Science.gov

Sample records for diametral tensile strength

  1. Compressive, diametral tensile and biaxial flexural strength of cutting-edge calcium phosphate cements.

    PubMed

    Luo, Jun; Ajaxon, Ingrid; Ginebra, Maria Pau; Engqvist, Håkan; Persson, Cecilia

    2016-07-01

    Calcium phosphate cements (CPCs) are widely used in bone repair. Currently there are two main types of CPCs, brushite and apatite. The aim of this project was to evaluate the mechanical properties of particularly promising experimental brushite and apatite formulations in comparison to commercially available brushite- and apatite-based cements (chronOS(™) Inject and Norian(®) SRS(®), respectively), and in particular evaluate the diametral tensile strength and biaxial flexural strength of these cements in both wet and dry conditions for the first time. The cements׳ porosity and their compressive, diametral tensile and biaxial flexural strength were tested in wet (or moist) and dry conditions. The surface morphology was characterized by scanning electron microscopy. Phase composition was assessed with X-ray diffraction. It was found that the novel experimental cements showed better mechanical properties than the commercially available cements, in all loading scenarios. The highest compressive strength (57.2±6.5MPa before drying and 69.5±6.0MPa after drying) was found for the experimental brushite cement. This cement also showed the highest wet diametral tensile strength (10.0±0.8MPa) and wet biaxial flexural strength (30.7±1.8MPa). It was also the cement that presented the lowest porosity (approx. 12%). The influence of water content was found to depend on cement type, with some cements showing higher mechanical properties after drying and some no difference after drying. PMID:27082025

  2. General and mechanistic optimal relationships for tensile strength of doubly convex tablets under diametrical compression.

    PubMed

    Razavi, Sonia M; Gonzalez, Marcial; Cuitiño, Alberto M

    2015-04-30

    We propose a general framework for determining optimal relationships for tensile strength of doubly convex tablets under diametrical compression. This approach is based on the observation that tensile strength is directly proportional to the breaking force and inversely proportional to a non-linear function of geometric parameters and materials properties. This generalization reduces to the analytical expression commonly used for flat faced tablets, i.e., Hertz solution, and to the empirical relationship currently used in the pharmaceutical industry for convex-faced tablets, i.e., Pitt's equation. Under proper parametrization, optimal tensile strength relationship can be determined from experimental results by minimizing a figure of merit of choice. This optimization is performed under the first-order approximation that a flat faced tablet and a doubly curved tablet have the same tensile strength if they have the same relative density and are made of the same powder, under equivalent manufacturing conditions. Furthermore, we provide a set of recommendations and best practices for assessing the performance of optimal tensile strength relationships in general. Based on these guidelines, we identify two new models, namely the general and mechanistic models, which are effective and predictive alternatives to the tensile strength relationship currently used in the pharmaceutical industry. PMID:25683146

  3. Diametral tensile strength and film thickness of an experimental dental luting agent derived from castor oil

    PubMed Central

    CARMELLO, Juliana Cabrini; FAIS, Laiza Maria Grassi; RIBEIRO, Lígia Nunes de Moraes; CLARO NETO, Salvador; GUAGLIANONI, Dalton Geraldo; PINELLI, Lígia Antunes Pereira

    2012-01-01

    The need to develop new dental luting agents in order to improve the success of treatments has greatly motivated research. Objective The aim of this study was to evaluate the diametral tensile strength (DTS) and film thickness (FT) of an experimental dental luting agent derived from castor oil (COP) with or without addition of different quantities of filler (calcium carbonate - CaCO3). Material and Methods Eighty specimens were manufactured (DTS N=40; FT N=40) and divided into 4 groups: Pure COP; COP 10%; COP 50% and zinc phosphate (control). The cements were mixed according to the manufacturers' recommendations and submitted to the tests. The DTS test was performed in the MTS 810 testing machine (10 KN, 0.5 mm/min). For FT test, the cements were sandwiched between two glass plates (2 cm2) and a load of 15 kg was applied vertically on the top of the specimen for 10 min. The data were analyzed by means of one-way ANOVA and Tukey's test (α=0.05). Results The values of DTS (MPa) were: Pure COP- 10.94±1.30; COP 10%- 30.06±0.64; COP 50%- 29.87±0.27; zinc phosphate- 4.88±0.96. The values of FT (µm) were: Pure COP- 31.09±3.16; COP 10%- 17.05±4.83; COP 50%- 13.03±4.83; Zinc Phosphate- 20.00±0.12. One-way ANOVA showed statistically significant differences among the groups (DTS - p=1.01E-40; FT - p=2.4E-10). Conclusion The experimental dental luting agent with 50% of filler showed the best diametral tensile strength and film thickness. PMID:22437672

  4. The diametral tensile strength and hydrostability of polymer-ceramic nano-composite (pcnc) material prototypes

    NASA Astrophysics Data System (ADS)

    Yepez, Johanna

    Statement of the problem: There is a weak connection between the filler and the resin matrix of dental composites caused primarily by hydrolysis of silane coupling agent, therefore, jeopardizing the mechanical properties of the dental restorations. Purpose: The purpose of this study was to compare the diametral tensile strength (DTS) of a nano-mechanically bonded polymer ceramic nano composite (pcnc) versus the chemically bonding prototype polymer ceramic nano composite (pcnc) fabricated by using hydrolytically stable interphase. Materials and Methods: Composites were made with 60wt % filler, 38% triethyleneglycol dimethacrylate (TEDGMA), 1% camphorquinone (CQ) and 1% 2-(dimethylamino) ethyl methacrylate (DMAEMA). Tests for DTS were performed using a universal testing machine. The disk-shaped specimens were loaded in compression between two supporting plates at a crosshead speed of 0.5 mm/min until fracture. The samples, measuring 3 mm in height and 6 mm in diameter, were produced in a round stainless steel (SS) mold. A total of 144 samples were created. Groups of 48 samples were made for each of three different fillers. Specimens were soaked in artificial saliva at 37° for four time periods, dry(t=0), 1 day, 7 days, 28 days). At the end of each soaking time DTS tests were performed. Results: There where statistically significant differences in the DTS between the filler groups and the soaking times (p=<0.001) as well as for the pairwise comparison between the different filler group values and between the different soaking times as an individual treatment. Overall, longer soaking times resulted in lower mean DTS values. The DTS of the PCNC for filler #1 decreased to 82.4% of the original value after 1 day of soaking, 67.2% after 7 days and 27.2 % after 28 days. For filler #2 decreased to 54.8% of the original value after 1 day of soaking, 62.3% after 7 days and 61.2% after 28 days. For filler #3 decreased to 71.2% of the original value, 67.3% after 7 days and 51

  5. Influence of different crosshead speeds on diametral tensile strength of a methacrylate based resin composite: An in-vitro study

    PubMed Central

    Sood, Anubhav; Ramarao, Sathyanarayanan; Carounanidy, Usha

    2015-01-01

    Aim: The aim was to evaluate the influence of different crosshead speeds on diametral tensile strength (DTS) of a resin composite material (Tetric N-Ceram). Materials and Methods: The DTS of Tetric N-Ceram was evaluated using four different crosshead speeds 0.5 mm/min (DTS 1), 1 mm/min (DTS 2), 5 mm/min (DTS 3), 10 mm/min (DTS 4). A total of 48 specimens were prepared and divided into four subgroups with 12 specimens in each group. Specimens were made using stainless steel split custom molds of dimensions 6 mm diameter and 3 mm height. The specimens were stored in distilled water at room temperature for 24 h. Universal testing machine was used and DTS values were calculated in MPa. Results: Analysis of variance was used to compare the four groups. Higher mean DTS value was recorded in DTS 2 followed by DTS 4, DTS 1, and DTS 3, respectively. However, the difference in mean tensile strength between the groups was not statistically significant (P > 0.05). Conclusion: The crosshead speed variation between 0.5 and 10 mm/min does not seem to influence the DTS of a resin composite. PMID:26069407

  6. Comparative evaluation of compressive strength, diametral tensile strength and shear bond strength of GIC type IX, chlorhexidine-incorporated GIC and triclosan-incorporated GIC: An in vitro study

    PubMed Central

    Jaidka, Shipra; Somani, Rani; Singh, Deepti J.; Shafat, Shazia

    2016-01-01

    Aim: To comparatively evaluate the compressive strength, diametral tensile strength, and shear bond strength of glass ionomer cement type IX, chlorhexidine-incorporated glass ionomer cement, and triclosan-incorporated glass ionomer cement. Materials and Methods: In this study, glass ionomer cement type IX was used as a control. Chlorhexidine diacetate, and triclosan were added to glass ionomer cement type IX powder, respectively, in order to obtain 0.5, 1.25, and 2.5% concentrations of the respective experimental groups. Compressive strength, diametral tensile strength, and shear bond strength were evaluated after 24 h using Instron Universal Testing Machine. The results obtained were statistically analyzed using the independent t-test, Dunnett test, and Tukey test. Results: There was no statistical difference in the compressive strength, diametral tensile strength, and shear bond strength of glass ionomer cement type IX (control), 0.5% triclosan-glass ionomer cement, and 0.5% chlorhexidine-glass ionomer cement. Conclusion: The present study suggests that the compressive strength, diametral tensile strength, and shear bond strength of 0.5% triclosan-glass ionomer cement and 0.5% chlorhexidine-glass ionomer cement were similar to those of the glass ionomer cement type IX, discernibly signifying that these can be considered as viable options for use in pediatric dentistry with the additional value of antimicrobial property along with physical properties within the higher acceptable range. PMID:27195231

  7. Influence of powder/liquid ratio on the radiodensity and diametral tensile strength of glass ionomer cements

    PubMed Central

    FONSECA, Rodrigo Borges; BRANCO, Carolina Assaf; QUAGLIATTO, Paulo Sérgio; GONÇALVES, Luciano de Souza; SOARES, Carlos José; CARLO, Hugo Lemes; CORRER-SOBRINHO, Lourenço

    2010-01-01

    Objective To determine the influence of P/L ratio on the radiodensity and diametral tensile strength (DTS) of glass ionomer cements. Material and Methods There were 2 factors under study: P/L ratio (manufacturer's recommended P/L ratio and a 50% reduced P/L ratio), and materials (Vitro Molar, Vitro Fil, Vitro Cem conventional GICs and Vitro Fil LC, Ortho Glass LC RMGICs). Five 1-mm-thick samples of each material-P/L ratio were produced for radiodensity evaluation. Samples were x-ray exposed onto Digora phosphor plate and radiodensity was obtained using the software Digora for Windows 2.5 Rev 0. For DTS, five (4.0x8.0 mm) cylinder samples of each material were tested (0.5 mm/min). Data were subjected to one- and two-way ANOVA (5x2) followed by Tukey's HSD test, or Kruskal-Wallis and Dunn's method. For paired comparisons, t-test or Mann-Whitney test were used (a=0.05). Results There was a significant interaction (P=0.001) for the studied factors (materials vs. P/L ratio). Reduced P/L ratio resulted in significantly lower DTS for the RMGICs, but radiodensity was affected for all materials (P<0.05). Conclusions Reduced P/L ratio affected properties of the tested glass ionomer cements. RMGICs were more susceptible to lower values of DTS, but radiodensity decreased for all materials following P/L ratio reduction. PMID:21308288

  8. Finite Element Simulation of Diametral Strength Test of Hydroxyapatite

    SciTech Connect

    Ozturk, Fahrettin; Toros, Serkan; Evis, Zafer

    2011-01-17

    In this study, the diametral strength test of sintered hydroxyapatite was simulated by the finite element software, ABAQUS/Standard. Stress distributions on diametral test sample were determined. The effect of sintering temperature on stress distribution of hydroxyapatite was studied. It was concluded that high sintering temperatures did not reduce the stress on hydroxyapatite. It had a negative effect on stress distribution of hydroxyapatite after 1300 deg. C. In addition to the porosity, other factors (sintering temperature, presence of phases and the degree of crystallinity) affect the diametral strength of the hydroxyapatite.

  9. Dynamic tensile strength of glass fiber reinforced pultruded composites

    SciTech Connect

    Dutta, P.K.; Kumar, M.M.; Hui, D.

    1994-12-31

    This paper discusses the stress-strain behavior, fracture strength, influence of low temperature, and energy absorption in the diametral tensile splitting fracturing of a Glass Fiber Reinforced Polymer Composite. Experiments were conducted at low-temperature in a thermal chamber installed on a servo-hydraulic universal testing machine. The tensile strength was determined by diametral compression of disc samples at 24, {minus}5 and {minus}40 C.

  10. Tensile strength of dried gelcast green bodies

    SciTech Connect

    Nunn, S.D.; Omatete, O.O.; Walls, C.A.; Barker, D.L.

    1994-04-01

    Ceramic green bodies were prepared by three different techniques, dry pressing, slip casting, and gelcasting. The tensile strength of the green bodies was measured using a diametral compression test. It was found that the gelcast samples were from 2 to 20 times stronger than the conventionally formed green bodies. SEM examination of the gelcast samples revealed a homogeneous, brittle fracture surface indicating a very uniform distribution of the binder and excellent dispersion of the ceramic powder.

  11. A novel dentin bond strength measurement technique using a composite disk in diametral compression.

    PubMed

    Huang, Shih-Hao; Lin, Lian-Shan; Rudney, Joel; Jones, Rob; Aparicio, Conrado; Lin, Chun-Pin; Fok, Alex

    2012-04-01

    New methods are needed that can predict the clinical failure of dental restorations that primarily rely on dentin bonding. Existing methods have shortcomings, e.g. severe deviation in the actual stress distribution from theory and a large standard deviation in the measured bond strength. We introduce here a novel test specimen by examining an endodontic model for dentin bonding. Specifically, we evaluated the feasibility of using the modified Brazilian disk test to measure the post-dentin interfacial bond strength. Four groups of resin composite disks which contained a slice of dentin with or without an intracanal post in the center were tested under diametral compression until fracture. Advanced nondestructive examination and imaging techniques in the form of acoustic emission (AE) and digital image correlation (DIC) were used innovatively to capture the fracture process in real time. DIC showed strain concentration first appearing at one of the lateral sides of the post-dentin interface. The appearance of the interfacial strain concentration also coincided with the first AE signal detected. Utilizing both the experimental data and finite-element analysis, the bond/tensile strengths were calculated to be: 11.2 MPa (fiber posts), 12.9 MPa (metal posts), 8.9 MPa (direct resin fillings) and 82.6 MPa for dentin. We have thus established the feasibility of using the composite disk in diametral compression to measure the bond strength between intracanal posts and dentin. The new method has the advantages of simpler specimen preparation, no premature failure, more consistent failure mode and smaller variations in the calculated bond strength. PMID:22266033

  12. Investigations into the tensile failure of doubly-convex cylindrical tablets under diametral loading using finite element methodology.

    PubMed

    Podczeck, Fridrun; Drake, Kevin R; Newton, J Michael

    2013-09-15

    In the literature various solutions exist for the calculation of the diametral compression tensile strength of doubly-convex tablets and each approach is based on experimental data obtained from single materials (gypsum, microcrystalline cellulose) only. The solutions are represented by complex equations and further differ for elastic and elasto-plastic behaviour of the compacts. The aim of this work was to develop a general equation that is applicable independently of deformation behaviour and which is based on simple tablet dimensions such as diameter and total tablet thickness only. With the help of 3D-FEM analysis the tensile failure stress of doubly-convex tables with central cylinder to total tablet thickness ratios W/D between 0.06 and 0.50 and face-curvature ratios D/R between 0.25 and 1.85 were evaluated. Both elastic and elasto-plastic deformation behaviour were considered. The results of 80 individual simulations were combined and showed that the tensile failure stress σt of doubly-convex tablets can be calculated from σt=(2P/πDW)(W/T)=2P/πDT with P being the failure load, D the diameter, W the central cylinder thickness, and T the total thickness of the tablet. This equation converts into the standard Brazilian equation (σt=2P/πDW) when W equals T, i.e. is equally valid for flat cylindrical tablets. In practice, the use of this new equation removes the need for complex measurements of tablet dimensions, because it only requires values for diameter and total tablet thickness. It also allows setting of standards for the mechanical strength of doubly-convex tablets. The new equation holds both for elastic and elasto-plastic deformation behaviour of the tablets under load. It is valid for all combinations of W/D-ratios between 0.06 and 0.50 with D/R-ratios between 0.00 and 1.85 except for W/D=0.50 in combination with D/R-ratios of 1.85 and 1.43 and for W/D-ratios of 0.40 and 0.30 in combination with D/R=1.85. FEM-analysis indicated a tendency to

  13. 7 CFR 29.3061 - Strength (tensile).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Strength (tensile). 29.3061 Section 29.3061... Type 93) § 29.3061 Strength (tensile). The stress a tobacco leaf can bear without tearing. Tensile strength is not an important element of quality in Burley tobacco....

  14. 7 CFR 29.3061 - Strength (tensile).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strength (tensile). 29.3061 Section 29.3061... Type 93) § 29.3061 Strength (tensile). The stress a tobacco leaf can bear without tearing. Tensile strength is not an important element of quality in Burley tobacco....

  15. 7 CFR 29.3061 - Strength (tensile).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Strength (tensile). 29.3061 Section 29.3061... Type 93) § 29.3061 Strength (tensile). The stress a tobacco leaf can bear without tearing. Tensile strength is not an important element of quality in Burley tobacco....

  16. 7 CFR 29.3061 - Strength (tensile).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Strength (tensile). 29.3061 Section 29.3061... Type 93) § 29.3061 Strength (tensile). The stress a tobacco leaf can bear without tearing. Tensile strength is not an important element of quality in Burley tobacco....

  17. 7 CFR 29.3061 - Strength (tensile).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Strength (tensile). 29.3061 Section 29.3061... Type 93) § 29.3061 Strength (tensile). The stress a tobacco leaf can bear without tearing. Tensile strength is not an important element of quality in Burley tobacco....

  18. An Interlaminar Tensile Strength Specimen

    NASA Technical Reports Server (NTRS)

    Martin, Roderick H.; Jackson, Wade C.

    1993-01-01

    This paper describes a technique to determine interlaminar tensile strength, sigma(sub 3c), of a fiber reinforced composite material using a curved beam. The specimen was a unidirectional curved beam, bent 90 deg, with straight arms. Attached to each arm was a hinged loading mechanism that was held by the grips of a tension testing machine. Geometry effects of the specimen, including the effects of loading arm length, inner radius, thickness, and width, were studied. The data sets fell into two categories: low strength corresponding to a macroscopic flaw related failure and high strength corresponding to a microscopic flaw related failure. From the data available, the specimen width and loading arm length had little effect on sigma(sub 3c). The inner radius was not expected to have a significant effect on sigma(sub 3c), but this conclusion could not be confirmed because of differences in laminate quality for each curve geometry. The thicker specimens had the lowest value of sigma(sub 3c) because of poor laminate quality.

  19. Experimental and Numerical Studies on Determination of Indirect Tensile Strength of Rocks

    NASA Astrophysics Data System (ADS)

    Erarslan, Nazife; Liang, Zheng Zhao; Williams, David John

    2012-09-01

    Indirect tension tests using Brisbane tuff Brazilian disc specimens under standard Brazilian jaws and various loading arcs were performed. The standard Brazilian indirect tensile tests caused catastrophic, crushing failure of the disc specimens, rather than the expected tensile splitting failure initiated by a central crack. This led to an investigation of the fracturing of Brazilian disc specimens and the existing indirect tensile Brazilian test using steel loading arcs with different angles. The results showed that the ultimate failure load increased with increasing loading arc angles. With no international standard for determining indirect tensile strength of rocks under diametral load, numerical modelling and analytical solutions were undertaken. Numerical simulations using RFPA2D software were conducted with a heterogeneous material model. The results predicted tensile stress in the discs and visually reproduced the progressive fracture process. It was concluded that standard Brazilian jaws cause catastrophic, crushing failure of the disc specimens instead of producing a central splitting crack. The experimental and numerical results showed that 20° and 30° loading arcs result in diametral splitting fractures starting at the disc centre. Moreover, intrinsic material properties (e.g. fracture toughness) may be used to propose the best loading configuration to determine the indirect tensile strength of rocks. Here, by using numerical outcomes and empirical relationships between fracture toughness and tensile strength, the best loading geometry to obtain the most accurate indirect tensile strength of rocks was the 2α = 30° loading arc.

  20. 7 CFR 29.6040 - Strength (tensile).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Strength (tensile). 29.6040 Section 29.6040 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Definitions § 29.6040 Strength (tensile). The stress a tobacco...

  1. 7 CFR 29.6040 - Strength (tensile).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strength (tensile). 29.6040 Section 29.6040 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Definitions § 29.6040 Strength (tensile). The stress a tobacco...

  2. Surfactant effects on soil aggregate tensile strength

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known regarding a soil aggregate's tensile strength response to surfactants that may be applied to alleviate soil water repellency. Two laboratory investigations were performed to determine surfactant effects on the tensile strength of 1) Ap horizons of nine wettable, agricultural soils co...

  3. 7 CFR 29.6040 - Strength (tensile).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Strength (tensile). 29.6040 Section 29.6040 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Definitions § 29.6040 Strength (tensile). The stress a tobacco...

  4. 7 CFR 29.6040 - Strength (tensile).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Strength (tensile). 29.6040 Section 29.6040 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Definitions § 29.6040 Strength (tensile). The stress a tobacco...

  5. 7 CFR 29.6040 - Strength (tensile).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Strength (tensile). 29.6040 Section 29.6040 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Definitions § 29.6040 Strength (tensile). The stress a tobacco...

  6. CHARACTERIZATION OF TENSILE STRENGTH OF GLOVEBOX GLOVES

    SciTech Connect

    Korinko, P.; Chapman, G.

    2012-02-29

    A task was undertaken to compare various properties of different glovebox gloves, having various compositions, for use in gloveboxes at the Savannah River Site (SRS). One aspect of this project was to determine the tensile strength (TS) of the gloves. Longitudinal tensile samples were cut from 15 different gloves and tensile tested. The stress, load, and elongation at failure were determined. All of the gloves that are approved for glovebox use and listed in the glovebox procurement specification met the tensile and elongation requirements. The Viton{reg_sign} compound gloves are not listed in the specification, but exhibited lower tensile strengths than permissible based on the Butyl rubber requirements. Piercan Polyurethane gloves were the thinnest samples and exhibited the highest tensile strength of the materials tested.

  7. Method and apparatus for determining tensile strength

    DOEpatents

    Ratigan, J.L.

    1982-05-28

    A method and apparatus is described for determining the statistical distribution of apparent tensile strength of rock, the size effect with respect to tensile strength, as well as apparent deformation modulus of both intact and fractured or jointed rock. The method is carried out by inserting a plug of deformable material, such as rubber, in an opening of a specimen to be tested. The deformable material is loaded by an upper and lower platen until the specimen ruptures, whereafter the tensile strength is calculated based on the parameters of the test specimen and apparatus.

  8. Method and apparatus for determining tensile strength

    DOEpatents

    Ratigan, Joe L.

    1984-01-01

    A method and apparatus for determining the statistical distribution of apparent tensile strength of rock, the size effect with respect to tensile strength, as well as apparent deformation modulus of both intact and fractured or jointed rock. The method is carried out by inserting a plug of deformable material, such as rubber, in an opening of a specimen to be tested. The deformable material is loaded by an upper and lower platen until the specimen ruptures, whereafter the tensile strength is calculated based on the parameters of the test specimen and apparatus.

  9. Dynamic tensile strength of lunar rock types

    NASA Technical Reports Server (NTRS)

    Cohn, S. N.; Ahrens, T. J.

    1981-01-01

    The dynamic tensile strength of four rocks are determined. A flat plate impact experiment is employed to generate approximately one-microsecond-duration tensile stress pulses in rock samples by superposing rarefaction waves to induce fracture. It is noted that the effect of chemical weathering and other factors has not been explicitly studied. The given tensile strengths are based on a series of experiments on each rock where determination of incipient spallation is made by terminal microscopic examination. The data are generally consistent with previous determinations, at least one of which was for a significantly chemically altered but physically coherent rock.

  10. Strength Measurement of Ceramic Spheres Using a Diametrally Compressed "C-Sphere" Specimen

    SciTech Connect

    Wereszczak, Andrew A; Jadaan, Osama M.; Kirkland, Timothy Philip

    2007-01-01

    A "C-sphere" flexure strength specimen geometry was conceived and developed to measure the hoop tensile strength of bearing-grade silicon nitride (Si3N4) balls. Because such a strength can be measured, the important study of surface-located strength-limiting flaws in ceramic sphere is also enabled with this specimen. A slot is machined into the balls to a set depth to produce the C-sphere geometry. A simple, monotonically increasing uniaxial compressive force produces a hoop tensile stress at the C-sphere's outer surface that ultimately initiates fracture. The strength is determined using the combination of failure load, C-sphere geometry, and finite element analysis. Additionally, the stress field was used to determine C-sphere effective areas and effective volumes as a function of Weibull modulus. To demonstrate this new specimen, C-sphere flexure strength distributions were determined for three commercially available bearing-grade Si3N4 materials (NBD200, SN101C, and TSN-03NH), and differences among their characteristic strengths and Weibull moduli were found.

  11. A comparison of pressure compaction and diametral compression tests for determining granule strengths

    SciTech Connect

    Glass, S.J.; Newton, C.

    1994-12-31

    Lightning strikes can cause structural damage, ignite flammable materials, and produce circuit malfunctions in missiles, aircraft, and ground systems. Lightning arrestor connectors (LACs) are used to divert harmful lightning energy away from these systems by providing less destructive breakdown paths. Ceramic granules in the size range of 150--200 {micro}m are used in LACs to provide physical and electrical separation of contacts (pins) from the surrounding metal web, and to control the voltage breakdown level. Pressure compaction (P-C) tests were used to characterize the strength of ceramic granules. When compaction data are plotted as relative density of the compact versus the compaction pressure two linear regions are generally observed. The intersection of these regions, which is known as the ``breakpoint,`` has been used as a semi-quantitative measure of granule strength. Comparisons were made between the P-C breakpoint and strengths of 150--200 {micro}m diameter ZnO, TiO{sub 2} (rutile), and lead magnesium niobate-lead titanate (PMN-PT) granules, where the strengths were determined by diametral compression (D-C) tests. At high compaction pressures the compliance of the die itself is significant and was accounted for in the analyses. Tests were conducted at different compaction rates, and with different aspect ratio compacts. High aspect ratios and loading rates decrease the slope of the second linear portion of the compaction curve and produce higher apparent P-C breakpoints. Comparison of the P-C breakpoint to the average D-C strength indicates that the D-C strength is approximately fifty percent higher for PMN-PT granules. To eliminate the uncertainty in results due to irregular granules sizes and shapes, comparisons were made for uniform size (210 {micro}m) glass spheres. In this case the average D-C strength coincided with a second breakpoint in the P-C data, which occurred after compaction by a mechanism of bridge formation and collapse had ceased.

  12. Making High-Tensile-Strength Amalgam Components

    NASA Technical Reports Server (NTRS)

    Grugel, Richard

    2008-01-01

    Structural components made of amalgams can be made to have tensile strengths much greater than previously known to be possible. Amalgams, perhaps best known for their use in dental fillings, have several useful attributes, including room-temperature fabrication, corrosion resistance, dimensional stability, and high compressive strength. However, the range of applications of amalgams has been limited by their very small tensile strengths. Now, it has been discovered that the tensile strength of an amalgam depends critically on the sizes and shapes of the particles from which it is made and, consequently, the tensile strength can be greatly increased through suitable choice of the particles. Heretofore, the powder particles used to make amalgams have been, variously, in the form of micron-sized spheroids or flakes. The tensile reinforcement contributed by the spheroids and flakes is minimal because fracture paths simply go around these particles. However, if spheroids or flakes are replaced by strands having greater lengths, then tensile reinforcement can be increased significantly. The feasibility of this concept was shown in an experiment in which electrical copper wires, serving as demonstration substitutes for copper powder particles, were triturated with gallium by use of a mortar and pestle and the resulting amalgam was compressed into a mold. The tensile strength of the amalgam specimen was then measured and found to be greater than 10(exp 4) psi (greater than about 69 MPa). Much remains to be done to optimize the properties of amalgams for various applications through suitable choice of starting constituents and modification of the trituration and molding processes. The choice of wire size and composition are expected to be especially important. Perusal of phase diagrams of metal mixtures could give insight that would enable choices of solid and liquid metal constituents. Finally, whereas heretofore, only binary alloys have been considered for amalgams

  13. Tensile bond strength of repaired amalgam.

    PubMed

    Hadavi, F; Hey, J H; Czech, D; Ambrose, E R

    1992-03-01

    This study evaluated the tensile strength of repaired high-copper amalgams and analyzed the different treatments of the amalgam interface prior to repair. One hundred specimens were divided into 10 groups: group 1 was left intact and was considered as the control group. In groups 2 through 8, the specimens were sectioned into halves after 10 days and were reconstructed with new amalgam. Groups 9 and 10 were condensed with time intervals of 15 minutes and all specimens were subjected to tensile loads in a Universal Testing Machine. The tensile strengths at the junction between old and new amalgam ranged between 50% to 79% of those of the control group and verified that the same type of amalgam and uncontaminated interfaces had higher strengths. The results also suggested that if an amalgam repair is anticipated, additional retention is critical to the longevity of the restoration. PMID:1507091

  14. Tensile strength of SiC fibers

    SciTech Connect

    Zok, F.W.; Chen, X.; Weber, C.H.

    1995-07-01

    An experimental investigation has been conducted on the effects of gauge length on the tensile strength of SiC fibers. The results show that the overall strength distribution cannot be described solely in terms of the two-parameter Weibull function. The overall distribution is found to be consistent with two concurrent flaw populations, one of them being characteristic of the pristine fibers, and the other characteristic of the additional flaws introduced into the fiber during processing of the composite.

  15. Tensile Strength of Carbon/Carbon Composites

    NASA Astrophysics Data System (ADS)

    Hatta, Hiroshi; Aoi, Tatsuji; Kawahara, Itaru; Kogo, Yasuo; Shiota, Ichiro

    In order to identify ruling mechanisms of tensile fracture of Carbon/Carbon composites (C/Cs), tensile tests were carried out for various C/Cs as functions of the density, heat treatment temperature, and interfacial strength between fiber and matrix. Three processing routes of preformed yarn, resin char, and HIP processes were adopted to densify C/Cs. These C/Cs were finally heat-treated at temperatures from 2273K to 3300K. The interfacial strength between fiber and matrix was varied by the selection of processing routes. As a result, two ruling failure mechanisms were identified. At density lower than 1.6g/cm3, the tensile fracture was controlled by stress transfer capability from the matrix to reinforcing fibers. However, at higher density than 1.6g/cm3, tensile strength was primarily governed by the interfacial strength between the matrix and fibers. Thus the latter mechanism is nearly same as ceramic matrix composites.

  16. Tensile strength and durability of bovine dentin.

    PubMed

    Inoue, Toshiko; Miyazaki, Takashi; Nishimura, Fumio

    2007-05-01

    This study investigated the effects of thermal cycling on the tensile strength of dentin. Bovine dentin were divided into 10 groups, which were then subjected to various conditions: intact after preparation, thereby serving as a control; heating in boiling water for 45 minutes; 10,000 thermal cycles in water; 10,000 thermal cycles in PBS; storage in water at 5, 23, or 55 degrees C for two weeks; and storage in PBS at 5, 23, or 55 degrees C for two weeks. Subsequently, bovine dentin were trimmed into dumbbell-shaped specimens and the tensile test performed in distilled water at 37 degrees C. Mean tensile strengths were compared statistically by one-way ANOVA and Fisher's PLTD test (p<0.05). Fracture surfaces were observed by scanning electron microscopy, and reliability of the results was analyzed with Weibull distribution. Tensile strength did not significantly change after thermal cycling or storage in water and PBS at all temperatures tested (71.2-77.0 MPa) but decreased after treatment with boiling water (65.5 MPa). PMID:17694743

  17. Tensile strength of bovine trabecular bone.

    PubMed

    Kaplan, S J; Hayes, W C; Stone, J L; Beaupré, G S

    1985-01-01

    Data on the tensile and compressive properties of trabecular bone are needed to define input parameters and failure criteria for modeling total joint replacements. To help resolve differences in reports comparing tensile and compressive properties of trabecular bone, we have developed new methods, based on porous foam technology, for tensile testing of fresh/frozen trabecular bone specimens. Using bovine trabecular bone from an isotropic region from the proximal humerus as a model material, we measured ultimate strengths in tension and compression for two groups of 24 specimens each. The average ultimate strength in tension was 7.6 +/- 2.2 (95% C.I.) MPa and in compression was 12.4 +/- 3.2 MPa. This difference was statistically significant (p = 0.013) and was not related to density differences between the test groups (p = 0.28). Strength was related by a power-law function of the local apparent density, but, even accounting for density influences, isotropic bovine trabecular bone exhibits significantly lower strengths in tension than in compression. PMID:4077868

  18. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Tensile strength of shell plates. 230.26 Section 230.26 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength...

  19. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of... 49 Transportation 4 2013-10-01 2013-10-01 false Tensile strength of shell plates. 230.26...

  20. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of... 49 Transportation 4 2012-10-01 2012-10-01 false Tensile strength of shell plates. 230.26...

  1. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of... 49 Transportation 4 2010-10-01 2010-10-01 false Tensile strength of shell plates. 230.26...

  2. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of... 49 Transportation 4 2014-10-01 2014-10-01 false Tensile strength of shell plates. 230.26...

  3. Stochastic models for the tensile strength, fatigue

    NASA Technical Reports Server (NTRS)

    Phoenix, S. L.

    1976-01-01

    The time-to-failure of a single fiber is modeled as a functional of the fiber load history and reasonable forms for this functional are proposed. Earlier models by Daniels and Coleman are shown to be special cases of the proposed model and apparent disparities in their behavior are discussed. Techniques are presented for determining analytically the asymptotic distributions of the tensile strength and time-to-failure for bundles of a large number of fibers. For smaller bundles, exact results are far too cumbersome to be of use so that efficient Monte Carlo simulation procedures are proposed.

  4. Structure and tensile strength of LaS(1.4)

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Smoak, Richard H.

    1987-01-01

    The tensile strength of LaS(1.4) has been estimated by diametral stress testing at room temperature, 800 and 1300 K. Brittle, tensile-type failures were obtained at all temperatures when the crosshead speed was 0.0021 mm/s; however, a 1300 K test at 0.00085 mm/s produced plastic flow. The microstructure of LaS(1.4) consisted of two phases with beta-La2S3 comprising about 15 vol percent of the structure and gamma-La2S3 the remainder. Because of the limited amount of material available for testing, no correlation between microstructure and mechanical strength could be drawn.

  5. Measuring the Tensile Strength of B/AL Composites

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1983-01-01

    Proposed nondestructive technique correlates damping measurements with material strength. Increasing axial damping and decreasing axial tensile strength are observed after 1-hour treatment of B/AL composites containing about 50 percent fiber. Damping was measured in vacuum at frequencies near 2,000 Hz, and tensile strength was normalized by maximum strength observed before thermally induced degradation.

  6. Toward predicting tensile strength of pharmaceutical tablets by ultrasound measurement in continuous manufacturing.

    PubMed

    Razavi, Sonia M; Callegari, Gerardo; Drazer, German; Cuitiño, Alberto M

    2016-06-30

    An ultrasound measurement system was employed as a non-destructive method to evaluate its reliability in predicting the tensile strength of tablets and investigate the benefits of incorporating it in a continuous line, manufacturing solid dosage forms. Tablets containing lactose, acetaminophen, and magnesium stearate were manufactured continuously and in batches. The effect of two processing parameters, compaction force and level of shear strain were examined. Young's modulus and tensile strength of tablets were obtained by ultrasound and diametrical mechanical testing, respectively. It was found that as the blend was exposed to increasing levels of shear strain, the speed of sound in the tablets decreased and the tablets became both softer and mechanically weaker. Moreover, the results indicate that two separate tablet material properties (e.g., relative density and Young's modulus) are necessary in order to predict tensile strength. A strategy for hardness prediction is proposed that uses the existing models for Young's modulus and tensile strength of porous materials. Ultrasound testing was found to be very sensitive in differentiating tablets with similar formulation but produced under different processing conditions (e.g., different level of shear strain), thus, providing a fast, and non-destructive method for hardness prediction that could be incorporated to a continuous manufacturing process. PMID:27157310

  7. Silphenylene elastomers have high thermal stability and tensile strength

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Two polymeric silphenylene ethers, when cured by reactions with ethyl silicates and metal salts at room temperature, form elastomers having excellent thermal stability and tensile properties. The highest tensile strength obtained in a reinforced elastomer was 2800 psi.

  8. On the tensile strength of insect swarms.

    PubMed

    Ni, Rui; Ouellette, Nicholas T

    2016-01-01

    Collective animal groups are often described by the macroscopic patterns they form. Such global patterns, however, convey limited information about the nature of the aggregation as a whole. Here, we take a different approach, drawing on ideas from materials testing to probe the macroscopic mechanical properties of mating swarms of the non-biting midge Chironomus riparius. By manipulating ground-based visual features that tend to position the swarms in space, we apply an effective tensile load to the swarms, and show that we can quasi-statically pull single swarms apart into multiple daughter swarms. Our results suggest that swarms surprisingly have macroscopic mechanical properties similar to solids, including a finite Young's modulus and yield strength, and that they do not flow like viscous fluids. PMID:27559838

  9. Aluminum/steel wire composite plates exhibit high tensile strength

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Composite plate of fine steel wires imbedded in an aluminum alloy matrix results in a lightweight material with high tensile strength. Plates have been prepared having the strength of titanium with only 85 percent of its density.

  10. Hoop tensile strength testing of small diameter ceramic particles

    NASA Astrophysics Data System (ADS)

    Wereszczak, A. A.; Jadaan, O. M.; Lin, H.-T.; Champoux, G. J.; Ryan, D. P.

    2007-03-01

    A method to measure hoop tensile strength of 1-mm-diameter brittle ceramic spheres was demonstrated through the use of a 'C-sphere' flexure strength specimen. This innovative specimen geometry was chosen because a simple, monotonically increasing uniaxial compressive force produces a hoop tensile stress at the C-sphere's outer surface that ultimately initiates fracture. This enables strength quantification and strength-limiting-flaw identification of the sphere itself. Such strength information is relevant to design optimization and durability assessments of ceramic fuel particles and breeder/multiplier pebbles for fusion when particle surfaces are subjected to tensile stresses during their manufacturing or service.

  11. An experimental evaluation of the tensile strength of impact ice

    NASA Technical Reports Server (NTRS)

    Xian, X.; Chu, M. L.; Scavuzzo, R. J.; Srivatsan, T. S.

    1989-01-01

    The evaluation of the tensile strength of impact built-up ice on structural components has been prompted by such problems as electrical transmission line losses and catastrophic failures in Arctic regions, deicing problems with fixed-wing and rotary-wing aircraft, etc. It is demonstrated that the conventional tensile-testing technique furnishes adequate data on artificially refrigerated ice, and helps establish the influence of extrinsic factors on ice tensile strength.

  12. A novel dentin bond strength measurement technique using the composite disk in diametral compression

    PubMed Central

    Huang, Shih-Hao; Lin, Lian-Shan; Rudney, Joel; Jones, Rob; Aparicio, Conrado; Lin, Chun-Pin

    2012-01-01

    We evaluated the feasibility of using the modified Brazilian disk test to measure the post-dentin interfacial bond strength. Advanced nondestructive examination and imaging techniques in the form of acoustic emission (AE) and digital image correlation (DIC) were used innovatively to capture the fracture process in real time. DIC showed strain concentration first appearing at one of the lateral sides of the post-dentin interface. The appearance of the interfacial strain concentration also coincided with the first AE signal detected. The new method has the advantages of simpler specimen preparation, no premature failure, more consistent failure mode and smaller variations in the calculated bond strength. PMID:22266033

  13. Dynamic Tensile Strength of Coal under Dry and Saturated Conditions

    NASA Astrophysics Data System (ADS)

    Zhao, Yixin; Liu, Shimin; Jiang, Yaodong; Wang, Kai; Huang, Yaqiong

    2016-05-01

    The tensile failure characterization of dry and saturated coals under different impact loading conditions was experimentally investigated using a Split Hopkinson pressure bar. Indirect dynamic Brazilian disc tension tests for coals were carried out. The indirect tensile strengths for different bedding angles under different impact velocities, strain rates and loading rates are analyzed and discussed. A high-speed high-resolution digital camera was employed to capture and record the dynamic failure process of coal specimens. Based on the experimental results, it was found that the saturated specimens have stronger loading rate dependence than the dry specimens. The bedding angle has a smaller effect on the dynamic indirect tensile strength compared to the impact velocity. Both shear and tensile failures were observed in the tested coal specimens. Saturated coal specimens have higher indirect tensile strength than dry ones.

  14. Tensile and shear strength of adhesives

    NASA Technical Reports Server (NTRS)

    Stibolt, Kenneth A.

    1990-01-01

    This experiment is conducted in a freshman-level course: Introduction to Engineering Materials. There are no prerequisites for the course although students should have some knowledge of basic algebra. The objectives are to tension and shear test adhesives and to determine the tensile and shear properties of adhesives. Details of equipment of procedure are given.

  15. Tensile Bond Strength of Latex-Modified Bonded Concrete Overlays

    NASA Astrophysics Data System (ADS)

    Dubois, Cameron; Ramseyer, Chris

    2010-10-01

    The tensile bond strength of bonded concrete overlays was tested using the in-situ pull-off method described in ASTM C 1583 with the goal of determining whether adding latex to the mix design increases bond strength. One slab of ductile concrete (f'c > 12,000 psi) was cast with one half tined, i.e. roughened, and one half steel-troweled, i.e. smooth. The slab surface was sectioned off and overlay mixtures containing different latex contents cast in each section. Partial cores were drilled perpendicular to the surface through the overlay into the substrate. A tensile loading device applied a direct tensile load to each specimen and the load was increased until failure occurred. The tensile bond strength was then calculated for comparison between the specimens.

  16. Discrete Analysis of Clay Layer Tensile Strength

    NASA Astrophysics Data System (ADS)

    Lê, T. N. H.; Plé, O.; Villard, P.; Gotteland, P.; Gourc, J. P.

    2009-06-01

    The Discrete Element Method is used to investigate the tensile behaviour and cracks mechanisms of a clay material submitted to bending loading. It is the case of compacted clay liners in landfill cap cover application. Such as the soil tested in this study is plastic clay, the distinct elements model was calibrated with previous data results by taking into account cohesive properties. Various contact and cohesion laws are tested to show that the numerical model is able to reproduce the failure mechanism. Numerical results are extending to simulate a landfill cap cover.

  17. Limiting tensile strength of liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Baidakov, Vladimir G.; Vinogradov, Vladimir E.; Pavlov, Pavel A.

    2016-05-01

    The method of pulsed liquid superheating in a tension wave that forms when a compression pulse is reflected from the liquid free surface has been used to investigate the kinetics of spontaneous cavitation in liquid nitrogen. The limiting tensile stress pn of nitrogen corresponding to nucleation rates J = 1020 - 1022 s-1 m-3 and the slope of the temperature dependence of the nucleation rate GT = dlnJ/dT have been determined by experiment. The results of experiments are compared with classical nucleation theory (CNT) and a modified classical nucleation theory (MCNT), which takes into account the size dependence of the properties of a critical bubble. It has been noted that experimental data are in better agreement with the results of MCNT than with those of CNT.

  18. Silicon nitride having a high tensile strength

    DOEpatents

    Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Willkens, C.A.; Yeckley, R.L.

    1996-11-05

    A silicon nitride ceramic is disclosed comprising: (a) inclusions no greater than 25 microns in length, (b) agglomerates no greater than 20 microns in diameter, and (c) a surface finish of less than about 8 microinches, said ceramic having a four-point flexural strength of at least about 900 MPa. 4 figs.

  19. Silicon nitride having a high tensile strength

    DOEpatents

    Pujari, Vimal K.; Tracey, Dennis M.; Foley, Michael R.; Paille, Norman I.; Pelletier, Paul J.; Sales, Lenny C.; Willkens, Craig A.; Yeckley, Russell L.

    1996-01-01

    A silicon nitride ceramic comprising: a) inclusions no greater than 25 microns in length, b) agglomerates no greater than 20 microns in diameter, and c) a surface finish of less than about 8 microinches, said ceramic having a four-point flexural strength of at least about 900 MPa.

  20. Characteristic tensile strength and Weibull shape parameter of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Klein, Claude A.

    2007-06-01

    Recently, it has been argued [N. M. Pugno and R. S. Ruoff, J. Appl. Phys. 99, 024301 (2006)] that available carbon-nanotube (CNT) tensile strength data do not obey the "classical" Weibull statistical model. In this paper we formulate Weibull's theory in a manner suitable for assessing CNT fracture-strength data and demonstrate that, on taking into account the area S subjected to uniform tensile stresses, the data are consistent with Weibull's model. Based on available data, a characteristic strength σC (S=1μm2) equal to 17.6±2.5GPa in conjunction with a shape parameter m equal to 2.77±0.34 provides a good description of the CNT fracture strength. In terms of effective strengths, and on assuming that the relevant area-scaling laws apply, carbon nanotubes and diamond nanofilms exhibit similar features for stressed areas ranging from 1to104μm2.

  1. Covalent Crosslinking of Carbon Nanotube Materials for Improved Tensile Strength

    NASA Technical Reports Server (NTRS)

    Baker, James S.; Miller, Sandi G.; Williams, Tiffany A.; Meador, Michael A.

    2013-01-01

    Carbon nanotubes have attracted much interest in recent years due to their exceptional mechanical properties. Currently, the tensile properties of bulk carbon nanotube-based materials (yarns, sheets, etc.) fall far short of those of the individual nanotube elements. The premature failure in these materials under tensile load has been attributed to inter-tube sliding, which requires far less force than that needed to fracture individual nanotubes.1,2 In order for nanotube materials to achieve their full potential, methods are needed to restrict this tube-tube shear and increase inter-tube forces.Our group is examining covalent crosslinking between the nanotubes as a means to increase the tensile properties of carbon nanotube materials. We are working with multi-walled carbon nanotube (MWCNT) sheet and yarn materials obtained from commercial sources. Several routes to functionalize the nanotubes have been examined including nitrene, aryl diazonium, and epoxide chemistries. The functional nanotubes were crosslinked through small molecule or polymeric bridges. Additionally, electron beam irradiation induced crosslinking of the non-functional and functional nanotube materials was conducted. For example, a nanotube sheet material containing approximately 3.5 mol amine functional groups exhibited a tensile strength of 75 MPa and a tensile modulus of 1.16 GPa, compared to 49 MPa and 0.57 GPa, respectively, for the as-received material. Electron beam irradiation (2.2x 1017 ecm2) of the same amine-functional sheet material further increased the tensile strength to 120 MPa and the modulus to 2.61 GPa. This represents approximately a 150 increase in tensile strength and a 360 increase in tensile modulus over the as-received material with only a 25 increase in material mass. Once we have optimized the nanotube crosslinking methods, the performance of these materials in polymer matrix composites will be evaluated.

  2. Tensile strength of cementitious materials under triaxial loading

    NASA Astrophysics Data System (ADS)

    Tsubota, Shuji

    1998-11-01

    A general tension-compression-compression (sigmasb1, sigmasb2=sigmasb3) failure criterion for brittle materials is mathematically developed using FEM analysis and experimentally verified by use of the cementitious composite axial tensile test (CCATT). This tensile failure criterion is based on the stress concentration derived from the classical theory of elasticity. This analytical approach shows the upper bound of the tension-compression-compression failure surface for brittle materials. Since the CCATT applies confining hydraulic pressure, a tensile specimen is subjected to triaxial loading defined by the principal stress ratio sigmasb1/|sigmasb2|. When lateral pressure increases, tensile strength decreases; therefore, stress concentration is defined as a function of the principal stress ratio. The model has three distinct regions of behavior corresponding to the principal stress ratio, 0≤sigmasb1/|sigmasb2|<0.9 (high-lateral pressure), 0.9≤sigmasb1/|sigmasb2|<3.0 (medium-lateral pressure), 3.0≤sigmasb1/|sigmasb2| (low-lateral pressure). The experimental failure line shows true tensile strength of cementitious materials under low-lateral pressure. The predicted nominal stress fsb{ta} with large size specimens for the CCATT is written as$fsb{ta}=gamma*{1/{Kt}}*alpha* pwhere gamma$ is the size effect obtained by experimental results; Kt is the stress concentration factor derived from triaxial loading. Tensile strength values from the CCATT are compared to experimental results from other tests such as the uniaxial tensile test and the split cylinder test. CCATT results are analyzed using Weibull theory to measure material reliability and to develop characteristic stresses for construction design. Failure analysis using fractography was conducted on fractured cementitious materials and composites. The failure analysis on test specimens correlated well with FEM stress distributions and with the principal stress ratio. The observed fracture behavior (fracture

  3. Improved molding process ensures plastic parts of higher tensile strength

    NASA Technical Reports Server (NTRS)

    Heier, W. C.

    1968-01-01

    Single molding process ensures that plastic parts /of a given mechanical design/ produced from a conventional thermosetting molding compound will have a maximum tensile strength. The process can also be used for other thermosetting compounds to produce parts with improved physical properties.

  4. UV exposure and the tensile strength of optical fiber

    NASA Astrophysics Data System (ADS)

    Sloan, Diann A.; Le Blanc, S. P.; Kane, Martin D.

    2001-04-01

    The tensile strength of fiber Bragg gratings is dependent on the type of UV laser exposure. The basic conclusion for the traditional method of producing gratings (exposure in the near-field region of a phase mask) is that the pulsed KrF excimer laser (248 nm) damages the fiber and the continuous wave frequency-doubled argon ion laser (244 nm) does not, provided that the fibers are handled carefully. Using the excimer laser at a low fluence (~5 mJ/cm2 pulse) and hydrogen loaded fiber, we demonstrate that Bragg gratings with an index change of 1.25x10-4 can be written. Although this index change is not enough to write a highly reflecting WDM grating, it is enough to write a weakly reflecting pump stabilization grating. The tensile strength of these fibers follow a Weibull distribution similar to pristine fiber with a median tensile strength of ~4.4 GPa (640 kpsi). A small percentage of the fibers are minimally damaged. As the fluence is increased, the median tensile strength decreases and the variability increases. The probability of damage from the laser as a function of the laser intensity suggests a damage mechanism related to laser-induced dielectric breakdown.

  5. Tensile strength of randomly perforated aluminum plates: Weibull distribution parameters

    NASA Astrophysics Data System (ADS)

    Klein, Claude A.

    2008-07-01

    Recently, Yanay and collaborators [J. Appl. Phys. 101, 104911 (2007)] addressed issues regarding the fracture strength of randomly perforated aluminum plates subjected to tensile loads. Based on comprehensive measurements and computational simulations, they formulate statistical predictions for the tensile strength dependence on the hole density but conclude that their data are inadequate for the purpose of deriving the strength distribution function. The primary purpose of this contribution is to demonstrate that, on dividing the totality of applicable data into seven "bins" of comparable population, the strength distribution of perforated plates of similar hole density obeys a conventional two-parameter Weibull model. Furthermore, on examining the fracture stresses as recorded in the vicinity of the percolation threshold, we find that the strength obeys the expression σo(P -Pth)β with Pth≃0.64 and β ≃0.4. In this light, and taking advantage of percolation theory, we formulate equations that specify how the two Weibull parameters (characteristic strength and shape factor) depend on the hole density. This enables us to express the failure probability as a function of the tensile stress, over the entire range of hole densities, i.e., P =0.02 up to the percolation threshold.

  6. Importance of Tensile Strength on the Shear Behavior of Discontinuities

    NASA Astrophysics Data System (ADS)

    Ghazvinian, A. H.; Azinfar, M. J.; Geranmayeh Vaneghi, R.

    2012-05-01

    In this study, the shear behavior of discontinuities possessing two different rock wall types with distinct separate compressive strengths was investigated. The designed profiles consisted of regular artificial joints molded by five types of plaster mortars, each representing a distinct uniaxial compressive strength. The compressive strengths of plaster specimens ranged from 5.9 to 19.5 MPa. These specimens were molded considering a regular triangular asperity profile and were designed so as to achieve joint walls with different strength material combinations. The results showed that the shear behavior of discontinuities possessing different joint wall compressive strengths (DDJCS) tested under constant normal load (CNL) conditions is the same as those possessing identical joint wall strengths, but the shear strength of DDJCS is governed by minor joint wall compressive strength. In addition, it was measured that the predicted values obtained by Barton's empirical criterion are greater than the experimental results. The finding indicates that there is a correlation between the joint roughness coefficient (JRC), normal stress, and mechanical strength. It was observed that the mode of failure of asperities is either pure tensile, pure shear, or a combination of both. Therefore, Barton's strength criterion, which considers the compressive strength of joint walls, was modified by substituting the compressive strength with the tensile strength. The validity of the modified criterion was examined by the comparison of the predicted shear values with the laboratory shear test results reported by Grasselli (Ph.D. thesis n.2404, Civil Engineering Department, EPFL, Lausanne, Switzerland, 2001). These comparisons infer that the modified criterion can predict the shear strength of joints more precisely.

  7. In vitro tensile strength of luting cements on metallic substrate.

    PubMed

    Orsi, Iara A; Varoli, Fernando K; Pieroni, Carlos H P; Ferreira, Marly C C G; Borie, Eduardo

    2014-01-01

    The aim of this study was to determine the tensile strength of crowns cemented on metallic substrate with four different types of luting agents. Twenty human maxillary molars with similar diameters were selected and prepared to receive metallic core castings (Cu-Al). After cementation and preparation the cores were measured and the area of crown's portion was calculated. The teeth were divided into four groups based on the luting agent used to cement the crowns: zinc phosphate cement; glass ionomer cement; resin cement Rely X; and resin cement Panavia F. The teeth with the crowns cemented were subjected to thermocycling and later to the tensile strength test using universal testing machine with a load cell of 200 kgf and a crosshead speed of 0.5 mm/min. The load required to dislodge the crowns was recorded and converted to MPa/mm(2). Data were subjected to Kruskal-Wallis analysis with a significance level of 1%. Panavia F showed significantly higher retention in core casts (3.067 MPa/mm(2)), when compared with the other cements. Rely X showed a mean retention value of 1.877 MPa/mm(2) and the zinc phosphate cement with 1.155 MPa/mm(2). Glass ionomer cement (0.884 MPa/mm(2)) exhibited the lowest tensile strength value. Crowns cemented with Panavia F on cast metallic posts and cores presented higher tensile strength. The glass ionomer cement showed the lowest tensile strength among all the cements studied. PMID:25140718

  8. Ideal tensile strength of B2 transition-metal aluminides

    NASA Astrophysics Data System (ADS)

    Li, Tianshu; Morris, J. W., Jr.; Chrzan, D. C.

    2004-08-01

    The ideal tensile strengths of the B2 -type (CsCl) transition-metal aluminides FeAl , CoAl , and NiAl have been investigated using an ab initio electronic structure total energy method. The three materials exhibit dissimilar mechanical behaviors under the simulated ideal tensile tests along [001], [110], and [111] directions. FeAl is weakest in tension along [001] whereas CoAl and NiAl are strongest in the same direction. The weakness of FeAl along [001] direction is attributed to the instability introduced by the filling of antibonding d states.

  9. Chain Ends and the Ultimate Tensile Strength of Polyethylene Fibers

    NASA Astrophysics Data System (ADS)

    O'Connor, Thomas C.; Robbins, Mark O.

    Determining the tensile yield mechanisms of oriented polymer fibers remains a challenging problem in polymer mechanics. By maximizing the alignment and crystallinity of polyethylene (PE) fibers, tensile strengths σ ~ 6 - 7 GPa have been achieved. While impressive, first-principal calculations predict carbon backbone bonds would allow strengths four times higher (σ ~ 20 GPa) before breaking. The reduction in strength is caused by crystal defects like chain ends, which allow fibers to yield by chain slip in addition to bond breaking. We use large scale molecular dynamics (MD) simulations to determine the tensile yield mechanism of orthorhombic PE crystals with finite chains spanning 102 -104 carbons in length. The yield stress σy saturates for long chains at ~ 6 . 3 GPa, agreeing well with experiments. Chains do not break but always yield by slip, after nucleation of 1D dislocations at chain ends. Dislocations are accurately described by a Frenkel-Kontorova model, parametrized by the mechanical properties of an ideal crystal. We compute a dislocation core size ξ = 25 . 24 Å and determine the high and low strain rate limits of σy. Our results suggest characterizing such 1D dislocations is an efficient method for predicting fiber strength. This research was performed within the Center for Materials in Extreme Dynamic Environments (CMEDE) under the Hopkins Extreme Materials Institute at Johns Hopkins University. Financial support was provided by Grant W911NF-12-2-0022.

  10. Tensile Fracture Strength of Brisbane Tuff by Static and Cyclic Loading Tests

    NASA Astrophysics Data System (ADS)

    Erarslan, N.; Alehossein, H.; Williams, D. J.

    2014-07-01

    This research presents the results of laboratory experiments during the investigation of tensile strength-strain characteristics of Brisbane tuff disc specimens under static and diametral cyclic loading. Three different cyclic loading methods were used; namely, sinusoidal cyclic loading, type I and II increasing cyclic loading with various amplitude values. The first method applied the stress amplitude-cycle number (s-n) curve approach to the measurement of the indirect tensile strength (ITS) and fracture toughness ( K IC) values of rocks for the first time in the literature. The type I and II methods investigated the effect of increasing cyclic loading on the ITS and K IC of rocks. For Brisbane tuff, the reduction in ITS was found to be 30 % under sinusoidal loading, whereas type I and II increasing cyclic loading caused a maximum reduction in ITS of 36 %. The maximum reduction of the static K IC of 46 % was obtained for the highest amplitude type I cyclic loading tested. For sinusoidal cyclic loading, a maximum reduction of the static K IC of 30 % was obtained. A continuous irreversible accumulation of damage was observed in dynamic cyclic tests conducted at different amplitudes and mean stress levels. Scanning electron microscope images showed that fatigue damage in Brisbane tuff is strongly influenced by the failure of the matrix because of both inter-granular fracturing and trans-granular fracturing. The main characteristic was grain breakage under cyclic loading, which probably starts at points of contact between grains and is accompanied by the production of very small fragments, probably due to frictional sliding within the weak matrix.

  11. On the tensile strength distribution of multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Barber, Asa H.; Andrews, Rodney; Schadler, Linda S.; Wagner, H. Daniel

    2005-11-01

    Individual multiwalled carbon nanotubes grown by chemical vapor deposition (CVD) were tensile tested within the chamber of an electron microscope using an atomic force microscope-based technique. Weibull-Poisson statistics could accurately model the nanotube tensile strength data. Weibull shape and scale parameters of 1.7 and 109GPa were obtained. The former reflects a wide variability in strength similar to that observed for high-modulus graphite fibers, while the latter indicates that the irregular CVD-grown tube wall structure requires, in some cases, higher breaking forces than more regular tube wall structures. This apparent strengthening mechanism is most likely caused by an enhanced interaction between the walls of the nanotube.

  12. Dependence of tablet brittleness on tensile strength and porosity.

    PubMed

    Gong, Xingchu; Chang, Shao-Yu; Osei-Yeboah, Frederick; Paul, Shubhajit; Perumalla, Sathyanarayana Reddy; Shi, Limin; Sun, Wei-Jhe; Zhou, Qun; Sun, Changquan Calvin

    2015-09-30

    An analysis of data collected from 25 sets of diverse pharmaceutical powders has identified that an exponential growth function satisfactorily describes the relationship between tablet brittleness and tablet porosity while a power law function well describes the relationship between tablet brittleness and tensile strength. These equations have the potential to facilitate better characterization of tablet mechanical properties and to guide the design and optimization of pharmaceutical tablet products. PMID:26226338

  13. Tensile Strength of Cell Walls of Living Cells 1

    PubMed Central

    Carpita, Nicholas C.

    1985-01-01

    A gas decompression technique was used to determine the breaking strength of cell walls of single cells. Breaking strengths of the bacterium Salmonella typhimurium and the unicellular green alga Chlamydomonas eugametos were 100 and 95 atmospheres, respectively, while those of sporophytes of the water mold Blastocladiella emersonii were 65 atmospheres, and those of suspension cultured cells of carrot were only 30 atmospheres. Estimation of wall tensile stress based on breaking pressures, cell radii, and estimation of wall thickness, indicates that microfibrillar walls are not necessarily stronger than walls of primitive organisms. Hence, alternative hypotheses for their evolution must be considered. PMID:16664436

  14. Effects of parachute-ribbon surface treatments on tensile strength

    SciTech Connect

    Auerbach, I.; Whinery, L.D.; Johnson, D.W.; Mead, K.E.; Sheldon, D.D.

    1986-01-01

    Routine quality-assurance evaluations of nylon ribbons used on test-deployed parachutes revealed tensile-strength degradation had occurred in some of the ribbons. The degradation occurred exclusively in some of the noncritical skirt ribbons with stenciled blue-ink identification markings. Although the strength loss was excessive, the reliability of the parachute was not affected. These results motivated an accelerated-aging study of the effects on tensile strength of not only the inks but also of the sizing chemicals that are used to coat fabrics in parachute construction. Nylon ribbons and Kevlar webbing were treated with these materials and stored both under ambient conditions and at 60/sup 0/C (140/sup 0/F) for periods of time up to eight months. Small increases in strength developed under ambient conditions whereas small decreases developed at elevated temperatures. Samples stored in glass degraded more than those stored in stainless steel. None of these laboratory results correlated with those obtained from parachutes. Possible explanations for the lack of a correlation are provided in this paper. Additional studies are in progress.

  15. Tensile strength and fracture of cemented granular aggregates.

    PubMed

    Affes, R; Delenne, J-Y; Monerie, Y; Radjaï, F; Topin, V

    2012-11-01

    Cemented granular aggregates include a broad class of geomaterials such as sedimentary rocks and some biomaterials such as the wheat endosperm. We present a 3D lattice element method for the simulation of such materials, modeled as a jammed assembly of particles bound together by a matrix partially filling the interstitial space. From extensive simulation data, we analyze the mechanical properties of aggregates subjected to tensile loading as a function of matrix volume fraction and particle-matrix adhesion. We observe a linear elastic behavior followed by a brutal failure along a fracture surface. The effective stiffness before failure increases almost linearly with the matrix volume fraction. We show that the tensile strength of the aggregates increases with both the increasing tensile strength at the particle-matrix interface and decreasing stress concentration as a function of matrix volume fraction. The proportion of broken bonds in the particle phase reveals a range of values of the particle-matrix adhesion and matrix volume fraction for which the cracks bypass the particles and hence no particle damage occurs. This limit is shown to depend on the relative toughness of the particle-matrix interface with respect to the particles. PMID:23160765

  16. Dynamic compressive and tensile strengths of spark plasma sintered alumina

    NASA Astrophysics Data System (ADS)

    Girlitsky, I.; Zaretsky, E.; Kalabukhov, S.; Dariel, M. P.; Frage, N.

    2014-06-01

    Fully dense submicron grain size alumina samples were manufactured from alumina nano-powder using Spark Plasma Sintering and tested in two kinds of VISAR-instrumented planar impact tests. In the first kind, samples were loaded by 1-mm tungsten impactors, accelerated to a velocity of about 1 km/s. These tests were aimed at studying the Hugoniot elastic limit (HEL) of Spark Plasma Sintering (SPS)-processed alumina and the decay, with propagation distance, of the elastic precursor wave. In the tests of the second kind, alumina samples of 3-mm thickness were loaded by 1-mm copper impactors accelerated to 100-1000 m/s. These tests were aimed at studying the dynamic tensile (spall) strength of the alumina specimens. The tensile fracture of the un-alloyed alumina shows a monotonic decline of the spall strength with the amplitude of the loading stress pulse. Analysis of the decay of the elastic precursor wave allowed determining the rate of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced inelastic deformation and to clarify the mechanisms responsible for the deformation. The 1-% addition of Cr2O3 decreases the HEL of the SPS-processed alumina by 5-% and its spall strength by 50% but barely affects its static properties.

  17. Dynamic compressive and tensile strengths of spark plasma sintered alumina

    SciTech Connect

    Girlitsky, I.; Zaretsky, E.; Kalabukhov, S.; Dariel, M. P.; Frage, N.

    2014-06-28

    Fully dense submicron grain size alumina samples were manufactured from alumina nano-powder using Spark Plasma Sintering and tested in two kinds of VISAR-instrumented planar impact tests. In the first kind, samples were loaded by 1-mm tungsten impactors, accelerated to a velocity of about 1 km/s. These tests were aimed at studying the Hugoniot elastic limit (HEL) of Spark Plasma Sintering (SPS)-processed alumina and the decay, with propagation distance, of the elastic precursor wave. In the tests of the second kind, alumina samples of 3-mm thickness were loaded by 1-mm copper impactors accelerated to 100–1000 m/s. These tests were aimed at studying the dynamic tensile (spall) strength of the alumina specimens. The tensile fracture of the un-alloyed alumina shows a monotonic decline of the spall strength with the amplitude of the loading stress pulse. Analysis of the decay of the elastic precursor wave allowed determining the rate of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced inelastic deformation and to clarify the mechanisms responsible for the deformation. The 1-% addition of Cr{sub 2}O{sub 3} decreases the HEL of the SPS-processed alumina by 5-% and its spall strength by 50% but barely affects its static properties.

  18. Through-the-thickness tensile strength of textile composites

    NASA Technical Reports Server (NTRS)

    Jackson, Wade C.; Ifju, Peter G.

    1994-01-01

    A series of tests was run to characterize the through-the-thickness tensile strength for a variety of composites that included 2D and 3D braids, 2D and 3D weaves, and prepreg tapes. A new test method based on a curved beam was evaluated. The through-the-thickness deformations were characterized using moire interferometry. Failures were significantly different between the 2D and 3D materials. The 2D materials delaminated between layers due to out-of-plane tensile stresses. The strength of the 2D textile composites did not increase relative to the tapes. The 3D materials failed due to the formation of radial cracks caused by high circumferential stresses along the inner radius. A circumferential crack similar to the 2D materials produced the final failure. Final failure in the 3D materials occurred at a lower bending moment than in other materials. The early failures were caused by radial crack formation rather than low through-the-thickness strength.

