Sample records for diamond lattice antiferromagnetic

  1. Diamond lattice Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Oitmaa, J.

    2018-04-01

    We investigate ground-state and high-temperature properties of the nearest-neighbour Heisenberg antiferromagnet on the three-dimensional diamond lattice, using series expansion methods. The ground-state energy and magnetization, as well as the magnon spectrum, are calculated and found to be in good agreement with first-order spin-wave theory, with a quantum renormalization factor of about 1.13. High-temperature series are derived for the free energy, and physical and staggered susceptibilities for spin S  =  1/2, 1 and 3/2, and analysed to obtain the corresponding Curie and Néel temperatures.

  2. Quantum order by disorder in frustrated diamond lattice antiferromagnets.

    PubMed

    Bernier, Jean-Sébastien; Lawler, Michael J; Kim, Yong Baek

    2008-07-25

    We present a quantum theory of frustrated diamond lattice antiferromagnets. Considering quantum fluctuations as the predominant mechanism relieving spin frustration, we find a rich phase diagram comprising of six phases with coplanar spiral ordering in addition to the Néel phase. By computing the specific heat of these ordered phases, we obtain a remarkable agreement between (k, k, 0) spiral ordering and the experimental specific heat data for the diamond lattice spinel compounds MnSc2S4, Co3O4, and CoRh2O4, i.e., specific heat data is a strong evidence for (k, k, 0) spiral ordering in all of these materials. This prediction can be tested in future neutron scattering experiments on Co3O4 and CoRh2O4, and is consistent with existing neutron scattering data on MnSc2S4. Based on this agreement, we infer a monotonically increasing relationship between frustration and the strength of quantum fluctuations.

  3. Impurity effects in highly frustrated diamond-lattice antiferromagnets

    NASA Astrophysics Data System (ADS)

    Savary, Lucile; Gull, Emanuel; Trebst, Simon; Alicea, Jason; Bergman, Doron; Balents, Leon

    2011-08-01

    We consider the effects of local impurities in highly frustrated diamond-lattice antiferromagnets, which exhibit large but nonextensive ground-state degeneracies. Such models are appropriate to many A-site magnetic spinels. We argue very generally that sufficiently dilute impurities induce an ordered magnetic ground state and provide a mechanism of degeneracy breaking. The states that are selected can be determined by a “swiss cheese model” analysis, which we demonstrate numerically for a particular impurity model in this case. Moreover, we present criteria for estimating the stability of the resulting ordered phase to a competing frozen (spin glass) one. The results may explain the contrasting finding of frozen and ordered ground states in CoAl2O4 and MnSc2S4, respectively.

  4. Impurity Effects in Highly Frustrated Diamond-Lattice Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Savary, Lucile

    2012-02-01

    We consider the effects of local impurities in highly frustrated diamond lattice antiferromagnets, which exhibit large but non-extensive ground state degeneracies. Such models are appropriate to many A-site magnetic spinels. We argue very generally that sufficiently dilute impurities induce an ordered magnetic ground state, and provide a mechanism of degeneracy breaking. The states which are selected can be determined by a ``swiss cheese model'' analysis, which we demonstrate numerically for a particular impurity model in this case. Moreover, we present criteria for estimating the stability of the resulting ordered phase to a competing frozen (spin glass) one. The results may explain the contrasting finding of frozen and ordered ground states in CoAl2O4 and MnSc2S4, respectively.

  5. Kinetically Inhibited Order in a Diamond-Lattice Antiferromagnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDougall, Gregory J; Gout, Delphine J; Zarestky, Jerel L

    2011-01-01

    Frustrated magnetic systems exhibit highly degenerate ground states and strong fluctuations, often leading to new physics. An intriguing example of current interest is the antiferromagnet on a diamond lattice, realized physically in the A-site spinel materials. This is a prototypical system in three dimensions where frustration arises from competing interactions rather than purely geometric constraints, and theory suggests the possibility of novel order at low temperature. Here we present a comprehensive single crystal neutron scattering study CoAl2O4, a highly frustrated A-site spinel. We observe strong diffuse scattering that peaks at wavevectors associated with Neel ordering. Below the temperature T*=6.5K, theremore » is a dramatic change in elastic scattering lineshape accompanied by the emergence of well-defined spin-wave excitations. T* had previously been associated with the onset of glassy behavior. Our new results suggest instead that in fact T* signifies a first-order phase transition, but with true long-range order inhibited by the kinetic freezing of domain walls. This scenario might be expected to occur widely in frustrated systems containing first-order phase transitions and is a natural explanation for existing reports of anomalous glassy behavior in other materials.« less

  6. Layer Anti-Ferromagnetism on Bilayer Honeycomb Lattice

    PubMed Central

    Tao, Hong-Shuai; Chen, Yao-Hua; Lin, Heng-Fu; Liu, Hai-Di; Liu, Wu-Ming

    2014-01-01

    Bilayer honeycomb lattice, with inter-layer tunneling energy, has a parabolic dispersion relation, and the inter-layer hopping can cause the charge imbalance between two sublattices. Here, we investigate the metal-insulator and magnetic phase transitions on the strongly correlated bilayer honeycomb lattice by cellular dynamical mean-field theory combined with continuous time quantum Monte Carlo method. The procedures of magnetic spontaneous symmetry breaking on dimer and non-dimer sites are different, causing a novel phase transition between normal anti-ferromagnet and layer anti-ferromagnet. The whole phase diagrams about the magnetism, temperature, interaction and inter-layer hopping are obtained. Finally, we propose an experimental protocol to observe these phenomena in future optical lattice experiments. PMID:24947369

  7. Frustrated spin one on a diamond lattice in NiRh2O4

    NASA Astrophysics Data System (ADS)

    Chamorro, J. R.; Ge, L.; Flynn, J.; Subramanian, M. A.; Mourigal, M.; McQueen, T. M.

    2018-03-01

    We report the discovery of a spin one diamond lattice in NiRh2O4 . This spinel undergoes a cubic to tetragonal phase transition at T =440 K that leaves all nearest neighbor interactions equivalent. In the tetragonal phase, magnetization measurements show a Ni2 + effective moment of peff=3.3 (1 ) and dominant antiferromagnetic interactions with ΘCW=-11.3 (7 ) K. No phase transition to a long-range magnetically ordered state is observed by specific heat measurements down to T =0.1 K. Inelastic neutron scattering measurements on substoichiometric NiRh2O4 reveal possible valence-bond behavior and show no visible signs of magnetic ordering. NiRh2O4 provides a platform on which to explore the previously unknown and potentially rich physics of spin one interacting on the diamond lattice, including the realization of theoretically predicted quantum spin liquid and topological paramagnet states.

  8. Ising antiferromagnet on the Archimedean lattices.

    PubMed

    Yu, Unjong

    2015-06-01

    Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.

  9. Ising antiferromagnet on the Archimedean lattices

    NASA Astrophysics Data System (ADS)

    Yu, Unjong

    2015-06-01

    Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.

  10. Pressure effects on the magnetoelectric properties of a multiferroic triangular-lattice antiferromagnet CuCrO2

    NASA Astrophysics Data System (ADS)

    Aoyama, Takuya; Miyake, Atsushi; Kagayama, Tomoko; Shimizu, Katsuya; Kimura, Tsuyoshi

    2013-03-01

    Effects of high pressure exceeding 10 GPa on spin-driven ferroelectricity were investigated for a multiferroic, triangular-lattice antiferromagnet (TLA), CuCrO2. For this purpose, we developed a system which enables us to measure ferroelectric polarization under a pressure of 10 GPa by using a diamond anvil cell. We found that the magnetic transition temperature accompanying the ferroelectric one in CuCrO2 was remarkably enhanced by applying pressure. The result is simply explained by considering the pressure-induced enhancement of inter- and/or intralayer magnetic interaction due to the compression of the lattice. In addition, the coercive electric field for the polarization reversal was also increased with increasing pressure, while the amplitude of the ferroelectric polarization was steeply suppressed at around 8 GPa. A possible origin of the observed pressure effects on the ferroelectric property in the multiferroic TLA is discussed in terms of a ferroelectric-antiferroelectric transition and structural domain rearrangement by uniaxial stress.

  11. Spin-Chirality-Driven Ferroelectricity on a Perfect Triangular Lattice Antiferromagnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitamura, H.; Watanuki, R.; Kaneko, Koji

    Magnetic field (B) variation of the electrical polarization P c ( ∥c) of the perfect triangular lattice antiferromagnet RbFe(MoO 4) 2 is examined up to the saturation point of the magnetization for B⊥c. P c is observed only in phases for which chirality is predicted in the in-plane magnetic structures. No strong anomaly is observed in P c at the field at which the spin modulation along the c axis, and hence the spin helicity, exhibits a discontinuity to the commensurate state. These results indicate that the ferroelectricity in this compound originates predominantly from the spin chirality, the explanation ofmore » which would require a new mechanism for magnetoferroelectricity. Lastly, the obtained field-temperature phase diagrams of ferroelectricity well agree with those theoretically predicted for the spin chirality of a Heisenberg spin triangular lattice antiferromagnet.« less

  12. Spin-Chirality-Driven Ferroelectricity on a Perfect Triangular Lattice Antiferromagnet

    DOE PAGES

    Mitamura, H.; Watanuki, R.; Kaneko, Koji; ...

    2014-10-01

    Magnetic field (B) variation of the electrical polarization P c ( ∥c) of the perfect triangular lattice antiferromagnet RbFe(MoO 4) 2 is examined up to the saturation point of the magnetization for B⊥c. P c is observed only in phases for which chirality is predicted in the in-plane magnetic structures. No strong anomaly is observed in P c at the field at which the spin modulation along the c axis, and hence the spin helicity, exhibits a discontinuity to the commensurate state. These results indicate that the ferroelectricity in this compound originates predominantly from the spin chirality, the explanation ofmore » which would require a new mechanism for magnetoferroelectricity. Lastly, the obtained field-temperature phase diagrams of ferroelectricity well agree with those theoretically predicted for the spin chirality of a Heisenberg spin triangular lattice antiferromagnet.« less

  13. Ising antiferromagnet on a finite triangular lattice with free boundary conditions

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Yeon

    2015-11-01

    The exact integer values for the density of states of the Ising model on an equilateral triangular lattice with free boundary conditions are evaluated up to L = 24 spins on a side for the first time by using the microcanonical transfer matrix. The total number of states is 2 N s = 2300 ≈ 2.037 × 1090 for L = 24, where N s = L( L+1)/2 is the number of spins. Classifying all 2300 spin states according to their energy values is an enormous work. From the density of states, the exact partition function zeros in the complex temperature plane of the triangular-lattice Ising model are evaluated. Using the density of states and the partition function zeros, we investigate the properties of the triangularlattice Ising antiferromagnet. The scaling behavior of the ground-state entropy and the form of the correlation length at T = 0 are studied for the triangular-lattice Ising antiferromagnet with free boundary conditions. Also, the scaling behavior of the Fisher edge singularity is investigated.

  14. Spin Structures and Phase Diagrams of Extended Spatially Completely Anisotropic Triangular Lattice Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Sakakida, Keishiro; Shimahara, Hiroshi

    2017-12-01

    Motivated by recently discovered organic antiferromagnets, we examine an extended triangular lattice that consists of two types of triangles of bonds with exchange coupling constants Jℓ and J'ℓ (ℓ= 1, 2, and 3), respectively. The simplified system with Jℓ = J'ℓ > 0 is the spatially completely anisotropic triangular lattice (SCATL) antiferromagnet examined previously. The extended system, which we call an extended SCATL (ESCATL), has two different spatial anisotropy parameters J3/J2 and J'3/J'2 when J1 = J'1 is assumed. We derive classical phase diagrams and spin structures. It is found that the ESCATL antiferromagnet exhibits two up-up-down-down (uudd) phases when the imbalance of the anisotropy parameters is significant, in addition to the three Néel phases that occur in the SCATL. When the model parameters vary, these collinear phases are continuously connected by the spiral-spin phase. Using the available model parameters for the organic compounds λ-(BETS)2XCl4 (X = Fe and Ga), we examine the stabilities of the spin structures of the independent π-electron system, which is considered to primarily sustain the magnetic order, where BETS represents bis(ethylenedithio)tetraselenafulvalene. It is found that one of the uudd phases has an energy close to the ground-state energy for λ-(BETS)2FeCl4. We discuss the relevance of the magnetic anion FeCl4 and the quantum fluctuation to the magnetism of these compounds. When J'3 = 0, the system is reduced to a trellis lattice antiferromagnet. The system exhibits a stripe spiral-spin phase, which comprises one-dimensional spiral-spin states stacked alternately.

  15. Magnetic properties of a quasi-two-dimensional S =1/2 Heisenberg antiferromagnet with distorted square lattice

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hironori; Tamekuni, Yusuke; Iwasaki, Yoshiki; Otsuka, Rei; Hosokoshi, Yuko; Kida, Takanori; Hagiwara, Masayuki

    2017-06-01

    We successfully synthesize single crystals of the verdazyl radical α -2 ,3 ,5 -Cl3 -V. Ab initio molecular orbital calculations indicate that the two dominant antiferromagnetic interactions, J1 and J2 (α =J2/J1≃0.56 ), form an S =1 /2 distorted square lattice. We explain the magnetic properties based on the S =1 /2 square lattice Heisenberg antiferromagnet using the quantum Monte Carlo method, and examine the effects of the lattice distortion and the interplane interaction contribution. In the low-temperature regions below 6.4 K, we observe anisotropic magnetic behavior accompanied by a phase transition to a magnetically ordered state. The electron spin resonance signals exhibit anisotropic behavior in the temperature dependence of the resonance field and the linewidth. We explain the frequency dependence of the resonance fields in the ordered phase using a mean-field approximation with out-of-plane easy-axis anisotropy, which causes a spin-flop phase transition at approximately 0.4 T for the field perpendicular to the plane. Furthermore, the anisotropic dipole field provides supporting information regarding the presence of the easy-axis anisotropy. These results demonstrate that the lattice distortion, anisotropy, and interplane interaction of this model are sufficiently small that they do not affect the intrinsic behavior of the S =1 /2 square lattice Heisenberg antiferromagnet.

  16. DNA-linked NanoParticle Lattices with Diamond Symmetry: Stability, Shape and Optical Properties

    NASA Astrophysics Data System (ADS)

    Emamy, Hamed; Tkachenko, Alexei; Gang, Oleg; Starr, Francis

    The linking of nanoparticles (NP) by DNA has been proven to be an effective means to create NP lattices with specific order. Lattices with diamond symmetry are predicted to offer novel photonic properties, but self-assembly of such lattices has proven to be challenging due to the low packing fraction, sensitivity to bond orientation, and local heterogeneity. Recently, we reported an approach to create diamond NP lattices based on the association between anisotropic particles with well-defined tetravalent DNA binding topology and isotropically functionalized NP. Here, we use molecular dynamics simulations to evaluate the Gibbs free energy of these lattices, and thereby determine the stability of these lattices as a function of NP size and DNA stiffness. We also predict the equilibrium shape for the cubic diamond crystallite using the Wulff construction method. Specifically, we predict the equilibrium shape using the surface energy for different crystallographic planes. We evaluate surface energy directly form molecular dynamics simulation, which we correlate with theoretical estimates from the expected number of broken DNA bonds along a facet. Furthermore we study the optical properties of this structure, e.g optical bandgap.

  17. RVB signatures in the spin dynamics of the square-lattice Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Ghioldi, E. A.; Gonzalez, M. G.; Manuel, L. O.; Trumper, A. E.

    2016-03-01

    We investigate the spin dynamics of the square-lattice spin-\\frac{1}{2} Heisenberg antiferromagnet by means of an improved mean-field Schwinger boson calculation. By identifying both, the long-range Néel and the RVB-like components of the ground state, we propose an educated guess for the mean-field magnetic excitation consisting on a linear combination of local and bond spin flips to compute the dynamical structure factor. Our main result is that when this magnetic excitation is optimized in such a way that the corresponding sum rule is fulfilled, we recover the low- and high-energy spectral weight features of the experimental spectrum. In particular, the anomalous spectral weight depletion at (π,0) found in recent inelastic neutron scattering experiments can be attributed to the interference of the triplet bond excitations of the RVB component of the ground state. We conclude that the Schwinger boson theory seems to be a good candidate to adequately interpret the dynamic properties of the square-lattice Heisenberg antiferromagnet.

  18. Characterizing the antiferromagnetic ordering of fermions in a compensated optical lattice

    NASA Astrophysics Data System (ADS)

    Duarte, P. M.; Hart, R. A.; Yang, T. L.; Liu, X.; Hulet, R. G.; Paiva, T. C. L.; Huse, D.; Scalettar, R.; Trivedi, N.

    2014-05-01

    We realize the Fermi-Hubbard model with fermionic 6Li atoms in a three-dimensional, red-detuned optical lattice. The lattice is compensated by the addition of three blue-detuned gaussian beams which overlap each of the lattice laser beams, but are not retro-reflected. Using the compensated lattice potential, we have reached temperatures low enough to produce antiferromagnetic (AF) spin correlations, which we detect via Bragg scattering of light. The variation of the measured AF correlations as a function of the Hubbard interaction strength, U / t , provides a way to determine the temperature of the atoms in the lattice by comparison with quantum Monte Carlo calculations. This method suggests our temperature is in the range of 2-3 times the Néel ordering temperature. In this poster we present our Bragg scattering results along with our studies of the effect of the compensating potential in helping us cool the atoms in the lattice and also enlarge the size of the AF phase. Work supported by DARPA, ONR, NSF and The Welch Foundation.

  19. Pressure–Temperature Phase Diagram Reveals Spin–Lattice Interactions in Co[N(CN) 2 ] 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musfeldt, J. L.; O’Neal, K. R.; Brinzari, T. V.

    2017-04-07

    Diamond anvil cell techniques, synchrotron-based infrared and Raman spectroscopies, and lattice dynamics calculations are combined with prior magnetic property work to reveal the pressure–temperature phase diagram of Co[N(CN)2]2. The second-order structural boundaries converge on key areas of activity involving the spin state exposing how the pressure-induced local lattice distortions trigger the ferromagnetic → antiferromagnetic transition in this quantum material.

  20. Magnonic quantum spin Hall state in the zigzag and stripe phases of the antiferromagnetic honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Lee, Ki Hoon; Chung, Suk Bum; Park, Kisoo; Park, Je-Geun

    2018-05-01

    We investigated the topological property of magnon bands in the collinear magnetic orders of zigzag and stripe phases for the antiferromagnetic honeycomb lattice and identified Berry curvature and symmetry constraints on the magnon band structure. Different symmetries of both zigzag and stripe phases lead to different topological properties, in particular, the magnon bands of the stripe phase being disentangled with a finite Dzyaloshinskii-Moriya (DM) term with nonzero spin Chern number. This is corroborated by calculating the spin Nernst effect. Our study establishes the existence of a nontrivial magnon band topology for all observed collinear antiferromagnetic honeycomb lattices in the presence of the DM term.

  1. Numerical-Diagonalization Study of Magnetization Process of Frustrated Spin-1/2 Heisenberg Antiferromagnets in Two Dimensions: —Triangular- and Kagome-Lattice Antiferromagnets—

    NASA Astrophysics Data System (ADS)

    Nakano, Hiroki; Sakai, Tôru

    2018-06-01

    The S = 1/2 triangular- and kagome-lattice Heisenberg antiferromagnets are investigated under a magnetic field using the numerical-diagonalization method. A procedure is proposed to extract data points with very small finite-size deviations using the numerical-diagonalization results for capturing the magnetization curve. For the triangular-lattice antiferromagnet, the plateau edges at one-third the height of the saturation and the saturation field are successfully estimated. This study additionally presents results of magnetization process for a 45-site cluster of the kagome-lattice antiferromagnet; the present analysis suggests that the plateau does not open at one-ninth the height of the saturation.

  2. Frustration and correlations in stacked triangular-lattice Ising antiferromagnets

    NASA Astrophysics Data System (ADS)

    Burnell, F. J.; Chalker, J. T.

    2015-12-01

    We study multilayer triangular-lattice Ising antiferromagnets with interlayer interactions that are weak and frustrated in an abc stacking. By analyzing a coupled height model description of these systems, we show that they exhibit a classical spin liquid regime at low temperature, in which both intralayer and interlayer correlations are strong but there is no long-range order. Diffuse scattering in this regime is concentrated on a helix in reciprocal space, as observed for charge ordering in the materials LuFe2O4 and YbFe2O4 .

  3. Fractional excitations in the square-lattice quantum antiferromagnet

    DOE PAGES

    Dalla Piazza, Bastien; Mourigal, M.; Christensen, N. B.; ...

    2014-12-15

    Quantum magnets have occupied the fertile ground between many-body theory and low-temperature experiments on real materials since the early days of quantum mechanics. However, our understanding of even deceptively simple systems of interacting spins-1/2 is far from complete. The quantum square-lattice Heisenberg antiferromagnet (QSLHAF), for example, exhibits a striking anomaly of hitherto unknown origin in its magnetic excitation spectrum. This quantum effect manifests itself for excitations propagating with the specific wave vector (π, 0). Here, we use polarized neutron spectroscopy to fully characterize the magnetic fluctuations in the metal-organic compound CFTD, a known realization of the QSLHAF model. Our experimentsmore » reveal an isotropic excitation continuum at the anomaly, which we analyse theoretically using Gutzwiller-projected trial wavefunctions. The excitation continuum is accounted for by the existence of spatially-extended pairs of fractional S=1/2 quasiparticles, 2D analogues of 1D spinons. Away from the anomalous wave vector, these fractional excitations are bound and form conventional magnons. Lastly, our results establish the existence of fractional quasiparticles in the high-energy spectrum of a quasi-two-dimensional antiferromagnet, even in the absence of frustration.« less

  4. Magnetoelectric control of spin-chiral ferroelectric domains in a triangular lattice antiferromagnet

    NASA Astrophysics Data System (ADS)

    Kimura, Kenta; Nakamura, Hiroyuki; Ohgushi, Kenya; Kimura, Tsuyoshi

    2008-10-01

    We have grown single crystals of a triangular lattice antiferromagnet (TLA), CuCrO2 , and investigated the correlation between magnetic and dielectric properties. Two magnetic phase transitions are observed at TN2≈24.2K and TN1≈23.6K . It was found that ferroelectric polarization along the triangular lattice plane develops at TN1 , suggesting that the system undergoes a transition into an out-of-plane 120° spin-chiral phase at TN1 . The TLA provides an opportunity for unique magnetoelectric control of spin-chiral ferroelectric domain structures by means of electric and/or magnetic fields.

  5. Frustrated honeycomb-lattice bilayer quantum antiferromagnet in a magnetic field

    NASA Astrophysics Data System (ADS)

    Krokhmalskii, Taras; Baliha, Vasyl; Derzhko, Oleg; Schulenburg, Jörg; Richter, Johannes

    2018-05-01

    Frustrated bilayer quantum magnets have attracted attention as flat-band spin systems with unconventional thermodynamic properties. We study the low-temperature properties of a frustrated honeycomb-lattice bilayer spin-1/2 isotropic (XXX) Heisenberg antiferromagnet in a magnetic field by means of an effective low-energy theory using exact diagonalizations and quantum Monte Carlo simulations. Our main focus is on the magnetization curve and the temperature dependence of the specific heat indicating a finite-temperature phase transition in high magnetic fields.

  6. Phase transitions and thermodynamic properties of antiferromagnetic Ising model with next-nearest-neighbor interactions on the Kagomé lattice

    NASA Astrophysics Data System (ADS)

    Ramazanov, M. K.; Murtazaev, A. K.; Magomedov, M. A.; Badiev, M. K.

    2018-06-01

    We study phase transitions and thermodynamic properties in the two-dimensional antiferromagnetic Ising model with next-nearest-neighbor interaction on a Kagomé lattice by Monte Carlo simulations. A histogram data analysis shows that a second-order transition occurs in the model. From the analysis of obtained data, we can assume that next-nearest-neighbor ferromagnetic interactions in two-dimensional antiferromagnetic Ising model on a Kagomé lattice excite the occurrence of a second-order transition and unusual behavior of thermodynamic properties on the temperature dependence.

  7. Magnetic Interaction in the Geometrically Frustrated Triangular LatticeAntiferromagnet CuFeO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Feng; Fernandez-Baca, Jaime A; Fishman, Randy Scott

    2007-01-01

    The spin wave excitations of the geometrically frustrated triangular lattice antiferromagnet (TLA) CuFeO2 have been measured using high resolution inelastic neutron scattering. Antiferromagnetic interactions up to third nearest neighbors in the ab plane (J1, J2, J3, with J2=J1 0:44 and J3=J1 0:57), as well as out-of-plane coupling (Jz, with Jz=J1 0:29) are required to describe the spin wave dispersion relations, indicating a three dimensional character of the magnetic interactions. Two energy deeps in the spin wave dispersion occur at the incommensurate wavevectors associated with multiferroic phase, and can be interpreted as dynamic precursors to the magnetoelectric behavior in this system.

  8. Gapless spin excitations in the S = 1 / 2 Kagome- and triangular-lattice Heisenberg antiferromagnets

    NASA Astrophysics Data System (ADS)

    Sakai, Tôru; Nakano, Hiroki

    2018-05-01

    The S = 1 / 2 kagome- and triangular-lattice Heisenberg antiferromagnets are investigated using the numerical exact diagonalization and the finite-size scaling analysis. The behaviour of the field derivative at zero magnetization is examined for both systems. The present result indicates that the spin excitation is gapless for each system.

  9. Magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs 2CuBr 4

    DOE PAGES

    Zvyagin, S. A.; Ozerov, M.; Kamenskyi, D.; ...

    2015-11-27

    We present on high- field electron spin resonance (ESR) studies of magnetic excitations in the spin- 1/2 triangular-lattice antiferromagnet Cs 2CuBr 4. Frequency- field diagrams of ESR excitations are measured for different orientations of magnetic fields up to 25 T. We show that the substantial zero- field energy gap, Δ ≈ 9.5 K, observed in the low-temperature excitation spectrum of Cs 2CuBr 4 [Zvyagin et al:, Phys. Rev. Lett. 112, 077206 (2014)], is present well above T N. Noticeably, the transition into the long-range magnetically ordered phase does not significantly affect the size of the gap, suggesting that even belowmore » T N the high-energy spin dynamics in Cs 2CuBr 4 is determined by short-range-order spin correlations. The experimental data are compared with results of model spin-wave-theory calculations for spin-1/2 triangle-lattice antiferromagnet.« less

  10. Diamond Lattice Colloidal Crystals from Binary DNA-grafted Microspheres

    NASA Astrophysics Data System (ADS)

    Crocker, John; Wang, Yifan; Jenkins, Ian; McGinley, James; Sinno, Talid

    Future optical materials promise to do for photonics what semiconductors did for electronics, but the challenge has long been in creating the structure they require regular, three-dimensional array of transparent microspheres arranged like the atoms in a diamond crystal. Here we demonstrate a simple approach for spontaneously growing double-diamond (or B32) crystals from a binary suspension of sub-micron polymer microspheres with synthetic DNA grafted to their surfaces. While diamond symmetry crystals have previously been grown from much smaller nanoparticles, none of those methods appear workable for the larger particles needed for photonic applications, whose size must be comparable to the wavelength of visible light. Intriguingly, matched simulations fail to nucleate or grow B32 crystals from suspension; nor have they been predicted on the basis of theoretical arguments. We conjecture that the B32 crystals may form via transformation from a precursor with a different lattice structure in the bulk or on its surface. The feasibility of converting our self-assembled crystals into diamond-symmetry photonic templates will be discussed. This finding suggests that still other unexpected microstructures may be accessible using this approach. US National Science Foundation, CBET- 1403237.

  11. Antiferromagnetic order in the Hubbard model on the Penrose lattice

    NASA Astrophysics Data System (ADS)

    Koga, Akihisa; Tsunetsugu, Hirokazu

    2017-12-01

    We study an antiferromagnetic order in the ground state of the half-filled Hubbard model on the Penrose lattice and investigate the effects of quasiperiodic lattice structure. In the limit of infinitesimal Coulomb repulsion U →+0 , the staggered magnetizations persist to be finite, and their values are determined by confined states, which are strictly localized with thermodynamics degeneracy. The magnetizations exhibit an exotic spatial pattern, and have the same sign in each of cluster regions, the size of which ranges from 31 sites to infinity. With increasing U , they continuously evolve to those of the corresponding spin model in the U =∞ limit. In both limits of U , local magnetizations exhibit a fairly intricate spatial pattern that reflects the quasiperiodic structure, but the pattern differs between the two limits. We have analyzed this pattern change by a mode analysis by the singular value decomposition method for the fractal-like magnetization pattern projected into the perpendicular space.

  12. Critical anisotropies of a geometrically frustrated triangular-lattice antiferromagnet

    NASA Astrophysics Data System (ADS)

    Swanson, M.; Haraldsen, J. T.; Fishman, R. S.

    2009-05-01

    This work examines the critical anisotropy required for the local stability of the collinear ground states of a geometrically frustrated triangular-lattice antiferromagnet (TLA). Using a Holstein-Primakoff expansion, we calculate the spin-wave frequencies for the one-, two-, three-, four-, and eight-sublattice (SL) ground states of a TLA with up to third neighbor interactions. Local stability requires that all spin-wave frequencies are real and positive. The two-, four-, and eight-SL phases break up into several regions where the critical anisotropy is a different function of the exchange parameters. We find that the critical anisotropy is a continuous function everywhere except across the two-SL/three-SL and three-SL/four-SL phase boundaries, where the three-SL phase has the higher critical anisotropy.

  13. Spin-Hall effect and emergent antiferromagnetic phase transition in n-Si

    NASA Astrophysics Data System (ADS)

    Lou, Paul C.; Kumar, Sandeep

    2018-04-01

    Spin current experiences minimal dephasing and scattering in Si due to small spin-orbit coupling and spin-lattice interactions is the primary source of spin relaxation. We hypothesize that if the specimen dimension is of the same order as the spin diffusion length then spin polarization will lead to non-equilibrium spin accumulation and emergent phase transition. In n-Si, spin diffusion length has been reported up to 6 μm. The spin accumulation in Si will modify the thermal transport behavior of Si, which can be detected with thermal characterization. In this study, we report observation of spin-Hall effect and emergent antiferromagnetic phase transition behavior using magneto-electro-thermal transport characterization. The freestanding Pd (1 nm)/Ni80Fe20 (75 nm)/MgO (1 nm)/n-Si (2 μm) thin film specimen exhibits a magnetic field dependent thermal transport and spin-Hall magnetoresistance behavior attributed to Rashba effect. An emergent phase transition is discovered using self-heating 3ω method, which shows a diverging behavior at 270 K as a function of temperature similar to a second order phase transition. We propose that spin-Hall effect leads to the spin accumulation and resulting emergent antiferromagnetic phase transition. We propose that the length scale for Rashba effect can be equal to the spin diffusion length and two-dimensional electron gas is not essential for it. The emergent antiferromagnetic phase transition is attributed to the site inversion asymmetry in diamond cubic Si lattice.

  14. Systematic low-energy effective field theory for magnons and holes in an antiferromagnet on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Kämpfer, F.; Bessire, B.; Wirz, M.; Hofmann, C. P.; Jiang, F.-J.; Wiese, U.-J.

    2012-02-01

    Based on a symmetry analysis of the microscopic Hubbard and t-J models, a systematic low-energy effective field theory is constructed for hole-doped antiferromagnets on the honeycomb lattice. In the antiferromagnetic phase, doped holes are massive due to the spontaneous breakdown of the SU(2)s symmetry, just as nucleons in Quantum Chromodynamics (QCD) pick up their mass from spontaneous chiral symmetry breaking. In the broken phase, the effective action contains a single-derivative term, similar to the Shraiman-Siggia term in the square lattice case. Interestingly, an accidental continuous spatial rotation symmetry arises at leading order. As an application of the effective field theory, we consider one-magnon exchange between two holes and the formation of two-hole bound states. As an unambiguous prediction of the effective theory, the wave function for the ground state of two holes bound by magnon exchange exhibits f-wave symmetry.

  15. High magnetic field magnetization of a new triangular lattice antiferromagnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, H. D.; Stritzinger, Laurel Elaine Winter; Harrison, Neil

    2017-03-23

    In CsV(MoO 4) 2, the magnetic V 3+ ions with octahedral oxygen-coordination form a geometrically frustrated triangular lattice. So fare, there is no magnetic properties reported on it. Recently, we successfully grew single crystals of CsV(MoO 4) 2 by using flux method. The susceptibility shows a sharp drop around 24 K, representing a long range magnetic ordering. To understand the physical properties of this new triangular lattice antiferromagnet (TLAF), we pursued high field magnetization measurements to answer two questions: (i) what is the saturation field, which will be very useful to calculate the exchange interaction of the system? (ii) Willmore » it exhibit spin state transition, such as the up up down phase with 1/3-saturation moment as other TLAFs? Recently, we performed VSM measurements in Cell 8, Tallahassee, NHMFL, the results show that the magnetization reaches 0.38 MuB at 34 T, which is just 19% of the full moment of 2 MuB for V 3+ (3d 2) ions. Apparently we need higher field to reach 1/3 value or full moment.« less

  16. Phase diagram of the triangular-lattice Potts antiferromagnet

    DOE PAGES

    Jacobsen, Jesper Lykke; Salas, Jesus; Scullard, Christian R.

    2017-07-28

    Here, we study the phase diagram of the triangular-lattice Q-state Potts model in the realmore » $(Q, v)$ -plane, where $$v={\\rm e}^J-1$$ is the temperature variable. Our first goal is to provide an obviously missing feature of this diagram: the position of the antiferromagnetic critical curve. This curve turns out to possess a bifurcation point with two branches emerging from it, entailing important consequences for the global phase diagram. We have obtained accurate numerical estimates for the position of this curve by combining the transfer-matrix approach for strip graphs with toroidal boundary conditions and the recent method of critical polynomials. The second goal of this work is to study the corresponding $$A_{p-1}$$ RSOS model on the torus, for integer $$p=4, 5, \\ldots, 8$$ . We clarify its relation to the corresponding Potts model, in particular concerning the role of boundary conditions. For certain values of p, we identify several new critical points and regimes for the RSOS model and we initiate the study of the flows between the corresponding field theories.« less

  17. Bose-Einstein condensation in diamond hierarchical lattices.

    PubMed

    Lyra, M L; de Moura, F A B F; de Oliveira, I N; Serva, M

    2014-05-01

    The Bose-Einstein condensation of noninteracting particles restricted to move on the sites of hierarchical diamond lattices is investigated. Using a tight-binding single-particle Hamiltonian with properly rescaled hopping amplitudes, we are able to employ an orthogonal basis transformation to exactly map it on a set of decoupled linear chains with sizes and degeneracies written in terms of the network branching parameter q and generation number n. The integrated density of states is shown to have a fractal structure of gaps and degeneracies with a power-law decay at the band bottom. The spectral dimension d(s) coincides with the network topological dimension d(f) = ln(2q)/ln(2). We perform a finite-size scaling analysis of the fraction of condensed particles and specific heat to characterize the critical behavior of the BEC transition that occurs for q > 2 (d(s) > 2). The critical exponents are shown to follow those for lattices with a pure power-law spectral density, with non-mean-field values for q < 8 (d(s) < 4). The transition temperature is shown to grow monotonically with the branching parameter, obeying the relation 1/T(c) = a + b/(q - 2).

  18. Ground-state entropy of the potts antiferromagnet with next-nearest-neighbor spin-spin couplings on strips of the square lattice

    PubMed

    Chang; Shrock

    2000-10-01

    We present exact calculations of the zero-temperature partition function (chromatic polynomial) and W(q), the exponent of the ground-state entropy, for the q-state Potts antiferromagnet with next-nearest-neighbor spin-spin couplings on square lattice strips, of width L(y)=3 and L(y)=4 vertices and arbitrarily great length Lx vertices, with both free and periodic boundary conditions. The resultant values of W for a range of physical q values are compared with each other and with the values for the full two-dimensional lattice. These results give insight into the effect of such nonnearest-neighbor couplings on the ground-state entropy. We show that the q=2 (Ising) and q=4 Potts antiferromagnets have zero-temperature critical points on the Lx-->infinity limits of the strips that we study. With the generalization of q from Z+ to C, we determine the analytic structure of W(q) in the q plane for the various cases.

  19. Partially Disordered Phase in Frustrated Triangular Lattice Antiferromagnet CuFeO 2

    NASA Astrophysics Data System (ADS)

    Mitsuda, Setsuo; Kasahara, Noriaki; Uno, Takahiro; Mase, Motoshi

    1998-12-01

    We reinvestigated successive magnetic phase transitions (T N1˜14.0 K, T N2˜10.5 K) in a frustrated triangular lattice antiferromagnet (TLA) CuFeO2 by neutron diffraction measurements using single crystals. The magnetic structure of the intermediate-temperature phase between T N1 and T N2 is found to be a quasi-long range ordered sinusoidally amplitude-modulated structure with a temperature dependent propagation wave vector (q q 0). These features of successive phase transitions are well explained by reinvestigated Monte-Carlo simulation of a 2D Ising TLA with competing exchange interactions up to 3rd neighbors, in spite of the Heisenberg spin character of orbital singlet Fe3+ magnetic ions.

  20. Spin frustration and magnetic ordering in triangular lattice antiferromagnet Ca3CoNb2O9

    NASA Astrophysics Data System (ADS)

    Dai, Jia; Zhou, Ping; Wang, Peng-Shuai; Pang, Fei; Munsie, Tim J.; Luke, Graeme M.; Zhang, Jin-Shan; Yu, Wei-Qiang

    2015-12-01

    We synthesized a quasi-two-dimensional distorted triangular lattice antiferromagnet Ca3CoNb2O9, in which the effective spin of Co2+ is 1/2 at low temperatures, whose magnetic properties were studied by dc susceptibility and magnetization techniques. The x-ray diffraction confirms the quality of our powder samples. The large Weiss constant θCW˜ -55 K and the low Neel temperature TN˜ 1.45 K give a frustration factor f = | θCW/TN | ≈ 38, suggesting that Ca3CoNb2O9 resides in strong frustration regime. Slightly below TN, deviation between the susceptibility data under zero-field cooling (ZFC) and field cooling (FC) is observed. A new magnetic state with 1/3 of the saturate magnetization Ms is suggested in the magnetization curve at 0.46 K. Our study indicates that Ca3CoNb2O9 is an interesting material to investigate magnetism in triangular lattice antiferromagnets with weak anisotropy. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374364 and 11222433), the National Basic Research Program of China (Grant No. 2011CBA00112). Research at McMaster University supported by the Natural Sciences and Engineering Research Council. Work at North China Electric Power University supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

  1. Ground-state phases of the spin-1 J1-J2 Heisenberg antiferromagnet on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Li, P. H. Y.; Bishop, R. F.

    2016-06-01

    We study the zero-temperature quantum phase diagram of a spin-1 Heisenberg antiferromagnet on the honeycomb lattice with both nearest-neighbor exchange coupling J1>0 and frustrating next-nearest-neighbor coupling J2≡κ J1>0 , using the coupled cluster method implemented to high orders of approximation, and based on model states with different forms of classical magnetic order. For each we calculate directly in the bulk thermodynamic limit both ground-state low-energy parameters (including the energy per spin, magnetic order parameter, spin stiffness coefficient, and zero-field uniform transverse magnetic susceptibility) and their generalized susceptibilities to various forms of valence-bond crystalline (VBC) order, as well as the energy gap to the lowest-lying spin-triplet excitation. In the range 0 <κ <1 we find evidence for four distinct phases. Two of these are quasiclassical phases with antiferromagnetic long-range order, one with two-sublattice Néel order for κ <κc1=0.250(5 ) , and another with four-sublattice Néel-II order for κ >κc 2=0.340 (5 ) . Two different paramagnetic phases are found to exist in the intermediate region. Over the range κc1<κ<κci=0.305 (5 ) we find a gapless phase with no discernible magnetic order, which is a strong candidate for being a quantum spin liquid, while over the range κci<κ <κc 2 we find a gapped phase, which is most likely a lattice nematic with staggered dimer VBC order that breaks the lattice rotational symmetry.

  2. Simultaneous breaking of lattice symmetry and spin frustration in triangular lattice antiferromagnet CuFeO2

    NASA Astrophysics Data System (ADS)

    Ren, Y.; Ye, F.; Huang, Q.; Fernandez-Baca, J. A.; Dai, Pengcheng; Lynn, J. W.; Kimura, T.

    2006-03-01

    We use high resolution synchrotron X-ray and neutron diffraction to study the geometrically frustrated triangular lattice antiferromagnet (TLA) CuFeO2. We show that the occurrence of the two magnetic transitions, at 14 K and 11 K, respectively is accompanied simultaneously by a second-and first- order structural phase transitions from a hexagonal structure to a monoclinic form. This is the first observation of two successive spin-driven structural transitions directly coupled with incommensurate and commensurate magnetic orderings in frustrated TLA systems. This work is supported by the U. S. NSF DMR-0453804 and DOE Nos. DE-FG02-05ER46202 and DE-AC05-00OR22725 with UT/Battelle LLC. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38.

  3. Competing spin fluctuations and trace of vortex dynamics in the two-dimensional triangular-lattice antiferromagnet AgCrS2

    NASA Astrophysics Data System (ADS)

    Gao, Wenshuai; Shi, Liran; Ouyang, Zhongwen; Xia, Zhengcai; Wang, Zhe; Liu, Bingjie; Li, Hexuan; Zou, Youming; Yu, Lu; Zhang, Lei; Pi, Li; Qu, Zhe; Zhang, Yuheng

    2018-07-01

    The spin dynamics of the two-dimensional triangular-lattice antiferromagnet AgCrS2 is investigated by electron spin resonance (ESR) spectroscopy. The g-factor is found to show an unusual non-monotonously temperature dependent behavior, which, along with the super-Curie behavior observed in the ESR intensity data, provides clear evidence for the competition between ferromagnetic and antiferromagnetic fluctuations at temperatures well above T N. On approaching the Néel temperature T N from above, the linewidth is found to diverge. Such a divergent behavior could be well described by the Kawamura–Miyashita model due to Z2 type magnetic vortex–antivortex pairing, which is consistent with the expectation for a 2D Heisenberg magnetic system.

  4. Quantum interference between two phonon paths and reduced heat transport in diamond lattice with atomic-scale planar defects

    NASA Astrophysics Data System (ADS)

    Kosevich, Yu. A.; Strelnikov, I. A.

    2018-02-01

    Destructive quantum interference between the waves propagating through laterally inhomogeneous layer can result in their total reflection, which in turn reduces energy flux carried by these waves. We consider the systems of Ge atoms, which fully or partly, in the chequer-wise order, fill a crystal plane in diamond-like Si lattice. We have revealed that a single type of the atomic defects, which are placed in identical positions in different unit cells in the defect crystal plane, can result in double transmission antiresonances of phonon wave packets. This new effect we relate with the complex structure of the diamond-like unit cell, which comprises two atoms in different positions and results in two distinct vibration resonances in two interfering phonon paths. We also consider the propagation of phonon wave packets in the superlatticies made of the defect planes, half-filled in the chequer-wise order with Ge atoms. We have revealed relatively broad phonon stop bands with center frequencies at the transmission antiresonances. We elaborate the equivalent analytical quasi-1D lattice model of the two phonon paths through the complex planar defect in the diamond-like lattice and describe the reduction of phonon heat transfer through the atomic-scale planar defects.

  5. Spin-1/2 Heisenberg antiferromagnet on the pyrochlore lattice: An exact diagonalization study

    NASA Astrophysics Data System (ADS)

    Chandra, V. Ravi; Sahoo, Jyotisman

    2018-04-01

    We present exact diagonalization calculations for the spin-1/2 nearest-neighbor antiferromagnet on the pyrochlore lattice. We study a section of the lattice in the [111] direction and analyze the Hamiltonian of the breathing pyrochlore system with two coupling constants J1 and J2 for tetrahedra of different orientations and investigate the evolution of the system from the limit of disconnected tetrahedra (J2=0 ) to a correlated state at J1=J2 . We evaluate the low-energy spectrum, two and four spin correlations, and spin chirality correlations for a system size of up to 36 sites. The model shows a fast decay of spin correlations and we confirm the presence of several singlet excitations below the lowest magnetic excitation. We find chirality correlations near J1=J2 to be small at the length scales available at this system size. Evaluation of dimer-dimer correlations and analysis of the nature of the entanglement of the tetrahedral unit shows that the triplet sector of the tetrahedron contributes significantly to the ground-state entanglement at J1=J2 .

  6. Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells.

    PubMed

    Ahmadi, S M; Campoli, G; Amin Yavari, S; Sajadi, B; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A

    2014-06-01

    Cellular structures with highly controlled micro-architectures are promising materials for orthopedic applications that require bone-substituting biomaterials or implants. The availability of additive manufacturing techniques has enabled manufacturing of biomaterials made of one or multiple types of unit cells. The diamond lattice unit cell is one of the relatively new types of unit cells that are used in manufacturing of regular porous biomaterials. As opposed to many other types of unit cells, there is currently no analytical solution that could be used for prediction of the mechanical properties of cellular structures made of the diamond lattice unit cells. In this paper, we present new analytical solutions and closed-form relationships for predicting the elastic modulus, Poisson׳s ratio, critical buckling load, and yield (plateau) stress of cellular structures made of the diamond lattice unit cell. The mechanical properties predicted using the analytical solutions are compared with those obtained using finite element models. A number of solid and porous titanium (Ti6Al4V) specimens were manufactured using selective laser melting. A series of experiments were then performed to determine the mechanical properties of the matrix material and cellular structures. The experimentally measured mechanical properties were compared with those obtained using analytical solutions and finite element (FE) models. It has been shown that, for small apparent density values, the mechanical properties obtained using analytical and numerical solutions are in agreement with each other and with experimental observations. The properties estimated using an analytical solution based on the Euler-Bernoulli theory markedly deviated from experimental results for large apparent density values. The mechanical properties estimated using FE models and another analytical solution based on the Timoshenko beam theory better matched the experimental observations. Copyright © 2014 Elsevier Ltd

  7. Cu doped diamond: Effect of charge state and defect aggregation on spin interactions in a 3d transition metal doped wide band-gap semiconductor

    NASA Astrophysics Data System (ADS)

    Benecha, E. M.; Lombardi, E. B.

    2018-05-01

    We present a first principles study of Cu in diamond using DFT+U electronic structure methods, by carefully considering the impact of co-doping, charge state, and Fermi level position on its stability, lattice location, spin states, and electronic properties. We show that the energetic stability and spin states of Cu are strongly dependent on the Fermi level position and the type of diamond co-doping, with Cu being energetically more favorable in n-type or p-type co-doped diamond compared to intrinsic diamond. Since Cu has been predicted to order magnetically in a number of other wide band-gap semiconductors, we have also evaluated this possibility for Cu doped diamond. We show that while Cu exhibits strong spin interactions at specific interatomic separations in diamond, a detailed consideration of the impact of Fermi level position and Cu aggregation precludes magnetic ordering, with Cu forming non-magnetic, antiferromagnetic, or paramagnetic clusters. These results have important implications in the understanding of the properties of transition metal dopants in diamond for device applications.

  8. Bicollinear antiferromagnetic order, monoclinic distortion, and reversed resistivity anisotropy in FeTe as a result of spin-lattice coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Christopher B.; Moreo, Adriana; Dagotto, Elbio

    2016-09-08

    The bicollinear antiferromagnetic order experimentally observed in FeTe is shown to be stabilized by the coupling g ~ 12 between monoclinic lattice distortions and the spin-nematic order parameter with B 2g symmetry, within a three-orbital spin-fermion model studied with Monte Carlo techniques. A finite but small value of g ~ 12 is required, with a concomitant lattice distortion compatible with experiments, and a tetragonal-monoclinic transition strongly first order. Remarkably, the bicollinear state found here displays a planar resistivity with the reversed puzzling anisotropy discovered in transport experiments. Orthorhombic distortions are also incorporated, and phase diagrams interpolating between pnictides and chalcogenidesmore » are presented. Here, we conclude that the spin-lattice coupling we introduce is sufficient to explain the challenging properties of FeTe.« less

  9. H-T Magnetic Phase Diagram of a Frustrated Triangular Lattice Antiferromagnet CuFeO 2

    NASA Astrophysics Data System (ADS)

    Mitsuda, Setsuo; Mase, Motoshi; Uno, Takahiro; Kitazawa, Hideaki; Katori, Hiroko

    2000-01-01

    By magnetization and specific heat measurements in an applied magnetic field up to 12 T, we obtained the magnetic field (H) versus temperature (T) phase diagram of a frustrated triangular lattice antiferromagnet (TLA), CuFeO2, where a partially disordered phase typical to Ising TLA exists as a thermally induced state for the 4-sublattice ground state as well as for the first-field-induced 5-sublattice-like state. The experimentally obtained H-T magnetic phase diagram is compared with that from Monte-Carlo simulation of a 2D Ising TLA model with competing exchange interactions up to 3rd neighbors.

  10. Quantum Spin Liquids in Frustrated Spin-1 Diamond Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Buessen, Finn Lasse; Hering, Max; Reuther, Johannes; Trebst, Simon

    2018-01-01

    Motivated by the recent synthesis of the spin-1 A -site spinel NiRh2 O4 , we investigate the classical to quantum crossover of a frustrated J1-J2 Heisenberg model on the diamond lattice upon varying the spin length S . Applying a recently developed pseudospin functional renormalization group approach for arbitrary spin-S magnets, we find that systems with S ≥3 /2 reside in the classical regime, where the low-temperature physics is dominated by the formation of coplanar spirals and a thermal (order-by-disorder) transition. For smaller local moments S =1 or S =1 /2 , we find that the system evades a thermal ordering transition and forms a quantum spiral spin liquid where the fluctuations are restricted to characteristic momentum-space surfaces. For the tetragonal phase of NiRh2 O4 , a modified J1-J2--J2⊥ exchange model is found to favor a conventionally ordered Néel state (for arbitrary spin S ), even in the presence of a strong local single-ion spin anisotropy, and it requires additional sources of frustration to explain the experimentally observed absence of a thermal ordering transition.

  11. GdPtPb: A noncollinear antiferromagnet with distorted kagome lattice

    DOE PAGES

    Manni, S.; Bud'ko, Sergey L.; Canfield, Paul C.

    2017-08-24

    In the spirit of searching for Gd-based, frustrated, rare earth magnets, we have found antiferomagnetism (AF) in GdPtPb, which crystallizes in the ZrNiAl-type structure that has a distorted kagome lattice of Gd triangles. Single crystals were grown and investigated using structural, magnetic, transport, and thermodynamic measurements. GdPtPb orders antiferromagnetically at 15.5 K, arguably with a planar, noncollinear structure. The high temperature magnetic susceptibility data reveal an “anti-frustration” behavior having a frustration parameter, |f| = |Θ|/T N = 0.25, which can be explained by mean field theory within a two-sublattice model. Here, the study of the magnetic phase diagram down tomore » T = 1.8K reveals a change of magnetic structure through a metamagnetic transition at around 20 kOe and the disappearance of the AF ordering near 140 kOe. In total, our work indicates that GdPtPb can serve as an example of a planar, noncollinear AF with a distorted kagome magnetic sublattice.« less

  12. Microscopic theory of the nearest-neighbor valence bond sector of the spin-1/2 kagome antiferromagnet

    NASA Astrophysics Data System (ADS)

    Ralko, Arnaud; Mila, Frédéric; Rousochatzakis, Ioannis

    2018-03-01

    The spin-1/2 Heisenberg model on the kagome lattice, which is closely realized in layered Mott insulators such as ZnCu3(OH) 6Cl2 , is one of the oldest and most enigmatic spin-1/2 lattice models. While the numerical evidence has accumulated in favor of a quantum spin liquid, the debate is still open as to whether it is a Z2 spin liquid with very short-range correlations (some kind of resonating valence bond spin liquid), or an algebraic spin liquid with power-law correlations. To address this issue, we have pushed the program started by Rokhsar and Kivelson in their derivation of the effective quantum dimer model description of Heisenberg models to unprecedented accuracy for the spin-1/2 kagome, by including all the most important virtual singlet contributions on top of the orthogonalization of the nearest-neighbor valence bond singlet basis. Quite remarkably, the resulting picture is a competition between a Z2 spin liquid and a diamond valence bond crystal with a 12-site unit cell, as in the density-matrix renormalization group simulations of Yan et al. Furthermore, we found that, on cylinders of finite diameter d , there is a transition between the Z2 spin liquid at small d and the diamond valence bond crystal at large d , the prediction of the present microscopic description for the two-dimensional lattice. These results show that, if the ground state of the spin-1/2 kagome antiferromagnet can be described by nearest-neighbor singlet dimers, it is a diamond valence bond crystal, and, a contrario, that, if the system is a quantum spin liquid, it has to involve long-range singlets, consistent with the algebraic spin liquid scenario.

  13. Mixed-Spin Diamond Chain Cu2FePO4F4(H2O)4 with a Noncollinear Spin Order and Possible Successive Phase Transitions.

    PubMed

    Lu, Hongcheng; Hayashi, Naoaki; Matsumoto, Yuki; Takatsu, Hiroshi; Kageyama, Hiroshi

    2017-08-07

    A diamond spin chain system, one of the one-dimensional frustrated lattices, is known to exhibit novel properties, but experimental studies have been exclusively confined to materials with a single spin component. Here, we report on the synthesis, structure, and magnetic properties of a new diamond chain compound Cu 2 FePO 4 F 4 (H 2 O) 4 1 composed of mixed-spins of Cu 2+ (S = 1/2 × 2) and Fe 3+ (S = 5/2). Compound 1 crystallizes in the space group C2/c of the monoclinic crystal system with a = 7.7546(4) Å, b = 12.1290(6) Å, c = 9.9209(6) Å, β = 105.29(1)°, and Z = 4. DC magnetization, Mössbauer spectroscopy, and heat capacity measurements revealed an antiferromagnetic order at 11.3 K with a small ferromagnetic component. It is suggested that ferrimagnetic diamond chains are arranged in an antiferromagnetic fashion (i.e., [...Fe(↑)-2Cu(↓↓)-Fe(↑)...] and [...Fe(↓)-2Cu(↑↑)-Fe(↓)...]) within the ab plane to cancel net magnetization, and the spin orientation of the diamond chains changes alternately along the c axis due to the magnetic anisotropy, leading to a noncollinear spin order. Furthermore, another anomaly is observed in the heat capacity at around 3 K, suggesting a successive magnetic transition or crossover due to competing magnetic interactions.

  14. Phase transitions and critical properties in the antiferromagnetic Ising model on a layered triangular lattice with allowance for intralayer next-nearest-neighbor interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badiev, M. K., E-mail: m-zagir@mail.ru; Murtazaev, A. K.; Ramazanov, M. K.

    2016-10-15

    The phase transitions (PTs) and critical properties of the antiferromagnetic Ising model on a layered (stacked) triangular lattice have been studied by the Monte Carlo method using a replica algorithm with allowance for the next-nearest-neighbor interactions. The character of PTs is analyzed using the histogram technique and the method of Binder cumulants. It is established that the transition from the disordered to paramagnetic phase in the adopted model is a second-order PT. Static critical exponents of the heat capacity (α), susceptibility (γ), order parameter (β), and correlation radius (ν) and the Fischer exponent η are calculated using the finite-size scalingmore » theory. It is shown that (i) the antiferromagnetic Ising model on a layered triangular lattice belongs to the XY universality class of critical behavior and (ii) allowance for the intralayer interactions of next-nearest neighbors in the adopted model leads to a change in the universality class of critical behavior.« less

  15. Femoral stem incorporating a diamond cubic lattice structure: Design, manufacture and testing.

    PubMed

    Jetté, Bruno; Brailovski, Vladimir; Dumas, Mathieu; Simoneau, Charles; Terriault, Patrick

    2018-01-01

    The current total hip prostheses with dense femoral stems are considerably stiffer than the host bones, which leads to such long-term complications as aseptic loosening, and eventually, the need for a revision. Consequently, the lifetime of the implantation does not match the lifetime expectation of young patients. A femoral stem design featuring a porous structure is proposed to lower its stiffness and allow bone tissue ingrowth. The porous structure is based on a diamond cubic lattice in which the pore size and the strut thickness are selected to meet the biomechanical requirements of the strength and the bone ingrowth. A porous stem and its fully dense counterpart are produced by laser powder-bed fusion using Ti-6Al-4V alloy. To evaluate the stiffness reduction, static testing based on the ISO standard 7206-4 is performed. The experimental results recorded by digital image correlation are analyzed and compared to the numerical model. The numerical and experimental force-displacement characteristics of the porous stem show a 31% lower stiffness as compared to that of its dense counterpart. Moreover, the correlation analysis of the total displacement and equivalent strain fields allows the preliminary validation of the numerical model of the porous stem. Finally, the analysis of the surface-to-volume and the strength-to-stiffness ratios of diamond lattice structures allow the assessment of their potential as biomimetic constructs for load-bearing orthopaedic implants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Magnon Spin Nernst Effect in Antiferromagnets.

    PubMed

    Zyuzin, Vladimir A; Kovalev, Alexey A

    2016-11-18

    We predict that a temperature gradient can induce a magnon-mediated spin Hall response in an antiferromagnet with nontrivial magnon Berry curvature. We develop a linear response theory which gives a general condition for a Hall current to be well defined, even when the thermal Hall response is forbidden by symmetry. We apply our theory to a honeycomb lattice antiferromagnet and discuss a role of magnon edge states in a finite geometry.

  17. Magnon Spin Nernst Effect in Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Zyuzin, Vladimir A.; Kovalev, Alexey A.

    2016-11-01

    We predict that a temperature gradient can induce a magnon-mediated spin Hall response in an antiferromagnet with nontrivial magnon Berry curvature. We develop a linear response theory which gives a general condition for a Hall current to be well defined, even when the thermal Hall response is forbidden by symmetry. We apply our theory to a honeycomb lattice antiferromagnet and discuss a role of magnon edge states in a finite geometry.

  18. Magneto-elastic coupling across the first-order transition in the distorted kagome lattice antiferromagnet Dy3Ru4Al12

    PubMed Central

    Henriques, M.S.; Gorbunov, D.I.; Kriegner, D.; Vališka, M.; Andreev, A.V.; Matěj, Z.

    2018-01-01

    Structural changes through the first-order paramagnetic-antiferromagnetic phase transition of Dy3Ru4Al12 at 7 K have been studied by means of X-ray diffraction and thermal expansion measurements. The compound crystallizes in a hexagonal crystal structure of Gd3Ru4Al12 type (P63/mmc space group), and no structural phase transition has been found in the temperature interval between 2.5 and 300 K. Nevertheless, due to the spin-lattice coupling the crystal volume undergoes a small orthorhombic distortion of the order of 2×10-5 as the compound enters the antiferromagnetic state. We propose that the first-order phase transition is not driven by the structural changes but rather by the exchange interactions present in the system. PMID:29445250

  19. Entanglement properties of the antiferromagnetic-singlet transition in the Hubbard model on bilayer square lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chia-Chen; Singh, Rajiv R. P.; Scalettar, Richard T.

    Here, we calculate the bipartite R enyi entanglement entropy of an L x L x 2 bilayer Hubbard model using a determinantal quantum Monte Carlo method recently proposed by Grover [Phys. Rev. Lett. 111, 130402 (2013)]. Two types of bipartition are studied: (i) One that divides the lattice into two L x L planes, and (ii) One that divides the lattice into two equal-size (L x L=2 x 2) bilayers. Furthermore, we compare our calculations with those for the tight-binding model studied by the correlation matrix method. As expected, the entropy for bipartition (i) scales as L 2, while themore » latter scales with L with possible logarithmic corrections. The onset of the antiferromagnet to singlet transition shows up by a saturation of the former to a maximal value and the latter to a small value in the singlet phase. We also comment on the large uncertainties in the numerical results with increasing U, which would have to be overcome before the critical behavior and logarithmic corrections can be quanti ed.« less

  20. Entanglement properties of the antiferromagnetic-singlet transition in the Hubbard model on bilayer square lattices

    DOE PAGES

    Chang, Chia-Chen; Singh, Rajiv R. P.; Scalettar, Richard T.

