These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Diametral tensile strength and film thickness of an experimental dental luting agent derived from castor oil  

PubMed Central

The need to develop new dental luting agents in order to improve the success of treatments has greatly motivated research. Objective The aim of this study was to evaluate the diametral tensile strength (DTS) and film thickness (FT) of an experimental dental luting agent derived from castor oil (COP) with or without addition of different quantities of filler (calcium carbonate - CaCO3). Material and Methods Eighty specimens were manufactured (DTS N=40; FT N=40) and divided into 4 groups: Pure COP; COP 10%; COP 50% and zinc phosphate (control). The cements were mixed according to the manufacturers' recommendations and submitted to the tests. The DTS test was performed in the MTS 810 testing machine (10 KN, 0.5 mm/min). For FT test, the cements were sandwiched between two glass plates (2 cm2) and a load of 15 kg was applied vertically on the top of the specimen for 10 min. The data were analyzed by means of one-way ANOVA and Tukey's test (?=0.05). Results The values of DTS (MPa) were: Pure COP- 10.94±1.30; COP 10%- 30.06±0.64; COP 50%- 29.87±0.27; zinc phosphate- 4.88±0.96. The values of FT (µm) were: Pure COP- 31.09±3.16; COP 10%- 17.05±4.83; COP 50%- 13.03±4.83; Zinc Phosphate- 20.00±0.12. One-way ANOVA showed statistically significant differences among the groups (DTS - p=1.01E-40; FT - p=2.4E-10). Conclusion The experimental dental luting agent with 50% of filler showed the best diametral tensile strength and film thickness. PMID:22437672

CARMELLO, Juliana Cabrini; FAIS, Laiza Maria Grassi; RIBEIRO, Lígia Nunes de Moraes; CLARO NETO, Salvador; GUAGLIANONI, Dalton Geraldo; PINELLI, Lígia Antunes Pereira

2012-01-01

2

The diametral tensile strength and hydrostability of polymer-ceramic nano-composite (pcnc) material prototypes  

NASA Astrophysics Data System (ADS)

Statement of the problem: There is a weak connection between the filler and the resin matrix of dental composites caused primarily by hydrolysis of silane coupling agent, therefore, jeopardizing the mechanical properties of the dental restorations. Purpose: The purpose of this study was to compare the diametral tensile strength (DTS) of a nano-mechanically bonded polymer ceramic nano composite (pcnc) versus the chemically bonding prototype polymer ceramic nano composite (pcnc) fabricated by using hydrolytically stable interphase. Materials and Methods: Composites were made with 60wt % filler, 38% triethyleneglycol dimethacrylate (TEDGMA), 1% camphorquinone (CQ) and 1% 2-(dimethylamino) ethyl methacrylate (DMAEMA). Tests for DTS were performed using a universal testing machine. The disk-shaped specimens were loaded in compression between two supporting plates at a crosshead speed of 0.5 mm/min until fracture. The samples, measuring 3 mm in height and 6 mm in diameter, were produced in a round stainless steel (SS) mold. A total of 144 samples were created. Groups of 48 samples were made for each of three different fillers. Specimens were soaked in artificial saliva at 37° for four time periods, dry(t=0), 1 day, 7 days, 28 days). At the end of each soaking time DTS tests were performed. Results: There where statistically significant differences in the DTS between the filler groups and the soaking times (p=<0.001) as well as for the pairwise comparison between the different filler group values and between the different soaking times as an individual treatment. Overall, longer soaking times resulted in lower mean DTS values. The DTS of the PCNC for filler #1 decreased to 82.4% of the original value after 1 day of soaking, 67.2% after 7 days and 27.2 % after 28 days. For filler #2 decreased to 54.8% of the original value after 1 day of soaking, 62.3% after 7 days and 61.2% after 28 days. For filler #3 decreased to 71.2% of the original value, 67.3% after 7 days and 51.4% after 28 days (Fig 8). Conclusions: Within the limitation of this study it can be concluded that the use of coupling agent will significantly influence the degradation of the material under wet environment. Clinical Implication: Changes within matrix composition and bonding interphase of resin base composites promise improvements of mechanical properties, decreasing the incidence of clinical failure of posterior composite restorations, hence resulting in a more ideal restorative material for use in posterior segment. The results of this investigation showed that the deficiency of hydrostability in dental composites is a detrimental factor in the mechanical behavior. The silanation of the filler particles have a positive influence on the mechanical properties of dental composites but the hydrolysis of the silane coupling agent can dramatically reduce the average lifetime of dental composites.

Yepez, Johanna

3

Influence of powder/liquid ratio on the radiodensity and diametral tensile strength of glass ionomer cements  

PubMed Central

Objective To determine the influence of P/L ratio on the radiodensity and diametral tensile strength (DTS) of glass ionomer cements. Material and Methods There were 2 factors under study: P/L ratio (manufacturer's recommended P/L ratio and a 50% reduced P/L ratio), and materials (Vitro Molar, Vitro Fil, Vitro Cem conventional GICs and Vitro Fil LC, Ortho Glass LC RMGICs). Five 1-mm-thick samples of each material-P/L ratio were produced for radiodensity evaluation. Samples were x-ray exposed onto Digora phosphor plate and radiodensity was obtained using the software Digora for Windows 2.5 Rev 0. For DTS, five (4.0x8.0 mm) cylinder samples of each material were tested (0.5 mm/min). Data were subjected to one- and two-way ANOVA (5x2) followed by Tukey's HSD test, or Kruskal-Wallis and Dunn's method. For paired comparisons, t-test or Mann-Whitney test were used (a=0.05). Results There was a significant interaction (P=0.001) for the studied factors (materials vs. P/L ratio). Reduced P/L ratio resulted in significantly lower DTS for the RMGICs, but radiodensity was affected for all materials (P<0.05). Conclusions Reduced P/L ratio affected properties of the tested glass ionomer cements. RMGICs were more susceptible to lower values of DTS, but radiodensity decreased for all materials following P/L ratio reduction. PMID:21308288

FONSECA, Rodrigo Borges; BRANCO, Carolina Assaf; QUAGLIATTO, Paulo Sérgio; GONÇALVES, Luciano de Souza; SOARES, Carlos José; CARLO, Hugo Lemes; CORRER-SOBRINHO, Lourenço

2010-01-01

4

CHARACTERIZATION OF TENSILE STRENGTH OF GLOVEBOX GLOVES  

SciTech Connect

A task was undertaken to compare various properties of different glovebox gloves, having various compositions, for use in gloveboxes at the Savannah River Site (SRS). One aspect of this project was to determine the tensile strength (TS) of the gloves. Longitudinal tensile samples were cut from 15 different gloves and tensile tested. The stress, load, and elongation at failure were determined. All of the gloves that are approved for glovebox use and listed in the glovebox procurement specification met the tensile and elongation requirements. The Viton{reg_sign} compound gloves are not listed in the specification, but exhibited lower tensile strengths than permissible based on the Butyl rubber requirements. Piercan Polyurethane gloves were the thinnest samples and exhibited the highest tensile strength of the materials tested.

Korinko, P.; Chapman, G.

2012-02-29

5

Method and apparatus for determining tensile strength  

DOEpatents

A method and apparatus for determining the statistical distribution of apparent tensile strength of rock, the size effect with respect to tensile strength, as well as apparent deformation modulus of both intact and fractured or jointed rock. The method is carried out by inserting a plug of deformable material, such as rubber, in an opening of a specimen to be tested. The deformable material is loaded by an upper and lower platen until the specimen ruptures, whereafter the tensile strength is calculated based on the parameters of the test specimen and apparatus.

Ratigan, Joe L. (Rapid City, SD)

1984-01-01

6

Making High-Tensile-Strength Amalgam Components  

NASA Technical Reports Server (NTRS)

Structural components made of amalgams can be made to have tensile strengths much greater than previously known to be possible. Amalgams, perhaps best known for their use in dental fillings, have several useful attributes, including room-temperature fabrication, corrosion resistance, dimensional stability, and high compressive strength. However, the range of applications of amalgams has been limited by their very small tensile strengths. Now, it has been discovered that the tensile strength of an amalgam depends critically on the sizes and shapes of the particles from which it is made and, consequently, the tensile strength can be greatly increased through suitable choice of the particles. Heretofore, the powder particles used to make amalgams have been, variously, in the form of micron-sized spheroids or flakes. The tensile reinforcement contributed by the spheroids and flakes is minimal because fracture paths simply go around these particles. However, if spheroids or flakes are replaced by strands having greater lengths, then tensile reinforcement can be increased significantly. The feasibility of this concept was shown in an experiment in which electrical copper wires, serving as demonstration substitutes for copper powder particles, were triturated with gallium by use of a mortar and pestle and the resulting amalgam was compressed into a mold. The tensile strength of the amalgam specimen was then measured and found to be greater than 10(exp 4) psi (greater than about 69 MPa). Much remains to be done to optimize the properties of amalgams for various applications through suitable choice of starting constituents and modification of the trituration and molding processes. The choice of wire size and composition are expected to be especially important. Perusal of phase diagrams of metal mixtures could give insight that would enable choices of solid and liquid metal constituents. Finally, whereas heretofore, only binary alloys have been considered for amalgams, ternary additions to liquid or solid components should be considered as means to impart desired properties to amalgams.

Grugel, Richard

2008-01-01

7

A comparison of pressure compaction and diametral compression tests for determining granule strengths  

NASA Astrophysics Data System (ADS)

Lightning strikes can cause structural damage, ignite flammable materials, and produce circuit malfunctions in missiles, aircraft, and ground systems. Lightning arrestor connectors (LAC's) are used to divert harmful lightning energy away from these systems by providing less destructive breakdown paths. Ceramic granules in the size range of 150-200 micrometers are used in LAC's to provide physical and electrical separation of contacts (pins) from the surrounding metal web, and to control the voltage breakdown level. Pressure compaction (P-C) tests were used to characterize the strength of ceramic granules. When compaction data are plotted as relative density of the compact versus the compaction pressure two linear regions are generally observed. The intersection of these regions, which is known as the 'breakpoint,' has been used as a semi-quantitative measure of granule strength. Comparisons were made between the P-C breakpoint and strengths of 150-200 micrometers diameter ZnO, TiO2 (rutile), and lead magnesium niobate-lead titanate (PMN-PT) granules, where the strengths were determined by diametral compression (D-C) tests. At high compaction pressures the compliance of the die itself is significant and was accounted for in the analyses. Tests were conducted at different compaction rates, and with different aspect ratio compacts. High aspect ratios and loading rates decrease the slope of the second linear portion of the compaction curve and produce higher apparent P-C breakpoints. Comparison of the P-C breakpoint to the average D-C strength indicates that the D-C strength is approximately fifty percent higher for PMN-PT granules. To eliminate the uncertainty in results due to irregular granules sizes and shapes, comparisons were made for uniform size (210 micrometers) glass spheres. In this case the average D-C strength coincided with a second breakpoint in the P-C data, which occurred after compaction by a mechanism of bridge formation and collapse had ceased.

Glass, S. J.; Newton, C.

8

49 CFR 230.26 - Tensile strength of shell plates.  

Code of Federal Regulations, 2010 CFR

...DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of steel or wrought-iron shell...

2010-10-01

9

A novel dentin bond strength measurement technique using the composite disk in diametral compression  

PubMed Central

We evaluated the feasibility of using the modified Brazilian disk test to measure the post-dentin interfacial bond strength. Advanced nondestructive examination and imaging techniques in the form of acoustic emission (AE) and digital image correlation (DIC) were used innovatively to capture the fracture process in real time. DIC showed strain concentration first appearing at one of the lateral sides of the post-dentin interface. The appearance of the interfacial strain concentration also coincided with the first AE signal detected. The new method has the advantages of simpler specimen preparation, no premature failure, more consistent failure mode and smaller variations in the calculated bond strength. PMID:22266033

Huang, Shih-Hao; Lin, Lian-Shan; Rudney, Joel; Jones, Rob; Aparicio, Conrado; Lin, Chun-Pin

2012-01-01

10

Investigating the Effect of Cyclic Loading on the Indirect Tensile Strength of Rocks  

NASA Astrophysics Data System (ADS)

This paper presents the results of laboratory experiments during the investigation of the stress-strain characteristics of Brisbane tuff disc specimens under diametral compressive cyclic loading. Two different cyclic loading methods were used: namely, sinusoidal cyclic loading and cyclic loading with increasing mean level. The first method applied the S- N curve approach to the indirect tensile strength (ITS) of rock specimens for the first time in the literature, and the second method investigated the effect of increasing cyclic loading on the ITS of rock specimens. The ITS of Brisbane tuff disc specimens was measured using the Brazilian tensile strength test. The reduction in ITS was found to be 33% with sinusoidal loading tests, whereas increasing cyclic loading caused a maximum reduction of 37%. It is believed that the fracturing under cyclic loading starts at contact points between strong grains and weak matrices, and that contact points at grain boundaries are the regions of stress concentration (i.e., indenters). Transgranular cracks emanate from these regions and intergranular cracks sometimes pass through the contact points. Once cracking begins, there is a steady progression of damage and a general `loosening' of the rock, which is a precursor to the formation of intergranular cracks.

Erarslan, N.; Williams, D. J.

2012-05-01

11

Silicon nitride having a high tensile strength  

DOEpatents

A silicon nitride ceramic comprising: a) inclusions no greater than 25 microns in length, b) agglomerates no greater than 20 microns in diameter, and c) a surface finish of less than about 8 microinches, said ceramic having a four-point flexural strength of at least about 900 MPa.

Pujari, Vimal K. (Northboro, MA); Tracey, Dennis M. (Medfield, MA); Foley, Michael R. (Oxford, MA); Paille, Norman I. (Oxford, MA); Pelletier, Paul J. (Millbury, MA); Sales, Lenny C. (Grafton, MA); Willkens, Craig A. (Sterling, MA); Yeckley, Russell L. (Oakham, MA)

1996-01-01

12

Influence of mix proportions and curing conditions on tensile splitting strength of high strength concretes  

Microsoft Academic Search

The effect of the composition of high strength concretes with low water to binder ratio and silica fume on the development\\u000a of splitting tensile strength was studied. A statistical approach was employed to develop formulation which could adequately\\u000a describe the relations between splitting tensile strength and the concrete composition, when cured in two different regimes:\\u000a water curing at 20°C and

K. Kovler; I. Schamban; S. Igarashi; A. Bentur

1999-01-01

13

Characterizing Curing-Cement Slurries by Permeability, Tensile Strength,  

E-print Network

Characterizing Curing-Cement Slurries by Permeability, Tensile Strength, and Shrinkage K.R. Backe oilwell cements. The results show that the curing characteristics are a function of temperature and that there is a correlation between shrinkage and cement content. The paper also introduces a new mechanism for gas migration

Backe, Knut

14

Improved molding process ensures plastic parts of higher tensile strength  

NASA Technical Reports Server (NTRS)

Single molding process ensures that plastic parts /of a given mechanical design/ produced from a conventional thermosetting molding compound will have a maximum tensile strength. The process can also be used for other thermosetting compounds to produce parts with improved physical properties.

Heier, W. C.

1968-01-01

15

Tensile strength of butt-joined epoxy-aluminum plates  

Microsoft Academic Search

Tensile tests conducted on butt joined epoxy-aluminum plates containing single cracks along the bond surfaces showed that there exists a characteristic crack length below which the fracture strength of the composite is mainly influenced by the stress concentrations at the bond edges. For specimens with cracks longer than the characteristic length the fracture of the composite is entirely controlled by

T. T. Wang; T. K. kwei; H. M. Zupko

1970-01-01

16

Practical Estimates of Tensile Strength and Hoek-Brown Strength Parameter m i of Brittle Rocks  

Microsoft Academic Search

By applying the Griffith stress criterion of brittle failure, one can find that the uniaxial compressive strength (sigmac) of rocks is eight times the value of the uniaxial tensile strength (sigmat). The Griffith strength ratio is smaller than what is normally measured for rocks, even with the consideration of crack closure. The reason is that Griffith's theories address only the

M. Cai

2010-01-01

17

Practical Estimates of Tensile Strength and Hoek-Brown Strength Parameter m i of Brittle Rocks  

NASA Astrophysics Data System (ADS)

By applying the Griffith stress criterion of brittle failure, one can find that the uniaxial compressive strength (?c) of rocks is eight times the value of the uniaxial tensile strength (?t). The Griffith strength ratio is smaller than what is normally measured for rocks, even with the consideration of crack closure. The reason is that Griffith’s theories address only the initiation of failure. Under tensile conditions, the crack propagation is unstable so that the tensile crack propagation stress (?cd)t and the peak tensile strength ?t are almost identical to the tensile crack initiation stress (?ci)t. On the other hand, the crack growth after crack initiation is stable under a predominantly compressive condition. Additional loading is required in compression to bring the stress from the crack initiation stress ?ci to the peak strength ?c. It is proposed to estimate the tensile strength of strong brittle rocks from the strength ratio of R = {{?_{text{c}} }/{left| {?_{text{t} } right|}}} = 8{{?_{text{c}} }/{?_{text{ci} }}}. The term {{?_{text{c}} }/{?_{text{ci} }}} accounts for the difference of crack growth or propagation in tension and compression in uniaxial compression tests. {{?c }/{?_{ci }}} depends on rock heterogeneity and is larger for coarse grained rocks than for fine grained rocks. ?ci can be obtained from volumetric strain measurement or acoustic emission (AE) monitoring. With the strength ratio R determined, the tensile strength can be indirectly obtained from left| {?_{text{t}} } right| = {{?_{text{c}} }/R} = {{?_{text{ci}} }/8}. It is found that the predicted tensile strengths using this method are in good agreement with test data. Finally, a practical estimate of the Hoek-Brown strength parameter m i is presented and a bi-segmental or multi-segmental representation of the Hoek-Brown strength envelope is suggested for some brittle rocks. In this fashion, the rock strength parameters like ?t and m i, which require specialty tests such as direct tensile (or Brazilian) and triaxial compression tests for their determination, can be reasonably estimated from uniaxial compression tests.

Cai, M.

2010-03-01

18

Tensile Fracture Strength of Brisbane Tuff by Static and Cyclic Loading Tests  

NASA Astrophysics Data System (ADS)

This research presents the results of laboratory experiments during the investigation of tensile strength-strain characteristics of Brisbane tuff disc specimens under static and diametral cyclic loading. Three different cyclic loading methods were used; namely, sinusoidal cyclic loading, type I and II increasing cyclic loading with various amplitude values. The first method applied the stress amplitude-cycle number (s-n) curve approach to the measurement of the indirect tensile strength (ITS) and fracture toughness ( K IC) values of rocks for the first time in the literature. The type I and II methods investigated the effect of increasing cyclic loading on the ITS and K IC of rocks. For Brisbane tuff, the reduction in ITS was found to be 30 % under sinusoidal loading, whereas type I and II increasing cyclic loading caused a maximum reduction in ITS of 36 %. The maximum reduction of the static K IC of 46 % was obtained for the highest amplitude type I cyclic loading tested. For sinusoidal cyclic loading, a maximum reduction of the static K IC of 30 % was obtained. A continuous irreversible accumulation of damage was observed in dynamic cyclic tests conducted at different amplitudes and mean stress levels. Scanning electron microscope images showed that fatigue damage in Brisbane tuff is strongly influenced by the failure of the matrix because of both inter-granular fracturing and trans-granular fracturing. The main characteristic was grain breakage under cyclic loading, which probably starts at points of contact between grains and is accompanied by the production of very small fragments, probably due to frictional sliding within the weak matrix.

Erarslan, N.; Alehossein, H.; Williams, D. J.

2014-07-01

19

Morphogenesis of Plasmodium zoites is uncoupled from tensile strength  

PubMed Central

A shared feature of the motile stages (zoites) of malaria parasites is a cortical cytoskeletal structure termed subpellicular network (SPN), thought to define and maintain cell shape. Plasmodium alveolins comprise structural components of the SPN, and alveolin gene knockout causes morphological abnormalities that coincide with markedly reduced tensile strength of the affected zoites, indicating the alveolins are prime cell shape determinants. Here, we characterize a novel SPN protein of Plasmodium berghei ookinetes and sporozoites named G2 (glycine at position 2), which is structurally unrelated to alveolins. G2 knockout abolishes parasite transmission and causes zoite malformations and motility defects similar to those observed in alveolin null mutants. Unlike alveolins, however, G2 contributes little to tensile strength, arguing against a cause-effect relationship between tensile strength and cell shape. We also show that G2 null mutant sporozoites display an abnormal arrangement of their subpellicular microtubules. These results provide important new understanding of the factors that determine zoite morphogenesis, as well as the potential roles of the cortical cytoskeleton in gliding motility. PMID:23773015

Tremp, Annie Z; Carter, Victoria; Saeed, Sadia; Dessens, Johannes T

2013-01-01

20

A novel indirect tensile test method to measure the biaxial tensile strength of concretes and other quasibrittle materials  

SciTech Connect

A novel indirect tensile test method, the biaxial flexure test (BFT) method, has been developed to measure the biaxial tensile strength of concretes. The classical modulus of rupture (MOR) test has been generalized to three dimensions. In this method, we use a circular plate as the new test specimen. This plate is supported by an annular ring. We apply an external load to this specimen through a circular edge. The centers of the specimen, the loading device and the support are identical. The biaxial tensile strength measured by this new method is about 19% greater than the uniaxial tensile strength obtained from the classical modulus of rupture test as reported by other researchers. However, at the same time, we also found that the stochastic deviation of the biaxial tensile strength is about 63% greater than the uniaxial strength.

Zi, Goangseup [Department of Civil, Environmental and Architectural Engineering, Korea, University, 5 Ga 1, An-Am Dong, Sung-Buk Gu, Seoul, 136-701 (Korea, Republic of)], E-mail: g-zi@korea.ac.kr; Oh, Hongseob [Department of Civil Engineering, Jinju National University, 150 Chilam Dong, Jinju, Kyongnam, 660-758 (Korea, Republic of); Park, Sun-Kyu [Department of Civil Engineering, Sungkyunkwan University, 300 Cheoncheon Dong, Jangan Gu, Suwon, Gyeonggi, 440-746 (Korea, Republic of)

2008-06-15

21

Tensile strength of bilayered ceramics and corresponding glass veneers  

PubMed Central

PURPOSE To investigate the microtensile bond strength between two all-ceramic systems; lithium disilicate glass ceramic and zirconia core ceramics bonded with their corresponding glass veneers. MATERIALS AND METHODS Blocks of core ceramics (IPS e.max® Press and Lava™ Frame) were fabricated and veneered with their corresponding glass veneers. The bilayered blocks were cut into microbars; 8 mm in length and 1 mm2 in cross-sectional area (n = 30/group). Additionally, monolithic microbars of these two veneers (IPS e.max® Ceram and Lava™ Ceram; n = 30/group) were also prepared. The obtained microbars were tested in tension until fracture, and the fracture surfaces of the microbars were examined with fluorescent black light and scanning electron microscope (SEM) to identify the mode of failure. One-way ANOVA and the Dunnett's T3 test were performed to determine significant differences of the mean microtensile bond strength at a significance level of 0.05. RESULTS The mean microtensile bond strength of IPS e.max® Press/IPS e.max® Ceram (43.40 ± 5.51 MPa) was significantly greater than that of Lava™ Frame/Lava™ Ceram (31.71 ± 7.03 MPa)(P<.001). Fluorescent black light and SEM analysis showed that most of the tested microbars failed cohesively in the veneer layer. Furthermore, the bond strength of Lava™ Frame/Lava™ Ceram was comparable to the tensile strength of monolithic glass veneer of Lava™ Ceram, while the bond strength of bilayered IPS e.max® Press/IPS e.max® Ceram was significantly greater than tensile strength of monolithic IPS e.max® Ceram. CONCLUSION Because fracture site occurred mostly in the glass veneer and most failures were away from the interfacial zone, microtensile bond test may not be a suitable test for bonding integrity. Fracture mechanics approach such as fracture toughness of the interface may be more appropriate to represent the bonding quality between two materials. PMID:25006377

Champirat, Tharee; Jirajariyavej, Bundhit

2014-01-01

22

Tensile strength and fracture of cemented granular aggregates.  

PubMed

Cemented granular aggregates include a broad class of geomaterials such as sedimentary rocks and some biomaterials such as the wheat endosperm. We present a 3D lattice element method for the simulation of such materials, modeled as a jammed assembly of particles bound together by a matrix partially filling the interstitial space. From extensive simulation data, we analyze the mechanical properties of aggregates subjected to tensile loading as a function of matrix volume fraction and particle-matrix adhesion. We observe a linear elastic behavior followed by a brutal failure along a fracture surface. The effective stiffness before failure increases almost linearly with the matrix volume fraction. We show that the tensile strength of the aggregates increases with both the increasing tensile strength at the particle-matrix interface and decreasing stress concentration as a function of matrix volume fraction. The proportion of broken bonds in the particle phase reveals a range of values of the particle-matrix adhesion and matrix volume fraction for which the cracks bypass the particles and hence no particle damage occurs. This limit is shown to depend on the relative toughness of the particle-matrix interface with respect to the particles. PMID:23160765

Affes, R; Delenne, J-Y; Monerie, Y; Radjaï, F; Topin, V

2012-11-01

23

Practical Estimates of Tensile Strength and Hoek–Brown Strength Parameter m i of Brittle Rocks  

Microsoft Academic Search

By applying the Griffith stress criterion of brittle failure, one can find that the uniaxial compressive strength (?c) of rocks is eight times the value of the uniaxial tensile strength (?t). The Griffith strength ratio is smaller than what is normally measured for rocks, even with the consideration of crack closure.\\u000a The reason is that Griffith’s theories address only the

M. Cai

2010-01-01

24

Through-the-thickness tensile strength of textile composites  

NASA Technical Reports Server (NTRS)

A series of tests was run to characterize the through-the-thickness tensile strength for a variety of composites that included 2D and 3D braids, 2D and 3D weaves, and prepreg tapes. A new test method based on a curved beam was evaluated. The through-the-thickness deformations were characterized using moire interferometry. Failures were significantly different between the 2D and 3D materials. The 2D materials delaminated between layers due to out-of-plane tensile stresses. The strength of the 2D textile composites did not increase relative to the tapes. The 3D materials failed due to the formation of radial cracks caused by high circumferential stresses along the inner radius. A circumferential crack similar to the 2D materials produced the final failure. Final failure in the 3D materials occurred at a lower bending moment than in other materials. The early failures were caused by radial crack formation rather than low through-the-thickness strength.

Jackson, Wade C.; Ifju, Peter G.

1994-01-01

25

Dynamic compressive and tensile strengths of spark plasma sintered alumina  

SciTech Connect

Fully dense submicron grain size alumina samples were manufactured from alumina nano-powder using Spark Plasma Sintering and tested in two kinds of VISAR-instrumented planar impact tests. In the first kind, samples were loaded by 1-mm tungsten impactors, accelerated to a velocity of about 1?km/s. These tests were aimed at studying the Hugoniot elastic limit (HEL) of Spark Plasma Sintering (SPS)-processed alumina and the decay, with propagation distance, of the elastic precursor wave. In the tests of the second kind, alumina samples of 3-mm thickness were loaded by 1-mm copper impactors accelerated to 100–1000?m/s. These tests were aimed at studying the dynamic tensile (spall) strength of the alumina specimens. The tensile fracture of the un-alloyed alumina shows a monotonic decline of the spall strength with the amplitude of the loading stress pulse. Analysis of the decay of the elastic precursor wave allowed determining the rate of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced inelastic deformation and to clarify the mechanisms responsible for the deformation. The 1-% addition of Cr{sub 2}O{sub 3} decreases the HEL of the SPS-processed alumina by 5-% and its spall strength by 50% but barely affects its static properties.

Girlitsky, I.; Zaretsky, E. [Department of Mechanical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Kalabukhov, S.; Dariel, M. P.; Frage, N. [Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)

2014-06-28

26

Size effect on flexural, splitting tensile, and torsional strengths of high-strength concrete  

SciTech Connect

This paper presents the results of an investigation into the size effect on flexural, splitting tensile, and torsional strengths of high-strength concrete (HSC) with normal aggregate (crushed limestone) and lightweight aggregate (sintered fly ash). The Bazant`s size effect law gives a very good fit to the flexural strengths of both normal and lightweight aggregate HSC measured from beams of different sizes. As observed in the size effect curve, the fracture behavior of the lightweight HSC seems more brittle than that of the normal HSC. Linear elastic fracture mechanics may still be less applicable to HSC in the normal size range than nonlinear fracture mechanics. A reverse size effect is observed in the prism splitting tensile strengths of both normal and light-weight HSC and possible mechanisms of the reverse size effect are discussed. The torsional strength of the lightweight HSC appears to have a stronger size dependency than that of the normal HSC.

Zhou, F.P.; Balendran, R.V.; Jeary, A.P. [City Univ. of Hong Kong (Hong Kong). Dept. of Building and Construction] [City Univ. of Hong Kong (Hong Kong). Dept. of Building and Construction

1998-12-01

27

METHOD FOR DETERMINING ULTIMATE TENSILE STRENGTH OF CONCRETE ANCHORAGE DEVICES  

E-print Network

Prior to handling test materials, performing equipment setups, and/or conducting this method, testers are required to read “SAFETY AND HEALTH ” in Section H of this method. It is the responsibility of the user of this method to consult and use departmental safety and health practices and determine the applicability of regulatory limitations before any testing is performed. A. OVERVIEW This method describes the test procedure to be followed in determining the tensile strength of various concrete anchorage devices, including cast-in-place concrete inserts, undercut anchors, and threaded bars and rebar dowels post-bonded with cartridge epoxy, portland cement grout, magnesium phosphate concrete, or other approved bonding materials.

unknown authors

28

Effects of conventional welding and laser welding on the tensile strength, ultimate tensile strength and surface characteristics of two cobalt-chromium alloys: a comparative study.  

PubMed

The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks. PMID:23858281

Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

2012-06-01

29

Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility  

NASA Astrophysics Data System (ADS)

The high-temperature stability and mechanical properties of refractory molybdenum alloys are highly desirable for a wide range of critical applications. However, a long-standing problem for these alloys is that they suffer from low ductility and limited formability. Here we report a nanostructuring strategy that achieves Mo alloys with yield strength over 800 MPa and tensile elongation as large as ~ 40% at room temperature. The processing route involves a molecular-level liquid-liquid mixing/doping technique that leads to an optimal microstructure of submicrometre grains with nanometric oxide particles uniformly distributed in the grain interior. Our approach can be readily adapted to large-scale industrial production of ductile Mo alloys that can be extensively processed and shaped at low temperatures. The architecture engineered into such multicomponent alloys offers a general pathway for manufacturing dispersion-strengthened materials with both high strength and ductility.

Liu, G.; Zhang, G. J.; Jiang, F.; Ding, X. D.; Sun, Y. J.; Sun, J.; Ma, E.

2013-04-01

30

Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility.  

PubMed

The high-temperature stability and mechanical properties of refractory molybdenum alloys are highly desirable for a wide range of critical applications. However, a long-standing problem for these alloys is that they suffer from low ductility and limited formability. Here we report a nanostructuring strategy that achieves Mo alloys with yield strength over 800 MPa and tensile elongation as large as ~ 40% at room temperature. The processing route involves a molecular-level liquid-liquid mixing/doping technique that leads to an optimal microstructure of submicrometre grains with nanometric oxide particles uniformly distributed in the grain interior. Our approach can be readily adapted to large-scale industrial production of ductile Mo alloys that can be extensively processed and shaped at low temperatures. The architecture engineered into such multicomponent alloys offers a general pathway for manufacturing dispersion-strengthened materials with both high strength and ductility. PMID:23353630

Liu, G; Zhang, G J; Jiang, F; Ding, X D; Sun, Y J; Sun, J; Ma, E

2013-04-01

31

Tensile strength and the mining of black holes.  

PubMed

There are a number of important thought experiments that involve raising and lowering boxes full of radiation in the vicinity of black hole horizons. This Letter looks at the limitations placed on these thought experiments by the null energy condition, which imposes a fundamental bound on the tensile-strength-to-weight ratio of the materials involved, makes it impossible to build a box near the horizon that is wider than a single wavelength of the Hawking quanta, and puts a severe constraint on the operation of "space elevators" near black holes. In particular, it is shown that proposals for mining black holes by lowering boxes near the horizon, collecting some Hawking radiation, and dragging it out to infinity cannot proceed nearly as rapidly as has previously been claimed. As a consequence of this limitation, the boxes and all the moving parts are superfluous and black holes can be destroyed equally rapidly by threading the horizon with strings. PMID:24313473

Brown, Adam R

2013-11-22

32

Evaluation of tensile strength of surgical synthetic absorbable suture materials: an in vitro study  

PubMed Central

Purpose The purpose of this study was to evaluate the tensile strength of surgical synthetic absorbable sutures over a period of 14 days under simulated oral conditions. Methods Three suture materials (polyglycolic acid [PGA], polyglactin [PG] 910, and poly (glycolide-co-?-caprolactone) [PGC]) were used in 4-0 and 5-0 gauges. 210 suture samples (35 of each material and gauge) were used. All of the samples were tested preimmersion and 1 hour and 1, 3, 7, 10, and 14 days postimmersion. The tensile strength of each suture material and gauge was assessed. The point of breakage and the resorption pattern of the sutures were also assessed. Results During the first 24 hours of immersion, all 4-0 and 5-0 samples of PGA, PG 910, and PGC maintained their initial tensile strength. At baseline (preimmersion), there was a statistically significant (P<0.001) difference in the tensile strengths between the 4-0 and 5-0 gauge of PGA, PG 910, and PGC. PGA 4-0 showed the highest tensile strength until day 10. At 7 days, all the 4-0 sutures of the three materials had maintained their tensile strength with PGA 4-0 having significantly greater (P=0.003) tensile strength compared to PG. Conclusions 4-0 sutures are stronger and have greater tensile strength than 5-0 sutures. The PGA 4-0 suture showed the highest tensile strength at the end of day 10. PMID:23837127

Ranganath, V.; Nichani, Ashish Sham

2013-01-01

33

Kevlar 49 fibres: correlation between tensile strength and X-ray diffraction peak positions  

Microsoft Academic Search

The exceptional properties and the consequent extensive applications of Kevlar fibres are well known [1]. Some of the applications utilize the high tensile modulus of the fibres and other applications depend on the high tensile strength. It has been observed that exposure to thermal environments can introduce changes in the tensile characteristics of the fibre [2-4]. In particular, the thermally

M. Shubha; H. V. Parimala; Kalyani Vijayan

1991-01-01

34

Flexural and tensile strength developments of various shape carbon fiber-reinforced lightweight cementitious composites  

SciTech Connect

Effects of three types of carbon fiber shapes (C, round, and hollow shape) on tensile and flexural strength developments of randomly oriented carbon-fiber-reinforced lightweight cement composites (CFRLC) were investigated. C-shape CFRLC (C-CFRLC) showed higher tensile and flexural strength development than any other shape. C-CFRLC loading V{sub f} = 3% in particular increased about 40% in tensile and flexural strength, compared to round shape CFRLC (R-CFRLC). Hollow-shape CFRLC (H-CFRLC) showed slightly higher tensile and flexural strength than R-CFRLC. C-CFRLC presented stronger fiber-matrix interfacial adhesive force, due to mechanical anchorage into the matrix, than any other fibers. Silica fume significantly influences the increase of tensile and flexural strength for the CFRLC.

Kim, T.J.; Park, C.K. [Ssangyong Research Center, Taejon (Korea, Republic of)] [Ssangyong Research Center, Taejon (Korea, Republic of)

1998-07-01

35

Evaluation of the tensile strength of the human ureter - Preliminary results.  

PubMed

Introduction: Ureteral injuries such as avulsion are directly related to mechanical damage of the ureter. Understanding the tensile strength of this tissue may assist in prevention of iatrogenic injuries. Few published studies have looked at the mechanical properties of the animal ureter, and of those none have determined the tensile strength of the human ureter. Therefore, the purpose of this work was to determine the tensile strength of the human ureter. Materials and Methods: We harvested 11 human proximal ureters from patients who were undergoing nephrectomy for either kidney tumors or non-functioning kidney. The specimens were then cut into multiple circumferentially and longitudinally-oriented tissue strips for tensile testing. Strips were uniaxially stretched to failure in a tensile testing machine. The corresponding force and displacement were recorded. Finally, stress at failure was noted as the tensile strength of the sample. Circumferential tensile strength was also compared in the proximal and distal regions of the specimens. Results: The tensile strength of the ureter in circumferential and longitudinal orientations was found to be 457.52±33.74 Ncm-2 and 902.43±122.08 Ncm-2, respectively (p<0.001). The circumferential strength in the proximal portion of the ureter was 409.89±35.13 Ncm-2 in comparison to 502.89±55.85 Ncm-2 in the distal portion (p=0.08). Conclusions: The circumferential tensile strength of the ureter was found to be significantly lower than the longitudinal strength. Circumferential tensile strength was also lower with more proximal parts of the ureter. This information may be important for the design of "intelligent" devices and simulators in order to prevent complications. PMID:25222851

Shilo, Yaniv; Pichamuthu, Joseph E; Averch, Timothy D; Vorp, David A

2014-09-15

36

Correlation of tensile and shear strengths of metals with their friction properties  

NASA Technical Reports Server (NTRS)

The relation between the theoretical tensile and the shear strengths and the friction properties of metals in contact with diamond, boron nitride, silicon carbide, manganese-zinc ferrite, and the metals themselves in vacuum was investigated. The relationship between the actual shear strength and the friction properties of the metal was also investigated. An estimate of the theoretical uniaxial tensile strength was obtained in terms of the equilibrium surface energy, interplanar spacing of the planes perpendicular to the tensile axis, and the Young's modulus of elasticity. An estimate of the theoretical shear strength for metals was obtained from the shear modulus, the repeat distance of atoms in the direction of shear of the metal and the interplanar spacing of the shear planes. The coefficient of friction for metals was found to be related to the theoretical tensile, theoretical shear, and actual shear strengths of metals. The higher the strength of the metal, the lower the coefficient of friction.

Miyoshi, K.; Buckley, D. H.

1982-01-01

37

Tensile and flexural strength of commercially pure titanium submitted to laser and tungsten inert gas welds.  

PubMed

This study evaluated the tensile and flexural strength of tungsten inert gas (TIG) welds in specimens made of commercially pure titanium (CP Ti) compared with laser welds. Sixty cylindrical specimens (2 mm diameter x 55 mm thick) were randomly assigned to 3 groups for each test (n=10): no welding (control), TIG welding (10 V, 36 A, 8 s) and Nd:YAG laser welding (380 V, 8 ms). The specimens were radiographed and subjected to tensile and flexural strength tests at a crosshead speed of 1.0 mm/min using a load cell of 500 kgf applied on the welded interface or at the middle point of the non-welded specimens. Tensile strength data were analyzed by ANOVA and Tukey's test, and flexural strength data by the Kruskal-Wallis test (?=0.05). Non-welded specimens presented significantly higher tensile strength (control=605.84 ± 19.83) (p=0.015) and flexural strength (control=1908.75) (p=0.000) than TIG- and laser-welded ones. There were no significant differences (p>0.05) between the welding types for neither the tensile strength test (TIG=514.90 ± 37.76; laser=515.85 ± 62.07) nor the flexural strength test (TIG=1559.66; laser=1621.64). As far as tensile and flexural strengths are concerned, TIG was similar to laser and could be suitable to replace laser welding in implant-supported rehabilitations. PMID:24474361

Atoui, Juliana Abdallah; Felipucci, Daniela Nair Borges; Pagnano, Valéria Oliveira; Orsi, Iara Augusta; Nóbilo, Mauro Antônio de Arruda; Bezzon, Osvaldo Luiz

2013-01-01

38

Increased Tensile Strength of Carbon Nanotube Yarns and Sheets through Chemical Modification and Electron Beam Irradiation  

NASA Technical Reports Server (NTRS)

The inherent strength of individual carbon nanotubes offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of carbon nanotube (CNT) forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading; and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated to macro-scale CNT forms where bulk material strength is limited by inter-tube electrostatic attraction and slippage. The focus of this work was to assess post processing of CNT sheet and yarn to improve the macro-scale strength of these material forms. Both small molecule functionalization and e-beam irradiation was evaluated as a means to enhance tensile strength and Youngs modulus of the bulk CNT material. Mechanical testing results revealed a tensile strength increase in CNT sheets by 57 when functionalized, while an additional 48 increase in tensile strength was observed when functionalized sheets were irradiated; compared to unfunctionalized sheets. Similarly, small molecule functionalization increased yarn tensile strength up to 25, whereas irradiation of the functionalized yarns pushed the tensile strength to 88 beyond that of the baseline yarn.

Miller, Sandi G.; Williams, Tiffany S.; Baker, James S.; Sola, Francisco; Lebron-Colon, Marisabel; McCorkle, Linda S.; Wilmoth, Nathan G.; Gaier, James; Chen, Michelle; Meador, Michael A.

2014-01-01

39

Relationships between tensile strength, morphology and crystallinity of treated kenaf bast fibers  

NASA Astrophysics Data System (ADS)

Surface treatments on kenaf bast fibers were carried out with steam, alkali and a combination of steam-alkali. To verify and gain an understanding of their inter-relationship, tensile strength, surface morphology and crystallinity of treated and raw fibers were characterized. Tensile strength of fibers was measured with a universal tensile machine (UTM), crystallinity was estimated using X-ray diffraction (XRD) and Fourier transformation infrared (FTIR) spectroscopy, and surface morphology was examined by scanning electron microscopy (SEM). Tensile strength of the treated fibers was higher than that of the raw fiber. Tensile strength increased after steam treatment and was further improved by alkali treatment, but slightly reduced after steam treatment followed by alkalization. Increase of concentration of alkali tended to increase tensile strength. Differences in tensile strength of the treated fibers are discussed in relation to the changes in surface morphology and crystallinity. Understanding of these relationships may provide direction towards the goal of producing better performance of natural fiber composites.

Sosiati, H.; Rohim, Ar; Ma`arif, Triyana, K.; Harsojo

2013-09-01

40

Predicting the Open-Hole Tensile Strength of Composite Plates Based on Probabilistic Neural Network  

NASA Astrophysics Data System (ADS)

Tensile experiments were performed for open-hole composite plates with three different layups. With the limited number of experimental results, a probabilistic neural network (PNN) based approach is proposed to predict the tensile strength of composite plates with an open-hole. The predictive model takes the geometric parameters, the layup features and the average tensile stress of open-hole composite plates as the inputs and produces the safety status as the intermediate output with the classification function of PNN. Then the critical safety point, that is the open-hole tensile strength, where the safety status turns from survival to failure, is determined with the bi-section searching method. The predictions produce acceptable results whose errors are comparable to the coefficient of variation of experimental results. With experimental data from other studies, further assessments are also made to prove the capability of this model in predicting the open-hole tensile strength of composite plates.

Fan, Hai-Tao; Wang, Hai

2014-12-01

41

Residual Stress Distribution of 600MPa Grade High Tensile Strength Steel Pipe Using Welding fe Simulation  

NASA Astrophysics Data System (ADS)

This paper aims to determine the residual stress distribution of 600MPa grade high tensile strength steel pipe (STKT590) by girth welding. Welding FE simulation is achieved considering temperature dependent physical constants and mechanical properties, obtained by the temperature elevated tensile tests. Comparative analyses clarify the characteristics of residual stress profile near weld joint of STKT590 pipe.

Chang, Kyong-Ho; Jang, Gab-Chul

2011-06-01

42

Characterization of the Compressive and Fracture Behavior, as Well as the Residual Tensile Strength of a Polyurethane Foam.  

E-print Network

??Experiments were conducted on polyurethane foam to determine its compressive strength/modulus, relaxation behavior, fracture toughness, as well as residual tensile strength after repetitive compression at… (more)

Zhang, Yanli

2007-01-01

43

Experimental and Numerical Study on Tensile Strength of Concrete under Different Strain Rates  

PubMed Central

The dynamic characterization of concrete is fundamental to understand the material behavior in case of heavy earthquakes and dynamic events. The implementation of material constitutive law is of capital importance for the numerical simulation of the dynamic processes as those caused by earthquakes. Splitting tensile concrete specimens were tested at strain rates of 10?7?s?1 to 10?4?s?1 in an MTS material test machine. Results of tensile strength versus strain rate are presented and compared with compressive strength and existing models at similar strain rates. Dynamic increase factor versus strain rate curves for tensile strength were also evaluated and discussed. The same tensile data are compared with strength data using a thermodynamic model. Results of the tests show a significant strain rate sensitive behavior, exhibiting dynamic tensile strength increasing with strain rate. In the quasistatic strain rate regime, the existing models often underestimate the experimental results. The thermodynamic theory for the splitting tensile strength of concrete satisfactorily describes the experimental findings of strength as effect of strain rates. PMID:24883355

Min, Fanlu; Yao, Zhanhu; Jiang, Teng

2014-01-01

44

Experimental and numerical study on tensile strength of concrete under different strain rates.  

PubMed

The dynamic characterization of concrete is fundamental to understand the material behavior in case of heavy earthquakes and dynamic events. The implementation of material constitutive law is of capital importance for the numerical simulation of the dynamic processes as those caused by earthquakes. Splitting tensile concrete specimens were tested at strain rates of 10(-7) s(-1) to 10(-4) s(-1) in an MTS material test machine. Results of tensile strength versus strain rate are presented and compared with compressive strength and existing models at similar strain rates. Dynamic increase factor versus strain rate curves for tensile strength were also evaluated and discussed. The same tensile data are compared with strength data using a thermodynamic model. Results of the tests show a significant strain rate sensitive behavior, exhibiting dynamic tensile strength increasing with strain rate. In the quasistatic strain rate regime, the existing models often underestimate the experimental results. The thermodynamic theory for the splitting tensile strength of concrete satisfactorily describes the experimental findings of strength as effect of strain rates. PMID:24883355

Min, Fanlu; Yao, Zhanhu; Jiang, Teng

2014-01-01

45

Strength Prediction of Composite ? Joints Under Tensile Load  

Microsoft Academic Search

Application of an all-composite ? joint as a structural connector for integrated aircraft structures can potentially enable both weight and assembly cost benefits while retaining good load carrying capability. This article is concerned with the behavior of an all-composite ? joint under a static, tensile load. The damage onset, propagation, and ultimate collapse of the composite ? joint are simulated

Libin Zhao; Tianliang Qin; R. Ajit Shenoi; Jianyu Zhang; Xianzhu Liang; Hai Huang

2010-01-01

46

SIZE EFFECT ON CONCRETE SPLITTING TENSILE STRENGTH AND MODULUS OF ELASTICITY  

Microsoft Academic Search

The work presented in this paper is part of an experimental investigation program regarding the tensile behavior of intermediate\\u000a strength concrete. In total, ninety-one oncrete cylinder specimens were casted and eighty-two of them were tested in uniaxial\\u000a compression and indirect tension. The concrete specimens were systematically varied in size. The splitting tensile strength\\u000a and modulus of elasticity of concrete exhibited

A. Kanos; P. C. Perdikaris

47

The tensile strength of the cometary surface: Laboratory experiments and implications on formation scenarios  

NASA Astrophysics Data System (ADS)

One big question in cometary physics is how the gas pressure can overcome the tensile strength of the surface material to effectively release dust from the cometary surface. Thus, we have performed laboratory experiments in order to measure the tensile strength of the cometary surface by using silica aggregates as an analog sample material. During this conference we would like to present our experimental results and to discuss how different formation scenarios can have influenced the activity of comets.

Gundlach, B.; Blum, J.

2014-07-01

48

Factors limiting the tensile strength of PBO-based carbon fibers  

Microsoft Academic Search

Poly p-phenylene benzobisoxazole (PBO) converts directly to carbon fiber without stabilization. However, the applicability of PBO-based carbon fibers is limited by their low tensile strength. This paper represents the first study of the high-temperature conversion of PBO to carbon fiber and examines some factors leading to this low tensile strength. A mixed-mode Weibull analysis implies that the flaws present in

J. A. Newell; D. D. Edie

1996-01-01

49

Dynamic tensile strength of terrestrial rocks and application to impact cratering  

Microsoft Academic Search

Dynamic tensile strengths and fracture strengths of 3 terrestrial rocks, San Marcos gabbro, Coconino sandstone, and Sesia eclogite were determined by carrying out flat-plate (PMMA and aluminum) impact experiments on disc-shaped samples in the 5 to 60 m\\/sec range. Tensile stresses of 125 to 300 MPa and 245 to 580 MPa were induced for gabbro and eclogite, respectively (with duration

Huirong-Anita Ai; Thomas J. Ahrens

2004-01-01

50

Evaluation of press-and-sinter parameters for tantalum pentoxide by the diametral compression test  

SciTech Connect

Submicron Ta{sub 2}O{sub 5} powder was consolidated by cold pressing using pressures between 24 MPa and 240 MPa followed by sintering at temperatures in the range 1300 degrees C to 1500 degrees C. The resulting disks were fractured in diametral compression tests (DCT) to determine the tensile strength. The strength, mode of fracture, and fracture surface were subsequently used to identify potential processing routes for high density, fine grained Ta{sub 2}O{sub 5} for the use as sputtering targets. Besides the conventional single or triple cleft fracture, two other modes of failure were observed in the diametrical compression test: delamination due to stratification flaws introduced by high pressure pre-pressing before sintering, and fragmentation caused by slow microcrack growth in the presence of phase transformation stresses arising in samples sintered above the transformation temperature of 1360 degrees C.

Livne, Z.; Fields, R.J.; Agulyansky, A.

1997-05-15

51

Impact of a microwave curing process on tensile strength of selected carbon fiber composites  

NASA Astrophysics Data System (ADS)

The traditional process for curing carbon fiber (CF) composites has been the autoclave system. A review of recent research indicates curing CF composites in a microwave oven has the potential for reducing processing time. The problem statement of the experimental study was that the impact of a microwave curing process on tensile strength of selected CF composite specimens was unknown. The research study describes the statistical procedure and analysis of data to answer the specific question for the experimental trials: What is the effect on the tensile strength of cured CF composite samples due to the relationship of the autoclave and microwave curing process cycle time and temperature? ASTM International standard test method designation D 5083 - 02 was used for testing tensile strength of reinforced carbon fiber plastics using straight-sided specimens. Analytical data was obtained for evaluating the effects of process cycle time and temperature on tensile strength of the CF composite specimens. The result was that curing time of the autoclave system and microwave process had significant effects on the maximum tensile stress of CF composite specimen. Although 83% faster than the autoclave system, the microwave curing process had CF specimens with lower maximum tensile strength compared with the autoclave system results. The primary reason for the difference was that the microwave process did not use vacuum or pressure. Considering the cost/benefit ratio, the research study indicated that the microwave oven would be a viable and efficient process for curing CF composites.

Balzer, Brian B.

52

Impact tensile properties and strength development mechanism of glass for reinforcement fiber  

NASA Astrophysics Data System (ADS)

In this study, impact tensile properties of E-glass were investigated by fiber bundle testing under a high strain rate. The impact tests were performed employing two types of experiments. One is the tension-type split Hopkinson pressure bar system, and the other is the universal high-speed tensile-testing machine. As the results, it was found that not only the tensile strength but also the fracture strain of E-glass fiber improved with the strain rate. The absorbed strain energy of this material significantly increased. It was also found that the degree of the strain rate dependency of E-glass fibers on the tensile strength was varied according to fiber diameter. As for the strain rate dependency of the glass fiber under tensile loading condition, change of the small crack-propagation behaviour was considered to clarify the development of the fiber strength. The tensile fiber strength was estimated by employing the numerical simulation based on the slow crack-growth model (SCG). Through the parametric study against the coefficient of the crack propagation rate, the numerical estimation value was obtained for the various testing conditions. It was concluded that the slow crack-growth behaviour in the glass fiber was an essential for the increase in the strength of this material.

Kim, T.; Oshima, K.; Kawada, H.

2013-07-01

53

The effects of sterilization on the tensile strength of orthodontic wires.  