  19. Strain rate effects on tensile strength of iron green bodies

    NASA Astrophysics Data System (ADS)

    Nishida, Masahiro; Kuroyanagi, Yuki; Häggblad, Hans-Åke; Jonsén, Pär; Gustafsson, Gustaf

    2015-09-01

    Impact tensile strength of iron green bodies with densities of 7.2 and 7.4 g/cm3 was examined by Brazilian test using the split-Hopkinson pressure bar (Kolsky bar) method. The powder material used for the experiments was a press-ready premix containing Distaloy AE, graphite, and lubricant. During dynamic compression, the failure behavior of specimens was observed using a high-speed video camera. The failure stress and failure behavior of dynamic compressive tests were compared with those of static compressive tests.

  20. Predicting Tensile Strengths of Boron/Aluminum Composites

    NASA Technical Reports Server (NTRS)

    Decarlo, J. A.

    1982-01-01

    To develop predictive theory to account for time/temperature effect of B/A1 composites, series of deformation and fracture studies was performed on commercial boron fibers over wide ranges of stress, stress application time, and temperature. By combining these single fiber results with fracture theory for metal matrix composites, design formulas were derived that describe B/A1 composite tensile and stress rupture strengths as function of time and temperature. Using derived formulas, calculated and experimental results agree to within 3 percent.

  1. Effects of conventional welding and laser welding on the tensile strength, ultimate tensile strength and surface characteristics of two cobalt-chromium alloys: a comparative study.

    PubMed

    Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

    2012-06-01

    The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks. PMID:23858281

  2. Tensile strength of bilayered ceramics and corresponding glass veneers

    PubMed Central

    Champirat, Tharee; Jirajariyavej, Bundhit

    2014-01-01

    PURPOSE To investigate the microtensile bond strength between two all-ceramic systems; lithium disilicate glass ceramic and zirconia core ceramics bonded with their corresponding glass veneers. MATERIALS AND METHODS Blocks of core ceramics (IPS e.max® Press and Lava™ Frame) were fabricated and veneered with their corresponding glass veneers. The bilayered blocks were cut into microbars; 8 mm in length and 1 mm2 in cross-sectional area (n = 30/group). Additionally, monolithic microbars of these two veneers (IPS e.max® Ceram and Lava™ Ceram; n = 30/group) were also prepared. The obtained microbars were tested in tension until fracture, and the fracture surfaces of the microbars were examined with fluorescent black light and scanning electron microscope (SEM) to identify the mode of failure. One-way ANOVA and the Dunnett's T3 test were performed to determine significant differences of the mean microtensile bond strength at a significance level of 0.05. RESULTS The mean microtensile bond strength of IPS e.max® Press/IPS e.max® Ceram (43.40 ± 5.51 MPa) was significantly greater than that of Lava™ Frame/Lava™ Ceram (31.71 ± 7.03 MPa)(P<.001). Fluorescent black light and SEM analysis showed that most of the tested microbars failed cohesively in the veneer layer. Furthermore, the bond strength of Lava™ Frame/Lava™ Ceram was comparable to the tensile strength of monolithic glass veneer of Lava™ Ceram, while the bond strength of bilayered IPS e.max® Press/IPS e.max® Ceram was significantly greater than tensile strength of monolithic IPS e.max® Ceram. CONCLUSION Because fracture site occurred mostly in the glass veneer and most failures were away from the interfacial zone, microtensile bond test may not be a suitable test for bonding integrity. Fracture mechanics approach such as fracture toughness of the interface may be more appropriate to represent the bonding quality between two materials. PMID:25006377

  3. Evaluation of ultimate tensile strength using Miniature Disk Bend Test

    NASA Astrophysics Data System (ADS)

    Kumar, Kundan; Pooleery, Arun; Madhusoodanan, K.; Singh, R. N.; Chakravartty, J. K.; Shriwastaw, R. S.; Dutta, B. K.; Sinha, R. K.

    2015-06-01

    Correlations for evaluation of Ultimate Tensile Strength (UTS) using Miniature Disk Bend Test (MDBT) or Small Punch Test (SPT) has been an open issue since the development of the techniques. The larger plastic strains, in tri-axial state of stress during SPT, make the translation to the equivalent uniaxial parameter less certain. Correlations based on Pmax of load-displacement curve are also in disagreement as the point corresponding to Pmax does not represent a necking situation as in case of UTS, in a uniaxial tensile test. In present work, an attempt has been made for locating necking zone, which appears prior to Pmax, through experiments and FEM analyses. Experimental results on disk specimens from 20MnMoNi55, CrMoV ferritic steel and SS304LN materials along with FEM analyses found that load corresponding to 0.48 mm displacement is to be very close to the necking zone, and gives best fit for a UTS correlation.

  4. Tensile strength and the mining of black holes.

    PubMed

    Brown, Adam R

    2013-11-22

    There are a number of important thought experiments that involve raising and lowering boxes full of radiation in the vicinity of black hole horizons. This Letter looks at the limitations placed on these thought experiments by the null energy condition, which imposes a fundamental bound on the tensile-strength-to-weight ratio of the materials involved, makes it impossible to build a box near the horizon that is wider than a single wavelength of the Hawking quanta, and puts a severe constraint on the operation of "space elevators" near black holes. In particular, it is shown that proposals for mining black holes by lowering boxes near the horizon, collecting some Hawking radiation, and dragging it out to infinity cannot proceed nearly as rapidly as has previously been claimed. As a consequence of this limitation, the boxes and all the moving parts are superfluous and black holes can be destroyed equally rapidly by threading the horizon with strings. PMID:24313473

  5. Prediction of residual tensile strength of transversely impacted composite laminates

    NASA Technical Reports Server (NTRS)

    Lal, K. M.

    1982-01-01

    The response to low velocity impact of graphite-epoxy T300/5208 composite laminates is discussed. Steel balls of 3/8 inch, 5/8 inch, and 1 inch diameter were the projectiles. Impact energy was limited to 1.2 joules. Impacted specimens were ultrasonically C scanned to determine the impact damaged region. The threshold value of impact energy for impact damage was found to be approximately 0.3 joules. A model was developed to predict the tensile residual strength of impact damaged specimens from fracture mechanics concepts. Impacted specimens were tested in tension to provide a fracture data base. The experimental results agreed well with the predictions from fracture mechanics. In this study, the maximum impact velocity used to simulate the low velocity transverse impact from common objects like tool drops was 10 m/s.

  6. Improved Tensile Adhesion Specimens for High Strength Epoxy Systems in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Haddock, M. Reed; McLennan, Michael L.

    2000-01-01

    An improved tensile adhesion button has been designed and tested that results in higher measured tensile adhesion strength while providing increased capability for testing high strength epoxy adhesive systems. The best attributes of two well-established tensile button designs were combined and refined into an optimized tensile button. The most significant design change to the tensile button was to improve alignment of the bonded tensile button specimens during tensile testing by changing the interface between the tensile button and the tensile test machine. The established or old button design uses a test fixture that pulls from a grooved annulus or anvil head while the new button design pulls from a threaded hole in the centerline of the button. Finite element (FE) analysis showed that asymmetric loading of the established anvil head tensile button significantly increases the stress concentration in the adhesive, causing failure at lower tensile test loads. The new tensile button was designed to eliminate asymmetric loading and eliminate misalignment sensitivity. Enhanced alignment resulted in improved tensile adhesion strength measurement up to 13.8 MPa (2000psi) over the established button design. Another design change increased the capability of the button by increasing the threaded hole diameter allowing it to test high strength epoxy systems up to 85 MPa(less than 12,000 psi). The improved tensile button can be used in button- to-button or button-to-panel configurations.

  7. ZERODUR: bending strength data for tensile stress loaded support structures

    NASA Astrophysics Data System (ADS)

    Bizjak, Tanja; Hartmann, Peter; Westerhoff, Thomas

    2012-03-01

    In the past ZERODUR® was mainly used for mirror and substrate applications, where mechanical loads were given by its own weight. Nowadays substrates become more sophisticated and subject to higher stresses as consequences of high operational accelerations or vibrations. The integrity of structures such as reticle and wafer stages e.g. must be guaranteed with low failure probability over their full intended life time. Their design requires statistically relevant strength data and information. The usual way determining the design strength employs statistical Weibull distributions obtained from a set of experimental data extrapolating the results to low acceptable failure probability values. However, in many cases this led to allowable stress values too low for the intended application. Moreover, the experimental basis has been found to be too small for reliable calculations. For these reasons measurement series on the strength of ZERODUR® have been performed with different surface conditions employing a standardized ring-on-ring test setup. The numbers of specimens per sample have been extended from about 20 to 100 or even much more. The results for surfaces ground with different diamond grain sizes D151, D64 and D25 as well as for etched surfaces are presented in this paper. Glass ceramics like all glassy materials exhibit some strength reduction when being exposed to loads above a tensile stress threshold over long time periods. The strength change of ZERODUR® with time will be discussed on the basis of known and newly determined stress corrosion data. The results for samples with large numbers of specimens contribute new aspects to the common practice of extrapolation to low failure probability, since they provide evidence for the existence of minimum strength values depending on the structures surface conditions. For ground surfaces the evidence for minimum strength values is quite obvious. For etched surfaces minimum values are to be expected also. However

  8. The relation between the tensile strength and the hardness of metals

    NASA Technical Reports Server (NTRS)

    Schwarz, O

    1930-01-01

    This report presents methods determining the hardness and tensile strength of metals by showing the effect and dependence of the hardness numbers on the strain-hardening. Relations between the hardness numbers and the ordinary stress-strain diagrams and tensile strength are given. Procedures for finding the Brinell strength are also presented.

  9. The tensile strength properties of CFRPs and GRRPs for Unnes electric car body material

    NASA Astrophysics Data System (ADS)

    Khumaedi, Muhammad; Sumbodo, Wirawan; Widodo, Rahmat Doni

    2016-04-01

    This paper describes composite materials tensile testing of electric car body material. The UNNES electric car body must be developed using a high strength and lightweight material. A fiber-reinforced plastic composite is widely used for the concerned objective. Selection of the type of composites, variations in fiber orientation, and the number of fiber layers will affect the tensile strength of the material. Composite materials use Carbon-fiber-reinforced plastics (CFRPs) and glass-fiber-reinforced plastics (GFRPs) variation to the fiber areal weight, variations in fiber orientation and the number of fiber layers. The CFRPs areal weight consists of 230 gsm and 400 gsm. The GFRPsareal weight consists of 400 gsm and 600 gsm. Fibre orientationsconsist of 0° and 45°. Number of fiber layers consists of one layer and two layers. Various variations were then tested to figure out their tensile to get ultimate tensile strength of materials. Standard test method for tensile test was conducted using ASTM D3039. Tensile specimen geometry used a type of balanced and symmetric fiber orientation, with 25mm in width, 250 mm in length, and 2.5 mm in thickness. The result shows that the more fiber areal weight and the layer number were used, the more its tensile strength would increase, beside it increased the ultimate tensile strength of the material for both glass and carbon fiber with 0o and 45o fiber arientation. Fiber plain wave with 45o has greater tensile strength compared to any other variation.

  10. Asteroids With Tensile Strength: The Case of 2015 HM10

    NASA Astrophysics Data System (ADS)

    Busch, Michael W.; Benner, Lance A. M.; Naidu, Shantanu P.; Brozovic, Marina; Richardson, James E.; Rivera-Valentin, Edgard G.; Taylor, Patrick A.; Ford, H. Alyson; Ghigo, Frank D.; Giorgini, Jon D.; Jao, Joseph S.; Teitelbaum, Lawrence

    2015-11-01

    Near-Earth asteroid 2015 HM10 was discovered on 2015 April 19 with the 4-m Blanco Telescope at Cerro Tololo (MPEC 2015-H90). HM10 made a 0.00295 AU / 1.14 lunar distance flyby of Earth on July 7. This was the asteroid’s closest approach to Earth until at least 2419.We observed HM10 with radar between July 5 and July 8 using Arecibo, the 70 m DSS-14 and 34 m DSS-13 antennas at Goldstone, Green Bank, and elements of the Very Long Baseline Array (VLBA). Bistatic observations were crucial to obtain high-resolution images of HM10 due to the short round-trip travel time of the radar signal, which was as low as 2.95 s on July 7. Our finest image resolution was 3.75 m/pixel in range, obtained on July 7 with the new 80 kW C-band (7190 MHz, 4.2 cm) transmitter on DSS-13 and receiving at Green Bank with the new radar backend.Optical lightcurves obtained prior to closest approach indicated that HM10 has a spin period of ~22.2 minutes and an elongated shape (W. Ryan, pers. comm). The delay-Doppler radar images confirm the rotation period estimated from photometry and reveal that HM10 has a long-axis extent of 80-100 m with an equatorial aspect ratio of about 2:1. Radar speckle tracking transmitting from Arecibo and receiving with the VLBA on July 6 rule out any non-principal axis ‘wobble’ with an amplitude greater than ~10º.HM10’s rapid rotation implies significant cohesion, with a minimum tensile strength of 25-150 Pa required at its center to prevent disruption, assuming overall bulk density between 0.7 and 3.9 g cm-3. This is comparable to strength predictions for rubble-pile aggregates (e.g. Scheeres, Britt, Carry, & Holsapple 2015, Asteroids IV, in press). HM10 is not necessarily a ‘monolith’.HM10’s shape is complex and irregular. The radar images show angular features and ‘facets’ up to ~30 m across. There is also a cluster of radar-bright pixels that tracks with HM10’s rotation, consistent with a high standing feature 15-20 m across. This feature is

  11. Evaluation of press-and-sinter parameters for tantalum pentoxide by the diametral compression test

    SciTech Connect

    Livne, Z.; Fields, R.J.; Agulyansky, A.

    1997-05-15

    Submicron Ta{sub 2}O{sub 5} powder was consolidated by cold pressing using pressures between 24 MPa and 240 MPa followed by sintering at temperatures in the range 1300 degrees C to 1500 degrees C. The resulting disks were fractured in diametral compression tests (DCT) to determine the tensile strength. The strength, mode of fracture, and fracture surface were subsequently used to identify potential processing routes for high density, fine grained Ta{sub 2}O{sub 5} for the use as sputtering targets. Besides the conventional single or triple cleft fracture, two other modes of failure were observed in the diametrical compression test: delamination due to stratification flaws introduced by high pressure pre-pressing before sintering, and fragmentation caused by slow microcrack growth in the presence of phase transformation stresses arising in samples sintered above the transformation temperature of 1360 degrees C.

  12. Correlation of tensile and shear strengths of metals with their friction properties

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The relation between the theoretical tensile and the shear strengths and the friction properties of metals in contact with diamond, boron nitride, silicon carbide, manganese-zinc ferrite, and the metals themselves in vacuum was investigated. The relationship between the actual shear strength and the friction properties of the metal was also investigated. An estimate of the theoretical uniaxial tensile strength was obtained in terms of the equilibrium surface energy, interplanar spacing of the planes perpendicular to the tensile axis, and the Young's modulus of elasticity. An estimate of the theoretical shear strength for metals was obtained from the shear modulus, the repeat distance of atoms in the direction of shear of the metal and the interplanar spacing of the shear planes. The coefficient of friction for metals was found to be related to the theoretical tensile, theoretical shear, and actual shear strengths of metals. The higher the strength of the metal, the lower the coefficient of friction.

  13. Effect of strain rate on formability in warm deep drawing of high tensile strength steel sheet

    NASA Astrophysics Data System (ADS)

    Yoshihara, Shoichiro; Iwamatsu, Go

    2014-10-01

    In tensile test of the high tensile strength steel, tensile strength isdrastically decreased as the temperature is raised. Then, the strain rate sensitivity exponent of high tensile strength steel (SUS631) in this study is high at 800 degrees especially. Also, elongation is increased as the temperature is raised. In deep drawing, the maximum punch load of the high tensile strength steel is examined on difference punch speed at 600 and 800 degrees. On the other hand, finite element (FE) simulation was used for the possibility to evaluate the forming load on difference punch speed in warm deep drawing. In FE simulation, we have considered both the strain hardening exponent and the strain rate sensitivity exponent (m-value) because we cannot neglect m-value 0.184 at 800 degrees. The tendency of the forming load in the experiments agrees the results in FE simulation.

  14. The dynamic tensile strength of ice and ice-silicate mixtures

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1983-01-01

    The dynamic tensile strength of icy media is measured at strain rates on the order of 10,000/sec to aid in the understanding of impact and cratering phenomena. Compressed samples consisting of ice and ice-silicate mixtures with 5 and 30 wt % sand were impacted at temperatures between 230 and 250 K by projectile plexiglas plates imparting the required strain rates in less than 0.75 microsec. Taking the tensile stress corresponding to the transition from intact to spalled or fragmented samples as the dynamic tensile strength, strengths of 17, 20 and 22 MPa were obtained for the pure ice, 5 wt % sand, and 30 wt % sand specimens, respectively. The values lie considerably above those observed in static testing. A continuum fracturing model is used to obtain relations between tensile strength and stress rate as well as to derive stress and damage histories during tensile loading and the size distribution of icy fragments as a function of strain rate.

  15. Computer simulation of fatigue under diametrical compression

    SciTech Connect

    Carmona, H. A.; Kun, F.; Andrade, J. S. Jr.; Herrmann, H. J.

    2007-04-15

    We study the fatigue fracture of disordered materials by means of computer simulations of a discrete element model. We extend a two-dimensional fracture model to capture the microscopic mechanisms relevant for fatigue and we simulate the diametric compression of a disc shape specimen under a constant external force. The model allows us to follow the development of the fracture process on the macrolevel and microlevel varying the relative influence of the mechanisms of damage accumulation over the load history and healing of microcracks. As a specific example we consider recent experimental results on the fatigue fracture of asphalt. Our numerical simulations show that for intermediate applied loads the lifetime of the specimen presents a power law behavior. Under the effect of healing, more prominent for small loads compared to the tensile strength of the material, the lifetime of the sample increases and a fatigue limit emerges below which no macroscopic failure occurs. The numerical results are in a good qualitative agreement with the experimental findings.

  16. Increased tensile strength of carbon nanotube yarns and sheets through chemical modification and electron beam irradiation.

    PubMed

    Miller, Sandi G; Williams, Tiffany S; Baker, James S; Solá, Francisco; Lebron-Colon, Marisabel; McCorkle, Linda S; Wilmoth, Nathan G; Gaier, James; Chen, Michelle; Meador, Michael A

    2014-05-14

    The inherent strength of individual carbon nanotubes (CNTs) offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of CNT forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated into that of sheets and yarns, where the bulk material strength is limited by intertube electrostatic attractions and slippage. The focus of this work was to assess postprocessing of CNT sheets and yarns to improve the macro-scale strength of these material forms. Both small-molecule functionalization and electron-beam irradiation were evaluated as means to enhance the tensile strength and Young's modulus of the bulk CNT materials. Mechanical testing revealed a 57% increase in tensile strength of CNT sheets upon functionalization compared with unfunctionalized sheets, while an additional 48% increase in tensile strength was observed when functionalized sheets were irradiated. Similarly, small-molecule functionalization increased tensile strength of yarn by up to 25%, whereas irradiation of the functionalized yarns pushed the tensile strength to 88% beyond that of the baseline yarn. PMID:24720450

  17. Increased Tensile Strength of Carbon Nanotube Yarns and Sheets through Chemical Modification and Electron Beam Irradiation

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Williams, Tiffany S.; Baker, James S.; Sola, Francisco; Lebron-Colon, Marisabel; McCorkle, Linda S.; Wilmoth, Nathan G.; Gaier, James; Chen, Michelle; Meador, Michael A.

    2014-01-01

    The inherent strength of individual carbon nanotubes offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of carbon nanotube (CNT) forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading; and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated to macro-scale CNT forms where bulk material strength is limited by inter-tube electrostatic attraction and slippage. The focus of this work was to assess post processing of CNT sheet and yarn to improve the macro-scale strength of these material forms. Both small molecule functionalization and e-beam irradiation was evaluated as a means to enhance tensile strength and Youngs modulus of the bulk CNT material. Mechanical testing results revealed a tensile strength increase in CNT sheets by 57 when functionalized, while an additional 48 increase in tensile strength was observed when functionalized sheets were irradiated; compared to unfunctionalized sheets. Similarly, small molecule functionalization increased yarn tensile strength up to 25, whereas irradiation of the functionalized yarns pushed the tensile strength to 88 beyond that of the baseline yarn.

  18. Tensile and flexural strength of commercially pure titanium submitted to laser and tungsten inert gas welds.

    PubMed

    Atoui, Juliana Abdallah; Felipucci, Daniela Nair Borges; Pagnano, Valéria Oliveira; Orsi, Iara Augusta; Nóbilo, Mauro Antônio de Arruda; Bezzon, Osvaldo Luiz

    2013-01-01

    This study evaluated the tensile and flexural strength of tungsten inert gas (TIG) welds in specimens made of commercially pure titanium (CP Ti) compared with laser welds. Sixty cylindrical specimens (2 mm diameter x 55 mm thick) were randomly assigned to 3 groups for each test (n=10): no welding (control), TIG welding (10 V, 36 A, 8 s) and Nd:YAG laser welding (380 V, 8 ms). The specimens were radiographed and subjected to tensile and flexural strength tests at a crosshead speed of 1.0 mm/min using a load cell of 500 kgf applied on the welded interface or at the middle point of the non-welded specimens. Tensile strength data were analyzed by ANOVA and Tukey's test, and flexural strength data by the Kruskal-Wallis test (α=0.05). Non-welded specimens presented significantly higher tensile strength (control=605.84 ± 19.83) (p=0.015) and flexural strength (control=1908.75) (p=0.000) than TIG- and laser-welded ones. There were no significant differences (p>0.05) between the welding types for neither the tensile strength test (TIG=514.90 ± 37.76; laser=515.85 ± 62.07) nor the flexural strength test (TIG=1559.66; laser=1621.64). As far as tensile and flexural strengths are concerned, TIG was similar to laser and could be suitable to replace laser welding in implant-supported rehabilitations. PMID:24474361

  19. Small screw study: Interim report on fastener tensile strength and optimum thread depth

    SciTech Connect

    Diegert, K.V.; Dorrell, L.R.; Reese, R.T.; Lazarus, L.J.; Allied-Signal Aerospace Co., Kansas City, MO . Kansas City Div.)

    1989-10-01

    This report summarizes about 1260 tests performed on small threaded fasteners (equal to or less than 1/4 inch in diameter and designated as 1/4-20 UNC, {number sign}4-40 UNC, {number sign}2-56 UNC, and 1.0 UNM). Tests determined the tensile strengths of the screws, the lengths of engagement needed to develop the full tensile strengths when the screws were engaged in 6061-T6 Aluminum, Hiperco 50, and 303 Stainless Steel, and whether relationships existed between the tensile strengths and Knoop Micro-Hardness measurements taken on the threaded ends of the screws. 17 figs., 13 tabs.

  20. Relationships between tensile strength, morphology and crystallinity of treated kenaf bast fibers

    NASA Astrophysics Data System (ADS)

    Sosiati, H.; Rohim, Ar; Ma`arif, Triyana, K.; Harsojo

    2013-09-01

    Surface treatments on kenaf bast fibers were carried out with steam, alkali and a combination of steam-alkali. To verify and gain an understanding of their inter-relationship, tensile strength, surface morphology and crystallinity of treated and raw fibers were characterized. Tensile strength of fibers was measured with a universal tensile machine (UTM), crystallinity was estimated using X-ray diffraction (XRD) and Fourier transformation infrared (FTIR) spectroscopy, and surface morphology was examined by scanning electron microscopy (SEM). Tensile strength of the treated fibers was higher than that of the raw fiber. Tensile strength increased after steam treatment and was further improved by alkali treatment, but slightly reduced after steam treatment followed by alkalization. Increase of concentration of alkali tended to increase tensile strength. Differences in tensile strength of the treated fibers are discussed in relation to the changes in surface morphology and crystallinity. Understanding of these relationships may provide direction towards the goal of producing better performance of natural fiber composites.

  1. Tensile-strength apparatus applies high strain-rate loading with minimum shock

    NASA Technical Reports Server (NTRS)

    Cotrill, H. E., Jr.; Mac Glashan, W. F., Jr.

    1966-01-01

    Tensile-strength testing apparatus employs a capillary bundle through which a noncompressible fluid is extruded and a quick-release valve system. This apparatus applies the test loads at relatively constant very high strain rates with minimal shock and vibration to the tensile specimen and apparatus.

  2. Experimental and numerical study on tensile strength of concrete under different strain rates.

    PubMed

    Min, Fanlu; Yao, Zhanhu; Jiang, Teng

    2014-01-01

    The dynamic characterization of concrete is fundamental to understand the material behavior in case of heavy earthquakes and dynamic events. The implementation of material constitutive law is of capital importance for the numerical simulation of the dynamic processes as those caused by earthquakes. Splitting tensile concrete specimens were tested at strain rates of 10(-7) s(-1) to 10(-4) s(-1) in an MTS material test machine. Results of tensile strength versus strain rate are presented and compared with compressive strength and existing models at similar strain rates. Dynamic increase factor versus strain rate curves for tensile strength were also evaluated and discussed. The same tensile data are compared with strength data using a thermodynamic model. Results of the tests show a significant strain rate sensitive behavior, exhibiting dynamic tensile strength increasing with strain rate. In the quasistatic strain rate regime, the existing models often underestimate the experimental results. The thermodynamic theory for the splitting tensile strength of concrete satisfactorily describes the experimental findings of strength as effect of strain rates. PMID:24883355

  3. Experimental and Numerical Study on Tensile Strength of Concrete under Different Strain Rates

    PubMed Central

    Min, Fanlu; Yao, Zhanhu; Jiang, Teng

    2014-01-01

    The dynamic characterization of concrete is fundamental to understand the material behavior in case of heavy earthquakes and dynamic events. The implementation of material constitutive law is of capital importance for the numerical simulation of the dynamic processes as those caused by earthquakes. Splitting tensile concrete specimens were tested at strain rates of 10−7 s−1 to 10−4 s−1 in an MTS material test machine. Results of tensile strength versus strain rate are presented and compared with compressive strength and existing models at similar strain rates. Dynamic increase factor versus strain rate curves for tensile strength were also evaluated and discussed. The same tensile data are compared with strength data using a thermodynamic model. Results of the tests show a significant strain rate sensitive behavior, exhibiting dynamic tensile strength increasing with strain rate. In the quasistatic strain rate regime, the existing models often underestimate the experimental results. The thermodynamic theory for the splitting tensile strength of concrete satisfactorily describes the experimental findings of strength as effect of strain rates. PMID:24883355

  4. Optimization and Prediction of Ultimate Tensile Strength in Metal Active Gas Welding.

    PubMed

    Ampaiboon, Anusit; Lasunon, On-Uma; Bubphachot, Bopit

    2015-01-01

    We investigated the effect of welding parameters on ultimate tensile strength of structural steel, ST37-2, welded by Metal Active Gas welding. A fractional factorial design was used for determining the significance of six parameters: wire feed rate, welding voltage, welding speed, travel angle, tip-to-work distance, and shielded gas flow rate. A regression model to predict ultimate tensile strength was developed. Finally, we verified optimization of the process parameters experimentally. We achieved an optimum tensile strength (558 MPa) and wire feed rate, 19 m/min, had the greatest effect, followed by tip-to-work distance, 7 mm, welding speed, 200 mm/min, welding voltage, 30 V, and travel angle, 60°. Shield gas flow rate, 10 L/min, was slightly better but had little effect in the 10-20 L/min range. Tests showed that our regression model was able to predict the ultimate tensile strength within 4%. PMID:26491719

  5. Anisotropy of tensile strength and fracture mode of perfect face-centered-cubic crystals

    NASA Astrophysics Data System (ADS)

    Wang, R. F.; Xu, J.; Qu, R. T.; Liu, Z. Q.; Zhang, Z. F.

    2015-06-01

    This study presents an effective method to calculate the ideal tensile strength of six face-centered-cubic (fcc) crystals (Cu, Au, Ni, Pt, Al, and Ir) along an arbitrary tensile direction by considering the coupling effect of normal stress and shear stress on a given crystallographic plane. Meanwhile, the fracture modes of the six crystals can also be derived from the competition between shear and cleavage fracture along different crystallographic planes. The results show that both the intrinsic factors (the ideal shear strength and cleavage strength of low-index planes) and the orientation may affect the tensile strength and fracture modes of ideal fcc crystals, which may give the reliable strength limit of fcc metals and well interpret the observed high strength in nano-scale mechanical experiments.

  6. Experimental determination of the dynamic tensile strength of liquid Sn, Pb, and Zn

    NASA Astrophysics Data System (ADS)

    Zaretsky, E. B.

    2016-07-01

    An experimental technique capable of determining the dynamic tensile (spall) strength of metals in the liquid state is described. Relying on this technique, spall data on samples of tin, lead, and zinc pre-heated to 20 K above their melting points were obtained. It is found that the spall strength of the metals is low, 40-100 MPa, but not zero and is, seemingly, affected by material purity and by the rate of tensile deformation preceding sample spallation.

  7. Comparative evaluation of tensile strength of Gutta-percha cones with a herbal disinfectant

    PubMed Central

    Mahali, Raghunandhan Raju; Dola, Binoy; Tanikonda, Rambabu; Peddireddi, Suresh

    2015-01-01

    Aim: To evaluate and compare the tensile strength values and influence of taper on the tensile strength of Gutta-percha (GP) cones after disinfection with sodium hypochlorite (SH) and Aloe vera gel (AV). Materials and Methods: Sixty GP cones of size 110, 2% taper, 60 GP cones F3 ProTaper, and 60 GP of size 30, 6% taper were obtained from sealed packs as three different groups. Experimental groups were disinfected with 5.25% SH and 90% AV gel except the control group. Tensile strengths of GP were measured using the universal testing machine. Results: The mean tensile strength values for Group IA, IIA and IIIA are 11.8 MPa, 8.69 MPa, and 9.24 MPa, respectively. Results were subjected to statistical analysis one-way analysis of variance test and Tukey post-hoc test. 5.25% SH solutions decreased the tensile strength of GP cones whereas with 90% AV gel it was not significantly altered. Conclusion: Ninety percent Aloe vera gel as a disinfectant does not alter the tensile strength of GP cones PMID:26752842

  8. High efficient preparation of carbon nanotube-grafted carbon fibers with the improved tensile strength

    NASA Astrophysics Data System (ADS)

    Fan, Wenxin; Wang, Yanxiang; Wang, Chengguo; Chen, Jiqiang; Wang, Qifen; Yuan, Yan; Niu, Fangxu

    2016-02-01

    An innovative technique has been developed to obtain the uniform catalyst coating on continuously moving carbon fibers. Carbon nanotube (CNT)-grafted carbon fibers with significantly improved tensile strength have been succeeded to produce by using chemical vapor deposition (CVD) when compared to the tensile strength of untreated carbon fibers. The critical requirements for preparation of CNT-grafted carbon fibers with high tensile strength have been found, mainly including (i) the obtainment of uniform coating of catalyst particles with small particle size, (ii) the low catalyst-induced and mechano-chemical degradation of carbon fibers, and (iii) the high catalyst activity which could facilitate the healing and strengthening of carbon fibers during the growth of CNTs. The optimum growth temperature was found to be about 500 °C, and the optimum catalyst is Ni due to its highest activity, there is a pronounced increase of 10% in tensile strength of carbon fibers after CNT growth at 500 °C by using Ni catalyst. Based on the observation from HRTEM images, a healing and crosslink model of neighboring carbon crystals by CNTs has been formulated to reveal the main reason that causes an increase in tensile strength of carbon fibers after the growth of CNTs. Such results have provided the theoretical and experimental foundation for the large-scale preparation of CNT-grafted carbon fibers with the improved tensile strength, significantly promoting the development of CNT-grafted carbon fiber reinforced polymer composites.

  9. Effective Size Analysis of the Diametral Compression (Brazil) Test Specimen

    SciTech Connect

    Jadaan, Osama M.; Wereszczak, Andrew A

    2009-04-01

    This study considers the finite element analysis (FEA) simulation and Weibull effective size analysis for the diametral compression (DC) or Brazil specimen loaded with three different push-rod geometries. Those geometries are a flat push-rod, a push-rod whose radius of curvature is larger than that for the DC specimen, and a push-rod whose radius of curvature matches that of the DC specimen. Such established effective size analysis recognizes that the tensile strength of structural ceramics is typically one to two orders of magnitude less than its compressive strength. Therefore, because fracture is much more apt to result from a tensile stress than a compressive one, this traditional analysis only considers the first principal tensile stress field in the mechanically loaded ceramic component for the effective size analysis. The effective areas and effective volumes were computed as function of Weibull modulus using the CARES/Life code. Particular attention was devoted to the effect of mesh sensitivity and localized stress concentration. The effect of specimen width on the stress state was also investigated. The effects of push-rod geometry, the use of steel versus WC push-rods, and considering a frictionless versus no-slip interface between push-rod and specimen on the maximum stresses, where those stresses are located, and the effective area and effective volume results are described. Of the three push-rod geometries, it is concluded that the push-rod (made from WC rather than steel) whose radius of curvature matches that of the DC specimen is the most apt to cause fracture initiation within the specimen's bulk rather than at the loading interface. Therefore, its geometry is the most likely to produce a valid diametral compression strength test. However, the DC specimen remains inefficient in terms of its area and volume efficiencies; namely, the tensile strength of only a few percent of the specimen's entire area or volume is sampled. Given the high probability

  10. Modeling of statistical tensile strength of short-fiber composites

    SciTech Connect

    Zhu, Y.T.; Blumenthal, W.R.; Stout, M.G.; Lowe, T.C.

    1995-10-01

    This paper develops a statistical strength theory for three-dimensionally (3-D) oriented short-fiber reinforced composites. Short-fiber composites are usually reinforced with glass and ceramic short fibers and whiskers. These reinforcements are brittle and display a range of strength values, which can be statistically characterized by a Weibull distribution. This statistical nature of fiber strength needs to be taken into account in the prediction of composite strength. In this paper, the statistical nature of fiber strength is incorporated into the calculation of direct fiber strengthening, and a maximum-load composite failure criterion is adopted to calculate the composite strength. Other strengthening mechanisms such as residual thermal stress, matrix work hardening, and short-fiber dispersion hardening are also briefly discussed.

  11. Modeling of statistical tensile strength tensile of short-fiber composites

    SciTech Connect

    Zhu, Y.T.; Blumenthal, W.R.; Stout, M.G.; Lowe, T.C.

    1995-10-05

    This Paper develops a statistical strength theory for three-dimensionally (3-D) oriented short-fiber reinforced composites. Short-fiber composites are usually reinforced with glass and ceramic short fibers and whiskers. These reinforcements are brittle and display a range of strength values, which can be statistically characterized by a Weibull distribution. This statistical nature of fiber strength needs to be taken into account in the prediction of composite strength. In this paper, the statistical nature of fiber strength is incorporated into the calculation of direct fiber strengthening, and a maximum-load composite failure criterion is adopted to calculate the composite strength. Other strengthening mechanisms such as residual thermal stress, matrix work hardening, and short-fiber dispersion hardening are also briefly discussed.

  12. Tensile and tear strength of carrageenan film from Philippine eucheuma species.

    PubMed

    Briones, Annabelle V; Ambal, Wilhelmina O; Estrella, Romulo R; Pangilinan, Rolando; De Vera, Carlos J; Pacis, Raymund L; Rodriguez, Ner; Villanueva, Merle A

    2004-01-01

    The tensile and tear strength of carrageenan film from Philippines Eucheuma species were investigated using NEC tensilon universal-testing machine according to American Society for Testing Materials methods. These properties are important for assessing carrageenan film as packaging material. The kappa and iota types were used in the study. The effect of glycerine on the tensile and tear strength including elongation was also evaluated. Addition of glycerine tended to lower the tensile strength of the film and increase its elongation properties including the tear strength. Carrageenan film without glycerine was much stronger. Glycerine made the film more flexible and easy to deform. The composite film of carrageenan and konjac gum did not exhibit elongation. It also showed higher tensile strength than did the composite film of carrageenan and xanthan gum. Compared with iota-type carrageenan film, kappa-type carrageenan film without glycerine was more comparable to low-density polyethylene (LDPE) film in terms of tensile strength as was the composite film of carrageenan-konjac gum. The kappa-type carrageenan film with glycerine was more comparable to LDPE film in terms of tear strength. The elongation reading for carrageenan film was lower than that for LDPE film. Morphologic studies showed that the carrageenan film had sets of pores distributed randomly at different places as compared to LDPE film. It also showed that the carrageenan film was more fibrous than LDPE film. PMID:15085409

  13. High temperature, short term tensile strength of C6000/PMR-15 composites

    NASA Technical Reports Server (NTRS)

    Digiovanni, P. R.; Paterson, D.

    1985-01-01

    Tensile tests were conducted on 0 unidirectionally reinforced Celion 6000 graphite fibers in PMR-15 polyimide matrix. Tensile strengths for coupons subjected to short and long term uniform temperatures were obtained. Thick coupons, heated on one side to produce significant transient through thickness temperature gradients, were tested and compared to the strength of specimens with uniform temperature distributions. All coupons were radiantly heated and reached maximum test temperatures within 15 sec. Tensile loads were applied to the coupons after 15 sec of elevated temperature exposure. Loading rates were selected so that specimen failures occurred within a maximum of 45 sec after reaching the test temperature. Results indicate that significant tensile strength remains beyond the material post cure temperature.

  14. Impact tensile properties and strength development mechanism of glass for reinforcement fiber

    NASA Astrophysics Data System (ADS)

    Kim, T.; Oshima, K.; Kawada, H.

    2013-07-01

    In this study, impact tensile properties of E-glass were investigated by fiber bundle testing under a high strain rate. The impact tests were performed employing two types of experiments. One is the tension-type split Hopkinson pressure bar system, and the other is the universal high-speed tensile-testing machine. As the results, it was found that not only the tensile strength but also the fracture strain of E-glass fiber improved with the strain rate. The absorbed strain energy of this material significantly increased. It was also found that the degree of the strain rate dependency of E-glass fibers on the tensile strength was varied according to fiber diameter. As for the strain rate dependency of the glass fiber under tensile loading condition, change of the small crack-propagation behaviour was considered to clarify the development of the fiber strength. The tensile fiber strength was estimated by employing the numerical simulation based on the slow crack-growth model (SCG). Through the parametric study against the coefficient of the crack propagation rate, the numerical estimation value was obtained for the various testing conditions. It was concluded that the slow crack-growth behaviour in the glass fiber was an essential for the increase in the strength of this material.

  15. Effects of Thermal Treatment on Tensile Strength of Laurentian Granite Using Brazilian Test

    NASA Astrophysics Data System (ADS)

    Yin, Tubing; Li, Xibing; Cao, Wenzhuo; Xia, Kaiwen

    2015-11-01

    The effect of thermal treatment on several physical properties and the tensile strength of Laurentian granite (LG) are measured in this study. Brazilian disc LG specimens are treated at temperatures of up to 850 °C. The physical properties such as grain density, relative volume change per degree, and P-wave velocity are investigated under the effect of heat treatment. The results indicate that both the density and the P-wave velocity decrease with the increase in heating temperature. However, the relative volume change per degree is not sensitive below 450 °C, while a remarkable increase appears from 450 to 850 °C. All cases are explained by the increase in both number and width of the thermally induced microcracks with the heating temperature. Brazilian tests are carried out statically with an MTS hydraulic servo-control testing system and dynamically with a modified split Hopkinson pressure bar (SHPB) system to measure both static and dynamic tensile strength of LG. The relationship between the tensile strength and treatment temperatures shows that static tensile strength decreases with temperature while the dynamic tensile strength first increases and then decreases with a linear increase in the loading rate. However, the increase in dynamic tensile strength with treatment temperatures from 25 to 100 °C is due to slight dilation of the grain boundaries as the initial thermal action, which leads to compaction of rock. When the treatment temperature rises above 450 °C, the quartz phase transition results in increased size of microcracks due to the differential expansion between the quartz grains and other minerals, which is the main cause of the sharp reduction in tensile strength.

  16. The Effect of Gap Angle on Tensile Strength of Preceramic Base Metal Solder Joints

    PubMed Central

    Fattahi, Farnaz; Hashemi Ardakani, Zahra; Hashemi Ardakani, Maryam

    2015-01-01

    Statement of the Problem Soldering is a process commonly used in fabricating dental prosthesis. Since most soldered prosthesis fail at the solder joints; the joint strength is of utmost importance. Purpose The purpose of this study was to evaluate the effect of gap angle on the tensile strength of base metal solder joints. Materials and Method A total number of 40 Ni-Cr samples were fabricated according to ADA/ISO 9693 specifications for tensile test. Samples were cut at the midpoint of the bar, and were placed at the considered angles by employing an explicitly designed device. They were divided into 4 groups regarding the gap angle; Group C (control group) with parallel gap on steady distance of 0.2mm, Group 1: 10°, Group 2: 20°, and Group3: 30° gap angles. When soldered, the specimens were all tested for tensile strength using a universal testing machine at a cross-head speed of 0.5 mm/min with a preload of 10N. Kruskal-Wallis H test was used to compare tensile strength among the groups (p< 0.05). Results The mean tensile strength values obtained from the study groups were respectively 307.84, 391.50, 365.18, and 368.86 MPa. The tensile strength was not statistically different among the four groups in general (p≤ 0.490). Conclusion Making the gap angular at the solder joints and the subsequent unsteady increase of the gap distance would not change the tensile strength of the joint. PMID:26636118

  17. Biophotonic effect of diode laser irradiance on tensile strength of diabetic rats.

    PubMed

    Lau, Pik Suan; Bidin, Noriah; Krishnan, Ganesan; Nassir, Zaleha; Bahktiar, Hazri

    2015-04-01

    Low-energy laser irradiance at certain wavelengths is able to stimulate the tissue bio-reaction and enhance the healing process. Collagen deposition is one of the important aspects in healing process because it can increase the strength of the skin. This study was designed to examine the biophotonic effect of irradiance on collagen production of diabetic wound in rat model. The tensile strength of skin was employed as a parameter to describe the wound. Diabetic rat models were induced by streptozotocin via intravenous injection. Skin-breaking strength was measured using an Instron tensile test machine. The experimental animals were treated with 808-nm diode laser at two different powers-0.1 and 0.5 W/cm(2)-and 30, 60, and 120 s for each session. The tensile strength was optimized after treated with high-power diode laser. The photostimulation effect was revealed by accelerated healing process and enhanced tensile strength of wound. Laser photostimulation on tensile strength in diabetic wound suggests that such therapy facilitates collagen production in diabetic wound healing. PMID:25260140

  18. Characterization of Optical Fiber Strength Under Applied Tensile Stress and Bending Stress

    SciTech Connect

    P.E. Klingsporn

    2011-08-01

    Various types of tensile testing and bend radius tests were conducted on silica core/silica cladding optical fiber of different diameters with different protective buffer coatings, fabricated by different fiber manufacturers. The tensile tests were conducted to determine not only the average fiber strengths at failure, but also the distribution in fracture strengths, as well as the influence of buffer coating on fracture strength. The times-to-failure of fiber subjected to constant applied bending stresses of various magnitudes were measured to provide a database from which failure times of 20 years or more, and the corresponding minimum bend radius, could be extrapolated in a statistically meaningful way. The overall study was done to provide an understanding of optical fiber strength in tensile loading and in applied bending stress as related to applications of optical fiber in various potential coizfgurations for weapons and enhanced surveillance campaigns.

  19. Tensile Strength of Welded Steel Tubes : First Series of Experiments

    NASA Technical Reports Server (NTRS)

    Rechtlich, A

    1928-01-01

    The purpose of the experiments was to determine the difference in the strength of steel tubes welded by different methods, as compared with one another and also with unwelded, unannealed tubes, including; moreover, a comparison of the results obtained by experienced and inexperienced welders.

  20. Effect of Silver Nano-particles on Tensile Strength of Acrylic Resins

    PubMed Central

    Ghaffari, Tahereh; Hamedi-rad, Fahimeh

    2015-01-01

    Background and aims. Polymethyl methacrylate (PMMA) is widely used for the fabrication of removable prostheses. Silver nano-particles (AgNps) have been added to PMMA because of their antimicrobial properties, but their effect on the mechanical properties of PMMA is unknown. The aim of this study was to investigate the effects of AgNps on the tensile strength of PMMA. Materials and methods. For this study, 12 specimens were prepared and divided into two groups. Group 1 included PMMA without AgNps and group 2 included PMMA mixed with 5 wt% of AgNps. Tensile strength of the specimens was measured by Zwick Z100 apparatus. Statistical analysis was carried out by SPSS using t-test. Statistical significance was defined at P<0.05. Results. This study showed that the mean tensile strength of PMMA in group 2 was significantly lower than that in group 1. Therefore, the tensile strength decreased significantly after incorporation of silver nano-particles. Conclusion. Within the limitations of this study, tensile strength of acrylic resin specimens was influenced by silver nano-particles. PMID:25973153

  1. Specimen type and size effects on lithium hydride tensile strength distributions

    SciTech Connect

    Oakes, Jr, R E

    1991-12-01

    Weibull's two-parameter statistical-distribution function is used to account for the effects of specimen size and loading differences on strength distributions of lithium hydride. Three distinctly differing uniaxial specimen types (i.e., an elliptical-transition pure tensile specimen, an internally pressurized ring tensile, and two sizes of four-point-flexure specimens) are shown to provide different strength distributions as expected, because of their differing sizes and modes of loading. After separation of strengths into volumetric- and surface-initiated failure distributions, the Weibull characteristic strength parameters for the higher-strength tests associated with internal fracture initiations are shown to vary as predicted by the effective specimen volume Weibull relationship. Lower-strength results correlate with the effective area to much lesser degree, probably because of the limited number of surface-related failures and the different machining methods used to prepare the specimen. The strength distribution from the fourth specimen type, the predominantly equibiaxially stressed disk-flexure specimen, is well below that predicted by the two-parameter Weibull-derived effective volume or surface area relations. The two-parameter Weibull model cannot account for the increased failure probability associated with multiaxial stress fields. Derivations of effective volume and area relationships for those specimens for which none were found in the literature, the elliptical-transition tensile, the ring tensile, and the disk flexure (including the outer region), are also included.

  2. Correlation Between Tensile Strength and Hardness of Electron Beam Welded TC4-DT Joints

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Shi, Yaowu; Li, Xiaoyan; Lei, Yongping

    2013-06-01

    Correlation between tensile strength and hardness for damage-tolerant Ti-6Al-4V (TC4-DT) alloy and its electron beam welded joints was investigated. Yield strength (YS), ultimate tensile strength (UTS) and strain hardening coefficient of base metal and weld metal were obtained using uniaxial tensile tests. Microhardness of the base metal, heat affected zone, and weld metal was measured. Then, the linear correlations among the yield strength, tensile strength, and hardness were proposed. Moreover, correlation between strain hardening coefficient and the ratio of YS to UTS (YS/UTS) was established. The results indicate that microhardness can be used to predict the YS and UTS of the TC4-DT welded joint successfully. In addition, the strain hardening coefficient can be predicted by the YS/UTS. The prediction of strength and strain hardening coefficient is in agreement with the experiments. The correlations are applicable and valuable for the strength prediction of narrow welded fusion zone and heat affected zone based on the microhardness measurement.

  3. Environmental effects on the tensile strength of chemically vapor deposited silicon carbide fibers

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Kraitchman, M. D.

    1985-01-01

    The room temperature and elevated temperature tensile strengths of commercially available chemically vapor-deposited (CVD) silicon carbide fibers were measured after 15 min heat treatment to 1600 C in various environments. These environments included oxygen, air, argon and nitrogen at one atmosphere and vacuum at 10/9 atmosphere. Two types of fibers were examined which differed in the SiC content of their carbon-rich coatings. Threshold temperature for fiber strength degradation was observed to be dependent on the as-received fiber-flaw structure, on the environment and on the coating. Fractographic analyses and flexural strength measurements indicate that tensile strength losses were caused by surface degradation. Oxidation of the surface coating is suggested as one possible degradation mechanism. The SiC fibers containing the higher percentage of SiC near the surface of the carbon-rich coating show better strength retention and higher elevated temperature strength.

  4. Thermal degradation of the tensile strength of unidirectional boron/aluminum composites

    NASA Technical Reports Server (NTRS)

    Grimes, H. H.; Lad, R. A.; Maisel, J. E.

    1977-01-01

    The variation of ultimate tensile strength with thermal treatment of B-Al composite materials and of boron fibers chemically removed from these composites in an attempt to determine the mechanism of the resulting strength degradation was studied. Findings indicate that thermally cycling B-Al represents a more severe condition than equivalent time at temperature. Degradation of composite tensile strength from about 1.3 GN/m squared to as low as 0.34 GN/m squared was observed after 3,000 cycles to 420 C for 203 micrometers B-1100 Al composite. In general, the 1100 Al matrix composites degraded somewhat more than the 6061 matrix material studied. Measurement of fiber strengths confirmed a composite strength loss due to the degradation of fiber strength. Microscopy indicated a highly flawed fiber surface.

  5. An investigation into geometry and microstructural effects upon the ultimate tensile strengths of butt welds

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S.

    1992-01-01

    A mathematical theory was evaluated empirically. This theory predicts weld ultimate tensile strength based on material properties and fusion line angles, mismatch, peaking, and weld widths. Welds were made on 1/4 and 1/2 in. aluminum 2219-T87, their geometries were measured, they were tensile tested, and these results were compared to theoretical predictions. Statistical analysis of results was performed to evaluate correlation of theory to results for many different categories of weld geometries.

  6. Estimating the tensile strength of super hard brittle materials using truncated spheroidal specimens

    NASA Astrophysics Data System (ADS)

    Serati, Mehdi; Alehossein, Habib; Williams, David J.

    2015-05-01

    New approaches need to be introduced to measure the tensile capacity of super hard materials since the standard methods are not effective. To pursue this objective, a series of laboratory tests were constructed to replicate the fracture mechanism of diamond-based materials. Experiments indicate that under a certain compressive test condition, stresses normal to the axisymmetric line in truncated spheroidal specimens (bullet-shaped specimens) are in tension contributing to the tensile fracture of the material. From experimental and numerical studies, it is concluded that semi-prolate spheroidal specimens can be used to determine precisely the tensile strength of brittle stiff diamond-like composites.

  7. On the Compressive and Tensile Strength of Magnesium Aluminate Spinel

    NASA Astrophysics Data System (ADS)

    Paris, V.; Hayun, S.; Dariel, M. P.; Frage, N.; Zaretsky, E.

    2009-12-01

    Magnesium aluminate spinel is a strong polycrystalline transparent ceramic. Spinel is an attractive material for armor applications and its behavior under shock wave loading is of obvious interest. The purpose of the present study was to determine the Hugoniot elastic limit (HEL) of this material, its Hugoniot response above the HEL, and its spall strength. Planar impact experiments were performed over the 2 to 40 GPa stress range using the Velocity Interferometer System for Any Reflector (VISAR) as a principal diagnostics tool. According to these tests, spinel has a HEL of about 11.3 GPa. The spall strength of the material was found to be close to zero at low, about 2 GPa, impact stress.

  8. SIZE EFFECTS IN THE TENSILE STRENGTH OF UNIDIRECTIONAL FIBER COMPOSITES

    SciTech Connect

    M. SIVASAMBU; ET AL

    1999-08-01

    Monte Carlo simulation and theoretical modeling are used to study the statistical failure modes in unidirectional composites consisting of elastic fibers in an elastic matrix. Both linear and hexagonal fiber arrays are considered, forming 2D and 3D composites, respectively. Failure is idealized using the chain-of-bundles model in terms of {delta}-bundles of length {delta}, which is the length-scale of fiber load transfer. Within each {delta}-bundle, fiber load redistribution is determined by local load-sharing models that approximate the in-plane fiber load redistribution from planar break clusters as predicted from 2D and 3D shear-lag models. As a result these models are 1D and 2D, respectively. Fiber elements have random strengths following either the Weibull or the power-law distribution with shape and scale parameters {rho} and {sigma}{sub {delta}}, respectively. Simulations of {delta}-bundle failure, reveal two regimes. When fiber strength variability is low (roughly {rho} > 2) the dominant failure mode is by growing clusters of fiber breaks up to instability. When this variability is high (roughly 0 < {rho} < 1) cluster formation is suppressed by a dispersed fiber failure mode. For these two cases, closed-form approximations to the strength distribution of a {delta}-bundle are developed under the local load-sharing model and an equal load-sharing model of Daniels, respectively. The results compare favorably with simulations on {delta}-bundles with up to 1500 fibers. The location of the transition in terms of {rho} is affected by the upper tail properties of the fiber strength distributions as well as the number of fibers.

  9. Treatment of bleached wool with trans-glutaminases to enhance tensile strength, whiteness, and alkali resistance.

    PubMed

    Montazer, Majid; Lessan, Fatemeh; Pajootan, Elmira; Dadashian, Fatemeh

    2011-09-01

    Trans-glutaminases is known as a cross-linking enzyme for proteins. Wool is a proteinous fiber conventionally is treated through several processes to obtain the desirable characteristics. Bleaching is also one of the most important processes usually carried out by using an oxidizing agent in a conventional method. The tensile strength of wool yarns was reduced as a consequence of oxidative bleaching. Here, with the help of microbial trans-glutaminases (m-TGases), a novel bleaching process was disclosed in a way to obtain a bleached wool yarn with no significant reduction in the tensile strength. The results confirmed that the bleached wool yarns with H(2)O(2) could be modified by m-TGases post-treatment. The m-TGases treatment on the bleached wool yarns improved the tensile strength and whiteness along with the higher alkali resistance. PMID:21638062

  10. Ultrahigh Tensile Strength Nanowires with a Ni/Ni-Au Multilayer Nanocrystalline Structure.

    PubMed

    An, Boo Hyun; Jeon, In Tak; Seo, Jong-Hyun; Ahn, Jae-Pyoung; Kraft, Oliver; Choi, In-Suk; Kim, Young Keun

    2016-06-01

    Superior mechanical properties of nanolayered structures have attracted great interest recently. However, previously fabricated multilayer metallic nanostructures have high strength under compressive load but never reached such high strength under tensile loads. Here, we report that our microalloying-based electrodeposition method creates a strong and stable Ni/Ni-Au multilayer nanocrystalline structure by incorporating Au atoms that makes nickel nanowires (NWs) strongest ever under tensile loads even with diameters exceeding 200 nm. When the layer thickness is reduced to 10 nm, the tensile strength reaches the unprecedentedly high 7.4 GPa, approximately 10 times that of metal NWs with similar diameters, and exceeding that of most metal nanostructures previously reported at any scale. PMID:27159629

  11. Experimental Study On The Effect Of Micro-Cracks On Brazilian Tensile Strength

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyu

    2015-12-01

    For coal mine ground control issues, it is necessary to propose a failure criteria accounting for the transversely isotropic behaviors of rocks. Hence, it is very helpful to provide experimental data for the validation of the failure criteria. In this paper, the method for preparing transversely isotropic specimens and the scheme of the Brazilian tensile strength test are presented. Results obtained from Brazilian split tests under dry and water-saturated conditions reflect the effect of the development direction β of the structural plane, such as the bedding fissure, on the tensile strength, ultimate displacement, failure mode, and the whole splitting process. The results show that the tensile strength decreases linearly with increasing β. The softening coefficient of the tensile strength shows a sinusoidal function. The values of the slope and inflection point for the curve vary at the different stages of the Brazilian test. The failure mode of the rock specimen presented in this paper generally coincides with the standard Brazilian splitting failure mode. Based on the test results, the major influencing factors for the Brazilian splitting strength are analyzed and a mathematical model for solving the Brazilian splitting strength is proposed. The findings in this paper would greatly benefit the coal mine ground control studies when the surrounding rocks of interest show severe transversely isotropic behaviors.

  12. Estimation of hyphal tensile strength in production-scale Aspergillus oryzae fungal fermentations.

    PubMed

    Li, Zheng Jian; Shukla, Vivek; Wenger, Kevin; Fordyce, Andrew; Pedersen, Annemarie Gade; Marten, Mark

    2002-03-20

    Fragmentation of filamentous fungal hyphae depends on two phenomena: hydrodynamic stresses, which lead to hyphal breakage, and hyphal tensile strength, which resists breakage. The goal of this study was to use turbulent hydrodynamic theory to develop a correlation that allows experimental data of morphology and hydrodynamics to be used to estimate relative (pseudo) tensile strength (sigma(pseudo)) of filamentous fungi. Fed-batch fermentations were conducted with a recombinant strain of Aspergillus oryzae in 80 m(3) fermentors, and measurements were made of both morphological (equivalent hyphal length, L) and hydrodynamic variables (specific power input, epsilon; kinematic viscosity, v). We found that v increased over 100-fold during these fermentations and, hence, Kolmogorov microscale (lambda) also changed significantly with time. In the impeller discharge zone, where hyphal fragmentation is thought to actually take place, lambda was calculated to be 700-3500 microm, which is large compared to the size of typical fungal hyphae (100-300 microm). This result implies that eddies in the viscous subrange are responsible for fragmentation. Applying turbulent theory for this subrange, it was possible to calculate sigma(pseudo)from morphological and hydrodynamic measurements. Pseudo tensile strength was not constant but increased to a maximum during the first half and then decreased during the second half of each fermentation, presumably due to differences in physiological state. When a literature correlation for hyphal fragmentation rate (k(frag)) was modified by adding a term to account for viscosity and tensile strength, the result was better qualitative agreement with morphological data. Taken together, these results imply hyphal tensile strength can change significantly over the course of large-scale, fed-batch fungal fermentations and that existing fragmentation and morphology models may be improved if they accounted for variations in hyphal tensile strength with

  13. Comparison of the Tensile, Creep, and Rupture Strength Properties of Stoichiometric SiC Fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.

    1999-01-01

    Tensile strength, creep strength, and rupture strength properties were measured for the following types of polymer-derived stoichiometric SiC fibers: Hi-Nicalon Type S from Nippon Carbon, Tyranno SA from Ube, and Sylramic from Dow Corning. Also included in this study were an earlier version of the SA fiber plus two recent developmental versions of the Sylramic fiber. The tensile strength measurements were made at room temperature on as-received fibers and on fibers after high-temperature inert exposure. The creep-rupture property data were obtained at 1400 deg C in air as well as, argon. Some fiber types showed strong effects of environment on their strength properties. These results are compared and discussed in terms of underlying mechanisms and implications for ceramic composites.

  14. Predicting the tensile modulus and strength of single and hybrid natural fibre reinforced thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Facca, Angelo George

    Natural fibre reinforced thermoplastics (NFRT) are used in a variety of commercial applications, but there is little theoretical modeling of structure/property relationships in these materials. In this thesis, micromechanical models available in the short-fibre literature were adapted to predict the tensile modulus and strength of some NFRT formulations. Hemp, 20 and 40-mesh hardwood, rice hulls and E-glass fibres were blended into HDPE to produce single and hybrid composites. Changes in fibre density and moisture content that occur during composite manufacturing were included in the micromechanical models. To account for fibre densification, the Young's modulus of the natural fibres was determined on a cell wall basis. A modified hybrid rule of mixtures (HROM) equation that uses experimental data from single NFRT was developed and found to adequately predict the tensile modulus of the hybrid composites. The tensile modulus for both the single and hybrid composites was found to linearly increase with an increase in fibre loading. The failure mechanism for all composite specimens was due to fibre pullout followed by matrix failure. Consequently the tensile strength of the NFRT was predicted using a ROM strength equation, which was modified with a derived semi-empirical fibre clustering parameter. The clustering parameter correctly predicted that as fibre loading increased, the average fibre stress would decrease. By assuming no contact between different types of fibres it was possible to use a modified HROM strength equation to predict the tensile strength of the hybrid composites. As a result parameters taken from the respective single fibre systems could be applied directly to the HROM equation. The modified ROM and HROM strength equations adequately predicted the tensile strength of various single and hybrid fibre reinforced composites over a wide range of composite loading. In this study experiments were conducted to shed light on the effect of a coupling agent

  15. Guidelines to come to minimized tensile strength loss upon cellulase application.

    PubMed

    Lenting, H B; Warmoeskerken, M M

    2001-08-23

    Application of cellulase technology in the textile production process often results in a certain loss of tensile strength along with the desired performance. In this paper guidelines are given how to come to minimization or even prevention of tensile strength loss. Part of the considerations is based on the hypothesis given in the accompanying paper (Lenting and Warmoeskerken, 2001, J. Biotechnol.) concerning the mechanism of interaction between cellulase action and applied shear force. Recommendations given concern the enzyme choice, process parameters and enzyme targeting. PMID:11500216

  16. Instrumented impact and residual tensile strength testing of eight-ply carbon eopoxy specimens

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.

    1990-01-01

    Instrumented drop weight impact testing was utilized to examine a puncture-type impact on thin carbon-epoxy coupons. Four different material systems with various eight-ply lay-up configurations were tested. Specimens were placed over a 10.3-mm diameter hole and impacted with a smaller tup (4.2-mm diameter) than those used in previous studies. Force-time plots as well as data on absorbed energy and residual tensile strength were gathered and examined. It was found that a critical impact energy level existed for each material tested, at which point tensile strength began to rapidly decrease with increasing impact energy.

  17. Tensile strength of dome rocks and lavas at Santiaguito dome complex, Guatemala

    NASA Astrophysics Data System (ADS)

    Hornby, Adrian; Lamb, Oliver; Lamur, Anthony; Lavallée, Yan

    2015-04-01

    Lava domes are inherently unstable structures, subject to intense gas flux and rapid variations in the state of stress. At shallow depths confining stresses are minimal and deformation is dilatant, occurring predominantly through tensile fractures. This fracture mode facilitates outgassing and contributes to the development of gas-and-ash activity as well as vulcanian eruptions. However, there is a paucity of tensile strength data for volcanic materials in the published literature, and we know of no paper which addresses this at high temperatures. We study the tensile strength of dome rocks collected at the Santiaguito dome complex, Guatemala, over a porosity range of 3-25%. Indirect tensile (Brazilian) tests were conducted on 40-mm diameter cores, by imposing a compressive displacement rate (radial to the core) of 4 micron/s at room temperature as well as an eruptive temperature of ca. 850 °C. An acoustic monitoring system is employed to track the nucleation, propagation and coalescence of fractures leading to complete sample failure. We find that the rocks' tensile strength exhibits a nonlinear decrease with porosity. Preliminary tests at high temperature indicate that some rocks exhibit a higher tensile strength (than at room temperature); in these experiments, samples containing a higher fraction of interstitial melt revealed an additional component of viscous flow. Further experiments conducted at higher strain rates will define the brittle response of the liquid during tensile failure. The data is compared against similar datasets for volcanic rocks. We will discuss implications for shallow volcanic processes ranging from dilation bands and tuffisite formation to gas-and-ash explosions and dome structural stability.

  18. Modeling the Tensile Strength of Carbon Fiber - Reinforced Ceramic - Matrix Composites Under Multiple Fatigue Loading

    NASA Astrophysics Data System (ADS)

    Li, Longbiao

    2016-06-01

    An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs) under multiple fatigue loading. The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two - parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.

  19. Development of Yield and Tensile Strength Design Curves for Alloy 617

    SciTech Connect

    Nancy Lybeck; T. -L. Sham

    2013-10-01

    The U.S. Department of Energy Very High Temperature Reactor Program is acquiring data in preparation for developing an Alloy 617 Code Case for inclusion in the nuclear section of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code. A draft code case was previously developed, but effort was suspended before acceptance by ASME. As part of the draft code case effort, a database was compiled of yield and tensile strength data from tests performed in air. Yield strength and tensile strength at temperature are used to set time independent allowable stress for construction materials in B&PV Code, Section III, Subsection NH. The yield and tensile strength data used for the draft code case has been augmented with additional data generated by Idaho National Laboratory and Oak Ridge National Laboratory in the U.S. and CEA in France. The standard ASME Section II procedure for generating yield and tensile strength at temperature is presented, along with alternate methods that accommodate the change in temperature trends seen at high temperatures, resulting in a more consistent design margin over the temperature range of interest.

  20. Modeling the Tensile Strength of Carbon Fiber - Reinforced Ceramic - Matrix Composites Under Multiple Fatigue Loading

    NASA Astrophysics Data System (ADS)

    Li, Longbiao

    2015-09-01

    An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs) under multiple fatigue loading. The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two - parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.

  1. Tensile strengths and porosities of solar system primitive bodies

    NASA Astrophysics Data System (ADS)

    Trigo-Rodriguez, J. M.; Llorca, J.; Blum, J.

    Recent measurements of asteroid bulk densities suggest that rubble-pile asteroids with typical porosities of 30 to 50% may be common (Britt et al., 2006). However, the presence of such objects doesn't mean necessarily that the initial porosity had been preserved (Kerridge, 1993). In fact, the fluffy aggregates produced in laboratory experiments that we expect to be representative of the oldest protoplanetary disk materials, exhibit even higher porosities (Blum et al., 2006). Recent results confirm that primitive meteorites (like e.g. CM carbonaceous chondrites) are compacted samples of the nebula matter exhibiting different density and porosity that their precursors materials (Trigo-Rodríguez et al., 2006). Consequently, aqueous alteration, brecciation, and impact-induced metamorphism make very unlikely to find pristine bodies between the asteroidal population. However, there is clear evidence for the existence of high-porosity bodies between the C-type asteroids like e.g. Mathilde (Housen et al., 1999) or the Tagish Lake parent body (Brown et al., 2002). Although extensive post-accretionary processing of meteorite parent bodies can produce high degrees of porosity, only the most pristine ones seem to preserve more than 50% of porosity. Consequently, we should look for these low strength bodies among the C-type asteroids, or very especially in some unprocessed comets that continue being representative of the precursor materials. Recent suggestion that CI1 chondrites are originated from comets should be studied in this context (Gounelle et al., 2006). Particularly, we think that studies of the porosity and strength of primitive meteorites would provide valuable clues on the origin and nature of their parent bodies. REFERENCES Blum J., R. Schräpler, B.J.R. Davidson and J.M. Trigo-Rodríguez (2006) Astroph. J., submitted. Britt D.T., G.J. Consolmagno, and W.J. Merline (2006) Lunar Planet. Sci. Conf. Abstract #2214. Brown, P. G., D. O. Revelle, E. Tagliaferri, and A

  2. Scale effects on the transverse tensile strength of graphite epoxy composites

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin; Salpekar, Satish A.

