; Brindley, David A.

    2016-01-01

    Rapid innovation in (epi)genetics and biomarker sciences is driving a new drug development and product development pathway, with the personalized medicine era dominated by biologic therapeutics and companion diagnostics. Companion diagnostics (CDx) are tests and assays that detect biomarkers and specific mutations to elucidate disease pathways, stratify patient populations, and target drug therapies. CDx can substantially influence the development and regulatory approval for certain high-risk biologics. However, despite the increasingly important role of companion diagnostics in the realization of personalized medicine, in the USA, there are only 23 Food and Drug Administration (FDA) approved companion diagnostics on the market for 11 unique indications. Personalized medicines have great potential, yet their use is currently constrained. A major factor for this may lie in the increased complexity of the companion diagnostic and corresponding therapeutic development and adoption pathways. Understanding the market dynamics of companion diagnostic/therapeutic (CDx/Rx) pairs is important to further development and adoption of personalized medicine. Therefore, data collected on a variety of factors may highlight incentives or disincentives driving the development of companion diagnostics. Statistical analysis for 36 hypotheses resulted in two significant relationships and 34 non-significant relationships. The sensitivity of the companion diagnostic was the only factor that significantly correlated with the price of the companion diagnostic. This result indicates that while there is regulatory pressure for the diagnostic and pharmaceutical industry to collaborate and co-develop companion diagnostics for the approval of personalized therapeutics, there seems to be a lack of parallel economic collaboration to incentivize development of companion diagnostics. PMID:26858745

  7. Recent diagnostic development for inertial confinement fusion research at Los Alamos National Laboratory

    SciTech Connect

    Murphy, T.J.; Oertel, J.A.; Archuleta, T.N.

    1997-09-01

    Inertial Confinement Fusion (ICF) experiments require sophisticated diagnostics with temporal resolution measured in tens of picoseconds and spatial resolutions measured in microns. The Los Alamos ICF Program is currently supporting a number of diagnostics on the Nova and Triden laser facilities, and is developing new diagnostics for use on the Omega laser facility. New systems and technologies are being developed for use on the National Ignition Facility, which is expected to be operational early in the next decade.

  8. Progress in the Development of Volatile Exhaled Breath Signatures of Lung Cancer

    PubMed Central

    Wang, Xiao-Feng; Lim, Sung; Jett, James; Choi, Humberto; Zhang, Qi; Beukemann, Mary; Seeley, Meredith; Martino, Ray; Rhodes, Paul

    2015-01-01

    Rationale: Volatile organic compounds present in the exhaled breath have shown promise as biomarkers of lung cancer. Advances in colorimetric sensor array technology, breath collection methods, and clinical phenotyping may lead to the development of a more accurate breath biomarker. Objectives: Perform a discovery-level assessment of the accuracy of a colorimetric sensor array–based volatile breath biomarker. Methods: Subjects with biopsy-confirmed untreated lung cancer, and others at risk for developing lung cancer, performed tidal breathing into a breath collection instrument designed to expose a colorimetric sensor array to the alveolar portion of the breath. Random forest models were built from the sensor output of 70% of the study subjects and were tested against the remaining 30%. Models were developed to separate cancer and subgroups from control, and to characterize the cancer. Additional models were developed after matching the clinical phenotypes of cancer and control subjects. Measurements and Main Results: Ninety-seven subjects with lung cancer and 182 control subjects participated. The accuracies, reported as C-statistics, for models of cancer and subgroups versus control ranged from 0.794 to 0.861. The accuracy was improved by developing models for cancer and control groups selected through propensity matching for clinical variables. A model built using only subjects from the largest available clinical subgroup (49 subjects) had a C-statistic of 0.982. Models developed and tested to characterize cancer histology, and to compare early- with late-stage cancer, had C-statistics of 0.881–0.960. Conclusions: The colorimetric sensor array signature of exhaled breath volatile organic compounds was capable of distinguishing patients with lung cancer from clinically relevant control subjects in a discovery level trial. The incorporation of clinical phenotypes into the further development of this biomarker may optimize its accuracy. PMID:25965541

  9. [Cognitive functions, their development and modern diagnostic methods].

    PubMed

    Klasik, Adam; Janas-Kozik, Małgorzata; Krupka-Matuszczyk, Irena; Augustyniak, Ewa

    2006-01-01

    Cognitive psychology is an interdisciplinary field whose main aim is to study the thinking mechanisms of humans leading to cognizance. Therefore the concept of human cognitive processes envelopes the knowledge related to the mechanisms which determine the way humans acquire information from the environment and utilize their knowledge and experience. There are three basic processes which need to be distinguished when discussing human perception development: acquiring sensations, perceptiveness and attention. Acquiring sensations means the experience arising from the stimulation of a single sense organ, i.e. detection and differentiation of sensory information. Perceptiveness stands for the interpretation of sensations and may include recognition and identification of sensory information. The attention process relates to the selectivity of perception. Mental processes of the higher order used in cognition, thanks to which humans tend to try to understand the world and adapt to it, doubtlessly include the processes of memory, reasoning, learning and problem solving. There is a great difference in the human cognitive functioning at different stages of one's life (from infancy to adulthood). The difference is both quantitative and qualitative. There are three main approaches to the human cognitive functioning development: Jean Piaget's approach, information processing approach and psychometric approach. Piaget's ideas continue to form the groundwork of child cognitive psychology. Piaget identified four developmental stages of child cognition: 1. Sensorimotor stage (birth - 2 years old); 2. Preoperational stage (ages 2-7); 3. Concrete operations (ages 7-11; 4. Formal operations (11 and more). The supporters of the information processing approach use a computer metaphor to present the human cognitive processes functioning model. The three important mechanisms involved are: coding, automation and strategy designing and they all often co-operate together. This theory has

  10. Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)

    SciTech Connect

    FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

    2000-02-01

    This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

  11. New Developments in Smart Bandage Technologies for Wound Diagnostics.

    PubMed

    McLister, Anna; McHugh, Jolene; Cundell, Jill; Davis, James

    2016-07-01

    The pH of wound fluid has long been recognized as an important diagnostic for assessing wound condition, but as yet there are few technological options available to the clinician. The availability of sensors that can measure wound pH, either in the clinic or at home could significantly improve clinical outcome - particularly in the early identification of complications such as infection. New material designs and electrochemical research strategies that are being targeted at wound diagnostics are identified and a critical overview of emerging research that could be pivotal in setting the direction for future devices is provided. PMID:26821765

  12. The Development of a Multi-Disciplinary Educational Programme in Biomedical Diagnostics: A Novel Approach

    ERIC Educational Resources Information Center

    MacCormac, Aoife; O'Brien, Emma; O'Kennedy, Richard

    2011-01-01

    This paper describes the development of a taught Master's course in biomedical diagnostics using a novel multi-disciplinary approach. This course, the first of its kind in Ireland, covers the science and technology underlying the development of medical diagnostic devices that detect early markers of diseases such as cancer. The ethical impact of…

  13. Physics R&D in support of ITER/BPX Diagnostic Development.

    SciTech Connect

    Wurden, G. A.; Boivin, R.; Costley, A. E.; Giannella, R.; Johnson, D.; Hodgson, E.; Kislyakov, A.; Krasilnikov, A.; Kusama, Y.; Leonard, T.; Malaquias, A.; Mckee, G.; Nielsen, P.; Nishitani, T.; Peebles, W.; Orsitto, F.; Pitts, R. A.; Razdobarin, G.; Sanchez, J.; Sassao, M.; Serra, F.; Shikama, T.; Strelkov, V.; Sugie, T.; Vayakis, G.; Voitsenya, V.; Vukolov, K.; Walker, C.; Young, K.

    2002-10-07

    The development of diagnostics for a next step burning plasma experiment (BPX) is a major challenge. Within the International Tokamak Physics Activity (ITPA), one Topical Group (TG) specialises in diagnostics and aims to support the development and design of the needed systems. Several diagnostics issues have been identified as ‘high priority’ and form the focus of current work of the TG. The core of this paper is a presentation and discussion of recent progress in the field of these high priority research topics. Moreover, the status of the recently initiated International Diagnostic Database will be briefly described.

  14. NSLS-II X-Ray Diagnostics Development

    SciTech Connect

    ILINSKI, P.

    2011-03-28

    NSLS-II x-ray diagnostics will provide continuous online data of electron beam dimensions, which will be used to derive electron beam emittance and energy spread. It will also provide information of electron beam tilt for coupling evaluation. X-ray diagnostics will be based on imaging of bending magnet and three-pole wiggler synchrotron radiation sources. Diagnostics from three-pole wiggler source will be used to derive particles energy spread. Beta and dispersion functions will have to be evaluated for emittance and particles energy spread calculations. Due to small vertical source sizes imaging need to be performed in x-ray energy range. X-ray optics with high numerical aperture, such as compound refractive lens, will be used to achieve required spatial resolution. Optical setups with different magnifications in horizontal and vertical directions fill be employed to deal with large aspect ratio of the source. X-ray diagnostics setup will include x-ray imaging optics, monochromatization, x-ray imaging and recording components.

  15. Benchmarking, Research, Development, and Support for ORNL Automated Image and Signature Retrieval (AIR/ASR) Technologies

    SciTech Connect

    Tobin, K.W.

    2004-06-01

    This report describes the results of a Cooperative Research and Development Agreement (CRADA) with Applied Materials, Inc. (AMAT) of Santa Clara, California. This project encompassed the continued development and integration of the ORNL Automated Image Retrieval (AIR) technology, and an extension of the technology denoted Automated Signature Retrieval (ASR), and other related technologies with the Defect Source Identification (DSI) software system that was under development by AMAT at the time this work was performed. In the semiconductor manufacturing environment, defect imagery is used to diagnose problems in the manufacturing line, train yield management engineers, and examine historical data for trends. Image management in semiconductor data systems is a growing cause of concern in the industry as fabricators are now collecting up to 20,000 images each week. In response to this concern, researchers at the Oak Ridge National Laboratory (ORNL) developed a semiconductor-specific content-based image retrieval method and system, also known as AIR. The system uses an image-based query-by-example method to locate and retrieve similar imagery from a database of digital imagery using visual image characteristics. The query method is based on a unique architecture that takes advantage of the statistical, morphological, and structural characteristics of image data, generated by inspection equipment in industrial applications. The system improves the manufacturing process by allowing rapid access to historical records of similar events so that errant process equipment can be isolated and corrective actions can be quickly taken to improve yield. The combined ORNL and AMAT technology is referred to hereafter as DSI-AIR and DSI-ASR.

  16. Guide to good practices for teamwork training and diagnostic skills development

    SciTech Connect

    1997-06-01

    This guide provides assistance in the development, implementation, and improvement of training on teamwork and diagnostics. DOE and contractor representatives identified the need for teamwork and diagnostics training guidance. This need was based on the increasing emphasis of properly applying knowledge and skills to complete assigned tasks. Teamwork and diagnostic skills have become a focal point because of the impact they have on effective facility operation and safety.

  17. Using Standardized Diagnostic Instruments to Classify Children with Autism in the Study to Explore Early Development

    ERIC Educational Resources Information Center

    Wiggins, Lisa D.; Reynolds, Ann; Rice, Catherine E.; Moody, Eric J.; Bernal, Pilar; Blaskey, Lisa; Rosenberg, Steven A.; Lee, Li-Ching; Levy, Susan E.

    2015-01-01

    The Study to Explore Early Development (SEED) is a multi-site case-control study designed to explore the relationship between autism spectrum disorder (ASD) phenotypes and etiologies. The goals of this paper are to (1) describe the SEED algorithm that uses the Autism Diagnostic Interview-Revised (ADI-R) and Autism Diagnostic Observation Schedule…

  18. Development of Extraction Techniques for the Detection of Signature Lipids from Oil

    SciTech Connect

    Borglin, Sharon; Geller, Jil; Chakraborty, Romy; Hazen, Terry; Mason, Olivia

    2010-05-17

    Pure cultures, including Desulfovibrio vulgaris and Methanococcus maripaludus, were combined with model oil samples and oil/diesel mixtures to optimize extraction techniques of signature lipids from oil in support of investigation of microbial communities in oil deposit samples targets for microbial enhanced hydrocarbon recovery. Several techniques were evaluated, including standard phospholipid extraction, ether linked lipid for Archaeal bacterial detection, and high pressure extractiontechniques. Recovery of lipids ranged from 50-80percent as compared to extraction of the pure culture. Extraction efficiency was evaluated by the use of internal standards. Field samples will also be tested for recovery of signature lipids with optimized extraction techniques.

  19. Development of a Metabolomic Radiation Signature in Urine from Patients Undergoing Total Body Irradiation

    PubMed Central

    Laiakis, Evagelia C.; Mak, Tytus D.; Anizan, Sebastien; Amundson, Sally A.; Barker, Christopher A.; Wolden, Suzanne L.; Brenner, David J.; Fornace, Albert J.