    2014-10-10

    Here, we calculate the bipartite R enyi entanglement entropy of an L x L x 2 bilayer Hubbard model using a determinantal quantum Monte Carlo method recently proposed by Grover [Phys. Rev. Lett. 111, 130402 (2013)]. Two types of bipartition are studied: (i) One that divides the lattice into two L x L planes, and (ii) One that divides the lattice into two equal-size (L x L=2 x 2) bilayers. Furthermore, we compare our calculations with those for the tight-binding model studied by the correlation matrix method. As expected, the entropy for bipartition (i) scales as L 2, while themore » latter scales with L with possible logarithmic corrections. The onset of the antiferromagnet to singlet transition shows up by a saturation of the former to a maximal value and the latter to a small value in the singlet phase. We also comment on the large uncertainties in the numerical results with increasing U, which would have to be overcome before the critical behavior and logarithmic corrections can be quanti ed.« less

  1. Diamond For Optical Material

    NASA Astrophysics Data System (ADS)

    Clay, Robert D.; Clay, John P.

    1984-12-01

    Clay Engineering Inc. currently has a proposal before DARPA to manufacture large optical quality diamond for use as optical material. The manufactured diamond will be approximately 100 mm in diameter by 100 mm long. The cost of producing the diamond is expected to be three dollars per carat. It is expected that total impurities of a few parts per billion can readily be obtained. A study of diamond is a study of the effects of impurities. The elements boron and nitrogen can replace carbon atoms in the lattice structure, making diamond a "P" or "N" type semiconductor. Diamonds which are not semiconductors are classified as type IIa. The presence of B or N in the lattice causes diamond to photoconduct in ultraviolet light. All type I and III) and most type IIa diamonds photoconduct. The manufactured diamond will not photoconduct and will have an electrical resistivity greater than 1018 ohm*m. All non-lattice impurities are in the form of inclusions which dramatically affect the mechanical properties of diamond. High purity diamond has a coefficient of absorption of order 10-3 cm-1 at wavelengths of 8 to 12 micro metres, which makes it useful for infrared applications. It also has a low coefficient of absorption at wavelengths greater than 12 micro metres. For missile and aircraft applications, diamond is relatively immune to erosion or pitting damage by sand and rain. Diamond will readily withstand the stagnation temperature of Mach 3 flight and will go to Mach 4.8 with an anti-reflective coating to protect it from oxygen attack. Diamond is highly resistant to thermal shock, which makes it valuable for high energy laser applications. Using R = St (1-)) k/Ea as a measure of thermal shock resistance, diamond is 107 w/m vs "sapphire" and Zerodur at 104 and fused quartz at 1.45x103. Diamond does not perform well in the 2.5-7.5 micro metres and less than 0.4 micro metres wavelengths. Intense beams of less than 0.4 micro metres energy can create color centers in diamond

  2. Growth, Characterization and Device Development in Monocrystalline Diamond Films

    DTIC Science & Technology

    1988-06-01

    ABSTRACT (ContMut on reverse,*i nauar and .dnr,A, A. W, -,,,I !Cu single crystals have been grown and prepared for use as a lattice matched substrate. A...literature survey of potential substrates which are both lattice and energy matched with diamond to promote two-dimensional growth has also been...first reported high resolution lattice imaging of CVD diamond. Diamond power MESFET devices have been theoretically evaluated and found to be capable

  3. Anisotropic antiferromagnetic order in the spin-orbit coupled trigonal-lattice Ca2Sr2IrO6

    NASA Astrophysics Data System (ADS)

    Sheng, Jieming; Ye, Feng; Hoffmann, Christina; Cooper, Valentino R.; Okamoto, Satoshi; Terzic, Jasminka; Zheng, Hao; Zhao, Hengdi; Cao, G.

    2018-06-01

    We used single-crystal x-ray and neutron diffraction to investigate the crystal and magnetic structures of trigonal lattice iridate Ca2Sr2IrO6 . The crystal structure is determined to be R 3 ¯ with two distinct Ir sites. The system exhibits long-range antiferromagnetic order below TN=13.1 K. The magnetic wave vector is identified as (0,0.5,1) with ferromagnetic coupling along the a axis and antiferromagnetic correlation along the b axis. Spins align dominantly within the basal plane along the [1,2,0] direction and tilt 34∘ toward the c axis. The ordered moment is 0.66(3) μB/Ir, larger than other iridates where iridium ions form corner- or edge-sharing IrO6 octahedral networks. The tilting angle is reduced to ≈19∘ when a magnetic field of 4.9 T is applied along the c axis. Density functional theory calculations confirm that the experimentally determined magnetic configuration is the most probable ground state with an insulating gap ˜0.5 eV.

  4. Spin-wave energy dispersion of a frustrated spin-½ Heisenberg antiferromagnet on a stacked square lattice.

    PubMed

    Majumdar, Kingshuk

    2011-03-23

    The effects of interlayer coupling and spatial anisotropy on the spin-wave excitation spectra of a three-dimensional spatially anisotropic, frustrated spin-½ Heisenberg antiferromagnet (HAFM) are investigated for the two ordered phases using second-order spin-wave expansion. We show that the second-order corrections to the spin-wave energies are significant and find that the energy spectra of the three-dimensional HAFM have similar qualitative features to the energy spectra of the two-dimensional HAFM on a square lattice. We also discuss the features that can provide experimental measures for the strength of the interlayer coupling, spatial anisotropy parameter, and magnetic frustration.

  5. [Spectroscopic studies on transition metal ions in colored diamonds].

    PubMed

    Meng, Yu-Fei; Peng, Ming-Sheng

    2004-07-01

    Transition metals like nickel, cobalt and iron have been often used as solvent catalysts in high pressure high temperature (HPHT) synthesis of diamond, and nickel and cobalt ions have been found in diamond lattice. Available studies indicated that nickel and cobalt ions could enter the lattice as interstitial or substitutional impurities and form complexes with nitrogen. Polarized microscopy, SEM-EDS, EPR, PL and FTIR have been used in this study to investigate six fancy color natural and synthetic diamonds in order to determine the spectroscopic characteristics and the existing forms of transition metal ions in colored diamond lattice. Cobalt-related optical centers were first found in natural chameleon diamonds, and some new nickel and cobalt-related optical and EPR centers have also been detected in these diamond samples.

  6. Charge-regulation phase transition on surface lattices of titratable sites adjacent to electrolyte solutions: An analog of the Ising antiferromagnet in a magnetic field

    PubMed Central

    Shore, Joel D.; Thurston, George M.

    2018-01-01

    We report a charge-patterning phase transition on two-dimensional square lattices of titratable sites, here regarded as protonation sites, placed in a low-dielectric medium just below the planar interface between this medium and a salt solution. We calculate the work-of-charging matrix of the lattice with use of a linear Debye-Hückel model, as input to a grand-canonical partition function for the distribution of occupancy patterns. For a large range of parameter values, this model exhibits an approximate inverse cubic power-law decrease of the voltage produced by an individual charge, as a function of its in-lattice separation from neighboring titratable sites. Thus, the charge coupling voltage biases the local probabilities of proton binding as a function of the occupancy of sites for many neighbors beyond the nearest ones. We find that even in the presence of these longer-range interactions, the site couplings give rise to a phase transition in which the site occupancies exhibit an alternating, checkerboard pattern that is an analog of antiferromagnetic ordering. The overall strength W of this canonical charge coupling voltage, per unit charge, is a function of the Debye length, the charge depth, the Bjerrum length, and the dielectric coefficients of the medium and the solvent. The alternating occupancy transition occurs above a curve of thermodynamic critical points in the (pH-pK,W) plane, the curve representing a charge-regulation analog of variation of the Néel temperature of an Ising antiferromagnet as a function of an applied, uniform magnetic field. The analog of a uniform magnetic field in the antiferromagnet problem is a combination of pH-pK and W, and 1/W is the analog of the temperature in the antiferromagnet problem. We use Monte Carlo simulations to study the occupancy patterns of the titratable sites, including interactions out to the 37th nearest-neighbor category (a distance of 74 lattice constants), first validating simulations through

  7. Charge-regulation phase transition on surface lattices of titratable sites adjacent to electrolyte solutions: An analog of the Ising antiferromagnet in a magnetic field.

    PubMed

    Shore, Joel D; Thurston, George M

    2015-12-01

    We report a charge-patterning phase transition on two-dimensional square lattices of titratable sites, here regarded as protonation sites, placed in a low-dielectric medium just below the planar interface between this medium and a salt solution. We calculate the work-of-charging matrix of the lattice with use of a linear Debye-Hückel model, as input to a grand-canonical partition function for the distribution of occupancy patterns. For a large range of parameter values, this model exhibits an approximate inverse cubic power-law decrease of the voltage produced by an individual charge, as a function of its in-lattice separation from neighboring titratable sites. Thus, the charge coupling voltage biases the local probabilities of proton binding as a function of the occupancy of sites for many neighbors beyond the nearest ones. We find that even in the presence of these longer-range interactions, the site couplings give rise to a phase transition in which the site occupancies exhibit an alternating, checkerboard pattern that is an analog of antiferromagnetic ordering. The overall strength W of this canonical charge coupling voltage, per unit charge, is a function of the Debye length, the charge depth, the Bjerrum length, and the dielectric coefficients of the medium and the solvent. The alternating occupancy transition occurs above a curve of thermodynamic critical points in the (pH-pK,W) plane, the curve representing a charge-regulation analog of variation of the Néel temperature of an Ising antiferromagnet as a function of an applied, uniform magnetic field. The analog of a uniform magnetic field in the antiferromagnet problem is a combination of pH-pK and W, and 1/W is the analog of the temperature in the antiferromagnet problem. We use Monte Carlo simulations to study the occupancy patterns of the titratable sites, including interactions out to the 37th nearest-neighbor category (a distance of √74 lattice constants), first validating simulations through

  8. Charge-regulation phase transition on surface lattices of titratable sites adjacent to electrolyte solutions: An analog of the Ising antiferromagnet in a magnetic field

    NASA Astrophysics Data System (ADS)

    Shore, Joel D.; Thurston, George M.

    2015-12-01

    We report a charge-patterning phase transition on two-dimensional square lattices of titratable sites, here regarded as protonation sites, placed in a low-dielectric medium just below the planar interface between this medium and a salt solution. We calculate the work-of-charging matrix of the lattice with use of a linear Debye-Hückel model, as input to a grand-canonical partition function for the distribution of occupancy patterns. For a large range of parameter values, this model exhibits an approximate inverse cubic power-law decrease of the voltage produced by an individual charge, as a function of its in-lattice separation from neighboring titratable sites. Thus, the charge coupling voltage biases the local probabilities of proton binding as a function of the occupancy of sites for many neighbors beyond the nearest ones. We find that even in the presence of these longer-range interactions, the site couplings give rise to a phase transition in which the site occupancies exhibit an alternating, checkerboard pattern that is an analog of antiferromagnetic ordering. The overall strength W of this canonical charge coupling voltage, per unit charge, is a function of the Debye length, the charge depth, the Bjerrum length, and the dielectric coefficients of the medium and the solvent. The alternating occupancy transition occurs above a curve of thermodynamic critical points in the (p H-p K ,W ) plane, the curve representing a charge-regulation analog of variation of the Néel temperature of an Ising antiferromagnet as a function of an applied, uniform magnetic field. The analog of a uniform magnetic field in the antiferromagnet problem is a combination of p H-p K and W , and 1 /W is the analog of the temperature in the antiferromagnet problem. We use Monte Carlo simulations to study the occupancy patterns of the titratable sites, including interactions out to the 37th nearest-neighbor category (a distance of √{74 } lattice constants), first validating simulations

  9. Detection of Antiferromagnetic Correlations in the Fermi-Hubbard Model

    NASA Astrophysics Data System (ADS)

    Hulet, Randall

    2014-05-01

    The Hubbard model, consisting of a cubic lattice with on-site interactions and kinetic energy arising from tunneling to nearest neighbors is a ``standard model'' of strongly correlated many-body physics, and it may also contain the essential ingredients of high-temperature superconductivity. While the Hamiltonian has only two terms it cannot be numerically solved for arbitrary density of spin-1/2 fermions due to exponential growth in the basis size. At a density of one spin-1/2 particle per site, however, the Hubbard model is known to exhibit antiferromagnetism at temperatures below the Néel temperature TN, a property shared by most of the undoped parent compounds of high-Tc superconductors. The realization of antiferromagnetism in a 3D optical lattice with atomic fermions has been impeded by the inability to attain sufficiently low temperatures. We have developed a method to perform evaporative cooling in a 3D cubic lattice by compensating the confinement envelope of the infrared optical lattice beams with blue-detuned laser beams. Evaporation can be controlled by the intensity of these non-retroreflected compensating beams. We observe significantly lower temperatures of a two-spin component gas of 6Li atoms in the lattice using this method. The cooling enables us to detect the development of short-range antiferromagnetic correlations using spin-sensitive Bragg scattering of light. Comparison with quantum Monte Carlo constrains the temperature in the lattice to 2-3 TN. We will discuss the prospects of attaining even lower temperatures with this method. Supported by DARPA/ARO, ONR, and NSF.

  10. Magnetic Phase Diagrams and Magnetization Plateaus of the Spin-1/2 Antiferromagnetic Heisenberg Model on a Square-Kagome Lattice with Three Nonequivalent Exchange Interactions

    NASA Astrophysics Data System (ADS)

    Morita, Katsuhiro; Tohyama, Takami

    2018-04-01

    Magnetization plateaus in quantum spin systems emerge in two-dimensional frustrated systems such as a kagome lattice. The spin-1/2 antiferromagnetic Heisenberg model on a square-kagome lattice is also appropriate for the study of the magnetization plateau. Motivated by recent experimental findings of such a square kagome lattice with three nonequivalent bonds, we investigate the phase diagrams and magnetization plateaus of the lattice using the exact diagonalization method. In addition to the previously reported 1/3 and 2/3 plateaus in the model with two equivalent bonds, we find a new 2/3 plateau whose magnetic structure is characterized by spontaneously broken four-fold rotational symmetry. The plateau appears only in the case of three nonequivalent bonds. We propose the possibility of finding plateaus including the new one.

  11. Magnon Spin-Momentum Locking: Various Spin Vortices and Dirac magnons in Noncollinear Antiferromagnets.

    PubMed

    Okuma, Nobuyuki

    2017-09-08

    We generalize the concept of the spin-momentum locking to magnonic systems and derive the formula to calculate the spin expectation value for one-magnon states of general two-body spin Hamiltonians. We give no-go conditions for magnon spin to be independent of momentum. As examples of the magnon spin-momentum locking, we analyze a one-dimensional antiferromagnet with the Néel order and two-dimensional kagome lattice antiferromagnets with the 120° structure. We find that the magnon spin depends on its momentum even when the Hamiltonian has the z-axis spin rotational symmetry, which can be explained in the context of a singular band point or a U(1) symmetry breaking. A spin vortex in momentum space generated in a kagome lattice antiferromagnet has the winding number Q=-2, while the typical one observed in topological insulator surface states is characterized by Q=+1. A magnonic analogue of the surface states, the Dirac magnon with Q=+1, is found in another kagome lattice antiferromagnet. We also derive the sum rule for Q by using the Poincaré-Hopf index theorem.

  12. Magnon Spin-Momentum Locking: Various Spin Vortices and Dirac magnons in Noncollinear Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Okuma, Nobuyuki

    2017-09-01

    We generalize the concept of the spin-momentum locking to magnonic systems and derive the formula to calculate the spin expectation value for one-magnon states of general two-body spin Hamiltonians. We give no-go conditions for magnon spin to be independent of momentum. As examples of the magnon spin-momentum locking, we analyze a one-dimensional antiferromagnet with the Néel order and two-dimensional kagome lattice antiferromagnets with the 120° structure. We find that the magnon spin depends on its momentum even when the Hamiltonian has the z -axis spin rotational symmetry, which can be explained in the context of a singular band point or a U (1 ) symmetry breaking. A spin vortex in momentum space generated in a kagome lattice antiferromagnet has the winding number Q =-2 , while the typical one observed in topological insulator surface states is characterized by Q =+1 . A magnonic analogue of the surface states, the Dirac magnon with Q =+1 , is found in another kagome lattice antiferromagnet. We also derive the sum rule for Q by using the Poincaré-Hopf index theorem.

  13. Gapped paramagnetic state in a frustrated spin-1/2 Heisenberg antiferromagnet on the cross-striped square lattice

    NASA Astrophysics Data System (ADS)

    Li, P. H. Y.; Bishop, R. F.

    2018-03-01

    We implement the coupled cluster method to very high orders of approximation to study the spin-1/2 J1 -J2 Heisenberg model on a cross-striped square lattice. Every nearest-neighbour pair of sites on the square lattice has an isotropic antiferromagnetic exchange bond of strength J1 > 0 , while the basic square plaquettes in alternate columns have either both or neither next-nearest-neighbour (diagonal) pairs of sites connected by an equivalent frustrating bond of strength J2 ≡ αJ1 > 0 . By studying the magnetic order parameter (i.e., the average local on-site magnetization) in the range 0 ≤ α ≤ 1 of the frustration parameter we find that the quasiclassical antiferromagnetic Néel and (so-called) double Néel states form the stable ground-state phases in the respective regions α < α1ac = 0 . 46(1) and α > α1bc = 0.615(5) . The double Néel state has Néel (⋯ ↑↓↑↓ ⋯) ordering along the (column) direction parallel to the stripes of squares with both or no J2 bonds, and spins alternating in a pairwise (⋯ ↑↑↓↓↑↑↓↓ ⋯) fashion along the perpendicular (row) direction, so that the parallel pairs occur on squares with both J2 bonds present. Further explicit calculations of both the triplet spin gap and the zero-field uniform transverse magnetic susceptibility provide compelling evidence that the ground-state phase over all or most of the intermediate regime α1ac < α < α1bc is a gapped state with no discernible long-range magnetic order.

  14. Raman Microscopic Characterization of Proton-Irradiated Polycrystalline Diamond Films

    NASA Technical Reports Server (NTRS)

    Newton, R. L.; Davidson, J. L.; Lance, M. J.

    2004-01-01

    The microstructural effects of irradiating polycrystalline diamond films with proton dosages ranging from 10(exp 15) to 10(exp 17) H(+) per square centimeter was examined. Scanning Electron Microscopy and Raman microscopy were used to examine the changes in the diamond crystalline lattice as a function of depth. Results indicate that the diamond lattice is retained, even at maximum irradiation levels.

  15. Weyl magnons in breathing pyrochlore antiferromagnets

    PubMed Central

    Li, Fei-Ye; Li, Yao-Dong; Kim, Yong Baek; Balents, Leon; Yu, Yue; Chen, Gang

    2016-01-01

    Frustrated quantum magnets not only provide exotic ground states and unusual magnetic structures, but also support unconventional excitations in many cases. Using a physically relevant spin model for a breathing pyrochlore lattice, we discuss the presence of topological linear band crossings of magnons in antiferromagnets. These are the analogues of Weyl fermions in electronic systems, which we dub Weyl magnons. The bulk Weyl magnon implies the presence of chiral magnon surface states forming arcs at finite energy. We argue that such antiferromagnets present a unique example, in which Weyl points can be manipulated in situ in the laboratory by applied fields. We discuss their appearance specifically in the breathing pyrochlore lattice, and give some general discussion of conditions to find Weyl magnons, and how they may be probed experimentally. Our work may inspire a re-examination of the magnetic excitations in many magnetically ordered systems. PMID:27650053

  16. Weyl magnons in breathing pyrochlore antiferromagnets

    DOE PAGES

    Li, Fei-Ye; Li, Yao-Dong; Kim, Yong Baek; ...

    2016-09-21

    Frustrated quantum magnets not only provide exotic ground states and unusual magnetic structures, but also support unconventional excitations in many cases. Using a physically relevant spin model for a breathing pyrochlore lattice, we discuss the presence of topological linear band crossings of magnons in antiferromagnets. These are the analogues of Weyl fermions in electronic systems, which we dub Weyl magnons. The bulk Weyl magnon implies the presence of chiral magnon surface states forming arcs at finite energy. We argue that such antiferromagnets present a unique example, in which Weyl points can be manipulated in situ in the laboratory by appliedmore » fields. We discuss their appearance specifically in the breathing pyrochlore lattice, and give some general discussion of conditions to find Weyl magnons, and how they may be probed experimentally. Our work may inspire a re-examination of the magnetic excitations in many magnetically ordered systems.« less

  17. Magnetic structure of the antiferromagnetic Kondo lattice compounds CeRhAl 4Si 2 and CeIrAl 4Si 2

    DOE PAGES

    Ghimire, N. J.; Calder, S.; Janoschek, M.; ...

    2015-06-01

    In this article, we have investigated the magnetic ground state of the antiferromagnetic Kondo-lattice compounds CeMAl 4Si 2(M = Rh, Ir) using neutron powder diffraction. Although both of these compounds show two magnetic transitions T N1 and T N2 in the bulk properties measurements, evidence for magnetic long-range order was only found below the lower transition T N2. Analysis of the diffraction profiles reveals a commensurate antiferromagnetic structure with a propagation vector k = (0, 0, 1/2). The magnetic moment in the ordered state of CeRhAl 4Si 2 and CeIrAl 4Si 2 were determined to be 1.14(2) and 1.41(3) μB/Ce,more » respectively, and are parallel to the crystallographic c-axis in agreement with magnetic susceptibility measurements.« less

  18. X-ray topographic studies and measurement of lattice parameter differences within synthetic diamonds grown by the reconstitution technique

    NASA Astrophysics Data System (ADS)

    Wierzchowski, W.; Moore, M.; Makepeace, A. P. W.; Yacoot, A.

    1991-10-01

    A 4 x 4 x 1.5 cu mm cuboctahedral diamond and two 0.7 mm thick slabs cut from a truncated octahedral diamond grown by the reconstitution technique were studied in different double-crystal arrangements with both conventional and synchrotron X-ray sources. The back-reflection double crystal topographs of large polished 001-plane-oriented faces intersecting different growth sectors, together with cathodoluminescence patterns, allowed identification of these sectors. A double-crystal arrangement, employing the -3 2 5 quartz reflection matching the symmetrical 004 diamond reflection in CuK(alpha 1) radiation, was used for measurement of lattice parameter differences with an accuracy of one and a half parts per million. The simultaneous investigation by means of Lang projection and section topography provided complementary information about the crystallographic defects and internal structures of growth sectors. Observation of the cuboctahedral diamond with a filter of peak transmittance at 430 nm revealed a 'Maltese cross' growth feature in the central (001) growth sector, which also affected the birefringence pattern. However, this feature only very slightly affected the double-crystal topographs.

  19. Control of the third dimension in copper-based square-lattice antiferromagnets

    DOE PAGES

    Goddard, Paul A.; Singleton, John; Franke, Isabel; ...

    2016-03-25

    Using a mixed-ligand synthetic scheme, we create a family of quasi-two-dimensional antiferromagnets, namely, [Cu(HF 2)(pyz) 2]ClO 4 [pyz = pyrazine], [CuL 2(pyz) 2](ClO 4) 2 [L = pyO = pyridine-N-oxide and 4-phpy-O = 4-phenylpyridine-N-oxide. These materials are shown to possess equivalent two-dimensional [Cu(pyz) 2] 2+ nearly square layers, but exhibit interlayer spacings that vary from 6.5713 to 16.777 Å, as dictated by the axial ligands. We present the structural and magnetic properties of this family as determined via x-ray diffraction, electron-spin resonance, pulsed- and quasistatic-field magnetometry and muon-spin rotation, and compare them to those of the prototypical two-dimensional magnetic polymermore » Cu(pyz) 2(ClO 4) 2. We find that, within the limits of the experimental error, the two-dimensional, intralayer exchange coupling in our family of materials remains largely unaffected by the axial ligand substitution, while the observed magnetic ordering temperature (1.91 K for the material with the HF 2 axial ligand, 1.70 K for the pyO and 1.63 K for the 4-phpy-O) decreases slowly with increasing layer separation. Despite the structural motifs common to this family and Cu(pyz) 2(ClO 4) 2, the latter has significantly stronger two-dimensional exchange interactions and hence a higher ordering temperature. Here, we discuss these results, as well as the mechanisms that might drive the long-range order in these materials, in terms of departures from the ideal S = 1/2 two-dimensional square-lattice Heisenberg antiferromagnet. In particular, we find that both spin-exchange anisotropy in the intralayer interaction and interlayer couplings (exchange, dipolar, or both) are needed to account for the observed ordering temperatures, with the intralayer anisotropy becoming more important as the layers are pulled further apart.« less

  20. Control of the third dimension in copper-based square-lattice antiferromagnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goddard, Paul A.; Singleton, John; Franke, Isabel

    Using a mixed-ligand synthetic scheme, we create a family of quasi-two-dimensional antiferromagnets, namely, [Cu(HF 2)(pyz) 2]ClO 4 [pyz = pyrazine], [CuL 2(pyz) 2](ClO 4) 2 [L = pyO = pyridine-N-oxide and 4-phpy-O = 4-phenylpyridine-N-oxide. These materials are shown to possess equivalent two-dimensional [Cu(pyz) 2] 2+ nearly square layers, but exhibit interlayer spacings that vary from 6.5713 to 16.777 Å, as dictated by the axial ligands. We present the structural and magnetic properties of this family as determined via x-ray diffraction, electron-spin resonance, pulsed- and quasistatic-field magnetometry and muon-spin rotation, and compare them to those of the prototypical two-dimensional magnetic polymermore » Cu(pyz) 2(ClO 4) 2. We find that, within the limits of the experimental error, the two-dimensional, intralayer exchange coupling in our family of materials remains largely unaffected by the axial ligand substitution, while the observed magnetic ordering temperature (1.91 K for the material with the HF 2 axial ligand, 1.70 K for the pyO and 1.63 K for the 4-phpy-O) decreases slowly with increasing layer separation. Despite the structural motifs common to this family and Cu(pyz) 2(ClO 4) 2, the latter has significantly stronger two-dimensional exchange interactions and hence a higher ordering temperature. Here, we discuss these results, as well as the mechanisms that might drive the long-range order in these materials, in terms of departures from the ideal S = 1/2 two-dimensional square-lattice Heisenberg antiferromagnet. In particular, we find that both spin-exchange anisotropy in the intralayer interaction and interlayer couplings (exchange, dipolar, or both) are needed to account for the observed ordering temperatures, with the intralayer anisotropy becoming more important as the layers are pulled further apart.« less

  1. Control of the third dimension in copper-based square-lattice antiferromagnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goddard, Paul A.; Singleton, John; Franke, Isabel

    Using a mixed-ligand synthetic scheme, we create a family of quasi-two-dimensional antiferromagnets, namely, [Cu(HF2)(pyz)(2)]ClO4 [pyz = pyrazine], [CuL2(pyz)(2)](ClO4)(2) [L = pyO = pyridine-N-oxide and 4-phpy-O = 4-phenylpyridine-N-oxide. These materials are shown to possess equivalent two-dimensional [Cu(pyz)(2)](2+) nearly square layers, but exhibit interlayer spacings that vary from 6.5713 to 16.777 angstrom, as dictated by the axial ligands. We present the structural and magnetic properties of this family as determined via x-ray diffraction, electron-spin resonance, pulsed-and quasistatic-field magnetometry and muon-spin rotation, and compare them to those of the prototypical two-dimensional magnetic polymer Cu(pyz)(2)(ClO4)(2). We find that, within the limits of the experimentalmore » error, the two-dimensional, intralayer exchange coupling in our family of materials remains largely unaffected by the axial ligand substitution, while the observed magnetic ordering temperature (1.91 K for the material with the HF2 axial ligand, 1.70 K for the pyO and 1.63 K for the 4-phpy-O) decreases slowly with increasing layer separation. Despite the structural motifs common to this family and Cu(pyz)(2)(ClO4)(2), the latter has significantly stronger two-dimensional exchange interactions and hence a higher ordering temperature. We discuss these results, as well as the mechanisms that might drive the long-range order in these materials, in terms of departures from the ideal S = 1/2 two-dimensional square-lattice Heisenberg antiferromagnet. In particular, we find that both spin-exchange anisotropy in the intralayer interaction and interlayer couplings (exchange, dipolar, or both) are needed to account for the observed ordering temperatures, with the intralayer anisotropy becoming more important as the layers are pulled further apart.« less

  2. Electrical switching of an antiferromagnet

    NASA Astrophysics Data System (ADS)

    Jungwirth, Tomas

    Louis Néel pointed out in his Nobel lecture that while abundant and interesting from theoretical viewpoint, antiferromagnets did not seem to have any applications. Indeed, the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization make antiferromagnets hard to control by tools common in ferromagnets. Strong coupling would be achieved if the externally generated field had a sign alternating on the scale of a lattice constant at which moments alternate in AFMs. However, generating such a field has been regarded unfeasible, hindering the research and applications of these abundant magnetic materials. We have recently predicted that relativistic quantum mechanics may offer staggered current induced fields with the sign alternating within the magnetic unit cell which can facilitate a reversible switching of an antiferromagnet by applying electrical currents with comparable efficiency to ferromagnets. Among suitable materials is a high Néel temperature antiferromagnet, tetragonal-phase CuMnAs, which we have recently synthesized in the form of single-crystal epilayers structurally compatible with common semiconductors. We demonstrate electrical writing and read-out, combined with the insensitivity to magnetic field perturbations, in a proof-of-concept antiferromagnetic memory device. We acknowledge support from European Research Council Advanced Grant No. 268066.

  3. Singular ferromagnetic susceptibility of the transverse-field Ising antiferromagnet on the triangular lattice

    NASA Astrophysics Data System (ADS)

    Biswas, Sounak; Damle, Kedar

    2018-02-01

    A transverse magnetic field Γ is known to induce antiferromagnetic three-sublattice order of the Ising spins σz in the triangular lattice Ising antiferromagnet at low enough temperature. This low-temperature order is known to melt on heating in a two-step manner, with a power-law ordered intermediate temperature phase characterized by power-law correlations at the three-sublattice wave vector Q : <σz(R ⃗) σz(0 ) > ˜cos(Q .R ⃗) /|R⃗| η (T ) with the temperature-dependent power-law exponent η (T )∈(1 /9 ,1 /4 ) . Here, we use a quantum cluster algorithm to study the ferromagnetic easy-axis susceptibility χu(L ) of an L ×L sample in this power-law ordered phase. Our numerical results are consistent with a recent prediction of a singular L dependence χu(L ) ˜L2 -9 η when η (T ) is in the range (1 /9 ,2 /9 ) . This finite-size result implies, via standard scaling arguments, that the ferromagnetic susceptibility χu(B ) to a uniform field B along the easy axis is singular at intermediate temperatures in the small B limit, χu(B ) ˜|B| -4/-18 η 4 -9 η for η (T )∈(1 /9 ,2 /9 ) , although there is no ferromagnetic long-range order in the low temperature state. Additionally we establish similar two-step melting behavior (via a study of the order parameter susceptibility χQ) in the case of the ferrimagnetic three-sublattice ordered phase which is stabilized by ferromagnetic next-neighbor couplings (J2) and confirm that the ferromagnetic susceptibility obeys the predicted singular form in the associated power-law ordered phase.

  4. Itinerant Antiferromagnetism in RuO 2

    DOE PAGES

    Berlijn, Tom; Snijders, Paul C.; Delaire, Oliver A.; ...

    2017-02-15

    Bulk rutile RuO 2 has long been considered a Pauli paramagnet. Here, in this article, we report that RuO 2 exhibits a hitherto undetected lattice distortion below approximately 900 K. The distortion is accompanied by antiferromagnetic order up to at least 300 K with a small room temperature magnetic moment of approximately 0.05μ B as evidenced by polarized neutron diffraction. Density functional theory plus U(DFT+U) calculations indicate that antiferromagnetism is favored even for small values of the Hubbard U of the order of 1 eV. The antiferromagnetism may be traced to a Fermi surface instability, lifting the band degeneracy imposedmore » by the rutile crystal field. The combination of high Néel temperature and small itinerant moments make RuO 2 unique among ruthenate compounds and among oxide materials in general.« less

  5. Phase transitions in the antiferromagnetic Ising model on a body-centered cubic lattice with interactions between next-to-nearest neighbors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murtazaev, A. K.; Ramazanov, M. K., E-mail: sheikh77@mail.ru; Kassan-Ogly, F. A.

    2015-01-15

    Phase transitions in the antiferromagnetic Ising model on a body-centered cubic lattice are studied on the basis of the replica algorithm by the Monte Carlo method and histogram analysis taking into account the interaction of next-to-nearest neighbors. The phase diagram of the dependence of the critical temperature on the intensity of interaction of the next-to-nearest neighbors is constructed. It is found that a second-order phase transition is realized in this model in the investigated interval of the intensities of interaction of next-to-nearest neighbors.

  6. Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles.

    PubMed

    Heyer, Steffen; Janssen, Wiebke; Turner, Stuart; Lu, Ying-Gang; Yeap, Weng Siang; Verbeeck, Jo; Haenen, Ken; Krueger, Anke

    2014-06-24

    The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 10-60 nm with a boron content of approximately 2.3 × 10(21) cm(-3). Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer.

  7. Observation of antiferromagnetic correlations in the Fermi-Hubbard model

    NASA Astrophysics Data System (ADS)

    Hart, R. A.; Duarte, P. M.; Yang, T. L.; Liu, X.; Hulet, R. G.; Paiva, T. C. L.; Huse, D.; Scalettar, R. T.; Trivedi, N.

    2014-05-01

    The physics of high temperature superconductors is not well understood, although it is known that the undoped parent compounds of many of them are antiferromagnetic (AF) insulators. The Fermi-Hubbard model at half filling (one atom per lattice site) is known to exhibit a phase transition to an antiferromagnetic insulator at a low temperature. We realize the Fermi-Hubbard model by loading ultracold 6Li atoms into a three-dimensional red-detuned optical lattice. We have compensated the confining potential of the lattice with blue-detuned laser beams in order to evaporatively cool the atoms. We have cooled sufficiently to observe AF correlations using spin-sensitive Bragg scattering of near-resonant light. Comparison with Quantum Monte Carlo (QMC) calculations indicates that the temperature is between 2-3 TN, where short-range correlations begin to develop. Bragg scattering combined with QMC provides sensitive thermometry in a previously unexplored regime. Supported by NSF, ONR, DARPA, and the Welch Foundation.

  8. Walls, anomalies, and deconfinement in quantum antiferromagnets

    NASA Astrophysics Data System (ADS)

    Komargodski, Zohar; Sulejmanpasic, Tin; Ünsal, Mithat

    2018-02-01

    We consider the Abelian-Higgs model in 2 +1 dimensions with instanton-monopole defects. This model is closely related to the phases of quantum antiferromagnets. In the presence of Z2 preserving monopole operators, there are two confining ground states in the monopole phase, corresponding to the valence bond solid (VBS) phase of quantum magnets. We show that the domain wall carries a 't Hooft anomaly in this case. The anomaly can be saturated by, e.g., charge-conjugation breaking on the wall or by the domain wall theory becoming gapless (a gapless model that saturates the anomaly is S U (2) 1 WZW). Either way the fundamental scalar particles (i.e., spinons) which are confined in the bulk are deconfined on the domain wall. This Z2 phase can be realized either with spin-1/2 on a rectangular lattice or spin-1 on a square lattice. In both cases the domain wall contains spin-1/2 particles (which are absent in the bulk). We discuss the possible relation to recent lattice simulations of domain walls in VBS. We further generalize the discussion to Abrikosov-Nielsen-Olsen (ANO) vortices in a dual superconductor of the Abelian-Higgs model in 3 +1 dimensions and to the easy-plane limit of antiferromagnets. In the latter case the wall can undergo a variant of the BKT transition (consistent with the anomalies) while the bulk is still gapped. The same is true for the easy-axis limit of antiferromagnets. We also touch upon some analogies to Yang-Mills theory.

  9. Incommensurate to commensurate antiferromagnetism in CeRhAl 4 Si 2 : An Al 27 NMR study

    DOE PAGES

    Sakai, Hironori; Hattori, T.; Tokunaga, Y.; ...

    2016-01-04

    27Al nuclear magnetic resonance (NMR) experiments have been performed on a single crystal of CeRhAl 4Si 2, which is an antiferromagnetic Kondo-lattice compound with successive antiferromagnetic transitions of T N1 = 14 K and T N2 = 9 K at zero external field. In the paramagnetic state, the Knight shifts, quadrupolar frequency, and asymmetric parameter of electrical field gradient on the Al sites have been determined, which have local orthorhombic symmetry. The transferred hyperfine coupling constants are also determined. Here, analysis of the NMR spectra indicates that a commensurate antiferromagnetic structure exists below T N2, but an incommensurate modulation ofmore » antiferromagnetic moments is present in the antiferromagnetic state between T N1 and T N2. The spin-lattice relaxation rate suggests that the 4f electrons behave as local moments at temperatures above T N1.« less

  10. Frustrated spin-1/2 Ising antiferromagnet on a square lattice in a transverse field

    NASA Astrophysics Data System (ADS)

    Bobák, A.; Jurčišinová, E.; Jurčišin, M.; Žukovič, M.

    2018-02-01

    We investigate the phase transitions and tricritical behaviors of the frustrated Ising antiferromagnet with first- (J1<0 ) and second- (J2<0 ) nearest-neighbor interactions in a transverse field Ω on the square lattice using an effective-field theory with correlations based on a single-spin approximation. We have proposed a functional for the free energy to obtain the phase diagram in the T -R (R =J2/|J1| ) or T -Ω planes. It is shown that due to the transverse field the phase transition between ordered and disordered phases changes in the tricritical point (TCP) from the second order to the first order. The longitudinal and transverse magnetizations are also studied for selected values of R and Ω . In particular, the variation of TCP at the ground state in the three-dimensional space is constructed. For some special cases, values of the critical temperature and the critical transverse field have been determined analytically.

  11. Spin dynamics in the stripe-ordered buckled honeycomb lattice antiferromagnet Ba 2 NiTeO 6

    DOE PAGES

    Asai, Shinichiro; Soda, Minoru; Kasatani, Kazuhiro; ...

    2017-09-01

    We carried out inelastic neutron scattering experiments on a buckled honeycomb lattice antiferromagnet Ba 2NiTeO 6 exhibiting a stripe structure at a low temperature. Magnetic excitations are observed in the energy range of ℏω≲10 meV having an anisotropy gap of 2 meV at 2 K. We perform spin-wave calculations to identify the spin model. The obtained microscopic parameters are consistent with the location of the stripe structure in the classical phase diagram. Furthermore, the Weiss temperature independently estimated from a bulk magnetic susceptibility is consistent with the microscopic parameters. The results reveal that a competition between the nearest-neighbor and next-nearest-neighbormore » interactions that together with a relatively large single-ion magnetic anisotropy stabilize the stripe magnetic structure.« less

  12. Spin dynamics in the stripe-ordered buckled honeycomb lattice antiferromagnet Ba 2 NiTeO 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asai, Shinichiro; Soda, Minoru; Kasatani, Kazuhiro

    We carried out inelastic neutron scattering experiments on a buckled honeycomb lattice antiferromagnet Ba 2NiTeO 6 exhibiting a stripe structure at a low temperature. Magnetic excitations are observed in the energy range of ℏω≲10 meV having an anisotropy gap of 2 meV at 2 K. We perform spin-wave calculations to identify the spin model. The obtained microscopic parameters are consistent with the location of the stripe structure in the classical phase diagram. Furthermore, the Weiss temperature independently estimated from a bulk magnetic susceptibility is consistent with the microscopic parameters. The results reveal that a competition between the nearest-neighbor and next-nearest-neighbormore » interactions that together with a relatively large single-ion magnetic anisotropy stabilize the stripe magnetic structure.« less

  13. Entanglement in a spin- s antiferromagnetic Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Hao, Xiang; Zhu, Shiqun

    2005-10-01

    The entanglement in a general Heisenberg antiferromagnetic chain of arbitrary spin- s is investigated. The entanglement is witnessed by the thermal energy which equals the minimum energy of any separable state. There is a characteristic temperature below that an entangled thermal state exists. The characteristic temperature for thermal entanglement is increased with spin s . When the total number of lattice is increased, the characteristic temperature decreases and then approaches a constant. This effect shows that the thermal entanglement can be detected in a real solid state system of larger number of lattices for finite temperature. The comparison of negativity and entanglement witness is obtained from the separability of the unentangled states. It is found that the thermal energy provides a sufficient condition for the existence of the thermal entanglement in a spin- s antiferromagnetic Heisenberg chain.

  14. Simple optimized Brenner potential for thermodynamic properties of diamond

    NASA Astrophysics Data System (ADS)

    Liu, F.; Tang, Q. H.; Shang, B. S.; Wang, T. C.

    2012-02-01

    We have examined the commonly used Brenner potentials in the context of the thermodynamic properties of diamond. A simple optimized Brenner potential is proposed that provides very good predictions of the thermodynamic properties of diamond. It is shown that, compared to the experimental data, the lattice wave theory of molecular dynamics (LWT) with this optimized Brenner potential can accurately predict the temperature dependence of specific heat, lattice constant, Grüneisen parameters and coefficient of thermal expansion (CTE) of diamond.

  15. Multiferroicity in the generic easy-plane triangular lattice antiferromagnet RbFe(MoO4)2

    NASA Astrophysics Data System (ADS)

    White, J. S.; Niedermayer, Ch.; Gasparovic, G.; Broholm, C.; Park, J. M. S.; Shapiro, A. Ya.; Demianets, L. A.; Kenzelmann, M.

    2013-08-01

    RbFe(MoO4)2 is a quasi-two-dimensional (quasi-2D) triangular lattice antiferromagnet (TLA) that displays a zero-field magnetically driven multiferroic phase with a chiral spin structure. By inelastic neutron scattering, we determine quantitatively the spin Hamiltonian. We show that the easy-plane anisotropy is nearly 1/3 of the dominant spin exchange, making RbFe(MoO4)2 an excellent system for studying the physics of the model 2D easy-plane TLA. Our measurements demonstrate magnetic-field-induced fluctuations in this material to stabilize the generic finite-field phases of the 2D XY TLA. We further explain how Dzyaloshinskii-Moriya interactions can generate ferroelectricity only in the zero-field phase. Our conclusion is that multiferroicity in RbFe(MoO4)2, and its absence at high fields, results from the generic properties of the 2D XY TLA.

  16. Field-Induced Magnetic Phase Transitions in a Triangular Lattice Antiferromagnet CuFeO 2 up to 14.5 T

    NASA Astrophysics Data System (ADS)

    Mitsuda, Setsuo; Mase, Motoshi; Prokes, K.; Kitazawa, Hideaki; Katori, H.

    2000-11-01

    Neutron diffraction studies on a frustrated triangular lattice antiferromagnet (TLA) CuFeO2 have been performed under an applied magnetic field up to 14.5 T. The first-field-induced state was found to be not the commensurate 5-sublattice (↑↑↑↓↓) magnetic state but rather an incommensurate complex helical state reflecting the Heisenberg spin character of orbital singlet Fe3+ magnetic ions. In contrast, the second-field-induced state was found to be the 5-sublattice (↑↑↑↓↓) magnetic state predicted by the two-dimensional (2D) Ising spin TLA model with competing exchange interactions up to the 3rd neighbors.

  17. Mineral resource of the month: diamond

    USGS Publications Warehouse

    Olson, Donald W.

    2009-01-01

    The article presents information on diamond, which is regarded as the world's most popular gemstone. It states that there is strength in the covalent bonding between its carbon atoms, resulting to the strength of its physical properties. The presence of colors in diamonds may be attributed to the impurities that settle in the crystal lattice. Diamonds have been used as decorative items since the ancient era.

  18. S = 1 on a Diamond Lattice in NiRh2O4

    NASA Astrophysics Data System (ADS)

    Chamorro, Juan; McQueen, Tyrel

    An S = 1 system has the potential of rich physics, and has been the subject of intense theoretical work. Extensive work has been done on one-dimensional and two-dimensional S = 1 systems, yet three dimensional systems remain elusive. Experimental realizations of three-dimensional S = 1, however, are limited, and no system to date has been found to genuinely harbor this. Recent theoretical work suggests that S = 1 on a diamond lattice would enable a novel topological paramagnet state, generated by fluctuating Haldane chains within the structure, with topologically protected end states. Here we present data on NiRh2O4, a tetragonal spinel that has a structural phase transition from cubic to tetragonal at T = 380 K. High resolution XRD shows it to have a tetragonally distorted spinel structure, with Ni2+ (d8, S = 1) on the tetrahedral, diamond sublattice site. Magnetic susceptibility and specific heat measurements show that it does not order magnetically down to T = 0.1 K. Nearest neighbor interactions remain the same despite the cubic to tetragonal phase transition. Comparison to theoretical models indicate that this system might fulfill the requirements necessary to have both highly entangled and topological behaviors. IQM Is Funded by US Department of Energy, Office of Basic Energy Sciences, Division of Material Sciences and Engineering, under Grant No. DE-FG02-08ER46544.

  19. CaMn 2Sb 2: Spin waves on a frustrated antiferromagnetic honeycomb lattice

    DOE PAGES

    McNally, D. E.; Simonson, J. W.; Kistner-Morris, J. J.; ...

    2015-05-22

    Here we presenmore » t inelastic neutron scattering measurements of the antiferromagnetic insulator CaMn 2 Sb 2 , which consists of corrugated honeycomb layers of Mn. The dispersion of magnetic excitations has been measured along the H and L directions in reciprocal space, with a maximum excitation energy of ≈ 24 meV. These excitations are well described by spin waves in a Heisenberg model, including first-and second-neighbor exchange interactions J 1 and J 2 in the Mn plane and also an exchange interaction between planes. The determined ratio J 2/J 1 ≈ 1/6 suggests that CaMn 2 Sb 2 is an example of a compound that lies very close to the mean field tricritical point, known for the classical Heisenberg model on the honeycomb lattice, where the Néel phase and two different spiral phases coexist. Lastly, the magnitude of the determined exchange interactions reveals a mean field ordering temperature ≈ 4 times larger than the reported Néel temperature T N = 85 K, suggesting significant frustration arising from proximity to the tricritical point.« less

  20. Large-N solution of the Sp(N) Heisenberg quantum antiferromagnet on the anisotropic triangular lattice in a magnetic field.

    NASA Astrophysics Data System (ADS)

    Chung, Chung-Hou; Marston, Brad

    2002-03-01

    We study the Sp(N) generalization of the physical Sp(1) \\cong SU(2) Heisenberg antiferromagnet on the anisotropic triangular lattice( C. H. Chung, J. B. Marston and R. H. McKenzie, Journal of Physics: Condensed Matter 13), 5159 (2001). in a magnetic field. The model is relevant for describing recent experiments on the magnetic phases of the quasi-2D system Cs_2CuCl4 in a magnetic field(R. Coldea, D. A. Tennant, A. M. Tsvelik, and Z. Tylczynski, Phys. Rev. Lett. 86), 1335 (2001).. We solve the model in the large-N limit and study the effect of a magnetic field on the incommensurate magnetic order. Below a critical field the spins form a ``cone'' of polarization, in apparent agreement with neutron scattering experiments when the magnetic field is oriented perpendicular to the lattice. The incommensuration increases with increasing field strength. Above the critical field the spins are fully polarized. We have difficulty treating Dzyaloshinskii-Moriya interactions which are believed to be important for in-plane fields.

  1. PROCESS FOR COLORING DIAMONDS

    DOEpatents

    Dugdale, R.A.

    1960-07-19

    A process is given for coloring substantially colorless diamonds in the blue to blue-green range and comprises the steps of irradiating the colorless diamonds with electrons having an energy within the range 0.5 to 2 Mev to obtain an integrated electron flux of between 1 and 2 x 10/sup 18/ thc diamonds may be irradiated 1 hr when they take on a blue color with a slight green tint: After being heated at about 500 deg C for half an hour they become pure blue. Electrons within this energy range contam sufficient energy to displace the diamond atoms from their normal lattice sites into interstitial sites, thereby causing the color changes.

  2. Application of Powder Diffraction Methods to the Analysis of Short- and Long-Range Atomic Order in Nanocrystalline Diamond and SiC: The Concept of the Apparent Lattice Parameter (alp)

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.

    2003-01-01

    Two methods of the analysis of powder diffraction patterns of diamond and SiC nanocrystals are presented: (a) examination of changes of the lattice parameters with diffraction vector Q ('apparent lattice parameter', alp) which refers to Bragg scattering, and (b), examination of changes of inter-atomic distances based on the analysis of the atomic Pair Distribution Function, PDF. Application of these methods was studied based on the theoretical diffraction patterns computed for models of nanocrystals having (i) a perfect crystal lattice, and (ii), a core-shell structure, i.e. constituting a two-phase system. The models are defined by the lattice parameter of the grain core, thickness of the surface shell, and the magnitude and distribution of the strain field in the shell. X-ray and neutron experimental diffraction data of nanocrystalline SiC and diamond powders of the grain diameter from 4 nm up to micrometers were used. The effects of the internal pressure and strain at the grain surface on the structure are discussed based on the experimentally determined dependence of the alp values on the Q-vector, and changes of the interatomic distances with the grain size determined experimentally by the atomic Pair Distribution Function (PDF) analysis. The experimental results lend a strong support to the concept of a two-phase, core and the surface shell structure of nanocrystalline diamond and SiC.

  3. Similarity between the superconductivity in the graphene with the spin transport in the two-dimensional antiferromagnet in the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2017-02-01

    We have used the Dirac's massless quasi-particles together with the Kubo's formula to study the spin transport by electrons in the graphene monolayer. We have calculated the electric conductivity and verified the behavior of the AC and DC currents of this system, that is a relativistic electron plasma. Our results show that the AC conductivity tends to infinity in the limit ω → 0 , similar to the behavior obtained for the spin transport in the two-dimensional frustrated antiferromagnet in the honeycomb lattice. We have made a diagrammatic expansion for the Green's function and we have not gotten significative change in the results.

  4. Antiferromagnetic spinor condensates in a bichromatic superlattice

    NASA Astrophysics Data System (ADS)

    Tang, Tao; Zhao, Lichao; Chen, Zihe; Liu, Yingmei

    2017-04-01

    A spinor Bose-Einstein condensate in an optical supelattice has been considered as a good quantum simulator for understanding mesoscopic magnetism. We report an experimental study on an antiferromagnetic spinor condensate in a bichromatic superlattice constructed by a cubic red-detuned optical lattice and a one-dimensional blue-detuned optical lattice. Our data demonstrate a few advantages of this bichromatic superlattice over a monochromatic lattice. One distinct advantage is that the bichromatic superlattice enables realizing the first-order superfluid to Mott-insulator phase transitions within a much wider range of magnetic fields. In addition, we discuss an apparent discrepancy between our data and the mean-field theory. We thank the National Science Foundation and the Oklahoma Center for the Advancement of Science and Technology for financial support.

  5. Search for the Heisenberg spin glass on rewired square lattices with antiferromagnetic interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surungan, Tasrief, E-mail: tasrief@unhas.ac.id; Bansawang, B.J.; Tahir, Dahlang

    Spin glass (SG) is a typical magnetic system with frozen random spin orientation at low temperatures. The system exhibits rich physical properties, such as infinite number of ground states, memory effect, and aging phenomena. There are two main ingredients considered to be pivotal for the existence of SG behavior, namely, frustration and randomness. For the canonical SG system, frustration is led by the presence of competing interaction between ferromagnetic (FM) and antiferromagnetic (AF) couplings. Previously, Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)], reported the SG properties of the AF Ising spins on scale free network (SFN). It is amore » new type of SG, different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely caused by the topological factor and its randomness is related to the irregular connectvity. Recently, Surungan et. al. [Journal of Physics: Conference Series, 640, 012001 (2015)] reported SG bahavior of AF Heisenberg model on SFN. We further investigate this type of system by studying an AF Heisenberg model on rewired square lattices. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase.« less

  6. Structure, properties, and possible mechanisms of formation of diamond-like phases

    NASA Astrophysics Data System (ADS)

    Belenkov, E. A.; Greshnyakov, V. A.

    2016-10-01

    An analysis was performed for relations between the structural parameters and the properties of 36 carbon diamond-like phases consisting of atoms occupying crystallographically equivalent positions. It was found that the crystal lattices of these phases were in stressed states with respect to the cubic diamond lattice. The density of diamond-like phases, their sublimation energies, bulk moduli, hardnesses, and band gaps depend on the deformation parameters Def and Str. The most stable phases must be phases with minimal parameters Def and Str and also with ring parameter Rng that is most close to the corresponding parameter of cubic diamond. The structures and energy characteristics of fullerites, nanotube bundles, and graphene layers of which diamond-like phases can be obtained as a result of polymerization at high pressures have been calculated.

  7. Ordering process in the diffusively coupled logistic lattice

    NASA Astrophysics Data System (ADS)

    Conrado, Claudine V.; Bohr, Tomas

    1991-08-01

    We study the ordering process in a lattice of diffusively coupled logistic maps for increasing lattice size. Within a window of parameters, the system goes into a weakly chaotic state with long range "antiferromagnetic" order. This happens for arbitrary lattice size L and the ordering time behaves as t ~ L2 as we would expect from a picture of diffusing defects.

  8. Properties of spin-1/2 triangular-lattice antiferromagnets CuY2Ge2O8 and CuLa2Ge2O8

    NASA Astrophysics Data System (ADS)

    Cho, Hwanbeom; Kratochvílová, Marie; Sim, Hasung; Choi, Ki-Young; Kim, Choong Hyun; Paulsen, Carley; Avdeev, Maxim; Peets, Darren C.; Jo, Younghun; Lee, Sanghyun; Noda, Yukio; Lawler, Michael J.; Park, Je-Geun

    2017-04-01

    We found new two-dimensional (2D) quantum (S =1 /2 ) antiferromagnetic systems: Cu R E2G e2O8 (R E =Y and La). According to our analysis of high-resolution x-ray and neutron diffraction experiments, the Cu network of Cu R E2G e2O8 (R E =Y and La) exhibits a 2D triangular lattice linked via weak bonds along the perpendicular b axis. Our bulk characterizations from 0.08 to 400 K show that they undergo a long-range order at 0.51(1) and 1.09(4) K for the Y and La systems, respectively. Interestingly, they also exhibit field induced phase transitions. For theoretical understanding, we carried out the density functional theory (DFT) band calculations to find that they are typical charge-transfer-type insulators with a gap of Eg≅2 eV . Taken together, our observations make Cu R E2G e2O8 (R E =Y and La) additional examples of low-dimensional quantum spin triangular antiferromagnets with the low-temperature magnetic ordering.

  9. Spin-1/2 Heisenberg antiferromagnet on an anisotropic triangular lattice

    NASA Astrophysics Data System (ADS)

    Starykh, Oleg

    2007-03-01

    The Triangular lattice spin-1/2 Heisenberg AntiFerromagnet (TAF) is a prototypical model of frustrated quantum magnetism. While it is believed to exhibit long-range order in the isotropic limit, changes such as spatial anisotropy can alter the delicate balance amongst competing ground states. I will describe the static and dynamic properties of the spatially anisotropic TAF, with inter-chain diagonal exchange J' much weaker than the intrachain exchange J. Treating J' as a perturbation of decoupled Heisenberg spin-1/2 chains, I find that the ground state is spontaneously dimerized in a four-fold degenerate zig-zag pattern. This dimerization instability is driven by quantum fluctuations, which are dramatically enhanced here by the frustrated nature of inter-chain exchange. A magnetic field partially relieves frustration, by canting the spins along the field direction, and causes a quantum phase transition into a magnetically-ordered spin-density-wave phase. This is followed by cone and, finally, fully polarized (saturated) phases, as a function of increasing magnetic field. I show that many of these features are in fact observed in experiments on the celebrated material Cs2CuCl4 (J'/J =1/3). I will also discuss the significant modification of the phase diagram by symmetry-breaking anisotropic Dzyaloshinskii-Moriya (DM) interactions, present in this interesting magnet. In addition to static and thermodynamic properties, the proposed ``one-dimensional'' approach offers a compelling explanation of the unusual experimentally measured dynamical structure factor of Cs2CuCl4 in terms of descendants of one-dimensional spinons. Quite generally, I find characteristic features of a momentum-dependent spinon bound state and a dispersing incoherent excitation in the structure factor, in agreement with experiments.

  10. Discovery of a diamond-based photonic crystal structure in beetle scales.

    PubMed

    Galusha, Jeremy W; Richey, Lauren R; Gardner, John S; Cha, Jennifer N; Bartl, Michael H

    2008-05-01

    We investigated the photonic crystal structure inside iridescent scales of the weevil Lamprocyphus augustus. By combining a high-resolution structure analysis technique based on sequential focused ion beam milling and scanning electron microscopy imaging with theoretical modeling and photonic band-structure calculations, we discovered a natural three-dimensional photonic structure with a diamond-based crystal lattice operating at visible wavelengths. Moreover, we found that within individual scales, the diamond-based structure is assembled in the form of differently oriented single-crystalline micrometer-sized pixels with only selected lattice planes facing the scales' top surface. A comparison of results obtained from optical microreflectance measurements with photonic band-structure calculations reveals that it is this sophisticated microassembly of the diamond-based crystal lattice that lends Lamprocyphus augustus its macroscopically near angle-independent green coloration.

  11. Zigzag antiferromagnetic ground state with anisotropic correlation lengths in the quasi-two-dimensional honeycomb lattice compound N a2C o2Te O6

    NASA Astrophysics Data System (ADS)

    Bera, A. K.; Yusuf, S. M.; Kumar, Amit; Ritter, C.

    2017-03-01

    The crystal structure, magnetic ground state, and the temperature-dependent microscopic spin-spin correlations of the frustrated honeycomb lattice antiferromagnet N a2C o2Te O6 have been investigated by powder neutron diffraction. A long-range antiferromagnetic (AFM) ordering has been found below TN˜24.8 K . The magnetic ground state, determined to be zigzag antiferromagnetic and characterized by a propagation vector k =(1 /2 0 0 ) , occurs due to the competing exchange interactions up to third-nearest neighbors within the honeycomb lattice. The exceptional existence of a limited magnetic correlation length along the c axis (perpendicular to the honeycomb layers in the a b planes) has been found even at 1.8 K, well below the TN˜24.8 K . The observed limited correlation along the c axis is explained by the disorder distribution of the Na ions within the intermediate layers between honeycomb planes. The reduced ordered moments mCo (1 )=2.77 (3 ) μB/C o2 + and mCo (2 )=2.45 (2 ) μB/C o2 + at 1.8 K reflect the persistence of spin fluctuations in the ordered state. Above TN˜24.8 K , the presence of short-range magnetic correlations, manifested by broad diffuse magnetic peaks in the diffraction patterns, has been found. Reverse Monte Carlo analysis of the experimental diffuse magnetic scattering data reveals that the spin correlations are mainly confined within the two-dimensional honeycomb layers (a b plane) with a correlation length of ˜12 Å at 25 K. The nature of the spin arrangements is found to be similar in both the short-range and long-range ordered magnetic states. This implies that the short-range correlation grows with decreasing temperature and leads to the zigzag AFM ordering at T ≤TN . The present study provides a comprehensive picture of the magnetic correlations over the temperature range above and below the TN and their relation to the crystal structure. The role of intermediate soft Na layers on the magnetic coupling between honeycomb planes is

  12. Matrix Synthesis of Graphene on a Diamond Surface and Its Simulation

    NASA Astrophysics Data System (ADS)

    Alekseev, N. I.

    2018-07-01

    A quantum-chemical simulation is performed for the transformation of the upper sublayer of carbon atoms in the lattice of single-crystal diamond into a flat graphene lattice under the influence of the atoms of a molten copper film on the diamond surface. It is established that the stable system configuration corresponds to the thermally activated motion of carbon atoms in the lower sublayer of the interface diamond layer to the position of graphene, i.e., at the same level as the atoms of the upper sublayer. The energy gain in comparison to the noninteracting subsystems of the copper and diamond atoms is approximately 0.7 eV per atom of the lower sublayer. The maximum size of the resulting graphene film is estimated and a possible mechanism for its rupture is considered.