    1992-01-01

    The influence of material volume on the transverse tensile strength of AS4/3501-6 graphite epoxy composites was investigated. Tensile tests of 90 degree laminates with 3 different widths and 5 different thicknesses were conducted. A finite element analysis was performed to determine the influence of the grip on the stress distribution in the coupons and explain the tendency for the distribution of failure locations to be skewed toward the grip. Specimens were instrumented with strain gages and extensometers to insure good alignment and to measure failure strains. Data indicated that matrix dominated strength properties varied with the volume of material that was stressed, with the strength decreasing as volume increased. Transverse strength data were used in a volumetric scaling law based on Weibull statistics to predict the strength of 90 degree laminates loaded in three point bending. Comparisons were also made between transverse strength measurements and out-of-plane interlaminar tensile strength measurements from curved beam bending tests. The significance of observed scale effects on the use of tests for material screening, quality assurance, and design allowables is discussed.

  3. Tensile Strength of Carbon Nanotubes Under Realistic Temperature and Strain Rate

    NASA Technical Reports Server (NTRS)

    Wei, Chen-Yu; Cho, Kyeong-Jae; Srivastava, Deepak; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Strain rate and temperature dependence of the tensile strength of single-wall carbon nanotubes has been investigated with molecular dynamics simulations. The tensile failure or yield strain is found to be strongly dependent on the temperature and strain rate. A transition state theory based predictive model is developed for the tensile failure of nanotubes. Based on the parameters fitted from high-strain rate and temperature dependent molecular dynamics simulations, the model predicts that a defect free micrometer long single-wall nanotube at 300 K, stretched with a strain rate of 1%/hour, fails at about 9 plus or minus 1% tensile strain. This is in good agreement with recent experimental findings.

  4. Tensile properties of an ultrahigh-strength graphite fiber in an epoxy matrix

    NASA Technical Reports Server (NTRS)

    Chiao, T. T.; Hamstad, M. A.; Jessop, E. S.

    1974-01-01

    The fiber performance and reinforcement potential for fiber composites of a special PAN-based graphite fiber were evaluated by testing the fiber's tensile properties in an epoxy matrix. Representative strand samples were taken from 30 spools of single-end, 1500-filament fiber to make over 5000 fiber/epoxy strand specimens using the filament-winding process. Characteristics studied were fiber uniformity, strength and modulus distributions at room and liquid-nitrogen temperatures, stress-strain behavior, the effect of strain rate on fiber strength, and acoustic emission during tensile loading to failure. The fiber was found to have a 3570-MPa failure stress, a 1.7% failure strain, a 206-GPa modulus, and a density of 1.77 Mg/cu m at 23 C. Liquid-nitrogen temperature and various strain rates had no significant effect on fiber tensile properties.

  5. Statistical characterization of tensile strengths for a nuclear-type core graphite

    SciTech Connect

    Kennedy, C.R.; Eatherly, W.P.

    1986-09-01

    A data set of tensile strengths comprising over 1200 experimental points has been analyzed statistically in conformance with the observed phenomenon of background and disparate flaws. The data are consistent with a bimodal normal distribution. If corrections are made for strength dependence on density, the background mode is Weibull. It is proposed the disparate mode can be represented by a combination of binomial and order statistics. The resultant bimodal model would show a strong dependence on stress volume.

  6. The effect of volume on the tensile strength of several nuclear-grade graphites

    SciTech Connect

    Strizak, J.P.

    1991-01-01

    This report will present the results of a study on the effects of stress volume on the tensile strength of two nuclear-grade graphites. The materials selected were H-451, an extruded near-isotropic graphite manufactured by Great Lakes Carbon Corporation, and IG-110, a fine-grained isotropic molded graphite manufactured by Toyo Tanso Company, Ltd. The tensile properties of H-451 were examined extensively in the past in order to characterize the variability of strength within billets, between billets, and between lots. But, the variability within a billet was, for the most part, studied only casually. The problem was the strong influence of a limited sampling plan in describing the mean strength and the variability. Therefore, an extensive, statistically sound sampling plan has been devised to fully characterize the spatial variability within a single billet. The effects of stress volume are being reexamined by comparing the strengths of four specimen sizes covering a broad range in stress volume. Two models will be employed for analysis of the stress volume data for the selected graphites. The popular Weibull model has previously been found to grossly overestimate the volume dependence of the strength of H-451 graphite. The model will be reevaluated using the improved statistical distribution of strength expected from the current sampling plan. A new fracture model developed by Burchell and Tucker has potential for determining the effect of stress volume on the tensile strength of graphite. This probabilistic failure criterion combines a microstructural basis with a fracture-mechanics approach to failure. An initial evaluation of H-451 data showed that the model closely predicted the mean tensile strength for the two smaller specimen sizes. 9 refs., 24 figs., 1 tab.

  7. Effects of compaction variables on porosity and material tensile strength of convex-faced aspirin tablets.

    PubMed

    Pitt, K G; Newton, J M; Stanley, P

    1991-04-01

    The porosity and tensile strength of convex-faced aspirin tablets formed under a compaction pressure in the range 40-320 MPa and at punch velocities in the range 0.008 to 500 mm s-1 have been determined. The material tensile strength, sigma f, was calculated from the observed fracture load, Ps, using the equation of Pitt et al (1988): sigma f = 10 Ps/pi D2(2.84 t/D - 0.126 t/W + 3.15 W/D + 0.01)-1 where D is the tablet diameter, t is the overall tablet thickness and W is the central cylinder thickness. Tablets formed at lower compaction pressures had a higher porosity and lower tensile strength than those formed at higher compaction pressures. Tablets of face curvature ratio (D/R) in the range 0.25-0.67 and a normalized cylinder length (W/D) of 0.2 had the optimum tensile strength. (R is the radius of curvature of the tablet face.) Tablets formed at high compaction rates were significantly weaker than those formed at lower compaction rates. PMID:1676731

  8. Melt reaction of zein with glyoxal to improve tensile strength and reduce solubility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyoxal, in the presence of base, has been used to crosslink zein in a melt process, involving reaction in a melt state combined with compression molding. The resulting zein articles had improved tensile strength, increasing from 34.3 to 40.6 MPa, when the amount of glyoxal was 6% by zein weight. ...

  9. Effects of reclaimed asphalt pavement on indirect tensile strength test of conditioned foamed asphalt mix

    NASA Astrophysics Data System (ADS)

    Yati Katman, Herda; Rasdan Ibrahim, Mohd; Yazip Matori, Mohd; Norhisham, Shuhairy; Ismail, Norlela

    2013-06-01

    This paper presents the results of Indirect Tensile Strength (ITS) Test for samples prepared with reclaimed asphalt pavement (RAP). Samples were conditioned in water at 25°C for 24 hours prior to testing. Results show that recycled aggregate from reclaimed asphalt pavement performs as well as virgin aggregate.

  10. Optimization and Prediction of Ultimate Tensile Strength in Metal Active Gas Welding

    PubMed Central

    Ampaiboon, Anusit; Lasunon, On-Uma; Bubphachot, Bopit

    2015-01-01

    We investigated the effect of welding parameters on ultimate tensile strength of structural steel, ST37-2, welded by Metal Active Gas welding. A fractional factorial design was used for determining the significance of six parameters: wire feed rate, welding voltage, welding speed, travel angle, tip-to-work distance, and shielded gas flow rate. A regression model to predict ultimate tensile strength was developed. Finally, we verified optimization of the process parameters experimentally. We achieved an optimum tensile strength (558 MPa) and wire feed rate, 19 m/min, had the greatest effect, followed by tip-to-work distance, 7 mm, welding speed, 200 mm/min, welding voltage, 30 V, and travel angle, 60°. Shield gas flow rate, 10 L/min, was slightly better but had little effect in the 10–20 L/min range. Tests showed that our regression model was able to predict the ultimate tensile strength within 4%. PMID:26491719

  11. Degree of compression as a potential process control tool of tablet tensile strength.

    PubMed

    Nordström, Josefina; Alderborn, Goran

    2011-01-01

    The current view on the development and manufacturing of pharmaceutical preparations points towards improved control tools that can be implemented in pharmaceutical manufacturing as a means to better control end product properties. The objective of this paper was to investigate the relationship between tablet tensile strength and the degree of bed compression in order to evaluate the suitability of assessing the straining of the powder bed during tableting as a process control tool of tablet tensile strength. Microcrystalline cellulose was used as powder raw material and subjected to wet granulation by different procedures to create agglomerates of different physical and compression properties. The produced agglomerates thus showed a large variation in compressibility and compactibility. However, in terms of the relationship between the degree of compression and the tablet tensile strength, all agglomerates gathered reasonably around a single general relationship. The degree of compression hence appears to be a potential valuable process control tool of the tablet tensile strength that may enable the use of an adaptive tableting process with improved product quality consistency. PMID:20649411

  12. DEVELOPMENT OF TENSILE STRENGTH DURING DISTRACTION OSTEOGENESIS IN A RAT MODEL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    These studies were designed to determine the reliability of in vitro tensile testing to measure the temporal development of regenerate bone strength in rats during limb lengthening (distraction osteogenesis, DO). External fixators were placed on the right tibiae of 36 virus-free, 400-450 g male Spr...

  13. Aggregate tensile strength and friability characteristics of furrow and sprinkler irrigated fields in Southern Idaho

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural crops grown in southern Idaho are furrow or sprinkler irrigated. Therefore, the soil experiences several wetting and drying cycles each growing season that can contribute to changes in aggregate tensile strength and friability. The objective of the research was to evaluate the influence...

  14. Effect of TiO2 Nanoparticles on Tensile Strength of Dental Acrylic Resins.

    PubMed

    Shirkavand, Saeed; Moslehifard, Elnaz

    2014-01-01

    Background and aims. Adding further fillers to dental resins may enhance their physical characteristics. The aim of this study was to evaluate the tensile strength of heat-curing acrylic resin reinforced by TiO2nanoparticles added into the resin matrix. Materials and methods. Commercially available TiO2 nanoparticles were obtained and characterized using X-ray diffrac-tion (XRD) and scanning electron microscopy (SEM) to determine their crystalline structure, particle size and morphology. TiO2-acrylic resin nanocomposite was prepared by mixing 0.5, 1 and 2 (wt%) of surface modified TiO2 nanoparticles in an amalgamator providing three groups of samples. Before curing, the obtained paste was packed into steel molds. After cur-ing, the specimens were removed from the molds. The tensile strength test samples were prepared according to ISO 1567. Results. Two crystalline phases were found in TiO2 nanoparticles including: (i) anatase as the major one, and (ii) rutile. The average particle size calculated according to the Scherrer equation was 20.4 nm, showing a normal size distribution. According to SEM images, the nanocomposite with 1wt% TiO2 nanoparticles had a better distribution compared to other groups. In addition, the group by 1wt% TiO2 exhibited higher tensile strength with a significant difference compared to other groups. ANOVA showed significant differences between the contents of TiO2 particles in acrylic resin (F = 22.19; P < 0.001). Conclusion. A considerable increase in tensile strength was observed with titania NPs reinforcement agents in 1wt% by weight. Further increase of TiO2 nanoparticles decreased the tensile strength. PMID:25587380

  15. Effect of TiO2 Nanoparticles on Tensile Strength of Dental Acrylic Resins

    PubMed Central

    Shirkavand, Saeed; Moslehifard, Elnaz

    2014-01-01

    Background and aims. Adding further fillers to dental resins may enhance their physical characteristics. The aim of this study was to evaluate the tensile strength of heat-curing acrylic resin reinforced by TiO2nanoparticles added into the resin matrix. Materials and methods. Commercially available TiO2 nanoparticles were obtained and characterized using X-ray diffrac-tion (XRD) and scanning electron microscopy (SEM) to determine their crystalline structure, particle size and morphology. TiO2-acrylic resin nanocomposite was prepared by mixing 0.5, 1 and 2 (wt%) of surface modified TiO2 nanoparticles in an amalgamator providing three groups of samples. Before curing, the obtained paste was packed into steel molds. After cur-ing, the specimens were removed from the molds. The tensile strength test samples were prepared according to ISO 1567. Results. Two crystalline phases were found in TiO2 nanoparticles including: (i) anatase as the major one, and (ii) rutile. The average particle size calculated according to the Scherrer equation was 20.4 nm, showing a normal size distribution. According to SEM images, the nanocomposite with 1wt% TiO2 nanoparticles had a better distribution compared to other groups. In addition, the group by 1wt% TiO2 exhibited higher tensile strength with a significant difference compared to other groups. ANOVA showed significant differences between the contents of TiO2 particles in acrylic resin (F = 22.19; P < 0.001). Conclusion. A considerable increase in tensile strength was observed with titania NPs reinforcement agents in 1wt% by weight. Further increase of TiO2 nanoparticles decreased the tensile strength. PMID:25587380

  16. Influence of surface defects on the tensile strength of carbon fibers

    NASA Astrophysics Data System (ADS)

    Vautard, F.; Dentzer, J.; Nardin, M.; Schultz, J.; Defoort, B.

    2014-12-01

    The mechanical properties of carbon fibers, especially their tensile properties, are affected by internal and surface defects. In order to asses in what extent the generation of surface defects can result in a loss of the mechanical properties, non-surface treated carbon fibers were oxidized with three different surface treatment processes: electro-chemical oxidation, oxidation in nitric acid, and oxidation in oxygen plasma. Different surface topographies and surface chemistries were obtained, as well as different types and densities of surface defects. The density of surface defects was measured with both a physical approach (Raman spectroscopy) and a chemical approach (Active Surface Area). The tensile properties were evaluated by determining the Weibull modulus and the scale parameter of each reference, after measuring the tensile strength for four different gauge lengths. A relationship between the tensile properties and the nature and density of surface defects was noticed, as large defects largely control the value of the tensile strength. When optimized, some oxidation surface treatment processes can generate surface functional groups as well as an increase of the mechanical properties of the fibers, because of the removal of the contamination layer of pyrolytic carbon generated during the carbonization of the polyacrylonitrile precursor. Oxidation in oxygen plasma revealed to be a promising technology for alternative surface treatment processes, as high levels of functionalization were achieved and a slight improvement of the mechanical properties was obtained too.

  17. Determination of the mechanical properties of solid and cellular polymeric dosage forms by diametral compression.

    PubMed

    Blaesi, Aron H; Saka, Nannaji

    2016-07-25

    At present, the immediate-release solid dosage forms, such as the oral tablets and capsules, are granular solids. They release drug rapidly and have adequate mechanical properties, but their manufacture is fraught with difficulties inherent in processing particulate matter. Such difficulties, however, could be overcome by liquid-based processing. Therefore, we have recently introduced polymeric cellular (i.e., highly porous) dosage forms prepared from a melt process. Experiments have shown that upon immersion in a dissolution medium, the cellular dosage forms with polyethylene glycol (PEG) as excipient and with predominantly open-cell topology disintegrate by exfoliation, thus enabling rapid drug release. If the volume fraction of voids of the open-cell structures is too large, however, their mechanical strength is adversely affected. At present, the common method for determining the tensile strength of brittle, solid dosage forms (such as select granular forms) is the diametral compression test. In this study, the theory of diametral compression is first refined to demonstrate that the relevant mechanical properties of ductile and cellular solids (i.e., the elastic modulus and the yield strength) can also be extracted from this test. Diametral compression experiments are then conducted on PEG-based solid and cellular dosage forms. It is found that the elastic modulus and yield strength of the open-cell structures are about an order of magnitude smaller than those of the non-porous solids, but still are substantially greater than the stiffness and strength requirements for handling the dosage forms manually. This work thus demonstrates that melt-processed polymeric cellular dosage forms that release drug rapidly can be designed and manufactured to have adequate mechanical properties. PMID:27178343

  18. The tensile strength of bilayered tablets made from different grades of microcrystalline cellulose.

    PubMed

    Podczeck, Fridrun; Al-Muti, Emad

    2010-11-20

    The aim of this work was to determine the tensile strength of bilayered tablets made from different grades of microcrystalline cellulose. While these grades are chemically identical, they differ significantly in their particle size distribution and in their mechanical properties such as Young's modulus of elasticity. Tablets were produced in the shape of beams of similar dimensions using uniaxial compression, and solid beams made from one material only were compared with bilayered beams made from various combinations of powders. It was found that in the production of layered tablets it is important for the purpose of quality assurance and control that the upper and lower layer of the compact can be identified. Otherwise, tensile strength measurements will result in large variability depending on which layer faces upwards during the test. Both particle size and Young's modulus of elasticity influenced the overall strength of layered tablets. If the material forming the lower layer was more elastic, then the beam strength was reduced due to tension introduced into the system, acting especially at the layer interface and potentially causing partial or complete delamination. Larger differences in the particle size of the materials forming the tablet layers resulted in an overall reduced compact tensile strength. PMID:20696243

  19. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method.

    PubMed

    Liu, Kai; Sun, Yinghui; Zhou, Ruifeng; Zhu, Hanyu; Wang, Jiaping; Liu, Liang; Fan, Shoushan; Jiang, Kaili

    2010-01-29

    We report a simple and continuous spinning method that combines twisting and shrinking processes to produce carbon nanotube yarns. In this method, a yarn freshly spun from a super-aligned carbon nanotube array is first twisted and then passes through a volatile solvent for shrinking. The as-produced yarn consists of densely packed carbon nanotubes, and thus has a tensile strength up to about 1 GPa. The tensile strength depends on the diameter and the twisting angle of the yarn. Different kinds of solvents, such as water, ethanol, and acetone, are used to shrink the twisted yarns, and acetone shows the best shrinking effect. The origin of the solvent shrinking effect is investigated. Our method is favorable for continuous mass production of high strength carbon nanotube yarns with a wide range of diameters, especially ultra-thin yarns. PMID:20009208

  20. Effects of processing induced defects on laminate response - Interlaminar tensile strength

    NASA Technical Reports Server (NTRS)

    Gurdal, Zafer; Tomasino, Alfred P.; Biggers, S. B.

    1991-01-01

    Four different layup methods were used in the present study of the interlaminar tensile strength of AS4/3501-6 graphite-reinforced epoxy as a function of defects from manufacturing-induced porosity. The methods were: (1) baseline hand layup, (2) solvent wipe of prepreg for resin removal, (3) moisture-introduction between plies, and (4) a low-pressure cure cycle. Pore characterization was conducted according to ASTM D-2734. A significant reduction is noted in the out-of-plane tensile strength as a function of increasing void content; the porosity data were used in an empirical model to predict out-of-plane strength as a function of porosity.

  1. Evaluation of tensile strength of hybrid fiber (jute/gongura) reinforced hybrid polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Venkatachalam, G.; Gautham Shankar, A.; Vijay, Kumar V.; Chandan, Byral R.; Prabaharan, G. P.; Raghav, Dasarath

    2015-07-01

    The polymer matrix composites attract many industrial applications due to its light weight, less cost and easy for manufacturing. In this paper, an attempt is made to prepare and study of the tensile strength of hybrid (two natural) fibers reinforced hybrid (Natural + Synthetic) polymer matrix composites. The samples were prepared with hybrid reinforcement consists of two different fibers such as jute and Gongura and hybrid polymer consists of polyester and cashew nut shell resins. The hybrid composites tensile strength is evaluated to study the influence of various fiber parameters on mechanical strength. The parameters considered here are the duration of fiber treatment, the concentration of alkali in fiber treatment and nature of fiber content in the composites.

  2. High Tensile Strength Amalgams for In-Space Repair and Fabrication

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.

    2005-01-01

    Amalgams are defined as an alloy of mercury with one or more other metals. These, along with those based on gallium (also liquid at near room temperature), are widely used in dental practice as a tooth filling material. Amalgams have a number of useful attributes that indude room temperature compounding. corrosion resistance, dimensional stability, and good compressive strength. These properties well serve dental needs but, unfortunately, amalgams have extremely poor tensile strength, a feature that severely limits their applications. The work presented here demonstrates how, by modifying particle geometry, the tensile strength of amalgams can be increased and thus extending the range of potential applications. This is relevant to, for example, the freeform fabrication of replacement parts that might be necessary during an extended space mission. Advantages, i.e. Figures-of-Merit. include the ability to produce complex parts, minimum crew interaction, high yield - minimum wasted material, reduced gravity compatibility, minimum final finishing, safety, and minimum power consumption.

  3. Correlation of fiber composite tensile strength with the ultrasonic stress wave factor

    NASA Technical Reports Server (NTRS)

    Vary, A.; Lark, R. F.

    1978-01-01

    An ultrasonic-acoustic technique was used to indicate the strength variations of tensile specimens of a graphite-epoxy composite. A 'stress wave factor' was determined and its value was found to depend on variations of the fiber-resin bonding as well as fiber orientation. The fiber orientations studied were 0 deg (longitudinal), 10 deg (off-axis), 90 deg (transverse), (0 deg/+ or - 45 deg/0) symmetrical, and (+ or - 45 deg) symmetrical. The stress wave factor can indicate variations of the tensile and shear strengths of composite materials. The stress wave factor was also found to be sensitive to strength variations associated with microporosity and differences in fiber-resin ratio.

  4. Correlation of Fiber Composite Tensile Strength with the Ultrasonic Stress Wave Factor

    NASA Technical Reports Server (NTRS)

    Vary, A.; Lark, R. F.

    1978-01-01

    An ultrasonic-acoustic technique was used to indicate the strength variations of tensile specimens of a graphite-epoxy composite. A stress wave factor was determined and its value was found to depend on variations of the fiber-resin bonding as well as fiber orientation. The fiber orientations studied were 0 deg (longitudinal), 10 deg (off-axis), 90 deg (transverse), 0 deg + or - 45 deg/0 deg symmetrical, and + or - 45 deg] symmetrical. The stress wave factor can indicate variations of the tensile and shear strengths of composite materials. The stress wave factor was also found to be sensitive to strength variations associated with microporosity and differences in fiber-resin ratio.

  5. Relationship between fractional porosity and tensile strength for high-porosity sintered ferrous powder compacts

    SciTech Connect

    Baron, R.P.; Wawner, F.E.; Wert, J.A.

    1998-07-03

    The current study examines the mechanical properties of pressed and sintered ferrous powder metallurgy compacts with low relative densities, between 0.6 and 0.8. Three different powder particle compositions were investigated: eutectoid steel, stainless steel, and stainless tool steel compacts. To obtain information concerning the tensile properties of these low-density compacts, simple tensile tests were performed. In addition, Vickers microhardness tests were performed on metallographic sections of the tensile bars. The results from these tests are used to compare the measured relative strength values with estimates generated by previously published models. Also, the fracture surfaces of selected compacts were examined in the scanning electron microscope to obtain information concerning the fracture process.

  6. Cryogenic Tensile Strength and Fatigue Life of Carbon Nanotube Multi-Yarn.

    PubMed

    Misak, H E; Mall, S

    2016-03-01

    Carbon nanotube (CNT) multi-yarns, consisting of 30 yarns, were tested under monotonic tensile load and fatigue at the room temperature (298 K) and two cryogenic temperatures (232 and 123 K). Tensile stiffness increased with the decrease of temperature. The average ultimate tensile strength was higher at 123 K when compared to the higher temperatures (232 and 298 K). Failure mechanism changed from a combination of classical variant and independent fiber breakage at the two higher temperatures to mostly classical variant failure mechanism at the lower temperature. The CNT-yarn's fatigue life also increased with decreasing temperature. CNT-yarns have been shown to function well at lower temperatures making them usable for applications requiring operation at cryogenic temperatures, such as in satellites and high altitude aircraft. PMID:27455753

  7. Effects of porosity on weld-joint tensile strength of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Lovoy, C. V.

    1974-01-01

    Tensile properties in defect-free weldments of aluminum alloys 2014-T6 and 2219-T87 (sheet and plate) are shown to be related to the level or concentration of induced simulated porosity. The scatter diagram shows that the ultimate tensile strength of the weldments displays the most pronounced linear relationship with the level of porosity. The relationships between yield strength or elongation and porosity are either trivial or inconsequential in the lower and intermediate levels of porosity content. In highly concentrated levels of porosity, both yield strength and elongation values decrease markedly. Correlation coefficients were obtained by simple straight line regression analysis between the variables of ultimate tensile strength and pore level. The coefficients were greater, indicating a better correlation, using a pore area accumulation concept or pore volume accumulation than the accumulation of the pore diameters. These relationships provide a useful tool for assessing the existing aerospace radiographic acceptance standards with respect to permissible porosity. In addition, these relationships, in combination with known design load requirements, will serve as an engineering guideline in determining when a weld repair is necessary based on accumulative pore level as detected by radiographic techniques.

  8. Modelling weathering induced retreat of c-φ cliffs with limited tensile strength

    NASA Astrophysics Data System (ADS)

    Voulgari, C.

    2015-09-01

    Natural cliffs subject to weathering induced retreat are typically made of hard soils and / or weak rocks exhibiting limited tensile strength. In this paper, the morphologic evolution of uniform c, φ slopes subject to weathering is investigated for a range of values of tensile strengths employing the limit analysis upper bound method. This paper extends the analytical framework set up in [1, 2] by accounting for the limited tensile strength of the ground which was previously disregarded. The solutions were obtained by employing the kinematic method of limit analysis providing rigorous upper bounds to the true collapse values. The inclusion of tension cracks leads to modified analytical expressions of the energy balance equation (the balance between external work and dissipated energy) and as a consequence, of the function whose minimum provides the solution in terms of failure mechanisms and associated values of soil strength. Pre-existing cracks are considered, as well as cracks that form as part of the failure mechanism. It turns out that the presence of tension cracks may significantly alter the size of each landslide contributing to the retrogression of the slope. Results in the form of dimensionless ready-to-use charts are produced for any value of engineering interest of friction angle and slope inclination for the case of dry cracks. Moreover, upper bounds for values not included in the charts can be achieved either by interpolation from the charts or by running the minimisation of the analytical functions provided in the paper.

  9. Microtensile and tensile bond strength of single-bottle adhesives: a new test method.

    PubMed

    Abdalla, A I

    2004-04-01

    To evaluate the tensile and microtensile bond strength of five single-bottle adhesives to dentine, extracted human molar teeth were used. For each tooth dentine was exposed on the occlusal surface by cutting with an isomet saw and the remaining part was mounted in a plastic ring using dental stone. The tested adhesive materials were: Scotchbond 1, Syntac SC, One-Step, Prime & Bond 2.1 and Clearfil SE Bond. The adhesive was applied to either 1 mm(2) of dentine or a circular area with a diameter of 3.9 mm. Composite resin Clearfil AP-X was placed to the adhesives using a Teflon split mould 3.9 mm in diameter and 2.5 mm in height. Tensile and microtensile bond strengths were measured using a universal testing machine at a crosshead speed of 0.5 mm min(-1). Under tensile mode, the bond strengths were 16.7 +/- 3.5, 15.2 +/- 2.5, 11.5 +/- 3.2, 13.7 +/- 2.6, 20.9 +/- 4.2 MPa for each material. Under microtensile mode, the bond strengths were 52.5 +/- 9.5, 55.3 +/- 8.3, 40.5 +/- 5.2, 37.5 +/- 8.7, 60 +/- 6.21 MPa. Fracture pattern of bonded specimens showed 66% cohesive dentine failure in samples tested for tensile bond strength. For the microtensile test, failures were mainly adhesive at the interface between adhesive and dentine (94%). PMID:15089946

  10. Thermal degradation of the tensile strength of unidirectional boron/aluminum composites

    NASA Technical Reports Server (NTRS)

    Grimes, H. H.; Lad, R. A.; Maisel, J. E.

    1977-01-01

    The variation of ultimate tensile strength with thermal treatment of B-Al composite materials and of boron fibers chemically removed from these composites is studied systematically in an attempt to determine the mechanism of the resulting strength degradation. The results indicate that thermally cycling of B-Al represents a more severe condition than equivalent time at temperature. Degradation of composite tensile strength from about 1.3 GN/sq m to as low as 0.34 GN/sq m was observed after 3000 cycles to 420 C for 203-micron B-1100 Al composite. In general, the 1100 Al-matrix composites degraded somewhat more than the 6061 matrix material studied. Measurement of fiber strengths confirmed a composite strength loss due to the degradation of fiber strength. Microscopy indicated a highly flawed fiber surface. On the basis of various thermal-cycling studies and electron diffraction analysis, a mechanism is favored in which B reacts with Al, freshly exposed by cold working during cycling, to form AlB2. The nonuniform interface reaction leads to a highly flawed and weakened B fiber.

  11. Correlation Between Shear Punch and Tensile Strength for Low-Carbon Steel and Stainless Steel Sheets

    NASA Astrophysics Data System (ADS)

    Mahmudi, R.; Sadeghi, M.

    2013-02-01

    The deformation behavior of AISI 1015 low-carbon steel, and AISI 304 stainless steel sheets was investigated by uniaxial tension and the shear punch test (SPT). Both materials were cold rolled to an 80% thickness reduction and subsequently annealed in the temperature range 25-850 °C to produce a wide range of yield and ultimate strength levels. The correlations between shear punch and tensile yield and ultimate stresses were established empirically. Different linear relationships having different slopes and intercepts were found for the low-carbon and stainless steel sheets, and the possible parameters affecting the correlation were discussed. It was shown that, within limits, yield and tensile strength of thin steel sheets can be predicted from the shear data obtained by the easy-to-perform SPT.

  12. Synthesis, characterization, and tensile strength of CVI SiC/BN/SiC composites

    SciTech Connect

    Kmetz, M.A.; Laliberte, J.M.; Willis, W.S.; Suib, S.L.; Galasso, F.S.

    1991-10-01

    Tows of Nicalon yarn were first precoated by CVD with amorphous BN, then infiltrated with SiC by CVD to form single strand composites. Two different methods for the preparation of BN were investigated. The first involved the formation of a BCl3-NH3 adduct; the second consisted of the direct reaction of the gases in hot zone. Tensile strength measurements made on the composites were about 277 MPa and displayed a considerable amount of fiber pull-out and crack bridging. In order to establish their thermal stability, the ends of the composites were cut, exposing the fiber and interface, and annealed in air to 1100 C for 70 h. This annealing process did not result in a decrease in tensile strength. The composites were characterized by AES, SEM, and X-ray diffraction analysis. 16 refs.

  13. Tensile bond strength of gold and porcelain inlays to extracted teeth using three cements.

    PubMed

    Michelini, F S; Belser, U C; Scherrer, S S; De Rijk, W G

    1995-01-01

    This in vitro study compared the tensile bond strength of gold and porcelain inlays to extracted molars in standardized cavities. Three cements were used: zinc phosphate, glass-ionomer, and a resin composite cement. The gold inlays were cemented using zinc phosphate or glass-ionomer cement, and the porcelain inlays were luted using resin composite or glass-ionomer cement. Surface treatments included, for gold inlays, either no treatment (zinc phosphate cement) or airborne particle abraded and tinplated (glass-ionomer cement); and for porcelain inlays, either no treatment (glass-ionomer cement) or etched and silane-treated (resin composite cement). Statistical analysis was performed using the Weibull distribution. Results showed no significant differences between gold inlays cemented using zinc phosphate or glass-ionomer cements and porcelain inlays luted using glass-ionomer cements. The bonded porcelain inlays (resin composite cement) showed tensile bond strengths two to three times higher than those obtained for cemented gold inlays. PMID:7575974

  14. Coating of carbon nanotube fibers: variation of tensile properties, failure behavior and adhesion strength

    NASA Astrophysics Data System (ADS)

    Mäder, Edith; Liu, Jian-Wen; Hiller, Janett; Lu, Weibang; Li, Qingwen; Zhandarov, Serge; Chou, Tsu-Wei

    2015-07-01

    An experimental study of the tensile properties of CNT fibers and their interphasial behavior in epoxy matrices is reported. One of the most promising applications of CNT fibers is their use as reinforcement in multifunctional composites. For this purpose, an increase of the tensile strength of the CNT fibers in unidirectional composites as well as strong interfacial adhesion strength is desirable. However, the mechanical performance of the CNT fiber composites manufactured so far is comparable to that of commercial fiber composites. The interfacial properties of CNT fiber/polymer composites have rarely been investigated and provided CNT fiber/epoxy interfacial shear strength of 14.4 MPa studied by the microbond test. In order to improve the mechanical performance of the CNT fibers, an epoxy compatible coating with nano-dispersed aqueous based polymeric film formers and low viscous epoxy resin, respectively, was applied. For impregnation of high homogeneity, low molecular weight epoxy film formers and polyurethane film formers were used. The aqueous based epoxy film formers were not crosslinked and able to interdiffuse with the matrix resin after impregnation. Due to good wetting of the individual CNT fibers by the film formers, the degree of activation of the fibers was improved leading to increased tensile strength and Young’s modulus. Cyclic tensile loading and simultaneous determination of electric resistance enabled to characterize the fiber’s durability in terms of elastic recovery and hysteresis. The pull-out tests and SEM study reveal different interfacial failure mechanisms in CNT fiber/epoxy systems for untreated and film former treated fibers, on the one hand, and epoxy resin treated ones, on the other hand. The epoxy resin penetrated between the CNT bundles in the reference or film former coated fiber, forming a relatively thick CNT/epoxy composite layer and thus shifting the fracture zone within the fiber. In contrast to this, shear sliding along

  15. Tensile strength of simulated and welded butt joints in W-Cu composite sheet

    NASA Technical Reports Server (NTRS)

    Moore, Thomas J.; Watson, Gordon K.

    1994-01-01

    The weldability of W-Cu composite sheet was investigated using simulated and welded joints. The welded joints were produced in a vacuum hot press. Tensile test results showed that simulated joints can provide strength and failure mode data which can be used in joint design for actual weldments. Although all of the welded joints had flaws, a number of these joints were as strong as the W-Cu composite base material.

  16. The tensile bond strength of new and rebonded stainless steel orthodontic brackets.

    PubMed

    Regan, D; LeMasney, B; van Noort, R

    1993-04-01

    The study investigated the effect on the tensile/peel bond strength of the variables associated with the bracket base, the enamel surface, and the type of adhesive when both new and used brackets were rebonded to a previously bonded enamel surface. The tensile/peel bond strength was firstly evaluated for three different types of stainless steel orthodontic bracket/base combinations. The cast integral base gave a significantly lower bond strength than the foil-mesh and photo-etched bases. Following debonding, a group of new brackets were bonded to the teeth using a chemically-activated or a light-cured adhesive. The old adhesive had been removed from the enamel by either a hand scaler or a tungsten-carbide bur. The rebonded new brackets demonstrated a small, but statistically significant fall in bond strength. No differences were found between the enamel preparations or the adhesives. A further group of previously debonded brackets were rebonded to the same teeth. The bracket bases were prepared by either smoothing with a green stone or heating in a bunsen flame followed by sandblasting and electropolishing. Highly significant falls in bond strength were obtained with all the bases. No significant differences were found between the two methods of bracket preparation. PMID:8500538

  17. Tensile bond strength of ceramic orthodontic brackets bonded to porcelain surfaces.

    PubMed

    Kocadereli, I; Canay, S; Akça, K

    2001-06-01

    The aim of this study was to compare various surface treatment methods to define the procedure that produces adequate bond strength between ceramic brackets and porcelain. The specimens used in this study, 60 porcelain tabs, were produced by duplication of the labial surface of a maxillary first premolar. The 6 different preparation procedures tested were: (1) sandblasting with 50 microm aluminum oxide in a sandblasting device, (2) application of silane to the porcelain and the bracket base, (3) sandblasting followed by application of silane, (4) acid etching with 9.6% hydrofluoric acid, (5) acid etching with 9.6% hydrofluoric acid followed by application of silane, and (6) sandblasting followed by application of 4-Meta adhesive. The ceramic brackets were bonded with no-mix orthodontic bonding material. A bonding force testing machine was used to determine tensile bond strengths at a crosshead speed of 0.5 mm per second. The results of the study showed that porcelain surface preparation with acid etching followed by silane application resulted in a statistically significant higher tensile bond strength (P < .05). Sandblasting the porcelain surface before silane treatment provided similar bond strengths, but sandblasting or acid etching alone were less effective. Silane application was recommended to bond a ceramic bracket to the porcelain surface to achieve bond strengths that are clinically acceptable. PMID:11395705

  18. Parameters of tensile strength, elongation, and tenacity of 70mm IIaO spectroscopic film

    NASA Technical Reports Server (NTRS)

    Hammond, Ernest C., Jr.; Peters, Kevin A.

    1989-01-01

    The 70mm IIaO spectroscopic film was tested to determine its tensile strength, elongation, and breaking strength, using an Instron (strength and compression) 4201 Test Instrument. These data provide information leading to the upper and lower limits of the above parameters for 70mm IIaO spectroscopic film. This film will be developed by a commercial developing machine after the Ultraviolet Telescope Space Shuttle Mission returns to the Earth in the early 1990's; thus, it is necessary to understand these force parameters. Several test strips of approximately 200mm in length were used. The results indicate that when a stress load of 100 kg was applied, the film elongated approximately 1.06mm and the break strength was 19.45 kilograms.

  19. Characterization of tensile strength and fracture toughness of nuclear graphite NBG-18 using subsize specimens

    NASA Astrophysics Data System (ADS)

    Yoon, J. H.; Byun, T. S.; Strizak, J. P.; Snead, L. L.

    2011-05-01

    The mechanical properties of NBG-18 nuclear grade graphite were characterized using small specimen test techniques and statistical treatment on the test results. New fracture strength and toughness test techniques were developed to use subsize cylindrical specimens with glued heads and to reuse their broken halves. Three sets of subsize cylindrical specimens of different sizes were tested to obtain tensile fracture strength and fracture toughness. The mean fracture strength decreased as the specimen size increased. The fracture strength data indicate that in the given diameter range the size effect is not significant and much smaller than that predicted by the Weibull moduli estimated for individual specimen groups of the Weibull distribution. Further, no noticeable size effect existed in the fracture toughness data. The mean values of the fracture toughness datasets were in a narrow range of 1.21-1.26 MPa√m.

  20. Effects of HF Treatments on Tensile Strength of Hi-Nicalon Fibers

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1998-01-01

    Tensile strengths of as-received Hi-Nicalon fibers and those having a dual BN/SiC surface coating, deposited by chemical vapor deposition, have been measured at room temperature. These fibers were also treated with HF for 24 h followed by tensile strength measurements. Strengths of uncoated and BN/SiC coated Hi-Nicalon fibers extracted from celsian matrix composites, by dissolving away the matrix in HF for 24 h, were also determined. The average tensile strength of uncoated Hi-Nicalon was 3.19 +/- 0.73 GPa with a Weibull modulus of 5.41. The Hi-Nicalon/BN/SiC fibers showed an average strength of 3.04 q 0.53 GPa and Weibull modulus of 6.66. After HF treatments, the average strengths of the uncoated and BN/SiC coated Hi-Nicalon fibers were 2.69 +/- 0.67 GPa and 2.80 +/- 0.53 GPa and the Weibull moduli were 4.93 and 5.96, respectively. The BN/SiC coated fibers extracted from the celsian matrix composite exhibited a strength of 2.38 +/- 0.40 GPa and a Weibull modulus of 7.15. The strength of the uncoated Hi-Nicalon fibers in the composite was so severely degraded that they disintegrated into small fragments during extraction with HF. The uncoated fibers probably undergo mechanical surface damage during hot pressing of the composites. Also, the BN layer on the coated fibers acts as a compliant layer which protects the fibers from mechanical damage during composite processing. The elemental composition and thickness of the fiber coatings were deten-nined using scanning Auger analysis. Microstructural analyses of the fibers and the coatings were done by scanning electron microscopy and transmission electron microscopy. Strengths of fibers calculated using average and measured fiber diameters were in good agreement. Thus, the strength of fibers can be evaluated using an average fiber diameter instead of the measured diameter of each filament.

  1. Surface morphology changes of lignin filled natural rubber latex films investigated using AFM in relation to tensile strengths

    NASA Astrophysics Data System (ADS)

    Asrul, M.; Othman, M.; Zakaria, M.

    2015-07-01

    The paper describes the preparation of lignin filled natural rubber latex composite and the consequential changes in tensile strength observed with varying lignin loading. The changes in tensile strength were shown to be associated with the changes in surface morphology as investigated via AFM. From the AFM analysis it can be inferred that lignin filled rubber latex film which exhibited an increase in tensile strength also demonstrated better phase homogeneity with lowest surface roughness value in comparison to the rest of the lignin filled rubber latex films analysed.

  2. Tensile strength of fiber reinforced plastics at 77K irradiated by various radiation sources

    SciTech Connect

    Humer, K.; Weber, H.W.; Tschegg, E.K.; Egusa, S.; Birtcher, R.C.; Gerstenberg, H.

    1993-08-01

    The influence of radiation damage on the mechanical properties of fiber reinforced plastics (FRPs), which are considered as candidate materials for the insulation of superconducting magnets for nuclear fusion reactors, has been investigated. Different types of FRPs (epoxies, bismaleimides; two- and three-dimensional reinforcement structures with E-, S-, or T-glass fibers) has been included in the test program. Three aspects of our present results will be discussed in detail. The first is related to an assessment of the tensile strength and its radiation dependence under the influence of strongly varying radiation conditions. The second aspect refers to low temperature ({approx}5 K) reactor irradiation of selected materials. In this case, identical sets of tensile test samples were transferred into the tensile testing machine, one without warming-up to room temperature and the other after an annealing cycle to room temperature. Finally, a comparison between the radiation response of different materials is made. It turns out that the three-dimensionally reinforced bismaleimide shows the smallest degradation of its tensile properties under all irradiation conditions.

  3. Effect of cement types on the tensile strength of metallic crowns submitted to thermocycling.

    PubMed

    Consani, Simonides; Santos, Julie Guzela dos; Correr Sobrinho, Lourenço; Sinhoreti, Mário Alexandre Coelho; Sousa-Neto, Manoel Damião

    2003-01-01

    The relationship between metallic cast crowns and tensile strength according to cement types submitted to thermocycling was studied. Seventy-two metallic crowns were cast with Verabond II Ni-Cr alloy and cemented in standardized preparations with 10 masculine tapering. Three types of finishing line (45-degree chamfered, 20-degree bevel shoulder and right shoulder) were made with diamond burs on bovine teeth. Twenty-four metallic crowns in each group were randomly subdivided into three subgroups of 8 samples each according to the cement used: SS White zinc phosphate cement, Vitremer resin-modified glass ionomer cement, and Rely X resin cement and were submitted to thermocycling. Retention was evaluated according to tensile load required to displace the metallic cast crowns from tooth preparations with an Instron testing machine. ANOVA and Tukey's test showed a statistically significant difference among luting materials, with greater results for Rely X resin cement (24.9 kgf) followed by SS White zinc phosphate cement (13.3 kgf) and Vitremer resin-modified glass ionomer cement (10.1 kgf). The finishing line types did not influence the tensile resistance of the crowns fixed with the three cements. Increased tensile resistance of metallic crowns fixed on bovine teeth was obtained with resin cement, independent of the finishing line types. PMID:15057396

  4. Modeling approach for tensile strength of interphase layers in polymer nanocomposites.

    PubMed

    Zare, Yasser

    2016-06-01

    At the first step, this paper describes a developed model for tensile strength of interphase layers (σk) in polymer nanocomposites. The "σk" is expressed as linear, exponential and power functions of the distance between nanoparticles and polymer matrix (xk). Afterwards, the predictions of these equations at the central layer of interphase (the average strength) are compared to the calculations of interphase strength (σi) by several micromechanical models including the developed Leidner-Woodhams and Pukanszky models to choose the best equation which expresses "σk". The calculations are carried out for several reported samples. The equation which expresses the "σk" as a power function of "xk" shows the best results compared to others. Also, its predictions significantly depend to an exponent as "Z" which demonstrates the level of interphase properties. According to the chosen equation, the "σm" and "σp" play positive roles in "σi" predictions at low "Z" value, but a high "Z" eliminates the effect of "σm" on the tensile strength of interphase layers. PMID:26990956

  5. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel

    PubMed Central

    Sekhri, Sahil; Garg, Sandeep

    2016-01-01

    Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165

  6. Chitosan films with improved tensile strength and toughness from N-acetyl-cysteine mediated disulfide bonds.

    PubMed

    Miles, Kevin Barrett; Ball, Rebecca Lee; Matthew, Howard William Trevor

    2016-03-30

    To improve the mechanical properties of chitosan (Ct) materials without the use of cytotoxic crosslinkers, disulfide cross-linkable Ct was synthesized by grafting N-acetyl-cysteine (NAC) to Ct using carbodiimide chemistry. Cast films of NAC-Ct conjugates were prepared with degrees of substitution (DS) of 0%, 6%, 15%, and 20%, and the disulfide bond formation was induced by increasing the reaction media pH to 11. The tensile strength, breaking strain, elastic moduli and toughness of disulfide cross-linked polymers were analyzed by monotonic tensile testing of hydrated NAC-Ct films. Crystallinity was determined via XRD. Results demonstrated that NAC incorporation and crosslinking in chitosan produced tougher polymer films with 4-fold higher tensile strength (10 MPa) and 6-fold greater elongation (365%), but reduced crystallinity, compared to unmodified chitosan. The resilience of NAC-Ct films was evaluated by cyclic testing, and results demonstrate that increasing NAC content produced a more resilient material that dissipated less energy when deformed. These improved mechanical properties broaden chitosan's applicability towards the construction of mechanically robust implantable scaffolds for tissue regeneration. PMID:26794940

  7. The tensile strength characteristics study of the laser welds of biological tissue using the nanocomposite solder

    NASA Astrophysics Data System (ADS)

    Rimshan, I. B.; Ryabkin, D. I.; Savelyev, M. S.; Zhurbina, N. N.; Pyanov, I. V.; Eganova, E. M.; Pavlov, A. A.; Podgaetsky, V. M.; Ichkitidze, L. P.; Selishchev, S. V.; Gerasimenko, A. Y.

    2016-04-01

    Laser welding device for biological tissue has been developed. The main device parts are the radiation system and adaptive thermal stabilization system of welding area. Adaptive thermal stabilization system provided the relation between the laser radiation intensity and the weld temperature. Using atomic force microscopy the structure of composite which is formed by the radiation of laser solder based on aqua- albuminous dispersion of multi-walled carbon nanotubes was investigated. AFM topograms nanocomposite solder are mainly defined by the presence of pores in the samples. In generally, the surface structure of composite is influenced by the time, laser radiation power and MWCNT concentration. Average size of backbone nanoelements not exceeded 500 nm. Bulk density of nanoelements was in the range 106-108 sm-3. The data of welding temperature maintained during the laser welding process and the corresponding tensile strength values were obtained. Maximum tensile strength of the suture was reached in the range 50-55°C. This temperature and the pointwise laser welding technology (point area ~ 2.5mm) allows avoiding thermal necrosis of healthy section of biological tissue and provided reliable bonding construction of weld join. In despite of the fact that tensile strength values of the samples are in the range of 15% in comparison with unbroken strips of pigskin leather. This situation corresponds to the initial stage of the dissected tissue connection with a view to further increasing of the joint strength of tissues with the recovery of tissue structure; thereby achieved ratio is enough for a medical practice in certain cases.

  8. Dynamic Tensile Strength of Low Temperature Ice and Kuiper Belt Size Distributions

    NASA Astrophysics Data System (ADS)

    Ahrens, Thomas J.; Fat'yanov, O. V.; Engelhardt, H.; Fraser, W. C.

    2009-09-01

    We model mutual gravitationally driven impact interactions in a nearly gas-free environment of the Kuiper belt (KB) and use low-temperature (< 100 K) ice dynamic strength dependent collisional out-come (accretion vs. erosion and fragmentation) models. These lead to theoretically predictable distributions of object number density, vs. mass distributions. These derived mass distributions are comparable to the now rapidly growing KB survey data. Tensional failure of single and polycrystalline ice in the temperature range from 263 to 128 K was measured for high strain rate, c.a. 104 s-1, dynamic loading conditions. Experiments, similar to Lange and Ahrens(1991)(LA), were conducted using a gas gun launched Lexan projectile. The liquid nitrogen cooled ice target approaching KB-like temperatures was partially confined, rather than using the LA confined geometry. Another set of experiments used a drop tube projectile launcher within the 263 K Caltech Ice Laboratory and at 163 K in a liquid nitrogen cooled chamber. New experiments give tensile strengths of 7.6±1.5 MPa at 263 K and 9.1±1.5 MPa at 163 K for unconfined, free of visual initial defects and measurable imperfections ice samples. The new strengths are lower than the earlier LA data ( 17 MPa). The major differences arise from ice target assembly. LA used polycrystalline ice samples confined in annular stainless steel target rings. New measurements were partially confined, in not initially contacting concentric target rings. Later shots used unconfined configurations with ice pellets affixed to aluminum foil. Circumferential confinement is known to increase the material damage threshold upon both compression and tensile loading. Previous confinement in LA is the main cause of the above discrepancy. Present tensile strengths are only a few times higher than 0.7 - 3.0 MPa summarized in Petrovic (2003) for quasistatic tension at 10-7 to 10-3 s-1 strain rate.

  9. Effect of Heat Treatment and Layer Orientation on the Tensile Strength of a Crystalline Rock Under Brazilian Test Condition

    NASA Astrophysics Data System (ADS)

    Guha Roy, Debanjan; Singh, T. N.

    2016-05-01

    The effect of heat treatment and the layer orientation on the tensile properties of granitic gneiss were studied under the unconfined stress condition. The tensile strength of the samples was studied using a Brazilian configuration, and the geochemical and microstructural properties were studied using the X-ray diffraction technique as well as scanning electron microscopy (SEM), respectively. The fracture pattern and the geometrical analyses were performed using the digital photographs. The results show that both the heat treatment and layer orientation have strong control on the tensile strength, force-parallel and layer-parallel strains, and on the tensile fracture geometry. A general decrease in the tensile strength of the rock was documented with the increasing heat treatment. Although, in the heat-treated samples, X-ray diffraction study do not reveal any major change in the mineral composition, but the SEM shows the development of several micro-cracks in the grains. In the samples with different layer orientation, along with the changes in the tensile strength and layer-parallel to force-parallel strain ratio, the layer activation under shear stress is also noticed. Here, the ratio between the tensile to shear stress, acting along the layers is thought to be the major controlling factor of the tensile properties of rocks, which has many applications in mining, civil constructions, and waste disposal work.

  10. Bulk metallic glass composite with good tensile ductility, high strength and large elastic strain limit

    PubMed Central

    Wu, Fu-Fa; Chan, K. C.; Jiang, Song-Shan; Chen, Shun-Hua; Wang, Gang

    2014-01-01

    Bulk metallic glasses exhibit high strength and large elastic strain limit but have no tensile ductility. However, bulk metallic glass composites reinforced by in-situ dendrites possess significantly improved toughness but at the expense of high strength and large elastic strain limit. Here, we report a bulk metallic glass composite with strong strain-hardening capability and large elastic strain limit. It was found that, by plastic predeformation, the bulk metallic glass composite can exhibit both a large elastic strain limit and high strength under tension. These unique elastic mechanical properties are attributed to the reversible B2↔B19′ phase transformation and the plastic-predeformation-induced complicated stress state in the metallic glass matrix and the second phase. These findings are significant for the design and application of bulk metallic glass composites with excellent mechanical properties. PMID:24931632

  11. High Tensile Strength Amalgams for In-Space Fabrication and Repair

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    2006-01-01

    Amalgams are well known for their use in dental practice as a tooth filling material. They have a number of useful attributes that include room temperature fabrication, corrosion resistance, dimensional stability, and very good compressive strength. These properties well serve dental needs but, unfortunately, amalgams have extremely poor tensile strength, a feature that severely limits other potential applications. Improved material properties (strength and temperature) of amalgams may have application to the freeform fabrication of repairs or parts that might be necessary during an extended space mission. Advantages would include, but are not limited to: the ability to produce complex parts, a minimum number of processing steps, minimum crew interaction, high yield - minimum wasted material, reduced gravity compatibility, minimum final finishing, safety, and minimum power consumption. The work presented here shows how the properties of amalgams can be improved by changing particle geometries in conjunction with novel engineering metals.

  12. Tensile and flexural strength of non-graphitic superhybrid composites: Predictions and comparisons

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.; Lark, R. F.

    1979-01-01

    Equations are presented and described which can be used to predict bounds on the tensile and flexural strengths of nongraphitic superhybrid (NGSH) composites. These equations are derived by taking into account the measured stress-strain behavior, the lamination residual stresses and the sequence of events leading to fracture. The required input for using these equations includes constituents, properties (elastic and strength), NGSH elastic properties, cure temperature, and ply stress influence coefficients. Results predicted by these equations are in reasonably good agreement with measured data for strength and for the apparent knees in the nonlinear stress-strain curve. The lower bound values are conservative compared to measured data. These equations are relatively simple and are suitable for use in the preliminary design and initial sizing of structural components made from NGSH composites.

  13. Tensile and flexural strength of nongraphitic superhybrid composites - Predictions and comparisons

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.; Lark, R. F.

    1979-01-01

    Equations are presented and described which can be used to predict bounds on the tensile and flexural strengths of nongraphitic superhybrid (NGSH) composites. These equations are derived by taking into account the measured stress-strain behavior, the lamination residual stresses and the sequence of events leading to fracture. The required input for using these equations includes constituent composites, elastic and strength properties, NGSH elastic properties, cure temperature, and ply stress influence coefficients. Results predicted by these equations are in reasonably good agreement with measured data for strength and for the apparent 'knees' in the nonlinear stress-strain curve. The lower bound values are conservative compared to measured data. These equations are relatively simple and should be suitable for use in the preliminary design and initial sizing of structural components made from NGSH composites.

  14. Tensile and fatigue strength properties of Kevlar 29 aramid/epoxy unidirectional composites

    SciTech Connect

    Zweben, C.

    1981-07-22

    Static and fatigue tensile strength properties of filament wound undirectional Kevlar 29/epoxy, typical of filament wound material used in flywheel rotors, were studied. Machining techniques were developed to minimize fiber fuzzing on edges. The static modulus, normalized to 70% fiber volume fraction is 8.87 x 10/sup 6/ psi. The major Poisson's ratio is 0.37. The static composite tensile strength, normalized to 70% fiber volume fraction is 200 x 10/sup 3/ psi, corresponding to a fiber stress at failure of 286 x 10/sup 3/ psi, which is good for materials having a very high fiber volume fraction. The S-N curve for R = 0.7 was found to be quite flat. Although the techniques used in this program had previously been employed successfully to study the fatigue behavior of Kevlar 29/epoxy and Kevlar 49/epoxy unidirectional materials, we were unable to overcome the persistent problem of cohesive material failure in the tab regions. The apparent reason for this is the very low interlaminar shear strength of the filament wound material. 16 figures.

  15. Ultimate tensile strength of dentin: Evidence for a damage mechanics approach to dentin failure.

    PubMed

    Staninec, Michal; Marshall, Grayson W; Hilton, Joan F; Pashley, David H; Gansky, Stuart A; Marshall, Sally J; Kinney, John H

    2002-01-01

    Dentin structure and properties are known to vary with orientation and location. The present study explored the variation in the ultimate tensile strength (UTS) of dentin with location in the tooth. Hourglass specimens were prepared from dentin located in the center, under cusps, and in the cervical regions of human molar teeth. These were tested in tension at various distances from the pulp. Median tensile strengths ranged from 44.4 MPa in the inner dentin near the pulp, to 97.8 MPa near the dentino-enamel junction (DEJ). This increase in the median UTS with distance from the pulp to the DEJ was statistically significant (P <.001). Of particular importance was the observation that the UTS measurements followed a Weibull probability distribution, with a Weibull modulus of about 4.5. The Weibull behavior of the UTS data strongly suggests that the large variances in fracture strength data result from a distribution of preexisting defects in the dentin. These findings justify a damage-mechanics approach to studies of dentin failure. PMID:12115767

  16. Tensile strength and disintegration of tableted silicified microcrystalline cellulose: influences of interparticle bonding.

    PubMed

    Kachrimanis, Kyriakos; Nikolakakis, Ioannis; Malamataris, Stavros

    2003-07-01

    The effects of some material variables (particle size and moisture content) on the tensile strength and disintegration time of tableted standard microcrystalline cellulose (MCC, Avicel) and a silicified brand (SMCC, Prosolv) were studied. Three particle size fractions were employed, after equilibration in three levels of environmental relative humidity (RH%), and the tensile strength and disintegration time were determined at different levels of total tablet porosity or packing fraction (p(f)). The MCC grade or silicification affects the moisture sorption and the packing during tapping as well as the particle deformation (yield pressure, P(y)) during tableting. There was a slight increase in the tensile strength but a marked increase in the disintegration time of Prosolv compared with Avicel in the p(f) range 0.7-0.9, which corresponds the range for pharmaceutical tablets. These increases are explained in terms of the range and magnitude of the interparticle forces developed and the interparticle separation. Despite the higher moisture content of Prosolv after equilibration compared with Avicel, compression of Prosolv results in higher P(y), in tablets of higher energy of interparticle bonding, longer interparticle separation, and extended disintegration compared with Avicel. The incorporated SiO(2) is thought to play the role of barrier or sink for the moisture sorbed, but only for RH up to 52%, which is a moisture content range less than twice that of tightly bound water. At higher RH (72%), the incorporated SiO(2) does not increase the P(y), but reduces the energy of interparticle bonding and the interparticle separation because of its probable saturation. The latter, in turn, results in more extended disintegration times due to reduced uptake of water into the tablets and to the probable reduction of water available for the deployment of the microcrystalline cellulose activity as disintegrant. PMID:12820153

  17. New enzyme-based process direction to prevent wool shrinking without substantial tensile strength loss.

    PubMed

    Lenting, H B M; Schroeder, M; Guebitz, G M; Cavaco-Paulo, A; Shen, J

    2006-05-01

    In this paper a new enzymatic process direction is described for obtaining machine washable wool with acceptable quality. In general, application of protease enzyme technology in wool processing results in considerable loss of tensile strength by diffusion of the enzyme into the interior of wool fibers. To overcome this disadvantage enzymatic activity has been more targeted to the outer surface of the scales by improving the susceptibility of the outer surface scale protein for proteolytic degradation. This has been realized by a pretreatment of wool with hydrogen peroxide at alkaline pH in the presence of high concentrations of salt. PMID:16791725

  18. Tensile Strength and Microstructural Characterization of Uncoated and Coated HPZ Ceramic Fibers

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Wheeler, Donald R.; Dickerson, Robert M.

    1996-01-01

    Tensile strengths of as-received HPZ fiber and those surface coated with BN, BN/SiC, and BN/Si3N4 have been determined at room temperature using a two-parameter Weibull distribution. Nominally approx. 0.4 micron BN and 0.2 micron SiC or Si3N4 coatings were deposited on the fibers by chemical vapor deposition using a continuous reactor. The average tensile strength of uncoated HPZ fiber was 2.0 +/- 0.56 GPa (290 +/- 81 ksi) with a Weibull modulus of 4.1. For the BN coated fibers, the average strength and the Weibull modulus increased to 2.39 +/- 0.44 GPa (346 +/- 64 ksi) and 6.5, respectively. The HPZ/BN/SiC fibers showed an average strength of 2.0 +/- 0.32 GPa (290 +/- 47 ksi) and Weibull modulus of 7.3. Average strength of the fibers having a dual BN/Si3N4 surface coating degraded to 1.15 +/- 0.26 GPa (166 +/- 38 ksi) with a Weibull modulus of 5.3. The chemical composition and thickness of the fiber coatings were determined using scanning Auger analysis. Microstructural analysis of the fibers and the coatings was carried out by scanning electron microscopy and transmission electron microscopy. A microporous silica-rich layer approx. 200 nm thick is present on the as-received HPZ fiber surface. The BN coatings on the fibers are amorphous to partly turbostratic and contaminated with carbon and oxygen. Silicon carbide coating was crystalline whereas the silicon nitride coating was amorphous. The silicon carbide and silicon nitride coatings are non-stoichiometric, non-uniform, and granular. Within a fiber tow, the fibers on the outside had thicker and more granular coatings than those on the inside.

  19. Relationship between the ideal tensile strength and the friction properties of metals in contact with nonmetals and themselves

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    The adhesion and friction properties of metals in contact with diamond, boron nitride, silicon carbide, manganese-zinc ferrite, and the metals themselves in vacuum was investigated. An estimate of the ideal uniaxial tensile was obtained in terms of the equilibrium surface energy, interplanar spacing of the planes perpendicular to the tensile axis, and the Young's modulus of elasticity. The coefficient of friction for metals was found to be related to the ideal tensile strength of metals. The higher the strength of the metal, the lower the coefficient of friction.

  20. Influence of strain rate on the quasi-static tensile strength of Kevlar 29 narrow fabrics

    SciTech Connect

    Ericksen, R.H.

    1981-01-01

    Increasing the strain rate from 3 x 10/sup -4/ min/sup -1/ to 1.4 min/sup -1/ resulted in a 20% increase in fabric strength. Similar changes in strength with strain rate were obtained for warp yarns removed from the fabrics. Static and sliding loop yarn tests, and tests in which yarn was interwoven through wires, were used to determine effect of abrasion, bending and lateral compression as a function of strain rate. Results eliminated yarn damage by abrasion and demonstrated that unwoven yarn strength, in presence of bending or lateral compression, was dependent on strain rate. Yarn and fiber pullout tests showed that increasing strain rate caused a transition from stick-slip to smooth curves. Results suggested a mechanism whereby strain-rate dependent frictional behavior of Kevlar influences woven fabric strength. It appears that friction restrains highly loaded fibers in a fabric from adjusting their position to relieve stress concentrations. Yarn tensile strength is influenced by strain rate when the fiber arrangement has been altered by weaving or when bending or lateral compressive forces are also present.

  1. [Effect of magnesium stearate on the tensile strength of tablets made with the binder Prosolv SMCC 90].

    PubMed

    Muzíková, J

    2002-01-01

    The present paper evaluated the tensile strength of tablets made from the dry binder Prosolv SMCC 90 and the influence of three concentrations of the lubricant magnesium stearate on the tensile strength of tablets manufactured from this material. The results were compared with the same evaluation in Avicel PH 102. The tested concentrations of the stearate were 0.4, 0.8 and 1.2%. The tablets were compressed by three press powers (3, 3.5, and 4 kN). On the basis of obtained results it can be stated that under the same press powers Prosolv SMCC 90 alone yields stronger compacts than Avicel PH 102. From the viewpoint of decreased strength of compacts by adding magnesium stearate, the dry binder Prosolv SMCC 90 is much less sensitive than Avicel PH 102. In Avicel PH 102 a marked decrease in tensile strength was recorded with an addition of 0.4%, which was not observed with Prosolv SMCC90. A more significant decrease in the strength of compacts was shown by the substance not until a stearate concentration of 0.8%. The highest employed stearate concentration of 1.2% decreases the tensile strength of tablets made from Prosolv SMCC 90 in the press powers of 3.5 and 4 kN two times less than the tensile strength of the compacts from Avicel PH 102. PMID:11910741

  2. Optimization of tensile strength of ferritic/austenitic laser-welded components

    NASA Astrophysics Data System (ADS)

    Anawa, E. M.; Olabi, A. G.

    2008-08-01

    Ferritic/austenitic (F/A) joints are a popular dissimilar metal combination used in many applications. F/A joints are usually produced using conventional processes. Laser beam welding (LBW) has recently been successfully used for the production of F/A joints with suitable mechanical properties. In this study, a statistical design of experiment (DOE) was used to optimize selected LBW parameters (laser power, welding speed and focus length). Taguchi approach was used for the selected factors, each having five levels (L-25; 5×3). Joint strength was determined using the notched-tensile strength (NTS) method. The results were analysed using analyses of variance (ANOVA) and the signal-to-noise (S/N) ratios for the optimal parameters, and then compared with the base material. The experimental results indicate that the F/A laser-welded joints are improved effectively by optimizing the input parameters using the Taguchi approach.

  3. An experimental investigation on the tensile moduli and strengths of graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Yeow, Y. T.; Brinson, H. F.

    1977-01-01

    The results of a series of tensile tests on some graphite/epoxy laminates, at rates varying from 0.002 to 2 in./min are examined. The loads were applied at various angles to the fiber directions in each case. The rate-dependent behavior of the stress-strain response is assessed. Evidence is presented to indicate that failure first occurs on inner plies, and that, in some cases, moduli increase with increasing stress (or strain) level. Lamination theory is used to predict the moduli, and comparisons with experiment are given. This theory is also used in conjunction with three failure theories to predict ultimate strengths (with varying degrees of success). Further, two approaches to ply unloading after first-ply failure are used and discussed. One is a standard method found in the literature while the other is a proposed 'strength-of-materials' type of technique which is computationally much simpler.

  4. Enzymatic Surface Erosion of High Tensile Strength Polycarbonates Based on Natural Phenols

    PubMed Central

    2015-01-01

    Surface erosion has been recognized as a valuable design tool for resorbable biomaterials within the context of drug delivery devices, surface coatings, and when precise control of strength retention is critical. Here we report on high tensile strength, aromatic–aliphatic polycarbonates based on natural phenols, tyrosol (Ty) and homovanillyl alcohol (Hva), that exhibit enzymatic surface erosion by lipase. The Young’s moduli of the polymers for dry and fully hydrated samples are 1.0 to 1.2 GPa and 0.8 to 1.2 GPa, respectively. Typical characteristics of enzymatic surface erosion were confirmed for poly(tyrosol carbonate) films with concomitant mass-loss and thickness-loss at linear rates of 0.14 ± 0.01 mg cm–2 d–1 and 3.0 ± 0.8 μm d–1, respectively. The molecular weight and the mechanical properties of the residual films remained constant. Changing the ratio of Ty and Hva provided control over the glass transition temperature (Tg) and the enzymatic surface erosion: increasing the Hva content in the polymers resulted in higher Tg and lower enzymatic erosion rate. Polymers with more than 50 mol % Hva were stable at 37 °C in enzyme solution. Analysis on thin films using quartz crystal microbalance with dissipation (QCM-D) demonstrated that the onset temperature of the enzymatic erosion was approximately 20 °C lower than the wet Tg for all tested polymers. This new finding demonstrates that relatively high tensile strength polycarbonates can undergo enzymatic surface erosion. Moreover, it also sheds light on the connection between Tg and enzymatic degradation and explains why few of the high strength polymers follow an enzyme-meditated degradation pathway. PMID:24432806

  5. Effect of Preparation Methods on Crystallization Behavior and Tensile Strength of Poly(vinylidene fluoride) Membranes.