PubMed

The purpose of this study was to evaluate the effect of sterilization on the tensile strength of 0.016" beta-titanium, nickel titanium and stainless steel wires. Three common methods of sterilization--autoclaving, dry heat and ethylene oxide--were evaluated in three test trials involving zero, one and five sterilization cycles. For each of the test trials, five pieces each of 0.016" TMA, 0.016" Sentalloy and 0.016" Tru-chrome stainless steel wires were sterilized using a standard autoclave. Five other pieces of each of the same wires were sterilized in a dryclave, while an additional five pieces of each of the three wire types were sterilized using ethylene oxide. The ultimate tensile strengths of the wires were then determined using an Instron Universal Testing Machine. The data were compared for statistical differences using analysis of variance. The results showed that dry heat sterilization significantly increased the tensile strength of TMA wires after one cycle, but not after five cycles. Autoclaving and ethylene oxide sterilization did not significantly alter the tensile strength of TMA wires. Dry heat and autoclave sterilization also significantly increased the tensile strength of Sentalloy wires, but the mean strength after five sterilization cycles was not significantly different than after one cycle. Ethylene oxide sterilization of Sentalloy wires did not significantly alter the tensile strengths of that wire. There were no significant differences in the tensile strengths of the stainless steel wires following zero, one or five cycles for any of the sterilization methods. PMID:8498702

Staggers, J A; Margeson, D

1993-01-01

54

Effect of abrasive wear on the tensile strength of steel wire rope  

Microsoft Academic Search

Known amounts of external abrasive wear were introduced into a new 6-strand steel wire rope and the effects of this wear on the tensile strength of the rope examined against the rope discard criteria for wear stated in ISO 4309: 1990 and other selected international standards. The variations of strength with degree of wear in the test rope were compared

A. R. T. de Silva; Long Woon Fong

2002-01-01

55

THE INFLUENCE OF FORMATION ON TENSILE STRENGTH OF PAPER MADE FROM MECHANICAL PULPS  

Microsoft Academic Search

The importance of paper formation is widely appreciated amongst papermakers in relation to sheet appearance, but much remains unclear about its role in paper strength, particularly for paper made from mechanical pulps. This paper addressed the question of how formation affects the tensile strength of such pulps. Two softwoods mechanical pulps from species of differing fibre length and coarseness were

Mousa M. Nazhad; Emma J. Harris; Christopher T. J. Dodson; Richard J. Kerekes

56

Ideal tensile and shear strength of a gum metal approximant: Ab initio density functional calculations  

NASA Astrophysics Data System (ADS)

The ideal tensile and shear strengths of binary ?-phase Ti3Nb alloys have been investigated using ab initio density functional calculations. The binary alloy is considered as an approximant to the multifunctional Ti-Nb-Ta-Zr-O alloy known as “gum metal,” which displays high strength, low elastic modulus, high yield strain, and very good ductility. This alloy has been reported to deform elastically until the stress approaches the ideal tensile strength. Our calculations have been performed for an optimized chemical decoration of the body-centered cubic (bcc) structure of the ? phase. Previous work has demonstrated that this model yields elastic constants in very good agreement with those measured for gum metal specimens and leads to a reasonably accurate description of the martensitic transformations between the bcc ?, the orthorhombic ?'' and the hexagonal ? phases [Lazar , Phys. Rev. BPLRBAQ0556-280510.1103/PhysRevB.84.054202 84, 054202 (2011)]. The simulations of the response to tensile and shear loading have been performed for large supercells which account also for the different orientations of the -Nb-Nb- chains characteristic for the ?-phase structure relative to the direction of the applied load. The energy-strain and stress-strain curves are found to be very different from those reported for all bcc metals. Under uniaxial <100> loading we find an ideal tensile strength of 2.4 GPa, the upper limit to the tensile stress arising from a shear instability of the structure. Under uniaxial <110> load we calculate an ideal tensile strength of 2.2 or 2.8 GPa, depending on the orientation of the -Nb-Nb- chains relative to the loading direction. For a realistic multidomain structure the ideal strength is expected to correspond to the average of these values. An ideal strength of 2.6 GPa under <110> loading is roughly the same as under <100> load, despite a considerable anisotropy of the tensile moduli. For {211}<111> shear we calculate an ideal shear strength of 1.6 GPa, again as an average over different possible shearing directions relative to the Nb-Nb bonds. For the {110}<110> shear system we find a lower strength of 0.9 GPa. The structures reached at the stress maximum under <100> uniaxial tension and {211}<111> shear are identical, and since the maximal shear stress is much lower than the tensile stress, the alloy will fail by shear even under strictly uniaxial tension. The values of the ideal tensile and shear strengths are significantly low, even in comparison with those calculated for bcc V and Nb with very small shear moduli and approach the values reported for gum metal alloys.

Nagasako, Naoyuki; Asahi, Ryoji; Hafner, Jürgen

2012-01-01

57

Computer simulation of fatigue under diametrical compression  

SciTech Connect

We study the fatigue fracture of disordered materials by means of computer simulations of a discrete element model. We extend a two-dimensional fracture model to capture the microscopic mechanisms relevant for fatigue and we simulate the diametric compression of a disc shape specimen under a constant external force. The model allows us to follow the development of the fracture process on the macrolevel and microlevel varying the relative influence of the mechanisms of damage accumulation over the load history and healing of microcracks. As a specific example we consider recent experimental results on the fatigue fracture of asphalt. Our numerical simulations show that for intermediate applied loads the lifetime of the specimen presents a power law behavior. Under the effect of healing, more prominent for small loads compared to the tensile strength of the material, the lifetime of the sample increases and a fatigue limit emerges below which no macroscopic failure occurs. The numerical results are in a good qualitative agreement with the experimental findings.

Carmona, H. A. [Centro de Ciencias e Tecnologia, Universidade Estadual do Ceara, 60740-903 Fortaleza, Ceara (Brazil); IfB, HIF, E18, ETH, Hoenggerberg, 8093 Zuerich (Switzerland); Kun, F. [Department of Theoretical Physics, University of Debrecen, P.O. Box 5, H-4010 Debrecen (Hungary); Andrade, J. S. Jr. [Departamento de Fisica, Universidade Federal do Ceara, 60451-970 Fortaleza, Ceara (Brazil); Herrmann, H. J. [IfB, HIF, E18, ETH, Hoenggerberg, 8093 Zuerich (Switzerland)

2007-04-15

58

Deformation and failure of polymer bonded explosives under diametric compression test  

Microsoft Academic Search

The tensile deformation and failure of polymer bonded explosives (PBXs), a particulate composite, is studied in this paper. Two HMX-based PBXs with different binder were selected for study. A diametric compression test, in which a disc-shaped specimen is loaded diametrically, was chosen to generate tensile failure in the materials. The quasi-static tensile properties and the tensile creep properties were studied

Pengwan Chen; Huimin Xie; Fenglei Huang; Tao Huang; Yansheng Ding

2006-01-01

59

Characterization of Optical Fiber Strength Under Applied Tensile Stress and Bending Stress  

SciTech Connect

Various types of tensile testing and bend radius tests were conducted on silica core/silica cladding optical fiber of different diameters with different protective buffer coatings, fabricated by different fiber manufacturers. The tensile tests were conducted to determine not only the average fiber strengths at failure, but also the distribution in fracture strengths, as well as the influence of buffer coating on fracture strength. The times-to-failure of fiber subjected to constant applied bending stresses of various magnitudes were measured to provide a database from which failure times of 20 years or more, and the corresponding minimum bend radius, could be extrapolated in a statistically meaningful way. The overall study was done to provide an understanding of optical fiber strength in tensile loading and in applied bending stress as related to applications of optical fiber in various potential coizfgurations for weapons and enhanced surveillance campaigns.

P.E. Klingsporn

2011-08-01

60

Contribution of hydroxyapatite to the tensile strength of the isobutyl-2-cyanoacrylate-bone bond.  

PubMed

The bonding strength between bone and alpha-2-cyanoacrylate polymers, with or without the addition of powdered hydroxyapatite, was determined. The tensile strength of a bone-cyanoacrylate bond was measured for each polymer: 4.31 +/- 0.88 MPa (methyl-), 5.74 +/- 0.62 MPa (ethyl-), and 8.33 +/- 0.41 MPa (isobutyl-). The tensile strength of the isobutyl-2-cyanoacrylate bond increased to 12.03 +/- 0.72 MPa with the addition of 10% (w/v) hydroxyapatite before decreasing to 7.89 +/- 0.58 MPa on addition of 15% (w/v) hydroxyapatite. An optimal concentration of hydroxyapatite significantly increased the tensile strength of a bone-cyanocacrylate bond in vitro in a manner comparable to reinforced bone replacement materials. PMID:2720039

Papatheofanis, F J

1989-04-01

61

Predictions of tensile strength of binary tablets using linear and power law mixing rules.  

PubMed

There has recently been an increased interest in predicting the tensile strength of binary tablets from the properties of the individual components. In this paper, measurements are reported for tensile strength of tablets compressed from single-component and binary powder mixtures of lactose with microcrystalline cellulose (MCC), and lactose with two types of silicified microcrystalline cellulose (SMCC and SMCC-HD), which are different in compressibility. Measurements show the tensile strength increases with the relative density for single powders, and both with the relative density and the mass fraction of cellulose in the mixtures. It was also observed, for binary mixtures compacted at 50 and 150 MPa, that there was a slight variation in porosity with the mass fraction of celluloses. The predictions of the tensile strength of binary tablets from the characteristics of the single-components was analysed with the extended Ryshkewitch-Duckworth model by assuming both linear and power law mixing rules for the determination of the parameters "tensile strength at zero porosity and bonding capacity constant". As consequence, four models were analysed and compared with measurements using criteria based on the standard deviation from the mean values. Results showed a good prediction using a linear mixing rule combined with the power law. However, as the predictions of these models depend on the powders and the porosity range for the characterization of single-components, none of them can be systematically considered as being the best to predict binary behaviour from data for individual powders. PMID:17097245

Michrafy, A; Michrafy, M; Kadiri, M S; Dodds, J A

2007-03-21

62

Tensile bond strength of metal bracket bonding to glazed ceramic surfaces with different surface conditionings  

PubMed Central

Objective The objective of this study was to compare the tensile bond strength of metal brackets bonding to glazed ceramic surfaces using three various surface treatments. Materials and Methods Forty two glazed ceramic disks were assigned to three groups. In the first and second groups the specimens were etched with 9.5% hydrofluoric acid (HFA). Subsequently in first group, ceramic primer and adhesive were applied, but in second group a bonding agent alone was used. In third group, specimens were treated with 35% phosphoric acid followed by ceramic primer and adhesive application. Brackets were bonded with light cure composites. The specimens were stored in distilled water in the room temperature for 24 hours and thermocycled 500 times between 5°C and 55°C. The universal testing machine was used to test the tensile bond strength and the adhesive remenant index scores between three groups was evaluated. The data were subjected to one-way ANOVA, Tukey and Kruskal-Wallis tests respectively. Results The tensile bond strength was 3.69±0.52 MPa forfirst group, 2.69±0.91 MPa for second group and 3.60±0.41 MPa for third group. Group II specimens showed tensile strength values significantly different from other groups (P<0.01). Conclusion In spite of limitations in laboratory studies it may be concluded that in application of Scotch bond multipurpose plus adhesive, phosphoric acid can be used instead of HFA for bonding brackets to the glazed ceramic restorations with enough tensile bond strength. PMID:22509459

Akhoundi, MS. Ahmad; Kamel, M. Rahmati; Hashemi, SH. Mahmood; Imani, M.

2011-01-01

63

Environmental effects on the tensile strength of chemically vapor deposited silicon carbide fibers  

NASA Technical Reports Server (NTRS)

The room temperature and elevated temperature tensile strengths of commercially available chemically vapor-deposited (CVD) silicon carbide fibers were measured after 15 min heat treatment to 1600 C in various environments. These environments included oxygen, air, argon and nitrogen at one atmosphere and vacuum at 10/9 atmosphere. Two types of fibers were examined which differed in the SiC content of their carbon-rich coatings. Threshold temperature for fiber strength degradation was observed to be dependent on the as-received fiber-flaw structure, on the environment and on the coating. Fractographic analyses and flexural strength measurements indicate that tensile strength losses were caused by surface degradation. Oxidation of the surface coating is suggested as one possible degradation mechanism. The SiC fibers containing the higher percentage of SiC near the surface of the carbon-rich coating show better strength retention and higher elevated temperature strength.

Bhatt, R. T.; Kraitchman, M. D.

1985-01-01

64

A modified Johnson–Cook model for tensile behaviors of typical high-strength alloy steel  

Microsoft Academic Search

The uniaxial tensile tests were conducted with the initial strain rates range of (0.0001–0.01)s?1 and the temperature range of (1123–1373)K for typical high-strength alloy steel. Based on the experimental results, the modified Johnson–Cook model, which considers the coupled effects of strain, strain rate and deformation temperature, was proposed to describe the tensile behaviors of the studied alloy steel. Results show

Y. C. Lin; Xiao-Min Chen; Ge Liu

2010-01-01

65

An investigation into geometry and microstructural effects upon the ultimate tensile strengths of butt welds  

NASA Technical Reports Server (NTRS)

A mathematical theory was evaluated empirically. This theory predicts weld ultimate tensile strength based on material properties and fusion line angles, mismatch, peaking, and weld widths. Welds were made on 1/4 and 1/2 in. aluminum 2219-T87, their geometries were measured, they were tensile tested, and these results were compared to theoretical predictions. Statistical analysis of results was performed to evaluate correlation of theory to results for many different categories of weld geometries.

Gordon, Stephen S.

1992-01-01

66

Establishing a Mathematical Model to Predict the Tensile Strength of Friction Stir Welded Pure Copper Joints  

NASA Astrophysics Data System (ADS)

This investigation was undertaken to predict the tensile strength of friction stir welded pure copper. Response surface methodology based on a central composite rotatable design with four welding parameters, five levels, and 31 runs was used to conduct the experiments and to develop the mathematical regression model by means of Design-Expert software. Four welding parameters considered were tool profile design, rotational speed, welding speed, and axial force. Analysis of variance was applied to validate the predicted model. Confirmation experiments including microstructural characterization and conducted tensile tests showed that developed models are reasonably accurate. The results showed that the joints welded using the square and triangular tools had higher tensile strength compared to the joints welded using other tools. The increase in tool rotational speed, welding speed, and axial force resulted in increasing the tensile strength of the joints up to a maximum value. Also, the developed model showed that the optimum parameters to get a maximum of tensile strength were rotational speed, welding speed, and axial force of 942 rpm, 84 mm/min, and 1.62 kN, respectively.

Heidarzadeh, A.; Saeid, T.; Khodaverdizadeh, H.; Mahmoudi, A.; Nazari, E.

2013-02-01

67

Development of a silicon carbide fibre with high tensile strength  

Microsoft Academic Search

MUCH work has been done on preparing heat-resistant silicon carbide materials in fibrous form, since plastics or metals can be reinforced with them to obtain very heat-resistant material of great mechanical strength. SiC whiskers1 are, however, impractical because of their shortness (several mm), their non-uniform diameter and high cost of production. SiC-on-W (ref. 2) and SiC-on-C (ref. 3) filaments have

S. Yajima; J. Hayashi; M. Omori; K. Okamura

1976-01-01

68

Effective Size Analysis of the Diametral Compression (Brazil) Test Specimen  

SciTech Connect

This study considers the finite element analysis (FEA) simulation and Weibull effective size analysis for the diametral compression (DC) or Brazil specimen loaded with three different push-rod geometries. Those geometries are a flat push-rod, a push-rod whose radius of curvature is larger than that for the DC specimen, and a push-rod whose radius of curvature matches that of the DC specimen. Such established effective size analysis recognizes that the tensile strength of structural ceramics is typically one to two orders of magnitude less than its compressive strength. Therefore, because fracture is much more apt to result from a tensile stress than a compressive one, this traditional analysis only considers the first principal tensile stress field in the mechanically loaded ceramic component for the effective size analysis. The effective areas and effective volumes were computed as function of Weibull modulus using the CARES/Life code. Particular attention was devoted to the effect of mesh sensitivity and localized stress concentration. The effect of specimen width on the stress state was also investigated. The effects of push-rod geometry, the use of steel versus WC push-rods, and considering a frictionless versus no-slip interface between push-rod and specimen on the maximum stresses, where those stresses are located, and the effective area and effective volume results are described. Of the three push-rod geometries, it is concluded that the push-rod (made from WC rather than steel) whose radius of curvature matches that of the DC specimen is the most apt to cause fracture initiation within the specimen's bulk rather than at the loading interface. Therefore, its geometry is the most likely to produce a valid diametral compression strength test. However, the DC specimen remains inefficient in terms of its area and volume efficiencies; namely, the tensile strength of only a few percent of the specimen's entire area or volume is sampled. Given the high probability that a valid (or invalid) test can be proven by ceramic fractographic practices suggests that this test method and specimen is questionable for use with relatively strong structural ceramics.

Jadaan, Osama M. [University of Wisconsin, Platteville; Wereszczak, Andrew A [ORNL

2009-04-01

69

Scale effects on the transverse tensile strength of graphite epoxy composites  

NASA Technical Reports Server (NTRS)

The influence of material volume on the transverse tensile strength of AS4/3501-6 graphite epoxy composites was investigated. Tensile tests of 90 degree laminates with 3 different widths and 5 different thicknesses were conducted. A finite element analysis was performed to determine the influence of the grip on the stress distribution in the coupons and explain the tendency for the distribution of failure locations to be skewed toward the grip. Specimens were instrumented with strain gages and extensometers to insure good alignment and to measure failure strains. Data indicated that matrix dominated strength properties varied with the volume of material that was stressed, with the strength decreasing as volume increased. Transverse strength data were used in a volumetric scaling law based on Weibull statistics to predict the strength of 90 degree laminates loaded in three point bending. Comparisons were also made between transverse strength measurements and out-of-plane interlaminar tensile strength measurements from curved beam bending tests. The significance of observed scale effects on the use of tests for material screening, quality assurance, and design allowables is discussed.

Obrien, T. Kevin; Salpekar, Satish A.

1992-01-01

70

Tensile strength of five types of retention for resin-bonded prostheses.  

PubMed

The tensile bond strengths of five retention techniques for bonded cast restorations were tested. The retentive methods were the electrolytic etch, Rochette's perforations, retention beads, the recessed surface, and soldered orthodontic mesh. The electrolytic etch and recessed surface methods gave the highest values of bond strength, followed by retention beads. Rochette's perforations and the soldered orthodontic mesh failed to surpass the bond strength of the control group (no additional retention) after 1 hour and provided the lowest bond strength after 24 hours. PMID:1687153

Bastos, M T; Mondelli, J; Ishikiriama, A; Navarro, M F

1991-12-01

71

Impact of a microwave curing process on tensile strength of selected carbon fiber composites  

Microsoft Academic Search

The traditional process for curing carbon fiber (CF) composites has been the autoclave system. A review of recent research indicates curing CF composites in a microwave oven has the potential for reducing processing time. The problem statement of the experimental study was that the impact of a microwave curing process on tensile strength of selected CF composite specimens was unknown.

Brian B. Balzer

2007-01-01

72

Strength of Tensile Loaded Graphite\\/Epoxy Laminates Containing Cracks, Open and Filled Holes  

Microsoft Academic Search

Most methods currently used for predicting tensile strength of composite laminates containing holes and cracks adopt a characteristic distance approach such as the Point Stress Criterion (PSC) or the Average Stress Criterion (ASC). These and similar ap proaches are attractive to designers since they are simple to apply. The limitation of such approaches, however, is that the characteristic distance is

Ingvar Eriksson; Carl-Gustaf Aronsson

1990-01-01

73

Effect of TiO2 Nanoparticles on Tensile Strength of Dental Acrylic Resins  

PubMed Central

Background and aims. Adding further fillers to dental resins may enhance their physical characteristics. The aim of this study was to evaluate the tensile strength of heat-curing acrylic resin reinforced by TiO2nanoparticles added into the resin matrix. Materials and methods. Commercially available TiO2 nanoparticles were obtained and characterized using X-ray diffrac-tion (XRD) and scanning electron microscopy (SEM) to determine their crystalline structure, particle size and morphology. TiO2-acrylic resin nanocomposite was prepared by mixing 0.5, 1 and 2 (wt%) of surface modified TiO2 nanoparticles in an amalgamator providing three groups of samples. Before curing, the obtained paste was packed into steel molds. After cur-ing, the specimens were removed from the molds. The tensile strength test samples were prepared according to ISO 1567. Results. Two crystalline phases were found in TiO2 nanoparticles including: (i) anatase as the major one, and (ii) rutile. The average particle size calculated according to the Scherrer equation was 20.4 nm, showing a normal size distribution. According to SEM images, the nanocomposite with 1wt% TiO2 nanoparticles had a better distribution compared to other groups. In addition, the group by 1wt% TiO2 exhibited higher tensile strength with a significant difference compared to other groups. ANOVA showed significant differences between the contents of TiO2 particles in acrylic resin (F = 22.19; P < 0.001). Conclusion. A considerable increase in tensile strength was observed with titania NPs reinforcement agents in 1wt% by weight. Further increase of TiO2 nanoparticles decreased the tensile strength. PMID:25587380

Shirkavand, Saeed; Moslehifard, Elnaz

2014-01-01

74

Influence of surface defects on the tensile strength of carbon fibers  

NASA Astrophysics Data System (ADS)

The mechanical properties of carbon fibers, especially their tensile properties, are affected by internal and surface defects. In order to asses in what extent the generation of surface defects can result in a loss of the mechanical properties, non-surface treated carbon fibers were oxidized with three different surface treatment processes: electro-chemical oxidation, oxidation in nitric acid, and oxidation in oxygen plasma. Different surface topographies and surface chemistries were obtained, as well as different types and densities of surface defects. The density of surface defects was measured with both a physical approach (Raman spectroscopy) and a chemical approach (Active Surface Area). The tensile properties were evaluated by determining the Weibull modulus and the scale parameter of each reference, after measuring the tensile strength for four different gauge lengths. A relationship between the tensile properties and the nature and density of surface defects was noticed, as large defects largely control the value of the tensile strength. When optimized, some oxidation surface treatment processes can generate surface functional groups as well as an increase of the mechanical properties of the fibers, because of the removal of the contamination layer of pyrolytic carbon generated during the carbonization of the polyacrylonitrile precursor. Oxidation in oxygen plasma revealed to be a promising technology for alternative surface treatment processes, as high levels of functionalization were achieved and a slight improvement of the mechanical properties was obtained too.

Vautard, F.; Dentzer, J.; Nardin, M.; Schultz, J.; Defoort, B.

2014-12-01

75

Comparison of the Effect of two Denture Cleansers on Tensile bond Strength of a Denture Liner  

PubMed Central

Statement of Problem: One of the most clinical challenging issues in prosthodontics is debonding of soft liners from the denture base. Purpose: The aim of this study was to evaluate and compare tensile bond strength between soft liner and heat-cured acrylic resin when immersed in two different types of denture cleanser and distilled water, at different period of times. Materials and Method: In this experimental in vivo study, 238 heat-cured acrylic blocks were made. A soft liner was embedded between the acrylic blocks. Samples were divided into four groups: 17 samples were in the control group and were not soaked in any solution .The remaining samples were divided into 3 groups (Distilled water, Calgon and Fittydent). Each group was then subdivided into two subcategories, regarding the immersion time variable; 15 and 45 minutes. All samples were placed in tension force and tensile bond strength was recorded with the testing machine. One- way ANOVA and Tucky HSD post-hoc test were adopted to analyze the yielded data (?> 0.05). Results: Specimens which were immersed in two denture cleansers (Fittydent and Calgon) and in distilled water showed significant difference (p= 0.001) in bonding strength when compared to the control group. The subjects immersed in denture cleanser solutions and distilled water did not reveal any significant difference (p= 0.90). For all groups; most of the bonding failures (72%) were cohesive type. Conclusion: The effect of the denture cleansers and distilled water on the bond strength was not statistically different; however, the difference was significant between the immersed groups with the non-immersed group. Moreover, type of the denture cleanser did not show any effect on the tensile strength. The tensile strength increases with time of immersion. PMID:24724134

Farzin, M; Bahrani, F; Adelpour, E

2013-01-01

76

Quantifying the tensile strength of microbial mats grown over noncohesive sediments.  

PubMed

Biofilms in marine and fluvial environments can comprise strong bacterial and diatom mats covering large areas of the bed and act to bind sediments. In this case the bed material becomes highly resistant to shear stresses applied by the overlying fluid motion and detachment, when it does occur, is manifest in patches of biofilm of the order cm(2) being entrained into the flow. This article is the first to report tensile test data specific to the centimeter scale using moist biofilm/sediment composite materials; the strain (?)-stress (?) relationships permit quantification of the elasticity (Young's modulus, E) and cohesive strength of each specimen. Specifically, we compare the mechanical strength of cyanobacterial biofilm-only samples to that of biofilm cultured over sediment samples (glass beads or natural sands of d ~ 1 mm) for up to 8 weeks. The range of tensile strength (1,288-3,283 Pa) for composite materials was up to three times higher than previous tensile tests conducted at smaller scale on mixed culture biofilm [Ohashi et al. (1999) Water Sci Technol 39:261-268], yet of similar range to cohesive strength values recorded on return activated sludge flocs [RAS; Poppele and Hozalski (2003) J Microbiol Methods 55:607-615]. Composite materials were 3-6 times weaker than biofilm-only samples, indicating that adhesion to sediment grains is weaker than cohesion within the biofilm. Furthermore, in order to relate the tensile test results to the more common in-situ failure of bio-mats due to shear flow, controlled erosion experiments were conducted in a hydraulic flume with live fluid flow. Here, the fluid shear stress causing erosion was 3 orders of magnitude lower than tensile stress; this highlights both the problem of interpreting material properties measured ex-situ and the need for a better mechanistic model of bio-mat detachment. PMID:22170239

Vignaga, E; Haynes, H; Sloan, W T

2012-05-01

77

Various conditioning methods for root canals influencing the tensile strength of titanium posts.  

PubMed

Conditioning the root canal is frequently advised to achieve high post-retention when resin composite luting cements are used. However, manufacturers' instructions for this purpose differ widely from one another. The aim of this study was to compare the tensile bond strengths of passive, tapered, titanium root posts that were luted with four different resin composite cements (Compolute Aplicap, Flexi-Flow cem, Panavia 21 EX, Twinlook) in the root canals at three conditions, namely (i) no conditioning, (ii) etching with 37% phosphoric acid, and (iii) etching + bonding agent application. Panavia 21 EX was further tested after using the primer for the post-surface according to the manufacturer's recommendations. The posts luted with zinc phosphate cement (Tenet) acted as the control group. Following endodontic preparation of 140 intact anterior teeth with hand instruments, the post-spaces were prepared using the opening drills of the corresponding size of the posts. The samples were first stored in water at 37 degrees C for 24 h and then thermocycled (5000 cycles, 5-55 degrees C, 30 s). The tensile strength values were measured with the universal testing machine at a crosshead speed of 0.5 mm min(-1). The data were analysed statistically using anova and corrected with Scheffé test due to the significance levels (P < 0.05). The tensile bond strengths of the titanium posts after luting with various cements and thermocycling were affected by the conditioning systems used for the root canals. Tensile bond strengths were the highest with Flexi-Flow (475 +/- 78 N) followed in descending order by Panavia 21 EX (442 +/- 97 N), Twinlook (430 +/- 78 N) and Compolute Aplicap (352 +/- 76 N) after conditioning the root canal. The use of primer on the post improved the tensile bond strength compared with the non-conditioned group for the Panavia 21 EX group (375 +/- 77 N) (P < 0.001). Tensile bond strengths obtained after luting the posts with zinc phosphate cement (414 +/- 102 N) were not significantly different (P < 0.05) than those of resin composite cements. Although the importance of conditioning the root canal was evident for Panavia 21 EX, it was not the case for the other luting cements tested. PMID:15369471

Schmage, P; Sohn, J; Nergiz, I; Ozcan, M

2004-09-01

78

DETERMINATION OF THE TENSILE STRENGTH OF MAGNESIUM PHOSPHATE CEMENTS CONTAINING DIFFERENT METALS USING THE BRAZILIAN TEST  

E-print Network

Surface treatment processes like electrolytic or electroless plating provide coatings to metallic parts improving some of their properties like corrosion resistance, wear resistance and appearance [1]. Such processes use baths containing high concentration of heavy metals like chromium, nickel, zinc, etc. When exhausted, the bath becomes a hazardous waste which has to be properly managed. An option for the valorization of the waste is manufacturing of magnesium phosphate cement parts that may be cast in order to obtain road walls or as a base for roads [2]. The stabilized waste may also be disposed at a landfill. In order to know the performance of the material, the strength of the specimens is usually determined. Pastes containing different heavy metals (cadmium, copper, chromium, nickel, lead and zinc) were prepared with a metal concentration of 25000 ppm, a water-to-solid ratio(W/S) of 0.3, 0.4, 0.5 (0.4, 0.5 and 0.6 for Cr) and a magnesium oxide content of 50 % in weight of the total solid. They were allowed to solidify and after 10 months of curing. After that, disks were cut and they were subjected to an indirect tensile strength test (Brazilian test or splitting test) [3]. In general, tensile strength decreased with increasing water content as expected. The specimens prepared with a water-to-solid ratio (W/S) of 0.3 showed relatively high tensile strength values.

Irene Buj Corral; Josep Torras Grané; Miquel Rovira Boixaderas; Joan De Pablo

79

Developing an Empirical Relationship to Predict Tensile Strength of Friction Stir Welded AA2219 Aluminum Alloy  

NASA Astrophysics Data System (ADS)

AA2219 aluminum alloy (Al-Cu-Mn alloy) has gathered wide acceptance in the fabrication of lightweight structures requiring a high strength-to-weight ratio and good corrosion resistance. Friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a nonconsumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force, etc., and tool pin profile play a major role in deciding the joint strength. An attempt has been made to develop an empirical relationship between FSW variables to predict tensile strength of the friction stir welded AA2219 aluminum alloy. To obtain the desired strength, it is essential to have a complete control over the relevant process parameters to maximize the tensile strength on which the quality of a weldment is based. Therefore, it is very important to select and control the welding process parameter for obtaining maximum strength. To achieve this various prediction methods such as response surface method (RSM), analysis of variance (ANOVA), Student’s t-test, coefficient of determination, etc., can be applied to define the desired output variables through developing mathematical models to specify the relationship between the output parameters and input variables. Four factors, five levels central composite design have been used to minimize number of experimental conditions. The developed mathematical relationship can be effectively used to predict the tensile strength of FSW joints of AA2219 aluminum alloy at 95% confidence level.

Elangovan, K.; Balasubramanian, V.; Babu, S.

2008-12-01

80

FE Analysis of Buckling Behavior Caused by Welding in Thin Plates of High Tensile Strength Steel  

NASA Astrophysics Data System (ADS)

The target of this study was to investigate buckling behavior during the entire welding process which consists of the heating and the cooling processes. For thin plate structures made of high tensile strength steel, not only residual buckling during or after cooling down but also transient buckling during heating may occur. The thermal elastic plastic FE analysis to investigate welding-induced buckling during the entire welding process is presented. Because of the high yield stress of high tensile strength steel, larger longitudinal compressive thermal stress is produced near the welding line compared with that in the case of carbon steel. Therefore, the plate may buckle due to thermal expansion, before the material nears yielding. During cooling down, the longitudinal compressive thermal stress close to the welding line disappears, and longitudinal tensile residual stress is produced due to contraction. Meanwhile, longitudinal compressive residual stress occurs far from the welding line to balance the tensile stress close to the welding line. This distribution of longitudinal residual stress would change the deformed dish shape of transient buckling into a saddle buckling type when the stress exceeds the critical buckling condition.

Wang, Jiangchao; Rashed, Sherif; Murakawa, Hidekazu

2014-09-01

81

FE Analysis of Buckling Behavior Caused by Welding in Thin Plates of High Tensile Strength Steel  

NASA Astrophysics Data System (ADS)

The target of this study was to investigate buckling behavior during the entire welding process which consists of the heating and the cooling processes. For thin plate structures made of high tensile strength steel, not only residual buckling during or after cooling down but also transient buckling during heating may occur. The thermal elastic plastic FE analysis to investigate welding-induced buckling during the entire welding process is presented. Because of the high yield stress of high tensile strength steel, larger longitudinal compressive thermal stress is produced near the welding line compared with that in the case of carbon steel. Therefore, the plate may buckle due to thermal expansion, before the material nears yielding. During cooling down, the longitudinal compressive thermal stress close to the welding line disappears, and longitudinal tensile residual stress is produced due to contraction. Meanwhile, longitudinal compressive residual stress occurs far from the welding line to balance the tensile stress close to the welding line. This distribution of longitudinal residual stress would change the deformed dish shape of transient buckling into a saddle buckling type when the stress exceeds the critical buckling condition.

Wang, Jiangchao; Rashed, Sherif; Murakawa, Hidekazu

2014-12-01

82

Laser solder repair technique for nerve anastomosis: temperatures required for optimal tensile strength  

NASA Astrophysics Data System (ADS)

Laser-assisted repair of nerves is often unsatisfactory and has a high failure rate. Two disadvantages of laser assisted procedures are low initial strength of the resulting anastomosis and thermal damage of tissue by laser heating. Temporary or permanent stay sutures are used and fluid solders have been proposed to increase the strength of the repair. These techniques, however, have their own disadvantages including foreign body reaction and difficulty of application. To address these problems solid protein solder strips have been developed for use in conjunction with a diode laser for nerve anastomosis. The protein helps to supplement the bond, especially in the acute healing phase up to five days post- operative. Indocyanine green dye is added to the protein solder to absorb a laser wavelength (approximately 800 nm) that is poorly absorbed by water and other bodily tissues. This reduces the collateral thermal damage typically associated with other laser techniques. An investigation of the feasibility of the laser-solder repair technique in terms of required laser irradiance, tensile strength of the repair, and solder and tissue temperature is reported here. The tensile strength of repaired nerves rose steadily with laser irradiance reaching a maximum of 105 plus or minus 10 N.cm-2 at 12.7 W.cm-2. When higher laser irradiances were used the tensile strength of the resulting bonds dropped. Histopathological analysis of the laser- soldered nerves, conducted immediately after surgery, showed the solder to have adhered well to the perineurial membrane, with minimal damage to the inner axons of the nerve. The maximum temperature reached at the solder surface and at the solder/nerve interface, measured using a non-contact fiber optic radiometer and thermocouple respectively, also rose steadily with laser irradiance. At 12.7 W.cm-2, the temperatures reached at the surface and at the interface were 85 plus or minus 4 and 68 plus or minus 4 degrees Celsius respectively. This study demonstrates the feasibility of the laser-solder repair technique for nerve anastomosis resulting in improved tensile strength. The welding temperature required to achieve optimal tensile strength has been identified.

McNally-Heintzelman, Karen M.; Dawes, Judith M.; Lauto, Antonio; Parker, Anthony E.; Owen, Earl R.; Piper, James A.

1998-01-01

83

A stereological analysis of aggregate grading and size effect on concrete tensile strength  

Microsoft Academic Search

One of the most important topics in solid mechanics is the study of the so-called size effects, whose importance has been widely recognised during the last decades. Size effects are particularly strong in quasi-brittle\\u000a (i.e., concrete-like) materials. In this paper we focus our attention on the tensile strength decrease associated with the\\u000a size of concrete structures. An original explanation of

Alberto Carpinteri; Pietro Cornetti; Simone Puzzi

2004-01-01

84

Tensile Bond Strength and SEM Evaluation of Caries-affected Dentin Using Dentin Adhesives  

Microsoft Academic Search

Tensile bond strength measurements are commonly used for the evaluation of dentin adhesive systems. Most tests are performed using extracted non-carious human or bovine dentin. However, the adhesion of resins to caries-affected dentin is still unclear. The objectives of this study were to test the hypothesis that bonding to caries-affected dentin is inferior to bonding to normal dentin, and that

M. Nakajima; H. Sano; M. F. Burrow; J. Tagami; M. Yoshiyama; S. Ebisu; B. Ciucchi; C. M. Russell; D. H. Pashley

1995-01-01

85

Tensile strength of simulated and welded butt joints in W-Cu composite sheet  

NASA Technical Reports Server (NTRS)

The weldability of W-Cu composite sheet was investigated using simulated and welded joints. The welded joints were produced in a vacuum hot press. Tensile test results showed that simulated joints can provide strength and failure mode data which can be used in joint design for actual weldments. Although all of the welded joints had flaws, a number of these joints were as strong as the W-Cu composite base material.

Moore, Thomas J.; Watson, Gordon K.

1994-01-01

86

Effect of laser welding on the titanium ceramic tensile bond strength  

PubMed Central

Titanium reacts strongly with elements, mainly oxygen at high temperature. The high temperature of titanium laser welding modifies the surface, and may interfere on the metal-ceramic tensile bond strength. Objective The influence of laser welding on the titanium-ceramic bonding has not yet been established. The purpose of this in vitro study was to analyze the influence of laser welding applied to commercially pure titanium (CpTi) substructure on the bond strength of commercial ceramic. The influence of airborne particle abrasion (Al2O3) conditions was also studied. Material and Methods Forty CpTi cylindrical rods (3 mm x 60 mm) were cast and divided into 2 groups: with laser welding (L) and without laser welding (WL). Each group was divided in 4 subgroups, according to the size of the particles used in airborne particle abrasion: A - Al2O3 (250 µm); B - Al2O3 (180 µm); C - Al2O3 (110 µm); D - Al2O3 (50 µm). Ceramic rings were fused around the CpTi rods. Specimens were invested and their tensile strength was measured at fracture with a universal testing machine at a crosshead speed of 2.0 mm/min and 200 kgf load cell. Statistical analysis was carried out with analysis of variance and compared using the independent t test (p?0.05). Results Significant differences were found among all subgroups (p<0.05). The highest and the lowest bond strength means were recorded in subgroups WLC (52.62 MPa) and LD (24.02 MPa), respectively. Conclusion Airborne particle abrasion yielded significantly lower bond strength as the Al2O3 particle size decreased. Mechanical retention decreased in the laser-welded specimens, i.e. the metal-ceramic tensile bond strength was lower. PMID:21956585

GALO, Rodrigo; RIBEIRO, Ricardo Faria; RODRIGUES, Renata Cristina Silveira; PAGNANO, Valéria de Oliveira; de MATTOS, Maria da Glória Chiarello

2011-01-01

87

The Effect of Teucrium Polium Hney on the Wound Healing and Tensile Strength in Rat  

PubMed Central

Objective(s) Wound healing represents a dynamic physiological process influenced by many factors. The aim of the present study was to evaluate the effects of Teucrium polium honey on the wound healing and tensile strength in rat. Materials and Methods Thirty-six Sprague-Dawley rats were randomly divided into four equal (n= 9) treatment and control groups. Two full-thickness wounds were made over the dorsal thoracic region according to the incision and excision models. Animals were treated with topical Teucrium polium honey twice a day post surgery until complete healing was achieved. Histopathology and tensiometry were then studied. Results The wound healing process occurred faster in the incision model than excision ones (P< 0.05). Teucrium polium honey promoted wound contraction, closure time and tensile strength (P< 0.05). Histopathological study also showed relative epithelial proliferation, improved angiogenesis granulation, and fibrous connective tissue in Teucrium polium honey treated animals. Conclusion The present study demonstrates that Teucrium polium honey can accelerate wound healing as well as tensile strength in rat skin wounds. PMID:23493667

Alizadeh, Ali Mohammad; Sohanaki, Hamid; Khaniki, Mahmod; Mohaghgheghi, Mohammad Ali; Ghmami, Giti; Mosavi, Maryamsadat

2011-01-01

88

Parameters of tensile strength, elongation, and tenacity of 70mm IIaO spectroscopic film  

NASA Technical Reports Server (NTRS)

The 70mm IIaO spectroscopic film was tested to determine its tensile strength, elongation, and breaking strength, using an Instron (strength and compression) 4201 Test Instrument. These data provide information leading to the upper and lower limits of the above parameters for 70mm IIaO spectroscopic film. This film will be developed by a commercial developing machine after the Ultraviolet Telescope Space Shuttle Mission returns to the Earth in the early 1990's; thus, it is necessary to understand these force parameters. Several test strips of approximately 200mm in length were used. The results indicate that when a stress load of 100 kg was applied, the film elongated approximately 1.06mm and the break strength was 19.45 kilograms.

Hammond, Ernest C., Jr.; Peters, Kevin A.

1989-01-01

89

Optimization of laser beam welding process parameters to attain maximum tensile strength in AZ31B magnesium alloy  

NASA Astrophysics Data System (ADS)

An empirical relationship is developed to predict tensile strength of the laser beam welded AZ31B magnesium alloy by incorporating process parameters such as laser power, welding speed and focal position. The experiments were conducted based on a three factor, three level, central composite face centered design matrix with full replications technique. The empirical relationship can be used to predict the tensile strength of laser beam welded AZ31B magnesium alloy joints at 95% confidence level. The results indicate that the welding speed has the greatest influence on tensile strength, followed by laser power and focal position.

Padmanaban, G.; Balasubramanian, V.

2010-11-01

90

Improved tensile strength of glycerol-plasticized gluten bioplastic containing hydrophobic liquids.  

PubMed

The aim of the present work has been to study the influence of hydrophobic liquids on the morphology and the properties of thermo-molded plastics based on glycerol-plasticized wheat gluten (WG). While the total amount of castor oil and glycerol was remained constant at 30 wt%, castor oil with various proportions with respect to glycerol was incorporated with WG by mixing at room temperature and the resultant mixtures were thermo-molded at 120 degrees C to prepare sheet samples. Moisture absorption, morphology, dynamic mechanical properties, and tensile properties (Young's modulus, tensile strength and elongation at break) of the plastics were evaluated. Experimental results showed that the physical properties of WG plastic were closely related to glycerol to castor oil ratio. Increasing in castor oil content reduces the moisture absorption markedly, which is accompanied with a significant improvement in tensile strength and Young's modulus. These observations were further confirmed in 24 wt% glycerol-plasticized WG plastics containing 6 wt% silicone oil or polydimethylsiloxane (PDMS) liquid rubber. PMID:18337091

Song, Yihu; Zheng, Qiang

2008-11-01

91

Identification of anisotropic tensile strength of cortical bone using Brazilian test.  

PubMed

For a proper analysis of cortical bone behaviour, it is essential to take into account both the elastic stiffness and the failure criteria. While ultrasound methods allow complete identification of the elastic orthotropic coefficients, tests used to characterise the various failure mechanisms and to identify the brittle tensile strength in all directions are currently inadequate. In the present work we propose the Brazilian test as a complement to conventional tensile tests. In fact, this experimental technique, rarely employed in the biomechanics field, has the potential to provide an accurate description of the anisotropic strength of cortical bone. Additionally, it allows us to assess the scale influence on failure behaviour which may be attributed to an intrinsic length in correlation with the cortical bone microstructure. In order to correctly set up the Brazilian test, several aspects such as the machining, the geometrical parameters of the specimen and the loading conditions were determined. The finite element method was used to evaluate the maximal tensile stress at the centre of a 2D anisotropic elastic specimen as a simple function of the loading. To validate the protocol, the Brazilian test was carried out on 29 cortical bovine cylindrical specimens with diameters ranging from 10mm to 4mm. PMID:25051151

Allena, Rachele; Cluzel, Christophe

2014-10-01

92

Tensile bond strength of four denture resins to porcelain teeth with different surface treatment  

PubMed Central

PURPOSE This study evaluated the bond strength between porcelain denture teeth (Bioblend 43D) and four different polymerized denture resins (Lucitone 199, Palapress, Acron MC, Triad) with and without a bonding agent and after four different types of surface treatment (polished, HF etched, sandblasted, air-abraded). MATERIALS AND METHODS Central incisor porcelain denture teeth were divided into 32 groups of 5 each. Tensile bond strength (MPa) was determined using a testing machine at crosshead speed of 0.5 mm/min. Mean and standard deviation are listed. Data were analyzed by two-way ANOVA. Means were compared by Tukey-Kramer intervals at 0.05 significance level. RESULTS All surface treatment increased bond strength compared to polished surface and the highest bond strength was found with Palapress resin with etched porcelain surface (8.1 MPa). Bonding agent improved the bond strength of all denture resins to porcelain teeth. Superior bonding was found with Palapress and air-abraded porcelain (39 MPa). CONCLUSION Resins with different curing methods affect the bond strength of porcelain teeth to denture bases. Superior bonding was found with auto-polymerized resin (Palapress). Application of ceramic primer and bonding agent to porcelain teeth with and without surface treatment will improve the bond strength of all denture resins to porcelain teeth. PMID:24353880

Powers, John

2013-01-01

93

Bulk metallic glass composite with good tensile ductility, high strength and large elastic strain limit.  

PubMed

Bulk metallic glasses exhibit high strength and large elastic strain limit but have no tensile ductility. However, bulk metallic glass composites reinforced by in-situ dendrites possess significantly improved toughness but at the expense of high strength and large elastic strain limit. Here, we report a bulk metallic glass composite with strong strain-hardening capability and large elastic strain limit. It was found that, by plastic predeformation, the bulk metallic glass composite can exhibit both a large elastic strain limit and high strength under tension. These unique elastic mechanical properties are attributed to the reversible B2?B19' phase transformation and the plastic-predeformation-induced complicated stress state in the metallic glass matrix and the second phase. These findings are significant for the design and application of bulk metallic glass composites with excellent mechanical properties. PMID:24931632

Wu, Fu-Fa; Chan, K C; Jiang, Song-Shan; Chen, Shun-Hua; Wang, Gang

2014-01-01

94

Tensile strength of carbyne chains in varied chemical environments and structural lengths  

NASA Astrophysics Data System (ADS)

Carbyne and carbyne-based low-dimensional structures are promising for several applications including ultra-compact circuits and purification devices. Designing any applied carbyne-based structure requires a fundamental understanding of the mechanical strength of carbyne chains with different lengths at different temperatures and operating chemical environment. Here we use molecular dynamics simulations to investigate the strength of carbyne chains with different lengths at different temperatures. A theoretical framework based on statistical mechanics and molecular dynamics results is presented, proving a fast and insightful method for predicting the rupture force and its physical mechanism. The effect of water molecules’ interaction is also studied on the mechanical properties and it is shown that both the tensile strength and rupture strain are improved by the water interaction. The results of this work can be used for designing and analyzing the robustness and reliability of various carbyne-based materials and applied devices for varies working conditions.

Mirzaeifar, Reza; Qin, Zhao; Buehler, Markus J.

2014-09-01

95

Tensile strength of carbyne chains in varied chemical environments and structural lengths.  

PubMed

Carbyne and carbyne-based low-dimensional structures are promising for several applications including ultra-compact circuits and purification devices. Designing any applied carbyne-based structure requires a fundamental understanding of the mechanical strength of carbyne chains with different lengths at different temperatures and operating chemical environment. Here we use molecular dynamics simulations to investigate the strength of carbyne chains with different lengths at different temperatures. A theoretical framework based on statistical mechanics and molecular dynamics results is presented, proving a fast and insightful method for predicting the rupture force and its physical mechanism. The effect of water molecules' interaction is also studied on the mechanical properties and it is shown that both the tensile strength and rupture strain are improved by the water interaction. The results of this work can be used for designing and analyzing the robustness and reliability of various carbyne-based materials and applied devices for varies working conditions. PMID:25148690

Mirzaeifar, Reza; Qin, Zhao; Buehler, Markus J

2014-09-19

96

Effect of the concrete compressive strength and tensile reinforcement ratio on the flexural behavior of fibrous concrete beams  

Microsoft Academic Search

Twenty seven reinforced concrete beams were tested to study the effects of steel fibers, longitudinal tensile reinforcement ratio and concrete compressive strength on the flexural behavior of reinforced concrete beams.Concrete compressive strengths of 49, 79 and 102 MPa and tensile reinforcement ratios of 1.18, 1.77 and 2.37% were used. The fiber contents were 0.0, 0.5 and 1.0% by volume. The

Samir A Ashour; Faisal F Wafa; Mohmd I Kamal

2000-01-01

97

Low-velocity impact characteristics and residual tensile strength of carbon fiber composite lattice core sandwich structures  

Microsoft Academic Search

In this paper, low-velocity impact characteristics and residual tensile strength of carbon fiber composite lattice core sandwich structures are investigated by experimentally and numerically. Low-velocity impact tests and residual tensile strength tests are performed using an instrumented drop-weight machine (Instron 9250HV) and static test machine (Instron 5569), respectively. The FE (finite element) software, ABAQUS\\/Explicit is employed to simulate low-velocity impact

Bing Wang; Lin-Zhi Wu; Li Ma; Ji-Cai Feng

2011-01-01

98

Scale-up model describing the impact of lubrication on tablet tensile strength.  

PubMed

Lubrication of 2:1 and 1:1 blends of microcrystalline cellulose and spray-dried lactose or dibasic calcium phosphate (DCP) with 0.33% or 1% magnesium stearate, as model free-flowing pharmaceutical formulations, was performed in rotary drum blenders. Blender process parameters examined in this study included type (Bin, V, and Turbula), volume (0.75-Quart to 200-L), fraction of headspace in the blender after the blend is loaded (30-70%), speed (6-202 rpm), and time (up to 225 min). Based on analysis of the experimental data, the following model for the impact of the lubrication process on tablet tensile strength at 0.85 solid fraction, TS(SF=0.85), was obtained, TS(SF=0.85)=TS(SF=0.85,0) [?exp(-?×V(1/3)×F(headspace)×r)+(1-?)], where V is blender volume, F(headspace) is the headspace fraction, r is the number of revolutions (i.e. speed × time), TS(SF=0.85,0) is the initial tensile strength of the blend, ? is the sensitivity of the blend to lubrication, and ? is the lubrication rate constant of the formulation. This model can be used to maintain tensile strength during scale-up, by ensuring that (V(1/3)F(headspace)r)(1)=(V(1/3)F(headspace)r)(2). The model also suggests that formulations with DCP are less sensitive to lubrication and more slowly lubricated than formulations with spray-dried lactose (i.e. smaller ? and ? values). PMID:20667504

Kushner, Joseph; Moore, Francis

2010-10-31

99

Morphine enhances tissue content of collagen and increases wound tensile strength  

Microsoft Academic Search

Purpose  Morphine is a commonly prescribed analgesic for wound pain. Previous studies have shown that morphine enhances accumulation\\u000a of collagen in cultured fibroblasts. Because fibroblasts are important for the remodeling of connective tissue in incisional\\u000a wound, this study investigates the biological effects of morphine on cutaneous collagen content and wound tensile strength.\\u000a \\u000a \\u000a \\u000a \\u000a Methods  A full-thickness incisional wound (2 cm in length) was created

Pei-Jung Chang; Meng-Yi Chen; Yu-Sheng Huang; Chou-Hwei Lee; Chien-Chi Huang; Chen-Fuh Lam; Yu-Chuan Tsai

2010-01-01

100

An experimental investigation on the tensile moduli and strengths of graphite/epoxy laminates  

NASA Technical Reports Server (NTRS)

The results of a series of tensile tests on some graphite/epoxy laminates, at rates varying from 0.002 to 2 in./min are examined. The loads were applied at various angles to the fiber directions in each case. The rate-dependent behavior of the stress-strain response is assessed. Evidence is presented to indicate that failure first occurs on inner plies, and that, in some cases, moduli increase with increasing stress (or strain) level. Lamination theory is used to predict the moduli, and comparisons with experiment are given. This theory is also used in conjunction with three failure theories to predict ultimate strengths (with varying degrees of success). Further, two approaches to ply unloading after first-ply failure are used and discussed. One is a standard method found in the literature while the other is a proposed 'strength-of-materials' type of technique which is computationally much simpler.

Yeow, Y. T.; Brinson, H. F.

1977-01-01

101

Enzymatic Surface Erosion of High Tensile Strength Polycarbonates Based on Natural Phenols  

PubMed Central

Surface erosion has been recognized as a valuable design tool for resorbable biomaterials within the context of drug delivery devices, surface coatings, and when precise control of strength retention is critical. Here we report on high tensile strength, aromatic–aliphatic polycarbonates based on natural phenols, tyrosol (Ty) and homovanillyl alcohol (Hva), that exhibit enzymatic surface erosion by lipase. The Young’s moduli of the polymers for dry and fully hydrated samples are 1.0 to 1.2 GPa and 0.8 to 1.2 GPa, respectively. Typical characteristics of enzymatic surface erosion were confirmed for poly(tyrosol carbonate) films with concomitant mass-loss and thickness-loss at linear rates of 0.14 ± 0.01 mg cm–2 d–1 and 3.0 ± 0.8 ?m d–1, respectively. The molecular weight and the mechanical properties of the residual films remained constant. Changing the ratio of Ty and Hva provided control over the glass transition temperature (Tg) and the enzymatic surface erosion: increasing the Hva content in the polymers resulted in higher Tg and lower enzymatic erosion rate. Polymers with more than 50 mol % Hva were stable at 37 °C in enzyme solution. Analysis on thin films using quartz crystal microbalance with dissipation (QCM-D) demonstrated that the onset temperature of the enzymatic erosion was approximately 20 °C lower than the wet Tg for all tested polymers. This new finding demonstrates that relatively high tensile strength polycarbonates can undergo enzymatic surface erosion. Moreover, it also sheds light on the connection between Tg and enzymatic degradation and explains why few of the high strength polymers follow an enzyme-meditated degradation pathway. PMID:24432806

2015-01-01

102

The impact of polymerization method on tensile bond strength between denture base and acrylic teeth.  

PubMed

Failure of the bond between acrylic teeth and the denture base resin interface is one of the major concern in prosthodontics. The new generation of denture bases that utilize alternate polymerization methods are being introduced in the market. The aim of the study is to evaluate the influence of polymerization methods on bonding quality between the denture base and artificial teeth. Sixty test specimens were prepared (20 in each group) and were polymerized using heat, microwave and visible light curing. The tensile strength was recorded for each of the samples, and the results were analyzed statistically. The light-activated Eclipse™ System showed the highest tensile strength, followed by heat curing. The microwave-cured samples exhibited the least bonding to the acrylic teeth. Within the limitations of this study, it can be concluded that the new generation of light-cured denture bases showed significantly better bonding to acrylic teeth and can be used as an alternative to the conventional heat-polymerized denture base. PMID:25307813

Hashem, Mohamed; Binmgren, Mohammed A; Alsaleem, Samah O; Vellappally, Sajith; Assery, Mansour K; Sukumaran, Anil

2014-01-01

103

Effect of Preparation Methods on Crystallization Behavior and Tensile Strength of Poly(vinylidene fluoride) Membranes  

PubMed Central

Poly(vinylidene fluoride) (PVDF) membranes were prepared by non solvent induced phase separation (NIPS), melt spinning and the solution-cast method. The effect of preparation methods with different membrane formation mechanisms on crystallization behavior and tensile strength of PVDF membranes was investigated. Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and X-ray diffraction (XRD) were employed to examine the crystal form of the surface layers and the overall membranes, respectively. Spherulite morphologies and thermal behavior of the membranes were studied by polarized light optical microscopy (PLO) and differential scanning calorimetry (DSC) separately. It was found that the crystallization behavior of PVDF membranes was closely related to the preparation methods. For membranes prepared by the NIPS method, the skin layers had a mixture of ? and ? phases, the overall membranes were predominantly ? phase, and the total crystallinity was 60.0% with no spherulite. For melt spinning membranes, the surface layers also showed a mixture of ? and ? phases, the overall membranes were predominantly ? phase. The total crystallinity was 48.7% with perfect spherulites. Whereas the crystallization behavior of solution-cast membranes was related to the evaporation temperature and the additive, when the evaporation temperature was 140 °C with a soluble additive in the dope solution, obvious spherulites appeared. The crystalline morphology of PVDF exerted a great influence on the tensile strength of the membranes, which was much higher with perfect spherulites. PMID:24957064

Liu, Jie; Lu, Xiaolong; Wu, Chunrui

2013-01-01

104

Theoretical investigations into the influence of the position of a breaking line on the tensile failure of flat, round, bevel-edged tablets using finite element methodology (FEM) and its practical relevance for industrial tablet strength testing.  