    2014-01-01

    The emergence of the threat of radiological terrorism and other radiological incidents has led to the need for development of fast, accurate and noninvasive methods for detection of radiation exposure. The purpose of this study was to extend radiation metabolomic biomarker discovery to humans, as previous studies have focused on mice. Urine was collected from patients undergoing total body irradiation at Memorial Sloan-Kettering Cancer Center prior to hematopoietic stem cell transplantation at 4–6 h postirradiation (a single dose of 1.25 Gy) and 24 h (three fractions of 1.25 Gy each). Global metabolomic profiling was obtained through analysis with ultra performance liquid chromatography coupled to time-of-flight mass spectrometry (TOFMS). Prior to further analyses, each sample was normalized to its respective creatinine level. Statistical analysis was conducted by the nonparametric Kolmogorov-Smirnov test and the Fisher’s exact test and markers were validated against pure standards. Seven markers showed distinct differences between pre- and post-exposure samples. Of those, trimethyl-l-lysine and the carnitine conjugates acetylcarnitine, decanoylcarnitine and octanoylcarnitine play an important role in the transportation of fatty acids across mitochondria for subsequent fatty acid β-oxidation. The remaining metabolites, hypoxanthine, xanthine and uric acid are the final products of the purine catabolism pathway, and high levels of excretion have been associated with increased oxidative stress and radiation induced DNA damage. Further analysis revealed sex differences in the patterns of excretion of the markers, demonstrating that generation of a sex-specific metabolomic signature will be informative and can provide a quick and reliable assessment of individuals in a radiological scenario. This is the first radiation metabolomics study in human urine laying the foundation for the use of metabolomics in biodosimetry and providing confidence in biomarker

  20. MicroRNA GENE EXPRESSION SIGNATURES IN THE DEVELOPING NEURAL TUBE

    PubMed Central

    Mukhopadhyay, Partha; Brock, Guy; Appana, Savitri; Webb, Cynthia; Greene, Robert M.; Pisano, M. Michele

    2011-01-01

    BACKGROUND Neurulation requires precise, spatio-temporal expression of numerous genes and coordinated interaction of signal transduction and gene regulatory networks, disruption of which may contribute to the etiology of neural tube (NT) defects. MicroRNAs are key modulators of cell and tissue differentiation. In order to define potential roles of miRNAs in development of the murine NT, miRNA microarray analysis was conducted to establish expression profiles, and identify miRNA target genes and functional gene networks. METHODS miRNA expression profiles in murine embryonic NTs derived from gestational days 8.5, 9.0 and 9.5 were defined and compared utilizing miRXplore™ microarrays from Miltenyi Biotech GmbH. Gene expression changes were verified by TaqMan™ quantitative Real-Time PCR. clValid R package and the UPGMA (hierarchical) clustering method were utilized for cluster analysis of the microarray data. Functional associations among selected miRNAs were examined via Ingenuity Pathway Analysis. RESULTS miRXplore™ chips enabled examination of 609 murine miRNAs. Expression of approximately 12% of these was detected in murine embryonic NTs. Clustering analysis revealed several developmentally regulated expression clusters among these expressed genes. Target analysis of differentially expressed miRNAs enabled identification of numerous target genes associated with cellular processes essential for normal NT development. Utilization of Ingenuity Pathway Analysis revealed interactive biological networks which connected differentially expressed miRNAs with their target genes, and highlighted functional relationships. CONCLUSIONS The present study defined unique gene expression signatures of a range of miRNAs in the developing NT during the critical period of NT morphogenesis. Analysis of miRNA target genes and gene interaction pathways revealed that specific miRNAs may direct expression of numerous genes encoding proteins which have been shown to be indispensable

  1. Diagnostics development for the PEP-II B factory

    SciTech Connect

    Fisher, A.S.; Alzofon, D.; Arnett, D.; Bong, E.; Daly, E.; Gioumousis, A.; Kulikov, A.; Kurita, N.; Langton, J.; Reuter, E.; Seeman, J.T.; Wienands, H.U.; Wright, D.; Chin, M.; Hinkson, J.; Hunt, D.; Kennedy, K.

    1997-01-01

    PEP-II is a 2.2-km collider with a 2.1-A, 3.1-GeV positron ring 1 m above a 1-A, 9-GeV electron ring; both are designed for a maximum of 3 A. Several diagnostics are now in preparation for commissioning the rings. The beam size and pulse duration are measured using visible synchrotron radiation from arc dipoles. Grazing-incidence, water-cooled mirrors that must withstand up to 200 W/cm extract the light. The sum signal from a set of four pickup buttons, normalized to a DC current transformer{close_quote}s measurement of the ring current, is processed to measure the charge in each bunch. This enables us to fill 1658 of the 3492 buckets per ring to a charge that must be equal within {plus_minus}2{percent}. For diagnostics and machine protection, 100 photomultiplier-based Cherenkov detectors measure the beam-loss distribution. {copyright} {ital 1997 American Institute of Physics.}

  2. Overview of the HIT-II Program and Diagnostic Development

    NASA Astrophysics Data System (ADS)

    Smith, R. J.; Redd, A. J.; Nelson, B. A.; Jarboe, T. R.; Gu, P.; Hamp, W. T.; Jewell, P. D.

    2001-10-01

    The HIT-II device is a low-aspect ratio (Ro = 0.3m, a = 0.2m) torus with a 0.5T field on axis. The machine configuration allows both inductive current drive and coaxial helicity injection (CHI) current drive operations and is capable of producing plasma currents of 200 kA in either mode. The device has active feedback control of the equilibrium and is capable of combining both current drive techniques during the same discharge. The plasma demonstrates a variety of phenomena including IREs and an n=1 rotating instability in both modes of operation (believed to be the mechanism for current drive in CHI plasmas). Details of the operation of the HIT-II device are presented along with data from several new diagnostics: a novel two chord scanning interferometer using a Martin-Puplett configuration, a multi-point Thomson scattering system, an internal magnetic probe, and a Zeff detector. These diagnostics are designed to give information on density and temperature profiles and the localization of internal magnetic fluctuations in the plasma.

  3. Diagnostic development and support of MHD Test Facilities. Technical progress report, October 1991--December 1991

    SciTech Connect

    Not Available

    1994-07-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for magnetohydrodynamic (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery (HRSR) support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL`s computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.

  4. Diagnostic development and support of MHD test facilities. Technical progress report, January--March 1991

    SciTech Connect

    Shepard, W.S.; Cook, R.L.

    1991-12-31

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for magnetohydrodynamic (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery (HRSR) support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL`S computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.

  5. Advances in the design, development, and deployment of the U.S. Army Research Laboratory (ARL) multimodal signatures database

    NASA Astrophysics Data System (ADS)

    Bennett, Kelly; Robertson, James

    2011-06-01

    Recent advances in the design, development, and deployment of U.S. Army Research Laboratory's (ARL) Multimodal Signature Database (MMSDB) create a state-of-the-art database system with Web-based access through a Web interface designed specifically for research and development. Tens of thousands of signatures are currently available for researchers to support their algorithm development and refinement for sensors and other security systems. Each dataset is stored in (Hierarchical Data Format 5 (HDF5) format for easy modeling and storing of signatures and archived sensor data, ground truth, calibration information, algorithms, and other documentation. Archived HDF5 formatted data provides the basis for computational interoperability across a variety of tools including MATLAB, Octave, and Python. The database has a Web-based front-end with public and restricted access interfaces, along with 24/7 availability and support. This paper describes the overall design of the system, and the recent enhancements and future vision, including the ability for researchers to share algorithms, data, and documentation in the cloud, and providing an ability to run algorithms and software for testing and evaluation purposes remotely across multiple domains and computational tools. The paper will also describe in detail the HDF5 format for several multimodal sensor types.

  6. Development of Compton Radiography Diagnostics for Inertial Confinement Fusion Implosions

    SciTech Connect

    Tommasini, R; Hatchett, S P; Hey, D S; Izumi, N; Koch, J A; Landen, O L; Mackinnon, A J; Delettrez, J; Glebov, V; Stoeckl, C

    2010-11-16

    An important diagnostic tool for inertial confinement fusion will be time-resolved radiographic imaging of the dense cold fuel surrounding the hot spot. The measurement technique is based on point-projection radiography at photon energies from 60-200 keV where the Compton effect is the dominant contributor to the opacity of the fuel or pusher. We have successfully applied this novel Compton Radiography technique to the study of the final compression of directly driven plastic capsules at the OMEGA facility. The radiographs have a spatial and temporal resolution of {approx}10 {micro}m and {approx}10ps, respectively. A statistical accuracy of {approx}0.5% in transmission per resolution element is achieved, allowing localized measurements of areal mass densities to 7% accuracy. The experimental results show 3D non-uniformities and lower than 1D expected areal densities attributed to drive asymmetries and hydroinstabilities.

  7. Development of Monitoring and Diagnostic Methods for Robots Used In Remediation of Waste Sites - Final Report

    SciTech Connect

    Martin, M.

    2000-04-01

    This project is the first evaluation of model-based diagnostics to hydraulic robot systems. A greater understanding of fault detection for hydraulic robots has been gained, and a new theoretical fault detection model developed and evaluated.

  8. Development and evaluation of a genomic signature for the prediction and mechanistic assessment of nongenotoxic hepatocarcinogens in the rat.

    PubMed

    Fielden, Mark R; Adai, Alex; Dunn, Robert T; Olaharski, Andrew; Searfoss, George; Sina, Joe; Aubrecht, Jiri; Boitier, Eric; Nioi, Paul; Auerbach, Scott; Jacobson-Kram, David; Raghavan, Nandini; Yang, Yi; Kincaid, Andrew; Sherlock, Jon; Chen, Shen-Jue; Car, Bruce

    2011-11-01

    Evaluating the risk of chemical carcinogenesis has long been a challenge owing to the protracted nature of the pathology and the limited translatability of animal models. Although numerous short-term in vitro and in vivo assays have been developed, they have failed to reliably predict the carcinogenicity of nongenotoxic compounds. Extending upon previous microarray work (Fielden, M. R., Nie, A., McMillian, M., Elangbam, C. S., Trela, B. A., Yang, Y., Dunn, R. T., II, Dragan, Y., Fransson-Stehen, R., Bogdanffy, M., et al. (2008). Interlaboratory evaluation of genomic signatures for predicting carcinogenicity in the rat. Toxicol. Sci. 103, 28-34), we have developed and extensively evaluated a quantitative PCR-based signature to predict the potential for nongenotoxic compounds to induce liver tumors in the rat as a first step in the safety assessment of potential nongenotoxic carcinogens. The training set was derived from liver RNA from rats treated with 72 compounds and used to develop a 22-gene signature on the TaqMan array platform, providing an economical and standardized assay protocol. Independent testing on over 900 diverse samples (66 compounds) confirmed the interlaboratory precision of the assay and its ability to predict known nongenotoxic hepatocarcinogens (NGHCs). When tested under different experimental designs, strains, time points, dose setting criteria, and other preanalytical processes, the signature sensitivity and specificity was estimated to be 67% (95% confidence interval [CI] = 38-88%) and 59% (95% CI = 44-72%), respectively, with an area under the receiver operating characteristic curve of 0.65 (95% CI = 0.46-0.83%). Compounds were best classified using expression data from short-term repeat dose studies; however, the prognostic expression changes appeared to be preserved after longer term treatment. Exploratory evaluations also revealed that different modes of action for nongenotoxic and genotoxic compounds can be discriminated based on the

  9. Digital Signature Management.

    ERIC Educational Resources Information Center

    Hassler, Vesna; Biely, Helmut

    1999-01-01

    Describes the Digital Signature Project that was developed in Austria to establish an infrastructure for applying smart card-based digital signatures in banking and electronic-commerce applications. Discusses the need to conform to international standards, an international certification infrastructure, and security features for a public directory…

  10. Domain-Specific Languages For Developing and Deploying Signature Discovery Workflows

    SciTech Connect

    Jacob, Ferosh; Wynne, Adam S.; Liu, Yan; Gray, Jeff

    2013-12-02

    Domain-agnostic Signature Discovery entails scientific investigation across multiple domains through the re-use of existing algorithms into workflows. The existing algorithms may be written in any programming language for various hardware architectures (e.g., desktops, commodity clusters, and specialized parallel hardware platforms). This raises an engineering issue in generating Web services for heterogeneous algorithms so that they can be composed into a scientific workflow environment (e.g., Taverna). In this paper, we present our software tool that defines two simple Domain-Specific Languages (DSLs) to automate these processes: SDL and WDL. Our Service Description Language (SDL) describes key elements of a signature discovery algorithm and generates the service code. The Workflow Description Language (WDL) describes the pipeline of services and generates deployable artifacts for the Taverna workflow management system. We demonstrate our tool with a landscape classification example that is represented by BLAST workflows composed of services that wrap original scripts.

  11. Hydrological signatures of Critical Zone Processes: Developing targets for Critical Zone modeling.

    NASA Astrophysics Data System (ADS)

    Thompson, S. E.; Karst, N.; Dralle, D.

    2015-12-01

    Water fluxes through the Critical Zone (CZ) are ubiquitous, and their behavior has the potential to reveal information about the structure and dynamics of the CZ. Models describing these fluxes implicitly propose hypotheses about the CZ which are encoded in the structure of the models. However, the certainty with which such hypotheses can be tested with observed hydrologic data is challenged by the well-known problem of equifinality - the tendency of multiple models, with very different model structures, to produce equally good representations of observed hydrologic dynamics. The project of modeling the CZ is thus challenged by the need to identify hydrologic signatures that are closely tied to the CZ structure and which could provide a stronger basis for hypothesis testing in model frameworks. Here I present one potential signature based on streamflow recession dynamics and the structure of their variability. Firstly, I present a technique to remove a mathematical artifact that is inherent in power-law representations of streamflow recessions. Secondly, I show that having removed this artifact, intriguing relationships emerge in the recession variability in the rivers near the Eel River Critical Zone Observatory. This relationship is interpreted in terms of how water is partitioned within the CZ. The close relationship between CZ processes and this part of the hydrologic response suggests that co-variation in recession parameters could provide a process-oriented hydrologic signature that CZ models should attempt to emulate.

  12. Diagnostic Methods for Platelet Bacteria Screening: Current Status and Developments

    PubMed Central

    Störmer, Melanie; Vollmer, Tanja

    2014-01-01

    Summary Bacterial contamination of blood components and the prevention of transfusion-associated bacterial infection still remains a major challenge in transfusion medicine. Over the past few decades, a significant reduction in the transmission of viral infections has been achieved due to the introduction of mandatory virus screening. Platelet concentrates (PCs) represent one of the highest risks for bacterial infection. This is due to the required storage conditions for PCs in gas-permeable containers at room temperature with constant agitation, which support bacterial proliferation from low contamination levels to high titers. In contrast to virus screening, since 1997 in Germany bacterial testing of PCs is only performed as a routine quality control or, since 2008, to prolong the shelf life to 5 days. In general, bacterial screening of PCs by cultivation methods is implemented by the various blood services. Although these culturing systems will remain the gold standard, the significance of rapid methods for screening for bacterial contamination has increased over the last few years. These new methods provide powerful tools for increasing the bacterial safety of blood components. This article summarizes the course of policies and provisions introduced to increase bacterial safety of blood components in Germany. Furthermore, we give an overview of the different diagnostic methods for bacterial screening of PCs and their current applicability in routine screening processes. PMID:24659944

  13. The OMEGA Gas Sampling System and Radiochemical Diagnostic Development

    NASA Astrophysics Data System (ADS)

    Stoyer, Mark; Hudson, Bryant; Sangster, Craig; Freeman, Charlie; Schwartz, B.; Olsen, M.