    PubMed

    Liu, Jie; Lu, Xiaolong; Wu, Chunrui

    2013-01-01

    Poly(vinylidene fluoride) (PVDF) membranes were prepared by non solvent induced phase separation (NIPS), melt spinning and the solution-cast method. The effect of preparation methods with different membrane formation mechanisms on crystallization behavior and tensile strength of PVDF membranes was investigated. Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and X-ray diffraction (XRD) were employed to examine the crystal form of the surface layers and the overall membranes, respectively. Spherulite morphologies and thermal behavior of the membranes were studied by polarized light optical microscopy (PLO) and differential scanning calorimetry (DSC) separately. It was found that the crystallization behavior of PVDF membranes was closely related to the preparation methods. For membranes prepared by the NIPS method, the skin layers had a mixture of α and β phases, the overall membranes were predominantly α phase, and the total crystallinity was 60.0% with no spherulite. For melt spinning membranes, the surface layers also showed a mixture of α and β phases, the overall membranes were predominantly α phase. The total crystallinity was 48.7% with perfect spherulites. Whereas the crystallization behavior of solution-cast membranes was related to the evaporation temperature and the additive, when the evaporation temperature was 140 °C with a soluble additive in the dope solution, obvious spherulites appeared. The crystalline morphology of PVDF exerted a great influence on the tensile strength of the membranes, which was much higher with perfect spherulites. PMID:24957064

  6. Effect of Preparation Methods on Crystallization Behavior and Tensile Strength of Poly(vinylidene fluoride) Membranes

    PubMed Central

    Liu, Jie; Lu, Xiaolong; Wu, Chunrui

    2013-01-01

    Poly(vinylidene fluoride) (PVDF) membranes were prepared by non solvent induced phase separation (NIPS), melt spinning and the solution-cast method. The effect of preparation methods with different membrane formation mechanisms on crystallization behavior and tensile strength of PVDF membranes was investigated. Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and X-ray diffraction (XRD) were employed to examine the crystal form of the surface layers and the overall membranes, respectively. Spherulite morphologies and thermal behavior of the membranes were studied by polarized light optical microscopy (PLO) and differential scanning calorimetry (DSC) separately. It was found that the crystallization behavior of PVDF membranes was closely related to the preparation methods. For membranes prepared by the NIPS method, the skin layers had a mixture of α and β phases, the overall membranes were predominantly α phase, and the total crystallinity was 60.0% with no spherulite. For melt spinning membranes, the surface layers also showed a mixture of α and β phases, the overall membranes were predominantly α phase. The total crystallinity was 48.7% with perfect spherulites. Whereas the crystallization behavior of solution-cast membranes was related to the evaporation temperature and the additive, when the evaporation temperature was 140 °C with a soluble additive in the dope solution, obvious spherulites appeared. The crystalline morphology of PVDF exerted a great influence on the tensile strength of the membranes, which was much higher with perfect spherulites. PMID:24957064

  7. Tensile Strength and Hardness Correlations with Microscopy in Friction welded Aluminium to Copper

    NASA Astrophysics Data System (ADS)

    Satish, Rengarajan; Seshagiri Rao, Vaddi; Ananthapadmanaban, Dattaguru; Ravi, Balappa

    2016-01-01

    Aluminium and copper are good conductors of heat and electricity, copper being the better conductor, is a costly metal indeed. On the other hand, aluminium is cheap, easily available and also has a lower density than copper. Hence, worldwide efforts are being made to partially replace copper wire. Solid state welding should be used to join aluminium to copper. This is because the use of fusion welding results in brittle phases formed in the weld interface. One of the solid state welding techniques used for joining aluminium to copper is friction welding. In this paper, an attempt has been made to join aluminium to copper by friction welding by varying the friction welding parameters, namely friction pressure, upset pressure, burn-off length and speed of rotation of the workpiece. Nine different friction welding parameter combinations were used during welding in accordance with ASTM standards and results have been reported. Tensile strength and hardness tests were carried out for each parameter combination. Optimum friction welding parameter combination was identified with respect to tensile strength. Scanning Electron Microscopy and Electron dispersive spectroanalysis were obtained to identify modes of fracture and presence of intermetallic phases for each friction welding combination with the aim to narrow down friction welding parameters that give good properties on the whole.

  8. TENSILE STRENGTH AND FRACTURE SURFACE CHARACTERIZATION OF HI-NICALONTM SIC FIBERS

    SciTech Connect

    Youngblood, Gerald E.; Lewinsohn, Charles A.; Jones, Russell H.; Kohyama, Akira

    2000-06-30

    Dimensional, tensile strength and fracture surface characterizations were carried out for a particular batch (51 samples) of unirradiated Hi-Nicalon™ SiC fiber. This batch of SiC fibers is included in the radiation test matrix as part of the JUPITER 12J and 14J experiments. In general, filaments of Hi-Nicalon™ fiber with larger cross-sectional areas (equivalent diameters) had lower strengths than filaments with smaller cross-sectional areas. During tensile tests at room temperature, fracture originated at critical flaws that typically consisted of internal pores or carbonaceous inclusions. Well-demarcated mirror and hackle regions usually surrounded the critical flaws. With a few exceptions, the critical flaw size (ac) was linearly related to the mirror size (rm) by ac » 0.33rm. From fracture mechanics principles, values for the average mirror constant (Am) and effective fracture toughness for this batch of Hi-NicalonÔ fiber were estimated to be 2.99 ± 0.33 and 1.1 ± 0.2 MPa m1/2, respectively.

  9. The impact of polymerization method on tensile bond strength between denture base and acrylic teeth.

    PubMed

    Hashem, Mohamed; Binmgren, Mohammed A; Alsaleem, Samah O; Vellappally, Sajith; Assery, Mansour K; Sukumaran, Anil

    2014-01-01

    Failure of the bond between acrylic teeth and the denture base resin interface is one of the major concern in prosthodontics. The new generation of denture bases that utilize alternate polymerization methods are being introduced in the market. The aim of the study is to evaluate the influence of polymerization methods on bonding quality between the denture base and artificial teeth. Sixty test specimens were prepared (20 in each group) and were polymerized using heat, microwave and visible light curing. The tensile strength was recorded for each of the samples, and the results were analyzed statistically. The light-activated Eclipse™ System showed the highest tensile strength, followed by heat curing. The microwave-cured samples exhibited the least bonding to the acrylic teeth. Within the limitations of this study, it can be concluded that the new generation of light-cured denture bases showed significantly better bonding to acrylic teeth and can be used as an alternative to the conventional heat-polymerized denture base. PMID:25307813

  10. Mechanical reliability of microstructured optical fibers: a comparative study of tensile and bending strength

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, C.; Sulejmani, S.; Geernaert, T.; Eve, S.; Gomina, M.; Makara, M.; Skorupski, K.; Mergo, P.; Berghmans, F.; Thienpont, H.

    2012-04-01

    Microstructured optical fibers are increasingly used in optical fiber sensing applications such as for example optical fiber based structural health monitoring. In such an application the fiber may experience substantial mechanical loads and has to remain functional during the entire lifetime of the structure to be monitored. The resistance to different types of mechanical loads has therefore to be characterized in order to assess the maximum stress and strain that a fiber can sustain. In this paper we therefore report on the extensive set of tensile tests and bending experiments that we have conducted both on microstructured optical fibers with an hexagonal air hole lattice and on standard optical fibers. We use Weibull statistics to model the strength distribution of the fibers and we follow a fracture mechanics approach in conjunction with microscopic observations of the fractured end faces to study crack initiation and propagation in both types of fibers. We show that the failure strain of microstructured fibers is about 4.3% as obtained with tensile tests, compared to 6.7% for reference fibers. Although the mechanical strength of microstructured optical fibers is lower than that of the standard fibers it is still adequate for these fibers to be used in many applications.

  11. Origin of tensile strength of a woven sample cut in bias directions.

    PubMed

    Pan, Ning; Kovar, Radko; Dolatabadi, Mehdi Kamali; Wang, Ping; Zhang, Diantang; Sun, Ying; Chen, Li

    2015-05-01

    Textile fabrics are highly anisotropic, so that their mechanical properties including strengths are a function of direction. An extreme case is when a woven fabric sample is cut in such a way where the bias angle and hence the tension loading direction is around 45° relative to the principal directions. Then, once loaded, no yarn in the sample is held at both ends, so the yarns have to build up their internal tension entirely via yarn-yarn friction at the interlacing points. The overall fabric strength in such a sample is a result of contributions from the yarns being pulled out and those broken during the process, and thus becomes a function of the bias direction angle θ, sample width W and length L, along with other factors known to affect fabric strength tested in principal directions. Furthermore, in such a bias sample when the major parameters, e.g. the sample width W, change, not only the resultant strengths differ, but also the strength generating mechanisms (or failure types) vary. This is an interesting problem and is analysed in this study. More specifically, the issues examined in this paper include the exact mechanisms and details of how each interlacing point imparts the frictional constraint for a yarn to acquire tension to the level of its strength when both yarn ends were not actively held by the testing grips; the theoretical expression of the critical yarn length for a yarn to be able to break rather than be pulled out, as a function of the related factors; and the general relations between the tensile strength of such a bias sample and its structural properties. At the end, theoretical predictions are compared with our experimental data. PMID:26064655

  12. Origin of tensile strength of a woven sample cut in bias directions

    PubMed Central

    Pan, Ning; Kovar, Radko; Dolatabadi, Mehdi Kamali; Wang, Ping; Zhang, Diantang; Sun, Ying; Chen, Li

    2015-01-01

    Textile fabrics are highly anisotropic, so that their mechanical properties including strengths are a function of direction. An extreme case is when a woven fabric sample is cut in such a way where the bias angle and hence the tension loading direction is around 45° relative to the principal directions. Then, once loaded, no yarn in the sample is held at both ends, so the yarns have to build up their internal tension entirely via yarn–yarn friction at the interlacing points. The overall fabric strength in such a sample is a result of contributions from the yarns being pulled out and those broken during the process, and thus becomes a function of the bias direction angle θ, sample width W and length L, along with other factors known to affect fabric strength tested in principal directions. Furthermore, in such a bias sample when the major parameters, e.g. the sample width W, change, not only the resultant strengths differ, but also the strength generating mechanisms (or failure types) vary. This is an interesting problem and is analysed in this study. More specifically, the issues examined in this paper include the exact mechanisms and details of how each interlacing point imparts the frictional constraint for a yarn to acquire tension to the level of its strength when both yarn ends were not actively held by the testing grips; the theoretical expression of the critical yarn length for a yarn to be able to break rather than be pulled out, as a function of the related factors; and the general relations between the tensile strength of such a bias sample and its structural properties. At the end, theoretical predictions are compared with our experimental data. PMID:26064655

  13. Accuracy of Prediction Method of Cryogenic Tensile Strength for Austenitic Stainless Steels in ITER Toroidal Field Coil Structure

    NASA Astrophysics Data System (ADS)

    Sakurai, Takeru; Icuchi, Masahide; Nakahira, Masatake; Saito, Toru; Morimoto, Masaaki; Inagaki, Takashi; Hong, Yunseok; Matsui, Kunihiro; Hemmi, Tsutomu; Kajitani, Hideki; Koizumi, Norikiyo

    The Japan Atomic Energy Agency (JAEA) has developed the prediction method for yield stress and ultimate tensile strength at liquid helium temperature (4 K) using the quadratic curve as a function of the content of carbon and nitrogen. Prediction method was formulated based on the tensile strength data of materials with shape of rectangle. In this study, tensile strength of the forged materials with round bar and complex shape were obtained so as to compare with the predicted value. The accuracy of the prediction method was 10.2% of Yield Strength (YS), 2.5% of Ultimate Tensile Strength (UTS) when the prediction method was applied to round bar forged materials. By contrast, the accuracy about prediction method was 1.8% of YS, -0.8% of UTS when prediction method was applied to complex shape forged materials. It can be presumed the tendency of tensile strength other than materials with shape of rectangle. However, it was found accuracy of round bar is larger than other materials because of difference in the forging method."The views and opinions expressed herein do not necessarily reflect those of the ITER Organization"

  14. Tensile Bond Strengths of Two Adhesives on Irradiated and Nonirradiated Human Dentin.

    PubMed

    Bernard, Cécile; Villat, Cyril; Abouelleil, Hazem; Gustin, Marie-Paule; Grosgogeat, Brigitte

    2015-01-01

    The aim of this study was to assess the effect of radiotherapy on bond efficiency of two different adhesive systems using tensile bond strength test. Twenty extracted teeth after radiotherapy and twenty nonirradiated extracted teeth were used. The irradiation was applied in vivo to a minimal dose of 50 Gy. The specimens of each group were randomly assigned to two subgroups to test two different adhesive systems. A three-step/etch-and-rinse adhesive system (Optibond FL) and a two-steps/self-etch adhesive system (Optibond XTR) were used. Composite buildups were performed with a nanohybrid composite (Herculite XTR). All specimens were submitted to thermocycling ageing (10000 cycles). The specimens were sectioned in 1 mm(2) sticks. Microtensile bond strength tests were measured. Nonparametric statistical analyses were performed due to nonnormality of data. Optibond XTR on irradiated and nonirradiated teeth did not show any significant differences. However, Optibond FL bond strength was more effective on nonirradiated teeth than on irradiated teeth. Within the limitations of an in vitro study, it can be concluded that radiotherapy had a significant detrimental effect on bond strength to human dentin. However, it seems that adhesive choice could be adapted to the substrata. According to the present study, the two-steps/self-etch (Optibond XTR) adhesive system tested could be more effective on irradiated dentin compared to three-steps/etch-and-rinse adhesive system (Optibond FL). PMID:26783528

  15. Tensile Bond Strengths of Two Adhesives on Irradiated and Nonirradiated Human Dentin

    PubMed Central

    Bernard, Cécile; Abouelleil, Hazem; Gustin, Marie-Paule; Grosgogeat, Brigitte

    2015-01-01

    The aim of this study was to assess the effect of radiotherapy on bond efficiency of two different adhesive systems using tensile bond strength test. Twenty extracted teeth after radiotherapy and twenty nonirradiated extracted teeth were used. The irradiation was applied in vivo to a minimal dose of 50 Gy. The specimens of each group were randomly assigned to two subgroups to test two different adhesive systems. A three-step/etch-and-rinse adhesive system (Optibond FL) and a two-steps/self-etch adhesive system (Optibond XTR) were used. Composite buildups were performed with a nanohybrid composite (Herculite XTR). All specimens were submitted to thermocycling ageing (10000 cycles). The specimens were sectioned in 1 mm2 sticks. Microtensile bond strength tests were measured. Nonparametric statistical analyses were performed due to nonnormality of data. Optibond XTR on irradiated and nonirradiated teeth did not show any significant differences. However, Optibond FL bond strength was more effective on nonirradiated teeth than on irradiated teeth. Within the limitations of an in vitro study, it can be concluded that radiotherapy had a significant detrimental effect on bond strength to human dentin. However, it seems that adhesive choice could be adapted to the substrata. According to the present study, the two-steps/self-etch (Optibond XTR) adhesive system tested could be more effective on irradiated dentin compared to three-steps/etch-and-rinse adhesive system (Optibond FL). PMID:26783528

  16. A modified Weibull model for tensile strength distribution of carbon nanotube fibers with strain rate and size effects

    NASA Astrophysics Data System (ADS)

    Sun, Gengzhi; Pang, John H. L.; Zhou, Jinyuan; Zhang, Yani; Zhan, Zhaoyao; Zheng, Lianxi

    2012-09-01

    Fundamental studies on the effects of strain rate and size on the distribution of tensile strength of carbon nanotube (CNT) fibers are reported in this paper. Experimental data show that the mechanical strength of CNT fibers increases from 0.2 to 0.8 GPa as the strain rate increases from 0.00001 to 0.1 (1/s). In addition, the influence of fiber diameter at low and high strain rate conditions was investigated further with statistical analysis. A modified Weibull distribution model for characterizing the tensile strength distribution of CNT fibers taking into account the effect of strain rate and fiber diameter is proposed.

  17. Symbiosis of Arbuscular Mycorrhizal Fungi and Robinia pseudoacacia L. Improves Root Tensile Strength and Soil Aggregate Stability.

    PubMed

    Zhang, Haoqiang; Liu, Zhenkun; Chen, Hui; Tang, Ming

    2016-01-01

    Robinia pseudoacacia L. (black locust) is a widely planted tree species on Loess Plateau for revegetation. Due to its symbiosis forming capability with arbuscular mycorrhizal (AM) fungi, we explored the influence of arbuscular mycorrhizal fungi on plant biomass, root morphology, root tensile strength and soil aggregate stability in a pot experiment. We inoculated R. pseudoacacia with/without AM fungus (Rhizophagus irregularis or Glomus versiforme), and measured root colonization, plant growth, root morphological characters, root tensile force and tensile strength, and parameters for soil aggregate stability at twelve weeks after inoculation. AM fungi colonized more than 70% plant root, significantly improved plant growth. Meanwhile, AM fungi elevated root morphological parameters, root tensile force, root tensile strength, Glomalin-related soil protein (GRSP) content in soil, and parameters for soil aggregate stability such as water stable aggregate (WSA), mean weight diameter (MWD) and geometric mean diameter (GMD). Root length was highly correlated with WSA, MWD and GMD, while hyphae length was highly correlated with GRSP content. The improved R. pseudoacacia growth, root tensile strength and soil aggregate stability indicated that AM fungi could accelerate soil fixation and stabilization with R. pseudoacacia, and its function in revegetation on Loess Plateau deserves more attention. PMID:27064570

  18. Symbiosis of Arbuscular Mycorrhizal Fungi and Robinia pseudoacacia L. Improves Root Tensile Strength and Soil Aggregate Stability

    PubMed Central

    Zhang, Haoqiang; Liu, Zhenkun; Chen, Hui; Tang, Ming

    2016-01-01

    Robinia pseudoacacia L. (black locust) is a widely planted tree species on Loess Plateau for revegetation. Due to its symbiosis forming capability with arbuscular mycorrhizal (AM) fungi, we explored the influence of arbuscular mycorrhizal fungi on plant biomass, root morphology, root tensile strength and soil aggregate stability in a pot experiment. We inoculated R. pseudoacacia with/without AM fungus (Rhizophagus irregularis or Glomus versiforme), and measured root colonization, plant growth, root morphological characters, root tensile force and tensile strength, and parameters for soil aggregate stability at twelve weeks after inoculation. AM fungi colonized more than 70% plant root, significantly improved plant growth. Meanwhile, AM fungi elevated root morphological parameters, root tensile force, root tensile strength, Glomalin-related soil protein (GRSP) content in soil, and parameters for soil aggregate stability such as water stable aggregate (WSA), mean weight diameter (MWD) and geometric mean diameter (GMD). Root length was highly correlated with WSA, MWD and GMD, while hyphae length was highly correlated with GRSP content. The improved R. pseudoacacia growth, root tensile strength and soil aggregate stability indicated that AM fungi could accelerate soil fixation and stabilization with R. pseudoacacia, and its function in revegetation on Loess Plateau deserves more attention. PMID:27064570

  19. Evaluation of the effects of tableting speed on the relationships between compaction pressure, tablet tensile strength, and tablet solid fraction.

    PubMed

    Tye, Ching Kim; Sun, Changquan Calvin; Amidon, Gregory E

    2005-03-01

    It is well known that compression speed can have significant effects on the compaction properties of pharmaceutical powders. This is a challenge during scale up and technology transfer when tableting speeds are significantly increased. This study examined the effects of tableting speed on the compressibility (solid fraction vs. compaction pressure), tabletability (tensile strength vs. compaction pressure), and compactibility (tensile strength vs. solid fraction) of four common direct compression excipients and a placebo formulation. The tabletability and compressibility of some of these materials were observed to be speed dependent whereas the compactibility of all materials tested was essentially independent of tableting speed. It is therefore proposed that the compactibility profile (tensile strength vs. solid fraction) is a predictor that is independent of tableting speed and can be used to predict tablet strength during formulation development and scale up. PMID:15696587

  20. Relationship between apposition pressure during welding and tensile strength of the acute weld

    NASA Astrophysics Data System (ADS)

    Wu, Paul J.; Walsh, Joseph T., Jr.

    2001-05-01

    Dye-assisted photothermal welding is a technique used to close wounds by thermally cross-linking collagen across apposed tissue edges. For a successful weld, not only do laser parameters have to be optimized, but also apposition of the incision has to be consistent and controlled. The objective of this study was to quantify the relationship between the applied apposition pressure (i.e., the compressive force holding the wound closed during the welding procedure divided by the area of the skin-to-skin interface) and the tensile strength of the wound following the welding procedure. By using a clamping device made of two complementary pieces, each 3 cm wide with a row of 10 equally spaced blunt wire mesh tips, the apposition pressure along a 2-cm-long incision in each albino guinea pig was quantified using a 127-micrometers -thick load cell and varied from 0-1.8 kgf/cm2. A continuous wave, Nd:YAG laser emitting 10.0 W of 1.06-micrometers radiation from a 600-micrometers -diameter fiber irradiating a 5-mm-diameter spot size was scanned across the incision in order to deliver 300 J of total energy. As the apposition pressure of the incisions was increased, the resulting tensile strength of welded skin increased in a sigmoidal manner. For this welding technique, an apposition pressure of at least 1.2 kgf/cm2 is necessary to obtain maximum weld strength of the skin (2.56+/- 0.36 kg/cm2).

  1. Comparison of the flexural strength of six reinforced restorative materials.

    PubMed

    Cohen, B I; Volovich, Y; Musikant, B L; Deutsch, A S

    2001-01-01

    This study calculated the flexural strength for six reinforced restorative materials and demonstrated that flexural strength values can be determined simply by using physical parameters (diametral tensile strength and Young's modulus values) that are easily determined experimentally. A one-way ANOVA analysis demonstrated a statistically significant difference between the two reinforced glass ionomers and the four composite resin materials, with the composite resin being stronger than the glass ionomers. PMID:12017792

  2. Back Propagation Neural Networks for Predicting Ultimate Strengths of Unidirectional Graphite/Epoxy Tensile Specimens

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Hill, Eric v. K.

    1993-01-01

    The research presented herein demonstrates the feasibility of predicting ultimate strengths in simple composite structures through a neural network analysis of their acoustic emission (AE) amplitude distribution data. A series of eleven ASTM D-3039 unidirectional graphite/epoxy tensile samples were loaded to failure to generate the amplitude distributions for this analysis. A back propagation neural network was trained to correlate the AE amplitude distribution signatures generated during the first 25% of loading with the ultimate strengths of the samples. The network was trained using two sets of inputs: (1) the statistical parameters obtained from a Weibull distribution fit of the amplitude distribution data, and (2) the event frequency (amplitude) distribution itself. The neural networks were able to predict ultimate strengths with a worst case error of -8.99% for the Weibull modeled amplitude distribution data and 3.74% when the amplitude distribution itself was used to train the network. The principal reason for the improved prediction capability of the latter technique lies in the ability of the neural network to extract subtle features from within the amplitude distribution.

  3. Tensile Strength of Liquids: Equivalence of Temporal and Spatial Scales in Cavitation.

    PubMed

    Cai, Y; Huang, J Y; Wu, H A; Zhu, M H; Goddard, W A; Luo, S N

    2016-03-01

    It is well known that strain rate and size effects are both important in material failure, but the relationships between them are poorly understood. To establish this connection, we carry out molecular dynamics (MD) simulations of cavitation in Lennard-Jones and Cu liquids over a very broad range of size and strain rate. These studies confirm that temporal and spatial scales play equivalent roles in the tensile strengths of these two liquids. Predictions based on smallest-scale MD simulations of Cu for larger temporal and spatial scales are consistent with independent simulations, and comparable to experiments on liquid metals. We analyze these results in terms of classical nucleation theory and show that the equivalence arises from the role of both size and strain rate in the nucleation of a daughter phase. Such equivalence is expected to hold for a wide range of materials and processes and to be useful as a predictive bridging tool in multiscale studies. PMID:26885747

  4. Analysis of Ninety Degree Flexure Tests for Characterization of Composite Transverse Tensile Strength

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin; Krueger, Ronald

    2001-01-01

    Finite element (FE) analysis was performed on 3-point and 4-point bending test configurations of ninety degree oriented glass-epoxy and graphite-epoxy composite beams to identify deviations from beam theory predictions. Both linear and geometric non-linear analyses were performed using the ABAQUS finite element code. The 3-point and 4-point bending specimens were first modeled with two-dimensional elements. Three-dimensional finite element models were then performed for selected 4-point bending configurations to study the stress distribution across the width of the specimens and compare the results to the stresses computed from two-dimensional plane strain and plane stress analyses and the stresses from beam theory. Stresses for all configurations were analyzed at load levels corresponding to the measured transverse tensile strength of the material.

  5. Influence of association of "EVA-NBR" on indirect tensile strength of modified bituminous concrete

    NASA Astrophysics Data System (ADS)

    Chinoun, M.; Soudani, K.; Haddadi, S.

    2016-04-01

    The aim of this work is to contribute to the improvement of the mechanical properties of bituminous concrete by modification of bituminous concrete. In this study, we present the results of the indirect tensile strength "ITS" of modified bituminous concrete by the combination of two modifiers, one is a plastomer EVA (Ethylene Vinyl Acetate) and the other is a industrial waste from the shoe soles grinding NBR (Nitrile Butadiene Rubber) as crumb rubber. To modify the bitumen a wet process was used. The results show that the modification of bitumen by EVA-NBR combination increases their resistance to the indirect traction "ITS" compared to the bituminous concrete control. The mixture of 5% [50% EVA+ 50% NBR] is given the best result among the other associations.

  6. Tensile strength of ramie yarn (spinning by machine)/HDPE thermoplastic matrix composites

    NASA Astrophysics Data System (ADS)

    Banowati, Lies; Hadi, Bambang K.; Suratman, Rochim; Faza, Aulia

    2016-03-01

    Technological developments should be trooped to prevent a gap between technology and environmental sustainability, then it needs to be developed "Green technology". In this research is making of green composites which use natural fiber ramie as reinforcement. Whereas the matrix used was HDPE (High Density Polyethylene) thermoplastic polymer which could be recycled and had a good formability and flexibility. The ramie yarns and fibers for unidirectional (0°) direction respectively were mixed with HDPE powder and processed using hot compression molding. The surface morphology was observed by SEM (Scanning Electrone Microscopy). Results showed that both tensile strength of the ramie fiber/HDPE composites increased in comparison with the ramie yarn (spinning by machine)/HDPE composites. However, the ramie yarn (spinning by machine)/HDPE composites have a good producibility for wider application. Analysis of the test results using the Weibull distribution as approaches to modeling the reliability of the specimens.

  7. Influence of residual stresses on the tensile strength of composite-metal sandwich laminates

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.; Wong, D. M.

    1977-01-01

    The tensile strength of boron-epoxy/aluminum sandwich laminates is discussed relative to the residual thermal stresses generated by curing and bonding at elevated temperatures. It is shown that the sandwich laminates investigated exhibit three dinstinct modes of failure, depending upon the fiber orientation of the composite. Sandwich laminates with moderate to high percentage of 0-deg fibers exhibit early failures initiated by edge effect; laminates with moderate to high percentage of 90-deg fibers fail according to a first-ply failure criterion; laminates with moderate to high percentages of plus or minus 45 deg plies fail at strains equal to or greater than the failure strain of the corresponding all-composite laminate.

  8. Analysis of the influence of voids and a crack on the ultimate tensile strength of REBCO bulk superconductor

    NASA Astrophysics Data System (ADS)

    Kasaba, K.; Oshida, Y.; Hokari, T.; Katagiri, K.

    2008-09-01

    Since the high Tc rare-earth based bulk superconductor is subjected to the tensile load in radial and circumferential direction by the Lorentz force generated in the magnetization process, the evaluation of the strength by the tensile test is indispensable. Ultimate tensile strength of the bulk superconductor depends on the defects in each sample. Many artificial specimens containing voids were generated for numerical stress calculations. The distribution of the voids diameter in each artificial specimen was based on the observations of Dy123 containing 25 wt% Dy211 (abbreviated as Dy25). Furthermore, the effect of a center crack superposed to the field of the voids on the strength was analytically evaluated. The strength depends on both the size and the location of the voids. The maximum crack length which has eventually no effect on the strength was evaluated. By the evaluation method proposed in this study, it was found that if there had been no void in the Dy25 bulk sample, the tensile strength could have been estimated to be 63 MPa. The voids increase the stress intensity factor at the crack tip. If there is a crack with 0.16 mm or more in the Dy25 superconductor bulk with the porosity 10%, the fracture may not be originated around a void but at a crack tip.

  9. Tensile strength as a function of thermal history of Inconel 718 and Inconel 625 alloys for glass-ceramic headers

    SciTech Connect

    Rey, M.C.; Henderson, W.R.

    1982-06-11

    Tensile strength tests were conducted on Inconel 718 specimens following a variety of heat treatments, and on as-received and heat-treated specimens of Inconel 625. A heat treatment cycle for Inconel 718 was found that represents an acceptable compromise between a thermal cycle that yields the strongest metal and one that least taxes a glass-ceramic material to which the Inconel 718 is bonded. Heat treating resulted in a moderate decrease in the tensile strength of the as-received Inconel 625.

  10. Tensile strengths of polyamide based 3D printed polymers in liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Cruz, P.; Shoemake, E. D.; Adam, P.; Leachman, J.

    2015-12-01

    Advances in additive manufacturing technology have made 3D printing a viable solution for many industries, allowing for the manufacture of designs that could not be made through traditional subtractive methods. Applicability of additive manufacturing in cryogenic applications is hindered, however, by a lack of accurate material properties information. Nylon is available for printing using fused deposition modeling (FDM) and selective laser sintering (SLS). We selected 5 SLS (DuraForm® EX, DuraForm® HST, DuraForm® PA, PA 640-GSL, and PA 840-GSL) and 2 FDM (Nylon 12, ULTEM) nylon variants based on the bulk material properties and printed properties at room temperature. Tensile tests were performed on five samples of each material while immersed in liquid nitrogen at approximately 77 Kelvin. Samples were tested in XY and, where available, Z printing directions to determine influence on material properties. Results show typical SLS and FDM nylon ultimate strength retention at 77 K, when compared to (extruded or molded) nylon ultimate strength.

  11. Dimensional stability and tensile strength of irradiated Nicalon-CG and Hi-Nicalon SiC fibers

    SciTech Connect

    Youngblood, G.E.; Henager, C.H. Jr.; Senor, D.J.; Newsome, G.A.; Woods, J.J.

    1997-05-01

    Nicalon-CG and Hi-Nicalon fibers were characterized by measuring their length, density, and tensile strength in the unirradiated, thermal annealed, and irradiated conditions. The irradiation was conducted in the EBR-II to a dose of 43 dpa-SiC at a nominal irradiation temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. The results indicate the fibers that perform best in an irradiation environment are those that approach stoichiometric and crystalline SiC. Hi-Nicalon exhibited negligible densification, accompanied by an increase in tensile strength after irradiation. Nicalon-CG possessed a higher tensile strength than hi-Nicalon in the unirradiated condition, but was significantly weakened in the annealed and irradiated conditions. In addition, Nicalon-CG exhibited unacceptable irradiation-induced shrinkage. Loss o fiber tensile strength after irradiation is shown to reduce the flexural strength of irradiated composites and Nicalon-CG fiber shrinkage observed in irradiated composites.

  12. Modeling the Effect of Oxidation on Tensile Strength of Carbon Fiber-Reinforced Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    An analytical method has been developed to investigate the effect of oxidation on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs). The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The fiber strength degradation model and oxidation region propagation model have been adopted to analyze the oxidation effect on tensile strength of the composite, which is controlled by diffusion of oxygen gas through matrix cracks. Under tensile loading, the fibers failure probabilities were determined by combining oxidation model and fiber statistical failure model based on the assumption that fiber strength is subjected to two-parameter Weibull distribution and the loads carried by broken and intact fibers statisfy the global load sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength considering oxidation time and temperature have been analyzed.

  13. Establishment of a model predicting tensile shear strength and fracture portion of laser-welded lap joints

    NASA Astrophysics Data System (ADS)

    Furusako, Seiji; Miyazaki, Yasunobu; Hashimoto, Koji; Kobayashi, Junichi

    2003-03-01

    This study was aimed at establishment of a model that can predict tensile shear strength and fracture portion laser-welded lap joints in the tensile test. To clear influence of the bead length and width on them, the joints employed steel sheets with a thickness in the range of 0.8 mm to 1.2 mm were evaluated. It was found that the tensile shear strength increased with the bead size, and the fracture occurred at base metal (BM), weld metal (WM) or portion between them with a curvature (referred to as portion R). Also to clarify rotational deformation process around WM during the tensile test, joint cross-sections were observed at some applied load levels in the test. This observation derived the relationship between the radius, Ri, at the inner plane of portion R and the rotational angle, θ, of the center of sheet thickness, and the relationship between Ri and applied load. A plastic analysis based on these functions and assumptions that the joint consists of BM, WM and R, which are under simplified stress mode respectively, could estimate the tensile shear strength and the fracture portion of the joints. This estimation made good accord with experimental results.

  14. Laboratory measurements of ice tensile strength dependence on density and concentration of silicate and polymer impurities at low temperatures

    NASA Astrophysics Data System (ADS)

    Litwin, K. L.; Beyeler, J. D.; Polito, P. J.; Zygielbaum, B. R.; Sklar, L. S.; Collins, G. C.

    2009-12-01

    The tensile strength of ice bedrock on Titan should strongly influence the effectiveness of the erosional processes responsible for carving the extensive fluvial drainage networks and other surface features visible in images returned by the Cassini and Huygens probes. Recent measurements of the effect of temperature on the tensile strength of low-porosity, polycrystalline ice, without impurities, suggest that ice bedrock at the Titan surface temperature of 93 K may be as much as five times stronger than ice at terrestrial surface temperatures. However, ice bedrock on Titan and other outer solar system bodies may have significant porosity, and impurities such silicates or polymers are possible in such ices. In this laboratory investigation we are exploring the dependence of tensile strength on the density and concentration of impurities, for polycrystalline ice across a wide range of temperatures. We use the Brazilian tensile splitting test to measure strength, and control temperature with dry ice and liquid nitrogen. The 50 mm diameter ice cores are made from a log-normally distributed seed crystal mixture with a median size of 1.4 mm. To control ice density and porosity we vary the packing density of the seed grains in core molds and vary the degree of saturation of the matrix with added near-freezing distilled water. We also vary ice density by blending in a similarly-sized mixture of angular fragments of two types of impurities, a fine-grained volcanic rock and a polyethylene polymer. Because both types of impurities have greater tensile strength than ice at Earth surface temperatures, we expect higher concentrations of impurities to correlate with increased strength for ice-rock and ice-polymer mixtures. However, at the ultra-cold temperatures of the outer planets, we expect significant divergence in the temperature dependence of ice tensile strength for the various mixtures and resulting densities. These measurements will help constrain the range of possible

  15. A Tensile Strength of Bermuda Grass and Vetiver Grass in Terms of Root Reinforcement Ability Toward Soil Slope Stabilization

    NASA Astrophysics Data System (ADS)

    Noorasyikin, M. N.; Zainab, M.

    2016-07-01

    An examination on root characteristics and root properties has been implemented in this study. Two types of bioengineering were chose which are Vetiver grass and Bermuda grass as these grasses were widely applied for slope stabilization. The root samples were taken to the laboratory to investigate its classification, characteristics and strength. The root of both grasses was found grow with fibrous root matrix system. In terms of root anchorage, the root matrix system of Vetiver grass was exhibits more strengthen than the Bermuda grass. However, observation on root image from Scanning Electron Microscope test reveals that the root of Vetiver grass becomes non-porous as the moisture content reduced. Meanwhile, the root tensile strength of Bermuda grass was obtained acquired low value with higher percentage of moisture content, root morphology and bonding strength. The results indicated that the root tensile strength is mainly influence by percentage of moisture content and root morphology.

  16. Effects of reclaimed asphalt pavement on indirect tensile strength test of foamed asphalt mix tested in dry condition

    NASA Astrophysics Data System (ADS)

    Yati Katman, Herda; Rasdan Ibrahim, Mohd; Yazip Matori, Mohd; Norhisham, Shuhairy; Ismail, Norlela

    2013-06-01

    Indirect tensile strength (ITS) test was conducted to analyse strength of the foamed asphalt mixes incorporating reclaimed asphalt pavement. Samples were tested for ITS after cured in the oven at 40°C for 72 hours. This testing condition known as dry condition or unconditioned. Laboratory results show that reclaimed asphalt pavement (RAP) contents insignificantly affect the ITS results. ITS results significantly affected by foamed bitumen contents.

  17. Resistance to densification, tensile strength and capsule-filling performance of some pharmaceutical diluents.

    PubMed

    Nikolakakis, I; Aragon, O B; Malamataris, S

    1998-07-01

    The purpose of this study was to compare some indicators of capsule-filling performance, as measured by tapped density under different conditions, and elucidate possible quantitative relationships between variation of capsule fill-weight (%CV) and gravitational and inter-particle forces (attractive or frictional) derived from measurements of particle size, true density, low compression and tensile strength. Five common pharmaceutical diluents (lactose, maize starch, talc, Emcocel and Avicel) were investigated and two capsule-filling methods (pouring powder and dosator nozzle) were employed. It was found that for the pouring-type method the appropriateness of Hausner's ratio (HR), Carr's compressibility index (CC%) and Kawakita's constant (alpha) as indicators of capsule fill-weight variation decreases in the order alpha > CC% > HR; the appropriateness of these indicators also decreases with increasing cylinder size and with impact velocity during tapping. For the dosator-type method the appropriateness of the indicators decreases in the order HR > CC% > alpha, the opposite of that for the pouring-type method; the appropriateness of the indicators increases with decreasing cylinder size and impact velocity. The relationship between %CV and the ratio of inter-particle attractive to gravitational forces calculated from measurements of particle size and true density (Fvdw/Wp) was more significant for the pouring-type capsule-filling method. For the dosator-type method a significant relationship (1% level) was found between %CV and the product of Fvdw/Wp and a function expressing the increase, with packing density (p(f)), in the ratio of frictional to attractive inter-particle forces derived from compression (P) and tensile-strength (T) testing, d(log(P/T))/d(p(f)). The value of tapped density in predictions of capsule-filling performance is affected by the testing conditions in a manner depending on the filling method applied. For the pouring-type method predictions

  18. Evaluation of Surface Roughness and Tensile Strength of Base Metal Alloys Used for Crown and Bridge on Recasting (Recycling)

    PubMed Central

    Hashmi, Syed W.; Rao, Yogesh; Garg, Akanksha

    2015-01-01

    Background Dental casting alloys play a prominent role in the restoration of the partial dentition. Casting alloys have to survive long term in the mouth and also have the combination of structure, molecules, wear resistance and biologic compatibility. According to ADA system casting alloys were divided into three groups (wt%); high noble, Noble and predominantly base metal alloys. Aim To evaluate the mechanical properties such as tensile strength and surface roughness of the new and recast base metal (nickel-chromium) alloys. Materials and Methods Recasting of the base metal alloys derived from sprue and button, to make it reusable has been done. A total of 200 test specimens were fabricated using specially fabricated jig of metal and divided into two groups- 100 specimens of new alloy and 100 specimens of recast alloys, which were tested for tensile strength on universal testing machine and surface roughness on surface roughness tester. Results Tensile strength of new alloy showed no statistically significant difference (p-value>0.05) from recast alloy whereas new alloy had statistically significant surface roughness (Maximum and Average surface roughness) difference (p-value<0.01) as compared to recast alloy. Conclusion Within the limitations of the study it is concluded that the tensile strength will not be affected by recasting of nickel-chromium alloy whereas surface roughness increases markedly. PMID:26393194

  19. Modeling and predicting the tensile strength of poly (lactic acid)/graphene nanocomposites by using support vector regression

    NASA Astrophysics Data System (ADS)

    Cheng, W. D.; Cai, C. Z.; Luo, Y.; Li, Y. H.; Zhao, C. J.

    2016-04-01

    According to an experimental dataset under different process parameters, support vector regression (SVR) combined with particle swarm optimization (PSO) for its parameter optimization was employed to establish a mathematical model for prediction of the tensile strength of poly (lactic acid) (PLA)/graphene nanocomposites. Four variables, while graphene loading, temperature, time and speed, were employed as input variables, while tensile strength acted as output variable. Using leave-one-out cross validation test of 30 samples, the maximum absolute percentage error does not exceed 1.5%, the mean absolute percentage error (MAPE) is only 0.295% and the correlation coefficient (R2) is as high as 0.99. Compared with the results of response surface methodology (RSM) model, it is shown that the estimated errors by SVR are smaller than those achieved by RSM. It revealed that the generalization ability of SVR is superior to that of RSM model. Meanwhile, multifactor analysis is adopted for investigation on significances of each experimental factor and their influences on the tensile strength of PLA/graphene nanocomposites. This study suggests that the SVR model can provide important theoretical and practical guide to design the experiment, and control the intensity of the tensile strength of PLA/graphene nanocomposites via rational process parameters.

  20. A new derivation of the tensile strength of cometary nuclei: Application to comet Shoemaker-Levy 9

    NASA Technical Reports Server (NTRS)

    Greenberg, J. Mayo; Mizutani, Hitoshi; Yamamoto, Tetsuo

    1994-01-01

    The splitting of comets as exemplified by comet Shoemaker-Levy 9, when it passed near Jupiter, is a common phenomenon. Multiple splitting is also not an uncommon occurrence. It is clear that the comet nucleus is fragile, i.e., its tensile strength is small compared with that of solid materials. We show that aggregates of sub-micron interstellar dust particles presumed to consist of a silicate core, an inner mantle of complex organic refractory molecules, and an outer mantle dominated by H2O ice (Greenberg, 1982) provide the basis for a quantitative derivation of the tensile strength of comet SL9 using molecular interactions at the contact interfaces. In fact, using a mean particle size representing interstellar dust as it would appear in its final presolar state one derives a tensile strength which describes remarkably well the multiple splitting phenomenon. This derivation of the tensile strength of a particle aggregate resulting from molecular interactions is quite general and can be applied to physical situations involving any sorts of aggregates as well as those representing comet nuclei.

  1. Research on tensile strength characteristics of bridge deck pavement bonding layers

    NASA Astrophysics Data System (ADS)

    Wu, Shaopeng; Han, Jun

    2010-03-01

    As the development of the traffic in the world, the bridge deck pavement is playing a more and more important role in the whole traffic system. Big span bridge has become more and more especially cement concrete bridge, therefore the bridge deck pavement bonding layers are emphasized as an important part of bridge traffic system, which can mitigate travel impact to bridge and magnify stationary or traffic amenity. The quality and durability of deck pavement bonding layer has directly effect on traffic safety, comfort, durability and investment of bridge. It represents the first line of defence against the ingress of water, road de-icing salts and aggressive chemicals. In real project, many early age damage of bridge deck pavement has become serious disease that affecting the function of bridge. During the construction of the bridge deck, many types of asphalt binders were used, such as styrene-butadiene-styrene (SBS) modified asphalt, styrene-butadiene rubber (SBR) modified asphalt, neoprene latex asphalt, etc. In this paper UTM-25 was used to test the tensile strength of different bridge deck pavement bonding layers with the different treatment methods to inter-surface.

  2. Research on tensile strength characteristics of bridge deck pavement bonding layers

    NASA Astrophysics Data System (ADS)

    Wu, Shaopeng; Han, Jun

    2009-12-01

    As the development of the traffic in the world, the bridge deck pavement is playing a more and more important role in the whole traffic system. Big span bridge has become more and more especially cement concrete bridge, therefore the bridge deck pavement bonding layers are emphasized as an important part of bridge traffic system, which can mitigate travel impact to bridge and magnify stationary or traffic amenity. The quality and durability of deck pavement bonding layer has directly effect on traffic safety, comfort, durability and investment of bridge. It represents the first line of defence against the ingress of water, road de-icing salts and aggressive chemicals. In real project, many early age damage of bridge deck pavement has become serious disease that affecting the function of bridge. During the construction of the bridge deck, many types of asphalt binders were used, such as styrene-butadiene-styrene (SBS) modified asphalt, styrene-butadiene rubber (SBR) modified asphalt, neoprene latex asphalt, etc. In this paper UTM-25 was used to test the tensile strength of different bridge deck pavement bonding layers with the different treatment methods to inter-surface.

  3. Hydrogen Embrittlement of a 1500-MPa Tensile Strength Level Steel with an Ultrafine Elongated Grain Structure

    NASA Astrophysics Data System (ADS)

    Nie, Yihong; Kimura, Yuuji; Inoue, Tadanobu; Yin, Fuxing; Akiyama, Eiji; Tsuzaki, Kaneaki

    2012-05-01

    A deformation of a tempered martensitic structure ( i.e., tempforming) at 773 K (500 °C) was applied to a 0.6 pct C-2 pct Si-1 pct Cr steel. The hydrogen embrittlement (HE) property of the tempformed (TF) steel was investigated by a slow strain rate test (SSRT) and an accelerated atmospheric corrosion test (AACT). Hydrogen content within the samples after SSRT and AACT was measured by thermal desorption spectrometry (TDS). The tempforming at 773 K (500 °C) using multipass caliber rolling with an accumulative are reduction of 76 pct resulted in the evolution of an ultrafine elongated grain (UFEG) structure with a strong <110>//rolling direction (RD) fiber deformation texture and a dispersion of spheroidized cementite particles. The SSRT of the pre-hydrogen-charged notched specimens and the AACT demonstrated that the TF sample had superior potential for HE resistance to the conventional quenched and tempered (QT) sample at a tensile strength of 1500 MPa. The TDS analysis also indicated that the hydrogen might be mainly trapped by reversible trapping sites such as grain boundaries and dislocations in the TF sample, and the hydrogen trapping states of the TF sample were similar to those of the QT sample. The QT sample exhibited hydrogen-induced intergranular fracture along the boundaries of coarse prior-austenite grains. In contrast, the hydrogen-induced cracking occurred in association with the UFEG structure in the TF sample, leading to the higher HE resistance of the TF sample.

  4. Effect of Fiber Strength on the Room Temperature Tensile Properties of Sic/Ti-24Al-11Nb

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Brindley, P. K.; Nathal, M. V.

    1991-01-01

    SCA-6 SiC fibers of known strength were incorporated into SiC/Ti-24Al-11Nb (at. percent) composites and the effect of fiber strength variability on room temperature composite strength was investigated. Fiber was etched out of a composite fabricated by the powder cloth technique and the effect of the fabrication process on fiber strength was assessed. The strength of the composite was directly correlated with the strength of the as-received fiber. The strength of composite plates containing mixed fiber strengths was dominated by the lower strength fiber. Fabrication by the powder cloth technique resulted in only a slight degradation of fiber strength. The strength of the composite was found to be overestimated by the rule of mixtures strength calculation. Examination of failed tensile specimens revealed periodic fiber cracks and the failure mode was concluded to be cumulative. With the variation in fiber strength eliminated, the composite UTS was found to have a positive correlation with volume fraction of fiber.

  5. Structural disorder effects on the tensile strength distribution of heterogeneous brittle materials with emphasis on fiber networks

    NASA Astrophysics Data System (ADS)

    Hristopulos, Dionissios T.; Uesaka, Tetsu

    2004-08-01

    Understanding the interplay of structural disorder and strength properties at various length scales can lead to improvements in the strength reliability of heterogeneous brittle materials. Various studies in ordered fiber- matrix composites have shown the existence of critical clusters of breaks and macroscopic weak-link scaling behavior. The fiber network in paper is structurally disordered. We verify experimentally that the tensile strength of newsprint samples follows weak-link scaling and obtain an estimate for the link and critical-cluster sizes. However, a slight nonlinear behavior is observed in the Weibull plots of the experimental strength distributions. We propose that this is due to mesoscopic structural disorder (e.g., at length scales between millimeters and centimeters), which we incorporate in the strength distribution of the links by averaging over the elastic stress variations. The prevailing industry perception is that mesoscopic disorder controls the strength reliability. In contrast, we find that it does not significantly affect the crucial lower tail of the strength distribution. Based on our analysis, we suggest a more reliable measurement approach for the tensile strength of newsprint paper. We also obtain explicit expressions for the effects of disorder on stress variations and the macroscopic Young’s modulus, including dependence on the shear modulus and anisotropic effects.

  6. Addition of antibacterial agents to MMA-TBB dentin bonding systems--influence on tensile bond strength and antibacterial effect.

    PubMed

    Kudou, Y; Obara, K; Kawashima, T; Kubota, M; Abe, S; Endo, T; Komatsu, M; Okuda, R

    2000-03-01

    To produce a bonding system which has both high bond strength and antibacterial properties, an antibacterial agent (vancomycin: VCM or metronidazol: MN) was added to the PMMA powder of 4-META/MMA-TBB resin (CB). The influence of the addition of an antibacterial agent on tensile bond strength to dentin and the antibacterial effect were investigated in this study. Forty-seven freshly extracted bovine first or second incisors were used to measure the tensile bond strength to dentin. The bond strengths to bovine dentin were not significantly decreased by addition of VCM (1%, 2%, 5%), or MN (1%) to CB (p < 0.05). The antibacterial effect of CB containing antibacterial agent on six strains of bacteria was investigated by the agar plate diffusion method, analyzing the appearance of the inhibition zone around a resin disk following anaerobic culturing. The resin disks containing VCM showed antibacterial effects on all of the strains examined; the widths of the inhibition zones were 4-15 mm. The resin disks containing MN showed antibacterial effects on three strains; the widths of the inhibition zones were 0-4 mm. It was thus possible to produce a bonding system with both antibacterial effect and high tensile bond strength by addition of VCM to PMMA powder. PMID:11219091

  7. Effect of Saliva on the Tensile Bond Strength of Different Generation Adhesive Systems: An In-Vitro Study

    PubMed Central

    Tripathi, Abhay Mani; Saha, Sonali; Dhinsa, Kavita; Garg, Aarti

    2015-01-01

    Background Newer development of bonding agents have gained a better understanding of factors affecting adhesion of interface between composite and dentin surface to improve longevity of restorations. Objective The present study evaluated the influence of salivary contamination on the tensile bond strength of different generation adhesive systems (two-step etch-and-rinse, two-step self-etch and one-step self-etch) during different bonding stages to dentin where isolation is not maintained. Materials and Methods Superficial dentin surfaces of 90 extracted human molars were randomly divided into three study Groups (Group A: Two-step etch-and-rinse adhesive system; Group B: Two-step self-etch adhesive system and Group C: One-step self-etch adhesive system) according to the different generation of adhesives used. According to treatment conditions in different bonding steps, each Group was further divided into three Subgroups containing ten teeth in each. After adhesive application, resin composite blocks were built on dentin and light cured subsequently. The teeth were then stored in water for 24 hours before sending for testing of tensile bond strength by Universal Testing Machine. The collected data were then statistically analysed using one-way ANOVA and Tukey HSD test. Results One-step self-etch adhesive system revealed maximum mean tensile bond strength followed in descending order by Two-step self-etch adhesive system and Two-step etch-and-rinse adhesive system both in uncontaminated and saliva contaminated conditions respectively. Conclusion Unlike One-step self-etch adhesive system, saliva contamination could reduce tensile bond strength of the two-step self-etch and two-step etch-and-rinse adhesive system. Furthermore, the step of bonding procedures and the type of adhesive seems to be effective on the bond strength of adhesives contaminated with saliva. PMID:26393214

  8. The Disulfide Bonds within BST-2 Enhance Tensile Strength during Viral Tethering.

    PubMed

    Du Pont, Kelly E; McKenzie, Aidan M; Kokhan, Oleksandr; Sumner, Isaiah; Berndsen, Christopher E

    2016-02-16

    Human BST-2/tetherin is a host factor that inhibits the release of enveloped viruses, including HIV-1, HIV-2, and SIV, from the cell surface by tethering viruses to the host cell membrane. BST-2 has an α-helical ectodomain that forms disulfide-linked dimers between two monomers forming a coiled coil. The ectodomain contains three cysteine residues that can participate in disulfide bond formation and are critical for viral tethering. The role of the disulfides in viral tethering is unknown but proposed to be for maintaining the dimer. We explored the role of the disulfides in the structure of BST-2 using experimental, biophysical methods. To understand the role of the disulfides in viral tethering, we used a new approach in viral tethering, steered molecular dynamics. We find that the disulfides coordinate the unfolding of the BST-2 monomers, which adds tensile strength to the coiled coil. Structural differences between oxidized and reduced BST-2 are apparent during unfolding, showing the monomers slide past each other in the absence of the disulfides. We found no evidence to support dissociation of the dimer upon reduction of the disulfide bonds. Moreover, the structure of BST-2 in the absence of the disulfides is similar to that of the oxidized form of BST-2, supporting previous X-ray crystallography and cellular work that showed the disulfides are not required for expression of BST-2. These data provide new insights into viral tethering by using novel techniques in the analysis of BST-2 to give amino acid level insight into functions of BST-2. PMID:26789136

  9. Tensile bond strength of a lithium-disilicate pressed glass ceramic to dentin of different surface treatments.

    PubMed

    Zortuk, Mustafa; Kilic, Kerem; Gurbulak, Aysegul Guleryuz; Kesim, Bulent; Uctasli, Sadullah

    2010-08-01

    The effects of desensitizer, disinfectant, saliva, blood, and hydrogen peroxide on the tensile bond strength between adhesive and ceramic as well as between adhesive and dentin were examined. Sixty 7x3 mm pressed ceramic discs of IPS e.max were fabricated and randomly assigned to six groups of different dentin surface treatments (control, desensitizer, disinfectant, saliva, blood, and hydrogen peroxide). Representative samples of fractured specimens were observed by SEM (scanning electron microscopy). There were significant differences between the control group and saliva, blood, and hydrogen peroxide groups (p<0.05). However, there were no significant differences between any other dentin surface treatment groups (p>0.05). Results of this study suggested that only saliva, blood, and hydrogen peroxide influenced the tensile bond strength between dentin and ceramic. PMID:20657150

  10. A Unified Model for Predicting the Open Hole Tensile and Compressive Strengths of Composite Laminates for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Davidson, Paul; Pineda, Evan J.; Heinrich, Christian; Waas, Anthony M.

    2013-01-01

    The open hole tensile and compressive strengths are important design parameters in qualifying fiber reinforced laminates for a wide variety of structural applications in the aerospace industry. In this paper, we present a unified model that can be used for predicting both these strengths (tensile and compressive) using the same set of coupon level, material property data. As a prelude to the unified computational model that follows, simplified approaches, referred to as "zeroth order", "first order", etc. with increasing levels of fidelity are first presented. The results and methods presented are practical and validated against experimental data. They serve as an introductory step in establishing a virtual building block, bottom-up approach to designing future airframe structures with composite materials. The results are useful for aerospace design engineers, particularly those that deal with airframe design.

  11. Evaluation of tensile strength and surface topography of orthodontic wires after infection control procedures: An in vitro study

    PubMed Central

    Brindha, M.; Kumaran, N. Kurunji; Rajasigamani, K.

    2014-01-01

    Aim: The aim of this study is to evaluate, the influence of four types of sterilization/disinfection procedures (autoclave, hot air oven, glutaraldehyde, and ultraviolet [UV] light) on the tensile strength and surface topography of three orthodontic wires (stainless steel (SS), titanium - molybdenum alloy [TMA], and cobalt chromium (CoCr)). Materials and Methods: Sample comprised of three types of 8 inches straight length segments of orthodontic wires. They were divided into three groups according to wire composition comprising of 50 samples each. Totally 50 samples of each group were then equally divided into five subgroups according to sterilization method. After sterilization and disinfection of the experimental group, surface topography was examined with scanning electron microscope (SEM) and tensile strength was tested using universal testing machine. Result: The results of this study show that the mean ultimate tensile strength (UTS) of SS wire after four sterilization procedures were similar to the control group (1845.815 ± 142.29 MPa). The mean UTS of TMA wire increases after four sterilization procedures when compared with the control group (874.107 ± 275.939 MPa). The mean UTS of CoCr wire remains same after UV light disinfection, but increases after other three sterilization procedures when compared with the control group (1449.759 ± 156.586 MPa). SEM photographs of the present study shows gross increase in pitting roughness of the surface topography of all the three types of wires after four types of sterilization. Conclusion: Orthodontists who want to offer maximum safety for their patients can sterilize orthodontic wires before placement, as it does not deteriorate the tensile strength and surface roughness of the alloys. PMID:25210383

  12. Tensile bond strength between auto-polymerized acrylic resin and acrylic denture teeth treated with MF-MA solution

    PubMed Central

    2016-01-01

    PURPOSE This study evaluated the effect of chemical surface treatment using methyl formate-methyl acetate (MF-MA) solution on the tensile bond strength between acrylic denture teeth and auto-polymerized acrylic resin. MATERIALS AND METHODS Seventy maxillary central incisor acrylic denture teeth for each of three different brands (Yamahachi New Ace; Major Dent; Cosmo HXL) were embedded with incisal edge downwards in auto-polymerized resin in polyethylene pipes and ground with silicone carbide paper on their ridge lap surfaces. The teeth of each brand were divided into seven groups (n=10): no surface treatment (control group), MF-MA solution at a ratio of 25:75 (v/v) for 15 seconds, 30 seconds, 60 seconds, 120 seconds, 180 seconds, and MMA for 180 seconds. Auto-polymerized acrylic resin (Unifast Trad) was applied to the ground surface and polymerized in a pressure cooker. A tensile strength test was performed with a universal testing machine. Statistical analysis of the results was performed using two-way analysis of variance (ANOVA) and post-hoc Dunnett T3 test (α=.05). RESULTS The surface treatment groups had significantly higher mean tensile bond strengths compared with the control group (P<.05) when compared within the same brand. Among the surface treatment groups of each brand, there were no significantly different tensile bond strengths between the MF-MA groups and the MMA 180 second group (P>.05), except for the Yamahachi New Ace MF-MA 180-second group (P<.05). CONCLUSION 15-second MF-MA solution can be an alternative chemical surface treatment for repairing a denture base and rebonding acrylic denture teeth with auto-polymerized acrylic resin, for both conventional and cross-linked teeth. PMID:27555897

  13. Effects of material properties and speed of compression on microbial survival and tensile strength in diclofenac tablet formulations.

    PubMed

    Ayorinde, J O; Itiola, O A; Odeniyi, M A

    2013-03-01

    A work has been done to study the effects of material properties and compression speed on microbial survival and tensile strength in diclofenac tablet formulations. Tablets were produced from three formulations containing diclofenac and different excipients (DC, DL and DDCP). Two types of machines (Hydraulic hand press and single punch press), which compress the tablets at different speeds, were used. The compression properties of the tablets were analyzed using Heckel and Kawakita equations. A 3-dimensional plot was produced to determine the relationship between the tensile strength, compression speed and percentage survival of Bacillus subtilis in the diclofenac tablets. The mode of consolidation of diclofenac was found to depends on the excipient used in the formulation. DC deformed mainly by plastic flow with the lowest Py and Pk values. DL deformed plastically at the initial stage, followed by fragmentation at the later stage of compression, whereas DDCP deformed mainly by fragmentation with the highest Py and Pk values. The ranking of the percentage survival of B. subtilis in the formulations was DDCP > DL > DC, whereas the ranking of the tensile strength of the tablets was DDCP > DL > DC. Tablets produced on a hydraulic hand press with a lower compression speed had a lower percentage survival of microbial contaminants than those produced on a single punch press, which compressed the tablets at a much higher speed. The mode of consolidation of the materials and the speed at which tablet compression is carried out have effects on both the tensile strength of the tablets and the extent of destruction of microbial contaminants in diclofenac tablet formulations. PMID:23471558

  14. Effect of heat treatments on the tensile and electrical properties of high-strength, high-conductivity copper alloys

    SciTech Connect

    Zinkle, S.J.; Eatherly, W.S.

    1997-08-01

    The unirradiated tensile properties of CuCrZr produced by two different vendors have been measured following different heat treatments. Room temperature electrical resistivity measurements were also performed in order to estimate the thermal conductivity of these specimens. The thermomechanical conditions studied included solution quenched, solution quenched and aged (ITER reference heat treatment), simulated slow HIP thermal cycle ({approximately}1{degrees}C/min cooling from solutionizing temperature) and simulated fast HIP thermal cycle ({approximately}100{degrees}C/min cooling from solutionizing temperature). Specimens from the last two heat treatments were tested in both the solution-cooled condition and after subsequent precipitate aging at 475{degrees}C for 2 h. Both of the simulated HIP thermal cycles caused a pronounced decreases in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycles caused a pronounced decrease in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycle specimens, whereas the strength and conductivity following aging in the fast HIP thermal cycle improved to {approximately}65% of the solution quenched and aged CuCrZr values. Limited tensile and electrical resistivity measurements were also made on two new heats of Hycon 3HP CuNiBe. High strength but poor uniform and total elongations were observed at 500{degrees}C on one of these new heats of CuNiBe, similar to that observed in other heats.

  15. Orthodontic brackets removal under shear and tensile bond strength resistance tests - a comparative test between light sources

    NASA Astrophysics Data System (ADS)

    Silva, P. C. G.; Porto-Neto, S. T.; Lizarelli, R. F. Z.; Bagnato, V. S.

    2008-03-01

    We have investigated if a new LEDs system has enough efficient energy to promote efficient shear and tensile bonding strength resistance under standardized tests. LEDs 470 ± 10 nm can be used to photocure composite during bracket fixation. Advantages considering resistance to tensile and shear bonding strength when these systems were used are necessary to justify their clinical use. Forty eight human extracted premolars teeth and two light sources were selected, one halogen lamp and a LEDs system. Brackets for premolar were bonded through composite resin. Samples were submitted to standardized tests. A comparison between used sources under shear bonding strength test, obtained similar results; however, tensile bonding test showed distinct results: a statistical difference at a level of 1% between exposure times (40 and 60 seconds) and even to an interaction between light source and exposure time. The best result was obtained with halogen lamp use by 60 seconds, even during re-bonding; however LEDs system can be used for bonding and re-bonding brackets if power density could be increased.

  16. Factors which influence tensile strength of a SiC/Ti-24Al-11Nb (at. pct) composite

    NASA Technical Reports Server (NTRS)

    Brindley, P. K.; Draper, S. L.; Nathal, M. V.; Eldridge, J. I.

    1990-01-01

    Tensile and fiber pullout tests were used in conjunction with SEM to investigate structural and processing effects on SiC fiber, a neat Ti-24Al-11Nb matrix alloy, and a composite fabricated from the two. The effects of oxygen content, fiber spacing, fiber volume fraction, fiber-matrix reaction thickness, Teflon content, and matrix powder size, appear to be smaller than the effects of variability in fiber strength. Fiber spacing did not influence radial crack formation, interfacial bond shear strength, or stress-strain behavior in the composite. The temperature dependence of composite properties was investigated over the 23-815 C range.

  17. Nb 3Sn tensile strength and its distribution estimated from change in superconducting critical current of preloaded multifilamentary composite wire

    NASA Astrophysics Data System (ADS)

    Ochiai, S.; Nishino, S.; Hojo, M.; Osamura, K.; Watanabe, K.

    The distribution of tensile strength of Nb 3Sn in multifilamentary composite wires heat-treated at 973 K for 8.64 ks (sample A) and for 43.2 ks (sample B) was estimated from an analysis of the change in the superconducting critical current at 4.2 K caused by the preloading treatment at room temperature. The average strengths of Nb 3Sn in samples A and B for a gauge length of 25 mm were 1.3 and 1.0 GPa, respectively. Applying the two-parameter Weibull distribution function, the shape parameters of samples A and B were 7.2 and 12 and the scale parameters 1.4 and 1.1 GPa, respectively. These results indicate that when the thickness of Nb 3Sn becomes great, the average strength becomes low, while the scatter of the strength (the coefficient of variation) becomes small.

  18. Modelling and Simulation of Tensile Fracture in High Velocity Compacted Metal Powder

    SciTech Connect

    Jonsen, P.; Haeggblad, H.-A.

    2007-05-17

    In cold uniaxial powder compaction, powder is formed into a desired shape with rigid tools and a die. After pressing, but before sintering, the compacted powder is called green body. A critical property in the metal powder pressing process is the mechanical properties of the green body. Beyond a green body free from defects, desired properties are high strength and uniform density. High velocity compaction (HVC) using a hydraulic operated hammer is a production method to form powder utilizing a shock wave. Pre-alloyed water atomised iron powder has been HVC-formed into circular discs with high densities. The diametral compression test also called the Brazilian disc test is an established method to measure tensile strength in low strength material like e.g. rock, concrete, polymers and ceramics. During the test a thin disc is compressed across the diameter to failure. The compression induces a tensile stress perpendicular to the compressed diameter. In this study the test have been used to study crack initiation and the tensile fracture process of HVC-formed metal powder discs with a relative density of 99%. A fictitious crack model controlled by a stress versus crack-width relationship is utilized to model green body cracking. Tensile strength is used as a failure condition and limits the stress in the fracture interface. The softening rate of the model is obtained from the corresponding rate of the dissipated energy. The deformation of the powder material is modelled with an elastic-plastic Cap model. The characteristics of the tensile fracture development of the central crack in a diametrically loaded specimen is numerically studied with a three dimensional finite element simulation. Results from the finite element simulation of the diametral compression test shows that it is possible to simulate fracturing of HVC-formed powder. Results from the simulation agree reasonably with experiments.

  19. Modelling and Simulation of Tensile Fracture in High Velocity Compacted Metal Powder

    NASA Astrophysics Data System (ADS)

    Jonsén, P.; Häggblad, H.-A.˚.

    2007-05-01

    In cold uniaxial powder compaction, powder is formed into a desired shape with rigid tools and a die. After pressing, but before sintering, the compacted powder is called green body. A critical property in the metal powder pressing process is the mechanical properties of the green body. Beyond a green body free from defects, desired properties are high strength and uniform density. High velocity compaction (HVC) using a hydraulic operated hammer is a production method to form powder utilizing a shock wave. Pre-alloyed water atomised iron powder has been HVC-formed into circular discs with high densities. The diametral compression test also called the Brazilian disc test is an established method to measure tensile strength in low strength material like e.g. rock, concrete, polymers and ceramics. During the test a thin disc is compressed across the diameter to failure. The compression induces a tensile stress perpendicular to the compressed diameter. In this study the test have been used to study crack initiation and the tensile fracture process of HVC-formed metal powder discs with a relative density of 99%. A fictitious crack model controlled by a stress versus crack-width relationship is utilized to model green body cracking. Tensile strength is used as a failure condition and limits the stress in the fracture interface. The softening rate of the model is obtained from the corresponding rate of the dissipated energy. The deformation of the powder material is modelled with an elastic-plastic Cap model. The characteristics of the tensile fracture development of the central crack in a diametrically loaded specimen is numerically studied with a three dimensional finite element simulation. Results from the finite element simulation of the diametral compression test shows that it is possible to simulate fracturing of HVC-formed powder. Results from the simulation agree reasonably with experiments.