PubMed

Flat, round tablets may have a breaking ("score") line. Pharmacopoeial tablet breaking load tests are diametral in their design, and industrially used breaking load testers often have automatic tablet feeding systems, which position the tablets between the loading platens of the machine with the breaking lines in random orientation to the applied load. The aim of this work was to ascertain the influence of the position of the breaking line in a diametral compression test using finite element methodology (FEM) and to compare the theoretical results with practical findings using commercially produced bevel-edged, scored tablets. Breaking line test positions at an angle of 0°, 22.5°, 45°, 67.5° and 90° relative to the loading plane were studied. FEM results obtained for fully elastic and elasto-plastic tablets were fairly similar, but they highlighted large differences in stress distributions depending on the position of the breaking line. The stress values at failure were predicted to be similar for tablets tested at an angle of 45° or above, whereas at lower test angles the predicted breaking loads were up to three times larger. The stress distributions suggested that not all breaking line angles would result in clean tensile failure. Practical results, however, did not confirm the differences in the predicted breaking loads, but they confirmed differences in the way tablets broke. The results suggest that it is not advisable to convert breaking loads obtained on scored tablets into tablet tensile strength values, and comparisons between different tablets or batches should carefully consider the orientation of the breaking line with respect to the loading plane, as the failure mechanisms appear to vary. PMID:25455775

Podczeck, Fridrun; Newton, J Michael; Fromme, Paul

2014-12-30

105

Relationship between apposition pressure during welding and tensile strength of the acute weld  

NASA Astrophysics Data System (ADS)

Dye-assisted photothermal welding is a technique used to close wounds by thermally cross-linking collagen across apposed tissue edges. For a successful weld, not only do laser parameters have to be optimized, but also apposition of the incision has to be consistent and controlled. The objective of this study was to quantify the relationship between the applied apposition pressure (i.e., the compressive force holding the wound closed during the welding procedure divided by the area of the skin-to-skin interface) and the tensile strength of the wound following the welding procedure. By using a clamping device made of two complementary pieces, each 3 cm wide with a row of 10 equally spaced blunt wire mesh tips, the apposition pressure along a 2-cm-long incision in each albino guinea pig was quantified using a 127-micrometers -thick load cell and varied from 0-1.8 kgf/cm2. A continuous wave, Nd:YAG laser emitting 10.0 W of 1.06-micrometers radiation from a 600-micrometers -diameter fiber irradiating a 5-mm-diameter spot size was scanned across the incision in order to deliver 300 J of total energy. As the apposition pressure of the incisions was increased, the resulting tensile strength of welded skin increased in a sigmoidal manner. For this welding technique, an apposition pressure of at least 1.2 kgf/cm2 is necessary to obtain maximum weld strength of the skin (2.56+/- 0.36 kg/cm2).

Wu, Paul J.; Walsh, Joseph T., Jr.

2001-05-01

106

Where to fix in rejuvenation surgeries?: tensile strength of the periosteum.  

PubMed

The aim of this study is to elucidate the tensile strength of the periosteum relating to facial rejuvenation surgeries.Twelve hemifaces of 6 formalin-fixed Korean adult cadavers were used. Two horizontal incision lines were made 3 cm above the supraorbital rim and 1 cm below the infraorbital rim. Another 2 vertical incisions were on the medial orbital rim and 2 cm lateral to the lateral orbital rim. Elevated flaps were turned over, and the undersurfaces of the periosteum were exposed. A silk string was passed below the periosteum with a 3-mm bite and wound. A 3-cm loop was made, and this was pulled away using the tensiometer. The breaking strength was measured.The breaking strengths of the periosteum were different according to the location (P = 0.000, analysis of variation). The strongest point was 2 cm above the supraorbital rim at the medial one third of the orbit (14.05 [2.50] N) followed by 1 cm above the frontozygomatic suture (13.35 [4.70] N). The weakest point was the infraorbital rim at the lateral one third of the orbit (6.93 [3.76] N) followed by the lateral orbital rim at the level of the lateral canthus (7.60 [3.49] N). Breaking strengths of the periosteum of the medial side (11.44 [3.83] N) were significantly greater (P = 0.021, t-test) than the lateral side (9.32 [3.76] N). In the supraorbital area, the breaking strengths of the periosteum of the upper points (12.91 [3.00] N) were significantly greater (P = 0.000, t-test) than the lower points (9.36 [2.76] N).The results of this study can be of use when choosing a fixation point in rejuvenation surgeries. PMID:25569400

Hwang, Kun; Kim, Han Joon; Han, Seung Ho; Kim, Kyung Yong; Park, Jong Ju; Kim, Seong Kee

2015-01-01

107

Analysis of Ninety Degree Flexure Tests for Characterization of Composite Transverse Tensile Strength  

NASA Technical Reports Server (NTRS)

Finite element (FE) analysis was performed on 3-point and 4-point bending test configurations of ninety degree oriented glass-epoxy and graphite-epoxy composite beams to identify deviations from beam theory predictions. Both linear and geometric non-linear analyses were performed using the ABAQUS finite element code. The 3-point and 4-point bending specimens were first modeled with two-dimensional elements. Three-dimensional finite element models were then performed for selected 4-point bending configurations to study the stress distribution across the width of the specimens and compare the results to the stresses computed from two-dimensional plane strain and plane stress analyses and the stresses from beam theory. Stresses for all configurations were analyzed at load levels corresponding to the measured transverse tensile strength of the material.

OBrien, T. Kevin; Krueger, Ronald

2001-01-01

108

Correlation analysis of the variation of weld seam and tensile strength in laser welding of galvanized steel  

NASA Astrophysics Data System (ADS)

Many advantages of laser welding technology such as high speed and non-contact welding make the use of the technology more attractive in the automotive industry. Many studies have been conducted to search the optimal welding condition experimentally that ensure the joining quality of laser welding that relies both on welding system configuration and welding parameter specification. Both non-destructive and destructive techniques, for example, ultrasonic inspection and tensile test are widely used in practice for estimating the joining quality. Non-destructive techniques are attractive as a rapid quality testing method despite relatively low accuracy. In this paper, we examine the relationship between the variation of weld seam and tensile shear strength in the laser welding of galvanized steel in a lap joint configuration in order to investigate the potential of the variation of weld seam as a joining quality estimator. From the experimental analysis, we identify a trend in between maximum tensile shear strength and the variation of weld seam that clearly supports the fact that laser welded parts having larger variation in the weld seam usually have lower tensile strength. The discovered relationship leads us to conclude that the variation of weld seam can be used as an indirect non-destructive testing method for estimating the tensile strength of the welded parts.

Sinha, Amit Kumar; Kim, Duck Young; Ceglarek, Darek

2013-10-01

109

The tensile strength of black bear ( Ursus americanus) cortical bone is not compromised with aging despite annual periods of hibernation  

Microsoft Academic Search

Black bears (Ursus americanus) may not develop disuse osteoporosis during long periods of disuse (i.e. hibernation) because they may be able to maintain bone formation. Previously, we found that cortical bone bending strength was not compromised with age in black bears tibias, despite annual periods of disuse. Here we showed that cortical bone tensile strength (166–198MPa) also does not decrease

Kristin B. Harvey; Thomas D. Drummer; Seth W. Donahue

2005-01-01

110

Water Saturation Effects on the Brazilian Tensile Strength of Gypsum and Assessment of Cracking Processes Using High-Speed Video  

NASA Astrophysics Data System (ADS)

This study investigates the water weakening effect on the tensile strength, as well as the fracturing behavior, of an artificially molded Hydrocal B-11 gypsum rock. Brazilian disc tests, with the aid of a high-speed video system to monitor and record the cracking processes, are conducted on dry and wet specimens to determine their tensile strengths. The dry specimens are oven-dried, while the wet specimens are prepared by soaking in water for 1, 3, and 10 weeks to achieve different levels of water content. The test results show that the tensile strength drops to nearly half of its dry value after being soaked in water for only 1 week. The tensile strength reduces only slightly further after the specimens have been immersed in water for 3 and 10 weeks. An analysis of the recorded high-speed footage shows that the primary crack initiates at the center as observed from the surface for the majority of the tested specimens. Most importantly, the cracking processes of dry and wet specimens are distinctly different with regard to the speed of crack propagation and the number of cracks developed.

Wong, Louis Ngai Yuen; Jong, Ming Chuan

2014-07-01

111

Influence of magnetic arc oscillation and current pulsing on microstructure and high temperature tensile strength of alloy 718 TIG weldments  

Microsoft Academic Search

The aim of the present work is to study the effect of magnetic arc oscillation and current pulsing on the microstructure and high temperature tensile strength of alloy 718 tungsten inert gas weldments. The magnetic arc oscillation technique resulted in refined Laves phase with lesser interconnectivity. The full benefits of current pulsing in breaking the dendrites could not be realized

K. Sivaprasad; S. Ganesh Sundara Raman; P. Mastanaiah; G. Madhusudhan Reddy

2006-01-01

112

Multivariate analysis approach for correlations between material properties and tablet tensile strength of microcrystalline cellulose.  

PubMed

In this study we applied statistical multivariate analysis techniques to establish correlations between material properties and tablet tensile strength (TS) of microcrystalline cellulose (MCC) with different types and manufacturers. There were sixteen MCC samples included in this analysis described by 22 material parameters. For data analysis, principal component analysis (PCA) was used to model and evaluate the various relationships between the material properties and TS. Furthermore, partial least squares regression (PLS) analysis was performed to quantify the relationships between the material properties and TS and to predict the most influential MCC parameters contributing to the compactibility. The results showed that the moisture content, hygroscopicity and crystallinity did not exhibit significant impact on TS. The turgidity, maximum water uptake, degree of polymerization and molecular weight presented a strong positive influence on TS, while the density property, bulk and tap density, exhibited an obvious negative impact. The present work demonstrated that multivariate data analysis techniques (PCA and PLS) are useful for interpreting complex relations between 22 material properties and the tabletting properties of MCC. Furthermore, the method can be used for material classification. PMID:23016450

Liao, Zhenggen; Zhang, Nan; Zhao, Guowei; Zhang, Jing; Liang, Xinli; Zhong, Shaojin; Wang, Guangfa; Chen, Xulong

2012-09-01

113

Research on tensile strength characteristics of bridge deck pavement bonding layers  

NASA Astrophysics Data System (ADS)

As the development of the traffic in the world, the bridge deck pavement is playing a more and more important role in the whole traffic system. Big span bridge has become more and more especially cement concrete bridge, therefore the bridge deck pavement bonding layers are emphasized as an important part of bridge traffic system, which can mitigate travel impact to bridge and magnify stationary or traffic amenity. The quality and durability of deck pavement bonding layer has directly effect on traffic safety, comfort, durability and investment of bridge. It represents the first line of defence against the ingress of water, road de-icing salts and aggressive chemicals. In real project, many early age damage of bridge deck pavement has become serious disease that affecting the function of bridge. During the construction of the bridge deck, many types of asphalt binders were used, such as styrene-butadiene-styrene (SBS) modified asphalt, styrene-butadiene rubber (SBR) modified asphalt, neoprene latex asphalt, etc. In this paper UTM-25 was used to test the tensile strength of different bridge deck pavement bonding layers with the different treatment methods to inter-surface.

Wu, Shaopeng; Han, Jun

2009-12-01

114

Research on tensile strength characteristics of bridge deck pavement bonding layers  

NASA Astrophysics Data System (ADS)

As the development of the traffic in the world, the bridge deck pavement is playing a more and more important role in the whole traffic system. Big span bridge has become more and more especially cement concrete bridge, therefore the bridge deck pavement bonding layers are emphasized as an important part of bridge traffic system, which can mitigate travel impact to bridge and magnify stationary or traffic amenity. The quality and durability of deck pavement bonding layer has directly effect on traffic safety, comfort, durability and investment of bridge. It represents the first line of defence against the ingress of water, road de-icing salts and aggressive chemicals. In real project, many early age damage of bridge deck pavement has become serious disease that affecting the function of bridge. During the construction of the bridge deck, many types of asphalt binders were used, such as styrene-butadiene-styrene (SBS) modified asphalt, styrene-butadiene rubber (SBR) modified asphalt, neoprene latex asphalt, etc. In this paper UTM-25 was used to test the tensile strength of different bridge deck pavement bonding layers with the different treatment methods to inter-surface.

Wu, Shaopeng; Han, Jun

2010-03-01

115

Root diversity in alpine plants: root length, tensile strength and plant age  

NASA Astrophysics Data System (ADS)

A high diversity of plant species and functional groups is hypothesised to increase the diversity of root types and their subsequent effects for soil stability. However, even basic data on root characteristics of alpine plants are very scarce. Therefore, we determined important root characteristics of 13 plant species from different functional groups, i.e. grasses, herbs and shrubs. We excavated the whole root systems of 62 plants from a machine-graded ski slope at 2625 m a.s.l. and analysed the rooting depth, the horizontal root extension, root length and diameter. Single roots of plant species were tested for tensile strength. The age of herbs and shrubs was determined by growth-ring analysis. Root characteristics varied considerably between both plant species and functional groups. The rooting depth of different species ranged from 7.2 ± 0.97 cm to 20.5 ± 2.33 cm, but was significantly larger in the herb Geum reptans (70.8 ± 10.75 cm). The woody species Salix breviserrata reached the highest horizontal root extensions (96.8 ± 25.5 cm). Most plants had their longest roots in fine diameter classes (0.5

Pohl, M.; Stroude, R.; Körner, C.; Buttler, A.; Rixen, C.

2009-04-01

116

Hydrogen Embrittlement of a 1500-MPa Tensile Strength Level Steel with an Ultrafine Elongated Grain Structure  

NASA Astrophysics Data System (ADS)

A deformation of a tempered martensitic structure ( i.e., tempforming) at 773 K (500 °C) was applied to a 0.6 pct C-2 pct Si-1 pct Cr steel. The hydrogen embrittlement (HE) property of the tempformed (TF) steel was investigated by a slow strain rate test (SSRT) and an accelerated atmospheric corrosion test (AACT). Hydrogen content within the samples after SSRT and AACT was measured by thermal desorption spectrometry (TDS). The tempforming at 773 K (500 °C) using multipass caliber rolling with an accumulative are reduction of 76 pct resulted in the evolution of an ultrafine elongated grain (UFEG) structure with a strong <110>//rolling direction (RD) fiber deformation texture and a dispersion of spheroidized cementite particles. The SSRT of the pre-hydrogen-charged notched specimens and the AACT demonstrated that the TF sample had superior potential for HE resistance to the conventional quenched and tempered (QT) sample at a tensile strength of 1500 MPa. The TDS analysis also indicated that the hydrogen might be mainly trapped by reversible trapping sites such as grain boundaries and dislocations in the TF sample, and the hydrogen trapping states of the TF sample were similar to those of the QT sample. The QT sample exhibited hydrogen-induced intergranular fracture along the boundaries of coarse prior-austenite grains. In contrast, the hydrogen-induced cracking occurred in association with the UFEG structure in the TF sample, leading to the higher HE resistance of the TF sample.

Nie, Yihong; Kimura, Yuuji; Inoue, Tadanobu; Yin, Fuxing; Akiyama, Eiji; Tsuzaki, Kaneaki

2012-05-01

117

Addition of antibacterial agents to MMA-TBB dentin bonding systems--influence on tensile bond strength and antibacterial effect.  

PubMed

To produce a bonding system which has both high bond strength and antibacterial properties, an antibacterial agent (vancomycin: VCM or metronidazol: MN) was added to the PMMA powder of 4-META/MMA-TBB resin (CB). The influence of the addition of an antibacterial agent on tensile bond strength to dentin and the antibacterial effect were investigated in this study. Forty-seven freshly extracted bovine first or second incisors were used to measure the tensile bond strength to dentin. The bond strengths to bovine dentin were not significantly decreased by addition of VCM (1%, 2%, 5%), or MN (1%) to CB (p < 0.05). The antibacterial effect of CB containing antibacterial agent on six strains of bacteria was investigated by the agar plate diffusion method, analyzing the appearance of the inhibition zone around a resin disk following anaerobic culturing. The resin disks containing VCM showed antibacterial effects on all of the strains examined; the widths of the inhibition zones were 4-15 mm. The resin disks containing MN showed antibacterial effects on three strains; the widths of the inhibition zones were 0-4 mm. It was thus possible to produce a bonding system with both antibacterial effect and high tensile bond strength by addition of VCM to PMMA powder. PMID:11219091

Kudou, Y; Obara, K; Kawashima, T; Kubota, M; Abe, S; Endo, T; Komatsu, M; Okuda, R

2000-03-01

118

Effect of cooling rate on eutectic cell count, grain size, microstructure, and ultimate tensile strength of hypoeutectic cast iron  

NASA Astrophysics Data System (ADS)

This article describes a series of microstructural and strength studies performed on hypoeutectic cast iron, which was sand cast using a variety of end chills (metallic, nonmetallic, water-cooled, and subzero, respectively). The effects of cooling rate on the eutectic cell count (ECC), grain size, and the ultimate tensile strength (UTS) were evaluated. Attempts were also made to explain these effects and to correlate the UTS with ECC. It was found that subzero chilled and water-cool, chilled cast iron exhibit severe undercooling compared to normal sand cast iron. It was concluded from this investigation that nucleation conditions are completely altered but growth conditions prevail as usual. Therefore, undercooling during solidification is considered to be responsible for variation in ECC, grain size, microstructure, and tensile strength.

Hemanth, J.; Rao, K. V. S.

1999-08-01

119

Structural basis of the tensile strength of protein complexes mediating cell adhesion  

NASA Astrophysics Data System (ADS)

This study explores the behaviour of adhesive complexes of cell adhesion molecules undergoing forced detachment. Molecular-forces measurements combined with Steered Molecular Dynamic (SMD) simulations were used to investigate the mechanical response of the CD2 C58 and hemophilic C-cadherin bonds. The CD2-CD58 adhesive complex, important for the adaptive immune response, contains several salt-bridges in the adhesive interface. SMD simulations showed that these inter-protein salt bridges contribute independently to the tensile strength of the complex. Consistent with this, force measurements with the Surface Force Apparatus (SFA) demonstrated that the elimination of single salt bridges weakens the bond. The corresponding loss in adhesion energy of the CD2-CD58 complex correlates with the importance of the salt bridges observed in the simulations. These findings correlate closely with the effect of the elimination of single salt bridges observed in cell aggregation assays and binding measurements. On the other hand, the hemophilic C-cadherin interaction determines specific cell-cell adhesion during development in Xenopus laevis . Single molecule force spectroscopy was used to characterize the multiple bound states between C-cadherin ectodomains. The experiments showed two short-lived bound states associated with the two outermost ectodomains and two long-lived states associated with the full ectodomain. It is likely that the two short-lived states are involved in the specificity of the interaction since previous studies showed that the corresponding states in E-cadherin have different lifetimes. In addition, SMD simulations of the forced dissociation of the strand dieter of C-cadherin suggested a mechanism for the specificity of cadherin interactions.

Bayas, Marco Vinicio

120

Tensile and mixed-mode strength of a thin film-substrate interface under laser induced pulse loading  

Microsoft Academic Search

Laser induced stress waves are used to characterize intrinsic interfacial strength of thin films under both tensile and mixed-mode conditions. A short-duration compressive pulse induced by pulsed-laser ablation of a sacrificial layer on one side of a substrate is allowed to impinge upon a thin test film on the opposite surface. Laser-interferometric measurements of test film displacement enable calculation of

Junlan Wang; Nancy R. Sottos; Richard L. Weaver

2004-01-01

121

Evaluation of tensile strength and surface topography of orthodontic wires after infection control procedures: An in vitro study  

PubMed Central

Aim: The aim of this study is to evaluate, the influence of four types of sterilization/disinfection procedures (autoclave, hot air oven, glutaraldehyde, and ultraviolet [UV] light) on the tensile strength and surface topography of three orthodontic wires (stainless steel (SS), titanium - molybdenum alloy [TMA], and cobalt chromium (CoCr)). Materials and Methods: Sample comprised of three types of 8 inches straight length segments of orthodontic wires. They were divided into three groups according to wire composition comprising of 50 samples each. Totally 50 samples of each group were then equally divided into five subgroups according to sterilization method. After sterilization and disinfection of the experimental group, surface topography was examined with scanning electron microscope (SEM) and tensile strength was tested using universal testing machine. Result: The results of this study show that the mean ultimate tensile strength (UTS) of SS wire after four sterilization procedures were similar to the control group (1845.815 ± 142.29 MPa). The mean UTS of TMA wire increases after four sterilization procedures when compared with the control group (874.107 ± 275.939 MPa). The mean UTS of CoCr wire remains same after UV light disinfection, but increases after other three sterilization procedures when compared with the control group (1449.759 ± 156.586 MPa). SEM photographs of the present study shows gross increase in pitting roughness of the surface topography of all the three types of wires after four types of sterilization. Conclusion: Orthodontists who want to offer maximum safety for their patients can sterilize orthodontic wires before placement, as it does not deteriorate the tensile strength and surface roughness of the alloys. PMID:25210383

Brindha, M.; Kumaran, N. Kurunji; Rajasigamani, K.

2014-01-01

122

Tensile bond strength of sealants following Er:YAG laser etching compared to acid etching in permanent teeth.  

PubMed

The aim of this in vitro study was to assess the effect of Er:YAG laser surface treatment on the tensile bond strength of a sealant in permanent teeth. A total of 30 sound third molars were selected and embedded in cold-cure acrylic resin. The enamel surfaces were flattened by a grinding. The teeth were randomly divided into three groups and pretreated as follows: (1) 37% phosphoric acid; (2) Er:YAG laser (1.5 ml/min water spray, 100 mJ energy output, 10 Hz frequency, focal distance 17 mm); (3) Er:YAG laser + 37% phosphoric acid. The treated surfaces were isolated by double adhesive Sellotape and after insertion of a split Teflon matrix at an isolated site, sealant was applied. The specimens were thermocycled and stored at 37°C in distilled water for 72 h, then subjected to a tensile bond strength test (50 kgf at 0.5 mm/min). The mean tensile bond strengths (± SD, in megapascals) were: 18.51 ± 5.68 in group 1, 8.06 ± 2.69 in group 2, and 17.33 ± 5.04 in group 3. Data were submitted to analysis of variance and the Tukey test. No significant difference were found between groups 1 (37% phosphoric acid) and group 3 (Er:YAG laser + 37% phosphoric acid) but treatment with the Er:YAG laser alone (group 2) resulted in significantly lower tensile bond strength than seen in the other groups. In this setting, the Er:YAG laser prepared the enamel surface for sealing but did not eliminate the need for acid etching before sealant application. PMID:21336680

Shahabi, Sima; Bagheri, Hossein G; Ramazani, Kosar

2012-03-01

123

Effects of enzymes and gamma irradiation on the tensile strength and morphology of poly(p-dioxanone) fibers  

SciTech Connect

The objective of this study was to examine how and to what extent a new degradable polymeric fiber, poly(p-dioxanone), used as a surgical suture material, degrades in the presence of enzymes and after ..gamma..-irradiation. The degradation of the fiber was studied mechanically using an Instron and morphologically by SEM. Both esterase and trypsine enzymes and their corresponding buffer controls were used. The fibers were ..gamma..-irradiated at the dosages ranging from 0 to 20 Mrad, immersed in the solution for up to 70 days, and then removed for tensile strength and morphological examinations. ..gamma..-irradiation alone lowered the tensile strength of PDS fibers and made them more susceptible to hydrolysis. Esterase and trypsin did not accelerate the hydrolytic degradation of this fiber to any significant level. Both ..gamma..-irradiation and enzymes influenced the gross morphological characteristic of PDS fibers when they were subjected to hydrolysis. The most important morphological observations were the formation of surface cracks and chips on the fibers and the subsequent peeling of the chips. Enzyme-treated PDS fibers exhibited similar morphological findings but the size of the chips was smaller. The morphological observations of PDS fibers were consistent with the tensile strength data. 24 references, 7 figures.

Williams, D.F.; Chu, C.C.; Dwyer, J.

1984-05-01

124

Wet-spinning of recombinant silk-elastin-like protein polymer fibers with high tensile strength and high deformability.  

PubMed

A recombinant silk-elastin-like protein copolymer SELP-47K containing tandemly repeated amino acid sequence blocks from silk, GAGAGS, and elastin, GVGVP, was fabricated into microdiameter fibers using a wet-spinning technique. Raman spectral analysis revealed the formation of antiparallel beta-sheet crystals of the silk-like blocks. Dry SELP-47K fibers display the dependence of mechanical properties such as Young's modulus on fiber diameter, suggesting more oriented and crystallized molecular chains in small-diameter fibers. Additionally, a brittle fracture mode was identified for dry fibers by SEM analysis of fracture surfaces. Hydration dramatically influenced the mechanical behavior of SELP-47K fibers. In contrast to the high tensile strength and limited strains to failure of dry fibers, fully hydrated SELP-47K fibers possessed strains to failure as high as 700%. Furthermore, upon chemical cross-linking, a tensile mechanical strength up to 20 MPa was achieved in hydrated fibers without compromising their high deformability. By combing the silk- and elastin-derived sequences into a single SELP-47K protein polymer, we demonstrated that protein fibers with high tensile strength and high deformability can be fabricated. PMID:19186950

Qiu, Weiguo; Teng, Weibing; Cappello, Joseph; Wu, Xiaoyi

2009-03-01

125

Modelling and Simulation of Tensile Fracture in High Velocity Compacted Metal Powder  

SciTech Connect

In cold uniaxial powder compaction, powder is formed into a desired shape with rigid tools and a die. After pressing, but before sintering, the compacted powder is called green body. A critical property in the metal powder pressing process is the mechanical properties of the green body. Beyond a green body free from defects, desired properties are high strength and uniform density. High velocity compaction (HVC) using a hydraulic operated hammer is a production method to form powder utilizing a shock wave. Pre-alloyed water atomised iron powder has been HVC-formed into circular discs with high densities. The diametral compression test also called the Brazilian disc test is an established method to measure tensile strength in low strength material like e.g. rock, concrete, polymers and ceramics. During the test a thin disc is compressed across the diameter to failure. The compression induces a tensile stress perpendicular to the compressed diameter. In this study the test have been used to study crack initiation and the tensile fracture process of HVC-formed metal powder discs with a relative density of 99%. A fictitious crack model controlled by a stress versus crack-width relationship is utilized to model green body cracking. Tensile strength is used as a failure condition and limits the stress in the fracture interface. The softening rate of the model is obtained from the corresponding rate of the dissipated energy. The deformation of the powder material is modelled with an elastic-plastic Cap model. The characteristics of the tensile fracture development of the central crack in a diametrically loaded specimen is numerically studied with a three dimensional finite element simulation. Results from the finite element simulation of the diametral compression test shows that it is possible to simulate fracturing of HVC-formed powder. Results from the simulation agree reasonably with experiments.

Jonsen, P.; Haeggblad, H.-A. [Division of Solid Mechanics, Department of Applied Physics and Mechanical Engineering, Luleaa University of Technology, 971 87 Luleaa (Sweden)

2007-05-17

126

The tensile strength of 339 aluminum reinforced with Kaowool fibers: A comparison of T5 and T6 heat treatments  

SciTech Connect

This study compares the effects of T5 and T6 heat treatment on the tensile strengths of both KAOWOOL fiber reinforced and unreinforced 339 aluminum. The 339 Al-T6 is stronger than 339 AL-T5 (as expected), but for a KAOWOOL/339 Al composite, the T5 condition is substantially stronger than the T6. The controlling parameter is the strength of the aluminum dendrites, which in turn is proportional to the concentration of magnesium retained in the dendrites. In the T5 condition, more than half of the magnesium is in the form of large intermetallics in both the unreinforced alloy and the KAOWOOL/339 Al composite. During a T6 heat treatment, magnesium in the intermetallics is redissolved. In the unreinforced T6 alloy, this additional magnesium is retained in and strengthens the dendrites. But in the T6 composite, the magnesium segregates extensively to the KAOWOOL/aluminum interfaces depleting and softening the dendrites. This factor along is sufficient to account for the low strength of the T6 composites. The tensile strengths of both the T5 and T6 composites correspond to the calculated values for a perfectly bonded system.

Baxter, W.J.; Sachdev, A.K. [General Motors R and D Center, Warren, MI (United States). Metallurgy Dept.

1999-07-01

127

Effects of polymerization and briquetting parameters on the tensile strength of briquettes formed from coal coke and aniline-formaldehyde resin  

SciTech Connect

In this work, the utilization of aniline (C{sub 6}H{sub 7}N) formaldehyde (HCHO) resins as a binding agent of coke briquetting was investigated. Aniline (AN) formaldehyde (F) resins are a family of thermoplastics synthesized by condensing AN and F in an acid solution exhibiting high dielectric strength. The tensile strength sharply increases as the ratio of F to AN from 0.5 to 1.6, and it reaches the highest values between 1.6 and 2.2 F/AN ratio; it then slightly decreases. The highest tensile strength of F-AN resin-coke briquette (23.66 MN/m{sup 2}) was obtained from the run with 1.5 of F/AN ratio by using (NH4){sub 2}S{sub 2}O{sub 8} catalyst at 310 K briquetting temperature. The tensile strength of F-AN resin-coke briquette slightly decreased with increasing the catalyst percent to 0.10%, and then it sharply decreased to zero with increasing the catalyst percent to 0.2%. The effect of pH on the tensile strength is irregular. As the pH of the mixture increases from 9.0 to 9.2, the tensile strength shows a sharp increase, and the curve reaches a plateau value between pH 9.3 and 9.9; then the tensile strength shows a slight increase after pH = 9.9.

Demirbas, A.; Simsek, T. [Selcuk University, Konya (Turkey)

2006-10-15

128

Influence of different brazing and welding methods on tensile strength and microhardness of orthodontic stainless steel wire.  

PubMed

The aim of this study was to compare the mechanical strength and microhardness of joints made by conventional brazing and tungsten inert gas (TIG) and laser welding. A standardized end-to-end joint configuration of the orthodontic wire material in spring hard quality was used. The joints were made using five different methods: brazing (soldering > 450 degrees C) with universal silver solder, two TIG, and two laser welders. Laser parameters and welding conditions were used according to the manufacturers' guidance. The tensile strengths were measured with a universal testing machine (Zwick 005). The microhardness measurements were carried out with a hardness tester (Zwick 3202). Data were analysed using one-way analysis of variance and Bonferroni's post hoc correction (P < 0.05). In all cases, brazing joints ruptured at low levels of tensile strength (198 +/- 146 MPa). Significant differences (P < 0.001) between brazing and TIG or laser welding were found. The highest means were observed for TIG welding (699-754 MPa). Laser welding showed a significantly lower mean tensile strength (369-520 MPa) compared with TIG welding. Significant differences (P < 0.001) were found between the original orthodontic wire and the mean microhardness at the centre of the welded area. The mean microhardness differed significantly between brazing (1.99 GPa), TIG (2.22-2.39 GPa) and laser welding (2.21-2.68 GPa). For orthodontic purposes, laser and TIG welding are solder-free alternatives to joining metal. TIG welding with a lower investment cost is comparable with laser welding. However, while expensive, the laser technique is a sophisticated and simple method. PMID:18617503

Bock, Jens Johannes; Fraenzel, Wolfgang; Bailly, Jacqueline; Gernhardt, Christian Ralf; Fuhrmann, Robert Andreas Werner

2008-08-01

129

Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests  

NASA Technical Reports Server (NTRS)

The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

Burns, F. A.; Dyke, R. A., Jr.

1979-01-01

130

The tensile strength of black bear (Ursus americanus) cortical bone is not compromised with aging despite annual periods of hibernation.  

PubMed

Black bears (Ursus americanus) may not develop disuse osteoporosis during long periods of disuse (i.e. hibernation) because they may be able to maintain bone formation. Previously, we found that cortical bone bending strength was not compromised with age in black bears' tibias, despite annual periods of disuse. Here we showed that cortical bone tensile strength (166-198MPa) also does not decrease with age (2-14 years) in black bear tibias. There were also no significant age-related changes in cortical bone porosity in black bear tibias. It is likely that the ability of black bears to maintain bone formation during hibernation keeps bone porosity low (2.3-8.6%) with aging, notwithstanding annual periods of disuse. This low porosity likely preserves ultimate stress with aging. Female bears give birth and nurse during hibernation; however, we found no significant differences between male and female tensile material properties, mineral content, or porosity. Our findings support the idea that black bears, which hibernate 5-7 months annually, have evolved biological mechanisms to mitigate the adverse effects of disuse on bone porosity and strength. PMID:16115638

Harvey, Kristin B; Drummer, Thomas D; Donahue, Seth W

2005-11-01

131

The Value Compressive Strength and Split Tensile Strength on Concrete Mixture With Expanded Polystyrene Coated by Surfactant Span 80 as a Partial Substitution of Fine Aggregate  

NASA Astrophysics Data System (ADS)

The value of the density normal concrete which ranges between 2200-2400 kg/m3. Therefore the use of Expanded Polystyrene (EPS) as a subitute to fine aggregate can reduce the density of concrete. The purpose this research is to reduce the density of normal concrete but increase compressive strength of EPS concrete, with use surfactant as coating for the EPS. Variables of substitution percentage of EPS and EPS coated by surfactant are 5%,10%,15%,20%,25%. Method of concrete mix design based on SNI 03-2834-2000 "Tata Cara Pembuatan Rencana Campuran Beton Normal (Provisions for Proportioning Normal Concrete Mixture)". The result of testing, every increase percentage of EPS substitution will decrease the compressive strength around 1,74 MPa and decrease density 34,03 kg/m3. Using Surfactant as coating of EPS , compressive strength increase from the EPS's compressive strength. Average of increasing compressive strength 0,19 MPa and increase the density 20,03 kg/m3,average decrease of the tensile split strength EPS coated surfaktan is 0,84 MPa.

Hidayat, Irpan; Siauwantara, Alice

2014-03-01

132

Development of a new method to determine dynamic tensile strength of ballistic yarns  

NASA Astrophysics Data System (ADS)

Since the design of new soft protections is getting intensive, the study of the dynamic behavior of ballistic yarns becomes more and more important. This paper deals with the development of a new experimental method in order to obtain some dynamic parameters by performing dynamic tensile tests. The concept is quite simple: two projectiles, linked together by the ballistic yarn we want to study, are accelerated together with the help of a gas gun. The first one flies freely while the second one is suddenly stopped. The yarn is then loaded in tensile. Several measurements are performed during each test with the help of a high speed camera. First results on a polyethylene yarn are presented here and several improvements are proposed in order to improve the accuracy of the results.

Nussbaum, J.; Faderl, N.; Nuesing, R.; Ha-Minh, C.; Boussu, F.

2012-08-01

133

Tensile Strength and Microstructure of Al2O3-ZrO2 Hypo-Eutectic Fibers Studied  

NASA Technical Reports Server (NTRS)

Oxide eutectics offer high-temperature strength retention and creep resistance in oxidizing environments. Al2O3-ZrO2 eutectic strengths have been studied since the 1970's. Directionally solidified oxide eutectics exhibit improved resistance to slow crack growth and excellent strength retention at high temperatures up to 1400 C. Materials studied typically contain Y2O3 to metastably retain the high-temperature cubic and tetragonal polymorphs at room temperature. Al2O3-ZrO2 is of fundamental interest for creep studies because it combines a creep-resistant material, Al2O3, with a very low creep resistance material, ZrO2. Results on mechanical properties and microstructures of these materials will be used to define compositions for creep testing in future work. Substantial variations from the eutectic alumina to zirconia ratio can be tolerated without a loss in room-temperature strength. The effect of increasing Y2O3 addition on the room-temperature tensile strength of an Al2O3-ZrO2 material containing excess Al2O3 was examined at the NASA Glenn Research Center, where the materials were grown using Glenn's world-class laser growth facilities.

Farmer, Serene C.; Sayir, Ali

2001-01-01

134

Waiting Time for Coronal Preparation and the Influence of Different Cements on Tensile Strength of Metal Posts  

PubMed Central

This study aimed to assess the effect of post-cementation waiting time for core preparation of cemented cast posts and cores had on retention in the root canal, using two different luting materials. Sixty extracted human canines were sectioned 16?mm from the root apex. After cast nickel-chromium metal posts and cores were fabricated and luted with zinc phosphate (ZP) cement or resin cement (RC), the specimens were divided into 3 groups (n = 10) according to the waiting time for core preparation: no preparation (control), 15 minutes, or 1 week after the core cementation. At the appropriate time, the specimens were subjected to a tensile load test (0.5?mm/min) until failure. Two-way ANOVA (time versus cement) and the Tukey tests (P < 0.05) showed significantly higher (P < 0.05) tensile strength values for the ZP cement groups than for the RC groups. Core preparation and post-cementation waiting time for core recontouring did not influence the retention strength. ZP was the best material for intraradicular metal post cementation. PMID:22291705

Oliveira, Ilione Kruschewsky Costa Sousa; Arsati, Ynara Bosco de Oliveira Lima; Basting, Roberta Tarkany; França, Fabiana Mantovani Gomes

2012-01-01

135

Effect of varying chromophores used in light-activated protein solders on tensile strength and thermal damage profile of repairs.  

PubMed

Clinical adoption of laser tissue welding (LTW) techniques has been beleaguered by problems associated with thermal damage of tissue and insufficient strength of the resulting tissue bond. The magnitude of these problems has been significantly reduced with the incorporation of indocyanine green (ICG)-doped protein solders into the LTW procedure to form a new technique known as laser tissue soldering (LTS). With the addition of ICG, a secondary concern has arisen relating to the potential harmful effects of the degradation products of the chromophore upon thermal denaturation of the protein solder with a laser. In this study, two different food colorings were investigated, including blue #1 and green consisting of yellow #5 and blue #1, as alternative chromophores for use in LTS techniques. Food coloring has been found to have a suitable stability and safety profile for enteral use when heated to temperatures above 200 degrees C; thus, it is a promising candidate chromophore for LTS which typically requires temperatures between 50 degrees C and 100 degrees C. Experimental investigations were conducted to test the tensile strength of ex vivo repairs formed using solders doped with these alternative chromophores in a bovine model. Two commonly used chromophores, ICG and methylene blue (MB), were investigated as a reference. In addition, the temperature rise, depth of thermal coagulation in the protein solder, and the extent of thermal damage in the surrounding tissue were measured. Temperature rise at the solder/tissue interface, and consequently the degree of solder coagulation and collateral tissue thermal damage, was directly related to the penetration depth of laser light in the protein solder. Variation of the chromophore concentration such that the laser light penetrated to a depth approximately equal to half the thickness of the solder resulted in uniform results between each group of chromophores investigated. Optimal tensile strength of repairs was achieved by optimizing laser and solder parameters to obtain a temperature of approximately 65 degrees C at the solder/tissue interface. The two alternative chromophores tested in this study show considerable promise for application in LTS techniques, with equivalent tensile strength to solders doped with ICG or MB, and the potential advantage of eliminating the risks associated with harmful byproducts. PMID:12724861

Hoffman, Grant T; Byrd, Brian D; Soller, Eric C; Heintzelman, Douglas L; McNally-Heintzelman, Karen M

2003-01-01

136

Tensile strength at elevated temperature and its applicability as an accelerated testing methodology for unidirectional composites  

NASA Astrophysics Data System (ADS)

The applicability of a macroscopic time-temperature superposition principle (TTSP) to unidirectional composite strength is discussed based on the microscopic Simultaneous Fiber-Failure (SFF) model that has been presented by Koyanagi et al. (J. Compos. Mater. 43:1901-1914, 2009a). The SFF model estimates composite strengths as functions of fiber, matrix, and interface strengths. This paper first investigates the applicability of SFF to the complicated temperature dependence of composite strengths, i.e., one composite exhibits significant temperature dependence and another does not, considering the temperature dependence of the components, which results in successful estimations for the two composite systems used in the present study. The long-term durability predicted by the SFF and that predicted by the TTSP are then compared. They typically correspond to each other in various cases; accelerated testing methodology (ATM) employing TTSP is thus proved to be valid from the micromechanical viewpoint, assuming the SFF applicability.

Koyanagi, Jun; Nakada, Masayuki; Miyano, Yasushi

2012-02-01

137

Relevance of impacter shape to nonvisible damage and residual tensile strength of a thick graphite/epoxy laminate  

NASA Technical Reports Server (NTRS)

A study was made to determine the relevance of impacter shape to nonvisible damage and tensile residual strength of a 36 mm (1.4 in.) thick graphite/epoxy motor case. The shapes of the impacters were as follows: 12.7 mm (0.5 in.) and 25.4 mm (1.0 in.) diameter hemispheres, a sharp corner, and a 6.3 mm (0.25 in.) diameter bolt-like rod. The investigation revealed that damage initiated when the contact pressure exceeded a critical level. However, the damage was not visible on the surface until an even higher pressure was exceeded. The damage on the surface consisted of a crater shaped like the impacter, and the damage below the surface consisted of broken fibers. The impact energy to initiate damage or cause visible damage on the surface increased approximately with impacter diameter to the third power. The reduction in strength for nonvisible damage increased with increasing diameter, 9 and 30 percent for the 12.7 mm (0.5 in.) and 25.4 mm (1.0 in.) diameter hemispheres, respectively. The corner impacter made visible damage on the surface for even the smallest impact energy. The rod impacter acted like a punch and sliced through the composite. Even so, the critical level of pressure to initiate damage was the same for the rod and hemispherical impacters. Factors of safety for nonvisible damage increased with increasing kinetic energy of impact. The effects of impacter shape on impact force, damage size, damage visibility, and residual tensile strength were predicted quite well assuming Hertzian contact and using maximum stress criteria and a surface crack analysis.

Poe, C. C., Jr.

1990-01-01

138

Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin  

PubMed Central

Objective The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. Material and Methods Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group): direct composite resin restoration (Alert) with etch-and-rinse adhesive system (Bond 1 primer/adhesive), Group 2: indirect composite restoration (Estenia) luted with a resin cement (Cement-It) combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond), Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively) onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. Results The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7) showed better results compared to the other groups (p<0.05). Group 4 showed the weakest bond strength (p>0.05). The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. Conclusion The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces. PMID:21710095

TÜRKMEN, Cafer; DURKAN, Meral; C?M?LL?, Hale; ÖKSÜZ, Mustafa

2011-01-01

139

Residual strength of composite laminates subjected to tensile-compressive fatigue loading  

NASA Technical Reports Server (NTRS)

Results are presented on the measurements of the residual strengths of T300/934 graphite epoxy laminates, in tension and in compression, after the samples were exposed to tension-compression fatigue loading (R = -1). Four laminate ocnfigurations were tested: unidirectional, cross-ply, angle-ply, and quasi-isotropic. It was found that the fatigue behavior of laminates was dependent on the quasi-static strengths and the specific structure of the laminate. No direct correlation was found between remaining residual strengths and the percentage of average fatigue life. However, a correlation scheme was developed for the individual specimen under test, based on a cumulative damage model and a stiffness change of the material.

Rotem, Assa; Nelson, H. G.

1990-01-01

140

Evaluation of a sugar based edible adhesive utilizing a tensile strength tester  

Technology Transfer Automated Retrieval System (TEKTRAN)

A new method to evaluate adhesives has been developed and utilized to formulate a recently patented adhesive based on sugar and citric acid. Factors affecting adhesive performance were uncovered, such as reduced strength due to improper heating time, and an optimal curing temperature of 60oC was ac...

141

LEONARDO DA VINCI'S TENSILE STRENGTH TESTS: IMPLICATIONS FOR THE DISCOVERY OF ENGINEERING MECHANICS  

Microsoft Academic Search

In one of Leonardo Da Vinci's notebooks, an experiment is described where strengths in tension are measured for various lengths of wire. The notebook indicates that the results of these experiments were that longer wires were weaker than shorter wires. This result defies classical mechanics of materials. This conflict has been explained as a note-taking failure by Leonardo. This short

JAY R. LUND; JOSEPH P. BYRNE

2001-01-01

142

Tensile and shear bond strength of hard and soft denture relining materials to the conventional heat cured acrylic denture base resin: An In-vitro study  

PubMed Central

Background: The condition of the denture bearing tissues may be adversely affected by high stress concentration during function. Chairside Denture (Hard and Soft) reliners are used to distribute forces applied to soft tissues during function. Tensile and shear bond strength has been shown to be dependent on their chemical composition. A weak bond could harbor bacteria, promote staining and delamination of the lining material. To investigate tensile and shear bond strength of 4 different commercially available denture relining materials to conventional heat cured acrylic denture base resin. Materials & Methods: 4 mm sections in the middle of 160 Acrylic cylindrical specimens (20 mm x 8 mm) were removed, packed with test materials (Mollosil, G C Reline Soft, G C Reline Hard (Kooliner) and Ufi Gel Hard and polymerized. Specimens were divided into 8 groups of 20 each. Tensile and shear bond strength to the conventional heat cured acrylic denture base resin were examined by Instron Universal Tensile Testing Machine using the equation F=N/A (F-maximum force exerted on the specimen (Newton) and A-bonding area= 50.24 mm2). One-way ANOVA was used for multiple group comparisons followed by Bonferroni Test and Hsu’s MCB for multiple pairwise comparisons to asses any significant differences between the groups. Results: The highest mean Tensile bond strength value was obtained for Ufi Gel Hard (6.49+0.08 MPa) and lowest for G C Reline Soft (0.52+0.01 MPa). The highest mean Shear bond strength value was obtained for Ufi Gel Hard (16.19+0.1 MPa) and lowest for Mollosil (0.59+0.05 MPa). The Benferroni test showed a significant difference in the mean tensile bond strength and the mean shear bond strength when the two denture soft liners were compared as well as when the two denture hard liners were compared. Hsu’s MCB implied that Ufi gel hard is better than its other closest competitors. Conclusion: The Tensile and Shear bond strength values of denture soft reliners were significantly lower than denture hard reliners. How to cite the article: Lau M, Amarnath GS, Muddugangadhar BC, Swetha MU, Das KA. Tensile and shear bond strength of hard and soft denture relining materials to the conventional heat cured acrylic denture base resin: An In-vitro study. J Int Oral Health 2014;6(2):55-61. PMID:24876703

Lau, Mayank; Amarnath, G S; Muddugangadhar, B C; Swetha, M U; Das, Kopal Anshuraj Ashok Kumar

2014-01-01

143

Effect of different surface preparations on the tensile strength of adhesively bonded metal joints  

Microsoft Academic Search

In this in vitro study, the effects of different surface preparations and resins on the strength and durability of adhesively bonded joints were evaluated. Disk-shaped cobalt-chromium substrate samples of the first group were treated by the Silicoater MD® system. Samples of the two subgroups were bonded with two different bisphenol-A glycidyl methacrylate (Bis-GMA) adhesives. Samples of the second group were

Mahmoud Abd El Salam Shakal; Peter Pfeiffer

1998-01-01

144

Effect of Load Rate on Ultimate Tensile Strength of Ceramic Matrix Composites at Elevated Temperatures  

NASA Technical Reports Server (NTRS)

The strengths of three continuous fiber-reinforced ceramic composites, including SiC/CAS-II, SiC/MAS-5 and SiC/SiC, were determined as a function of test rate in air at 1100 to 1200 C. All three composite materials exhibited a strong dependency of strength on test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress-rate) to another (constant stress loading) suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics. It was further found that constant stress-rate testing could be used as an alternative to life prediction test methodology even for composite materials, at least for short range of lifetimes and when ultimate strength is used as the failure criterion.

Choi, Sung R.; Gyekenyesi, John P.

2001-01-01

145

Effect of Beverages on the Hardness and Tensile Bond Strength of Temporary Acrylic Soft Liners to Acrylic Resin Denture Base  

PubMed Central

Statement of Problem: Two potential problems commonly identified with a denture base incorporating a resilient liner are failure of the bond between acrylic resin and soft liner material, and loss of resiliency of the soft liner over time. Since patients may drink different beverages, it is important to evaluate their effects on physical properties of soft lining materials. Purpose: The objective of this in vitro study was to evaluate the effect of different beverages on the hardness of two temporary acrylic-based soft lining materials and their bond strength to the denture base resin. Materials and Method: For the hardness test; a total of 80 rectangular specimens (40mm×10mm×3mm) were fabricated from a heat-polymerized polymethylmethacrylate. Two commercially auto-polymerized acrylic resin-based resilient liners; Coe-Soft and Visco-gel were prepared according to the manufacturers’ instructions and applied on the specimens. For the tensile test, 160 cylindrical specimens (30mm×10mm) were prepared. The liners were added between specimens with a thickness of 3 mm. The specimens of both soft liners were divided into 4 groups (n=10) and immersed in distilled water as the control group, Coca-Cola, 8% and 50% ethanol. All groups were stored in separate containers at 37oC for 12 days. All beverages were changed daily. The hardness was determined using a Shore A durometer and tensile bond strength was determined in a ZwickRoell testing machine at a cross-head speed of 5mm/min. The results were analyzed using two-way ANOVA. Results: There was no significant interaction between the soft liners and the drinks for both hardness (p= 0.748) and bond strength (p= 0.902). There were statistically significant differences between all drinks for both hardness (p< 0.001) and bond strength (p< 0.05). Conclusion: Within the limitations of this study, it seems that drinking Coca-Cola and alcoholic beverages would not be potentially causing any problems for the temporary acrylic soft liners. PMID:24724142

Safari, A; Vojdani, M; Mogharrabi, S; Iraji Nasrabadi, N; Derafshi, R

2013-01-01

146

Sub-Microsecond Yield and Tensile Strengths of Metals and Alloys at Elevated Temperatures  

NASA Astrophysics Data System (ADS)

The shock-wave tests have been carried out for Armco-iron, aluminum and Al-6%Mg alloy, and titanium of different purity at temperatures up to 600°C. The dynamic yield stresses are practically athermal for Al-6%Mg alloy and titanium of commercial purity, decrease for Armco-iron and anomalously increase for titanium of high purity with increasing the temperature. The different behaviors of metals and alloys are treated in terms of relationship between phonon drag of motion of dislocations and the drag forces created by obstacles. The spall strength slightly decreases with increasing the temperature and, for polycrystalline aluminum and aluminum alloy, precipitously drops as temperature approaches the melting point. The waveforms for pure titanium indicate irreversible polymorphic transformations at normal and elevated temperatures.

Razorenov, S. V.; Savinykh, A. S.; Kanel, G. I.; Skakun, S. N.

2004-07-01

147

Ultimate tensile strength of embedded I-sections: a comparison of experimental and numerical results  

NASA Astrophysics Data System (ADS)

Exposed baseplates together with anchor bolts are the customary method of connection of steel structures to the concrete footings. Post-Kobe studies revealed that the embedded column bases respond better to the earthquake uplift forces. The embedded column bases also, offer higher freedom in achieving the required strength, rigidity and ductility. The paper presents the results of the pullout failure of three embedded IPE140 sections, tested under different conditions. The numerical models are then, generated in Abaqus 6.10-1 software. It is concluded that, the steel profiles could be directly anchored in concrete without using anchor bolts as practiced in the exposed conventional column bases. Such embedded column bases can develop the required resistance against pullout forces at lower constructional costs.

Heristchian, Mahmoud; Pourakbar, Pouyan; Imeni, Saeed; Ramezani, M. Reza Adib

2014-12-01

148

Dependence of ultimate tensile strength of friction stir welded AA2024-T6 aluminium alloy on friction stir welding process parameters  

Microsoft Academic Search

parameters. The present research work is aimed to evaluate the interaction effects of four process parameters viz., tool rotational speed N, welding speed S, tool pin diameter D and tool axial plunging force F on the tensile strength of FS welded AA2024 -T6 joints fabricated using the newly developed tool. Response surface method (RSM) was em- ployed to develop the

N. Shanmuga Sundaram; N. Murugan

149

Diametric Quadrilaterals with Two Equal Sides  

ERIC Educational Resources Information Center

If you take a circle with a horizontal diameter and mark off any two points on the circumference above the diameter, then these two points together with the end points of the diameter form the vertices of a cyclic quadrilateral with the diameter as one of the sides. We refer to the quadrilaterals in question as diametric. In this note we consider…

Beauregard, Raymond A.