    2001-10-01

    Radiochemical diagnostics for the National Ignition Facility (NIF) will address important issues such as shell rho-R, mix and charged particle production in ignition and near-ignition capsules. Many reaction products from charged particle reactions are noble gases. A gas sampling system for obtaining radiochemical samples following OMEGA shots has been assembled at LLNL and is being installed on the target chamber at OMEGA. Results of benchtop tests and possibly target chamber background collections with such a system will be discussed. A primary goal is to demonstrate reproducible collection efficiencies for this new technical capability of near 100include measuring collection efficiencies for certain reaction processes and to test the collection scheme for other low energy reaction products. Should high collection efficiencies be demonstrated, and the background be low and well-characterized, test reactions of 18O(alpha,n)21Ne or 80Kr(n,2n)79Kr and 38Ar(n,2n)37Ar will be investigated at OMEGA. In addition, other collection schemes are being considered for reactions that do not result in a noble gas isotope. Some simulations of expected activations from several capsule designs will be discussed. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  14. Development and testing of a diagnostic system for intelligen distributed control at EBR-2

    SciTech Connect

    Edwards, R.M.; Ruhl, D.W.; Klevans, E.H.; Robinson, G.E.

    1990-01-01

    A diagnostic system is under development for demonstration of Intelligent Distributed Control at the Experimental Breeder Reactor (EBR--II). In the first phase of the project a diagnostic system is being developed for the EBR-II steam plant based on the DISYS expert systems approach. Current testing uses recorded plant data and data from simulated plant faults. The dynamical simulation of the EBR-II steam plant uses the Babcock and Wilcox (B W) Modular Modeling System (MMS). At EBR-II the diagnostic system operates in the UNIX workstation and receives live plant data from the plant Data Acquisition System (DAS). Future work will seek implementation of the steam plant diagnostic in a distributed manner using UNIX based computers and Bailey microprocessor-based control system. 10 refs., 6 figs.

  15. Diagnostic development and support of MHD test facilities. Final progress report, March 1980--March 1994

    SciTech Connect

    Not Available

    1995-02-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU), under U.S. Department of Energy (DOE) Contract No. DE-AC02-80ET-15601, Diagnostic Development and Support of MHD Test Facilities, developed diagnostic instruments for magnetohydrodynamic (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery (HRSR) support, were refined, and new systems to measure temperatures and gas-seed-slag stream characteristics were developed. To further data acquisition and analysis capabilities, the diagnostic systems were interfaced with DIAL`s computers. Technical support was provided for the diagnostic needs of the national MHD research effort. DIAL personnel also cooperated with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. The initial contract, Testing and Evaluation of Heat Recovery/Seed Recovery, established a data base on heat transfer, slagging effects on heat transfer surfaces, metal durability, secondary combustor performance, secondary combustor design requirements, and other information pertinent to the design of HR/SR components at the Coal-Fired Flow Facility (CFFF). To accomplish these objectives, a combustion test stand was constructed that simulated MHD environments, and mathematical models were developed and evaluated for the heat transfer in hot-wall test sections. Two transitions occurred during the span of this contract. In May 1983, the objectives and title of the contract changed from Testing and Evaluation of Heat Recovery/Seed Recovery to Diagnostic Development and Support of MHD Test Facilities. In July 1988, the research laboratory`s name changed from the MHD Energy Center to the Diagnostic Instrumentation and Analysis Laboratory.

  16. Signature control

    NASA Astrophysics Data System (ADS)

    Pyati, Vittal P.

    The reduction of vehicle radar signature is accomplished by means of vehicle shaping, the use of microwave frequencies-absorbent materials, and either passive or active cancellation techniques; such techniques are also useful in the reduction of propulsion system-associated IR emissions. In some anticipated scenarios, the objective is not signature-reduction but signature control, for deception, via decoy vehicles that mimic the signature characteristics of actual weapons systems. As the stealthiness of airframes and missiles increases, their propulsion systems' exhaust plumes assume a more important role in detection by an adversary.

  17. The ISIS Penning H- SPS and Diagnostic Developments at RAL

    SciTech Connect

    Faircloth, D. C.; Letchford, A. P.; Whitehead, M. O.; Wood, T.; Pozimski, J.; Jolly, S.; Savage, P.; Haigh, M.; Morrison, J.; Yew, I.; Doucas, G.

    2007-08-10

    This paper covers the recent work carried out at the Rutherford Appleton Laboratory (RAL) on the ISIS Ion Source Development Rig (ISDR). The development of a retarding potential energy analyzer is described and a measured energy spread of 17.6 eV {+-} 1.5 eV from the ion source is reported. Variation in energy spread versus discharge current is shown. The development of a pepperpot emittance scanner to study emittance variation along the beam axis is discussed.

  18. Development and clinical evaluation of a rapid diagnostic kit for feline leukemia virus infection

    PubMed Central

    Kim, Won-Shik; Chong, Chom-Kyu; Kim, Hak-Yong; Lee, Gyu-Cheol; Jeong, Wooseog; An, Dong-Jun; Jeoung, Hye-Young; Lee, Jae-In

    2014-01-01

    Feline leukemia virus (FeLV) causes a range of neoplastic and degenerative diseases in cats. To obtain a more sensitive and convenient diagnosis of the disease, we prepared monoclonal antibodies specific for the FeLV p27 to develop a rapid diagnostic test with enhanced sensitivity and specificity. Among these antibodies, we identified two clones (hybridomas 8F8B5 and 8G7D1) that specifically bound to FeLV and were very suitable for a diagnostic kit. The affinity constants for 8F8B5 and 8G7D1 were 0.35 × 109 and 0.86 × 109, respectively. To investigate the diagnostic abilities of the rapid kit using these antibodies, we performed several clinical studies. Assessment of analytical sensitivity revealed that the detection threshold of the rapid diagnostic test was 2 ng/mL for recombinant p27 and 12.5 × 104 IU/mL for FeLV. When evaluating 252 cat sera samples, the kit was found to have a kappa value of 0.88 compared to polymerase chain reaction (PCR), indicating a significant correlation between data from the rapid diagnostic test and PCR. Sensitivity and specificity of the kit were 95.2% (20/21) and 98.5% (257/261), respectively. Our results demonstrated that the rapid diagnostic test would be a suitable diagnostic tool for the rapid detection of FeLV infection in cats. PMID:24136209

  19. Can model observers be developed to reproduce radiologists' diagnostic performances? Our study says not so fast!

    NASA Astrophysics Data System (ADS)

    Lee, Juhun; Nishikawa, Robert M.; Reiser, Ingrid; Boone, John M.

    2016-03-01

    The purpose of this study was to determine radiologists' diagnostic performances on different image reconstruction algorithms that could be used to optimize image-based model observers. We included a total of 102 pathology proven breast computed tomography (CT) cases (62 malignant). An iterative image reconstruction (IIR) algorithm was used to obtain 24 reconstructions with different image appearance for each image. Using quantitative image feature analysis, three IIRs and one clinical reconstruction of 50 lesions (25 malignant) were selected for a reader study. The reconstructions spanned a range of smooth-low noise to sharp-high noise image appearance. The trained classifiers' AUCs on the above reconstructions ranged from 0.61 (for smooth reconstruction) to 0.95 (for sharp reconstruction). Six experienced MQSA radiologists read 200 cases (50 lesions times 4 reconstructions) and provided the likelihood of malignancy of each lesion. Radiologists' diagnostic performances (AUC) ranged from 0.7 to 0.89. However, there was no agreement among the six radiologists on which image appearance was the best, in terms of radiologists' having the highest diagnostic performances. Specifically, two radiologists indicated sharper image appearance was diagnostically superior, another two radiologists indicated smoother image appearance was diagnostically superior, and another two radiologists indicated all image appearances were diagnostically similar to each other. Due to the poor agreement among radiologists on the diagnostic ranking of images, it may not be possible to develop a model observer for this particular imaging task.

  20. CONCEPTUAL MODEL DEVELOPMENT AND INFORMATION MANAGEMENT FRAMEWORK FOR DIAGNOSTICS RESEARCH

    EPA Science Inventory

    Conceptual model development will focus on the effects of habitat alteration, nutrients,suspended and bedded sediments, and toxic chemicals on appropriate endpoints (individuals, populations, communities, ecosystems) across spatial scales (habitats, water body, watershed, region)...

  1. Methane and its Stable Isotope Signature Across Pennsylvania: Assessing the Potential Impacts of Natural Gas Development and Agriculture

    NASA Astrophysics Data System (ADS)

    Ramos-Garcés, F.; Fuentes, J. D.; Grannas, A. M.; Martins, D. K.

    2012-12-01

    Methane is an important greenhouse gas with a global warming potential 72 times that of carbon dioxide (20 year time horizon). Many recent efforts have been focused on improving our understanding of methane sources to the atmosphere and better quantifying the atmospheric methane budget. Increased natural gas exploration, particularly associated with shale gas drilling, has been hypothesized to be a potential source of atmospheric methane during well development and also due to fugitive emissions from operational well sites and pipelines. For a six-day period in June 2012, measurements of methane and its stable isotope signature were obtained from a mobile measurement platform using cavity ringdown spectroscopy. Transects from southwestern to northeastern Pennsylvania were studied, with samples obtained in rural, forested, urban, farm-impacted and well-impacted sites. Particular emphasis was placed on performing air sampling in the vicinity of natural gas wells under development, just completed, and in full operation. In the rural atmosphere, away from cattle farms and natural gas systems, the ambient levels of methane were around 1.75 ppm. Near and around gas wells under development, ambient methane levels resembled those found in the rural atmosphere. In some cases, the atmosphere was enriched with methane (up to 2.2 ppm) in areas near old wells and existing pipelines. Ambient methane levels around cattle farms were significantly enhanced, with mixing ratios reaching about 4 ppm. We will discuss here the impact of both gas well development and agricultural activities on observed methane concentrations and stable isotope signatures.

  2. Development of a system to provide diagnostics-while-drilling.

    SciTech Connect

    Wise, Jack LeRoy; Jacobson, Ronald David; Finger, John Travis; Mansure, Arthur James; Knudsen, Steven Dell

    2003-06-01

    This report describes development of a system that provides high-speed, real-time downhole data while drilling. Background of the project, its benefits, major technical challenges, test planning, and test results are covered by relatively brief descriptions in the body of the report, with some topics presented in more detail in the attached appendices.

  3. The Development of a Literacy Diagnostic Tool for Maltese Children

    ERIC Educational Resources Information Center

    Xuereb, Rachael; Grech, Helen; Dodd, Barbara

    2011-01-01

    This article focuses on the development of a Literacy Assessment Battery for the diagnosis of Maltese children with specific learning difficulties. It forms part of a wider research study involving testing of 549 children in Malta as well as standardisation of the tool. Results of the children's performance and psychometric validation go beyond…

  4. Continued Development of Expert System Tools for NPSS Engine Diagnostics

    NASA Technical Reports Server (NTRS)

    Lewandowski, Henry

    1996-01-01

    The objectives of this grant were to work with previously developed NPSS (Numerical Propulsion System Simulation) tools and enhance their functionality; explore similar AI systems; and work with the High Performance Computing Communication (HPCC) K-12 program. Activities for this reporting period are briefly summarized and a paper addressing the implementation, monitoring and zooming in a distributed jet engine simulation is included as an attachment.

  5. Development of a Sampling Collection Device with Diagnostic Procedures.

    PubMed

    Cheng, Jhih-Yan; Feng, Mow-Jung; Wu, Chia-Chi; Wang, Jane; Chang, Ting-Chang; Cheng, Chao-Min

    2016-08-01

    Cervicovaginal fluid plays an important role in the detection of many female genital diseases, but the lack of suitable collection devices in the market severely challenges test success rate. Appropriate clinical sampling devices for cervicovaginal fluid collection would help physicians detect diseases and disease states more rapidly, efficiently, and accurately. The objective of this study was to develop a readily usable sampling collection device that would eliminate macromolecular interference and accurately provide specimens for further studies. This study was designed to develop an effective device to collect cervicovaginal fluid from women with symptoms of endometrial lesions, women appearing in the clinic for a routine Papanicolaou smear, and/or women seeking a routine gynecologic checkup. Paper-based assay, ELISA, and qNano were used to provide accurate diagnoses. A total of 103 patients successfully used the developed device to collect cervicovaginal fluid. Some of the collected specimens were used to detect glycogen, lactate, and pH for determining pathogen infection. Other specimen samples were tested for the presence of female genital cancer by comparing interleukin 6 concentration and microvesicle concentration. We proposed a noninvasive screening test for the diagnosis of female genital diseases using a dual-material collection device. The outer, nonwoven fabric portion of this device was designed to filter macromolecules, and the inner cotton portion was designed to absorb cervicovaginal fluid. PMID:27338148

  6. Clinical Research and Development of Tuberculosis Diagnostics: Moving From Silos to Synergy

    PubMed Central

    Kim, Peter S.; Evans, Carlton A.; Alland, David; Barer, Michael; Diefenbach, Jane; Ellner, Jerrold; Hafner, Richard; Hamilton, Carol Dukes; Iademarco, Michael F.; Ireton, Gregory; Kimerling, Michael E.; Lienhardt, Christian; MacKenzie, William R.; Murray, Megan; Perkins, Mark D.; Posey, Jamie E.; Roberts, Teri; Sizemore, Christine; Stevens, Wendy S.; Via, Laura; Williams, Sharon D.; Yew, Wing W.; Swindells, Susan

    2012-01-01

    The development, evaluation, and implementation of new and improved diagnostics have been identified as critical needs by human immunodeficiency virus (HIV) and tuberculosis researchers and clinicians alike. These needs exist in international and domestic settings and in adult and pediatric populations. Experts in tuberculosis and HIV care, researchers, healthcare providers, public health experts, and industry representatives, as well as representatives of pertinent US federal agencies (Centers for Disease Control and Prevention, Food and Drug Administration, National Institutes of Health, United States Agency for International Development) assembled at a workshop proposed by the Diagnostics Working Group of the Federal Tuberculosis Taskforce to review the state of tuberculosis diagnostics development in adult and pediatric populations. PMID:22476718

  7. A relational approach to the development of expert diagnostic systems

    NASA Technical Reports Server (NTRS)

    Ames, K. R.