  20. Weathering effects on tensile and stress rupture strength of glass fiber reinforced vinylester and epoxy thermoset pipes

    NASA Astrophysics Data System (ADS)

    Nizamuddin, Syed

    Glass fiber reinforced vinylester (GFRE) and epoxy (GFRE) pipes have been used for more than three decades to mitigate corrosion problems in oil fields, chemical and industrial plants. In these services, both GFRV and GFRE pipes are exposed to various environmental conditions. Long-term mechanical durability of these pipes after exposure to environmental conditions, which include natural weathering exposure to seasonal temperature variation, sea water, humidity and other corrosive fluids like crude oil, should be well known. Although extensive research has been undertaken, several major issues pertaining to the performance of these pipes under a number of environmental conditions still remain unresolved. The main objective of this study is to investigate the effects of natural weathering, combined natural weathering with seawater and crude oil exposure, for time periods ranging from 3 to 36 months respectively, on the tensile and stress rupture behavior of GFRV and GFRE pipes. Ring specimens are machined from GFRV and GFRE pipes and tested before and after exposure to different weathering conditions prevalent in the eastern region (Dhahran) of Saudi Arabia and present under service conditions. The natural weathering and combined natural weathering with crude oil exposure of GFRV specimens revealed increased tensile strength even after 36 months of exposure when compared with that of the as received samples. However, the combined natural weathering with seawater exposure of GFRV samples revealed better tensile behavior till 24 months of exposure, and after 36 months their tensile strength was seen to be below that of the as received GFRV samples. The stress rupture behavior of natural weather exposed GFRV samples showed an improvement after 12 months of exposure and it decreased after 24 and 36 months of exposure when compared with the as received GFRV samples. The combined natural weathering with crude oil and seawater exposure of GFRV sample revealed improved

  1. Effects of Cyclic Tensile Forces on the Strength of Fibrous Tissue Examined in an in Vivo Model

    NASA Astrophysics Data System (ADS)

    Takakuda, Kazuo; Koyama, Yoshihisa; Matsumoto, Hiroko N.; Katakura, Hiroshi; Muneta, Takeshi

    Adaptive remodeling of soft fibrous tissues under cyclic tensile forces was investigated. Patellar tendons of rat’s knee were harvested and mounted on apparatuses for mechanical stimuli. They were transplanted into the subcutaneous tissues and experienced mechanical stimuli of cyclic tensile forces (1N, 1Hz). Then the tendons were retrieved and their mechanical properties were evaluated with a tensile tester. Four experimental groups were examined in which loading conditions were (1) three times a day (2700 cycles a day) throughout 4 weeks, (2) twice a week (1800 cycles a week) throughout 4 weeks, (3) load-free throughout 4 weeks, or (4) control. Comparing to control group, the tendons in load-free conditions were very weak and shown statistically significant decrease in maximum load, strength and tangent modulus. Contrarily, the tendons in frequent loadings (three times a day) nearly maintained their mechanical properties. Thus the present study clearly elucidated the fact that cyclic tensile forces have significant effects on the mechanical properties of transplanted fibrous tissues.

  2. Influence of different brazing and welding methods on tensile strength and microhardness of orthodontic stainless steel wire.

    PubMed

    Bock, Jens Johannes; Fraenzel, Wolfgang; Bailly, Jacqueline; Gernhardt, Christian Ralf; Fuhrmann, Robert Andreas Werner

    2008-08-01

    The aim of this study was to compare the mechanical strength and microhardness of joints made by conventional brazing and tungsten inert gas (TIG) and laser welding. A standardized end-to-end joint configuration of the orthodontic wire material in spring hard quality was used. The joints were made using five different methods: brazing (soldering > 450 degrees C) with universal silver solder, two TIG, and two laser welders. Laser parameters and welding conditions were used according to the manufacturers' guidance. The tensile strengths were measured with a universal testing machine (Zwick 005). The microhardness measurements were carried out with a hardness tester (Zwick 3202). Data were analysed using one-way analysis of variance and Bonferroni's post hoc correction (P < 0.05). In all cases, brazing joints ruptured at low levels of tensile strength (198 +/- 146 MPa). Significant differences (P < 0.001) between brazing and TIG or laser welding were found. The highest means were observed for TIG welding (699-754 MPa). Laser welding showed a significantly lower mean tensile strength (369-520 MPa) compared with TIG welding. Significant differences (P < 0.001) were found between the original orthodontic wire and the mean microhardness at the centre of the welded area. The mean microhardness differed significantly between brazing (1.99 GPa), TIG (2.22-2.39 GPa) and laser welding (2.21-2.68 GPa). For orthodontic purposes, laser and TIG welding are solder-free alternatives to joining metal. TIG welding with a lower investment cost is comparable with laser welding. However, while expensive, the laser technique is a sophisticated and simple method. PMID:18617503

  3. A scaffold-enhanced light-activated surgical adhesive technique: surface selection for enhanced tensile strength in wound repair

    NASA Astrophysics Data System (ADS)

    Soller, Eric C.; Hoffman, Grant T.; Heintzelman, Douglas L.; Duffy, Mark T.; Bloom, Jeffrey N.; McNally-Heintzelman, Karen M.

    2004-07-01

    An ex vivo study was conducted to determine the effect of the irregularity of the scaffold surface on the tensile strength of repairs formed using our Scaffold-Enhanced Biological Adhesive (SEBA). Two different scaffold materials were investigated: (i) a synthetic biodegradable material fabricated from poly(L-lactic-co-glycolic acid); and (ii) a biological material, small intestinal submucosa, manufactured by Cook BioTech. The scaffolds were doped with protein solder composed of 50%(w/v) bovine serum albumin solder and 0.5mg/ml indocyanine green dye mixed in deionized water, and activated with an 808-nm diode laser. The tensile strength of repairs performed on bovine thoracic aorta, liver, spleen, small intestine and lung, using the smooth and irregular surfaces of the above scaffold-enhanced materials were measured and the time-to-failure was recorded. The tensile strength of repairs formed using the irregular surfaces of the scaffolds were consistently higher than those formed using the smooth surfaces of the scaffolds. The largest difference was observed on repairs formed on the aorta and small intestine, where the repairs were, on average, 50% stronger using the irregular versus the smooth scaffold surfaces. In addition, the time-to-failure of repairs formed using the irregular surfaces of the scaffolds were between 50% and 100% longer than that achieved using the smooth surfaces of the scaffolds. It has previously been shown that distributing or dispersing the adhesive forces over the increased surface area of the scaffold, either smooth or irregular, produces stronger repairs than albumin solder alone. The increase in the absolute strength and longevity of repairs seen in this new study when the irregular surfaces of the scaffolds are used is thought to be due to the distribution of forces between the many independent micro-adhesions provided by the irregular surfaces.

  4. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    NASA Technical Reports Server (NTRS)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  5. Ultimate Tensile Strength as a Function of Test Rate for Various Ceramic Matrix Composites at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.

    2002-01-01

    Ultimate tensile strength of five different continuous fiber-reinforced ceramic composites, including SiC/BSAS (2D 2 types), SiC/MAS-5 (2D), SiC/SiC (2D enhanced), and C/SiC(2D) was determined as a function of test rate at I 100 to 1200 'C in air. All five composite materials exhibited a significant dependency of ultimate strength on test rate such that the ultimate strength decreased with decreasing test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress rate) to another (constant stress loading) for SiC/BSAS suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics.

  6. Influence of Specimen Preparation and Specimen Size on Composite Transverse Tensile Strength and Scatter

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin; Chawan, Arun D.; DeMarco, Kevin; Paris, Isabelle

    2001-01-01

    The influence of specimen polishing, configuration, and size on the transverse tension strength of two glass-epoxy materials, and one carbon-epoxy material, loaded in three and four point bending was evaluated. Polishing machined edges, arid/or tension side failure surfaces, was detrimental to specimen strength characterization instead of yielding a higher, more accurate, strength as a result of removing inherent manufacture and handling flaws. Transverse tension strength was typically lower for longer span lengths due to the classical weakest link effect. However, strength was less sensitive to volume changes achieved by increasing specimen width. The Weibull scaling law typically over-predicted changes in transverse tension strengths in three point bend tests and under-predicted changes in transverse tension strengths in four point bend tests. Furthermore, the Weibull slope varied with specimen configuration, volume, and sample size. Hence, this scaling law was not adequate for predicting transverse tension strength of heterogeneous, fiber-reinforced, polymer matrix composites.

  7. Effects of polymerization and briquetting parameters on the tensile strength of briquettes formed from coal coke and aniline-formaldehyde resin

    SciTech Connect

    Demirbas, A.; Simsek, T.

    2006-10-15

    In this work, the utilization of aniline (C{sub 6}H{sub 7}N) formaldehyde (HCHO) resins as a binding agent of coke briquetting was investigated. Aniline (AN) formaldehyde (F) resins are a family of thermoplastics synthesized by condensing AN and F in an acid solution exhibiting high dielectric strength. The tensile strength sharply increases as the ratio of F to AN from 0.5 to 1.6, and it reaches the highest values between 1.6 and 2.2 F/AN ratio; it then slightly decreases. The highest tensile strength of F-AN resin-coke briquette (23.66 MN/m{sup 2}) was obtained from the run with 1.5 of F/AN ratio by using (NH4){sub 2}S{sub 2}O{sub 8} catalyst at 310 K briquetting temperature. The tensile strength of F-AN resin-coke briquette slightly decreased with increasing the catalyst percent to 0.10%, and then it sharply decreased to zero with increasing the catalyst percent to 0.2%. The effect of pH on the tensile strength is irregular. As the pH of the mixture increases from 9.0 to 9.2, the tensile strength shows a sharp increase, and the curve reaches a plateau value between pH 9.3 and 9.9; then the tensile strength shows a slight increase after pH = 9.9.

  8. Diametrical diseases reflect evolutionary-genetic tradeoffs

    PubMed Central

    Crespi, Bernard J.; Go, Matthew C.

    2015-01-01

    Tradeoffs centrally mediate the expression of human adaptations. We propose that tradeoffs also influence the prevalence and forms of human maladaptation manifest in disease. By this logic, increased risk for one set of diseases commonly engenders decreased risk for another, diametric, set of diseases. We describe evidence for such diametric sets of diseases from epidemiological, genetic and molecular studies in four clinical domains: (i) psychiatry (autism vs psychotic-affective conditions), (ii) rheumatology (osteoarthritis vs osteoporosis), (iii) oncology and neurology (cancer vs neurodegenerative disorders) and (iv) immunology (autoimmunity vs infectious disease). Diametric disorders are important to recognize because genotypes or environmental factors that increase risk for one set of disorders protect from opposite disorders, thereby providing novel and direct insights into disease causes, prevention and therapy. Ascertaining the mechanisms that underlie disease-related tradeoffs should also indicate means of circumventing or alleviating them, and thus reducing the incidence and impacts of human disease in a more general way. PMID:26354001

  9. Relevance of impacter shape to nonvisible damage and residual tensile strength of a thick graphite/epoxy laminate

    NASA Technical Reports Server (NTRS)

    Poe, Clarence C., Jr.

    1991-01-01

    A study was made to determine the relevance of impacter shape to nonvisible damage and tensile residual strength of a 36 mm thick graphite/epoxy motor case. The shapes of the impacters were as follows: 12.7 mm and 25.4 mm diameter hemispheres, a sharp corner, and a 6.3 mm diameter bolt-like rod. The investigation revealed that damage initiated when the contact pressure exceeded a critical level. However, the damage was not visible on the surface until an even higher pressure was exceeded. The impact energy to initiate damage or cause visible damage on the surface increased approximately with impacter diameter to the third power. The reduction in strength for nonvisible damage increased with increasing diameter, 9 and 30 percent for the 12.7 mm and 25.4 mm diameter hemispheres, respectively. The corner impacter made visible damage on the surface for even the smallest impact energy. The rod impacter acted like a punch and sliced through the composite. Even so, the critical level of pressure to initiate damage was the same for the rod and hemispherical impacters. Factors of safety for nonvisible damage increased with increasing kinetic energy of impact. The effects of impacter shape on impact force, damage size, damage visibility, and residual tensile strength were predicted quite well assuming Hertzian contact and using maximum stress criteria and a surface crack analysis.

  10. Temperature-dependence mechanism of tensile strength of Si-Ti-C-O fiber-aluminum matrix composites

    SciTech Connect

    Ochiai, Shojiro; Hojo, Masaki; Osamura, Kozo; Matsunaga, Kenji; Waku, Yoshiharu; Yamamura, Takemi

    1995-03-01

    The mechanism for the temperature dependence of the tensile strength of unidirectional hybrid type Si-Ti-C-O (Tyranno) fiber-reinforced aluminum matrix composite, in which SiC-particles are dispersed in the matrix, is discussed, focusing on the temperature dependencies of the stress concentration arising from broken fibers and critical length and their influences on the composite strength, by means of a shear-lag analysis and a Monte Carlo simulation. The main results are summarized as follows. The softening of the matrix at high temperatures raises the composite strength from the point of decrease in stress concentration, but on the other hand, it also reduces strength from the point of increase in critical length, which reduces the stress-carrying capacity of broken fibers over a long distance. The reason why the measured strength of composite decreased with increasing temperature could be attributed to the predominancy of the latter effect over the former one. The results of the simulation indicated that the hybridization of the composites improved room-temperature and high-temperature strengths through the strengthening of the matrix.

  11. Temperature-dependence mechanism of tensile strength of Si-Ti-C-0 Fiber-Aluminum matrix composites

    NASA Astrophysics Data System (ADS)

    Ochiai, Shojiro; Matsunaga, Kenji; Waku, Yoshiharu; Yamamura, Takemi; Hojo, Masaki; Osamura, Kozo

    1995-03-01

    The mechanism for the temperature dependence of the tensile strength of unidirectional hybrid type Si-Ti-C-O (Tyranno) fiber-reinforced aluminum matrix composite, in which SiC-particles are dispersed in the matrix, is discussed, focusing on the temperature dependencies of the stress concentration arising from broken fibers and critical length and their influences on the composite strength, by means of a shear-lag analysis and a Monte Carlo simulation. The main results are summarized as follows. The softening of the matrix at high temperatures raises the composite strength from the point of decrease in stress concentration, but on the other hand, it also reduces strength from the point of increase in critical length, which reduces the stress-carrying capacity of broken fibers over a long distance. The reason why the measured strength of composite decreased with increasing temperature could be attributed to the predominacy of the latter effect over the former one. The results of the simulation indicated that the hybridization of the composites improved room-temperature and high-temperature strengths through the strengthening of the matrix.

  12. The Value Compressive Strength and Split Tensile Strength on Concrete Mixture With Expanded Polystyrene Coated by Surfactant Span 80 as a Partial Substitution of Fine Aggregate

    NASA Astrophysics Data System (ADS)

    Hidayat, Irpan; Siauwantara, Alice

    2014-03-01

    The value of the density normal concrete which ranges between 2200-2400 kg/m3. Therefore the use of Expanded Polystyrene (EPS) as a subitute to fine aggregate can reduce the density of concrete. The purpose this research is to reduce the density of normal concrete but increase compressive strength of EPS concrete, with use surfactant as coating for the EPS. Variables of substitution percentage of EPS and EPS coated by surfactant are 5%,10%,15%,20%,25%. Method of concrete mix design based on SNI 03-2834-2000 "Tata Cara Pembuatan Rencana Campuran Beton Normal (Provisions for Proportioning Normal Concrete Mixture)". The result of testing, every increase percentage of EPS substitution will decrease the compressive strength around 1,74 MPa and decrease density 34,03 kg/m3. Using Surfactant as coating of EPS , compressive strength increase from the EPS's compressive strength. Average of increasing compressive strength 0,19 MPa and increase the density 20,03 kg/m3,average decrease of the tensile split strength EPS coated surfaktan is 0,84 MPa.

  13. The effects of damage accumulation on the tensile strength and toughness of compact bovine bone.

    PubMed

    Zhang, Wei; Tekalur, Srinivasan Arjun; Baumann, Melissa; McCabe, Laura R

    2013-03-15

    Damage accumulation in compact bovine femur subjected to uniaxial tensile loading was examined by strong light illumination effects of microcracking. Imaging was done using a high-speed camera capturing image at 200 to 1500FPS. The tensile tests were performed in a multipurpose tensile testing system with cross-head speeds ranging from 0.5 to 10mm/min which leads to strain rates of 0.0001 to 0.0012s(-1) (physiologically relevant to walking and running Hansen et al., 2008). The post-failure images were then examined in a scanning electron microscopy (SEM) and effects of microstructure, strain rate, and orientation were evaluated. Correlation of the high-speed images with stress-strain curves indicated that optically visible microcracks were most likely initiated at yielding, and the specimens with dispersed microcracks exhibited a higher energy-absorption capacity compared to the specimens with coalesced local cracks. It was found that damage accumulation negatively correlates to strain rate and that transverse specimens exhibited a different failure pattern compared to the longitudinal specimens. Strain hardening and softening were found in the longitudinal and transverse specimens respectively. The microcracking in the transverse specimens instantly increased to peak after yielding compared to the gradual growth until failure in the longitudinal specimens. The average Young's modulus (21.5GPa) and ultimate stress (93.5MPa) of the specimens loaded in the longitudinal direction were more than twice that of the specimens (10.9GPa and 36.2MPa respectively) loaded in the transverse direction. The current technique has shown potential in relating damage accumulation real time in bone samples subjected to tensile loading condition. This information will be helpful in relating the role of micro damage accumulation in initiating failure and/or remodeling in bone. PMID:23337851

  14. Tensile and electrical properties of high-strength high-conductivity copper alloys

    SciTech Connect

    Zinkle, S.J.; Eatherly, W.S.

    1998-09-01

    Electrical conductivity and tensile properties have been measured on an extruded and annealed CuCrNb dispersion strengthened copper alloy which has been developed for demanding aerospace high heat flux applications. The properties of this alloy are somewhat inferior to GlidCop dispersion strengthened copper and prime-aged CuCrZr over the temperature range of 20--500 C. However, if the property degradation in CuCrZr due to joining operations and the anisotropic properties of GlidCop in the short transverse direction are taken into consideration, CuCrNb may be a suitable alternative material for high heat flux structural applications in fusion energy devices. The electrical conductivity and tensile properties of CuCrZr that was solution annealed and then simultaneously aged and diffusion bonded are also summarized. A severe reduction in tensile elongation is observed in the diffusion bonded joint, particularly if a thin copper shim is not placed in the diffusion bondline.

  15. Diametral compression test: Analysing the H/ D ratio influence on the mechanical resistance of UO 2-green pellets

    NASA Astrophysics Data System (ADS)

    Santana, H. H. S.; Maier, G.; Ródenas, J.

    2010-07-01

    Fired ceramic components and green compacted bodies from ceramic powder are both fragile structures. Their particles have weak mechanical links or are just agglomerated by a binder. Due to the compaction process failure can occur during unloading and ejection stages and also after a certain level of densification or powder cohesion has been achieved. Ceramic materials normally have worse standard deviation in the splitting tensile strength values when subjected to static or dynamic impact tests than metals. The height-to-diameter ( H/ D) ratio has been studied for several materials showing that by having different geometrical correlations the mechanical resistance of the tested specimens is highly affected. Cylindrical UO 2-green pellet samples, having approximately the same density with three different diameters and four different heights, were pressed and experimentally studied by means of the diametral compression (Brazilian) test. By combining the diameters and the heights different H/ D ratios could be tested. Results, which were analysed using Weibull statistics, showed that the cylinder size has a great influence on the Weibull module ( m), whereas for the Weibull tensile strength no conclusive tendency could be observed except if we keep the height fixed and increase the pellet diameter. Pellets having the same height showed an increased tendency for the m value if their diameter is increased. The largest volume by each diameter has the highest Weibull module values.

  16. Tensile Strength and Microstructure of Al2O3-ZrO2 Hypo-Eutectic Fibers Studied

    NASA Technical Reports Server (NTRS)

    Farmer, Serene C.; Sayir, Ali

    2001-01-01

    Oxide eutectics offer high-temperature strength retention and creep resistance in oxidizing environments. Al2O3-ZrO2 eutectic strengths have been studied since the 1970's. Directionally solidified oxide eutectics exhibit improved resistance to slow crack growth and excellent strength retention at high temperatures up to 1400 C. Materials studied typically contain Y2O3 to metastably retain the high-temperature cubic and tetragonal polymorphs at room temperature. Al2O3-ZrO2 is of fundamental interest for creep studies because it combines a creep-resistant material, Al2O3, with a very low creep resistance material, ZrO2. Results on mechanical properties and microstructures of these materials will be used to define compositions for creep testing in future work. Substantial variations from the eutectic alumina to zirconia ratio can be tolerated without a loss in room-temperature strength. The effect of increasing Y2O3 addition on the room-temperature tensile strength of an Al2O3-ZrO2 material containing excess Al2O3 was examined at the NASA Glenn Research Center, where the materials were grown using Glenn's world-class laser growth facilities.

  17. AEREX 350 alloy: A 220 ksi minimum tensile strength fastener alloy for service up to 1350{degree}F

    SciTech Connect

    Buzolits, S.R.; Lawler, M.J.; Erickson, G.L.; Maloney, J.L.

    1995-12-31

    AEREX{trademark} 350 Alloy is a new high strength, high temperature, corrosion resistant fastener material which has been developed to service the more demanding requirements typical of newer gas turbine engines. It exhibits the highest creep- and stress-rupture resistance known for any fastener material between 620 and 760 C (1,150 and 1,400 F). Furthermore, its coefficient of thermal expansion is equivalent to conventional nickel base superalloys, such as Waspaloy and Udimet 720. These characteristics combined with its excellent tensile and impact strengths, thermal stability and resistance to stress relaxation suggest that AEREX 350 Alloy is an excellent candidate for high temperature fastener applications, such as those existing in aircraft and land-based gas turbine engines.

  18. Comment on ``On the tensile strength distribution of multiwalled carbon nanotubes'' [Appl. Phys. Lett. 87, 203106 (2005)

    NASA Astrophysics Data System (ADS)

    Lu, Chunsheng

    2008-05-01

    In a recent letter, Barber, Andrews, Schadler, and Wagner, Appl. Phys. Lett. 87, 203106 (2005). indicated that Weibull-Poisson statistics could accurately model the nanotube tensile strength data, and then concluded that the apparent strengthening mechanism in a multiwalled carbon nanotube (MWCNT) grown by chemical vapor deposition (CVD) is most likely caused by an enhanced interaction between the walls of the nanotube. In this comment, we show that their conclusion seems to be inconsistent with the assumption introduced in the data analysis by using a two-parameter Weibull distribution. Further statistical analysis provides a new explanation on the scattered strengths of MWCNTs. The effectiveness of Weibull-Poisson statistics at nanoscales is also discussed.

  19. Diametric Quadrilaterals with Two Equal Sides

    ERIC Educational Resources Information Center

    Beauregard, Raymond A.

    2009-01-01

    If you take a circle with a horizontal diameter and mark off any two points on the circumference above the diameter, then these two points together with the end points of the diameter form the vertices of a cyclic quadrilateral with the diameter as one of the sides. We refer to the quadrilaterals in question as diametric. In this note we consider…

  20. Development of Cold-Rolled Dual-Phase Steels with Tensile Strength Above 1000 MPa and Good Bendability

    NASA Astrophysics Data System (ADS)

    Rosenberg, Gejza; Sinaiová, Iveta; Hvizdoš, Pavol; Juhar, L'uboš

    2015-10-01

    This paper presents the most important results of the study oriented on development of low-silicon (<0.03Si), precipitation-strengthened, fine-grained, cold-rolled dual-phase (DP) steels with tensile strength greater than 1000 MPa, primarily intended for the automotive industry. For this purpose, extensive systematic investigations were conducted with the aim to optimize the composition/processing conditions with regard to the microstructural effects on tensile properties and bendability of DP steels. Within this study, influence of the addition of Mn, Cr, Mo and/or both Mo and Ti on the microstructure and tensile properties of eight steels molded in the form of ~20 kg ingots processed by controlled rolling has been investigated. The effect of simulated coiling temperature on hot-rolled steels followed by cold rolling and intercritical annealing at temperatures 1023 K and 1073 K (750 °C and 800 °C) as well as the interaction between ferrite recrystallization and austenite formation were examined. Investigation of the effect of intercritical annealing on the structure-property relationships was carried out on steels in both the hot-rolled and cold-rolled states. It was found that in spite of strength above 1000 MPa, good bendability (steel strip may have been bent to 180 deg at radius of 0.5 mm) can be achieved in the cold-rolled intercritically annealed steel with nominal composition 0.15-C-1.2Mn-0.02Si-0.2Mo-0.1Ti by more or less homogeneous distribution of fine Ti precipitates (<5 nm) within fine ferrite grains (<2 μm) and about 35 pct martensite volume fraction in the microstructure of DP steel.

  1. Waiting Time for Coronal Preparation and the Influence of Different Cements on Tensile Strength of Metal Posts

    PubMed Central

    Oliveira, Ilione Kruschewsky Costa Sousa; Arsati, Ynara Bosco de Oliveira Lima; Basting, Roberta Tarkany; França, Fabiana Mantovani Gomes

    2012-01-01

    This study aimed to assess the effect of post-cementation waiting time for core preparation of cemented cast posts and cores had on retention in the root canal, using two different luting materials. Sixty extracted human canines were sectioned 16 mm from the root apex. After cast nickel-chromium metal posts and cores were fabricated and luted with zinc phosphate (ZP) cement or resin cement (RC), the specimens were divided into 3 groups (n = 10) according to the waiting time for core preparation: no preparation (control), 15 minutes, or 1 week after the core cementation. At the appropriate time, the specimens were subjected to a tensile load test (0.5 mm/min) until failure. Two-way ANOVA (time versus cement) and the Tukey tests (P < 0.05) showed significantly higher (P < 0.05) tensile strength values for the ZP cement groups than for the RC groups. Core preparation and post-cementation waiting time for core recontouring did not influence the retention strength. ZP was the best material for intraradicular metal post cementation. PMID:22291705

  2. Measurement of ultimate tensile strength and Young modulus in LYSO scintillating crystals

    NASA Astrophysics Data System (ADS)

    Scalise, Lorenzo; Rinaldi, Daniele; Davì, Fabrizio; Paone, Nicola

    2011-10-01

    Scintillating crystals are employed in high energy physics, in medical imaging, diagnostic and security. Two mechanical properties of lutetium-yttrium oxyorthosilicate cerium-doped Lu 2(1- x) Y 2 xSiO 5:Ce with x=0.1 (LYSO) crystals have been measured: the ultimate tensile stress ( σUTS) and the Young elastic modulus ( E). Measurements are made by means of a 4-points loading device and the experimental results account for an elastic-brittle stress-strain relation, which depends heavily on the specimen preparation and the material defects. σUTS along the [0 1 0] tensile direction ranges within 68.14 and 115.61 MPa, which, in the lowest case, is more than twice with respect to those measured for PbWO 4 (PWO), exhibiting a marked difference between the annealed and the not-annealed samples. The mean elastic modulus ( E), along the same direction, is E=1.80×10 11 (±2.15×10 10) N/m 2, with lower dispersion respect to UTS data. This type of analysis and study can be included into quality control procedures of crystals, based on samples taken out of production; such procedures can be established for industrial processing of crystals aimed to the high energy physics (calorimeters) and medical imaging (PET, etc.) applications.

  3. The influence of tensile fatigue damage on residual compressive strength of woven composites

    SciTech Connect

    Mitrovic, M.; Carman, G.P.

    1995-12-31

    The long term mechanical fatigue of a Celion G30-500/PMR-15 woven composite system is investigated to study the interrelationship between thermo-mechanical properties, namely the thermal expansion coefficient (TEC) and the compressive strength. Residual compressive strength measurements (IITRI fixture) conducted on specimens subjected to tension-tension fatigue cycling indicate that this material property is sensitive to cracks and delaminations which form during mechanical cycling. Measured compressive strength degradation are as large as 49% for this material undergoing mechanical fatigue cycling with TEC degradation as large as 61%. Experimental results show that a correlation exists between TEC measurements and compressive strength. This correlation suggests that TEC measurements may be used as a damage evaluation technique.

  4. Effect of laser welding on the titanium composite tensile bond strength.

    PubMed

    Galo, Rodrigo; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina Silveira; Pagnano, Valéria de Oliveira; de Mattos, Maria da Glória Chiarello

    2009-01-01

    The aim of this study was to analyze the shear bond strength between commercially pure titanium, with and without laser welding, after airbone-particle abrasion (Al(2)O(3)) and 2 indirect composites. Sixty-four specimens were cast and divided into 2 groups with and without laser welding. Each group was divided in 4 subgroups, related to Al(2)O(3) grain size: A - 250 microm; B - 180 microm; C- 110 microm; and D - 50 microm. Composite rings were formed around the rods and light polymerized using UniXS unit. Specimens were invested and their shear bond strength at failure was measured with a universal testing machine at a crosshead speed of 2.0 mm/min. Statistical analysis was carried out with ANOVA and Tukey's test (alpha=0.05). The highest bond strength means were recorded in 250 microm group without laser welding. The lowest shear bond strength means were recorded in 50 microm group with laser welding. Statistically significant differences (p<0.05) were found between all groups. In conclusion, airborne particle abrasion yielded significantly lower bond strength as the Al(2)O(3) particle size decreased. Shear bond strength decreased in the laser welded specimens. PMID:20126909

  5. Effect of test temperature and strain rate on the tensile properties of high-strength, high-conductivity copper alloys

    SciTech Connect

    Zinkle, S.J.; Eatherly, W.S.

    1997-04-01

    The unirradiated tensile properties of wrought GlidCop AL25 (ITER grade zero, IGO) solutionized and aged CuCrZr, and cold-worked and aged and solutionized and aged Hycon 3HP{trademark} CuNiBe have been measured over the temperature range of 20-500{degrees}C at strain rates between 4 x 10{sup {minus}4} s{sup {minus}1} and 0.06 s{sup {minus}1}. The measured room temperature electrical conductivity ranged from 64 to 90% IACS for the different alloys. All of the alloys were relatively insensitive to strain rate at room temperature, but the strain rate sensitivity of GlidCop Al25 increased significantly with increasing temperature. The CuNiBe alloys exhibited the best combination of high strength and high conductivity at room temperature. The strength of CuNiBe decreased slowly with increasing temperature. However, the ductility of CuNiBe decreased rapidly with increasing temperature due to localized deformation near grain boundaries, making these alloy heats unsuitable for typical structural applications above 300{degrees}C. The strength and uniform elongation of GlidCop Al25 decreased significantly with increasing temperature at a strain rate of 1 x 10{sup {minus}3} s{sup {minus}1}, whereas the total elongation was independent of test temperature. The strength and ductility of CuCrZr decreased slowly with increasing temperature.

  6. Müller glia provide essential tensile strength to the developing retina

    PubMed Central

    MacDonald, Ryan B.; Randlett, Owen; Oswald, Julia; Yoshimatsu, Takeshi

    2015-01-01

    To investigate the cellular basis of tissue integrity in a vertebrate central nervous system (CNS) tissue, we eliminated Müller glial cells (MG) from the zebrafish retina. For well over a century, glial cells have been ascribed a mechanical role in the support of neural tissues, yet this idea has not been specifically tested in vivo. We report here that retinas devoid of MG rip apart, a defect known as retinoschisis. Using atomic force microscopy, we show that retinas without MG have decreased resistance to tensile stress and are softer than controls. Laser ablation of MG processes showed that these cells are under tension in the tissue. Thus, we propose that MG act like springs that hold the neural retina together, finally confirming an active mechanical role of glial cells in the CNS. PMID:26416961

  7. Effects on stress rupture life and tensile strength of tin additions to Inconel 718

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Johnson, W.

    1982-01-01

    Because Inconel 718 represents a major use of columbium and a large potential source of columbium for aerospace alloys could be that of columbium derived from tin slags, the effects of tin additions to Inconel 718 at levels which might be typical of or exceed those anticipated if tin slag derived columbium were used as a melting stock were investigated. Tin was added to 15 pound Inconel 718 heats at levels varying from none added to approximately 10,000 ppm (1 wt%). Limited 1200 F stress rupture testing was performed at stresses from 68,000 to 115,000 psi and a few tensile tests were performed at room temperature, 800 and 1200 F. Additions of tin in excess of 800 ppm were detrimental to ductility and stress rupture life.

  8. Relevance of impacter shape to nonvisible damage and residual tensile strength of a thick graphite/epoxy laminate

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1990-01-01

    A study was made to determine the relevance of impacter shape to nonvisible damage and tensile residual strength of a 36 mm (1.4 in.) thick graphite/epoxy motor case. The shapes of the impacters were as follows: 12.7 mm (0.5 in.) and 25.4 mm (1.0 in.) diameter hemispheres, a sharp corner, and a 6.3 mm (0.25 in.) diameter bolt-like rod. The investigation revealed that damage initiated when the contact pressure exceeded a critical level. However, the damage was not visible on the surface until an even higher pressure was exceeded. The damage on the surface consisted of a crater shaped like the impacter, and the damage below the surface consisted of broken fibers. The impact energy to initiate damage or cause visible damage on the surface increased approximately with impacter diameter to the third power. The reduction in strength for nonvisible damage increased with increasing diameter, 9 and 30 percent for the 12.7 mm (0.5 in.) and 25.4 mm (1.0 in.) diameter hemispheres, respectively. The corner impacter made visible damage on the surface for even the smallest impact energy. The rod impacter acted like a punch and sliced through the composite. Even so, the critical level of pressure to initiate damage was the same for the rod and hemispherical impacters. Factors of safety for nonvisible damage increased with increasing kinetic energy of impact. The effects of impacter shape on impact force, damage size, damage visibility, and residual tensile strength were predicted quite well assuming Hertzian contact and using maximum stress criteria and a surface crack analysis.

  9. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin

    PubMed Central

    TÜRKMEN, Cafer; DURKAN, Meral; CİMİLLİ, Hale; ÖKSÜZ, Mustafa

    2011-01-01

    Objective The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. Material and Methods Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group): direct composite resin restoration (Alert) with etch-and-rinse adhesive system (Bond 1 primer/adhesive), Group 2: indirect composite restoration (Estenia) luted with a resin cement (Cement-It) combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond), Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively) onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. Results The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7) showed better results compared to the other groups (p<0.05). Group 4 showed the weakest bond strength (p>0.05). The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. Conclusion The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces. PMID:21710095

  10. On the Compressive and Tensile Dynamic Strength of Magnesium Aluminate Spinel

    NASA Astrophysics Data System (ADS)

    Hayun, Shmuel; Paris, Vitaly; Dariel, Moshe; Zaretsky, Eugene; Frage, Nahum

    2009-06-01

    Polycrystalline transparent Magnesium Aluminate Spinel (MAS) is an attractive material for a wide range of optical, electronic, structural and armor applications. Transparent MAS samples of 20-30 mm diameter and 3-5 mm thickness has been successfully fabricated by means of Field Assisted Sintering Technology. The dynamic response of MAS was investigated by plate impact experiments. The values of the Hugoniot Elastic Limit (HEL) and the spall strength were derived from the VISAR records of the velocities of the free sample surface or of the sample/window (PMMA) interface. The dependence of the HEL and the spall strength on the impact stress, as well as, correlation between the spall strength and the width of the loading pulse are discussed.

  11. Residual strength of composite laminates subjected to tensile-compressive fatigue loading

    NASA Technical Reports Server (NTRS)

    Rotem, Assa; Nelson, H. G.

    1990-01-01

    Results are presented on the measurements of the residual strengths of T300/934 graphite epoxy laminates, in tension and in compression, after the samples were exposed to tension-compression fatigue loading (R = -1). Four laminate ocnfigurations were tested: unidirectional, cross-ply, angle-ply, and quasi-isotropic. It was found that the fatigue behavior of laminates was dependent on the quasi-static strengths and the specific structure of the laminate. No direct correlation was found between remaining residual strengths and the percentage of average fatigue life. However, a correlation scheme was developed for the individual specimen under test, based on a cumulative damage model and a stiffness change of the material.

  12. Tensile strength of composite sheets with unidirectional stringers and crack-like damage: A brief report

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1984-01-01

    The residual strength of composite sheets with bonded composite stringers loaded in tension was determined. The results are summarized. About 50 graphite/epoxy composite panels with crack-like slots were monotonically loaded in tension to failure. Both sheet layup and stringer configuration were varied. The composite panels have considerable damage tolerance. The stringers arrested cracks that ran from the crack-like slots, and the residual strengths were considerably greater than those of unstiffened composite sheets. A stress-intensity factor analysis was developed to predict the failing strains of the stiffened panels. Using the analysis, a single design curve was produced for composite sheets with bonded stringers of any configuration.

  13. A curved beam test specimen for determining the interlaminar tensile strength of a laminated composite

    NASA Technical Reports Server (NTRS)

    Hiel, Clement C.; Sumich, Mark; Chappell, David P.

    1990-01-01

    A curved beam type of test specimen is evaluated for use in determining the through-the-thickness strength of laminated composites. Two variations of a curved beam specimen configuration (semi-circular and elliptical) were tested to failure using static and fatigue loads. The static failure load for the semi-circular specimens was found to be highly sensitive to flaw content, with the specimens falling into two distinct groups. This result supports the use of proof testing for structural validation. Static design allowables are derived based on the Weibull distribution. Fatigue data indicates no measured increase in specimen compliance prior to final fracture. All static and fatigue failures at room temperature dry conditions occurred catastrophically. The elliptical specimens demonstrated unusually high failure strengths indicating the presence of phenomena requiring further study. Results are also included for specimens exposed to a wet environment showing a matrix strength degradation due to moisture content. Further testing is under way to evaluate a fatigue methodology for matrix dominated failures based on residual static strength (wearout).

  14. A curved beam test specimen for determining the interlaminar tensile strength of a laminated composite

    NASA Technical Reports Server (NTRS)

    Hiel, Clement C.; Sumich, Mark; Chappell, David P.

    1991-01-01

    A curved beam type of test specimen is evaluated for use in determining the through-the-thickness strength of laminated composites. Two variations of a curved beam specimen configuration (semicircular and elliptical) were tested to failure using static and fatigue loads. The static failure load for the semicircular specimens was found to be highly sensitive to flaw content, with the specimens falling into two distinct groups. This result supports the use of proof testing for structural validation. Static design allowables are derived based on the Weibull distribution. Fatigue data indicates no measured increase in specimen compliance prior to final fracture. All static and fatigue failures at room temperature dry conditions occurred catastrophically. The elliptical specimens demonstrated unusually high failure strengths indicating the presence of phenomena requiring further study. Results are also included for specimens exposed to a wet environment showing a matrix strength degradation due to moisture content. Further testing is underway to evaluate a fatigue methodology for matrix dominated failures based on residual static strength (wearout).

  15. Evaluation of a sugar based edible adhesive utilizing a tensile strength tester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new method to evaluate adhesives has been developed and utilized to formulate a recently patented adhesive based on sugar and citric acid. Factors affecting adhesive performance were uncovered, such as reduced strength due to improper heating time, and an optimal curing temperature of 60oC was ac...

  16. Simplified method measures changes in tensile yield strength using least number of specimens

    NASA Technical Reports Server (NTRS)

    Dixon, C. E.

    1967-01-01

    Simplified method determines yield strength due to heat treat, irradiation or mechanical treatment. Each specimen in a group of specimens is tested for yield stress point, subjected to heat treat or irradiation, and retested for new yield stress point which is a measure of change in material.

  17. Tensile strength of composite sheets with unidirectional stringers and crack-like damage

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1984-01-01

    The damage tolerance characteristics of metal tension panels with riveted and bonded stringers are well known. The stringers arrest unstable cracks and retard propagation of fatigue cracks. Residual strengths and fatigue lives are considerably greater than those of unstiffened or integrally stiffened sheets. The damage tolerance of composite sheets with bonded composite stringers loaded in tension was determined. Cracks in composites do not readily propagate in fatigue, at least not through fibers. Moreover, the residual strength of notched composites is sometimes even increased by fatigue loading. Therefore, the residual strength aspect of damage tolerance, and not fatigue crack propagation, was investigated. About 50 graphite/epoxy composite panels were made with two sheet layups and several stringer configurations. Crack-like slots were cut in the middle of the panels to simulate damage. The panels were instrumented and monotonically loaded in tension to failure. The tests indicate that the composite panels have considerable damage tolerance, much like metal panels. The stringers arrested cracks that ran from the crack-like slots, and the residual strengths were considerably greater than those of unstiffened composite sheets. A stress intensity factor analysis was developed to predict the failing strains of the stiffened panels. Using the analysis, a single design curve was produced for composite sheets with bonded stringers of any configuration.

  18. A curved beam test specimen for determining the interlaminar tensile strength of a laminated composite

    SciTech Connect

    Hiel, C.C.; Sumich, M.; Chappell, D.P. )

    1991-07-01

    A curved beam type of test specimen is evaluated for use in determining the through-the-thickness strength of laminated composites. Two variations of a curved beam specimen configuration (semicircular and elliptical) were tested to failure using static and fatigue loads. The static failure load for the semicircular specimens was found to be highly sensitive to flaw content, with the specimens falling into two distinct groups. This result supports the use of proof testing for structural validation. Static design allowables are derived based on the Weibull distribution. Fatigue data indicates no measured increase in specimen compliance prior to final fracture. All static and fatigue failures at room temperature dry conditions occurred catastrophically. The elliptical specimens demonstrated unusually high failure strengths indicating the presence of phenomena requiring further study. Results are also included for specimens exposed to a wet environment showing a matrix strength degradation due to moisture content. Further testing is underway to evaluate a fatigue methodology for matrix dominated failures based on residual static strength (wearout). 10 refs.

  19. Micro-tensile bond strength of different adhesive systems on sound dentin and resin-based composite: An in-vitro study

    PubMed Central

    Mallick, Rashmirekha; Sarangi, Priyanka; Mohanty, Sandhyarani; Behera, Subasish; Nanda, Soumyaranjan; Satapathy, Sukanta Kumar

    2015-01-01

    Aim: To analyze the difference in the micro-tensile bond strength of specimens made with two different adhesive systems and compare them with two homogenous substrates. Materials and Methods: Sixty permanent mandibular molars were mounted in acrylic blocks and sectioned with exposed dentin surfaces. Samples were then divided into four groups. To Group-I Adper Single Bond 2 and to Group-II Adper Self-Etch plus bonding agents were applied. For Group-I and Group-II beams consisted of resin composite in the upper half and dentin in the lower half. In Group-III beams were made of only dentin. In Group-IV beams were made of only composite. Fifteen specimens of each group were taken for the micro-tensile bond strength test. Statistical Analysis: The results are analyzed using one-way analysis of variance and Critical Difference test. Results: The interface bonded with the two adhesive systems had lower micro-tensile bond strength than those of dentin and resin composite and the self-etching adhesive Adper Self-Etch plus had comparable bond strength with total-etch adhesive Adper Single Bond 2. Conclusion: The bond strength values for current adhesive systems cannot be compared to the micro-tensile bond strength of dentin and resin composite, and self-etching adhesives have comparable bond strength with total-etch adhesives. PMID:26430301

  20. Ultrasonic Spot Welding of Aluminum to High-Strength Low-Alloy Steel: Microstructure, Tensile and Fatigue Properties

    NASA Astrophysics Data System (ADS)

    Patel, V. K.; Bhole, S. D.; Chen, D. L.

    2014-04-01

    The structural applications of lightweight aluminum alloys inevitably involve dissimilar welding with steels and the related durability issues. This study was aimed at evaluating the microstructural change, lap shear tensile load, and fatigue resistance of dissimilar ultrasonic spot-welded joints of aluminum-to-galvanized high-strength low-alloy (HSLA) steel. Two non-uniform layers were identified in between Al and HSLA steel via SEM/EDS and XRD. One was an Al-Zn eutectic layer and the other was a thin (<2 μm) layer of intermetallic compound (IMC) of Al and Fe in the nugget zone. The lap shear tensile testing gave a maximum load of 3.7 kN and the sample failed initially in between the Al-Zn eutectic film and Al-Fe IMC, and afterward from the region containing Al on both matching fracture surfaces. The fatigue test results showed a fatigue limit of about 0.5 kN (at 1 × 107 cycles). The maximum cyclic stress at which transition of the fatigue fracture from transverse through-thickness crack growth mode to the interfacial failure mode occurs increases with increasing energy input.

  1. Disruption patterns of rotating self-gravitating aggregates: A survey on angle of friction and tensile strength

    NASA Astrophysics Data System (ADS)

    Sánchez, Paul; Scheeres, Daniel J.

    2016-06-01

    This paper presents a study, through the use of a SSDEM simulation code, of the possible disruption patterns and mechanisms of self-gravitating aggregates that are spun-up to the point of disruption. We do this survey by systematically changing the angle of friction and tensile stress of the aggregates. It is observed that the amount of deformation that takes place before disruption, as well as its onset, is directly related to the angle of friction. On the other hand, the change in tensile strength allows us to clearly observe a continuous transition from losing surface material to larger scale fission at higher spin rates before disruption, but in no case do we observe surface flow. These results are also compared to other simulation results and the observations of asteroids P/2013 R3, P/2013 P5, 1950 DA, 1999 KW4 and Geographos. Additionally, we propose modifications to previously discussed mechanisms for the formation of binary asteroids and asteroid pairs.

  2. An Investigation of the Tensile Strength of a Composite-To-Metal Adhesive Joint

    NASA Astrophysics Data System (ADS)

    Tsouvalis, Nicholas G.; Karatzas, Vassilios A.

    2011-04-01

    The present study examines the feasibility of a simple concept composite-to-metal butt joint through the performance of both numerical and experimental studies. The composite part is made of glass/epoxy unidirectional layers made with the vacuum bag method. The geometry of the joint is typical for marine applications and corresponds to a low stiffness ratio. Two major parameters are investigated, namely the overlap length and the surface preparation of the steel adherent. Manufacturing of specimens and the procedure of the tensile tests are described in detail, giving hints for obtaining a better quality joint. Axial elongation and strains at various places of the joint were monitored and also numerically calculated. The tests revealed that the joint is quite effective, irrespectively of the steel surface preparation method. The failure loads are comparable and in some cases superior to other corresponding values found in the literature. The numerical models proved to adequately predict the structural response of the joint up to the loading where debonding starts.

  3. Effect of Load Rate on Ultimate Tensile Strength of Ceramic Matrix Composites at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2001-01-01

    The strengths of three continuous fiber-reinforced ceramic composites, including SiC/CAS-II, SiC/MAS-5 and SiC/SiC, were determined as a function of test rate in air at 1100 to 1200 C. All three composite materials exhibited a strong dependency of strength on test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress-rate) to another (constant stress loading) suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics. It was further found that constant stress-rate testing could be used as an alternative to life prediction test methodology even for composite materials, at least for short range of lifetimes and when ultimate strength is used as the failure criterion.

  4. Effect of the fiber-matrix interphase on the transverse tensile strength of the unidirectional composite material

    NASA Technical Reports Server (NTRS)

    Tsai, H. C.; Arocho, A. M.

    1992-01-01

    A simple one-dimensional fiber-matrix interphase model has been developed and analytical results obtained correlated well with available experimental data. It was found that by including the interphase between the fiber and matrix in the model, much better local stress results were obtained than with the model without the interphase. A more sophisticated two-dimensional micromechanical model, which included the interphase properties was also developed. Both one-dimensional and two-dimensional models were used to study the effect of the interphase properties on the local stresses at the fiber, interphase and matrix. From this study, it was found that interphase modulus and thickness have significant influence on the transverse tensile strength and mode of failure in fiber reinforced composites.

  5. A Discrete Element Model for Predicting Shear Strength and Degradation of Rock Joint by Using Compressive and Tensile Test Data

    NASA Astrophysics Data System (ADS)

    Kazerani, T.; Yang, Z. Y.; Zhao, J.

    2012-09-01

    A discrete element model is proposed to examine rock strength and failure. The model is implemented by UDEC, which is developed for this purpose. The material is represented as a collection of irregular-sized deformable particles interacting at their cohesive boundaries. The interface between two adjacent particles is viewed as a flexible contact whose constitutive law controls the material fracture and fragmentation properties. To reproduce rock anisotropy, an orthotropic cohesive law is developed for the contacts, which allows their shear and tensile behaviors to be different from each other. Using a combination of original closed-form expressions and statistical calibrations, a unique set of the contact microparameters are found based on the uniaxial/triaxial compression and Brazilian tension test data of a plaster. Applying the obtained microparameters, joint specimens, made of the same plaster, are simulated, where the comparison of the obtained results to laboratory data shows a reasonable agreement.

  6. Gas bubble retention and its effect on waste properties: Retention mechanisms, viscosity, and tensile and shear strengths

    SciTech Connect

    Gauglitz, P.A.; Rassat, S.D.; Powell, M.R.

    1995-08-01

    Several of the underground nuclear storage tanks at Hanford have been placed on a flammable gas watch list, because the waste is either known or suspected to generate, store, and episodically release flammable gases. Because retention and episodic release of flammable gases from these tanks containing radioactive waste slurries are critical safety concerns, Pacific Northwest Laboratory (PNL) is studying physical mechanisms and waste properties that contribute to the episodic gas release from these storage tanks. This study is being conducted for Westinghouse Hanford Company as part of the PNL Flammable Gas project. Previous investigations have concluded that gas bubbles are retained by the slurry or sludge that has settled at the bottom of the tanks; however, the mechanisms responsible for the retention of these bubbles are not well understood. Understanding the rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles and the dynamics of how these bubbles are released from the waste. The presence of gas bubbles is expected to affect the rheology of the sludge, specifically its viscosity and tensile and shear strengths, but essentially no literature data are available to assess the effect of bubbles. The objectives of this study were to conduct experiments and develop theories to understand better how bubbles are retained by slurries and sludges, to measure the effect of gas bubbles on the viscosity of simulated slurries, and to measure the effect of gas bubbles on the tensile and shear strengths of simulated slurries and sludges. In addition to accomplishing these objectives, this study developed correlations, based on the new experimental data, that can be used in large-scale computations of waste tank physical phenomena.

  7. Evaluation of a sugar-based edible adhesive using a tensile strength tester.

    PubMed

    Doll, Kenneth M; Erhan, Sevim Z

    2011-04-01

    A method to evaluate adhesives has been developed and used to reformulate a recently patented adhesive which is based on sugar and citric acid. Factors affecting adhesive performance were uncovered, such as an optimal curing temperature of 60°C. The addition of maltodextrin and soy protein at optimized levels was shown to nearly double the bonding strength of the adhesive, from 0.46 ± 0.076 to 0.74 ± 0.26 kN, under our test conditions. Also discussed is the potential for this method to be automated using commercially available equipment. PMID:21609697

  8. Tensile strength and elongation of laser-welded Ti and Ti-6AL-7NB.

    PubMed

    Watanabe, Ikuya; Topham, D Scott

    2004-10-15

    This study established data demonstrating the possible laser-welded strengths of cast Ti and Ti-6Al-7Nb and compared them to those of two dental-casting alloys. Cast plates of Ti, Ti-6Al-7Nb, gold, and Co-Cr alloy were prepared. After polishing the surfaces to be welded, two plates were abutted and welded using an Nd:YAG laser at a pulse duration of 10 ms, spot diameter of 1 mm, and voltage of 200 V. Five specimens were prepared for each metal by welding either three or five spots unilaterally or bilaterally. The fracture load and percent elongation were measured at a crosshead speed of 1.0 mm/min. The bilaterally welded specimens performed significantly greater than unilaterally welded specimens in both fracture load and elongation whether they were welded with three or five spots per side. The bilaterally welded Ti and Ti-6Al-7Nb specimens were nearly as strong as their corresponding control specimens, whereas the gold and Co-Cr specimens were approximately half as strong. When a large proportion of the cross-sectional area of the joint is laser welded, the strength of the laser-welded portion of the cast Ti and Ti-6Al-7Nb may approach or equal that of the nonwelded metal frameworks. PMID:15368227

  9. An evaluation of the +/-45 deg tensile test for the determination of the in-plane shear strength of composite materials

    NASA Technical Reports Server (NTRS)

    Kellas, S.; Morton, J.; Jackson, K. E.

    1991-01-01

    The applicability of the +/-45 deg tensile test for the determination of the in-plane shear strength of advanced composite laminates is studied. The assumptions used for the development of the shear strength formulas were examined, and factors such as the specimen geometry and stacking sequence were assessed experimentally. It was found that the strength of symmetric and balanced +/-45 deg laminates depends primarily upon the specimen thickness rather than the specimen width. These findings have important implications for the +/-45 deg tensile test which is recommended by several organizations for the determination of the in-plane shear stress/strain response and the shear strength of continuous fiber reinforced composites. Modifications to the recommended practices for specimen selection and shear strength determination are suggested.

  10. On the determination of tensile and compressive strengths of unidirectional fiber composites

    SciTech Connect

    Chatterjee, S.N.; Yen, C.F.; Oplinger, D.W.

    1997-12-31

    Stress fields in tabbed unidirectional composite coupons and in cross-ply specimens are examined with a goal towards improving the methods for determining the axial strengths of the unidirectional material. Results of parametric studies for evaluation of the influence of tab materials and geometries as well as adhesive properties on the stress peaks in unidirectional tension coupons are presented. Use of ductile (but tough) adhesives, soft tabs, and low taper angles is recommended to reduce failures near tab ends. Data reduction schemes for evaluation of cross-ply test data are critically examined with due consideration to subcritical damages (such as ply cracks) and expected failure modes. Test results from cross-ply and unidirectional tension and compression specimens of carbon and glass-fiber composites are compared. Some recommendations are made based on the results reported. Tests and data correlations for other composites are suggested for selecting a data reduction scheme acceptable to the composites community.

  11. Macrophage depletion reduces cell proliferation and extracellular matrix accumulation but increases the ultimate tensile strength of injured Achilles tendons.

    PubMed

    de la Durantaye, Mélissa; Piette, Antoine Boulanger; van Rooijen, Nico; Frenette, Jérôme

    2014-02-01

    Macrophages are present in large numbers and display specific and distinct phenotypes during the various phases of tissue repair. However, their role following tendon injury and during repair has never been investigated. We injected C57BL/6 mice daily for 4 days with liposome-encapsulated clodronate to deplete circulating monocytes/macrophages. Placebo mice were injected with PBS. The left Achilles tendons of the mice were transversely sectioned and sutured using the 8-strand technique. Macrophage accumulation and cell proliferation were significantly lower in the tendons of clodronate-treated mice than in those of PBS-treated mice on days 3 and 7 post-injury. TGF-β1 staining was significantly more intense in the tendons of PBS-treated mice on day 7 post-injury. Edema and the dry mass of the Achilles tendons were also higher in the PBS-treated mice on days 7 and 14 post-injury. No differences in absolute strength and stiffness were observed, but Young's modulus and maximal stress were significantly greater for tendons from the clodronate-treated mice than those from PBS-treated mice after 14 days of tendon repair. Overall, our findings showed that macrophages promote cell proliferation and extracellular matrix accumulation but their presence leads to inferior ultimate tensile strength of the Achilles tendons. PMID:24307236

  12. Metalloproteases meprin α and meprin β are C- and N-procollagen proteinases important for collagen assembly and tensile strength

    PubMed Central

    Broder, Claudia; Arnold, Philipp; Vadon-Le Goff, Sandrine; Konerding, Moritz A.; Bahr, Kerstin; Müller, Stefan; Overall, Christopher M.; Bond, Judith S.; Koudelka, Tomas; Tholey, Andreas; Hulmes, David J. S.; Moali, Catherine; Becker-Pauly, Christoph

    2013-01-01

    Type I fibrillar collagen is the most abundant protein in the human body, crucial for the formation and strength of bones, skin, and tendon. Proteolytic enzymes are essential for initiation of the assembly of collagen fibrils by cleaving off the propeptides. We report that Mep1a−/− and Mep1b−/− mice revealed lower amounts of mature collagen I compared with WT mice and exhibited significantly reduced collagen deposition in skin, along with markedly decreased tissue tensile strength. While exploring the mechanism of this phenotype, we found that cleavage of full-length human procollagen I heterotrimers by either meprin α or meprin β led to the generation of mature collagen molecules that spontaneously assembled into collagen fibrils. Thus, meprin α and meprin β are unique in their ability to process and release both C- and N-propeptides from type I procollagen in vitro and in vivo and contribute to the integrity of connective tissue in skin, with consequent implications for inherited connective tissue disorders. PMID:23940311

  13. Parametric studies on tensile strength in joining AA6061- T6 and AA7075-T6 by gas metal arc welding process

    NASA Astrophysics Data System (ADS)

    Ishak, M.; Noordin, N. F. M.; Shah, L. H.

    2015-12-01

    Proper selection of the welding parameters can result in better joining. In this study, the effects of various welding parameters on tensile strength in joining dissimilar aluminum alloys AA6061-T6 and AA7075-T6 were investigated. 2 mm thick samples of both base metals were welded by semi-automatic gas metal arc welding (GMAW) using filler wire ER5356. The welding current, arc voltage and welding speed were chosen as variables parameters. The strength of each specimen after the welding operations were tested and the effects of these parameters on tensile strength were identified by using Taguchi method. The range of parameter for welding current were chosen from 100 to 115 A, arc voltage from 17 to 20 V and welding speed from 2 to 5 mm/s. L16 orthogonal array was used to obtained 16 runs of experiments. It was found that the highest tensile strength (194.34 MPa) was obtained with the combination of a welding current of 115 A, welding voltage of 18 V and welding speed of 4 mm/s. Through analysis of variance (ANOVA), the welding voltage was the most effected parameter on tensile strength with percentage of contribution at 41.30%.

  14. Tensile strength and dilatational elasticity of giant sarcolemmal vesicles shed from rabbit muscle.

    PubMed Central

    Nichol, J A; Hutter, O F

    1996-01-01

    1. Mechanical properties of the surface membrane of skeletal muscle were determined on sarcolemmal vesicles (mean diameter, 71 microns) shed by rabbit psoas muscle swelling in 140 mM KC1 containing collagenase. 2. Vesicles were stressed by partial aspiration into parallel bore pipettes. The isotropic membrane tension so created caused an increase in membrane area which expresses itself in an elongation of the vesicle projection into the pipette. 3. For individual vesicles, a linear relationship between membrane tension and membrane area increase was found up to the point when the vesicle burst, i.e. sarcolemmal vesicles behaved as perfectly elastic structures. 4. The maximum tension sarcolemmal vesicles could sustain before bursting was 12.4 +/- 0.2 mN m-1 (median +/- 95% confidence interval), and the corresponding fractional increase in membrane area was 0.026 +/- 0.005 (median +/- 95% confidence interval). The elastic modulus of area expansion was 490 +/- 88 mN m-1 (mean +/- S.D.). 5. In conformity with cited comparable work on red blood cells and artificial lipid vesicles, the strength and area elasticity of the skeletal muscle membrane are considered properties of the fluid lipid matrix of the membrane and of the degree to which the bilayer is perturbed by lipid-protein interaction. Images Figure 2 PMID:8735704

  15. Tensile strength of a surgeon’s or a square knot

    PubMed Central

    Muffly, Tyler M.; Boyce, Jamie; Kieweg, Sarah L.; Bonham, Aaron J.

    2014-01-01

    Objective To test the integrity of surgeon’s knots and flat square knots using four different suture materials. Study Design Chromic catgut, polyglactin 910, silk, and polydioxanone sutures were tied in the two types of knot configurations. For all sutures, a 0-gauge United States Pharmacopeia suture was used. Knots were tied by a single investigator (JB). Suture was soaked in 0.9 % sodium chloride for 60 seconds and subsequently transferred to a tensiometer where the tails were cut to 3 mm length. We compared the knots, measuring knot strength using a tensiometer until the sutures broke or untied. Results A total of 119 knots were tied. We found no difference in mean tension at failure between a surgeon’s knot (79.7 Newtons) and a flat square knot (82.9 Newtons). Using a Chi-square test, we did not find a statistically significant difference in the likelihood of knots coming untied between surgeon’s knots (29%) and flat square knots (38%). Conclusions Under laboratory conditions, surgeon’s knots and flat square knots did not differ in tension at failure or likelihood of untying. PMID:20816357

  16. Effect of different stages of tensile deformation on micromagnetic parameters in high-strength, low-alloy steel

    SciTech Connect

    Vaidyanathan, S.; Moorthy, V.; Kalyanasundaram, P.; Jayakumar, T.; Raj, B.

    1999-08-01

    The influence of tensile deformation on the magnetic Barkhausen emissions (MBE) and hysteresis loop has been studied in a high-strength, low-alloy steel (HSLA) and its weldment. The magnetic measurements were made both in loaded and unloaded conditions for different stress levels. The root-mean-square (RMS) voltage of the MBE has been used for analysis. This study shows that the preyield and postyield deformation can be identified from the change in the MBE profile. The initial elastic deformation showed a linear increase in the MBE level in the loaded condition, and the MBE level remained constant in the unloaded condition. The microplastic yielding, well below the macroyield stress, significantly reduces the MBE, indicating the operation of grain-boundary dislocation sources below the macroyield stress. This is indicated by the slow increase in the MBE level in the loaded condition and the decrease in the MBE level in the unloaded condition. The macroyielding resulted in a significant increase in the MBE level in the loaded condition and, more clearly, in the unloaded condition. The increase in the MBE level during macroyielding has been attributed to the grain rotation phenomenon, in order to maintain the boundary integrity between adjacent grains, which would preferentially align the magnetic domains along the stress direction. This study shows that MBE during tensile deformation can be classified into four stages: (1) perfectly elastic, (2) microplastic yielding, (3) macroyielding, and (4) progressive plastic deformation. A multimagnetic parameter approach, combining the hysteresis loop and MBE, has been suggested to evaluate the residual stresses.

  17. Evaluation of pH, ultimate tensile strength, and micro-shear bond strength of two self-adhesive resin cements.

    PubMed

    Costa, Luciana Artioli; Carneiro, Karina Kato; Tanaka, Auro; Lima, Darlon Martins; Bauer, José

    2014-01-01

    The aim of this study was to evaluate the pH, ultimate tensile strength (UTS), and micro-shear bond strength (µSBS) of two self-adhesive resin cements to enamel and dentin. Sound bovine incisors (n = 10) and two self-adhesive resin cements (i.e., RelyX U-100 and seT PP) were used. The pH of the resin cements was measured using a pH-indicator paper (n = 3). Specimens for UTS were obtained from an hourglass-shaped mold. For µSBS, cylinders with internal diameter of 0.75 mm and height of 0.5 mm were bonded to the flat enamel and dentin surfaces. Bonded cylinders were tested in the shear mode using a loop wire. The fracture mode was also evaluated. The cement seT PP showed a low pH; U-100 showed significantly higher UTS (49.9 ± 2.0) than seT PP (40.0 ± 2.1) (p < 0.05) and high µSBS to enamel (10.7 ± 3.7). The lowest µSBS was found for seT PP to dentin (0.7 ± 0.6); seT PP to enamel (4.8 ± 1.7), and for U-100 to dentin (7.2 ± 1.9), showing an intermediate µSBS value (p < 0.05). Adhesive failure was the most frequently observed failure mode. The resin cement that presented the lowest pH and UTS also presented the lowest micro-shear bond strength to enamel and dentin. PMID:25337932

  18. Low-output carbon dioxide laser for cutaneous wound closure of scalpel incisions: comparative tensile strength studies of the laser to the suture and staple for wound closure

    SciTech Connect

    Garden, J.M.; Robinson, J.K.; Taute, P.M.; Lautenschlager, E.P.; Leibovich, S.J.; Hartz, R.S.

    1986-01-01

    The low-output carbon dioxide (CO/sub 2/) laser was used for cutaneous wound closure of scalpel incisions. Cutaneous scalpel incisions were placed over the dorsum of three minipigs and were then closed by either the laser, sutures, or staples. At multiple time points after wound closure, up to day 90, the tensile strengths of these wounds were comparatively evaluated. All wounds, including those closed with the laser, clinically appeared to heal similarly with no evidence of wound dehiscence or infection. Tensile strength studies revealed similar sigmoid curves for all wound closure modalities with low initial tensile strengths up to days 14 to 21, which afterwards increased rapidly, with a plateau toward day 90. From our study, it appears that the CO/sub 2/ laser, in the low-output mode, can be used for cutaneous wound closure and that similar clinical healing and tensile strength measurements are obtained relative to the conventional cutaneous wound closure modalities of the suture or staple.