2009-01-01

150

Analysis of the diametrical compression test and the applicability to plastically deforming materials  

Microsoft Academic Search

The effect of contact flattening and material properties on the fracture stress calculation for the diametrical compression test used to evaluate compact strength was examined through finite element simulations. Two-dimensional simulations were carried out using linear elastic, elastoplastic, and porous elastoplastic models with commercial finite element software. A parametric study was performed by varying the elastic modulus (E), Poisson's ratio

A. T. Procopio; A. Zavaliangos; J. C. Cunningham

2003-01-01

151

Diametric gene-dosage effects as windows into neurogenetic architecture  

E-print Network

Diametric gene-dosage effects as windows into neurogenetic architecture Bernard Crespi Gene diametric changes in gene dosage influence neurological development and function? Recent studies of transgenic and knockout mouse models, genomic copy-number variants, imprinted- gene expression alterations

Crespi, Bernard J.

152

Effects of excipients on the tensile strength, surface properties and free volume of Klucel® free films of pharmaceutical importance  

NASA Astrophysics Data System (ADS)

The physicochemical properties of polymers planned to be applied as mucoadhesive films were studied. Two types of Klucel® hydroxypropylcellulose (LF and MF) were used as film-forming polymers. Hydroxypropylcellulose was incorporated in 2 w/w% with glycerol and xylitol as excipients and lidocaine base as an active ingredient at 5, 10 or 15 w/w% of the mass of the film-forming polymer. The free volume changes of the films were investigated by positron annihilation lifetime spectroscopy, the mechanical properties of the samples were measured with a tensile strength tester and contact angles were determined to assess the surface properties of the films. It was found that the Klucel® MF films had better physicochemical properties than those of the LF films. Klucel® MF as a film-forming polymer with lidocaine base and both excipients at 5 w/w% exhibited physicochemical properties and good workability. The excipients proved to exert strong effects on the physicochemical properties of the tested systems and it is very important to study them intensively in preformulation studies in the pharmaceutical technology in order to utilise their benefits and to avoid any disadvantageous effects.

Gottnek, Mihály; Süvegh, Károly; Pintye-Hódi, Klára; Regdon, Géza

2013-08-01

153

Effect of Surface Treatment on the Flexural Strength of Denture Base Resin and Tensile Strength of Autopolymerizing Silicone Based Denture Liner Bonded to Denture Base Resin: An In Vitro Study  

Microsoft Academic Search

Silicone based denture liners are superior to acrylic based denture liners but it has a problem of failure of adhesion with\\u000a the denture base. To evaluate the effect on the tensile bond strength of silicone based liner and flexural strength of denture\\u000a base resin when the latter is treated with different chemical etchants prior to the application of the resilient

Saloni Gupta

2010-01-01

154

The effect of HIPing on the fatigue and tensile strength of a case, porous-coated Co-Cr-Mo alloy.  

PubMed

The process required to sinter porous Co-Cr-Mo alloys results in the formation of substrate porosity through carbide dissolution. Since hot isostatic pressing (HIPing) has been shown to eliminate casting porosity in the Co-Cr-Mo alloy, it is possible that it may be equally effective on pores that are generated from the sintering operation. The effect that HIPing a porous-coated Co-Cr-Mo material has on the fatigue and tensile properties was investigated. Fatigue testing was performed on sintered materials as well as sintered and HIPed materials, both with and without a porous coating. Further, the effect of varying coating thickness on the resulting fatigue strength of sintered and HIPed materials was studied. Light microscopy was performed in order to define the microstructural changes brought about by the various thermal cycles. Scanning electron microscopy was utilized to define the crack initiation process. The fatigue strength of uncoated "as sintered" materials was found to be reduced by 34% relative to the "as cast" condition. The same material that was HIPed revealed a fatigue strength slightly lower than the "as cast" condition. It was found that porous coatings created preferential sites for fatigue crack initiation. However, the presence of the coating did not further reduce the fatigue strength of "as sintered" materials because of the already low strength created by the sintering operation. Materials that were sintered exhibited a lowering in both tensile strength and elongation to failure relative to the "as cast" condition. The HIPing of sintered materials improved both fatigue and tensile properties relative to the "as sintered" condition. PMID:3782180

Georgette, F S; Davidson, J A

1986-10-01

155

In Vitro Comparison of Compressive and Tensile Strengths ofAcrylic Resins Reinforced by Silver Nanoparticles at 2% and0.2% Concentrations  

PubMed Central

Background and aims. Polymethyl methacrylate, PMMA, is widely used in prosthodontics for fabrication of removable prostheses. This study was undertaken to investigate the effect of adding silver nanoparticles (AgNPs) to PMMA at 2% and 0.2% concentrations on compressive and tensile strengths of PMMA. Materials and methods. The silver nanoparticles were mixed with heat-cured acrylic resin in an amalgamator in two groups at 0.2 and 2 wt% of AgNPs. Eighteen 2×20×200-mm samples were prepared for tensile strength test, 12 samples containing silver nanoparticle and 6 samples for the control group. Another 18 cylindrical 25×38-mm samples were prepared for compressive strength test. Scanning electron microscopy was used to verify homogeneous distribution of particles. The powder was manually mixed with a resin monomer and then the mixture was properly blended. Before curing, the paste was packed into steel molds. After curing, the specimens were removed from the molds. One-way ANOVA was used for statistical analysis, followed by multiple comparison test (Scheffé’s test). Results. This study showed that the mean compressive strength of PMMA reinforced with AgNPs was significantly higher than that of the unmodified PMMA (P<0.05). It was not statistically different between the two groups reinforced with AgNPs. The tensile strength was not significantly different between the 0.2% group and unmodified PMMA and it de-creased significantly after incorporation of 2% AgNPs (P<0.05). Conclusion. Based on the results and the desirable effect of nanoparticles of silver on improvement of compressive strength of PMMA, use of this material with proper concentration in the palatal area of maxillary acrylic resin dentures is recommended. PMID:25587381

Ghaffari, Tahereh; Hamedirad, Fahimeh; Ezzati, Baharak

2014-01-01

156

An in vitro Comparative Evaluation of Micro Tensile Bond Strength of Two metal bonding Resin Cements bonded to Cobalt Chromium alloy  

PubMed Central

Background: The purpose of this study was to evaluate and compare the micro tensile bond strength of two metal bonding resin cements to sandblasted cobalt chromium alloy. Materials & Methods: Eight, Cobalt chromium alloy blocks of dimensions 10x5x5 mm were cast, finished and polished. One of the faces of each alloy block measuring 5x5mm was sandblasted with 50 ?m grit alumina particles. The alloy blocks were then cleaned in an ultrasonic cleaner for 1 min and then air dried with an air stream. The Sandblasted surfaces of the two alloy blocks were bonded together with 2 different metal bonding resin systems (Panavia F Kuraray and DTK Kleber – Bredent). The samples were divided into 2 groups (n=4). Group 1- Two Co-Cr blocks were luted with Panavia cement. Group 2- Two Co-Cr blocks were luted with DTK Kleber-Bredent cement. The bonded samples were cut with a diamond saw to prepare Microtensile bars of approximately 1mm x 1mm x 6mm. Thirty bars from each group were randomly separated into 2 subgroups (n=15) and left for 3hrs (baseline) as per manufacturer's instructions while the other group was aged for 24hrs in 370C water, prior to loading to failure under tension at a cross head speed of 1mm/min. Failure modes were determined by means of stereomicroscopy (sm). Statistical analysis was performed through one way – ANOVA. Results: Significant variation in micro-tensile bond strength was observed between the two metal bonding resin systems. Conclusion: DTK showed higher mean bond strength values than Panavia F cement both at baseline and after aging. How to cite this article: Musani S, Musani I, Dugal R, Habbu N, Madanshetty P, Virani D. An in vitro Comparative Evaluation of Micro Tensile Bond Strength of Two metal bonding Resin Cements bonded to Cobalt Chromium alloy. J Int Oral Health 2013;5(5):73-8. PMID:24324308

Musani, Smita; Musani, Iqbal; Dugal, Ramandeep; Habbu, Nitin; Madanshetty, Pallavi; Virani, Danish

2013-01-01

157

The effect of disk type and cutting speed on the micro-tensile bond strength of ceramic specimens to resin cement.  

PubMed

The bond strength of dental materials has been evaluated by tensile testing of micro-specimens. The cutting process used to obtain specimens may influence the results. The objective of this study was to investigate the influence of different types of diamond disks and cutting speeds on the bond strength of ceramic specimens and on specimen integrity. Lithium disilicate-based ceramic cubes were bonded with resin cement to composite resin cubes, according to the manufacturers' instructions. The ceramic/cement/resin blocks thus obtained were divided into two groups to be cut with Buehler(®) or Extec(®) disks and then sectioned at cutting speeds of 200 rpm and 400 rpm. The results showed that the bond strength values were affected by the cutting speed and disk/speed interaction (p<0.05). SEM analysis revealed better specimen properties when the blocks were cut at 200 rpm. It was concluded that ceramic specimens must be cut at low speeds. PMID:25311334

Castro, Martha C C; Sadek, Fernanda T; Batitucci, Eduardo; Miranda, Mauro S

2014-12-01

158

Influence of Specimen Preparation and Specimen Size on the Transverse Tensile Strength and Scatter of Glass Epoxy Laminates  

NASA Technical Reports Server (NTRS)

The influence of specimen polishing, specimen configuration, and specimen size on the transverse tension strength of two glass epoxy materials loaded in three and four point bending was evaluated. Polishing machined edges, and/or tension side failure surfaces, was detrimental to specimen strength characterization instead of yielding a higher, more accurate, strength as a result of removing inherent manufacture and handling flaws. Transverse tension strength was sensitive to span length due to the classical weakest link effect. However, strength was less sensitive to volume changes achieved by increasing specimen width. The Weibull scaling law over-predicted changes in transverse tension strengths in three point bend tests and under-predicted changes in transverse tension strengths in four point bend tests. Furthermore, the Weibull slope varied with specimen configuration, volume, and sample size. Hence, the utility of this scaling law for predicting transverse tension strength is unclear.

OBrien, T. Kevin; Chawan, Arun D.; DeMarco, Kevin

1999-01-01

159

Root tensile strength of grey alder and mountain maple grown on a coarse grained eco-engineered slope in the Swiss Alps related to wood anatomical features  

NASA Astrophysics Data System (ADS)

Steep, vegetation free slopes are a common feature in alpine areas. The material covering these slopes is prone to all kind of erosional processes, resulting in a high risk potential for population and infrastructure. This risk potential is likely to increase with the predicted change in the spatiotemporal distribution of precipitation events. A potential increase in extreme precipitation events will also result in a higher magnitude and frequency of erosional processes. In the Swiss Alps as in many other mountainous areas, there is a need to stabilize these slopes to reduce their direct or indirect hazard potential. In this regard, eco-engineering is a very promising and sustainable approach for slope stabilization. Planting trees and shrubs is a central task in eco-engineering. A developing vegetation cover will on one hand reduce the mechanical effects of rainfall by an increased interception, on the other hand, the root systems cause modifications of soil properties. Roots not only provide anchorage for the plants, they also promote soil aggregation and are able to penetrate possible shear horizons. Overall, anchorage of plants is at the same extend also stabilizing the near subsurface. When rainfall occurs, the saturated soil exerts downhill pressure to a tree or shrub. As long as the root distribution supports anchorage, the respective slope area remains stable. At this point, the tensile strength of the roots is a critical measure, because it is more likely that the supporting roots break than the entire root system being pulled out of the soil completely. As a consequence, root tensile strength is an important parameter in characterizing the soil stabilization potential of trees and shrubs. It is known that tree roots show a high variability in their anatomical structure depending on their depth below soil surface as well as their distance to the main stem. Therefore, we assume that these structural changes affect the tensile strength of every single root. In order to confirm this assumption and possibly find more important root properties which have an influence on soil stabilization, the root systems of seven trees (three grey alder, four mountain maple) were excavated and analyzed. The study site is a catchment, where shallow landslides are common. It is located in the Prättigau valley in the Eastern Swiss Alps and was eco-engineered in 1997. The substrate is coarse-grained morainic material, mean annual air temperature reaches 4.64°C, average precipitation is 1170 mm, and the altitude is about 1000 m a.s.l.. The root system of each tree was uncovered carefully by hand to keep the roots undamaged, before removal it was photographed in situ to document the root distribution. The root systems were then cut into single root pieces of about 20 cm length and the position of each sample was documented. The root samples were then hierarchically classified in several root classes. The tensile strength of more than 500 samples was determined. In addition, the values for age, diameter, and root moisture were ascertained. Since it was assumed, that the cellular structure of the roots has an influence on the tensile strength, two microscopic thin-sections were prepared from all successfully tested root samples. The microscopic analysis focused on anatomical parameters such as the size and number of vessels, their distribution as well as their conductivity. The results for the final correlation between the anatomical characteristics and the root's tensile strength are presented for both tree species.

Kink, Dimitri; Bast, Alexander; Meyer, Christine; Meier, Wolfgang; Egli, Markus; Gärtner, Holger

2014-05-01

160

Tensile strength of the cement-bone interface depends on the amount of bone interdigitated with PMMA cement  

Microsoft Academic Search

An experimental investigation was performed to (1) determine the general mechanical behavior and in particular, the post-yield behavior of the cement-bone interface under tensile loading, (2) determine where interface failure occurs, and (3) determine if the mechanical properties of the interface could be related to the density of bone at the interface and\\/or the amount of cement-bone interdigitation. Seventy-one cement-bone

K. A. Mann; D. C. Ayers; F. W. Werner; R. J. Nicoletta; M. D. Fortino

1997-01-01

161

Self-assembled smooth muscle cell tissue rings exhibit greater tensile strength than cell-seeded fibrin or collagen gel rings  

PubMed Central

In this study, we created self-assembled smooth muscle cell (SMC) tissue rings (comprised entirely of cells and cell-derived matrix; CDM) and compared their structure and material properties with tissue rings created from SMC-seeded fibrin or collagen gels. All tissue rings were cultured statically for 7 days in supplemented growth medium (with ?-amino caproic acid, ascorbic acid, and insulin-transferrin-selenium), prior to uniaxial tensile testing and histology. Self-assembled CDM rings exhibited ultimate tensile strength and stiffness values that were two-fold higher than fibrin gel and collagen gel rings. Tensile testing of CDM, fibrin gel and collagen gel rings treated with deionized water to lyse cells showed little to no change in mechanical properties relative to untreated ring samples, indicating that the ECM dominates the measured ring mechanics. In addition, CDM rings cultured in supplemented growth medium were significantly stronger than CDM rings cultured in standard, unsupplemented growth medium. These results illustrate the potential utility of self-assembled cell rings as model CDM constructs for tissue engineering and biomechanical analysis of ECM material properties. PMID:22865465

Adebayo, Olufunmilayo; Gwyther, Tracy A.; Hu, Jason Z.; Billiar, Kristen L.; Rolle, Marsha W.

2012-01-01

162

Incorporating Turbula mixers into a blending scale-up model for evaluating the effect of magnesium stearate on tablet tensile strength and bulk specific volume.  

PubMed

Turbula bottle blenders are often used in lab-scale experiments during early-stage pharmaceutical product development. Unfortunately, applying knowledge gained with these blenders to larger-sized diffusion mixers is limited by the lack of blending models that include Turbula mixers. To address this need for lubrication blending scale-up, 2:1 blends of microcrystalline cellulose and spray-dried lactose or dibasic calcium phosphate were mixed with 1% magnesium stearate using Turbula bottle blenders, varying bottle volume, V (30-1250mL); bottle headspace fraction, F(headspace) (30-70%); and the number of blending cycles, r (24 to ?190,000 cycles). The impact of lubrication blending on tensile strength and bulk specific volume quality attributes, QA, was modeled by:where QA(0) is initial QA value, ? is sensitivity of QA to lubrication, ? is formulation-specific lubrication rate constant, and L is characteristic mixing length scale (i.e. 1.5V(1/3) for Turbula blenders, V(1/3) for simple diffusion mixers). The factor of 1.5 captures the bottle dimensions and the more complex mixing dynamics of the Turbula blender. This lubrication blending process model is valid for scale-up from 30-mL to 200-L blenders. Assessing bulk specific volume may provide a simpler, more material-sparing means for determining ? than tensile strength, since these QAs exhibited similar ? values. PMID:22405966

Kushner, Joseph

2012-06-15

163

Data Qualification and Data Summary Report: Intact Rock Properties Data on Tensile Strength, Schmidt Hammer Rebound Hardness, and Rock Triaxial Creep  

SciTech Connect

This report presents a systematic review of the available data in the TDMS that are relevant to the following intact rock properties: rock tensile strength, Schmidt hammer rebound hardness, and rock triaxial creep. Relevant data are compiled from qualified and unqualified sources into the summary DTNs and these DTNs are evaluated for qualification using the method of corroborating data as defined in AP-SIII.2Q, ''Qualification of Unqualified Data''. This report also presents a summary of the compiled information in the form of descriptive statistics and recommended values that will be contained in a Reference Information Base (RIB) item prepared in accordance with AP-SIII.4Q, ''Development, Review, Online Placement, and Maintenance of Individual Reference Information Base Data Items''. The primary purpose of this report is to produce qualified sets of data that include all relevant intact rock tensile strength, Schmidt hammer rebound hardness, and rock triaxial creep testing done over the course of the Yucca Mountain Project (YMP). A second purpose is to provide a qualified summary (i.e., a RIB data item) of the test results using descriptive statistics. The immediate purpose of the report is to support the data needs of repository design; however, the products are designed to be appropriate for general use by the YMP. The appropriateness and limitations, if any, of the data, with respect to the intended use, are addressed in this report.

E.M. Cikanek; R.J. Blakely; T.A. Grant; L.E. Safley

2003-07-29

164

Compressive and tensile failure at high fluid pressure where preexisting fractures have cohesive strength, with application to the San Andreas fault  

USGS Publications Warehouse

In thrusting and strike-slip situations, when the maximum principal horizontal stress S1 acts nearly normal to a fault (a misoriented fault, such as the San Andreas), pore-fluid pressure > the lithostatic load, Pf > Sv, is required to reactivate movement on that fault. Pf > Sv may be achieved without causing hydraulic tensile fracturing if (1) previously existing cracks have regained cohesive strength by chemical processes, (2) subcritical crack growth has been blunted, and (3) the least principal horizontal stress S3 nearly equals Sv. Where Pf > Sv has been attained within a misaligned fault, increasing the stress difference (S1 - S3) at constant Pf > Sv will not lead to shear failure, while a decrease in (S1 - S3) can lead to shear failure of that fault. However, where the cohesive strength of material in a broad misaligned fault zone is less than that of the surrounding intact rock, increasing (S1 - S3) while Pf > Sv can result in shear failure of fractures at near optimum angles to S1, but confined within this weak fault zone. If this faulting results in the local short-lived attainment of Pf > Sv (cataclastic deformation and frictional heating overcoming dilation) and a simultaneous decrease in (S1 - S3), this combination of effects can trigger movement along the main trace of the misaligned fault. When increasing Pf results in hydraulic failure, anisotropy in tensile strength or fracture toughness resulting from foliation within faults allows fractures to propagate along the planes of weakness rather than across the foliation perpendicular to S3.

Fournier, R.O.

1996-01-01

165

Mechanical Strength and Failure Characteristics of Cast Mg-9 pctAl-1 pctZn Alloys Produced by a Heated-Mold Continuous Casting Process: Tensile Properties  

NASA Astrophysics Data System (ADS)

The mechanical properties and failure characteristics of a cast Mg alloy (AZ91: Mg-Al8.9-Zn0.6-Mn0.2) produced by a heated-mold continuous casting process (HMC) are investigated. In a modification of the original HMC process, the cooling of the liquid alloy by direct water spray is carried out in an atmosphere of high-purity argon gas. The HMC-AZ91 alloy exhibits excellent mechanical properties (high strength and high ductility) that are about twice as high as those for the same alloy produced by conventional gravity casting. The increased material strength and ductility of the HMC sample are attributed to nanoscale and microscale microstructural characteristics. The fine grains and tiny spherical eutectic structures ( e.g., Mg17Al12 and Al6Mn) distributed randomly in the matrix of the HMC alloy result in resistance to dislocation movement, leading to high tensile strength. Basal slip on (0001) planes in the relatively organized crystal orientation of the HMC alloy, as well as grain boundary sliding through tiny spherical eutectic structures, results in high ductility. Details of the failure mechanism under static loading in the HMC alloy are also discussed using failure models.

Okayasu, Mitsuhiro; Takeuchi, Shuhei; Ohfuji, Hiroaki

2014-11-01

166

Investigation of the C-ring test for measuring hoop tensile strength of nuclear grade ceramic composites  

NASA Astrophysics Data System (ADS)

Silicon carbide (SiC) and silicon carbide fiber reinforced composites (SiC/SiCf) are currently being evaluated as a high temperature material for use in nuclear reactors. While methods to determine the mechanical properties of SiC/SiCf on planar test specimens are well established, mechanical testing methods for tubular SiC/SiCf are still being developed. In this study the C-ring test is evaluated for use with nuclear grade SiC/SiCf as a method of measuring hoop strength. For the samples tested in this work, hoop strengths from C-ring testing are shown to agree within 6% to those obtained using expanding plug testing and analysis shows that the expected composite behavior is observed during testing. While other techniques may give more accurate values for hoop stress, the small specimen requirements and ease of testing makes C-ring testing a valuable tool.

Jacobsen, G. M.; Stone, J. D.; Khalifa, H. E.; Deck, C. P.; Back, C. A.

2014-09-01

167

Time/Temperature Dependent Tensile Strength of SiC and Al2O3-Based Fibers  

NASA Technical Reports Server (NTRS)

In order to understand and model the thermomechanical behavior of fiber-reinforced composites, stress-rupture, fast-fracture, and warm-up rupture studies were conducted on various advanced SiC and Al2O3-based fibers in the,temperature range from 20 to 1400 C in air as well as in inert environments. The measured stress-rupture, fast fracture, and warm-up rupture strengths were correlated into a single master time/temperature-dependent strength plot for each fiber type using thermal activation and slow crack growth theories. It is shown that these plots are useful for comparing and selecting fibers for CMC and MMC reinforcement and that, in comparison to stress rupture tests, the fast-fracture and warm-up tests can be used for rapid generation of these plots.

Yun, Hee Mann; DiCarlo, James A.

1997-01-01

168

Effects of build orientation on tensile strength for stereolithography-manufactured ASTM D-638 type I specimens  

Microsoft Academic Search

A statistical design of experiments (DOE) approach was used to determine if specific build orientation parameters impacted\\u000a mechanical strength of stereolithography (SL) fabricated parts. A single platform (25.4 × 25.4-cm cross-section) on the 3D\\u000a Systems Viper si2 SL machine was designed to hold 18 ASTM D-638 type I samples manufactured in different orientations. The\\u000a DOE tested three factors: axis, layout,

Rolando Quintana; Jae-Won Choi; Karina Puebla; Ryan Wicker

2010-01-01

169

Hardness and tensile strength of zircon particles and TiB 2 reinforced Al-A356.1 alloy matrix composites: comparative study  

NASA Astrophysics Data System (ADS)

Aluminum matrix composites are important engineering materials in automotive, aerospace, thermal, wear, and other applications because of excellent low weight, high specific strength, and better physical and mechanical properties compared to pure aluminum. In this paper, zircon and TiB II ceramic particles with different amounts were incorporated into Al-A356.1 alloy by stir-casting route. The ceramic particles size and adding temperature were 1 micron and 750°C respectively. Microstructure of samples has been investigated by scanning electron microscopy (SEM); hence the dispersion of reinforcement was noted. Situation of compounds of composites was examined by XRD. Mechanical tests such as hardness measurement, tensile and physical (density) tests were used. Results showed that the mechanical properties and microstructure behavior of composites have improved compared to monolithic alloy. Microstructures of the composites in as-cast conditions show uniform distribution particles and reveal better bonding in the case of zircon reinforced composite compare to TiB II, but increasing the amount of reinforcement shows better conditions in the case of TiB II reinforced composite. It is observed that TiB II reinforced composites have a better wetting condition compare to zircon reinforced composites.

Shirvani Moghaddam, K.; Abdizadeh, H.; Baharvandi, H. R.; Ehsani, N.; Abdi, F.

2007-07-01

170

Can extended photoactivation time of resin-based fissure sealer materials improve ultimate tensile strength and decrease water sorption/solubility?  

PubMed Central

Objective: This study aimed to evaluate the impact of extended photoactivation time on ultimate tensile strength (UTS), water sorption (WS) and solubility (WSB) of resin-based materials used as fissure-sealants. Methods: A fissure-sealant (Fluroshield) and a flowable composite (Permaflo) polymerized for 20 and 60 seconds were tested. For UTS, 20 hourglass shaped samples were prepared representing two materials and two photoactivation time (n=5). After 24-h dry-storage, samples were tested in tension using a universal testing machine at a cross-head speed of 0.5 mm/min (UTS was calculated in MPa). For WS and WSB, 20 disks with 5 mm diameter and 1 mm height (n=5) were prepared and volumes were calculated (mm3). They were transferred to desiccators until a constant mass was obtained (m1) and were subsequently immersed in distilled water until no alteration in mass was detected (m2). Samples were reconditioned to constant mass in desiccators (m3). WS and WSB were determined using the equations m2-m3/V and m1-m3/V, respectively. Data were subjected to two-way ANOVA and Tukey’s HSD test (P<.05). Results: There was no significant difference between materials or photoactivation times for the UTS and WS. Permaflo presented lower but negative WSB compared to Fluroshield. Conclusions: Extended photoactivation time did not improve the physical properties tested. Fluroshield presented physical properties that were similar to or better than Permaflo. PMID:23077420

Borges, Boniek Castillo Dutra; Souza-Júnior, Eduardo José; Catelan, Anderson; Paulillo, Luís Alexandre Maffei Sartini; Aguiar, Flávio Henrique Baggio

2012-01-01

171

Simultaneous determination of the impurity and radial tensile strength of reduced glutathione tablets by a high selective NIR-PLS method  

NASA Astrophysics Data System (ADS)

This paper establishes a high-throughput and high selective method to determine the impurity named oxidized glutathione (GSSG) and radial tensile strength (RTS) of reduced glutathione (GSH) tablets based on near infrared (NIR) spectroscopy and partial least squares (PLS). In order to build and evaluate the calibration models, the NIR diffuse reflectance spectra (DRS) and transmittance spectra (TS) for 330 GSH tablets were accurately measured by using the optimized parameter values. For analyzing GSSG or RTS of GSH tablets, the NIR-DRS or NIR-TS were selected, subdivided reasonably into calibration and prediction sets, and processed appropriately with chemometric techniques. After selecting spectral sub-ranges and neglecting spectrum outliers, the PLS calibration models were built and the factor numbers were optimized. Then, the PLS models were evaluated by the root mean square errors of calibration (RMSEC), cross-validation (RMSECV) and prediction (RMSEP), and by the correlation coefficients of calibration (Rc) and prediction (Rp). The results indicate that the proposed models have good performances. It is thus clear that the NIR-PLS can simultaneously, selectively, nondestructively and rapidly analyze the GSSG and RTS of GSH tablets, although the contents of GSSG impurity were quite low while those of GSH active pharmaceutical ingredient (API) quite high. This strategy can be an important complement to the common NIR methods used in the on-line analysis of API in pharmaceutical preparations. And this work expands the NIR applications in the high-throughput and extraordinarily selective analysis.

Li, Juan; Jiang, Yue; Fan, Qi; Chen, Yang; Wu, Ruanqi

172

High-strain rate tensile characterization of graphite platelet reinforced vinyl ester based nanocomposites using split-Hopkinson pressure bar  

NASA Astrophysics Data System (ADS)

The dynamic response of exfoliated graphite nanoplatelet (xGnP) reinforced and carboxyl terminated butadiene nitrile (CTBN) toughened vinyl ester based nanocomposites are characterized under both dynamic tensile and compressive loading. Dynamic direct tensile tests are performed applying the reverse impact Split Hopkinson Pressure Bar (SHPB) technique. The specimen geometry for tensile test is parametrically optimized by Finite Element Analysis (FEA) using ANSYS Mechanical APDLRTM. Uniform stress distribution within the specimen gage length has been verified using high-speed digital photography. The on-specimen strain gage installation is substituted by a non-contact Laser Occlusion Expansion Gage (LOEG) technique for infinitesimal dynamic tensile strain measurements. Due to very low transmitted pulse signal, an alternative approach based on incident pulse is applied for obtaining the stress-time history. Indirect tensile tests are also performed combining the conventional SHPB technique with Brazilian disk test method for evaluating cylindrical disk specimens. The cylindrical disk specimen is held snugly in between two concave end fixtures attached to the incident and transmission bars. Indirect tensile stress is estimated from the SHPB pulses, and diametrical transverse tensile strain is measured using LOEG. Failure diagnosis using high-speed digital photography validates the viability of utilizing this indirect test method for characterizing the tensile properties of the candidate vinyl ester based nanocomposite system. Also, quasi-static indirect tensile response agrees with previous investigations conducted using the traditional dog-bone specimen in quasi-static direct tensile tests. Investigation of both quasi-static and dynamic indirect tensile test responses show the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. Finally, the conventional compressive SHPB tests are performed. It is observed that both strength and energy absorbing capacity of these candidate material systems are distinctively less under dynamic tension than under compressive loading. Nano-reinforcement appears to marginally improve these properties for pure vinyl ester under dynamic tension, although it is found to be detrimental under dynamic compression.

Pramanik, Brahmananda

173

Psychosis and autism as diametrical disorders of the social brain  

E-print Network

Psychosis and autism as diametrical disorders of the social brain Bernard Crespi Killam Research-correlated, in that autism involves a general pattern of constrained overgrowth, whereas schizophrenia involves undergrowth of autistic-spectrum and psychotic-spectrum conditions. Keywords: autism, cognition, genomic conflict, genomic

Haig, David

174

ER-? agonist induces conversion of fibroblasts into myofibroblasts, while ER-? agonist increases ECM production and wound tensile strength of healing skin wounds in ovariectomised rats.  

PubMed

Oestrogen deprivation is one of the major factors responsible for many age-related processes, including poor wound healing in women. Previously, it has been shown that oestrogens have a modulatory effect in different wound-healing models. Therefore, in this study, the effect of selective oestrogen receptor (ER) agonists (PPT - ER-? agonist, DPN - ER-? agonist) on excisional and incisional wound-healing models was compared in ovariectomised rats in vivo as well as on human dermal fibroblasts (HDF) and human umbilical endothelial cells (HUVEC) in vitro. In the in vivo study, 4 months after either ovariectomy or sham ovariectomy, Sprague-Dawley rats were randomly divided into four groups and subjected to two incisional and excisional wounds: (i) control - sham operated, vehicle-treated; (ii) ovariectomised, vehicle-treated; (iii) ovariectomised, PPT treated; (iv) ovariectomised, DPN treated. In the in vitro study, HDFs and HUVECs were used. After treatment with ER agonists, cells were processed for immunocytochemistry and gelatin zymography. Our study shows that stimulation of ER-? leads to the differentiation of fibroblasts into myofibroblasts both in vivo and in vitro. On the other hand, the formation of extracellular matrix was more prominent, and wound tensile strength (TS) was increased when ER-? was stimulated. In contrast, stimulation of ER-? led to a more prominent increase in the expression of MMP-2 and decrease in wound TS. New information is presented in this investigation concerning oestrogen replacement therapy (ERT) in different wound-healing models. This study demonstrates that the ERT should be both wound and receptor-type specific. PMID:21507066

Novotný, Martin; Vasilenko, Tomáš; Varinská, Lenka; Smetana, Karel; Szabo, Pavol; Sarišský, Marek; Dvo?ánková, Barbora; Mojžiš, Ján; Bobrov, Nikita; Toporcerová, Silvia; Sabol, Franitšek; Matthews, Bryan J O; Gál, Peter

2011-09-01

175

Strength of magnesia-core crown with different body porcelains.  

PubMed

The diametral strengths of magnesia-core crowns made with different body porcelains, Will-Ceram, Crystar, Ceramco II, and Vita VMK 68, were measured. The results were compared to the diametral strengths of aluminous-core crowns and Renaissance crowns. A one-way analysis of variance showed that there were no significant differences in the strengths of magnesia-core crowns or the aluminous-core crowns, but the Renaissance crown strengths were significantly lower. PMID:8507332

Liu, C C; O'Brien, W J

1993-01-01

176

Tensile city  

E-print Network

Tensile City is a story that provides the answer to the following question: II If we were to leap forward in time and visit a city of the future, what would learn about our contemporary city ? II The story unfolds when ...

Chakkour, Mario Henri

1987-01-01

177

The theoretical strength of rubber: numerical simulations of polyisoprene networks at high tensile strains evidence the role of average chain tortuosity  

NASA Astrophysics Data System (ADS)

The ultimate stress and strain of polyisoprene rubber were studied by numerical simulations of three-dimensional random networks, subjected to tensile strains high enough to cause chain rupture. Previously published molecular chain force extension models and a numerical network construction procedure were used to perform the simulations for network crosslink densities between 2 × 1019 and 1 × 1020 cm-3, corresponding to experimental dicumyl-peroxide concentrations of 1-5 parts per hundred. At tensile failure (defined as the point of maximum stress), we find that the fraction of network chains ruptured is between 0.1% and 1%, depending on the crosslink density. The fraction of network chains that are taut, i.e. their end-to-end distance is greater than their unstretched contour length, ranges between 10% and 15% at failure. Our model predicts that the theoretical (defect-free) failure stress should be about twice the highest experimental value reported. For extensions approaching failure, tensile stress is dominated by the network morphology and purely enthalpic bond distortion forces and, in this regime, the model has essentially no free parameters. The average initial chain tortuosity (?) appears to be an important statistical property of rubber networks; if the stress is scaled by ? and the tensile strain is scaled by ?-1, we obtain a master curve for stress versus strain, valid for all crosslink densities. We derive an analytic expression for the average tortuosity, which is in agreement with values calculated in the simulations.

Hanson, David E.; Barber, John L.

2013-10-01

178

Experimental stress analysis of a sphere under a diametral load  

E-print Network

corners between the mold cavity and the parting surface, gate, vent and punch-out holes were beveled at 45 degrees for about 1/8 inch to prevent stress concentrations in the casting. Dow Corning 7 Com- pound, referred to as DC-7, was used...LIBRA&V tk M COLLEQE OF YfXAS EXPERIMENTAL STRESS ANALYSIS OF A SPHERE UNDER A DIAMETRAL LOAD A Thesis By THEODORE ALVAN NOYFS Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment...

Noyes, Theodore Alvan

2012-06-07

179

Amalcore strength recovery following refilling of access preparations with amalgam.  

PubMed

After endodontic treatment through an amalgam core, the recommended procedure is to replace the entire core. This study examined the strength achieved by restoring the access openings with dental amalgam and reported the type of failure during strength testing. Seventy-two Dispersalloy 8 x 8 mm cylindrical specimens were produced using controlled condensation pressures. The specimens were randomized in three groups: (1) controls, (2) 3 mm access preparations wetted with mercury-rich amalgam before restoration, and (3) 3 mm access preparations restored unwetted. The specimens tested for compressive strength were separated in two subsets. The unwetted group demonstrated significantly less strength than the control and wetted group (p less than 0.05), while the unwetted and wetted groups revealed significantly less strength than the control group (p less than 0.05). The mean diametral tensile strength recovery for the wetted and unwetted groups was 76% and 69%, respectively. The qualitative assessment of the fracture zones indicated that wetted specimens exhibited more fractures through the new amalgam core than the unwetted specimens (p less than 0.05). It would appear that amalgam refilling of access preparations through amalgam cores has clinical potential. PMID:1403921

MacInnis, W A; Peacocke, L E; Zakariasen, K L; MacDonald, R M

1992-07-01

180

Stresses and failure in rings of rock loaded in diametral tension or compression  

Microsoft Academic Search

The failure of rock materials in the form of rings subjected to line loadings on either their internal or external surfaces is studied. Formulae for the stresses and some numerical values are given. Experimental results for three fine-grained rocks are given and values of the tensile strengths so obtained are compared with those from direct tension, indirect tension (Brazilian) and

J C Jaeger; E R Hoskins

1966-01-01

181

Tensile Properties and Viscoelastic Model of a Polyimide Film  

NASA Astrophysics Data System (ADS)

This paper presents tensile properties of a polyimide thin film used in electronic devices. Tensile tests were performed to determine Young's modulus, proportional limit, yield stress, ultimate tensile strength and elongation of the polyimide film. Effects of strain rate and temperature on the tensile properties were discussed. There was a little effect of strain rate on Young's modulus but proportional limit, yield stress and ultimate tensile strength increased with increasing strain rate. Only elongation decreased with strain rate. Young's modulus, proportional limit, yield stress and ultimate tensile strength decreased with increasing temperature, but elongation increased. Applicability of a viscoelastic model for describing the stress-strain curves of the polyimide film was discussed.

Zhang, Shengde; Mori, Syuhei; Sakane, Masao; Nagasawa, Tadashi; Kobayashi, Kaoru

182

Structure of the Space of Diametrically Complete Sets in a Minkowski Space  

E-print Network

Structure of the Space of Diametrically Complete Sets in a Minkowski Space Jos´e Pedro Moreno and Rolf Schneider Abstract We study the structure of the space of diametrically complete sets in a finite di- mensional normed space. In contrast to the Euclidean case, this space is in general not convex

Schneider, Rolf

183

Fatigue analysis for a multi-lap spot welded joint of high strength steel using quasi static tensile-shear test  

Microsoft Academic Search

The welding quality of spot weldment is an important factor that significantly affects the strength, stiffness, safety, and\\u000a other performance characteristics of vehicles. Therefore, quality control and fatigue life evaluation of spot weldment are\\u000a necessary processes. This paper presents a method for determining the fatigue life of multi-lap spot weldment of a high strength\\u000a steel sheet. In this method, the

S. R. Sin; S. M. Yang; H. S. Yu; C. W. Kim; H. Y. Kang

2008-01-01

184

Tensile testing of SiC whiskers  

SciTech Connect

The room temperature tensile mechanical properties of SiC whiskers have been examined using a micro-tensile-test apparatus. SiC whiskers exhibit an average tensile strength of 8.4 GPa for a 5 mm tested length, and an average elastic modulus of 581 GPa. These results indicate that SiC whiskers possess significant potential as short-fiber reinforcement elements in ceramic matrix composites.

Petrovic, J.J.

1984-01-01

185

Study of the effect of ? phase on hydrogen embrittlement of Inconel 718 by notch tensile tests  

Microsoft Academic Search

This article describes the effect of ? phase on the hydrogen embrittlement (HE) sensitivity of Inconel 718 conducted by notch tensile tests. Notch tensile specimens were subjected to proper heat treatment to produce various precipitation morphologies of ? phase. Hydrogen was charged into the tensile specimens before tensile tests via a cathodic charging process. The loss of notch tensile strength

Liufa Liu; Chunquan Zhai; Chen Lu; Wenjiang Ding; Akio Hirose; Kojiro F. Kobayashi

2005-01-01

186

Cassini First Diametric Radio Occultation of Saturn's Rings  

NASA Astrophysics Data System (ADS)

We present preliminary results expected from the first planned Cassini radio occultation observation of Saturn's rings, to be conducted on May 3rd, 2005. The path of Cassini as seen from Earth (the occultation track) has been designed to cross the rings from the west to the east ansa almost diametrically, allowing for occultation of all major ring features at two widely separated longitudes (about 180 deg apart). The duration of the geometric occultation is about 1.5 hours on each side. During the occultation, Cassini transmits through the rings three coherent monochromatic radio signals of wavelength 0.94, 3.6, and 13 cm (Ka-, X-, and S-band respectively), a capability unique to Cassini. The perturbed signals received at the Earth are recorded at the NASA DSN complexes at Goldstone and Canberra. Both direct and forward-scattered components of the signal may be identified in spectrograms of the received signals. The time history of the extinction of the direct signal is expected to yield high-spatial-resolution optical depth and phase shift profiles of ring structure. The timing of the occultation was optimized to allow probing the rings when the ring-opening-angle B (the angle between the line-of-sight and the ring plane) is relatively large (B = 23 deg), hence maximizing chances of measuring for the first time the structure of the relatively optically thick Ring B. In a similar experiment by Voyager in 1980, excessive signal attenuation along the long path within the nearly closed rings (B = 5.9 deg) limited the utility of the observations in relatively thick ring regions, in particular the main Ring B. For the Cassini optimized occultation geometry, a large B, slow radial velocity along the occultation track, and much improved phase stability of the reference ultrastable oscillator (USO) on board Cassini combine to promise achievable radial resolution approaching 100 m over a good fraction of the rings. Measurement of the amplitude and phase of the diffracted signal enables reconstruction of the observations to remove diffraction effects. Reliable high resolution profiling of ring structure at multiple ring longitudes is at the heart of investigating ring kinematics and dynamics, a major scientific objective of this experiment. In addition, observations of the scattered signal combined with measurements of the differential extinction of the three radio signals are expected to yield complementary information about ring physical properties, including particle size distribution and thickness, another major scientific objective.

Marouf, E.; French, R.; Rappaport, N.; Kliore, A.; Flasar, M.; Nagy, A.; Ambrosini, R.; McGhee, C.; Schinder, P.; Anabtawi, A.; Barbinis, E.; Goltz, G.; Thomson, F.; Wong, K.

2005-05-01

187

Direct Lentiviral-Cyclooxygenase 2 Application to the Tendon-Bone Interface Promotes Osteointegration and Enhances Return of the Pull-Out Tensile Strength of the Tendon Graft in a Rat Model of Biceps Tenodesis  

PubMed Central

This study sought to determine if direct application of the lentiviral (LV)-cyclooxygenase 2 (COX2) vector to the tendon-bone interface would promote osteointegration of the tendon graft in a rat model of biceps tenodesis. The LV-COX2 gene transfer strategy was chosen for investigation because a similar COX2 gene transfer strategy promoted bony bridging of the fracture gap during bone repair, which involves similar histologic transitions that occur in osteointegration. Briefly, a 1.14-mm diameter tunnel was drilled in the mid-groove of the humerus of adult Fischer 344 rats. The LV-COX2 or ?gal control vector was applied directly into the bone tunnel and onto the end of the tendon graft, which was then pulled into the bone tunnel. A poly-L-lactide pin was press-fitted into the tunnel as interference fixation. Animals were sacrificed at 3, 5, or 8 weeks for histology analysis of osteointegration. The LV-COX2 gene transfer strategy enhanced neo-chondrogenesis at the tendon-bone interface but with only marginal effect on de novo bone formation. The tendon-bone interface of the LV-COX2-treated tenodesis showed the well-defined tendon-to-fibrocartilage-to-bone histologic transitions that are indicative of osteointegration of the tendon graft. The LV-COX2 in vivo gene transfer strategy also significantly enhanced angiogenesis at the tendon-bone interface. To determine if the increased osteointegration was translated into an improved pull-out mechanical strength property, the pull-out tensile strength of the LV-COX2-treated tendon grafts was determined with a pull-out mechanical testing assay. The LV-COX2 strategy yielded a significant improvement in the return of the pull-out strength of the tendon graft after 8 weeks. In conclusion, the COX2-based in vivo gene transfer strategy enhanced angiogenesis, osteointegration and improved return of the pull-out strength of the tendon graft. Thus, this strategy has great potential to be developed into an effective therapy to promote tendon-to-bone healing after tenodesis or related surgeries. PMID:24848992

Wergedal, Jon E.; Stiffel, Virginia; Lau, Kin-Hing William

2014-01-01

188

Effect of the strain-induced melt activation (SIMA) process on the tensile properties of a new developed super high strength aluminum alloy modified by Al-5Ti-1B grain refiner  

SciTech Connect

In this study, the effect of Al-5Ti-1B grain refiners and modified strain-induced melt activation process on an Al-Zn-Mg-Cu alloy was studied. The optimum level of Ti was found to be 0.1 wt.%. The specimens subjected to deformation ratio of 40% (at 300 Degree-Sign C) and various heat treatment times (10-40 min) and temperature (550-600 Degree-Sign C) regimes were characterized in this study. Reheating condition to obtain a fine globular microstructure was optimized. Microstructural examinations were conducted by optical and scanning electron microscopy coupled with an energy dispersive spectrometry. The optimum temperature and time in strain-induced melt activation process are 575 Degree-Sign C and 20 min, respectively. T6 heat treatment including quenching to room temperature and aging at 120 Degree-Sign C for 24 h was employed to reach to the maximum strength. Significant improvements in mechanical properties were obtained with the addition of grain refiner combined with T6 heat treatment. After the T6 heat treatment, the average tensile strength increased from 283 MPa to 587 and 332 MPa to 617 for samples refined with 2 wt.% Al-5Ti-1B before and after strain-induced melt activation process and extrusion process, respectively. Ultimate strength of Ti-refined specimens without SIMA process has a lower value than globular microstructure specimens after SIMA and extrusion process. - Highlights: Black-Right-Pointing-Pointer The effect of Al-5Ti-1B on the aluminum alloy produced by SIMA process was studied. Black-Right-Pointing-Pointer Al-5Ti-1B is an effective in reducing the grain and reagent fine microstructure. Black-Right-Pointing-Pointer Reheating condition to obtain a fine globular microstructure was optimized. Black-Right-Pointing-Pointer The optimum temperature and time in SIMA process are 575 Degree-Sign C and 20 min respectively. Black-Right-Pointing-Pointer UTS of globular structure specimens have a more value than Ti-refined specimens.

Haghparast, Amin [School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)] [School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Nourimotlagh, Masoud [Young Researchers Club, Dareshahr Branch, Islamic Azad university (Iran, Islamic Republic of)] [Young Researchers Club, Dareshahr Branch, Islamic Azad university (Iran, Islamic Republic of); Alipour, Mohammad, E-mail: Alipourmo@ut.ac.ir [School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)] [School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

2012-09-15

189

Strength of Human Pulleys  

Microsoft Academic Search

The length, breaking strength, and tensile strength of each of the annular fibro-osseous pulleys of digital flexor sheath in ten fresh human cadaver specimens were measured. The first annular pulley and the fourth annular pulley were found to be the strongest, while the second annular pulley was the weakest. The design of artificial pulleys should reproduce the strength of the

PAUL R. MANSKE; PEGGY A. LESKER

1977-01-01

190

Tensile properties of martensitic stainless steels at elevated temperatures  

Microsoft Academic Search

Tensile properties of quenched and tempered martensitic alloys EP-823, HT-9, and 422 were evaluated at temperatures ranging\\u000a from ambient to 600 C as a function of three different tempering times. The results indicated that the yield strength, ultimate\\u000a tensile strength, and the failure strength were gradually reduced with increasing temperature. The ductility parameters were\\u000a enhanced at elevated temperatures due to

A. K. Roy; S. R Kukatla; B. Yarlagadda; V. N. Potluri; M. Lewis; M. Jones; B. J. O’Toole

2005-01-01

191

Are the Autism and Positive Schizotypy Spectra Diametrically Opposed in Empathizing and Systemizing?  

ERIC Educational Resources Information Center

Crespi and Badcock's (Behaviour Brain Sci 31: 241-261, 2008) novel theory, which presents autism and positive schizophrenia as diametrical opposites on a cognitive continuum, has received mixed support in the literature to date. The current study aimed to further assess the validity of this theory by investigating predictions in relation to…

Russell-Smith, Suzanna N.; Bayliss, Donna M.; Maybery, Murray T.; Tomkinson, Rosy L.

2013-01-01

192

An open-end burst test method to obtain uniaxial hoop tensile properties of fuel cladding in a hot cell  

NASA Astrophysics Data System (ADS)

The hoop stress-hoop strain relationship of fuel cladding is one of the essential input parameters for safety analysis of fuel rods. The three objectives of this paper were: to propose a burst test method for open-end tube specimens with the uniaxial hoop stress condition; to develop the necessary in-cell high temperature open-end burst (OEB) techniques to implement the method; and to determine the optimum specimen length for the proposed OEB test method. Silicone oil was selected as the pressurization medium, and it was sealed inside the specimens not by welding but by O-rings so that no axial tensile stress was induced in the specimens. The specimens with combined end plugs and O-rings were successfully assembled by manipulators in a hot cell, and a high temperature (?350 °C), high pressure (?100 MPa) seal was achieved. The optimum specimen length was determined by using ductile and embrittled tubes with various lengths of 30-60 mm and was found to be around 45 mm for typical BWR fuel rods. During the OEB test, internal pressure and diametral expansion were monitored to obtain the basic mechanical performance properties of the fuel cladding such as yield stress, ultimate strength, as well as the true hoop stress-hoop strain curve.

Nakatsuka, Masafumi; Aita, Makoto; Sakamoto, Kan; Higuchi, Toru

2013-03-01

193

Tensile Properties of Extruded Corn Protein Low-Density Polyethylene Films 1  

Microsoft Academic Search

Cereal Chem. 79(2):261-264 The strength of films extruded from powder blends of corn zein or corn gluten meal (CGM) with low-density polyethylene was investigated. Tensile strength, percent elongation at break, and elastic modulus of the extruded films were measured. The tensile strength decreased from 13 MPa to ?10.5 MPa with zein addition, while CGM addition resulted in tensile strength of

Thomas J. Herald; Ersel Obuz; Wesley W. Twombly; Kent D. Rausch

2002-01-01

194

Tensile Properties of GRCop-84  

NASA Technical Reports Server (NTRS)

This is a chapter in the final report on GRCop-84 for the Reusable Launch Vehicle (RLV) Second Generation/Project Constellation Program. It contains information on the tensile properties of GRCop-84. GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) was produced by extrusion and Hot Isostatic Pressing (HIPing). Some of the extrusions were rolled to plate and sheet while other extrusions were drawn into tubing. The material was further subjected to various heat treatments corresponding to annealing, anticipated typical brazing conditions, an end-of-life condition and various elevated temperature exposures to attempt to improve creep resistance. As anticipated, cold work increased strength while decreasing ductility. Annealing at 600 C (1112 F) and higher temperatures was effective. An exposure for 100 h at 500 C (932 F) resulted in an increase in strength rather than the anticipated decrease. High temperature simulated-braze cycles and thermal exposures lowered the strength of GRCop-84, but the deceases were small compared to precipitation strengthened copper alloys. It was observed that the excess Cr could form large precipitates that lower the reduction in area though it appears a minimum amount is required. Overall, GRCop-84 exhibits good stability of its tensile properties, which makes it an excellent candidate for rocket engine liners and many other high temperature applications.

Ellis, David L.; Loewenthal, William S.; Yun, Hee-Man

2012-01-01

195

High tensile ductility in a nanostructured metal  

Microsoft Academic Search

Nanocrystalline metals-with grain sizes of less than 100nm-have strengths exceeding those of coarse-grained and even alloyed metals, and are thus expected to have many applications. For example, pure nanocrystalline Cu (refs 1-7) has a yield strength in excess of 400MPa, which is six times higher than that of coarse-grained Cu. But nanocrystalline materials often exhibit low tensile ductility at room

Yinmin Wang; Mingwei Chen; Fenghua Zhou; En Ma

2002-01-01

196

Study of the optomechanical response of a diametrically loaded high-birefringent optical fiber  

NASA Astrophysics Data System (ADS)

This paper describes an experimental and finite-element study of the optomechanical response of a diametrically loaded Bow-Tie high-birefringent optical fiber. The thermomechanical finite-element analysis performed in this study uses PATRAN as the solid modeler and ABAQUS as the analysis package. The purpose of the study is to determine the effect of a diametrical load on the optical phase generated by polarimetric sensors as a function of polar angle. This is done in order to understand the behavior of structurally embedded polarimetric sensors, and to determine the effect of load-induced rotation of principal optical axis in a Bow- Tie fiber so as to assess the response of the lead-insensitivity of lead-insensitive embedded polarimetric sensor configurations. The results indicate that the stress concentrations produced by the stress applying parts are responsible for a polarimetric phase sensitivity that is a function of the applied load direction. The results further indicate that the diametric loads do not significantly alter the principal optical axes in the lead-in fiber.

Lo, Yu-Lung; Sirkis, James S.; Ritchie, K. T.

1995-04-01

197

Strength properties of separators in alkaline solutions  

SciTech Connect

Battery separator non-wovens that were coated with regenerated cellulose via the viscose process were subjected to storage in 40% potassium hydroxide (KOH) over a two month period. Samples were periodically checked for wet MD tensile strength. The test showed that among the non-wovens, the polyamide retained about 93% of its initial tensile strength whereas polyvinyl alcohol and cellulosic non-wovens retained only 55% and 35%, respectively. Adding a viscose coating to the non-wovens improved tensile strength retention by 20--25% for the polyvinyl alcohol and cellulosic materials. The viscose-coated polyamide retained more than 98% of its initial tensile strength.

Danko, T. [Viskase Corp., Chicago, IL (United States)

1996-11-01

198

Assessing the Strength Enhancement of Heterogeneous Networks of Miscible Polymer Blends  

NASA Astrophysics Data System (ADS)

At the typical crosslink densities of elastomers, the failure properties vary inversely with mechanical stiffness, so that compounding entails a compromise between stiffness and strength. Our approach to circumvent this conventional limitation is by forming networks of two polymers that: (i) are thermodynamically miscible, whereby the chemical composition is uniform on the segmental level; and (ii) have markedly different reactivities for network formation. The resulting elastomer consists of one highly crosslinked component and one that is lightly or uncrosslinked. This disparity in crosslinking causes their respective contributions to the network mechanical response to differ diametrically. Earlier results showed some success with this approach for thermally crosslinked blends of 1,2-polybutadiene (PVE) and polyisoprene (PI), as well as ethylene-propylene copolymer (EPM) and ethylene-propylene-diene random terpolymer (EPDM), taking advantage of their differing reactivities to sulfur. In this work we demonstrate the miscibility of polyisobutylene (PIB) with butyl rubber (BR) (a copolymer of PIB and polyisoprene) and show that networks in which only the BR is crosslinked possess greater tensile strengths than neat BR over the same range of moduli.