  13. Boron-doped diamond electrode: synthesis, characterization, functionalization and analytical applications.

    PubMed

    Luong, John H T; Male, Keith B; Glennon, Jeremy D

    2009-10-01

    In recent years, conductive diamond electrodes for electrochemical applications have been a major focus of research and development. The impetus behind such endeavors could be attributed to their wide potential window, low background current, chemical inertness, and mechanical durability. Several analytes can be oxidized by conducting diamond compared to other carbon-based materials before the breakdown of water in aqueous electrolytes. This is important for detecting and/or identifying species in solution since oxygen and hydrogen evolution do not interfere with the analysis. Thus, conductive diamond electrodes take electrochemical detection into new areas and extend their usefulness to analytes which are not feasible with conventional electrode materials. Different types of diamond electrodes, polycrystalline, microcrystalline, nanocrystalline and ultrananocrystalline, have been synthesized and characterized. Of particular interest is the synthesis of boron-doped diamond (BDD) films by chemical vapor deposition on various substrates. In the tetrahedral diamond lattice, each carbon atom is covalently bonded to its neighbors forming an extremely robust crystalline structure. Some carbon atoms in the lattice are substituted with boron to provide electrical conductivity. Modification strategies of doped diamond electrodes with metallic nanoparticles and/or electropolymerized films are of importance to impart novel characteristics or to improve the performance of diamond electrodes. Biofunctionalization of diamond films is also feasible to foster several useful bioanalytical applications. A plethora of opportunities for nanoscale analytical devices based on conducting diamond is anticipated in the very near future.

  14. Antiferromagnetic Chern Insulators in Noncentrosymmetric Systems

    NASA Astrophysics Data System (ADS)

    Jiang, Kun; Zhou, Sen; Dai, Xi; Wang, Ziqiang

    2018-04-01

    We investigate a new class of topological antiferromagnetic (AF) Chern insulators driven by electronic interactions in two-dimensional systems without inversion symmetry. Despite the absence of a net magnetization, AF Chern insulators (AFCI) possess a nonzero Chern number C and exhibit the quantum anomalous Hall effect (QAHE). Their existence is guaranteed by the bifurcation of the boundary line of Weyl points between a quantum spin Hall insulator and a topologically trivial phase with the emergence of AF long-range order. As a concrete example, we study the phase structure of the honeycomb lattice Kane-Mele model as a function of the inversion-breaking ionic potential and the Hubbard interaction. We find an easy z axis C =1 AFCI phase and a spin-flop transition to a topologically trivial x y plane collinear antiferromagnet. We propose experimental realizations of the AFCI and QAHE in correlated electron materials and cold atom systems.

  15. Terahertz electrical writing speed in an antiferromagnetic memory

    PubMed Central

    Kašpar, Zdeněk; Campion, Richard P.; Baumgartner, Manuel; Sinova, Jairo; Kužel, Petr; Müller, Melanie; Kampfrath, Tobias

    2018-01-01

    The speed of writing of state-of-the-art ferromagnetic memories is physically limited by an intrinsic gigahertz threshold. Recently, realization of memory devices based on antiferromagnets, in which spin directions periodically alternate from one atomic lattice site to the next has moved research in an alternative direction. We experimentally demonstrate at room temperature that the speed of reversible electrical writing in a memory device can be scaled up to terahertz using an antiferromagnet. A current-induced spin-torque mechanism is responsible for the switching in our memory devices throughout the 12-order-of-magnitude range of writing speeds from hertz to terahertz. Our work opens the path toward the development of memory-logic technology reaching the elusive terahertz band. PMID:29740601

  16. Multi-functional laser fabrication of diamond (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Salter, Patrick S.; Booth, Martin J.

    2017-03-01

    Ultrafast laser fabrication enables micro-structuring of diamond in 3D with a range of functionality. An ultrashort pulsed beam focused beneath the diamond surface induces structural modifications which are highly localised in three dimensions. At high pulse energy, the laser breaks down the diamond lattice at focus to form a graphitic phase. We demonstrate high resolution analysis of the structural changes revealing the graphitic phase to be formed of small clusters ( 100 nm in size) of amorphous sp2 bonded carbon accompanied by localised cracking of the diamond. When the laser focus is traced through the diamond, continuous graphitic wires are created which are electrically conductive. We have used such wires to fabricate large-area 3D radiation sensors which have been employed for the detection of high energy protons. Such graphitic wires have an associated stress field and a related localised modulation of the refractive index. We have recently written combinations of graphitic tracks in diamond to engineer stress fields to give a desired refractive index distribution and form an optical waveguide. Type III waveguides are demonstrated that allow guiding of both polarization states. We also show that by reducing the laser pulse energy, it is possible to avoid complete breakdown of the diamond lattice and simply introduce an ensemble of vacancies within the focal volume. This can be used to create single coherent NV centres in diamond isolated in 3D. All these processes are improved by processing at high numerical aperture (NA), for which adaptive optics aberration correction is essential.

  17. Static and dynamical properties of the spin-1/2 equilateral triangular-lattice antiferromagnet Ba 3CoSb 2O 9

    DOE PAGES

    Ma, Jie; Kamiya, Yoshitomo; Hong, Tao; ...

    2016-02-24

    We present single-crystal neutron scattering measurements of the spin-1/2 equilateral triangular-lattice antiferromagnet Ba 3CoSb 2O 9. Besides confirming that the Co 2+ magnetic moments lie in the ab plane for zero magnetic field and then determining all the exchange parameters of the minimal quasi-2D spin Hamiltonian, we provide conclusive experimental evidence of magnon decay through observation of intrinsic line broadening. Through detailed comparisons with the linear and nonlinear spin-wave theories, we also point out that the large-S approximation, which is conventionally employed to predict magnon decay in noncollinear magnets, is inadequate to explain our experimental observation. Hence, our results callmore » for a new theoretical framework for describing excitation spectra in low-dimensional frustrated magnets under strong quantum effects.« less

  18. Observation of twinning in diamond CVD films

    NASA Astrophysics Data System (ADS)

    Marciniak, W.; Fabisiak, K.; Orzeszko, S.; Rozploch, F.

    1992-10-01

    Diamond particles prepared by dc-glow-discharge enhanced HF-CVD hybrid method, from a mixture of acetone vapor and hydrogen gas have been examined by TEM, RHEED and dark field method of observation. Results suggest the presence of twinned diamond particles, which can be reconstructed by a sequence of twinning operations. Contrary to the 'stick model' of the lattice, very common five-fold symmetry of diamond microcrystals may be obtained by applying a number of edge dislocations rather than the continuous deformation of many tetrahedral C-C bonds.

  19. Strain effect on magnetic property of antiferromagnetic insulator SmFeO3

    NASA Astrophysics Data System (ADS)

    Kuroda, M.; Tanahashi, N.; Hajiri, T.; Ueda, K.; Asano, H.

    2018-05-01

    Thin films and heterostructures of antiferromagnetic insulator SmFeO3 were fabricated on LaAlO3 (001) substrates by magnetron sputtering, and their structural, magnetic properties were investigated. It was found that epitaxially strained thin films showed a pronounced magnetic anisotropy with the enhanced magnetization up to 65 emu/cc, which is approximately ten times larger than the bulk value. The observed enhancement of magnetization was considered to be due to the lattice distortion and the non-collinear antiferromagnetic spin ordering of SmFeO3.

  20. Thermodynamic and critical properties of an antiferromagnetically stacked triangular Ising antiferromagnet in a field

    NASA Astrophysics Data System (ADS)

    Žukovič, M.; Borovský, M.; Bobák, A.

    2018-05-01

    We study a stacked triangular lattice Ising model with both intra- and inter-plane antiferromagnetic interactions in a field, by Monte Carlo simulation. We find only one phase transition from a paramagnetic to a partially disordered phase, which is of second order and 3D XY universality class. At low temperatures we identify two highly degenerate phases: at smaller (larger) fields the system shows long-range ordering in the stacking direction (within planes) but not in the planes (stacking direction). Nevertheless, crossovers to these phases do not have a character of conventional phase transitions but rather linear-chain-like excitations.

  1. Quantum magnetic phase transition in square-octagon lattice.

    PubMed

    Bao, An; Tao, Hong-Shuai; Liu, Hai-Di; Zhang, XiaoZhong; Liu, Wu-Ming

    2014-11-05

    Quantum magnetic phase transition in square-octagon lattice was investigated by cellular dynamical mean field theory combining with continuous time quantum Monte Carlo algorithm. Based on the systematic calculation on the density of states, the double occupancy and the Fermi surface evolution of square-octagon lattice, we presented the phase diagrams of this splendid many particle system. The competition between the temperature and the on-site repulsive interaction in the isotropic square-octagon lattice has shown that both antiferromagnetic and paramagnetic order can be found not only in the metal phase, but also in the insulating phase. Antiferromagnetic metal phase disappeared in the phase diagram that consists of the anisotropic parameter λ and the on-site repulsive interaction U while the other phases still can be detected at T = 0.17. The results found in this work may contribute to understand well the properties of some consuming systems that have square-octagon structure, quasi square-octagon structure, such as ZnO.

  2. Magnetic phase transition in Heisenberg antiferromagnetic films with easy-axis single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Pan, Kok-Kwei

    2012-03-01

    The staggered susceptibility of spin-1 and spin-3/2 Heisenberg antiferromagnet with easy-axis single-ion anisotropy on the cubic lattice films consisting of n=2, 3, 4, 5 and 6 interacting square lattice layers is studied by high-temperature series expansions. Sixth order series in J/kBT have been obtained for free-surface boundary conditions. The dependence of the Néel temperature on film thickness n and easy-axis anisotropy D has been investigated. The shifts of the Néel temperature from the bulk value can be described by a power law n with a shift exponent λ, where λ is the inverse of the bulk correlation length exponent. The effect of easy-axis single-ion anisotropy on shift exponent of antiferromagnetic films has been studied. A comparison is made with related works. The results obtained are qualitatively consistent with the predictions of finite-size scaling theory.

  3. DNA-controlled assembly of a NaTl lattice structure from gold nanoparticles and protein nanoparticles

    NASA Astrophysics Data System (ADS)

    Cigler, Petr; Lytton-Jean, Abigail K. R.; Anderson, Daniel G.; Finn, M. G.; Park, Sung Yong

    2010-11-01

    The formation of diamond structures from tailorable building blocks is an important goal in colloidal crystallization because the non-compact diamond lattice is an essential component of photonic crystals for the visible-light range. However, designing nanoparticle systems that self-assemble into non-compact structures has proved difficult. Although several methods have been proposed, single-component nanoparticle assembly of a diamond structure has not been reported. Binary systems, in which at least one component is arranged in a diamond lattice, provide alternatives, but control of interparticle interactions is critical to this approach. DNA has been used for this purpose in a number of systems. Here we show the creation of a non-compact lattice by DNA-programmed crystallization using surface-modified Qβ phage capsid particles and gold nanoparticles, engineered to have similar effective radii. When combined with the proper connecting oligonucleotides, these components form NaTl-type colloidal crystalline structures containing interpenetrating organic and inorganic diamond lattices, as determined by small-angle X-ray scattering. DNA control of assembly is therefore shown to be compatible with particles possessing very different properties, as long as they are amenable to surface modification.

  4. Revisiting the ground state of CoAl 2 O 4 : Comparison to the conventional antiferromagnet MnAl 2 O 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDougall, Gregory J.; Aczel, Adam A.; Su, Yixi

    The A-site spinel material CoAl 2O 4 is a physical realization of the frustrated diamond-lattice antiferromagnet, a model in which unique incommensurate or “spin-spiral-liquid” ground states are predicted. Our previous single-crystal neutron scattering study instead classified it as a “kinetically inhibited” antiferromagnet, where the long-ranged correlations of a collinear Néel ground state are blocked by the freezing of domain-wall motion below a first-order phase transition at T*=6.5 K. This study provides new data sets from a number of experiments, which support and expand this work in several important ways. We show that the phenomenology leading to the kinetically inhibited ordermore » is unaffected by sample measured and instrument resolution, while new low-temperature measurements reveal spin correlations are unchanging between T=2 K and 250 mK, consistent with a frozen state. Polarized diffuse neutron measurements show several interesting magnetic features, which can be entirely explained by the existence of short-ranged Néel order. Finally, and crucially, this paper presents some neutron scattering studies of single crystalline MnAl 2O 4, which acts as an unfrustrated analog to CoAl 2O 4 and shows all the hallmarks of a classical antiferromagnet with a continuous phase transition to Néel order at T N=39 K. Direct comparison between the two compounds indicates that CoAl 2O 4 is unique, not in the nature of high-temperature diffuse correlations, but rather in the nature of the frozen state below T*. Finally, the higher level of cation inversion in the MnAl 2O 4 sample indicates that this behavior is primarily an effect of greater next-nearest-neighbor exchange.« less

  5. Revisiting the ground state of CoAl 2 O 4 : Comparison to the conventional antiferromagnet MnAl 2 O 4

    DOE PAGES

    MacDougall, Gregory J.; Aczel, Adam A.; Su, Yixi; ...

    2016-11-17

    The A-site spinel material CoAl 2O 4 is a physical realization of the frustrated diamond-lattice antiferromagnet, a model in which unique incommensurate or “spin-spiral-liquid” ground states are predicted. Our previous single-crystal neutron scattering study instead classified it as a “kinetically inhibited” antiferromagnet, where the long-ranged correlations of a collinear Néel ground state are blocked by the freezing of domain-wall motion below a first-order phase transition at T*=6.5 K. This study provides new data sets from a number of experiments, which support and expand this work in several important ways. We show that the phenomenology leading to the kinetically inhibited ordermore » is unaffected by sample measured and instrument resolution, while new low-temperature measurements reveal spin correlations are unchanging between T=2 K and 250 mK, consistent with a frozen state. Polarized diffuse neutron measurements show several interesting magnetic features, which can be entirely explained by the existence of short-ranged Néel order. Finally, and crucially, this paper presents some neutron scattering studies of single crystalline MnAl 2O 4, which acts as an unfrustrated analog to CoAl 2O 4 and shows all the hallmarks of a classical antiferromagnet with a continuous phase transition to Néel order at T N=39 K. Direct comparison between the two compounds indicates that CoAl 2O 4 is unique, not in the nature of high-temperature diffuse correlations, but rather in the nature of the frozen state below T*. Finally, the higher level of cation inversion in the MnAl 2O 4 sample indicates that this behavior is primarily an effect of greater next-nearest-neighbor exchange.« less

  6. Effect of a Nitrogen Impurity on the Fundamental Raman Band of Diamond Single Crystals

    NASA Astrophysics Data System (ADS)

    Gusakov, G. A.; Samtsov, M. P.; Voropay, E. S.

    2018-05-01

    The effect of nitrogen defects in natural and synthetic diamond single crystals on the position and half-width of the fundamental Raman band was investigated. Samples containing the main types of nitrogen lattice defects at impurity contents of 1-1500 ppm were studied. The parameters of the Stokes and anti-Stokes components in Raman spectra of crystals situated in a cell with distilled water to minimize the influence of heating by the exciting laser radiation were analyzed to determine the effect of a nitrogen impurity in the diamond crystal lattice. It was shown that an increase of impurity atoms in the crystals in the studied concentration range resulted in broadening of the Raman band from 1.61 to 2.85 cm-1 and shifting of the maximum to lower frequency from 1332.65 to 1332.3 cm-1. The observed effect was directly proportional to the impurity concentration and depended on the form of the impurity incorporated into the diamond lattice. It was found that the changes in the position and half-width of the fundamental Raman band for diamond were consistent with the magnitude of crystal lattice distortions due to the presence of impurity defects and obeyed the Gruneisen law.

  7. Structure and magnetic properties of oxychalcogenides A2F2Fe2OQ2 (A = Sr, Ba; Q = S, Se) with Fe2O square planar layers representing an antiferromagnetic checkerboard spin lattice.

    PubMed

    Kabbour, Houria; Janod, Etienne; Corraze, Benoît; Danot, Michel; Lee, Changhoon; Whangbo, Myung-Hwan; Cario, Laurent

    2008-07-02

    The oxychalcogenides A2F2Fe2OQ2 (A = Sr, Ba; Q = S, Se), which contain Fe2O square planar layers of the anti-CuO2 type, were predicted using a modular assembly of layered secondary building units and subsequently synthesized. The physical properties of these compounds were characterized using magnetic susceptibility, electrical resistivity, specific heat, (57)Fe Mossbauer, and powder neutron diffraction measurements and also by estimating their exchange interactions on the basis of first-principles density functional theory electronic structure calculations. These compounds are magnetic semiconductors that undergo a long-range antiferromagnetic ordering below 83.6-106.2 K, and their magnetic properties are well-described by a two-dimensional Ising model. The dominant antiferromagnetic spin exchange interaction between S = 2 Fe(2+) ions occurs through corner-sharing Fe-O-Fe bridges. Moreover, the calculated spin exchange interactions show that the A2F2Fe2OQ2 (A = Sr, Ba; Q = S, Se) compounds represent a rare example of a frustrated antiferromagnetic checkerboard lattice.

  8. Diamond- cBN alloy: A universal cutting material

    DOE PAGES

    Wang, Pei; He, Duanwei; Wang, Liping; ...

    2015-09-08

    Diamond and cubic boron nitride ( cBN) as conventional superhard materials have found widespread industrial applications, but both have inherent limitations. Diamond is not suitable for high-speed cutting of ferrous materials due to its poor chemical inertness, while cBN is only about half as hard as diamond. Because of their affinity in structural lattices and covalent bonding character, diamond and cBN could form alloys that can potentially fill the performance gap. However, the idea has never been demonstrated because samples obtained in the previous studies were too small to be tested for their practical performance. Here, we report the synthesismore » and characterization of transparent bulk diamond- cBN alloy compacts whose diameters (3 mm) are sufficiently large for them to be processed into cutting tools. The testing results show that the diamond- cBN alloy has superior chemical inertness over polycrystalline diamond and higher hardness than single crystal cBN. In conclusion, high-speed cutting tests on hardened steel and granite suggest that diamond- cBN alloy is indeed a universal cutting material.« less

  9. Diamond-cBN alloy: A universal cutting material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Pei; High Pressure Science and Engineering Center and Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, Nevada 89154; He, Duanwei, E-mail: duanweihe@scu.edu.cn

    Diamond and cubic boron nitride (cBN) as conventional superhard materials have found widespread industrial applications, but both have inherent limitations. Diamond is not suitable for high-speed cutting of ferrous materials due to its poor chemical inertness, while cBN is only about half as hard as diamond. Because of their affinity in structural lattices and covalent bonding character, diamond and cBN could form alloys that can potentially fill the performance gap. However, the idea has never been demonstrated because samples obtained in the previous studies were too small to be tested for their practical performance. Here, we report the synthesis andmore » characterization of transparent bulk diamond-cBN alloy compacts whose diameters (3 mm) are sufficiently large for them to be processed into cutting tools. The testing results show that the diamond-cBN alloy has superior chemical inertness over polycrystalline diamond and higher hardness than single crystal cBN. High-speed cutting tests on hardened steel and granite suggest that diamond-cBN alloy is indeed a universal cutting material.« less

  10. Diamond- cBN alloy: A universal cutting material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Pei; He, Duanwei; Wang, Liping

    Diamond and cubic boron nitride ( cBN) as conventional superhard materials have found widespread industrial applications, but both have inherent limitations. Diamond is not suitable for high-speed cutting of ferrous materials due to its poor chemical inertness, while cBN is only about half as hard as diamond. Because of their affinity in structural lattices and covalent bonding character, diamond and cBN could form alloys that can potentially fill the performance gap. However, the idea has never been demonstrated because samples obtained in the previous studies were too small to be tested for their practical performance. Here, we report the synthesismore » and characterization of transparent bulk diamond- cBN alloy compacts whose diameters (3 mm) are sufficiently large for them to be processed into cutting tools. The testing results show that the diamond- cBN alloy has superior chemical inertness over polycrystalline diamond and higher hardness than single crystal cBN. In conclusion, high-speed cutting tests on hardened steel and granite suggest that diamond- cBN alloy is indeed a universal cutting material.« less

  11. Frustrated Magnetism in Low-Dimensional Lattices

    NASA Astrophysics Data System (ADS)

    Tovar, Mayra

    2011-12-01

    In this dissertation we present the results of a theoretical investigation of spin models on two-dimensional and quasi one-dimensional lattices, all unified under the concept of quantum frustrated antiferromagnetism, and all discussing various aspects of the antiferromagnetic Heisenberg model on the kagome lattice. In the Introduction (Chapter 1), we discuss at some length such concepts as frustration and superexchange, among others, which are of common relevance in the rest of the chapters. In Chapter 2, we study the effect of Dzyaloshinskii-Moriya (DM) interactions on the zero-temperature magnetic susceptibility of systems whose low energy can be described by short-range valence bond states. Our work shows that this treatment is consistent with the experimentally observed non-vanishing susceptibility---in the specified temperature limit---of the spin-1/2 kagome antiferromagnetic compound ZnCu3(OH)6Cl2, also known as herbertsmithite. Although the objective of this work is explaining the aforementioned characteristic of the experimental system, our methods are more general and we apply them to the checkerboard and Shastry-Sutherland lattices as well. In Chapter 3, we discuss our findings in the study of ghost-mediated domain wall interactions in the diamondback ladder. These domain walls are the the spin excitations---the kinks and the antikinks---separating the ground states along one chain of the ladder. While as individual entities an antikink is energy costly and a kink energy free, our study finds that both interact via the ghosts that they produce in the opposite side of the ladder from where they are located. Through the study of these ghosts, we find that domain walls proliferate in the system above a critical value of the system's coupling constants. It is this proliferation that makes their treatment as free, non-interacting particles impossible, so we study here their interactions both quantitatively and qualitatively, in a region where the latter are

  12. Mechanical Properties of Optimized Diamond Lattice Structure for Bone Scaffolds Fabricated via Selective Laser Melting.

    PubMed

    Liu, Fei; Zhang, David Z; Zhang, Peng; Zhao, Miao; Jafar, Salman

    2018-03-03

    Developments in selective laser melting (SLM) have enabled the fabrication of periodic cellular lattice structures characterized by suitable properties matching the bone tissue well and by fluid permeability from interconnected structures. These multifunctional performances are significantly affected by cell topology and constitutive properties of applied materials. In this respect, a diamond unit cell was designed in particular volume fractions corresponding to the host bone tissue and optimized with a smooth surface at nodes leading to fewer stress concentrations. There were 33 porous titanium samples with different volume fractions, from 1.28 to 18.6%, manufactured using SLM. All of them were performed under compressive load to determine the deformation and failure mechanisms, accompanied by an in-situ approach using digital image correlation (DIC) to reveal stress-strain evolution. The results showed that lattice structures manufactured by SLM exhibited comparable properties to those of trabecular bone, avoiding the effects of stress-shielding and increasing longevity of implants. The curvature of optimized surface can play a role in regulating the relationship between density and mechanical properties. Owing to the release of stress concentration from optimized surface, the failure mechanism of porous titanium has been changed from the pattern of bottom-up collapse by layer (or cell row) to that of the diagonal (45°) shear band, resulting in the significant enhancement of the structural strength.

  13. Mechanical Properties of Optimized Diamond Lattice Structure for Bone Scaffolds Fabricated via Selective Laser Melting

    PubMed Central

    Zhang, David Z.; Zhang, Peng; Zhao, Miao; Jafar, Salman

    2018-01-01

    Developments in selective laser melting (SLM) have enabled the fabrication of periodic cellular lattice structures characterized by suitable properties matching the bone tissue well and by fluid permeability from interconnected structures. These multifunctional performances are significantly affected by cell topology and constitutive properties of applied materials. In this respect, a diamond unit cell was designed in particular volume fractions corresponding to the host bone tissue and optimized with a smooth surface at nodes leading to fewer stress concentrations. There were 33 porous titanium samples with different volume fractions, from 1.28 to 18.6%, manufactured using SLM. All of them were performed under compressive load to determine the deformation and failure mechanisms, accompanied by an in-situ approach using digital image correlation (DIC) to reveal stress–strain evolution. The results showed that lattice structures manufactured by SLM exhibited comparable properties to those of trabecular bone, avoiding the effects of stress-shielding and increasing longevity of implants. The curvature of optimized surface can play a role in regulating the relationship between density and mechanical properties. Owing to the release of stress concentration from optimized surface, the failure mechanism of porous titanium has been changed from the pattern of bottom-up collapse by layer (or cell row) to that of the diagonal (45°) shear band, resulting in the significant enhancement of the structural strength. PMID:29510492

  14. Quantum criticality and development of antiferromagnetic order in the quasikagome Kondo lattice CeR h1 -xP dxSn

    NASA Astrophysics Data System (ADS)

    Yang, C. L.; Tsuda, S.; Umeo, K.; Yamane, Y.; Onimaru, T.; Takabatake, T.; Kikugawa, N.; Terashima, T.; Uji, S.

    2017-07-01

    CeRhSn with a quasikagome lattice of Ce atoms in the hexagonal c plane has been expected to be in close vicinity to a zero-field quantum criticality derived from magnetic frustration. We have studied how the ground state changes with substitution of Pd for Rh in CeR h1 -xP dxSn (x ≤0.75 ) by measuring the specific heat C , magnetic susceptibilities χdc and χac, magnetization M , electrical resistivity ρ, and magnetoresistance. For x =0 , the field dependence of χac at T =0.03 K shows a peak at B ∥a =3.5 T , confirming the spin-flop crossover in the field applied along the hard axis. The temperature dependence of χac shows a broad maximum at 0.1 K whereas C /T continues to increase down to 0.08 K. For x ≧0.1 ,ρ (T ) is dominated by incoherent Kondo scattering and both C /T and χac(T ) exhibit peaks, indicating the development of an antiferromagnetic order. The ordering temperature rises to 2.5 K as x is increased to 0.75. Our results indicate that the ground state in the quasikagome Kondo lattice CeR h1 -xP dxSn leaves the quantum critical point at x =0 with increasing x as a consequence of suppression of both the magnetic frustration and Kondo effect.

  15. Lattice distortion and stripelike antiferromagnetic order in Ca10(Pt3As8)(Fe2As2)5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapkota, Aashish; Tucker, Gregory S; Ramazanoglu, Mehmet

    2014-09-01

    Ca10(Pt3As8)(Fe2As2)5 is the parent compound for a class of Fe-based high-temperature superconductors where superconductivity with transition temperatures up to 30 K can be introduced by partial element substitution. We present a combined high-resolution high-energy x-ray diffraction and elastic neutron scattering study on a Ca10(Pt3As8)(Fe2As2)5 single crystal. This study reveals the microscopic nature of two distinct and continuous phase transitions to be very similar to other Fe-based high-temperature superconductors: an orthorhombic distortion of the high-temperature tetragonal Fe-As lattice below TS=110(2) K followed by stripelike antiferromagnetic ordering of the Fe moments below TN=96(2) K. These findings demonstrate that major features of themore » Fe-based high-temperature superconductors are very robust against variations in chemical constitution as well as structural imperfection of the layers separating the Fe-As layers from each other and confirms that the Fe-As layers primarily determine the physics in this class of material.« less

  16. Thick homoepitaxial (110)-oriented phosphorus-doped n-type diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balasubramaniam, Y.; Pobedinskas, P., E-mail: paulius.pobedinskas@uhasselt.be; Janssens, S. D.

    2016-08-08

    The fabrication of n-type diamond is essential for the realization of electronic components for extreme environments. We report on the growth of a 66 μm thick homoepitaxial phosphorus-doped diamond on a (110)-oriented diamond substrate, grown at a very high deposition rate of 33 μm h{sup −1}. A pristine diamond lattice is observed by high resolution transmission electron microscopy, which indicates the growth of high quality diamond. About 2.9 × 10{sup 16} cm{sup −3} phosphorus atoms are electrically active as substitutional donors, which is 60% of all incorporated dopant atoms. These results indicate that P-doped (110)-oriented diamond films deposited at high growth rates are promising candidates formore » future use in high-power electronic applications.« less

  17. Topological antiferromagnetic spintronics

    NASA Astrophysics Data System (ADS)

    Šmejkal, Libor; Mokrousov, Yuriy; Yan, Binghai; MacDonald, Allan H.

    2018-03-01

    The recent demonstrations of electrical manipulation and detection of antiferromagnetic spins have opened up a new chapter in the story of spintronics. Here, we review the emerging research field that is exploring the links between antiferromagnetic spintronics and topological structures in real and momentum space. Active topics include proposals to realize Majorana fermions in antiferromagnetic topological superconductors, to control topological protection and Dirac points by manipulating antiferromagnetic order parameters, and to exploit the anomalous and topological Hall effects of zero-net-moment antiferromagnets. We explain the basic concepts behind these proposals, and discuss potential applications of topological antiferromagnetic spintronics.

  18. Possible extinction of Berezinskii-Kosterlitz-Thouless transition by diagonal interactions in the checkerboard lattice

    NASA Astrophysics Data System (ADS)

    Lopes, R. J. C.; Moura, A. R.

    2018-06-01

    We study the thermodynamics of the classical anisotropic antiferromagnetic Heisenberg model in a checkerboard lattice. The checkerboard lattice is distinguished from the antiferromagnetic square lattice (with coupling constant J) by the presence of a diagonal crossing (coupling constant J‧) in half of the sites. This lattice model is the direct analog of the three-dimensional pyrochlore lattice on a two-dimensional surface. Besides, we considered a single-ion anisotropy D that breaks the O (3) symmetry and contributes to planar spin fields. Since the model is two-dimensional endowed with an O (2) symmetry, a Berezinskii-Kosterlitz-Thouless (BKT) transition is expected to take place. We also investigated the BKT temperature as a function of the coupling constants J‧ and D. The problem is developed through a continuous representation given by the O (3) Nonlinear Sigma Model (NLSM). Computer simulations were also carried out, and the results were in accordance with the analytical model.

  19. Intrinsically High Thermoelectric Performance in AgInSe2 n-Type Diamond-Like Compounds.

    PubMed

    Qiu, Pengfei; Qin, Yuting; Zhang, Qihao; Li, Ruoxi; Yang, Jiong; Song, Qingfeng; Tang, Yunshan; Bai, Shengqiang; Shi, Xun; Chen, Lidong

    2018-03-01

    Diamond-like compounds are a promising class of thermoelectric materials, very suitable for real applications. However, almost all high-performance diamond-like thermoelectric materials are p-type semiconductors. The lack of high-performance n-type diamond-like thermoelectric materials greatly restricts the fabrication of diamond-like material-based modules and their real applications. In this work, it is revealed that n-type AgInSe 2 diamond-like compound has intrinsically high thermoelectric performance with a figure of merit ( zT ) of 1.1 at 900 K, comparable to the best p-type diamond-like thermoelectric materials reported before. Such high zT is mainly due to the ultralow lattice thermal conductivity, which is fundamentally limited by the low-frequency Ag-Se "cluster vibrations," as confirmed by ab initio lattice dynamic calculations. Doping Cd at Ag sites significantly improves the thermoelectric performance in the low and medium temperature ranges. By using such high-performance n-type AgInSe 2 -based compounds, the diamond-like thermoelectric module has been fabricated for the first time. An output power of 0.06 W under a temperature difference of 520 K between the two ends of the module is obtained. This work opens a new window for the applications using the diamond-like thermoelectric materials.

  20. Study of the effects of focused high-energy boron ion implantation in diamond

    NASA Astrophysics Data System (ADS)

    Ynsa, M. D.; Agulló-Rueda, F.; Gordillo, N.; Maira, A.; Moreno-Cerrada, D.; Ramos, M. A.

    2017-08-01

    Boron-doped diamond is a material with a great technological and industrial interest because of its exceptional chemical, physical and structural properties. At modest boron concentrations, insulating diamond becomes a p-type semiconductor and at higher concentrations a superconducting metal at low temperature. The most conventional preparation method used so far, has been the homogeneous incorporation of boron doping during the diamond synthesis carried out either with high-pressure sintering of crystals or by chemical vapour deposition (CVD) of films. With these methods, high boron concentration can be included without distorting significantly the diamond crystalline lattice. However, it is complicated to manufacture boron-doped microstructures. A promising alternative to produce such microstructures could be the implantation of focused high-energy boron ions, although boron fluences are limited by the damage produced in diamond. In this work, the effect of focused high-energy boron ion implantation in single crystals of diamond is studied under different irradiation fluences and conditions. Micro-Raman spectra of the sample were measured before and after annealing at 1000 °C as a function of irradiation fluence, for both superficial and buried boron implantation, to assess the changes in the diamond lattice by the creation of vacancies and defects and their degree of recovery after annealing.

  1. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer

    NASA Astrophysics Data System (ADS)

    Gross, I.; Akhtar, W.; Garcia, V.; Martínez, L. J.; Chouaieb, S.; Garcia, K.; Carrétéro, C.; Barthélémy, A.; Appel, P.; Maletinsky, P.; Kim, J.-V.; Chauleau, J. Y.; Jaouen, N.; Viret, M.; Bibes, M.; Fusil, S.; Jacques, V.

    2017-09-01

    Although ferromagnets have many applications, their large magnetization and the resulting energy cost for switching magnetic moments bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem, and often have extra functionalities: non-collinear spin order may break space-inversion symmetry and thus allow electric-field control of magnetism, or may produce emergent spin-orbit effects that enable efficient spin-charge interconversion. To harness these traits for next-generation spintronics, the nanoscale control and imaging capabilities that are now routine for ferromagnets must be developed for antiferromagnetic systems. Here, using a non-invasive, scanning single-spin magnetometer based on a nitrogen-vacancy defect in diamond, we demonstrate real-space visualization of non-collinear antiferromagnetic order in a magnetic thin film at room temperature. We image the spin cycloid of a multiferroic bismuth ferrite (BiFeO3) thin film and extract a period of about 70 nanometres, consistent with values determined by macroscopic diffraction. In addition, we take advantage of the magnetoelectric coupling present in BiFeO3 to manipulate the cycloid propagation direction by an electric field. Besides highlighting the potential of nitrogen-vacancy magnetometry for imaging complex antiferromagnetic orders at the nanoscale, these results demonstrate how BiFeO3 can be used in the design of reconfigurable nanoscale spin textures.

  2. X-ray diffraction characterization of epitaxial CVD diamond films with natural and isotopically modified compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokhorov, I. A., E-mail: igor.prokhorov@mail.ru; Voloshin, A. E.; Ralchenko, V. G.

    2016-11-15

    Comparative investigations of homoepitaxial diamond films with natural and modified isotopic compositions, grown by chemical vapor deposition (CVD) on type-Ib diamond substrates, are carried out using double-crystal X-ray diffractometry and topography. The lattice mismatch between the substrate and film is precisely measured. A decrease in the lattice constant on the order of (Δa/a){sub relax} ∼ (1.1–1.2) × 10{sup –4} is recorded in isotopically modified {sup 13}C (99.96%) films. The critical thicknesses of pseudomorphic diamond films is calculated. A significant increase in the dislocation density due to the elastic stress relaxation is revealed by X-ray topography.

  3. Antiferromagnetic spintronics

    NASA Astrophysics Data System (ADS)

    Baltz, V.; Manchon, A.; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y.

    2018-01-01

    Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and "magnetization" dynamics, and spin-orbit related phenomena, such as (tunnel) anisotropic magnetoresistance, spin Hall, and inverse spin galvanic effects. Effects related to spin caloritronics, such as the spin Seebeck effect, are linked to the transport of magnons in antiferromagnets. The propagation of spin waves and spin superfluids in antiferromagnets is also covered.

  4. Antiferromagnetic domain wall as spin wave polarizer and retarder.

    PubMed

    Lan, Jin; Yu, Weichao; Xiao, Jiang

    2017-08-02

    As a collective quasiparticle excitation of the magnetic order in magnetic materials, spin wave, or magnon when quantized, can propagate in both conducting and insulating materials. Like the manipulation of its optical counterpart, the ability to manipulate spin wave polarization is not only important but also fundamental for magnonics. With only one type of magnetic lattice, ferromagnets can only accommodate the right-handed circularly polarized spin wave modes, which leaves no freedom for polarization manipulation. In contrast, antiferromagnets, with two opposite magnetic sublattices, have both left and right-circular polarizations, and all linear and elliptical polarizations. Here we demonstrate theoretically and confirm by micromagnetic simulations that, in the presence of Dzyaloshinskii-Moriya interaction, an antiferromagnetic domain wall acts naturally as a spin wave polarizer or a spin wave retarder (waveplate). Our findings provide extremely simple yet flexible routes toward magnonic information processing by harnessing the polarization degree of freedom of spin wave.Spin waves are promising candidates as carriers for energy-efficient information processing, but they have not yet been fully explored application wise. Here the authors theoretically demonstrate that antiferromagnetic domain walls are naturally spin wave polarizers and retarders, two key components of magnonic devices.

  5. Spin configurations on a decorated square lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mert, Gülistan; Mert, H. Şevki

    Spin configurations on a decorated square lattice are investigated using Bertaut’s microscopic method. We have obtained collinear and non-collinear (canted) modes for the given wave vectors in the ground state. We have found ferromagnetic and antiferromagnetic commensurate spin configurations. We have found canted incommensurate spin configurations.

  6. Diamond family of colloidal supercrystals as phononic metamaterials

    NASA Astrophysics Data System (ADS)

    Aryana, Kiumars; Zanjani, Mehdi B.

    2018-05-01

    Colloidal crystals provide a versatile platform for designing phononic metamaterials with exciting applications for sound and heat management. New advances in the synthesis and self-assembly of anisotropic building blocks such as colloidal clusters have expanded the library of available micro- and nano-scale ordered multicomponent structures. Diamond-like supercrystals formed by such clusters and spherical particles are notable examples that include a rich family of crystal symmetries such as diamond, double diamond, zinc-blende, and MgCu2. This work investigates the design of phononic supercrystals by predicting and analyzing phonon transport properties. In addition to size variation and structural diversity, these supercrystals encapsulate different sub-lattice types within one structure. Computational models are used to calculate the effect of various parameters on the phononic spectrum of diamond-like supercrystals. The results show that structures with relatively small or large filling factors (f > 0.65 or f < 0.45) include smaller bandgaps compared to those with medium filling factors (0.65 > f > 0.45). The double diamond and zinc-blende structures render the largest bandgap size compared to the other supercrystals studied in this paper. Additionally, this article discusses the effect of incorporating various configurations of sub-lattices by selecting different material compositions for the building blocks. The results suggest that, for the same structure, there exist multiple phononic variants with drastically different band structures. This study provides a valuable insight for evaluating novel colloidal supercrystals for phononic applications and guides the future experimental work for the synthesis of colloidal structures with desired phononic behavior.

  7. Adhesion at WC/diamond interfaces - A theoretical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padmanabhan, Haricharan; Rao, M. S. Ramachandra; Nanda, B. R. K., E-mail: nandab@iitm.ac.in

    2015-06-24

    We investigate the adhesion at the interface of face-centered tungsten-carbide (001) and diamond (001) from density-functional calculations. Four high-symmetry model interfaces, representing different lattice orientations for either side of the interface, are constructed to incorporate different degrees of strain arising due to lattice mismatch. The adhesion, estimated from the ideal work of separation, is found to be in the range of 4 - 7 J m{sup −2} and is comparable to that of metal-carbide interfaces. Maximum adhesion occurs when WC and diamond slabs have the same orientation, even though such a growth induces large epitaxial strain at the interface. Frommore » electronic structure calculations, we attribute the adhesion to covalent interaction between carbon p-orbitals as well as partial ionic interaction between the tungsten d- and carbon p-orbitals across the interface.« less

  8. NMR studies of the incommensurate helical antiferromagnet EuCo 2 P 2 : Determination of antiferromagnetic propagation vector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higa, Nonoka; Ding, Qing -Ping; Yogi, Mamoru

    Recently, Q.-P. Ding et al. reported that their nuclear magnetic resonance (NMR) study on EuCo 2As 2 successfully characterized the antiferromagnetic (AFM) propagation vector of the incommensurate helix AFM state, showing that NMR is a unique tool for determination of the spin structures in incommensurate helical AFMs. Motivated by this work, we have carried out 153Eu, 31P, and 59Co NMR measurements on the helical antiferromagnet EuCo 2P 2 with an AFM ordering temperature T N = 66.5 K. An incommensurate helical AFM structure was clearly confirmed by 153Eu and 31P NMR spectra on single-crystalline EuCo 2P 2 in zero magneticmore » field at 1.6 K and its external magnetic field dependence. Furthermore, based on 59Co NMR data in both the paramagnetic and incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector k = (0,0,0.73±0.09)2π/c, where c is the c-axis lattice parameter. As a result, the temperature dependence of k is also discussed.« less

  9. NMR studies of the incommensurate helical antiferromagnet EuCo 2 P 2 : Determination of antiferromagnetic propagation vector

    DOE PAGES

    Higa, Nonoka; Ding, Qing -Ping; Yogi, Mamoru; ...

    2017-07-06

    Recently, Q.-P. Ding et al. reported that their nuclear magnetic resonance (NMR) study on EuCo 2As 2 successfully characterized the antiferromagnetic (AFM) propagation vector of the incommensurate helix AFM state, showing that NMR is a unique tool for determination of the spin structures in incommensurate helical AFMs. Motivated by this work, we have carried out 153Eu, 31P, and 59Co NMR measurements on the helical antiferromagnet EuCo 2P 2 with an AFM ordering temperature T N = 66.5 K. An incommensurate helical AFM structure was clearly confirmed by 153Eu and 31P NMR spectra on single-crystalline EuCo 2P 2 in zero magneticmore » field at 1.6 K and its external magnetic field dependence. Furthermore, based on 59Co NMR data in both the paramagnetic and incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector k = (0,0,0.73±0.09)2π/c, where c is the c-axis lattice parameter. As a result, the temperature dependence of k is also discussed.« less

  10. Charge dynamics of the antiferromagnetically ordered Mott insulator

    NASA Astrophysics Data System (ADS)

    Han, Xing-Jie; Liu, Yu; Liu, Zhi-Yuan; Li, Xin; Chen, Jing; Liao, Hai-Jun; Xie, Zhi-Yuan; Normand, B.; Xiang, Tao

    2016-10-01

    We introduce a slave-fermion formulation in which to study the charge dynamics of the half-filled Hubbard model on the square lattice. In this description, the charge degrees of freedom are represented by fermionic holons and doublons and the Mott-insulating characteristics of the ground state are the consequence of holon-doublon bound-state formation. The bosonic spin degrees of freedom are described by the antiferromagnetic Heisenberg model, yielding long-ranged (Néel) magnetic order at zero temperature. Within this framework and in the self-consistent Born approximation, we perform systematic calculations of the average double occupancy, the electronic density of states, the spectral function and the optical conductivity. Qualitatively, our method reproduces the lower and upper Hubbard bands, the spectral-weight transfer into a coherent quasiparticle band at their lower edges and the renormalisation of the Mott gap, which is associated with holon-doublon binding, due to the interactions of both quasiparticle species with the magnons. The zeros of the Green function at the chemical potential give the Luttinger volume, the poles of the self-energy reflect the underlying quasiparticle dispersion with a spin-renormalised hopping parameter and the optical gap is directly related to the Mott gap. Quantitatively, the square-lattice Hubbard model is one of the best-characterised problems in correlated condensed matter and many numerical calculations, all with different strengths and weaknesses, exist with which to benchmark our approach. From the semi-quantitative accuracy of our results for all but the weakest interaction strengths, we conclude that a self-consistent treatment of the spin-fluctuation effects on the charge degrees of freedom captures all the essential physics of the antiferromagnetic Mott-Hubbard insulator. We remark in addition that an analytical approximation with these properties serves a vital function in developing a full understanding of the

  11. Dipolar order by disorder in the classical Heisenberg antiferromagnet on the kagome lattice

    NASA Astrophysics Data System (ADS)

    Chern, Gia-Wei

    2014-03-01

    The first experiments on the ``kagome bilayer'' SCGO triggered a wave of interest in kagome antiferromagnets in particular, and frustrated systems in general. A cluster of early seminal theoretical papers established kagome magnets as model systems for novel ordering phenomena, discussing in particular spin liquidity, partial order, disorder-free glassiness and order by disorder. Despite significant recent progress in understanding the ground state for the quantum S = 1 / 2 model, the nature of the low-temperature phase for the classical kagome Heisenberg antiferromagnet has remained a mystery: the non-linear nature of the fluctuations around the exponentially numerous harmonically degenerate ground states has not permitted a controlled theory, while its complex energy landscape has precluded numerical simulations at low temperature. Here we present an efficient Monte Carlo algorithm which removes the latter obstacle. Our simulations detect a low-temperature regime in which correlations saturate at a remarkably small value. Feeding these results into an effective model and analyzing the results in the framework of an appropriate field theory implies the presence of long-range dipolar spin order with a tripled unit cell.

  12. Simple full micromagnetic model of exchange bias behavior in ferro/antiferromagnetic layered structures (abstract)

    NASA Astrophysics Data System (ADS)

    Koon, Norman C.

    1997-04-01

    It is shown using full micromagnetic relaxation calculations that exchange bias behavior is predicted for single-crystal ferro/antiferromagnetic layers with a fully compensated interface. The particular example most fully studied has a bcc/bct lattice structure with a fully compensated (110) interface plane. Only bilinear Heisenberg exchange was assumed, with anisotropy only in the antiferromagnet. In spite of the intuitive notion that exchange coupling between a ferromagnet and an antiferromagnet across a fully compensated plane of the antiferromagnet should be zero, we find strong coupling, comparable to the bilinear exchange, with a 90° angle between the ferromagnetic and antiferromagnetic axes of layers far from the interface in absence of an applied field. Even though the 90° coupling has characteristics resembling "biquadratic" exchange, it originates entirely from frustrated bilinear exchange. The development of exchange bias is found to originate from the formation of a domain wall in the antiferromagnet via the strong 90° exchange coupling and pinning of the wall by the magnetocrystalline anisotropy in the antiferromagnet. Because the large demagnetizing factor of the ferromagnet tends to confine its magnetization to the plane, the exchange bias is found to depend mainly on the strength and the symmetry of the in-plane component of anisotropy. Although little effort was made to analyze specific systems, the model reproduces many of the qualitative features observed in real exchange bias systems and gives reasonable semiquantitative estimates for the bias field when exchange and anisotropy values consistent with real systems are used.

  13. Squeezed Dirac and topological magnons in a bosonic honeycomb optical lattice

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.; Nsofini, J.

    2017-11-01

    Quantum information storage using charge-neutral quasiparticles is expected to play a crucial role in the future of quantum computers. In this regard, magnons or collective spin-wave excitations in solid-state materials are promising candidates in the future of quantum computing. Here, we study the quantum squeezing of Dirac and topological magnons in a bosonic honeycomb optical lattice with spin-orbit interaction by utilizing the mapping to quantum spin-1/2 XYZ Heisenberg model on the honeycomb lattice with discrete Z2 symmetry and a Dzyaloshinskii-Moriya interaction. We show that the squeezed magnons can be controlled by the Z2 anisotropy and demonstrate how the noise in the system is periodically modified in the ferromagnetic and antiferromagnetic phases of the model. Our results also apply to solid-state honeycomb (anti)ferromagnetic insulators.

  14. Squeezed Dirac and topological magnons in a bosonic honeycomb optical lattice.

    PubMed

    Owerre, S A; Nsofini, J

    2017-10-19

    Quantum information storage using charge-neutral quasiparticles is expected to play a crucial role in the future of quantum computers. In this regard, magnons or collective spin-wave excitations in solid-state materials are promising candidates in the future of quantum computing. Here, we study the quantum squeezing of Dirac and topological magnons in a bosonic honeycomb optical lattice with spin-orbit interaction by utilizing the mapping to quantum spin-[Formula: see text] XYZ Heisenberg model on the honeycomb lattice with discrete Z 2 symmetry and a Dzyaloshinskii-Moriya interaction. We show that the squeezed magnons can be controlled by the Z 2 anisotropy and demonstrate how the noise in the system is periodically modified in the ferromagnetic and antiferromagnetic phases of the model. Our results also apply to solid-state honeycomb (anti)ferromagnetic insulators.

  15. Order by disorder and gaugelike degeneracy in a quantum pyrochlore antiferromagnet.

    PubMed

    Henley, Christopher L

    2006-02-03

    The (three-dimensional) pyrochlore lattice antiferromagnet with Heisenberg spins of large spin length S is a highly frustrated model with a macroscopic degeneracy of classical ground states. The zero-point energy of (harmonic-order) spin-wave fluctuations distinguishes a subset of these states. I derive an approximate but illuminating effective Hamiltonian, acting within the subspace of Ising spin configurations representing the collinear ground states. It consists of products of Ising spins around loops, i.e., has the form of a Z2 lattice gauge theory. The remaining ground-state entropy is still infinite but not extensive, being O(L) for system size O(L3). All these ground states have unit cells bigger than those considered previously.

  16. Topological magnon bands in ferromagnetic star lattice.

    PubMed

    Owerre, S A

    2017-05-10

    The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1-3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii-Moriya (DM) spin-orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases.

  17. Diamond structure recovery during ion irradiation at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Deslandes, Alec; Guenette, Mathew C.; Belay, Kidane; Elliman, Robert G.; Karatchevtseva, Inna; Thomsen, Lars; Riley, Daniel P.; Lumpkin, Gregory R.

    2015-12-01

    CVD diamond is irradiated by 5 MeV carbon ions, with each sample held at a different temperature (300-873 K) during irradiations. The defect structures resulting from the irradiations are evident as vacancy, interstitial and amorphous carbon signals in Raman spectra. The observed variation of the full width at half maximum (FWHM) and peak position of the diamond peak suggests that disorder in the diamond lattice is reduced for high temperature irradiations. The dumbbell interstitial signal is reduced for irradiations at 873 K, which suggests this defect is unstable at these temperatures and that interstitials have migrated to crystal surfaces. Near edge X-ray absorption fine structure (NEXAFS) spectroscopy results indicate that damage to the diamond structure at the surface has occurred for room temperature irradiations, however, this structure is at least partially recovered for irradiations performed at 473 K and above. The results suggest that, in a high temperature irradiation environment such as a nuclear fusion device, in situ annealing of radiation-created defects can maintain the diamond structure and prolong the lifetime of diamond components.

  18. Reentrant behavior in the nearest-neighbor Ising antiferromagnet in a magnetic field

    NASA Astrophysics Data System (ADS)

    Neto, Minos A.; de Sousa, J. Ricardo

    2004-12-01

    Motived by the H-T phase diagram in the bcc Ising antiferromagnetic with nearest-neighbor interactions obtained by Monte Carlo simulation [Landau, Phys. Rev. B 16, 4164 (1977)] that shows a reentrant behavior at low temperature, with two critical temperatures in magnetic field about 2% greater than the critical value Hc=8J , we apply the effective field renormalization group (EFRG) approach in this model on three-dimensional lattices (simple cubic-sc and body centered cubic-bcc). We find that the critical curve TN(H) exhibits a maximum point around of H≃Hc only in the bcc lattice case. We also discuss the critical behavior by the effective field theory in clusters with one (EFT-1) and two (EFT-2) spins, and a reentrant behavior is observed for the sc and bcc lattices. We have compared our results of EFRG in the bcc lattice with Monte Carlo and series expansion, and we observe a good accordance between the methods.

  19. Graded Index Silicon Geranium on Lattice Matched Silicon Geranium Semiconductor Alloy

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R., Jr. (Inventor); Stoakley, Diane M. (Inventor)

    2009-01-01

    A lattice matched silicon germanium (SiGe) semiconductive alloy is formed when a {111} crystal plane of a cubic diamond structure SiGe is grown on the {0001} C-plane of a single crystalline Al2O3 substrate such that a <110> orientation of the cubic diamond structure SiGe is aligned with a <1,0,-1,0> orientation of the {0001} C-plane. A lattice match between the substrate and the SiGe is achieved by using a SiGe composition that is 0.7223 atomic percent silicon and 0.2777 atomic percent germanium. A layer of Si(1-x), ,Ge(x) is formed on the cubic diamond structure SiGe. The value of X (i) defines an atomic percent of germanium satisfying 0.2277diamond structure SiGe, and (iii) increases linearly with the thickness of the layer of Si(1-x)Ge(x).

  20. Antiferromagnetic opto-spintronics

    NASA Astrophysics Data System (ADS)

    Němec, P.; Fiebig, M.; Kampfrath, T.; Kimel, A. V.

    2018-03-01

    Control and detection of spin order in ferromagnetic materials is the main principle enabling magnetic information to be stored and read in current technologies. Antiferromagnetic materials, on the other hand, are far less utilized, despite having some appealing features. For instance, the absence of net magnetization and stray fields eliminates crosstalk between neighbouring devices, and the absence of a primary macroscopic magnetization makes spin manipulation in antiferromagnets inherently faster than in ferromagnets. However, control of spins in antiferromagnets requires exceedingly high magnetic fields, and antiferromagnetic order cannot be detected with conventional magnetometry. Here we provide an overview and illustrative examples of how electromagnetic radiation can be used for probing and modification of the magnetic order in antiferromagnets. We also discuss possible research directions that are anticipated to be among the main topics defining the future of this rapidly developing field.

  1. Perspectives of antiferromagnetic spintronics

    NASA Astrophysics Data System (ADS)

    Jungfleisch, Matthias B.; Zhang, Wei; Hoffmann, Axel

    2018-04-01

    Antiferromagnets are promising for future spintronic applications owing to their advantageous properties: They are magnetically ordered, but neighboring magnetic moments point in opposite directions, which results in zero net magnetization. This means antiferromagnets produce no stray fields and are insensitive to external magnetic field perturbations. Furthermore, they show intrinsic high frequency dynamics, exhibit considerable spin-orbit and magneto-transport effects. Over the past decade, it has been realized that antiferromagnets have more to offer than just being utilized as passive components in exchange bias applications. This development resulted in a paradigm shift, which opens the pathway to novel concepts using antiferromagnets for spin-based technologies and applications. This article gives a broad perspective on antiferromagnetic spintronics. In particular, the manipulation and detection of antiferromagnetic states by spintronics effects, as well as spin transport and dynamics in antiferromagnetic materials will be discussed. We will also outline current challenges and future research directions in this emerging field.

  2. Frustrated ground state in the metallic Ising antiferromagnet Nd2Ni2In

    NASA Astrophysics Data System (ADS)

    Sala, G.; Mašková, S.; Stone, M. B.

    2017-10-01

    We used inelastic neutron scattering measurements to examine the intermetallic Ising antiferromagnet Nd2Ni2In . The dynamical structure factor displays a spectrum with multiple crystal field excitations. These crystal field excitations consist of a set of four transitions covering a range of energies between 4 and 80 meV. The spectrum is very sensitive to the temperature, and we observed a softening and a shift in the energies above the transition temperature of the system. The analysis of the crystalline electric field scheme confirms the Ising nature of the spins and their orientation as proposed by previous studies. We characterized Nd2Ni2In as a large moment intermetallic antiferromagnet with the potential to support a geometrically frustrated Shastry-Sutherland lattice.

  3. Squeezed Dirac and Topological Magnons in a Bosonic Honeycomb Optical Lattice.

    PubMed

    Owerre, Solomon; Nsofini, Joachim

    2017-09-20

    Quantum information storage using charge-neutral quasiparticles are expected to play a crucial role in the future of quantum computers. In this regard, magnons or collective spin-wave excitations in solid-state materials are promising candidates in the future of quantum computing. Here, we study the quantum squeezing of Dirac and topological magnons in a bosonic honeycomb optical lattice with spin-orbit interaction by utilizing the mapping to quantum spin-$1/2$ XYZ Heisenberg model on the honeycomb lattice with discrete Z$_2$ symmetry and a Dzyaloshinskii-Moriya interaction. We show that the squeezed magnons can be controlled by the Z$_2$ anisotropy and demonstrate how the noise in the system is periodically modified in the ferromagnetic and antiferromagnetic phases of the model. Our results also apply to solid-state honeycomb (anti)ferromagnetic insulators. . © 2017 IOP Publishing Ltd.

  4. Overlap of two topological phases in the antiferromagnetic Potts model

    NASA Astrophysics Data System (ADS)

    Zhao, Ran; Ding, Chengxiang; Deng, Youjin

    2018-05-01

    By controlling the vortex core energy, the three-state ferromagnetic Potts model can exhibit two types of topological paradigms, including the quasi-long-range ordered phase and the vortex lattice phase [Phys. Rev. Lett. 116, 097206 (2016), 10.1103/PhysRevLett.116.097206]. Here, using Monte Carlo simulations using an efficient worm algorithm, we show that by controlling the vortex core energy, the antiferromagnetic Potts model can also exhibit the two topological phases, and, more interestingly, the two topological phases can overlap with each other.

  5. Cathodoluminescence of diamond as an indicator of its metamorphic history

    NASA Astrophysics Data System (ADS)

    Kopylova, Maya; Bruce, Loryn; Longo, Micaela; Ryder, John; Dobrzhinetskaya, Larissa

    2010-05-01

    optical centers (neutrally charged complexes of a vacancy and a single nitrogen). We ascribe the effect of metamorphism on the diamond CL to low-T, low-P deformation that creates lattice dislocations and vacancies. These combine with substitutional N to make and enhance optical centers. The metamorphism-induced CL anneals when diamonds are stored at high-T mantle conditions, as the mobility of dislocations at T>750oC quenches the luminescence. Indeed, all studied diamonds that displayed unusual green, yellow and red CL were found in low and medium grade metamorphic rocks, i.e. Wawa greenschists (T<350oC and P< 3 kb) and Kokchetav and Erzgebirge UHP terranes retrograded in the amphibolite facies (T<750oC, P<14 kb) Our study suggest that a low abundance of octahedrally grown Type IaAB diamonds with blue CL colours among detrital diamonds may indicate that the stones may have once been a part of a low- or medium-grade metamorphic terrane. The CL characteristics superimposed by metamorphism could survive through billions of years of the geological history if not annealed by a high -T process. The discovered record of metamorphism in the diamond crystal lattice provides an opportunity for a better reconstruction of the crustal history and provenance studies of diamond.

  6. Spin and lattice structures of single-crystalline SrFe2As2

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Ratcliff, W., II; Lynn, J. W.; Chen, G. F.; Luo, J. L.; Wang, N. L.; Hu, Jiangping; Dai, Pengcheng

    2008-10-01

    We use neutron scattering to study the spin and lattice structure of single-crystal SrFe2As2 , the parent compound of the FeAs-based superconductor (Sr,K)Fe2As2 . We find that SrFe2As2 exhibits an abrupt structural phase transition at 220 K, where the structure changes from tetragonal with lattice parameters c>a=b to orthorhombic with c>a>b . At almost the same temperature, Fe spins develop a collinear antiferromagnetic structure along the orthorhombic a axis with spin direction parallel to this a axis. These results are consistent with earlier work on the RFeAsO ( R=rare earth) families of materials and on BaFe2As2 , and therefore suggest that static antiferromagnetic order is ubiquitous for the parent compounds of these FeAs-based high-transition temperature superconductors.

  7. Evaporative cooling in a compensated optical lattice

    NASA Astrophysics Data System (ADS)

    Duarte, P. M.; Hart, R.; Yang, T. L.; Liu, X.; Hulet, R. G.

    2014-03-01

    We present experimental results of evaporative cooling in a three-dimensional, red-detuned optical lattice. The lattice is compensated by the addition of three blue-detuned gaussian beams which overlap each of the lattice laser beams, but are not retro-reflected. The intensity of the compensating beams can be used to control the difference between the chemical potential in the lattice and the threshold for evaporation. We start with a two spin component degenerate Fermi gas of 6Li atoms at a temperature < 0 . 05TF in a dimple potential, which is obtained by rotating the polarization of the lattice retro beams to prevent the formation of standing waves. The temperature of the cloud is measured by releasing it from the dimple and fitting the momentum distribution to a Thomas-Fermi profile. We perform round-trip measurements into, and out of the lattice to study the adiabaticity of the loading as well as the effect of the compensating beams. Using the compensated lattice potential, we have reached temperatures low enough to produce antiferromagnetic spin correlations, which we detect via Bragg scattering of light. Supported by NSF, ONR, DARPA/ARO, and the Welch Foundation.

  8. Improvement in plasma illumination properties of ultrananocrystalline diamond films by grain boundary engineering

    NASA Astrophysics Data System (ADS)

    Sankaran, K. J.; Srinivasu, K.; Chen, H. C.; Dong, C. L.; Leou, K. C.; Lee, C. Y.; Tai, N. H.; Lin, I. N.