    1984-01-01

    The proposition that, given a structural and/or functional description of any real or abstract system, an expert system can be built based on this description is examined. First, a model is developed for a microprocessor-controlled end effector/sensor system using a modeling approach called a relational Knowledge-Base Machine (RKBM). Next, an explanation of how the end effector model could be used for the error diagnosis on the operational end effector is given and two versions of an error diagnosis algorithm based on the model are presented. Finally, areas of further research are described that are necessary before an expert system using this approach becomes a reality.

  8. Development of prototype polychromator system for KSTAR Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Lee, S. H.; Son, S. H.; Ko, W. H.; Seo, D. C.; Yamada, I.; Her, K. H.; Jeon, J. S.; Bog, M. G.

    2015-12-01

    A polychromator is widely used by the Thomson scattering system for measuring the electron temperature and density. This type of spectrometer includes optic elements such as band-pass filters, focusing lens, collimating lens, and avalanche photodiodes (APDs). The characteristics of band-pass filters in the polychromator are determined by the measuring range of the Thomson system. KSTAR edge polychromators were developed by co-works at NIFS in Japan, and the KSTAR core polychromators were developed by NFRI in Korea. The power supply system of these polychromators is connected only to one power supply module and can manually control the APD's voltage at the front side of the power supply by using a potentiometer. In this paper, a prototype polychromator is introduced at the KSTAR. The prototype polychromator system has a built-in power supply unit that includes high voltage for the APD and ± 5 V for an op-amp IC. The high voltage for the APD is finely controlled and monitored using a PC with the LabView software. One out of the six band pass-filters has a center wavelength of 523.5 nm with 2-nm bandwidth, which can measure Zeff, and the other five band-pass filters can simultaneously measure the Thomson signal. In addition, we will show the test result of this prototype polychromator system during the KSTAR experiment campaign (2015).

  9. Development of an Adaptable Display and Diagnostic System for the Evaluation of Tropical Cyclone Forecasts

    NASA Astrophysics Data System (ADS)

    Kucera, P. A.; Burek, T.; Halley-Gotway, J.

    2015-12-01

    NCAR's Joint Numerical Testbed Program (JNTP) focuses on the evaluation of experimental forecasts of tropical cyclones (TCs) with the goal of developing new research tools and diagnostic evaluation methods that can be transitioned to operations. Recent activities include the development of new TC forecast verification methods and the development of an adaptable TC display and diagnostic system. The next generation display and diagnostic system is being developed to support evaluation needs of the U.S. National Hurricane Center (NHC) and broader TC research community. The new hurricane display and diagnostic capabilities allow forecasters and research scientists to more deeply examine the performance of operational and experimental models. The system is built upon modern and flexible technology that includes OpenLayers Mapping tools that are platform independent. The forecast track and intensity along with associated observed track information are stored in an efficient MySQL database. The system provides easy-to-use interactive display system, and provides diagnostic tools to examine forecast track stratified by intensity. Consensus forecasts can be computed and displayed interactively. The system is designed to display information for both real-time and for historical TC cyclones. The display configurations are easily adaptable to meet the needs of the end-user preferences. Ongoing enhancements include improving capabilities for stratification and evaluation of historical best tracks, development and implementation of additional methods to stratify and compute consensus hurricane track and intensity forecasts, and improved graphical display tools. The display is also being enhanced to incorporate gridded forecast, satellite, and sea surface temperature fields. The presentation will provide an overview of the display and diagnostic system development and demonstration of the current capabilities.

  10. Development of phoH as a Novel Signature Gene for Assessing Marine Phage Diversity▿

    PubMed Central

    Goldsmith, Dawn B.; Crosti, Giuseppe; Dwivedi, Bhakti; McDaniel, Lauren D.; Varsani, Arvind; Suttle, Curtis A.; Weinbauer, Markus G.; Sandaa, Ruth-Anne; Breitbart, Mya

    2011-01-01

    Phages play a key role in the marine environment by regulating the transfer of energy between trophic levels and influencing global carbon and nutrient cycles. The diversity of marine phage communities remains difficult to characterize because of the lack of a signature gene common to all phages. Recent studies have demonstrated the presence of host-derived auxiliary metabolic genes in phage genomes, such as those belonging to the Pho regulon, which regulates phosphate uptake and metabolism under low-phosphate conditions. Among the completely sequenced phage genomes in GenBank, this study identified Pho regulon genes in nearly 40% of the marine phage genomes, while only 4% of nonmarine phage genomes contained these genes. While several Pho regulon genes were identified, phoH was the most prevalent, appearing in 42 out of 602 completely sequenced phage genomes. Phylogenetic analysis demonstrated that phage phoH sequences formed a cluster distinct from those of their bacterial hosts. PCR primers designed to amplify a region of the phoH gene were used to determine the diversity of phage phoH sequences throughout a depth profile in the Sargasso Sea and at six locations worldwide. phoH was present at all sites examined, and a high diversity of phoH sequences was recovered. Most phoH sequences belonged to clusters without any cultured representatives. Each depth and geographic location had a distinct phoH composition, although most phoH clusters were recovered from multiple sites. Overall, phoH is an effective signature gene for examining phage diversity in the marine environment. PMID:21926220

  11. Development of phoH as a novel signature gene for assessing marine phage diversity.

    PubMed

    Goldsmith, Dawn B; Crosti, Giuseppe; Dwivedi, Bhakti; McDaniel, Lauren D; Varsani, Arvind; Suttle, Curtis A; Weinbauer, Markus G; Sandaa, Ruth-Anne; Breitbart, Mya

    2011-11-01

    Phages play a key role in the marine environment by regulating the transfer of energy between trophic levels and influencing global carbon and nutrient cycles. The diversity of marine phage communities remains difficult to characterize because of the lack of a signature gene common to all phages. Recent studies have demonstrated the presence of host-derived auxiliary metabolic genes in phage genomes, such as those belonging to the Pho regulon, which regulates phosphate uptake and metabolism under low-phosphate conditions. Among the completely sequenced phage genomes in GenBank, this study identified Pho regulon genes in nearly 40% of the marine phage genomes, while only 4% of nonmarine phage genomes contained these genes. While several Pho regulon genes were identified, phoH was the most prevalent, appearing in 42 out of 602 completely sequenced phage genomes. Phylogenetic analysis demonstrated that phage phoH sequences formed a cluster distinct from those of their bacterial hosts. PCR primers designed to amplify a region of the phoH gene were used to determine the diversity of phage phoH sequences throughout a depth profile in the Sargasso Sea and at six locations worldwide. phoH was present at all sites examined, and a high diversity of phoH sequences was recovered. Most phoH sequences belonged to clusters without any cultured representatives. Each depth and geographic location had a distinct phoH composition, although most phoH clusters were recovered from multiple sites. Overall, phoH is an effective signature gene for examining phage diversity in the marine environment. PMID:21926220

  12. Development of a BPM Lock-In Diagnostic System

    SciTech Connect

    Richard Dickson

    2003-05-12

    A system has been developed for the acquisition and analysis of high rate, time coherent BPM data across the Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF). This system will allow the acquisition of Beam Position Monitor (BPM) position and intensity information at a rate in excess 7 KHz for approximately 200 BPMs in a time synchronous manner. By inducing minute sinusoidal transverse beam motion in the CEBAF injector, with known phase relative to the synchronized BPM acquisition, it is possible to derive several types of useful information. Analysis of the BPM intensity data, which is proportional to beam current, by beating the signal with an in-phase sinusoidal representation of the transverse kick can localize beam scraping to a particular BPM. Similarly, real-time optics information may be deduced with an analysis of BPM position data. This paper will detail the frequency lock-in technique applied and present status.

  13. Development of detection techniques and diagnostics for airborne carbon nanoparticles.

    SciTech Connect

    Michelsen, Hope A.; Witze, Peter O.; Settersten, Thomas B.

    2003-11-01

    We have recorded time-resolved LII signals from a laminar ethylene diffusion flame over a wide range of laser fluences at 532 nm. We have performed these experiments using an injection-seeded NdYAG laser with a pulse duration of 7 ns. The beam was spatially filtered and imaged into the flame to provide a homogeneous spatial profile. These data were used to aid in the development of a model, which will be used to test the validity of the LII technique under varying environmental conditions. The new model describes the heating of soot particles during the laser pulse and the subsequent cooling of the particles by radiative emission, sublimation, and conduction. The model additionally includes particle heating by oxidation, accounts for the likelihood of particle annealing, and incorporates a mechanism for nonthermal photodesorption, which is required for good agreement with our experimental results. In order to investigate the fast photodesorption mechanism in more detail, we have recorded LII temporal profiles using a regeneratively amplified Nd:YAG laser with a pulse duration of 70 ps to heat the particles and a streak camera with a temporal resolution of {approx}65 ps to collect the signal. Preliminary results confirm earlier indications of a fast mechanism leading to signal decay rates of much less than a nanosecond. Parameters to which the model is sensitive include the initial soot temperature, the temperature of the ambient gas, and the partial pressure of oxygen. In order to narrow the model uncertainties, we have developed a source of soot that allows us to determine and control these parameters. Soot produced by a burner is extracted, diluted, and cooled in a flow tube, which is equipped with a Scanning Mobility Particle Sizer (SMPS) for characterization of the aggregates.

  14. Development of stimulation diagnostic technology. Annual report, January 1991--December 1992

    SciTech Connect

    Warpinski, N.R.; Lorenz, J.C.; Sleefe, G.E.; Engler, B.P.

    1993-02-01

    To apply Sandia`s expertise and technology towards the development of stimulation diagnostic technology in the areas of in situ stress, natural fracturing, stimulation processes and instrumentation systems. The approach to stimulation diagnostics is to integrate in situ stress measurements (including microfracs, anelastic strain recovery, circumferential velocity analysis, and coring-induced fractures) with natural fracture characterization, stimulation analyses (including Fracpro, other models, finite-element analyses, and various pressure analyses), and fracture diagnostics in order to validate hydraulic fracture concepts, models and diagnostic capabilities. The focus of this year`s efforts has been on the planning and development of the M-Site experiment facility for hydraulic fracture diagnostic development. A microseismic suitability test was conducted at the site with very positive results. In four small fracture treatments, over 1,000 microseismic were recorded, with most of these events having analyzable polarization and p- and s-wave arrivals. In the area of in situ stress, comparative studies are being made to evaluate stress measurement techniques, and an in situ stress topical report is being prepared. Natural fracture studies of the Frontier formation are progressing; the genesis and stratigraphic controls on two fracture sets have been hypothesized.

  15. Development of two color laser diagnostics for the ITER poloidal polarimeter

    SciTech Connect

    Kawahata, K.; Akiyama, T.; Tanaka, K.; Nakayama, K.; Okajima, S.

    2010-10-15

    Two color laser diagnostics using terahertz laser sources are under development for a high performance operation of the Large Helical Device and for future fusion devices such as ITER. So far, we have achieved high power laser oscillation lines simultaneously oscillating at 57.2 and 47.7 {mu}m by using a twin optically pumped CH{sub 3}OD laser, and confirmed the original function, compensation of mechanical vibration, of the two color laser interferometer. In this article, application of the two color laser diagnostics to the ITER poloidal polarimeter and recent hardware developments will be described.

  16. Disorders of sex development: effect of molecular diagnostics.

    PubMed

    Achermann, John C; Domenice, Sorahia; Bachega, Tania A S S; Nishi, Mirian Y; Mendonca, Berenice B

    2015-08-01

    Disorders of sex development (DSDs) are a diverse group of conditions that can be challenging to diagnose accurately using standard phenotypic and biochemical approaches. Obtaining a specific diagnosis can be important for identifying potentially life-threatening associated disorders, as well as providing information to guide parents in deciding on the most appropriate management for their child. Within the past 5 years, advances in molecular methodologies have helped to identify several novel causes of DSDs; molecular tests to aid diagnosis and genetic counselling have now been adopted into clinical practice. Occasionally, genetic profiling of embryos prior to implantation as an adjunct to assisted reproduction, prenatal diagnosis of at-risk pregnancies and confirmatory testing of positive results found during newborn biochemical screening are performed. Of the available genetic tests, the candidate gene approach is the most popular. New high-throughput DNA analysis could enable a genetic diagnosis to be made when the aetiology is unknown or many differential diagnoses are possible. Nonetheless, concerns exist about the use of genetic tests. For instance, a diagnosis is not always possible even using new molecular approaches (which can be worrying for the parents) and incidental information obtained during the test might cause anxiety. Careful selection of the genetic test indicated for each condition remains important for good clinical practice. The purpose of this Review is to describe advances in molecular biological techniques for diagnosing DSDs. PMID:25942653

  17. Advanced development of particle beam probe diagnostic systems

    SciTech Connect

    Hickok, R.L.; Crowley, T.P.; Connor, K.A.

    1990-11-01

    This progress report covers the period starting with the approval to go ahead with the 2 MeV heavy ion beam probe (HIBP) for TEXT Upgrade to the submission of the grant renewal proposal. During this period the co-principal investigators, R. L. Hickok and T. P. Crowley have each devoted 45% of their time to this Grant. Their effort has been almost exclusively devoted to the design and fabrication of the 2 MeV HIBP system. The 1989 report that described the advantages of a 2 MeV HIBP for TEXT Upgrade compared to the existing 0.5 MeV HIBP and outlined the design of the 2 MeV system is attached as Appendix A. Since the major effort under the renewal proposal will be the continued fabrication, installation and operation of the 2 MeV system on TEXT Upgrade, we describe some of the unique results that have been obtained with the 0.5 MeV system on TEXT. For completeness, we also include the preliminary operation of the 160 keV HIBP on ATF. We present the present fabrication status of the 2 MeV system with the exception of the electrostatic energy analyzer. The energy analyzer which is designed to operate with 400 kV on the top plate is a major development effort and is treated separately. Included in this section are the results obtained with a prototype no guard ring analyzer, the conceptual design for the 2 MeV analyzer, the status of the high voltage testing of full size analyzer systems and backup plans if it turns out that it is impossible to hold 400 kV on an analyzer this size.