Giller, Carl; Roland, Mike

2013-03-01

199

Effect of Strain Rate on Tensile Properties of Carbon Fiber Epoxy-Impregnated Bundle Composite  

NASA Astrophysics Data System (ADS)

The tensile tests for high tensile strength polyacrylonitrile (PAN)-based (T1000GB) carbon fiber epoxy-impregnated bundle composite at various strain rates ranging from 3.33 × 10-5 to 6.0 × 102 s-1 (various crosshead speeds ranging from 8.33 × 10-7 to 1.5 × 101 m/s) were investigated. The statistical distributions of the tensile strength were also evaluated. The results clearly demonstrated that the tensile strength of bundle composite slightly increased with an increase in the strain rate (crosshead speed) and the Weibull modulus of tensile strength for the bundle composite decreased with an increase in the strain rate (crosshead speed), there is a linear relation between the Weibull modulus and the average tensile strength on log-log scale.

Naito, Kimiyoshi

2014-03-01

200

Approaches for Tensile Testing of Braided Composites  

NASA Technical Reports Server (NTRS)

For angleply composites, lamina tension and compression strengths are commonly determined by applying classical lamination theory to test data obtained from testing of angleply composite specimens. For textile composites such as 2D triaxial braids, analysis is more complex and standard test methods do not always yield reliable strength measurements. This paper describes recent research focused on development of more reliable tensile test methods for braided composites and presents preliminary data for various approaches. The materials investigated in this work have 0deg+/-60 2D triaxial braid architecture with nearly equal fiber volume fraction in each of the three fiber directions. Flat composite panels are fabricated by resin transfer molding (RTM) using six layers of the braided preform aligned along the 0deg fiber direction. Various epoxy resins are used as matrix materials. Single layer panels are also fabricated in order to examine local variations in deformation related to the braid architecture. Specimens are cut from these panels in the shape of standard straight-sided coupons, an alternative bowtie geometry, and an alternative notched geometry. Axial tensile properties are measured using specimens loaded along the 0deg fiber direction. Transverse tensile properties are measured using specimens loaded perpendicular to the 0deg fibers. Composite tubes are also fabricated by RTM. These tubes are tested by internal pressurization using a soft rubbery material sealed between the inside diameter of the tube and the load fixtures. The ends of the tube are unconstrained, so the primary load is in the hoop direction. Tubes are fabricated with the 0deg fibers aligned along the tube axis by overbraiding the preform on a mandrel. Since the loading is in the hoop direction, testing of the overbraided tube provides a measure of transverse tensile strength. Previous work has indicated that straight-sided coupons yield a transverse tensile strength that is much lower than the expected material strength because of premature edge-initiated failure. Full-field strain measured during transverse tensile tests clearly showed accumulation of edge damage prior to failure. In the current work, high speed video and testing of single layer specimens are used to investigate potential failure mechanisms in more detail. High speed video clearly shows the edge initiation in six layer transverse tensile test coupons. Specimens with the bowtie geometry and the notched geometry minimize this edge effect and yield significantly higher transverse tensile strength values compared to the straight-sided coupons. However, bowtie and notched specimens geometries are not ideal because of the non-uniform stress and strain fields in the region of failure. Testing of tubes using internal pressurization eliminates edge-initiated failure and provides a more uniform state of stress and strain. Preliminary results indicate that bowtie, notched, and tube specimens yield comparable values for transverse tensile strength and that these values are much higher than the strength measured using a straight-sided coupon.

Roberts, Gary D.; Salem, Jonathan A.; Bail, Justin L.; Kohlman, Lee W.; Binienda, Wieslaw K.; Martin, Richard E.

2011-01-01

201

Alumina fiber strength improvement  

NASA Technical Reports Server (NTRS)

The effective fiber strength of alumina fibers in an aluminum composite was increased to 173,000 psi. A high temperature heat treatment, combined with a glassy carbon surface coating, was used to prevent degradation and improve fiber tensile strength. Attempts to achieve chemical strengthening of the alumina fiber by chromium oxide and boron oxide coatings proved unsuccessful. A major problem encountered on the program was the low and inconsistent strength of the Dupont Fiber FP used for the investigation.

Pepper, R. T.; Nelson, D. C.

1982-01-01

202

Tensile properties of textile composites  

NASA Technical Reports Server (NTRS)

The importance of textile composite materials in aerospace structural applications has been gaining momentum in recent years. With a view to better understand the suitability of these materials in aerospace applications, an experimental program was undertaken to assess the mechanical properties of these materials. Specifically, the braided textile preforms were infiltrated with suitable polymeric matrices leading to the fabrication of composite test coupons. Evaluation of the tensile properties and the analyses of the results in the form of strength moduli, Poisson's ratio, etc., for the braided composites are presented. Based on our past experience with the textile coupons, the fabrication techniques have been modified (by incorporating glass microballoons in the matrix and/or by stabilizing the braid angle along the length of the specimen with axial fibers) to achieve enhanced mechanical properties of the textile composites. This paper outlines the preliminary experimental results obtained from testing these composites.

Avva, V. Sarma; Sadler, Robert L.; Lyon, Malcolm

1992-01-01

203

Effect of excitation energy on dentine bond strength and composite properties.  

PubMed

A number of available dentine adhesives and dental composites require light activation for polymerization. There are many variables which affect the light absorbing properties (e.g. bond strength) of these materials. The purpose of this study was to determine the influence of excitation energy (EE) on the dentine shear bond strength (SBS) of two lengths (2.1 mm and 3.25 mm) of light-cured (or dual-cured) dentine adhesives/dental composites. Diametral tensile (DTS) and compressive (CS) strengths of the same composites were also studied as a function of EE. Three resin composites with their respective adhesives (Marathon One/Tenure, Z100/Scotchbond Multi-Purpose and Herculite XRV/Optibond) were used. Five commercial curing lights were used to produce spectra of 100-650 mW cm-2. The data were analysed using ANOVA and the Tukey LSD test. No significant correlation was observed at the P > 0.05 level between EE and SBS in the shorter specimens. The SBS of Optibond is independent of EE and composite length. The SBS data were also analysed with Weibull statistics. The characteristic strengths calculated varied between 14 and 27 MPa. For the composites tested, mean values of DTS varied between 33 and 54 MPa and CS varied between 167 and 414 MPa. The DTS and CS of Z100 were significantly greater than those of the other materials. Intensities > or = 250 mW cm-2 produced equivalent mechanical properties within all composite materials and equivalent bond strengths in systems which included dentine, adhesive and composite resin. PMID:8027461

Lee, S Y; Greener, E H

1994-06-01

204

Strength of Rewelded Inconel 718  

NASA Technical Reports Server (NTRS)

Inconel 718, nickel-based alloy used extensively for high-temperature structural service, welded repeatedly without detriment to its strength. According to NASA report, tests show 12 repairs on same weld joint do not adversely affect ultimate tensile strenth, yield strength, fatigue strength, metallurgical grain structures, or ability of weld joint to respond to post weld heat treatments.

Bayless, E.; Lovoy, C. V.; Mcllwain, M. C.; Munafo, P.

1982-01-01

205

Tensile Properties of Under-Matched Weld Joints for 950 MPa Steel.  

NASA Astrophysics Data System (ADS)

In welding of 950 MPa-class high tensile strength steel, preheating is crucial in order to avoid cold cracks, which, however, eventually increases welding deformations. One way to decrease welding deformations is lowering preheating temperature by using under-matched weld metal. Toyota and others clarify that although breaking elongation can decrease due to plastic constraint effect under certain conditions, static tensile of under-matched weld joints is comparable to that of base metal. However, there has still been no report about joint static tensile of under-matched weld joints applied to 950 MPa-class high tensile strength steel. In this study, we aim to research tensile strength and fatigue strength of under-matched weld joints applied to 950 MPa-class high tensile steel.

Yamamoto, Kouji; Arakawa, Toshiaki; Akazawa, Nobuki; Yamamoto, Kousei; Matsuo, Hiroki; Nakagara, Kiyoyuki; Suita, Yoshikazu

206

Development of Manila Hemp Fiber Epoxy Composite with High Tensile Properties Through Handpicking Fiber Fragments  

NASA Astrophysics Data System (ADS)

Manila hemp fibers are separated to several sequent fragments from single fiber. The tensile strength of each fiber fragments and their epoxy composite are measured, followed by scanning electronic microscopic (SEM) analysis. The results show that the tensile strength of fiber fragments is almost constant along fiber. For composite, the tensile strength first increases and then decreases at the position near to root. The Young's modulus presents increasing with location from root to top for fiber and composite. Microstructure analysis indicates that the difference of tensile properties between fiber fragments derive from the difference of fiber diameter.

Liu, Ke; Takagi, Hitoshi; Yang, Zhimao

207

Tensile properties of titanium electrolytically charged with hydrogen  

NASA Technical Reports Server (NTRS)

Yield strength, ultimate tensile strength, and elongation were studied for annealed titanium electrolytically charged with hydrogen. The hydrogen was present as a surface hydride layer. These tensile properties were generally lower for uncharged titanium than for titanium with a continuous surface hydride; they were greater for uncharged titanium than for titanium with an assumed discontinuous surface hydride. We suggest that the interface between titanium and titanium hydride is weak. And the hydride does not necessarily impair strength and ductility of annealed titanium. The possibility that oxygen and/or nitrogen can embrittle titanium hydride is discussed.

Smith, R. J.; Otterson, D. A.

1971-01-01

208

Distribution of tensile property and microstructure in friction stir weld of 6063 aluminum  

Microsoft Academic Search

Dominant microstructural factors governing the global tensile properties of a friction-stir-welded joint of 6063 aluminum\\u000a were examined by estimating distribution of local tensile properties corresponding to local microstructure and hardness. Yield\\u000a and ultimate tensile strengths of the as-welded weld were significantly lower than those of the base material. Postweld aging\\u000a and postweld solution heat-treatment and aging (SHTA) restored the strengths

Yutaka S. Sato; Hiroyuki Kokawa

2001-01-01

209

Effects of Coating and Diametric Load on Fiber Bragg Gratings as Cryogenic Temperature Sensors  

NASA Technical Reports Server (NTRS)

Cryogenic temperature sensing was demonstrated using pressurized fiber Bragg gratings (PFBGs) with polymer coating of various thicknesses. The PFBG was obtained by applying a small diametric load to a regular fiber Bragg grating (FBG). The Bragg wavelengths of FBGs and PFBG were measured at temperatures from 295 K to 4.2 K. The temperature sensitivities of the FBGs were increased by the polymer coating. A physical model was developed to relate the Bragg wavelength shifts to the thermal expansion coefficients, Young's moduli, and thicknesses of the coating polymers. When a diametric load of no more than 15 N was applied to a FBG, a pressure-induced transition occurred at 200 K during the cooling cycle. The pressure induced transition yielded PFBG temperature sensitivities three times greater than conventional FBGs for temperatures ranging from 80 to 200 K, and ten times greater than conventional fibers for temperatures below 80 K. PFBGs were found to produce an increased Bragg wavelength shift of 2.2 nm compared to conventional FBGs over the temperature range of 4.2 to 300 K. This effect was independent of coating thickness and attributed to the change of the fiber thermo-optic coefficient.

Wu, meng-Chou; Pater, Ruth H.; DeHaven, Stanton L.

2008-01-01

210

Improve the Strength of PLA/HA Composite Through the Use of Surface Initiated Polymerization and Phosphonic Acid Coupling Agent  

PubMed Central

Bioresorbable composite made from degradable polymers, e.g., polylactide (PLA), and bioactive calcium phosphates, e.g., hydroxyapatite (HA), are clinically desirable for bone fixation, repair and tissue engineering because they do not need to be removed by surgery after the bone heals. However, preparation of PLA/HA composite from non-modified HA usually results in mechanical strength reductions due to a weak interface between PLA and HA. In this study, a calcium-phosphate/phosphonate hybrid shell was developed to introduce a greater amount of reactive hydroxyl groups onto the HA particles. Then, PLA was successfully grafted on HA by surface-initiated polymerization through the non-ionic surface hydroxyl groups. Thermogravimetric analysis indiated that the amount of grafted PLA on HA can be up to 7 %, which is about 50 % greater than that from the literature. PLA grafted HA shows significantly different pH dependent ?-potential and particle size profiles from those of uncoated HA. By combining the phosphonic acid coupling agent and surface initiated polymerization, PLA could directly link to HA through covalent bond so that the interfacial interaction in the PLA/HA composite can be significantly improved. The diametral tensile strength of PLA/HA composite prepared from PLA-grafted HA was found to be over twice that of the composite prepared from the non-modified HA. Moreover, the tensile strength of the improved composite was 23 % higher than that of PLA alone. By varying additional variables, this approach has the potential to produce bioresorbable composites with improved mechanical properties that are in the range of natural bones, and can have wide applications for bone fixation and repair in load-bearing areas. PMID:22399838

Wang, Tongxin; Chow, Laurence C.; Frukhtbeyn, Stanislav A.; Ting, Andy Hai; Dong, Quanxiao; Yang, Mingshu; Mitchell, James W.

2012-01-01

211

Strength enhancement process for prealloyed powder superalloys  

NASA Technical Reports Server (NTRS)

A technique involving superplastic processing and high pressure autoclaving was applied to a nickel base prealloyed powder alloy. Tensile strengths as high as 2865 MN/sq m at 480 C were obtained with as-superplastically deformed material. Appropriate treatments yielding materials with high temperature tensile and stress rupture strengths were also devised.

Waters, W. J.; Freche, J. C.

1977-01-01

212

Controlling factors in tensile deformation of nanocrystalline cobalt and nickel  

NASA Astrophysics Data System (ADS)

In an effort to understand and enhance the tensile ductility of truly nanocrystalline metals, we have investigated and compared the mechanical behavior, especially the tensile behavior, of hexagonal close-packed (hcp) nanocrystalline cobalt (˜20 nm) and face-centered cubic (fcc) nanocrystalline nickel (˜28 nm). Although both materials exhibit obvious plasticity in tension, their uniform tensile ductility, tensile elongation-to-failure, and fracture behavior are drastically different. In-situ synchrotron x-ray diffraction and ultra-small angle x-ray scattering reveal distinct deformation disparity in terms of residual strain development, texture evolution, nanovoid formation, and subsequent strain-hardening and strain-rate-hardening behavior. The dependence of tensile property on the strain rate and temperature is examined and discussed. Factors that influence the strength and ductility of nanocrystalline metals are considered and prioritized according to the current findings. A new Hall-petch relationship is proposed for nanocrystalline nickel.

Wang, Y. M.; Ott, R. T.; van Buuren, T.; Willey, T. M.; Biener, M. M.; Hamza, A. V.

2012-01-01

213

Deformation behavior of human dentin in liquid nitrogen: a diametral compression test.  

PubMed

Contribution of the collagen fibers into the plasticity of human dentin is considered. Mechanical testing of dentin at low temperature allows excluding the plastic response of its organic matrix. Therefore, deformation and fracture behavior of the dentin samples under diametral compression at room temperature and liquid nitrogen temperature are compared. At 77K dentin behaves like almost brittle material: it is deformed exclusively in the elastic regime and it fails due to growth of the sole crack. On the contrary, dentin demonstrates the ductile response at 300K. There are both elastic and plastic contributions in the deformation of dentin samples. Multiple cracking and crack tip blunting precede the failure of samples. Organic phase plays an important role in fracture of dentin: plasticity of the collagen fibers could inhibit the crack growth. PMID:25063091

Zaytsev, Dmitry; Panfilov, Peter

2014-09-01

214

The Effect of Reprocessing on the Tensile Properties of Composites  

NASA Astrophysics Data System (ADS)

In this study, waste cotton fabric reinforced polymer matrix composite material has been manufactured by a custom made recycling extruder. Composites with different reinforcement ratios as 12,5%wt ( 12,5%wtRPE ) and 25%wt ( 25%wtRPE ) were tested for their mechanical properties such as tensile strength and young's modulus. The material was then granulated down to the size enough to be used in the extrusion process in order to observe the effects of reprocessing. Reprocessing leads to improve Tensile Strength of composite materials and slows down the reduction of tensile strength of polyethylene. It was observed that composite materials were highly affected by the fiber orientation and acts as anisotropic material under the load.

Bodur, Mehmet Safa; Bakkal, Mustafa; Berkalp, Omer Berk; Sadikoglu, Telem Gok

2011-01-01

215

Tensile testing apparatus  

NASA Technical Reports Server (NTRS)

An improved mechanical extensometer is described for use with a constant load creep test machine. The dead weight of the extensometer is counterbalanced by two pairs of weights connected through a pulley system and to rod extension and leading into the furnace where the test sample is undergoing elevated temperature (above 500 F.) tensile testing. Novel gripper surfaces, conical tip and flat surface are provided in each sampling engaging platens to reduce the grip pressure normally required for attachment of the extensometer to the specimen and reduce initial specimen bending normally associated with foil-gage metal testing.

Blackburn, L. B.; Ellingsworth, J. R. (inventors)

1985-01-01

216

PBX 9502 TENSILE ANALYSIS  

SciTech Connect

With the recent creation of the PX HE Core Surveillance Database, individual specimen surveillance values can be easily compared to the corresponding individual qualification values to evaluate for trends. A review of the data shows a broad scatter in measured stress-strain values. Using the available HE surveillance database, it is clear that the surveillance measurements from the two Cycle 15 charges fall within the range of qualification stress and strain values recorded previously for PBX 9502 lots and that no apparent stockpile-age related trends are evident in the tensile stress-strain data. As a result of this investigation, some changes are being made to the core surveillance specifications to minimize the effects on tensile data scatter due to temperature and humidity differences and method to method changes. These data analyses do point out the need for a comprehensive understanding of the effect of a number of variables, i.e. formulation and pressing method, density, stockpile age, lot-to-lot variations, temperature, and humidity on the mechanical property behavior of HE composite materials. Too often data have been compared without the relevant details made available to determine if the test conditions were nominally the same or different. These results also point out the critical need to establish useful stress-strain limits for qualification and surveillance testing of HEs.

Idar, D.J.; Larson, S.A. [and others

2000-10-01

217

Tensile plasticity and ductile fracture  

NASA Astrophysics Data System (ADS)

A mathematical model of tensile plasticity and void growth based on the Gurson flow surface and associated flow law is developed and applied to the problem of ductile fracture under general tensile loading conditions. The flow surface defines the plastic strain components in the tensile region; conditions of fracture are defined in terms of the plastic deformational strain, porosity, and the ratio of mean stress to shear stress, p/?. This model reduces to the Carroll and Holt [J. Appl. Phys. 43, 759 (1972)] tensile threshold pressure for void growth, and to the Rice and Tracey [J. Mech. Phys. Solids 17, 201 (1969)] expression relating the fractional change in void radius to the incremental plastic deformational strain and p/? in a triaxial tensile stress field. The model has sufficient generality to represent plastic flow and fracture in notched and smooth tensile bars as well as in uniaxial-strain spallation tests. One- and two-dimensional finite-difference calculations demonstrate this capability.

Johnson, J. N.; Addessio, F. L.

1988-12-01

218

Biaxial and uniaxial data for statistical comparisons of a ceramic's strength  

NASA Technical Reports Server (NTRS)

The uniaxial and equibiaxial tensile strengths of a brittle material were measured in bending. Equibiaxial tension was attained by concentric ring loading of disks and uniaxial tension by four-point line loading of plates. The two specimen designs give equal volumes, surface areas, and stress gradients. Ground surfaces and lapped surfaces were tested. The equibiaxial tensile strength of a dense alumina was lower than the uniaxial tensile strengths for both ground and lapped surfaces, 8.5 and 8.1%, respectively. The Batdorf theory of flaw statistics, in which biaxial tensile strengths can be predicted from the statistical distribution of uniaxial tensile strength measurements, agreed with the data.

Giovan, M. N.; Sines, G.

1979-01-01

219

Tensile and creep properties of titanium-vanadium, titanium-molybdenum, and titanium-niobium alloys  

NASA Technical Reports Server (NTRS)

Tensile and creep properties of experimental beta-titanium alloys were determined. Titanium-vanadium alloys had substantially greater tensile and creep strength than the titanium-niobium and titanium-molybdenum alloys tested. Specific tensile strengths of several titanium-vanadium-aluminum-silicon alloys were equivalent or superior to those of commercial titanium alloys to temperatures of 650 C. The Ti-50V-3Al-1Si alloy had the best balance of tensile strength, creep strength, and metallurgical stability. Its 500 C creep strength was far superior to that of a widely used commercial titanium alloy, Ti-6Al-4V, and almost equivalent to that of newly developed commercial titanium alloys.

Gray, H. R.

1975-01-01

220

Tensile Fracture of Ductile Materials. M.S. Thesis  

NASA Technical Reports Server (NTRS)

For brittle materials, circular voids play an important role relative to fracture, intensifing both tensile and compressive stresses. A maximum intensified tensile stress failure criterion applies quite well to brittle materials. An attempt was made to explore the possibility of extending the approach to the tensile fracture of ductile materials. The three dimensional voids that exist in reality are modelled by circular holes in sheet metal. Mathematical relationships are sought between the shape and size of the hole, after the material is plastically deformed, and the amount of deformation induced. Then, the effect of hole shape, size and orientation on the mechanical properties is considered experimentally. The presence of the voids does not affect the ultimate tensile strength of the ductile materials because plastic flow wipes out the stress intensification caused by them. However, the shape and orientation of the defect is found to play an important role in affecting the strain at fracture.

Pai, D. M.

1984-01-01

221

Enhanced tensile ductility and toughness in nanostructured Cu  

NASA Astrophysics Data System (ADS)

Pure copper with ultrafine grain sizes and nanoscale subgrain (dislocation) structures was prepared by using severe plastic deformation through cold rolling at subambient temperatures, with or without subsequent recovery annealing. We report coexisting high strength and tensile ductility (large elongation to failure and ductile fracture). Factors leading to the simultaneous strengthening and toughening with increasing cold deformation and microstructural refinement are discussed.

Wang, Y. M.; Ma, E.; Chen, M. W.

2002-04-01

222

Tensile and thickness swelling properties of strands from  

E-print Network

-poplar (Liriodendron tulipifera L), red oak (Quercus spp.) and southern yellow pine (Pinus taeda L.)--were tested of engineering constants of strand composites. Among the four species tested, yellow-poplar strands demonstrated engineering con stants of strand composites. Tensile modulus and strength of sweet-gum strands, for example

223

Velocity anti-correlation of diametrically opposed galaxy satellites in the low-redshift Universe  

NASA Astrophysics Data System (ADS)

Recent work has shown that the Milky Way and the Andromeda galaxies both possess the unexpected property that their dwarf satellite galaxies are aligned in thin and kinematically coherent planar structures. It is interesting to evaluate the incidence of such planar structures in the larger galactic population, because the Local Group may not be a representative environment. Here we report measurements of the velocities of pairs of diametrically opposed satellite galaxies. In the local Universe (redshift z < 0.05), we find that satellite pairs out to a distance of 150 kiloparsecs from the galactic centre are preferentially anti-correlated in their velocities (99.994 per cent confidence level), and that the distribution of galaxies in the larger-scale environment (out to distances of about 2 megaparsecs) is strongly clumped along the axis joining the inner satellite pair (>7? confidence). This may indicate that planes of co-rotating satellites, similar to those seen around the Andromeda galaxy, are ubiquitous, and their coherent motion suggests that they represent a substantial repository of angular momentum on scales of about 100 kiloparsecs.

Ibata, Neil G.; Ibata, Rodrigo A.; Famaey, Benoit; Lewis, Geraint F.

2014-07-01

224

Analytical simulation of tensile response of fabric reinforced cement based composites  

E-print Network

Analytical simulation of tensile response of fabric reinforced cement based composites Barzin March 2005; accepted 2 June 2005 Abstract A model simulating the tensile behavior of fabric­cement composites; Cement composites; Laminated composites; Pultrusion; Fibers; Fabrics; Toughness; Strength; Micro

Mobasher, Barzin

225

The effect of tensile prestraining on 2024-T851 aluminum mechanical properties  

NASA Astrophysics Data System (ADS)

The effects of a tensile prestrain on the mechanical properties of 2024-T851 aluminum were investigated. Specifically, the effect of a 3% tensile prestrain on the offset yield strength, ultimate strength, compressive yield strength, resilience, and toughness was studied. Smooth tensile bars and notched round bars were used to study the interaction between internally generated hydrostatic stress and the tensile prestrain. Prestrain effects on material damage were also studied, using both tensile bars and notched round bars to evaluate the combined effect of internal hydrostatic stress and prestrain on damage. As expected, a tensile prestrain had favorable effects on 2024-T851, such as increased yield strength and resilience. However, compressive yield strength and the modulus of toughness decreased significantly (41% and 45% respectively). The damage variable decreased as much as 38% for smooth tensile bars. However, the damage values of prestrained notched round bars were greater than baseline notched round bars until fracture. These results suggest that prestraining 2024-T851 should be carefully examined due to the potentially harmful effects.

Poore, Adam Lawrence

226

Towards an improved understanding of strength and anisotropy of cold compacted powder  

NASA Astrophysics Data System (ADS)

The strength of powder compacts after cold compaction is known to be anisotropic, which comes from the directionality of microstructure resulting from initial particle morphology and/or from particle deformation during compaction. Current work focuses on multi-scale numerical analysis of powder compaction with emphasis on the role of interparticle cohesion on post-compaction mechanical properties. At macroscopic level, we applied phenomenological model to describe the mechanical behavior of powder, in which the material is considered to be continuum medium. A user subroutine (VUMAT) was successfully developed for ABAQUS/Explicit analysis, in which one of the popular phenomenological models for powder compaction---Drucker Prager/Cap model---is implemented. By studying of pharmaceutical powder die compaction and subsequent diametrical compression test via finite element analysis, the capabilities and limitations of current constitutive models are evaluated on predicting such as density, stress and tool force evolution, as well as the strength and fracture tendency. Our results illustrate that current model has good predictive capability of powder densification (e.g. density evolution) but can not predict post-compaction strength well. The following studies focus on evaluating the physics and mechanics occurring at particle level. The compaction of granular media was explored by using MPFEM approach. In the new model, individual particles discretized with a finite element mesh allow for a full description of contact mechanics and local and global particle kinematics. The introduction of a layer of degrading material on the surface of each particle provides the means of introducing variable cohesion and its effect on the final strength of compacts. The simulations show that the unloading creates tensile stresses at the root of the contact necks, which may cause partial or full separation of contact interface when the cohesion developed during loading is not strong enough. These results, which are in agreement with recent strength anisotropy data for cold compaction, bring a new perspective on understanding the interparticle behavior and the origin of the strength and failure of cold compacts.

Wang, Wenhai

227

Tensile Testing: A Simple Introduction  

ERIC Educational Resources Information Center

Tensile testing may be used to decide, say, which steel to use in various constructions. Analogous testing can be done simply in the classroom using plasticine and helps to introduce pupils to the various properties studied in materials science.

Carr, Martin

2006-01-01

228

Manufacturing of Plutonium Tensile Specimens  

SciTech Connect

Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

Knapp, Cameron M [Los Alamos National Laboratory

2012-08-01

229

Effects of neutron irradiation on tensile properties of oxide dispersion strengthened (ODS) steel claddings  

NASA Astrophysics Data System (ADS)

The effects of fast neutron irradiation on ring tensile properties of oxide dispersion strengthened (ODS) steel claddings for fast reactor were investigated. Specimens were irradiated in the experimental fast reactor Joyo using the material irradiation rig at temperatures between 693 and 1108 K to fast neutron doses ranging from 16 to 33 dpa. The post-irradiation ring tensile tests were carried out at irradiation temperatures. The experimental results showed that there was no significant change in tensile strengths after neutron irradiation below 923 K, but the tensile strengths at neutron irradiation above 1023 K up to 33 dpa were decreased by about 20%. On the other hand, uniform elongation after irradiation was more than 2% at all irradiation conditions. The ring tensile properties of these ODS claddings remained excellent within these irradiation conditions compared with conventional 11Cr ferritic/martensitic steel (PNC-FMS) claddings.

Yano, Y.; Ogawa, R.; Yamashita, S.; Ohtsuka, S.; Kaito, T.; Akasaka, N.; Inoue, M.; Yoshitake, T.; Tanaka, K.

2011-12-01

230

Imparting strength and toughness to brittle composites  

NASA Technical Reports Server (NTRS)

Appropriate intermittent coatings of fibers can produce areas of low and high toughness in brittle composites. Experiments using silicon vacuum grease (SVG) and polyurethane varnish (PUV) coatings that achieve weakly and strongly bonded interfaces are described. Tensile strength and edge-crack fracture toughness for both SVG and PUV coatings were plotted against the percentage coating (C). Both coating materials maintain tensile strengths in the order of the rule of mixture strength values up to a large C. It is suggested that both materials produce similar coated interfacial shear strengths while producing different effects on toughness.

Atkins, A. G.

1974-01-01

231

Structure-strength relations in mammalian tendon.  

PubMed Central

The stress-strain relations in mammalian tendon are analyzed in terms of the structure and mechanics of its constituents. The model considers the tensile and bending strength of the collagen fibers, the tensile strength of the elastin fibers, and the interaction between the matrix and the collagen fibers. The stress-strain relations are solved through variational considerations by assuming that the fibermaxtrix interactions can be modeled as beam on elastic foundation. The tissue thus modeled is a hyperelastic material. It is further shown that on the basis of the model, the dominant parameters to the tendon's behavior can be evaluated from simple tensile tests. PMID:728528

Lanir, Y

1978-01-01

232

Weld width indicates weld strength  

NASA Technical Reports Server (NTRS)

Width of butt weld in 2219-T87 aluminum has been found to be more reliable indicator of weld strength than more traditional parameters of power input and cooling rate. Yield stress and ultimate tensile strength tend to decrease with weld size. This conclusion supports view of many professional welders who give priority to weld geometry over welding energy or cooling rate as indicator of weld quality.

Nunes, A. C. J.; Novak, H. L.; Mcllwain, M. C.

1982-01-01

233

Tensile Behavior of Al2o3/feal + B and Al2o3/fecraly Composites  

NASA Technical Reports Server (NTRS)

The feasibility of Al2O3/FeAl + B and Al2O3/FeCrAlY composites for high-temperature applications was assessed. The major emphasis was on tensile behavior of both the monolithics and composites from 298 to 1100 K. However, the study also included determining the chemical compatibility of the composites, measuring the interfacial shear strengths, and investigating the effect of processing on the strength of the single-crystal Al2O3 fibers. The interfacial shear strengths were low for Al203/FeAl + B and moderate to high for Al203/FeCrAlY. The difference in interfacial bond strengths between the two systems affected the tensile behavior of the composites. The strength of the Al203 fiber was significantly degraded after composite processing for both composite systems and resulted in poor composite tensile properties. The ultimate tensile strength (UTS) values of the composites could generally be predicted with either rule of mixtures (ROM) calculations or existing models when using the strength of the etched-out fiber. The Al2O3/FeAl + B composite system was determined to be unfeasible due to poor interfacial shear strengths and a large mismatch in coefficient of thermal expansion (CTE). Development of the Al2O3/FeCrAlY system would require an effective diffusion barrier to minimize the fiber strength degradation during processing and elevated temperature service.

Draper, S. L.; Eldridge, J. I.; Aiken, B. J. M.

1995-01-01

234

Study on strength, elastic modulus of artifical lightweight aggregate concrete  

NASA Astrophysics Data System (ADS)

Aggregate strength of artificial lightweight concrete and concrete used with this artificial lightweight aggregate can be expected to have nearly the same strength as normal weight concrete. An experimental study of properties of concrete strength and correlation between compressive and tensile and flexural strengths and elastic modulus of its concrete was made.

Kakizaki, M.

1982-04-01

235

In situ EBSD during tensile test of aluminum AA3003 sheet.  

PubMed

Miniature tensile-test specimens of soft-annealed, weakly textured AA3003 aluminum sheet in 0.9 mm thickness were deformed until fracture inside a scanning electron microscope. Tensile strength measured by the miniature tensile test stage agreed well with the tensile strength by regular tensile testing. Strain over the microscope field of view was determined from changes in positions of constituent particles. Slip lines were visible in secondary electron images already at 0.3% strain; activity from secondary slip systems became apparent at 2% strain. Orientation rotation behavior of the tensile load axis with respect to the crystallographic axes agreed well with previously reported trends for other aluminum alloys. Start of the fracture and tensile crack propagation were documented in secondary electron images. The region of fracture nucleation included and was surrounded by many grains that possessed high Schmid factors at zero strain. Crystal lattice rotation angles in the grains surrounding the initial fracture zone were higher than average while rotations inside the initial fracture zone were lower than average for strains from zero to 31%. The orientation rotation behavior of the tensile load axes of the grains around the fracture zone deviated from the average behavior in this material. PMID:24314927

Kahl, Sören; Peng, Ru Lin; Calmunger, Mattias; Olsson, Björn; Johansson, Sten

2014-03-01

236

The tensile fatigue of wire rope: A new approach  

SciTech Connect

The fatigue behaviour in air and seawater of zinc coated steel wire taken from a 40 mm diameter wire rope has been studied. Seawater had little effect on short term tensile strength but it reduced fatigue life by an amount which increased with increasing mean stress and decreasing test frequency. The application of fretting during fatigue testing resulted in very low endurances, which were similar to those measured in fatigue tests on wire ropes.

Thorpe, T.W.; Rance, A.

1983-05-01

237

The Cryogenic Tensile Properties of an Extruded Aluminum-Beryllium Alloy  

NASA Technical Reports Server (NTRS)

Basic mechanical properties; i.e., ultimate tensile strength, yield strength, percent elongation, and elastic modulus, were obtained for the aluminum-beryllium alloy, AlBeMet162, at cryogenic (-195.5 C (-320 F) and -252.8 C (-423 F)) temperatures. The material evaluated was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions."

Gamwell, W. R.

2002-01-01

238

SPH without a Tensile Instability  

Microsoft Academic Search

The tensile instability in smoothed particle hydrodynamics results in a clustering of smoothed particle hydrodynamics (SPH) particles. The clustering is particularly noticeable in materials which have an equation of state which can give rise to negative pressures, but it can occur in gases where the pressure is always positive and in magnetohydrodynamics (MHD) problems. It is a particular problem in

J. J. Monaghan

2000-01-01

239

Mechanical tensile testing of titanium 15-3-3-3 and Kevlar 49 at cryogenic temperatures  

NASA Astrophysics Data System (ADS)

Titanium 15-3-3-3 and Kevlar 49 are highly desired materials for structural components in cryogenic applications due to their low thermal conductivity at low temperatures. Previous tests have indicated that titanium 15-3-3-3 becomes increasingly brittle as the temperature decreases. Furthermore, little is known regarding the mechanical properties of Kevlar 49 at low temperatures, most specifically its Young's modulus. This testing investigates the mechanical properties of both materials at cryogenic temperatures through cryogenic mechanical tensile testing to failure. The elongation, ultimate tensile strength, yield strength, and break strength of both materials are provided and analyzed here.

James, B. L.; Martinez, R. M.; Shirron, P.; Tuttle, J.; Galassi, N. M.; McGuinness, D. S.; Puckett, D.; Francis, J. J.; Flom, Y.

2012-06-01

240

Atomistic modeling of the tensile behavior of monoclinic ZrO2 bicrystal  

NASA Astrophysics Data System (ADS)

Molecular dynamics was used to simulate the tensile behavior of monoclinic ZrO2 bicrystals constructed by fusing two symmetrically tilted single crystals at several temperatures ranging from 300 to 1200 K and then annealing them to 300 K. The average amorphous grain boundary (GB) is about 11 Å thick (approximately twice the average unit-cell dimension). Axial elongation of the typical bicrystal at constant (boundary) velocity leads to failure at a global strain of about 4%, at which the maximum stress (i.e., the tensile strength) is approximately 6 GPa. The failure process is ductile, driven by growth and coalescence of voids in the GB, in contrast with that of the monoclinic single crystal, which undergoes essentially brittle fracture at a tensile stress of around 10 GPa. The tensile strength of the bicrystal is approximately inversely proportional to the thickness of the GB. Decreasing the fusion temperature increases the thickness of the GB and lowers the tensile strength accordingly. The dependence of tensile strength on the loading rate is insignificant for the range of tilt angles and loading conditions examined. The influence of the GB on the small-strain effective elastic response of the bicrystal is also insignificant.

Wang, C.; Feng, R.; Diestler, D. J.; Zeng, X. C.

2010-07-01

241

Inert strength of pristine silica glass fibers  

SciTech Connect

Silica glass fibers have been produced and tested under ultra high vacuum (UHV) conditions to investigate the inert strength of pristine fibers in absence of reactive agents. Analysis of the coefficient of variation in diameter ({upsilon}{sub d}) vs the coefficient of variation of breaking strength ({upsilon}{sub {sigma}}) does not adequately explain the variation of breaking stress. Distribution of fiber tensile strength data suggests that the inert strength of such fibers is not single valued and that the intrinsic strength is controlled by defects in the glass. Furthermore, comparison of room temperature UHV data with LN{sub 2} data indicates that these intrinsic strengths are not temperature dependent.

Smith, W.L.; Michalske, T.A.

1993-11-01

242

The influence of die semiangle and of the coefficient of friction on the uniform tensile elongation of drawn copper bars  

Microsoft Academic Search

Cold drawing of bars leads to changes in the mechanical properties of the products. An increase in strength and a loss of ductility are usually observed. The tensile elongation for example, decreases as greater reductions in area in drawing are considered. Previous researche has shown that this is basically associated with a reduction in tensile uniform elongation. The present paper

H. B Campos; P. R Cetlin

1998-01-01

243

Change in Tensile Properties of Neoprene and Nitrile Gloves After Repeated Exposures to Acetone and Thermal Decontamination  

Microsoft Academic Search

This study investigated the change in tensile properties of neoprene and nitrile gloves after repeated cycles of exposure to acetone, followed by thermal decontamination. The glove was exposed to acetone (outer surface in contact with chemical), subjected to thermal decontamination, and tested for the tensile strength and the ultimate elongation. Thermal decontamination was carried out inside an oven for 16

Pengfei Gao; Beth Tomasovic

2005-01-01

244

Tensile properties of NiAl bicrystals  

SciTech Connect

The intermetallic compound {beta}-NiAl continues to receive considerable attention in spite of its lack of room temperature toughness and high temperature strength. Although the dislocations are mobile at room temperature, the lack of a sufficient number of slip systems precludes significant elongation in single and polycrystalline NiAl except in single crystals under special conditions. In the case of polycrystals of stoichiometric NiAl, the room temperature fracture tends to be mostly intergranular; this has been related to the stresses that build up at the grain boundaries during plastic deformation due to the lack of active independent deformation mechanisms or the possibility that the grain boundaries are intrinsically weak. The present study was designed to establish the condition of grain boundary fracture by performing tensile tests at different temperatures and strain rates on bicrystals of NiAl containing natural boundaries produced by Bridgman growth. This approach was selected based on the previous work on NiAl bicrystals produced by diffusion bonding/brazing and Bridgman growth. In some cases, these boundaries were reportedly enriched in nickel although it is unclear, based on the limited atomistic modeling efforts to date, whether this is a result of sample processing or is a characteristic of this compound. Furthermore, the previous studies of slip behavior were performed in compression which is less suitable for examining the relative strength of the grain boundaries.

LeBleu, J.B. Jr.; Mei, P.R.; Levit, V.I.; Kaufman, M.J. [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering] [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering

1998-01-06

245

Changes in boron fiber strength due to surface removal by chemical etching  

NASA Technical Reports Server (NTRS)

The effects of chemical etching on the tensile strength of commercial boron/tungsten fibers were investigated. Fibers with as-received diameters of 203, 143, and 100 micrometers were etched to diameters as small as 43 micrometers. The etching generally resulted in increasing fiber tensile strength with decreasing fiber diameter. And for the 203 micrometer fibers there was an accompanying significant decrease in the coefficient of variation of the tensile strength for diameters down to 89 micrometers. Heat treating these fibers above 1,173 K in a vacuum caused a marked decrease in the average tensile strength of at least 80 percent. But after the fibers were etched, their strengths exceeded the as-received strengths. The tensile strength behavior is explained in terms of etching effects on surface flaws and the residual stress pattern of the as-received fibers.

Smith, R. J.

1976-01-01

246

Tensile and fatigue properties of 17-4 PH stainless steel at high temperatures  

Microsoft Academic Search

The tensile and high-cycle fatigue properties for 17-4 PH* stainless steels in three different conditions were investigated\\u000a at temperatures ranging from room temperature to 400 C. Results indicated that the yield strength and fatigue strength for\\u000a the three conditions at a given temperature took the following order: condition H900 > condition A> condition H1150. The yield\\u000a strength of each condition

Jui-Hung Wu; Chih-Kuang Lin

2002-01-01

247

Establishing Correlations for Predicting Tensile Properties Based on the Shear Punch Test and Vickers Microhardness data  

NASA Astrophysics Data System (ADS)

A series of mechanical tests was performed on a matrix of pressure vessel alloys to establish correlations between shear punch tests (SPT), microhardness (Hv), and tensile data. The purpose is to estimate tensile properties from SPT and Hv data. Small specimen testing is central to characterization of irradiation-induced changes in alloys used for nuclear applications. SPT have the potential for estimating tensile yield and ultimate strengths, strain hardening and ductility data, by using TEM disks, for example. Additional insight into SPT was gained by performing finite element analysis (FEA) simulations.

Milot, Timothy S.

248

Tensile Behavior of Intercritically Annealed 10 pct Mn Multi-phase Steel  

NASA Astrophysics Data System (ADS)

The exceptional elongation obtained during tensile testing of intercritically annealed 10 pct Mn steel, with a two phase ferrite-austenite microstructure at room temperature, was investigated. The austenite phase exhibited deformation-twinning and strain-induced transformation to martensite. These two plasticity-enhancing mechanisms occurred in succession, resulting in a high rate of work hardening and a total elongation of 65 pct for a tensile strength of 1443 MPa. A constitutive model for the tensile behavior of the 10 pct Mn steel was developed using the Kocks-Mecking hardening model.

Lee, Sangwon; De Cooman, Bruno C.

2014-02-01

249

The effect of boron addition on the tensile properties of control-rolled and normalized C-Mn steels  

Microsoft Academic Search

Control-rolled and normalized C-Mn steels with and without boron alloying at two finish rolling temperatures of 800 °C and 1000°C were studied with respect to their tensile properties in order to investigate the role of boron in enhancing the strength of these materials. It was found that in boron steels ultimate tensile strength increased and impact transition temperature decreased owing

M. I. Haq; Nazma Ikram

1993-01-01

250

Tensile properties of Inconel 718 after low temperature neutron irradiation  

NASA Astrophysics Data System (ADS)

Tensile properties of Inconel 718 (IN718) have been investigated after neutron irradiation to 0.0006-1.2 dpa at 60-100 °C in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). The alloy was exposed in solution-annealed (SA) and precipitation-hardened (PH) conditions. Before irradiation, the yield strength of PH IN718 was about 1170 MPa, which was 3.7 times higher than that of SA IN718. In the SA condition, an almost threefold increase in yield strength was found at 1.2 dpa, but the alloy retained a positive strain-hardening capability and a uniform ductility of more than 20%. Comparisons showed that the strain-hardening behavior of the SA IN718 is similar to that of a SA 316LN austenitic stainless steel. In the PH condition, the IN718 displayed no radiation-induced hardening in yield strength and significant softening in ultimate tensile strength. The strain-hardening capability of the PH IN718 decreased with dose as the radiation-induced dissolution of precipitates occurred, which resulted in the onset of plastic instability at strains less than 1% after irradiation to 0.16 or 1.2 dpa. An analysis on plastic instability indicated that the loss of uniform ductility in PH IN718 was largely due to the reduction in strain-hardening rate, while in SA IN718 and SA 316LN stainless steel it resulted primarily from the increase of yield stress.

Byun, T. S.; Farrell, K.

2003-05-01

251

Effect of conditioning temperature on the strength and permeability of normal- and high-strength concrete  

Microsoft Academic Search

In order to evaluate the effect of the conditioning temperature on strength and permeability properties of concrete a series of compressive, indirect tensile and permeability tests were performed on concretes (designed to have 28-day compressive strengths of 40 and 100 N\\/mm2) conditioned at temperatures of 85 and 105 °C. The results show that, for both the normal- (NSC) and the

D. R. Gardner; R. J. Lark; B. Barr

2005-01-01

252

Some characteristics of high strength fiber reinforced lightweight aggregate concrete  

Microsoft Academic Search

The effect of polypropylene and steel fibers on high strength lightweight aggregate concrete is investigated. Sintered fly ash aggregates were used in the lightweight concrete; the fines were partially replaced by fly ash. The effects on compressive strength, indirect tensile strength, modulus of rupture, modulus of elasticity, stress–strain relationship and compression toughness are reported. Compared to plain sintered fly ash

O Kayali; M. N Haque; B Zhu

2003-01-01

253

Static and Dynamic Flexural Strength Anisotropy of Barre Granite  

NASA Astrophysics Data System (ADS)

Granite exhibits anisotropy due to pre-existing microcracks under tectonic loadings; and the mechanical property anisotropy such as flexural/tensile strength is vital to many rock engineering applications. In this paper, Barre Granite is studied to understand the flexural strength anisotropy under a wide range of loading rates using newly proposed semi-circular bend tests. Static tests are conducted with a MTS hydraulic servo-control testing machine and dynamic tests with a split Hopkinson pressure bar (SHPB) system. Six samples groups are fabricated with respect to the three principle directions of Barre granite. Pulse shaping technique is used in all dynamic SHPB tests to facilitate dynamic stress equilibrium. Finite element method is utilized to build up equations calculating the flexural tensile strength. For samples in the same orientation group, a loading rate dependence of the flexural tensile strength is observed. The measured flexural tensile strength is higher than the tensile strength measured using Brazilian disc method at given loading rate and this scenario has been rationalized using a non-local failure theory. The flexural tensile strength anisotropy features obvious dependence on the loading rates, the higher the loading rate, the less the anisotropy and this phenomenon may be explained considering the interaction of the preferentially oriented microcracks.

Dai, F.; Xia, K.; Zuo, J. P.; Zhang, R.; Xu, N. W.

2013-11-01

254

Tensile Properties and Fracture Behavior of Different Carbon Nanotube-Grafted Polyacrylonitrile-Based Carbon Fibers  

NASA Astrophysics Data System (ADS)

The tensile properties and fracture behavior of different carbon nanotube (CNT)-grafted polyacrylonitrile-based (T1000GB) single carbon fibers were investigated. Grafting of CNTs was achieved via chemical vapor deposition (CVD). When Fe(C5H5)2 (also applied via CVD) was used as the catalyst, the tensile strength and Weibull modulus of the carbon fibers were improved, possibly due to the growth of dense CNT networks on the carbon fibers, which may have led to a reduction in the number of strength-limiting defects. Separately, at lower concentrations of an Fe(NO3)3·9H2O catalyst in ethanol, which was applied via dipping, the tensile strength of CNT-grafted fibers was nearly identical to that of the as-received fibers, although the Weibull modulus was higher. For higher concentrations of the Fe(NO3)3·9H2O catalyst, however, the tensile strength and the Weibull modulus were lower than those for the as-received material. Although the density of the CNT network increased with the concentration of the Fe(NO3)3·9H2O catalyst in the ethanol solution, heating of the ethanolic Fe(NO3)3·9H2O catalyst solution generated nitric acid (HNO3) due to decomposition, which damaged the fiber surfaces, resulting in an increase in the number of flaws and consequently a reduction in the tensile strength. Therefore, the tensile strength and Weibull modulus of CNT-grafted carbon fibers vary due to the combination of these effects and as a function of the catalyst concentration.

Naito, Kimiyoshi

2014-11-01

255

Tensile test of pressureless-sintered silicon nitride at elevated temperature  

NASA Technical Reports Server (NTRS)

Uniaxial tensile strength tests of pressureless sintered silicon nitride were carried out in air at temperatures ranging from room temperature up to 1600 C. Silicon nitrides containing Y2O3, Al2O3, Al2O3-MgO, or MgO-CeO2 additives were tested. The results show that the composition of the additive used influences the strength characteristics of the silicon nitride. The tensile strength rapidly decreased at temperatures above 1000 C for the materials containing MgO as the additive and above 1000 C for the material with Y2O3. When the temperature increased to as high as 1300 C, the strength decreased to about 10 percent of the room temperature strength in each case. Observations of the fracture origin and of the crack propagation on the fracture surfaces are discussed.

Matsusue, K.; Fujisawa, Y.; Takahara, K.

1985-01-01

256

Strength Degradation of Silica Fibers by Acetone Immersion Andrew T. Taylort, M. John Matthewson andC. R. Kurkjian*  

E-print Network

Strength Degradation of Silica Fibers by Acetone Immersion Andrew T. Taylort, M. John Matthewson in acetone. The two-point bending and tensile strengths of this fiber as a function of immersion time in acetone were determined, and this strength loss was not seen for 0.5-rn gauge length tensile specimens

Matthewson, M. John

257

Effects of strain rate on tensile properties of TZM and Mo-5%Re  

NASA Astrophysics Data System (ADS)

In the present work, we have studied the strain rate sensitivity of tensile properties of TZM and Mo-5%Re alloys. Tests were performed at room temperature and around the transition temperature of each alloy, at strain rates varying over five decades. Ductility appeared insensitive to strain rate, whereas the strength is found to be strain rate dependent. Both proof stress and ultimate tensile strength are affected by strain rate and the Mo-5%Re alloy is more sensitive than TZM. As expected, the hardening decreases with temperature; in TZM alloy the strain rate sensitivity was apparent only at room temperature.

Filacchioni, G.; Casagrande, E.; De Angelis, U.; De Santis, G.; Ferrara, D.

2002-12-01

258

Tensile Properties of Hydrogels and of Snake Skin  

NASA Technical Reports Server (NTRS)

Stimulus-responsive or 'smart' gels are of potential interest as sensors and actuators, in industrial separations, and as permeable delivery systems. In most applications, a certain degree of mechanical strength and toughness will be required, yet the large-strain behavior of gels has not been widely reported. Some exceptions include work on gelatin and other food gels, some characterization of soft gels applicable for in-vitro cell growth studies, and toughness determinations on commercial contact lens materials. In general, it can be anticipated that the gel stiffness will increase with increasing degree of crosslinking, but the tensile strength may go through a maximum. Gel properties can be tailored by varying not only the degree of crosslinking, but also the polymer concentration and the nature of the polymer backbone (e.g. its stiffness or solubility). Polypeptides provide an especially interesting case, where secondary structure affects trends in moduli and conformational transitions may accompany phase changes. A few papers on the tensile properties of responsive gels have begun to appear. The responsive hydrogel chosen for the present study, crosslinked hydroxypropylcellulose, shrinks over a rather narrow temperature range near 44 C. Some vertebrate skin is also subject to substantial strain. Among reptiles, the morphologies of the skin and scales show wide variations. Bauer et al. described the mechanical properties and histology of gecko skin; longitudinal tensile properties of snake skin were examined by Jayne with reference to locomotion. The present measurements focus on adaptations related to feeding, including the response of the skin to circumferential tension. Tensile properties will be related to interspecific and regional variation in skin structure and folding.

Hinkley, Jeffrey A.; Savitzky, Alan H.; Rivera, Gabriel; Gehrke, Stevin H.

2002-01-01

259

Strength degradation of glass fibers at high temperatures  

Microsoft Academic Search

This article presents an experimental investigation into the effects of temperature and heating time on the tensile strength\\u000a and failure mechanisms of glass fibers. The loss in strength of two glass fiber types (E-glass and Advantex®, a boron-free version of E-glass) was investigated at temperatures up to 650 °C and heating times up to 2 h. The tensile\\u000a properties were measured by

S. Feih; K. Manatpon; Z. Mathys; A. G. Gibson; A. P. Mouritz

2009-01-01

260

Notched Strength Allowables and Inplane Shear Strength of AS4/VRM-34 Textile Laminates  

NASA Technical Reports Server (NTRS)

Notched and unnotched strength allowables were developed for a textile composite to provide input data to analytical structural models based on the Pultruded Rod Stiffened Efficient Unitized Structure (PRSEUS) concept. Filled-hole tensile strength, filled-hole compressive strength, and inplane shear strength along stitch lines have been measured. The material system evaluated in this study is based on warp-knitted preforms of AS4 carbon fibers and VRM-34 epoxy resin, which have been processed via resin infusion and oven curing. All specimens were tested in as-fabricated (dry) condition. Filled-hole strengths were evaluated with and without through-thickness stitching. The effects of scaling on filled-hole tensile strength were evaluated by testing specimens in two widths, but with identical width / hole-diameter ratios. Inplane shear specimens were stitched in two configurations, and two specimen thicknesses were tested for each stitch configuration.

Grenoble, Ray W.; Johnston, William M.

2013-01-01

261

In situ tensile fracture toughness of surficial cohesive marine sediments  

NASA Astrophysics Data System (ADS)

This study reports the first in situ measurements of tensile fracture toughness, K IC, of soft, surficial, cohesive marine sediments. A newly developed probe continuously measures the stress required to cause tensile failure in sediments to depths of up to 1 m. Probe measurements are in agreement with standard laboratory methods of K IC measurements in both potter's clay and natural sediments. The data comprise in situ depth profiles from three field sites in Nova Scotia, Canada. Measured K IC at two muddy sites (median grain size of 23-50 ?m) range from near zero at the sediment surface to >1,800 Pa m1/2 at 0.2 m depth. These profiles also appear to identify the bioturbated/mixed depth. K IC for a sandy site (>90% sand) is an order of magnitude lower than for the muddy sediments, and reflects the lack of cohesion/adhesion. A comparison of K IC, median grain size, and porosity in muddy sediments indicates that consolidation increases fracture strength, whereas inclusion of sand causes weakening; thus, sand-bearing layers can be easily identified in K IC profiles. K IC and vane-measured shear strength correlate strongly, which suggests that the vane measurements should perhaps be interpreted as shear fracture toughness, rather than shear strength. Comparison of in situ probe-measured values with K IC of soils and gelatin shows that sediments have a K IC range intermediate between denser compacted soils and softer, elastic gelatin.