    2013-08-01

    Microstructural evolution of ultrananocrystalline diamond (UNCD) films as a function of substrate temperature (TS) and/or by introducing H2 in Ar/CH4 plasma is investigated. Variation of the sp2 and sp3 carbon content is analyzed using UV-Raman and near-edge X-ray absorption fine structure spectra. Morphological and microstructural studies confirm that films deposited using Ar/CH4 plasma at low TS consist of a random distribution of spherically shaped ultra-nano diamond grains with distinct sp2-bonded grain boundaries, which are attributed to the adherence of CH radicals to the nano-sized diamond clusters. By increasing TS, adhering efficiency of CH radicals to the diamond lattice drops and trans-polyacetylene (t-PA) encapsulating the nano-sized diamond grains break, whereas the addition of 1.5% H2 in Ar/CH4 plasma at low TS induces atomic hydrogen that preferentially etches out the t-PA attached to ultra-nano diamond grains. Both cases make the sp3-diamond phase less passivated. This leads to C2 radicals attaching to the diamond lattice promoting elongated clustered grains along with a complicated defect structure. Such a grain growth model is highly correlated to explain the technologically important functional property, namely, plasma illumination (PI) of UNCD films. Superior PI properties, viz. low threshold field of 0.21 V/μm with a high PI current density of 4.10 mA/cm2 (at an applied field of 0.25 V/μm) and high γ-coefficient (0.2604) are observed for the UNCD films possessing ultra-nano grains with a large fraction of grain boundary phases. The grain boundary component consists of a large amount of sp2-carbon phases that possibly form interconnected paths for facilitating the transport of electrons and the electron field emission process that markedly enhance PI properties.

  9. Room Temperature Antiferromagnetic Ordering of Nanocrystalline Tb1.90Ni0.10O3

    NASA Astrophysics Data System (ADS)

    Mandal, J.; Dalal, M.; Sarkar, B. J.; Chakrabarti, P. K.

    2017-02-01

    Nanocrystalline Ni-doped terbium oxide (Tb1.90Ni0.10O3) has been synthesized by the co-precipitation method followed by annealing at 700°C for 6 h in vacuum. The crystallographic phase and the substitution of Ni2+ ions in the lattice of Tb2O3 are confirmed by Rietveld analysis of the x-ray diffraction pattern using the software MAUD. High-resolution transmission electron microscopy is also carried out to study the morphology of the sample. Magnetic measurements are carried out at different temperatures from 5 K to 300 K using a superconducting quantum interference device (SQUID) magnetometer. The dependence of the magnetization of Tb1.90Ni0.10O3 as a function of temperature ( M- T) and magnetic field ( M- H) suggests the presence of both paramagnetic and antiferromagnetic phase at room temperature, but antiferromagnetic phase dominates below ˜120 K. The lack of saturation in the M- H curve and good fitting of the M- T curve by the Johnston formula also indicate the presence of both paramagnetic and antiferromagnetic phase at room temperature. Interestingly, an antiferromagnetic to ferromagnetic phase transition is observed below ˜40 K. The result also shows a high value of magnetization at 5 K.

  10. Quantum phase transitions in the S=(1)/(2) distorted diamond chain

    NASA Astrophysics Data System (ADS)

    Li, Yan-Chao; Li, Shu-Shen

    2008-11-01

    By means of the second derivative of the ground-state and first-excited energy, the quantum phase transitions (QPTs) for the distorted diamond chain (DDC) with ferromagnetic and antiferromagnetic frustrated interactions and the trimerized case are investigated, respectively. Our results show the plentiful quantum phases owing to the spin interaction competitions in the model. Meanwhile, by using the transfer-matrix renormalization-group technique, we study the two-site thermal entanglement of the DDC model in the thermodynamic limit for a further understanding of the QPTs.

  11. Zero-field random-field effect in diluted triangular lattice antiferromagnet CuFe1-xAlxO2

    NASA Astrophysics Data System (ADS)

    Nakajima, T.; Mitsuda, S.; Kitagawa, K.; Terada, N.; Komiya, T.; Noda, Y.

    2007-04-01

    We performed neutron scattering experiments on a diluted triangular lattice antiferromagnet (TLA), CuFe1-xAlxO2 with x = 0.10. The detailed analysis of the scattering profiles revealed that the scattering function of magnetic reflection is described as the sum of a Lorentzian term and a Lorentzian-squared term with anisotropic width. The Lorentzian-squared term dominating at low temperature is indicative of the domain state in the prototypical random-field Ising model. Taking account of the sinusoidally amplitude-modulated magnetic structure with incommensurate wavenumber in CuFe1-xAlxO2 with x = 0.10, we conclude that the effective random field arises even at zero field, owing to the combination of site-random magnetic vacancies and the sinusoidal structure that is regarded as a partially disordered (PD) structure in a wide sense, as reported in the typical three-sublattice PD phase of a diluted Ising TLA, CsCo0.83Mg0.17Br3 (van Duijn et al 2004 Phys. Rev. Lett. 92 077202). While the previous study revealed the existence of a domain state in CsCo0.83Mg0.17Br3 by detecting magnetic reflections specific to the spin configuration near the domain walls, our present study revealed the existence of a domain state in CuFe1-xAlxO2 (x = 0.10) by determination of the functional form of the scattering function.

  12. Synchrotron Bragg diffraction imaging characterization of synthetic diamond crystals for optical and electronic power device applications1 1

    PubMed Central

    Tran Thi, Thu Nhi; Morse, J.; Caliste, D.; Fernandez, B.; Eon, D.; Härtwig, J.; Mer-Calfati, C.; Tranchant, N.; Arnault, J. C.; Lafford, T. A.; Baruchel, J.

    2017-01-01

    Bragg diffraction imaging enables the quality of synthetic single-crystal diamond substrates and their overgrown, mostly doped, diamond layers to be characterized. This is very important for improving diamond-based devices produced for X-ray optics and power electronics applications. The usual first step for this characterization is white-beam X-ray diffraction topography, which is a simple and fast method to identify the extended defects (dislocations, growth sectors, boundaries, stacking faults, overall curvature etc.) within the crystal. This allows easy and quick comparison of the crystal quality of diamond plates available from various commercial suppliers. When needed, rocking curve imaging (RCI) is also employed, which is the quantitative counterpart of monochromatic Bragg diffraction imaging. RCI enables the local determination of both the effective misorientation, which results from lattice parameter variation and the local lattice tilt, and the local Bragg position. Maps derived from these parameters are used to measure the magnitude of the distortions associated with polishing damage and the depth of this damage within the volume of the crystal. For overgrown layers, these maps also reveal the distortion induced by the incorporation of impurities such as boron, or the lattice parameter variations associated with the presence of growth-incorporated nitrogen. These techniques are described, and their capabilities for studying the quality of diamond substrates and overgrown layers, and the surface damage caused by mechanical polishing, are illustrated by examples. PMID:28381981

  13. Absolute age Determinations on Diamond by Radioisotopic Methods: NOT the way to Accurately Identify Diamond Provenance

    NASA Astrophysics Data System (ADS)

    Shirey, S. B.

    2002-05-01

    Gem-quality diamond contains such low abundances of parent-daughter radionuclides that dating the diamond lattice directly by isotopic measurements has been and will be impossible. Absolute ages on diamonds typically are obtained through measurements of their syngenetic mineral inclusions: Rb-Sr in garnet; Sm-Nd in garnet and pyroxene; Re-Os and U-Th-Pb in sulfide; K-Ar in pyroxene; and U-Pb in zircon. The application of the first two isotope schemes in the list requires putting together many inclusions from many diamonds whereas the latter isotope schemes permit ages on single diamonds. The key limitations on the application of these decay pairs are the availability and size of the inclusions, the abundance levels of the radionuclides, and instrumental sensitivity. Practical complications of radioisotope dating of inclusions are fatal to the application of the technique for diamond provenance. In all mines, the ratio of gem-quality diamonds to stones with datable inclusions is very high. Thus there is no way to date the valuable, marketable stones that are part of the conflict diamond problem, just their rare, flawed cousins. Each analysis destroys the diamond host plus the inclusion and can only be carried out in research labs by highly trained scientists. Thus, these methods can not be automated or applied to the bulk of diamond production. The geological problems with age dating are equally fatal to its application to diamond provenance. From the geological perspective, for age determination to work as a tool for diamond provenance studies, diamond ages would have to be specific to particular kimberlites or kimberlite fields and different between fields. The southern African Kaapvaal-Zimbabwe Craton and Limpopo Mobile Belt is the only cratonic region where age determinations have been applied on a large enough scale to a number of kimberlites to illustrate the geological problems in age measurements for diamond provenance. However, this southern African example

  14. Antiferromagnetic and Orbital Ordering on a Diamond Lattice Near Quantum Criticality

    NASA Astrophysics Data System (ADS)

    Plumb, K. W.; Morey, J. R.; Rodriguez-Rivera, J. A.; Wu, Hui; Podlesnyak, A. A.; McQueen, T. M.; Broholm, C. L.

    2016-10-01

    We present neutron scattering measurements on powder samples of the spinel FeSc2S4 that reveal a previously unobserved magnetic ordering transition occurring at 11.8(2) K. Magnetic ordering occurs subsequent to a subtle cubic-to-tetragonal structural transition that distorts Fe coordinating sulfur tetrahedra and lifts the orbital degeneracy. The orbital ordering is not truly long ranged, but occurs over finite-sized domains that limit magnetic correlation lengths. The application of 1 GPa hydrostatic pressure appears to destabilize this Néel state, reducing the transition temperature to 8.6(8) K and redistributing magnetic spectral weight to higher energies. The relative magnitudes of ordered ⟨m ⟩2=3.1 (2 ) μB2 and fluctuating moments ⟨δ m ⟩=13 (1 ) μB2 show that the magnetically ordered state of FeSc2 S4 is drastically renormalized and close to criticality.

  15. Antiferromagnetic and Orbital Ordering on a Diamond Lattice Near Quantum Criticality

    DOE PAGES

    Plumb, K. W.; Morey, J. R.; Rodriguez-Rivera, J. A.; ...

    2016-12-01

    Here, we present neutron scattering measurements on powder samples of the spinel FeSc 2 S 4 that reveal a previously unobserved magnetic ordering transition occurring at 11.8(2) K. Magnetic ordering occurs subsequent to a subtle cubic-to-tetragonal structural transition that distorts Fe coordinating sulfur tetrahedra and lifts the orbital degeneracy. Furthermore, the orbital ordering is not truly long ranged, but occurs over finite-sized domains that limit magnetic correlation lengths. During the application of 1 GPa hydrostatic pressure appears to destabilize this Néel state, reducing the transition temperature to 8.6(8) K and redistributing magnetic spectral weight to higher energies. The relative magnitudes of ordered 2= 3.1(2) μmore » $$2\\atop{B}$$ and fluctuating moments < δm >= 13(1) μ$$2\\atop{B}$$ show that the magnetically ordered state of FeSc 2 S 4 is drastically renormalized and close to criticality.« less

  16. Two-peak structure in the K-edge RIXS spectra of a spatially frustrated Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Datta, Trinanjan; Luo, Cheng; Yao, Dao-Xin

    2014-03-01

    Quantum fluctuations due to spatial anisotropy and strong magnetic frustration lead to the formation of a two-peak structure in the K-edge bimagnon RIXS intensity spectra of a Jx-Jy-J2 Heisenberg model on a square lattice. We compute the RIXS intensity, including up to first order 1/S spin wave expansion correction, using the Bethe-Salpeter equation within the ladder approximation scheme. The two-peak feature occurs in both the antiferromagnetic phase and the collinear antiferromagnetic phase. A knowledge of the peak splitting energy from both magnetically ordered regime can provide experimentalists with an alternative means to measure and study the effects of local microscopic exchange constants. Cottrell Research Corporation, NSFC-11074310, NSFC-11275279, Specialized Research Fund for the Doctoral Program of Higher Education.

  17. Topological magnon bands and unconventional thermal Hall effect on the frustrated honeycomb and bilayer triangular lattice.

    PubMed

    Owerre, S A

    2017-09-27

    In the conventional ferromagnetic systems, topological magnon bands and thermal Hall effect are due to the Dzyaloshinskii-Moriya interaction (DMI). In principle, however, the DMI is either negligible or it is not allowed by symmetry in some quantum magnets. Therefore, we expect that topological magnon features will not be present in those systems. In addition, quantum magnets on the triangular-lattice are not expected to possess topological features as the DMI or spin-chirality cancels out due to equal and opposite contributions from adjacent triangles. Here, however, we predict that the isomorphic frustrated honeycomb-lattice and bilayer triangular-lattice antiferromagnetic system will exhibit topological magnon bands and topological thermal Hall effect in the absence of an intrinsic DMI. These unconventional topological magnon features are present as a result of magnetic-field-induced non-coplanar spin configurations with nonzero scalar spin chirality. The relevance of the results to realistic bilayer triangular antiferromagnetic materials are discussed.

  18. Tuning the antiferromagnetic helical pitch length and nanoscale domain size in Fe3PO4O3 by magnetic dilution

    NASA Astrophysics Data System (ADS)

    Tarne, M. J.; Bordelon, M. M.; Calder, S.; Neilson, J. R.; Ross, K. A.

    2017-12-01

    The insulating magnetic material Fe3PO4O3 features a noncentrosymmetric lattice composed of Fe3 + triangular units. Frustration, due to competing near-neighbor (J1) and next-nearest-neighbor (J2) antiferromagnetic interactions, was recently suggested to be the origin of an antiferromagnetic helical ground state with unusual needlelike nanoscale magnetic domains in Fe3PO4O3 . Magnetic dilution is shown here to tune the ratio of these magnetic interactions, thus providing deeper insight into this unconventional antiferromagnet. Dilution of the Fe3 + lattice in Fe3PO4O3 was accomplished by substituting nonmagnetic Ga3 + to form the solid solution series Fe3-xGaxPO4O3 with x =0.012 , 0.06, 0.25, 0.5, 1.0, 1.5. Magnetic susceptibility and neutron powder diffraction data from this series are presented. A continuous decrease of both the helical pitch length and the domain size is observed with increasing dilution up to at least x =0.25 , while for x ≥0.5 , the compounds lack long-range magnetic order entirely. The decrease in the helical pitch length with increasing x can be qualitatively understood by reduction of the ratio of J2/J1 in the Heisenberg model, consistent with mean-field considerations. Intriguingly, the magnetic correlation length in the a b plane remains nearly equal to the pitch length for each value of x ≤0.25 , showing that the two quantities are intrinsically connected in this unusual antiferromagnet.

  19. Perspectives of antiferromagnetic spintronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jungfleisch, Matthias B.; Zhang, Wei; Hoffmann, Axel

    2018-04-01

    Antiferromagnets are promising for future spintronics applications owing to their interesting properties: They are magnetically ordered, but neighboring magnetic moments point in opposite directions which results in zero net magneti- zation. This means antiferromagnets produce no stray fields and are insensitive to external magnetic field perturbations. Furthermore, they show intrinsic high frequency dynamics, exhibit considerable spin-orbit and magneto-transport effects. Over the past decade, it has been realized that antiferromagnets have more to offer than just being utilized as passive components in exchange bias applications. This development resulted in a paradigm shift, which opens the pathway to novel concepts using antiferromagnetsmore » for spin-based technologies and applications. This article gives a broad per- spective on antiferromagnetic spintronics. In particular, the manipulation and detection of anitferromagnetic states by spintronics effects, as well as spin transport and dynamics in antiferromagnetic materials will be discussed. We will also outline current challenges and future research directions in this emerging field.« less

  20. Deconfined quantum critical point on the triangular lattice

    NASA Astrophysics Data System (ADS)

    Jian, Chao-Ming; Thomson, Alex; Rasmussen, Alex; Bi, Zhen; Xu, Cenke

    2018-05-01

    In this work we propose a theory for the deconfined quantum critical point (DQCP) for spin-1/2 systems on a triangular lattice, which is a direct unfine-tuned quantum phase transition between the standard "√{3 }×√{3 } " noncollinear antiferromagnetic order (or the so-called 120∘ state) and the "√{12 }×√{12 } " valence solid bond (VBS) order, both of which are very standard ordered phases often observed in numerical simulations. This transition is beyond the standard Landau-Ginzburg paradigm and is also fundamentally different from the original DQCP theory on the square lattice due to the very different structures of both the magnetic and VBS order on frustrated lattices. We first propose a topological term in the effective-field theory that captures the "intertwinement" between the √{3 }×√{3 } antiferromagnetic order and the √{12 }×√{12 } VBS order. Then using a controlled renormalization-group calculation, we demonstrate that an unfine-tuned direct continuous DQCP exists between the two ordered phases mentioned above. This DQCP is described by the Nf=4 quantum electrodynamics (QED) with an emergent PSU(4)=SU(4)/Z4 symmetry only at the critical point. The aforementioned topological term is also naturally derived from the Nf=4 QED. We also point out that physics around this DQCP is analogous to the boundary of a 3 d bosonic symmetry- protected topological state with only on-site symmetries.

  1. Perpendicular susceptibility and geometrical frustration in two-dimensional Ising antiferromagnets: Exact solutions

    NASA Astrophysics Data System (ADS)

    Muttalib, K. A.; Khatun, M.; Barry, J. H.

    2017-11-01

    Discovery of new materials and improved experimental as well as numerical techniques have led to a renewed interest in geometrically frustrated spin systems. However, there are very few exact results available that can provide a benchmark for comparison. In this work, we calculate exactly the perpendicular susceptibility χ⊥ for an Ising antiferromagnet with (i) nearest-neighbor pair interaction on a kagome lattice where strong frustration prevents long-range ordering and (ii) elementary triplet interactions on a kagome lattice which has no frustration but the system remains disordered down to zero temperature. By comparing with other known exact results with and without frustration, we propose that an appropriately temperature-scaled χ⊥ can be used as a quantitative measure of the degree of frustration in Ising spin systems.

  2. Boron doped diamond synthesized from detonation nanodiamond in a C-O-H fluid at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Shakhov, Fedor M.; Abyzov, Andrey M.; Takai, Kazuyuki

    2017-12-01

    Boron doped diamond (BDD) was synthesized under high pressure and high temperature (HPHT) of 7 GPa, 1230 °C in a short time of 10 s from a powder mixtures of detonation nanodiamond (DND), pentaerythritol C5H8(OH)4 and amorphous boron. SEM, TEM, XRD, XPS, FTIR and Raman spectroscopy indicated that BDD nano- and micro-crystals have formed by consolidation of DND particles (4 nm in size). XRD showed the enlargement of crystallites size to 6-80 nm and the increase in diamond lattice parameter by 0.02-0.07% without appearance of any microstrains. Raman spectroscopy was used to estimate the content of boron atoms embedded in the diamond lattice. It was found that the Raman diamond peak shifts significantly from 1332 cm-1 to 1290 cm-1 without appearance of any non-diamond carbon. The correlation between Raman peak position, its width, and boron content in diamond is proposed. Hydrogenated diamond carbon in significant amount was detected by IR spectroscopy and XPS. Due to the doping with boron content of about 0.1 at%, the electrical conductivity of the diamond achieved approximately 0.2 Ω-1 cm-1. Reaction mechanism of diamond growth (models of recrystallization and oriented attachment) is discussed, including the initial stages of pentaerythritol pyrolysis and thermal desorption of functional groups from the surface of DND particles with the generation of supercritical fluid of low-molecular substances (H2O, CH4, CO, CO2, etc.), as well as byproducts formation (B2O3, B4C).

  3. Critical space-time networks and geometric phase transitions from frustrated edge antiferromagnetism

    NASA Astrophysics Data System (ADS)

    Trugenberger, Carlo A.

    2015-12-01

    Recently I proposed a simple dynamical network model for discrete space-time that self-organizes as a graph with Hausdorff dimension dH=4 . The model has a geometric quantum phase transition with disorder parameter (dH-ds) , where ds is the spectral dimension of the dynamical graph. Self-organization in this network model is based on a competition between a ferromagnetic Ising model for vertices and an antiferromagnetic Ising model for edges. In this paper I solve a toy version of this model defined on a bipartite graph in the mean-field approximation. I show that the geometric phase transition corresponds exactly to the antiferromagnetic transition for edges, the dimensional disorder parameter of the former being mapped to the staggered magnetization order parameter of the latter. The model has a critical point with long-range correlations between edges, where a continuum random geometry can be defined, exactly as in Kazakov's famed 2D random lattice Ising model but now in any number of dimensions.

  4. Magnetic phase diagram and multiferroicity of Ba 3 MnNb 2 O 9 : A spin - 5 2 triangular lattice antiferromagnet with weak easy-axis anisotropy

    DOE PAGES

    Lee, M.; Choi, E. S.; Huang, X.; ...

    2014-12-01

    Here we have performed magnetic, electric, thermal and neutron powder diffraction (NPD) experiments as well as density functional theory (DFT) calculations on Ba 3MnNb 2 O 9. All results suggest that Ba 3MnNb 2 O 9 is a spin-5/2 triangular lattice antiferromagnet (TLAF) with weak easy-axis anisotropy. At zero field, we observed a narrow two-step transition at T N1 = 3.4 K and T N2 = 3.0 K. The neutron diffraction measurement and the DFT calculation indicate a 120 spin structure in ab plane with out-of-plane canting at low temperatures. With increasing magnetic field, the 120 spin structure evolves intomore » up-up-down (uud) and oblique phases showing successive magnetic phase transitions, which fits well to the theoretical prediction for the 2D Heisenberg TLAF with classical spins. Ultimately, multiferroicity is observed when the spins are not collinear but suppressed in the uud and oblique phases.« less

  5. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Mingxuan; Imai, Takahashi; Han, Tian -Heng

    2015-11-06

    Here, the kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu 3(OH) 6Cl 2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χkagome, deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction.more » Combined with the magnetic field dependence of χ kagome that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.« less

  6. Spin lattices of walking droplets

    NASA Astrophysics Data System (ADS)

    Saenz, Pedro; Pucci, Giuseppe; Goujon, Alexis; Dunkel, Jorn; Bush, John

    2017-11-01

    We present the results of an experimental investigation of the spontaneous emergence of collective behavior in spin lattice of droplets walking on a vibrating fluid bath. The bottom topography consists of relatively deep circular wells that encourage the walking droplets to follow circular trajectories centered at the lattice sites, in one direction or the other. Wave-mediated interactions between neighboring drops are enabled through a thin fluid layer between the wells. The sense of rotation of the walking droplets may thus become globally coupled. When the coupling is sufficiently strong, interactions with neighboring droplets may result in switches in spin that lead to preferred global arrangements, including correlated (all drops rotating in the same direction) or anti-correlated (neighboring drops rotating in opposite directions) states. Analogies with ferromagnetism and anti-ferromagnetism are drawn. Different spatial arrangements are presented in 1D and 2D lattices to illustrate the effects of topological frustration. This work was supported by the US National Science Foundation through Grants CMMI-1333242 and DMS-1614043.

  7. Ising lattices with +/-J second-nearest-neighbor interactions

    NASA Astrophysics Data System (ADS)

    Ramírez-Pastor, A. J.; Nieto, F.; Vogel, E. E.

    1997-06-01

    Second-nearest-neighbor interactions are added to the usual nearest-neighbor Ising Hamiltonian for square lattices in different ways. The starting point is a square lattice where half the nearest-neighbor interactions are ferromagnetic and the other half of the bonds are antiferromagnetic. Then, second-nearest-neighbor interactions can also be assigned randomly or in a variety of causal manners determined by the nearest-neighbor interactions. In the present paper we consider three causal and three random ways of assigning second-nearest-neighbor exchange interactions. Several ground-state properties are then calculated for each of these lattices:energy per bond ɛg, site correlation parameter pg, maximal magnetization μg, and fraction of unfrustrated bonds hg. A set of 500 samples is considered for each size N (number of spins) and array (way of distributing the N spins). The properties of the original lattices with only nearest-neighbor interactions are already known, which allows realizing the effect of the additional interactions. We also include cubic lattices to discuss the distinction between coordination number and dimensionality. Comparison with results for triangular and honeycomb lattices is done at specific points.

  8. Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models

    NASA Astrophysics Data System (ADS)

    Sato, Toshihiro; Assaad, Fakher F.; Grover, Tarun

    2018-03-01

    The absence of the negative sign problem in quantum Monte Carlo simulations of spin and fermion systems has different origins. World-line based algorithms for spins require positivity of matrix elements whereas auxiliary field approaches for fermions depend on symmetries such as particle-hole symmetry. For negative-sign-free spin and fermionic systems, we show that one can formulate a negative-sign-free auxiliary field quantum Monte Carlo algorithm that allows Kondo coupling of fermions with the spins. Using this general approach, we study a half-filled Kondo lattice model on the honeycomb lattice with geometric frustration. In addition to the conventional Kondo insulator and antiferromagnetically ordered phases, we find a partial Kondo screened state where spins are selectively screened so as to alleviate frustration, and the lattice rotation symmetry is broken nematically.

  9. Antiferromagnetic skyrmions

    NASA Astrophysics Data System (ADS)

    Tretiakov, Oleg; Barker, Joseph

    Skyrmions are topologically protected entities in magnetic materials which have the potential to be used in spintronics for information storage and processing. However, skyrmions in ferromagnets have some intrinsic difficulties which must be overcome to use them for spintronic applications, such as the inability to move straight along current. We show that skyrmions can also be stabilized and manipulated in antiferromagnetic materials. An antiferromagnetic skyrmion is a compound topological object with a similar but of opposite sign spin texture on each sublattice, which e.g. results in a complete cancelation of the Magnus force. We find that the composite nature of antiferromagnetic skyrmions gives rise to different dynamical behavior, both due to an applied current and temperature effects. O.A.T. and J.B. acknowledge support by the Grants-in-Aid for Scientific Research (Nos. 25800184, 25247056, 25220910 and 15H01009) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and SpinNet.

  10. Frustrated quantum magnetism in the Kondo lattice on the zigzag ladder

    NASA Astrophysics Data System (ADS)

    Peschke, Matthias; Rausch, Roman; Potthoff, Michael

    2018-03-01

    The interplay between the Kondo effect, indirect magnetic interaction, and geometrical frustration is studied in the Kondo lattice on the one-dimensional zigzag ladder. Using the density-matrix renormalization group, the ground-state and various short- and long-range spin- and density-correlation functions are calculated for the model at half filling as a function of the antiferromagnetic Kondo interaction down to J =0.3 t , where t is the nearest-neighbor hopping on the zigzag ladder. Geometrical frustration is shown to lead to at least two critical points: Starting from the strong-J limit, where almost local Kondo screening dominates and where the system is a nonmagnetic Kondo insulator, antiferromagnetic correlations between nearest-neighbor and next-nearest-neighbor local spins become stronger and stronger, until at Jcdim≈0.89 t frustration is alleviated by a spontaneous breaking of translational symmetry and a corresponding transition to a dimerized state. This is characterized by antiferromagnetic correlations along the legs and by alternating antiferro- and ferromagnetic correlations on the rungs of the ladder. A mechanism of partial Kondo screening that has been suggested for the Kondo lattice on the two-dimensional triangular lattice is not realized in the one-dimensional case. Furthermore, within the symmetry-broken dimerized state, there is a magnetic transition to a 90∘ quantum spin spiral with quasi-long-range order at Jcmag≈0.84 t . The quantum-critical point is characterized by a closure of the spin gap (with decreasing J ) and a divergence of the spin-correlation length and of the spin-structure factor S (q ) at wave vector q =π /2 . This is opposed to the model on the one-dimensional bipartite chain, which is known to have a finite spin gap for all J >0 at half filling.

  11. Quantum fluctuations in anisotropic triangular lattices with ferromagnetic and antiferromagnetic exchange

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard; Thalmeier, Peter

    2014-05-01

    The Heisenberg model on a triangular lattice is a prime example of a geometrically frustrated spin system. However most experimentally accessible compounds have spatially anisotropic exchange interactions. As a function of this anisotropy, ground states with different magnetic properties can be realized. Motivated by recent experimental findings on Cs2CuCl4-xBrx, we discuss the full phase diagram of the anisotropic model with two exchange constants J1 and J2, including possible ferromagnetic exchange. Furthermore a comparison with the related square lattice model is carried out. We discuss the zero-temperature phase diagram, ordering vector, ground-state energy, and ordered moment on a classical level and investigate the effect of quantum fluctuations within the framework of spin-wave theory. The field dependence of the ordered moment is shown to be nonmonotonic with field and control parameter.

  12. Magnetic order in a frustrated two-dimensional atom lattice at a semiconductor surface.

    PubMed

    Li, Gang; Höpfner, Philipp; Schäfer, Jörg; Blumenstein, Christian; Meyer, Sebastian; Bostwick, Aaron; Rotenberg, Eli; Claessen, Ralph; Hanke, Werner

    2013-01-01

    Two-dimensional electron systems, as exploited for device applications, can lose their conducting properties because of local Coulomb repulsion, leading to a Mott-insulating state. In triangular geometries, any concomitant antiferromagnetic spin ordering can be prevented by geometric frustration, spurring speculations about 'melted' phases, known as spin liquid. Here we show that for a realization of a triangular electron system by epitaxial atom adsorption on a semiconductor, such spin disorder, however, does not appear. Our study compares the electron excitation spectra obtained from theoretical simulations of the correlated electron lattice with data from high-resolution photoemission. We find that an unusual row-wise antiferromagnetic spin alignment occurs that is reflected in the photoemission spectra as characteristic 'shadow bands' induced by the spin pattern. The magnetic order in a frustrated lattice of otherwise non-magnetic components emerges from longer-range electron hopping between the atoms. This finding can offer new ways of controlling magnetism on surfaces.

  13. Magnetic states, correlation effects and metal-insulator transition in FCC lattice

    NASA Astrophysics Data System (ADS)

    Timirgazin, M. A.; Igoshev, P. A.; Arzhnikov, A. K.; Irkhin, V. Yu

    2016-12-01

    The ground-state magnetic phase diagram (including collinear and spiral states) of the single-band Hubbard model for the face-centered cubic lattice and related metal-insulator transition (MIT) are investigated within the slave-boson approach by Kotliar and Ruckenstein. The correlation-induced electron spectrum narrowing and a comparison with a generalized Hartree-Fock approximation allow one to estimate the strength of correlation effects. This, as well as the MIT scenario, depends dramatically on the ratio of the next-nearest and nearest electron hopping integrals {{t}\\prime}/t . In contrast with metallic state, possessing substantial band narrowing, insulator one is only weakly correlated. The magnetic (Slater) scenario of MIT is found to be superior over the Mott one. Unlike simple and body-centered cubic lattices, MIT is the first order transition (discontinuous) for most {{t}\\prime}/t . The insulator state is type-II or type-III antiferromagnet, and the metallic state is spin-spiral, collinear antiferromagnet or paramagnet depending on {{t}\\prime}/t . The picture of magnetic ordering is compared with that in the standard localized-electron (Heisenberg) model.

  14. Nano-inclusions in diamond: Evidence of diamond genesis

    NASA Astrophysics Data System (ADS)

    Wirth, R.

    2015-12-01

    The use of Focused Ion Beam technology (FIB) for TEM sample preparation introduced approximately 15 years ago revolutionized the application of TEM in Geosciences. For the first time, FIB enabled cutting samples for TEM use from exactly the location we are interested in. Applied to diamond investigation, this technique revealed the presence of nanometre-sized inclusions in diamond that have been simply unknown before. Nanoinclusions in diamond from different location and origin such as diamonds from the Lower and Upper Mantle, metamorphic diamonds (Kazakhstan, Erzgebirge, Bohemia), diamonds from ophiolites (Tibet, Mongolia, Xinjiang, Ural Mountains), diamonds from igneous rocks (Hawaii, Kamchatka) and impact diamonds (Popigai Crater, Siberia) have been investigated during the last 15 years. The major conclusion of all these TEM studies is, that the nanoinclusions, their phases and phase composition together with the micro- and nanostructure evidence the origin of diamond and genesis of diamond. We can discriminate Five different mechanisms of diamond genesis in nature are observed: Diamond crystallized from a high-density fluid (Upper mantle and metamorphic diamond). Diamond crystallized from carbonatitic melt (Lower mantle diamond). Diamond precipitates from a metal alloy melt (Diamond from ophiolites). Diamond crystallized by gas phase condensation or chemical vapour condensation (CVD) (Lavas from Kamchatka, xenoliths in Hawaiian lavas). Direct transformation of graphite into diamond.

  15. Critical exponents of the 3D antiferromagnetic three-state Potts model using the coherent-anomaly method

    NASA Astrophysics Data System (ADS)

    Kolesik, Miroslav; Suzuki, Masuo

    1995-02-01

    The antiferromagnetic three-state Potts model on the simple-cubic lattice is studied using the coherent-anomaly method (CAM). The CAM analysis provides the estimates for the critical exponents which indicate the XY universality class, namely α = -0.011, β = 0.351, γ = 1.309 and δ = 4.73. This observation corroborates the results of the recent Monte Carlo simulations, and disagrees with the proposal of a new universality class.

  16. Antiferromagnetism and DX2-Y2-WAVE Pairing in the Colored Hubbard Model

    NASA Astrophysics Data System (ADS)

    Baier, Tobias; Bick, Eike

    2001-08-01

    We introduce a new formulation of the 2d Hubbard model on a square lattice (the "colored" Hubbard model). In this formulation interesting physical nonlocal properties as antiferromagnetic or dx2-y2-wave superconducting behavior are included in an explicit way. Analyzing the phase diagram in a mean field approximation numerically, we show that our approach yields results which are in qualitative agreement with experiment.

  17. Room temperature exchange bias in multiferroic BiFeO3 nano- and microcrystals with antiferromagnetic core and two-dimensional diluted antiferromagnetic shell

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Wang, Shou Yu; Liu, Wei Fang; Xu, Xun Ling; Li, Xiu; Zhang, Hong; Gao, Ju; Li, De Jun

    2017-05-01

    Exchange bias (EB) of multiferroics presents many potential opportunities for magnetic devices. However, instead of using low-temperature field cooling in the hysteresis loop measurement, which usually shows an effective approach to obtain obvious EB phenomenon, there are few room temperature EB. In this article, extensive studies on room temperature EB without field cooling were observed in BiFeO3 nano- and microcrystals. Moreover, with increasing size the hysteresis loops shift from horizontal negative exchange bias (NEB) to positive exchange bias (PEB). In order to explain the tunable EB behaviors with size dependence, a phenomenological qualitative model based on the framework of antiferromagnetic (AFM) core-two-dimensional diluted antiferromagnet in a field (2D-DAFF) shell structure was proposed. The training effect (TE) ascertained the validity of model and the presence of unstable magnetic structure using Binek's model. Experimental results show that the tunable EB effect can be explained by the competition of ferromagnetic (FM) exchange coupling and AFM exchange coupling interaction between AFM core and 2D-DAFF shell. Additionally, the local distortion of lattice fringes was observed in hexagonal-shaped BiFeO3 nanocrystals with well-dispersed behavior. The electrical conduction properties agreed well with the space charge-limited conduction mechanism.

  18. Roton Minimum as a Fingerprint of Magnon-Higgs Scattering in Ordered Quantum Antiferromagnets.

    PubMed

    Powalski, M; Uhrig, G S; Schmidt, K P

    2015-11-13

    A quantitative description of magnons in long-range ordered quantum antiferromagnets is presented which is consistent from low to high energies. It is illustrated for the generic S=1/2 Heisenberg model on the square lattice. The approach is based on a continuous similarity transformation in momentum space using the scaling dimension as the truncation criterion. Evidence is found for significant magnon-magnon attraction inducing a Higgs resonance. The high-energy roton minimum in the magnon dispersion appears to be induced by strong magnon-Higgs scattering.

  19. Magnetic polarons in antiferromagnetic CaMnO3-x (x<0.01) probed by O17 NMR

    NASA Astrophysics Data System (ADS)

    Trokiner, A.; Verkhovskii, S.; Yakubovskii, A.; Gerashenko, A.; Monod, P.; Kumagai, K.; Mikhalev, K.; Buzlukov, A.; Litvinova, Z.; Gorbenko, O.; Kaul, A.; Kartavtzeva, M.

    2009-06-01

    We study with O17 NMR and bulk magnetization a lightly electron doped CaMnO3-x (x<0.01) polycrystalline sample in the G -type antiferromagnetic state. The O17 NMR spectra show two lines with very different intensities corresponding to oxygen sites with very different local magnetic environments. The more intense unshifted line is due to the antiferromagnetic (AF) matrix. The thermal dependence of the magnetic moment of the AF sublattice deduced from the O17 linewidth is typical of insulating three-dimensional Heisenberg antiferromagnets. The less intense, strongly shifted line directly evidences the existence of ferromagnetic (FM) domains embedded in the AF spin lattice. The extremely narrow line in zero magnetic field indicates a nearly perfect alignment of the manganese spins in the FM domains which also display an unusually weak temperature dependence of their magnetic moment. We show that these FM entities start to move above 40 K in a slow-diffusion regime. These static and dynamic properties bear a strong similarity with those of a small size self-trapped magnetic polaron.

  20. One-dimensional magnetic fluctuations in the spin-2 triangular lattice alpha-NaMnO2.

    PubMed

    Stock, C; Chapon, L C; Adamopoulos, O; Lappas, A; Giot, M; Taylor, J W; Green, M A; Brown, C M; Radaelli, P G

    2009-08-14

    The S=2 anisotropic triangular lattice alpha-NaMnO2 is studied by neutron inelastic scattering. Antiferromagnetic order occurs at T< or =45 K with opening of a spin gap. The spectral weight of the magnetic dynamics above the gap (Delta approximately equal to 7.5 meV) has been analyzed by the single-mode approximation. Excellent agreement with the experiment is achieved when a dominant exchange interaction (|J|/k(B) approximately 73 K), along the monoclinic b axis and a sizable easy-axis magnetic anisotropy (|D|/k(B) approximately 3 K) are considered. Despite earlier suggestions for two-dimensional spin interactions, the dynamics illustrate strongly coupled antiferromagnetic S=2 chains and cancellation of the interchain exchange due to the lattice topology. alpha-NaMnO2 therefore represents a model system where the geometric frustration is resolved through the lowering of the dimensionality of the spin interactions.

  1. Microinclusions in polycrystalline diamonds: insights into processes of diamond formation

    NASA Astrophysics Data System (ADS)

    Jacob, D. E.; Wirth, R.; Enzmann, F.; Schwarz, J. O.; Kronz, A.

    2009-04-01

    Polycrystalline diamond aggregates (framesites) contain silicates of eclogitic and peridotitic affinity (e.g. Kurat and Dobosi, 2000). The minerals occur mostly in interstices and are intimately intergrown with the diamonds, indicating contemporaneous crystallization within the diamond stability field in the Earth's mantle. In addition to silicates, rarer phases such as Fe-carbide can sometimes be found in framesites that record unusually low local oxygen fugacity at the time of their formation (Jacob et al., 2004). Furthermore, while most gem-sized diamonds have old, often Archaean formation ages, some polycrystalline diamond aggregates have been shown to form directly preceding the kimberlite eruption (Jacob et al., 2000). Thus, these samples may provide a unique source of information on the nature and timing of small scale processes that lead to diamond formation and complement evidence from gem-sized diamonds. Here, we present a study of micro- and nano-inclusions in diamonds from a polycrystalline diamond aggregate (framesite) from the Orapa Mine (Botswana) and combine results from TEM/FIB analyses with high-resolution computerized micro-tomography (HR-µCT) and electron microprobe analyses to further constrain the formation of diamond in the Earth's mantle. Results In total, 14 microinclusions from fifteen FIB foils were investigated. Micro- and nano-inclusions identified by TEM were smaller than 1µm down to ca. 50nm in size, and are both monomineralic and multi-phase. The cavities are often lath-shaped and oriented parallel to each other; many show lattice dislocations in the surrounding diamond. In addition, inclusions are found along open cracks within the diamond single crystals. Mineral phases in the microinclusions comprise rutile, omphacite and a FeS phase (pyrrhotite). The multiphase inclusions most often consist of cavities that are only partly occupied (less than 50% of the total space), suggesting that the empty space was originally filled by a

  2. Analysis of synthetic diamond single crystals by X-ray topography and double-crystal diffractometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokhorov, I. A., E-mail: igor.prokhorov@mail.ru; Ralchenko, V. G.; Bolshakov, A. P.

    2013-12-15

    Structural features of diamond single crystals synthesized under high pressure and homoepitaxial films grown by chemical vapor deposition (CVD) have been analyzed by double-crystal X-ray diffractometry and topography. The conditions of a diffraction analysis of diamond crystals using Ge monochromators have been optimized. The main structural defects (dislocations, stacking faults, growth striations, second-phase inclusions, etc.) formed during crystal growth have been revealed. The nitrogen concentration in high-pressure/high-temperature (HPHT) diamond substrates is estimated based on X-ray diffraction data. The formation of dislocation bundles at the film-substrate interface in the epitaxial structures has been revealed by plane-wave topography; these dislocations are likelymore » due to the relaxation of elastic macroscopic stresses caused by the lattice mismatch between the substrate and film. The critical thicknesses of plastic relaxation onset in CVD diamond films are calculated. The experimental techniques for studying the real diamond structure in optimizing crystal-growth technology are proven to be highly efficient.« less

  3. Quantum critical scaling and fluctuations in Kondo lattice materials

    PubMed Central

    Yang, Yi-feng; Pines, David; Lonzarich, Gilbert

    2017-01-01

    We propose a phenomenological framework for three classes of Kondo lattice materials that incorporates the interplay between the fluctuations associated with the antiferromagnetic quantum critical point and those produced by the hybridization quantum critical point that marks the end of local moment behavior. We show that these fluctuations give rise to two distinct regions of quantum critical scaling: Hybridization fluctuations are responsible for the logarithmic scaling in the density of states of the heavy electron Kondo liquid that emerges below the coherence temperature T∗, whereas the unconventional power law scaling in the resistivity that emerges at lower temperatures below TQC may reflect the combined effects of hybridization and antiferromagnetic quantum critical fluctuations. Our framework is supported by experimental measurements on CeCoIn5, CeRhIn5, and other heavy electron materials. PMID:28559308

  4. Theoretical investigation of the electronic structure and quantum transport in the graphene-C(111) diamond surface system.

    PubMed

    Selli, Daniele; Baburin, Igor; Leoni, Stefano; Zhu, Zhen; Tománek, David; Seifert, Gotthard

    2013-10-30

    We investigate the interaction of a graphene monolayer with the C(111) diamond surface using ab initio density functional theory. To accommodate the lattice mismatch between graphene and diamond, the overlayer deforms into a wavy structure that binds strongly to the diamond substrate. The detached ridges of the wavy graphene overlayer behave electronically as free-standing polyacetylene chains with delocalized π electrons, separated by regions containing only sp(3) carbon atoms covalently bonded to the (111) diamond surface. We performed quantum transport calculations for different geometries of the system to study how the buckling of the graphene layer and the associated bonding to the diamond substrate affect the transport properties. The system displays high carrier mobility along the ridges and a wide transport gap in the direction normal to the ridges. These intriguing, strongly anisotropic transport properties qualify the hybrid graphene-diamond system as a viable candidate for electronic nanodevices.

  5. Coupled dielectric permittivity and magnetic susceptibility in the insulating antiferromagnet Ba2FeSbSe5

    NASA Astrophysics Data System (ADS)

    Maier, S.; Moussa, C.; Berthebaud, D.; Gascoin, F.; Maignan, A.

    2018-05-01

    We report on coupled changes in the dielectric permittivity and the magnetic susceptibility in the insulating antiferromagnet Ba2FeSbSe5. The real part of the dielectric permittivity (ɛ') and the thermal conductivity (κ) shows pronounced anomalies at the Néel temperature (TN). Our findings show that there is a weak coupling between electric dipoles and magnetic spins, which is mediated by spin-lattice coupling possibly through exchange striction effects.

  6. Efficient production of spin singlets in lattice-confined spinor condensates

    NASA Astrophysics Data System (ADS)

    Zhao, Lichao; Chen, Zihe; Tang, Tao; Liu, Yingmei

    2017-04-01

    We present an efficient experimental scheme for a production of spin singlets in an antiferromagnetic spinor condensate confined by a cubic optical lattice. Via two independent detection methods, we demonstrate that about 80 percent of atoms in the lattice-confined spinor condensate can form spin singlets, immediately after the atoms cross a first-order superfluid to Mott-insulator phase transition in a sufficiently low microwave dressing field. We also discuss a good agreement between our data and the mean field theory, and two applications of spin singlets in quantum information science. We thank the National Science Foundation and the Oklahoma Center for the Advancement of Science and Technology for financial support.

  7. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2001-01-01

    An overview of the industrial diamond industry is provided. More than 90 percent of the industrial diamond consumed in the U.S. and the rest of the world is manufactured diamond. Ireland, Japan, Russia, and the U.S. produce 75 percent of the global industrial diamond output. In 2000, the U.S. was the largest market for industrial diamond. Industrial diamond applications, prices for industrial diamonds, imports and exports of industrial diamonds, the National Defense Stockpile of industrial diamonds, and the outlook for the industrial diamond market are discussed.

  8. Antiferromagnetic spin current rectifier

    NASA Astrophysics Data System (ADS)

    Khymyn, Roman; Tiberkevich, Vasil; Slavin, Andrei

    2017-05-01

    It is shown theoretically, that an antiferromagnetic dielectric with bi-axial anisotropy, such as NiO, can be used for the rectification of linearly-polarized AC spin current. The AC spin current excites two evanescent modes in the antiferromagnet, which, in turn, create DC spin current flowing back through the antiferromagnetic surface. Spin diode based on this effect can be used in future spintronic devices as direct detector of spin current in the millimeter- and submillimeter-wave bands. The sensitivity of such a spin diode is comparable to the sensitivity of modern electric Schottky diodes and lies in the range 102-103 V/W for 30 ×30 nm2 structure.

  9. Transport, Thermal, and Magnetic Properties of YbNi3X9 (X = Al, Ga): A Newly Synthesized Yb-Based Kondo Lattice System

    NASA Astrophysics Data System (ADS)

    Yamashita, Tetsuro; Miyazaki, Ryoichi; Aoki, Yuji; Ohara, Shigeo

    2012-03-01

    We have succeeded in synthesizing a new Yb-based Kondo lattice system, YbNi3X9 (X = Al, Ga). Our study reveals that YbNi3Al9 shows typical features of a heavy-fermion antiferromagnet with a Néel temperature of TN = 3.4 K. All of the properties reflect a competition between the Kondo effect and the crystalline electric field (CEF) effect. The moderate heavy-fermion state leads to an enhanced Sommerfeld coefficient of 100 mJ/(mol\\cdotK2), even if ordered antiferromagnetically. On the other hand, the isostructural gallide YbNi3Ga9 is an intermediate-valence system with a Kondo temperature of TK = 570 K. A large hybridization scale can overcome the CEF splitting energy, and a moderately heavy Fermi-liquid ground state with high local moment degeneracy should form at low temperatures. Note that the quality of single-crystalline YbNi3X9 is extremely high compared with those of other Yb-based Kondo lattice compounds. We conclude that YbNi3X9 is a suitable system for investigating the electronic structure of Yb-based Kondo lattice systems from a heavy-fermion system with an antiferromagnetically ordered ground state to an intermediate-valence system.

  10. How to manipulate magnetic states of antiferromagnets

    NASA Astrophysics Data System (ADS)

    Song, Cheng; You, Yunfeng; Chen, Xianzhe; Zhou, Xiaofeng; Wang, Yuyan; Pan, Feng

    2018-03-01

    Antiferromagnetic materials, which have drawn considerable attention recently, have fascinating features: they are robust against perturbation, produce no stray fields, and exhibit ultrafast dynamics. Discerning how to efficiently manipulate the magnetic state of an antiferromagnet is key to the development of antiferromagnetic spintronics. In this review, we introduce four main methods (magnetic, strain, electrical, and optical) to mediate the magnetic states and elaborate on intrinsic origins of different antiferromagnetic materials. Magnetic control includes a strong magnetic field, exchange bias, and field cooling, which are traditional and basic. Strain control involves the magnetic anisotropy effect or metamagnetic transition. Electrical control can be divided into two parts, electric field and electric current, both of which are convenient for practical applications. Optical control includes thermal and electronic excitation, an inertia-driven mechanism, and terahertz laser control, with the potential for ultrafast antiferromagnetic manipulation. This review sheds light on effective usage of antiferromagnets and provides a new perspective on antiferromagnetic spintronics.

  11. Antiferromagnetic Skyrmion: Stability, Creation and Manipulation

    NASA Astrophysics Data System (ADS)

    Zhang, Xichao; Zhou, Yan; Ezawa, Motohiko

    2016-04-01

    Magnetic skyrmions are particle-like topological excitations in ferromagnets, which have the topo-logical number Q = ± 1, and hence show the skyrmion Hall effect (SkHE) due to the Magnus force effect originating from the topology. Here, we propose the counterpart of the magnetic skyrmion in the antiferromagnetic (AFM) system, that is, the AFM skyrmion, which is topologically protected but without showing the SkHE. Two approaches for creating the AFM skyrmion have been described based on micromagnetic lattice simulations: (i) by injecting a vertical spin-polarized current to a nanodisk with the AFM ground state; (ii) by converting an AFM domain-wall pair in a nanowire junction. It is demonstrated that the AFM skyrmion, driven by the spin-polarized current, can move straightly over long distance, benefiting from the absence of the SkHE. Our results will open a new strategy on designing the novel spintronic devices based on AFM materials.

  12. Dissipative preparation of antiferromagnetic order in the Fermi-Hubbard model

    NASA Astrophysics Data System (ADS)

    Kaczmarczyk, J.; Weimer, H.; Lemeshko, M.

    2016-09-01

    The Fermi-Hubbard model is one of the key models of condensed matter physics, which holds a potential for explaining the mystery of high-temperature superconductivity. Recent progress in ultracold atoms in optical lattices has paved the way to studying the model’s phase diagram using the tools of quantum simulation, which emerged as a promising alternative to the numerical calculations plagued by the infamous sign problem. However, the temperatures achieved using elaborate laser cooling protocols so far have been too high to show the appearance of antiferromagnetic (AF) and superconducting quantum phases directly. In this work, we demonstrate that using the machinery of dissipative quantum state engineering, one can observe the emergence of the AF order in the Fermi-Hubbard model with fermions in optical lattices. The core of the approach is to add incoherent laser scattering in such a way that the AF state emerges as the dark state of the driven-dissipative dynamics. The proposed controlled dissipation channels described in this work are straightforward to add to already existing experimental setups.

  13. Microscopic Studies of Quantum Phase Transitions in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Bakr, Waseem S.

    2011-12-01

    In this thesis, I report on experiments that microscopically probe quantum phase transitions of ultracold atoms in optical lattices. We have developed a "quantum gas microscope" that allowed, for the first time, optical imaging and manipulation of single atoms in a quantum-degenerate gas on individual sites of an optical lattice. This system acts as a quantum simulator of strongly correlated materials, which are currently the subject of intense research because of the technological potential of high--T c superconductors and spintronic materials. We have used our microscope to study the superfluid to Mott insulator transition in bosons and a magnetic quantum phase transition in a spin system. In our microscopic study of the superfluid-insulator transition, we have characterized the on-site number statistics in a space- and time-resolved manner. We observed Mott insulators with fidelities as high as 99%, corresponding to entropies of 0.06kB per particle. We also measured local quantum dynamics and directly imaged the shell structure of the Mott insulator. I report on the first quantum magnetism experiments in optical lattices. We have realized a quantum Ising chain in a magnetic field, and observed a quantum phase transition between a paramagnet and antiferromagnet. We achieved strong spin interactions by encoding spins in excitations of a Mott insulator in a tilted lattice. We detected the transition by measuring the total magnetization of the system across the transition using in-situ measurements as well as the Neel ordering in the antiferromagnetic state using noise-correlation techniques. We characterized the dynamics of domain formation in the system. The spin mapping introduced opens up a new path to realizing more exotic states in optical lattices including spin liquids and quantum valence bond solids. As our system sizes become larger, simulating their physics on classical computers will require exponentially larger resources because of entanglement build

  14. Magneto-phonon polaritons in two-dimension antiferromagnetic/ion-crystalic photonic crystals

    NASA Astrophysics Data System (ADS)

    Ta, J. X.; Song, Y. L.; Wang, X. Z.

    2012-01-01

    Magneto-phonon polaritons in a two-dimension photonic crystal (PC) are discussed. This PC is constructed by embedding a periodical square lattice of ionic-crystal cylinders into an antiferromagnet. The two media are dispersive, with their individual resonant frequencies near each other. We first set up an effective-medium method to obtain the effective magnetic permeability and dielectric permittivity of the PC, followed by the dispersion relations of surface and bulk polaritons. There are a number of new surface polaritons, and two new distinctive bulk polariton bands in which the negative refraction and left-handedness can appear. The numerical calculations are based on the example, FeF2/TlBr PC.

  15. Spin diffusion and torques in disordered antiferromagnets

    NASA Astrophysics Data System (ADS)

    Manchon, Aurelien

    2017-03-01

    We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.

  16. Spin transport and spin torque in antiferromagnetic devices

    DOE PAGES

    Zelezny, J.; Wadley, P.; Olejnik, K.; ...

    2018-03-02

    Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, whichmore » could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.« less

  17. Spin transport and spin torque in antiferromagnetic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelezny, J.; Wadley, P.; Olejnik, K.

    Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, whichmore » could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.« less

  18. Spin transport and spin torque in antiferromagnetic devices

    NASA Astrophysics Data System (ADS)

    Železný, J.; Wadley, P.; Olejník, K.; Hoffmann, A.; Ohno, H.

    2018-03-01

    Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets, which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here, we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum-mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.

  19. Very High Efficiency, Miniaturized, Long-Lived Alpha Particle Power Source Using Diamond Devices for Extreme Space Environments

    NASA Technical Reports Server (NTRS)

    Kolawa, Elizabeth A. (Inventor); Patel, Jagdishbhai U. (Inventor); Fleurial, Jean-Pierre (Inventor)

    2004-01-01

    A power source that converts a-particle energy into electricity by coulomb collision in doped diamond films is described. Alpha particle decay from curium-244 creates electron-hole pairs by free- ing electrons and holes inside the crystal lattice in N- and P-doped diamond films. Ohmic contacts provide electrical connection to an electronic device. Due to the built-in electric field at the rectifying junction across the hT- and P-doped diamond films, the free electrons are constrained to traveling in generally one direction. This one direction then supplies electrons in a manner similar to that of a battery. The radioactive curium layer may be disposed on diamond films for even distribution of a-particle radiation. The resulting power source may be mounted on a diamond substrate that serves to insulate structures below the diamond substrate from a-particle emission. Additional insulation or isolation may be provided in order to prevent damage from a-particle collision. N-doped silicon may be used instead of N-doped diamond.

  20. Analysis of Short and Long Range Atomic Order in Nanocrystalline Diamonds with Application of Powder Diffractometry

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Neuefiend, J.; Weber, H.-P.; Proffen, T.; VonDreele, R.; Palosz, W.; hide

    2002-01-01

    Fundamental limitations, with respect to nanocrystalline materials, of the traditional elaboration of powder diffraction data like the Rietveld method are discussed. A tentative method of the analysis of powder diffraction patterns of nanocrystals is introduced which is based on the examination of the variation of lattice parameters calculated from individual Bragg lines (named the "apparent lattice parameter", alp). We examine the application of our methodology using theoretical diffraction patterns computed for models of nanocrystals with a perfect crystal lattice and for grains with a two-phase, core-shell structure. We use the method for the analysis of X-ray and neutron experimental diffraction data of nanocrystalline diamond powders of 4, 6 and 12 nm in diameter. The effects of an internal pressure and strain at the grain surface is discussed. This is based on the dependence of the alp values oil the diffraction vector Q and on the PDF analysis. It is shown, that the experimental results support well the concept of the two-phase structure of nanocrystalline diamond.

  1. Understanding lattice defects to influence ferromagnetic order of ZnO nanoparticles by Ni, Cu, Ce ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Kuldeep Chand, E-mail: dkuldeep.physics@gmail.com; Kotnala, R.K., E-mail: rkkotnala@gmail.com

    Future spintronics technologies based on diluted magnetic semiconductors (DMS) will rely heavily on a sound understanding of the microscopic origins of ferromagnetism in such materials. It remains unclear, however, whether the ferromagnetism in DMS is intrinsic - a precondition for spintronics - or due to dopant clustering. For this, we include a simultaneous doping from transition metal (Ni, Cu) and rare earth (Ce) ions in ZnO nanoparticles that increase the antiferromagnetic ordering to achieve high-T{sub c} ferromagnetism. Rietveld refinement of XRD patterns indicate that the dopant ions in ZnO had a wurtzite structure and the dopants, Ni{sup 2+}, Cu{sup 2+},more » Ce{sup 3+} ions, are highly influenced the lattice constants to induce lattice defects. The Ni, Cu, Ce ions in ZnO have nanoparticles formation than nanorods was observed in pure sample. FTIR involve some organic groups to induce lattice defects and the metal-oxygen bonding of Zn, Ni, Cu, Ce and O atoms to confirm wurtzite structure. Raman analysis evaluates the crystalline quality, structural disorder and defects in ZnO lattice with doping. Photoluminescence spectra have strong near-band-edge emission and visible emission bands responsible for defects due to oxygen vacancies. The energy band gap is calculated using Tauc relation. Room temperature ferromagnetism has been described due to bound magnetic polarons formation with Ni{sup 2+}, Cu{sup 2+}, Ce{sup 3+} ions in ZnO via oxygen vacancies. The zero field and field cooling SQUID measurement confirm the strength of antiferromagnetism in ZnO. The field cooling magnetization is studied by Curie-Weiss law that include antiferromagnetic interactions up to low temperature. The XPS spectra have involve +3/+4 oxidation states of Ce ions to influence the observed ferromagnetism. - Graphical abstract: The lattice defects/vacancies attributed by Ni and Ce ions in the wurtzite ZnO structure are responsible in high T{sub c} -ferromagnetism due to long

  2. Antiferromagnetic inclusions in lunar glass

    USGS Publications Warehouse

    Thorpe, A.N.; Senftle, F.E.; Briggs, Charles; Alexander, Corrine

    1974-01-01

    The magnetic susceptibility of 11 glass spherules from the Apollo 15, 16, and 17 fines and two specimens of a relatively large glass spherical shell were studied as a function of temperature from room temperature to liquid helium temperatures. All but one specimen showed the presence of antiferromagnetic inclusions. Closely spaced temperature measurements of the magnetic susceptibility below 77 K on five of the specimens showed antiferromagnetic temperature transitions (Ne??el transitions). With the exception of ilmenite in one specimen, these transitions did not correspond to any transitions in known antiferromagnetic compounds. ?? 1974.

  3. Magnon-induced superconductivity in field-cooled spin-1/2 antiferromagnets

    NASA Astrophysics Data System (ADS)

    Karchev, Naoum

    2017-12-01

    If, during the preparation, an external magnetic field is applied upon cooling we say it has been field cooled. A novel mechanism for insulator-metal transition and superconductivity in field-cooled spin-1 /2 antiferromagnets on bcc lattice is discussed. Applying a magnetic field along the sublattice B magnetization, we change the magnetic and transport properties of the material. There is a critical value Hcr1. When the magnetic field is below the critical one H antiferromagnetic insulator. When H >Hcr1 the sublattice A electrons are delocalized and the material is metal. There is a second critical value Hcr2>Hcr1 . When H =Hcr2 , it is shown that the Zeeman splitting of the sublattice A electrons is zero and they do not contribute to the magnetization of the system. At this quantum partial order point (QPOP) the sublattice B transversal spin fluctuations (magnons) interact with sublattice A electrons inducing spin antiparallel p -wave superconductivity which coexists with magnetism. At zero temperature the magnetic moment of sublattice B electrons is maximal. Below the Néel temperature (TN) the gap is approximately constant with a small increase when the system approaches TN. It abruptly falls down to zero at temperatures above TN.