  18. The development of a post-test diagnostic system for rocket engines

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.

    1991-01-01

    An effort was undertaken by NASA to develop an automated post-test, post-flight diagnostic system for rocket engines. The automated system is designed to be generic and to automate the rocket engine data review process. A modular, distributed architecture with a generic software core was chosen to meet the design requirements. The diagnostic system is initially being applied to the Space Shuttle Main Engine data review process. The system modules currently under development are the session/message manager, and portions of the applications section, the component analysis section, and the intelligent knowledge server. An overview is presented of a rocket engine data review process, the design requirements and guidelines, the architecture and modules, and the projected benefits of the automated diagnostic system.

  19. Signature extension studies

    NASA Technical Reports Server (NTRS)

    Vincent, R. K.; Thomas, G. S.; Nalepka, R. F.

    1974-01-01

    The importance of specific spectral regions to signature extension is explored. In the recent past, the signature extension task was focused on the development of new techniques. Tested techniques are now used to investigate this spectral aspect of the large area survey. Sets of channels were sought which, for a given technique, were the least affected by several sources of variation over four data sets and yet provided good object class separation on each individual data set. Using sets of channels determined as part of this study, signature extension was accomplished between data sets collected over a six-day period and over a range of about 400 kilometers.

  20. Hyperspectral signature analysis of skin parameters

    NASA Astrophysics Data System (ADS)

    Vyas, Saurabh; Banerjee, Amit; Garza, Luis; Kang, Sewon; Burlina, Philippe

    2013-02-01

    The temporal analysis of changes in biological skin parameters, including melanosome concentration, collagen concentration and blood oxygenation, may serve as a valuable tool in diagnosing the progression of malignant skin cancers and in understanding the pathophysiology of cancerous tumors. Quantitative knowledge of these parameters can also be useful in applications such as wound assessment, and point-of-care diagnostics, amongst others. We propose an approach to estimate in vivo skin parameters using a forward computational model based on Kubelka-Munk theory and the Fresnel Equations. We use this model to map the skin parameters to their corresponding hyperspectral signature. We then use machine learning based regression to develop an inverse map from hyperspectral signatures to skin parameters. In particular, we employ support vector machine based regression to estimate the in vivo skin parameters given their corresponding hyperspectral signature. We build on our work from SPIE 2012, and validate our methodology on an in vivo dataset. This dataset consists of 241 signatures collected from in vivo hyperspectral imaging of patients of both genders and Caucasian, Asian and African American ethnicities. In addition, we also extend our methodology past the visible region and through the short-wave infrared region of the electromagnetic spectrum. We find promising results when comparing the estimated skin parameters to the ground truth, demonstrating good agreement with well-established physiological precepts. This methodology can have potential use in non-invasive skin anomaly detection and for developing minimally invasive pre-screening tools.

  1. Diagnostic Stability of Acute and Transient Psychotic Disorders in Developing Country Settings: An Overview

    PubMed Central

    Mehta, Shubham

    2015-01-01

    Acute and transient psychotic disorders (ATPD), introduced in the International Classification of Diseases (ICD-10) diagnostic system in 1992, are not receiving much attention in developing countries. Therefore, the main objective of this article is to review the literature related to the diagnostic stability of ATPD in developing countries. A PubMed search was conducted to review the studies concerned with this issue in the context of developing countries, as diagnostic stability is more of a direct test of validity of psychiatric diagnoses. Four publications were found. According to the literature search, the stability percentage of the ICD-10 ATPD diagnosis is 63-100%. The diagnostic shift is more commonly either towards bipolar disorder or schizophrenia, if any. Shorter duration of illness (<1 month) and abrupt onset (<48 hours) predict a stable diagnosis of ATPD. Based on available evidence, the diagnosis of ATPD appears to be relatively stable in developing countries. However, it is difficult to make a definitive conclusion, as there is a substantial lack of literature in developing country settings. PMID:26266021

  2. Diagnostic Stability of Acute and Transient Psychotic Disorders in Developing Country Settings: An Overview.

    PubMed

    Mehta, Shubham

    2015-02-24

    Acute and transient psychotic disorders (ATPD), introduced in the International Classification of Diseases (ICD-10) diagnostic system in 1992, are not receiving much attention in developing countries. Therefore, the main objective of this article is to review the literature related to the diagnostic stability of ATPD in developing countries. A PubMed search was conducted to review the studies concerned with this issue in the context of developing countries, as diagnostic stability is more of a direct test of validity of psychiatric diagnoses. Four publications were found. According to the literature search, the stability percentage of the ICD-10 ATPD diagnosis is 63-100%. The diagnostic shift is more commonly either towards bipolar disorder or schizophrenia, if any. Shorter duration of illness (<1 month) and abrupt onset (<48 hours) predict a stable diagnosis of ATPD. Based on available evidence, the diagnosis of ATPD appears to be relatively stable in developing countries. However, it is difficult to make a definitive conclusion, as there is a substantial lack of literature in developing country settings. PMID:26266021

  3. Development of a unique epigenetic signature during in vivo Th17 differentiation.

    PubMed

    Yang, Bi-Huei; Floess, Stefan; Hagemann, Stefanie; Deyneko, Igor V; Groebe, Lothar; Pezoldt, Joern; Sparwasser, Tim; Lochner, Matthias; Huehn, Jochen

    2015-02-18

    Activated naive CD4(+) T cells are highly plastic cells that can differentiate into various T helper (Th) cell fates characterized by the expression of effector cytokines like IFN-γ (Th1), IL-4 (Th2) or IL-17A (Th17). Although previous studies have demonstrated that epigenetic mechanisms including DNA demethylation can stabilize effector cytokine expression, a comprehensive analysis of the changes in the DNA methylation pattern during differentiation of naive T cells into Th cell subsets is lacking. Hence, we here performed a genome-wide methylome analysis of ex vivo isolated naive CD4(+) T cells, Th1 and Th17 cells. We could demonstrate that naive CD4(+) T cells share more demethylated regions with Th17 cells when compared to Th1 cells, and that overall Th17 cells display the highest number of demethylated regions, findings which are in line with the previously reported plasticity of Th17 cells. We could identify seven regions located in Il17a, Zfp362, Ccr6, Acsbg1, Dpp4, Rora and Dclk1 showing pronounced demethylation selectively in ex vivo isolated Th17 cells when compared to other ex vivo isolated Th cell subsets and in vitro generated Th17 cells, suggesting that this unique epigenetic signature allows identifying and functionally characterizing in vivo generated Th17 cells. PMID:25593324

  4. From interplanetary space to the ground: The development of magnetic structures and their signatures

    NASA Astrophysics Data System (ADS)

    Volwerk, Martin; Berchem, J.; Bogdanova, Y. V.; Constantinescu, O. D.; Dunlop, M. W.; Escoubet, P.; Faza-Kerley, A. N.; Frey, H.; Hasegawa, H.; Lavraud, B.; Panov, E. V.; Shen, C.; Shi, J. K.; Sibeck, D. G.; Taylor, M.; Wang, J.; Wild, J.

    We use a special conjuntion of several satellites (ACE, Wind, Cluster, THEMIS, Geotail and DoubleStar) and ground based magnetometers and cameras, on 14 June 2007, to follow ro-tational magnetic structures from the solar wind, via amplification through the bow shock, motion of the magnetopause and signatures on the ground. The structures crossing the quasi-perpendicular bow shock are amplified as expected ( factor 2) and further compressed when moving towards the magnetopause. Timing analysis on the structures in the magnetosheath shows that they are moving along with the magnetosheath plasma flow. The structures have slightly different characters with respect to the location of the spacecraft, either pre-or post-noon, both in the solar wind and in the magnetosheath. At the same time that these two structures are observed near Earth, there are strong poleward motions of the aurora and the THEMIS ground magnetometer stations show strong magnetic activity. We will follow these structures from the solar wind to the ground and discuss the various processes that are taking place in a first time "three dimensional" view of near Earth space.

  5. Development of a rapid method for the automatic classification of biological agents' fluorescence spectral signatures

    NASA Astrophysics Data System (ADS)

    Carestia, Mariachiara; Pizzoferrato, Roberto; Gelfusa, Michela; Cenciarelli, Orlando; Ludovici, Gian Marco; Gabriele, Jessica; Malizia, Andrea; Murari, Andrea; Vega, Jesus; Gaudio, Pasquale

    2015-11-01

    Biosecurity and biosafety are key concerns of modern society. Although nanomaterials are improving the capacities of point detectors, standoff detection still appears to be an open issue. Laser-induced fluorescence of biological agents (BAs) has proved to be one of the most promising optical techniques to achieve early standoff detection, but its strengths and weaknesses are still to be fully investigated. In particular, different BAs tend to have similar fluorescence spectra due to the ubiquity of biological endogenous fluorophores producing a signal in the UV range, making data analysis extremely challenging. The Universal Multi Event Locator (UMEL), a general method based on support vector regression, is commonly used to identify characteristic structures in arrays of data. In the first part of this work, we investigate fluorescence emission spectra of different simulants of BAs and apply UMEL for their automatic classification. In the second part of this work, we elaborate a strategy for the application of UMEL to the discrimination of different BAs' simulants spectra. Through this strategy, it has been possible to discriminate between these BAs' simulants despite the high similarity of their fluorescence spectra. These preliminary results support the use of SVR methods to classify BAs' spectral signatures.

  6. Development and Use of Diagnostic Tests to Evaluate Students' Misconceptions in Science.

    ERIC Educational Resources Information Center

    Treagust, David F.

    1988-01-01

    Describes 10 steps for developing a diagnostic test of students' misconceptions and the use of two tests in chemistry (covalent bonding and structure) and in biology (photosynthesis and respiration in plants). Discusses the results and some implications for teaching science. (YP)

  7. A Needs-Based Approach to the Development of a Diagnostic College English Speaking Test

    ERIC Educational Resources Information Center

    Zhao, Zhongbao

    2014-01-01

    This paper investigated the current situation of oral English teaching, learning, and assessment at the tertiary level in China through needs analysis and explored the implications for the development of a diagnostic speaking test. Through random sampling, the researcher administered both a student questionnaire and a teacher questionnaire to over…

  8. Development and Preparation of Lead-Containing Paint Films and Diagnostic Test Materials

    EPA Science Inventory

    Lead in paint continues to be a threat to children’s health in cities across the United States, which means there is an ongoing need for testing and analysis of paint. This ongoing analytical effort and especially development of new methods continue to drive the need for diagnost...

  9. Development and Validation of a Diagnostic Grammar Test for Japanese Learners of English

    ERIC Educational Resources Information Center

    Koizumi, Rie; Sakai, Hideki; Ido, Takahiro; Ota, Hiroshi; Hayama, Megumi; Sato, Masatoshi; Nemoto, Akiko

    2011-01-01

    This article reports on the development and validation of the English Diagnostic Test of Grammar (EDiT Grammar) for Japanese learners of English. From among the many aspects of grammar, this test focuses on the knowledge of basic English noun phrases (NPs), especially their internal structures, because previous research has indicated the…

  10. Development and Evaluation of the Diagnostic Power for a Computer-Based Two-Tier Assessment

    ERIC Educational Resources Information Center

    Lin, Jing-Wen

    2016-01-01

    This study adopted a quasi-experimental design with follow-up interview to develop a computer-based two-tier assessment (CBA) regarding the science topic of electric circuits and to evaluate the diagnostic power of the assessment. Three assessment formats (i.e., paper-and-pencil, static computer-based, and dynamic computer-based tests) using…

  11. 75 FR 15443 - Advancing the Development of Diagnostic Tests and Biomarkers for Tuberculosis; Public Workshop...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Advancing the Development of Diagnostic Tests and Biomarkers for Tuberculosis; Public Workshop; Request for Comments AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public workshop; request...

  12. Psychometric properties of the motor diagnostics in the German football talent identification and development programme.