  19. Micro-tensile bond strength of two adhesives to Erbium:YAG-lased vs. bur-cut enamel and dentin.

    PubMed

    De Munck, Jan; Van Meerbeek, Bart; Yudhira, Rafaël; Lambrechts, Paul; Vanherle, Guido

    2002-08-01

    The purpose of the study was to assess the hypotheses that laser irradiation is equally effective for bonding as traditional acid-etch procedures, and that tooth substrate prepared either by Erbium:YAG laser or diamond bur is equally receptive to adhesive procedures. Buccal/oral enamel and mid-coronal dentin were laser-irradiated using an Erbium:YAG laser. A total-etch adhesive (OptiBond FL) applied with and without prior acid-etching and a self-etch adhesive (Clearfil SE Bond) were employed to bond the composite. The micro-tensile bond strength (microTBS) was determined after 24 h of storage in water. Failure patterns were analysed using a stereo-microscope, and samples were processed for Field-emission Scanning Electron Microscopy (Fe-SEM) evaluation. Unbonded, lased enamel and dentin surfaces were evaluated using Fe-SEM as well. The total-etch adhesive bonded significantly less effectively to lased than to bur-cut enamel/dentin. Laser 'conditioning' was clearly less effective than acid-etching. Moreover, acid etching lased enamel and dentin significantly improved the microTBS of OptiBond FL. The self-etch adhesive performed equally to lased as to bur-cut enamel, but significantly less effectively to lased than to bur-cut dentin. It is concluded that cavities prepared by laser appear less receptive to adhesive procedures than conventional bur-cut cavities. PMID:12206595

  20. INFLUENCE OF THE FINAL TEMPERATURE OF INVESTMENT HEALTING ON THE TENSILE STRENGTH AND VICKERS HARDNESS OF CP TI AND TI-6AL-4V ALLOY

    PubMed Central

    Oliveira, Pedro César Garcia; Adabo, Gelson Luis; Ribeiro, Ricardo Faria; da Rocha, Sicknan Soares; Ávila, Fabiano Araújo; do Valle, Accácio Lins

    2007-01-01

    The aim of the work was to evaluate the influence of the temperature of investment healting on the tensile strength and Vickers hardness of CP Ti and Ti-6Al-4V alloy casting. Were obtained for the tensile strength test dumbbell rods that were invested in the Rematitan Plus investment and casting in the Discovery machine cast. Thirty specimens were obtained, fiftten to the CP Titanium and fifteen to the Ti-6Al-4V alloy, five samples to each an of the three temperatures of investment: 430°C (control group), 480°C and 530°C. The tensile test was measured by means of a universal testing machine, MTS model 810, at a strain of 1.0 mm/min. After the tensile strenght test the specimens were secctioned, embedded and polished to hardness measurements, using a Vickers tester, Micromet 2100. The means values to tensile tests to the temperatures 430°C, 480 and 530: CP Ti (486.1 – 501.16 – 498.14 –mean 495.30 MPa) and Ti-6Al-4V alloy (961.33 – 958.26 – 1005.80 – mean 975.13 MPa) while for the Vickers hardness the values were (198.06, 197.85, 202.58 – mean 199.50) and (352.95, 339.36, 344.76 – mean 345.69), respectively. The values were submitted to Analysis of Variance (ANOVA) and Tukey,s Test that indicate differences significant only between the materials, but not between the temperature, for both the materias. It was conclued that increase of the temperature of investment its not chance the tensile strength and the Vickers hardness of the CP Titanium and Ti-6Al-4V alloy. PMID:19089099

  1. The effect of using different rinsing angles on the micro-tensile bond strength of the sealant to the etched enamel

    PubMed Central

    Afshar, Hossein; Nakhjavani, Yahya Baradaran; Ahmadi, Rahil

    2014-01-01

    Background: Attempts to enhance bond strength of the sealant have been among the most important sides of dental research. Aim: The purpose of the present study was to evaluate the effect of using different rinsing angles on the micro-tensile bond strength of the sealant to the etched enamel. Settings and Design: Experimental study. Materials and Methods: Sixty first-premolars were randomly assigned to six groups based on the rinsing angle applied (15°, 30°, 45°, 60°, 75°, and 90°). Following etching and rinsing, a 4-mm height build up of sealant material was created. Bonded specimens were sectioned into sticks (1 × 1 mm), which were subjected to micro-tensile bond strength, testing at a cross-head speed of 0.5 mm/min. Statistical Analysis Used: The data were analyzed by Kolmogorov-Smirnov and post-hoc Tukey test. Results: The tensile bond strength in specimens rinsed at 90° were statistically higher compared to those rinsed at 15° and 30° (P < 0.05), and increasing the angle from 15° to 90° was correlated with a reduction in the number of specimens with adhesive failures. Conclusions: Rinsing the conditioned enamel surface at 90° may improve the bond strength and retention of the sealant. PMID:24808698

  2. Direct Tensile Strength and Characteristics of Dentin Restored with All-Ceramic, Resin-Composite, and Cast Metal Prostheses Cemented with Resin Adhesives

    PubMed Central

    Piemjai, Morakot; Nakabayashi, Nobuo

    2015-01-01

    A dentin-cement-prosthesis complex restored with either all-porcelain, cured resin-composite, or cast base metal alloy and cemented with either of the different resin cements was trimmed into a mini-dumbbell shape for tensile testing. The fractured surfaces and characterization of the dentin-cement interface of bonded specimens were investigated using a Scanning Electron Microscope. A significantly higher tensile strength of all-porcelain (12.5 ± 2.2 MPa) than that of cast metal (9.2 ± 3.5 MPa) restorations was revealed with cohesive failure in the cement and failure at the prosthesis-cement interface in Super-Bond C&B group. No significant difference in tensile strength was found among the types of restorations using the other three cements with adhesive failure on the dentin side and cohesive failure in the cured resin. SEM micrographs demonstrated the consistent hybridized dentin in Super-Bond C&B specimens that could resist degradation when immersed in hydrochloric acid followed by NaOCl solutions whereas a detached and degraded interfacial layer was found for the other cements. The results suggest that when complete hybridization of resin into dentin occurs tensile strength at the dentin-cement is higher than at the cement-prosthesis interfaces. The impermeable hybridized dentin can protect the underlying dentin and pulp from acid demineralization, even if detachment of the prosthesis has occurred. PMID:26539520

  3. Influence Of Holes On The In-Plane Tensile Strength And Fatigue Durability Of A NICALON(Trademark)/Si-N-C Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Verrilli, Michael J.

    2003-01-01

    Effects of different sizes of holes as well as different percentages of open areas on the in-plane tensile strength and fatigue durability of the SiC/Si-N-C composite were investigated in this study. Test specimens with no holes, four different diameters of holes (1.0 to 3.2 mm), and four different open areas (20 to 35%) were machined. All mechanical testing was performed in air at a temperature of 910 C. Fatigue tests were conducted with a load ratio, R = 0.05, and a frequency of 0.33 Hz. In general, both the in-plane tensile strength of the composite and its fatigue durability decreased with an increase in the size of the hole and percentage of the open area. Reductions in the in-plane tensile strength and cyclic fatigue life of the composite were described by empirical equations with the diameter of the hole and the percent open area as the independent variables. The validity of these two empirical equations was verified with additional tensile and fatigue test data generated on the composite specimens.

  4. Direct Tensile Strength and Characteristics of Dentin Restored with All-Ceramic, Resin-Composite, and Cast Metal Prostheses Cemented with Resin Adhesives.

    PubMed

    Piemjai, Morakot; Nakabayashi, Nobuo

    2015-01-01

    A dentin-cement-prosthesis complex restored with either all-porcelain, cured resin-composite, or cast base metal alloy and cemented with either of the different resin cements was trimmed into a mini-dumbbell shape for tensile testing. The fractured surfaces and characterization of the dentin-cement interface of bonded specimens were investigated using a Scanning Electron Microscope. A significantly higher tensile strength of all-porcelain (12.5 ± 2.2 MPa) than that of cast metal (9.2 ± 3.5 MPa) restorations was revealed with cohesive failure in the cement and failure at the prosthesis-cement interface in Super-Bond C&B group. No significant difference in tensile strength was found among the types of restorations using the other three cements with adhesive failure on the dentin side and cohesive failure in the cured resin. SEM micrographs demonstrated the consistent hybridized dentin in Super-Bond C&B specimens that could resist degradation when immersed in hydrochloric acid followed by NaOCl solutions whereas a detached and degraded interfacial layer was found for the other cements. The results suggest that when complete hybridization of resin into dentin occurs tensile strength at the dentin-cement is higher than at the cement-prosthesis interfaces. The impermeable hybridized dentin can protect the underlying dentin and pulp from acid demineralization, even if detachment of the prosthesis has occurred. PMID:26539520

  5. The characterization of the mechanical strength of chewable tablets.

    PubMed

    Ambros, M C; Podczeck, F; Podczeck, H; Newton, J M

    1998-11-01

    The purpose of this research was to identify possible test procedures for the evaluation of the strength of chewable tablets with respect to prevention of damage to teeth or mandibular joints when tablets are consumed. Diametral compression and flexure tests were employed to evaluate the strength of commercial samples from five manufacturers of chewable vitamin C tablets. Weibull analysis was used to assess the brittleness of these tablets. The tablets had a lower tensile strength value when determined by the diametral compression test compared to the flexure test ratio which ranged from 0.27 to 0.4. The value for the Weibull modulus ranged from 5 to 16, indicating an appreciable degree of brittleness of the samples. Relating the values for the mechanical strength to suggested practical values for the prevention of damage to the teeth or the mandibular joints indicated that most tablets exceeded these values. The flexure test reflects the practical situation closest, and a limiting tensile strength value of 2 MPa should not be exceeded for chewable tablets. The tablet batches tested were also characterized by a large batch-to-batch variability, suggesting uncontrolled manufacturing procedures. Commercially distributed chewable vitamin C tablets could provide a possible health hazard to teeth and mandibular joints. This hazard could be limited by a mechanical strength test specification. PMID:9834954

  6. Tensile bond strength of silicone-based soft denture liner to two chemically different denture base resins after various surface treatments.

    PubMed

    Akin, Hakan; Tugut, Faik; Guney, Umit; Kirmali, Omer; Akar, Turker

    2013-01-01

    This study evaluated the effect of various surface treatments on the tensile bond strength of a silicone-based soft denture liner to two chemically different denture base resins, heat-cured polymethyl methacrylate (PMMA), and light-activated urethane dimethacrylate or Eclipse denture base resin. PMMA test specimens were fabricated and relined with a silicone-based soft denture liner (group AC). Eclipse test specimens were prepared according to the manufacturer's recommendation. Before they were relined with a silicone-based soft denture liner, each received one of three surface treatments: untreated (control, group EC), Eclipse bonding agent applied (group EB), and laser-irradiated (group EL). Tensile bond strength tests (crosshead speed = 5 mm/min) were performed for all specimens, and the results were analyzed using the analysis of variance followed by Tukey's test (p = 0.05). Eclipse denture base and PMMA resins presented similar bond strengths to the silicone-based soft denture liner. The highest mean force was observed in group EL specimens, and the tensile bond strengths in group EL were significantly different (p < 0.05) from those in the other groups. PMID:22447403

  7. In Vitro Comparison of Compressive and Tensile Strengths ofAcrylic Resins Reinforced by Silver Nanoparticles at 2% and0.2% Concentrations

    PubMed Central

    Ghaffari, Tahereh; Hamedirad, Fahimeh; Ezzati, Baharak

    2014-01-01

    Background and aims. Polymethyl methacrylate, PMMA, is widely used in prosthodontics for fabrication of removable prostheses. This study was undertaken to investigate the effect of adding silver nanoparticles (AgNPs) to PMMA at 2% and 0.2% concentrations on compressive and tensile strengths of PMMA. Materials and methods. The silver nanoparticles were mixed with heat-cured acrylic resin in an amalgamator in two groups at 0.2 and 2 wt% of AgNPs. Eighteen 2×20×200-mm samples were prepared for tensile strength test, 12 samples containing silver nanoparticle and 6 samples for the control group. Another 18 cylindrical 25×38-mm samples were prepared for compressive strength test. Scanning electron microscopy was used to verify homogeneous distribution of particles. The powder was manually mixed with a resin monomer and then the mixture was properly blended. Before curing, the paste was packed into steel molds. After curing, the specimens were removed from the molds. One-way ANOVA was used for statistical analysis, followed by multiple comparison test (Scheffé’s test). Results. This study showed that the mean compressive strength of PMMA reinforced with AgNPs was significantly higher than that of the unmodified PMMA (P<0.05). It was not statistically different between the two groups reinforced with AgNPs. The tensile strength was not significantly different between the 0.2% group and unmodified PMMA and it de-creased significantly after incorporation of 2% AgNPs (P<0.05). Conclusion. Based on the results and the desirable effect of nanoparticles of silver on improvement of compressive strength of PMMA, use of this material with proper concentration in the palatal area of maxillary acrylic resin dentures is recommended. PMID:25587381

  8. pGlcNAc Nanofiber Treatment of Cutaneous Wounds Stimulate Increased Tensile Strength and Reduced Scarring via Activation of Akt1

    PubMed Central

    Lindner, Haley Buff; Felmly, Lloyd McPherson; Demcheva, Marina; Seth, Arun; Norris, Russell; Bradshaw, Amy D.; Vournakis, John; Muise-Helmericks, Robin C.

    2015-01-01

    Treatment of cutaneous wounds with poly-N-acetyl-glucosamine containing nanofibers (pGlcNAc), a novel polysaccharide material derived from a marine diatom, results in increased wound closure, antibacterial activities and innate immune responses. We have shown that Akt1 plays a central role in the regulation of these activities. Here, we show that pGlcNAc treatment of cutaneous wounds results in a smaller scar that has increased tensile strength and elasticity. pGlcNAc treated wounds exhibit decreased collagen content, increased collagen organization and decreased myofibroblast content. A fibrin gel assay was used to assess the regulation of fibroblast alignment in vitro. In this assay, fibrin lattice is formed with two pins that provide focal points upon which the gel can exert force as the cells align from pole to pole. pGlcNAc stimulation of embedded fibroblasts results in cellular alignment as compared to untreated controls, by a process that is Akt1 dependent. We show that Akt1 is required in vivo for the pGlcNAc-induced increased tensile strength and elasticity. Taken together, our findings suggest that pGlcNAc nanofibers stimulate an Akt1 dependent pathway that results in the proper alignment of fibroblasts, decreased scarring, and increased tensile strength during cutaneous wound healing. PMID:25955155

  9. pGlcNAc Nanofiber Treatment of Cutaneous Wounds Stimulate Increased Tensile Strength and Reduced Scarring via Activation of Akt1.

    PubMed

    Lindner, Haley Buff; Felmly, Lloyd McPherson; Demcheva, Marina; Seth, Arun; Norris, Russell; Bradshaw, Amy D; Vournakis, John; Muise-Helmericks, Robin C

    2015-01-01

    Treatment of cutaneous wounds with poly-N-acetyl-glucosamine containing nanofibers (pGlcNAc), a novel polysaccharide material derived from a marine diatom, results in increased wound closure, antibacterial activities and innate immune responses. We have shown that Akt1 plays a central role in the regulation of these activities. Here, we show that pGlcNAc treatment of cutaneous wounds results in a smaller scar that has increased tensile strength and elasticity. pGlcNAc treated wounds exhibit decreased collagen content, increased collagen organization and decreased myofibroblast content. A fibrin gel assay was used to assess the regulation of fibroblast alignment in vitro. In this assay, fibrin lattice is formed with two pins that provide focal points upon which the gel can exert force as the cells align from pole to pole. pGlcNAc stimulation of embedded fibroblasts results in cellular alignment as compared to untreated controls, by a process that is Akt1 dependent. We show that Akt1 is required in vivo for the pGlcNAc-induced increased tensile strength and elasticity. Taken together, our findings suggest that pGlcNAc nanofibers stimulate an Akt1 dependent pathway that results in the proper alignment of fibroblasts, decreased scarring, and increased tensile strength during cutaneous wound healing. PMID:25955155

  10. High-Temperature Tensile Strength of Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy (High-Entropy Alloy)

    NASA Astrophysics Data System (ADS)

    Daoud, H. M.; Manzoni, A. M.; Wanderka, N.; Glatzel, U.

    2015-06-01

    Homogenizing at 1220°C for 20 h and subsequent aging at 900°C for 5 h and 50 h of a novel Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy) produces a microstructure consisting of an L12 ordered γ' phase embedded in a face-centered cubic solid-solution γ matrix together with needle-like B2 precipitates (NiAl). The volume fraction of γ' phase is ~46% and of needle-like B2 precipitates <5%, which is in accordance with the prediction of calculation of phase diagram method (CALPHAD using Thermo-Calc software with TTNi7 database; Thermo-Calc Software, Stockholm, Sweden). The high-temperature tensile tests were carried out at room temperature, 600°C, 700°C, 800°C, and 1000°C. The tensile strength as well as the elongation to failure of both heat-treated specimens is very high at all tested temperatures. The values of tensile strength has been compared with literature data of well-known Alloy 800H and Inconel 617, and is discussed in terms of the observed microstructure.

  11. An in vitro Comparative Evaluation of Micro Tensile Bond Strength of Two metal bonding Resin Cements bonded to Cobalt Chromium alloy

    PubMed Central

    Musani, Smita; Musani, Iqbal; Dugal, Ramandeep; Habbu, Nitin; Madanshetty, Pallavi; Virani, Danish

    2013-01-01

    Background: The purpose of this study was to evaluate and compare the micro tensile bond strength of two metal bonding resin cements to sandblasted cobalt chromium alloy. Materials & Methods: Eight, Cobalt chromium alloy blocks of dimensions 10x5x5 mm were cast, finished and polished. One of the faces of each alloy block measuring 5x5mm was sandblasted with 50 μm grit alumina particles. The alloy blocks were then cleaned in an ultrasonic cleaner for 1 min and then air dried with an air stream. The Sandblasted surfaces of the two alloy blocks were bonded together with 2 different metal bonding resin systems (Panavia F Kuraray and DTK Kleber – Bredent). The samples were divided into 2 groups (n=4). Group 1- Two Co-Cr blocks were luted with Panavia cement. Group 2- Two Co-Cr blocks were luted with DTK Kleber-Bredent cement. The bonded samples were cut with a diamond saw to prepare Microtensile bars of approximately 1mm x 1mm x 6mm. Thirty bars from each group were randomly separated into 2 subgroups (n=15) and left for 3hrs (baseline) as per manufacturer's instructions while the other group was aged for 24hrs in 370C water, prior to loading to failure under tension at a cross head speed of 1mm/min. Failure modes were determined by means of stereomicroscopy (sm). Statistical analysis was performed through one way – ANOVA. Results: Significant variation in micro-tensile bond strength was observed between the two metal bonding resin systems. Conclusion: DTK showed higher mean bond strength values than Panavia F cement both at baseline and after aging. How to cite this article: Musani S, Musani I, Dugal R, Habbu N, Madanshetty P, Virani D. An in vitro Comparative Evaluation of Micro Tensile Bond Strength of Two metal bonding Resin Cements bonded to Cobalt Chromium alloy. J Int Oral Health 2013;5(5):73-8. PMID:24324308

  12. Influence of Specimen Preparation and Specimen Size on the Transverse Tensile Strength and Scatter of Glass Epoxy Laminates

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin; Chawan, Arun D.; DeMarco, Kevin

    1999-01-01

    The influence of specimen polishing, specimen configuration, and specimen size on the transverse tension strength of two glass epoxy materials loaded in three and four point bending was evaluated. Polishing machined edges, and/or tension side failure surfaces, was detrimental to specimen strength characterization instead of yielding a higher, more accurate, strength as a result of removing inherent manufacture and handling flaws. Transverse tension strength was sensitive to span length due to the classical weakest link effect. However, strength was less sensitive to volume changes achieved by increasing specimen width. The Weibull scaling law over-predicted changes in transverse tension strengths in three point bend tests and under-predicted changes in transverse tension strengths in four point bend tests. Furthermore, the Weibull slope varied with specimen configuration, volume, and sample size. Hence, the utility of this scaling law for predicting transverse tension strength is unclear.

  13. Root tensile strength of grey alder and mountain maple grown on a coarse grained eco-engineered slope in the Swiss Alps related to wood anatomical features

    NASA Astrophysics Data System (ADS)

    Kink, Dimitri; Bast, Alexander; Meyer, Christine; Meier, Wolfgang; Egli, Markus; Gärtner, Holger

    2014-05-01

    Steep, vegetation free slopes are a common feature in alpine areas. The material covering these slopes is prone to all kind of erosional processes, resulting in a high risk potential for population and infrastructure. This risk potential is likely to increase with the predicted change in the spatiotemporal distribution of precipitation events. A potential increase in extreme precipitation events will also result in a higher magnitude and frequency of erosional processes. In the Swiss Alps as in many other mountainous areas, there is a need to stabilize these slopes to reduce their direct or indirect hazard potential. In this regard, eco-engineering is a very promising and sustainable approach for slope stabilization. Planting trees and shrubs is a central task in eco-engineering. A developing vegetation cover will on one hand reduce the mechanical effects of rainfall by an increased interception, on the other hand, the root systems cause modifications of soil properties. Roots not only provide anchorage for the plants, they also promote soil aggregation and are able to penetrate possible shear horizons. Overall, anchorage of plants is at the same extend also stabilizing the near subsurface. When rainfall occurs, the saturated soil exerts downhill pressure to a tree or shrub. As long as the root distribution supports anchorage, the respective slope area remains stable. At this point, the tensile strength of the roots is a critical measure, because it is more likely that the supporting roots break than the entire root system being pulled out of the soil completely. As a consequence, root tensile strength is an important parameter in characterizing the soil stabilization potential of trees and shrubs. It is known that tree roots show a high variability in their anatomical structure depending on their depth below soil surface as well as their distance to the main stem. Therefore, we assume that these structural changes affect the tensile strength of every single root

  14. Effects of Cooling Conditions on Microstructure, Tensile Properties, and Charpy Impact Toughness of Low-Carbon High-Strength Bainitic Steels

    NASA Astrophysics Data System (ADS)

    Sung, Hyo Kyung; Shin, Sang Yong; Hwang, Byoungchul; Lee, Chang Gil; Lee, Sunghak

    2013-01-01

    In this study, four low-carbon high-strength bainitic steel specimens were fabricated by varying finish cooling temperatures and cooling rates, and their tensile and Charpy impact properties were investigated. All the bainitic steel specimens consisted of acicular ferrite, granular bainite, bainitic ferrite, and martensite-austenite constituents. The specimens fabricated with higher finish cooling temperature had a lower volume fraction of martensite-austenite constituent than the specimens fabricated with lower finish cooling temperature. The fast-cooled specimens had twice the volume fraction of bainitic ferrite and consequently higher yield and tensile strengths than the slow-cooled specimens. The energy transition temperature tended to increase with increasing effective grain size or with increasing volume fraction of granular bainite. The fast-cooled specimen fabricated with high finish cooling temperature and fast cooling rate showed the lowest energy transition temperature among the four specimens because of the lowest content of coarse granular bainite. These findings indicated that Charpy impact properties as well as strength could be improved by suppressing the formation of granular bainite, despite the presence of some hard microstructural constituents such as bainitic ferrite and martensite-austenite.

  15. Comparison of tensile strength among simple interrupted, cruciate, intradermal, and subdermal suture patterns for incision closure in ex vivo canine skin specimens.

    PubMed

    Zellner, Eric M; Hedlund, Cheryl S; Kraus, Karl H; Burton, Andrew F; Kieves, Nina R

    2016-06-15

    OBJECTIVE To compare suture placement time, tension at skin separation and suture line failure, and mode of failure among 4 suture patterns. DESIGN Randomized trial. SAMPLE 60 skin specimens from the pelvic limbs of 30 purpose-bred Beagles. PROCEDURES Skin specimens were harvested within 2 hours after euthanasia and tested within 6 hours after harvest. An 8-cm incision was made in each specimen and sutured with 1 of 4 randomly assigned suture patterns (simple interrupted, cruciate, intradermal, or subdermal). Suture placement time and percentage of skin apposition were evaluated. Specimens were mounted in a calibrated material testing machine and distracted until suture line failure. Tensile strength at skin-edge separation and suture-line failure and mode of failure were compared among the 4 patterns. RESULTS Mean suture placement time for the cruciate pattern was significantly less than that for other patterns. Percentage of skin apposition did not differ among the 4 patterns. Mean tensile strength at skin-edge separation and suture-line failure for the simple interrupted and cruciate patterns were significantly higher than those for the intradermal and subdermal patterns. Mean tensile strength at skin-edge separation and suture-line failure did not differ significantly between the intradermal and subdermal patterns or the simple interrupted and cruciate patterns. The primary mode of failure for the simple interrupted pattern was suture breakage, whereas that for the cruciate, intradermal, and subdermal patterns was tissue failure. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested external skin sutures may be preferred for closure of incisions under tension to reduce risk of dehiscence. PMID:27270059

  16. Damage Initiation and Ultimate Tensile Strength of Scaled [0 deg n/90 deg n/0 deg n]sub T Graphite-Epoxy Coupons

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Prosser, William H.

    1997-01-01

    Previous research on scaling effects in composite materials has demonstrated that the stress levels at first ply failure and ultimate failure of composite laminates are dependent on the size of the laminate. In particular, the thickness dimension has been shown to be the most influential parameter in strength scaling of composite coupons loaded in tension. Geometrically and constitutively scaled laminates exhibit decreasing strength with increasing specimen size, and the magnitude of the strength-size effect is a function of both material properties and laminate stacking sequence. Some of the commonly used failure criteria for composite materials such as maximum stress, maximum strain, and tensor polynomial (e.g., Tsai-Wu) cannot account for the strength-size effect. In this paper, three concepts are developed and evaluated for incorporating size dependency into failure criteria for composite materials. An experimental program of limited scope was performed to determine the first ply failure stress in scaled cross-ply laminates loaded in tension. Test specimens were fabricated of AS-4/3502 graphite-epoxy composite material with laminate stacking sequences of [0 deg n/90 deg n/o deg n]subT where n=1-6. Two experimental techniques were used to determine first ply failure, defined as a transverse matrix crack in the 90 deg ply: (1) step loading with dye penetrant x-ray of the specimen at each load interval, and (2) acoustic emission. The best correlation between first ply failure analysis and experimental data was obtained using a modified Weibull approach which incorporated the residual thermal stress and the outer ply constraint, as well as the ply thickness effect. Finally, a second set of experiments was performed to determine the tensile response and ultimate failure of the scaled cross-ply laminates. The results of these experiments indicated no influence of specimen size on tensile response or ultimate strength.

  17. Self-assembled smooth muscle cell tissue rings exhibit greater tensile strength than cell-seeded fibrin or collagen gel rings

    PubMed Central

    Adebayo, Olufunmilayo; Gwyther, Tracy A.; Hu, Jason Z.; Billiar, Kristen L.; Rolle, Marsha W.

    2012-01-01

    In this study, we created self-assembled smooth muscle cell (SMC) tissue rings (comprised entirely of cells and cell-derived matrix; CDM) and compared their structure and material properties with tissue rings created from SMC-seeded fibrin or collagen gels. All tissue rings were cultured statically for 7 days in supplemented growth medium (with ε-amino caproic acid, ascorbic acid, and insulin-transferrin-selenium), prior to uniaxial tensile testing and histology. Self-assembled CDM rings exhibited ultimate tensile strength and stiffness values that were two-fold higher than fibrin gel and collagen gel rings. Tensile testing of CDM, fibrin gel and collagen gel rings treated with deionized water to lyse cells showed little to no change in mechanical properties relative to untreated ring samples, indicating that the ECM dominates the measured ring mechanics. In addition, CDM rings cultured in supplemented growth medium were significantly stronger than CDM rings cultured in standard, unsupplemented growth medium. These results illustrate the potential utility of self-assembled cell rings as model CDM constructs for tissue engineering and biomechanical analysis of ECM material properties. PMID:22865465

  18. Data Qualification and Data Summary Report: Intact Rock Properties Data on Tensile Strength, Schmidt Hammer Rebound Hardness, and Rock Triaxial Creep

    SciTech Connect

    E.M. Cikanek; R.J. Blakely; T.A. Grant; L.E. Safley

    2003-07-29

    This report presents a systematic review of the available data in the TDMS that are relevant to the following intact rock properties: rock tensile strength, Schmidt hammer rebound hardness, and rock triaxial creep. Relevant data are compiled from qualified and unqualified sources into the summary DTNs and these DTNs are evaluated for qualification using the method of corroborating data as defined in AP-SIII.2Q, ''Qualification of Unqualified Data''. This report also presents a summary of the compiled information in the form of descriptive statistics and recommended values that will be contained in a Reference Information Base (RIB) item prepared in accordance with AP-SIII.4Q, ''Development, Review, Online Placement, and Maintenance of Individual Reference Information Base Data Items''. The primary purpose of this report is to produce qualified sets of data that include all relevant intact rock tensile strength, Schmidt hammer rebound hardness, and rock triaxial creep testing done over the course of the Yucca Mountain Project (YMP). A second purpose is to provide a qualified summary (i.e., a RIB data item) of the test results using descriptive statistics. The immediate purpose of the report is to support the data needs of repository design; however, the products are designed to be appropriate for general use by the YMP. The appropriateness and limitations, if any, of the data, with respect to the intended use, are addressed in this report.

  19. Theoretical Model of the Effect of Crack Tip Blunting on the Ultimate Tensile Strength of Welds in 2219-T87 Aluminum

    NASA Technical Reports Server (NTRS)

    Beil, R. J.

    1982-01-01

    A theoretical model representing blunting of a crack tip radius through diffusion of vacancies is presented. The model serves as the basis for a computer program which calculates changes, due to successive weld heat passes, in the ultimate tensile strength of 2219-T81 aluminum. In order for the model to yield changes of the same order in the ultimate tensile strength as that observed experimentally, a crack tip radius of the order of .001 microns is required. Such sharp cracks could arise in the fusion zone of a weld from shrinkage cavities or decohered phase boundaries between dendrites and the eutectic phase, or, possibly, from plastic deformation due to thermal stresses encountered during the welding process. Microstructural observations up to X2000 (resolution of about .1 micron) did not, in the fusion zone, show structural details which changed significantly under the influence of a heat pass, with the exception of possible small changes in the configuration of the interdendritic eutectic and in porosity build-up in the remelt zone.

  20. The effects of adsorbed water on tensile strength and Young's modulus of moldings determined by means of a three-point bending method.

    PubMed

    Tsukamoto, T; Chen, C Y; Okamoto, H; Danjo, K

    2000-06-01

    Young's moduli (E) of three representative tableting excipients and their mix powders were measured for compressed rectangular beam specimens over a range of porosities using a three-point bending technique. We also examined the effects of the amount of water adsorbed on the tensile strength of these specimens. The maximal tensile strength (sigma(max)) decreased with increasing water vapor adsorption for microcrystalline cellulose (MCC) and mixed powders of lactose and MCC. Sigma(max) increased with increasing compression stress and specimen weight for all samples. Sigma(max) of an alpha-lactose and cornstarch mixture with a ratio of 7:3 showed a large value. Young's modulus (E) and the crushing energy (CE) of MCC were larger than those of the other samples. Young's modulus of specimens decreased as the proportion of alpha-lactose increased. Disintegration time (DT) of tablets comprised of lactose and MCC mixture was much faster than those of tablets comprised of individual powders. This appeared to demonstrate the effect of MCC swelling on the disintegration time of the tablet. The disintegration time of the lactose/cornstarch series increased only when Young's modulus increased sharply. PMID:10866134

  1. Incorporating Turbula mixers into a blending scale-up model for evaluating the effect of magnesium stearate on tablet tensile strength and bulk specific volume.

    PubMed

    Kushner, Joseph

    2012-06-15

    Turbula bottle blenders are often used in lab-scale experiments during early-stage pharmaceutical product development. Unfortunately, applying knowledge gained with these blenders to larger-sized diffusion mixers is limited by the lack of blending models that include Turbula mixers. To address this need for lubrication blending scale-up, 2:1 blends of microcrystalline cellulose and spray-dried lactose or dibasic calcium phosphate were mixed with 1% magnesium stearate using Turbula bottle blenders, varying bottle volume, V (30-1250mL); bottle headspace fraction, F(headspace) (30-70%); and the number of blending cycles, r (24 to ∼190,000 cycles). The impact of lubrication blending on tensile strength and bulk specific volume quality attributes, QA, was modeled by:where QA(0) is initial QA value, β is sensitivity of QA to lubrication, γ is formulation-specific lubrication rate constant, and L is characteristic mixing length scale (i.e. 1.5V(1/3) for Turbula blenders, V(1/3) for simple diffusion mixers). The factor of 1.5 captures the bottle dimensions and the more complex mixing dynamics of the Turbula blender. This lubrication blending process model is valid for scale-up from 30-mL to 200-L blenders. Assessing bulk specific volume may provide a simpler, more material-sparing means for determining γ than tensile strength, since these QAs exhibited similar γ values. PMID:22405966

  2. Compression of nanowires using a flat indenter: diametrical elasticity measurement.

    PubMed

    Wang, Zhao; Mook, William M; Niederberger, Christoph; Ghisleni, Rudy; Philippe, Laetitia; Michler, Johann

    2012-05-01

    A new experimental approach for the characterization of the diametrical elastic modulus of individual nanowires is proposed by implementing a micro/nanoscale diametrical compression test geometry, using a flat punch indenter. A 250 nm diameter single crystal silicon nanowire is compressed inside of a scanning electron microscope. Since silicon is highly anisotropic, the wire crystal orientation in the compression axis is determined by electron backscatter diffraction. In order to analyze the load-displacement compression data, a two-dimensional analytical closed-form solution based on a classical contact model is proposed. The results of the analytical model are compared with those of finite element simulations and to the experimental diametrical compression results and show good agreement. PMID:22432959

  3. A Comparative Evaluation of the Effect of Bonding Agent on the Tensile Bond Strength of Two Pit and Fissure Sealants Using Invasive and Non-invasive Techniques: An in–vitro Study

    PubMed Central

    Singh, Shamsher; Adlakha, Vivek; Babaji, Prashant; Chandna, Preetika; Thomas, Abi M.; Chopra, Saroj

    2013-01-01

    Background: Newer technologies and the development of pit and fissure sealants have shifted the treatment philosophy from ‘drill and fill’ to that of ‘seal and heal’. Aims: The purpose of this in–vitro study was to evaluate the effects of bonding agents on the tensile bond strengths of two pit and fissure sealants by using invasive and non-invasive techniques. Study Design and Methods: One hundred and twenty bicuspids were collected and teeth were divided into two groups: Group-I (Clinpro) and Group-II (Conseal f) with 60 teeth in each group. For evaluating tensile bond strengths, occlusal surfaces of all the teeth were flattened by reducing buccal and lingual cusps without disturbing fissures. Standardised polyvinyl tube was bonded to occlusal surfaces with respective materials. Sealants were applied, with or without bonding agents, in increments and they were light cured. Tensile bond strengths were determined by using Universal Testing Machine. Statistical Analysis: Data were then statistically analysed by using Student t–test for comparison. Results: A statistically significant difference was found in tensile bond strength in invasive with bonding agent group than in non-invasive with bonding agent group. Conclusion: This study revealed that invasive techniques increase the tensile bond strengths of sealants as compared to non- invasive techniques and that the use of a bonding agent as an intermediate layer between the tooth and fissure sealant is beneficial for increasing the bond strength. PMID:24298525

  4. Comparative Evaluation of Tensile – Bond Strength of An Orthodontic Adhesive with and without Fluoride Application, After Acid Etching -An Invitro Study

    PubMed Central

    Yugandhar, G; Ramana, I Venkata; Srinivas, K; Yadav, S. Sarjeev Singh

    2015-01-01

    Background Fixed appliances hinder the effective control of plaque accumulation and white spot lesions may develop under the ill fitting bands or adjacent to the stainless steel brackets during orthodontic treatment particularly the etching process. Aims and Objectives Comparative study of tensile bond strength of an orthodontic adhesive with and without fluoride application after acid etching to know the effect of fluoride on bond strength. Materials and Methods This study is carried out on 90 non carious human premolar teeth, and divided in 6 groups with each group of 15 specimens. In those Groups I and IV were control group acid etch treatment, Group II and V is 1.23% APF gel (acid etch plus APF gel treatment,) and group III and VI is 8% SnF2 (acid etch plus SnF2 treatment). Samples of Group I, II and III bond strength were tested after 24 h and groups IV, V and VI after one month on microtechtensometer machine. The scanning electron microscope (SEM) investigation was carried out for the 2 specimens for the control group after acid etch and 4 specimens after acid etch with fluoride application for fluoride groups. Results Control and SnF2 treated groups was found to be nearly similar to the control group whereas APF treated group showed less focal holes than the other 2 groups. Conclusion Fluoride application after acid etching without having an adverse effect on bond strength but we can prevent the white spot lesions and caries. PMID:26023648

  5. Compressive and tensile failure at high fluid pressure where preexisting fractures have cohesive strength, with application to the San Andreas fault

    USGS Publications Warehouse

    Fournier, R.O.

    1996-01-01

    In thrusting and strike-slip situations, when the maximum principal horizontal stress S1 acts nearly normal to a fault (a misoriented fault, such as the San Andreas), pore-fluid pressure > the lithostatic load, Pf > Sv, is required to reactivate movement on that fault. Pf > Sv may be achieved without causing hydraulic tensile fracturing if (1) previously existing cracks have regained cohesive strength by chemical processes, (2) subcritical crack growth has been blunted, and (3) the least principal horizontal stress S3 nearly equals Sv. Where Pf > Sv has been attained within a misaligned fault, increasing the stress difference (S1 - S3) at constant Pf > Sv will not lead to shear failure, while a decrease in (S1 - S3) can lead to shear failure of that fault. However, where the cohesive strength of material in a broad misaligned fault zone is less than that of the surrounding intact rock, increasing (S1 - S3) while Pf > Sv can result in shear failure of fractures at near optimum angles to S1, but confined within this weak fault zone. If this faulting results in the local short-lived attainment of Pf > Sv (cataclastic deformation and frictional heating overcoming dilation) and a simultaneous decrease in (S1 - S3), this combination of effects can trigger movement along the main trace of the misaligned fault. When increasing Pf results in hydraulic failure, anisotropy in tensile strength or fracture toughness resulting from foliation within faults allows fractures to propagate along the planes of weakness rather than across the foliation perpendicular to S3.

  6. Effect of a ductility layer on the tensile strength of TiAl-based multilayer composite sheets prepared by EB-PVD

    SciTech Connect

    Zhang, Rubing; Zhang, Yaoyao; Liu, Qiang; Chen, Guiqing; Zhang, Deming

    2014-09-15

    TiAl/Nb and TiAl/NiCoCrAl laminate composite sheets with a thickness of 0.4–0.6 mm and dimensions of 150 mm × 100 mm were successfully fabricated by electron beam physical vapor deposition. The microstructures of the sheets were examined, and their mechanical properties were compared with those of TiAl monolithic sheet produced by electron beam physical vapor deposition. Tensile testing was performed at room temperature and 750 °C, and the fracture surfaces were examined by scanning electron microscopy. Among the three microlaminate sheets, the TiAl/NiCoCrAl micro-laminate sheet had the best comprehensive properties at room temperature, and the TiAl/Nb micro-laminate sheet showed the ideal high-temperature strength and plasticity at 750 °C. The result was discussed in terms of metal strengthening mechanism. - Highlights: • TiAl-based multilayer foils was fabricated successfully by using EB-PVD method; • The tensile properties and micro-fracture morphologies of the sheet were investigated; • The deformation behavior of the multilayer foils was discussed.

  7. Aligned electrospun siloxane-doped vaterite/poly(L-lactide) composite fibremats: evaluation of their tensile strength and cell compatibility.

    PubMed

    Tujunen, Noora-Maria; Fujikura, Kie; Obata, Akiko; Kasuga, Toshihiro

    2013-01-01

    Siloxane-doped vaterite (SiV)/poly(L-lactide) hybrid-composite (SiPVH) has been developed in our group as the bone repair material and successfully fabricated into a non-woven electrospun fibremat. The aim of this work is to prepare aligned electrospun SiPVH fibremats with varied SiV content and compare their tensile properties and cell compatibilities using mouse osteoblast-like cells. It was observed that the maximum stress exhibited some non-linear trend as a function of SiV content: the highest stress value was reached with 30 wt.% SiV and decreased significantly with more than 40 wt.% SiV. Cellular morphology and proliferation were taken under examination on both aligned and random electrospun SiPVH fibremats. The cells started to orient themselves only 3 h after seeding on the aligned fibremat and they continued to elongate along the fibres. The number of the cells cultured up to seven days on both random and aligned fibremats was well comparable; therefore the alignment did not show negative effect on the cellular proliferation. PMID:23914946

  8. Mechanical Strength and Failure Characteristics of Cast Mg-9 pctAl-1 pctZn Alloys Produced by a Heated-Mold Continuous Casting Process: Tensile Properties

    NASA Astrophysics Data System (ADS)

    Okayasu, Mitsuhiro; Takeuchi, Shuhei; Ohfuji, Hiroaki

    2014-11-01

    The mechanical properties and failure characteristics of a cast Mg alloy (AZ91: Mg-Al8.9-Zn0.6-Mn0.2) produced by a heated-mold continuous casting process (HMC) are investigated. In a modification of the original HMC process, the cooling of the liquid alloy by direct water spray is carried out in an atmosphere of high-purity argon gas. The HMC-AZ91 alloy exhibits excellent mechanical properties (high strength and high ductility) that are about twice as high as those for the same alloy produced by conventional gravity casting. The increased material strength and ductility of the HMC sample are attributed to nanoscale and microscale microstructural characteristics. The fine grains and tiny spherical eutectic structures ( e.g., Mg17Al12 and Al6Mn) distributed randomly in the matrix of the HMC alloy result in resistance to dislocation movement, leading to high tensile strength. Basal slip on (0001) planes in the relatively organized crystal orientation of the HMC alloy, as well as grain boundary sliding through tiny spherical eutectic structures, results in high ductility. Details of the failure mechanism under static loading in the HMC alloy are also discussed using failure models.

  9. The relationship of vascularity and water content to tensile strength in a patellar tendon replacement of the anterior cruciate in dogs.

    PubMed

    McFarland, E G; Morrey, B F; An, K N; Wood, M B

    1986-01-01

    The methods and materials for ACL reconstruction are important issues for the practicing orthopaedic surgeon. In this study a model was developed to study the biological and biomechanical characteristics of a patellar tendon autograft used for ACL reconstruction. Specifically it was hypothesized that since vascularity of these grafts reflects their "healthiness," strength and vascularity should be inversely related in the early period after implantation. Using an over the top technique, a patellar tendon graft was placed in three groups of dogs and studied at 37, 57, and 120 days. Vascularity of the grafts was measured using technetium-tagged red blood cells, and percent water by weight was determined by dessication. Tensile testing to failure was performed using an MTS machine. The grafts became more vascular, more hydrated, less stiff, and less strong (by 4 weeks) than controls. By 16 weeks the vascular response was subsiding but the grafts remained only 40% as strong as controls. Percent water increased significantly over controls for all time periods. Decrease in strength correlated poorly with vascularity but correlated well with increase in percent water. These findings suggest that the change in strength of an intraarticular ACL replacement relates more to a basic rearrangement of its collagen-ground substance relationships, and that vascularity may reflect the inflammatory response bringing about these changes. The model developed in this study serves as a basis for further studies, and the findings reveal important information about the behavior of ACL grafting materials. PMID:3541655

  10. Effect of Load Rate on Tensile Strength of Various CFCCs at Elevated Temperatures: An Approach to Life Prediction Testing

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2001-01-01

    Strength of three continuous fiber-reinforced ceramic composites, including SiC/CAS-11, SiC/MAS-5 and SiC/SiC, was determined as a function of test rate in air at 1100 - 1200 C. All three composite materials exhibited a strong dependency of strength on test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress-rate) to another (constant stress loading) suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law tyw of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics. It was further found that constant stress-rate testing could be used as an alternative to life prediction test methodology even for the composite materials at least for the short range of lifetime.

  11. Time/Temperature Dependent Tensile Strength of SiC and Al2O3-Based Fibers

    NASA Technical Reports Server (NTRS)

    Yun, Hee Mann; DiCarlo, James A.

    1997-01-01

    In order to understand and model the thermomechanical behavior of fiber-reinforced composites, stress-rupture, fast-fracture, and warm-up rupture studies were conducted on various advanced SiC and Al2O3-based fibers in the,temperature range from 20 to 1400 C in air as well as in inert environments. The measured stress-rupture, fast fracture, and warm-up rupture strengths were correlated into a single master time/temperature-dependent strength plot for each fiber type using thermal activation and slow crack growth theories. It is shown that these plots are useful for comparing and selecting fibers for CMC and MMC reinforcement and that, in comparison to stress rupture tests, the fast-fracture and warm-up tests can be used for rapid generation of these plots.

  12. Mechanical strength and stability of lithium aluminate

    NASA Astrophysics Data System (ADS)

    Brimhall, J. L.

    1992-06-01

    Pacific Northwest Laboratory (PNL) investigated the strength and resistance to thermal shock of lithium aluminate annular pellets. The room temperature, axial compressive fracture strength of pellets made at Westinghouse Advanced Energy Systems (WAES) varied from 80 to 133 ksi. The strength at 430 C (806 F) was to 30 to 40 percent lower. The strength at 900 C (1652 F) showed a wide variation with one measurement near 90 ksi. These strength values are consistent with other data and predictions made in the literature when the grain size and porosity of the microstructure are taken into account. In diametral compression tests, the fracture strengths were much lower due to the existence of tensile stresses in some pellet regions from this type of loading. However, the fracture stresses were still generally higher than those reported in the literature; this fracture resistance probably reflects the better quality of the pellets tested in this study. Measurements on pellets made at PNL indicated lower strengths compared to the WAES material. This strength difference could be accounted for by different processing technologies: material made at PNL was cold-pressed and sintered with high porosity whereas the WAES material was isostatically hot-pressed with high density. Thermal shocking of the material by ramping to 900 C in two minutes did not have an observable effect on the microstructure or the strength of any of the pellets.

  13. Mechanical strength and stability of lithium aluminate

    SciTech Connect

    Brimhall, J.L.

    1992-06-01

    Pacific Northwest Laboratory (PNL) investigated the strength and resistance to thermal shock of lithium aluminate annular pellets. The room temperature, axial compressive fracture strength of pellets made at Westinghouse Advanced Energy Systems (WAES) varied from 80 to 133 ksi. The strength at 430{degrees}C (806{degrees}F) was to 30 to 40% lower. The strength at 900{degrees}C (1652{degrees}F) showed a wide variation with one measurement near 90 ksi. These strength values are consistent with other data and predictions made in the literature when the grain size and porosity of the microstructure are taken into account. In diametral compression tests, the fracture strengths were much lower due to the existence of tensile stresses in some pellet regions from this type of loading. However, the fracture stresses were still generally higher than those reported in the literature; this fracture resistance probably reflects the better quality of the pellets tested in this study. Measurements on pellets made at PNL indicated lower strengths compared to the WAES material. This strength difference could be accounted for by different processing technologies: material made at PNL was cold-pressed and sintered with high porosity whereas the WAES material was isostatically hot-pressed with high density. Thermal shocking of the material by ramping to 900{degrees}C in two minutes did not have an observable effect on the microstructure or the strength of any of the pellets.

  14. Real-time near-infrared monitoring of content uniformity, moisture content, compact density, tensile strength, and Young's modulus of roller compacted powder blends.

    PubMed

    Gupta, Abhay; Peck, Garnet E; Miller, Ronald W; Morris, Kenneth R

    2005-07-01

    A method for real-time in-line near-infrared (NIR) monitoring of roller compaction is reported. Multivariate analysis using partial least square projections to latent structures (PLS) was used to relate the spectral data with key compact attributes: content uniformity, moisture content, relative density, tensile strength, and Young's modulus. NIR calibration curves were generated using the spectral data collected on simulated ribbons, that is, tablets prepared under uni-axial compression, and tested on the data collected on another set of simulated ribbons and by monitoring the ribbons as they exited the roller compactor. For all compact attributes, the NIR predicted values agreed well with the values measured using a reference method. PMID:15924348

  15. Comparative Evaluation of Tensile Bond Strength between Silicon Soft Liners and Processed Denture Base Resin Conditioned by Three Modes of Surface Treatment: An Invitro Study.

    PubMed

    Surapaneni, Hemchand; Ariga, Padma; Haribabu, R; Ravi Shankar, Y; Kumar, V H C; Attili, Sirisha

    2013-09-01

    Soft denture liners act as a cushion for the denture bearing mucosa through even distribution of functional load, avoiding local stress concentrations and improving retention of dentures there by providing comfort to the patient. The objective of the present study was to compare and evaluate the tensile bond strengths of silicone-based soft lining materials (Ufi Gel P and GC Reline soft) with different surface pre treatments of heat cure PMMA denture base acrylic resin. Stainless steel dies measuring 40 mm in length; 10 mm in width and 10 mm in height (40 × 10 × 10) were machined to prepare standardized for the polymethyl methacrylate resin blocks. Stainless steel dies (spacer for resilient liner) measuring 3 mm thick; 10 mm long and 10 mm wide were prepared as spacers to ensure uniformity of the soft liner being tested. Two types of Addition silicone-based soft lining materials (room temperature polymerised soft lining materials (RTPSLM): Ufi Gel P and GC Reline soft) were selected. Ufi Gel P (VOCO, Germany), GC Reline soft (GC America) are resilient, chairside vinyl polysiloxane denture reliners of two different manufacturers. A total of 80 test samples were prepared of which 40 specimens were prepared for Group A (Ufi Gel P) and 40 specimens for Group B (GC Reline soft). In these groups, based on Pre-treatment of acrylic resin specimens each group was subdivided into four sub groups of 10 samples each. Sub-group I-without any surface treatment. Sub-group II-sand blasted Sub-group III-treated with Methyl Methacrylate monomer Sub-group IV-treated with chemical etchant Acetone. The results were statistically analysed by Kruscal Wallis test, Mann-Whitney U test, and Independent t test. The specimens treated with MMA monomer wetting showed superior and significant bond strength than those obtained by other surface treatments. The samples belonging to subgroups of GC Reline soft exhibit superior tensile bond strength than subgroups of Ufi Gel P. The modes

  16. Effects of Rolling and Cooling Conditions on Microstructure and Tensile and Charpy Impact Properties of Ultra-Low-Carbon High-Strength Bainitic Steels

    NASA Astrophysics Data System (ADS)

    Sung, Hyo Kyung; Shin, Sang Yong; Hwang, Byoungchul; Lee, Chang Gil; Kim, Nack J.; Lee, Sunghak

    2011-07-01

    Six ultra-low-carbon high-strength bainitic steel plates were fabricated by controlling rolling and cooling conditions, and effects of bainitic microstructure on tensile and Charpy impact properties were investigated. The microstructural evolution was more critically affected by start cooling temperature and cooling rate than by finish rolling temperature. Bainitic microstructures such as granular bainites (GBs) and bainitic ferrites (BFs) were well developed as the start cooling temperature decreased or the cooling rate increased. When the steels cooled from 973 K or 873 K (700 °C or 600 °C) were compared under the same cooling rate of 10 K/s (10 °C/s), the steels cooled from 973 K (700 °C) consisted mainly of coarse GBs, while the steels cooled from 873 K (600 °C) contained a considerable amount of BFs having high strength, thereby resulting in the higher strength but the lower ductility and upper shelf energy (USE). When the steels cooled from 673 K (400 °C) at a cooling rate of 10 K/s (10 °C/s) or 0.1 K/s (0.1 °C/s) were compared under the same start cooling temperature of 873 K (600 °C), the fast cooled specimens were composed mainly of coarse GBs or BFs, while the slowly cooled specimens were composed mainly of acicular ferrites (AFs). Since AFs had small effective grain size and contained secondary phases finely distributed at grain boundaries, the slowly cooled specimens had a good combination of strength, ductility, and USE, together with very low energy transition temperature (ETT).

  17. Effects of mechanical and thermal load cycling on micro tensile bond strength of clearfil SE bond to superficial dentin

    PubMed Central

    Daneshkazemi, Ali Reza; Davari, Abdol Rahim; Ataei, Ebrahim; Dastjerdi, Fariba; Hajighasemi, Ehsan

    2013-01-01

    Background: Certain studies have been conducted on the effects of mechanical and thermal load cycling on the microtensile bond strength (microTBS) of composites to dentin, but the results were different. The authors therefore decided to evaluate these effects on the bonding of Clearfil SE bond to superficial dentin. Materials and Methods: Flat dentinal surface of 42 molar teeth were bonded to Filtek-Z250 resin composite by Clearfil SE bond. The teeth were randomly divided into 7 groups and exposed to different mechanical and thermal load cycling. Thermocycling was at 5-55°C and mechanical load cycling was created with a force of 125 N and 0.5 Hz. Then, the teeth were sectioned and shaped to hour glass form and subjected to microTBS testing at a speed of 0.5 mm/min. The results were statistically analyzed by computer with three-way analysis of variance and T-test at P < 0.05 significant. To evaluate the location and mode of failure, the specimens were observed under the stereomicroscope. Then, one of the specimens in each group was evaluated under Scanning Electron Microscopy (SEM) for mode of failure. Results: All of the study groups had a significantly lower microTBS as compared to the control group (P < 0.001). There was no statistically significant difference between mechanical cycling with 50K (kilo = 1000) cycles, and 50K mechanical cycles plus 1K thermal cycles. Most of the fractures in the control group were of adhesive type and this type of fracture increased after exposure to mechanical and thermal load cycling. Conclusion: Thermal and mechanical load cycling had significant negative effects on microTBS and the significant effects of mechanical load cycling started to be significant at 100K cycles. PMID:23946737

  18. Steel bars and forgings, 0.50Cr 0.55Ni 0.25Mo (0.38 0.43C) (SAE 8740), heat treated, 125,000 psi (862 MPa) tensile strength (reaffirmed, Apr 1994). (SAE standard)

    SciTech Connect

    1988-10-01

    This specification covers an aircraft-quality, low-alloy steel in the form of bars and forgings. Primarily for parts, such as nuts, bolts, and screws, 1.50 inch (38.1 mm) and under in section thickness, requiring a minimum tensile strength of 125,000 (862 MPa). Alloy: 8740 UNS Number: G8740.

  19. Comparison of tensile bond strengths of four one-bottle self-etching adhesive systems with Er:YAG laser-irradiated dentin.

    PubMed

    Jiang, Qianzhou; Chen, Minle; Ding, Jiangfeng

    2013-12-01

    This study aimed to investigate the interaction of current one-bottle self-etching adhesives and Er:YAG laser with dentin using a tensile bond strength (TBS) test and scanning electron microscopy (SEM) in vitro. Two hundred and thirteen dentin discs were randomly distributed to the Control Group using bur cutting and to the Laser Group using an Er:YAG laser (200 mJ, VSP, 20 Hz). The following adhesives were investigated: one two-step total-etch adhesive [Prime & Bond NT (Dentsply)] and four one-step self-etch adhesives [G-Bond plus (GC), XENO V (Dentsply), iBond Self Etch (Heraeus) and Adper Easy One (3 M ESPE)]. Samples were restored with composite resin, and after 24-hour storage in distilled water, subjected to the TBS test. For morphological analysis, 12 dentin specimens were prepared for SEM. No significant differences were found between the control group and laser group (p = 0.899); dentin subjected to Prime & Bond NT, XENOV and Adper Easy One produced higher TBS. In conclusion, this study indicates that Er:YAG laser-prepared dentin can perform as well as bur on TBS, and some of the one-step one-bottle adhesives are comparable to the total-etch adhesives in TBS on dentin. PMID:24190486

  20. Temperature-dependent tensile strength, surface roughness diagnostics, and magnetic support and positioning of polymer ICF shells. Final report, October 1, 1993--April 30, 1995

    SciTech Connect

    Honig, A.

    1995-12-15

    During the course of this grant, we perfected emissivity and accommodation coefficient measurements on polymer ICF shells in the temperature range 250 to 350 K. Values for polystyrene shells are generally between 10{sup -2} and 10{sup -3}, which are very advantageous for ICF at cryogenic temperatures. Preliminary results on Br doped target shells indicate an accommodation coefficient, presumably associated with surface roughness on an atomic scale, about an order of magnitude larger than for ordinary polystyrene target shells. We also constructed apparatus with optical access for low temperature tensile strength and emissivity measurements, and made preliminary tests on this system. Magnetic shells were obtained both from GDP coating and from doping styrene with 10 manometer size ferromagnetic particles. The magnetic properties were measured through electron spin resonance (ESR). These experiments confirm the applicability of the Curie law, and establish the validity of using ESR measurements to determine shell temperature in the low temperature regime from 4K to 250K, thus complementing our presently accessible range. The high electron spin densities (> 10{sup 20}/CM{sup 3}) suggest magnetic levitation should be feasible at cryogenic temperatures. This work has resulted in two conference presentations, a Technical Report, a paper to be published in Fusion Technology, and a Master`s Thesis.

  1. Application of Arrhenius law to DP and zero-span tensile strength measurements taken on iron gall ink impregnated papers: relevance of artificial ageing protocols

    NASA Astrophysics Data System (ADS)

    Rouchon, Véronique; Belhadj, Oulfa; Duranton, Maroussia; Gimat, Alice; Massiani, Pascale

    2016-08-01

    Iron gall inks (IGI) were largely used for writing until the nineteenth century. Under certain circumstances, they provoke a substantial degradation of their cellulosic support. It was shown in a previous works that combination of oxygen and iron largely impacts cellulose chain breaking occurring in acidic conditions (pH 3-4). The present study aims to study the kinetic of this degradation. It assesses the validity of Arrhenius law between 20 and 90 °C taking advantage of the fast depolymerization of IGI impregnated papers at room temperature and using two complementary tools: DP measurements and zero-span tensile strength. The first one is sensitive enough to measure degradation at its very beginning, while the second is more appropriate for advanced stage of degradation. Similar activation energies (97 ± 2 kJ mol-1) were found via DP and zero-span measurements, and reaction rates of IGI impregnated papers were 1-2 orders of magnitude above available data related to lignin-free acidic papers. These observations suggest a dominant hydrolytic mechanism that involves directly or indirectly oxygen and iron.

  2. Simultaneous determination of the impurity and radial tensile strength of reduced glutathione tablets by a high selective NIR-PLS method

    NASA Astrophysics Data System (ADS)

    Li, Juan; Jiang, Yue; Fan, Qi; Chen, Yang; Wu, Ruanqi

    This paper establishes a high-throughput and high selective method to determine the impurity named oxidized glutathione (GSSG) and radial tensile strength (RTS) of reduced glutathione (GSH) tablets based on near infrared (NIR) spectroscopy and partial least squares (PLS). In order to build and evaluate the calibration models, the NIR diffuse reflectance spectra (DRS) and transmittance spectra (TS) for 330 GSH tablets were accurately measured by using the optimized parameter values. For analyzing GSSG or RTS of GSH tablets, the NIR-DRS or NIR-TS were selected, subdivided reasonably into calibration and prediction sets, and processed appropriately with chemometric techniques. After selecting spectral sub-ranges and neglecting spectrum outliers, the PLS calibration models were built and the factor numbers were optimized. Then, the PLS models were evaluated by the root mean square errors of calibration (RMSEC), cross-validation (RMSECV) and prediction (RMSEP), and by the correlation coefficients of calibration (Rc) and prediction (Rp). The results indicate that the proposed models have good performances. It is thus clear that the NIR-PLS can simultaneously, selectively, nondestructively and rapidly analyze the GSSG and RTS of GSH tablets, although the contents of GSSG impurity were quite low while those of GSH active pharmaceutical ingredient (API) quite high. This strategy can be an important complement to the common NIR methods used in the on-line analysis of API in pharmaceutical preparations. And this work expands the NIR applications in the high-throughput and extraordinarily selective analysis.

  3. Effects of excipients on the tensile strength, surface properties and free volume of Klucel® free films of pharmaceutical importance

    NASA Astrophysics Data System (ADS)

    Gottnek, Mihály; Süvegh, Károly; Pintye-Hódi, Klára; Regdon, Géza

    2013-08-01

    The physicochemical properties of polymers planned to be applied as mucoadhesive films were studied. Two types of Klucel® hydroxypropylcellulose (LF and MF) were used as film-forming polymers. Hydroxypropylcellulose was incorporated in 2 w/w% with glycerol and xylitol as excipients and lidocaine base as an active ingredient at 5, 10 or 15 w/w% of the mass of the film-forming polymer. The free volume changes of the films were investigated by positron annihilation lifetime spectroscopy, the mechanical properties of the samples were measured with a tensile strength tester and contact angles were determined to assess the surface properties of the films. It was found that the Klucel® MF films had better physicochemical properties than those of the LF films. Klucel® MF as a film-forming polymer with lidocaine base and both excipients at 5 w/w% exhibited physicochemical properties and good workability. The excipients proved to exert strong effects on the physicochemical properties of the tested systems and it is very important to study them intensively in preformulation studies in the pharmaceutical technology in order to utilise their benefits and to avoid any disadvantageous effects.

  4. High-strain rate tensile characterization of graphite platelet reinforced vinyl ester based nanocomposites using split-Hopkinson pressure bar

    NASA Astrophysics Data System (ADS)

    Pramanik, Brahmananda

    The dynamic response of exfoliated graphite nanoplatelet (xGnP) reinforced and carboxyl terminated butadiene nitrile (CTBN) toughened vinyl ester based nanocomposites are characterized under both dynamic tensile and compressive loading. Dynamic direct tensile tests are performed applying the reverse impact Split Hopkinson Pressure Bar (SHPB) technique. The specimen geometry for tensile test is parametrically optimized by Finite Element Analysis (FEA) using ANSYS Mechanical APDLRTM. Uniform stress distribution within the specimen gage length has been verified using high-speed digital photography. The on-specimen strain gage installation is substituted by a non-contact Laser Occlusion Expansion Gage (LOEG) technique for infinitesimal dynamic tensile strain measurements. Due to very low transmitted pulse signal, an alternative approach based on incident pulse is applied for obtaining the stress-time history. Indirect tensile tests are also performed combining the conventional SHPB technique with Brazilian disk test method for evaluating cylindrical disk specimens. The cylindrical disk specimen is held snugly in between two concave end fixtures attached to the incident and transmission bars. Indirect tensile stress is estimated from the SHPB pulses, and diametrical transverse tensile strain is measured using LOEG. Failure diagnosis using high-speed digital photography validates the viability of utilizing this indirect test method for characterizing the tensile properties of the candidate vinyl ester based nanocomposite system. Also, quasi-static indirect tensile response agrees with previous investigations conducted using the traditional dog-bone specimen in quasi-static direct tensile tests. Investigation of both quasi-static and dynamic indirect tensile test responses show the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. Finally, the conventional compressive SHPB tests are performed. It is observed that both

  5. Improved Tensile Test for Ceramics

    NASA Technical Reports Server (NTRS)

    Osiecki, R. A.

    1982-01-01

    For almost-nondestructive tensile testing of ceramics, steel rod is bonded to sample of ceramic. Assembly is then pulled apart in conventional tensile-test machine. Test destroys only shallow surface layer which can be machined away making specimen ready for other uses. Method should be useful as manufacturing inspection procedure for low-strength brittle materials.

  6. Quantification of the Existence Ratio of Non-Adhesion Grain Boundaries and Factors Governing the Strength of Coke Containing Low-Quality Coal

    NASA Astrophysics Data System (ADS)

    Kanai, Tetsuya; Yamazaki, Yoshiaki; Zhang, Xiaoqing; Uchida, Ataru; Saito, Yasuhiro; Shoji, Masakazu; Aoki, Hideyuki; Nomura, Seiji; Kubota, Yukihiro; Hayashizaki, Hideyuki; Miyashita, Shigeto

    “Non-adhesion grain boundaries” are formed when low-quality coal grains do not adhere to other grains in the carbonization process because of the low dilation of coke. To better understand the effects of non-adhesion grain boundaries on coke strength, the relationship between the existence ratio of non-adhesion grain boundaries and coke strength was investigated quantitatively. The existence ratio of non-adhesion grain boundaries were measured quantitatively by observing the fracture cross-section of coke using scanning electron microscopy (SEM). Coke strength was measured with a diametral-compression test and an I-shape drum index test. As a result, non-adhesion grain boundaries increased with an increase in the blending ratio of low-quality coal. In particular, non-adhesion grain boundaries increased rapidly when the blending ratio of low-quality coal was over 50%. When the ratio was less than 50%, low-quality coals adhered to other caking coal. However, not many low-quality coals adhered to other caking coals when the ratio was over 50%. The tensile strength of coke was not affected by the porosity of coke. However, the tensile strength and the drum index were affected by the existence ratio of non-adhesion grain boundaries. Tensile strength decreased rapidly even for a few non-adhesion grain boundaries because significant defects caused a fracture in the diametral-compression test. However, the I-shape drum index decreased linearly with the existence ratio of the non-adhesion grain boundaries because many fractures occurred during 600 rotations in the drum. The strength of coke containing low-quality coal is governed by the existence ratio of non-adhesion grain boundaries rather than mean values such as the porosity of coke.

  7. The elastic moduli and diametrical compressive fracture stress of ? - ? ceramics

    NASA Astrophysics Data System (ADS)

    Tan, K. S.; Hing, P.; Ramalingam, P.

    1997-03-01

    Young's moduli of green and sintered unstabilized 0022-3727/30/6/017/img8 - 0022-3727/30/6/017/img9 ceramics have been determined by measuring compression and shear velocities through the material and, from separate measurements, the associated bulk density. Young's modulus and sintered density of 0022-3727/30/6/017/img8 - 0022-3727/30/6/017/img9 ceramics can be enhanced by increasing the compacting pressure when forming the green ceramics and with the addition of <5 wt% of unstabilized 0022-3727/30/6/017/img9. For a particular green compacting pressure, the trend in the diametrical compressive fracture stress is similar to that of Young's modulus. The fracture stress also increases with a higher green compacting pressure at a constant wt% 0022-3727/30/6/017/img9.

  8. Modelling of the break force of tablets under diametrical compression.

    PubMed

    Shang, C; Sinka, I C; Pan, J

    2013-03-10

    A numerical method to predict the break force of curved faced tablets is proposed. The constitutive model and the failure criteria necessary to obtain predictions consistent with experimental data are identified. A modified Drucker-Prager cap model together with a maximum principal stress based failure criteria was found sufficient to predict the break force of tablets under diametrical compression loading. The conditions for the validity of the method were identified with reference to practical tablet shapes and failure patterns. Under these conditions the numerical procedures can be used as a practical tool to predict tablet breakage as an alternative to the empirical methods currently used in pharmaceutical product design and process development. PMID:23357256

  9. Tensile properties of impact ices

    NASA Technical Reports Server (NTRS)

    Chu, M. L.; Scavuzzo, R. J.; Kellackey, C. J.

    1992-01-01

    A special test apparatus was developed to measure the tensile strength of impact ices perpendicular to the direction of growth. The apparatus consists of a split tube carefully machined to minimize the effect of the joint on impact ice strength. The tube is supported in the wind tunnel by two carefully aligned bearings. During accretion the tube is turned slowly in the icing cloud to form a uniform coating of ice on the split tube specimen. The two halves of the split tube are secured firmly by a longitudinal bolt to prevent relative motion between the two halves during ice accretion and handling. Tensile test strength results for a variety of icing conditions were obtained. Both glaze and rime ice conditions were investigated. In general, the tensile strength of impact ice was significantly less than refrigerator ice. Based on the limited data taken, the median strength of rime ice was less than glaze ice. However, the mean values were similar.

  10. High-temperature tensile tester for ceramics

    NASA Technical Reports Server (NTRS)

    Smith, M.

    1974-01-01

    Apparatus measures tensile strength of rigid, low-density ceramic materials at temperatures up to 1375 K. Tensile grips mate with tensile specimen and form top and bottom of lightweight furnace. Apparatus can only be used with rigid materials and grips must be stronger than material under test.