  4. Stability of the antiferromagnetic state in the electron doped iridates

    NASA Astrophysics Data System (ADS)

    Bhowal, Sayantika; Moradi Kurdestany, Jamshid; Satpathy, Sashi

    2018-06-01

    Iridates such as Sr2IrO4 are of considerable interest owing to the formation of the Mott insulating state driven by a large spin–orbit coupling. However, in contrast to the expectation from the Nagaoka theorem that a single doped hole or electron destroys the anti-ferromagnetic (AFM) state of the half-filled Hubbard model in the large U limit, the anti-ferromagnetism persists in the doped Iridates for a large dopant concentration beyond half-filling. With a tight-binding description of the relevant states by the third-neighbor (t 1, t 2, t 3, U) Hubbard model on the square lattice, we examine the stability of the AFM state to the formation of a spin spiral state in the strong coupling limit. The third-neighbor interaction t 3 is important for the description of the Fermi surface of the electron doped system. A phase diagram in the parameter space is obtained for the regions of stability of the AFM state. Our results qualitatively explain the robustness of the AFM state in the electron doped iridate (such as Sr2‑x La x IrO4), observed in many experiments, where the AFM state continues to be stable until a critical dopant concentration.

  5. Thermal conductivity of high purity synthetic single crystal diamonds

    NASA Astrophysics Data System (ADS)

    Inyushkin, A. V.; Taldenkov, A. N.; Ralchenko, V. G.; Bolshakov, A. P.; Koliadin, A. V.; Katrusha, A. N.

    2018-04-01

    Thermal conductivity of three high purity synthetic single crystalline diamonds has been measured with high accuracy at temperatures from 6 to 410 K. The crystals grown by chemical vapor deposition and by high-pressure high-temperature technique demonstrate almost identical temperature dependencies κ (T ) and high values of thermal conductivity, up to 24 W cm-1K-1 at room temperature. At conductivity maximum near 63 K, the magnitude of thermal conductivity reaches 285 W cm-1K-1 , the highest value ever measured for diamonds with the natural carbon isotope composition. Experimental data were fitted with the classical Callaway model for the lattice thermal conductivity. A set of expressions for the anharmonic phonon scattering processes (normal and umklapp) has been proposed which gives an excellent fit to the experimental κ (T ) data over almost the whole temperature range explored. The model provides the strong isotope effect, nearly 45%, and the high thermal conductivity (>24 W cm-1K-1 ) for the defect-free diamond with the natural isotopic abundance at room temperature.

  6. Lattice parameters guide superconductivity in iron-arsenides

    NASA Astrophysics Data System (ADS)

    Konzen, Lance M. N.; Sefat, Athena S.

    2017-03-01

    The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped ‘parent’ materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which ‘dopants’ can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce ‘in-plane’ superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.

  7. Lattice parameters guide superconductivity in iron-arsenides

    DOE PAGES

    Konzen, Lance M. N.; Sefat, Athena S.

    2017-01-12

    The discovery of superconducting materials has led to their use in modern technological marvels, such as magnetic field sensors in MRI machines, powerful research magnets, and high-speed trains. Despite such applications, the uses of superconductors are not widespread due to high cooling costs. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), numerous studies have tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped ‘parent’ materials that undergo a superconducting transition uponmore » small chemical substitutions in them. As it is currently unclear which ‘dopants’ can favor of superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-based materials (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce ‘in-plane’ superconductivity. The review of lattice parameter trends in iron-based superconductors presented here, should guide synthesis of new materials and give clues for superconductivity.« less

  8. Lattice parameters guide superconductivity in iron-arsenides.

    PubMed

    Konzen, Lance M N; Sefat, Athena S

    2017-03-01

    The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped 'parent' materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which 'dopants' can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce 'in-plane' superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.

  9. Structural and spectroscopic properties of the polar antiferromagnet N i2MnTe O6

    NASA Astrophysics Data System (ADS)

    Retuerto, Maria; Skiadopoulou, Stella; Borodavka, Fedir; Kadlec, Christelle; Kadlec, Filip; Prokleška, Jan; Deng, Zheng; Alonso, Jose A.; Fernandez-Diaz, Maria T.; Saouma, Felix O.; Jang, Joon I.; Legut, Dominik; Kamba, Stanislav; Greenblatt, Martha

    2018-04-01

    We present a structural and spectroscopic study of the compound N i2MnTe O6 , closely related to the polar antiferromagnet N i3Te O6 known to show a colossal magnetoelectric effect and pronounced elementary magnetoelectric excitations. We prepared single crystals and polycrystalline samples of N i2MnTe O6 showing the same polar structure as N i3Te O6 from room temperature down to 4 K with the R 3 space-group symmetry. Magnetic and dielectric measurements have indicated an antiferromagnetic phase transition at TN≈70 K , almost 20 K higher than that of N i3Te O6 . Extensive infrared, Raman, and terahertz spectroscopy experiments were employed for investigating lattice and spin excitations, revealing all phonons predicted by the factor group analysis. Terahertz spectra below TN reveal one new excitation, which is strongly influenced by external magnetic field, thus assigned to a magnon.

  10. Relief of frustration in the Heisenberg pyrochlore antiferromagnet Gd2Pt2O7

    NASA Astrophysics Data System (ADS)

    Hallas, A. M.; Sharma, A. Z.; Cai, Y.; Munsie, T. J.; Wilson, M. N.; Tachibana, M.; Wiebe, C. R.; Luke, G. M.

    2016-10-01

    The gadolinium pyrochlores Gd2B2O7 are among the best realizations of antiferromagnetically coupled Heisenberg spins on a pyrochlore lattice. We present a magnetic characterization of Gd2Pt2O7 , a unique member of this family. Magnetic susceptibility, heat capacity, and muon spin relaxation measurements show that Gd2Pt2O7 undergoes an antiferromagnetic ordering transition at TN=1.6 K. This transition is strongly first order, as indicated by the sharpness of the heat capacity anomaly, thermal hysteresis in the magnetic susceptibility, and a nondivergent relaxation rate in μ SR . The form of the heat capacity below TN suggests that the ground state is an anisotropic collinear antiferromagnet with an excitation spectrum that is gapped by 0.245(1) meV. The ordering temperature in Gd2Pt2O7,TN=1.6 K, is a substantial 160% increase from other gadolinium pyrochlores, which are all known to order at 1 K or lower. We attribute this enhancement in TN to the B -site cation, platinum. Despite being nonmagnetic, platinum has a filled 5 d t2 g orbital and an empty 5 d eg orbital that can facilitate superexchange. Thus, the magnetic frustration in Gd2Pt2O7 is partially "relieved," thereby promoting magnetic order.

  11. Diamond anvil cells using boron-doped diamond electrodes covered with undoped diamond insulating layer

    NASA Astrophysics Data System (ADS)

    Matsumoto, Ryo; Yamashita, Aichi; Hara, Hiroshi; Irifune, Tetsuo; Adachi, Shintaro; Takeya, Hiroyuki; Takano, Yoshihiko

    2018-05-01

    Diamond anvil cells using boron-doped metallic diamond electrodes covered with undoped diamond insulating layers have been developed for electrical transport measurements under high pressure. These designed diamonds were grown on a bottom diamond anvil via a nanofabrication process combining microwave plasma-assisted chemical vapor deposition and electron beam lithography. The resistance measurements of a high-quality FeSe superconducting single crystal under high pressure were successfully demonstrated by just putting the sample and gasket on the bottom diamond anvil directly. The superconducting transition temperature of the FeSe single crystal was increased to up to 43 K by applying uniaxial-like pressure.

  12. Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators

    NASA Astrophysics Data System (ADS)

    Hilker, Timon A.; Salomon, Guillaume; Grusdt, Fabian; Omran, Ahmed; Boll, Martin; Demler, Eugene; Bloch, Immanuel; Gross, Christian

    2017-08-01

    Topological phases, like the Haldane phase in spin-1 chains, defy characterization through local order parameters. Instead, nonlocal string order parameters can be employed to reveal their hidden order. Similar diluted magnetic correlations appear in doped one-dimensional lattice systems owing to the phenomenon of spin-charge separation. Here we report on the direct observation of such hidden magnetic correlations via quantum gas microscopy of hole-doped ultracold Fermi-Hubbard chains. The measurement of nonlocal spin-density correlation functions reveals a hidden finite-range antiferromagnetic order, a direct consequence of spin-charge separation. Our technique, which measures nonlocal order directly, can be readily extended to higher dimensions to study the complex interplay between magnetic order and density fluctuations.

  13. Directly probing spin dynamics in insulating antiferromagnets using ultrashort terahertz pulses

    DOE PAGES

    Bowlan, Pamela Renee; Trugman, Stuart Alan; Wang, X.; ...

    2016-11-22

    We investigate spin dynamics in the antiferromagnetic (AFM) multiferroic TbMnO3 using opticalpump, terahertz (THz)-probe spectroscopy. Photoexcitation results in a broadband THz transmission change, with an onset time of 25 ps at 6 K that becomes faster at higher temperatures. We attribute this time constant to spin-lattice thermalization. The excellent agreement between our measurements and previous ultrafast resonant x-ray diffraction measurements on the same material confirms that our THz pulse directly probes spin order. We suggest that this could be the case in general for insulating AFM materials, if the origin of the static absorption in the THz spectral range ismore » magnetic.« less

  14. NMR studies of the helical antiferromagnetic compound EuCo2P2

    NASA Astrophysics Data System (ADS)

    Higa, N.; Ding, Q.-P.; Kubota, F.; Uehara, H.; Yogi, M.; Furukawa, Y.; Sangeetha, N. S.; Johnston, D. C.; Nakamura, A.; Hedo, M.; Nakama, T.; Ōnuki, Y.

    2018-05-01

    In EuCo2P2, 4f electron spins of Eu2+ ions order antiferromagnetically below a Néel temperature TN = 66.5 K . The magnetic structure below TN was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo2P2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicate homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. We have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.

  15. Diamond tool machining of materials which react with diamond

    DOEpatents

    Lundin, Ralph L.; Stewart, Delbert D.; Evans, Christopher J.

    1992-01-01

    Apparatus for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond.

  16. Diamond tool machining of materials which react with diamond

    DOEpatents

    Lundin, R.L.; Stewart, D.D.; Evans, C.J.

    1992-04-14

    An apparatus is described for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond. 1 figs.

  17. New PLAD apparatus and fabrication of epitaxial films and junctions of functional materials: SiC, GaN, ZnO, diamond and GMR layers

    NASA Astrophysics Data System (ADS)

    Muto, Hachizo; Kusumori, Takeshi; Nakamura, Toshiyuki; Asano, Takashi; Hori, Takahiro

    2006-04-01

    We have developed a new pulsed laser ablation-deposition (PLAD) apparatus and techniques for fabricating films of high-temperature or functional materials, including two short-wavelength lasers: (a) a YAG 5th harmonic (213 nm) and (b) Raman-shifted lasers containing vacuum ultraviolet light; also involved are (c) a high-temperature heater with a maximum temperature of 1350 °C, (d) dual-target simultaneous ablation mechanics, and (e) hybrid PLAD using a pico-second YAG laser combined with (c) and/or (d). Using the high-T heater, hetero-epitaxial films of 3C-, 2H- and 4H-SiC have been prepared on sapphire-c. In situ p-doping for GaN epitaxial films is achieved by simultaneous ablation of GaN and Mg targets by (d) during film growth. Junctions such as pGaN (Mg-doped)-film/n-SiC(0 0 0 1) substrate and pGaN/n-Si(1 1 1) show good diode characteristics. Epitaxial films with a diamond lattice can be grown on the sapphire-c plane by hybrid PLAD (e) with a high-T heater using a 6H-SiC target. High quality epitaxial films of ZnO are grown by PLAD by introducing a low-temperature self-buffer layer; magnetization of ferromagnetic materials is enforced by overlaying on a ferromagnetic lattice plane of an anti-ferromagnetic material, showing the value of the layer-overlaying method in improving quality. The short-wavelength lasers are useful in reducing surface particles on functional films, including superconductors.

  18. Nitrogen and silicon defect incorporation during homoepitaxial CVD diamond growth on (111) surfaces

    DOE PAGES

    Moore, Samuel L.; Vohra, Yogesh K.

    2015-01-01

    Chemical Vapor Deposited (CVD) diamond growth on (111)-diamond surfaces has received increased attention lately because of the use of N-V related centers in quantum computing as well as application of these defect centers in sensing nano-Tesla strength magnetic fields. We have carried out a detailed study of homoepitaxial diamond deposition on (111)-single crystal diamond (SCD) surfaces using a 1.2 kW microwave plasma CVD (MPCVD) system employing methane/hydrogen/nitrogen/oxygen gas phase chemistry. We have utilized Type Ib (111)-oriented single crystal diamonds as seed crystals in our study. The homoepitaxially grown diamond films were analyzed by Raman spectroscopy, Photoluminescence Spectroscopy (PL), X-ray Photoelectronmore » Spectroscopy (XPS), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The nitrogen concentration in the plasma was carefully varied between 0 and 1500 ppm while a ppm level of silicon impurity is present in the plasma from the quartz bell jar. The concentration of N-V defect centers with PL zero phonon lines (ZPL) at 575nm and 637nm and the Si-defect center with a ZPL at 737nm were experimentally detected from a variation in CVD growth conditions and were quantitatively studied. As a result, altering nitrogen and oxygen concentration in the plasma was observed to directly affect N-V and Si-defect incorporation into the (111)-oriented diamond lattice and these findings are presented.« less

  19. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2013-01-01

    Estimated 2012 world production of natural and synthetic industrial diamond was about 4.45 billion carats. During 2012, natural industrial diamonds were produced in at least 20 countries, and synthetic industrial diamond was produced in at least 12 countries. About 99 percent of the combined natural and synthetic global output was produced in Belarus, China, Ireland, Japan, Russia, South Africa and the United States. During 2012, China was the world’s leading producer of synthetic industrial diamond followed by the United States and Russia. In 2012, the two U.S. synthetic producers, one in Pennsylvania and the other in Ohio, had an estimated output of 103 million carats, valued at about $70.6 million. This was an estimated 43.7 million carats of synthetic diamond bort, grit, and dust and powder with a value of $14.5 million combined with an estimated 59.7 million carats of synthetic diamond stone with a value of $56.1 million. Also in 2012, nine U.S. firms manufactured polycrystalline diamond (PCD) from synthetic diamond grit and powder. The United States government does not collect or maintain data for either domestic PCD producers or domestic chemical vapor deposition (CVD) diamond producers for quantity or value of annual production. Current trade and consumption quantity data are not available for PCD or for CVD diamond. For these reasons, PCD and CVD diamond are not included in the industrial diamond quantitative data reported here.

  20. Petit and grand ensemble Monte Carlo calculations of the thermodynamics of the lattice gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murch, G.E.; Thorn, R.J.

    1978-11-01

    A direct Monte Carlo method for estimating the chemical potential in the petit canonical ensemble was applied to the simple cubic Ising-like lattice gas. The method is based on a simple relationship between the chemical potential and the potential energy distribution in a lattice gas at equilibrium as derived independently by Widom, and Jackson and Klein. Results are presented here for the chemical potential at various compositions and temperatures above and below the zero field ferromagnetic and antiferromagnetic critical points. The same lattice gas model was reconstructed in the form of a restricted grand canonical ensemble and results at severalmore » temperatures were compared with those from the petit canonical ensemble. The agreement was excellent in these cases.« less

  1. Crystal structures and magnetic properties of two-dimensional antiferromagnets Co{sub 1-x}Zn{sub x}TeMoO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doi, Yoshihiro, E-mail: doi@sci.hokudai.ac.j; Suzuki, Ryo; Hinatsu, Yukio

    2009-12-15

    Crystal structures and magnetic properties of metal telluromolybdates Co{sub 1-x}Zn{sub x}TeMoO{sub 6} (x=0.0, 0.1,...,0.9) are reported. All the compounds have an orthorhombic structure with space group P2{sub 1}2{sub 1}2 and a charge configuration of M{sup 2+}Te{sup 4+}Mo{sup 6+}O{sub 6}. In this structure, M ions form a pseudo-two-dimensional lattice in the ab plane. Their magnetic susceptibility measurements have been performed in the temperature range between 1.8 and 300 K. The end member CoTeMoO{sub 6} shows a magnetic transition at 24.4 K. The transition temperature for solid solutions rapidly decreases with increasing x and this transition disappears between x=0.4 and 0.5, whichmore » is corresponding to the percolation limit for the square-planer lattice. From the magnetization, specific heat, and powder neutron diffraction measurements, it is found that the magnetic transition observed in the CoTeMoO{sub 6} is a canted antiferromagnetic ordering of Co{sup 2+} ions. The antiferromagnetic component of the ordered magnetic moment (3.12(3)mu{sub B} at 10 K) is along the b-axis. In addition, there exists a small ferromagnetic component (0.28(3)mu{sub B}) along the a-axis. - Graphical abstract: The metal telluromolybdates Co{sub 1-x}Zn{sub x}TeMoO{sub 6} have an orthorhombic structure with space group P2{sub 1}2{sub 1}2. In this structure, M ions form a pseudo-square-planer lattice in the ab plane. These compounds show a low-dimensional magnetism reflecting this structural feature. The magnetic transition observed in the CoTeMoO{sub 6} is a canted antiferromagnetic ordering of Co{sup 2+} ions, and the figure is the magnetic structure.« less

  2. Half-magnetization plateau in a Heisenberg antiferromagnet on a triangular lattice

    NASA Astrophysics Data System (ADS)

    Ye, Mengxing; Chubukov, Andrey V.

    2017-10-01

    We present the phase diagram of a 2D isotropic triangular Heisenberg antiferromagnet in a magnetic field. We consider spin-S model with nearest-neighbor (J1) and next-nearest-neighbor (J2) interactions. We focus on the range of 1 /8

  3. Antiferromagnetic resonance excited by oscillating electric currents

    NASA Astrophysics Data System (ADS)

    Sluka, Volker

    2017-12-01

    In antiferromagnetic materials the order parameter exhibits resonant modes at frequencies that can be in the terahertz range, making them interesting components for spintronic devices. Here, it is shown that antiferromagnetic resonance can be excited using the inverse spin-Hall effect in a system consisting of an antiferromagnetic insulator coupled to a normal-metal waveguide. The time-dependent interplay between spin torque, ac spin accumulation, and magnetic degrees of freedom is studied. It is found that the dynamics of the antiferromagnet affects the frequency-dependent conductivity of the normal metal. Further, a comparison is made between spin-current-induced and Oersted-field-induced excitation under the condition of constant power injection.

  4. Competition between dynamic and structural disorder in a doped triangular antiferromagnet RbFe(MoO4)2

    NASA Astrophysics Data System (ADS)

    Smirnov, A. I.; Soldatov, T. A.; Petrenko, O. A.; Takata, A.; Kida, T.; Hagiwara, M.; Zhitomirsky, M. E.; Shapiro, A. Ya

    2018-03-01

    Magnetisation measurements and electron spin resonance (ESR) spectra of a doped quasi two dimensional (2D) antiferromagnet on a triangular lattice Rb1 ‑ x K x Fe(MoO4)2 reveal a crucial change of the ground state spin configuration and a disappearance of a characteristic 1/3-magnetisation plateau at x = 0.15. According to theory for triangular antiferromagnets with a weak random modulation of the exchange bonds, this is a result of the competition between the structural and dynamic disorders. The dynamic zero-point or thermal fluctuations are known to lift the degeneracy of the mean field ground state of a triangular antiferromagnet and cause the spin configuration to be the most collinear, while the static disorder provides another selection of the ground state, with the least collinear structure. Low-level doping (x ≤ 0.15) was found to decrease the Néel temperature and saturation field by only few percent, while the magnetisation plateau disappears completely and the spin configuration is drastically changed. ESR spectra confirm an impurity-induced change of the so-called Y-type structure to an inverted Y-structure for x = 0.15. For x = 0.075 the intermediate regime with the decrease of width and weakening of flattening of 1/3-plateau was found.

  5. Optical patterning of trapped charge in nitrogen-doped diamond

    NASA Astrophysics Data System (ADS)

    Dhomkar, Siddharth; Jayakumar, Harishankar; Pagliero, Daniela; Laraoui, Abdelghani; Albu, Remus; Manson, Neil; Doherty, Marcus; Henshaw, Jacob; Meriles, Carlos

    The nitrogen-vacancy (NV) center in diamond is emerging as a promising platform for solid-state quantum information processing and nanoscale metrology. Of interest in these applications is the manipulation of the NV charge state, which can be attained by optical illumination. Here we use two-color optical microscopy to investigate the dynamics of NV photo-ionization, charge diffusion, and trapping in type-1b diamond. We combine fixed-point laser excitation and scanning fluorescence imaging to locally alter the concentration of negatively charged NVs and to subsequently probe the corresponding redistribution of charge. We uncover the formation of various spatial patterns of trapped charge, which we semi-quantitatively reproduce via a model of the interplay between photo-excited carriers and atomic defects in the diamond lattice. Further, by using the NV as a local probe, we map the relative fraction of positively charged nitrogen upon localized optical excitation. These observations may prove important to various technologies, including the transport of quantum information between remote NVs and the development of three-dimensional, charge-based memories. We acknowledge support from the National Science Foundation through Grant NSF-1314205.

  6. Double-double bend achromat cell upgrade at the Diamond Light Source: From design to commissioning

    NASA Astrophysics Data System (ADS)

    Bartolini, R.; Abraham, C.; Apollonio, M.; Bailey, C. P.; Cox, M. P.; Day, A.; Fielder, R. T.; Hammond, N. P.; Heron, M. T.; Holdsworth, R.; Kay, J.; Martin, I. P. S.; Mhaskar, S.; Miller, A.; Pulampong, T.; Rehm, G.; Rial, E. C. M.; Rose, A.; Shahveh, A.; Singh, B.; Thomson, A.; Walker, R. P.

    2018-05-01

    Diamond has recently successfully commissioned a major change in the lattice consisting of the substitution of a standard double-bend achromat (DBA) cell with a modified four-bend achromat (4BA) cell called "double-double bend achromat" (DDBA). This work stems from the original studies initiated in 2012 towards a Diamond upgrade and provides the benefit of an additional straight section in the ring available for insertion devices. This paper reviews the DDBA design and layout, the implications for technical subsystems, the associated engineering challenges and the main results of the commissioning completed in April 2017.

  7. Nearly Deconfined Spinon Excitations in the Square-Lattice Spin-1 /2 Heisenberg Antiferromagnet

    NASA Astrophysics Data System (ADS)

    Shao, Hui; Qin, Yan Qi; Capponi, Sylvain; Chesi, Stefano; Meng, Zi Yang; Sandvik, Anders W.

    2017-10-01

    We study the spin-excitation spectrum (dynamic structure factor) of the spin-1 /2 square-lattice Heisenberg antiferromagnet and an extended model (the J -Q model) including four-spin interactions Q in addition to the Heisenberg exchange J . Using an improved method for stochastic analytic continuation of imaginary-time correlation functions computed with quantum Monte Carlo simulations, we can treat the sharp (δ -function) contribution to the structure factor expected from spin-wave (magnon) excitations, in addition to resolving a continuum above the magnon energy. Spectra for the Heisenberg model are in excellent agreement with recent neutron-scattering experiments on Cu (DCOO )2.4 D2O , where a broad spectral-weight continuum at wave vector q =(π ,0 ) was interpreted as deconfined spinons, i.e., fractional excitations carrying half of the spin of a magnon. Our results at (π ,0 ) show a similar reduction of the magnon weight and a large continuum, while the continuum is much smaller at q =(π /2 ,π /2 ) (as also seen experimentally). We further investigate the reasons for the small magnon weight at (π ,0 ) and the nature of the corresponding excitation by studying the evolution of the spectral functions in the J -Q model. Upon turning on the Q interaction, we observe a rapid reduction of the magnon weight to zero, well before the system undergoes a deconfined quantum phase transition into a nonmagnetic spontaneously dimerized state. Based on these results, we reinterpret the picture of deconfined spinons at (π ,0 ) in the experiments as nearly deconfined spinons—a precursor to deconfined quantum criticality. To further elucidate the picture of a fragile (π ,0 )-magnon pole in the Heisenberg model and its depletion in the J -Q model, we introduce an effective model of the excitations in which a magnon can split into two spinons that do not separate but fluctuate in and out of the magnon space (in analogy to the resonance between a photon and a particle

  8. Effective One-Dimensional Coupling in the Highly Frustrated Square-Lattice Itinerant Magnet CaCo2 -yAs2

    NASA Astrophysics Data System (ADS)

    Sapkota, A.; Ueland, B. G.; Anand, V. K.; Sangeetha, N. S.; Abernathy, D. L.; Stone, M. B.; Niedziela, J. L.; Johnston, D. C.; Kreyssig, A.; Goldman, A. I.; McQueeney, R. J.

    2017-10-01

    Inelastic neutron scattering measurements on the itinerant antiferromagnet CaCo2 -yAs2 at a temperature of 8 K reveal two orthogonal planes of scattering perpendicular to the Co square lattice in reciprocal space, demonstrating the presence of effective one-dimensional spin interactions. These results are shown to arise from near-perfect bond frustration within the J1-J2 Heisenberg model on a square lattice with ferromagnetic J1 and hence indicate that the extensive previous experimental and theoretical study of the J1-J2 Heisenberg model on local-moment square spin lattices should be expanded to include itinerant spin systems.

  9. Effective One-Dimensional Coupling in the Highly Frustrated Square-Lattice Itinerant Magnet CaCo_{2-y}As_{2}.

    PubMed

    Sapkota, A; Ueland, B G; Anand, V K; Sangeetha, N S; Abernathy, D L; Stone, M B; Niedziela, J L; Johnston, D C; Kreyssig, A; Goldman, A I; McQueeney, R J

    2017-10-06

    Inelastic neutron scattering measurements on the itinerant antiferromagnet CaCo_{2-y}As_{2} at a temperature of 8 K reveal two orthogonal planes of scattering perpendicular to the Co square lattice in reciprocal space, demonstrating the presence of effective one-dimensional spin interactions. These results are shown to arise from near-perfect bond frustration within the J_{1}-J_{2} Heisenberg model on a square lattice with ferromagnetic J_{1} and hence indicate that the extensive previous experimental and theoretical study of the J_{1}-J_{2} Heisenberg model on local-moment square spin lattices should be expanded to include itinerant spin systems.

  10. Effective One-Dimensional Coupling in the Highly Frustrated Square-Lattice Itinerant Magnet CaCo 2 - y As 2

    DOE PAGES

    Sapkota, A.; Ueland, B. G.; Anand, V. K.; ...

    2017-10-02

    Inelastic neutron scattering measurements on the itinerant antiferromagnet CaCo 2–yAs 2 at a temperature of 8 K reveal two orthogonal planes of scattering perpendicular to the Co square lattice in reciprocal space, demonstrating the presence of effective one-dimensional spin interactions. Here, these results are shown to arise from near-perfect bond frustration within the J 1–J 2 Heisenberg model on a square lattice with ferromagnetic J 1 and hence indicate that the extensive previous experimental and theoretical study of the J 1–J 2 Heisenberg model on local-moment square spin lattices should be expanded to include itinerant spin systems.

  11. Effective One-Dimensional Coupling in the Highly Frustrated Square-Lattice Itinerant Magnet CaCo 2 - y As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapkota, A.; Ueland, B. G.; Anand, V. K.

    Inelastic neutron scattering measurements on the itinerant antiferromagnet CaCo 2–yAs 2 at a temperature of 8 K reveal two orthogonal planes of scattering perpendicular to the Co square lattice in reciprocal space, demonstrating the presence of effective one-dimensional spin interactions. Here, these results are shown to arise from near-perfect bond frustration within the J 1–J 2 Heisenberg model on a square lattice with ferromagnetic J 1 and hence indicate that the extensive previous experimental and theoretical study of the J 1–J 2 Heisenberg model on local-moment square spin lattices should be expanded to include itinerant spin systems.

  12. Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet.

    PubMed

    Zaletel, Michael P; Zhu, Zhenyue; Lu, Yuan-Ming; Vishwanath, Ashvin; White, Steven R

    2016-05-13

    The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations.

  13. Anisotropy of Spin Fluctuations in a Tetragonal Heavy Fermion Antiferromagnet CeRhAl 4 Si 2

    DOE PAGES

    Sakai, H.; Hattori, T.; Tokunaga, Y.; ...

    2017-06-01

    An antiferromagnetic (AFM) Kondo lattice compound CeRhAl 4Si 2, which exhibits successive AFM transitions at T N1=14 K and T N2=9 K in zero external field, has been microscopically investigated by means of 27Al nuclear magnetic resonance (NMR) technique. In the high temperature range, magnetic excitations of 4f electrons can be well explained by isotropic localized spin fluctuations. Below ~50 K, it begins to show a characteristic anisotropy of spin fluctuations, which suggests a competition between spin fluctuations and nesting instability in this system.

  14. Asymptotic Behaviour of Ground States for Mixtures of Ferromagnetic and Antiferromagnetic Interactions in a Dilute Regime

    NASA Astrophysics Data System (ADS)

    Braides, Andrea; Causin, Andrea; Piatnitski, Andrey; Solci, Margherita

    2018-06-01

    We consider randomly distributed mixtures of bonds of ferromagnetic and antiferromagnetic type in a two-dimensional square lattice with probability 1-p and p, respectively, according to an i.i.d. random variable. We study minimizers of the corresponding nearest-neighbour spin energy on large domains in Z^2. We prove that there exists p_0 such that for p≤ p_0 such minimizers are characterized by a majority phase; i.e., they take identically the value 1 or - 1 except for small disconnected sets. A deterministic analogue is also proved.

  15. Asymptotic Behaviour of Ground States for Mixtures of Ferromagnetic and Antiferromagnetic Interactions in a Dilute Regime

    NASA Astrophysics Data System (ADS)

    Braides, Andrea; Causin, Andrea; Piatnitski, Andrey; Solci, Margherita

    2018-04-01

    We consider randomly distributed mixtures of bonds of ferromagnetic and antiferromagnetic type in a two-dimensional square lattice with probability 1-p and p, respectively, according to an i.i.d. random variable. We study minimizers of the corresponding nearest-neighbour spin energy on large domains in Z^2 . We prove that there exists p_0 such that for p≤p_0 such minimizers are characterized by a majority phase; i.e., they take identically the value 1 or - 1 except for small disconnected sets. A deterministic analogue is also proved.

  16. Gapless Spin-Liquid Ground State in the S =1 /2 Kagome Antiferromagnet

    NASA Astrophysics Data System (ADS)

    Liao, H. J.; Xie, Z. Y.; Chen, J.; Liu, Z. Y.; Xie, H. D.; Huang, R. Z.; Normand, B.; Xiang, T.

    2017-03-01

    The defining problem in frustrated quantum magnetism, the ground state of the nearest-neighbor S =1 /2 antiferromagnetic Heisenberg model on the kagome lattice, has defied all theoretical and numerical methods employed to date. We apply the formalism of tensor-network states, specifically the method of projected entangled simplex states, which combines infinite system size with a correct accounting for multipartite entanglement. By studying the ground-state energy, the finite magnetic order appearing at finite tensor bond dimensions, and the effects of a next-nearest-neighbor coupling, we demonstrate that the ground state is a gapless spin liquid. We discuss the comparison with other numerical studies and the physical interpretation of this result.

  17. Nonmonotonic and anisotropic magnetoresistance effect in antiferromagnet CaMn2Bi2

    NASA Astrophysics Data System (ADS)

    Kawaguchi, N.; Urata, T.; Hatano, T.; Iida, K.; Ikuta, H.

    2018-04-01

    We found a large and unique magnetoresistance (MR) effect for CaMn2Bi2 . When the magnetic field was applied along the crystallographic c axis at low temperatures, the resistivity increased with the magnetic field and the MR ratio reached several hundred percent, but then it decreased with further increasing the applied field. In addition, the angle dependence measurement revealed a strong anisotropy. This compound is an antiferromagnetic semiconductor with a narrow band gap, and Mn atoms form a corrugated honeycomb lattice. Therefore, a frustration among the magnetic moments is expected, and we propose that our observations can be understood by a nonmonotonic modulation of magnetic fluctuation under the magnetic field.

  18. Investigation of the Fermi-Hubbard model with 6Li in an optical lattice

    NASA Astrophysics Data System (ADS)

    Hart, R. A.; Duarte, P. M.; Yang, T.-L.; Hulet, R. G.

    2013-05-01

    We present our results on investigation of the physics of the Fermi-Hubbard model using an ultracold gas of 6Li loaded into an optical lattice. We use all-optical methods to efficiently cool and load the lattice beginning with laser cooling on the 2S1 / 2 --> 2P3 / 2 transition and then further cooling using the narrow 2S1 / 2 --> 3P3 / 2 transition to T ~ 59 μK. The second stage of laser cooling greatly enhances loading to an optical dipole trap where a two spin state mixture of atoms is evaporatively cooled to degeneracy. We then adiabatically load ~106 degenerate fermions into a 3D optical lattice formed by three orthogonal standing waves of 1064 nm light. Overlapped with each of the three lattice beams is a non-retroreflected beam at 532 nm. This light cancels the harmonic trapping caused by the lattice beams, which extends the number of lattice sites over which a Néel phase can exist and may allow evaporative cooling in the lattice. By using Bragg scattering of light, we investigate the possibility of observing long-range antiferromagnetic ordering of spins in the lattice. Supported by NSF, ONR, DARPA, and the Welch Foundation.

  19. Pressure-tuned quantum criticality in the antiferromagnetic Kondo semimetal CeNi 2–δAs 2

    DOE PAGES

    Luo, Yongkang; Ronning, F.; Wakeham, N.; ...

    2015-10-19

    The easily tuned balance among competing interactions in Kondo-lattice metals allows access to a zero-temperature, continuous transition between magnetically ordered and disordered phases, a quantum-critical point (QCP). Indeed, these highly correlated electron materials are prototypes for discovering and exploring quantum-critical states. Theoretical models proposed to account for the strange thermodynamic and electrical transport properties that emerge around the QCP of a Kondo lattice assume the presence of an indefinitely large number of itinerant charge carriers. Here, we report a systematic transport and thermodynamic investigation of the Kondo-lattice system CeNi 2–δAs 2 (δ ≈ 0.28) as its antiferromagnetic order is tunedmore » by pressure and magnetic field to zero-temperature boundaries. These experiments show that the very small but finite carrier density of ~0.032 e –/formular unit in CeNi 2–δAs 2 leads to unexpected transport signatures of quantum criticality and the delayed development of a fully coherent Kondo-lattice state with decreasing temperature. Here, the small carrier density and associated semimetallicity of this Kondo-lattice material favor an unconventional, local-moment type of quantum criticality and raises the specter of the Nozières exhaustion idea that an insufficient number of conduction-electron spins to separately screen local moments requires collective Kondo screening.« less

  20. Itinerant G-type antiferromagnetic order in SrCr2As2

    NASA Astrophysics Data System (ADS)

    Das, Pinaki; Sangeetha, N. S.; Lindemann, George R.; Heitmann, T. W.; Kreyssig, A.; Goldman, A. I.; McQueeney, R. J.; Johnston, D. C.; Vaknin, D.

    2017-07-01

    Neutron-diffraction and magnetic susceptibility studies of polycrystalline SrCr2As2 reveal that this compound is an itinerant G-type antiferromagnet below the Néel temperature TN = 590(5) K with the Cr magnetic moments aligned along the tetragonal c axis. The system remains tetragonal to the lowest measured temperature (˜12 K). The lattice parameter ratio c /a and the magnetic moment saturate at about the same temperature below ˜200 K, indicating a possible magnetoelastic coupling. The ordered moment μ =1.9 (1 ) μB /Cr , measured at T =12 K, is significantly reduced compared to its localized value (4 μB /Cr ) due to the itinerant character brought about by hybridization between the Cr 3 d and As 4 p orbitals.

  1. Observation of magnetic phase segregation in an antiferromagnet

    NASA Astrophysics Data System (ADS)

    Neumeier, J. J.; Cohn, J. L.

    2000-03-01

    Magnetic phase segregation in an antiferromagnet is investigated through electron doping of CaMnO3 and magnetization measurements which reveal G-type antiferromagnetism, local ferrimagnetism, local ferromagnetism, and C-type antiferromagnetism; up to three of these phases coexist at any one doped-electron concentration. The magnetic properties are strongly correlated with the electron mobility. These results confirm that the addition of electrons to an antiferromagnet can promote phase segregation. Work at the University of Miami was supported by NSF Grant No. DMR-9631236.

  2. The stability of a crystal with diamond structure for patchy particles with tetrahedral symmetry.

    PubMed

    Noya, Eva G; Vega, Carlos; Doye, Jonathan P K; Louis, Ard A

    2010-06-21

    The phase diagram of model anisotropic particles with four attractive patches in a tetrahedral arrangement has been computed at two different values of the range of the potential, with the aim of investigating the conditions under which a diamond crystal can be formed. We find that the diamond phase is never stable for our longer-ranged potential. At low temperatures and pressures, the fluid freezes into a body-centered-cubic solid that can be viewed as two interpenetrating diamond lattices with a weak interaction between the two sublattices. Upon compression, an orientationally ordered face-centered-cubic crystal becomes more stable than the body-centered-cubic crystal, and at higher temperatures, a plastic face-centered-cubic phase is stabilized by the increased entropy due to orientational disorder. A similar phase diagram is found for the shorter-ranged potential, but at low temperatures and pressures, we also find a region over which the diamond phase is thermodynamically favored over the body-centered-cubic phase. The higher vibrational entropy of the diamond structure with respect to the body-centered-cubic solid explains why it is stable even though the enthalpy of the latter phase is lower. Some preliminary studies on the growth of the diamond structure starting from a crystal seed were performed. Even though the diamond phase is never thermodynamically stable for the longer-ranged model, direct coexistence simulations of the interface between the fluid and the body-centered-cubic crystal and between the fluid and the diamond crystal show that at sufficiently low pressures, it is quite probable that in both cases the solid grows into a diamond crystal, albeit involving some defects. These results highlight the importance of kinetic effects in the formation of diamond crystals in systems of patchy particles.

  3. Dynamics of antiferromagnetic skyrmion driven by the spin Hall effect

    NASA Astrophysics Data System (ADS)

    Jin, Chendong; Song, Chengkun; Wang, Jianbo; Liu, Qingfang

    2016-10-01

    Magnetic skyrmion moved by the spin-Hall effect is promising for the application of the generation racetrack memories. However, the Magnus force causes a deflected motion of skyrmion, which limits its application. Here, we create an antiferromagnetic skyrmion by injecting a spin-polarized pulse in the nanostripe and investigate the spin Hall effect-induced motion of antiferromagnetic skyrmion by micromagnetic simulations. In contrast to ferromagnetic skyrmion, we find that the antiferromagnetic skyrmion has three evident advantages: (i) the minimum driving current density of antiferromagnetic skyrmion is about two orders smaller than the ferromagnetic skyrmion; (ii) the velocity of the antiferromagnetic skyrmion is about 57 times larger than the ferromagnetic skyrmion driven by the same value of current density; (iii) antiferromagnetic skyrmion can be driven by the spin Hall effect without the influence of Magnus force. In addition, antiferromagnetic skyrmion can move around the pinning sites due to its property of topological protection. Our results present the understanding of antiferromagnetic skyrmion motion driven by the spin Hall effect and may also contribute to the development of antiferromagnetic skyrmion-based racetrack memories.

  4. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. A review of the state of the global industrial diamond industry in 1999 is presented. World consumption of industrial diamond has increased annually in recent years, with an estimated 500 million carats valued between $650 million and $800 million consumed in 1999. In 1999, the U.S. was the world's largest market for industrial diamond and was also one of the world's main producers; the others were Ireland, Russia, and South Africa. Uses of industrial diamonds are discussed, and prices of natural and synthetic industrial diamond are reported.

  5. Spin Hall Effects in Metallic Antiferromagnets

    DOE PAGES

    Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...

    2014-11-04

    In this paper, we investigate four CuAu-I-type metallic antiferromagnets for their potential as spin current detectors using spin pumping and inverse spin Hall effect. Nontrivial spin Hall effects were observed for FeMn, PdMn, and IrMn while a much higher effect was obtained for PtMn. Using thickness-dependent measurements, we determined the spin diffusion lengths of these materials to be short, on the order of 1 nm. The estimated spin Hall angles of the four materials follow the relationship PtMn > IrMn > PdMn > FeMn, highlighting the correlation between the spin-orbit coupling of nonmagnetic species and the magnitude of the spinmore » Hall effect in their antiferromagnetic alloys. These experiments are compared with first-principles calculations. Finally, engineering the properties of the antiferromagnets as well as their interfaces can pave the way for manipulation of the spin dependent transport properties in antiferromagnet-based spintronics.« less

  6. High-heat-load monochromator options for the RIXS beamline at the APS with the MBA lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zunping, E-mail: zpliu@anl.gov; Gog, Thomas, E-mail: gog@aps.anl.gov; Stoupin, Stanislav A.

    2016-07-27

    With the MBA lattice for APS-Upgrade, tuning curves of 2.6 cm period undulators meet the source requirements for the RIXS beamline. The high-heat-load monochromator (HHLM) is the first optical white beam component. There are four options for the HHLM such as diamond monochromators with refrigerant of either water or liquid nitrogen (LN{sub 2}), and silicon monochromators of either direct or indirect cooling system. Their performances are evaluated at energy 11.215 keV (Ir L-III edge). The cryo-cooled diamond monochromator has similar performance as the water-cooled diamond monochromator because GaIn of the Cu-GaIn-diamond interface becomes solid. The cryo-cooled silicon monochromators perform better,more » not only in terms of surface slope error due to thermal deformation, but also in terms of thermal capacity.« less

  7. NMR studies of the helical antiferromagnetic compound EuCo 2P 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higa, N.; Ding, Q. -P.; Johnston, D. C.

    In EuCo 2P 2, 4 f electron spins of Eu 2+ ions order antiferromagnetically below a Neel temperature T N = 66.5K. The magnetic structure below T N was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo 2P 2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicatemore » homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. In conclusion, we have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.« less

  8. NMR studies of the helical antiferromagnetic compound EuCo 2P 2

    DOE PAGES

    Higa, N.; Ding, Q. -P.; Johnston, D. C.; ...

    2017-09-18

    In EuCo 2P 2, 4 f electron spins of Eu 2+ ions order antiferromagnetically below a Neel temperature T N = 66.5K. The magnetic structure below T N was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo 2P 2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicatemore » homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. In conclusion, we have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.« less

  9. Itinerant and localized magnetization dynamics in antiferromagnetic Ho

    DOE PAGES

    Rettig, L.; Dornes, C.; Thielemann-Kuhn, N.; ...

    2016-06-21

    Using femtosecond time-resolved resonant magnetic x-ray diffraction at the Ho L 3 absorption edge, we investigate the demagnetization dynamics in antiferromagnetically ordered metallic Ho after femtosecond optical excitation. Here, tuning the x-ray energy to the electric dipole (E1, 2p → 5d) or quadrupole (E2, 2p → 4f) transition allows us to selectively and independently study the spin dynamics of the itinerant 5d and localized 4f electronic subsystems via the suppression of the magnetic (2 1 3–τ) satellite peak. We find demagnetization time scales very similar to ferromagnetic 4f systems, suggesting that the loss of magnetic order occurs via a similarmore » spin-flip process in both cases. The simultaneous demagnetization of both subsystems demonstrates strong intra-atomic 4f–5d exchange coupling. In addition, an ultrafast lattice contraction due to the release of magneto-striction leads to a transient shift of the magnetic satellite peak.« less

  10. Vibronic effects in the 1.4-eV optical center in diamond

    NASA Astrophysics Data System (ADS)

    Iakoubovskii, Konstantin; Davies, Gordon

    2004-12-01

    We report optical absorption and luminescence measurements on the 1.4-eV center in diamond. We show that the zero-phonon lines have a temperature-dependent Ni-isotope shift, that the isotopic shifts induced by carbon and nickel are opposite in sign, and that a local vibronic mode is present in the absorption spectrum but not in luminescence. The microscopic properties of the center are successfully analyzed with the Ludwig-Woodbury theory (LWT), revealing that the Ni+ ion in the 1.4-eV center only weakly interacts with the diamond lattice. The importance of vibronic effects in the LWT analysis is experimentally demonstrated. It is believed that similar effects can account for the discrepancies previously encountered in modeling other 3d9 impurities in semiconductors.

  11. Diamond bio electronics.

    PubMed

    Linares, Robert; Doering, Patrick; Linares, Bryant

    2009-01-01

    The use of diamond for advanced applications has been the dream of mankind for centuries. Until recently this dream has been realized only in the use of diamond for gemstones and abrasive applications where tons of diamonds are used on an annual basis. Diamond is the material system of choice for many applications, but its use has historically been limited due to the small size, high cost, and inconsistent (and typically poor) quality of available diamond materials until recently. The recent development of high quality, single crystal diamond crystal growth via the Chemical Vapor Deposition (CVD) process has allowed physcists and increasingly scientists in the life science area to think beyond these limitations and envision how diamond may be used in advanced applications ranging from quantum computing, to power generation and molecular imaging, and eventually even diamond nano-bots. Because of diamond's unique properties as a bio-compatible material, better understanding of diamond's quantum effects and a convergence of mass production, semiconductor-like fabrication process, diamond now promises a unique and powerful key to the realization of the bio-electronic devices being envisioned for the new era of medical science. The combination of robust in-the-body diamond based sensors, coupled with smart bio-functionalized diamond devices may lead to diamond being the platform of choice for bio-electronics. This generation of diamond based bio-electronic devices would contribute substantially to ushering in a paradigm shift for medical science, leading to vastly improved patient diagnosis, decrease of drug development costs and risks, and improved effectiveness of drug delivery and gene therapy programs through better timed and more customized solutions.

  12. Current polarity-dependent manipulation of antiferromagnetic domains

    NASA Astrophysics Data System (ADS)

    Wadley, Peter; Reimers, Sonka; Grzybowski, Michal J.; Andrews, Carl; Wang, Mu; Chauhan, Jasbinder S.; Gallagher, Bryan L.; Campion, Richard P.; Edmonds, Kevin W.; Dhesi, Sarnjeet S.; Maccherozzi, Francesco; Novak, Vit; Wunderlich, Joerg; Jungwirth, Tomas

    2018-05-01

    Antiferromagnets have several favourable properties as active elements in spintronic devices, including ultra-fast dynamics, zero stray fields and insensitivity to external magnetic fields1. Tetragonal CuMnAs is a testbed system in which the antiferromagnetic order parameter can be switched reversibly at ambient conditions using electrical currents2. In previous experiments, orthogonal in-plane current pulses were used to induce 90° rotations of antiferromagnetic domains and demonstrate the operation of all-electrical memory bits in a multi-terminal geometry3. Here, we demonstrate that antiferromagnetic domain walls can be manipulated to realize stable and reproducible domain changes using only two electrical contacts. This is achieved by using the polarity of the current to switch the sign of the current-induced effective field acting on the antiferromagnetic sublattices. The resulting reversible domain and domain wall reconfigurations are imaged using X-ray magnetic linear dichroism microscopy, and can also be detected electrically. Switching by domain-wall motion can occur at much lower current densities than those needed for coherent domain switching.

  13. Charge-patterning phase transition on a surface lattice of titratable sites adjacent to an electrolyte solution

    NASA Astrophysics Data System (ADS)

    Shore, Joel; Thurston, George

    We discuss a model for a charge-patterning phase transition on a two-dimensional square lattice of titratable sites, here regarded as protonation sites, placed on a square lattice in a dielectric medium just below the planar interface between this medium and an aqueous salt solution. Within Debye-Huckel theory, the analytical form of the electrostatic repulsion between protonated sites exhibits an approximate inverse cubic power-law decrease beyond short distances. The problem can thus be mapped onto the two-dimensional antiferromagnetic Ising model with this longer-range interaction, which we study with Monte Carlo simulations. As we increase pH, the occupation probability of a site decreases from 1 at low pH to 0 at high pH. For sufficiently-strong interaction strengths, a phase transition occurs as the occupation probability of 1/2 is approached: the charges arrange themselves into a checkerboard pattern. This ordered phase persists over a range of pH until a transition occurs back to a disordered state. This state is the analogue of the Neel state in the antiferromagnetic Ising spin model. More complicated ordered phases are expected for sufficiently strong interactions (with occupation probabilities of 1/4 and 3/4) and if the lattice is triangular rather than square. This work was supported by NIH EY018249 (GMT).

  14. Antiferromagnetic defect structure in LaNi O3 -δ single crystals

    NASA Astrophysics Data System (ADS)

    Wang, Bi-Xia; Rosenkranz, S.; Rui, X.; Zhang, Junjie; Ye, F.; Zheng, H.; Klie, R. F.; Mitchell, J. F.; Phelan, D.

    2018-06-01

    The origins of the metal-insulator and magnetic transitions exhibited by perovskite rare-earth nickelates, RNiO3 (where R is a rare-earth element), remain open issues, with charge disproportionation, magnetic interactions, and lattice response across multiple length scales being among the many possible origins. Recently, growth of single crystals of LaNiO3, which is the only member of these compounds that remains metallic in its ground state, has been reported, opening a new chapter in the investigation of the perovskite nickelates. Here, using a combination of magnetometry, heat capacity, and neutron scattering on as-grown and purposely reduced LaNi O3 -δ crystals, we show that both antiferromagnetic and ferromagnetic phases with a Néel temperature of ˜152 K and a Curie temperature of ˜225 K can be induced by reduction of the oxygen content. Transmission electron microscopy shows that these phases are characterized by ordered oxygen vacancy defect structures that exist as dilute secondary phases in as-grown crystals despite growth in partial oxygen pressures up to at least 130 bar. The demonstration of antiferromagnetism resulting from oxygen vacancy ordered structures implies that stoichiometry must be explicitly considered when interpreting the bulk properties of LaNi O3 -δ single crystals; accordingly, the implications of our results for putative oxygen-stoichiometric LaNiO3 are discussed.

  15. Probing ultrafast spin dynamics through a magnon resonance in the antiferromagnetic multiferroic HoMnO 3

    DOE PAGES

    Bowlan, P.; Trugman, S. A.; Bowlan, J.; ...

    2016-09-26

    Here, we demonstrate an approach for directly tracking antiferromagnetic (AFM) spin dynamics by measuring ultrafast changes in a magnon resonance. We also test this idea on the multiferroic HoMnO 3 by optically photoexciting electrons, after which changes in the spin order are probed with a THz pulse tuned to a magnon resonance. This reveals a photoinduced change in the magnon line shape that builds up over 5–12 picoseconds, which we show to be the spin-lattice thermalization time, indicating that electrons heat the spins via phonons. We compare our results to previous studies of spin-lattice thermalization in ferromagnetic manganites, giving insightmore » into fundamental differences between the two systems. Finally, our work sheds light on the microscopic mechanism governing spin-phonon interactions in AFMs and demonstrates a powerful approach for directly monitoring ultrafast spin dynamics.« less

  16. Probing ultrafast spin dynamics through a magnon resonance in the antiferromagnetic multiferroic HoMnO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowlan, P.; Trugman, S. A.; Bowlan, J.

    Here, we demonstrate an approach for directly tracking antiferromagnetic (AFM) spin dynamics by measuring ultrafast changes in a magnon resonance. We also test this idea on the multiferroic HoMnO 3 by optically photoexciting electrons, after which changes in the spin order are probed with a THz pulse tuned to a magnon resonance. This reveals a photoinduced change in the magnon line shape that builds up over 5–12 picoseconds, which we show to be the spin-lattice thermalization time, indicating that electrons heat the spins via phonons. We compare our results to previous studies of spin-lattice thermalization in ferromagnetic manganites, giving insightmore » into fundamental differences between the two systems. Finally, our work sheds light on the microscopic mechanism governing spin-phonon interactions in AFMs and demonstrates a powerful approach for directly monitoring ultrafast spin dynamics.« less

  17. Lateral overgrowth of diamond film on stripes patterned Ir/HPHT-diamond substrate

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Feng; Chang, Xiaohui; Liu, Zhangcheng; Liu, Zongchen; Fu, Jiao; Zhao, Dan; Shao, Guoqing; Wang, Juan; Zhang, Shaopeng; Liang, Yan; Zhu, Tianfei; Wang, Wei; Wang, Hong-Xing

    2018-05-01

    Epitaxial lateral overgrowth (ELO) of diamond films on patterned Ir/(0 0 1)HPHT-diamond substrates have been carried out by microwave plasma CVD system. Ir/(0 0 1)HPHT-diamond substrates are fabricated by photolithographic and magnetron sputtering technique. The morphology of the as grown ELO diamond film is characterized by optical microscopy and scanning electronic microscopy. The quality and stress of the ELO diamond film are investigated by surface etching pit density and micro-Raman spectroscopy. Two ultraviolet photodetectors are fabricated on ELO diamond area and non-ELO diamond area prepared on same substrate, and that one on ELO diamond area indicates better photoelectric properties. All results indicate quality of ELO diamond film is improved.

  18. Nitrogen doping, optical characterization, and electron emission study of diamond

    NASA Astrophysics Data System (ADS)

    Park, Minseo

    Nitrogen-doped chemical vapor deposited (CVD) diamond films were synthesized with N2 (nitrogen) and C3H6N6 (melamine) as doping sources. More effective substitutional nitrogen doping was achieved with C3H6N6 than with N 2. Since a melamine molecule has an existing cyclic C-N bonded ring, it is expected that the incorporation of nitrogen on substitution diamond lattice should be facilitated. The diamond film doped with N2 contained a significant amount of non-diamond carbon phases. The samples were analyzed by scanning electron microscopy, Raman scattering, photoluminescence spectroscopy, and field emission measurements. The sample produced using N 2 exhibited a lower field emission turn-on field than the sample produced using C3H6N6. It is believed that the presence of the graphitic phases (or amorphous sp2 carbon) at the grain boundaries of the diamond and/or the nanocrystallinity (or microcrystallinity) of the diamond play a significant role in lowering the turn-on field of the film produced using N2. The nature of the nitrogen-related 1190 cm-1 Raman peak was investigated. Nitrogen is incorporated predominantly to the crystalline or amorphous sp2 phases when nitrogen is added to the growing diamond. Field emission characteristics from metallic field emitter coated with type Ia and Ib diamond powders were also investigated. No significant difference in electron emission characteristics were found in these samples. Voltage-dependent field emission energy distribution (V-FEED) measurement was performed to analyze the energy distribution of the emitted electrons. It is believed that substitutional nitrogen doping plays only a minor role in changing field emission characteristics in diamond. Discontinuous diamond films were deposited on silicon using a microwave plasma chemical vapor deposition (MPCVD) system. The diamond deposits were sharpened by argon ion beam etching. Raman spectroscopy was carried out to study the structural change of the diamond after ion beam

  19. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2011-01-01

    Estimated world production of natural and synthetic industrial diamond was about 4.44 billion carats in 2010. Natural industrial diamond deposits have been found in more than 35 countries, and synthetic industrial diamond is produced in at least 15 countries.

  20. Itinerant G-type antiferromagnetic order in SrCr 2 As 2

    DOE PAGES

    Das, Pinaki; Sangeetha, N. S.; Lindemann, George R.; ...

    2017-07-07

    Here, neutron-diffraction and magnetic susceptibility studies of polycrystalline SrCr 2As 2 reveal that this compound is an itinerant G-type antiferromagnet below the Néel temperature T N = 590(5) K with the Cr magnetic moments aligned along the tetragonal c axis. The system remains tetragonal to the lowest measured temperature (~12 K). The lattice parameter ratio c/a and the magnetic moment saturate at about the same temperature below ~200 K, indicating a possible magnetoelastic coupling. The ordered moment μ = 1.9(1)μ B/Cr, measured at T = 12 K, is significantly reduced compared to its localized value (4μ B/Cr) due to themore » itinerant character brought about by hybridization between the Cr 3d and As 4p orbitals.« less

  1. Itinerant G-type antiferromagnetic order in SrCr 2 As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Pinaki; Sangeetha, N. S.; Lindemann, George R.

    Here, neutron-diffraction and magnetic susceptibility studies of polycrystalline SrCr 2As 2 reveal that this compound is an itinerant G-type antiferromagnet below the Néel temperature T N = 590(5) K with the Cr magnetic moments aligned along the tetragonal c axis. The system remains tetragonal to the lowest measured temperature (~12 K). The lattice parameter ratio c/a and the magnetic moment saturate at about the same temperature below ~200 K, indicating a possible magnetoelastic coupling. The ordered moment μ = 1.9(1)μ B/Cr, measured at T = 12 K, is significantly reduced compared to its localized value (4μ B/Cr) due to themore » itinerant character brought about by hybridization between the Cr 3d and As 4p orbitals.« less

  2. Lattice strain of osmium diboride under high pressure and nonhydrostatic stress

    NASA Astrophysics Data System (ADS)

    Kavner, Abby; Weinberger, Michelle B.; Shahar, Anat; Cumberland, Robert W.; Levine, Jonathan B.; Kaner, Richard B.; Tolbert, Sarah H.

    2012-07-01

    The lattice strain behavior of osmium diboride—a member of a group of third-row transition metal borides associated with hard/superhard behavior—has been studied using radial diffraction in a diamond anvil cell under high pressure and non-hydrostatic stress. We interpret the average values of the measured lattice strains as a lower-bound to the lattice-plane dependent yield strengths using existing estimates for the elastic constants of OsB2, with a yield strength of 11 GPa at 27.5 GPa of hydrostatic pressure. The measured differential lattice strains show significant plane-dependent anisotropy, with the (101) lattice plane showing the largest differential strain and the (001) lattice plane showing the least strain. At the highest pressure, the a-axis develops a larger compressive strain and supports a larger differential strain than either the b or c axes. This causes an increase in the c/a ratio and a decrease in the a/b ratio especially in the maximum stress direction. The large strength anisotropy of this material points to possible ways to modulate directional mechanical properties by taking advantage of the interplay between aggregate polycrystalline texture with directional mechanical properties.

  3. Long range magnetic ordering of ultracold fermions in an optical lattice

    NASA Astrophysics Data System (ADS)

    Duarte, P. M.; Hart, R. A.; Yang, T.-L.; Hulet, R. G.

    2013-05-01

    We present progress towards the observation of long range antiferromagnetic (AFM) ordering of fermionic 6Li atoms in an optical lattice. We prepare a two spin state mixture of 106 atoms at T /TF = 0 . 1 by evaporatively cooling in an optical dipole trap. The sample is then transferred to a dimple trap formed by three retroreflected laser beams at 1064 nm that propagate in orthogonal directions. The polarization of the retroreflected light is controlled using liquid crystal retarders, which allow us to adiabatically transform the dimple trap into a 3D lattice. Overlapped with each of the three dimple/lattice beams is a beam at 532 nm, which can cancel the harmonic confinement and flatten the band structure in the lattice. This setup offers the possibility of implementing proposed schemes which enlarge the size of the AFM phase in the trap. As a probe for AFM we use Bragg scattering of light. We have observed Bragg scattering off of the (100) lattice planes, and using an off-angle probe we can see the diffuse scattering from the sample which serves as background for the small signals expected before the onset of AFM ordering. Supported by NSF, ONR, DARPA, and the Welch Foundation.

  4. Identifying Two-Dimensional Z 2 Antiferromagnetic Topological Insulators

    NASA Astrophysics Data System (ADS)

    Bègue, F.; Pujol, P.; Ramazashvili, R.

    2018-01-01

    We revisit the question of whether a two-dimensional topological insulator may arise in a commensurate Néel antiferromagnet, where staggered magnetization breaks the symmetry with respect to both elementary translation and time reversal, but retains their product as a symmetry. In contrast to the so-called Z 2 topological insulators, an exhaustive characterization of antiferromagnetic topological phases with the help of topological invariants has been missing. We analyze a simple model of an antiferromagnetic topological insulator and chart its phase diagram, using a recently proposed criterion for centrosymmetric systems [13]. We then adapt two methods, originally designed for paramagnetic systems, and make antiferromagnetic topological phases manifest. The proposed methods apply far beyond the particular examples treated in this work, and admit straightforward generalization. We illustrate this by two examples of non-centrosymmetric systems, where no simple criteria have been known to identify topological phases. We also present, for some cases, an explicit construction of edge states in an antiferromagnetic topological insulator.

  5. Ultrahard stitching of nanotwinned diamond and cubic boron nitride in C 2-BN composite

    DOE PAGES

    Liu, Xiaobing; Chen, Xin; Ma, Hong-An; ...