    PubMed

    HÖner, Oliver; Votteler, Andreas; Schmid, Markus; Schultz, Florian; Roth, Klaus

    2015-01-01

    The utilisation of motor performance tests for talent identification in youth sports is discussed intensively in talent research. This article examines the reliability, differential stability and validity of the motor diagnostics conducted nationwide by the German football talent identification and development programme and provides reference values for a standardised interpretation of the diagnostics results. Highly selected players (the top 4% of their age groups, U12-U15) took part in the diagnostics at 17 measurement points between spring 2004 and spring 2012 (N = 68,158). The heterogeneous test battery measured speed abilities and football-specific technical skills (sprint, agility, dribbling, ball control, shooting, juggling). For all measurement points, the overall score and the speed tests showed high internal consistency, high test-retest reliability and satisfying differential stability. The diagnostics demonstrated satisfying factorial-related validity with plausible and stable loadings on the two empirical factors "speed" and "technical skills". The score, and the technical skills dribbling and juggling, differentiated the most among players of different performance levels and thus showed the highest criterion-related validity. Satisfactory psychometric properties for the diagnostics are an important prerequisite for a scientifically sound rating of players' actual motor performance and for the future examination of the prognostic validity for success in adulthood. PMID:24949838

  13. Reliable and sample saving gene expression analysis approach for diagnostic tool development.

    PubMed

    Port, Matthias; Seidl, Christof; Ruf, Christian G; Riecke, Armin; Meineke, Viktor; Abend, Michael

    2012-08-01

    This work answers the question of whether it is necessary to hybridize individual instead of pooled RNA samples on microarrays for screening gene targets suitable as diagnostic tools for radiation exposure scenarios, while at the same time meeting comparable microarray quality criteria. For developing new clinical diagnostic tools, a two-stage study design was employed in five projects. At first, pooled and not individual RNA samples were hybridized on microarrays for screening purposes. Potential gene candidates were selected based on their fold-change only. This was followed by a validation/quantification step using individual RNA samples and quantitative RT-PCR. Quality criteria from the screening approach with pooled RNA samples were compared with published data from the MicroArray Quality Control (MAQC) consortium that hybridized each reference RNA sample separately and established quality criteria for microarrays. When comparing both approaches, only insignificant differences for quality criteria such as false positives, sensitivity, specificity, and overall agreement were found. However, material, costs, and time were drastically reduced when hybridizing pooled RNA and gene targets applicable for clinical diagnostic purposes could be successfully selected. In search of new diagnostic tools for radiation exposure scenarios, the two stage study design using either pooled or individual RNA samples on microarrays shows comparable quality criteria, but the RNA pooling approach saves unique material, costs, and efforts and successfully selects gene targets that can be used for the desired diagnostic purposes. PMID:22951474

  14. Development of backlighting sources for a Compton Radiography diagnostic of Inertial Confinement Fusion targets

    SciTech Connect

    Tommasini, R

    2010-04-23

    An important diagnostic tool for inertial confinement fusion is time-resolved imaging of the dense cold fuel surrounding the hot spot. Here we report on the source and diagnostic development of hard x-ray radiography and on the first radiographs of direct drive implosions obtained at photon energies up to about 100keV, where the Compton effect is the dominant contributor to the shell opacity. The radiographs of direct drive, plastic shell implosions obtained at the OMEGA laser facility have a spatial resolution of {approx}10um and a temporal resolution of {approx}10ps. This novel Compton Radiography is an invaluable diagnostic tool for Inertial Confinement Fusion targets, and will be integrated at the National Ignition Facility (NIF).

  15. An Overview of Models of Speaking Performance and Its Implications for the Development of Procedural Framework for Diagnostic Speaking Tests

    ERIC Educational Resources Information Center

    Zhao, Zhongbao

    2013-01-01

    This paper aims at developing a procedural framework for the development and validation of diagnostic speaking tests. The researcher reviews the current available models of speaking performance, analyzes the distinctive features and then points out the implications for the development of a procedural framework for diagnostic speaking tests. On…

  16. Diagnostic Suite for HyperV Coaxial Plasma Gun Development for the PLX- α Project

    NASA Astrophysics Data System (ADS)

    Case, Andrew; Brockington, Sam; Witherspoon, F. Douglas

    2015-11-01

    We present the diagnostic suite to be used during development of the coaxial guns HyperV will deliver to LANL in support of the ARPA-E Accelerating Low-Cost Plasma Heating And Assembly (ALPHA) program. For plasma jet diagnostics this includes fast photodiodes for velocimetry, a ballistic pendulum for measuring total plasmoid momentum, interferometry for line integrated plasma density, deflectometry for line integrated perpendicular density gradient measurements, and spectroscopy, both time resolved high resolution spectroscopy using a novel detector developed by HyperV and time integrated survey spectroscopy, for measurements of velocity and temperature as well as impurities. In addition, we plan to use fast pressure probes for stagnation pressure, a Faraday cup for density, fast imaging for plume geometry and time integrated imaging for overall light emission. A novel low resolution long record length camera developed by HyperV will also be used for plume diagnostics. For diagnostics of gun operation, we will use Rogowski coils to measure current, voltage dividers for voltages, B-dot probes for magnetic field, and time resolved fast photodiodes to measure plasmoid velocity inside the accelerator. This work supported by the ARPA-E ALPHA program.

  17. Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms: Tools for Physics-Based Model Development.

    SciTech Connect

    Kearney, Sean Patrick; Jilek, Brook Anton; Kohl, Ian Thomas; Farrow, Darcie; Urayama, Junji

    2014-11-01

    We present the results of an LDRD project to develop diagnostics to perform fundamental measurements of material properties during shock compression of condensed phase materials at micron spatial scales and picosecond time scales. The report is structured into three main chapters, which each focus on a different diagnostic devel opment effort. Direct picosecond laser drive is used to introduce shock waves into thin films of energetic and inert materials. The resulting laser - driven shock properties are probed via Ultrafast Time Domain Interferometry (UTDI), which can additionally be used to generate shock Hugoniot data in tabletop experiments. Stimulated Raman scattering (SRS) is developed as a temperature diagnostic. A transient absorption spectroscopy setup has been developed to probe shock - induced changes during shock compressio n. UTDI results are presented under dynamic, direct - laser - drive conditions and shock Hugoniots are estimated for inert polystyrene samples and for the explosive hexanitroazobenzene, with results from both Sandia and Lawrence Livermore presented here. SRS a nd transient absorption diagnostics are demonstrated on static thin - film samples, and paths forward to dynamic experiments are presented.

  18. The Development of an Angiogenic Protein "Signature" in Ovarian Cancer Ascites as a Tool for Biologic and Prognostic Profiling.

    PubMed

    Trachana, Sofia-Paraskevi; Pilalis, Eleftherios; Gavalas, Nikos G; Tzannis, Kimon; Papadodima, Olga; Liontos, Michalis; Rodolakis, Alexandros; Vlachos, Georgios; Thomakos, Nikolaos; Haidopoulos, Dimitrios; Lykka, Maria; Koutsoukos, Konstantinos; Kostouros, Efthimios; Terpos, Evagelos; Chatziioannou, Aristotelis; Dimopoulos, Meletios-Athanasios; Bamias, Aristotelis

    2016-01-01

    Advanced ovarian cancer (AOC) is one of the leading lethal gynecological cancers in developed countries. Based on the important role of angiogenesis in ovarian cancer oncogenesis and expansion, we hypothesized that the development of an "angiogenic signature" might be helpful in prediction of prognosis and efficacy of anti-angiogenic therapies in this disease. Sixty-nine samples of ascitic fluid- 35 from platinum sensitive and 34 from platinum resistant patients managed with cytoreductive surgery and 1st-line carboplatin-based chemotherapy- were analyzed using the Proteome ProfilerTM Human Angiogenesis Array Kit, screening for the presence of 55 soluble angiogenesis-related factors. A protein profile based on the expression of a subset of 25 factors could accurately separate resistant from sensitive patients with a success rate of approximately 90%. The protein profile corresponding to the "sensitive" subset was associated with significantly longer PFS (8 [95% Confidence Interval {CI}: 8-9] vs. 20 months [95% CI: 15-28]; Hazard ratio {HR}: 8.3, p<0.001) and OS (20.5 months [95% CI: 13.5-30] vs. 74 months [95% CI: 36-not reached]; HR: 5.6 [95% CI: 2.8-11.2]; p<0.001). This prognostic performance was superior to that of stage, histology and residual disease after cytoreductive surgery and the levels of vascular endothelial growth factor (VEGF) in ascites. In conclusion, we developed an "angiogenic signature" for patients with AOC, which can be used, after appropriate validation, as a prognostic marker and a tool for selection for anti-angiogenic therapies. PMID:27258020

  19. Target Diagnostic Technology Research & Development for the LLNL ICF and HED Program

    SciTech Connect

    Bell, P; Landen, O; Weber, F; Lowry, M; Bennett, C; Kimbrough, J; Moody, J; Holder, J; Lerche, R; Griffith, R; Park, H; Boni, R; Jaanimagi, P; Davies, T

    2004-04-13

    The National Ignition Facility is operational at LLNL. The ICF and HED programs at LLNL have formed diagnostic research and development groups to institute improvements outside the charter of core diagnostics. We will present data from instrumentation being developed. A major portion of our work is improvements to detectors and readout systems. We have efforts related to CCD device development. Work has been done in collaboration with the University of Arizona to back thin a large format CCD device. We have developed in collaboration with a commercial vendor a large format, compact CCD system. We have coupled large format CCD systems to our optical and x-ray streak cameras leading to improvements in resolution and dynamic range. We will discuss gate-width and uniformity improvements to MCP-based framing cameras. We will present data from single shot data link work and discuss technology aimed at improvements of dynamic range for high-speed transient measurements from remote locations.

  20. Quantitative proteomics reveals the novel co-expression signatures in early brain development for prognosis of glioblastoma multiforme

    PubMed Central

    Yu, Xuexin; Feng, Lin; Liu, Dianming; Zhang, Lianfeng; Wu, Bo; Jiang, Wei; Han, Zujing; Cheng, Shujun

    2016-01-01

    Although several researches have explored the similarity across development and tumorigenesis in cellular behavior and underlying molecular mechanisms, not many have investigated the developmental characteristics at proteomic level and further extended to cancer clinical outcome. In this study, we used iTRAQ to quantify the protein expression changes during macaque rhesus brain development from fetuses at gestation 70 days to after born 5 years. Then, we performed weighted gene co-expression network analysis (WGCNA) on protein expression data of brain development to identify co-expressed modules that highly expressed on distinct development stages, including early stage, middle stage and late stage. Moreover, we used the univariate cox regression model to evaluate the prognostic potentials of these genes in two independent glioblastoma multiforme (GBM) datasets. The results showed that the modules highly expressed on early stage contained more reproducible prognostic genes, including ILF2, CCT7, CCT4, RPL10A, MSN, PRPS1, TFRC and APEX1. These genes were not only associated with clinical outcome, but also tended to influence chemoresponse. These signatures identified from embryonic brain development might contribute to precise prediction of GBM prognosis and identification of novel drug targets in GBM therapies. Thus, the development could become a viable reference model for researching cancers, including identifying novel prognostic markers and promoting new therapies. PMID:26895104

  1. Quantitative proteomics reveals the novel co-expression signatures in early brain development for prognosis of glioblastoma multiforme.

    PubMed

    Yu, Xuexin; Feng, Lin; Liu, Dianming; Zhang, Lianfeng; Wu, Bo; Jiang, Wei; Han, Zujing; Cheng, Shujun

    2016-03-22

    Although several researches have explored the similarity across development and tumorigenesis in cellular behavior and underlying molecular mechanisms, not many have investigated the developmental characteristics at proteomic level and further extended to cancer clinical outcome. In this study, we used iTRAQ to quantify the protein expression changes during macaque rhesus brain development from fetuses at gestation 70 days to after born 5 years. Then, we performed weighted gene co-expression network analysis (WGCNA) on protein expression data of brain development to identify co-expressed modules that highly expressed on distinct development stages, including early stage, middle stage and late stage. Moreover, we used the univariate cox regression model to evaluate the prognostic potentials of these genes in two independent glioblastoma multiforme (GBM) datasets. The results showed that the modules highly expressed on early stage contained more reproducible prognostic genes, including ILF2, CCT7, CCT4, RPL10A, MSN, PRPS1, TFRC and APEX1. These genes were not only associated with clinical outcome, but also tended to influence chemoresponse. These signatures identified from embryonic brain development might contribute to precise prediction of GBM prognosis and identification of novel drug targets in GBM therapies. Thus, the development could become a viable reference model for researching cancers, including identifying novel prognostic markers and promoting new therapies. PMID:26895104

  2. Development of advanced diagnostics for characterization of burning droplets in microgravity

    NASA Technical Reports Server (NTRS)

    Sankar, Subramanian; Buermann, Dale H.; Bachalo, William D.

    1995-01-01

    Diagnostic techniques currently used for microgravity research are generally not as advanced as those used in earth based gravity experiments. Diagnostic techniques for measuring the instantaneous radial temperature profile (or temperature gradients) within the burning droplet do not exist. Over the past few years, Aerometrics has been researching and developing a rainbow thermometric technique for measuring the droplet temperatures of burning droplets. This technique has recently been integrated with the phase Doppler interferometric technique to yield a diagnostic instrument that can be used to simultaneously measure the size, velocity, and temperature of burning droplets in complex spray flames. Also, the rainbow thermometric technique has been recently integrated with a point-diffraction interferometric technique for measuring the instantaneous gas phase temperature field surrounding a burning droplet. These research programs, apart from being very successful, have also helped us identify other innovative techniques for the characterization of burning droplets. For example, new techniques have been identified for measuring the instantaneous regression rate of burning droplets. Also, there is the possibility of extracting the instantaneous radial temperature distribution or the temperature gradients within a droplet during transient heating. What is important is that these diagnostic techniques have the potential for making use of inexpensive, light-weight, and rugged devices such as diode lasers and linear CCD arrays. As a result, they can be easily packaged for incorporation into microgravity drop-test and flight-test facilities. Furthermore, with the use of linear CCD arrays, data rates as high as 10-100 kHz can be easily achieved. This data rate is orders of magnitude higher than what is currently achievable. In this research and development program, a compact and rugged diagnostic system will be developed that can be used to measure instantaneous fuel

  3. The potential of circulating extracellular small RNAs (smexRNA) in veterinary diagnostics-Identifying biomarker signatures by multivariate data analysis.

    PubMed

    Melanie, Spornraft; Benedikt, Kirchner; Pfaffl, Michael W; Irmgard, Riedmaier

    2015-09-01

    Worldwide growth and performance-enhancing substances are used in cattle husbandry to increase productivity. In certain countries however e.g., in the EU, these practices are forbidden to prevent the consumers from potential health risks of substance residues in food. To maximize economic profit, 'black sheep' among farmers might circumvent the detection methods used in routine controls, which highlights the need for an innovative and reliable detection method. Transcriptomics is a promising new approach in the discovery of veterinary medicine biomarkers and also a missing puzzle piece, as up to date, metabolomics and proteomics are paramount. Due to increased stability and easy sampling, circulating extracellular small RNAs (smexRNAs) in bovine plasma were small RNA-sequenced and their potential to serve as biomarker candidates was evaluated using multivariate data analysis tools. After running the data evaluation pipeline, the proportion of miRNAs (microRNAs) and piRNAs (PIWI-interacting small non-coding RNAs) on the total sequenced reads was calculated. Additionally, top 10 signatures were compared which revealed that the readcount data sets were highly affected by the most abundant miRNA and piRNA profiles. To evaluate the discriminative power of multivariate data analyses to identify animals after veterinary drug application on the basis of smexRNAs, OPLS-DA was performed. In summary, the quality of miRNA models using all mapped reads for both treatment groups (animals treated with steroid hormones or the β-agonist clenbuterol) is predominant to those generated with combined data sets or piRNAs alone. Using multivariate projection methodologies like OPLS-DA have proven the best potential to generate discriminative miRNA models, supported by small RNA-Seq data. Based on the presented comparative OPLS-DA, miRNAs are the favorable smexRNA biomarker candidates in the research field of veterinary drug abuse. PMID:27077039

  4. Development of procedures to ensure quality and integrity in Tandem Mirror Experiment-Upgrade (TMX-U) diagnostics systems

    SciTech Connect

    Coutts, G.W.; Coon, M.L.; Hinz, A.F.; Hornady, R.S.; Lang, D.D.; Lund, N.P.