Johnson, Bruce D.; Barry, Mark A.; Boudreau, Bernard P.; Jumars, Peter A.; Dorgan, Kelly M.

2012-02-01

262

Shear Strength  

NSDL National Science Digital Library

Dr. John Atkinson, of the University of the West of England, developed a site for undergraduate students wanting to learn more about soil classification. His site addresses issues such as: shear strength, peak strength, and residual strength testing. Filled with charts, diagrams, statistics, the information is pertinent and easily understood by almost any audience.

Atkinson, John

2008-10-07

263

A Novel Ni-Containing Powder Metallurgy Steel with Ultrahigh Impact, Fatigue, and Tensile Properties  

NASA Astrophysics Data System (ADS)

The impact toughness of powder metallurgy (PM) steel is typically inferior, and it is further impaired when the microstructure is strengthened. To formulate a versatile PM steel with superior impact, fatigue, and tensile properties, the influences of various microstructures, including ferrite, pearlite, bainite, and Ni-rich areas, were identified. The correlations between impact toughness with other mechanical properties were also studied. The results demonstrated that ferrite provides more resistance to impact loading than Ni-rich martensite, followed by bainite and pearlite. However, Ni-rich martensite presents the highest transverse rupture strength (TRS), fatigue strength, tensile strength, and hardness, followed by bainite, pearlite, and ferrite. With 74 pct Ni-rich martensite and 14 pct bainite, Fe-3Cr-0.5Mo-4Ni-0.5C steel achieves the optimal combination of impact energy (39 J), TRS (2170 MPa), bending fatigue strength at 2 × 106 cycles (770 MPa), tensile strength (1323 MPa), and apparent hardness (38 HRC). The impact energy of Fe-3Cr-0.5Mo-4Ni-0.5C steel is twice as high as those of the ordinary high-strength PM steels. These findings demonstrate that a high-strength PM steel with high-toughness can be produced by optimized alloy design and microstructure.

Wu, Ming-Wei; Shu, Guo-Jiun; Chang, Shih-Ying; Lin, Bing-Hao

2014-08-01

264

Postoperative irradiation impairs or enhances wound strength depending on time of administration  

SciTech Connect

Irradiation can complicate surgical wound healing, yet little is known of the importance of the time between surgery and irradiation on this process. This study investigated the impact of post-operative irradiation on gain in wound tensile strength in a murine skin model. Irradiation on the same day as wounding or to 2-day-old wounds reduced wound tensile strength. In contrast, postoperative irradiation delivered at 7, 9 and 14 days transiently enhanced wound tensile strength, as measure d 3 but not 4 or 5 weeks later. This effect was independent of the inclusion (hemi-body) or exclusion (skin alone) of the hematopoietic system in the field of irradiation. Radiation-enhanced wound tensile strength was greater and occurred earlier after higher radiation doses. Even though the effect of irradiation in enhancing wound tensile strength is transitory, it could be important in assisting early wound healing. 14 refs., 3 figs., 1 tab.

Vegesna, V.; McBride, W.H.; Withers, H.R. [Univ. of California, Los Angeles, CA (United States)

1995-08-01

265

A Weibull characterization for tensile fracture of multicomponent brittle fibers  

NASA Technical Reports Server (NTRS)

Necessary to the development and understanding of brittle fiber reinforced composites is a means to statistically describe fiber strength and strain-to-failure behavior. A statistical characterization for multicomponent brittle fibers is presented. The method, which is an extension of usual Weibull distribution procedures, statistically considers the components making up a fiber (e.g., substrate, sheath, and surface) as separate entities and taken together as in a fiber. Tensile data for silicon carbide fiber and for an experimental carbon-boron alloy fiber are evaluated in terms of the proposed multicomponent Weibull characterization.

Barrows, R. G.

1977-01-01

266

Diametrically opposite methylome-transcriptome relationships in high- and low-CpG promoter genes in postmitotic neural rat tissue  

PubMed Central

DNA methylation can control some CpG-poor genes but unbiased studies have not found a consistent genome-wide association with gene activity outside of CpG islands or shores possibly due to use of cell lines or limited bioinformatics analyses. We performed reduced representation bisulfite sequencing (RRBS) of rat dorsal root ganglia encompassing postmitotic primary sensory neurons (n = 5, r > 0.99; orthogonal validation p < 10?19). The rat genome suggested a dichotomy of genes previously reported in other mammals: low CpG content (< 3.2%) promoter (LCP) genes and high CpG content (? 3.2%) promoter (HCP) genes. A genome-wide integrated methylome-transcriptome analysis showed that LCP genes were markedly hypermethylated when repressed, and hypomethylated when active with a 40% difference in a broad region at the 5? of the transcription start site (p < 10?87 for -6000 bp to -2000 bp, p < 10?73 for -2000 bp to +2000 bp, no difference in gene body p = 0.42). HCP genes had minimal TSS-associated methylation regardless of transcription status, but gene body methylation appeared to be lost in repressed HCP genes. Therefore, diametrically opposite methylome-transcriptome associations characterize LCP and HCP genes in postmitotic neural tissue in vivo. PMID:22415013

Hartung, Theresa; Zhang, Lu; Kanwar, Rahul; Khrebtukova, Irina; Reinhardt, Matthias; Wang, Cheng; Therneau, Terry M.; Banck, Michaela S.; Schroth, Gary P.; Beutler, Andreas S.

2012-01-01

267

Diametral strain of fast reactor MOX fuel pins with austenitic stainless steel cladding irradiated to high burnup  

NASA Astrophysics Data System (ADS)

The C3M irradiation test, which was conducted in the experimental fast reactor, "Joyo", demonstrated that mixed oxide (MOX) fuel pins with austenitic steel cladding could attain a peak pellet burnup of about 130 GWd/t safely. The test fuel assembly consisted of 61 fuel pins, whose design specifications were similar to those of driver fuel pins of a prototype fast breeder reactor, "Monju". The irradiated fuel pins exhibited diametral strain due to cladding void swelling and irradiation creep. The cladding irradiation creep strain were due to the pellet-cladding mechanical interaction (PCMI) as well as the internal gas pressure. From the fuel pin ceramographs and 137Cs gamma scanning, it was found that the PCMI was associated with the pellet swelling which was enhanced by the rim structure formation or by cesium uranate formation. The PCMI due to cesium uranate, which occurred near the top of the MOX fuel column, significantly affected cladding hoop stress and thermal creep, and the latter effect tended to increase the cumulative damage fraction (CDF) of the cladding though the CDF indicated that the cladding still had some margin to failure due to the creep damage.

Uwaba, Tomoyuki; Ito, Masahiro; Maeda, Koji

2011-09-01

268

Open-circuit field distribution in a brushless motor with diametrically magnetised PM rotor, accounting for slotting and eddy current effects  

Microsoft Academic Search

An analytical model has been developed for calculating the open-circuit time-varying magnetic field distribution in the airgap\\/magnet\\/retaining sleeve region of a brushless permanent magnet motor equipped with diametrically magnetised magnets. It accounts for the stator slotting and curvature, as well as for parasitic eddy currents induced in the retaining sleeve and magnets. The analytically predicted time-varying field distribution in the

K. Ng; Z. Q. Zhu; D. Howe

1996-01-01

269

Fundamental mechanisms of tensile fracture in aluminum sheet undirectionally reinforced with boron filament  

NASA Technical Reports Server (NTRS)

Results are presented from an experimental study of the tensile-fracture process in aluminum sheet unidirectionally reinforced with boron filament. The tensile strength of the material is severely limited by a noncumulative fracture mechanism which involves the initiation and sustenance of a chain reaction of filament fractures at a relatively low stress level. Matrix fracture follows in a completely ductile manner. The minimum filament stress for initiation of the fracture mechanism is shown to be approximately 1.17 GN/sq m (170 ksi), and appears to be independent of filament diameter, number of filament layers, and the strength of the filament-matrix bond. All the commonly observed features of tensile fracture surfaces are explained in terms of the observed noncumulative fracture mechanism.

Herring, H. W.

1972-01-01

270

Tensile and transient burst properties of advanced ferritic/martensitic steel claddings after neutron irradiation  

NASA Astrophysics Data System (ADS)

The effects of fast neutron irradiation on tensile and transient burst properties of advanced ferritic/martensitic steel claddings for fast breeder reactors were investigated. Specimens were irradiated in the experimental fast reactor JOYO using the material irradiation rig at temperatures between 773 and 1013 K to fast neutron doses ranging from 11 to 102 dpa. The post-irradiation tensile and temperature-transient-to-burst tests were carried out. The results of mechanical tests showed that there was no significant degradation in tensile and transient burst strengths after neutron irradiation below 873 K. This was attributed to grain boundary strengthening caused by precipitates that preferentially formed on prior-austenite grain boundaries. Both strengths at neutron irradiation above about 903 K up to 102 dpa decreased due to radiation enhanced recovery of lath martensite structures and recrystallization.

Yano, Y.; Yoshitake, T.; Yamashita, S.; Akasaka, N.; Onose, S.; Takahashi, H.

2007-08-01

271

Effect of oxidation on tensile properties of a V-5Cr-5Ti alloy  

SciTech Connect

Oxidation studies were conducted on V-5Cr-5Ti alloy specimens at 5000{degrees}C in an air environment to evaluate the alloy`s oxygen uptake behavior as a function of temperature and exposure time. Oxidation rates, calculated from measurements of thermogravimetric testing, are 5, 17, and 27 {mu}m after a 1-yr exposure at 300, 400, and 5000{degrees}C, respectively. Uniaxial tensile tests were conducted on preoxidized specimens of the alloy to examine the effects of oxidation and oxygen migration on tensile strength and ductility. Microstructural characteristics of several of the tested specimens were characterized by electron-optical techniques. Correlations have been developed between the tensile strength and ductility of the oxidized alloy and microstructural characteristics such as oxide thickness, depth of hardened layer, depth of intergranular fracture zone, and transverse crack length.

Natesan, K.; Soppet, W.K.

1995-05-01

272

Effect of oxygen and oxidation on tensile properties of V-5Cr-5Ti alloy  

SciTech Connect

Oxidation studies were conducted on V-5Cr-5Ti alloy specimens in an air environment to evaluate the oxygen uptake behavior of the alloy as a function of temperature and exposure time. The oxidation rates calculated from parabolic kinetic measurements of thermogravimetric testing and confirmed by microscopic analyses of cross sections of exposed specimens were 5, 17, and 27 {mu}m per year after exposure at 300, 400, and 500{degrees}C, respectively. Uniaxial-tensile tests were conducted at room temperature and at 500C on preoxidized specimens of the alloy to examine the effects of oxidation and oxygen migration on tensile strength and ductility. Microstructural characteristics of several of the tested specimens were determined by electron optics techniques. Correlations were developed between tensile strength and ductility of the oxidized alloy and microstructural characteristics such as oxide thickness, depth of hardened layer, depth of intergranular fracture zone, and transverse crack length.

Natesan, K.; Soppet, W.K.

1995-09-01

273

Machining technique prevents undercutting in tensile specimens  

NASA Technical Reports Server (NTRS)

Machining technique prevents undercutting at the test section in tensile specimens when machining the four corners of the reduced section. Made with a gradual taper in the test section, the width of the center of the tensile specimen is less than the width at the four corners of the reduced section.

Moscater, R. E.; Royster, D. M.

1968-01-01

274

IMPACT STRENGTH OF GLASS AND GLASS CERAMIC  

SciTech Connect

Strength of glass and glass ceramic was measured with a bar impact technique. High-speed movies show regions of tensile and compressive failure. The borosilicate glass had a compressive strength of at least 2.2 GPa, and the glass ceramic at least 4 GPa. However, the BSG was much stronger in tension than GC. In ballistic tests, the BSG was the superior armor.

Bless, S.; Tolman, J. [Institute for Advanced Technology, University of Texas at Austin, Austin, TX 78759 (United States)

2009-12-28

275

Influence of excessive filler coating on the tensile properties of LDPE–calcium carbonate composites  

Microsoft Academic Search

Calcium carbonate fillers are usually coated with stearic acid to reduce their surface energy and improve their dispersion in polymers. Commercial products are often over-coated and contain an excess of surfactant. It was found that stearic acid linearly increases the modulus and yield stress of LDPE but reduces its tensile strength, yield strain, and ultimate elongation. The influence of surfactant

Maged A. Osman; Ayman Atallah; Ulrich W. Suter

2004-01-01

276

Study on the Strength of GFRP/Stainless Steel Adhesive Joints Reinforced with Glass Mat  

NASA Astrophysics Data System (ADS)

The adhesive strengths of glass fiber reinforced plastics/metal adhesive joints reinforced with glass mat under tensile shear loads and tensile loads were investigated analytically and experimentally. First, the stress singularity parameters of the bonding edges were analyzed by FEM for various types of adhesive joints reinforced with glass mat. The shear stress and normal stress distributions near the bonding edge can be expressed by two stress singularity parameters. Second, tensile shear tests were performed on taper lap joint and taper lap joint reinforced with glass mat and tensile tests were performed on T-type adhesive joint and T-type adhesive joint reinforced with glass mat. The relationships between the loads and the crosshead displacements were measured. We concluded that reinforcing adhesive joints has a greater effect on strength under tensile load than under tensile shear load. The adhesive joints strength reinforced with glass mat can be evaluated by using stress singularity parameters.

Iwasa, Masaaki

277

The Brittle Strength of Orthotropic Materials  

Microsoft Academic Search

A phenomenological fracture condition is proposed for ortho tropic brittle materials. It contains nine material parameters and can account for widely differing compressive and tensile strengths in various directions. The proposed fracture condition is devel oped, purely on formal grounds, by borrowing features of the Mises-Schleicher isotropic yield condition and Hill's orthotropic yield condition. Comparison with experimental data on a

Oscar Hoffman

1967-01-01

278

Tensile fracture dynamics and intrinsic plasticity of metallic glasses  

NASA Astrophysics Data System (ADS)

Under tensile tests of metallic glasses (MGs) subjected to annealing below glass transition temperature Tg, ductile-to-brittle transition (DBT) occurs due to structural relaxation, which results in more ordered atomic packing and decrease of glass fraction ?. DBT is observed simultaneously with fracture mechanism transition: shear banding to cracking. All MG samples annealed under different temperature were also restricted to shear banding and cracking separately under small-aspect-ratio compression and compact tension avoiding DBT. Experimental results prove that as annealing temperature increases (or glass fraction ? decreases), strength for shear banding increases, while strength for cracking decreases; as ? becomes less than critical state ?DBT, MG samples tend to cracking instead of shear banding. So, ?DBT is proposed as an important parameter to characterize the intrinsic plasticity of various MGs and to conform to the previous factors soundly.

Cui, J. W.; Calin, M.; Eckert, J.; Zhang, Z. F.

2013-01-01

279

In situ tensile and creep testing of lithiated silicon nanowires  

SciTech Connect

We present experimental results for uniaxial tensile and creep testing of fully lithiated silicon nanowires. A reduction in the elastic modulus is observed when silicon nanowires are alloyed with lithium and plastic deformation becomes possible when the wires are saturated with lithium. Creep testing was performed at fixed force levels above and below the tensile strength of the material. A linear dependence of the strain-rate on the applied stress was evident below the yield stress of the alloy, indicating viscous deformation behavior. The observed inverse exponential relationship between wire radius and strain rate below the yield stress indicates that material transport was controlled by diffusion. At stress levels approaching the yield strength of fully lithiated silicon, power-law creep appears to govern the strain-rate dependence on stress. These results have direct implications on the cycling conditions, rate-capabilities, and charge capacity of silicon and should prove useful for the design and construction of future silicon-based electrodes.

Boles, Steven T.; Kraft, Oliver [Institute for Applied Materials, KIT, 76344 Eggenstein-Leopoldshafen (Germany)] [Institute for Applied Materials, KIT, 76344 Eggenstein-Leopoldshafen (Germany); Thompson, Carl V. [Department of Materials Science and Engineering, MIT, Cambridge, Massachusetts 02139 (United States)] [Department of Materials Science and Engineering, MIT, Cambridge, Massachusetts 02139 (United States); Mönig, Reiner [Institute for Applied Materials, KIT, 76344 Eggenstein-Leopoldshafen (Germany) [Institute for Applied Materials, KIT, 76344 Eggenstein-Leopoldshafen (Germany); Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU), 89069 Ulm (Germany)

2013-12-23

280

In situ tensile and creep testing of lithiated silicon nanowires  

NASA Astrophysics Data System (ADS)

We present experimental results for uniaxial tensile and creep testing of fully lithiated silicon nanowires. A reduction in the elastic modulus is observed when silicon nanowires are alloyed with lithium and plastic deformation becomes possible when the wires are saturated with lithium. Creep testing was performed at fixed force levels above and below the tensile strength of the material. A linear dependence of the strain-rate on the applied stress was evident below the yield stress of the alloy, indicating viscous deformation behavior. The observed inverse exponential relationship between wire radius and strain rate below the yield stress indicates that material transport was controlled by diffusion. At stress levels approaching the yield strength of fully lithiated silicon, power-law creep appears to govern the strain-rate dependence on stress. These results have direct implications on the cycling conditions, rate-capabilities, and charge capacity of silicon and should prove useful for the design and construction of future silicon-based electrodes.

Boles, Steven T.; Thompson, Carl V.; Kraft, Oliver; Mönig, Reiner

2013-12-01

281

Tensile Fracture of Welded Polymer Interfaces: Miscibility, Entanglements and Crazing  

E-print Network

Large-scale molecular simulations are performed to investigate tensile failure of polymer interfaces as a function of welding time $t$. Changes in the tensile stress, mode of failure and interfacial fracture energy $G_I$ are correlated to changes in the interfacial entanglements as determined from Primitive Path Analysis. Bulk polymers fail through craze formation, followed by craze breakdown through chain scission. At small $t$ welded interfaces are not strong enough to support craze formation and fail at small strains through chain pullout at the interface. Once chains have formed an average of about one entanglement across the interface, a stable craze is formed throughout the sample. The failure stress of the craze rises with welding time and the mode of craze breakdown changes from chain pullout to chain scission as the interface approaches bulk strength. The interfacial fracture energy $G_I$ is calculated by coupling the simulation results to a continuum fracture mechanics model. As in experiment, $G_I$ increases as $t^{1/2}$ before saturating at the average bulk fracture energy $G_b$. As in previous simulations of shear strength, saturation coincides with the recovery of the bulk entanglement density. Before saturation, $G_I$ is proportional to the areal density of interfacial entanglements. Immiscibiltiy limits interdiffusion and thus suppresses entanglements at the interface. Even small degrees of immisciblity reduce interfacial entanglements enough that failure occurs by chain pullout and $G_I \\ll G_b$.

Ting Ge; Gary S. Grest; Mark O. Robbins

2014-10-07

282

Application of Gurson-Tvergaard-Needleman constitutive model to the tensile behavior of reinforcing bars with corrosion pits.  

PubMed

Based on meso-damage mechanics and finite element analysis, the aim of this paper is to describe the feasibility of the Gurson-Tvergaard-Needleman (GTN) constitutive model in describing the tensile behavior of corroded reinforcing bars. The orthogonal test results showed that different fracture pattern and the related damage evolution process can be simulated by choosing different material parameters of GTN constitutive model. Compared with failure parameters, the two constitutive parameters are significant factors affecting the tensile strength. Both the nominal yield and ultimate tensile strength decrease markedly with the increase of constitutive parameters. Combining with the latest data and trial-and-error method, the suitable material parameters of GTN constitutive model were adopted to simulate the tensile behavior of corroded reinforcing bars in concrete under carbonation environment attack. The numerical predictions can not only agree very well with experimental measurements, but also simplify the finite element modeling process. PMID:23342140

Xu, Yidong; Qian, Chunxiang

2013-01-01

283

Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints  

SciTech Connect

This paper reports on studies of the influences of various post-weld heat treatment procedures on tensile properties of friction stir-welded AA6061 aluminum alloy joints. Rolled plates of 6-mm thick AA6061 aluminum alloy were used to fabricate the joints. Solution treatment, an artificial aging treatment and a combination of both were given to the welded joints. Tensile properties such as yield strength, tensile strength, elongation and joint efficiency were evaluated. Microstructures of the welded joints were analyzed using optical microscopy and transmission electron microscopy. A simple artificial aging treatment was found to be more beneficial than other treatment methods to enhance the tensile properties of the friction stir-welded AA6061 aluminum alloy joints.

Elangovan, K. [Department of Mechanical and Production Engineering, Annamalai University, Annamalai Nagar - 608 002, Tamil Nadu (India); Balasubramanian, V. [Centre for Materials Joining Research (CEMAJOR), Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar - 608 002, Tamil Nadu (India)], E-mail: visvabalu@yahoo.com

2008-09-15

284

Application of Gurson–Tvergaard–Needleman Constitutive Model to the Tensile Behavior of Reinforcing Bars with Corrosion Pits  

PubMed Central

Based on meso-damage mechanics and finite element analysis, the aim of this paper is to describe the feasibility of the Gurson–Tvergaard–Needleman (GTN) constitutive model in describing the tensile behavior of corroded reinforcing bars. The orthogonal test results showed that different fracture pattern and the related damage evolution process can be simulated by choosing different material parameters of GTN constitutive model. Compared with failure parameters, the two constitutive parameters are significant factors affecting the tensile strength. Both the nominal yield and ultimate tensile strength decrease markedly with the increase of constitutive parameters. Combining with the latest data and trial-and-error method, the suitable material parameters of GTN constitutive model were adopted to simulate the tensile behavior of corroded reinforcing bars in concrete under carbonation environment attack. The numerical predictions can not only agree very well with experimental measurements, but also simplify the finite element modeling process. PMID:23342140

Xu, Yidong; Qian, Chunxiang

2013-01-01

285

Strength Testing.  

ERIC Educational Resources Information Center

Postural deviations resulting from strength and flexibility imbalances include swayback, scoliosis, and rounded shoulders. Screening tests are one method for identifying strength problems. Tests for the evaluation of postural problems are described, and exercises are presented for the strengthening of muscles. (JN)

Londeree, Ben R.

1981-01-01

286

Dynamic-tensile-extrusion response of fluoropolymers  

SciTech Connect

The current work applies the recently developed Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) technique to polytetrafluoroethylene (PTFE) and polychlorotrifluoroethylene (PCTFE). Similar to the Taylor Impact Rod, Dynamic-Tensile-Extrusion is a strongly integrated test, probing a wide range of strain rates and stress states. However, the stress state is primarily tensile enabling investigation of dynamic tensile failure modes. Here we investigate the influence of this propensity to neck or not between PCTFE and PTFE on their response under dynamic tensile extrusion loading. The results of the Dyn-Ten-Ext technique are compared with two classic techniques. Both polymers have been investigated using Tensile Split Hopkinson Pressure Bar. The quasistatic and dynamic responses of both fluoro-polymers have been extensively characterized. The two polymers exhibit significantly different failure behavior under tensile loading at moderate strain rates. Polytetrafluoroethylene resists formation of a neck and exhibits significant strain hardening. Independent of temperature or strain rate, PTFE sustains true strains to failure of approximately 1.5. Polychlorotrifluoroethylene, on the other hand, consistently necks at true strains of approximately 0.05.

Brown, Eric N [Los Alamos National Laboratory; Trujillo, Carl P [Los Alamos National Laboratory; Gray, George T [Los Alamos National Laboratory

2009-01-01

287

Microstructure and Tensile Properties of Wrought Al Alloy 5052 Produced by Rheo-Squeeze Casting  

NASA Astrophysics Data System (ADS)

The semisolid slurry of wrought Al alloy 5052 was prepared by the indirect ultrasonic vibration (IUV) method, in which the horn was vibrated under the outside of the metallic cup containing molten alloy, and then shaped by direct squeeze casting (SC). Spherical primary ?-Al particles were uniformly dispersed in the matrix and presented a bimodal distribution of grain sizes. The effects of rheo-squeeze casting (RSC) parameters such as squeeze pressure and solid fraction on the microstructure and tensile properties of the semisolid alloy were investigated. The results indicate that average diameters of the primary ?-Al particles decreased with the increase of squeeze pressure, while the tensile properties of the alloy increased. With the increase of solid fraction, the tensile strength increased first and then decreased, but the elongation decreased continuously. The best tensile properties were achieved when the slurry with a solid fraction of 0.17 solidified under 100 MPa. Compared to conventional squeeze casting, RSC process can offer the 5052 alloy better tensile strength and elongation, which were improved by 9.7 pct and 42.4 pct, respectively.

Lü, Shulin; Wu, Shusen; Wan, Li; An, Ping

2013-06-01

288

Effect of cryogenic treatment on tensile behavior of case carburized steel-815M17  

SciTech Connect

The crown wheel and pinion represent the most highly stressed parts of a heavy vehicle; these are typically made of 815M17 steel. The reasons for the frequent failure of these components are due to tooth bending impact, wear and fatigue. The modern processes employed to produce these as high, durable components include cryogenic treatment as well as conventional heat treatment. It helps to convert retained austenite into martensite as well as promote carbide precipitation. This paper deals with the influence of cryogenic treatment on the tensile behavior of case carburized steel 815M17. The impetus for studying the tensile properties of gear steels is to ensure that steels used in gears have sufficient tensile strength to prevent failure when gears are subjected to tensile or fatigue loads, and to provide basic design information on the strength of 815M17 steel. A comparative study on the effects of deep cryogenic treatment (DCT), shallow cryogenic treatment (SCT) and conventional heat treatment (CHT) was made by means of tension testing. This test was conducted as per ASTM standard designation E 8M. The present results confirm that the tensile behavior is marginally reduced after cryogenic treatment (i.e. both shallow and deep cryogenic treatment) for 815M17 when compared with conventional heat treatment. Scanning electron microscopic (SEM) analysis of the fracture surface indicates the presence of dimples and flat fracture regions are more common in SCT specimens than for CHT and DCT-processed material.

Bensely, A. [Department of Mechanical Engineering, Anna University, Sardar Patel Road, Chennai-600 025 (India)]. E-mail: benzlee@annauniv.edu; Senthilkumar, D. [Department of Mechanical Engineering, Anna University, Sardar Patel Road, Chennai-600 025 (India); Mohan Lal, D. [Department of Mechanical Engineering, Anna University, Sardar Patel Road, Chennai-600 025 (India); Nagarajan, G. [Department of Mechanical Engineering, Anna University, Sardar Patel Road, Chennai-600 025 (India); Rajadurai, A. [Department of Production Engineering, Madras Institute of Technology, Chrompet, Anna University, Chennai-600 044 (India)

2007-05-15

289

In situ tensile testing of individual Co nanowires inside a scanning electron microscope  

NASA Astrophysics Data System (ADS)

Uniaxial quasi-static tensile testing on individual nanocrystalline Co nanowires (NWs), synthesized by electrochemical deposition process (EDP) in porous templates, was performed inside a scanning electron microscope (SEM) using a microfabricated tensile stage consisting of a comb drive actuator and a clamped-clamped beam force sensor. A 'three-beam structure' was fabricated by focused ion beam induced deposition (FIBID) on the stage, from which the specimen elongation and the tensile force could be measured simultaneously from SEM images at high magnification. A novel strategy of modifying device topography, e.g. in the form of trenches and pillars, was proposed to facilitate in situ SEM pick-and-place nanomanipulation, which could achieve a high yield of about 80% and reduce the difficulties in specimen preparation for tensile testing at the nanoscale. The measured apparent Young's modulus (75.3 ± 14.6) GPa and tensile strength (1.6 ± 0.4) GPa are significantly lower than the bulk modulus and the theoretical strength of monocrystalline samples, respectively. This result is important for designing Co NW-based devices. The origins of these distinctions are discussed in terms of the stiffnesses of the soldering portions, specimen misalignment, microstructure of the NWs and the experimental measurement uncertainty.

Zhang, Dongfeng; Breguet, Jean-Marc; Clavel, Reymond; Philippe, Laetitia; Utke, Ivo; Michler, Johann

2009-09-01

290

Notch tensile properties of laser-surface-annealed 17-4 PH stainless steel in hydrogen-related environments  

Microsoft Academic Search

Slow displacement rate tensile tests were performed to determine the notched tensile strength (NTS) of 17-4 PH stainless steel with various microstructures in hydrogen-related environments. Solution-annealed (SA), peak-aged (H900), over-aged (H1025), and laser-annealed (LA) specimens were included in the study. Based on the results of NTS in air, the NTS loss in both gaseous hydrogen and H2S-saturated solution was used

L. W. Tsay; W. C. Lee; R. K. Shiue; J. K. Wu

2002-01-01

291

Development of high strength biodegradable composites using Manila hemp fiber and starch-based biodegradable resin  

Microsoft Academic Search

This paper describes the development of high strength biodegradable “green” composites. The unidirectional biodegradable composites were made from Manila hemp fiber bundles and a starch-based emulsion-type biodegradable resin. The tensile and flexural strengths of the composites increased with increasing fiber content up to 70%. The composites possessed extremely high tensile and flexural strengths of 365MPa and 223MPa, respectively. The fabrication

Shinji Ochi

2006-01-01

292

Effect of Welding and Post-weld Heat Treatment on Tensile Properties of Nimonic 263 at Room and Elevated Temperatures  

NASA Astrophysics Data System (ADS)

Nimonic 263 has been developed for the improved ductility in welded assemblies and is a candidate material for gas turbine combustor and transition pieces along with its good weldability and mechanical properties at room and elevated temperatures. In this study, the tensile behavior of an as-welded Nimonic 263 specimen at room temperature and 1053 K (780 °C) was examined in conjunction with microstructural evolution during welding and postweld heat treatment (PWHT). With the welding and the PWHT, the yield strength (YS), ultimate tensile strength (UTS), and tensile elongation of Nimonic 263 varied in a complex manner. It was observed that the PWHT of resolutionization at 1423 K (1150 °C) for 2 hours gave the highest YS and UTS values, whereas the tensile elongation was the lowest, at both testing temperatures. With increasing resolutionization time, the YS and UTS tended to decrease along with the increase in tensile ductility. The tensile behaviors of as-welded Nimonic 263 specimens was affected by several factors, including grain size, residual stress, possible microsegregation of ?' forming elements, a tendency for interdendritic or intergranular fracture and a morphological change in both M23C6 and MC type carbides, depending on the testing temperature and the PWHT. The complex changes in tensile properties of Nimonic 263 with welding and PWHT at room temperature and 1053 K (780 °C) were discussed based on the micrographic and fractographic observations.

Jeon, Minwoo; Lee, Jae-Hyun; Woo, Ta Kwan; Kim, Sangshik

2011-04-01

293

Micro-mechanical studies on graphite strength prediction models  

NASA Astrophysics Data System (ADS)

The influence of type of loading and size-effects on the failure strength of graphite were studied using Weibull model. It was observed that this model over-predicts size effect in tension. However, incorporation of grain size effect in Weibull model, allows a more realistic simulation of size effects. Numerical prediction of strength of four-point bend specimen was made using the Weibull parameters obtained from tensile test data. Effective volume calculations were carried out and subsequently predicted strength was compared with experimental data. It was found that Weibull model can predict mean flexural strength with reasonable accuracy even when grain size effect was not incorporated. In addition, the effects of microstructural parameters on failure strength were analyzed using Rose and Tucker model. Uni-axial tensile, three-point bend and four-point bend strengths were predicted using this model and compared with the experimental data. It was found that this model predicts flexural strength within 10%. For uni-axial tensile strength, difference was 22% which can be attributed to less number of tests on tensile specimens. In order to develop failure surface of graphite under multi-axial state of stress, an open ended hollow tube of graphite was subjected to internal pressure and axial load and Batdorf model was employed to calculate failure probability of the tube. Bi-axial failure surface was generated in the first and fourth quadrant for 50% failure probability by varying both internal pressure and axial load.

Kanse, Deepak; Khan, I. A.; Bhasin, V.; Vaze, K. K.

2013-06-01

294

A new theoretical approach to tablet strength of a binary mixture consisting of a well and a poorly compactable substance  

Microsoft Academic Search

The objective of this study was to analyse the tensile strength of a well and a poorly compactable substance in a tablet mixture. Recent developments in the theory of percolation were taken into account and two power laws are proposed, one for the tensile strength as a function of the relative density of the mixture, and the other for the

Martin Kuentz; Hans Leuenberger

2000-01-01

295

Tensile properties of rat anterior cruciate ligament in collagen induced arthritis  

PubMed Central

OBJECTIVES—To investigate the effects of collagen induced arthritis (CIA) on the tensile properties of rat anterior cruciate ligament (ACL).?METHODS—The tensile strength, bone mineral density (BMD), and histology of ACL units from rats with CIA were investigated.?RESULTS—The tensile strength of the ACL unit was significantly lower in the rats with CIA at 10 weeks after immunisation (ultimate failure load, 74.9% of the control; stiffness, 62.0% of the control). The major mode of failure was femoral avulsion, and the BMD was significantly lower in the rats with CIA. A histological examination of the ligament insertion in rats with CIA showed resorption of the cortical bone beneath the ACL insertion and an enlarged mineralised fibrocartilage zone.?CONCLUSIONS—These findings indicate that the decrease in tensile strength of ACL units correlated with histological changes in the ligament-bone attachment, such as bone resorption beneath the ligament insertion site and an enlargement of the mineralised fibrocartilage zone.?? PMID:11247872

Nawata, K; Enokida, M; Yamasaki, D; Minamizaki, T; Hagino, H; Morio, Y; Teshima, R

2001-01-01

296

Elevated-temperature tensile and creep properties of several ferritic stainless steels  

NASA Technical Reports Server (NTRS)

The elevated-temperature mechanical properties of several ferritic stainless steels were determined. The alloys evaluated included Armco 18SR, GE 1541, and NASA-18T-A. Tensile and creep strength properties at 1073 and 1273 K and residual room temperature tensile properties after creep testing were measured. In addition, 1273 K tensile and creep tests and residual property testing were conducted with Armco 18SR and GE 1541 which were exposed for 200 hours to a severe oxidizing environment in automotive thermal reactors. Aside from the residual tensile properties for Armco 18SR, prior exposure did not affect the mechanical properties of either alloy. The 1273 K creep strength parallel to the sheet-rolling direction was similar for all three alloys. At 1073 K, NASA-18T-A had better creep strength than either Armco 18SR or GE 1541. NASA-18T-A possesses better residual properties after creep testing than either Armco 18SR or Ge 1541.

Whittenberger, J. D.

1977-01-01

297

Tensile testing method for rare earth based bulk superconductors at liquid nitrogen temperature  

NASA Astrophysics Data System (ADS)

Bending tests have been commonly carried out to investigate the mechanical properties of melt-processed rare earth based bulk superconductors. Tensile tests by using small specimen, however, are preferable to evaluate the detailed distribution of the mechanical properties and the intrinsic elastic modulus because no stress distributions exist in the cross-section. In this study, the tensile test method at low temperature by using specimens with the dimensions of 3 × 3 × 4 mm from Y123 and Gd123 bulks was examined. They were glued to Al alloy rods at 400 K by using epoxy resin. Tests were carried out at liquid nitrogen temperature (LNT) by using the immersion type jig. Although the bending strength in the direction perpendicular to the c-axis of the bulks at LNT is higher than that at room temperature (RT), the tensile strength at LNT was lower than that at RT. Many of specimens fractured near the interface between the specimen and the Al alloy rod at LNT. According to the finite element method analysis, it was shown that there was a peak thermal stress in the loading direction near the interface and it was significantly higher at LNT than that at RT. It was also shown that the replacement of the Al alloy rod to Ti rod of which the coefficient of thermal expansion is close to that of bulks significantly increased the tensile strength.

Kasaba, K.; Katagiri, K.; Murakami, A.; Sato, G.; Sato, T.; Murakami, M.; Sakai, N.; Teshima, H.; Sawamura, M.

2005-10-01

298

Effect of Pre-Loading with Tensile Stress on Laboratory UCS of a Synthetic Rock  

NASA Astrophysics Data System (ADS)

Amongst various index properties used by rock engineers, the uniaxial compressive strength (UCS) is probably the most widely used property of intact rocks. In the field, in situ stresses are always present, and, when samples are extracted from such rocks, the stresses are released. These specimens, when tested in the laboratory, may give low strength values in comparison to what would have been obtained without stress removal. It is difficult to exactly follow the stress path of coring of rock in a natural stress environment; an indirect way of simulating effect of stress removal has been adopted in this study. Specimens of a synthetic rock have been subjected to pre-loading with tensile stress, and qualitative assessment of the reduction in the laboratory UCS of the rock has been made. To induce tensile stresses, conventional Brazilian test apparatus was modified. The results indicate that if pre-loading tensile stress exceeds about half of the Brazilian tensile strength, stress removal has substantial effect on the UCS and conservative results may be expected from laboratory tests on rock specimens.

Singh, Mahendra; Lakshmi, Vijaya; Yudhbir; Srivastava, L. P.

2015-01-01

299

Tensile Properties of Polyimide Composites Incorporating Carbon Nanotubes-Grafted and Polyimide-Coated Carbon Fibers  

NASA Astrophysics Data System (ADS)

The tensile properties and fracture behavior of polyimide composite bundles incorporating carbon nanotubes-grafted (CNT-grafted) and polyimide-coated (PI-coated) high-tensile-strength polyacrylonitrile (PAN)-based (T1000GB), and high-modulus pitch-based (K13D) carbon fibers were investigated. The CNT were grown on the surface of the carbon fibers by chemical vapor deposition. The pyromellitic dianhydride/4,4'-oxydianiline PI nanolayer coating was deposited on the surface of the carbon fiber by high-temperature vapor deposition polymerization. The results clearly demonstrate that CNT grafting and PI coating were effective for improving the Weibull modulus of T1000GB PAN-based and K13D pitch-based carbon fiber bundle composites. In addition, the average tensile strength of the PI-coated T1000GB carbon fiber bundle composites was also higher than that of the as-received carbon fiber bundle composites, while the average tensile strength of the CNT-grafted T1000GB, K13D, and the PI-coated K13D carbon fiber bundle composites was similar to that of the as-received carbon fiber bundle composites.

Naito, Kimiyoshi

2014-09-01

300

Tensile strain-rate sensitivity of tungsten/niobium composites at 1300 to 1600 K  

NASA Technical Reports Server (NTRS)

The tensile behavior of continuous tungsten fiber reinforced niobium composites (W/Nb), fabricated by an arc-spray process, was studied in the 1300 to 1600 K temperature range. The tensile properties of the fiber and matrix components as well as of the composites were measured and were compared to rule of mixtures (ROM) predictions. The deviation from the ROM was found to depend upon the chemistry of the tungsten alloy fibers, with positive deviations for ST300/Nb (i.e., stronger composite strength than the ROM) and negative or zero deviations for 218/Nb.

Yun, H. M.; Titran, R. H.

1992-01-01

301

High temperature tensile testing of ceramic composites  

NASA Technical Reports Server (NTRS)

The various components of a high temperature tensile testing system are evaluated. The objective is the high temperature tensile testing of SiC fiber reinforced reaction bonded Si3N4 specimens at test temperatures up to 1650 C (3000 F). Testing is to be conducted in inert gases and air. Gripping fixtures, specimen configurations, furnaces, optical strain measuring systems, and temperature measurement techniques are reviewed. Advantages and disadvantages of the various techniques are also noted.

Gyekenyesi, John Z.; Hemann, John H.

1988-01-01

302

VALIDITY OF THE HIGH-TENSILE-STRENG TH BOLT FOR THE SOFT ROCK WITH LARGE CROSS SECTIONAL TUNNEL  

NASA Astrophysics Data System (ADS)

This paper reports the experiential result about the applications of the high tensile strength bolts as a countermeasure for the displacement, considered about the denaturalization of the large cross sectional tunnel in mudstone layer. In Kanaya Tunnel of the New Tomei Expressway, the soft rock section appeared where we cannot restrain support denaturizi ng and internal displacement by materials of the standard design. Then fore, we adopted the high tensile strength bolts (748kN) replacing with of the standard design, and improved the support proof for stress. As the result, we got possible to control the displacement and execute the work safety and economi cally. We compared the analysis result (FEM) by the limited element method with the measure result on the spot, and inspected the supportability effect of the higt tensile strength bolts.

Yagi, Hiroshi; Tamamura, Kouji; Uneda, Atsushi; Domon, Tsuyoshi; Nishimura, Kazuo

303

Strength Scaling in Fiber Composites  

NASA Technical Reports Server (NTRS)

A research program was initiated to study and isolate the factors responsible for scale effects in the tensile strength of graphite/epoxy composite laminates. Four layups were chosen with appropriate stacking sequences so as to highlight individual and interacting failure modes. Four scale sizes were selected for investigation including full scale size, 3/4, 2/4, and 1/4, with n = to 4, 3, 2, and 1, respectively. The full scale specimen sizes was 32 piles thick as compared to 24, 16, and 8 piles for the 3/4, 2/4, and 1/4 specimen sizes respectively. Results were obtained in the form of tensile strength, stress-strain curves and damage development. Problems associated with strength degradation with increasing specimen sizes are isolated and discussed. Inconsistencies associated with strain measurements were also identified. Enhanced x ray radiography was employed for damage evaluation, following step loading. It was shown that fiber dominated layups were less sensitive to scaling effects compared to the matrix dominated layups.

Kellas, Sotiris; Morton, John

1990-01-01

304

The Effect of Thermomechanical Processing on the Tensile, Fatigue, and Creep Behavior of Magnesium Alloy AM60  

NASA Astrophysics Data System (ADS)

Tensile, fatigue, fracture toughness, and creep experiments were performed on a commercially available magnesium-aluminum alloy (AM60) after three processing treatments: (1) as-THIXOMOLDED (as-molded), (2) THIXOMOLDED then thermomechanically processed (TTMP), and (3) THIXOMOLDED then TTMP then annealed (annealed). The TTMP procedure resulted in a significantly reduced grain size and a tensile yield strength greater than twice that of the as-molded material without a debit in elongation to failure ( ? f ). The as-molded material exhibited the lowest strength, while the annealed material exhibited an intermediate strength but the highest ? f (>1 pct). The TTMP and annealed materials exhibited fracture toughness values almost twice that of the as-molded material. The as-molded material exhibited the lowest fatigue threshold values and the lowest fatigue resistance. The annealed material exhibited the greatest fatigue resistance, and this was suggested to be related to its balance of tensile strength and ductility. The fatigue lives of each material were similar at both room temperature (RT) and 423 K (150 °C). The tensile-creep behavior was evaluated for applied stresses ranging between 20 and 75 MPa and temperatures between 373 and 473 K (100 and 200 °C). During both the fatigue and creep experiments, cracking preferentially occurred at grain boundaries. Overall, the results indicate that thermomechanical processing of AM60 dramatically improves the tensile, fracture toughness, and fatigue behavior, making this alloy attractive for structural applications. The reduced creep resistance after thermomechanical processing offers an opportunity for further research and development.

Chen, Z.; Huang, J.; Decker, R. F.; Lebeau, S. E.; Walker, L. R.; Cavin, O. B.; Watkins, T. R.; Boehlert, C. J.

2011-05-01

305

Role of Crystal Interlocking on the Strength of Brittle Rocks  

NASA Astrophysics Data System (ADS)

Results of an experimental programme on heterogeneous rock-like specimens of dental plaster confirm the pronounced role of tensile microcracks on brittle failure. Microbuckling of very small rock-columns formed amid closely located tensile cracks was observed as the key incident connecting stable phenomenon of tensile cracking to unstable phenomenon of shearing and subsequent macroscopic failure. Using the classical beam and buckling theories and considering geometry of the problem a new failure criterion is proposed. As a novel attempt, this new failure criterion relates the compressive strength of rock to three basic microstructural properties, i.e. degree of crystal interlocking, average Young modulus and average tensile strength of rock forming minerals.

Noferesti, Hossain; Rao, K. S.

2011-03-01

306

Superior Tensile Ductility in Bulk Metallic Glass with Gradient Amorphous Structure  

PubMed Central

Over centuries, structural glasses have been deemed as a strong yet inherently ‘brittle’ material due to their lack of tensile ductility. However, here we report bulk metallic glasses exhibiting both a high strength of ~2?GPa and an unprecedented tensile elongation of 2–4% at room temperature. Our experiments have demonstrated that intense structural evolution can be triggered in theses glasses by the carefully controlled surface mechanical attrition treatment, leading to the formation of gradient amorphous microstructures across the sample thickness. As a result, the engineered amorphous microstructures effectively promote multiple shear banding while delay cavitation in the bulk metallic glass, thus resulting in superior tensile ductility. The outcome of our research uncovers an unusual work-hardening mechanism in monolithic bulk metallic glasses and demonstrates a promising yet low-cost strategy suitable for producing large-sized, ultra-strong and stretchable structural glasses. PMID:24755683

Wang, Q.; Yang, Y.; Jiang, H.; Liu, C. T.; Ruan, H. H.; Lu, J.

2014-01-01

307

Superior tensile ductility in bulk metallic glass with gradient amorphous structure.  

PubMed

Over centuries, structural glasses have been deemed as a strong yet inherently 'brittle' material due to their lack of tensile ductility. However, here we report bulk metallic glasses exhibiting both a high strength of ~2 GPa and an unprecedented tensile elongation of 2-4% at room temperature. Our experiments have demonstrated that intense structural evolution can be triggered in theses glasses by the carefully controlled surface mechanical attrition treatment, leading to the formation of gradient amorphous microstructures across the sample thickness. As a result, the engineered amorphous microstructures effectively promote multiple shear banding while delay cavitation in the bulk metallic glass, thus resulting in superior tensile ductility. The outcome of our research uncovers an unusual work-hardening mechanism in monolithic bulk metallic glasses and demonstrates a promising yet low-cost strategy suitable for producing large-sized, ultra-strong and stretchable structural glasses. PMID:24755683

Wang, Q; Yang, Y; Jiang, H; Liu, C T; Ruan, H H; Lu, J

2014-01-01

308

Effect of cold work on tensile behavior of irradiated type 316 stainless steel  

SciTech Connect

Tensile specimens were irradiated in ORR at 250, 290, 450, and 500/sup 0/C to produce a displacement damage of approx.5 dpa and 40 at. ppM He. Irradiation at 250 and 290/sup 0/C caused an increase in yield stress and ultimate tensile strength and a decrease in ductility relative to unaged and thermally aged controls. The changes were greatest for the 20%-cold-worked steel and lowest for the 50%-cold-worked steel. Irradiation at 450/sup 0/C caused a slight relative decrease in strength for all cold-worked conditions. A large decrease was observed at 500/sup 0/C, with the largest decrease occurring for the 50%-cold-worked specimen. No bubble, void, or precipitate formation was observed for specimens examined by transmission electron microscopy (TEM). The irradiation hardening was correlated with Frank-loop and ''black-dot'' loop damage. A strength decrease at 500/sup 0/C was correlated with dislocation network recovery. Comparison of tensile and TEM results from ORR-irradiated steel with those from steels irradiated in the High Flux Isotope Reactor and the Experimental Breeder Reactor indicated consistent strength and microstructure changes.

Klueh, R.L.; Maziasz, P.J.

1986-01-01

309

Tensile fracture mechanisms of ferritic/martensitic structural materials  

NASA Astrophysics Data System (ADS)

Radiation-induced defect structures are known to elevate material yield strength and reduce material ductility so that small strains induce plastic instability. This process is commonly known as flow localization. Recent research indicates that the flow localization in face-centered cubic (FCC) materials is controlled by critical stress, the true stress of onset of necking. Critical stress dose not change with irradiation dose but has strong temperature dependence. Because critical stress acts as a material intrinsic property similar to yield strength, it is important to understand the controlling mechanism and the temperature dependence of critical stress. It is believed that critical stress is associated with critical interfacial strength between particle and matrix, which determines the void nucleation. Void nucleation has received extensive attention motivated by the need to enhance damage tolerance and avoid fracture in structural materials. Several initiation models have been built to predict critical interfacial strength of void nucleation. However, all of these models are limited because they were derived from post-deformation (static) micro-structural characterization, which contains no information about the dynamic processes involved in the evolution of failure. This dissertation project aims to examine the controlling mechanism of critical stress, and the effects of temperature and particle characters by investigating the void nucleation through in-situ tensile tests with high energy X-ray diffraction and small angle X-ray scattering. By combining stress and void evolution from X-ray experiments, the critical interfacial strength right at the beginning of void nucleation is directly measured for four types of Fe-Cr-C model alloys: Fe-9%Cr-0.1%C, Fe-9%Cr-0.5%C, Fe-12%Cr-0.2%C, and Fe-12%Cr-0.5%C, which are promising candidates for high-temperature advanced nuclear system applications. The effects of temperature, particle size, particle volume fraction, particle crystal orientation, and chemical composition on critical interfacial strength have been inspected thoroughly. Results from this study demonstrate that critical stress is strongly linearly correlated with critical interfacial strength. The effects of temperature and particle size on critical stress are correspondingly determined by how temperature and particle size influence critical interfacial strength. In addition, a new Micro-Structural Model (MSM) is developed to predict critical interfacial strength using macro tensile testing parameters. This MSM model is consistent with experimental measurements under all testing conditions. Pre-existing dislocation models are also evaluated by the X-ray measurements. Results show that the MSM model can provide better prediction than dislocation models. X-ray measurements and analysis not only support the hypothesis of the association between critical stress and critical interfacial strength, but also offer a new method to determine the true strain/stress behavior during deformation. This method is called the Universal Micro-structural Geometry-corrected Model (UMGM) in this dissertation. Due to the development of tri-axial stress and severe distortion of grain structure in the necking region, it is a challenge to determine the true strain/stress curve, a critical input in finite element modeling (FEM) analysis. Previous scholars have developed several analytical methods to characterize true strain/stress behavior after necking merely based on geometry correction or direct linear extrapolation. Grounded with experimental data, the UMGM provides empirical validation for these existing methods.

Pan, Xiao

310

Tensile and stress-rupture behavior of hafnium carbide dispersed molybdenum and tungsten base alloy wires  

NASA Technical Reports Server (NTRS)

The tensile strain rate sensitivity and the stress-rupture strength of Mo-base and W-base alloy wires, 380 microns in diameter, were determined over the temperature range from 1200 K to 1600 K. Three molybdenum alloy wires; Mo + 1.1w/o hafnium carbide (MoHfC), Mo + 25w/o W + 1.1w/o hafnium carbide (MoHfC+25W) and Mo + 45w/o W + 1.1w/o hafnium carbide (MoHfC+45W), and a W + 0.4w/o hafnium carbide (WHfC) tungsten alloy wire were evaluated. The tensile strength of all wires studied was found to have a positive strain rate sensitivity. The strain rate dependency increased with increasing temperature and is associated with grain broadening of the initial fibrous structures. The hafnium carbide dispersed W-base and Mo-base alloys have superior tensile and stress-rupture properties than those without HfC. On a density compensated basis the MoHfC wires exhibit superior tensile and stress-rupture strengths to the WHfC wires up to approximately 1400 K. Addition of tungsten in the Mo-alloy wires was found to increase the long-term stress rupture strength at temperatures above 1400 K. Theoretical calculations indicate that the strength and ductility advantage of the HfC dispersed alloy wires is due to the resistance to recrystallization imparted by the dispersoid.

Yun, Hee Mann; Titran, Robert H.

1993-01-01

311

Lifetimes of fiber composites under sustained tensile loading  

NASA Technical Reports Server (NTRS)

Results are presented for a study intended to summarize lifetime data on several fiber/epoxy composite materials subjected to sustained uniaxial tensile loading, to report preliminary results of an accelerated test method for predicting the life of simple composites, and to describe related work in progress on pressure vessels and other filament-wound structures. The lifetime performance of the tested composites was compared by plotting the percent of ultimate strength (applied fiber stress normalized with respect to fiber failure stress in a composite) versus lifetime. In terms of performance in long-term tensile applications, the tested composites are ranked in the following order: graphite/epoxy, Be wire/epoxy, Aramid/epoxy, and S-glass/epoxy. The accelerated test using temperature and stress to simulate the passage of time proves to be encouraging, at least in the case of the Aramid/epoxy composite. The potential of a statistical analysis based on Weibull distribution analyses or a power law relationship is demonstrated.

Chiao, T. T.; Sherry, R. J.; Chiao, C. C.

1977-01-01

312

High temperature tensile deformation behavior of Grade 92 steel  

NASA Astrophysics Data System (ADS)

Candidate structural materials for advanced reactors need to have superior high temperature strength and creep-rupture properties among other characteristics. The ferritic-martensitic Grade 92 steel (Fe-9Cr-2W-0.5Mo, wt.%) is considered such a candidate structural material. Tensile tests were performed at temperatures of 600, 650 and 700 °C in the strain rate range of 10-5-10-3 s-1. After analyzing the tensile results using the Bird-Mukherjee-Dorn (BMD) equation, a stress exponent of about 9.5 and an activation energy of about 646 kJ/mol were obtained. In the light of high values of the stress exponent and activation energy, the threshold stress concept was used to elucidate the operating high temperature deformation mechanism. As a result of this modification, the true activation energy and stress exponent of the high temperature deformation in Grade 92 steel were found to be about 245 kJ/mol and 5, respectively. Thus, the dominant high temperature deformation mechanism was identified as the high temperature climb of edge dislocations and the appropriate constitutive equation was developed.