    2016-07-27

    Materials combining the hardness and strength of diamond with the higher thermal stability of cubic boron nitride (cBN) have broad potential value in science and engineering. Reacting nanodiamond with cBN at moderate pressures and high temperatures provides a pathway to such materials. Here we report the fabrication of C x-BN nanocomposites, measuring up to 10 mm in longest dimension, by reacting nanodiamond with pre-synthesized cBN in a large-volume press. The nanocomposites consist of randomly-oriented diamond and cBN domains stitched together by sp 3-hybridized C-B and C-N bonds, leading to p-type semiconductivity. Dislocations near the sutures accommodate lattice mismatch between diamondmore » and cBN. Nanotwinning within both diamond and cBN domains further contributes to a bulk hardness ~50% higher than sintered cBN. We find the nanocomposite of C 2-BN exhibits p-type semiconductivity with low activation energy and high thermal stability, making it a functional,ultrahard substance.« less

  6. Diamond Coatings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Advances in materials technology have demonstrated that it is possible to get the advantages of diamond in a number of applications without the cost penalty, by coating and chemically bonding an inexpensive substrate with a thin film of diamond-like carbon (DLC). Diamond films offer tremendous technical and economic potential in such advances as chemically inert protective coatings; machine tools and parts capable of resisting wear 10 times longer; ball bearings and metal cutting tools; a broad variety of optical instruments and systems; and consumer products. Among the American companies engaged in DLC commercialization is Diamonex, Inc., a diamond coating spinoff of Air Products and Chemicals, Inc. Along with its own proprietary technology for both polycrystalline diamond and DLC coatings, Diamonex is using, under an exclusive license, NASA technology for depositing DLC on a substrate. Diamonex is developing, and offering commercially, under the trade name Diamond Aegis, a line of polycrystalline diamond-coated products that can be custom tailored for optical, electronic and engineering applications. Diamonex's initial focus is on optical products and the first commercial product is expected in late 1990. Other target applications include electronic heat sink substrates, x-ray lithography masks, metal cutting tools and bearings.

  7. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2012-01-01

    Estimated 2011 world production of natural and synthetic industrial diamond was about 4.45 billion carats. During 2011, natural industrial diamonds were produced in more than 20 countries, and synthetic industrial diamond was produced in at least 13 countries. About 98 percent of the combined natural and synthetic global output was produced in China, Ireland, Japan, Russia, South Africa and the United States. China is the world's leading producer of synthetic industrial diamond followed by Russia and the United States.

  8. Diamonds in ophiolites: Contamination or a new diamond growth environment?

    NASA Astrophysics Data System (ADS)

    Howell, D.; Griffin, W. L.; Yang, J.; Gain, S.; Stern, R. A.; Huang, J.-X.; Jacob, D. E.; Xu, X.; Stokes, A. J.; O'Reilly, S. Y.; Pearson, N. J.

    2015-11-01

    For more than 20 years, the reported occurrence of diamonds in the chromites and peridotites of the Luobusa massif in Tibet (a complex described as an ophiolite) has been widely ignored by the diamond research community. This skepticism has persisted because the diamonds are similar in many respects to high-pressure high-temperature (HPHT) synthetic/industrial diamonds (grown from metal solvents), and the finding previously has not been independently replicated. We present a detailed examination of the Luobusa diamonds (recovered from both peridotites and chromitites), including morphology, size, color, impurity characteristics (by infrared spectroscopy), internal growth structures, trace-element patterns, and C and N isotopes. A detailed comparison with synthetic industrial diamonds shows many similarities. Cubo-octahedral morphology, yellow color due to unaggregated nitrogen (C centres only, Type Ib), metal-alloy inclusions and highly negative δ13C values are present in both sets of diamonds. The Tibetan diamonds (n = 3) show an exceptionally large range in δ15N (-5.6 to + 28.7 ‰) within individual crystals, and inconsistent fractionation between {111} and {100} growth sectors. This in contrast to large synthetic HPHT diamonds grown by the temperature gradient method, which have with δ15N = 0 ‰ in {111} sectors and + 30 ‰ in {100} sectors, as reported in the literature. This comparison is limited by the small sample set combined with the fact the diamonds probably grew by different processes. However, the Tibetan diamonds do have generally higher concentrations and different ratios of trace elements; most inclusions are a NiMnCo alloy, but there are also some small REE-rich phases never seen in HPHT synthetics. These characteristics indicate that the Tibetan diamonds grew in contact with a C-saturated Ni-Mn-Co-rich melt in a highly reduced environment. The stable isotopes indicate a major subduction-related contribution to the chemical environment. The

  9. Diamond fiber field emitters

    DOEpatents

    Blanchet-Fincher, Graciela B.; Coates, Don M.; Devlin, David J.; Eaton, David F.; Silzars, Aris K.; Valone, Steven M.

    1996-01-01

    A field emission electron emitter comprising an electrode formed of at least one diamond, diamond-like carbon or glassy carbon composite fiber, said composite fiber having a non-diamond core and a diamond, diamond-like carbon or glassy carbon coating on said non-diamond core, and electronic devices employing such a field emission electron emitter.

  10. Mechanical design of thin-film diamond crystal mounting apparatus for coherence preservation hard x-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Deming, E-mail: shu@aps.anl.gov; Shvyd’ko, Yuri V.; Stoupin, Stanislav

    2016-07-27

    A new thin-film diamond crystal mounting apparatus has been designed at the Advanced Photon Source (APS) for coherence preservation hard x-ray optics with optimized thermal contact and minimized crystal strain. This novel mechanical design can be applied to new development in the field of: x-ray optics cavities for hard x-ray free-electron laser oscillators (XFELOs), self-seeding monochromators for hard x-ray free-electron laser (XFEL) with high average thermal loading, high heat load diamond crystal monochromators and beam-sharing/beam-split-and-delay devices for XFEL facilities and future upgraded high-brightness coherent x-ray source in the MBA lattice configuration at the APS.

  11. Antiferromagnetic domain wall as spin wave polarizer

    NASA Astrophysics Data System (ADS)

    Lan, Jin; Yu, Weichao; Xiao, Jiang

    Spin waves are collective excitations of local magnetizations that can effectively propagate information even in magnetic insulators. In antiferromagnet, spin waves are endowed with additional polarization freedom. Here we propose that the antiferromagnetic domain wall can act as a spin wave polarizer, which perfectly passes one linearly polarized spin wave while substantially reflects the perpendicular one. We show that the polarizing effect lies in the suppression of one linear polarization inside domain wall, in close analogy to the wire-grid optical polarizer. Our finding opens up new possibilities in magnonic processing by harnessing spin wave polarization in antiferromagnet.

  12. Spin transport across antiferromagnets induced by the spin Seebeck effect

    NASA Astrophysics Data System (ADS)

    Cramer, Joel; Ritzmann, Ulrike; Dong, Bo-Wen; Jaiswal, Samridh; Qiu, Zhiyong; Saitoh, Eiji; Nowak, Ulrich; Kläui, Mathias

    2018-04-01

    For prospective spintronics devices based on the propagation of pure spin currents, antiferromagnets are an interesting class of materials that potentially entail a number of advantages as compared to ferromagnets. Here, we present a detailed theoretical study of magnonic spin current transport in ferromagnetic-antiferromagnetic multilayers by using atomistic spin dynamics simulations. The relevant length scales of magnonic spin transport in antiferromagnets are determined. We demonstrate the transfer of angular momentum from a ferromagnet into an antiferromagnet due to the excitation of only one magnon branch in the antiferromagnet. As an experimental system, we ascertain the transport across an antiferromagnet in Y3Fe5O12 |Ir20Mn80|Pt heterostructures. We determine the spin transport signals for spin currents generated in the Y3Fe5O12 by the spin Seebeck effect and compare to measurements of the spin Hall magnetoresistance in the heterostructure stack. By means of temperature-dependent and thickness-dependent measurements, we deduce conclusions on the spin transport mechanism across Ir20Mn80 and furthermore correlate it to its paramagnetic-antiferromagnetic phase transition.

  13. Antiferromagnetic defect structure in LaNi O 3 – δ single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bi -Xia; Rosenkranz, Stephan; Rui, X.

    Here, the origins of the metal-insulator and magnetic transitions exhibited by perovskite rare-earth nickelates, RNiO 3 (where R is a rare-earth element), remain open issues, with charge disproportionation, magnetic interactions, and lattice response across multiple length scales being among the many possible origins. Recently, growth of single crystals of LaNiO 3, which is the only member of these compounds that remains metallic in its ground state, has been reported, opening a new chapter in the investigation of the perovskite nickelates. Here, using a combination of magnetometry, heat capacity, and neutron scattering on as-grown and purposely reduced LaNiO 3–δ crystals, wemore » show that both antiferromagnetic and ferromagnetic phases with a Néel temperature of ~152 K and a Curie temperature of ~225 K can be induced by reduction of the oxygen content. Transmission electron microscopy shows that these phases are characterized by ordered oxygen vacancy defect structures that exist as dilute secondary phases in as-grown crystals despite growth in partial oxygen pressures up to at least 130 bar. The demonstration of antiferromagnetism resulting from oxygen vacancy ordered structures implies that stoichiometry must be explicitly considered when interpreting the bulk properties of LaNiO 3–δ single crystals; accordingly, the implications of our results for putative oxygen-stoichiometric LaNiO 3 are discussed.« less

  14. Antiferromagnetic defect structure in LaNi O 3 – δ single crystals

    DOE PAGES

    Wang, Bi -Xia; Rosenkranz, Stephan; Rui, X.; ...

    2018-06-12

    Here, the origins of the metal-insulator and magnetic transitions exhibited by perovskite rare-earth nickelates, RNiO 3 (where R is a rare-earth element), remain open issues, with charge disproportionation, magnetic interactions, and lattice response across multiple length scales being among the many possible origins. Recently, growth of single crystals of LaNiO 3, which is the only member of these compounds that remains metallic in its ground state, has been reported, opening a new chapter in the investigation of the perovskite nickelates. Here, using a combination of magnetometry, heat capacity, and neutron scattering on as-grown and purposely reduced LaNiO 3–δ crystals, wemore » show that both antiferromagnetic and ferromagnetic phases with a Néel temperature of ~152 K and a Curie temperature of ~225 K can be induced by reduction of the oxygen content. Transmission electron microscopy shows that these phases are characterized by ordered oxygen vacancy defect structures that exist as dilute secondary phases in as-grown crystals despite growth in partial oxygen pressures up to at least 130 bar. The demonstration of antiferromagnetism resulting from oxygen vacancy ordered structures implies that stoichiometry must be explicitly considered when interpreting the bulk properties of LaNiO 3–δ single crystals; accordingly, the implications of our results for putative oxygen-stoichiometric LaNiO 3 are discussed.« less

  15. Modelling compensated antiferromagnetic interfaces with MuMax3

    NASA Astrophysics Data System (ADS)

    De Clercq, Jonas; Leliaert, Jonathan; Van Waeyenberge, Bartel

    2017-10-01

    We show how compensated antiferromagnetic interfaces can be implemented in the micromagnetic simulation program MuMax3. We demonstrate that we can model spin flop coupling as a uniaxial anisotropy for small canting angles and how we can take into account the exact energy terms for strong coupling between a ferromagnet and a compensated antiferromagnet. We also investigate athermal training in biaxial antiferromagnets and reproduce the training effect in a polycrystalline IrMn/CoFe bilayer.

  16. Diamond Smoothing Tools

    NASA Technical Reports Server (NTRS)

    Voronov, Oleg

    2007-01-01

    Diamond smoothing tools have been proposed for use in conjunction with diamond cutting tools that are used in many finish-machining operations. Diamond machining (including finishing) is often used, for example, in fabrication of precise metal mirrors. A diamond smoothing tool according to the proposal would have a smooth spherical surface. For a given finish machining operation, the smoothing tool would be mounted next to the cutting tool. The smoothing tool would slide on the machined surface left behind by the cutting tool, plastically deforming the surface material and thereby reducing the roughness of the surface, closing microcracks and otherwise generally reducing or eliminating microscopic surface and subsurface defects, and increasing the microhardness of the surface layer. It has been estimated that if smoothing tools of this type were used in conjunction with cutting tools on sufficiently precise lathes, it would be possible to reduce the roughness of machined surfaces to as little as 3 nm. A tool according to the proposal would consist of a smoothing insert in a metal holder. The smoothing insert would be made from a diamond/metal functionally graded composite rod preform, which, in turn, would be made by sintering together a bulk single-crystal or polycrystalline diamond, a diamond powder, and a metallic alloy at high pressure. To form the spherical smoothing tip, the diamond end of the preform would be subjected to flat grinding, conical grinding, spherical grinding using diamond wheels, and finally spherical polishing and/or buffing using diamond powders. If the diamond were a single crystal, then it would be crystallographically oriented, relative to the machining motion, to minimize its wear and maximize its hardness. Spherically polished diamonds could also be useful for purposes other than smoothing in finish machining: They would likely also be suitable for use as heat-resistant, wear-resistant, unlubricated sliding-fit bearing inserts.

  17. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2006-01-01

    In 2005, estimated world production of natural and synthetic industrial diamond was 630 million carats. Natural industrial diamond deposits were found in more than 35 countries. Synthetic industrial diamond is produced in at least 15 countries. More than 81% of the combined natural and synthetic global output was produced in Ireland, Japan, Russia, South Africa and the United States.

  18. Antiferromagnetic Spin Wave Field-Effect Transistor

    DOE PAGES

    Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; ...

    2016-04-06

    In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. In conclusion, our findings open up the exciting possibilitymore » of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale.« less

  19. Piezo-antiferromagnetic effect of sawtooth-like graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shangqian; Lu, Yan; Zhang, Yuchun

    2014-05-19

    A type of sawtooth-like graphene nanoribbon (SGNR) with piezo-antiferromagnetic effect is studied numerically. The ground state of the studied SGNR changes from nonmagnetic state to antiferromagnetic state with uniaxial strain. The changes of the spin-charge distributions during the stretching are investigated. The Hubbard model reveals that the hopping integrals between the π-orbitals of the carbon atoms are responsible to the piezo-antiferromagnetic effect. The study sheds light on the application of graphene-based structures to nanosensors and spintronic devices.

  20. Inter-Wire Antiferromagnetic Exchange Interaction in Ni/Si-Ferromagnetic/Semiconductor Nanocomposites

    NASA Astrophysics Data System (ADS)

    Granitzer, P.; Rumpf, K.; Hofmayer, M.; Krenn, H.; Pölt, P.; Reichmann, A.; Hofer, F.

    2007-04-01

    A matrix of mesoporous silicon offering an array of quasi 1-dimensional oriented pores of high aspect ratio perpendicular to the sample surface has been produced. This porous silicon (PS) skeleton is filled with Ni in a further process-step to achieve ferromagnetic metallic nanostructures within the channels. This produced silicon based nanocomposite is compatible with state-of-the-art silicon technology. Beside the vertical magnetic surface anisotropy of this Ni-filled composite the nearly monodisperse distribution of pore diameters and its regular arrangement in a quasi 2-dimensional lattice provides novel magnetic phenomena like a depression of the magnetization curve at magnetic fields beyond 2T, which can be interpreted as a field induced antiferromagnetic exchange interaction between Ni-wires which is strongly influenced by magnetostrictive stresses at the Ni/Si-interface. 2007 American Institute of Physics

  1. Theoretical reconsideration of antiferromagnetic Fermi surfaces in URu2Su2

    NASA Astrophysics Data System (ADS)

    Yamagami, Hiroshi

    2011-01-01

    In an itinerant 5f-band model, the antiferromagnetic (AFM) Fermi surfaces of URu2Si2 are reconsidered using a relativistic LAPW method within a local spin-density approximation, especially taking into account the lattice parameters dependent on pressures. The reduction of the z-coordinate of the Si sites results in the effect of flattening the Ru-Si layers of URu2Si2 crystal structure, thus weakening a hybridization/mixing between the U-5f and Ru-4d states in the band structure. Consequently the 5f bands around the Fermi level are more flat in the dispersion with decreasing the z-coordinate, thus producing three closed Fermi surfaces like "curing-stone", "rugby-ball " and "ball". The origins of de Haas-van Alphen branches can be qualitatively interpreted from the obtained AFM Fermi surfaces.

  2. Controlled in situ boron doping of diamond thin films using solution phase

    NASA Astrophysics Data System (ADS)

    Roy, M.; Dua, A. K.; Nuwad, J.; Girija, K. G.; Tyagi, A. K.; Kulshreshtha, S. K.

    2006-12-01

    Controlled boron doping of diamond film using nontoxic reagents is a challenge in itself. During the present study, attempts have been made to dope diamond films in situ with boron from a solution of boric acid (H3BO3) in methanol (CH3OH) using a specially designed bubbler that ensured continuous and controlled flow of vapors of boron precursors during deposition. The samples are thoroughly characterized using a host of techniques comprising of x-ray photoelectron spectroscopy, Raman, x-ray diffraction, and current-voltage measurements (I-V). Cross-sectional micro-Raman spectroscopy has been used to obtain depth profile of boron in diamond films. Boron concentration ([B]) in the films is found to vary linearly on a semilog scale with molarity (M) of H3BO3 in CH3OH. Lattice constant of our samples is smaller than the reported American society for testing and materials (ASTM) values due to oxygen incorporation and it increases with [B] in the diamond samples. Heavily boron doped samples exhibit Fano deformation of the Raman line shape and negative and/zero activation barrier in temperature dependent I-V measurements that indicate the formation of metallic phase in the samples. The present study illustrates the feasibility of safe and controlled boron doping of diamond films using a solution of H3BO3 in CH3OH over a significant range of [B] from semiconductor to metallic regime but with a little adverse effect due to unintentional but unavoidable incorporation of oxygen.

  3. Superconductivity in diamond.

    PubMed

    Ekimov, E A; Sidorov, V A; Bauer, E D; Mel'nik, N N; Curro, N J; Thompson, J D; Stishov, S M

    2004-04-01

    Diamond is an electrical insulator well known for its exceptional hardness. It also conducts heat even more effectively than copper, and can withstand very high electric fields. With these physical properties, diamond is attractive for electronic applications, particularly when charge carriers are introduced (by chemical doping) into the system. Boron has one less electron than carbon and, because of its small atomic radius, boron is relatively easily incorporated into diamond; as boron acts as a charge acceptor, the resulting diamond is effectively hole-doped. Here we report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500-2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature T(c) approximately 4 K; superconductivity survives in a magnetic field up to Hc2(0) > or = 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions.

  4. Voltage Control of Antiferromagnetic Phases at Near-Terahertz Frequencies

    NASA Astrophysics Data System (ADS)

    Barra, Anthony; Domann, John; Kim, Ki Wook; Carman, Greg

    2018-03-01

    A method to control antiferromagnetism using voltage-induced strain is proposed and theoretically examined. Voltage-induced magnetoelastic anisotropy is shown to provide sufficient torque to switch an antiferromagnetic domain 90° either from out of plane to in plane or between in-plane axes. Numerical results indicate that strain-mediated antiferromagnetic switching can occur in an 80-nm nanopatterned disk at frequencies approaching 1 THz but that the switching speed heavily depends on the system's mechanical design. Furthermore, the energy cost to induce magnetic switching is only 450 aJ, indicating that magnetoelastic control of antiferromagnetism is substantially more energy efficient than other approaches.

  5. Dynamic magnetic hysteresis and nonlinear susceptibility of antiferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kalmykov, Yuri P.; Ouari, Bachir; Titov, Serguey V.

    2016-08-01

    The nonlinear ac stationary response of antiferromagnetic nanoparticles subjected to both external ac and dc fields of arbitrary strength and orientation is investigated using Brown's continuous diffusion model. The nonlinear complex susceptibility and dynamic magnetic hysteresis (DMH) loops of an individual antiferromagnetic nanoparticle are evaluated and compared with the linear regime for extensive ranges of the anisotropy, the ac and dc magnetic fields, damping, and the specific antiferromagnetic parameter. It is shown that the shape and area of the DMH loops of antiferromagnetic particles are substantially altered by applying a dc field that permits tuning of the specific magnetic power loss in the nanoparticles.

  6. Diamond/diamond-like carbon coated nanotube structures for efficient electron field emission

    NASA Technical Reports Server (NTRS)

    Dimitrijevic, Steven (Inventor); Withers, James C. (Inventor); Loutfy, Raouf O. (Inventor)

    2005-01-01

    The present invention is directed to a nanotube coated with diamond or diamond-like carbon, a field emitter cathode comprising same, and a field emitter comprising the cathode. It is also directed to a method of preventing the evaporation of carbon from a field emitter comprising a cathode comprised of nanotubes by coating the nanotube with diamond or diamond-like carbon. In another aspect, the present invention is directed to a method of preventing the evaporation of carbon from an electron field emitter comprising a cathode comprised of nanotubes, which method comprises coating the nanotubes with diamond or diamond-like carbon.

  7. Spinon dynamics in quantum integrable antiferromagnets

    NASA Astrophysics Data System (ADS)

    Vlijm, R.; Caux, J.-S.

    2016-05-01

    The excitations of the Heisenberg antiferromagnetic spin chain in zero field are known as spinons. As pairwise-created fractionalized excitations, spinons are important in the understanding of inelastic neutron scattering experiments in (quasi-)one-dimensional materials. In the present paper, we consider the real space-time dynamics of spinons originating from a local spin flip on the antiferromagnetic ground state of the (an)isotropic Heisenberg spin-1/2 model and the Babujan-Takhtajan spin-1 model. By utilizing algebraic Bethe ansatz methods at finite system size to compute the expectation value of the local magnetization and spin-spin correlations, spinons are visualized as propagating domain walls in the antiferromagnetic spin ordering with anisotropy dependent behavior. The spin-spin correlation after the spin flip displays a light cone, satisfying the Lieb-Robinson bound for the propagation of correlations at the spinon velocity.

  8. Antiferromagnetic spin fluctuations and unconventional nodeless superconductivity in an iron-based new superconductor (Ca4Al2O(6-y))(Fe2As2): 75As nuclear quadrupole resonance study.

    PubMed

    Kinouchi, H; Mukuda, H; Yashima, M; Kitaoka, Y; Shirage, P M; Eisaki, H; Iyo, A

    2011-07-22

    We report 75As nuclear quadrupole resonance studies on (Ca4Al2O(6-y))(Fe2As2) with T(c) = 27  K. Measurement of nuclear-spin-relaxation rate 1/T1 has revealed a significant development of two-dimensional antiferromagnetic spin fluctuations down to T(c) in association with the smallest As-Fe-As bond angle. Below T(c), the temperature dependence of 1/T1 without any trace of the coherence peak is well accounted for by a nodeless s(±)-wave multiple-gaps model. From the fact that its T(c) is comparable to T(c) = 28  K in the optimally doped LaFeAsO(1-y) in which antiferromagnetic spin fluctuations are not dominant, we remark that antiferromagnetic spin fluctuations are not a unique factor for enhancing T(c) among Fe-based superconductors, but a condition for optimizing superconductivity should be addressed from the lattice structure point of view.

  9. Porous boron doped diamonds as metal-free catalysts for the oxygen reduction reaction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Suo, Ni; Huang, Hao; Wu, Aimin; Cao, Guozhong; Hou, Xiaoduo; Zhang, Guifeng

    2018-05-01

    Porous boron doped diamonds (BDDs) were obtained on foam nickel substrates with a porosity of 80%, 85%, 90% and 95% respectively by hot filament chemical vapor deposition (HFCVD) technology. Scanning electron microscopy (SEM) reveals that uniform and compact BDDs with a cauliflower-like morphology have covered the overall frame of the foam nickel substrates. Raman spectroscopy shows that the BDDs have a poor crystallinity due to heavily doping boron. X-ray photoelectron spectroscopy (XPS) analysis effectively demonstrates that boron atoms can be successfully incorporated into the crystal lattice of diamonds. Electrochemical measurements indicate that the oxygen reduction potential is unaffected by the specific surface area (SSA), and both the onset potential and the limiting diffusion current density are enhanced with increasing SSA. It is also found that the durability and methanol tolerance of the boron doped diamond catalysts are attenuated as the increasing of SSA. The SSA of the catalyst is directly proportional to the oxygen reduction activity and inversely to the durability and methanol resistance. These results provide a reference to the application of porous boron doped diamonds as potential cathodic catalysts for the oxygen reduction reaction in alkaline solution by adjusting the SSA.

  10. Diamond Synthesis Employing Nanoparticle Seeds

    NASA Technical Reports Server (NTRS)

    Uppireddi, Kishore (Inventor); Morell, Gerardo (Inventor); Weiner, Brad R. (Inventor)

    2014-01-01

    Iron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods.

  11. Anisotropic diamond etching through thermochemical reaction between Ni and diamond in high-temperature water vapour.

    PubMed

    Nagai, Masatsugu; Nakanishi, Kazuhiro; Takahashi, Hiraku; Kato, Hiromitsu; Makino, Toshiharu; Yamasaki, Satoshi; Matsumoto, Tsubasa; Inokuma, Takao; Tokuda, Norio

    2018-04-27

    Diamond possesses excellent physical and electronic properties, and thus various applications that use diamond are under development. Additionally, the control of diamond geometry by etching technique is essential for such applications. However, conventional wet processes used for etching other materials are ineffective for diamond. Moreover, plasma processes currently employed for diamond etching are not selective, and plasma-induced damage to diamond deteriorates the device-performances. Here, we report a non-plasma etching process for single crystal diamond using thermochemical reaction between Ni and diamond in high-temperature water vapour. Diamond under Ni films was selectively etched, with no etching at other locations. A diamond-etching rate of approximately 8.7 μm/min (1000 °C) was successfully achieved. To the best of our knowledge, this rate is considerably greater than those reported so far for other diamond-etching processes, including plasma processes. The anisotropy observed for this diamond etching was considerably similar to that observed for Si etching using KOH.

  12. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2003-01-01

    Statistics on the production, consumption, cost, trade, and government stockpile of natural and synthetic industrial diamond are provided. The outlook for the industrial diamond market is also considered.

  13. Duality and the universality class of the three-state Potts antiferromagnet on plane quadrangulations.

    PubMed

    Lv, Jian-Ping; Deng, Youjin; Jacobsen, Jesper Lykke; Salas, Jesús; Sokal, Alan D

    2018-04-01

    We provide a criterion based on graph duality to predict whether the three-state Potts antiferromagnet on a plane quadrangulation has a zero- or finite-temperature critical point, and its universality class. The former case occurs for quadrangulations of self-dual type, and the zero-temperature critical point has central charge c=1. The latter case occurs for quadrangulations of non-self-dual type, and the critical point belongs to the universality class of the three-state Potts ferromagnet. We have tested this criterion against high-precision computations on four lattices of each type, with very good agreement. We have also found that the Wang-Swendsen-Kotecký algorithm has no critical slowing-down in the former case, and critical slowing-down in the latter.

  14. Duality and the universality class of the three-state Potts antiferromagnet on plane quadrangulations

    NASA Astrophysics Data System (ADS)

    Lv, Jian-Ping; Deng, Youjin; Jacobsen, Jesper Lykke; Salas, Jesús; Sokal, Alan D.

    2018-04-01

    We provide a criterion based on graph duality to predict whether the three-state Potts antiferromagnet on a plane quadrangulation has a zero- or finite-temperature critical point, and its universality class. The former case occurs for quadrangulations of self-dual type, and the zero-temperature critical point has central charge c =1 . The latter case occurs for quadrangulations of non-self-dual type, and the critical point belongs to the universality class of the three-state Potts ferromagnet. We have tested this criterion against high-precision computations on four lattices of each type, with very good agreement. We have also found that the Wang-Swendsen-Kotecký algorithm has no critical slowing-down in the former case, and critical slowing-down in the latter.

  15. Spin liquid state in the disordered triangular lattice Sc 2Ga 2CuO 7 revealed by NMR

    DOE PAGES

    Khuntia, P.; Kumar, R.; Mahajan, A. V.; ...

    2016-04-18

    We present microscopic magnetic properties of a two-dimensional triangular lattice Sc 2Ga 2CuO 7, consisting of single and double triangular Cu planes. An antiferromagnetic (AFM) exchange interaction J/k B ≈ 35 K between Cu 2+ (S = 1/2) spins in the triangular biplane is obtained from the analysis of intrinsic magnetic susceptibility data. The intrinsic magnetic susceptibility, extracted from 71Ga NMR shift data, displays the presence of AFM short range spin correlations and remains finite down to 50 mK, suggesting a nonsinglet ground state. The nuclear spin-lattice relaxation rate (1/T 1) reveals a slowing down of Cu 2+ spin fluctuationsmore » with decreasing T down to 100 mK. Magnetic specific heat (C m) and 1/T 1 exhibit power law behavior at low temperatures, implying the gapless nature of the spin excitation spectrum. The absence of long range magnetic ordering down to ~J/700, nonzero spin susceptibility at low T, and the power law behavior of C m and 1/T 1 suggest a gapless quantum spin liquid (QSL) state. Our results demonstrate that persistent spin dynamics induced by frustration maintain a quantum-disordered state at T → 0 in this triangular lattice antiferromagnet. Furthermore, this suggests that the low energy modes are dominated by spinon excitations in the QSL state due to randomness engendered by disorder and frustration.« less

  16. Magnetic and Structural Properties of A-Site Ordered Chromium Spinel Sulfides: Alternating Antiferromagnetic and Ferromagnetic Interactions in the Breathing Pyrochlore Lattice

    NASA Astrophysics Data System (ADS)

    Okamoto, Yoshihiko; Mori, Masaki; Katayama, Naoyuki; Miyake, Atsushi; Tokunaga, Masashi; Matsuo, Akira; Kindo, Koichi; Takenaka, Koshi

    2018-03-01

    We report a comprehensive study on the magnetic and structural properties of the spinel sulfides LiInCr4S8, LiGaCr4S8, and CuInCr4S8, where Li+/Cu+ and Ga3+/In3+ ions form a zinc-blende-type order. On the basis of synchrotron X-ray diffraction and magnetization data obtained using polycrystalline samples, these three sulfides are suggested to be breathing pyrochlore magnets with alternating antiferromagnetic and ferromagnetic interactions on the small and large tetrahedra, respectively. The measured magnetization processes of the three sulfides up to 72 T are significantly different. The magnetization curves of LiInCr4S8 and CuInCr4S8 have large hysteresis loops with different shapes, while there is no hysteresis in that of LiGaCr4S8. Geometrical frustration of the small tetrahedron is likely to give rise to a wide variety of ground states, indicating the rich physics in these antiferromagnetic-ferromagnetic breathing pyrochlore magnets.

  17. Antidamping-Torque-Induced Switching in Biaxial Antiferromagnetic Insulators

    NASA Astrophysics Data System (ADS)

    Chen, X. Z.; Zarzuela, R.; Zhang, J.; Song, C.; Zhou, X. F.; Shi, G. Y.; Li, F.; Zhou, H. A.; Jiang, W. J.; Pan, F.; Tserkovnyak, Y.

    2018-05-01

    We investigate the current-induced switching of the Néel order in NiO (001 )/Pt heterostructures, which is manifested electrically via the spin Hall magnetoresistance. Significant reversible changes in the longitudinal and transverse resistances are found at room temperature for a current threshold lying in the range of 1 07 A /cm2 . The order-parameter switching is ascribed to the antiferromagnetic dynamics triggered by the (current-induced) antidamping torque, which orients the Néel order towards the direction of the writing current. This is in stark contrast to the case of antiferromagnets such as Mn2Au and CuMnAs, where fieldlike torques induced by the Edelstein effect drive the Néel switching, therefore resulting in an orthogonal alignment between the Néel order and the writing current. Our findings can be readily generalized to other biaxial antiferromagnets, providing broad opportunities for all-electrical writing and readout in antiferromagnetic spintronics.

  18. Plasma spraying method for forming diamond and diamond-like coatings

    DOEpatents

    Holcombe, C.E.; Seals, R.D.; Price, R.E.

    1997-06-03

    A method and composition is disclosed for the deposition of a thick layer of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate. The softened or molten composition crystallizes on the substrate to form a thick deposition layer comprising at least a diamond or diamond-like material. The selected composition includes at least glassy carbon as a primary constituent and may include at least one secondary constituent. Preferably, the secondary constituents are selected from the group consisting of at least diamond powder, boron carbide (B{sub 4}C) powder and mixtures thereof. 9 figs.

  19. Plasma spraying method for forming diamond and diamond-like coatings

    DOEpatents

    Holcombe, Cressie E.; Seals, Roland D.; Price, R. Eugene

    1997-01-01

    A method and composition for the deposition of a thick layer (10) of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition (12) including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate (20). The softened or molten composition (18) crystallizes on the substrate (20) to form a thick deposition layer (10) comprising at least a diamond or diamond-like material. The selected composition (12) includes at least glassy carbon as a primary constituent (14) and may include at least one secondary constituent (16). Preferably, the secondary constituents (16) are selected from the group consisting of at least diamond powder, boron carbide (B.sub.4 C) powder and mixtures thereof.

  20. Tunable Noncollinear Antiferromagnetic Resistive Memory through Oxide Superlattice Design

    NASA Astrophysics Data System (ADS)

    Hoffman, Jason D.; Wu, Stephen M.; Kirby, Brian J.; Bhattacharya, Anand

    2018-04-01

    Antiferromagnets (AFMs) have recently gathered a large amount of attention as a potential replacement for ferromagnets (FMs) in spintronic devices due to their lack of stray magnetic fields, invisibility to external magnetic probes, and faster magnetization dynamics. Their development into a practical technology, however, has been hampered by the small number of materials where the antiferromagnetic state can be both controlled and read out. We show that by relaxing the strict criterion on pure antiferromagnetism, we can engineer an alternative class of magnetic materials that overcome these limitations. This is accomplished by stabilizing a noncollinear magnetic phase in LaNiO3 /La2 /3Sr1 /3MnO3 superlattices. This state can be continuously tuned between AFM and FM coupling through varying the superlattice spacing, strain, applied magnetic field, or temperature. By using this alternative "knob" to tune magnetic ordering, we take a nanoscale materials-by-design approach to engineering ferromagneticlike controllability into antiferromagnetic synthetic magnetic structures. This approach can be used to trade-off between the favorable and unfavorable properties of FMs and AFMs when designing realistic resistive antiferromagnetic memories. We demonstrate a memory device in one such superlattice, where the magnetic state of the noncollinear antiferromagnet is reversibly switched between different orientations using a small magnetic field and read out in real time with anisotropic magnetoresistance measurements.

  1. Mermin-Wagner physics, (H ,T ) phase diagram, and candidate quantum spin-liquid phase in the spin-1/2 triangular-lattice antiferromagnet Ba8CoNb6O24

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Dai, J.; Zhou, P.; Wang, P. S.; Li, T. R.; Song, W. H.; Wang, J. C.; Ma, L.; Zhang, Z.; Li, S. Y.; Luke, G. M.; Normand, B.; Xiang, T.; Yu, W.

    2018-04-01

    Ba8CoNb6O24 presents a system whose Co2 + ions have an effective spin 1/2 and construct a regular triangular-lattice antiferromagnet (TLAFM) with a very large interlayer spacing, ensuring purely two-dimensional character. We exploit this ideal realization to perform a detailed experimental analysis of the S =1 /2 TLAFM, which is one of the keystone models in frustrated quantum magnetism. We find strong low-energy spin fluctuations and no magnetic ordering, but a diverging correlation length down to 0.1 K, indicating a Mermin-Wagner trend toward zero-temperature order. Below 0.1 K, however, our low-field measurements show an unexpected magnetically disordered state, which is a candidate quantum spin liquid. We establish the (H ,T ) phase diagram, mapping in detail the quantum fluctuation corrections to the available theoretical analysis. These include a strong upshift in field of the maximum ordering temperature, qualitative changes to both low- and high-field phase boundaries, and an ordered regime apparently dominated by the collinear "up-up-down" state. Ba8CoNb6O24 , therefore, offers fresh input for the development of theoretical approaches to the field-induced quantum phase transitions of the S =1 /2 Heisenberg TLAFM.

  2. Magnetism of the antiferromagnetic spin-3/2 dimer compound CrVMoO7 having an antiferromagnetically ordered state

    NASA Astrophysics Data System (ADS)

    Hase, Masashi; Ebukuro, Yuta; Kuroe, Haruhiko; Matsumoto, Masashige; Matsuo, Akira; Kindo, Koichi; Hester, James R.; Sato, Taku J.; Yamazaki, Hiroki

    2017-04-01

    We measured magnetization, specific heat, electron spin resonance, neutron diffraction, and inelastic neutron scattering of CrVMoO7 powder. An antiferromagnetically ordered state appears below TN=26.5 ±0.8 K. We consider that the probable spin model for CrVMoO7 is an interacting antiferromagnetic spin-3/2 dimer model. We evaluated the intradimer interaction J to be 25 ±1 K and the effective interdimer interaction Jeff to be 8.8 ±1 K. CrVMoO7 is a rare spin dimer compound that shows an antiferromagnetically ordered state at atmospheric pressure and zero magnetic field. The magnitude of ordered moments is 0.73 (2 ) μB . It is much smaller than a classical value ˜3 μB . Longitudinal-mode magnetic excitations may be observable in single crystalline CrVMoO7.

  3. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2007-01-01

    World production of natural and synthetic industrial diamond was about 648 million carats in 2006, with 79 percent of the production coming from Ireland, Japan, Russia, South Africa, and the U.S. U.S. consumption was was an estimated 602 million carats, imports were over 391 million carats, and exports were about 83 million carats. About 87 percent of the industrial diamonds market uses synthetic diamonds, which are expected to become less expensive as technology improves and competition from low-cost producers increases.

  4. Microscopic theory for coupled atomistic magnetization and lattice dynamics

    NASA Astrophysics Data System (ADS)

    Fransson, J.; Thonig, D.; Bessarab, P. F.; Bhattacharjee, S.; Hellsvik, J.; Nordström, L.

    2017-12-01

    A coupled atomistic spin and lattice dynamics approach is developed which merges the dynamics of these two degrees of freedom into a single set of coupled equations of motion. The underlying microscopic model comprises local exchange interactions between the electron spin and magnetic moment and the local couplings between the electronic charge and lattice displacements. An effective action for the spin and lattice variables is constructed in which the interactions among the spin and lattice components are determined by the underlying electronic structure. In this way, expressions are obtained for the electronically mediated couplings between the spin and lattice degrees of freedom, besides the well known interatomic force constants and spin-spin interactions. These former susceptibilities provide an atomistic ab initio description for the coupled spin and lattice dynamics. It is important to notice that this theory is strictly bilinear in the spin and lattice variables and provides a minimal model for the coupled dynamics of these subsystems and that the two subsystems are treated on the same footing. Questions concerning time-reversal and inversion symmetry are rigorously addressed and it is shown how these aspects are absorbed in the tensor structure of the interaction fields. By means of these results regarding the spin-lattice coupling, simple explanations of ionic dimerization in double-antiferromagnetic materials, as well as charge density waves induced by a nonuniform spin structure, are given. In the final parts, coupled equations of motion for the combined spin and lattice dynamics are constructed, which subsequently can be reduced to a form which is analogous to the Landau-Lifshitz-Gilbert equations for spin dynamics and a damped driven mechanical oscillator for the ionic motion. It is important to notice, however, that these equations comprise contributions that couple these descriptions into one unified formulation. Finally, Kubo-like expressions for

  5. Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications

    DOEpatents

    Gruen, Dieter M.

    2012-09-04

    One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

  6. Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications

    DOEpatents

    Gruen, Dieter M [Downers Grove, IL

    2009-08-11

    One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

  7. Trace elements in Gem-Quality Diamonds - Origin and evolution of diamond-forming fluid inclusions

    NASA Astrophysics Data System (ADS)

    Pearson, Graham; Krebs, Mandy; Stachel, Thomas; Woodland, Sarah; Chinn, Ingrid; Kong, Julie

    2017-04-01

    In the same way that melt inclusions in phenocrysts have expanded our idea of melt formation and evolution in basalts, studying fluids trapped in diamonds is providing important new constraints on the nature of diamond-forming fluids. Fibrous and cloudy diamonds trap a high but variable density of fluid inclusions and so have been extensively studied using major and trace element compositions. In contrast, constraining the nature of the diamond-forming fluid for high purity gem-quality diamonds has been restricted by the rarity of available high quality trace element data. This is due to the extremely low concentrations of impurities that gem diamonds contain - often in the ppt range. The recent discovery of fluids in gem diamonds showing similar major element chemistry to fluid-rich diamonds suggest that many diamonds may share a common spectrum of parental fluids. Here we test this idea further. Recent advances in analytical techniques, in particular the development of the "off-line" laser ablation pre-concentration approach, have allowed fully quantitative trace element data to be recovered from "fluid-poor", high quality gem diamonds. We present trace element data for gem diamonds from a variety of locations from Canada, S. Africa and Russia, containing either silicate or sulphide inclusions to examine possible paragenetic or genetic differences between fluids. REE abundance in the "gem" diamonds vary from 0.1 to 0.0001 x chondrite. To a first order, we observe the same spectrum of trace element compositions in the gem diamonds as that seen in fluid-rich "fibrous" diamonds, supporting a common origin for the fluids. REE patterns range from extremely flat (Ce/Yb)n 2.5 to 5 (commonly in sulphide-bearing diamonds) to >70, the latter having significantly greater inter-element HFSE/LILE fractionation. In general, the fluids from the sulphide-bearing diamonds are less REE-enriched than the silicate-bearing diamonds, but the ranges overlap significantly. The very

  8. Process of negative-muon-induced formation of an ionized acceptor center ({sub μ}A){sup –} in crystals with the diamond structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belousov, Yu. M., E-mail: theorphys@phystech.edu

    The formation of an ionized acceptor center by a negative muon in crystals with the diamond structure is considered. The negative muon entering a target is captured by a nucleus, forming a muonic atom {sub μ}A coupled to a lattice. The appearing radiation-induced defect has a significant electric dipole moment because of the violation of the local symmetry of the lattice and changes the phonon spectrum of the crystal. The ionized acceptor center is formed owing to the capture of an electron interacting with the electric dipole moment of the defect and with the radiation of a deformation-induced local-mode phonon.more » Upper and lower bounds of the formation rate of the ionized acceptor center in diamond, silicon, and germanium crystals are estimated. It is shown that the kinetics of the formation of the acceptor center should be taken into account when processing μSR experimental data.« less

  9. Kankan diamonds (Guinea) III: δ13C and nitrogen characteristics of deep diamonds

    NASA Astrophysics Data System (ADS)

    Stachel, T.; Harris, J. W.; Aulbach, S.; Deines, P.

    Diamonds from the Kankan area in Guinea formed over a large depth profile beginning within the cratonic mantle lithosphere and extending through the asthenosphere and transition zone into the lower mantle. The carbon isotopic composition, the concentration of nitrogen impurities and the nitrogen aggregation level of diamonds representing this entire depth range have been determined. Peridotitic and eclogitic diamonds of lithospheric origin from Kankan have carbon isotopic compositions (δ13C: peridotitic -5.4 to -2.2‰ eclogitic -19.7 to -0.7‰) and nitrogen characteristics (N: peridotitic 17-648 atomic ppm; eclogitic 0-1,313 atomic ppm; aggregation from IaA to IaB) which are generally typical for diamonds of these two suites worldwide. Geothermobarometry of peridotitic and eclogitic inclusion parageneses (worldwide sources) indicates that both suites formed under very similar conditions within the cratonic lithosphere, which is not consistent with a derivation of diamonds with light carbon isotopic composition from subducted organic matter within subducting oceanic slabs. Diamonds containing majorite garnet inclusions fall to the isotopically heavy side (δ13C: -3.1‰ to +0.9‰) of the worldwide diamond population. Nitrogen contents are low (0-126 atomic ppm) and one of the two nitrogen-bearing diamonds shows such a low level of nitrogen aggregation (30% B-centre) that it cannot have been exposed to ambient temperatures of the transition zone (>=1,400 °C) for more than 0.2 Ma. This suggests rapid upward transport and formation of some Kankan diamonds pene-contemporaneous to Cretaceous kimberlite activity. Similar to these diamonds from the asthenosphere and the transition zone, lower mantle diamonds show a small shift towards isotopic heavy compositions (-6.6 to -0.5‰, mode at -3.5‰). As already observed for other mines, the nitrogen contents of lower mantle diamonds were below detection (using FTIRS). The mutual shift of sublithospheric diamonds towards

  10. Kankan diamonds (Guinea) III: δ13C and nitrogen characteristics of deep diamonds

    NASA Astrophysics Data System (ADS)

    Stachel, T.; Harris, J. W.; Aulbach, S.; Deines, P.

    2001-08-01

    Diamonds from the Kankan area in Guinea formed over a large depth profile beginning within the cratonic mantle lithosphere and extending through the asthenosphere and transition zone into the lower mantle. The carbon isotopic composition, the concentration of nitrogen impurities and the nitrogen aggregation level of diamonds representing this entire depth range have been determined. Peridotitic and eclogitic diamonds of lithospheric origin from Kankan have carbon isotopic compositions (δ13C: peridotitic -5.4 to -2.2‰ eclogitic -19.7 to -0.7‰) and nitrogen characteristics (N: peridotitic 17-648 atomic ppm; eclogitic 0-1,313 atomic ppm; aggregation from IaA to IaB) which are generally typical for diamonds of these two suites worldwide. Geothermobarometry of peridotitic and eclogitic inclusion parageneses (worldwide sources) indicates that both suites formed under very similar conditions within the cratonic lithosphere, which is not consistent with a derivation of diamonds with light carbon isotopic composition from subducted organic matter within subducting oceanic slabs. Diamonds containing majorite garnet inclusions fall to the isotopically heavy side (δ13C: -3.1‰ to +0.9‰) of the worldwide diamond population. Nitrogen contents are low (0-126 atomic ppm) and one of the two nitrogen-bearing diamonds shows such a low level of nitrogen aggregation (30% B-centre) that it cannot have been exposed to ambient temperatures of the transition zone (>=1,400 °C) for more than 0.2 Ma. This suggests rapid upward transport and formation of some Kankan diamonds pene-contemporaneous to Cretaceous kimberlite activity. Similar to these diamonds from the asthenosphere and the transition zone, lower mantle diamonds show a small shift towards isotopic heavy compositions (-6.6 to -0.5‰, mode at -3.5‰). As already observed for other mines, the nitrogen contents of lower mantle diamonds were below detection (using FTIRS). The mutual shift of sublithospheric diamonds towards

  11. On the evolution of antiferromagnetic nanodomains in NiO thin films: A LEEM study

    NASA Astrophysics Data System (ADS)

    Das, Jayanta; Menon, Krishnakumar S. R.

    2018-03-01

    Fractional order (1/2, 0) spots appear in the electron diffraction from NiO/Ag(0 0 1) films due to exchange scattering of low energy electrons by the antiferromagnetically ordered surface Ni moments. Utilizing these beams, imaging of the nanosized surface magnetic domains were carried out employing the high spatial resolution (∼ 10 nm) of the Low Energy Electron Microscopy (LEEM) in the dark-field (DF) mode. While selected through a contrast aperture, the four magnetic reflections produced by the p (2 × 2) antiferromagnetic sub-lattice lead to the visualization of the different magnetic twin domains. The intensity variations of different twin domains were measured as a function of electron beam energies via domain resolved LEEM I-V plots. The surface Néel temperatures (TN) of the films were measured using the temperature dependence of these half-order spot intensities. Detailed morphological studies of the size and shape of these nanodomains and their evolution as a function of the film thickness have been carried out with the help of pair-correlation function and fractal analysis. The size, shape and distribution of these magnetic domains are modified significantly by the strain relaxation mechanism beyond the critical film thickness. A method to estimate the relative domain sizes from a quantitative measure of the half-order spot intensities is manifested well below TN .

  12. Spin pumping and inverse spin Hall voltages from dynamical antiferromagnets

    NASA Astrophysics Data System (ADS)

    Johansen, Øyvind; Brataas, Arne

    2017-06-01

    Dynamical antiferromagnets can pump spins into adjacent conductors. The high antiferromagnetic resonance frequencies represent a challenge for experimental detection, but magnetic fields can reduce these resonance frequencies. We compute the ac and dc inverse spin Hall voltages resulting from dynamical spin excitations as a function of a magnetic field along the easy axis and the polarization of the driving ac magnetic field perpendicular to the easy axis. We consider the insulating antiferromagnets MnF2,FeF2, and NiO. Near the spin-flop transition, there is a significant enhancement of the dc spin pumping and inverse spin Hall voltage for the uniaxial antiferromagnets MnF2 and FeF2. In the uniaxial antiferromagnets it is also found that the ac spin pumping is independent of the external magnetic field when the driving field has the optimal circular polarization. In the biaxial NiO, the voltages are much weaker, and there is no spin-flop enhancement of the dc component.

  13. PREFACE: Science's gem: diamond science 2009 Science's gem: diamond science 2009

    NASA Astrophysics Data System (ADS)

    Mainwood, Alison; Newton, Mark E.; Stoneham, Marshall

    2009-09-01

    Natural diamond has been valued for its appearance and mechanical properties for at least two thousand years. As a gem stone diamond is unsurpassed. However, scientific work, especially in the last 20 years, has demonstrated that diamond has numerous surprising properties and many unique ones. Some of the extreme properties have been known for many years, but the true scale of diamond's other highly desirable features is still only coming to light as control in the synthesis of diamond, and hence material perfection, improves. The ultimate prize for man-made diamond is surely not in the synthesis of gem stones, but in delivering technological solutions enabled by diamond to the challenges facing our society today. If the special properties are to be exploited to their full potential, at least four crucial factors must be considered. First, there must be sufficient scientific understanding of diamond to make applications effective, efficient and economical. Secondly, the means of fabrication and control of properties have to be achieved so that diamond's role can be optimised. Thirdly, it is not enough that its properties are superior to existing materials: they must be so much better that it is worth initiating new technologies to exploit them. Finally, any substantial applications will have to address the society's major needs worldwide. The clear technology drivers for the 21st century come from the biomedical technologies, the demand for energy subject to global constraints, and the information technologies, where perhaps diamond will provide the major enabling technology [1]. The papers in this volume concern the solid state physics of diamond, and primarily concern the first two factors: understanding, and control of properties. They address many of the outstanding basic problems, such as the identification of existing defects, which affect the material's properties, both desirable and less so. Regarding future substantial applications, one paper discusses

  14. Lower pressure synthesis of diamond material

    DOEpatents

    Lueking, Angela; Gutierrez, Humberto; Narayanan, Deepa; Burgess Clifford, Caroline E.; Jain, Puja

    2010-07-13

    Methods of synthesizing a diamond material, particularly nanocrystalline diamond, diamond-like carbon and bucky diamond are provided. In particular embodiments, a composition including a carbon source, such as coal, is subjected to addition of energy, such as high energy reactive milling, producing a milling product enriched in hydrogenated tetrahedral amorphous diamond-like carbon compared to the coal. A milling product is treated with heat, acid and/or base to produce nanocrystalline diamond and/or crystalline diamond-like carbon. Energy is added to produced crystalline diamond-like carbon in particular embodiments to produce bucky diamonds.

  15. Thermally stable diamond brazing

    DOEpatents

    Radtke, Robert P [Kingwood, TX

    2009-02-10

    A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

  16. Quantum phase diagram of distorted J 1 - J 2 Heisenberg S  =  1/2 antiferromagnet in honeycomb lattice: a modified spin wave study

    NASA Astrophysics Data System (ADS)

    Ghorbani, Elaheh; Shahbazi, Farhad; Mosadeq, Hamid

    2016-10-01

    Using the modified spin wave method, we study the {{J}1}-{{J}2} Heisenberg model with first and second neighbor antiferromagnetic exchange interactions. For a symmetric S  =  1/2 model, with the same couplings for all the equivalent neighbors, we find three phases in terms of the frustration parameter \\barα={{J}2}/{{J}1} : (1) a commensurate collinear ordering with staggered magnetization (Néel.I state) for 0≤slant \\barα≲ 0.207 , (2) a magnetically gapped disordered state for 0.207≲ \\barα≲ 0.369 , preserving all the symmetries of the Hamiltonian and lattice, which by definition is a quantum spin liquid (QSL) state and (3) a commensurate collinear ordering in which two out of the three nearest neighbor magnetizations are antiparallel and the remaining pair are parallel (Néel.II state), for 0.396≲ \\barα≤slant 1 . We also explore the phase diagram of a distorted {{J}1}-{{J}2} model with S  =  1/2. Distortion is introduced as an inequality of one nearest neighbor coupling with the other two. This yields a richer phase diagram by the appearance of a new gapped QSL, a gapless QSL and also a valence bond crystal phase in addition to the previous three phases found for the undistorted model.

  17. Canted antiferromagnetism in phase-pure CuMnSb

    NASA Astrophysics Data System (ADS)

    Regnat, A.; Bauer, A.; Senyshyn, A.; Meven, M.; Hradil, K.; Jorba, P.; Nemkovski, K.; Pedersen, B.; Georgii, R.; Gottlieb-Schönmeyer, S.; Pfleiderer, C.

    2018-05-01

    We report the low-temperature properties of phase-pure single crystals of the half-Heusler compound CuMnSb grown by means of optical float zoning. The magnetization, specific heat, electrical resistivity, and Hall effect of our single crystals exhibit an antiferromagnetic transition at TN=55 K and a second anomaly at a temperature T*≈34 K. Powder and single-crystal neutron diffraction establish an ordered magnetic moment of (3.9 ±0.1 ) μB/f .u . , consistent with the effective moment inferred from the Curie-Weiss dependence of the susceptibility. Below TN, the Mn sublattice displays commensurate type-II antiferromagnetic order with propagation vectors and magnetic moments along <111 > (magnetic space group R [I ]3 c ). Surprisingly, below T*, the moments tilt away from <111 > by a finite angle δ ≈11∘ , forming a canted antiferromagnetic structure without uniform magnetization consistent with magnetic space group C [B ]c . Our results establish that type-II antiferromagnetism is not the zero-temperature magnetic ground state of CuMnSb as may be expected of the face-centered cubic Mn sublattice.

  18. Diamond heteroepitaxial lateral overgrowth

    DOE PAGES

    Tang, Y. -H.; Bi, B.; Golding, B.

    2015-02-24

    A method of diamond heteroepitaxial lateral overgrowth is demonstrated which utilizes a photolithographic metal mask to pattern a thin (001) epitaxial diamond surface. Significant structural improvement was found, with a threading dislocation density reduced by two orders of magnitude at the top surface of a thick overgrown diamond layer. In the initial stage of overgrowth, a reduction of diamond Raman linewidth in the overgrown area was also realized. Thermally-induced stress and internal stress were determined by Raman spectroscopy of adhering and delaminated diamond films. As a result, the internal stress is found to decrease as sample thickness increases.

  19. Cryptic iridescence in a fossil weevil generated by single diamond photonic crystals

    PubMed Central

    McNamara, Maria E.; Saranathan, Vinod; Locatelli, Emma R.; Noh, Heeso; Briggs, Derek E. G.; Orr, Patrick J.; Cao, Hui

    2014-01-01

    Nature's most spectacular colours originate in integumentary tissue architectures that scatter light via nanoscale modulations of the refractive index. The most intricate biophotonic nanostructures are three-dimensional crystals with opal, single diamond or single gyroid lattices. Despite intense interest in their optical and structural properties, the evolution of such nanostructures is poorly understood, due in part to a lack of data from the fossil record. Here, we report preservation of single diamond (Fd-3m) three-dimensional photonic crystals in scales of a 735 000 year old specimen of the brown Nearctic weevil Hypera diversipunctata from Gold Run, Canada, and in extant conspecifics. The preserved red to green structural colours exhibit near-field brilliancy yet are inconspicuous from afar; they most likely had cryptic functions in substrate matching. The discovery of pristine fossil examples indicates that the fossil record is likely to yield further data on the evolution of three-dimensional photonic nanostructures and their biological functions. PMID:25185581

  20. Magnetoresistive detection of strongly pinned uncompensated magnetization in antiferromagnetic FeMn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapa, Pavel N.; Roshchin, Igor V.; Ding, Junjia

    2017-01-17

    Here we observed and studied pinned uncompensated magnetization in an antiferromagnet using magnetoresistance measurements. For this, we developed antiferromagnet-ferromagnet spin valves (AFSVs) that consist of an antiferromagnetic layer and a ferromagnetic one, separated by a nonmagnetic conducting spacer. In an AFSV, the uncompensated magnetization in the antiferromagnet affects scattering of spin-polarized electrons giving rise to giant magnetoresitance (GMR). By measuring angular dependence of AFSVs' resistance, we detected pinned uncompensated magnetization responsible for the exchange bias effect in an antiferromagnet- only exchange bias system Cu/FeMn/Cu. The fact that GMR measured in this system persists up to 110 kOe indicates that themore » scattering occurs on strongly pinned uncompensated magnetic moments in FeMn. This strong pinning can be explained if this pinned uncompensated magnetization is a thermodynamically stable state and coupled to the antiferromagnetic order parameter. Finally, using the AFSV technique, we confirmed that the two interfaces between FeMn and Cu are magnetically different: The uncompensated magnetization is pinned only at the interface with the bottom Cu layer.« less

  1. Antiferromagnetic instability in Sr3Ru2O7: stabilized and revealed by dilute Mn impurities

    NASA Astrophysics Data System (ADS)

    Hossain, Muhammed; Bohnenbuck, B.; Chuang, Y.-D.; Cruz, E.; Wu, H.-H.; Tjeng, L. H.; Elfimov, I. S.; Hussain, Z.; Keimer, B.; Sawatzky, G. A.; Damascelli, A.

    2009-03-01

    X-ray Absorption Spectroscopy (XAS) and Resonant Elastic Soft X-ray Scattering (RESXS) studies have been performed on Mn-doped Sr3Ru2O7, both on the Ru and Mn L-edges, to investigate the origin of the metal insulator transition. Extensive simulations based on our experimental findings point toward an intrinsic antiferromagnetic instability in the parent Sr3Ru2O7 compound that is stabilized by the dilute Mn impurities. We show that the metal-insulator transition is a direct consequence of the antiferromagnetic order and we propose a phenomenological model that may be applicable also to metal-insulator transitions seen in other oxides. Moreover, a comparison of Ru and Mn L-edge data on 5% Mn doped system reveals that dilute Mn impurities are generating much more intense signal than Ru which is occupying 95% of the lattice sites. This suggests the embedding of dilute impurities as a powerful mean to probe weak and, possibly, spatially inhomogeneous order in solid-state systems. In collaboration with: Y. Yoshida (AIST), J. Geck, D.G. Hawthorn (UBC), M.W. Haverkort, Z. Hu, C. Sch"ußler-Langeheine (Cologne), R. Mathieu, Y. Tokura, S. Satow, H. Takagi (Tokyo), J.D. Denlinger (ALS).

  2. Nature of diamonds in Yakutian eclogites: views from eclogite tomography and mineral inclusions in diamonds

    NASA Astrophysics Data System (ADS)

    Anand, Mahesh; Taylor, Lawrence A.; Misra, Kula C.; Carlson, William D.; Sobolev, Nikolai V.

    2004-09-01

    We have performed dissections of two diamondiferous eclogites (UX-1 and U33/1) from the Udachnaya kimberlite, Yakutia in order to understand the nature of diamond formation and the relationship between the diamonds, their mineral inclusions, and host eclogite minerals. Diamonds were carefully recovered from each xenolith, based upon high-resolution X-ray tomography images and three-dimensional models. The nature and physical properties of minerals, in direct contact with diamonds, were investigated at the time of diamond extraction. Polished sections of the eclogites were made, containing the mould areas of the diamonds, to further investigate the chemical compositions of the host minerals and the phases that were in contact with diamonds. Major- and minor-element compositions of silicate and sulfide mineral inclusions in diamonds show variations among each other, and from those in the host eclogites. Oxygen isotope compositions of one garnet and five clinopyroxene inclusions in diamonds from another Udachnaya eclogite (U51) span the entire range recorded for eclogite xenoliths from Udachnaya. In addition, the reported compositions of almost all clinopyroxene inclusions in U51 diamonds exhibit positive Eu anomaly. This feature, together with the oxygen isotopic characteristics, is consistent with the well-established hypothesis of subduction origin for Udachnaya eclogite xenoliths. It is intuitive to expect that all eclogite xenoliths in a particular kimberlite should have common heritage, at least with respect to their included diamonds. However, the variation in the composition of multiple inclusions within diamonds, and among diamonds, from the same eclogite indicates the involvement of complex processes in diamond genesis, at least in the eclogite xenoliths from Yakutia that we have studied.