    1983-11-30

    The diagnostic systems for Tandem Mirror Experiment-Upgrade (TMX-U) have grown from eleven initial systems to more than twenty systems. During operation, diagnostic system modifications are sometimes required to complete experimental objectives. Also, during operations new diagnostic systems are being developed and implemented. To ensure and maintain the quality and integrity of the data signals, a set of plans and systematic actions are being developed. This paper reviews the procedures set in place to maintain the integrity of existing data systems and ensure the performance objectives of new diagnostics being added.

  5. [Intersex and differences of sex development: background, diagnostics, and concepts of care].

    PubMed

    Holterhus, P-M

    2013-12-01

    Intersex is an inherited incongruence of chromosomal, gonadal, and genital sexual characteristics. A typical clinical situation of intersex is the ambiguous genitalia in the newborn. Diagnostics, counseling, and therapy should be offered by specialized multidisciplinary health-care teams. The focus is not only on medical issues but also on psychological, social, and ethical aspects. In the international literature, intersex is now termed "disorders of sex development" (DSD). Alternatively, some authors use "differences of sex development" to underline that patients do not necessarily feel they have a "disorder" but rather a "difference" of sex development compared with normal sex development. PMID:24337131

  6. Development of an Information Fusion System for Engine Diagnostics and Health Management

    NASA Technical Reports Server (NTRS)

    Volponi, Allan J.; Brotherton, Tom; Luppold, Robert; Simon, Donald L.

    2004-01-01

    Aircraft gas-turbine engine data are available from a variety of sources including on-board sensor measurements, maintenance histories, and component models. An ultimate goal of Propulsion Health Management (PHM) is to maximize the amount of meaningful information that can be extracted from disparate data sources to obtain comprehensive diagnostic and prognostic knowledge regarding the health of the engine. Data Fusion is the integration of data or information from multiple sources, to achieve improved accuracy and more specific inferences than can be obtained from the use of a single sensor alone. The basic tenet underlying the data/information fusion concept is to leverage all available information to enhance diagnostic visibility, increase diagnostic reliability and reduce the number of diagnostic false alarms. This paper describes a basic PHM Data Fusion architecture being developed in alignment with the NASA C17 Propulsion Health Management (PHM) Flight Test program. The challenge of how to maximize the meaningful information extracted from disparate data sources to obtain enhanced diagnostic and prognostic information regarding the health and condition of the engine is the primary goal of this endeavor. To address this challenge, NASA Glenn Research Center (GRC), NASA Dryden Flight Research Center (DFRC) and Pratt & Whitney (P&W) have formed a team with several small innovative technology companies to plan and conduct a research project in the area of data fusion as applied to PHM. Methodologies being developed and evaluated have been drawn from a wide range of areas including artificial intelligence, pattern recognition, statistical estimation, and fuzzy logic. This paper will provide a broad overview of this work, discuss some of the methodologies employed and give some illustrative examples.

  7. Recent developments in Förster resonance energy transfer (FRET) diagnostics using quantum dots.

    PubMed

    Geißler, Daniel; Hildebrandt, Niko

    2016-07-01

    The exceptional photophysical properties and the nanometric dimensions of colloidal semiconductor quantum dots (QD) have strongly attracted the bioanalytical community over the last approximately 20 y. In particular, the integration of QDs in the analysis of biological components and interactions, and the related diagnostics using Förster resonance energy transfer (FRET), have allowed researchers to significantly improve and diversify fluorescence-based biosensing. In this TRENDS article, we review some recent developments in QD-FRET biosensing that have implemented this technology in electronic consumer products, multiplexed analysis, and detection without light excitation for diagnostic applications. In selected examples of smartphone-based imaging, single- and multistep FRET, steady-state and time-resolved spectroscopy, and bio/chemiluminescence detection of QDs used as both FRET donors and acceptors, we highlight the advantages of QD-based FRET biosensing for multiplexed and sensitive diagnostics. Graphical Abstract Quantum dots (QDs) can be applied as donors and/or acceptors for Förster resonance energy transfer- (FRET-) based biosensing for multiplexed and sensitive diagnostics in various assay formats. PMID:26970745

  8. Significant roadblocks exist in developing sputum sample libraries for clinical validation of novel in vitro diagnostics

    PubMed Central

    Dollow, Joshua M; Green, Justin A

    2014-01-01

    With the continuing rise of multiresistant pathogens, reliable, cost-effective, and novel diagnostics are urgently required by clinicians and clinical trialists to diagnose conditions such as respiratory tract infections to enable rational antimicrobial choice and enhance clinical outcomes. However, during product development, validation of these in vitro diagnostic devices, a key regulatory hurdle, requires sputum samples in large numbers. The Rapid Point-of-Care test Platform for Infectious Diseases (RAPP-ID) consortium is tasked with producing point of care test (POCT) platforms for rapid diagnosis of lower respiratory tract infections, including tuberculosis and blood stream infections. Validation of diagnostic platforms would ideally use well-characterized samples in a sputum library taken from a range of clinical settings to allow for a wide panel of pathogens to be assessed. These samples would be stored in specific stable conditions (monitored temperature, specific medium) until required for validation. Therefore we reviewed the current literature for details of storage conditions of sputum samples and for previous validation studies of other diagnostic tests using this methodology. However, we conclude that little data exists, and thus the acquisition and successful storage of good quality clinical samples are major roadblocks in the validation of novel POCT platforms, and that while not without limitations, spiked sputum samples appear the best solution until sputum library laboratory techniques allowing careful preservation of pathogens are improved. PMID:24489460

  9. Development of spectrophotometer for breast tumor diagnostic spectrometer based on virtual instruments

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Liu, Ying; Huang, Zhen

    2013-12-01

    Although some progresses have been achieved by the traditional diagnostic methods, such as X mammography, computer tomography (CT) imaging and magnetic resonance imaging (MRI) etc, their applications are limited by some drawbacks to some extent. As a more promising alternative method, the breast tumor diagnosis method based on infrared spectrometer was introduced. According to the theory of spectral unique characteristics for matter, i.e. the spectrums are different for the matter with different properties, so the spectrums are different between the tumor and normal tissues. Therefore, a spectrometer system was developed to diagnose the breast tumor in this paper. Meanwhile, a spectrophotometer for breast tumor diagnostic spectrometer was designed, and the plane holography concave (PHV) grating was used as the dispersion device in this spectrophotometer because of excellent performances. In this system, linear CCD detector combined with PCI data acquisition card was used as the spectral detector, and the virtual instruments (VI) technique was used to control the data acquisition and data processing. In experiments, the spectral calibration based on mercury lamp was performed. Experimental results illustrated that the construction of the spectrophotometer system is available, the spectral range is from 300-850nm, its wavelength resolution reached 2nm. The simulation experimental result proved that the design of the diagnostic system was very satisfied and diagnostic method was also feasible.

  10. Best practices for companion diagnostic and therapeutic development: translating between the stakeholders.

    PubMed

    Love, Delicia; Stratton, Elyse; Stocum, Michael

    2012-09-15

    By 2012 the pharmaceutical industry has generally recognized the value proposition offered through 'personalized medicine': shorter regulatory reviews and higher prices as a tradeoff for a more specific patient market. Examples of companion diagnostics (Cdx) exist not only in oncology, but across therapeutic areas that allow us to define treatment benefit and identify the 'best patients' for a given treatment approach or combination thereof. In the 13 years since the co-approval of trastuzumab (Herceptin(®)) from Genentech and the HercepTest(®) from Dako, the regulatory and commercial environments have yet to adopt a standard methodology for co-development and co-approval. Furthermore, a one-size-fits-all approach is unlikely to emerge despite attempts by various stakeholders to create an environment of conformity for approval and reimbursement issues. What has emerged, however, is the experience of clinical developers and commercial teams in bringing these products to market. In this article, we focus on the many factors that should be considered to successfully develop and market a companion diagnostic, based on lessons learned from recent case studies. A proposed framework of questions to be addressed at the various stages of developing highly effective companion diagnostic products is also presented. PMID:22743138

  11. Development and preparation of lead-containing paint films and diagnostic test materials.

    PubMed

    Binstock, David; Gutknecht, William; Sorrell, Kristen; Haas, Curtis; Winstead, Wayne; McCombs, Michelle; Brown, Gordon; Salmons, Cynthia; Harper, Sharon L

    2012-05-01

    Lead in paint continues to be a threat to children's health in cities across the United States, which means there is an ongoing need for testing and analysis of paint. This ongoing analytical effort and especially development of new methods continue to drive the need for diagnostic testing materials that provide the analytical challenges of real-world paints. To this end, 31 different types of paint test materials were developed and prepared. Preparation of the materials included development of lead-containing paint films yielding an overall relative standard error for one individual test sample being less than 10%. The 31 diagnostic test materials prepared with these paint films included two lead pigments; lead concentrations from nominally 0 to 2.0 mg lead/cm(2) (0 to 5% lead by weight); overlayers of both "lead-free," oil-based and water-based paints; Al, Ba, and Mg as potential chemical interferents; red and black potential color interferents; and substrates of wood, metal, masonry, and plaster. These materials challenge each step in method development and evaluation, including paint sample collection and preparation, lead extraction, and measurement of solubilized lead. When the materials were used to test performance of a new lead-in-paint testing method based on extraction using a rotor/stator method and measurement using turbidimetry, the results agreed to within ±20% of the expected lead values for 30 out of 31 of the diagnostic test materials, thereby demonstrating their levels of quality and utility. PMID:22460838

  12. The MIT Accelerator Laboratory for Diagnostic Development for OMEGA, Z and the NIF

    NASA Astrophysics Data System (ADS)

    Petrasso, R.; Gatu Johnson, M.; Armstrong, E.; Orozco, D.; Rinderknecht, H. G.; Rojas Herrera, J.; Rosenberg, M.; Sio, H.; Zylstra, A.; Frenje, J.; Li, C. K.; Seguin, F. H.; Hahn, K.; Jones, B.; Ruiz, C. L.; Sangster, T. C.

    2014-10-01

    The MIT Linear Electrostatic Ion Accelerator generates D-D and D-3He fusion products, which are used for development of nuclear diagnostics for OMEGA, Z, and the NIF. Fusion reaction rates around 106 s-1 are routinely achieved with this accelerator, and fluence and energy of the fusion products are accurately characterized. Diagnostics developed and calibrated at this facility include CR-39 based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) CVD-diamond-based bang time detector. The accelerator is also a vital tool in the education of graduate and undergraduate students at MIT. This work was supported in part by SNL, DOE, LLE and LLNL.

  13. The Development of Diagnostic Reasoning about Uncertain Events between Ages 4–7

    PubMed Central

    Erb, Christopher D.; Sobel, David M.

    2014-01-01

    The present investigation examines the development of children's diagnostic reasoning abilities when such inferences involve belief revision about uncertain potential causes. Four- to 7-year-olds observed an event occur that was due to one of four potential causes. Some of those potential causes were revealed to be efficacious; others were revealed to be inefficacious, but there was always one potential cause presented with unknown efficacy. While all children could make appropriate predictive inferences about this situation, 4- and 5-year-olds were less capable of making correct diagnostic inferences about the cause of the event under these circumstances than older children. We discuss possible mechanisms for this development, as well as speculate on the relation between these findings and literature in children's scientific reasoning. PMID:24651366

  14. Developing and Implementing Diagnostic Prediction Models for Vestibular Diseases in Primary Care.

    PubMed

    Grill, Eva; Groezinger, Michael; Feil, Katharina; Strupp, Michael

    2016-01-01

    Diagnosing patients with vertigo and dizziness is a challenge in primary care settings where laboratory examinations are often not available. This study uses data from patients with confirmed diagnoses of vestibular syndromes to develop and validate simple diagnostic prediction models for the primary care physician. We describe the implementation of these models into an application that may assist the practitioners with their clinical decisions. PMID:27577483

  15. ToxCast: Developing Predictive Signatures of Chemically Induced Toxicity (S)

    EPA Science Inventory

    ToxCast, the United States Environmental Protection Agency’s chemical prioritization research program, is developing methods for utilizing computational chemistry, bioactivity profiling and toxicogenomic data to predict potential for toxicity and prioritize limited testing resour...

  16. Reactive oxygen species–associated molecular signature predicts survival in patients with sepsis

    PubMed Central

    Zhou, Tong; Wang, Ting; Slepian, Marvin J.; Garcia, Joe G. N.; Hecker, Louise

    2016-01-01

    Abstract Sepsis-related multiple organ dysfunction syndrome is a leading cause of death in intensive care units. There is overwhelming evidence that oxidative stress plays a significant role in the pathogenesis of sepsis-associated multiple organ failure; however, reactive oxygen species (ROS)–associated biomarkers and/or diagnostics that define mortality or predict survival in sepsis are lacking. Lung or peripheral blood gene expression analysis has gained increasing recognition as a potential prognostic and/or diagnostic tool. The objective of this study was to identify ROS-associated biomarkers predictive of survival in patients with sepsis. In-silico analyses of expression profiles allowed the identification of a 21-gene ROS-associated molecular signature that predicts survival in sepsis patients. Importantly, this signature performed well in a validation cohort consisting of sepsis patients aggregated from distinct patient populations recruited from different sites. Our signature outperforms randomly generated signatures of the same signature gene size. Our findings further validate the critical role of ROSs in the pathogenesis of sepsis and provide a novel gene signature that predicts survival in sepsis patients. These results also highlight the utility of peripheral blood molecular signatures as biomarkers for predicting mortality risk in patients with sepsis, which could facilitate the development of personalized therapies. PMID:27252846

  17. New online signature acquisition system

    NASA Astrophysics Data System (ADS)

    Oulefki, Adel; Mostefai, Messaoud; Abbadi, Belkacem; Djebrani, Samira; Bouziane, Abderraouf; Chahir, Youssef

    2013-01-01

    We present a nonconstraining and low-cost online signature acquisition system that has been developed to enhance the performances of an existing multimodal biometric authentication system (based initially on both voice and image modalities). A laboratory prototype has been developed and validated for an online signature acquisition.