Alsagabi, Sultan; Shrestha, Triratna; Charit, Indrajit

2014-10-01

313

Dry Bag Isostatic Pressing for Improved Green Strength of Nuclear Fuel Pellets  

SciTech Connect

Dry bag isostatic pressing is proposed for mass production of nuclear fuel pellets. Dry bag isostatically pressed rods of a fuel surrogate (95% CeO2-5% HfO2) 200 mm long by 8 mm diameter were cut into pellets using a wire saw. Four different binder and two different CeO2 powder sources were investigated. The strength of the isostatically pressed pellets for all binder systems measured by diametral compression was about 50% higher than pellets produced by uniaxial dry pressing at the same pressure. It was proposed that the less uniform density of uniaxially pressed pellets accounted for the lower strength. The strength of pellets containing CeO2 powder with significantly higher moisture content was five times higher than pellets containing CeO2 powder with a low moisture content. Capillary pressure of the moisture was thought to supply the added binding strength.

G. W. Egeland; L. D. Zuck; W. R. Cannon; P. A. Lessing; P. G. Medvedev

2010-11-01

314

Influence of thermo-mechanical treatment on the tensile properties of a modified 14Cr-15Ni stainless steel  

NASA Astrophysics Data System (ADS)

The titanium modified 14Cr-15Ni austenitic stainless steel is used as clad and wrapper material for fast breeder nuclear reactor. Thermo-mechanical treatments consisting of solution annealing at two different temperatures of 1273 and 1373 K followed by cold-work and thermal ageing have been imparted to the steel to tailor its microstructure for enhancing strength. Tensile tests have been carried out on the thermo-mechanically treated steel at nominal strain rate of 1.6 × 10-4 s-1 over a temperature range of 298-1073 K. The yield stress and the ultimate tensile strength of the steel increased with increase in solution treatment temperature and this has been attributed to the fine and higher density of Ti(C,N) precipitate. Tensile flow behaviour of the steel has been analysed using Ludwigson and Voce constitutive equations. The steel heat treated at higher solution temperature exhibited earlier onset of cross slip during tensile deformation. The rate of recovery at higher test temperatures was also influenced by variations in solution heat treatment temperature. In addition, dynamic recrystallization during tensile deformation at higher temperatures was profound for steel solution heat-treated at lower temperature. The differences in flow behaviour and softening mechanisms during tensile testing of the steel after different heat treated conditions have been attributed to the nature of Ti(C,N) precipitation.

Vijayanand, V. D.; Laha, K.; Parameswaran, P.; Nandagopal, M.; Panneer Selvi, S.; Mathew, M. D.

2014-10-01

315

Lifetimes of fiber composites under sustained tensile loading  

NASA Technical Reports Server (NTRS)

A description is presented of the test techniques which have been used to apply sustained uniaxial tensile loading to fiber/epoxy composites. The fiber types used include S-glass, aramid, graphite, and beryllium wire. The applied load vs lifetime data for four composite materials are presented in graphs. Attention is given to a statistical analysis of data, a performance comparison of various composites, the age effect on the strength of composites, the applicability of the lifetime data to complex composites, and aspects of accelerated test method development. It is found that the lifetime of a composite under a sustained load varies widely. Depending on the composite system, the minimum life typically differs from the maximum life by a factor of 100 to 1000. It is in this connection recommended that a use of average life data should be avoided in serious design calculations.

Chiao, T. T.; Sherry, R. J.; Chiao, C. C.

1977-01-01

316

Factors which affect fatigue strength of fasteners  

SciTech Connect

Axial load cycling fatigue tests of threaded fasteners are useful in determining fastener fatigue failure or design properties. By using appropriate design factors between the failure and design fatigue strengths, such tests are used to establish fatigue failure and design parameters of fasteners for axial and bending cyclic load conditions. This paper reviews the factors which influence the fatigue strength of low Alloy steel threaded fasteners, identifies those most significant to fatigue strength, and provides design guidelines based on the direct evaluation of fatigue tests of threaded fasteners. Influences on fatigue strength of thread manufacturing process (machining and rolling of threads), effect of fastener membrane and bending stresses, thread root radii, fastener sizes, fastener tensile strength, stress relaxation, mean stress, and test temperature are discussed.

Skochko, G.W.; Herrmann, T.P.

1992-11-01

317

Factors which affect fatigue strength of fasteners  

NASA Astrophysics Data System (ADS)

Axial load cycling fatigue tests of threaded fasteners are useful in determining fastener fatigue failure or design properties. By using appropriate design factors between the failure and design fatigue strengths, such tests are used to establish fatigue failure and design parameters of fasteners for axial and bending cyclic load conditions. This paper reviews the factors which influence the fatigue strength of low alloy steel threaded fasteners, identifies those most significant to fatigue strength, and provides design guidelines based on the direct evaluation of fatigue tests of threaded fasteners. Influences on fatigue strength of thread manufacturing process (machining and rolling of threads), effect of fastener membrane and bending stresses, thread root radii, fastener sizes, fastener tensile strength, stress relaxation, mean stress, and test temperature are discussed.

Skochko, G. W.; Herrmann, T. P.

1992-11-01

318

The effect of surface indications on the tensile properties of cast steel  

NASA Astrophysics Data System (ADS)

The objective of this thesis was to study the effect of surface indications on the tensile properties of cast steel. Four cast steel grades were selected for evaluation; these grades include three carbon and low alloy steels (110/80, 165/135, and Eglin) and one high alloy steel (CF8M). Using these steels, tensile specimens were produced, inspected via MT/PT, categorized by surface indications (as-cast or machined), and tested. Bars with natural surface indications were tensile tested and the properties recorded. The presence of a ? inch, ? inch, or ¼ inch flat-bottomed hole drilled through half the thickness mimicked a similar nonlinear worse-case scenario indication. The ¼ inch indication resulted in an ultimate tensile strength loss ranging from 21.5% to 36.0%, with the more ductile materials being impacted least. The percent elongation loss ranged from 38.5% to 69.9%, with the majority of the alloys showing an approximate 60 percent loss in elongation. The modulus decrease ranged from 2.9% to 17.5%. These results were modeled using ANSYS to observe capability in predicting a decrease in properties. The resulting decrease in properties matched the experimental data to an accuracy of 3+/-11%. The results provide a previously undocumented relationship between indication size and tensile properties.

Hamby, Jeff

319

Numerical modeling of the compressive and tensile response of brittle materials under high pressure dynamic loading  

NASA Astrophysics Data System (ADS)

Ceramic materials are commonly used as ballistic protection materials. The response of a ceramic to impact, perforation and penetration is complex and only limited physical instrumentation can be used in experiments. This paper demonstrates how a hydrocode, such as AUTODYN, can be used to aid in the understanding of the response of brittle materials to high pressure impact loading. While the penetration process is dominated by the material compressive thermodynamic and deviatoric response, the final damaged state of the material can be significantly influenced by the tensile behavior. Modelling of the final damage state is important since this is often the only physical experimental information available. In this paper we present a unique implementation, in a hydrocode, of a tensile crack softening model for improved modeling of brittle materials in the tensile regime. Tensile failure initiation is based on principal stress while the post-failure tensile strength of the material is controlled through a damaging Rankine plasticity failure surface. The performance of the model is demonstrated with the relatively new meshless SPH technique; simulations of steel ball impacts onto alumina ceramic are presented and compared with experiments.

Clegg, Richard A.; Hayhurst, Colin J.

2000-04-01

320

Tensile behavior of tungsten and tungsten-alloy wires from 1300 to 1600 K  

NASA Technical Reports Server (NTRS)

The tensile behavior of a 200-micrometer-diameter tungsten lamp (218CS-W), tungsten + 1.0 atomic percent (a/o) thoria (ST300-W), and tungsten + 0.4 a/o hafnium carbide (WHfC) wires was determined over the temperature range 1300 t0 1600 K at strain rates of 3.3 X 10 to the -2 to 3.3 X 10 to the -5/sec. Although most tests were conducted on as-drawn materials, one series of tests was undertaken on ST300-W wires in four different conditions: as-drawn and vacuum-annealed at 1535 K for 1 hr, with and without electroplating. Whereas heat treatment had no effect on tensile properties, electropolishing significantly increased both the proportional limit and ductility, but not the ultimate tensile strength. Comparison of the behavior of the three alloys indicates that the HfC-dispersed material possesses superior tensile properties. Theoretical calculations indicate that the strength/ductility advantage of WHfC is due to the resistance to recrystallization imparted by the dispersoid.

Hee, Man Yun

1988-01-01

321

Effects of Sample Geometry and Loading Rate onTensile Ductility of TRIP800 Steel  

SciTech Connect

The effects of sample geometry and loading rate on the tensile ductility of a commercial grade Transformation Induced Plasticity (TRIP) steel are examined in this paper. Quasistatic tensile tests were performed for the 1.2mm gauge TRIP800 steel sheets with two geometries: sub-sized ASTM E-8 and a custom designed miniature tensile sample. Sample geometry effects on post-uniform elongation are discussed together with other experimental data reported in the open literature. Further discussions on the effects of sample geometry are cast in the context of mesh-size dependent ductility in finite element-based engineering simulations. The quasi-static tensile curve for the miniature sample is then compared with the split Hopkinson bar results at the loading rates of 1700-S-1 and 2650-S-1 with the same sample design. In contrary to the typical strain rate sensitivity results for mild steel where the dynamic strength increase at high strain rate usually occurs at the price of ductility reduction, our results show that the TRIP800 under examination has positive strain rate sensitivity on both strength and ductility. Images of the deformation process captured by high speed camera together with scanning electron microscopy (SEM) near the fracture zone are also used to elucidate the different deformation modes at different loading rates.

Sun, Xin; Soulami, Ayoub; Choi, Kyoo Sil; Guzman, O.; Chen, Weinong W.

2012-04-15

322

Microcracking and engineering properties of high-strength concrete  

NASA Astrophysics Data System (ADS)

An X-ray technique was used to study internal microcracking. Two classification systems were developed to analyze the microcracks: bond-mortar crack analysis and simple-combined crack analysis. Internal microcracks were observed at four strain levels. The observed microcracking mechanism is related to the failure mode in uniaxial compression. The results of the mechanical properties study are presented including data on compressive strength, strength gain with age, specimen size effect, static modulus of elasticity, Poisson's ratio, modulus of rupture, tensile splitting strength, unit weight, and drying effect on compressive and flexural strength of normal- and high-strength concretes.

Carrasquillo, R. L.

1980-02-01

323

The influence of layer and bond strengths on the ductility of an all beryllium laminate  

Microsoft Academic Search

A limited study has been made of the effect of layer and bond strengths on the longitudinal tensile failure mode of an all beryllium laminate comprising a ductile (~ 5% elongation), high purity substrate and an adhering, brittle (R) of bond strength to layer strength. When R is 0.23 extensive delamination along the gauge length is obtained resulting in maximum

D. Beasley; J. E. J. Bunce

1975-01-01

324

Geometrically controlled tensile response of braided sutures.  

PubMed

Sutures are the materials used for wound closure that are caused by surgery or trauma. The main pre-requisite to the success of the suture is to obtain ultimate level of tensile properties with defined geometrical constraints. In this communication, the model for tensile properties of braided sutures has been proposed by elucidating the most important geometrical and material parameters. The model has accounted for the kinematical changes occurring in the braid and constituent strand geometries under defined level of strain. A comparison has been made between the theoretical and experimental results of stress-strain characteristics of braided sutures. PMID:25579946

Rawal, Amit; Sibal, Apurv; Saraswat, Harshvardhan; Kumar, Vijay

2015-03-01

325

Effects of knot characteristics on tensile breaking of a polymeric monofilament  

NASA Astrophysics Data System (ADS)

The relationship between knot characteristics and breaking mechanisms was investigated for the model filament of a poly(vinylidene fluoride) fishing line. The colouring procedure adopted in this study enabled us to define the accurate breaking position within the knots. Comparison of the breaking positions of a series of torus knots suggested that the breaking position gradually shifted from inside to outside the knots with increasing crossing number. Interestingly, a corresponding effect of knot geometry was also recognized as the synchronized decrease of tensile strength of the knotted filaments. The morphological observation of the fractured tips obtained after tensile breaking revealed that both squeezing and rotation identified for each knot predominantly determined the position and strength of the knot.

Uehara, Hiroki; Kimura, Hiroyuki; Aoyama, Asami; Yamanobe, Takeshi; Komoto, Tadashi

2007-03-01

326

The elevated temperature tensile properties of S-200E commercially pure beryllium  

SciTech Connect

Experiments were performed at 300-100 C in longitudinal and transverse orientations at quasi-static strain rate 5.5 {times} 10{sup {minus}4}s{sup {minus}1}. Results show that the stress-strain curve is smooth, without yield points or serrations. Yield stress and ultimate tensile stress decrease monotonically with temperature. Similar strengths were measured for both orientations. Failure elongation vs temperature is complex.

Henshall, G.A.; Torres, S.G.; Hanafee, J.E.

1995-03-01

327

Determination of biofilm mechanical properties from tensile tests performed using a micro-cantilever method  

Microsoft Academic Search

Recently, a micro-cantilever method was introduced for measuring the ultimate tensile strength of intact bacterial biofilms. Herein, is reported the analysis of the video files from the testing of a 4-day-old Staphylococcus epidermidis biofilm to determine the elastic modulus, toughness, and failure strain. Elastic modulus (1270±280 Pa) was within the range of previously reported values (17–6000 Pa). The high failure

Srijan Aggarwal; Raymond M. Hozalski

2010-01-01

328

Optimization of high filler loading on tensile properties of recycled HDPE/PET blends filled with rice husk  

NASA Astrophysics Data System (ADS)

Biocomposites of recycled high density polyethylene / recycled polyethylene terephthalate (rHDPE/rPET) blend incorporated with rice husk flour (RHF) were prepared using a corotating twin screw extruder. Maleic anhydride polyethylene (MAPE) was added as a coupling agent to improve the fibre-matrix interface adhesion. The effect of high filler loadings (50-90 wt%) on morphology and tensile properties of compatibilized rHDPE/rPET blend was investigated. The results of our study shown that composite with 70 wt% exhibited the highest tensile strength and Young's modulus, which are 22 MPa and 1752 MPa, respectively. The elongation at break decreased with increasing percentage of RHF. SEM micrograph confirmed fillers dispersion, morphological interaction and enhanced interfacial bonding between recycled polymer blends and rice husk. It can be concluded that the optimum RHF content is 70 wt% with maximum tensile strength.

Chen, Ruey Shan; Ahmad, Sahrim; Ghani, Mohd Hafizuddin Ab; Salleh, Mohd Nazry

2014-09-01

329

Tensile and Fatigue Behavior of Friction-Stir Welded Tailor-Welded Blank of Aluminum Alloy 5754  

NASA Astrophysics Data System (ADS)

Friction stir welding is becoming increasingly desirable in many applications, including tailor-welded blanks in which two sheets of different thicknesses are joined together to form blanks that can be subsequently stamped into a final product shape. In this article, we have studied the static tensile and tension-tension fatigue behavior of friction stir welded joint in a tailor-welded blank of aluminum alloy 5754. It was observed that the yield and tensile strengths of friction stir welded specimens with weld located 90° to the tensile direction are close to the base material values, but its elongation is nearly half the elongation for the base material. The friction stir welded joints had relatively high-fatigue strength, and was even superior to that of the base aluminum alloy in the high-cycle region. Pre-straining caused by press forming lowered the elongation to failure, but improved the fatigue performance.

Garware, M.; Kridli, G. T.; Mallick, P. K.

2010-11-01

330

Low carbon dual phase steels for high strength wire  

SciTech Connect

This paper shows that dual phase steels can be designed and processed as new, economical low carbon steels for cold drawing into high tensile strength steel wires. Current work indicates wires of tensile strengths up to 400,000 psi can be obtained. Potential applications for dual phase steel wire include bead wire, tire cord, wire rope and prestressed concrete. It should be possible to produce wire rods in existing rod mills by adapting the controlled rolling and quenching procedures outlined in this paper.

Thomas, G.; Ahn, J.H.

1985-08-01

331

Tensile behavior of borated stainless steels  

Microsoft Academic Search

Borated stainless steel tensile testing is being conducted at Sandia National Laboratories (SNL). The goal of the test program is to provide data to support a code case inquiry to the ASME Boiler and Pressure Vessel Code, Section 3. The adoption by ASME facilitates a materials qualification for structural use in transport cask applications. The borated stainless steel being tested

J. J. Stephens; K. B. Sorenson

1990-01-01

332

Hydrogen embrittlement susceptibility and permeability of two ultra-high strength steels  

Microsoft Academic Search

Slow displacement rate tensile tests were carried out in a saturated H2S solution to investigate the effect of hydrogen embrittlement on notched tensile strength (NTS) and fracture characteristics of two ultra-high strength steels (PH 13-8 Mo stainless steel and T-200 maraging steel). Hydrogen permeation properties were determined by an electrochemical permeation method. The results of permeation tests indicated that over-aged

L. W. Tsay; M. Y. Chi; Y. F. Wu; J. K. Wu; D.-Y. Lin

2006-01-01

333

Effect of Cold Work on Tensile Properties During Annealing Process for Pure Commercial Aluminum (AA 1070 Alloy)  

Microsoft Academic Search

The behavior of non-heat-treatable aluminum alloy in annealing process depends mainly on chemical composition and amount of cold work (strain) retained in the texture. This article discusses the effect of cold work on tensile properties during annealing process. The article discusses the steepness and magnitude of the decline in yield strength and the critical temperature, which has the greatest effect

Raed M. Al Qassab

2007-01-01

334

Numerical Simulation of the Tensile Fractures of the Glass Fabric Composite with 3-D Finite Element Approach (FEA)  

Microsoft Academic Search

With the rapid growth of the computer applications, multitudinous procedures were developed for the prediction of the strength and fractures of various materials in engineering applications. A finite element simulation of composite woven reinforcement forming requires the knowledge of the fabric mechanical behavior. In the presented microscopic approach, the plain weaved glass fabric\\/epoxy laminates were investigated, the tensile mechanical behavior

Wang Rui; Xu Lei

2010-01-01

335

Designing tensile ductility in metallic glasses  

PubMed Central

Effectiveness of a second phase in metallic glass heterostructures to improve mechanical properties varies widely. Unfortunately, methods to fabricate such heterostructures like foams and composites do not allow controlled variation of structural features. Here we report a novel strategy, which allows us to vary heterostructural features independently, thereby enabling a systematic and quantitative study. Our approach reveals the optimal microstructural architecture for metallic glass heterostructures to achieve tensile ductility. Critical design aspect is a soft second phase, which is most effective when spacing between the second phase assumes the critical crack length of the metallic glass. This spacing should coincide with the second phase’s size, and beyond, the specific second phase morphology of the heterostructure is crucial. These toughening strategies are only effective in samples that are large compared with the spacing of the second phase. The identified design aspects provide guidance in designing tensile ductility into metallic glasses. PMID:23863967

Sarac, Baran; Schroers, Jan

2013-01-01

336

Designing tensile ductility in metallic glasses  

NASA Astrophysics Data System (ADS)

Effectiveness of a second phase in metallic glass heterostructures to improve mechanical properties varies widely. Unfortunately, methods to fabricate such heterostructures like foams and composites do not allow controlled variation of structural features. Here we report a novel strategy, which allows us to vary heterostructural features independently, thereby enabling a systematic and quantitative study. Our approach reveals the optimal microstructural architecture for metallic glass heterostructures to achieve tensile ductility. Critical design aspect is a soft second phase, which is most effective when spacing between the second phase assumes the critical crack length of the metallic glass. This spacing should coincide with the second phase’s size, and beyond, the specific second phase morphology of the heterostructure is crucial. These toughening strategies are only effective in samples that are large compared with the spacing of the second phase. The identified design aspects provide guidance in designing tensile ductility into metallic glasses.

Sarac, Baran; Schroers, Jan

2013-07-01

337

Modifications of system for elevated temperature tensile testing and stress-strain measurement of metal matrix composites  

NASA Technical Reports Server (NTRS)

Composites consisting of tungsten alloy wires in superalloy matrices are being studied because they offer the potential for increased strength compared to current materials used at temperatures up to at least 1093 C (2000F). Previous research at the NASA Lewis Research Center and at other laboratories in the U.S., Europe, and Japan has demonstrated laboratory feasibility for fiber reinforced superalloys (FRS). The data for the mechanical and physical properties used to evaluate candidate materials is limited and a need exists for a more detailed and complete data base. The focus of this work is to develop a test procedure to provide a more complete FRS data base to quantitatively evaluate the composite's potential for component applications. This paper will describe and discuss the equipment and procedures under development to obtain elevated temperature tensile stress-strain, strength and modulus data for the first generation of tungsten fiber reinforced superalloy composite (TFRS) materials. Tensile stress-strain tests are conducted using a constant crosshead speed tensile testing machine and a modified load-strain measuring apparatus. Elevated temperature tensile tests are performed using a resistance wound commercial furnace capable of heating test specimens up to 1093 C (2000 F). Tensile stress-strain data are obtained for hollow tubular stainless steel specimens serving as a prototype for future composite specimens.

Diaz, J. O.

1985-01-01

338

Hydration dependent viscoelastic tensile behavior of cornea.  

PubMed

The cornea is a protective transparent connective tissue covering the front of the eye. The standard uniaxial tensile experiments are among the most popular techniques for investigating biomechanical properties of the cornea. This experimental method characterizes the stress-strain response of corneal strips immersed in a bathing solution. In the present study, the important roles of corneal hydration on tensile viscoelastic properties were investigated. The thickness was used as a surrogate for hydration and uniaxial tensile experiments were performed on bovine corneal samples with four different average thickness (hydration), i.e., 1100 ?m (4.87 mg water/mg dry tissue), 900 ?m (4.13 mg water/mg dry tissue), 700 ?m (3.20 mg water/mg dry tissue), and 500 ?m (1.95 mg water/mg dry tissue). The samples were immersed in mineral oil in order to prevent their swelling during the experiments. A quasilinear viscoelastic (QLV) model was used to analyze the experimental measurements and determine viscoelastic material constants. It was observed that both maximum and equilibrium (relaxed) stresses were exponentially increased with decreasing tissue thickness (hydration). Furthermore, the QLV model successfully captured the corneal viscoelastic response with an average R (2) value greater than 0.99. Additional experiments were conducted in OBSS in order to confirm that these significant changes in viscoelastic properties were because of corneal hydration and not the bathing solution. The findings of this study suggest that extra care must be taken in interpreting the results of earlier uniaxial tensile testings and their correspondence to the corneal biomechanical properties. PMID:24668183

Hatami-Marbini, Hamed

2014-08-01

339

Acoustic emission monitoring of tensile testing of corroded and un-corroded clad aluminum 2024-T3 and characterization of effects of corrosion on AE source events and material tensile properties  

NASA Astrophysics Data System (ADS)

Corrosion damage affects structural integrity and deteriorates material properties of aluminum alloys in aircraft structures. Acoustic Emission (AE) is an effective nondestructive evaluation (NDE) technique for monitoring such damages and predicting failure in large structures of an aircraft. For successful interpretation of data from AE monitoring, sources of AE and factors affecting it need to be identified. This paper presents results of AE monitoring of tensile testing of corroded and un-corroded clad Aluminum 2024-T3 test specimens, and characterization of the effects of strain-rate and corrosion damage on material tensile properties and AE source events. Effect of corrosion was studied by inducing corrosion in the test specimens by accelerated corrosion testing in a Q-Fog accelerated corrosion chamber for 12 weeks. Eight (8) masked dog-bone shaped specimens were placed in the accelerated corrosion chamber at the beginning of the test. Two (2) dog-bone shaped specimens were removed from the corrosion chamber after exposure time of 3, 6, 9, and 12 weeks respectively, and subjected to tension testing till specimen failure along with AE monitoring, as well as two (2) reference samples not exposed to corrosion. Material tensile properties (yield strength, ultimate tensile strength, toughness, and elongation) obtained from tension test and AE parameters obtained from AE monitoring were analyzed and characterized. AE parameters increase with increase in exposure period of the specimens in the corrosive environment. Aluminum 2024-T3 is an acoustically silent material during tensile deformation without any damage. Acoustic emission events increase with increase of corrosion damage and with increase in strain rate above a certain value. Thus AE is suitable for structural health monitoring of corrosion damage. Ultimate tensile strength, toughness and elongation values decrease with increase of exposure period in corrosion chamber.

Okafor, A. Chukwujekwu; Natarajan, Shridhar

2014-02-01

340

Bounds on the Strength Distribution of Unidirectional Fiber Composites  

SciTech Connect

Failure mechanisms under tensile loading of unidirectional fiber composites comprising of Weibull fibers embedded in a matrix are studied using Monte-Carlo simulations. Two fundamental mechanisms of failure are recognized--stress concentration driven failure and strength driven failure. It is shown that the cumulative distribution function for composite strength predicted by the stressconcentration-driven failure and strength-driven failure form apparent upper and lower bounds respectively and also that failure mechanism switches from one to the other as fiber strength variability changes.

Mahesh, S.; Beyerlein, I.J.; Phoenix, S.L.

1999-06-13

341

Studies of fiber-matrix adhesion on compression strength  

NASA Technical Reports Server (NTRS)

A study was initiated on the effect of the matrix polymer and the fiber matrix bond strength of carbon fiber polymer matrix composites. The work includes tests with micro-composites, single ply composites, laminates, and multi-axial loaded cylinders. The results obtained thus far indicate that weak fiber-matrix adhesion dramatically reduces 0 degree compression strength. Evidence is also presented that the flaws in the carbon fiber that govern compression strength differ from those that determine fiber tensile strength. Examination of post-failure damage in the single ply tests indicates kink banding at the crack tip.

Bascom, Willard D.; Nairn, John A.; Boll, D. J.

1991-01-01

342

MISSE 6 Polymer Film Tensile Experiment  

NASA Technical Reports Server (NTRS)

The Polymer Film Tensile Experiment (PFTE) was flown as part of Materials International Space Station Experiment 6 (MISSE 6). The purpose of the experiment was to expose a variety of polymer films to the low Earth orbital environment under both relaxed and tension conditions. The polymers selected are those commonly used for spacecraft thermal control and those under consideration for use in spacecraft applications such as sunshields, solar sails, and inflatable and deployable structures. The dog-bone shaped samples of polymers that were flown were exposed on both the side of the MISSE 6 Passive Experiment Container (PEC) that was facing into the ram direction (receiving atomic oxygen, ultraviolet (UV) radiation, ionizing radiation, and thermal cycling) and the wake facing side (which was supposed to have experienced predominantly the same environmental effects except for atomic oxygen which was present due to reorientation of the International Space Station). A few of the tensile samples were coated with vapor deposited aluminum on the back and wired to determine the point in the flight when the tensile sample broke as recorded by a change in voltage that was stored on battery powered data loggers for post flight retrieval and analysis. The data returned on the data loggers was not usable. However, post retrieval observation and analysis of the samples was performed. This paper describes the preliminary analysis and observations of the polymers exposed on the MISSE 6 PFTE.

Miller, Sharon K. R.; Dever, Joyce A.; Banks, Bruce A.; Waters, Deborah L.; Sechkar, Edward; Kline, Sara

2010-01-01

343

Tensile properties and fracture reliability of a glass-coated Co-based amorphous microwire  

NASA Astrophysics Data System (ADS)

Co68.15Fe4.35Si12.25B15.25 (at%) amorphous microwires with a smooth surface and a circular cross-section were fabricated by the glass-coated melt spinning method. Their mechanical properties were evaluated through tensile tests of the glass-coated amorphous microwires, and their fracture reliability was estimated using two- and three-parameter Weibull analysis. X-ray diffraction and transmission electron microscopy results showed that these glass-coated Co-based microwires were mostly amorphous. The coated Co-based microwires exhibit a tensile strength of 1145 to 2457 MPa, with a mean value of 1727 MPa and a variance of 445 MPa. Weibull statistical analysis showed that the tensile two-parameter Weibull modulus of the amorphous microwires is 4.16 and the three-parameter Weibull modulus is 1.61 with a threshold value as high as 942 MPa. These results indicate that the fabricated microwires exhibit good tensile properties and fracture reliability, and thus appear to be good candidates for electronics reliability engineering applications.

Wang, Xiao-dong; Wang, Huan; Shen, Hong-xian; Qin, Fa-xiang; Xing, Da-wei; Liu, Jing-shun; Chen, Dong-ming; Sun, Jian-fei

2014-06-01

344

Microstructure and tensile properties of squeeze cast magnesium alloy AM50  

NASA Astrophysics Data System (ADS)

High-pressure die cast magnesium alloy AM50 is currently used extensively in large and complex shaped thin-wall automotive components. For further expansion of the alloy usage in automobiles, novelmanufacturing processes need to be developed. In this study, squeeze casting of AM50 alloy with a relatively thick cross section was carried out using a hydraulic press with an applied pressure of 70 MPa. Microstructure and mechanical properties of the squeeze cast AM50 with a cross-section thickness of 10 mm were characterized in comparison with the die cast counterpart. The squeeze cast AM50 alloy exhibits virtually no porosity in the microstructure as evaluated by both optical microscopy and the density measurement technique. The results of tensile testing indicate the improved tensile properties, specifically ultimate tensile strength and elongation, for the squeeze cast samples over the conventional high-pressure die cast parts. The analysis of tensile behavior show that the strain-hardening rate during the plastic deformation of the squeeze cast specimens is constantly higher than that of the die cast specimens. The scanning electron microscopy fractography evidently reveals the ductile fracture features of the squeeze cast alloy AM50.

Zhou, Ming; Hu, Henry; Li, Naiyi; Lo, Jason

2005-08-01

345

Nano-Scale Tensile Testing and Sample Preparation Techniques for Silicon Nanowires  

NASA Astrophysics Data System (ADS)

In this paper, we describe an experimental technique to achieve a highly reliable characterization of the mechanical properties of silicon (Si) nanowires (NWs). A reusable on-chip Si device consisting of comb-drive electrostatic actuator for generating tensile force and capacitive sensors for measuring tensile force and displacement was designed and developed for quasi-static tensile test of Si NWs. The combination of focused ion beam (FIB) fabrication, FIB-assisted chemical vapor deposition, and probe manipulation enabled us to directly fabricate the NWs on the device. This sampling technique led to high yielding percentage of nano-scale tensile testing. The NWs were made from 200-nm-thick Si membranes that were produced by using silicon-on-nothing membrane fabrication technique. Several Si NWs were annealed at 700 °C in ultrahigh vacuum (UHV) for 5 min in order to examine the influence of annealing on the mechanical characteristics. The mean Young's modulus for nonannealed NWs was 129.1+/-10.1 GPa. After UHV annealing, the mean value was improved to be 168.1+/-1.3 GPa, comparable to the ideal value for Si(001)[110]. The annealing process gave rise to improving the Young's modulus, whereas it degraded the strength. Transmission electron microscopy suggested that recrystallization and gallium nanoclusters formation by annealing would have changed the mechanical characteristics.

Fujii, Tatsuya; Sudoh, Koichi; Sakakihara, Shouichi; Naito, Muneyuki; Inoue, Shozo; Namazu, Takahiro

2013-11-01

346

Optimization of mechanical strength of titania fibers fabricated by direct drawing  

NASA Astrophysics Data System (ADS)

Nanostructured polycrystalline titania (TiO2) microfibers were produced by direct drawing from visco-elastic alkoxide precursors. The fiber crystallinity and grain size were shown to depend on post-treatment calcination temperature. Tensile tests with individual fibers showed strong sensitivity of the elastic modulus and the tensile strength to microstructural details of the fibers. The elastic modulus of as-fabricated fibers increased about 10 times after calcination at 700 ?C, while the strain at failure remained almost the same at ˜1.4 %. The highest tensile strength of more than 800 MPa was exhibited by nanoscale grained fibers with a bimodal grain size distribution consisting of rutile grains embedded into an anatase matrix. This structure is believed to have reduced the critical defect size, and thus increased the tensile strength. The resultant fibers showed properties that were appropriate for reinforcement of different matrixes.

Hanschmidt, Kelli; Tätte, Tanel; Hussainova, Irina; Part, Marko; Mändar, Hugo; Roosalu, Kaspar; Chasiotis, Ioannis

2013-11-01

347

Strength evaluation test of pressureless-sintered silicon nitride at room temperature  

NASA Technical Reports Server (NTRS)

In order to study strength characteristics at room temperature and the strength evaluating method of ceramic materials, the following tests were conducted on pressureless sintered silicon nitride specimens: bending tests, the three tensile tests of rectangular plates, holed plates, and notched plates, and spin tests of centrally holed disks. The relationship between the mean strength of specimens and the effective volume of specimens are examined using Weibull's theory. The effect of surface grinding on the strength of specimens is discussed.

Matsusue, K.; Takahara, K.; Hashimoto, R.

1984-01-01

348

Tension and flexural strength of silicon carbide fibre-reinforced glass ceramics  

Microsoft Academic Search

The use of silicon carbide-type fibres to reinforce lithium aluminosilicate glass ceramics results in composites with exceptional levels of strength and toughness. It is demonstrated that composite strength and stress-strain behaviour depend onin situ fibre strength, matrix composition, test technique and atmosphere of test. Both linear and non-linear tensile stress-strain curves are obtained with ultimate strengths at 22° C approaching

K. M. Prewo

1986-01-01

349

Improving wet and dry strength properties of recycled old corrugated carton (OCC) pulp using various polymers.  

PubMed

In this study, the application of different dosages of low and high molecular weights (MW) of chitosan (Ch), cationic starch (CS) and poly vinyl alcohol (PVA) were systematically investigated using old corrugated carton (OCC) furnishes. Various sequences of above-mentioned polymeric additives were also examined to find out the optimal combination for improving both wet and dry tensile strength. For each treatment, 4 handsheets, each having basis weight of 100 g/m(2), were made. In general, the tensile strength of handsheets was significantly affected by the addition of polymeric agents. The enhancing effect of additives on dry tensile property was much higher than wet condition. The results also showed that the tensile strength of the samples made from OCC furnishes were improved upon the addition of high molecular weight chitosan (ChI) compared to the untreated ones (control). The low MW chitosan did not change the properties of handsheets dramatically. Application of polymeric agents moderately decreased the stretch to rupture, however with increasing dosage the stretch was improved. Sequential addition of used polymers showed that triple application of polymers was beneficial to both dry and wet tensile strength, although the effect was larger for dry. The best results in wet and dry tensile strengths were achieved using sequential of PVA-ChI-CS. Sequential addition of oppositely charged polymers forms a macromolecular layered structure of polyelectrolytes. PMID:23544577

Hamzeh, Yahya; Sabbaghi, Sanaz; Ashori, Alireza; Abdulkhani, Ali; Soltani, Farshid

2013-04-15

350

Influence of Temperature and Strain Rate on Tensile Deformation and Fracture Behavior of P92 Ferritic Steel  

NASA Astrophysics Data System (ADS)

Tensile tests were performed at strain rates ranging from 3.16 × 10-5 to 1.26 × 10-3 s-1 over a temperature range of 300 K to 923 K (27 °C to 650 °C) to examine the effects of temperature and strain rate on tensile deformation and fracture behavior of P92 ferritic steel. The variations of flow stress/strength values, work hardening rate, and tensile ductility with respect to temperature exhibited distinct three temperature regimes. The fracture mode remained transgranular. The steel exhibited serrated flow, an important manifestation of dynamic strain aging, along with anomalous variations in tensile properties in terms of peaks in flow stress/strength and work hardening rate, negative strain rate sensitivity, and ductility minima at intermediate temperatures. At high temperatures, the rapid decrease in flow stress/strength values and work hardening rate, and increase in ductility with increase in temperature and decrease in strain rate, indicated the dominance of dynamic recovery.

Choudhary, B. K.; Samuel, E. Isaac; Sainath, G.; Christopher, J.; Mathew, M. D.

2013-11-01

351

Bonding characteristics in NiAl intermetallics with O impurity: a first-principles computational tensile test.  

PubMed

We have performed a first-principles computational tensile test on NiAl intermetallics with O impurity along the [001] crystalline direction on the (110) plane to investigate the tensile strength and the bonding characteristics of the NiAl-O system. We show that the ideal tensile strength is largely reduced due to the presence of O impurity in comparison with pure NiAl. The investigations of the atomic configuration and bond-length evolution show that O prefers to bond with Al, forming an O-Al cluster finally with the break of O-Ni bonds. The O-Ni bonds are demonstrated to be weaker than the O-Al bonds, and the reduced tensile strength originates from such weaker O-Ni bonds. A void-like structure forms after the break of the O-Ni and some Ni-Al bonds. Such a void-like structure can act as the initial nucleation or the propagation path of the crack, and thus produce large effects on the mechanical properties of NiAl. PMID:21813975

Hu, Xue-Lan; Zhang, Ying; Lu, Guang-Hong; Wang, Tianmin

2009-01-14

352

Impact strength of optically transparent glass ribbon composites  

Microsoft Academic Search

Optically transparent ribbon-composite (OTRC) panels were made by reinforcing a clear polymer matrix with glass ribbons of matching refractive index. These panels had glass volume fraction up to 0.60 and tensile strength up to 772 MPa. Impact testing of 610 mm × 910 mm × 6 mm OTRC panels with a 0.45 kg projectile indicated two different failure modes at

M Velez; WR Braisted; GJ Frank; PL Phillips; DE Day

2012-01-01

353

Tensile and Creep Behavior of Extruded AA6063/SiCp Al MMCs  

NASA Astrophysics Data System (ADS)

Composites of AA6063 Al alloy reinforced with SiC particles (SiCp) were prepared by the vortex method. Hot extrusion was carried out for the as cast composites with a reduction in area of 25%. Tensile and creep behavior of as-cast and extruded composites were studied at elevated temperatures. Tensile tests carried out at room temperature showed that for the as-cast composites, the addition of SiCp up to 10% by weight improves the strength but reduces ductility. Further addition of SiCp reduces the strength and ductility of the composites. At 150 and 300° C the matrix alloy exhibits higher strength than the composites. Extrusion generally raised the strength of the composites at both room and elevated temperatures. Time rupture creep tests carried out at 300° C showed that the composites exhibit higher creep resistance as compared to the matrix alloy except at relatively low stresses where the matrix has a better creep resistance. Extrusion improved the resistance of composites to creep rupture.

Khalifa, Tarek A.; Mahmoud, Tamer S.

2010-03-01

354

Tensile properties of some copper- and zinc-based alloys: Effects of strain rate and test temperature  

Microsoft Academic Search

This study analyzes the effects of test temperature and strain rate on the tensile properties of some copper-and zinc-based\\u000a alloys. The copper-based alloys comprised a leaded-tin and an aluminum bronze, whereas the zinc-based alloys were added with\\u000a various quantities of aluminum. The aluminum bronze attained maximum room-temperature tensile strength, whereas that of the\\u000a leaded-tin bronze was the least. Among the

B. K. Prasad; A. H. Yegneswaran; A. K. Patwardhan

2000-01-01

355

Influence of macrostructure on tensile properties of multipass SAW C-Mn steel deposits  

NASA Astrophysics Data System (ADS)

Blocks of 'all weld' metal were prepared by a multipass submerged arc process, using a C-Mn filler wire, at different welding currents and speeds by keeping the arc voltage constant. The variation in welding parameters was found to alter the macrostructure primarily by influencing its co-axial dendrite content. The chemical composition and hardness of the dendritic and the heat affected regions were affected little by the welding parameters. A dendrite content up to 37%, had no significant effect on the tensile properties. However an increase in it beyond 37% was found to enhance the UTS and YS and reduce percent elongation. The tensile strength was found to be a maximum in the L orientation and a minimum in the S direction. The use of post-weld heat treatment (PWHT) at 873 K caused spheroidization of cementite there by somewhat reducing the hardness and strength. The treatment while not affecting the basic dendritic morphology reduced the observed difference in tensile properties along the L, T and S directions. Implications of the data vis-a-vis industrial applications have been discussed.

Yongyuth, P.; Ghosh, P. K.; Gupta, P. C.; Patwardhan, A. K.; Prakash, Satya

1993-06-01

356

High-speed imaging on static tensile test for unidirectional CFRP  

NASA Astrophysics Data System (ADS)

The objective of this study is to clarify the fracture mechanism of unidirectional CFRP (Carbon Fiber Reinforced Plastics) under static tensile loading. The advantages of CFRP are higher specific stiffness and strength than the metal material. The use of CFRP is increasing in not only the aerospace and rapid transit railway industries but also the sports, leisure and automotive industries. The tensile fracture mechanism of unidirectional CFRP has not been experimentally made clear because the fracture speed of unidirectional CFRP is quite high. We selected the intermediate modulus and high strength unidirectional CFRP laminate which is a typical material used in the aerospace field. The fracture process under static tensile loading was captured by a conventional high-speed camera and a new type High-Speed Video Camera HPV-1. It was found that the duration of fracture is 200 microseconds or less, then images taken by a conventional camera doesn't have enough temporal-resolution. On the other hand, results obtained by HPV-1 have higher quality where the fracture process can be clearly observed.

Kusano, Hideaki; Aoki, Yuichiro; Hirano, Yoshiyasu; Kondo, Yasushi; Nagao, Yosuke

2008-11-01

357

Shear Strength Behavior of Human Trabecular Bone  

PubMed Central

The shear strength of human trabecular bone may influence overall bone strength under fall loading conditions and failure at bone-implant interfaces. Here, we sought to compare shear and compressive yield strengths of human trabecular bone and elucidate the underlying failure mechanisms. We analyzed 54 specimens (5-mm cubes), all aligned with the main trabecular orientation and spanning four anatomic sites, 44 different cadavers, and a wide range of bone volume fraction (0.06–0.38). Micro-CT-based non-linear finite element analysis was used to assess the compressive and shear strengths and the spatial distribution of yielded tissue; the tissue-level constitutive model allowed for kinematic non-linearity and yielding with strength asymmetry. We found that the computed values of both the shear and compressive strengths depended on bone volume fraction via power law relations having an exponent of 1.7 (R2=0.95 shear; R2=0.97 compression). The ratio of shear to compressive strengths (mean ± SD, 0.44 ± 0.16) did not depend on bone volume fraction (p=0.24) but did depend on microarchitecture, most notably the intra-trabecular standard deviation in trabecular spacing (R2=0.23, p<0.005). For shear, the main tissue-level failure mode was tensile yield of the obliquely oriented trabeculae. By contrast, for compression, specimens having low bone volume fraction failed primarily by large-deformation-related tensile yield of horizontal trabeculae and those having high bone volume failed primarily by compressive yield of vertical trabeculae. We conclude that human trabecular bone is generally much weaker in shear than compression at the apparent level, reflecting different failure mechanisms at the tissue level. PMID:22884967

Sanyal, Arnav; Gupta, Atul; Bayraktar, Harun H.; Kwon, Ronald Y.; Keaveny, Tony M.

2012-01-01

358

Residual stress modification by post-weld treatment and its beneficial effect on fatigue strength of welded structures  

Microsoft Academic Search

High tensile weld residual stress is one important factor contributing to fatigue crack development even under reversal or compressive cyclic loadings. A compressive stress induced by post-weld treatment is beneficial by eliminating the tensile residual stresses and generating compressive residual stresses, which improves fatigue strength of welded structures. A study is underway to characterize the magnitude and subsurface distribution of

Xiaohua Cheng; John W. Fisher; Henry J. Prask; Thomas Gnäupel-Herold; Ben T. Yen; Sougata Roy

2003-01-01

359

Considerations about the theoretically expected crushing strength of tablets from binary powder mixtures: double layer tablets versus arithmetic additivity rule.  

PubMed

The theoretically expected breaking strength of tablets from powder mixtures is often calculated by the weighted arithmetic mean from the breaking strength of the single components, which corresponds to a linear interpolation. The validity of this additivity of fracture strength shall be evaluated by the underlying model of parallel couplings. It assumes the components linked in parallel with respect to the direction of loading during diametrical strength testing. Parallel couplings were experimentally realised by the preparation of double layer tablets from crystalline and spray-dried lactose on the one hand and from maltitol and metamizol-sodium on the other. Constant total true volumes of the single substances and of layered powders in varying ratios of true volume were compressed on an eccentric tabletting machine to constant geometric mean punch force. Simulated crushing profiles of parallel couplings were derived from force-displacement profiles measured during diametrical compression of the one-component tablets. At given finely graded deformation levels, the forces exerted by the components during loading were added in the proportion of the true volume fractions of the components in the coupling. The results from the experiments and from the simulations are in good accordance. They demonstrate that a linear change of the crushing strength in dependence on the true volume fraction of the components can only be assumed if the single components deform to the same extent up to the point of fracture. This behaviour was approximately found with the parallel lactose system. In all other cases it must be expected that the crushing strength of parallel systems will be lowered beneath the weighted arithmetic mean values or even below the crushing strength of the single components. The latter was observed with the maltitol-metamizol combinations. Thus, if tablets from binary powder mixtures exhibit a crushing strength depression, this is not necessarily an indication of weak bonding between the components or of structural defects. PMID:16914296

Belda, Petra M; Mielck, Jobst B

2006-11-01

360

Designing metallic glass matrix composites with high toughness and tensile ductility.  

PubMed

The selection and design of modern high-performance structural engineering materials is driven by optimizing combinations of mechanical properties such as strength, ductility, toughness, elasticity and requirements for predictable and graceful (non-catastrophic) failure in service. Highly processable bulk metallic glasses (BMGs) are a new class of engineering materials and have attracted significant technological interest. Although many BMGs exhibit high strength and show substantial fracture toughness, they lack ductility and fail in an apparently brittle manner in unconstrained loading geometries. For instance, some BMGs exhibit significant plastic deformation in compression or bending tests, but all exhibit negligible plasticity (<0.5% strain) in uniaxial tension. To overcome brittle failure in tension, BMG-matrix composites have been introduced. The inhomogeneous microstructure with isolated dendrites in a BMG matrix stabilizes the glass against the catastrophic failure associated with unlimited extension of a shear band and results in enhanced global plasticity and more graceful failure. Tensile strengths of approximately 1 GPa, tensile ductility of approximately 2-3 per cent, and an enhanced mode I fracture toughness of K(1C) approximately 40 MPa m(1/2) were reported. Building on this approach, we have developed 'designed composites' by matching fundamental mechanical and microstructural length scales. Here, we report titanium-zirconium-based BMG composites with room-temperature tensile ductility exceeding 10 per cent, yield strengths of 1.2-1.5 GPa, K(1C) up to approximately 170 MPa m(1/2), and fracture energies for crack propagation as high as G(1C) approximately 340 kJ m(-2). The K(1C) and G(1C) values equal or surpass those achievable in the toughest titanium or steel alloys, placing BMG composites among the toughest known materials. PMID:18305540

Hofmann, Douglas C; Suh, Jin-Yoo; Wiest, Aaron; Duan, Gang; Lind, Mary-Laura; Demetriou, Marios D; Johnson, William L

2008-02-28

361

Strength loss in MA-MOX green pellets from radiation damage to binders  

NASA Astrophysics Data System (ADS)

The fracture strength of green Minor Actinides (MA)-MOX pellets containing 75 wt.% DUO2, 20 wt.% PuO2, 3 wt.% AmO2 and 2 wt.% NpO2 was studied as a function of storage time, after mixing with the binder and before sintering, to test the effect of radiation damage on binders. Fracture strength degraded continuously over the 10 days of the study for all three binders studied: PEG binder (Carbowax 8000), microcrystalline wax (Mobilcer X) and styrene-acrylic copolymer (Duramax B1022) but the fracture strength of Duramax B1022 degraded the least. For instance, for several hours after mixing Carbowax 8000 with MA-MOX, the fracture strength of a pellet was reasonably high and pellets were easily handled without breaking but the pellets were too weak to handle after 10 days. Strength measured using diametral compression test showed that strength degradation was more rapid in pellets containing 1.0 wt.% Carbowax PEG 8000 compared to those containing only 0.2 wt.%, suggesting that irradiation not only left the binder less effective but also reduced the pellet strength. In contrast the strength of pellets containing Duramax B1022 degraded very little over the 10 days period. It was suggested that the styrene portion present in the Duramax B1022 copolymer provided the radiation resistance.

Lessing, Paul A.; Cannon, W. Roger; Egeland, Gerald W.; Zuck, Larry D.; Jewell, James K.; Akers, Douglas W.; Groenewold, Gary S.

2013-06-01

362

Strength Loss in MA-MOX Green Pellets from Radiation Damage to Binders  

SciTech Connect

The fracture strength of green Minor Actinides (MA)-MOX pellets containing 75 wt.% DUO2, 20 wt. % PuO2, 3 wt. % AmO2 and 2 wt. % NpO2 was studied as a function of storage time, after mixing in the binder and before sintering, to test the effect of radiation damage on binders. Fracture strength degraded continuously over the 10 days of the study for all three binders studied: PEG binder (Carbowax 8000), microcrystalline wax (Mobilcer X) and Styrene-acrylic copolymer (Duramax B1022) but the fracture strength of Duramax B1022 degraded the least. For instance, for several hours after mixing Carbowax 8000 with MA MOX, the fracture strength of a pellet was reasonably high and pellets were easily handled without breaking but the pellets were too weak to handle after 10 days. Strength measured using diametral compression test showed strength degradation was more rapid in pellets containing 1.0 wt. % Carbowax PEG 8000 compared to those containing only 0.2 wt. %, suggesting that irradiation not only left the binder less effective but also reduced the pellet strength. In contrast the strength of pellets containing Duramax B1022 degraded very little over the 10 day period. It was suggested that the styrene portion of the Duramax B1022 copolymer provided the radiation resistance.

Paul A. Lessing; W.R. Cannon; Gerald W. Egeland; Larry D. Zuck; James K. Jewell; Douglas W. Akers; Gary S. Groenewold

2013-06-01

363

Hydraulically Driven Grips For Hot Tensile Specimens  

NASA Technical Reports Server (NTRS)

Pair of grips for tensile and compressive test specimens operate at temperatures up to 1,500 degrees F. Grips include wedges holding specimen inside furnace, where heated to uniform temperature. Hydraulic pistons drive wedges, causing them to exert clamping force. Hydraulic pistons and hydraulic fluid remain outside furnace, at room temperature. Cooling water flows through parts of grips to reduce heat transferred to external components. Advantages over older devices for gripping specimens in high-temperature tests; no need to drill holes in specimens, maintains constant gripping force on specimens, and heated to same temperature as that of specimen without risk of heating hydraulic fluid and acuator components.

Bird, R. Keith; Johnson, George W.

1994-01-01

364

Tensile-integrity structures for the moon  

NASA Astrophysics Data System (ADS)

The paper reviews lunar base structural concepts proposed in the past, with particular attention given to the use of tension cable structures (tensile integrity, 'tensegrity' structures) for a lunar structural concept. In such a structure, the tensegric shells can be a system of bars and a cable net, with the shell attaining its topology and stiffness when the bars are prestressed against the cable net. Advantages of such structures include the ability of tensegric shells to be self-sustaining, not depending on internal pressurization for their integrity (as do inflatable structures). A primary disadvantage is the difficulty of construction.

Benaroya, Haym

1993-02-01

365

Slow strain rate tensile tests on T91 in static lead bismuth eutectic  

NASA Astrophysics Data System (ADS)

The embrittlement effect of liquid lead-bismuth eutectic (LBE) on martensitic steel T91 has been studied by performing slow-strain-rate tensile (SSRT) tests in static LBE with about 1 wppm oxygen at temperatures ranging from 250 °C to 425 °C. Two groups of samples were used. Group-I samples with microcracks on the lateral surfaces indicated clearly LBE embrittlement effect at temperatures ?300 °C, while Group-II samples without microcracks did not show the effect. The LBE embrittlement effect occurred after the necking of specimens started. The yield and ultimate tensile strengths and uniform elongation were not affected. SEM observations showed the specimens ruptured in a brittle fracture mode when the embrittlement occurred. It is concluded that the requirements for the susceptibility of LBE embrittlement effect on the T91 steel are: surface cracks or flaws, wetting and a certain level of stress concentration at crack tips.

Dai, Y.; Long, B.; Groeschel, F.

2006-09-01

366

Adhesion Assessment of Bnt Films on Titanium Substrates Using a Tensile Test  

NASA Astrophysics Data System (ADS)

Lead-free piezoelectric (Bi1/2Na1/2)TiO3 (abbreviated as BNT) films were deposited on 1 mm thick pure titanium(Ti) substrates by a hydrothermal method. Tensile tests were performed to quantitatively assess the adhesion strength between BNT films and Ti substrates. Ti substrates were pretreated by chemical polish and mechanical polish respectively prior to BNT film deposition. In the tensile test, the behavior of BNT film exfoliation was investigated by the replica method. The critical Ti substrate strain inducing BNT film exfoliation was determined by the aid of finite element analysis (FEM). In this study, the results revealed that BNT film exfoliations were caused by the strain of Ti substrate, and the mechanical polish pretreatment improved the adhesion of BNT film to Ti substrate.

Xu, Fangchao; Kusukawa, Kazuhiro

367

Dynamic tensile fracture of mortar at ultra-high strain-rates  

NASA Astrophysics Data System (ADS)

During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 104 to 4 × 104 s-1. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.

Erzar, B.; Buzaud, E.; Chanal, P.-Y.