  3. Evolution of magnetic Dirac bosons in a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Boyko, D.; Balatsky, A. V.; Haraldsen, J. T.

    2018-01-01

    We examine the presence and evolution of magnetic Dirac nodes in the Heisenberg honeycomb lattice. Using linear spin theory, we evaluate the collinear phase diagram as well as the change in the spin dynamics with various exchange interactions. We show that the ferromagnetic structure produces bosonic Dirac and Weyl points due to the competition between the interactions. Furthermore, it is shown that the criteria for magnetic Dirac nodes are coupled to the magnetic structure and not the overall crystal symmetry, where the breaking of inversion symmetry greatly affects the antiferromagnetic configurations. The tunability of the nodal points through variation of the exchange parameters leads to the possibility of controlling Dirac symmetries through an external manipulation of the orbital interactions.

  4. Spin-one bilinear-biquadratic model on a star lattice

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Yong; Kawashima, Naoki

    2018-05-01

    We study the ground-state phase diagram of the S =1 bilinear-biquadratic model (BLBQ) on the star lattice with the state-of-art tensor network algorithms. The system has four phases: the ferromagnetic, antiferromagnetic, ferroquadrupolar, and spin-liquid phases. The phases and their phase boundaries are determined by examining various local observables, correlation functions, and transfer matrices exhaustively. The spin-liquid phase, which is the first quantum disordered phase found in the two-dimensional BLBQ model, is gapped and devoid of any conventional long-range order. It is also characterized by fixed-parity virtual bonds in the tensor network formalism, analogous to the Haldane phase, while the parity varies depending on the location of the bond.

  5. Noncollinear antiferromagnetic Mn3Sn films

    NASA Astrophysics Data System (ADS)

    Markou, A.; Taylor, J. M.; Kalache, A.; Werner, P.; Parkin, S. S. P.; Felser, C.

    2018-05-01

    Noncollinear hexagonal antiferromagnets with almost zero net magnetization were recently shown to demonstrate giant anomalous Hall effect. Here, we present the structural and magnetic properties of noncollinear antiferromagnetic Mn3Sn thin films heteroepitaxially grown on Y:ZrO2 (111) substrates with a Ru underlayer. The Mn3Sn films were crystallized in the hexagonal D 019 structure with c -axis preferred (0001) crystal orientation. The Mn3Sn films are discontinuous, forming large islands of approximately 400 nm in width, but are chemical homogeneous and characterized by near perfect heteroepitaxy. Furthermore, the thin films show weak ferromagnetism with an in-plane uncompensated magnetization of M =34 kA/m and coercivity of μ0Hc=4.0 mT at room temperature. Additionally, the exchange bias effect was studied in Mn3Sn /Py bilayers. Exchange bias fields up to μ0HEB=12.6 mT can be achieved at 5 K. These results show Mn3Sn films to be an attractive material for applications in antiferromagnetic spintronics.

  6. Crystal-field effects in the kagome antiferromagnet Ho3Ru4Al12

    NASA Astrophysics Data System (ADS)

    Gorbunov, D. I.; Nomura, T.; Ishii, I.; Henriques, M. S.; Andreev, A. V.; Doerr, M.; Stöter, T.; Suzuki, T.; Zherlitsyn, S.; Wosnitza, J.

    2018-05-01

    In Ho3Ru4Al12 , the Ho atoms form a distorted kagome lattice. We performed magnetization, magnetic-susceptibility, specific-heat, and ultrasound measurements on a single crystal. We find that the magnetic and magnetoelastic properties of Ho3Ru4Al12 result from an interplay between geometric frustration and crystal-electric-field (CEF) effects. The Ho atoms order antiferromagnetically at TN=4.5 K with reduced magnetic moments. In applied field, the magnetization shows anomalies that can be explained by CEF level crossings. We propose a CEF level scheme for which the ground-state doublet and the first two excited singlets at about 2.7 K form a quasiquartet. Indirect interlevel transitions allow for a quadrupolar interaction. This interaction explains well changes in the elastic shear modulus C44 as a function of temperature and magnetic field.

  7. Impact resistance and energies of intermetallic bonded diamond composites and polycrystalline diamond compacts and their comparison

    NASA Astrophysics Data System (ADS)

    Gorla, Sai Prasanth

    Chemistry of intermetallic bonded diamond is studied. The impact resistance and energies of intermetallic bonded diamond is compared to current poly crystalline diamond compacts. IBD's are found to have high standards of hardness and have more impact energies absorbed. Intermetallic bonded diamond composite comprises of diamond particles dispersed in Tungsten carbide using Nickel aluminide (Ni3Al) as binder. In previous research conducted on IBD's, diamonds are successfully dispersed in intermetallic alloy of nickel aluminide and processed at 1350°C such that diamond particles remain intact without forming graphite. Composites are formed by milling, pressing the intermetallic binder and diamond particles and sintering at high temperature conditions.

  8. Chemical-Vapor-Deposited Diamond Film

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This chapter describes the nature of clean and contaminated diamond surfaces, Chemical-vapor-deposited (CVD) diamond film deposition technology, analytical techniques and the results of research on CVD diamond films, and the general properties of CVD diamond films. Further, it describes the friction and wear properties of CVD diamond films in the atmosphere, in a controlled nitrogen environment, and in an ultra-high-vacuum environment.

  9. Antiferromagnetic vs. non-magnetic ε phase of solid oxygen. Periodic density functional theory studies using a localized atomic basis set and the role of exact exchange.

    PubMed

    Ramírez-Solís, A; Zicovich-Wilson, C M; Hernández-Lamoneda, R; Ochoa-Calle, A J

    2017-01-25

    The question of the non-magnetic (NM) vs. antiferromagnetic (AF) nature of the ε phase of solid oxygen is a matter of great interest and continuing debate. In particular, it has been proposed that the ε phase is actually composed of two phases, a low-pressure AF ε 1 phase and a higher pressure NM ε 0 phase [Crespo et al., Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 10427]. We address this problem through periodic spin-restricted and spin-polarized Kohn-Sham density functional theory calculations at pressures from 10 to 50 GPa using calibrated GGA and hybrid exchange-correlation functionals with Gaussian atomic basis sets. The two possible configurations for the antiferromagnetic (AF1 and AF2) coupling of the 0 ≤ S ≤ 1 O 2 molecules in the (O 2 ) 4 unit cell were studied. Full enthalpy-driven geometry optimizations of the (O 2 ) 4 unit cells were done to study the pressure evolution of the enthalpy difference between the non-magnetic and both antiferromagnetic structures. We also address the evolution of structural parameters and the spin-per-molecule vs. pressure. We find that the spin-less solution becomes more stable than both AF structures above 50 GPa and, crucially, the spin-less solution yields lattice parameters in much better agreement with experimental data at all pressures than the AF structures. The optimized AF2 broken-symmetry structures lead to large errors of the a and b lattice parameters when compared with experiments. The results for the NM model are in much better agreement with the experimental data than those found for both AF models and are consistent with a completely non-magnetic (O 2 ) 4 unit cell for the low-pressure regime of the ε phase.

  10. Orapa Diamond Mine, Botswana

    NASA Image and Video Library

    2015-11-16

    This image from NASA Terra spacecraft shows the Orapa diamond mine, the world largest diamond mine by area. The mine is located in Botswana. It is the oldest of four mines operated by the same company, having begun operations in 1971. Orapa is an open pit style of mine, located on two kimberlite pipes. Currently, the Orapa mine annually produces approximately 11 million carats (2200 kg) of diamonds. The Letlhakane diamond mine is also an open pit construction. In 2003, the Letlhakane mine produced 1.06 million carats of diamonds. The Damtshaa diamond mine is the newest of four mines, located on top of four distinct kimberlite pipes of varying ore grade. The mine is forecast to produce about 5 million carats of diamond over the projected 31 year life of the mine. The image was acquired October 5, 2014, covers an area of 28 by 45 km, and is located at 21.3 degrees south, 25.4 degrees east. http://photojournal.jpl.nasa.gov/catalog/PIA20104

  11. Microstructure and thermal properties of copper–diamond composites with tungsten carbide coating on diamond particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Qiping; He, Xinbo, E-mail: xb_he@163.com; Ren, Shubin

    2015-07-15

    An effective method for preparing tungsten carbide coating on diamond surfaces was proposed to improve the interface bonding between diamond and copper. The WC coating was formed on the diamond surfaces with a reaction medium of WO{sub 3} in mixed molten NaCl–KCl salts and the copper–diamond composites were obtained by vacuum pressure infiltration of WC-coated diamond particles with pure copper. The microstructure of interface bonding between diamond and copper was discussed. Thermal conductivity and thermal expansion behavior of the obtained copper–diamond composites were investigated. Results indicated that the thermal conductivity of as-fabricated composite reached 658 W m{sup −} {sup 1}more » K{sup −} {sup 1}. Significant reduction in coefficient of thermal expansion of the composite compared with that of pure copper was obtained. - Highlights: • WC coating was successfully synthesized on diamond particles in molten salts. • WC coating obviously promoted the wettability of diamond and copper matrix. • WC coating greatly enhanced the thermal conductivity of Cu–diamond composite. • The composites are suitable candidates for heat sink applications.« less

  12. Homoepitaxial Boron Doped Diamond Anvils as Heating Elements in a Diamond Anvil Cell

    NASA Astrophysics Data System (ADS)

    Montgomery, Jeffrey; Samudrala, Gopi; Smith, Spencer; Tsoi, Georgiy; Vohra, Yogesh; Weir, Samuel

    2013-03-01

    Recent advances in designer-diamond technology have allowed for the use of electrically and thermally conducting homoepitaxially-grown layers of boron-doped diamond (grown at 1200 °C with a 2% mixture of CH4 in H, resulting in extremely high doping levels ~ 1020/cm3) to be used as heating elements in a diamond anvil cell (DAC). These diamonds allow for precise control of the temperature inside of the diamond anvil itself, particularly when coupled with a cryostat. Furthermore, the unmatched thermally conducting nature of diamond ensures that no significant lateral gradient in temperature occurs across the culet area. Since a thermocouple can easily be attached anywhere on the diamond surface, we can also measure diamond temperatures directly. With two such heaters, one can raise sample temperatures uniformly, or with any desired gradient along the pressure axis while preserving optical access. In our continuing set of benchmark experiments, we use two newly created matching heater anvils with 500 μm culets to analyze the various fluorescence emission lines of ruby microspheres, which show more complicated behavior than traditional ruby chips. We also report on the temperature dependence of the high-pressure Raman modes of paracetamol (C8H9NO2) up to 20 GPa.

  13. Substantiation of Epitaxial Growth of Diamond Crystals on the Surface of Carbide Fe3AlC0.66 Phase Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dzevin, Ievgenij M.; Mekhed, Alexander A.

    2017-03-01

    Samples of Fe-Al-C alloys of varying composition were synthesized under high pressures and temperatures. From X-ray analysis data, only K-phase with usual for it average parameter of elemental lattice cell, a = 0.376 nm, carbide Fe3C and cubic diamond reflexes were present before and after cooling to the temperature of liquid nitrogen.

  14. Antiferromagnetic exchange and magnetoresistance enhancement in Co-Re superlattices

    NASA Astrophysics Data System (ADS)

    Freitas, P. P.; Melo, L. V.; Trindade, I.; From, M.; Ferreira, J.; Monteiro, P.

    1992-02-01

    Co-Re superlattices were prepared that show either antiferromagnetic or ferromagnetic coupling between the Co layers depending on the Re spacer thickness. Enhanced saturation magnetoresistance occurs for antiferromagnetically coupled layers. The saturation magnetoresistance decays exponentially with Re thickness but does not depend critically on the Co thickness.

  15. Equilibrium, metastability, and hysteresis in a model spin-crossover material with nearest-neighbor antiferromagnetic-like and long-range ferromagnetic-like interactions

    NASA Astrophysics Data System (ADS)

    Rikvold, Per Arne; Brown, Gregory; Miyashita, Seiji; Omand, Conor; Nishino, Masamichi

    2016-02-01

    Phase diagrams and hysteresis loops were obtained by Monte Carlo simulations and a mean-field method for a simplified model of a spin-crossover material with a two-step transition between the high-spin and low-spin states. This model is a mapping onto a square-lattice S =1 /2 Ising model with antiferromagnetic nearest-neighbor and ferromagnetic Husimi-Temperley (equivalent-neighbor) long-range interactions. Phase diagrams obtained by the two methods for weak and strong long-range interactions are found to be similar. However, for intermediate-strength long-range interactions, the Monte Carlo simulations show that tricritical points decompose into pairs of critical end points and mean-field critical points surrounded by horn-shaped regions of metastability. Hysteresis loops along paths traversing the horn regions are strongly reminiscent of thermal two-step transition loops with hysteresis, recently observed experimentally in several spin-crossover materials. We believe analogous phenomena should be observable in experiments and simulations for many systems that exhibit competition between local antiferromagnetic-like interactions and long-range ferromagnetic-like interactions caused by elastic distortions.

  16. Equilibrium, metastability, and hysteresis in a model spin-crossover material with nearest-neighbor antiferromagnetic-like and long-range ferromagnetic-like interactions

    DOE PAGES

    Rikvold, Per Arne; Brown, Gregory; Miyashita, Seiji; ...

    2016-02-16

    Phase diagrams and hysteresis loops were obtained by Monte Carlo simulations and a mean- field method for a simplified model of a spin-crossovermaterialwith a two-step transition between the high-spin and low-spin states. This model is a mapping onto a square-lattice S = 1/2 Ising model with antiferromagnetic nearest-neighbor and ferromagnetic Husimi-Temperley ( equivalent-neighbor) long-range interactions. Phase diagrams obtained by the two methods for weak and strong long-range interactions are found to be similar. However, for intermediate-strength long-range interactions, the Monte Carlo simulations show that tricritical points decompose into pairs of critical end points and mean-field critical points surrounded by horn-shapedmore » regions of metastability. Hysteresis loops along paths traversing the horn regions are strongly reminiscent of thermal two-step transition loops with hysteresis, recently observed experimentally in several spin-crossover materials. As a result, we believe analogous phenomena should be observable in experiments and simulations for many systems that exhibit competition between local antiferromagnetic-like interactions and long-range ferromagnetic-like interactions caused by elastic distortions.« less

  17. Spin-lattice relaxation of individual solid-state spins

    NASA Astrophysics Data System (ADS)

    Norambuena, A.; Muñoz, E.; Dinani, H. T.; Jarmola, A.; Maletinsky, P.; Budker, D.; Maze, J. R.

    2018-03-01

    Understanding the effect of vibrations on the relaxation process of individual spins is crucial for implementing nanosystems for quantum information and quantum metrology applications. In this work, we present a theoretical microscopic model to describe the spin-lattice relaxation of individual electronic spins associated to negatively charged nitrogen-vacancy centers in diamond, although our results can be extended to other spin-boson systems. Starting from a general spin-lattice interaction Hamiltonian, we provide a detailed description and solution of the quantum master equation of an electronic spin-one system coupled to a phononic bath in thermal equilibrium. Special attention is given to the dynamics of one-phonon processes below 1 K where our results agree with recent experimental findings and analytically describe the temperature and magnetic-field scaling. At higher temperatures, linear and second-order terms in the interaction Hamiltonian are considered and the temperature scaling is discussed for acoustic and quasilocalized phonons when appropriate. Our results, in addition to confirming a T5 temperature dependence of the longitudinal relaxation rate at higher temperatures, in agreement with experimental observations, provide a theoretical background for modeling the spin-lattice relaxation at a wide range of temperatures where different temperature scalings might be expected.

  18. Restoring the lattice of Si-based atom probe reconstructions for enhanced information on dopant positioning.

    PubMed

    Breen, Andrew J; Moody, Michael P; Ceguerra, Anna V; Gault, Baptiste; Araullo-Peters, Vicente J; Ringer, Simon P

    2015-12-01

    The following manuscript presents a novel approach for creating lattice based models of Sb-doped Si directly from atom probe reconstructions for the purposes of improving information on dopant positioning and directly informing quantum mechanics based materials modeling approaches. Sophisticated crystallographic analysis techniques are used to detect latent crystal structure within the atom probe reconstructions with unprecedented accuracy. A distortion correction algorithm is then developed to precisely calibrate the detected crystal structure to the theoretically known diamond cubic lattice. The reconstructed atoms are then positioned on their most likely lattice positions. Simulations are then used to determine the accuracy of such an approach and show that improvements to short-range order measurements are possible for noise levels and detector efficiencies comparable with experimentally collected atom probe data. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Ultrafast Band Engineering and Transient Spin Currents in Antiferromagnetic Oxides

    NASA Astrophysics Data System (ADS)

    Gu, Mingqiang; Rondinelli, James M.

    2016-04-01

    We report a dynamic structure and band engineering strategy with experimental protocols to induce indirect-to-direct band gap transitions and coherently oscillating pure spin-currents in three-dimensional antiferromagnets (AFM) using selective phononic excitations. In the Mott insulator LaTiO3, we show that a photo-induced nonequilibrium phonon mode amplitude destroys the spin and orbitally degenerate ground state, reduces the band gap by 160 meV and renormalizes the carrier masses. The time scale of this process is a few hundreds of femtoseconds. Then in the hole-doped correlated metallic titanate, we show how pure spin-currents can be achieved to yield spin-polarizations exceeding those observed in classic semiconductors. Last, we demonstrate the generality of the approach by applying it to the non-orbitally degenerate AFM CaMnO3. These results advance our understanding of electron-lattice interactions in structures out-of-equilibrium and establish a rational framework for designing dynamic phases that may be exploited in ultrafast optoelectronic and optospintronic devices.

  20. Ultrafast Band Engineering and Transient Spin Currents in Antiferromagnetic Oxides.

    PubMed

    Gu, Mingqiang; Rondinelli, James M

    2016-04-29

    We report a dynamic structure and band engineering strategy with experimental protocols to induce indirect-to-direct band gap transitions and coherently oscillating pure spin-currents in three-dimensional antiferromagnets (AFM) using selective phononic excitations. In the Mott insulator LaTiO3, we show that a photo-induced nonequilibrium phonon mode amplitude destroys the spin and orbitally degenerate ground state, reduces the band gap by 160 meV and renormalizes the carrier masses. The time scale of this process is a few hundreds of femtoseconds. Then in the hole-doped correlated metallic titanate, we show how pure spin-currents can be achieved to yield spin-polarizations exceeding those observed in classic semiconductors. Last, we demonstrate the generality of the approach by applying it to the non-orbitally degenerate AFM CaMnO3. These results advance our understanding of electron-lattice interactions in structures out-of-equilibrium and establish a rational framework for designing dynamic phases that may be exploited in ultrafast optoelectronic and optospintronic devices.

  1. Ultrafast band engineering and transient spin currents in antiferromagnetic oxides

    DOE PAGES

    Gu, Mingqiang; Rondinelli, James M.

    2016-04-29

    Here, we report a dynamic structure and band engineering strategy with experimental protocols to induce indirect-to-direct band gap transitions and coherently oscillating pure spin-currents in three-dimensional antiferromagnets (AFM) using selective phononic excitations. In the Mott insulator LaTiO 3, we show that a photo-induced nonequilibrium phonon mode amplitude destroys the spin and orbitally degenerate ground state, reduces the band gap by 160 meV and renormalizes the carrier masses. The time scale of this process is a few hundreds of femtoseconds. Then in the hole-doped correlated metallic titanate, we show how pure spin-currents can be achieved to yield spin-polarizations exceeding those observedmore » in classic semiconductors. Last, we demonstrate the generality of the approach by applying it to the non-orbitally degenerate AFM CaMnO 3. These results advance our understanding of electron-lattice interactions in structures out-of-equilibrium and establish a rational framework for designing dynamic phases that may be exploited in ultrafast optoelectronic and optospintronic devices.« less

  2. Ultrafast Band Engineering and Transient Spin Currents in Antiferromagnetic Oxides

    PubMed Central

    Gu, Mingqiang; Rondinelli, James M.

    2016-01-01

    We report a dynamic structure and band engineering strategy with experimental protocols to induce indirect-to-direct band gap transitions and coherently oscillating pure spin-currents in three-dimensional antiferromagnets (AFM) using selective phononic excitations. In the Mott insulator LaTiO3, we show that a photo-induced nonequilibrium phonon mode amplitude destroys the spin and orbitally degenerate ground state, reduces the band gap by 160 meV and renormalizes the carrier masses. The time scale of this process is a few hundreds of femtoseconds. Then in the hole-doped correlated metallic titanate, we show how pure spin-currents can be achieved to yield spin-polarizations exceeding those observed in classic semiconductors. Last, we demonstrate the generality of the approach by applying it to the non-orbitally degenerate AFM CaMnO3. These results advance our understanding of electron-lattice interactions in structures out-of-equilibrium and establish a rational framework for designing dynamic phases that may be exploited in ultrafast optoelectronic and optospintronic devices. PMID:27126354

  3. Quantum measurement-induced antiferromagnetic order and density modulations in ultracold Fermi gases in optical lattices

    NASA Astrophysics Data System (ADS)

    Mazzucchi, Gabriel; Caballero-Benitez, Santiago F.; Mekhov, Igor B.

    2016-08-01

    Ultracold atomic systems offer a unique tool for understanding behavior of matter in the quantum degenerate regime, promising studies of a vast range of phenomena covering many disciplines from condensed matter to quantum information and particle physics. Coupling these systems to quantized light fields opens further possibilities of observing delicate effects typical of quantum optics in the context of strongly correlated systems. Measurement backaction is one of the most funda- mental manifestations of quantum mechanics and it is at the core of many famous quantum optics experiments. Here we show that quantum backaction of weak measurement can be used for tailoring long-range correlations of ultracold fermions, realizing quantum states with spatial modulations of the density and magnetization, thus overcoming usual requirement for a strong interatomic interactions. We propose detection schemes for implementing antiferromagnetic states and density waves. We demonstrate that such long-range correlations cannot be realized with local addressing, and they are a consequence of the competition between global but spatially structured backaction of weak quantum measurement and unitary dynamics of fermions.

  4. Antiferromagnetic spin Seebeck effect.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Stephen M.; Zhang, Wei; KC, Amit

    2016-03-03

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2. A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF2(110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2–80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in themore » spin Seebeck signal when large magnetic fields (>9T) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.« less

  5. Antiferromagnetic Spin Seebeck Effect

    NASA Astrophysics Data System (ADS)

    Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand

    2016-03-01

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2 . A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30 nm )/Pt (4 nm) grown by molecular beam epitaxy on a MgF2 (110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2-80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9 T ) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.

  6. Diamond-anvil cell for radial x-ray diffraction.

    PubMed

    Chesnut, G N; Schiferl, D; Streetman, B D; Anderson, W W

    2006-06-28

    We have designed a new diamond-anvil cell capable of radial x-ray diffraction to pressures of a few hundred GPa. The diffraction geometry allows access to multiple angles of Ψ, which is the angle between each reciprocal lattice vector g(hkl) and the compression axis of the cell. At the 'magic angle', Ψ≈54.7°, the effects of deviatoric stresses on the interplanar spacings, d(hkl), are significantly reduced. Because the systematic errors, which are different for each d(hkl), are significantly reduced, the crystal structures and the derived equations of state can be determined reliably. At other values of Ψ, the effects of deviatoric stresses on the diffraction pattern could eventually be used to determine elastic constants.

  7. Magnonic analog of relativistic Zitterbewegung in an antiferromagnetic spin chain

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Gu, Chenjie; Zhou, Yan; Fangohr, Hans

    2017-07-01

    We theoretically investigate the spin-wave (magnon) excitations in a classical antiferromagnetic spin chain with easy-axis anisotropy. We obtain a Dirac-like equation by linearizing the Landau-Lifshitz-Gilbert equation in this antiferromagnetic system, in contrast to the ferromagnetic system in which a Schrödinger-type equation is derived. The Hamiltonian operator in the Dirac-like equation is a pseudo-Hermitian. We compute and demonstrate relativistic Zitterbewegung (trembling motion) in the antiferromagnetic spin chain by measuring the expectation values of the wave-packet position.

  8. Microstructural evolution of diamond growth during HFCVD

    NASA Technical Reports Server (NTRS)

    Singh, J.

    1994-01-01

    High resolution transmission electron microscopy (HRTEM) was used to study the nucleation and growth mechanism of diamond by hot filament chemical vapor deposition (HFCVD) process. A novel technique has shown a direct evidence for the formation of the diamond-like carbon layer 8-14 nm thick in which small diamond micro-crystallites were embedded. These diamond micro-crystallites were formed as a result of transformation of diamond-like carbon into diamond. The diamond micro-crystallites present in the amorphous diamond-like carbon layer provided nucleation sites for diamond growth. Large diamond crystallites were observed to grow from these micro-crystallites. The mechanism of diamond growth will be presented based on experimental findings.

  9. Diamonds in an Archean greenstone belt: Diamond suites in unconventional rocks of Wawa, Northern Ontario (Canada)

    NASA Astrophysics Data System (ADS)

    Kopylova, Maya; Bruce, Loryn; Ryder, John

    2010-05-01

    Diamonds typically are found on Archean cratons entrained by younger Phanerozoic kimberlites. In contrast, Wawa diamonds are hosted in "unconventional", non-kimberlitic rocks that formed contemporaneously with the mafic and sedimentary rocks of the Archean Michipicoten Greenstone Belt (MGB). We studied two diamond suites that occur within the 2.9-2.7 Ga greenschist facies rocks of MGB located in the southwest portion of the Superior Craton (E. Canada). The first diamond suite henceforth referred to as the Wawa breccia diamonds (384 stones), are hosted in the 2618-2744 Ma calc-alkaline lamprophyres and volcaniclastic breccias, contemporaneous with pillow basalts and felsic volcanics of MGB. The second suite, the Wawa conglomerate diamonds (80 crystals), are hosted in the 2697-2700 Ma poorly sorted sedimentary polymictic conglomerate which is interpreted as a proximal alluvial fan debris flow in a fan-delta environment. The majority of the diamonds was found within the matrix of the conglomerate. The diamondiferous breccia occurs 20 km north of the town of Wawa, whereas the conglomerate is found 12 km northeast of Wawa. Diamonds from the 2 occurrences were characterized and described for provenance studies. Both the breccia and conglomerate diamonds show similar crystal habits, with the predominance of octahedral single crystals and ~ 10% of cubes. The conglomerate diamonds are significantly less resorbed (no resorbtion in 43% of the stones) than the breccia diamonds (8% non-resorbed stones). In both suites, only 21-24% show high degrees of resorption. The majority of crystals in both suites are colourless, with some yellow, brown and grey stones. Conglomerate diamonds had a wider variety of colours that were not seen in the breccia diamonds, including green and pink. The breccia diamonds contain 0-740 ppm N and show two modes of N aggregation at 0-30 and 60-95%. Among the breccia diamonds, Type IaA stones comprise 17%, whereas IaAB stones make up 49% of the

  10. Spin dynamics of antiferromagnets in the presence of a homogeneous magnetization

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, T. R.; Belitz, D.

    2017-06-01

    We use general hydrodynamic equations to determine the long-wavelength spin excitations in isotropic antiferromagnets in the presence of a homogeneous magnetization. The latter may be induced, such as in antiferromagnets in an external magnetic field, or spontaneous, such as in ferrimagnetic or canted phases that are characterized by the coexistence of antiferromagnetic and ferromagnetic order. Depending on the physical situation, we find propagating spin waves that are gapped in some cases and gapless in others, diffusive modes, or relaxational modes. The excitation spectra turn out to be qualitatively different depending on whether or not the homogeneous magnetization is a conserved quantity. The results lay the foundation for a description of a variety of quantum phase transitions, including the transition from a ferromagnetic metal to an antiferromagnetic one, and the spin-flop transitions that are observed in some antiferromagnets. They also are crucial for incorporating weak localization and Altshuler-Aronov effects into the descriptions of quantum phases in both clean and disordered magnetic metals.

  11. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility

    NASA Astrophysics Data System (ADS)

    Olejník, K.; Schuler, V.; Marti, X.; Novák, V.; Kašpar, Z.; Wadley, P.; Campion, R. P.; Edmonds, K. W.; Gallagher, B. L.; Garces, J.; Baumgartner, M.; Gambardella, P.; Jungwirth, T.

    2017-05-01

    Antiferromagnets offer a unique combination of properties including the radiation and magnetic field hardness, the absence of stray magnetic fields, and the spin-dynamics frequency scale in terahertz. Recent experiments have demonstrated that relativistic spin-orbit torques can provide the means for an efficient electric control of antiferromagnetic moments. Here we show that elementary-shape memory cells fabricated from a single-layer antiferromagnet CuMnAs deposited on a III-V or Si substrate have deterministic multi-level switching characteristics. They allow for counting and recording thousands of input pulses and responding to pulses of lengths downscaled to hundreds of picoseconds. To demonstrate the compatibility with common microelectronic circuitry, we implemented the antiferromagnetic bit cell in a standard printed circuit board managed and powered at ambient conditions by a computer via a USB interface. Our results open a path towards specialized embedded memory-logic applications and ultra-fast components based on antiferromagnets.

  12. Status and applications of diamond and diamond-like materials: An emerging technology

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Recent discoveries that make possible the growth of crystalline diamond by chemical vapor deposition offer the potential for a wide variety of new applications. This report takes a broad look at the state of the technology following from these discoveries in relation to other allied materials, such as high-pressure diamond and cubic boron nitride. Most of the potential defense, space, and commercial applications are related to diamond's hardness, but some utilize other aspects such as optical or electronic properties. The growth processes are reviewed, and techniques for characterizing the resulting materials' properties are discussed. Crystalline diamond is emphasized, but other diamond-like materials (silicon carbide, amorphous carbon containing hydrogen) are also examined. Scientific, technical, and economic problem areas that could impede the rapid exploitation of these materials are identified. Recommendations are presented covering broad areas of research and development.

  13. Laser patterning of diamond films

    NASA Astrophysics Data System (ADS)

    Narayan, J.; Chen, X.

    1992-04-01

    Selective deposition and fine-scale patterning of hot filament deposited diamond films by the use of pulsed laser irradiation on silicon and copper substrates are reported. The substrates were abraded with diamond and alumina powders before hot-filament chemical vapor deposition. A drastic enhancement in diamond nucleation (using hot-filament chemical vapor deposition) was observed on specimens treated with diamond powder, whereas enhancement on specimens pretreated with alumina powder was relatively insignificant. It is found that the seeding of diamond crystals was substantially reduced by pulsed laser annealing/melting which removes the plastic damage as well as the seed crystals introduced by diamond powder pretreatment. The selective deposition or fine-scale patterning of diamond films was achieved either by a shadow masking or by scanning a focused laser beam to generate desired patterns. The nucleation can also be enhanced by laser deposition of thin films, such as diamond-like carbon and tungsten carbide (WC), and selective deposition and patterning achieved by controlled removal or deposition of the above films.

  14. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Rough diamond. 592.310 Section 592.310... ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply sawn, cleaved...

  15. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Rough diamond. 592.310 Section 592.310... ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply sawn, cleaved...

  16. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Rough diamond. 592.310 Section 592... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply sawn...

  17. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Rough diamond. 592.310 Section 592.310... ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply sawn, cleaved...

  18. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Rough diamond. 592.310 Section 592.310... ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply sawn, cleaved...

  19. Electrically conductive diamond electrodes

    DOEpatents

    Swain, Greg [East Lansing, MI; Fischer, Anne [Arlington, VA; Bennett, Jason [Lansing, MI; Lowe, Michael [Holt, MI

    2009-05-19

    An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

  20. CsFe3(SeO3)2F6 with S = 5/2 Cube Tile Lattice.

    PubMed

    Lu, Hongcheng; Kageyama, Hiroshi

    2018-05-21

    A layered iron selenite fluoride CsFe 3 (SeO 3 ) 2 F 6 1 was hydrothermally synthesized. Single-crystal X-ray diffraction studies show that 1 has a trigonal ( P3̅ m1) lattice, where [Fe 3 (SeO 3 ) 2 F 6 ] - blocks of three iron sublayers are separated by Cs cations. Within the block, only Fe(2)F 6 and Fe(1)O 3 F 3 octahedra are magnetically connected via superexchange Fe(1) -F -Fe(2) pathways, giving an S = 5/2 cube tile (dice) lattice. At low magnetic field, 1 exhibits an antiferromagnetic transition at ∼130 K, where ferrimagnetic cube tile layers are arranged in a staggered manner. At low temperatures, we observed a field-induced transition to a ferrimagnetic state with a one-third magnetization plateau.

  1. Diamonds in detonation soot

    NASA Technical Reports Server (NTRS)

    Greiner, N. Roy; Phillips, Dave; Johnson, J. D.; Volk, Fred

    1990-01-01

    Diamonds 4 to 7 nm in diameter have been identified and partially isolated from soot formed in detonations of carbon-forming composite explosives. The morphology of the soot has been examined by transmission electron microscopy (TEM), and the identity of the diamond has been established by the electron diffraction pattern of the TEM samples and by the X-ray diffraction (XRD) pattern of the isolated solid. Graphite is also present in the form of ribbons of turbostatic structure with a thickness of 2 to 4 nm. A fraction, about 25 percent of the soot by weight, was recovered from the crude soot after oxidation of the graphite with fuming perchloric acid. This fraction showed a distinct XRD pattern of diamond and the diffuse band of amorphous carbon. The IR spectrum of these diamonds closely matches that of diamonds recovered from meteorites (Lewis et al., 1987), perhaps indicating similar surface properties after the oxidation. If these diamonds are produced in the detonation itself or during the initial expansion, they exhibit a phenomenal crystal growth rate (5 nm/0.00001 s equal 1.8 m/hr) in a medium with a very low hydrogen/carbon ratio. Because the diamonds will be carried along with the expanding gases, they will be accelerated to velocities approaching 8 km/s.

  2. Solitary Magnons in the S =5/2 Antiferromagnet CaFe2O4

    NASA Astrophysics Data System (ADS)

    Stock, C.; Rodriguez, E. E.; Lee, N.; Green, M. A.; Demmel, F.; Ewings, R. A.; Fouquet, P.; Laver, M.; Niedermayer, Ch.; Su, Y.; Nemkovski, K.; Rodriguez-Rivera, J. A.; Cheong, S.-W.

    2016-07-01

    CaFe2O4 is a S =5/2 anisotropic antiferromagnet based upon zig-zag chains having two competing magnetic structures, denoted as the A (↑↑↓↓) and B (↑↓↑↓) phases, which differ by the c -axis stacking of ferromagnetic stripes. We apply neutron scattering to demonstrate that the competing A and B phase order parameters result in magnetic antiphase boundaries along c which freeze on the time scale of ˜1 ns at the onset of magnetic order at 200 K. Using high resolution neutron spectroscopy, we find quantized spin wave levels and measure 9 such excitations localized in regions ˜1 - 2 c -axis lattice constants in size. We discuss these in the context of solitary magnons predicted to exist in anisotropic systems. The magnetic anisotropy affords both competing A +B orders as well as localization of spin excitations in a classical magnet.

  3. Fluidized bed deposition of diamond

    DOEpatents

    Laia, Jr., Joseph R.; Carroll, David W.; Trkula, Mitchell; Anderson, Wallace E.; Valone, Steven M.

    1998-01-01

    A process for coating a substrate with diamond or diamond-like material including maintaining a substrate within a bed of particles capable of being fluidized, the particles having substantially uniform dimensions and the substrate characterized as having different dimensions than the bed particles, fluidizing the bed of particles, and depositing a coating of diamond or diamond-like material upon the substrate by chemical vapor deposition of a carbon-containing precursor gas mixture, the precursor gas mixture introduced into the fluidized bed under conditions resulting in excitation mechanisms sufficient to form the diamond coating.

  4. Developments in FTIR spectroscopy of diamonds and better constraints on diamond thermal histories

    NASA Astrophysics Data System (ADS)

    Kohn, Simon; Speich, Laura; Smith, Christopher; Bulanova, Galina

    2017-04-01

    Fourier Transform Infrared (FTIR) spectroscopy is a commonly-used technique for investigating diamonds. It gives the most useful information if spatially-resolved measurements are used [1]. In this contribution we discuss the best way to acquire and present FTIR data from diamonds, using examples from Murowa (Zimbabwe), Argyle (Australia) and Machado River (Brazil). Examples of FTIR core-to-rim line scans, maps with high spatial resolution and maps with high spectral resolution that are fitted to extract the spatial variation of different nitrogen and hydrogen defects are presented. Model mantle residence temperatures are calculated from the concentration of A and B nitrogen-containing defects in the diamonds using known times of annealing in the mantle. A new, two-stage thermal annealing model is presented that better constrains the thermal history of the diamond and that of the mantle lithosphere in which the diamond resided. The effect of heterogeneity within the analysed FTIR volume is quantitatively assessed and errors in model temperatures that can be introduced by studying whole diamonds instead of thin plates are discussed. The kinetics of platelet growth and degradation will be discussed and the potential for two separate, kinetically-controlled defect reactions to be used to constrain a full thermal history of the diamond will be assessed. [1] Kohn, S.C., Speich, L., Smith, C.B. and Bulanova, G.P., 2016. FTIR thermochronometry of natural diamonds: A closer look. Lithos, 265, pp.148-158.

  5. Critical Anisotropies of a Geometrically-Frustrated Triangular-Lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, Mason R; Haraldsen, Jason T; Fishman, Randy Scott

    2009-01-01

    This work examines the critical anisotropy required for the local stability of the collinear ground states of a geometrically-frustrated triangular-lattice antiferromagnet (TLA). Using a Holstein-Primakoff expansion, we calculate the spin-wave frequencies for the 1, 2, 3, 4, and 8-sublattice (SL) ground states of a TLA with up to third neighbor interactions. Local stability requires that all spin-wave frequencies are real and positive. The 2, 4, and 8-SL phases break up into several regions where the critical anisotropy is a different function of the exchange parameters. We find that the critical anisotropy is a continuous function everywhere except across the 2-SL/3-SLmore » and 3-SL/4-SL phase boundaries, where the 3-SL phase has the higher critical anisotropy.« less

  6. Optical and electronic properties of sub-surface conducting layers in diamond created by MeV B-implantation at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willems van Beveren, L. H., E-mail: laurensw@unimelb.edu.au; Bowers, H.; Ganesan, K.

    2016-06-14

    Boron implantation with in-situ dynamic annealing is used to produce highly conductive sub-surface layers in type IIa (100) diamond plates for the search of a superconducting phase transition. Here, we demonstrate that high-fluence MeV ion-implantation, at elevated temperatures avoids graphitization and can be used to achieve doping densities of 6 at. %. In order to quantify the diamond crystal damage associated with implantation Raman spectroscopy was performed, demonstrating high temperature annealing recovers the lattice. Additionally, low-temperature electronic transport measurements show evidence of charge carrier densities close to the metal-insulator-transition. After electronic characterization, secondary ion mass spectrometry was performed to mapmore » out the ion profile of the implanted plates. The analysis shows close agreement with the simulated ion-profile assuming scaling factors that take into account an average change in diamond density due to device fabrication. Finally, the data show that boron diffusion is negligible during the high temperature annealing process.« less

  7. Exact ground states for the nearest neighbor quantum XXZ model on the kagome and other lattices with triangular motifs at Jz /Jxy = - 1 / 2

    NASA Astrophysics Data System (ADS)

    Changlani, Hitesh; Kumar, Krishna; Kochkov, Dmitrii; Fradkin, Eduardo; Clark, Bryan

    We report the existence of a quantum macroscopically degenerate ground state manifold on the nearest neighbor XXZ model on the kagome lattice at the point Jz /Jxy = - 1 / 2 . On many lattices with triangular motifs (including the kagome, sawtooth, icosidodecahedron and Shastry-Sutherland lattice for a certain choice of couplings) this Hamiltonian is found to be frustration-free with exact ground states which correspond to three-colorings of these lattices. Several results also generalize to the case of variable couplings and to other motifs (albeit with possibly more complex Hamiltonians). The degenerate manifold on the kagome lattice corresponds to a ''many-body flat band'' of interacting hard-core bosons; and for the one boson case our results also explain the well-known non-interacting flat band. On adding realistic perturbations, state selection in this manifold of quantum many-body states is discussed along with the implications for the phase diagram of the kagome lattice antiferromagnet. supported by DE-FG02-12ER46875, DMR 1408713, DE-FG02-08ER46544.

  8. Measuring Two Key Parameters of H3 Color Centers in Diamond

    NASA Technical Reports Server (NTRS)

    Roberts, W. Thomas

    2005-01-01

    A method of measuring two key parameters of H3 color centers in diamond has been created as part of a continuing effort to develop tunable, continuous-wave, visible lasers that would utilize diamond as the lasing medium. (An H3 color center in a diamond crystal lattice comprises two nitrogen atoms substituted for two carbon atoms bonded to a third carbon atom. H3 color centers can be induced artificially; they also occur naturally. If present in sufficient density, they impart a yellow hue.) The method may also be applicable to the corresponding parameters of other candidate lasing media. One of the parameters is the number density of color centers, which is needed for designing an efficient laser. The other parameter is an optical-absorption cross section, which, as explained below, is needed for determining the number density. The present method represents an improvement over prior methods in which optical-absorption measurements have been used to determine absorption cross sections or number densities. Heretofore, in order to determine a number density from such measurements, it has been necessary to know the applicable absorption cross section; alternatively, to determine the absorption cross section from such measurements, it has been necessary to know the number density. If, as in this case, both the number density and the absorption cross section are initially unknown, then it is impossible to determine either parameter in the absence of additional information.

  9. Calculations of Exchange Bias in Thin Films with Ferromagnetic/Antiferromagnetic Interfaces

    NASA Astrophysics Data System (ADS)

    Koon, N. C.

    1997-06-01

    A microscopic explanation of exchange bias in thin films with compensated ferro/antiferromagnetic interfaces is presented. Full micromagnetic calculations show the interfacial exchange coupling to be relatively strong with a perpendicular orientation between the ferro/antiferromagnetic axis directions, similar to the classic ``spin-flop'' state in bulk antiferromagnets. With reasonable parameters the calculations predict bias fields comparable to those observed and provide a possible explanation for both anomalous high field rotational hysteresis and recently discovered ``positive'' exchange bias.

  10. All diamond self-aligned thin film transistor

    DOEpatents

    Gerbi, Jennifer [Champaign, IL

    2008-07-01

    A substantially all diamond transistor with an electrically insulating substrate, an electrically conductive diamond layer on the substrate, and a source and a drain contact on the electrically conductive diamond layer. An electrically insulating diamond layer is in contact with the electrically conductive diamond layer, and a gate contact is on the electrically insulating diamond layer. The diamond layers may be homoepitaxial, polycrystalline, nanocrystalline or ultrananocrystalline in various combinations.A method of making a substantially all diamond self-aligned gate transistor is disclosed in which seeding and patterning can be avoided or minimized, if desired.

  11. A sandwich-like differential B-dot based on EACVD polycrystalline diamond slice

    NASA Astrophysics Data System (ADS)

    Xu, P.; Yu, Y.; Xu, L.; Zhou, H. Y.; Qiu, C. J.

    2018-06-01

    In this article, we present a method of mass production of a standardized high-performance differential B-dot magnetic probe together with the magnetic field measurement in a pulsed current device with the current up to hundreds of kilo-Amperes. A polycrystalline diamond slice produced in an Electron Assisted Chemical Vapor Deposition device is used as the base and insulating material to imprint two symmetric differential loops for the magnetic field measurement. The SP3 carbon bond in the cubic lattice structure of diamond is confirmed by Raman spectra. The thickness of this slice is 20 μm. A gold loop is imprinted onto each surface of the slice by using the photolithography technique. The inner diameter, width, and thickness of each loop are 0.8 mm, 50 μm, and 1 μm, respectively. It provides a way of measuring the pulsed magnetic field with a high spatial and temporal resolution, especially in limited space. This differential magnetic probe has demonstrated a very good common-mode rejection rate through the pulsed magnetic field measurement.

  12. Cryptic iridescence in a fossil weevil generated by single diamond photonic crystals.

    PubMed

    McNamara, Maria E; Saranathan, Vinod; Locatelli, Emma R; Noh, Heeso; Briggs, Derek E G; Orr, Patrick J; Cao, Hui

    2014-11-06

    Nature's most spectacular colours originate in integumentary tissue architectures that scatter light via nanoscale modulations of the refractive index. The most intricate biophotonic nanostructures are three-dimensional crystals with opal, single diamond or single gyroid lattices. Despite intense interest in their optical and structural properties, the evolution of such nanostructures is poorly understood, due in part to a lack of data from the fossil record. Here, we report preservation of single diamond (Fd-3m) three-dimensional photonic crystals in scales of a 735,000 year old specimen of the brown Nearctic weevil Hypera diversipunctata from Gold Run, Canada, and in extant conspecifics. The preserved red to green structural colours exhibit near-field brilliancy yet are inconspicuous from afar; they most likely had cryptic functions in substrate matching. The discovery of pristine fossil examples indicates that the fossil record is likely to yield further data on the evolution of three-dimensional photonic nanostructures and their biological functions. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Local formation of nitrogen-vacancy centers in diamond by swift heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, J.; Ilmenau University of Technology, Department of Microelectronics and Nanoelectric Systems, 98684 Ilmenau; Aloni, S.

    2014-12-07

    We exposed nitrogen-implanted diamonds to beams of swift heavy ions (∼1 GeV, ∼4 MeV/u) and find that these irradiations lead directly to the formation of nitrogen vacancy (NV) centers, without thermal annealing. We compare the photoluminescence intensities of swift heavy ion activated NV{sup −} centers to those formed by irradiation with low-energy electrons and by thermal annealing. NV{sup −} yields from irradiations with swift heavy ions are 0.1 of yields from low energy electrons and 0.02 of yields from thermal annealing. We discuss possible mechanisms of NV center formation by swift heavy ions such as electronic excitations and thermal spikes. While formingmore » NV centers with low efficiency, swift heavy ions could enable the formation of three dimensional NV{sup −} assemblies over relatively large distances of tens of micrometers. Further, our results show that NV center formation is a local probe of (partial) lattice damage relaxation induced by electronic excitations from swift heavy ions in diamond.« less

  14. Local formation of nitrogen-vacancy centers in diamond by swift heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, J.; Aloni, S.; Ogletree, D. F.

    2014-12-03

    In this paper, we exposed nitrogen-implanted diamonds to beams of swift heavy ions (~1 GeV, ~4 MeV/u) and find that these irradiations lead directly to the formation of nitrogen vacancy (NV) centers, without thermal annealing. We compare the photoluminescence intensities of swift heavy ion activated NV - centers to those formed by irradiation with low-energy electrons and by thermal annealing. NV - yields from irradiations with swift heavy ions are 0.1 of yields from low energy electrons and 0.02 of yields from thermal annealing. We discuss possible mechanisms of NV center formation by swift heavy ions such as electronic excitationsmore » and thermal spikes. While forming NV centers with low efficiency, swift heavy ions could enable the formation of three dimensional NV - assemblies over relatively large distances of tens of micrometers. Finally and further, our results show that NV center formation is a local probe of (partial) lattice damage relaxation induced by electronic excitations from swift heavy ions in diamond.« less

  15. Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds

    NASA Astrophysics Data System (ADS)

    Panich, A. M.; Sergeev, N. A.; Shames, A. I.; Osipov, V. Yu; Boudou, J.-P.; Goren, S. D.

    2015-02-01

    Size dependence of physical properties of nanodiamond particles is of crucial importance for various applications in which defect density and location as well as relaxation processes play a significant role. In this work, the impact of defects induced by milling of micron-sized synthetic diamonds was studied by magnetic resonance techniques as a function of the particle size. EPR and 13C NMR studies of highly purified commercial synthetic micro- and nanodiamonds were done for various fractions separated by sizes. Noticeable acceleration of 13C nuclear spin-lattice relaxation with decreasing particle size was found. We showed that this effect is caused by the contribution to relaxation coming from the surface paramagnetic centers induced by sample milling. The developed theory of the spin-lattice relaxation for such a case shows good compliance with the experiment.

  16. Tunable Quantum Spin Liquidity in the 1 /6 th-Filled Breathing Kagome Lattice

    NASA Astrophysics Data System (ADS)

    Akbari-Sharbaf, A.; Sinclair, R.; Verrier, A.; Ziat, D.; Zhou, H. D.; Sun, X. F.; Quilliam, J. A.

    2018-06-01

    We present measurements on a series of materials, Li2 In1 -xScx Mo3 O8 , that can be described as a 1 /6 th-filled breathing kagome lattice. Substituting Sc for In generates chemical pressure which alters the breathing parameter nonmonotonically. Muon spin rotation experiments show that this chemical pressure tunes the system from antiferromagnetic long range order to a quantum spin liquid phase. A strong correlation with the breathing parameter implies that it is the dominant parameter controlling the level of magnetic frustration, with increased kagome symmetry generating the quantum spin liquid phase. Magnetic susceptibility measurements suggest that this is related to distinct types of charge order induced by changes in lattice symmetry, in line with the theory of Chen et al. [Phys. Rev. B 93, 245134 (2016), 10.1103/PhysRevB.93.245134]. The specific heat for samples at intermediate Sc concentration, which have the minimum breathing parameter, show consistency with the predicted U (1 ) quantum spin liquid.

  17. Effect of added dispersants on diamond particles in Ni-diamond composites fabricated with electrodeposition

    NASA Astrophysics Data System (ADS)

    Choi, Yongje; Kim, Donghyun; Son, Kyungsik; Lee, Sanghyuk; Chung, Wonsub

    2015-11-01

    The electrodeposition of Ni-diamond composites was investigated to improve the dispersion and adhesion of the diamond particles, and thus, increase the performance of cutting tools. The additives, so called firstclass brighteners, benzoic sulfimide, benzene sulfonamide, and benzene sulfonic acid were used as dispersants to enhance the dispersivity of diamond particles. The dispersivity was analyzed with Image-Pro software, which was used to asses optical microscopy images, and the number of individual diamond particles and area fraction were calculated. In addition, electrochemical tests were performed, including zeta potential and galvanostatic measurements, and the adhesion strengths was tested by evaluating the wear resistance using ball-on-disk tester. The dispersion and adhesion of the diamond particles were improved when benzoic sulfimide was added to the composite plating bath at a concentration of 0.06 g/L. The number of individual diamond particles was 56 EA/mm2, and the weight loss of alumina ball and specimen was 2.88 mg and 0.80 mg, respectively.

  18. Antiferromagnetic phase of the gapless semiconductor V3Al

    NASA Astrophysics Data System (ADS)

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D.; Lewis, L. H.; Saúl, A. A.; Radtke, G.; Heiman, D.

    2015-03-01

    Discovering new antiferromagnetic (AF) compounds is at the forefront of developing future spintronic devices without fringing magnetic fields. The AF gapless semiconducting D 03 phase of V3Al was successfully synthesized via arc-melting and annealing. The AF properties were established through synchrotron measurements of the atom-specific magnetic moments, where the magnetic dichroism reveals large and oppositely oriented moments on individual V atoms. Density functional theory calculations confirmed the stability of a type G antiferromagnetism involving only two-thirds of the V atoms, while the remaining V atoms are nonmagnetic. Magnetization, x-ray diffraction, and transport measurements also support the antiferromagnetism. This archetypal gapless semiconductor may be considered as a cornerstone for future spintronic devices containing AF elements.

  19. Superconductivity in the vicinity of antiferromagnetic order in CrAs.

    PubMed

    Wu, Wei; Cheng, Jinguang; Matsubayashi, Kazuyuki; Kong, Panpan; Lin, Fukun; Jin, Changqing; Wang, Nanlin; Uwatoko, Yoshiya; Luo, Jianlin

    2014-11-19

    One of the common features of unconventional superconducting systems such as the heavy-fermion, high transition-temperature cuprate and iron-pnictide superconductors is that the superconductivity emerges in the vicinity of long-range antiferromagnetically ordered state. In addition to doping charge carriers, the application of external pressure is an effective and clean approach to induce unconventional superconductivity near a magnetic quantum critical point. Here we report on the discovery of superconductivity on the verge of antiferromagnetic order in CrAs via the application of external pressure. Bulk superconductivity with Tc≈2 K emerges at the critical pressure Pc≈8 kbar, where the first-order antiferromagnetic transition at T(N)≈265 K under ambient pressure is completely suppressed. The close proximity of superconductivity to an antiferromagnetic order suggests an unconventional pairing mechanism for CrAs. The present finding opens a new avenue for searching novel superconductors in the Cr and other transition metal-based systems.

  20. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl 3 crystals

    DOE PAGES

    McGuire, Michael A.; Clark, Genevieve; KC, Santosh; ...

    2017-06-19

    CrCl 3 is a layered insulator that undergoes a crystallographic phase transition below room temperature and orders antiferromagnetically at low temperature. Weak van der Waals bonding between the layers and ferromagnetic in-plane magnetic order make it a promising material for obtaining atomically thin magnets and creating van der Waals heterostructures. In this work we have grown crystals of CrCl 3, revisited the structural and thermodynamic properties of the bulk material, and explored mechanical exfoliation of the crystals. We find two distinct anomalies in the heat capacity at 14 and 17 K confirming that the magnetic order develops in two stagesmore » on cooling, with ferromagnetic correlations forming before long-range antiferromagnetic order develops between them. This scenario is supported by magnetization data. A magnetic phase diagram is constructed from the heat capacity and magnetization results. We also find an anomaly in the magnetic susceptibility at the crystallographic phase transition, indicating some coupling between the magnetism and the lattice. First-principles calculations accounting for van der Waals interactions also indicate spin-lattice coupling, and find multiple nearly degenerate crystallographic and magnetic structures consistent with the experimental observations. Lastly, we demonstrate that monolayer and few-layer CrCl 3 specimens can be produced from the bulk crystals by exfoliation, providing a path for the study of heterostructures and magnetism in ultrathin crystals down to the monolayer limit.« less

  1. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl 3 crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, Michael A.; Clark, Genevieve; KC, Santosh

    CrCl 3 is a layered insulator that undergoes a crystallographic phase transition below room temperature and orders antiferromagnetically at low temperature. Weak van der Waals bonding between the layers and ferromagnetic in-plane magnetic order make it a promising material for obtaining atomically thin magnets and creating van der Waals heterostructures. In this work we have grown crystals of CrCl 3, revisited the structural and thermodynamic properties of the bulk material, and explored mechanical exfoliation of the crystals. We find two distinct anomalies in the heat capacity at 14 and 17 K confirming that the magnetic order develops in two stagesmore » on cooling, with ferromagnetic correlations forming before long-range antiferromagnetic order develops between them. This scenario is supported by magnetization data. A magnetic phase diagram is constructed from the heat capacity and magnetization results. We also find an anomaly in the magnetic susceptibility at the crystallographic phase transition, indicating some coupling between the magnetism and the lattice. First-principles calculations accounting for van der Waals interactions also indicate spin-lattice coupling, and find multiple nearly degenerate crystallographic and magnetic structures consistent with the experimental observations. Lastly, we demonstrate that monolayer and few-layer CrCl 3 specimens can be produced from the bulk crystals by exfoliation, providing a path for the study of heterostructures and magnetism in ultrathin crystals down to the monolayer limit.« less

  2. CeRuPO: A rare example of a ferromagnetic Kondo lattice

    NASA Astrophysics Data System (ADS)

    Krellner, C.; Kini, N. S.; Brüning, E. M.; Koch, K.; Rosner, H.; Nicklas, M.; Baenitz, M.; Geibel, C.

    2007-09-01

    We have determined the physical ground state properties of the compounds CeRuPO and CeOsPO by means of magnetic susceptibility χ(T) , specific heat C(T) , electrical resistivity ρ(T) , and thermopower S(T) measurements. χ(T) reveals a trivalent 4f1 cerium state in both compounds. For CeRuPO a pronounced decrease of ρ(T) below 50K indicates the onset of coherent Kondo scattering, which is confirmed by enhanced S(T) . The temperature and magnetic field dependence of χ(T) and C(T) evidence ferromagnetic (FM) order at TC=15K . Thus, CeRuPO seems to be one of the rare examples of a FM Kondo lattice. In contrast, CeOsPO shows antiferromagnetic order at TN=4.5K despite only minor changes in lattice parameters and electronic configuration. Additional P31 NMR results support these scenarios. LSDA+U calculations evidence a quasi-two-dimensional electronic band structure, reflecting a strong covalent bonding within the CeO and RuP layers and a weak ioniclike bonding between the layers.

  3. Note: Novel diamond anvil cell for electrical measurements using boron-doped metallic diamond electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, R.; Sasama, Y.; Yamaguchi, T.

    2016-07-15

    A novel diamond anvil cell suitable for electrical transport measurements under high pressure has been developed. A boron-doped metallic diamond film was deposited as an electrode on a nano-polycrystalline diamond anvil using a microwave plasma-assisted chemical vapor deposition technique combined with electron beam lithography. The maximum pressure that can be achieved by this assembly is above 30 GPa. We report electrical transport measurements of Pb up to 8 GPa. The boron-doped metallic diamond electrodes showed no signs of degradation after repeated compression.

  4. Magnetoelastic couplings in the distorted diamond-chain compound azurite

    NASA Astrophysics Data System (ADS)

    Cong, Pham Thanh; Wolf, Bernd; Manna, Rudra Sekhar; Tutsch, Ulrich; de Souza, Mariano; Brühl, Andreas; Lang, Michael

    2014-05-01

    We present results of ultrasonic measurements on a single crystal of the distorted diamond-chain compound azurite Cu3(CO3)2(OH)2. Pronounced elastic anomalies are observed in the temperature dependence of the longitudinal elastic mode c22 which can be assigned to the relevant magnetic interactions in the system and their couplings to the lattice degrees of freedom. From a semiquantitative analysis of the magnetic contribution to c22 the magnetoelastic coupling G =∂J2/∂ɛb can be estimated, where J2 is the intradimer coupling constant and ɛb the strain along the intrachain b axis. We find an exceptionally large coupling constant of |G |˜ 3650 K highlighting an extraordinarily strong sensitivity of J2 against changes of the b-axis lattice parameter. These results are complemented by measurements of the hydrostatic pressure dependence of J2 by means of thermal expansion and magnetic susceptibility measurements performed both at ambient and finite hydrostatic pressure. We propose that a structural peculiarity of this compound, in which Cu2O6 dimer units are incorporated in an unusually stretched manner, is responsible for the anomalously large magnetoelastic coupling.

  5. Nanocrystalline diamond micro-anvil grown on single crystal diamond as a generator of ultra-high pressures

    DOE PAGES

    Samudrala, Gopi K.; Moore, Samuel L.; Velisavljevic, Nenad; ...

    2016-09-29

    By combining mask-less lithography and chemical vapor deposition (CVD) techniques, a novel two-stage diamond anvil has been fabricated. A nanocrystalline diamond (NCD) micro-anvil 30 μm in diameter was grown at the center of a [100]-oriented, diamond anvil by utilizing microwave plasma CVD method. The NCD micro-anvil has a diamond grain size of 115 nm and micro-focused Raman and X-ray Photoelectron spectroscopy analysis indicate sp3-bonded diamond content of 72%. Lastly, these CVD grown NCD micro-anvils were tested in an opposed anvil configuration and the transition metals osmium and tungsten were compressed to high pressures of 264 GPa in a diamond anvilmore » cell.« less

  6. Antiferromagnetism in Bulk Rutile RuO2

    NASA Astrophysics Data System (ADS)

    Berlijn, T.; Snijders, P. C.; Kent, P. R. C.; Maier, T. A.; Zhou, H.-D.; Cao, H.-B.; Delaire, O.; Wang, Y.; Koehler, M.; Weitering, H. H.