  11. Revisiting the Recommended Geometry for the Diametrally Compressed Ceramic C-Ring Specimen

    SciTech Connect

    Jadaan, Osama M.; Wereszczak, Andrew A

    2009-04-01

    A study conducted several years ago found that a stated allowable width/thickness (b/t) ratio in ASTM C1323 (Standard Test Method for Ultimate Strength of Advanced Ceramics with Diametrally Compressed C-Ring Specimens at Ambient Temperature) could ultimately cause the prediction of a non-conservative probability of survival when the measured C-ring strength was scaled to a different size. Because of that problem, this study sought to reevaluate the stress state and geometry of the C-ring specimen and suggest changes to ASTM C1323 that would resolve that issue. Elasticity, mechanics of materials, and finite element solutions were revisited with the C ring geometry. To avoid the introduction of more than 2% error, it was determined that the C ring width/thickness (b/t) ratio should range between 1-3 and that its inner radius/outer radius (ri/ro) ratio should range between 0.50-0.95. ASTM C1323 presently allows for b/t to be as large as 4 so that ratio should be reduced to 3.

  12. The theoretical strength of rubber: numerical simulations of polyisoprene networks at high tensile strains evidence the role of average chain tortuosity

    NASA Astrophysics Data System (ADS)

    Hanson, David E.; Barber, John L.

    2013-10-01

    The ultimate stress and strain of polyisoprene rubber were studied by numerical simulations of three-dimensional random networks, subjected to tensile strains high enough to cause chain rupture. Previously published molecular chain force extension models and a numerical network construction procedure were used to perform the simulations for network crosslink densities between 2 × 1019 and 1 × 1020 cm-3, corresponding to experimental dicumyl-peroxide concentrations of 1-5 parts per hundred. At tensile failure (defined as the point of maximum stress), we find that the fraction of network chains ruptured is between 0.1% and 1%, depending on the crosslink density. The fraction of network chains that are taut, i.e. their end-to-end distance is greater than their unstretched contour length, ranges between 10% and 15% at failure. Our model predicts that the theoretical (defect-free) failure stress should be about twice the highest experimental value reported. For extensions approaching failure, tensile stress is dominated by the network morphology and purely enthalpic bond distortion forces and, in this regime, the model has essentially no free parameters. The average initial chain tortuosity (τ) appears to be an important statistical property of rubber networks; if the stress is scaled by τ and the tensile strain is scaled by τ-1, we obtain a master curve for stress versus strain, valid for all crosslink densities. We derive an analytic expression for the average tortuosity, which is in agreement with values calculated in the simulations.

  13. In-Plane Cracking Behavior and Ultimate Strength for 2D Woven and Braided Melt-Infiltrated SiC/SiC Composites Tensile Loaded in Off-Axis Fiber Directions

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Yun, Hee Mann; DiCarlo, James A.

    2007-01-01

    The tensile mechanical properties of ceramic matrix composites (CMC) in directions off the primary axes of the reinforcing fibers are important for architectural design of CMC components that are subjected to multi-axial stress states. In this study, 2D-woven melt-infiltrated (MI) SiC/SiC composite panels with balanced fiber content in the 0 degree and 90 degree directions were tensile loaded in-plane in the 0 degree direction and at 45 degree to this direction. In addition, a 2D triaxially-braided MI composite panel with balanced fiber content in the plus or minus 67 degree bias directions and reduced fiber content in the axial direction was tensile loaded perpendicular to the axial direction tows (i.e., 23 degrees from the bias fibers). Stress-strain behavior, acoustic emission, and optical microscopy were used to quantify stress-dependent matrix cracking and ultimate strength in the panels. It was observed that both off-axis loaded panels displayed higher composite onset stresses for through-thickness matrix cracking than the 2D-woven 0/90 panels loaded in the primary 0 degree direction. These improvements for off-axis cracking strength can in part be attributed to higher effective fiber fractions in the loading direction, which in turn reduces internal stresses on critical matrix flaws for a given composite stress. Also for the 0/90 panel loaded in the 45 degree direction, an improved distribution of matrix flaws existed due to the absence of fiber tows perpendicular to the loading direction. In addition, for the +67/0/-67 braided panel, the axial tows perpendicular to the loading direction were not only low in volume fraction, but were also were well separated from one another. Both off-axis oriented panels also showed relatively good ultimate tensile strength when compared to other off-axis oriented composites in the literature, both on an absolute strength basis as well as when normalized by the average fiber strength within the composites. Initial

  14. STRENGTH OF A C-SPHERE FLEXURE SPECIMEN

    SciTech Connect

    Wereszczak, Andrew A; Wang, Wei; Jadaan, Osama M.; Lance, Michael J; Lin, Hua-Tay

    2007-01-01

    A 'C-Sphere' flexure strength specimen geometry was conceived and developed to measure a relevant strength of bearing-grade Si{sub 3}N{sub 4} balls and to relate that to surface-located strength-limiting flaws and to ultimately link those flaw populations to rolling contact fatigue performance. A slot was machined into the balls to a set depth to produce the C-sphere geometry. C-sphere specimens were then diametrally compressed to produce a monotonically increasing flexure or hoop tensile stress at their surface that caused their fracture. The strength was determined using the combination of failure load, C-sphere geometry, and FEA, and the stress field was used to determine C-sphere effective areas and effective volumes as a function of Weibull modulus. A description of the specimen and the aforementioned analysis are provided and a comparison of C-sphere flexure strength distributions of two bearing grade Si{sub 3}N{sub 4} materials (NBD200 and SN101C) is given.

  15. Influences of post weld heat treatment on tensile strength and microstructure characteristics of friction stir welded butt joints of AA2014-T6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Rajendran, C.; Srinivasan, K.; Balasubramanian, V.; Balaji, H.; Selvaraj, P.

    2016-08-01

    Friction stir welded (FSWed) joints of aluminum alloys exhibited a hardness drop in both the advancing side (AS) and retreating side (RS) of the thermo-mechanically affected zone (TMAZ) due to the thermal cycle involved in the FSW process. In this investigation, an attempt has been made to overcome this problem by post weld heat treatment (PWHT) methods. FSW butt (FSWB) joints of Al-Cu (AA2014-T6) alloy were PWHT by two methods such as simple artificial aging (AA) and solution treatment followed by artificial aging (STA). Of these two treatments, STA was found to be more beneficial than the simple aging treatment to improve the tensile properties of the FSW joints of AA2014 aluminum alloy.

  16. Cassini First Diametric Radio Occultation of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Marouf, E.; French, R.; Rappaport, N.; Kliore, A.; Flasar, M.; Nagy, A.; Ambrosini, R.; McGhee, C.; Schinder, P.; Anabtawi, A.; Barbinis, E.; Goltz, G.; Thomson, F.; Wong, K.

    2005-05-01

    We present preliminary results expected from the first planned Cassini radio occultation observation of Saturn's rings, to be conducted on May 3rd, 2005. The path of Cassini as seen from Earth (the occultation track) has been designed to cross the rings from the west to the east ansa almost diametrically, allowing for occultation of all major ring features at two widely separated longitudes (about 180 deg apart). The duration of the geometric occultation is about 1.5 hours on each side. During the occultation, Cassini transmits through the rings three coherent monochromatic radio signals of wavelength 0.94, 3.6, and 13 cm (Ka-, X-, and S-band respectively), a capability unique to Cassini. The perturbed signals received at the Earth are recorded at the NASA DSN complexes at Goldstone and Canberra. Both direct and forward-scattered components of the signal may be identified in spectrograms of the received signals. The time history of the extinction of the direct signal is expected to yield high-spatial-resolution optical depth and phase shift profiles of ring structure. The timing of the occultation was optimized to allow probing the rings when the ring-opening-angle B (the angle between the line-of-sight and the ring plane) is relatively large (B = 23 deg), hence maximizing chances of measuring for the first time the structure of the relatively optically thick Ring B. In a similar experiment by Voyager in 1980, excessive signal attenuation along the long path within the nearly closed rings (B = 5.9 deg) limited the utility of the observations in relatively thick ring regions, in particular the main Ring B. For the Cassini optimized occultation geometry, a large B, slow radial velocity along the occultation track, and much improved phase stability of the reference ultrastable oscillator (USO) on board Cassini combine to promise achievable radial resolution approaching 100 m over a good fraction of the rings. Measurement of the amplitude and phase of the diffracted

  17. Tensile Test For Arboform Samples

    NASA Astrophysics Data System (ADS)

    Plavanescu (Mazurchevici), Simona; Quadrini, Fabrizio; Nedelcu, Dumitru

    2015-07-01

    Petroleum-based plastic materials constitute a major environmental problem due to their low biodegradability and accumulation in various environments. Therefore, searching for novel biodegradable plastics is received particular attention. Our studied material, "Liquid wood" produced from lignin, natural fibres and natural additives, is completely biodegradable in natural environment, in normal conditions. This paper presents the behaviour of Arboform and Arboform reinforced with Aramidic Fibers tensile test analysis. Experimental data show that the tensile strength reached an average value of 15.8 MPa, the modulus of elasticity after tests is 3513.3MPA for Arboform and for the reinforcement the tensile strength is 23.625MPa, the modulus of elasticity after tests is 3411.5MPA, the materials present a brittle behaviour. The high mechanical properties of newly developed material, better than of other ordinary plastics, recommend it as a potential environment-friendly substituent for synthetic plastics, which are present in all fields of activity.

  18. Experimental Analysis of Work-piece's Diametrical Error in Ultrasonic-Vibration-Assisted Turning

    NASA Astrophysics Data System (ADS)

    Soleimanimehr, H.; Nategh, M. J.; Gholamzadeh, B.

    2011-01-01

    Vibration at an ultrasonic frequency is superimposed on the ordinary cutting motion in ultrasonic-vibration-assisted turning (UAT). This combinatory cutting motion results in reduction of the cutting force and surface roughness, and improvement of the dimensional tolerances compared with conventional turning (CT). The advantages obtainable from UAT has made this process suitable for machining hard-to-cut and brittle materials such as super-alloys and ceramics, as well as ordinary materials. The elastic deflection of work-pieces is primarily responsible for the diametrical errors of the machined parts. This is of course more obvious for slender work-pieces. The influence of UAT process on the diametrical error has not yet been investigated. This has been partly undertaken by the authors of the present paper. It has been experimentally illustrated in this paper that ultrasonic vibration superimposed on the tool tip can result in reduction of the diametrical error and thus reduced scrap rate is ensued.

  19. Experimental Analysis of Work-piece's Diametrical Error in Ultrasonic-Vibration-Assisted Turning

    SciTech Connect

    Soleimanimehr, H.; Nategh, M. J.; Gholamzadeh, B.

    2011-01-17

    Vibration at an ultrasonic frequency is superimposed on the ordinary cutting motion in ultrasonic-vibration-assisted turning (UAT). This combinatory cutting motion results in reduction of the cutting force and surface roughness, and improvement of the dimensional tolerances compared with conventional turning (CT). The advantages obtainable from UAT has made this process suitable for machining hard-to-cut and brittle materials such as super-alloys and ceramics, as well as ordinary materials. The elastic deflection of work-pieces is primarily responsible for the diametrical errors of the machined parts. This is of course more obvious for slender work-pieces. The influence of UAT process on the diametrical error has not yet been investigated. This has been partly undertaken by the authors of the present paper. It has been experimentally illustrated in this paper that ultrasonic vibration superimposed on the tool tip can result in reduction of the diametrical error and thus reduced scrap rate is ensued.

  20. Do Diametric Measurements Provide Sufficient and Reliable Tumor Assessment? An Evaluation of Diametric, Areametric, and Volumetric Variability of Lung Lesion Measurements on Computerized Tomography Scans

    PubMed Central

    Fogarty, Edward; Beal, James; Chaudhary, Vijay

    2015-01-01

    Diametric analysis is the standard approach utilized for tumor measurement on medical imaging. However, the availability of newer more sophisticated techniques may prove advantageous. An evaluation of diameter, area, and volume was performed on 64 different lung lesions by three trained users. These calculations were obtained using a free DICOM viewer and standardized measuring procedures. Measurement variability was then studied using relative standard deviation (RSD) and intraclass correlation. Volumetric measurements were shown to be more precise than diametric. With minimal RSD and variance between different users, volumetric analysis was demonstrated as a reliable measurement technique. Additionally, the diameters were used to calculate an estimated area and volume; thereafter the estimated area and volume were compared against the actual measured values. The results in this study showed independence of the estimated and actual values. Estimated area deviated an average of 43.5% from the actual measured, and volume deviated 88.03%. The range of this variance was widely scattered and without trend. These results suggest that diametric measurements cannot be reliably correlated to actual tumor size. Access to appropriate software capable of producing volume measurements has improved drastically and shows great potential in the clinical assessment of tumors. Its applicability merits further consideration. PMID:26064117

  1. Identification of a keratinase-producing bacterial strain and enzymatic study for its improvement on shrink resistance and tensile strength of wool- and polyester-blended fabric.

    PubMed

    Cai, Shao-Bo; Huang, Zheng-Hua; Zhang, Xing-Qun; Cao, Zhang-Jun; Zhou, Mei-Hua; Hong, Feng

    2011-01-01

    A wool-degrading bacterium was isolated from decomposition wool fabrics in China. The strain, named 3096-4, showed excellent capability of removing cuticle layer of wool fibers, as demonstrated by removing cuticle layer completely within 48 h. According to the phenotypic characteristics and 16S rRNA profile, the isolate was classified as Pseudomonas. Bacteria growth and keratinase activity of the isolate were determined during cultivation on raw wool at different temperatures, initial pH, and rotation speed using orthogonal matrix method. Maximum growth and keratinase activity of the bacterium were observed under the condition including 30 °C, initial pH 7.6, and rotational speeds 160 rpm. The keratinase-containing crude enzyme prepared from 3096-4 was evaluated in the treatment of wool fabrics. The optimal condition of our enzymatic improvement of shrink resistance was the combination of 30 °C, initial pH 7.6, and rotation speeds 160 rpm. After the optimized treatment, the wool fabrics felting shrink was 4.1% at 6 h, and textile strength was not lost. PMID:20607444

  2. Are the Autism and Positive Schizotypy Spectra Diametrically Opposed in Empathizing and Systemizing?

    ERIC Educational Resources Information Center

    Russell-Smith, Suzanna N.; Bayliss, Donna M.; Maybery, Murray T.; Tomkinson, Rosy L.

    2013-01-01

    Crespi and Badcock's (Behaviour Brain Sci 31: 241-261, 2008) novel theory, which presents autism and positive schizophrenia as diametrical opposites on a cognitive continuum, has received mixed support in the literature to date. The current study aimed to further assess the validity of this theory by investigating predictions in relation to…

  3. An in vitro study to compare the effect of two etching techniques on the tensile bond strength of resin cement bonded to base metal alloy and enamel.

    PubMed

    Sudheer, Arunachalam; Shetty, Gautam

    2013-12-01

    Resin-bonded retainers are being preferred for anterior restorations. To increase the retentive strength of the metal fixed to the tooth, the retainer surface has to be etched. Different etching techniques are described in the literature with different researchers expressing the superiority of one technique over the other. This study was conducted to compare electro chemical and chemical etching techniques and the mode of bond failure. Twenty human maxillary premolars with the crown portion separated from root were embedded in resin block such that mesial or distal portion of it was exposed on the top of the block. 4 × 5 mm area was marked on the tooth, and wax pattern was prepared to cover the exact area, with the opposite end having a hook like structure which was later attached to universal testing machine. Wiron99 Ni-Cr alloy was used for casting. Once the casting and etching procedures were finished, wax patterns were invested, casted and half the samples were etched chemically using Aqua-regia and the other half samples were etched electrochemically. The castings were cleaned and cemented to tooth structure using Rely-X ARC (3 M ESPE, USA) resin cement. Specimens were fixed to universal testing machine and de-bonded. The load required to de-bond and mode of de-bonding was noted. Results were subjected to five different statistical tests, each test specific to the variable being tested. The mean failure load was calculated as 5.95 kg for electrochemically etched samples and that of chemically etched samples was calculated as 11.15 kg. The standard deviation of the force required to debond the specimens (Kgf) was calculated and found to be 0.65 for electrochemically etched samples and 1.11 for chemically etched samples. The following conclusions have been drawn from the study. 1. Chemical etching of the samples created better retentive surfaces than electrochemical etching. 2. The results of mode of de-bonding show that in case of chemical etching

  4. Direct Lentiviral-Cyclooxygenase 2 Application to the Tendon-Bone Interface Promotes Osteointegration and Enhances Return of the Pull-Out Tensile Strength of the Tendon Graft in a Rat Model of Biceps Tenodesis

    PubMed Central

    Wergedal, Jon E.; Stiffel, Virginia; Lau, Kin-Hing William

    2014-01-01

    This study sought to determine if direct application of the lentiviral (LV)-cyclooxygenase 2 (COX2) vector to the tendon-bone interface would promote osteointegration of the tendon graft in a rat model of biceps tenodesis. The LV-COX2 gene transfer strategy was chosen for investigation because a similar COX2 gene transfer strategy promoted bony bridging of the fracture gap during bone repair, which involves similar histologic transitions that occur in osteointegration. Briefly, a 1.14-mm diameter tunnel was drilled in the mid-groove of the humerus of adult Fischer 344 rats. The LV-COX2 or βgal control vector was applied directly into the bone tunnel and onto the end of the tendon graft, which was then pulled into the bone tunnel. A poly-L-lactide pin was press-fitted into the tunnel as interference fixation. Animals were sacrificed at 3, 5, or 8 weeks for histology analysis of osteointegration. The LV-COX2 gene transfer strategy enhanced neo-chondrogenesis at the tendon-bone interface but with only marginal effect on de novo bone formation. The tendon-bone interface of the LV-COX2-treated tenodesis showed the well-defined tendon-to-fibrocartilage-to-bone histologic transitions that are indicative of osteointegration of the tendon graft. The LV-COX2 in vivo gene transfer strategy also significantly enhanced angiogenesis at the tendon-bone interface. To determine if the increased osteointegration was translated into an improved pull-out mechanical strength property, the pull-out tensile strength of the LV-COX2-treated tendon grafts was determined with a pull-out mechanical testing assay. The LV-COX2 strategy yielded a significant improvement in the return of the pull-out strength of the tendon graft after 8 weeks. In conclusion, the COX2-based in vivo gene transfer strategy enhanced angiogenesis, osteointegration and improved return of the pull-out strength of the tendon graft. Thus, this strategy has great potential to be developed into an effective therapy to

  5. Direct lentiviral-cyclooxygenase 2 application to the tendon-bone interface promotes osteointegration and enhances return of the pull-out tensile strength of the tendon graft in a rat model of biceps tenodesis.

    PubMed

    Rundle, Charles H; Chen, Shin-Tai; Coen, Michael J; Wergedal, Jon E; Stiffel, Virginia; Lau, Kin-Hing William

    2014-01-01

    This study sought to determine if direct application of the lentiviral (LV)-cyclooxygenase 2 (COX2) vector to the tendon-bone interface would promote osteointegration of the tendon graft in a rat model of biceps tenodesis. The LV-COX2 gene transfer strategy was chosen for investigation because a similar COX2 gene transfer strategy promoted bony bridging of the fracture gap during bone repair, which involves similar histologic transitions that occur in osteointegration. Briefly, a 1.14-mm diameter tunnel was drilled in the mid-groove of the humerus of adult Fischer 344 rats. The LV-COX2 or βgal control vector was applied directly into the bone tunnel and onto the end of the tendon graft, which was then pulled into the bone tunnel. A poly-L-lactide pin was press-fitted into the tunnel as interference fixation. Animals were sacrificed at 3, 5, or 8 weeks for histology analysis of osteointegration. The LV-COX2 gene transfer strategy enhanced neo-chondrogenesis at the tendon-bone interface but with only marginal effect on de novo bone formation. The tendon-bone interface of the LV-COX2-treated tenodesis showed the well-defined tendon-to-fibrocartilage-to-bone histologic transitions that are indicative of osteointegration of the tendon graft. The LV-COX2 in vivo gene transfer strategy also significantly enhanced angiogenesis at the tendon-bone interface. To determine if the increased osteointegration was translated into an improved pull-out mechanical strength property, the pull-out tensile strength of the LV-COX2-treated tendon grafts was determined with a pull-out mechanical testing assay. The LV-COX2 strategy yielded a significant improvement in the return of the pull-out strength of the tendon graft after 8 weeks. In conclusion, the COX2-based in vivo gene transfer strategy enhanced angiogenesis, osteointegration and improved return of the pull-out strength of the tendon graft. Thus, this strategy has great potential to be developed into an effective therapy to

  6. Effect of the strain-induced melt activation (SIMA) process on the tensile properties of a new developed super high strength aluminum alloy modified by Al-5Ti-1B grain refiner

    SciTech Connect

    Haghparast, Amin; Nourimotlagh, Masoud; Alipour, Mohammad

    2012-09-15

    In this study, the effect of Al-5Ti-1B grain refiners and modified strain-induced melt activation process on an Al-Zn-Mg-Cu alloy was studied. The optimum level of Ti was found to be 0.1 wt.%. The specimens subjected to deformation ratio of 40% (at 300 Degree-Sign C) and various heat treatment times (10-40 min) and temperature (550-600 Degree-Sign C) regimes were characterized in this study. Reheating condition to obtain a fine globular microstructure was optimized. Microstructural examinations were conducted by optical and scanning electron microscopy coupled with an energy dispersive spectrometry. The optimum temperature and time in strain-induced melt activation process are 575 Degree-Sign C and 20 min, respectively. T6 heat treatment including quenching to room temperature and aging at 120 Degree-Sign C for 24 h was employed to reach to the maximum strength. Significant improvements in mechanical properties were obtained with the addition of grain refiner combined with T6 heat treatment. After the T6 heat treatment, the average tensile strength increased from 283 MPa to 587 and 332 MPa to 617 for samples refined with 2 wt.% Al-5Ti-1B before and after strain-induced melt activation process and extrusion process, respectively. Ultimate strength of Ti-refined specimens without SIMA process has a lower value than globular microstructure specimens after SIMA and extrusion process. - Highlights: Black-Right-Pointing-Pointer The effect of Al-5Ti-1B on the aluminum alloy produced by SIMA process was studied. Black-Right-Pointing-Pointer Al-5Ti-1B is an effective in reducing the grain and reagent fine microstructure. Black-Right-Pointing-Pointer Reheating condition to obtain a fine globular microstructure was optimized. Black-Right-Pointing-Pointer The optimum temperature and time in SIMA process are 575 Degree-Sign C and 20 min respectively. Black-Right-Pointing-Pointer UTS of globular structure specimens have a more value than Ti-refined specimens.

  7. Numerical evaluation of the capping tendency of microcrystalline cellulose tablets during a diametrical compression test.

    PubMed

    Furukawa, Ryoichi; Chen, Yuan; Horiguchi, Akio; Takagaki, Keisuke; Nishi, Junichi; Konishi, Akira; Shirakawa, Yoshiyuki; Sugimoto, Masaaki; Narisawa, Shinji

    2015-09-30

    Capping is one of the major problems that occur during the tabletting process in the pharmaceutical industry. This study provided an effective method for evaluating the capping tendency during diametrical compression test using the finite element method (FEM). In experiments, tablets of microcrystalline cellulose (MCC) were compacted with a single tabletting machine, and the capping tendency was determined by visual inspection of the tablet after a diametrical compression test. By comparing the effects of double-radius and single-radius concave punch shapes on the capping tendency, it was observed that the capping tendency of double-radius tablets occurred at a lower compaction force compared with single-radius tablets. Using FEM, we investigated the variation in plastic strain within tablets during the diametrical compression test and visualised it using the output variable actively yielding (AC YIELD) of ABAQUS. For both single-radius and double-radius tablets, a capping tendency is indicated if the variation in plastic strain was initiated from the centre of tablets, while capping does not occur if the variation began from the periphery of tablets. The compaction force estimated by the FEM analysis at which the capping tendency was observed was in reasonable agreement with the experimental results. PMID:26188313

  8. An open-end burst test method to obtain uniaxial hoop tensile properties of fuel cladding in a hot cell

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Masafumi; Aita, Makoto; Sakamoto, Kan; Higuchi, Toru

    2013-03-01

    The hoop stress-hoop strain relationship of fuel cladding is one of the essential input parameters for safety analysis of fuel rods. The three objectives of this paper were: to propose a burst test method for open-end tube specimens with the uniaxial hoop stress condition; to develop the necessary in-cell high temperature open-end burst (OEB) techniques to implement the method; and to determine the optimum specimen length for the proposed OEB test method. Silicone oil was selected as the pressurization medium, and it was sealed inside the specimens not by welding but by O-rings so that no axial tensile stress was induced in the specimens. The specimens with combined end plugs and O-rings were successfully assembled by manipulators in a hot cell, and a high temperature (⩽350 °C), high pressure (⩽100 MPa) seal was achieved. The optimum specimen length was determined by using ductile and embrittled tubes with various lengths of 30-60 mm and was found to be around 45 mm for typical BWR fuel rods. During the OEB test, internal pressure and diametral expansion were monitored to obtain the basic mechanical performance properties of the fuel cladding such as yield stress, ultimate strength, as well as the true hoop stress-hoop strain curve.

  9. Effects of high-energy ball-milling on injectability and strength of β-tricalcium-phosphate cement.

    PubMed

    Bae, Jiyoung; Ida, Yumika; Sekine, Kazumitsu; Kawano, Fumiaki; Hamada, Kenichi

    2015-07-01

    Calcium phosphate cement (CPC) offers many advantages as a bone-substitution material. The objective of this study is to develop a new CPC that simultaneously exhibits fine injectability, a short setting time, and high strength. β-tricalcium phosphate (β-TCP, control) powder was ball-milled for 24h to produce a new cement powder. The modified β-TCP after 24h milling (mβ-TCP-24h) exhibited excellent injectability even 1h after mixing. The mechanical properties of the set cement (compact) were evaluated using compressive strength (CS) and diametral tensile strength (DTS) testing. The CS and DTS values of the mβ-TCP-24h compacts were 8.02MPa and 2.62MPa, respectively, at 5h after mixing, and were 49.6MPa and 7.9MPa, respectively, at 2 weeks after mixing. All the CS and DTS values of the mβ-TCP-24h compacts were significantly higher than those of the control for the same duration after mixing. These results suggest that the mechano-chemically modified β-TCP powder dissolves rapidly and accelerates hydroxyapatite precipitation, which successfully shortens the cement setting time and enhances the strength. This study supports that mβ-TCP-24h is a promising candidate for use in injectable CPCs with improved strength. PMID:25855467

  10. Tensile Properties of GRCop-84

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Loewenthal, William S.; Yun, Hee-Man

    2012-01-01

    This is a chapter in the final report on GRCop-84 for the Reusable Launch Vehicle (RLV) Second Generation/Project Constellation Program. It contains information on the tensile properties of GRCop-84. GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) was produced by extrusion and Hot Isostatic Pressing (HIPing). Some of the extrusions were rolled to plate and sheet while other extrusions were drawn into tubing. The material was further subjected to various heat treatments corresponding to annealing, anticipated typical brazing conditions, an end-of-life condition and various elevated temperature exposures to attempt to improve creep resistance. As anticipated, cold work increased strength while decreasing ductility. Annealing at 600 C (1112 F) and higher temperatures was effective. An exposure for 100 h at 500 C (932 F) resulted in an increase in strength rather than the anticipated decrease. High temperature simulated-braze cycles and thermal exposures lowered the strength of GRCop-84, but the deceases were small compared to precipitation strengthened copper alloys. It was observed that the excess Cr could form large precipitates that lower the reduction in area though it appears a minimum amount is required. Overall, GRCop-84 exhibits good stability of its tensile properties, which makes it an excellent candidate for rocket engine liners and many other high temperature applications.

  11. Fatigue failure of dentin-composite disks subjected to cyclic diametral compression

    PubMed Central

    Li, Yuping; Carrera, Carola; Chen, Ruoqiong; Li, Jianying; Chen, Yungchung; Lenton, Patricia; Rudney, Joel. D.; Jones, Robert S.; Aparicio, Conrado; Fok, Alex

    2015-01-01

    Objective Our aim was to establish the relationship between cyclic loading and fatigue life of the dentin-composite interface using the newly developed disk in diametral compression tests. The results were then used to estimate the fatigue life of restored teeth under occlusal loading. Methods Disk specimens (5mm dia. × 2mm thick) were prepared using bovine incisors and restored with either a methacrylate-based composite Z100™ with Adper Single Bond Plus (Z100) or silorane-based composite Filtek ™ LS with LS System adhesive (LS). The dentin-composite disks were tested under cyclic diametral compression to determine the number of cycles to failure (Nf) at three load levels (n = 3 per group). Finite element analysis (FEA) was used to calculate the interfacial stresses (σ) within the specimen, to establish the σ vs. Nf curves, and those within a restored tooth under normal chewing forces (15N maximum). These were then used to estimate the lifetime of the restored tooth for the two restorative systems. Results The disks restored with LS had a higher fatigue resistance than those restored with Z100. The maximum interfacial stress in the restored tooth determined by FEA was ∼0.5MPa. Based on the estimate of 300,000 cycles of chewing per year, the predicted lifetime under occlusal loading for teeth restored with LS and Z100 was 33 and 10 years, respectively. Significance The disk in cyclic diametral compression has been used successfully to provide fatigue data which allows the lifetime of composite-restored teeth under occlusal loading to be predicted using numerical simulation. PMID:25958269

  12. Tensile properties of nanoclay reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Ku, H.; Trada, Mohan

    2013-08-01

    Kinetic epoxy resin was filled with nanoclay to increase tensile properties of the composite for civil and structural. This project manufactured samples with different percentages by weight of nanoclay in the composites in steps of 1 wt %, which were then post-cured in an oven. The samples were then subjected to tensile tests. The results showed that the composite with 3 wt % of nanoclay produced the highest yield and tensile strengths. However, the Young's modulus increased with increasing nanoparticulate loading. It is hoped that the discussion and results in this work would not only contribute towards the further development of nanoclay reinforced epoxy composites with enhanced material properties, but also provide useful information for the studies of fracture toughness, tensile properties and flexural properties of other composites.

  13. Tensile-property characterization of thermally aged cast stainless steels.

    SciTech Connect

    Michaud, W. F.; Toben, P. T.; Soppet, W. K.; Chopra, O. K.; Energy Technology

    1994-03-03

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components.

  14. Tensile-property characterization of thermally aged cast stainless steels

    SciTech Connect

    Michaud, W.F.; Toben, P.T.; Soppet, W.K.; Chopra, O.K.

    1994-02-01

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components.

  15. High temperature tensile properties of V-4Cr-4Ti

    SciTech Connect

    Zinkle, S.J.; Rowcliffe, A.F.; Stevens, C.O.

    1998-09-01

    Tensile tests have been performed on V-4Cr-4Ti at 750 and 800 C in order to extend the data base beyond the current limit of 700 C. From comparison with previous measurements, the yield strength is nearly constant and tensile elongations decrease slightly with increasing temperature between 300 and 800 C. The ultimate strength exhibits an apparent maximum near 600 C (attributable to dynamic strain aging) but adequate strength is maintained up to 800 C. The reduction in area measured on tensile specimens remained high ({approximately}80%) for test temperatures up to 800 C, in contrast to previous reported results.

  16. Tensile properties of the modified 13Cr martensitic stainless steels

    NASA Astrophysics Data System (ADS)

    Mabruri, Efendi; Anwar, Moch. Syaiful; Prifiharni, Siska; Romijarso, Toni B.; Adjiantoro, Bintang

    2016-04-01

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  17. Quest for the Vulnerable Atheroma: Carotid Stenosis and Diametric Strain--A Feasibility Study.

    PubMed

    Xu, Canxing; Yuan, Chun; Stutzman, Edward; Canton, Gador; Comess, Keith A; Beach, Kirk W

    2016-03-01

    The Bernoulli effect may result in eruption of a vulnerable carotid atheroma, causing a stroke. We measured electrocardiography (ECG)-registered QRS intra-stenotic blood velocity and atheroma strain dynamics in carotid artery walls using ultrasonic tissue Doppler methods, providing displacement and time resolutions of 0.1 μm and 3.7 ms. Of 22 arteries, 1 had a peak systolic velocity (PSV) >280 cm/s, 4 had PSVs between 165 and 280 cm/s and 17 had PSVs <165 cm/s. Eight arteries with PSVs <65 cm/s and 4 of 9 with PSVs between 65 and 165 cm/s had normal systolic diametric expansion (0% and 7%) and corresponding systolic wall thinning. The remaining 10 arteries had abnormal systolic strain dynamics, 2 with diametric reduction (>-0.05 mm), 2 with extreme wall expansion (>0.1 mm), 2 with extreme wall thinning (>-0.1 mm) and 4 with combinations. Decreases in systolic diameter and/or extreme systolic arterial wall thickening may indicate imminent atheroma rupture. PMID:26705891

  18. Effects of Coating and Diametric Load on Fiber Bragg Gratings as Cryogenic Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Wu, meng-Chou; Pater, Ruth H.; DeHaven, Stanton L.

    2008-01-01

    Cryogenic temperature sensing was demonstrated using pressurized fiber Bragg gratings (PFBGs) with polymer coating of various thicknesses. The PFBG was obtained by applying a small diametric load to a regular fiber Bragg grating (FBG). The Bragg wavelengths of FBGs and PFBG were measured at temperatures from 295 K to 4.2 K. The temperature sensitivities of the FBGs were increased by the polymer coating. A physical model was developed to relate the Bragg wavelength shifts to the thermal expansion coefficients, Young's moduli, and thicknesses of the coating polymers. When a diametric load of no more than 15 N was applied to a FBG, a pressure-induced transition occurred at 200 K during the cooling cycle. The pressure induced transition yielded PFBG temperature sensitivities three times greater than conventional FBGs for temperatures ranging from 80 to 200 K, and ten times greater than conventional fibers for temperatures below 80 K. PFBGs were found to produce an increased Bragg wavelength shift of 2.2 nm compared to conventional FBGs over the temperature range of 4.2 to 300 K. This effect was independent of coating thickness and attributed to the change of the fiber thermo-optic coefficient.

  19. Tensile Mechanical Properties of Swine Cortical Mandibular Bone

    PubMed Central

    Brosh, Tamar; Rozitsky, Doron; Geron, Silvia; Pilo, Raphael

    2014-01-01

    Temporary orthodontic mini implants serve as anchorage devices in orthodontic treatments. Often, they are inserted in the jaw bones, between the roots of the teeth. The stability of the mini implants within the bone is one of the major factors affecting their success and, consequently, that of the orthodontic treatment. Bone mechanical properties are important for implant stability. The aim of this study was to determine the tensile properties of the alveolar and basal mandible bones in a swine model. The diametral compression test was employed to study the properties in two orthogonal directions: mesio-distal and occluso-gingival. Small cylindrical cortical bone specimens (2.6 mm diameter, 1.5 mm thickness) were obtained from 7 mandibles using a trephine drill. The sites included different locations (anterior and posterior) and aspects (buccal and lingual) for a total of 16 specimens from each mandible. The load-displacement curves were continuously monitored while loading half of the specimens in the oclluso-gingival direction and half in the mesio-distal direction. The stiffness was calculated from the linear portion of the curve. The mesio-distal direction was 31% stiffer than the occluso-gingival direction. The basal bone was 40% stiffer than the alveolar bone. The posterior zone was 46% stiffer than the anterior zone. The lingual aspect was stiffer than the buccal aspect. Although bone specimens do not behave as brittle materials, the diametral compression test can be adequately used for determining tensile behavior when only small bone specimens can be obtained. In conclusion, to obtain maximal orthodontic mini implant stability, the force components on the implants should be oriented mostly in the mesio-distal direction. PMID:25463971

  20. Tree Diametric Increment and Litterfall Production in an Eastern Amazonian Forest: the Role of Functional Groups

    NASA Astrophysics Data System (ADS)

    Camargo, P. B. D.; Ferreira, M. L.; Oliveira Junior, R. C.; Saleska, S. R.

    2014-12-01

    Tree growth is a biotic variable of great importance in understanding the dynamics of tree communities and may be used as a tool in studies of biological or climate modeling. Some climate models predict more recurrent climate anomalies in this century, which may alter the functioning of tropical forests with serious structural and demographic implications. The present study aimed to evaluate the profile of tree growth and litterfall production in an eastern Amazon forest, which has suffered recent climatic disturbances. We contrasted different functional groups based on wood density (stem with 0.55; 0.56-0.7; >0.7 g cm-3), light availability (crown illumination index; high illuminated crown - IIC1 until shaded crown - IIC5), and, size class (trees 10-22.5; 22.6-35; 35.1-55; 55,1-90; >90 cm dbh). Tree diameter increment was monthly measured from November 2011 to September 2013 by using dendrometer bands installed on 850 individuals from different families. Litterfall was collected in 64 circular traps, oven dried and weighed, separated into leaves, twigs, reproductive parts and miscellaneous. During the rainy season the sampled trees had the highest rates of tree diametric increment. When analyzing the data by functional groups, large trees had faster growth, but when grouped by wood density, trees with wood density up to 0.55 and between 0.56 and 0.7 g cm-3 had the fastest rates of growth. When grouped by crown illumination index, trees exposed to higher levels of light grew more in comparison to partially shaded trees. Maximum daily air temperature and precipitation were the most important environmental variables in determining the diametric increment profile of the trees. Litterfall production was estimated to be 7.1 Mg ha-1.year-1 and showed a strong seasonal pattern, with dry season production being higher than in the rainy season. Leaves formed the largest fraction of the litterfall, followed by twigs, reproductive parts, and finally miscellaneous. These

  1. Assessing the Strength Enhancement of Heterogeneous Networks of Miscible Polymer Blends

    NASA Astrophysics Data System (ADS)

    Giller, Carl; Roland, Mike

    2013-03-01

    At the typical crosslink densities of elastomers, the failure properties vary inversely with mechanical stiffness, so that compounding entails a compromise between stiffness and strength. Our approach to circumvent this conventional limitation is by forming networks of two polymers that: (i) are thermodynamically miscible, whereby the chemical composition is uniform on the segmental level; and (ii) have markedly different reactivities for network formation. The resulting elastomer consists of one highly crosslinked component and one that is lightly or uncrosslinked. This disparity in crosslinking causes their respective contributions to the network mechanical response to differ diametrically. Earlier results showed some success with this approach for thermally crosslinked blends of 1,2-polybutadiene (PVE) and polyisoprene (PI), as well as ethylene-propylene copolymer (EPM) and ethylene-propylene-diene random terpolymer (EPDM), taking advantage of their differing reactivities to sulfur. In this work we demonstrate the miscibility of polyisobutylene (PIB) with butyl rubber (BR) (a copolymer of PIB and polyisoprene) and show that networks in which only the BR is crosslinked possess greater tensile strengths than neat BR over the same range of moduli. Office of Naval Research

  2. Tensile Tests of Round-head, Flat-head, and Brazier-head Rivets

    NASA Technical Reports Server (NTRS)

    Schuette, Evan H; Bartone, Leonard M; Mandel, Merven W

    1944-01-01

    An investigation was conducted to determine the tensile strength of round-head (AN43C), flat-head(AN442), and brazier-head (AN4556) aluminum-alloy rivets because of the scarcity of information on the tensile strength of rivets. The results of the investigation are presented as curves that show the variation of the ratio of the tensile strength of the rivet to the tensile strength of the rivet crank with the ratio of the sheet thickness to the rivet diameter for the different types of rivet.

  3. Approaches for Tensile Testing of Braided Composites

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Salem, Jonathan A.; Bail, Justin L.; Kohlman, Lee W.; Binienda, Wieslaw K.; Martin, Richard E.

    2011-01-01

    For angleply composites, lamina tension and compression strengths are commonly determined by applying classical lamination theory to test data obtained from testing of angleply composite specimens. For textile composites such as 2D triaxial braids, analysis is more complex and standard test methods do not always yield reliable strength measurements. This paper describes recent research focused on development of more reliable tensile test methods for braided composites and presents preliminary data for various approaches. The materials investigated in this work have 0deg+/-60 2D triaxial braid architecture with nearly equal fiber volume fraction in each of the three fiber directions. Flat composite panels are fabricated by resin transfer molding (RTM) using six layers of the braided preform aligned along the 0deg fiber direction. Various epoxy resins are used as matrix materials. Single layer panels are also fabricated in order to examine local variations in deformation related to the braid architecture. Specimens are cut from these panels in the shape of standard straight-sided coupons, an alternative bowtie geometry, and an alternative notched geometry. Axial tensile properties are measured using specimens loaded along the 0deg fiber direction. Transverse tensile properties are measured using specimens loaded perpendicular to the 0deg fibers. Composite tubes are also fabricated by RTM. These tubes are tested by internal pressurization using a soft rubbery material sealed between the inside diameter of the tube and the load fixtures. The ends of the tube are unconstrained, so the primary load is in the hoop direction. Tubes are fabricated with the 0deg fibers aligned along the tube axis by overbraiding the preform on a mandrel. Since the loading is in the hoop direction, testing of the overbraided tube provides a measure of transverse tensile strength. Previous work has indicated that straight-sided coupons yield a transverse tensile strength that is much lower

  4. Effect of Strain Rate on Tensile Properties of Carbon Fiber Epoxy-Impregnated Bundle Composite

    NASA Astrophysics Data System (ADS)

    Naito, Kimiyoshi

    2014-03-01

    The tensile tests for high tensile strength polyacrylonitrile (PAN)-based (T1000GB) carbon fiber epoxy-impregnated bundle composite at various strain rates ranging from 3.33 × 10-5 to 6.0 × 102 s-1 (various crosshead speeds ranging from 8.33 × 10-7 to 1.5 × 101 m/s) were investigated. The statistical distributions of the tensile strength were also evaluated. The results clearly demonstrated that the tensile strength of bundle composite slightly increased with an increase in the strain rate (crosshead speed) and the Weibull modulus of tensile strength for the bundle composite decreased with an increase in the strain rate (crosshead speed), there is a linear relation between the Weibull modulus and the average tensile strength on log-log scale.

  5. Tensile properties of austempered ductile iron under thermomechanical treatment

    SciTech Connect

    Achary, J.

    2000-02-01

    A new processing method was investigated for improving the strength and elongation of austempered ductile iron (ADI) by grain refinement of parent austenite using thermomechanical treatment. The material was deformed at the austenitization temperature by single and multipass rolling before the austempering treatment. The effects of the amount of deformation, austenitization temperature, austempering temperatures, reaustenitization, and secondary deformation on the tensile properties were studied. The properties obtained using the method were compared with those of the ASTM standards. The effect of deformation on the graphite shape was also studied. Tensile strength/yield strength/elongation values were found to increase with increasing austenite deformation up to 40% and then to start decreasing. Tensile strength/yield strength and elongation values of 1,700 MPa/1,300 MPa/5% and 1,350 MPa/920 MPa/15% can be achieved with this method in the ranges of variables studied.

  6. Tensile properties of textile composites

    NASA Technical Reports Server (NTRS)

    Avva, V. Sarma; Sadler, Robert L.; Lyon, Malcolm

    1992-01-01

    The importance of textile composite materials in aerospace structural applications has been gaining momentum in recent years. With a view to better understand the suitability of these materials in aerospace applications, an experimental program was undertaken to assess the mechanical properties of these materials. Specifically, the braided textile preforms were infiltrated with suitable polymeric matrices leading to the fabrication of composite test coupons. Evaluation of the tensile properties and the analyses of the results in the form of strength moduli, Poisson's ratio, etc., for the braided composites are presented. Based on our past experience with the textile coupons, the fabrication techniques have been modified (by incorporating glass microballoons in the matrix and/or by stabilizing the braid angle along the length of the specimen with axial fibers) to achieve enhanced mechanical properties of the textile composites. This paper outlines the preliminary experimental results obtained from testing these composites.

  7. Effect of excitation energy on dentine bond strength and composite properties.

    PubMed

    Lee, S Y; Greener, E H

    1994-06-01

    A number of available dentine adhesives and dental composites require light activation for polymerization. There are many variables which affect the light absorbing properties (e.g. bond strength) of these materials. The purpose of this study was to determine the influence of excitation energy (EE) on the dentine shear bond strength (SBS) of two lengths (2.1 mm and 3.25 mm) of light-cured (or dual-cured) dentine adhesives/dental composites. Diametral tensile (DTS) and compressive (CS) strengths of the same composites were also studied as a function of EE. Three resin composites with their respective adhesives (Marathon One/Tenure, Z100/Scotchbond Multi-Purpose and Herculite XRV/Optibond) were used. Five commercial curing lights were used to produce spectra of 100-650 mW cm-2. The data were analysed using ANOVA and the Tukey LSD test. No significant correlation was observed at the P > 0.05 level between EE and SBS in the shorter specimens. The SBS of Optibond is independent of EE and composite length. The SBS data were also analysed with Weibull statistics. The characteristic strengths calculated varied between 14 and 27 MPa. For the composites tested, mean values of DTS varied between 33 and 54 MPa and CS varied between 167 and 414 MPa. The DTS and CS of Z100 were significantly greater than those of the other materials. Intensities > or = 250 mW cm-2 produced equivalent mechanical properties within all composite materials and equivalent bond strengths in systems which included dentine, adhesive and composite resin. PMID:8027461

  8. Alumina fiber strength improvement

    NASA Technical Reports Server (NTRS)

    Pepper, R. T.; Nelson, D. C.

    1982-01-01

    The effective fiber strength of alumina fibers in an aluminum composite was increased to 173,000 psi. A high temperature heat treatment, combined with a glassy carbon surface coating, was used to prevent degradation and improve fiber tensile strength. Attempts to achieve chemical strengthening of the alumina fiber by chromium oxide and boron oxide coatings proved unsuccessful. A major problem encountered on the program was the low and inconsistent strength of the Dupont Fiber FP used for the investigation.

  9. Effect of temperature on tensile and creep characteristics of PRD49 fiber/epoxy composites

    NASA Technical Reports Server (NTRS)

    Hanson, M. P.

    1972-01-01

    Tensile and creep data of PRD49-1 and 3 fiber/epoxy-resin composites are presented. Tensile data were obtained from 20 to 477 K (-423 to 400 F). Tensile strengths and moduli were determined at selected temperatures. Creep data are presented for fiber composites at 297, 422 and 450 K (75, 300, and 350 F) for as long as 1000 hours at stress levels of approximately 50 and 80 percent of the ultimate tensile strength at 297 K (75 F). Details of tensile specimens and test procedures used in the investigation are presented.

  10. Strength of Rewelded Inconel 718

    NASA Technical Reports Server (NTRS)

    Bayless, E.; Lovoy, C. V.; Mcllwain, M. C.; Munafo, P.

    1982-01-01

    Inconel 718, nickel-based alloy used extensively for high-temperature structural service, welded repeatedly without detriment to its strength. According to NASA report, tests show 12 repairs on same weld joint do not adversely affect ultimate tensile strenth, yield strength, fatigue strength, metallurgical grain structures, or ability of weld joint to respond to post weld heat treatments.

  11. Improve the Strength of PLA/HA Composite Through the Use of Surface Initiated Polymerization and Phosphonic Acid Coupling Agent

    PubMed Central

    Wang, Tongxin; Chow, Laurence C.; Frukhtbeyn, Stanislav A.; Ting, Andy Hai; Dong, Quanxiao; Yang, Mingshu; Mitchell, James W.

    2011-01-01

    Bioresorbable composite made from degradable polymers, e.g., polylactide (PLA), and bioactive calcium phosphates, e.g., hydroxyapatite (HA), are clinically desirable for bone fixation, repair and tissue engineering because they do not need to be removed by surgery after the bone heals. However, preparation of PLA/HA composite from non-modified HA usually results in mechanical strength reductions due to a weak interface between PLA and HA. In this study, a calcium-phosphate/phosphonate hybrid shell was developed to introduce a greater amount of reactive hydroxyl groups onto the HA particles. Then, PLA was successfully grafted on HA by surface-initiated polymerization through the non-ionic surface hydroxyl groups. Thermogravimetric analysis indiated that the amount of grafted PLA on HA can be up to 7 %, which is about 50 % greater than that from the literature. PLA grafted HA shows significantly different pH dependent ζ-potential and particle size profiles from those of uncoated HA. By combining the phosphonic acid coupling agent and surface initiated polymerization, PLA could directly link to HA through covalent bond so that the interfacial interaction in the PLA/HA composite can be significantly improved. The diametral tensile strength of PLA/HA composite prepared from PLA-grafted HA was found to be over twice that of the composite prepared from the non-modified HA. Moreover, the tensile strength of the improved composite was 23 % higher than that of PLA alone. By varying additional variables, this approach has the potential to produce bioresorbable composites with improved mechanical properties that are in the range of natural bones, and can have wide applications for bone fixation and repair in load-bearing areas. PMID:22399838

  12. Tensile properties of titanium electrolytically charged with hydrogen

    NASA Technical Reports Server (NTRS)

    Smith, R. J.; Otterson, D. A.

    1971-01-01

    Yield strength, ultimate tensile strength, and elongation were studied for annealed titanium electrolytically charged with hydrogen. The hydrogen was present as a surface hydride layer. These tensile properties were generally lower for uncharged titanium than for titanium with a continuous surface hydride; they were greater for uncharged titanium than for titanium with an assumed discontinuous surface hydride. We suggest that the interface between titanium and titanium hydride is weak. And the hydride does not necessarily impair strength and ductility of annealed titanium. The possibility that oxygen and/or nitrogen can embrittle titanium hydride is discussed.

  13. Effect of Electron Beam Irradiation on the Tensile Properties of Carbon Nanotubes Sheets and Yarns

    NASA Technical Reports Server (NTRS)

    Williams, Tiffany S.; Miller, Sandi G.; Baker, James S.; McCorkle, Linda S.; Meador, Michael A.

    2013-01-01

    Carbon nanotube sheets and yarns were irradiated using electron beam (e-beam) energy to determine the effect of irradiation dose on the tensile properties. Results showed that a slight change in tensile strength occurred after irradiating as-received CNT sheets for 20 minutes, and a slight decrease in tensile strength as the irradiation time approached 90 minutes. On the other hand, the addition of small molecules to the CNT sheet surface had a greater effect on the tensile properties of e-beam irradiated CNT sheets. Some functionalized CNT sheets displayed up to a 57% increase in tensile strength following 90 minutes of e-beam exposure. In addition, as-received CNT yarns showed a significant increase in tensile strength as the irradiation time increased.

  14. Velocity anti-correlation of diametrically opposed galaxy satellites in the low-redshift Universe.

    PubMed

    Ibata, Neil G; Ibata, Rodrigo A; Famaey, Benoit; Lewis, Geraint F

    2014-07-31

    Recent work has shown that the Milky Way and the Andromeda galaxies both possess the unexpected property that their dwarf satellite galaxies are aligned in thin and kinematically coherent planar structures. It is interesting to evaluate the incidence of such planar structures in the larger galactic population, because the Local Group may not be a representative environment. Here we report measurements of the velocities of pairs of diametrically opposed satellite galaxies. In the local Universe (redshift z < 0.05), we find that satellite pairs out to a distance of 150 kiloparsecs from the galactic centre are preferentially anti-correlated in their velocities (99.994 per cent confidence level), and that the distribution of galaxies in the larger-scale environment (out to distances of about 2 megaparsecs) is strongly clumped along the axis joining the inner satellite pair (>7σ confidence). This may indicate that planes of co-rotating satellites, similar to those seen around the Andromeda galaxy, are ubiquitous, and their coherent motion suggests that they represent a substantial repository of angular momentum on scales of about 100 kiloparsecs. PMID:25043008

  15. Original Research: Diametric effects of hypoxia on pathophysiology of sickle cell disease in a murine model.

    PubMed

    Tan, Fang; Ghosh, Samit; Mosunjac, Mario; Manci, Elizabeth; Ofori-Acquah, Solomon Fiifi

    2016-04-01

    Hypoxia causes erythrocyte sickling in vitro; however, its role in the pathophysiology of sickle cell disease is poorly understood. We report that hypoxia rapidly decreased oxygen saturation in transgenic sickle cell disease mice, but this effect was immediately buffered by a robust ventilatory response. The initial hypoxemia improved steadily throughout the duration of hypoxia without any detectable acute pulmonary adverse effect. Furthermore, the mice suffered acute anemia that ironically was associated with lowering of both plasma hemoglobin and heme. These results were corroborated by increased plasma haptoglobin and hemopexin levels. Markers of ischemic tissue injury increased spatiotemporally following repeated hypoxia exposures. This variation was supported by organ-specific induction of hypoxia-responsive genes. Our results show that hypoxia exerts diametric effects on sickle cell disease by promoting ischemic injury while enhancing the expression of hemolysis scavenger molecules. This phenomenon may help to understand the disparate clinical syndromes associated with hemolysis and vaso-occlusion in sickle cell disease. PMID:27026725

  16. Comparison of the Morphology and Histomorphometry of Spermatogenic Cyst of Three Sharks Species With Diametric Testes.

    PubMed

    Gomes do Rêgo, Mariana; Fitzpatrick, John L; Hissa V Hazin, Fabio; Araujo, Maria Lucia G; Barros, Maria Edna Gomes; Evêncio Neto, Joaquim

    2016-06-01

    Characterization of the reproductive anatomy of elasmobranchs (sharks, skates, rays, and sawfish) offers unique insights into the evolution of reproductive traits in animals due to their phylogenetic position at the base of the vertebrate tree of life. Yet, despite advances in our understanding of male elasmobranch reproductive physiology and testes histology, very little is known about how testes histomorphometrics varies with male maturation. In this study, we characterize and contrast testes morphology and histomorphology of males at different maturation stages in three shark species with diametric testes development: Prionaceglauca, Rhizoprionodon lalandii, and Mustelus canis. All stages of spermatogenesis were observed in P. glauca and R. lalandii, while for M. canis, only males at early stages of maturation were examined and therefore all the spermatogenesis cells lineage were not present. The number of Sertoli cells increased with cell development by six times in R. lalandii and roughly four times in P. glauca, and were statistically different among stages of spermatogenesis cysts in both species. Statistical differences in cyst diameter and Sertoli cell numbers were observed between P. glauca and R. lalandii. The increase of spermatocyte II cell diameter described for R. Lalandii in this study was not usual to elasmobranch species as compared, for example, to P. glauca. This information proves the importance of studying the testicular development and the process of spermatogenesis is necessary for understanding the reproductive biology of the species, including life cycles and history, variation of reproductive morphology. Anat Rec, 299:759-768, 2016. © 2016 Wiley Periodicals, Inc. PMID:26864330

  17. Notch Effect on Tensile Deformation Behavior of 304L and 316L Steels in Liquid Helium and Hydrogen

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Fujii, H.

    2004-06-01

    Tensile tests of type 304L and 316L steels were carried out using round bar specimens with a notch in liquid helium, hydrogen, liquid nitrogen and at ambient temperature. The obtained tensile strengths were compared with the tensile strengths of smooth specimens. For smooth specimens, tensile strength increased with a decrease in temperature and the strengths in liquid helium and hydrogen show similar values in both steels. For notched specimen of 304L steel, tensile strength (including fracture strength) increased noticeably from ambient to liquid nitrogen temperature but showed a large decrease in liquid helium and hydrogen. In liquid hydrogen and helium, the tensile strength is a little lower in liquid hydrogen than in liquid helium and both strengths are lower than tensile strengths of smooth specimens. For notched specimen of 316L steel, an increase in tensile strength from ambient to liquid nitrogen temperature was not so large and a decrease from liquid nitrogen to liquid hydrogen was small. The tensile strengths in liquid helium and hydrogen were nearly same and higher than those of smooth specimens. Different behavior of serration was observed between liquid helium and hydrogen, and between 304L and 316L steels. The reasons for these differences were discussed using computer simulation.

  18. Notch Effect on Tensile Deformation Behavior of 304L and 316L Steels in Liquid Helium and Hydrogen

    SciTech Connect

    Shibata, K.; Fujii, H.

    2004-06-28

    Tensile tests of type 304L and 316L steels were carried out using round bar specimens with a notch in liquid helium, hydrogen, liquid nitrogen and at ambient temperature. The obtained tensile strengths were compared with the tensile strengths of smooth specimens. For smooth specimens, tensile strength increased with a decrease in temperature and the strengths in liquid helium and hydrogen show similar values in both steels. For notched specimen of 304L steel, tensile strength (including fracture strength) increased noticeably from ambient to liquid nitrogen temperature but showed a large decrease in liquid helium and hydrogen. In liquid hydrogen and helium, the tensile strength is a little lower in liquid hydrogen than in liquid helium and both strengths are lower than tensile strengths of smooth specimens. For notched specimen of 316L steel, an increase in tensile strength from ambient to liquid nitrogen temperature was not so large and a decrease from liquid nitrogen to liquid hydrogen was small. The tensile strengths in liquid helium and hydrogen were nearly same and higher than those of smooth specimens. Different behavior of serration was observed between liquid helium and hydrogen, and between 304L and 316L steels. The reasons for these differences were discussed using computer simulation.

  19. Strength enhancement process for prealloyed powder superalloys

    NASA Technical Reports Server (NTRS)

    Waters, W. J.; Freche, J. C.

    1977-01-01

    A technique involving superplastic processing and high pressure autoclaving was applied to a nickel base prealloyed powder alloy. Tensile strengths as high as 2865 MN/sq m at 480 C were obtained with as-superplastically deformed material. Appropriate treatments yielding materials with high temperature tensile and stress rupture strengths were also devised.

  20. Tensile testing apparatus

    NASA Technical Reports Server (NTRS)

    Blackburn, L. B.; Ellingsworth, J. R. (Inventor)

    1985-01-01

    An improved mechanical extensometer is described for use with a constant load creep test machine. The dead weight of the extensometer is counterbalanced by two pairs of weights connected through a pulley system and to rod extension and leading into the furnace where the test sample is undergoing elevated temperature (above 500 F.) tensile testing. Novel gripper surfaces, conical tip and flat surface are provided in each sampling engaging platens to reduce the grip pressure normally required for attachment of the extensometer to the specimen and reduce initial specimen bending normally associated with foil-gage metal testing.

  1. Tensile testing apparatus

    NASA Astrophysics Data System (ADS)

    Blackburn, L. B.; Ellingsworth, J. R.

    1985-08-01

    An improved mechanical extensometer is described for use with a constant load creep test machine. The dead weight of the extensometer is counterbalanced by two pairs of weights connected through a pulley system and to rod extension and leading into the furnace where the test sample is undergoing elevated temperature (above 500 F.) tensile testing. Novel gripper surfaces, conical tip and flat surface are provided in each sampling engaging platens to reduce the grip pressure normally required for attachment of the extensometer to the specimen and reduce initial specimen bending normally associated with foil-gage metal testing.

  2. Tensile properties of amorphous diamond films

    SciTech Connect

    Lavan, D.A.; Hohlfelder, R.J.; Sullivan, J.P.; Friedmann, T.A.; Mitchell, M.A.; Ashby, C.I.

    1999-12-02

    The strength and modulus of amorphous diamond, a new material for surface micromachined MEMS and sensors, was tested in uniaxial tension by pulling laterally with a flat tipped diamond in a nanoindenter. Several sample designs were attempted. Of those, only the single layer specimen with a 1 by 2 {micro}m gage cross section and a fixed end rigidly attached to the substrate was successful. Tensile load was calculated by resolving the measured lateral and normal forces into the applied tensile force and frictional losses. Displacement was corrected for machine compliance using the differential stiffness method. Post-mortem examination of the samples was performed to document the failure mode. The load-displacement data from those samples that failed in the gage section was converted to stress-strain curves using carefully measured gage cross section dimensions. Mean fracture strength was found to be 8.5 {+-} 1.4 GPa and the modulus was 831 {+-} 94 GPa. Tensile results are compared to hardness and modulus measurements made using a nanoindenter.

  3. Ceramic granule strength variability and compaction behavior

    SciTech Connect

    Glass, S.J.; Ewsuk, K.G.; Readey, M.J.

    1995-08-01

    Diametral compression strength distributions and the compaction behavior and of irregular shape 150--200 {mu}m ceramic granules and uniform-size 210 {mu}m glass spheres were measured to determine how granule strength variability relates to compaction behavior of granular assemblies. High variability in strength, represented by low Weibull modulus values (m<3) was observed for ceramic granules having a distribution of sizes and shapes, and for uniform-size glass spheres. Compaction pressure data were also analyzed using a Weibull distribution function, and the results were very similar to those obtained from the diametral compression strength tests for the same material. This similarity suggests that it may be possible to model granule compaction using a weakest link theory, whereby an assemblage of granules is viewed as the links of a chain, and failure of the weakest granule (i.e., the weakest link) leads to rearrangement and compaction. Additionally, with the use of Weibull statistics, it appears to be possible to infer the variability in strength of individual granules from a simple pressure compaction test, circumventing the tedious task of testing individual granules.

  4. Laser-induced generation of pure tensile stresses

    SciTech Connect

    Niemz, M.H.; Lin, C.P.; Pitsillides, C.; Cui, J.; Doukas, A.G.; Deutsch, T.F.

    1997-05-01

    While short compressive stresses can readily be produced by laser ablation, the generation of pure tensile stresses is more difficult. We demonstrate that a 90{degree} prism made of polyethylene can serve to produce short and pure tensile stresses. A compressive wave is generated by ablating a thin layer of strongly absorbing ink on one surface of the prism with a Q-switched frequency-doubled Nd:YAG laser. The compressive wave driven into the prism is reflected as a tensile wave by the polyethylene-air interface at its long surface. The low acoustic impedance of polyethylene makes it ideal for coupling tensile stresses into liquids. In water, tensile stresses up to {minus}200bars with a rise time of the order of 20 ns and a duration of 100 ns are achieved. The tensile strength of water is determined for pure tensile stresses lasting for 100 ns only. The technique has potential application in studying the initiation of cavitation in liquids and in comparing the effect of compressive and tensile stress transients on biological media. {copyright} {ital 1997 American Institute of Physics.}

  5. Tensile mechanical properties of human forearm tendons.

    PubMed

    Weber, J F; Agur, A M R; Fattah, A Y; Gordon, K D; Oliver, M L

    2015-09-01

    Previous studies of the mechanical properties of tendons in the upper limb have used embalmed specimens or sub-optimal methods of measurement. The aim of this study was to determine the biomechanical properties of all tendons from five fresh frozen cadaveric forearms using updated methodology. The cross-sectional area of tendons was accurately measured using a laser reflectance system. Tensile testing was done in a precision servo-hydraulic device with cryo-clamp fixation. We determined that the cross-sectional area of some tendons is variable and directly influences the calculated material properties; visual estimation of this is unreliable. Data trends illustrate that digital extensor tendons possess the greatest tensile strength and a higher Young's modulus than other tendon types. PMID:25940499

  6. Tensile Fracture of Ductile Materials. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Pai, D. M.

    1984-01-01

    For brittle materials, circular voids play an important role relative to fracture, intensifing both tensile and compressive stresses. A maximum intensified tensile stress failure criterion applies quite well to brittle materials. An attempt was made to explore the possibility of extending the approach to the tensile fracture of ductile materials. The three dimensional voids that exist in reality are modelled by circular holes in sheet metal. Mathematical relationships are sought between the shape and size of the hole, after the material is plastically deformed, and the amount of deformation induced. Then, the effect of hole shape, size and orientation on the mechanical properties is considered experimentally. The presence of the voids does not affect the ultimate tensile strength of the ductile materials because plastic flow wipes out the stress intensification caused by them. However, the shape and orientation of the defect is found to play an important role in affecting the strain at fracture.

  7. Electrothermal fracturing of tensile specimens

    NASA Technical Reports Server (NTRS)

    Blinn, H. O.; Hanks, J. G.; Perkins, H. P.

    1970-01-01

    Pulling device consisting of structural tube, connecting rod, spring-loaded nuts, loading rod, heating element, and three bulkheads fractures tensile specimens. Alternate heating and cooling increases tensile loading by increments until fracturing occurs. Load cell or strain gage, applied to pulling rod, determines forces applied.

  8. Tunable Tensile Ductility in Metallic Glasses

    PubMed Central

    Magagnosc, D. J.; Ehrbar, R.; Kumar, G.; He, M. R.; Schroers, J.; Gianola, D. S.

    2013-01-01

    Widespread adoption of metallic glasses (MGs) in applications motivated by high strength and elasticity combined with plastic-like processing has been stymied by their lack of tensile ductility. One emerging strategy to couple the attractive properties of MGs with resistance to failure by shear localization is to employ sub-micron sample or feature length scales, although conflicting results shroud an atomistic understanding of the responsible mechanisms in uncertainty. Here, we report in situ deformation experiments of directly moulded Pt57.5Cu14.7Ni5.3P22.5 MG nanowires, which show tunable tensile ductility. Initially brittle as-moulded nanowires can be coerced to a distinct glassy state upon irradiation with Ga+ ions, leading to tensile ductility and quasi-homogeneous plastic flow. This behaviour is reversible and the glass returns to a brittle state upon subsequent annealing. Our results suggest a novel mechanism for homogenous plastic flow in nano-scaled MGs and strategies for circumventing the poor damage tolerance that has long plagued MGs.

  9. Tensile and creep properties of titanium-vanadium, titanium-molybdenum, and titanium-niobium alloys

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1975-01-01

    Tensile and creep properties of experimental beta-titanium alloys were determined. Titanium-vanadium alloys had substantially greater tensile and creep strength than the titanium-niobium and titanium-molybdenum alloys tested. Specific tensile strengths of several titanium-vanadium-aluminum-silicon alloys were equivalent or superior to those of commercial titanium alloys to temperatures of 650 C. The Ti-50V-3Al-1Si alloy had the best balance of tensile strength, creep strength, and metallurgical stability. Its 500 C creep strength was far superior to that of a widely used commercial titanium alloy, Ti-6Al-4V, and almost equivalent to that of newly developed commercial titanium alloys.

  10. Tensile Tests of NACA and Conventional Machine-countersunk Flush Rivets

    NASA Technical Reports Server (NTRS)

    Bartone, Leonard M.; Mandel, Merven W.

    1944-01-01

    An investigation was conducted to determine and compare the tensile strength of NACA and conventional machine-countersunk flush rivets of several rivet-head angles and varying countersunk depth. The results of the investigation are presented in the form of curves that show the variation of the tensile strength of the rivet with the ratio of the sheet thickness to the rivet diameter. For the same rivet-head angle and for a given angle of c/d, the NACA rivets developed higher tensile strength than the conventional rivets.

  11. Tensile behavior of irradiated SiC fibers

    SciTech Connect

    Osborne, M.C.; Steiner, D.; Snead, L.L.