2013-12-01

368

The effects of tensile preloads on the impact response of carbon/epoxy laminates  

NASA Technical Reports Server (NTRS)

The effects of tensile preloads on the tension-after-impact (TAI) strength of composite laminates of IM7/8551-7 were examined. A failure threshold curve was first determined so the most informative values for preload/impact energy combinations could be determined. The impact tests were instrumented so maximum load of impact, as well as several other parameters could be measured. The elastic response data indicate that as the tensile preload is increased, the maximum load of impact also increases. The damage data show that at low impact energies, the damage/failure is an 'all-or-nothing' event but at higher impact energies, a region of preload values exists where the coupons could sustain damage, yet not fail catastrophically.

Nettles, Alan; Daniel, Vince; Branscomb, Caleb

1995-01-01

369

Tensile Properties and Deformation Characteristics of a Ni-Fe-Base Superalloy for Steam Boiler Applications  

NASA Astrophysics Data System (ADS)

Ni-Fe-base superalloys due to their good manufacturability and low cost are the proper candidates for boiler materials in advanced power plants. The major concerns with Ni-Fe-base superalloys are the insufficient mechanical properties at elevated temperatures. In this paper, tensile properties, deformation, and fracture characteristics of a Ni-Fe-base superalloy primarily strengthened by ?' precipitates have been investigated from room temperature to 1073 K (800 °C). The results showed a gradual decrease in the strength up to about 973 K (700 °C) followed by a rapid drop above this temperature and a ductility minimum at around 973 K (700 °C). The fracture surfaces were studied using scanning electron microscopy and the deformation mechanisms were determined by the observation of deformed microstructures using transmission electron microscopy. An attempt has been made to correlate the tensile properties and fracture characteristics at different temperatures with the observed deformation mechanisms.

Zhong, Zhihong; Gu, Yuefeng; Yuan, Yong; Shi, Zhan

2014-01-01

370

Effect of neutron irradiation on microstructure and tensile properties of TZM and Mo-5% Re alloys  

NASA Astrophysics Data System (ADS)

The response of two molybdenum alloys (e.g. TZM and Mo-5% Re) to fission neutron irradiation has been investigated. These alloys were irradiated in the DR-3 reactor at Risø National Laboratory with a flux of ˜ 2.5 × 10 17 n/m 2/s ( E > 1 MeV) at ˜ 320 and 373 K toa fluence level of ˜ 1.5 × 10 24 n/m 2 ( E > 1 MeV), corresponding to ˜ 0.16 dpa (NRT). The microstructure of these materials was investigated before and after irradiation. Both unirradiated and irradiated specimens of the two alloys were tensile tested at ˜ 295 and 373 K. The fracture surfaces of both alloys in unirradiated as well as irradiated conditions were investigated by scanning electron microscopy. The main conclusion of the present investigation is that even this low dose irradiation causes a tremendous increase in tensile strength and a drastic decrease in elongation.

Singh, B. N.; Horsewell, A.; Toft, P.; Evans, J. H.

1994-09-01

371

Tensile Property of Al-Mg-Sc-Zr Alloy at Cryogenic Temperature  

SciTech Connect

The tensile property and fracture characteristic of Al-Mg-Sc-Zr alloy have been investigated at 77 K, 123 K, 173 K, 223 K and 300 K respectively. Both the strength and elongation improved with decreasing temperature from 300 K to 77 K, particularly between 123 K and 77 K. However, the reduction of area exhibited a maximum at around 173 K. The fractographs of tensile specimens show a completely dimple-type ductile mode of fracture at 77 K and mixed type of fracture at 300 K, and the primary Al3(Sc,Zr) and Al6(Mn,Fe) phases are responsible for void and crack initiation at their interface with the matrix at cryogenic temperature.

Zhao, W. T.; Yan, D. S.; Li, X. Y.; Rong, L. J.; Li, Y. Y. [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

2006-03-31

372

Effect of formation and state of interface on joint strength in friction stir spot welding for advanced high strength steel sheets  

NASA Astrophysics Data System (ADS)

The tensile shear strength and cross tension strength of friction stir spot welded joints were evaluated in the cases of lap joints of 270 N/mm2 grade and 980 N/mm2 grade cold rolled steel sheets with respect to the stir zone area, hardness distribution, and interface condition between the sheets. The results suggested that both the tensile shear strength and cross tension strength were based on the stir zone area and its hardness in both grades of steel. The "hook" shape of the interface also affected the joint strength. However, the joining that occurred across the interfaces had a significant influence on the value of the joint strength in the case of the 270 N/mm2 grade steel.

Taniguchi, Koichi; Matsushita, Muneo; Ikeda, Rinsei; Oi, Kenji

2014-08-01

373

Mechanical properties of individual InAs nanowires studied by tensile tests  

SciTech Connect

Mechanical properties of individual InAs nanowires (NWs) synthesized by metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) methods are studied by in-situ tensile tests in a scanning electron microscope and their fracture strength and Young's modulus are obtained. The two types of NWs both exhibit brittle fracture with a maximum elastic strain up to ?10%. Their fracture strength distributes in a similar range of ?2–5?GPa with a general trend of increasing with NW volume decrease, which is well described by Weibull statistic with a smaller Weibull modulus and a higher characteristic strength for MOCVD NWs. Young's modulus is determined to be 16–78?GPa with an average value of 45?GPa and no dependence on NW diameter for MOCVD NWs and 34–79?GPa with an average value of 58?GPa for MBE NWs.

Li, X.; Wei, X. L., E-mail: weixl@pku.edu.cn, E-mail: qingchen@pku.edu.cn; Xu, T. T.; Ning, Z. Y.; Shu, J. P.; Chen, Q., E-mail: weixl@pku.edu.cn, E-mail: qingchen@pku.edu.cn [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Wang, X. Y.; Pan, D.; Zhao, J. H.; Yang, T. [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)] [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

2014-03-10

374

Elastic constants and tensile properties of Al2OC by density functional calculations  

NASA Astrophysics Data System (ADS)

Al2OC is a compound that forms as a nanoscale grain-boundary crystalline film in silicon carbide ceramics, and is responsible for imparting high low-temperature toughness and high-temperature creep strength in these materials. The elastic properties and ultimate strengths properties of Al2OC are determined from first-principles calculations. The crystal structure of Al2OC was approximated by an optimized model based on the wurtzite structure. The full set of single-crystal elastic stiffness cij was calculated, from which the polycrystalline elastic constants were obtained by using the Voigt-Reuss-Hill averaging scheme. The tensile properties and the ideal strength in [001] direction of Al2OC were also computed and compared to those of SiC , where it was found that indeed, Al2OC is the weaker and more brittle phase, supporting fracture mechanics expectations for SiC containing Al2OC -type intergranular films.

Yu, R.; Zhang, X. F.; de Jonghe, L. C.; Ritchie, R. O.

2007-03-01

375

Mechanical properties of individual InAs nanowires studied by tensile tests  

NASA Astrophysics Data System (ADS)

Mechanical properties of individual InAs nanowires (NWs) synthesized by metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) methods are studied by in-situ tensile tests in a scanning electron microscope and their fracture strength and Young's modulus are obtained. The two types of NWs both exhibit brittle fracture with a maximum elastic strain up to ˜10%. Their fracture strength distributes in a similar range of ˜2-5 GPa with a general trend of increasing with NW volume decrease, which is well described by Weibull statistic with a smaller Weibull modulus and a higher characteristic strength for MOCVD NWs. Young's modulus is determined to be 16-78 GPa with an average value of 45 GPa and no dependence on NW diameter for MOCVD NWs and 34-79 GPa with an average value of 58 GPa for MBE NWs.

Li, X.; Wei, X. L.; Xu, T. T.; Ning, Z. Y.; Shu, J. P.; Wang, X. Y.; Pan, D.; Zhao, J. H.; Yang, T.; Chen, Q.

2014-03-01

376

Tensile Properties of 17-7 PH and 12 MoV Stainless-Steel Sheet under Rapid-Heating and Constant-Temperature Conditions  

NASA Technical Reports Server (NTRS)

Results are presented of rapid-heating tests of 17-7 PH and 12 MoV stainless-steel sheet heated to failure at temperature rates from about 1 F to 170 F per second under constant-load conditions. Yield and rupture strengths obtained from rapid-heating tests are compared with yield and tensile strengths obtained from short-time elevated-temperature tensile tests (30-minute exposure). A rate-temperature parameter was used to construct master curves from which yield and rupture stresses or temperatures can be predicted. A method for measuring strain by optical means is described.

Manning, Charles R., Jr.; Price, Howard L.

1961-01-01

377

Mechanical properties of high-strength concrete  

NASA Astrophysics Data System (ADS)

This report summarizes an experimental program conducted to investigate production techniques and mechanical properties of high strength concrete in general and to provide recommendations for using these concretes in manufacturing precast/prestressed bridge girders. Test variables included total amount and composition of cementitious material (portland cement, fly ash, and silica fume), type and brand of cement, type of silica fume (dry densified and slurry), type and brand of high-range water-reducing admixture, type of aggregate, aggregate gradation, maximum aggregate size, and curing. Tests were conducted to determine the effects of these variables on changes in compressive strength and modulus of elasticity over time, splitting tensile strength, modulus of rupture, creep, shrinkage, and absorption potential (as an indirect indicator of permeability). Also investigated were the effects of test parameters such as mold size, mold material, and end condition. Over 6,300 specimens were cast from approximately 140 mixes over a period of 3 years.

Mokhtarzadeh, Alireza

378

U-groove aluminum weld strength improvement  

NASA Technical Reports Server (NTRS)

Though butt-welds are among the most preferred joining methods in aerostructures, their strength dependence on inelastic mechanics is generally the least understood. This study investigated experimental strain distributions across a thick aluminum U-grooved weld and identified two weld process considerations for improving the multipass weld strength. The extreme thermal expansion and contraction gradient of the fusion heat input across the groove tab thickness produces severe peaking which induces bending under uniaxial loading. The filler strain-hardening deceased with increasing filler pass sequence, producing the weakest welds on the last pass side. Current welding schedules unknowingly compound these effects which reduce the weld strength. A de-peaking index model was developed to select filler pass thicknesses, pass numbers, and sequences to improve de-peaking in the welding process. Intent is to combine the strongest weld pass side with the peaking induced bending tension to provide a more uniform stress and stronger weld under axial tensile loading.

Verderaime, V.; Vaughan, R.

1995-01-01

379

U-Groove aluminum weld strength improvement  

NASA Technical Reports Server (NTRS)

Though butt-welds are among the most preferred joining methods in aerostructures, their strength dependence on inelastic mechanics is generally the least understood. This study investigated experimental strain distributions across a thick aluminum U-grooved weld and identified two weld process considerations for improving the multipass weld strength. The extreme thermal expansion and contraction gradient of the fusion heat input across the groove tab thickness produces severe peaking, which induces bending under uniaxial loading. The filler strain-hardening decreased with increasing filler pass sequence, producing the weakest welds on the last pass side. Current welding schedules unknowingly compound these effects which reduce the weld strength. A depeaking index model was developed to select filler pass thicknesses, pass numbers, and sequences to improve depeaking in the welding process. The intent is to combine the strongest weld pass side with the peaking induced bending tension to provide a more uniform stress and stronger weld under axial tensile loading.

Verderaime, V.; Vaughan, R.

1996-01-01

380

Necking of Q&P steel during uniaxial tensile test with the aid of DIC technique  

NASA Astrophysics Data System (ADS)

A lot of research has been focused on the necking process during the plastic deformation of sheet metals, but the localized necking is rarely distinguished form diffused necking by experiments, due to the limit of measurement equipment and method. Quenching and Partitioning (Q&P) steel is a 3rd generation advanced high strength steel (AHSS). Its good combination of high strength and ductility ensures potential application in automobile industry. Uniaxial tensile tests of QP980 steel sheet at five strain rates are performed to investigate the necking process and the effect of strain rate on necking behavior of Q&P steel. Digital image correlation (DIC) method is applied during tensile tests, and evolutions of major strain, minor strain and normal strain distributions along gauge section of the tensile specimens are obtained. The diffused and localized necking strains are determined according to SWIFT necking theory and HILL necking theory respectively. The test results indicate that with the increasing of strain rate in the investigated range, the diffused necking strain decreases from 0.152 to 0.120 and localized necking strain decreases from 0.245 to 0.137. Meanwhile, the difference of the two strains decreases form 0.096 to 0.017. Thus it can be concluded that strain rate has an influence on both necking strains during the deformation of QP980 steel sheet. Diffused and localized necking strains are determined by uniaxial tensile tests with the aid of DIC technique and the effect of strain rate on necking strains is evaluated.

Ding, Lei; Lin, Jianping; Min, Junying; Pang, Zheng; Ye, You

2013-05-01

381

Effect of He on the structure and bonding properties of W: A first-principles computational tensile test  

NASA Astrophysics Data System (ADS)

Using a first-principles computational tensile test (FPCTT), we have investigated the effect of helium (He) on the structure and bonding properties of tungsten (W), which is a promising plasma-facing material in nuclear fusion Tokamak. Density of states results reveal the underlying reason that the substitutional site for He is the most energetically favorable, while the tetrahedral interstitial site is more favorable than the octahedral interstitial one. The FPCTT shows that the ideal tensile strength is 29.1 GPa at the strain of 14% along the [0 0 1] direction for intrinsic W, while it decreases to 28.2 GPa at the same strain when one impurity He atom is introduced. A local bond-breaking region around He forms in the tensile process due to the presence of He, which suggests He will have a large effect on the bonding properties of W.

Liu, Yue-Lin; Zhou, Hong-Bo; Zhang, Ying; Jin, Shuo; Lu, Guang-Hong

2009-09-01

382

Strength Prediction and Optimization of Composites with Statistical Fiber Flaw Distributions  

Microsoft Academic Search

For continuous fiber reinforced polymeric composites the process domi nating tensile strength is fiber fracture. This phenomena results in stress concentrations in adjacent fibers over some distance which is directly associated with the ineffective length. This length is the controlling factor in the theory of bundle strength for polymer-based composites. The associated stress concentration factor, C, is normally associated with

Zhanjun Gao; Kenneth L. Reifsnider; Greg Carman

1992-01-01

383

TENSILE TESTING OF CARBON STEEL IN HIGH PRESSURE HYDROGEN  

SciTech Connect

An infrastructure of new and existing pipelines and systems will be required to carry and to deliver hydrogen as an alternative energy source under the hydrogen economy. Carbon and low alloy steels of moderate strength are currently used in hydrogen delivery systems as well as in the existing natural gas systems. It is critical to understand the material response of these standard pipeline materials when they are subjected to pressurized hydrogen environments. The methods and results from a testing program to quantify hydrogen effects on mechanical properties of carbon steel pipeline and pipeline weld materials are provided. Tensile properties of one type of steel (A106 Grade B) in base metal, welded and heat affected zone conditions were tested at room temperature in air and high pressure (10.34 MPa or 1500 psig) hydrogen. A general reduction in the materials ability to plastically deform was noted in this material when specimens were tested in hydrogen. Furthermore, the primary mode of fracture was changed from ductile rupture in air to cleavage with secondary tearing in hydrogen. The mechanical test results will be applied in future analyses to evaluate service life of the pipelines. The results are also envisioned to be part of the bases for construction codes and structural integrity demonstrations for hydrogen service pipeline and vessels.

Duncan, A; Thad Adams, T; Ps Lam, P

2007-05-02

384

Tensile characterization of porcine temporomandibular joint disc attachments.  

PubMed

The frequency and impact of temporomandibular joint (TMJ) disorders necessitate research in characterizing the joint's function. The 6 discal attachments have not yet been systematically characterized under tension. Understanding their role in joint function may guide our study of TMJ pathologies, including disc displacement. In the present study, a porcine model was used to characterize the attachments in tension anteroposteriorly and mediolaterally, based on previously identified similarities in the porcine and human masticatory behaviors and discal properties. Tensile stiffness, strength, toughness, and maximum strain were quantified. Collagen alignment was characterized via polarized light and scanning electron microscopy. Anisotropy was demonstrated in all attachments, with the exception of the anterior inferior attachment. Anteroposteriorly, the lateral attachment was stiffest (8.3 MPa) and the anterior superior was least stiff (1.4 MPa). Mediolaterally, the posterior superior attachment was stiffest (16.3 MPa) and the medial was least stiff (1.4 MPa). The greatest strain was observed in the lateral attachment in the mediolateral direction and the posterior superior attachment in the anteroposterior direction. With greatest strains in the most commonly observed directions of disc displacement, it is suggested that compromise in the posterior and lateral attachments contributes to partial lateral and anterior disc displacement. PMID:23783320

Murphy, M K; Arzi, B; Hu, J C; Athanasiou, K A

2013-08-01

385

Development of the Z Specimen for Tensile-Tensile, Tensile-Compression, Compression-Compression Wire Testing  

NASA Astrophysics Data System (ADS)

A new wire test specimen was developed as part of the Safe Technology consortium project to produce a nitinol algorithm for the fe-safe™ fatigue postprocessor. The requirements for the design were permit tensile and compressive loading, accommodate data collection of strains from ±0.1 to 6% at high-frequency cycling. The requirements for the wire were inexpensive, stable, consistent, and commercially available. The requirements for the processing were incorporate deformation and multiple anneal cycles to simulate manufacturing methods associated with vascular stent production. The final design was 0.508 mm (0.020 in.) diameter wire formed in a two-stage process to produce a Z-shaped specimen. The final part met all requirements for testing. Subsequently, a second specimen, Z3, and a straight wire specimen were produced to supply additional data to the consortium.

Pike, K.; Berg, B.; Adler, P.

2011-07-01

386

Large Tensions and Strength of Iron in Different Structure States  

NASA Astrophysics Data System (ADS)

Results of shock-wave experiments with iron single crystals, ultra-fine grain and as-received Armco-iron, at load durations of ˜20 ns to 200 ns are presented. No evidence of the expected formation of rarefaction shock waves, as predicted by the ab initio calculations, was observed in the range of attained tensile stresses down to -7.6 GPa. The tensile fracture stresses achieved 25-50% of the theoretical iron ultimate strength for a load duration of ˜10-8 s. The spall strength of a coarse-grain Armco-iron is much less than that of single crystals whereas an intensively deformed Armco-iron with a sub-micron grain size demonstrates nearly the same spall strength as the crystals do.

Razorenov, S. V.; Kanel, G. I.; Savinykh, A. S.; Fortov, V. E.

2006-07-01

387

Microstructure and tensile properties of iron parts fabricated by selective laser melting  

NASA Astrophysics Data System (ADS)

Iron, as the basic industry material was extensively studied in the past, but it could still offer extended possibilities with the use of new processing techniques such as selective laser melting (SLM). In this work, the manufacturing of iron parts using SLM technology was investigated. The effect of processing parameters on density of the iron parts was studied. Fully dense iron parts have been fabricated at the laser power of 100 W using different laser scanning speeds. By means of metallographic observation and TEM characterization, it can be found that the grains size decreased with increasing scanning speed and high dislocation density was observed. Tensile specimens were fabricated using optimal parameters and mechanical tests allowed observing an ultimate tensile strength of 412 MPa and the yield strength of 305 MPa. Multiple self-strengthening mechanisms during SLM process are proposed to explain this high mechanical strength. The grain refinement seems to be the most significant strengthening mechanism, followed by work hardening arising from the high cooling rate.

Song, Bo; Dong, Shujuan; Deng, Sihao; Liao, Hanlin; Coddet, Christian

2014-03-01

388

Finite element analysis of steel fiber-reinforced concrete (SFRC): validation of experimental tensile capacity of dog-bone specimens  

NASA Astrophysics Data System (ADS)

Finite element analyses are conducted to model the tensile capacity of steel fiber-reinforced concrete (SFRC). For this purpose dog-bone specimens are casted and tested under direct and uniaxial tension. Two types of aggregates (brick and stone) are used to cast the SFRC and plain concrete. The fiber volume ratio is maintained 1.5 %. Total 8 numbers of dog-bone specimens are made and tested in a 1000-kN capacity digital universal testing machine (UTM). The strain data are gathered employing digital image correlation technique from high-definition images and high-speed video clips. Then, the strain data are synthesized with the load data obtained from the load cell of the UTM. The tensile capacity enhancement is found 182-253 % compared to control specimen to brick SFRC and in case of stone SFRC the enhancement is 157-268 %. Fibers are found to enhance the tensile capacity as well as ductile properties of concrete that ensures to prevent sudden brittle failure. The dog-bone specimens are modeled in the ANSYS 10.0 finite element platform and analyzed to model the tensile capacity of brick and stone SFRC. The SOLID65 element is used to model the SFRC as well as plain concretes by optimizing the Poisson's ratio, modulus of elasticity, tensile strength and stress-strain relationships and also failure pattern as well as failure locations. This research provides information of the tensile capacity enhancement of SFRC made of both brick and stone which will be helpful for the construction industry of Bangladesh to introduce this engineering material in earthquake design. Last of all, the finite element outputs are found to hold good agreement with the experimental tensile capacity which validates the FE modeling.

Islam, Md. Mashfiqul; Chowdhury, Md. Arman; Sayeed, Md. Abu; Hossain, Elsha Al; Ahmed, Sheikh Saleh; Siddique, Ashfia

2014-09-01

389

Fabric thickness dynamic measurement during a classic uniaxial tensile test  

Microsoft Academic Search

An understanding of fabric tensile behavior is essential for the development of new technical textile applications and for\\u000a realistic simulations. Indeed, mechanical fabric properties, such as thickness evolution, are very important in classic uniaxial\\u000a tensile tests. The authors have developed a very lightweight inductive sensor to measure the thickness evolution during such\\u000a a tensile test. The main difficulty of this

Stéphane Fontaine; Bernard Durand; Jean Marie Freyburger

2002-01-01

390

Ultrahigh strength and high ductility of bulk nanocrystalline copper  

SciTech Connect

We have synthesized artifact-free bulk nanocrystalline copper samples with a narrow grain size distribution (mean grain size of 23 nm) that exhibited tensile yield strength about 11 times higher than that of conventional coarse-grained copper, while retaining a 14% uniform tensile elongation. In situ dynamic straining transmission electron microscope observations of the nanocrystalline copper are also reported, which showed individual dislocation motion and dislocation pile-ups. This suggests a dislocation-controlled deformation mechanism that allows for the high strain hardening observed. Trapped dislocations are observed in the individual nanograins.

Youssef, Khaled M.; Scattergood, Ronald O.; Murty, K. Linga; Horton, Joseph A.; Koch, Carl C. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606-7907 (United States); Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606-7907 (United States)

2005-08-29

391

Burst Strength of Tubing and Casing Based on Twin Shear Unified Strength Theory  

PubMed Central

The internal pressure strength of tubing and casing often cannot satisfy the design requirements in high pressure, high temperature and high H2S gas wells. Also, the practical safety coefficient of some wells is lower than the design standard according to the current API 5C3 standard, which brings some perplexity to the design. The ISO 10400: 2007 provides the model which can calculate the burst strength of tubing and casing better than API 5C3 standard, but the calculation accuracy is not desirable because about 50 percent predictive values are remarkably higher than real burst values. So, for the sake of improving strength design of tubing and casing, this paper deduces the plastic limit pressure of tubing and casing under internal pressure by applying the twin shear unified strength theory. According to the research of the influence rule of yield-to-tensile strength ratio and mechanical properties on the burst strength of tubing and casing, the more precise calculation model of tubing-casing's burst strength has been established with material hardening and intermediate principal stress. Numerical and experimental comparisons show that the new burst strength model is much closer to the real burst values than that of other models. The research results provide an important reference to optimize the tubing and casing design of deep and ultra-deep wells. PMID:25397886

Lin, Yuanhua; Deng, Kuanhai; Sun, Yongxing; Zeng, Dezhi; Liu, Wanying; Kong, Xiangwei; Singh, Ambrish

2014-01-01

392

Investigation of the plastic fracture of high strength steels  

NASA Technical Reports Server (NTRS)

An investigation of the plastic fracture process to improve tensile strength in high strength steels is presented. Two generic types of steels are considered: a quenched and tempered grade and a maraging grade, in order to compare two different matrix microstructures. Each type of steel was studied in commercial grade purity and in special melted high purity form, low in residual and impurity elements. The specific alloys dealt with include AISI 4340 and 18 Ni, 200 grade maraging steel, both heat treated to the same yield strength level of approximately 200 ksi.

Cox, T. B.; Low, J. R., Jr.

1972-01-01

393

Tensile behavior of RAFM alloys after neutron irradiation of up to 16.3 dpa between 250 and 450 °C  

NASA Astrophysics Data System (ADS)

Tensile specimen of steel EUROFER97 and other alloys on the basis of RAFM steels such, as OPTIFER and F82H alloys, and Ga3X were irradiated and post-examined during a neutron irradiation program of up to 16.3 dpa between 250 and 450 °C in the HFR (High Flux Reactor) in the Netherlands. These tensile results were compared with former irradiation programs, with lower neutron doses of up to 0.8 and 2.4 dpa to quantify the difference in tensile strengthening. The average increase of tensile strength was in a range of 300 MPa between 0.8 and 16.3 dpa at temperatures of 250-300 °C. This behavior can be correlated with irradiation-induced changes in the microstructure. Most of the hardening can be attributed to dislocation loops, point defects or small precipitates as observed in boron-free alloys as F82H mod. and EUROFER97. Whereas the hardening in boron-containing alloys OPTIFER alloys and Ga3X can be correlated in addition with the combination of helium bubbles. At the highest irradiation and test temperature at 450 °C, all tensile data of all investigated materials were in the range of those of non-irradiated and irradiated material due to thermal aging effects.

Materna-Morris, E.; Schneider, H.-C.; Möslang, A.

2014-12-01

394

Simulation of the tensile properties of silica aerogels: the effects of cluster structure and primary particle size.  

PubMed

A new two-level model is proposed to investigate the relationship between the mechanical properties and microstructure of silica aerogels. This two-level model consists of the particle-particle interaction model and the cluster structure model. The particle-particle interaction model is proposed to describe interactions between primary particles, in which the polymerization reaction between primary particles is considered. The cluster structure model represents the geometrical structure of silica aerogels, and it is established using a modified diffusion-limited colloid aggregation (DLCA) algorithm. This two-level model is used to investigate the tensile behavior of silica aerogels based on the discrete element method (DEM). The numerical results show that the primary particle size has significant effects on the elastic modulus and tensile strength of silica aerogels. Moreover, the power-law relationships between tensile properties and aerogel density are dependent on the variation of the primary particle radius with density. The present results can explain the difference among different experimental exponents to a certain extent. In comparison with experimental data within a wide density range, this two-level model provides good quantitative estimations of the elastic modulus and tensile strength of silica aerogels after the size effects of the primary particle are considered. This paper provides a fundamental understanding of the relationship between the mechanical properties and microstructure of silica aerogels. The two-level model can be extended to study the mechanical properties of other aerogels and aerogel composites. PMID:25022232

Liu, Qiang; Lu, Zixing; Zhu, Man; Yuan, Zeshuai; Yang, Zhenyu; Hu, Zijun; Li, Junning

2014-09-01

395

Tensile-stressed microelectromechanical apparatus and micromirrors formed therefrom  

DOEpatents

A microelectromechanical (MEM) apparatus is disclosed which includes one or more tensile-stressed actuators that are coupled through flexures to a stage on a substrate. The tensile-stressed actuators, which can be formed from tensile-stressed tungsten or silicon nitride, initially raise the stage above the substrate without any applied electrical voltage, and can then be used to control the height or tilt angle of the stage. An electrostatic actuator can also be used in combination with each tensile-stressed actuator. The MEM apparatus has applications for forming piston micromirrors or tiltable micromirrors and independently addressable arrays of such devices.

Fleming, James G. (Albuquerque, NM)

2006-05-16

396

Thermal degradation of the tensile properties of undirectionally reinforced FP-Al2O3/EZ 33 magnesium composites  

NASA Technical Reports Server (NTRS)

The effects of isothermal and cyclic exposure on the room temperature axial and transverse tensile strength and dynamic flexural modulus of 35 volume percent and 55 volume percent FP-Al203/EZ 33 magnesium composites were studied. The composite specimens were continuously heated in a sand bath maintained at 350 C for up to 150 hours or thermally cycled between 50 and 250 C or 50 and 350 C for up to 3000 cycles. Each thermal cycle lasted for a total of six minutes with a hold time of two minutes at the maximum temperature. Results indicate no significant loss in the room temperature axial tensile strength and dynamic flexural modulus of composites thermally cycled between 50 and 250 C or of composites isothermally heated at 350 C for up to 150 hours from the strength and modulus data for the untreated, as-fabricated composites. In contrast, thermal cycling between 50 and 350 C caused considerable loss in both room temperature strength and modulus. Fractographic analysis and measurement of composite transverse strength and matrix hardness of thermally cycled and isothermally heated composites indicated matrix softening and fiber/matrix debonding due to void growth at the interface and matrix cracking as the likely causes of the strength and modulus loss behavior. Previously announced in STAR as N82-21260

Bhatt, R.T.; Grimes, H. H.

1983-01-01

397

Thermal degradation of the tensile properties of undirectionally reinforced FP-AI203/EZ 33 magnesium composites  

NASA Technical Reports Server (NTRS)

The effects of isothermal and cyclic exposure on the room temperature axial and transverse tensile strength and dynamic flexural modulus of 35 volume percent and 55 volume percent FP-Al2O3/EZ 33 magnesium composites were studied. The composite specimens were continuously heated in a sand bath maintained at 350 C for up to 150 hours or thermally cycled between 50 and 250 C or 50 and 350 C for up to 3000 cycles. Each thermal cycle lasted for a total of six minutes with a hold time of two minutes at the maximum temperature. Results indicate to significant loss in the room temperature axial tensile strength and dynamic flexural modulus of composites thermally cycled between 50 and 250 C or of composites isothermally heated at 350 C for up to 150 hours from the strength and modulus data for the untreated, as fabricated composites. In contrast, thermal cycling between 50 and 350 C caused considerable loss in both room temperature strength and modulus. Fractographic analysis and measurement of composite transverse strength and matrix hardness of thermally cycled and isothermally heated composites indicated matrix softening and fiber/matrix debonding due to void growth at the interface and matrix cracking as the likely causes of the strength and modulus loss behavior.

Bhatt, R. T.; Grimes, H. H.

1982-01-01

398

In vivo behaviour of three calcium phosphate cements and a magnesium phosphate cement  

Microsoft Academic Search

Three types of calcium phosphate cements and one magnesium phosphate cement were implanted subcutaneously in rats under exclusion of direct cellular contact. Retrieval times were either 1, 2, 4 or 8 weeks. Before and after retrieval the compressive strength, the diametral tensile strength, the quantitative chemical composition, the qualitative phase composition, the FTIR spectrum and the microstructure were determined. The

F. C. M. Driessens; M. G. Boltong; M. I. Zapatero; R. M. H. Verbeeck; W. Bonfield; O. Bérmúdez; E. Fernández; M. P. Ginebra; J. A. Planell

1995-01-01

399

Dynamic tensile characterization of pig skin  

NASA Astrophysics Data System (ADS)

The strain-rate dependent response of porcine skin oriented in the fiber direction is explored under tensile loading. Quasi-static response was obtained at strain rates in the range of 10-3 s-1 to 25 s-1. Characterization of the response at even greater strain rates is accomplished by measuring the spatio-temporal evolution of the particle velocity and strain in a thin strip subjected to high speed impact loading that generates uniaxial stress conditions. These experiments indicate the formation of shock waves; the shock Hugoniot that relates particle velocity to the shock velocity and the dynamic stress to dynamic strain is obtained directly through experimental measurements, without any assumptions regarding the constitutive properties of the material. [Figure not available: see fulltext.

Khatam, H.; Liu, Q.; Ravi-Chandar, K.

2014-04-01

400

Interpreting finite element results for brittle materials in endodontic restorations  

PubMed Central

Background Finite element simulation has been used in last years for analysing the biomechanical performance of post-core restorations in endodontics, but results of these simulations have been interpreted in most of the works using von Mises stress criterion. However, the validity of this failure criterion for brittle materials, which are present in these restorations, is questionable. The objective of the paper is to analyse how finite element results for brittle materials of endodontic restorations should be interpreted to obtain correct conclusions about the possible failure in the restoration. Methods Different failure criteria (Von Mises, Rankine, Coulomb-Mohr, Modified Mohr and Christensen) and material strength data (diametral tensile strength and flexural strength) were considered in the study. Three finite element models (FEM) were developed to simulate an endodontic restoration and two typical material tests: diametral tensile test and flexural test. Results Results showed that the Christensen criterion predicts similar results as the Von Mises criterion for ductile components, while it predicts similar results to all other criteria for brittle components. The different criteria predict different failure points for the diametral tensile test, all of them under multi-axial stress states. All criteria except Von Mises predict failure for flexural test at the same point of the specimen, with this point under uniaxial tensile stress. Conclusions From the results it is concluded that the Christensen criterion is recommended for FEM result interpretation in endodontic restorations and that the flexural test is recommended to estimate tensile strength instead of the diametral tensile test. PMID:21635759

2011-01-01

401

Constitutive Model of Single Root System’s Resistance to Tensile Stress - Taking Pinus tabulaeformis, Betula platyphylla, Quercus mongolica and Larix gmelinii as Experimental Objects  

PubMed Central

A constitutive model for the stress-strain relationship of single forest root system was developed in order to provide theoretical foundations for the mechanisms of soil-reinforcement by root system and offer a reliable basis for the analysis of root tensile strength character. This study started a general form of linear and non-linear stress-strain relation that was mathematically defined by four boundary conditions observed in typical tensile tests of single roots. The parameters of the model were determined by experiment data and had definite physical meaning. The model was verified by experiment data, which showed that the calculated values were in good agreement with the experimental single root tensile test results. The constitutive model was validated and found to be feasible for modeling single root tensile stress. PMID:24736724

Chen, Lihua; Wang, Pinghua; Yang, Yuanjun; He, Jia

2014-01-01

402

Tensile and impact properties of TZM and Mo-5% Re*1  

NASA Astrophysics Data System (ADS)

Some aspects of the mechanical behaviour of two molybdenum alloys, one belonging to the precipitation hardened sub-family (TZM) and the other is a solid solution Mo 5% rhenium-bearing alloy, have been investigated. Experimental data (tensile mechanical strength, ductility and impact properties of unirradiated materials) show that a difference in behaviour exists between the precipitation hardened and the solid solution strengthened alloy, but at the same time a serious discrepancy has been found between the present results and previously reported ductile to brittle transition temperature values for Mo alloys.

Filacchioni, G.; Casagrande, E.; De Angelis, U.; De Santis, G.; Ferrara, D.

1994-09-01

403

Tensile Properties of Commonly Used Prolapse Meshes  

PubMed Central

Objectives Although most currently available synthetic meshes are lightweight, macroporous polypropylene, they differ in regard to pore size, knit pattern and surface characteristics, all of which may impact behavior. In this study, we compare the biomechanical properties of 4 commonly used prolapse meshes relative to Gynecare PS ™, using a tensile testing protocol. Methods Full length meshes [Gynecare PS™ (Ethicon), Pelvitex ™ (Bard), Popmesh™, Timesh ™ (Caldera), and Polyform (Boston Scientific)] were divided into 15 × 5 cm samples. Light microscopy was used to define pore size. For tensile testing, each mesh was either loaded to failure (n=5 per group) or cyclically loaded (n=3 per group). Data abstracted from the largely bilinear load-elongation curves included the low and high stiffness, the point of transition between them (inflection point), the load at failure, and the relative elongation. Results Microscopic analysis demonstrated that the pore size for all of the meshes were distinct. With the exception of Popmesh which displayed linear behavior, all prolapse meshes were characterized by a very low initial stiffness increasing by an order of magnitude into the high stiffness region. The newer meshes were 70%-90% less stiff than Gynecare (p< 0.05) and more readily deformed in response to cyclical loading (greater permanent elongation; p < 0.001). There was a significant positive correlation between mesh weight and load at failure, (p< 0.001). Conclusions Newer meshes are significantly less stiff than Gynecare PS. The significant amount of permanent elongation of these meshes may be important to consider, especially during the early post-operative period when tissue in growth has yet to take place. PMID:19495548

Jones, Keisha A.; Feola, Andrew; Meyn, Leslie; Abramowitch, Steven D.; Moalli, Pamela A.

2010-01-01

404

Effect of Ultrasonic Treatment on The Tensile and Impact Properties of Thermoplastic Natural Rubber Nanocomposites Reinforced with Carbon Nanotubes  

NASA Astrophysics Data System (ADS)

This study investigates the effect of ultrasonic treatment on the mechanical properties of thermoplastic natural rubber (TPNR) nanocomposites reinforced with multi-walled nanotubes. The TPNR nanocomposites were prepared using melt blending method from polypropylene (PP), natural rubber (NR) and liquid natural rubber (LNR) as a compatibilizer, respectively, with 1% of Multi-wall nanotubes. The nanocomposite was prepared using the indirect technique (IDT) with the optimum processing parameters at 180° C with 80 rpm mixing speed and 11 minutes processing time. The results have showed that the good dispersion on nanotubes was achieved by ultrasonic treatment. The optimization of ultrasonic time indicated that the maximum tensile and impact properties occurred with 1 h ultrasonic treatment. The Young's modulus, tensile strength, elongation at break and impact strength have increased by almost 11%, 21%, 43% and 50%, respectively. The results from our study indicate that nanotubes have as excellent reinforcement filler in TPNR matrix.

Tarawneh, Mou'ad A.; Ahmad, Sahrim Hj.; Yahya, S. Y.; Rasid, Rozaidi

2009-06-01

405

Heat Treatment Effects on the Tensile Properties and Microstructures of a SiC/RBSN Composite in Nitrogen  

NASA Technical Reports Server (NTRS)

The room-temperature tensile properties and constituent microstructures of a unidirectionally reinforced SiC/reaction bonded silicon nitride (RBSN) composite have been investigated after heat treatments at 1400, 1600, or 1800 C in nitrogen for up to 100 hr. The composite consisted of approximately 24 vol% of aligned 140 micron diameter, continuous length, chemically vapor deposited SiC fibers in an approximately 40% porous silicon nitride matrix. The composites heat treated at 1400 C for up to 100 hr showed elastic modulus, first matrix cracking strength, and ultimate tensile strength values similar to those of the as-fabricated composites, but those heat treated for 1 hr beyond this temperature displayed losses in all three properties. Recrystallization of the SiC fibers, reaction between the carbon-rich interface coating on the fibers and the RBSN matrix, and dissociation of the RBSN matrix are the reasons for the loss of mechanical properties.

Bhatt, R. T.

1995-01-01

406

The effect of microstructure on the tensile and fatigue behavior of Ti22Al23Nb in air and vacuum  

Microsoft Academic Search

Titanium aluminide alloys containing the ordered orthorhombic (O) phase, based on Ti2AlNb, exhibit high specific strengths at elevated temperature along with good room temperature tensile ductility and fracture toughness values. They are thus considered as potential materials for aerospace applications both in their monolithic form and as matrices in metal matrix composites. Microstructure\\/property relationships have been studied to a great

Stephanie Luetjering

1998-01-01

407

Tensile-shear correlations obtained from shear punch test technique using a modified experimental approach  

NASA Astrophysics Data System (ADS)

Shear punch testing has been a very useful technique for evaluating mechanical properties of irradiated alloys using a very small volume of material. The load-displacement data is influenced by the compliance of the fixture components. This paper describes a modified experimental approach where the compliances of the punch and die components are eliminated. The analysis of the load-displacement data using the modified setup for various alloys like low carbon steel, SS316, modified 9Cr-1Mo, 2.25Cr-1Mo indicate that the shear yield strength evaluated at 0.2% offset of normalized displacement relates to the tensile YS as per the Von Mises yield relation ( ?ys = 1.73 ?ys). A universal correlation of type UTS = m?max where m is a function of strain hardening exponent, is seen to be obeyed for all the materials in this study. The use of analytical models developed for blanking process are explored for evaluating strain hardening exponent from the load-displacement data. This study is directed towards rationalizing the tensile-shear empirical correlations for a more reliable prediction of tensile properties from shear punch tests.

Karthik, V.; Visweswaran, P.; Vijayraghavan, A.; Kasiviswanathan, K. V.; Raj, Baldev

2009-09-01

408

Tensile strength of a surgeon’s or a square knot  

E-print Network

. Some biomechanical considerations of polytetrafluoroethylene sutures. Arch Surg. 1990; 125:647–650. [PubMed: 2331223] 9. Jones, KFA.; Abramowitch, D.; Moalli, PA. Evidence Against The Need For Permanent Suture For Graft Placement At The Time...

Muffly, Tyler M.; Boyce, Jamie; Kieweg, Sarah L.; Bonham, Aaron J.

2014-09-19

409

Improved tensile strength of glycerol-plasticized gluten bioplastic containing hydrophobic liquids  

Microsoft Academic Search

The aim of the present work has been to study the influence of hydrophobic liquids on the morphology and the properties of thermo-molded plastics based on glycerol-plasticized wheat gluten (WG). While the total amount of castor oil and glycerol was remained constant at 30wt%, castor oil with various proportions with respect to glycerol was incorporated with WG by mixing at

Yihu Song; Qiang Zheng

2008-01-01

410

Discrete simulation of model, loose cohesive powders: plastic consolidation, fractal microstructure and tensile strength  

E-print Network

on the assembling process and on whether contacts possess rolling resistance (RR), configurations form under low increases by large amounts in consolidation. Keywords: cohesive granular material; rolling resistance, i.e., when the particles are in con- tact. We also introduce rolling resistance (RR) in some samples

Boyer, Edmond

411

DOI: 10.1002/adma.200800214 High Tensile Ductility and Strength in Bulk  

E-print Network

and subsequently quasi-isostatic (QI) forging processes (formerly known as Ceracon forging), to prepare bulk dense) methods,[18] and cold drawing.[19] Microstructural analyses suggest that significantly reduced extrinsic

Zhu, Yuntian T.

412

The development of high tensile strength steels with higher levels of alloying elements needs the  

E-print Network

the implementation of operating means in the continuous casting machine to master slabs internal soundness of the different continuous casting machines, and to optimize the revamping of older equipment, thermomechanical, a macroscopic thermomechanical model of steel slab continuous casting has been developed by CEMEF

Paris-Sud XI, Université de

413

Development of a method for the evaluation of wound tensile strength in cynomolgus macaques  

Microsoft Academic Search

Introduction: Numerous in vivo wound healing models have been developed to evaluate the potential of drugs to affect the processes involved in wound healing, including angiogenesis. The majority of these models are frequently conducted in rodents, rabbits, and pigs and are terminal in nature. Due to the species specificity of many biotherapeutic molecules under development a non-terminal model in the

Joel B. Cornacoff; Kreg Howk; Bill Pikounis; Vince Mendenhall; Pauline Martin

2008-01-01

414

Synthesis of continuous silicon carbide fibre with high tensile strength and high Young's modulus  

Microsoft Academic Search

Polycarbosilane as the precursor of continuous SiC fibre was synthesized by thermal decomposition of polydimethylsilane. The\\u000a structure of the polycarbosilane is concluded to be similar to that of polysilapropylene by the measurements of i.r. spectra,\\u000a NMR spectra and chemical analyses. Its formation mechanisms are initially the formation of carbosilane by thermal decomposition\\u000a of polydimethylsilane and then the increase in molecular

S. Yajima; Y. Hasegawa; J. Hayashi; M. Iimura

1978-01-01

415

Fracture Testing with Surface Crack Specimens. [especially the residual tensile strength test  

NASA Technical Reports Server (NTRS)

Recommendations are given for the design, preparation, and static fracture testing of surface crack specimens. The recommendations are preceded by background information including discussions of stress intensity factors, crack opening displacements, and fracture toughness values associated with surface crack specimens. Cyclic load and sustained load tests are discussed briefly.

Orange, T. W.

1974-01-01

416

Proportioning RCCP mixes under hot weather conditions for a specified tensile strength  

Microsoft Academic Search

The work presented in this paper introduces the use of roller-compacted concrete pavements (RCCPs) as a substitute to the traditional asphalt concrete pavements that suffer from severe rutting and cracking due to heavy loading and hot weather which prevail in most of the Middle East countries. A soil compaction method (Kneading compaction) was used in this research to simulate compaction

Hisham Y. Qasrawi; Ibrahim M. Asi; H. I. Al-Abdul Wahhab

2005-01-01

417

Polystyrene cryostat facilitates testing tensile specimens under liquid nitrogen  

NASA Technical Reports Server (NTRS)

Lightweight cryostat made of expanded polystyrene reduces eccentricity in a tensile system being tested under liquid nitrogen. The cryostat is attached directly to the tensile system by a special seal, reducing misalignment effects due to cryostat weight, and facilitates viewing and loading of the specimens.

Shogan, R. P.; Skalka, R. J.

1967-01-01

418

Mechanical shear and tensile characteristics of selected biomass stems  

Technology Transfer Automated Retrieval System (TEKTRAN)

Mechanical characteristics (stress and energy of tensile and shear modes) of selected biomass stems, such as big bluestem, bromegrass, and Barlow wheat were determined. A high capacity MTI-100K universal testing machine attached with standard tensile clamps and designed fabricated double-shear devic...

419

Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility  

PubMed Central

The mechanical properties of bulk metallic glasses (BMGs) and their composites have been under intense investigation for many years, owing to their unique combination of high strength and elastic limit. However, because of their highly localized deformation mechanism, BMGs are typically considered to be brittle materials and are not suitable for structural applications. Recently, highly-toughened BMG composites have been created in a Zr–Ti-based system with mechanical properties comparable with high-performance crystalline alloys. In this work, we present a series of low-density, Ti-based BMG composites with combinations of high strength, tensile ductility, and excellent fracture toughness. PMID:19074287

Hofmann, Douglas C.; Suh, Jin-Yoo; Wiest, Aaron; Lind, Mary-Laura; Demetriou, Marios D.; Johnson, William L.

2008-01-01

420

Strength Reduction via SSAPRE  

Microsoft Academic Search

We present techniques that allow strength reduction to be performed concurrently with partial redundancy elimination in the SSAPRE framework. By sharing the characteristics inherent to SSAPRE, the resulting strength reduction algorithm exhibits many interesting attributes. We compare various aspects of the new strength reduction algorithm with previous strength reduction algorithms. We also outline and discuss our implementation of the closely

Robert Kennedy; Fred C. Chow; Peter Dahl; Shin-ming Liu; Raymond Lo; Mark Streich

1998-01-01

421

Effect of irradiation on the fracture behavior and tensile properties of an HT9 duct  

SciTech Connect

Alloy HT9 is a leading candidate material for Liquid Metal Reactor applications because of insignificant swelling and low thermal expansion. To evaluate applications for this alloy, the ACO-1 experiment was conducted. The HT9 alloy was used for cladding and duct for the FFTF Test Assembly. A part of the postirradiation portion of the experiment was the mechanical property testing of the irradiated duct. Results of tensile and fracture toughness tests in samples cut from the HT9 duct are presented in this report. Tensile tests were performed on smooth as well as notched tensile specimens, and fracture toughness tests were performed on compact tension specimens. The postirradiation strength in the lower region of the duct was found to be about 50% stronger than that in the center region. The total elongation for smooth tensile specimens remained at 10% or above for the irradiated specimens taken from the duct various axial locations along the ACO-1 duct. Results showed that irradiation temperature had a strong effect on notched sample behavior. The samples which were irradiated at 360{degree}C and tested at 33{degree}C failed without plastic deformation, their fracture toughness values were also found to be significantly lower than tests at 205{degree}C. This shows that reactor ducts of HT9 irradiated at an FFTF inlet temperature of 360{degree}C have adequate fracture toughness for in-reactor service at temperatures near 200{degree}C, but caution must be taken for duct handling at hot cell temperatures to prevent brittle fracture. 8 refs., 17 figs., 2 tabs.

Huang, F.H.

1989-05-01

422

Dynamic Tensile Properties of Iron and Steels for a Wide Range of Strain Rates and Strain  

NASA Astrophysics Data System (ADS)

The tensile stress-strain curves of iron and a variety of steels, covering a wide range of strength level, over a wide strain rate range on the order of 10-3 ~ 103 s-1, were obtained systematically by using the Sensing Block Type High Speed Material Testing System (SBTS, Saginomiya). Through intensive analysis of these results, the strain rate sensitivity of the flow stress for the large strain region, including the viscous term at high strain rates, the true fracture strength and the true fracture strain were cleared for the material group of the ferrous metals. These systematical data may be useful to develop a practical constitutive model for computer codes, including a fracture criterion for simulations of the dynamic behavior in crash worthiness studies and of work-pieces subjected to dynamic plastic working for a wide strain rate range.

Kojima, Nobusato; Hayashi, Hiroyuki; Yamamoto, Terumi; Mimura, Koji; Tanimura, Shinji

423

(Finite) statistical size effects on compressive strength  

PubMed Central

The larger structures are, the lower their mechanical strength. Already discussed by Leonardo da Vinci and Edmé Mariotte several centuries ago, size effects on strength remain of crucial importance in modern engineering for the elaboration of safety regulations in structural design or the extrapolation of laboratory results to geophysical field scales. Under tensile loading, statistical size effects are traditionally modeled with a weakest-link approach. One of its prominent results is a prediction of vanishing strength at large scales that can be quantified in the framework of extreme value statistics. Despite a frequent use outside its range of validity, this approach remains the dominant tool in the field of statistical size effects. Here we focus on compressive failure, which concerns a wide range of geophysical and geotechnical situations. We show on historical and recent experimental data that weakest-link predictions are not obeyed. In particular, the mechanical strength saturates at a nonzero value toward large scales. Accounting explicitly for the elastic interactions between defects during the damage process, we build a formal analogy of compressive failure with the depinning transition of an elastic manifold. This critical transition interpretation naturally entails finite-size scaling laws for the mean strength and its associated variability. Theoretical predictions are in remarkable agreement with measurements reported for various materials such as rocks, ice, coal, or concrete. This formalism, which can also be extended to the flowing instability of granular media under multiaxial compression, has important practical consequences for future design rules. PMID:24733930

Weiss, Jérôme; Girard, Lucas; Gimbert, Florent; Amitrano, David; Vandembroucq, Damien

2014-01-01

424

(Finite) statistical size effects on compressive strength.  

PubMed

The larger structures are, the lower their mechanical strength. Already discussed by Leonardo da Vinci and Edmé Mariotte several centuries ago, size effects on strength remain of crucial importance in modern engineering for the elaboration of safety regulations in structural design or the extrapolation of laboratory results to geophysical field scales. Under tensile loading, statistical size effects are traditionally modeled with a weakest-link approach. One of its prominent results is a prediction of vanishing strength at large scales that can be quantified in the framework of extreme value statistics. Despite a frequent use outside its range of validity, this approach remains the dominant tool in the field of statistical size effects. Here we focus on compressive failure, which concerns a wide range of geophysical and geotechnical situations. We show on historical and recent experimental data that weakest-link predictions are not obeyed. In particular, the mechanical strength saturates at a nonzero value toward large scales. Accounting explicitly for the elastic interactions between defects during the damage process, we build a formal analogy of compressive failure with the depinning transition of an elastic manifold. This critical transition interpretation naturally entails finite-size scaling laws for the mean strength and its associated variability. Theoretical predictions are in remarkable agreement with measurements reported for various materials such as rocks, ice, coal, or concrete. This formalism, which can also be extended to the flowing instability of granular media under multiaxial compression, has important practical consequences for future design rules. PMID:24733930

Weiss, Jérôme; Girard, Lucas; Gimbert, Florent; Amitrano, David; Vandembroucq, Damien

2014-04-29

425

Cryogenic insulation strength and bond tester  

NASA Technical Reports Server (NTRS)

A method and apparatus for testing the tensile strength and bonding strength of sprayed-on foam insulation attached to metal cryogenic fuel tanks is described. A circular cutter is used to cut the insulation down to the surface of the metal tank to form plugs of the insulation for testing in situ on the tank. The apparatus comprises an electromechanical pulling device powered by a belt battery pack. The pulling device comprises a motor driving a mechanical pulling structure comprising a horizontal shaft connected to two bell cracks which are connected to a central member. When the lower end of member is attached to a fitting, which in turn is bonded to a plug, a pulling force is exerted on the plug sufficient to rupture it. The force necessary to rupture the plug or pull it loose is displayed as a digital read-out.

Schuerer, P. H.; Ehl, J. H.; Prasthofer, W. P. (inventors)

1985-01-01

426

The failure strengths of perfect diamond crystals  

NASA Technical Reports Server (NTRS)

Finite elasticity analysis is extended to the 110 direction, where off axis strain symmetry is not present, and the third order elastic data are obtained for diamond. The compressive yield strengths of perfect diamond crystals loaded in the 100, 110, and 111 directions are predicted to be 2.2, 5.6, and 2.8 Mbars, respectively, while the corresponding tensile fracture strengths are 1.0, 0.5, and 0.5 Mbars. From these results and from Hertz theory it is predicted that ring fracture of spherically tipped diamonds pressed against a flat will occur at pressures of 1.8-1.9 Mbars, substantially below the yield pressure (above 3 Mbars). Modification of the tip shape leads to a predicted increase in the pressure at which fracture occurs.

Whitlock, J.; Ruoff, A. L.

1981-01-01

427

Strength of Polysilicon for MEMS Devices  

SciTech Connect

The safe, secure and reliable application of Microelectromechanical Systems (MEMS) devices requires knowledge about the distribution in material and mechanical properties of the small-scale structures. A new testing program at Sandia is quantifying the strength distribution using polysilicon samples that reflect the dimensions of critical MEMS components. The strength of polysilicon fabricated at Sandia's Microelectronic Development Laboratory