  18. The transcriptomic and evolutionary signature of social interactions regulating honey bee caste development.

    PubMed

    Vojvodic, Svjetlana; Johnson, Brian R; Harpur, Brock A; Kent, Clement F; Zayed, Amro; Anderson, Kirk E; Linksvayer, Timothy A

    2015-11-01

    The caste fate of developing female honey bee larvae is strictly socially regulated by adult nurse workers. As a result of this social regulation, nurse-expressed genes as well as larval-expressed genes may affect caste expression and evolution. We used a novel transcriptomic approach to identify genes with putative direct and indirect effects on honey bee caste development, and we subsequently studied the relative rates of molecular evolution at these caste-associated genes. We experimentally induced the production of new queens by removing the current colony queen, and we used RNA sequencing to study the gene expression profiles of both developing larvae and their caregiving nurses before and after queen removal. By comparing the gene expression profiles of queen-destined versus worker-destined larvae as well as nurses observed feeding these two types of larvae, we identified larval and nurse genes associated with caste development. Of 950 differentially expressed genes associated with caste, 82% were expressed in larvae with putative direct effects on larval caste, and 18% were expressed in nurses with putative indirect effects on caste. Estimated selection coefficients suggest that both nurse and larval genes putatively associated with caste are rapidly evolving, especially those genes associated with worker development. Altogether, our results suggest that indirect effect genes play important roles in both the expression and evolution of socially influenced traits such as caste. PMID:26640660

  19. Correlation signatures of wet soils and snows. [algorithm development and computer programming

    NASA Technical Reports Server (NTRS)

    Phillips, M. R.

    1972-01-01

    Interpretation, analysis, and development of algorithms have provided the necessary computational programming tools for soil data processing, data handling and analysis. Algorithms that have been developed thus far, are adequate and have been proven successful for several preliminary and fundamental applications such as software interfacing capabilities, probability distributions, grey level print plotting, contour plotting, isometric data displays, joint probability distributions, boundary mapping, channel registration and ground scene classification. A description of an Earth Resources Flight Data Processor, (ERFDP), which handles and processes earth resources data under a users control is provided.

  20. Integrated Program of Experimental Diagnostics at the NNSS. An Integrated, Prioritized Work Plan for Diagnostic Development and Maintenance and Supporting Capability

    SciTech Connect

    None, None

    2010-09-01

    This Integrated Program of Experimental Diagnostics at the NNSS is an integrated prioritized work plan for the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), program that is independent of individual National Security Enterprise Laboratories’ (Labs) requests or specific Subprograms being supported. This prioritized work plan is influenced by national priorities presented in the Predictive Capability Framework (PCF) and other strategy documents (Primary and Secondary Assessment Technologies Plans and the Plutonium Experiments Plan). This document satisfies completion criteria for FY 2010 MRT milestone #3496: Document an integrated, prioritized work plan for diagnostic development, maintenance, and supporting capability. This document is an update of the 3-year NNSS plan written a year ago, September 21, 2009, to define and understand Lab requests for diagnostic implementation. This plan is consistent with Lab interpretations of the PCF, Primary Assessment Technologies, and Plutonium Experiment plans.

  1. Developing Predictive Toxicity Signatures Using In Vitro Data from the EPA ToxCast Program

    EPA Science Inventory

    A major focus in toxicology research is the development of in vitro methods to predict in vivo chemical toxicity. Numerous studies have evaluated the use of targeted biochemical, cell-based and genomic assay approaches. Each of these techniques is potentially helpful, but provide...

  2. The transcriptomic and evolutionary signature of social interactions regulating honey bee caste development.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The caste fate of developing female honey bee larvae is strictly socially regulated by adult nurse workers. As a result of this social regulation, nurse-expressed genes as well as larval-expressed genes may affect caste expression and evolution. We used a novel transcriptomic approach to identify ge...

  3. Multimodal signature modeling of humans

    NASA Astrophysics Data System (ADS)

    Cathcart, J. Michael; Kocher, Brian; Prussing, Keith; Lane, Sarah; Thomas, Alan

    2010-04-01

    Georgia Tech been investigating method for the detection of covert personnel in traditionally difficult environments (e.g., urban, caves). This program focuses on a detailed phenomenological analysis of human physiology and signatures with the subsequent identification and characterization of potential observables. Both aspects are needed to support the development of personnel detection and tracking algorithms. The difficult nature of these personnel-related problems dictates a multimodal sensing approach. Human signature data of sufficient and accurate quality and quantity do not exist, thus the development of an accurate signature model for a human is needed. This model should also simulate various human activities to allow motion-based observables to be exploited. This paper will describe a multimodal signature modeling approach that incorporates human physiological aspects, thermoregulation, and dynamics into the signature calculation. This approach permits both passive and active signatures to be modeled. The focus of the current effort involved the computation of signatures in urban environments. This paper will discuss the development of a human motion model for use in simulating both electro-optical signatures and radar-based signatures. Video sequences of humans in a simulated urban environment will also be presented; results using these sequences for personnel tracking will be presented.

  4. The development, evaluation and performance of molecular diagnostics for detection of Mycobacterium tuberculosis.

    PubMed

    Bates, Matthew; Zumla, Alimuddin

    2016-03-01

    The unique pathogenesis of tuberculosis (TB) poses several barriers to the development of accurate diagnostics: a) the establishment of life-long latency by Mycobacterium tuberculosis (M.tb) after primary infection confounds the development of classical antibody or antigen based assays; b) our poor understanding of the molecular pathways that influence progression from latent to active disease; c) the intracellular nature of M.tb infection in tissues means that M.tb and/or its components, are not readily detectable in peripheral specimens; and d) the variable presence of M.tb bacilli in specimens from patients with extrapulmonary TB or children. The literature on the current portfolio of molecular diagnostics tests for TB is reviewed here and the developmental pipeline is summarized. Also reviewed are data from recently published operational research on the GeneXpert MTB/RIF assay and discussed are the lessons that can be taken forward for the design of studies to evaluate the impact of TB diagnostics. PMID:26735769

  5. Development of an On-board Failure Diagnostics and Prognostics System for Solid Rocket Booster

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadim N.; Luchinsky, Dmitry G.; Osipov, Vyatcheslav V.; Timucin, Dogan A.; Uckun, Serdar

    2009-01-01

    We develop a case breach model for the on-board fault diagnostics and prognostics system for subscale solid-rocket boosters (SRBs). The model development was motivated by recent ground firing tests, in which a deviation of measured time-traces from the predicted time-series was observed. A modified model takes into account the nozzle ablation, including the effect of roughness of the nozzle surface, the geometry of the fault, and erosion and burning of the walls of the hole in the metal case. The derived low-dimensional performance model (LDPM) of the fault can reproduce the observed time-series data very well. To verify the performance of the LDPM we build a FLUENT model of the case breach fault and demonstrate a good agreement between theoretical predictions based on the analytical solution of the model equations and the results of the FLUENT simulations. We then incorporate the derived LDPM into an inferential Bayesian framework and verify performance of the Bayesian algorithm for the diagnostics and prognostics of the case breach fault. It is shown that the obtained LDPM allows one to track parameters of the SRB during the flight in real time, to diagnose case breach fault, and to predict its values in the future. The application of the method to fault diagnostics and prognostics (FD&P) of other SRB faults modes is discussed.

  6. DEVELOPMENT OF SIGNAL PROCESSING TOOLS AND HARDWARE FOR PIEZOELECTRIC SENSOR DIAGNOSTIC PROCESSES

    SciTech Connect

    OVERLY, TIMOTHY G.; PARK, GYUHAE; FARRAR, CHARLES R.

    2007-02-09

    This paper presents a piezoelectric sensor diagnostic and validation procedure that performs in -situ monitoring of the operational status of piezoelectric (PZT) sensor/actuator arrays used in structural health monitoring (SHM) applications. The validation of the proper function of a sensor/actuator array during operation, is a critical component to a complete and robust SHM system, especially with the large number of active sensors typically involved. The method of this technique used to obtain the health of the PZT transducers is to track their capacitive value, this value manifests in the imaginary part of measured electrical admittance. Degradation of the mechanical/electric properties of a PZT sensor/actuator as well as bonding defects between a PZT patch and a host structure can be identified with the proposed procedure. However, it was found that temperature variations and changes in sensor boundary conditions manifest themselves in similar ways in the measured electrical admittances. Therefore, they examined the effects of temperature variation and sensor boundary conditions on the sensor diagnostic process. The objective of this study is to quantify and classify several key characteristics of temperature change and to develop efficient signal processing techniques to account for those variations in the sensor diagnostis process. In addition, they developed hardware capable of making the necessary measurements to perform the sensor diagnostics and to make impedance-based SHM measurements. The paper concludes with experimental results to demonstrate the effectiveness of the proposed technique.

  7. Development of the gas-puff imaging diagnostic in the TEXTOR tokamak

    SciTech Connect

    Shesterikov, I.; Xu, Y.; Berte, M.; Dumortier, P.; Van Schoor, M.; Vergote, M.; Schweer, B.; Van Oost, G.

    2013-05-15

    Gas puff imaging (GPI) [S. J. Zweben, D. P. Stotler et al., Phys. Plasmas 9, 1981 (2002); R. J. Maqueda, G. A. Wurden et al., Rev. Sci. Instrum. 74, 2020 (2003)] is a powerful diagnostic that permits a two-dimensional measurement of turbulence in the edge region of a fusion plasma and is based on the observation of the local emission of a neutral gas, actively puffed into the periphery of the plasma. The developed in-vessel GPI telescope observes the emission from the puffed gas along local (at the puff) magnetic field lines. The GPI telescope is specially designed to operate in severe TEXTOR conditions and can be treated as a prototype for the GPI systems on next generation machines. Also, the gas puff nozzle is designed to have a lower divergence of the gas flow than previous GPI diagnostics. The resulting images show poloidally and radially propagating structures, which are associated with plasma blobs. We demonstrate that the local gas puff does not disturb plasma properties. Our results indicate also that the neutral gas emission intensity is more sensitive to the electron density than the electron temperature. Here, we present implementation details of the GPI system on TEXTOR and discuss some design and diagnostic issues related to the development of GPI systems in general.

  8. Development of the Zebra load region for increased capability plasma diagnostics and improved Leopard laser access

    NASA Astrophysics Data System (ADS)

    Astanovitskiy, Alexey; Presura, R.; Ivanov, V. V.; Haboub, A.; Plachaty, C.; Kindel, J. M.

    2008-11-01

    A new geometry for the load area in the Zebra (1MA pulse generator) is developed. It will form the basis for future experiments requiring Leopard (1057nm, 50TW laser) to Zebra coupling and give extended capability to z-pinch diagnostics. This required the development of a new current return, which allows laser access and installation of the OD 4'' parabolic mirror for the x-ray radiography, isochoric heating and magnetized plasma experiments, and accommodates wire-array z-pinch loads, to which the laser may then be coupled. In addition, this configuration allows diagnostics access close to the plasma, leading to a significant increase of the spatial resolution for imaging of z-pinches, as well as the photon flux in imaging and spectroscopy of laser produced plasmas. These diagnostics will allow coupling of the Leopard beam for x-ray laser probing of the pinch plasma and we will test point-projection x-ray backlighting of the pinch plasma.

  9. Diagnostic assays developed for the control of foot-and-mouth disease in India.

    PubMed

    Sharma, Gaurav Kumar; Mahajan, Sonalika; Matura, Rakesh; Subramaniam, Saravanan; Ranjan, Rajeev; Biswal, Jitendra; Rout, Manoranjan; Mohapatra, Jajati Keshari; Dash, Bana Bihari; Sanyal, Aniket; Pattnaik, Bramhadev

    2015-08-12

    Foot-and-mouth disease (FMD) is a highly contagious and economically devastating disease of livestock, primarily affecting cattle, buffalo and pigs. FMD virus serotypes O, A and Asia1 are prevalent in India and systematic efforts are on to control and eventually eradicate the disease from the country. FMD epidemiology is complex due to factors like co-circulation, extinction, emergence and re-emergence of genotypes/lineages within the three serotypes, animal movement, diverse farm practices and large number of susceptible livestock in the country. Systematic vaccination, prompt diagnosis, strict biosecurity measures, and regular monitoring of vaccinal immunity and surveillance of virus circulation are indispensible features for the effective implementation of the control measures. Availability of suitable companion diagnostic tests is very important in this endeavour. In this review, the diagnostic assays developed and validated in India and their contribution in FMD control programme is presented. PMID:26279990

  10. Development of Enhanced, Permanently-Installed, Neutron Activation Diagnostic Hardware for NIF

    NASA Astrophysics Data System (ADS)

    Edwards, E. R.; Jedlovec, D. R.; Carrera, J. A.; Yeamans, C. B.

    2016-05-01

    Neutron activation diagnostics are baseline neutron yield and flux measurement instruments at the National Ignition Facility. Up to 19 activation samples are distributed around the target chamber. Currently the samples must be removed to be counted, creating a 1-2 week data turn-around time and considerable labor costs. An improved system consisting of a commercially available LaBr3(Ce) scintillator and Power over Ethernet electronics is under development. A machined zirconium-702 cap over the detector is the activation medium to measure the 90Zr(n,2n)89Zr reaction. The detectors are located at the current neutron activation diagnostic sites and monitored remotely. Because they collect data in real time yield values are returned within a few hours after a NIF shot.