    1994-09-01

    Tensile results are presented for low oxygen Nicalon fibers neutron irradiated at damage levels of 0.013 displacements per atom (dpa), 0.13 dpa and 0.32 dpa. Single fibers were tensile tested and analyzed, using Weibull statistics, for mean strength and distribution. Tensile modulus was also determined. Using a diffractometer, the fiber grain size and percent crystallinity were determined. The mean strength and modulus decreased by 20% but then increased with the highest damage level tested. Both grain size and crystallinity decreased as dose increased. These initial results of low level neutron irradiation of low oxygen Nicalon fibers exhibit no substantial degradation of the properties investigated. Therefore, continued research at higher doses is recommended.

  12. Column strength of magnesium alloy AM-57S

    NASA Technical Reports Server (NTRS)

    Holt, M

    1942-01-01

    Tests were made to determine the column strength of extruded magnesium alloy AM-57S. Column specimens were tested with round ends and with flat ends. It was found that the compressive properties should be used in computations for column strengths rather than the tensile properties because the compressive yield strength was approximately one-half the tensile yield strength. A formula for the column strength of magnesium alloy AM-57S is given.

  13. Strength analysis of yttria-stabilized tetragonal zirconia polycrystals

    SciTech Connect

    Noguchi, K.; Matsuda, Y.; Oishi, M. ); Masaki, T.; Nakayama, S.; Mizushina, M. )

    1990-09-01

    This paper reports the tensile strength of Y{sub 2}O{sub 3}-stabilized ZrO{sub 2} polycrystals (Y-TZP) measured by a newly developed tensile testing method with a rectangular bar. The tensile strength of Y-TZP was lower than that of the three-point bend strength, and the shape of the tensile strength distribution was quite different from that of the three-point bend strength distribution. It was difficult to predict the distribution curve of the tensile strength using the data of the three-point bend strength by one-modal Weibull distribution. The distribution of the tensile strength was analyzed by two- or three-modal Weibull distribution coupled with an analysis of fracture origins. The distribution curve of the three-point bend strength which was estimated by multimodal Weibull distribution agreed favorably with that of the measured three-point bend strength values. A two-modal Weibull distribution function was formulated approximately from the distributions of the tensile and three-point bend strengths, and the estimated two-modal Weibull distribution function for the four-point bend strength agreed well with the measured four-point bend strength.

  14. Tensile creep behavior of polycrystalline alumina fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.

    1993-01-01

    Tensile creep studies were conducted on polycrystalline Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Test conditions were temperatures from 800 to 1050 C and stresses from 60 to 1000 MPa. For both fibers, only a small primary creep portion occurred followed by steady-state creep. The stress exponents for steady-state creep of Nextel 610 and Fiber FP were found to be about 3 and 1, respectively. At lower temperatures, below 1000 C, the finer grained Nextel 610 had a much higher 0.2 percent creep strength for 100 hr than the Fiber FP; while at higher temperatures, Nextel 610 had a comparable creep strength to the Fiber FP. The stress and grain size dependencies suggest Nextel 610 and Fiber FP creep rates are due to grain boundary sliding controlled by interface reaction and Nabarro-Herring mechanisms, respectively.

  15. Effects of Effective Dendrite Size on Dynamic Tensile Properties of Ti-Based Amorphous Matrix Composites

    NASA Astrophysics Data System (ADS)

    Jeon, Changwoo; Park, Jaeyeong; Kim, Choongnyun Paul; Kim, Hyoung Seop; Lee, Sunghak

    2016-04-01

    In this study, dynamic tensile properties of dendrite-containing Ti-based amorphous matrix composites were examined, and effects of dendrite size on dynamic deformation were investigated. The composites contained 73 to 76 vol pct of dendrites whose effective sizes were varied from 63 to 103 μm. The dynamic tensile test results indicated that the ultimate tensile strength increased up to 1.25 GPa, whereas the elongation decreased to 1 pct, although the overall strength and elongation trends followed those of the quasi-static tensile test. According to the observation of dynamic tensile deformation behavior, very few deformation bands were observed beneath the fracture surface in the composite containing large dendrites. In the composite containing small dendrites, deformation bands initiated inside small dendrites propagated into adjacent dendrites through the amorphous matrix, and were crossly intersect perpendicularly in widely deformed areas, which beneficially worked for elongation as well as strength.

  16. Tensile and fatigue properties of Inconel 718 at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Malin, C. O.; Schmidt, E. H.

    1969-01-01

    Tests to determine the tensile and fatigue properties of Inconel 718 at cryogenic temperatures show that the alloy increases in strength at low temperatures, with very little change in toughness. The effect of surface finish and grain size on the fatigue properties was also determined.

  17. Tensile behavior of irradiated SiC fibers

    NASA Astrophysics Data System (ADS)

    Osborne, M. C.; Snead, L. L.; Steiner, D.

    1995-03-01

    The strength and toughness of continuous fiber reinforced ceramic composites (CFCCs) are highly dependent on the fiber strength distribution. To first order, weaker fibers lead to low strength but higher toughness while stronger fibers lead to high strength composites of relatively low toughness. Toughness is associated with pullout of the fibers from the ceramic matrix. It has been shown previously that both strength and toughness of SiC/Nicalon TM composites are drastically changed following irradiation. Tensile results are presented for low oxygen Nicalon fibers neutron irradiated at damage levels of 0.013 displacements per atom (dpa), 0.13 dpa and 0.32 dpa. Single fibers were tensile tested and analyzed, using Weibull statistics, for mean strength and distribution. Tensile modulus was also determined. Using a diffractometer, the fiber grain size and percent crystallinity were determined. The initial results of these low fluence neutron irradiations exhibit no substantial degradation of the properties investigated. Therefore, continued research at higher doses is recommended.

  18. Notch strength of composites

    NASA Technical Reports Server (NTRS)

    Whitney, J. M.

    1983-01-01

    The notch strength of composites is discussed. The point stress and average stress criteria relate the notched strength of a laminate to the average strength of a relatively long tensile coupon. Tests of notched specimens in which microstrain gages have been placed at or near the edges of the holes have measured strains much larger that those measured in an unnotched tensile coupon. Orthotropic stress concentration analyses of failed notched laminates have also indicated that failure occurred at strains much larger than those experienced on tensile coupons with normal gage lengths. This suggests that the high strains at the edge of a hole can be related to the very short length of fiber subjected to these strains. Lockheed has attempted to correlate a series of tests of several laminates with holes ranging from 0.19 to 0.50 in. Although the average stress criterion correlated well with test results for hole sizes equal to or greater than 0.50 in., it over-estimated the laminate strength in the range of hole sizes from 0.19 to 0.38 in. It thus appears that a theory is needed that is based on the mechanics of failure and is more generally applicable to the range of hole sizes and the varieties of laminates found in aircraft construction.

  19. Effect of Root Moisture Content and Diameter on Root Tensile Properties

    PubMed Central

    Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen

    2016-01-01

    The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation. PMID:27003872

  20. Effect of Root Moisture Content and Diameter on Root Tensile Properties.

    PubMed

    Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen

    2016-01-01

    The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation. PMID:27003872

  1. Tensile testing of nylon and Kevlar parachute materials under Federal specified temperature and relative humidity conditions

    SciTech Connect

    Botner, W.T.

    1980-01-01

    A small 10-ft x 12-ft temperature and relative humidity controlled room for tensile testing of parachute materials is presented. Tensile tests of nylon and Kevlar parachute materials indicate there is a negligible change in break strength of test samples soaked in the controlled environment vs samples soaked in ambient conditions.

  2. Tensile buckling of advanced turboprops

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Aiello, R. A.

    1982-01-01

    Theoretical studies were conducted to determine analytically the tensile buckling of advanced propeller blades (turboprops) in centrifugal fields, as well as the effects of tensile buckling on other types of structural behavior, such as resonant frequencies and flutter. Theoretical studies were also conducted to establish the advantages of using high performance composite turboprops as compared to titanium. Results show that the vibration frequencies are not affected appreciably prior to 80 percent of the tensile speed. Some frequencies approach zero as the tensile buckling speed is approached. Composites provide a substantial advantage over titanium on a buckling speed to weight basis. Vibration modes change as the rotor speed is increased and substantial geometric coupling is present.

  3. Tensile Testing: A Simple Introduction

    ERIC Educational Resources Information Center

    Carr, Martin

    2006-01-01

    Tensile testing may be used to decide, say, which steel to use in various constructions. Analogous testing can be done simply in the classroom using plasticine and helps to introduce pupils to the various properties studied in materials science.

  4. Towards an improved understanding of strength and anisotropy of cold compacted powder

    NASA Astrophysics Data System (ADS)

    Wang, Wenhai

    The strength of powder compacts after cold compaction is known to be anisotropic, which comes from the directionality of microstructure resulting from initial particle morphology and/or from particle deformation during compaction. Current work focuses on multi-scale numerical analysis of powder compaction with emphasis on the role of interparticle cohesion on post-compaction mechanical properties. At macroscopic level, we applied phenomenological model to describe the mechanical behavior of powder, in which the material is considered to be continuum medium. A user subroutine (VUMAT) was successfully developed for ABAQUS/Explicit analysis, in which one of the popular phenomenological models for powder compaction---Drucker Prager/Cap model---is implemented. By studying of pharmaceutical powder die compaction and subsequent diametrical compression test via finite element analysis, the capabilities and limitations of current constitutive models are evaluated on predicting such as density, stress and tool force evolution, as well as the strength and fracture tendency. Our results illustrate that current model has good predictive capability of powder densification (e.g. density evolution) but can not predict post-compaction strength well. The following studies focus on evaluating the physics and mechanics occurring at particle level. The compaction of granular media was explored by using MPFEM approach. In the new model, individual particles discretized with a finite element mesh allow for a full description of contact mechanics and local and global particle kinematics. The introduction of a layer of degrading material on the surface of each particle provides the means of introducing variable cohesion and its effect on the final strength of compacts. The simulations show that the unloading creates tensile stresses at the root of the contact necks, which may cause partial or full separation of contact interface when the cohesion developed during loading is not strong

  5. Manufacturing of Plutonium Tensile Specimens

    SciTech Connect

    Knapp, Cameron M

    2012-08-01

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  6. The development of a tensile-shear punch correlation for yield properties of model austenitic alloys

    SciTech Connect

    Hankin, G.L.; Faulkner, R.G.; Hamilton, M.L.; Garner, F.A.

    1997-08-01

    The effective shear yield and maximum strengths of a set of neutron-irradiated, isotopically tailored austentic alloys were evaluated using the shear punch test. The dependence on composition and neutron dose showed the same trends as were observed in the corresponding miniature tensile specimen study conducted earlier. A single tensile-shear punch correlation was developed for the three alloys in which the maximum shear stress or Tresca criterion was successfully applied to predict the slope. The correlation will predict the tensile yield strength of the three different austenitic alloys tested to within {+-}53 MPa. The accuracy of the correlation improves with increasing material strength, to within {+-} MPa for predicting tensile yield strengths in the range of 400-800 MPa.

  7. Static and fatigue interlaminar tensile characterization of laminated composites

    SciTech Connect

    Koudela, K.L.; Strait, L.H.; Caiazzo, A.A.; Gipple, K.L.

    1997-12-31

    Spool and curved-beam specimens were evaluated to determine the viability of using either one or both of these configurations to characterize the static and fatigue interlaminar tensile behavior of carbon/epoxy laminates. Unidirectional curved-beam and quasi-isotropic spool specimens were fabricated, nondestructively inspected, and statically tested to failure. Tension-tension fatigue tests were conducted at 10 Hz and an R-ratio ({sigma}{sub min}/{sigma}{sub max}) equal to 0.1 for each specimen configuration. The interlaminar tensile strength of the spool specimen was 12% larger than the strength obtained using curved-beam specimens. In addition, data scatter associated with spool specimens was significantly less than the scatter associated with curved-beam specimens. The difference in data scatter was attributed to the influence of the fabrication process on the quality of the laminates tested. The fatigue limit at 0{sup 7} cycles for both specimen types was shown to be at least 40% of the average interlaminar tensile strength. Based on the results of this study, it was concluded that either the spool or the curved-beam specimens can be used to characterize the interlaminar tensile static and fatigue behavior of carbon/epoxy laminates. However, to obtain the most representative results, the test specimen configuration should be selected so that the specimen fabrication process closely simulates the actual component fabrication process.

  8. A hybrid x-ray and microscopy method for diametrical profile measurement of internal holes in steel components

    NASA Astrophysics Data System (ADS)

    Liu, T.; Malcolm, A. A.; Yin, X. M.; Liew, S. J.; Prawiradiraja, T. P.

    2008-09-01

    High-resolution X-ray is now an essential tool for internal defect and structure inspection in electronics and advanced materials industry. However, it is always a challenge to use it for accurate dimensional measurement due to the nature of the fan-beam X-ray source, particularly for cylindrical objects. This paper presents a novel hybrid X-ray and microscopy method for the profile measurement of the internal hole of a cylinder-shaped steel component. The part to be measured has a beer bottle shape but is open at the bottom side. The objective is to measure the diametrical profile of the internal hole with an accuracy of about 10μm. Traditionally this is measured with using a microscope after cutting and polishing the specimen. This is not only a tedious work, but is also inaccurate due to the uncertainty in cutting and polishing. This report demonstrates that the two edge-profiles of the internal hole can be obtained with X-ray inspection by sequentially placing each of them at the central of the X-ray beam so that the fan-beam effect can be minimized. The resolution of the X-ray inspection is about 6µm under a 20x magnification. Subsequently, the diameter of the hole is measured at two positions through the open end using a microscope with a 20x and a 10x objectives respectively. The results obtained with the two methods are then combined to generate the whole diametrical profile of the internal hole.

  9. Strength enhancement process for prealloyed powder superalloys

    NASA Technical Reports Server (NTRS)

    Waters, W. J.; Freche, J. C.

    1977-01-01

    A technique involving superplastic processing and high-pressure autoclaving was applied to a nickel-base prealloyed powder alloy. Tensile strengths as high as 2865 MN/sq m (415 ksi) at 480 C (900 F) were obtained with as-superplastically deformed material. Appropriate treatments yielding materials with high-temperature tensile and stress-rupture strengths (980 C (1800 F)) were also devised.

  10. Fluid dynamic lateral slicing of high tensile strength carbon nanotubes.

    PubMed

    Vimalanathan, Kasturi; Gascooke, Jason R; Suarez-Martinez, Irene; Marks, Nigel A; Kumari, Harshita; Garvey, Christopher J; Atwood, Jerry L; Lawrance, Warren D; Raston, Colin L

    2016-01-01

    Lateral slicing of micron length carbon nanotubes (CNTs) is effective on laser irradiation of the materials suspended within dynamic liquid thin films in a microfluidic vortex fluidic device (VFD). The method produces sliced CNTs with minimal defects in the absence of any chemical stabilizers, having broad length distributions centred at ca 190, 160 nm and 171 nm for single, double and multi walled CNTs respectively, as established using atomic force microscopy and supported by small angle neutron scattering solution data. Molecular dynamics simulations on a bent single walled carbon nanotube (SWCNT) with a radius of curvature of order 10 nm results in tearing across the tube upon heating, highlighting the role of shear forces which bend the tube forming strained bonds which are ruptured by the laser irradiation. CNT slicing occurs with the VFD operating in both the confined mode for a finite volume of liquid and continuous flow for scalability purposes. PMID:26965728

  11. Tensile strengths of problem shales and clays. Master's thesis

    SciTech Connect

    Rechner, F.J.

    1990-01-01

    The greatest single expense faced by oil companies involved in the exploration for crude oil is that of drilling wells. The most abundant rock drilled is shale. Some of these shales cause wellbore stability problems during the drilling process. These can range from slow rate of penetration and high torque up to stuck pipe and hole abandonment. The mechanical integrity of the shale must be known when the shalers are subjected to drilling fluids to develop an effective drilling plan.

  12. Fluid dynamic lateral slicing of high tensile strength carbon nanotubes

    PubMed Central

    Vimalanathan, Kasturi; Gascooke, Jason R.; Suarez-Martinez, Irene; Marks, Nigel A.; Kumari, Harshita; Garvey, Christopher J.; Atwood, Jerry L.; Lawrance, Warren D.; Raston, Colin L.

    2016-01-01

    Lateral slicing of micron length carbon nanotubes (CNTs) is effective on laser irradiation of the materials suspended within dynamic liquid thin films in a microfluidic vortex fluidic device (VFD). The method produces sliced CNTs with minimal defects in the absence of any chemical stabilizers, having broad length distributions centred at ca 190, 160 nm and 171 nm for single, double and multi walled CNTs respectively, as established using atomic force microscopy and supported by small angle neutron scattering solution data. Molecular dynamics simulations on a bent single walled carbon nanotube (SWCNT) with a radius of curvature of order 10 nm results in tearing across the tube upon heating, highlighting the role of shear forces which bend the tube forming strained bonds which are ruptured by the laser irradiation. CNT slicing occurs with the VFD operating in both the confined mode for a finite volume of liquid and continuous flow for scalability purposes. PMID:26965728

  13. Rod Has High Tensile Strength And Low Thermal Expansion

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Everton, R. L.; Howe, E.; O'Malley, M.

    1996-01-01

    Thoriated tungsten extension rod fabricated to replace stainless-steel extension rod attached to linear variable-differential transformer in gap-measuring gauge. Threads formed on end of rod by machining with special fixtures and carefully chosen combination of speeds and feeds.

  14. Fluid dynamic lateral slicing of high tensile strength carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Vimalanathan, Kasturi; Gascooke, Jason R.; Suarez-Martinez, Irene; Marks, Nigel A.; Kumari, Harshita; Garvey, Christopher J.; Atwood, Jerry L.; Lawrance, Warren D.; Raston, Colin L.

    2016-03-01

    Lateral slicing of micron length carbon nanotubes (CNTs) is effective on laser irradiation of the materials suspended within dynamic liquid thin films in a microfluidic vortex fluidic device (VFD). The method produces sliced CNTs with minimal defects in the absence of any chemical stabilizers, having broad length distributions centred at ca 190, 160 nm and 171 nm for single, double and multi walled CNTs respectively, as established using atomic force microscopy and supported by small angle neutron scattering solution data. Molecular dynamics simulations on a bent single walled carbon nanotube (SWCNT) with a radius of curvature of order 10 nm results in tearing across the tube upon heating, highlighting the role of shear forces which bend the tube forming strained bonds which are ruptured by the laser irradiation. CNT slicing occurs with the VFD operating in both the confined mode for a finite volume of liquid and continuous flow for scalability purposes.

  15. Collagen network strengthening following cyclic tensile loading.

    PubMed

    Susilo, Monica E; Paten, Jeffrey A; Sander, Edward A; Nguyen, Thao D; Ruberti, Jeffrey W

    2016-02-01

    The bulk mechanical properties of tissues are highly tuned to the physiological loads they experience and reflect the hierarchical structure and mechanical properties of their constituent parts. A thorough understanding of the processes involved in tissue adaptation is required to develop multi-scale computational models of tissue remodelling. While extracellular matrix (ECM) remodelling is partly due to the changing cellular metabolic activity, there may also be mechanically directed changes in ECM nano/microscale organization which lead to mechanical tuning. The thermal and enzymatic stability of collagen, which is the principal load-bearing biopolymer in vertebrates, have been shown to be enhanced by force suggesting that collagen has an active role in ECM mechanical properties. Here, we ask how changes in the mechanical properties of a collagen-based material are reflected by alterations in the micro/nanoscale collagen network following cyclic loading. Surprisingly, we observed significantly higher tensile stiffness and ultimate tensile strength, roughly analogous to the effect of work hardening, in the absence of network realignment and alterations to the fibril area fraction. The data suggest that mechanical loading induces stabilizing changes internal to the fibrils themselves or in the fibril-fibril interactions. If such a cell-independent strengthening effect is operational in vivo, then it would be an important consideration in any multiscale computational approach to ECM growth and remodelling. PMID:26855760

  16. Dynamic Tensile Failure of the Rock Interface Between Tuff and Basalt

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Feng, Xia-Ting; Chen, Rong; Xia, Kaiwen; Jin, Changyu

    2012-05-01

    The dynamic tensile strength properties of the rock interface and its host rocks sampled from the Baihetan Hydropower Station from Western China were measured using a split Hopkinson pressure bar (SHPB). The results were compared with those for its two host rocks. The dynamic tensile strengths of the two host rocks, tuff and basalt have typical loading rate dependence. However, the dynamic response of the rock interface is much more complicated and at a given loading rate, varies between those of tuff and basalt. To explain the observation, numerical simulation using the discrete element method (DEM) was conducted to determine the detailed tensile failure process of the rock interface. The numerical simulation verifies that the variation of the dynamic tensile strength of the rock interface is a result of the variation of the interface geometry.

  17. The effect of structure on tensile properties of directionally solidified Zn-based alloys

    NASA Astrophysics Data System (ADS)

    Ares, A. E.; Schvezov, C. E.

    2011-03-01

    The main objective of this study was to measure thermal (cooling rates, temperature gradients and velocities of the liquidus and solidus isotherms), structural (grain size and primary and secondary dendritic arm spacings) and tensile parameters (maximum tensile strength (MTS), yield strength (YS) and ultimate tensile strength (UTS)) in zinc-aluminum (ZA) hypoeutectic (Zn-3 wt%Al) and hypereutectic (Zn-10 wt%Al, Zn-15 wt%Al, Zn-20 wt%Al, Zn-30 wt%Al, Zn-37 wt%Al and Zn-50 wt%Al) alloys directionally solidified, which present columnar, equiaxed and columnar-to-equiaxed transition (CET) structures. The different types of structures were analyzed with optical and Scanning Electron Microscopy (SEM). Correlations between temperature gradient, cooling rate, local solidification time, grain size and dendritic spacings and tensile tests parameters are presented and discussed. The results show the influence of concentration, microstructural arrangement and thermal conditions on the mechanical properties during the solidification process.

  18. Effect of food and oral simulating fluids on dentine bond and composite strength.

    PubMed

    Lee, S Y; Greener, E H; Mueller, H J; Chiu, C H

    1994-12-01

    The effect of up to 30 days' immersion in 75% ethanol solution and in an artificial saliva (Moi-Stir) on the dentine shear bond strength (SBS) of three adhesive/composite systems (Tenure/Marathon One, Scotchbond Multi-Purpose/Z100 and Optibond/Herculite XRV) was evaluated. Two control series were stored either in 100% humidity or in air. Diametral tensile specimens (DTS) of the composites studied were stored in 75% ethanol for up to 30 days. The fracture mode and morphology of the failure interface were examined by scanning electron microscopy (SEM). Data were analysed using ANOVA and the Tukey LSD test. The SBS for all systems stored in Moi-Stir (24.8 +/- 3.0 MPa) and air (28.3 +/- 3.0 MPa) was not influenced by length of storage. Microscopic (SEM) examination of the debonded air, and Moi-Stir stored specimens showed that failure had primarily occurred through the dentine. Significant decreases (30-50%) in the SBS of all systems occurred after immersion in 75% ethanol. There was no significant difference among brands. The DTS of the composites showed significant decreases as a function of ethanol exposure. Marathon One and Herculite XRV showed significantly lower DTS after 14 days' storage while Z100 showed no reduction in DTS until after 30 days. The decrease in both SBS and DTS after storage in ethanol was a function of the square root of time (P < 0.001) and followed Fick's laws of diffusion. Ethanol diffusivity was approximated as 1.8 x 10(-6) cm2 s-1 for both SBS and DTS specimens, suggesting that alcohol attack in SBS specimens occurred primarily in the composite system.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7844264

  19. Cryogenic Temperature-Gradient Foam/Substrate Tensile Tester

    NASA Technical Reports Server (NTRS)

    Vailhe, Christophe

    2003-01-01

    The figure shows a fixture for measuring the tensile strength of the bond between an aluminum substrate and a thermally insulating polymeric foam. The specimen is meant to be representative of insulating foam on an aluminum tank that holds a cryogenic liquid. Prior to the development of this fixture, tensile tests of this type were performed on foam/substrate specimens immersed in cryogenic fluids. Because the specimens were cooled to cryogenic temperatures throughout their thicknesses, they tended to become brittle and to fracture at loads below true bond tensile strengths. The present fixture is equipped to provide a thermal gradient from cryogenic temperature at the foam/substrate interface to room temperature on the opposite foam surface. The fixture includes an upper aluminum block at room temperature and a lower aluminum block cooled to -423 F (approx. -253 C) by use of liquid helium. In preparation for a test, the metal outer surface (the lower surface) of a foam/substrate specimen is bonded to the lower block and the foam outer surface (the upper surface) of the specimen is bonded to the upper block. In comparison with the through-the-thickness cooling of immersion testing, the cryogenic-to-room-temperature thermal gradient that exists during testing on this fixture is a more realistic approximation of the operational thermal condition of sprayed insulating foam on a tank of cryogenic liquid. Hence, tensile tests performed on this fixture provide more accurate indications of operational bond tensile strengths. In addition, the introduction of the present fixture reduces the cost of testing by reducing the amount of cryogenic liquid consumed and the time needed to cool a specimen.

  20. Extreme strength observed in limpet teeth.

    PubMed

    Barber, Asa H; Lu, Dun; Pugno, Nicola M

    2015-04-01

    The teeth of limpets exploit distinctive composite nanostructures consisting of high volume fractions of reinforcing goethite nanofibres within a softer protein phase to provide mechanical integrity when rasping over rock surfaces during feeding. The tensile strength of discrete volumes of limpet tooth material measured using in situ atomic force microscopy was found to range from 3.0 to 6.5 GPa and was independent of sample size. These observations highlight an absolute material tensile strength that is the highest recorded for a biological material, outperforming the high strength of spider silk currently considered to be the strongest natural material, and approaching values comparable to those of the strongest man-made fibres. This considerable tensile strength of limpet teeth is attributed to a high mineral volume fraction of reinforcing goethite nanofibres with diameters below a defect-controlled critical size, suggesting that natural design in limpet teeth is optimized towards theoretical strength limits. PMID:25694539

  1. Extreme strength observed in limpet teeth

    PubMed Central

    Barber, Asa H.; Lu, Dun; Pugno, Nicola M.

    2015-01-01

    The teeth of limpets exploit distinctive composite nanostructures consisting of high volume fractions of reinforcing goethite nanofibres within a softer protein phase to provide mechanical integrity when rasping over rock surfaces during feeding. The tensile strength of discrete volumes of limpet tooth material measured using in situ atomic force microscopy was found to range from 3.0 to 6.5 GPa and was independent of sample size. These observations highlight an absolute material tensile strength that is the highest recorded for a biological material, outperforming the high strength of spider silk currently considered to be the strongest natural material, and approaching values comparable to those of the strongest man-made fibres. This considerable tensile strength of limpet teeth is attributed to a high mineral volume fraction of reinforcing goethite nanofibres with diameters below a defect-controlled critical size, suggesting that natural design in limpet teeth is optimized towards theoretical strength limits. PMID:25694539

  2. Tensile and creep data on type 316 stainless steel

    SciTech Connect

    Sikka, V. K.; Booker, B. L.P.; Booker, M. K.; McEnerney, J. W.

    1980-01-01

    This report summarizes tensile and creep data on 13 heats of type 316 stainless steel. It includes ten different product forms (three plates, four pipes, and three bars) of the reference heat tested at ORNL. Tensile data are presented in tabular form and analyzed as a function of temperature by the heat centering method. This method yielded a measure of variations within a single heat as well as among different heats. The upper and lower scatter bands developed by this method were wider at the lower temperatures than at the high temperatures (for strength properties), a trend reflected by the experimental data. The creep data on both unaged and aged specimens are presented in tabular form along with creep curves for each test. The rupture time data are compared with the ASME Code Case minimum curve at each test temperature in the range from 538 to 704{sup 0}C. The experimental rupture time data are also compared with the values predicted by using the rupture model based on elevated-temperature ultimate tensile strength. A creep ductility trend curve was developed on the basis of the reference heat data and those published in the literature on nitrogen effects. To characterize the data fully, information was also supplied on vendor, product form, fabrication method, material condition (mill-annealed vs laboratory annealed and aged), grain size, and chemical composition for various heats. Test procedures used for tensile and creep results are also discussed.

  3. Tensile Behavior of Al2o3/feal + B and Al2o3/fecraly Composites

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Eldridge, J. I.; Aiken, B. J. M.

    1995-01-01

    The feasibility of Al2O3/FeAl + B and Al2O3/FeCrAlY composites for high-temperature applications was assessed. The major emphasis was on tensile behavior of both the monolithics and composites from 298 to 1100 K. However, the study also included determining the chemical compatibility of the composites, measuring the interfacial shear strengths, and investigating the effect of processing on the strength of the single-crystal Al2O3 fibers. The interfacial shear strengths were low for Al203/FeAl + B and moderate to high for Al203/FeCrAlY. The difference in interfacial bond strengths between the two systems affected the tensile behavior of the composites. The strength of the Al203 fiber was significantly degraded after composite processing for both composite systems and resulted in poor composite tensile properties. The ultimate tensile strength (UTS) values of the composites could generally be predicted with either rule of mixtures (ROM) calculations or existing models when using the strength of the etched-out fiber. The Al2O3/FeAl + B composite system was determined to be unfeasible due to poor interfacial shear strengths and a large mismatch in coefficient of thermal expansion (CTE). Development of the Al2O3/FeCrAlY system would require an effective diffusion barrier to minimize the fiber strength degradation during processing and elevated temperature service.

  4. Elastic-plastic analysis of the SS-3 tensile specimen

    SciTech Connect

    Majumdar, S.

    1998-09-01

    Tensile tests of most irradiated specimens of vanadium alloys are conducted using the miniature SS-3 specimen which is not ASTM approved. Detailed elastic-plastic finite element analysis of the specimen was conducted to show that, as long as the ultimate to yield strength ratio is less than or equal to 1.25 (which is satisfied by many irradiated materials), the stress-plastic strain curve obtained by using such a specimen is representative of the true material behavior.

  5. The Cryogenic Tensile Properties of an Extruded Aluminum-Beryllium Alloy

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.

    2002-01-01

    Basic mechanical properties; i.e., ultimate tensile strength, yield strength, percent elongation, and elastic modulus, were obtained for the aluminum-beryllium alloy, AlBeMet162, at cryogenic (-195.5 C (-320 F) and -252.8 C (-423 F)) temperatures. The material evaluated was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions."

  6. Diametral strain of fast reactor MOX fuel pins with austenitic stainless steel cladding irradiated to high burnup

    NASA Astrophysics Data System (ADS)

    Uwaba, Tomoyuki; Ito, Masahiro; Maeda, Koji

    2011-09-01

    The C3M irradiation test, which was conducted in the experimental fast reactor, "Joyo", demonstrated that mixed oxide (MOX) fuel pins with austenitic steel cladding could attain a peak pellet burnup of about 130 GWd/t safely. The test fuel assembly consisted of 61 fuel pins, whose design specifications were similar to those of driver fuel pins of a prototype fast breeder reactor, "Monju". The irradiated fuel pins exhibited diametral strain due to cladding void swelling and irradiation creep. The cladding irradiation creep strain were due to the pellet-cladding mechanical interaction (PCMI) as well as the internal gas pressure. From the fuel pin ceramographs and 137Cs gamma scanning, it was found that the PCMI was associated with the pellet swelling which was enhanced by the rim structure formation or by cesium uranate formation. The PCMI due to cesium uranate, which occurred near the top of the MOX fuel column, significantly affected cladding hoop stress and thermal creep, and the latter effect tended to increase the cumulative damage fraction (CDF) of the cladding though the CDF indicated that the cladding still had some margin to failure due to the creep damage.

  7. Calibration of DEM simulation: Unconfined Compressive Test and Brazilian Tensile Test

    NASA Astrophysics Data System (ADS)

    Wang, Yucang; Alonso-Marroquín, Fernando

    2009-06-01

    We simulate rock fracture using ESyS_Particle, which is a 3-D Discrete Element Model developed for modeling geological materials. Two types of simulations are carried out: Unconfined Compressive Test (UCT) and Brazilian Tensile Test (BTT). The results are compared to laboratory tests. Model parameters are determined on the basis of theoretical studies on the elastic properties of regular lattices and dimensionless analysis. The fracture patterns and realistic macroscopic strength are well reproduced. Also the ratio of the macroscopic strength of compression to the tensile strength is obtained numerically.

  8. Compressive-tensile deformation of nanocrystalline nickel at high pressure and temperature conditions

    NASA Astrophysics Data System (ADS)

    Yu, Xiaohui; Wang, Yuejian; Zhang, Jianzhong; Xu, Hongwu; Zhao, Yusheng

    2013-07-01

    We conducted uniaxial compressive and tensile deformation on nanocrystalline Ni at a confining pressure of 6 GPa and temperatures up to 900 °C. The determined compressive yield strength is 0.8 GPa, identical to the tensile yield strength obtained in the same deformation experiment, indicating that the Bauschinger effect is absent in nanocrystalline Ni. The yield strength obtained at 6 GPa is also comparable to that at ambient pressure, suggesting that the dislocation-mediated mechanisms are no longer activated during plastic deformation. Based on peak intensity and peak width analyses, grain rotation and grain growth are main factors underlying the plastic deformation.

  9. Tensile and Microindentation Stress-Strain Curves of Al-6061

    DOE Data Explorer

    Weaver, Jordan S [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Center for Integrated Nanotechnologies (CINT); Khosravani, Ali [Georgia Inst. of Technology, Atlanta, GA (United States); Castillo, Andrew [Georgia Inst. of Technology, Atlanta, GA (United States); Kalidind, Surya R [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-07-13

    Recent spherical microindentation stress-strain protocols were developed and validated on Al-6061 (DOI: 10.1186/s40192-016-0054-3). The scaling factor between the uniaxial yield strength and the indentation yield strength was determined to be about 1.9. The microindentation stress-strain protocols were then applied to a microstructurally graded sample in an effort to extract high throughput process-property relationships. The tensile and microindentation force-displacement and stress-strain data are presented in this data set.

  10. Change in tensile properties of neoprene and nitrile gloves after repeated exposures to acetone and thermal decontamination.

    PubMed

    Gao, Pengfei; Tomasovic, Beth

    2005-11-01

    This study investigated the change in tensile properties of neoprene and nitrile gloves after repeated cycles of exposure to acetone, followed by thermal decontamination. The glove was exposed to acetone (outer surface in contact with chemical), subjected to thermal decontamination, and tested for the tensile strength and the ultimate elongation. Thermal decontamination was carried out inside an oven for 16 hours at 100 degrees C. The exposure/decontamination procedure was repeated for a maximum of 10 cycles. For neoprene versus acetone, the mean tensile strength consistently decreased after each exposure/decontamination cycle. Multiple comparisons indicated that the mean tensile strengths between the new swatches and each exposure/decontamination group were significantly different (p < 0.05). The loss of either tensile strength or ultimate elongation was less than 23% compared with new swatches after four exposure/decontamination cycles. Swatches with out acetone exposure were then cycled through the oven in the same manner. It was found that both the heat used for thermal decontamination and acetone exposure significantly affected the tensile strength and ultimate elongation. For nitrile gloves exposed to acetone, the mean tensile strength remained virtually unchanged (p > 0.05). The mean tensile strength for the new swatches was 37.1 MPa and the mean tensile strength after nine exposure/decontamination cycles was 36.0 MPa, with a loss less than 3%. The largest single cycle loss for ultimate elongation occurred during the first exposure/decontamination cycle for both glove materials. In our previous study, decisions regarding the effectiveness of the decontamination process were based on having no discernible change in the breakthrough time and steady-state permeation rate. The results of this study indicate that the effectiveness of the decontamination process cannot be based on permeation parameters alone but must also take into account the change in physical

  11. Tensile behavior of unnotched and notched tungsten-copper laminar composites

    NASA Technical Reports Server (NTRS)

    Hoffman, C. A.

    1976-01-01

    Relations were studied between the tensile strengths of unnotched and of notched, and elastic moduli of unnotched laminar sheet or foil composites and the amounts of reinforcement. Tungsten was used as the reinforcement and copper as the matrix, and the tests were run at room temperature. Three thicknesses of tungsten (i.e., 0.00254, 0.0127, and 0.0254 cm (0.001, 0.005, and 0.010 in) were used and the nominal volume fraction of tungsten was varied from about 0.05 to 0.95. It was found that the tensile strength of the unnotched specimens could be related to the amount of reinforcement, as could the elastic moduli, and that these values could be predicted by use of the rule of mixtures. The tensile strengths of the notched laminar composites could be predicted by use of the rule of mixtures using strengths for notched constituents, provided notch effects did not predominate.

  12. Manual for LDEF tensile tests

    NASA Technical Reports Server (NTRS)

    Witte, W. G., Jr.

    1985-01-01

    One of the experiments aboard the NASA Long Duration Exposure Facility (LDEF) consists of a tray of approximately one hundred tensile specimens of several candidate space structure composite materials. During the LDEF flight the materials will be subjected to the space environment and to possible contamination during launch and recovery. Tensile tests of representative samples were made before the LDEF flight to obtain baseline data. Similar tests will be made on control specimens stored on earth for the length of the LDEF flight and on recovered flight specimens. This manual codifies the details of testing, data acquisition, and handling used in obtaining the baseline data so that the same procedures and equipment will be used on the subsequent tests.

  13. Probabilistic Modeling of Ceramic Matrix Composite Strength

    NASA Technical Reports Server (NTRS)

    Shan, Ashwin R.; Murthy, Pappu L. N.; Mital, Subodh K.; Bhatt, Ramakrishna T.

    1998-01-01

    Uncertainties associated with the primitive random variables such as manufacturing process (processing temperature, fiber volume ratio, void volume ratio), constituent properties (fiber, matrix and interface), and geometric parameters (ply thickness, interphase thickness) have been simulated to quantify the scatter in the first matrix cracking strength (FMCS) and the ultimate tensile strength of SCS-6/RBSN (SiC fiber (SCS-6) reinforced reaction-bonded silicon nitride composite) ceramic matrix composite laminate at room temperature. Cumulative probability distribution function for the FMCS and ultimate tensile strength at room temperature (RT) of (0)(sub 8), (0(sub 2)/90(sub 2), and (+/-45(sub 2))(sub S) laminates have been simulated and the sensitivity of primitive variables to the respective strengths have been quantified. Computationally predicted scatter of the strengths for a uniaxial laminate have been compared with those from limited experimental data. Also the experimental procedure used in the tests has been described briefly. Results show a very good agreement between the computational simulation and the experimental data. Dominating failure modes in (0)(sub 8), (0/90)(sub s) and (+/-45)(sub S) laminates have been identified. Results indicate that the first matrix cracking strength for the (0)(sub S), and (0/90)(sub S) laminates is sensitive to the thermal properties, modulus and strengths of both the fiber and matrix whereas the ultimate tensile strength is sensitive to the fiber strength and the fiber volume ratio. In the case of a (+/-45)(sub S), laminate, both the FMCS and the ultimate tensile strengths have a small scatter range and are sensitive to the fiber tensile strength as well as the fiber volume ratio.

  14. Elongation Transducer For Tensile Tests

    NASA Technical Reports Server (NTRS)

    Roberts, Paul W.; Stokes, Thomas R.

    1994-01-01

    Extensometer transducer measures elongation of tensile-test specimen with negligible distortion of test results. Used in stress-versus-strain tests of small specimens of composite materials. Clamping stress distributed more evenly. Specimen clamped gently between jaw and facing surface of housing. Friction force of load points on conical tips onto specimen depends on compression of spring, adjusted by turning cover on housing. Limp, light nylon-insulated electrical leads impose minimal extraneous loads on measuring elements.

  15. Development of High Specific Strength Envelope Materials

    NASA Astrophysics Data System (ADS)

    Komatsu, Keiji; Sano, Masa-Aki; Kakuta, Yoshiaki

    Progress in materials technology has produced a much more durable synthetic fabric envelope for the non-rigid airship. Flexible materials are required to form airship envelopes, ballonets, load curtains, gas bags and covering rigid structures. Polybenzoxazole fiber (Zylon) and polyalirate fiber (Vectran) show high specific tensile strength, so that we developed membrane using these high specific tensile strength fibers as a load carrier. The main material developed is a Zylon or Vectran load carrier sealed internally with a polyurethane bonded inner gas retention film (EVOH). The external surface provides weather protecting with, for instance, a titanium oxide integrated polyurethane or Tedlar film. The mechanical test results show that tensile strength 1,000 N/cm is attained with weight less than 230g/m2. In addition to the mechanical properties, temperature dependence of the joint strength and solar absorptivity and emissivity of the surface are measured. 

  16. Inert strength of pristine silica glass fibers

    SciTech Connect

    Smith, W.L.; Michalske, T.A.

    1993-11-01

    Silica glass fibers have been produced and tested under ultra high vacuum (UHV) conditions to investigate the inert strength of pristine fibers in absence of reactive agents. Analysis of the coefficient of variation in diameter ({upsilon}{sub d}) vs the coefficient of variation of breaking strength ({upsilon}{sub {sigma}}) does not adequately explain the variation of breaking stress. Distribution of fiber tensile strength data suggests that the inert strength of such fibers is not single valued and that the intrinsic strength is controlled by defects in the glass. Furthermore, comparison of room temperature UHV data with LN{sub 2} data indicates that these intrinsic strengths are not temperature dependent.

  17. On the entropy changes and fluctuations occurring near a tensile instability

    NASA Astrophysics Data System (ADS)

    Debenedetti, Pablo G.; D'Antonio, Michael C.

    1986-10-01

    Several liquids exhibit an apparent loss of tensile strength (tensile instability) as their temperature is lowered. Assuming that such substances exhibit a true minimum in the PT projections of their spinodal curves, the thermodynamically consistent behavior that follows from this hypothesis displays a variety of unusual phenomena, of which the PVT aspects have been recently discussed. If, along the tensile instability isochore, the reciprocal compressibility vanishes linearly with respect to temperature (as is the case for a van der Waals fluid near the spinodal) an unusual metastable phase transition with discontinuous entropy and thermal expansion coefficient but continuous volume must occur if this isochore admits a metastable solution below the tensile instability temperature. The form of the specific heat divergence, as well as the equations of phase diagram loci of constant correlation length follow from the nature of the PVT surface in the vicinity of a tensile instability.

  18. High-temperature tensile properties of fiber reinforced reaction bonded silicon nitride

    NASA Technical Reports Server (NTRS)

    Jablonski, David A.; Bhatt, Ramakrishna T.

    1990-01-01

    Measurements of tensile properties of unidirectional silicon carbide fiber-reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens were carried out in air at 25, 1300, and 1500 C, using a new testing technique and a specially designed gripping system that minimizes bending moment and assures that failure always occurred in the gage section. The material was found to display metallike stress-strain behavior at all temperatures tested, and a noncatastrophic failure beyond the matrix fracture. The tensile properties were found to be temperature dependent, with the values of the ultimate tensile strength decreasing with temperature, from 543 MPa at 25 C to 169 at 1500 C.

  19. Establishing Correlations for Predicting Tensile Properties Based on the Shear Punch Test and Vickers Microhardness data

    NASA Astrophysics Data System (ADS)

    Milot, Timothy S.

    A series of mechanical tests was performed on a matrix of pressure vessel alloys to establish correlations between shear punch tests (SPT), microhardness (Hv), and tensile data. The purpose is to estimate tensile properties from SPT and Hv data. Small specimen testing is central to characterization of irradiation-induced changes in alloys used for nuclear applications. SPT have the potential for estimating tensile yield and ultimate strengths, strain hardening and ductility data, by using TEM disks, for example. Additional insight into SPT was gained by performing finite element analysis (FEA) simulations.

  20. Changes in boron fiber strength due to surface removal by chemical etching

    NASA Technical Reports Server (NTRS)

    Smith, R. J.

    1976-01-01

    The effects of chemical etching on the tensile strength of commercial boron/tungsten fibers were investigated. Fibers with as-received diameters of 203, 143, and 100 micrometers were etched to diameters as small as 43 micrometers. The etching generally resulted in increasing fiber tensile strength with decreasing fiber diameter. And for the 203 micrometer fibers there was an accompanying significant decrease in the coefficient of variation of the tensile strength for diameters down to 89 micrometers. Heat treating these fibers above 1,173 K in a vacuum caused a marked decrease in the average tensile strength of at least 80 percent. But after the fibers were etched, their strengths exceeded the as-received strengths. The tensile strength behavior is explained in terms of etching effects on surface flaws and the residual stress pattern of the as-received fibers.

  1. Examination of a Rock Failure Criterion Based on Circumferential Tensile Strain

    NASA Astrophysics Data System (ADS)

    Fujii, , Y.; Kiyama, , T.; Ishijima, Y.; Kodama, J.

    Uniaxial compression, triaxial compression and Brazialian tests were conducted on several kinds of rock, with particular attention directed to the principal tensile strain. In this paper we aim to clarify the effects of the experimental environment-such as confining pressure, loading rate, water content and anisotropy-on the critical tensile strain, i.e., the measured principal tensile strain at peak load.It was determined that the chain-type extensometer is a most suitable method for measuring the critical tensile strain in uniaxial compression tests. It is also shown that the paper-based strain gage, whose effective length is less than or equal to a tenth of the specimen's diameter and glued on with a rubber-type adhesive, can be effectively used in the Brazilian tests.The effect of confining pressure PC on the critical tensile strain ɛTC in the brittle failure region was between -0.02 × 10-10 Pa-1 and 0.77 × 10-10 Pa-1. This pressure sensitivity is small compared to the critical tensile strain values of around -0.5 × 10-2. The strain rate sensitivities ∂ɛTC/∂{log(d|ɛ|/dt)} were observed in the same way as the strength constants in other failure criteria. They were found to be from -0.10 × 10-3 to -0.52 × 10-3 per order of magnitude in strain rate in the triaxial tests. The average magnitude of the critical tensile strain ɛTC increased due to the presence of water by 4% to 20% for some rocks, and decreased by 22% for sandstone. It can at least be said that the critical tensile strain is less sensitive to water content than the uniaxial compressive strength under the experimental conditions reported here. An obvious anisotropy was observed in the P-wave velocity and in the uniaxial compressive strength of Pombetsu sandstone. It was not observed, however, in the critical tensile strain, although the data do show some variation.A "tensile strain criterion" was proposed, based on the above experimental results. This criterion signifies that stress begins

  2. Comparison of Elevated Temperature Tensile Properties and Fatigue Behavior of Two Variants of a Woven SiC/SiC Composite

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Brewer, David N.; Sreeramesh, Kalluri

    2005-01-01

    Tensile properties (elastic modulus, proportional limit strength, in-plane tensile strength, and strain at failure) of two variants of a woven SiC/SiC composite, manufactured during two separate time periods (9/99 and 1/01), were determined at 1038 and 1204 C by conducting tensile tests on specimens machined from plates. Continuous cycling fatigue tests (R = 0.05) and 20 cpm) were also conducted at the same two temperatures on specimens from both composites. In this study, average tensile properties, 95% confidence intervals associated with the tensile properties, and geometric mean fatigue lives of both composite materials are compared. The observed similarities and differences in the tensile properties are highlighted and an attempt is made to understand the relationship, if any, between the tensile properties and the fatigue behaviors of the two woven composites.

  3. Tensile Hoop Behavior of Irradiated Zircaloy-4 Nuclear Fuel Cladding

    SciTech Connect

    Jaramillo, Roger A; Hendrich, WILLIAM R; Packan, Nicolas H

    2007-03-01

    A method for evaluating the room temperature ductility behavior of irradiated Zircaloy-4 nuclear fuel cladding has been developed and applied to evaluate tensile hoop strength of material irradiated to different levels. The test utilizes a polyurethane plug fitted within a tubular cladding specimen. A cylindrical punch is used to compress the plug axially, which generates a radial displacement that acts upon the inner diameter of the specimen. Position sensors track the radial displacement of the specimen outer diameter as the compression proceeds. These measurements coupled with ram force data provide a load-displacement characterization of the cladding response to internal pressurization. The development of this simple, cost-effective, highly reproducible test for evaluating tensile hoop strain as a function of internal pressure for irradiated specimens represents a significant advance in the mechanical characterization of irradiated cladding. In this project, nuclear fuel rod assemblies using Zircaloy-4 cladding and two types of mixed uranium-plutonium oxide (MOX) fuel pellets were irradiated to varying levels of burnup. Fuel pellets were manufactured with and without thermally induced gallium removal (TIGR) processing. Fuel pellets manufactured by both methods were contained in fuel rod assemblies and irradiated to burnup levels of 9, 21, 30, 40, and 50 GWd/MT. These levels of fuel burnup correspond to fast (E > 1 MeV) fluences of 0.27, 0.68, 0.98, 1.4 and 1.7 1021 neutrons/cm2, respectively. Following irradiation, fuel rod assemblies were disassembled; fuel pellets were removed from the cladding; and the inner diameter of cladding was cleaned to remove residue materials. Tensile hoop strength of this cladding material was tested using the newly developed method. Unirradiated Zircaloy-4 cladding was also tested. With the goal of determining the effect of the two fuel types and different neutron fluences on clad ductility, tensile hoop strength tests were

  4. INFUENCE OF SPECIMEN TYPE AND LOADING CONFIGURATION ON THE FRACTURE STRENGTH OF SiC LAYER IN COATED PARTICLE FUEL

    SciTech Connect

    Byun, Thak Sang; Hong, Seong Gu; Katoh, Yutai; Snead, Lance Lewis

    2006-01-01

    Internal pressurization and diametrical loading techniques were developed to measure the fracture strength of the chemical vapor deposition (CVD) silicon carbide (SiC) coatings in nuclear fuel particles. Miniature tubular and hemispherical shell specimens were used for both test methods. In the internal pressurization test an expansion load was applied to the inner surface of a specimen by use of a compressively loaded elastomeric insert (polyurethane). In the crush test a diametrical compressive load was applied to the outer surface(s) of a specimen. The test results revealed that the fracture strengths from four test methods obeyed Weibull's two-parameter distribution, and the measured values of the Weibull modulus were consistent for different test methods. The fracture strengths measured by crush test techniques were larger than those by internal pressurization tests. This is because the internal pressurization produces uniform stress distribution while the diametrical loading technique produces severely localized stress distribution. The test method dependence of fracture strength was explained by the size effect predicted by effective surface.

  5. Tensile behavior of the L(1)2 compound Al67Ti25Cr8

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Brown, S. A.

    1992-01-01

    Temperature-related variations in tensile yield strength and ductility were studied on cast, homogenized and isothermally forged Al67Ti25Cr8. Yield strength dropped discontinuously between 623 K and 773 K and then decreased gradually with increasing temperature. Below 623 K, fracture occurred prior to macroscopic yielding. Ductility decreased from 0.2 percent at 623 K to zero at 773 K, but increased again at higher temperatures. At 1073 K, an elongation of 19 percent was obtainable, and ultimate tensile strength and localized necking were observed. Fracture surfaces and deformed microstructures were examined. The 1073 K tensile specimen that exhibited 19 percent elongation showed grain boundary serrations and some evidence of recrystallization (likely dynamic) although fracture occurred predominantly via an intergranular mode.

  6. Probabilistic simulation of uncertainties in composite uniaxial strengths

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Stock, T. A.

    1990-01-01

    Probabilistic composite micromechanics methods are developed that simulate uncertainties in unidirectional fiber composite strengths. These methods are in the form of computational procedures using composite mechanics with Monte Carlo simulation. The variables for which uncertainties are accounted include constituent strengths and their respective scatter. A graphite/epoxy unidirectional composite (ply) is studied to illustrate the procedure and its effectiveness to formally estimate the probable scatter in the composite uniaxial strengths. The results show that ply longitudinal tensile and compressive, transverse compressive and intralaminar shear strengths are not sensitive to single fiber anomalies (breaks, intergacial disbonds, matrix microcracks); however, the ply transverse tensile strength is.

  7. Apple Strength Issues

    SciTech Connect

    Syn, C

    2009-12-22

    Strength of the apple parts has been noticed to decrease, especially those installed by the new induction heating system since the LEP campaign started. Fig. 1 shows the ultimate tensile strength (UTS), yield strength (YS), and elongation of the installed or installation-simulated apples on various systems. One can clearly see the mean values of UTS and YS of the post-LEP parts decreased by about 8 ksi and 6 ksi respectively from those of the pre-LEP parts. The slight increase in elongation seen in Fig.1 can be understood from the weak inverse relationship between the strength and elongation in metals. Fig.2 shows the weak correlation between the YS and elongation of the parts listed in Fig. 1. Strength data listed in Figure 1 were re-plotted as histograms in Figs. 3 and 4. Figs. 3a and 4a show histograms of all UTS and YS data. Figs. 3b and 4b shows histograms of pre-LEP data and Figs. 3c and 4c of post-LEP data. Data on statistical scatter of tensile strengths have been rarely published by material suppliers. Instead, only the minimum 'guaranteed' strength data are typically presented. An example of strength distribution of aluminum 7075-T6 sheet material, listed in Fig. 5, show that its scatter width of both UTS and YS for a single sheet can be about 6 ksi and for multi-lot scatter can be as large as 11 ksi even though the sheets have been produced through well-controlled manufacturing process. By approximating the histograms shown in Figs. 3 and 4 by a Gaussian or similar type of distribution curves, one can plausibly see the strength reductions in the later or more recent apples. The pre-LEP data in Figs. 3b and 4b show wider scatter than the post-LEP data in Figs. 3c and 4c and seem to follow the binomial distribution of strength indicating that the apples might have been made from two different lots of material, either from two different vendors or from two different melts of perhaps slightly different chemical composition by a single vendor. The post

  8. Tensile Properties and Fracture Behavior of Different Carbon Nanotube-Grafted Polyacrylonitrile-Based Carbon Fibers

    NASA Astrophysics Data System (ADS)

    Naito, Kimiyoshi

    2014-11-01

    The tensile properties and fracture behavior of different carbon nanotube (CNT)-grafted polyacrylonitrile-based (T1000GB) single carbon fibers were investigated. Grafting of CNTs was achieved via chemical vapor deposition (CVD). When Fe(C5H5)2 (also applied via CVD) was used as the catalyst, the tensile strength and Weibull modulus of the carbon fibers were improved, possibly due to the growth of dense CNT networks on the carbon fibers, which may have led to a reduction in the number of strength-limiting defects. Separately, at lower concentrations of an Fe(NO3)3·9H2O catalyst in ethanol, which was applied via dipping, the tensile strength of CNT-grafted fibers was nearly identical to that of the as-received fibers, although the Weibull modulus was higher. For higher concentrations of the Fe(NO3)3·9H2O catalyst, however, the tensile strength and the Weibull modulus were lower than those for the as-received material. Although the density of the CNT network increased with the concentration of the Fe(NO3)3·9H2O catalyst in the ethanol solution, heating of the ethanolic Fe(NO3)3·9H2O catalyst solution generated nitric acid (HNO3) due to decomposition, which damaged the fiber surfaces, resulting in an increase in the number of flaws and consequently a reduction in the tensile strength. Therefore, the tensile strength and Weibull modulus of CNT-grafted carbon fibers vary due to the combination of these effects and as a function of the catalyst concentration.

  9. An Assessment of Variability in the Average Tensile Properties of a Melt-Infiltrated SiC/SiC Composite

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Brewer, David N.; Calomino, Anthony M.

    2004-01-01

    Woven SiC/SiC Ceramic Matrix Composites (CMCs), manufactured by the slurry-cast, melt-infiltration process are under consideration as combustor liner materials in aircraft gas turbine engines. Tensile properties (elastic modulus, proportional limit strength, in-plane tensile strength and strain to failure) of the CMC, manufactured during two separate time periods (9/99 and 1/01) were determined at 816 and 1024 C by conducting tensile tests on specimens machined from the CMC plates. A total of 24 tensile tests were conducted for each temperature and CMC variant combination. In this study average tensile properties of the two cMC variants were statistically compared to evaluate significant differences, if any, within the CMC's properties.

  10. Tensile Properties of Hydrogels and of Snake Skin

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Savitzky, Alan H.; Rivera, Gabriel; Gehrke, Stevin H.

    2002-01-01

    Stimulus-responsive or 'smart' gels are of potential interest as sensors and actuators, in industrial separations, and as permeable delivery systems. In most applications, a certain degree of mechanical strength and toughness will be required, yet the large-strain behavior of gels has not been widely reported. Some exceptions include work on gelatin and other food gels, some characterization of soft gels applicable for in-vitro cell growth studies, and toughness determinations on commercial contact lens materials. In general, it can be anticipated that the gel stiffness will increase with increasing degree of crosslinking, but the tensile strength may go through a maximum. Gel properties can be tailored by varying not only the degree of crosslinking, but also the polymer concentration and the nature of the polymer backbone (e.g. its stiffness or solubility). Polypeptides provide an especially interesting case, where secondary structure affects trends in moduli and conformational transitions may accompany phase changes. A few papers on the tensile properties of responsive gels have begun to appear. The responsive hydrogel chosen for the present study, crosslinked hydroxypropylcellulose, shrinks over a rather narrow temperature range near 44 C. Some vertebrate skin is also subject to substantial strain. Among reptiles, the morphologies of the skin and scales show wide variations. Bauer et al. described the mechanical properties and histology of gecko skin; longitudinal tensile properties of snake skin were examined by Jayne with reference to locomotion. The present measurements focus on adaptations related to feeding, including the response of the skin to circumferential tension. Tensile properties will be related to interspecific and regional variation in skin structure and folding.

  11. Tensile test of pressureless-sintered silicon nitride at elevated temperature

    NASA Technical Reports Server (NTRS)

    Matsusue, K.; Fujisawa, Y.; Takahara, K.

    1985-01-01

    Uniaxial tensile strength tests of pressureless sintered silicon nitride were carried out in air at temperatures ranging from room temperature up to 1600 C. Silicon nitrides containing Y2O3, Al2O3, Al2O3-MgO, or MgO-CeO2 additives were tested. The results show that the composition of the additive used influences the strength characteristics of the silicon nitride. The tensile strength rapidly decreased at temperatures above 1000 C for the materials containing MgO as the additive and above 1000 C for the material with Y2O3. When the temperature increased to as high as 1300 C, the strength decreased to about 10 percent of the room temperature strength in each case. Observations of the fracture origin and of the crack propagation on the fracture surfaces are discussed.

  12. In-situ rock strength determination for blasting purposes

    SciTech Connect

    Soni, D.K.; Jain, A.

    1994-12-31

    Compressive strength of rocks is often required by mining engineers and quarrying authorities for blasting operations. Uniaxial compressive strength of rocks can be predicted with reasonable accuracy with the help of point load strength tests which can be easily conducted at site by the field staff, simultaneously as the cores are recovered from drilling operations. A number of diametral point load tests and uniaxial compressive strength tests have been conducted on the specimens of different rock types under air dried, and saturated condition as well to study the effect of ground water saturation on strength. It has been observed that due to saturation uniaxial compressive strength and point load strength get reduced to a maximum of 32 and 29 percent respectively. It has also been observed that uniaxial strength is sixteen times the point load strength in air dried as well as saturated condition. However, this factor used for calculating uniaxial compressive strength may be reduced to a lower value for the safety of miners in field blasting operations.

  13. Static and Dynamic Flexural Strength Anisotropy of Barre Granite

    NASA Astrophysics Data System (ADS)

    Dai, F.; Xia, K.; Zuo, J. P.; Zhang, R.; Xu, N. W.

    2013-11-01

    Granite exhibits anisotropy due to pre-existing microcracks under tectonic loadings; and the mechanical property anisotropy such as flexural/tensile strength is vital to many rock engineering applications. In this paper, Barre Granite is studied to understand the flexural strength anisotropy under a wide range of loading rates using newly proposed semi-circular bend tests. Static tests are conducted with a MTS hydraulic servo-control testing machine and dynamic tests with a split Hopkinson pressure bar (SHPB) system. Six samples groups are fabricated with respect to the three principle directions of Barre granite. Pulse shaping technique is used in all dynamic SHPB tests to facilitate dynamic stress equilibrium. Finite element method is utilized to build up equations calculating the flexural tensile strength. For samples in the same orientation group, a loading rate dependence of the flexural tensile strength is observed. The measured flexural tensile strength is higher than the tensile strength measured using Brazilian disc method at given loading rate and this scenario has been rationalized using a non-local failure theory. The flexural tensile strength anisotropy features obvious dependence on the loading rates, the higher the loading rate, the less the anisotropy and this phenomenon may be explained considering the interaction of the preferentially oriented microcracks.

  14. Microstructure-Tensile Properties Correlation for the Ti-6Al-4V Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Shi, Xiaohui; Zeng, Weidong; Sun, Yu; Han, Yuanfei; Zhao, Yongqing; Guo, Ping

    2015-04-01

    Finding the quantitative microstructure-tensile properties correlations is the key to achieve performance optimization for various materials. However, it is extremely difficult due to their non-linear and highly interactive interrelations. In the present investigation, the lamellar microstructure features-tensile properties correlations of the Ti-6Al-4V alloy are studied using an error back-propagation artificial neural network (ANN-BP) model. Forty-eight thermomechanical treatments were conducted to prepare the Ti-6Al-4V alloy with different lamellar microstructure features. In the proposed model, the input variables are microstructure features including the α platelet thickness, colony size, and β grain size, which were extracted using Image Pro Plus software. The output variables are the tensile properties, including ultimate tensile strength, yield strength, elongation, and reduction of area. Fourteen hidden-layer neurons which can make ANN-BP model present the most excellent performance were applied. The training results show that all the relative errors between the predicted and experimental values are within 6%, which means that the trained ANN-BP model is capable of providing precise prediction of the tensile properties for Ti-6Al-4V alloy. Based on the corresponding relations between the tensile properties predicted by ANN-BP model and the lamellar microstructure features, it can be found that the yield strength decreases with increasing α platelet thickness continuously. However, the α platelet thickness exerts influence on the elongation in a more complicated way. In addition, for a given α platelet thickness, the yield strength and the elongation both increase with decreasing β grain size and colony size. In general, the β grain size and colony size play a more important role in affecting the tensile properties of Ti-6Al-4V alloy than the α platelet thickness.

  15. Micro-tensile testing system

    DOEpatents

    Wenski, Edward G.

    2006-01-10

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  16. Micro-tensile testing system

    DOEpatents

    Wenski, Edward G.

    2007-08-21

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  17. Micro-tensile testing system

    DOEpatents

    Wenski, Edward G.

    2007-07-17

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  18. In situ tensile fracture toughness of surficial cohesive marine sediments

    NASA Astrophysics Data System (ADS)

    Johnson, Bruce D.; Barry, Mark A.; Boudreau, Bernard P.; Jumars, Peter A.; Dorgan, Kelly M.

    2012-02-01

    This study reports the first in situ measurements of tensile fracture toughness, K IC, of soft, surficial, cohesive marine sediments. A newly developed probe continuously measures the stress required to cause tensile failure in sediments to depths of up to 1 m. Probe measurements are in agreement with standard laboratory methods of K IC measurements in both potter's clay and natural sediments. The data comprise in situ depth profiles from three field sites in Nova Scotia, Canada. Measured K IC at two muddy sites (median grain size of 23-50 μm) range from near zero at the sediment surface to >1,800 Pa m1/2 at 0.2 m depth. These profiles also appear to identify the bioturbated/mixed depth. K IC for a sandy site (>90% sand) is an order of magnitude lower than for the muddy sediments, and reflects the lack of cohesion/adhesion. A comparison of K IC, median grain size, and porosity in muddy sediments indicates that consolidation increases fracture strength, whereas inclusion of sand causes weakening; thus, sand-bearing layers can be easily identified in K IC profiles. K IC and vane-measured shear strength correlate strongly, which suggests that the vane measurements should perhaps be interpreted as shear fracture toughness, rather than shear strength. Comparison of in situ probe-measured values with K IC of soils and gelatin shows that sediments have a K IC range intermediate between denser compacted soils and softer, elastic gelatin.

  19. Tensile behavior of irradiated manganese-stabilized stainless steel

    SciTech Connect

    Klueh, R.L.

    1996-10-01

    Tensile tests were conducted on seven experimental, high-manganese austenitic stainless steels after irradiation up to 44 dpa in the FFTF. An Fe-20Mn-12Cr-0.25C base composition was used, to which various combinations of Ti, W, V, B, and P were added to improve strength. Nominal amounts added were 0.1% Ti, 1% W, 0.1% V, 0.005% B, and 0.03% P. Irradiation was carried out at 420, 520, and 600{degrees}C on the steels in the solution-annealed and 20% cold-worked conditions. Tensile tests were conducted at the irradiation temperature. Results were compared with type 316 SS. Neutron irradiation hardened all of the solution-annealed steels at 420, 520, and 600{degrees}C, as measured by the increase in yield stress and ultimate tensile strength. The steel to which all five elements were added to the base composition showed the least amount of hardening. It also showed a smaller loss of ductility (uniform and total elongation) than the other steels. The total and uniform elongations of this steel after irradiation at 420{degrees}C was over four times that of the other manganese-stabilized steels and 316 SS. There was much less difference in strength and ductility at the two higher irradiation temperatures, where there was considerably less hardening, and thus, less loss of ductility. In the cold-worked condition, hardening occured only after irradiation at 420{degrees}C, and there was much less difference in the properties of the steels after irradiation. At the 420{degrees}C irradiation temperature, most of the manganese-stabilized steels maintained more ductility than the 316 SS. After irradiation at 420{degrees}C, the temperature of maximum hardening, the steel to which all five of the elements were added had the best uniform elongation.

  20. Notched Strength Allowables and Inplane Shear Strength of AS4/VRM-34 Textile Laminates

    NASA Technical Reports Server (NTRS)

    Grenoble, Ray W.; Johnston, William M.

    2013-01-01

    Notched and unnotched strength allowables were developed for a textile composite to provide input data to analytical structural models based on the Pultruded Rod Stiffened Efficient Unitized Structure (PRSEUS) concept. Filled-hole tensile strength, filled-hole compressive strength, and inplane shear strength along stitch lines have been measured. The material system evaluated in this study is based on warp-knitted preforms of AS4 carbon fibers and VRM-34 epoxy resin, which have been processed via resin infusion and oven curing. All specimens were tested in as-fabricated (dry) condition. Filled-hole strengths were evaluated with and without through-thickness stitching. The effects of scaling on filled-hole tensile strength were evaluated by testing specimens in two widths, but with identical width / hole-diameter ratios. Inplane shear specimens were stitched in two configurations, and two specimen thicknesses were tested for each stitch configuration.