    While bulk rutile RuO2 has long been considered to be a Pauli paramagnet, we conclude it to host antiferromagnetism based on our combined theoretical and experimental study. This constitutes an important finding given the large amount of applications of RuO2 in the electrochemical and electronics industry. Furthermore the high onset temperature of the antiferromagnetism around 1000K together with the high electrical conductivity makes RuO2 unique among the ruthenates and among oxide materials in general. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  7. Antiferromagnetic exchange and magnetoresistance enhancement in ultrathin Co-Re sandwiches

    NASA Astrophysics Data System (ADS)

    Freitas, P. P.; Melo, L. V.; Trindade, I.; From, M.

    1992-10-01

    Co-Re ultrathin sandwiches were prepared that show antiferromagnetic coupling and enhanced saturation magnetoresistance for Re spacer thicknesses below 9 Å. A field of 2.5 kOe is needed to saturate the antiferromagnetically coupled Co layers. These results are similar to those found in Co-Re superlattices.

  8. Toward Quantum Non-demolition of nitrogen-vacancy centers in diamond

    NASA Astrophysics Data System (ADS)

    Hodges, Jonathan; Jiang, Liang; Maze, Jeronimo; Lukin, Mikhail

    2009-05-01

    The nitrogen-vacancy color center (NVC) in diamond, which possesses a long-lived electronic spin (S=1) ground state with optical addressability, is a promising platform for quantum networks, single-photon sources, and nanoscale magnetometers. Here, we make use of a nuclear spin based quantum memory to demonstrate quantum non-demolition measurement of a solid-state spin qubit. By entangling the electron spin with a polarized carbon-13 spin (I=1/2) in the lattice, we have repeated optical measurement of the electron spin for the polarization lifetime of the nuclear spin. We show relative improvements in signal-to-noise of greater than 300%. These techniques can be used to improve the sensitivity of NVC magnetometers.

  9. Nucleation of the diamond phase in aluminium-solid solutions

    NASA Technical Reports Server (NTRS)

    Hornbogen, E.; Mukhopadhyay, A. K.; Starke, E. A., Jr.

    1993-01-01

    Precipitation was studied from fcc solid solutions with silicon, germanium, copper and magnesium. Of all these elements only silicon and germanium form diamond cubic (DC) precipitates in fcc Al. Nucleation of the DC structure is enhanced if both types of atom are dissolved in the fcc lattice. This is interpreted as due to atomic size effects in the prenucleation stage. There are two modes of interference of fourth elements with nucleation of the DC phase in Al + Si, Ge. The formation of the DC phase is hardly affected if the atoms (for example, copper) are rejected from the (Si, Ge)-rich clusters. If additional types of atom are attracted by silicon and/or germanium, DC nuclei are replaced by intermetallic compounds (for example Mg2Si).

  10. Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes

    NASA Astrophysics Data System (ADS)

    Saidaoui, Hamed Ben Mohamed; Manchon, Aurelien; Waintal, Xavier

    2014-05-01

    Current-driven spin torques in metallic spin valves composed of antiferromagnets are theoretically studied using the nonequilibrium Green's function method implemented on a tight-binding model. We focus our attention on G-type and L-type antiferromagnets in both clean and disordered regimes. In such structures, spin torques can either rotate the magnetic order parameter coherently (coherent torque) or compete with the internal antiferromagnetic exchange (exchange torque). We show that, depending on the symmetry of the spin valve, the coherent and exchange torques can either be in the plane, ∝n×(q×n) or out of the plane ∝n×q, where q and n are the directions of the order parameter of the polarizer and the free antiferromagnetic layers, respectively. Although disorder conserves the symmetry of the torques, it strongly reduces the torque magnitude, pointing out the need for momentum conservation to ensure strong spin torque in antiferromagnetic spin valves.

  11. Making Diamond in the Laboratory

    ERIC Educational Resources Information Center

    Strong, Herbert

    1975-01-01

    Discusses the graphite to diamond transformation and a phase diagram for carbon. Describes high temperature-higher pressure experimental apparatus and growth of diamonds from seed crystals. Reviews properties of the diamond which suggest uses for the synthetic product. Illustrations with text. (GH)

  12. Extended Bose Hubbard model of interacting bosonic atoms in optical lattices: From superfluidity to density waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzarella, G.; Giampaolo, S. M.; Illuminati, F.

    2006-01-15

    For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the lattice attenuation factor. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on-site occupation numbers. In the mean field approximation, we determine the free energy of the system and study the phase diagram both at zeromore » and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero-temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is, in principle, possible, but completely suppressed at the lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters.« less

  13. The magnetic properties and structure of the quasi-two-dimensional antiferromagnet CoPS3

    NASA Astrophysics Data System (ADS)

    Wildes, A. R.; Simonet, V.; Ressouche, E.; Ballou, R.; McIntyre, G. J.

    2017-11-01

    The magnetic properties and magnetic structure are presented for CoPS3, a quasi-two-dimensional antiferromagnet on a honeycomb lattice with a Néel temperature of TN ∼120 K. The compound is shown to have XY-like anisotropy in its susceptibility, and the anisotropy is analysed to extract crystal field parameters. For temperatures between 2 K and 300 K, no phase transitions were observed in the field-dependent magnetization up to 10 Tesla. Single-crystal neutron diffraction shows that the magnetic propagation vector is k  =  (0 1 0) with the moments mostly along the {a} axis and with a small component along the {c} axis, which largely verifies the previously-published magnetic structure for this compound. The magnetic Bragg peak intensity decreases with increasing temperature as a power law with exponent 2β = 0.60 +/- 0.01 for T > 0.9~TN .

  14. Solitary Magnons in the S=5/2 Antiferromagnet CaFe_{2}O_{4}.

    PubMed

    Stock, C; Rodriguez, E E; Lee, N; Green, M A; Demmel, F; Ewings, R A; Fouquet, P; Laver, M; Niedermayer, Ch; Su, Y; Nemkovski, K; Rodriguez-Rivera, J A; Cheong, S-W

    2016-07-01

    CaFe_{2}O_{4} is a S=5/2 anisotropic antiferromagnet based upon zig-zag chains having two competing magnetic structures, denoted as the A (↑↑↓↓) and B (↑↓↑↓) phases, which differ by the c-axis stacking of ferromagnetic stripes. We apply neutron scattering to demonstrate that the competing A and B phase order parameters result in magnetic antiphase boundaries along c which freeze on the time scale of ∼1  ns at the onset of magnetic order at 200 K. Using high resolution neutron spectroscopy, we find quantized spin wave levels and measure 9 such excitations localized in regions ∼1-2 c-axis lattice constants in size. We discuss these in the context of solitary magnons predicted to exist in anisotropic systems. The magnetic anisotropy affords both competing A+B orders as well as localization of spin excitations in a classical magnet.

  15. In situ observation of quasimelting of diamond and reversible graphite-diamond phase transformations.

    PubMed

    Huang, J Y

    2007-08-01

    Because of technique difficulties in achieving the extreme high-pressure and high-temperature (HPHT) simultaneously, direct observation of the structures of carbon at extreme HPHT conditions has not been possible. Banhart and Ajayan discovered remarkably that carbon onions can act as nanoscopic pressure cells to generate high pressures. By heating carbon onions to approximately 700 degrees C and under electron beam irradiation, the graphite-to-diamond transformation was observed in situ by transmission electron microscopy (TEM). However, the highest achievable temperature in a TEM heating holder is less than 1000 degrees C. Here we report that, by using carbon nanotubes as heaters and carbon onions as high-pressure cells, temperatures higher than 2000 degrees C and pressures higher than 40 GPa were achieved simultaneously in carbon onions. At such HPHT conditions and facilitated by electron beam irradiation, the diamond formed in the carbon onion cores frequently changed its shape, size, orientation, and internal structure and moved like a fluid, implying that it was in a quasimelting state. The fluctuation between the solid phase of diamond and the fluid/amorphous phase of diamond-like carbon, and the changes of the shape, size, and orientation of the solid diamond, were attributed to the dynamic crystallization of diamond crystal from the quasimolten state and the dynamic graphite-diamond phase transformations. Our discovery offers unprecedented opportunities to studying the nanostructures of carbon at extreme conditions in situ and at an atomic scale.

  16. Fabrication of diamond shells

    DOEpatents

    Hamza, Alex V.; Biener, Juergen; Wild, Christoph; Woerner, Eckhard

    2016-11-01

    A novel method for fabricating diamond shells is introduced. The fabrication of such shells is a multi-step process, which involves diamond chemical vapor deposition on predetermined mandrels followed by polishing, microfabrication of holes, and removal of the mandrel by an etch process. The resultant shells of the present invention can be configured with a surface roughness at the nanometer level (e.g., on the order of down to about 10 nm RMS) on a mm length scale, and exhibit excellent hardness/strength, and good transparency in the both the infra-red and visible. Specifically, a novel process is disclosed herein, which allows coating of spherical substrates with optical-quality diamond films or nanocrystalline diamond films.

  17. Superconductivity in CVD diamond films.

    PubMed

    Takano, Yoshihiko

    2009-06-24

    A beautiful jewel of diamond is insulator. However, boron doping can induce semiconductive, metallic and superconducting properties in diamond. When the boron concentration is tuned over 3 × 10(20) cm(-3), diamonds enter the metallic region and show superconductivity at low temperatures. The metal-insulator transition and superconductivity are analyzed using ARPES, XAS, NMR, IXS, transport and magnetic measurements and so on. This review elucidates the physical properties and mechanism of diamond superconductor as a special superconductivity that occurs in semiconductors.

  18. Diamond Pixel Detectors

    NASA Astrophysics Data System (ADS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Gobbi, B.; Grim, G. P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L. S.; Pernicka, M.; Perera, L.; Pirollo, S.; Plano, R.; Procario, M.; Riester, J. L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M.

    2001-06-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles.

  19. Antiferromagnetic Kondo lattice in the layered compound CePd 1 - x Bi 2 and comparison to the superconductor LaPd 1 - x Bi 2

    DOE PAGES

    Han, Fei; Wan, Xiangang; Phelan, Daniel; ...

    2015-07-13

    ZrCuSi 2-type CePd 1-xBi 2 crystals were obtained from excess Bi flux. Magnetic susceptibility measurements reveal that CePd 1-xBi 2 is a highly anisotropic antiferromagnet with transition temperature at 6 K, and a magnetic-field-induced metamagnetic transition at 5 T. An enhanced Sommerfeld coefficient of γ of 0.199 J-mol-Ce -1K -2 obtained from specific heat measurements suggests a moderate Kondo effect in CePd 1-xBi 2. In addition to the antiferromagnetic peak the resistivity curve shows a shoulder-like behavior which could be attributed to the presence of Kondo effect and crystal-electric-field effects in this compound. Magnetoresistance and Hall effect measurements suggest anmore » interplay between Kondo and crystal-electric-field effects which reconstructs the Fermi surface topology of CePd 1-xBi 2 around 75 K. Electronic structure calculations reveal the Pd vacancies are important to the magnetic structure and enhance the crystal-electric-field effects which quench the orbital moment of Ce at low temperatures.« less

  20. Metal films on the surfaces and within diamond crystals from Arkhangelskaya and Yakutian diamond provinces

    NASA Astrophysics Data System (ADS)

    Makeev, A. B.; Kriulina, G. Yu.

    2012-12-01

    Representative samples of diamonds from five kimberlite pipes (Lomonosovskaya, Archangel'sk, Snegurochka, XXIII Congress of the Communist Party of the Soviet Union (CPSU), and Internationalnaya) of the Arkhangelskaya and Yakutian diamond provinces in Russia have been studied. Thirty-three varieties of metal films have been identified as syngenetic associated minerals. The films consist of 15 chemical elements that occur in the form of native metals and their natural alloys. Remnants of metal films were detected within diamond crystals. The metal films coating diamonds are a worldwide phenomenon. To date, these films have been described from Europe, Asia, South America, and Africa. Native metals, their alloys, and intermetallides are actual companion minerals of diamond.

  1. Monte Carlo simulations of ABC stacked kagome lattice films

    NASA Astrophysics Data System (ADS)

    Yerzhakov, H. V.; Plumer, M. L.; Whitehead, J. P.

    2016-05-01

    Properties of films of geometrically frustrated ABC stacked antiferromagnetic kagome layers are examined using Metropolis Monte Carlo simulations. The impact of having an easy-axis anisotropy on the surface layers and cubic anisotropy in the interior layers is explored. The spin structure at the surface is shown to be different from that of the bulk 3D fcc system, where surface axial anisotropy tends to align spins along the surface [1 1 1] normal axis. This alignment then propagates only weakly to the interior layers through exchange coupling. Results are shown for the specific heat, magnetization and sub-lattice order parameters for both surface and interior spins in three and six layer films as a function of increasing axial surface anisotropy. Relevance to the exchange bias phenomenon in IrMn3 films is discussed.

  2. Quantum Computing in Diamond

    DTIC Science & Technology

    2007-05-28

    104 N2 103 N2 (a) (b) (c) Fig. 1: Confocal microscope images of NV centers created in bulk diamond through ion implantation of (a) gallium ions...nitrogen defects in diamond by chemical vapour deposition, J. R. Rabeau, S. Prawer, Y.L. Chin, F. Jelezko, T. Gaebel, and J. Wrachtrup, Applied...Physics Letters, 86, 31926, (2005) 2. Diamond Chemical Vapour Deposition on Opitcal Fibres for Fluorescence Waveguiding, J.R. Rabeau, S.T

  3. Tracing the depositional history of Kalimantan diamonds by zircon provenance and diamond morphology studies

    NASA Astrophysics Data System (ADS)

    Kueter, Nico; Soesilo, Joko; Fedortchouk, Yana; Nestola, Fabrizio; Belluco, Lorenzo; Troch, Juliana; Wälle, Markus; Guillong, Marcel; Von Quadt, Albrecht; Driesner, Thomas

    2016-11-01

    Diamonds in alluvial deposits in Southeast Asia are not accompanied by indicator minerals suggesting primary kimberlite or lamproite sources. The Meratus Mountains in Southeast Borneo (Province Kalimantan Selatan, Indonesia) provide the largest known deposit of these so-called "headless" diamond deposits. Proposals for the origin of Kalimantan diamonds include the adjacent Meratus ophiolite complex, ultra-high pressure (UHP) metamorphic terranes, obducted subcontinental lithospheric mantle and undiscovered kimberlite-type sources. Here we report results from detailed sediment provenance analysis of diamond-bearing Quaternary river channel material and from representative outcrops of the oldest known formations within the Alino Group, including the diamond-bearing Campanian-Maastrichtian Manunggul Formation. Optical examination of surfaces of diamonds collected from artisanal miners in the Meratus area (247 stones) and in West Borneo (Sanggau Area, Province Kalimantan Barat; 85 stones) points toward a classical kimberlite-type source for the majority of these diamonds. Some of the diamonds host mineral inclusions suitable for deep single-crystal X-ray diffraction investigation. We determined the depth of formation of two olivines, one coesite and one peridotitic garnet inclusion. Pressure of formation estimates for the peridotitic garnet at independently derived temperatures of 930-1250 °C are between 4.8 and 6.0 GPa. Sediment provenance analysis includes petrography coupled to analyses of detrital garnet and glaucophane. The compositions of these key minerals do not indicate kimberlite-derived material. By analyzing almost 1400 zircons for trace element concentrations with laser ablation ICP-MS (LA-ICP-MS) we tested the mineral's potential as an alternative kimberlite indicator. The screening ultimately resulted in a small subset of ten zircons with a kimberlitic affinity. Subsequent U-Pb dating resulting in Cretaceous ages plus a detailed chemical reflection make

  4. Electron energy loss spectrometry of interstellar diamonds

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.; Gibbons, Patrick C.; Lewis, Roy S.

    1990-01-01

    The results are reported of electron energy loss spectra (EELS) measurements on diamond residues from carbonaceous meteorites designed to elucidate the structure and composition of interstellar diamonds. Dynamic effective medium theory is used to model the dielectric properties of the diamonds and in particular to synthesize the observed spectra as mixtures of diamond and various pi-bonded carbons. The results are shown to be quantitatively consistent with the idea that diamonds and their surfaces are the only contributors to the electron energy loss spectra of the diamond residues and that these peculiar spectra are the result of the exceptionally small grain size and large specific surface area of the interstellar diamonds.

  5. Ground-state ordering of the J1-J2 model on the simple cubic and body-centered cubic lattices

    NASA Astrophysics Data System (ADS)

    Farnell, D. J. J.; Götze, O.; Richter, J.

    2016-06-01

    The J1-J2 Heisenberg model is a "canonical" model in the field of quantum magnetism in order to study the interplay between frustration and quantum fluctuations as well as quantum phase transitions driven by frustration. Here we apply the coupled cluster method (CCM) to study the spin-half J1-J2 model with antiferromagnetic nearest-neighbor bonds J1>0 and next-nearest-neighbor bonds J2>0 for the simple cubic (sc) and body-centered cubic (bcc) lattices. In particular, we wish to study the ground-state ordering of these systems as a function of the frustration parameter p =z2J2/z1J1 , where z1 (z2) is the number of nearest (next-nearest) neighbors. We wish to determine the positions of the phase transitions using the CCM and we aim to resolve the nature of the phase transition points. We consider the ground-state energy, order parameters, spin-spin correlation functions, as well as the spin stiffness in order to determine the ground-state phase diagrams of these models. We find a direct first-order phase transition at a value of p =0.528 from a state of nearest-neighbor Néel order to next-nearest-neighbor Néel order for the bcc lattice. For the sc lattice the situation is more subtle. CCM results for the energy, the order parameter, the spin-spin correlation functions, and the spin stiffness indicate that there is no direct first-order transition between ground-state phases with magnetic long-range order, rather it is more likely that two phases with antiferromagnetic long range are separated by a narrow region of a spin-liquid-like quantum phase around p =0.55 . Thus the strong frustration present in the J1-J2 Heisenberg model on the sc lattice may open a window for an unconventional quantum ground state in this three-dimensional spin model.

  6. Ultrananocrystalline diamond contacts for electronic devices

    DOEpatents

    Sumant, Anirudha V.; Smedley, John; Muller, Erik

    2016-11-01

    A method of forming electrical contacts on a diamond substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The mixture of gases include a source of a p-type or an n-type dopant. The plasma ball is disposed at a first distance from the diamond substrate. The diamond substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the diamond substrate for a first time, and a UNCD film, which is doped with at least one of a p-type dopant and an n-type dopant, is disposed on the diamond substrate. The doped UNCD film is patterned to define UNCD electrical contacts on the diamond substrate.

  7. Ultrananocrystalline diamond contacts for electronic devices

    DOEpatents

    Sumant, Anirudha V.; Smedley, John; Muller, Erik

    2017-12-12

    A method of forming electrical contacts on a diamond substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The mixture of gases include a source of a p-type or an n-type dopant. The plasma ball is disposed at a first distance from the diamond substrate. The diamond substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the diamond substrate for a first time, and a UNCD film, which is doped with at least one of a p-type dopant and an n-type dopant, is disposed on the diamond substrate. The doped UNCD film is patterned to define UNCD electrical contacts on the diamond substrate.

  8. Microplasma device architectures with various diamond nanostructures

    NASA Astrophysics Data System (ADS)

    Kunuku, Srinivasu; Jothiramalingam Sankaran, Kamatchi; Leou, Keh-Chyang; Lin, I.-Nan

    2017-02-01

    Diamond nanostructures (DNSs) were fabricated from three different morphological diamonds, microcrystalline diamond (MCD), nanocrystalline diamond (NCD), and ultrananocrystalline diamond (UNCD) films, using a reactive ion etching method. The plasma illumination (PI) behavior of microplasma devices using the DNSs and the diamond films as cathode were investigated. The Paschen curve approach revealed that the secondary electron emission coefficient (γ value) of diamond materials is similar irrespective of the microstructure (MCD, NCD, and UNCD) and geometry of the materials (DNSs and diamond films). The diamond materials show markedly larger γ-coefficient than conventional metallic cathode materials such as Mo that resulted in markedly better PI behavior for the corresponding microplasma devices. Moreover, the PI behavior, i.e. the voltage dependence of plasma current density (J pl-V), plasma density (n e-V), and the robustness of the devices, varied markedly with the microstructure and geometry of the cathode materials that was closely correlated to the electron field emission (EFE) properties of the cathode materials. The UNCD nanopillars, possessing good EFE properties, resulted in superior PI behavior, whereas the MCD diamond films with insufficient EFE properties led to inferior PI behavior. Consequently, enhancement of plasma characteristics is the collective effects of EFE behavior and secondary electron emission characteristics of diamond-based cathode materials.

  9. Dirac fermions in an antiferromagnetic semimetal

    NASA Astrophysics Data System (ADS)

    Tang, Peizhe; Zhou, Quan; Xu, Gang; Zhang, Shou-Cheng

    2016-12-01

    Analogues of the elementary particles have been extensively searched for in condensed-matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low-energy excitations in materials now known as Dirac semimetals. All of the currently known Dirac semimetals are non-magnetic with both time-reversal symmetry and inversion symmetry . Here we show that Dirac fermions can exist in one type of antiferromagnetic system, where both and are broken but their combination is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyse the robustness of the Dirac points under symmetry protections and demonstrate its distinctive bulk dispersions, as well as the corresponding surface states, by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism.

  10. Origins of diamond-forming fluids: An isotopic and trace element study of diamonds and silicates from diamondiferous xenoliths

    NASA Astrophysics Data System (ADS)

    Laiginhas, Fernando; Pearson, D. Graham; McNeill, John; Gurney, John; Nowell, Geoff; Ottley, Chris

    2010-05-01

    While there is increasing understanding of the age of formation and nature of "gem" diamonds, significant debate revolves around the nature of the fluids/melts from which they form. Stable C and N isotopes have been shown to be highly variable and yet the role of subduction-related fluids remains strongly debated. Recent studies on fibrous diamonds have yielded new trace and major element data (e.g., Weiss et al., 2009) that, together with new radiogenic isotope data (Klein BenDavid et al., 2010) indicate such diamonds grow from fluids that comprise mixtures of hydrous silicic, hydrous saline and carbonatitic fluids, derived from different source components of asthenospheric and lithospheric origin. However, until now such data has been lacking from gem diamonds. Using a new laser-based technique (McNeill et al., 2009), we have analysed a suite of diamonds plus co-existing host silicates from several diamondiferous xenoliths (6 harzburgites, 1 eclogite) from the Finsch and Newlands kimberlites in order to try to understand the fluid compositions that produce gem diamonds and better understand their effects of their mantle wall rocks. Diamonds from the xenoliths show a wide variety of trace element enrichment levels. While the eclogitic diamond shows similar trace element systematics to some of the harzburgitic diamonds there are significant differences within the harzburgitic diamonds from different xenoliths, with those from Finsch being significantly enriched in Ba, Sr and Pb relative to other elements. Nd isotope data on the host silicates is variable and dominantly unradiogenic, indicative of long-term enrichment typically associated with the source of some diamond-forming fluids. We will present Sr isotopic data on host silicates and diamond fluids to constrain whether the "gem" diamonds require the complex sources of fluids that characterise the growth of fibrous diamonds. 1) Y. Weiss, R. Kessel, W.L. Griffin, I. Kiflawi, O. Klein-BenDavid, D.R. Bell, J

  11. Phase diagram of the isotropic spin-(3)/(2) model on the z=3 Bethe lattice

    NASA Astrophysics Data System (ADS)

    Depenbrock, Stefan; Pollmann, Frank

    2013-07-01

    We study an SU(2) symmetric spin-3/2 model on the z=3 Bethe lattice using the infinite time evolving block decimation (iTEBD) method. This model is shown to exhibit a rich phase diagram. We compute several order parameters which allow us to identify a ferromagnetic, a ferrimagnetic, an antiferromagnetic, as well as a dimerized phase. We calculate the entanglement spectra from which we conclude the existence of a symmetry protected topological phase that is characterized by S=1/2 edge spins. Details of the iTEBD algorithm used for the simulations are included.

  12. Properties of Diamond and Diamond-Like Clusters in Nanometric Dimensions

    NASA Technical Reports Server (NTRS)

    Halicioglu, Timur; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    Variations in materials properties of small clusters of nanometric dimensions were investigated. Investigations were carried out for diamond and diamond-like particles in spherical shapes. Calculations were performed for clusters containing over 1000 carbon atoms. Results indicate that as the cluster size diminishes, (i) the average cohesive energy becomes weaker, (ii) the excess surface energy increases, and (iii) the value for stiffness decreases.

  13. Single crystal diamond membranes for nanoelectronics.

    PubMed

    Bray, Kerem; Kato, Hiromitsu; Previdi, Rodolfo; Sandstrom, Russell; Ganesan, Kumaravelu; Ogura, Masahiko; Makino, Toshiharu; Yamasaki, Satoshi; Magyar, Andrew P; Toth, Milos; Aharonovich, Igor

    2018-02-22

    Single crystal, nanoscale diamond membranes are highly sought after for a variety of applications including nanophotonics, nanoelectronics and quantum information science. However, so far, the availability of conductive diamond membranes has remained an unreachable goal. In this work we present a complete nanofabrication methodology for engineering high aspect ratio, electrically active single crystal diamond membranes. The membranes have large lateral directions, exceeding ∼500 × 500 μm 2 and are only several hundreds of nanometers thick. We further realize vertical single crystal p-n junctions made from the diamond membranes that exhibit onset voltages of ∼10 V and a current of several mA. Moreover, we deterministically introduce optically active color centers into the membranes, and demonstrate for the first time a single crystal nanoscale diamond LED. The robust and scalable approach to engineer the electrically active single crystal diamond membranes offers new pathways for advanced nanophotonic, nanoelectronic and optomechanical devices employing diamond.

  14. Study on the Ising Antiferromagnet in an External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Yeon

    2018-06-01

    In an external magnetic field, the properties of an antiferromagnet are much less well understood than those of a ferromagnet are. An abnormal peak in the specific heat of matter at a low temperature, the so-called Schottky anomaly, is one of the most universal phenomena, and it is the most important concept in studying experimentally the low-energy structure of matter. We investigate the unknown properties of the Ising antiferromagnet in an external magnetic field B, in particular, the magnetic-field dependence of the Schottky anomaly of the Ising antiferromagnet systematically. We find three different kinds of Schottky anomalies for the Ising antiferromagnet. First, for B > B c , where B c is the critical magnetic field, both the maximum of the Schottky anomaly C s ( B) and the Schottky temperature T s ( B) increase as B increases. In particular, T s ( B) follows T s ( B) = 0.8336( B - B c ) only for B > B c . Second, for B < B c , both the maximum of the Schottky anomaly and the Schottky temperature decrease as B increases, in clear contrast to the increasing behaviors of the Schottky anomaly for B > B c . Third, at B = B c , the unusual Schottky anomaly appears due to the nonzero ground-state entropy, similar to real ice and spin glass. We expect that our results will play a vital role in measuring and understanding the properties of an antiferromagnet and related materials in an external magnetic field.

  15. Diamond collecting in northern Colorado.

    USGS Publications Warehouse

    Collins, D.S.

    1982-01-01

    The discovery of numerous diamond-bearing kimberlite diatremes in the N Front Range of Colorado and Wyoming is of both scientific and economic interest. Species recovered from heavy-mineral concentrates include Cr-diopside, spinel, Mg-ilmenite, pyrope and diamond. A nodule tentatively identified as a graphite-diamond eclogite was also found. -G.W.R.

  16. Thermally induced alkylation of diamond.

    PubMed

    Hoeb, Marco; Auernhammer, Marianne; Schoell, Sebastian J; Brandt, Martin S; Garrido, Jose A; Stutzmann, Martin; Sharp, Ian D

    2010-12-21

    We present an approach for the thermally activated formation of alkene-derived self-assembled monolayers on oxygen-terminated single and polycrystalline diamond surfaces. Chemical modification of the oxygen and hydrogen plasma-treated samples was achieved by heating in 1-octadecene. The resulting layers were characterized using X-ray photoelectron spectroscopy, thermal desorption spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and water contact angle measurements. This investigation reveals that alkenes selectively attach to the oxygen-terminated sites via covalent C-O-C bonds. The hydrophilic oxygen-terminated diamond is rendered strongly hydrophobic following this reaction. The nature of the process limits the organic layer growth to a single monolayer, and FTIR measurements reveal that such monolayers are dense and well ordered. In contrast, hydrogen-terminated diamond sites remain unaffected by this process. This method is thus complementary to the UV-initiated reaction of alkenes with diamond, which exhibits the opposite reactivity contrast. Thermal alkylation increases the range of available diamond functionalization strategies and provides a means of straightforwardly forming single organic layers in order to engineer the surface properties of diamond.

  17. EuCo 2P 2: A Model Molecular-Field Helical Heisenberg Antiferromagnet

    DOE PAGES

    Sangeetha, N. S.; Cuervo-Reyes, Eduardo; Pandey, Abhishek; ...

    2016-07-19

    The metallic compound EuCo 2P 2 with the body-centered tetragonal ThCr 2Si 2 structure containing Eu spins-7/2 was previously shown from single-crystal neutron diffraction measurements to exhibit a helical antiferromagnetic (AFM) structure below T N=66.5 K with the helix axis along the c axis and with the ordered moments aligned within the ab plane. Here we report crystallography, electrical resistivity, heat capacity, magnetization, and magnetic susceptibility measurements on single crystals of this compound. We demonstrate that EuCo 2P 2 is a model molecular-field helical Heisenberg antiferromagnet from comparisons of the anisotropic magnetic susceptibility χ, high-field magnetization, and magnetic heat capacitymore » of EuCo 2P 2 single crystals at temperature T≤TN with the predictions of our recent formulation of molecular-field theory. Values of the Heisenberg exchange interactions between the Eu spins are derived from the data. The low-T magnetic heat capacity ~T 3 arising from spin-wave excitations with no anisotropy gap is calculated and found to be comparable to the lattice heat capacity. The density of states at the Fermi energy of EuCo 2P 2 and the related compound BaCo 2P 2 are found from the heat capacity data to be large, 10 and 16 states/eV per formula unit for EuCo 2P 2 and BaCo 2P 2, respectively. These values are enhanced by a factor of ~2.5 above those found from DFT electronic structure calculations for the two compounds. Additionally, the calculations also find ferromagnetic Eu–Eu exchange interactions within the ab plane and AFM interactions between Eu spins in nearest- and next-nearest planes, in agreement with the MFT analysis of χ ab(T≤TN).« less

  18. EuCo 2P 2: A Model Molecular-Field Helical Heisenberg Antiferromagnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangeetha, N. S.; Cuervo-Reyes, Eduardo; Pandey, Abhishek

    The metallic compound EuCo 2P 2 with the body-centered tetragonal ThCr 2Si 2 structure containing Eu spins-7/2 was previously shown from single-crystal neutron diffraction measurements to exhibit a helical antiferromagnetic (AFM) structure below T N=66.5 K with the helix axis along the c axis and with the ordered moments aligned within the ab plane. Here we report crystallography, electrical resistivity, heat capacity, magnetization, and magnetic susceptibility measurements on single crystals of this compound. We demonstrate that EuCo 2P 2 is a model molecular-field helical Heisenberg antiferromagnet from comparisons of the anisotropic magnetic susceptibility χ, high-field magnetization, and magnetic heat capacitymore » of EuCo 2P 2 single crystals at temperature T≤TN with the predictions of our recent formulation of molecular-field theory. Values of the Heisenberg exchange interactions between the Eu spins are derived from the data. The low-T magnetic heat capacity ~T 3 arising from spin-wave excitations with no anisotropy gap is calculated and found to be comparable to the lattice heat capacity. The density of states at the Fermi energy of EuCo 2P 2 and the related compound BaCo 2P 2 are found from the heat capacity data to be large, 10 and 16 states/eV per formula unit for EuCo 2P 2 and BaCo 2P 2, respectively. These values are enhanced by a factor of ~2.5 above those found from DFT electronic structure calculations for the two compounds. Additionally, the calculations also find ferromagnetic Eu–Eu exchange interactions within the ab plane and AFM interactions between Eu spins in nearest- and next-nearest planes, in agreement with the MFT analysis of χ ab(T≤TN).« less

  19. Thermal evolution of antiferromagnetic correlations and tetrahedral bond angles in superconducting FeTe1 -xSex

    NASA Astrophysics Data System (ADS)

    Xu, Zhijun; Schneeloch, J. A.; Wen, Jinsheng; Božin, E. S.; Granroth, G. E.; Winn, B. L.; Feygenson, M.; Birgeneau, R. J.; Gu, Genda; Zaliznyak, I. A.; Tranquada, J. M.; Xu, Guangyong

    2016-03-01

    It has recently been demonstrated that dynamical magnetic correlations measured by neutron scattering in iron chalcogenides can be described with models of short-range correlations characterized by particular choices of four-spin plaquettes, where the appropriate choice changes as the parent material is doped towards superconductivity. Here we apply such models to describe measured maps of magnetic scattering as a function of two-dimensional wave vectors obtained for optimally superconducting crystals of FeTe1 -xSex . We show that the characteristic antiferromagnetic wave vector evolves from that of the bicollinear structure found in underdoped chalcogenides (at high temperature) to that associated with the stripe structure of antiferromagnetic iron arsenides (at low temperature); these can both be described with the same local plaquette, but with different interplaquette correlations. While the magnitude of the low-energy magnetic spectral weight is substantial at all temperatures, it actually weakens somewhat at low temperature, where the charge carriers become more itinerant. The observed change in spin correlations is correlated with the dramatic drop in the electronic scattering rate and the growth of the bulk nematic response upon cooling. Finally, we also present powder neutron diffraction results for lattice parameters in FeTe1 -xSex indicating that the tetrahedral bond angle tends to increase towards the ideal value upon cooling, in agreement with the increased screening of the crystal field by more itinerant electrons and the correspondingly smaller splitting of the Fe 3 d orbitals.

  20. Characterization of CVD micrometer-size diamond (abstract)

    NASA Astrophysics Data System (ADS)

    Ohsumi, K.; Hagiya, K.; Miyamoto, M.; Matsuda, J.; Ohmasa, M.

    1989-07-01

    formed from carbonaceous materials by impact shock or directly formed from vapor. Recent discovery of vapor-growth diamonds in carbonaceous chondrites has generated a renewed interest in the origin of ureilite diamonds. Two types of micrometer-size diamonds were prepared. One of them was grown under low pressure by chemical vapor deposition (CVD) from gaseous mixtures of H2 and CH4, and another was synthesized by shock effect (kindly offered by Nippon Oil & Fats Co., Ltd.) The micro-Laue method was applied to them in order to get information about their microstructures. Two characteristics are recognized in profiles of reflections themselves and in whole patterns of the Laue photographs. The reflections of CVD diamonds are elongated but symmetric in their profiles and are distributed regularly as they are indexed by the diamond lattice, while those of shock effect are also elongated and asymmetric, and are distributed at random as they cannot be indexed. The characteristics observed by the method may be useful to ascribe the origin to CVD or shock effect.

  1. Magnetic field induced switching of the antiferromagnetic order parameter in thin films of magnetoelectric chromia

    NASA Astrophysics Data System (ADS)

    Fallarino, Lorenzo; Berger, Andreas; Binek, Christian

    2015-02-01

    A Landau-theoretical approach is utilized to model the magnetic field induced reversal of the antiferromagnetic order parameter in thin films of magnetoelectric antiferromagnets. A key ingredient of this peculiar switching phenomenon is the presence of a robust spin polarized state at the surface of the antiferromagnetic films. Surface or boundary magnetization is symmetry allowed in magnetoelectric antiferromagnets and experimentally established for chromia thin films. It couples rigidly to the antiferromagnetic order parameter and its Zeeman energy creates a pathway to switch the antiferromagnet via magnetic field application. In the framework of a minimalist Landau free energy expansion, the temperature dependence of the switching field and the field dependence of the transition width are derived. Least-squares fits to magnetometry data of (0001 ) textured chromia thin films strongly support this model of the magnetic reversal mechanism.

  2. Antiferromagnetic Order in Epitaxial FeSe Films on SrTiO3

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Miao, L.; Wang, P.; Zhu, F. F.; Jiang, W. X.; Jiang, S. W.; Zhang, Y.; Lei, B.; Chen, X. H.; Ding, H. F.; Zheng, Hao; Zhang, W. T.; Jia, Jin-feng; Qian, Dong; Wu, D.

    2018-03-01

    Single monolayer FeSe film grown on a Nb-doped SrTiO3 (001 ) substrate shows the highest superconducting transition temperature (TC˜100 K ) among the iron-based superconductors (iron pnictides), while the TC value of bulk FeSe is only ˜8 K . Although bulk FeSe does not show antiferromagnetic order, calculations suggest that the parent FeSe /SrTi O3 films are antiferromagnetic. Experimentally, because of a lack of a direct probe, the magnetic state of FeSe /SrTi O3 films remains mysterious. Here, we report direct evidence of antiferromagnetic order in the parent FeSe /SrTi O3 films by the magnetic exchange bias effect measurements. The magnetic blocking temperature is ˜140 K for a single monolayer film. The antiferromagnetic order disappears after electron doping.

  3. Amorphous-diamond electron emitter

    DOEpatents

    Falabella, Steven

    2001-01-01

    An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.

  4. 46 CFR 45.33 - Diamond.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Diamond. 45.33 Section 45.33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Load Line Marks § 45.33 Diamond. (a) Each vessel must be marked with the diamond mark described in figure 2 of § 45.35 amidships below...

  5. 46 CFR 45.33 - Diamond.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Diamond. 45.33 Section 45.33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Load Line Marks § 45.33 Diamond. (a) Each vessel must be marked with the diamond mark described in figure 2 of § 45.35 amidships below...

  6. 46 CFR 45.33 - Diamond.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Diamond. 45.33 Section 45.33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Load Line Marks § 45.33 Diamond. (a) Each vessel must be marked with the diamond mark described in figure 2 of § 45.35 amidships below...

  7. 46 CFR 45.33 - Diamond.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Diamond. 45.33 Section 45.33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Load Line Marks § 45.33 Diamond. (a) Each vessel must be marked with the diamond mark described in figure 2 of § 45.35 amidships below...

  8. 46 CFR 45.33 - Diamond.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Diamond. 45.33 Section 45.33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Load Line Marks § 45.33 Diamond. (a) Each vessel must be marked with the diamond mark described in figure 2 of § 45.35 amidships below...

  9. Investigation of the chiral antiferromagnetic Heisenberg model using projected entangled pair states

    NASA Astrophysics Data System (ADS)

    Poilblanc, Didier

    2017-09-01

    A simple spin-1/2 frustrated antiferromagnetic Heisenberg model (AFHM) on the square lattice—including chiral plaquette cyclic terms—was argued [A. E. B. Nielsen, G. Sierra, and J. I. Cirac, Nat. Commun. 4, 2864 (2013), 10.1038/ncomms3864] to host a bosonic Kalmeyer-Laughlin (KL) fractional quantum Hall ground state [V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095 (1987), 10.1103/PhysRevLett.59.2095]. Here, we construct generic families of chiral projected entangled pair states (chiral PEPS) with low bond dimension (D =3 ,4 ,5 ) which, upon optimization, provide better variational energies than the KL Ansatz. The optimal D =3 PEPS exhibits chiral edge modes described by the Wess-Zumino-Witten SU(2) 1 model, as expected for the KL spin liquid. However, we find evidence that, in contrast to the KL state, the PEPS spin liquids have power-law dimer-dimer correlations and exhibit a gossamer long-range tail in the spin-spin correlations. We conjecture that these features are genuine to local chiral AFHM on bipartite lattices.

  10. Antiferromagnetism and superconductivity in the half-Heusler semimetal HoPdBi

    PubMed Central

    Pavlosiuk, Orest; Kaczorowski, Dariusz; Fabreges, Xavier; Gukasov, Arsen; Wiśniewski, Piotr

    2016-01-01

    We observed the coexistence of superconductivity and antiferromagnetic order in the single-crystalline ternary pnictide HoPdBi, a plausible topological semimetal. The compound orders antiferromagnetically at TN = 1.9 K and exhibits superconductivity below Tc = 0.7 K, which was confirmed by magnetic, electrical transport and specific heat measurements. The specific heat shows anomalies corresponding to antiferromagnetic ordering transition and crystalline field effect, but not to superconducting transition. Single-crystal neutron diffraction indicates that the antiferromagnetic structure is characterized by the propagation vector. Temperature variation of the electrical resistivity reveals two parallel conducting channels of semiconducting and metallic character. In weak magnetic fields, the magnetoresistance exhibits weak antilocalization effect, while in strong fields and temperatures below 50 K it is large and negative. At temperatures below 7 K Shubnikov-de Haas oscillations with two frequencies appear in the resistivity. These oscillations have non-trivial Berry phase, which is a distinguished feature of Dirac fermions. PMID:26728755

  11. Anomalous Z2 antiferromagnetic topological phase in pressurized SmB6

    NASA Astrophysics Data System (ADS)

    Chang, Kai-Wei; Chen, Peng-Jen

    2018-05-01

    Antiferromagnetic materials, whose time-reversal symmetry is broken, can be classified into the Z2 topology if they respect some specific symmetry. Since the theoretical proposal, however, no materials have been found to host such Z2 antiferromagnetic topological (Z2-AFT ) phase to date. Here we demonstrate that the topological Kondo insulator SmB6 can be a Z2-AFT system when pressurized to undergo an antiferromagnetic phase transition. In addition to proposing the possible candidate for a Z2-AFT material, in this work we also illustrate the anomalous topological surface states of the Z2-AFT phase which have not been discussed before. Originating from the interplay between the topological properties and the antiferromagnetic surface magnetization, the topological surface states of the Z2-AFT phase behave differently as compared with those of a topological insulator. Besides, the Z2-AFT insulators are also found promising in the generation of tunable spin currents, which is an important application in spintronics.

  12. Conversion of fullerenes to diamonds

    DOEpatents

    Gruen, Dieter M.

    1995-01-01

    A method of forming synthetic diamond or diamond-like films on a substrate surface. The method involves the steps of providing a vapor selected from the group of fullerene molecules or an inert gas/fullerene molecule mixture, providing energy to the fullerene molecules consisting of carbon-carbon bonds, the energized fullerene molecules breaking down to form fragments of fullerene molecules including C.sub.2 molecules and depositing the energized fullerene molecules with C.sub.2 fragments onto the substrate with farther fragmentation occurring and forming a thickness of diamond or diamond-like films on the substrate surface.

  13. Diamond network: template-free fabrication and properties.

    PubMed

    Zhuang, Hao; Yang, Nianjun; Fu, Haiyuan; Zhang, Lei; Wang, Chun; Huang, Nan; Jiang, Xin

    2015-03-11

    A porous diamond network with three-dimensionally interconnected pores is of technical importance but difficult to be produced. In this contribution, we demonstrate a simple, controllable, and "template-free" approach to fabricate diamond networks. It combines the deposition of diamond/β-SiC nanocomposite film with a wet-chemical selective etching of the β-SiC phase. The porosity of these networks was tuned from 15 to 68%, determined by the ratio of the β-SiC phase in the composite films. The electrochemical working potential and the reactivity of redox probes on the diamond networks are similar to those of a flat nanocrystalline diamond film, while their surface areas are hundreds of times larger than that of a flat diamond film (e.g., 490-fold enhancement for a 3 μm thick diamond network). The marriage of the unprecedented physical/chemical features of diamond with inherent advantages of the porous structure makes the diamond network a potential candidate for various applications such as water treatment, energy conversion (batteries or fuel cells), and storage (capacitors), as well as electrochemical and biochemical sensing.

  14. High efficiency diamond solar cells

    DOEpatents

    Gruen, Dieter M [Downers Grove, IL

    2008-05-06

    A photovoltaic device and method of making same. A layer of p-doped microcrystalline diamond is deposited on a layer of n-doped ultrananocrystalline diamond such as by providing a substrate in a chamber, providing a first atmosphere containing about 1% by volume CH.sub.4 and about 99% by volume H.sub.2 with dopant quantities of a boron compound, subjecting the atmosphere to microwave energy to deposit a p-doped microcrystalline diamond layer on the substrate, providing a second atmosphere of about 1% by volume CH.sub.4 and about 89% by volume Ar and about 10% by volume N.sub.2, subjecting the second atmosphere to microwave energy to deposit a n-doped ultrananocrystalline diamond layer on the p-doped microcrystalline diamond layer. Electrodes and leads are added to conduct electrical energy when the layers are irradiated.

  15. Small-cluster renormalization group in Ising and Blume-Emery-Griffiths models with ferromagnetic, antiferromagnetic, and quenched disordered magnetic interactions

    NASA Astrophysics Data System (ADS)

    Antenucci, F.; Crisanti, A.; Leuzzi, L.

    2014-07-01

    The Ising and Blume-Emery-Griffiths (BEG) models' critical behavior is analyzed in two dimensions and three dimensions by means of a renormalization group scheme on small clusters made of a few lattice cells. Different kinds of cells are proposed for both ordered and disordered model cases. In particular, cells preserving a possible antiferromagnetic ordering under renormalization allow for the determination of the Néel critical point and its scaling indices. These also provide more reliable estimates of the Curie fixed point than those obtained using cells preserving only the ferromagnetic ordering. In all studied dimensions, the present procedure does not yield a strong-disorder critical point corresponding to the transition to the spin-glass phase. This limitation is thoroughly analyzed and motivated.

  16. NMR determination of an incommensurate helical antiferromagnetic structure in EuCo 2 As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Q. -P.; Higa, N.; Sangeetha, N. S.

    In this paper, we report 153Eu, 75As, and 59Co nuclear magnetic resonance (NMR) results on EuCo 2As 2 single crystal. Observations of 153Eu and 75As NMR spectra in zero magnetic field at 4.3 K below an antiferromagnetic (AFM) ordering temperature T N = 45 K and its external magnetic field dependence clearly evidence an incommensurate helical AFM structure in EuCo 2As 2. Furthermore, based on 59Co NMR data in both the paramagnetic and the incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector k = (0,0,0.73 ± 0.07)2π/c, where c is the c lattice parameter.more » Finally, the incommensurate helical AFM state was characterized by only NMR data with model-independent analyses, showing NMR to be a unique tool for determination of the spin structure in incommensurate helical AFMs.« less

  17. NMR determination of an incommensurate helical antiferromagnetic structure in EuCo 2 As 2

    DOE PAGES

    Ding, Q. -P.; Higa, N.; Sangeetha, N. S.; ...

    2017-05-05

    In this paper, we report 153Eu, 75As, and 59Co nuclear magnetic resonance (NMR) results on EuCo 2As 2 single crystal. Observations of 153Eu and 75As NMR spectra in zero magnetic field at 4.3 K below an antiferromagnetic (AFM) ordering temperature T N = 45 K and its external magnetic field dependence clearly evidence an incommensurate helical AFM structure in EuCo 2As 2. Furthermore, based on 59Co NMR data in both the paramagnetic and the incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector k = (0,0,0.73 ± 0.07)2π/c, where c is the c lattice parameter.more » Finally, the incommensurate helical AFM state was characterized by only NMR data with model-independent analyses, showing NMR to be a unique tool for determination of the spin structure in incommensurate helical AFMs.« less

  18. Spin-transfer torque induced spin waves in antiferromagnetic insulators

    DOE PAGES

    Daniels, Matthew W.; Guo, Wei; Stocks, George Malcolm; ...

    2015-01-01

    We explore the possibility of exciting spin waves in insulating antiferromagnetic films by injecting spin current at the surface. We analyze both magnetically compensated and uncompensated interfaces. We find that the spin current induced spin-transfer torque can excite spin waves in insulating antiferromagnetic materials and that the chirality of the excited spin wave is determined by the polarization of the injected spin current. Furthermore, the presence of magnetic surface anisotropy can greatly increase the accessibility of these excitations.

  19. Magnetic anisotropy in antiferromagnetic hexagonal MnTe

    NASA Astrophysics Data System (ADS)

    Kriegner, D.; Reichlova, H.; Grenzer, J.; Schmidt, W.; Ressouche, E.; Godinho, J.; Wagner, T.; Martin, S. Y.; Shick, A. B.; Volobuev, V. V.; Springholz, G.; Holý, V.; Wunderlich, J.; Jungwirth, T.; Výborný, K.

    2017-12-01

    Antiferromagnetic hexagonal MnTe is a promising material for spintronic devices relying on the control of antiferromagnetic domain orientations. Here we report on neutron diffraction, magnetotransport, and magnetometry experiments on semiconducting epitaxial MnTe thin films together with density functional theory (DFT) calculations of the magnetic anisotropies. The easy axes of the magnetic moments within the hexagonal basal plane are determined to be along 〈1 1 ¯00 〉 directions. The spin-flop transition and concomitant repopulation of domains in strong magnetic fields is observed. Using epitaxially induced strain the onset of the spin-flop transition changes from ˜2 to ˜0.5 T for films grown on InP and SrF2 substrates, respectively.

  20. Radiation-induced diamond crystallization: Origin of carbonados and its implications on meteorite nano-diamonds

    USGS Publications Warehouse

    Ozima, M.; Tatsumoto, M.

    1997-01-01

    Ten carbonados from Central Africa were studied for U-Th-Pb systematics. To extract U, Th, and Pb from the samples, we developed a cold combustion technique wherein diamond was burnt in liquid oxygen. The technique gave low blanks; 25-50 pg for Pb, 3 pg for U, and 5 pg for Th. After very thorough acid treatments of the carbonados with hot HNO3, HF, and HCl over one week, most of U, Th, and Pb were removed from the samples. Lead in the acid-leached diamonds was highly radiogenic (206Pb/204Pb up to 470). However, the amounts of U and Th in the acid-leached diamonds are too low to account for the radiogenic Pb even if we assume 4.5 Ga for the age of the diamonds. Therefore, we conclude that the radiogenic Pb was implanted into the diamonds from surroundings by means of recoil energy of radioactive decays of U and Th. From the radiogenic lead isotopic composition, we estimate a minimum age of 2.6 Ga and a maximum age of 3.8 Ga for the formation of the carbonados. The above findings of the implantation of recoiled radiogenic Pb into carbonados is consistent with the process of radiation-induced crystallization which was proposed for carbonado by Kaminsky (1987). We show from some theoretical considerations that when highly energetic particles, such as those emitted from radioactive decay of U and Th, interact with carbonaceous materials, they give rise to cascades of atomic disturbance (over regions of about a few nanometer), and the disturbed atoms are likely to recrystallize to form micro-diamonds because of increasing surface energy due to small size. The radiation-induced diamond formation mechanism may be relevant to the origin of nano-diamonds in primitive meteorites. Copyright ?? 1997 Elsevier Science Ltd.

  1. Microwave fields driven domain wall motions in antiferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Z. Y.; Yan, Z. R.; Zhang, Y. L.; Qin, M. H.; Fan, Z.; Lu, X. B.; Gao, X. S.; Liu, J.-M.

    2018-06-01

    In this work, we study the microwave field driven domain wall (DW) motion in an antiferromagnetic nanowire, using the numerical calculations based on a classical Heisenberg spin model with the biaxial magnetic anisotropy. We show that a proper combination of a static magnetic field plus an oscillating field perpendicular to the nanowire axis is sufficient to drive the DW propagation along the nanowire. More importantly, the drift velocity at the resonance frequency is comparable to that induced by temperature gradients, suggesting that microwave field can be a very promising tool to control DW motions in antiferromagnetic nanostructures. The dependences of resonance frequency and drift velocity on the static and oscillating fields, the axial anisotropy, and the damping constant are discussed in details. Furthermore, the optimal orientations of the field are also numerically determined and explained. This work provides useful information for the spin dynamics in antiferromagnetic nanostructures for spintronics applications.

  2. Isotope effect in quasi-two-dimensional metal-organic antiferromagnets

    NASA Astrophysics Data System (ADS)

    Goddard, P. A.; Singleton, J.; Maitland, C.; Blundell, S. J.; Lancaster, T.; Baker, P. J.; McDonald, R. D.; Cox, S.; Sengupta, P.; Manson, J. L.; Funk, K. A.; Schlueter, J. A.

    2008-08-01

    Although the isotope effect in superconducting materials is well documented, changes in the magnetic properties of antiferromagnets due to isotopic substitution are seldom discussed and remain poorly understood. This is perhaps surprising given the possible link between the quasi-two-dimensional (Q2D) antiferromagnetic and superconducting phases of the layered cuprates. Here we report the experimental observation of shifts in the Néel temperature and critical magnetic fields (ΔTN/TN≈4%;ΔBc/Bc≈4%) in a Q2D organic molecular antiferromagnet on substitution of hydrogen for deuterium. These compounds are characterized by strong hydrogen bonds through which the dominant superexchange is mediated. We evaluate how the in-plane and interplane exchange energies evolve as the atoms of hydrogen on different ligands are substituted, and suggest a possible mechanism for this effect in terms of the relative exchange efficiency of hydrogen and deuterium bonds.

  3. n-Type diamond and method for producing same

    DOEpatents

    Anderson, Richard J.

    2002-01-01

    A new n-type semiconducting diamond is disclosed, which is doped with n-type dopant atoms. Such diamond is advantageously formed by chemical vapor deposition from a source gas mixture comprising a carbon source compound for the diamond, and a volatile hot wire filament for the n-type impurity species, so that the n-type impurity atoms are doped in the diamond during its formation. A corresponding chemical vapor deposition method of forming the n-type semiconducting diamond is disclosed. The n-type semiconducting diamond of the invention may be usefully employed in the formation of diamond-based transistor devices comprising pn diamond junctions, and in other microelectronic device applications.

  4. Effect of electronic structure of the diamond surface on the strength of the diamond-metal interface

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1981-01-01

    A diamond surface undergoes a transformation in its electronic structure by a vacuum anneal at approximately 900 C. The polished surface has no electronic states in the band gap, whereas the annealed surface has both occupied and unoccupied states in the and gap and exhibits some electrical conductivity. The effect of this transformation on the strength of the diamond metal interface was investigated by measuring the static friction force of an atomically clean meta sphere on a diamond flat in ultrahigh vacuum. It was found that low friction (weak bonding) is associated with the diamond surface devoid of gap states whereas high friction (strong bonding) is associated with the diamond surface with gap states. Exposure of the annealed surface to excited hydrogen also leads to weak bonding. The interfacial bond is discussed in terms of interaction of the metal conduction band electrons with the band gap states on the diamond surface. Effects of surface electrical conductivity on the interfacial bond are also be considered.

  5. Dirac fermions in an antiferromagnetic semimetal

    DOE PAGES

    Tang, Peizhe; Zhou, Quan; Xu, Gang; ...

    2016-08-08

    Analogues of the elementary particles have been extensively searched for in condensed-matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low-energy excitations in materials now known as Dirac semimetals. All of the currently known Dirac semimetals are non-magnetic with both time-reversal symmetry and inversion symmetry. Here in this paper, we show that Dirac fermions can exist in one type of antiferromagnetic system, where both and are broken but their combination is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyse the robustness of the Dirac points under symmetry protections andmore » demonstrate its distinctive bulk dispersions, as well as the corresponding surface states, by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism.« less

  6. Localizable entanglement in antiferromagnetic spin chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, B.-Q.; Korepin, V.E.

    2004-06-01

    Antiferromagnetic spin chains play an important role in condensed matter and statistical mechanics. Recently XXX spin chain was discussed in relation to information theory. Here we consider localizable entanglement. It is how much entanglement can be localized on two spins by performing local measurements on other individual spins (in a system of many interacting spins). We consider the ground state of antiferromagnetic spin chain. We study localizable entanglement [represented by concurrence] between two spins. It is a function of the distance. We start with isotropic spin chain. Then we study effects of anisotropy and magnetic field. We conclude that anisotropymore » increases the localizable entanglement. We discovered high sensitivity to a magnetic field in cases of high symmetry. We also evaluated concurrence of these two spins before the measurement to illustrate that the measurement raises the concurrence.« less

  7. Diamonds: Exploration, mines and marketing

    NASA Astrophysics Data System (ADS)

    Read, George H.; Janse, A. J. A. (Bram)

    2009-11-01

    The beauty, value and mystique of exceptional quality diamonds such as the 603 carat Lesotho Promise, recovered from the Letseng Mine in 2006, help to drive a multi-billion dollar diamond exploration, mining and marketing industry that operates in some 45 countries across the globe. Five countries, Botswana, Russia, Canada, South Africa and Angola account for 83% by value and 65% by weight of annual diamond production, which is mainly produced by four major companies, De Beers, Alrosa, Rio Tinto and BHP Billiton (BHPB), which together account for 78% by value and 72% by weight of annual diamond production for 2007. During the last twelve years 16 new diamond mines commenced production and 4 re-opened. In addition, 11 projects are in advanced evaluation and may begin operations within the next five years. Exploration for diamondiferous kimberlites was still energetic up to the last quarter of 2008 with most work carried out in Canada, Angola, Democratic Republic of the Congo (DRC) and Botswana. Many kimberlites were discovered but no new economic deposits were outlined as a result of this work, except for the discovery and possible development of the Bunder project by Rio Tinto in India. Exploration methods have benefitted greatly from improved techniques of high resolution geophysical aerial surveying, new research into the geochemistry of indicator minerals and further insights into the formation of diamonds and the relation to tectonic/structural events in the crust and mantle. Recent trends in diamond marketing indicate that prices for rough diamonds and polished goods were still rising up to the last quarter of 2008 and subsequently abruptly sank in line with the worldwide financial crisis. Most analysts predict that prices will rise again in the long term as the gap between supply and demand will widen because no new economic diamond discoveries have been made recently. The disparity between high rough and polished prices and low share prices of publicly

  8. The Geopolitical Setting of Conflict Diamonds.

    NASA Astrophysics Data System (ADS)

    Haggerty, S. E.

    2002-05-01

    September 11, 2001 will live in infamy. Ideological differences have also led to senseless atrocities in Angola, Congo Republic, Sierra Leone, and Liberia. Hundreds of thousands have died, scores mutilated, and millions displaced. These have gone virtually unnoticed for decades. Unnoticed that is until it became evident that these barbaric acts were fueled by the sale or bartering of diamonds for arms, or by more ingenious ways that are less traceable. There is no end in sight. Industry has long recognized that about 20% of diamonds reaching the open market are smuggled from operating mines, and more recently that an additional 4% originates from conflict diamond sources. Diamond identification by laser inscription, ion implantation, or certification protocols are subject to fraudulent tampering. And these applied methods are thwarted if cutting and polishing centers are infiltrated, or if terrorist facilities are independently established. Mark ups are substantial (40-60%) from raw material to finished product. Tracking the paths of rough stones from mines to faceted gems is impractical because some 30-50 million cts of top quality material, or about 100 million stones, would require branding each year. Moreover, the long standing tradition of site-holdings and the bourse system of mixing or matching diamonds, inadvertently ensures regional anonymity. Conflict diamonds are mined in primary kimberlites and from widely dispersed alluvial fields in tropical jungle. Landscapes, eroded by 1-5 vertical km over 100 Ma, have transformed low grade primary deposits into unconsolidated sedimentary bonanzas. The current value of stones retrieved, by motivated diggers and skillful jiggers, in rebel held territories, is impossible to determine, but in 1993 amounted to tens of millions USD. Diamonds over 100 cts continue to surface at premier prices. Borders are porous, diamonds flow easily, and armed networks are permeable and mobile. Diamonds form at great depths (over 200 km

  9. Ferro- and antiferro-magnetism in (Np, Pu)BC

    NASA Astrophysics Data System (ADS)

    Klimczuk, T.; Shick, A. B.; Kozub, A. L.; Griveau, J.-C.; Colineau, E.; Falmbigl, M.; Wastin, F.; Rogl, P.

    2015-04-01

    Two new transuranium metal boron carbides, NpBC and PuBC, have been synthesized. Rietveld refinements of powder XRD patterns of {Np,Pu}BC confirmed in both cases isotypism with the structure type of UBC. Temperature dependent magnetic susceptibility data reveal antiferromagnetic ordering for PuBC below TN = 44 K, whereas ferromagnetic ordering was found for NpBC below TC = 61 K. Heat capacity measurements prove the bulk character of the observed magnetic transition for both compounds. The total energy electronic band structure calculations support formation of the ferromagnetic ground state for NpBC and the antiferromagnetic ground state for PuBC.

  10. Study of diamond film growth and properties

    NASA Technical Reports Server (NTRS)

    Albin, Sacharial

    1990-01-01

    The objective was to study diamond film growth and its properties in order to enhance the laser damage threshold of substrate materials. Calculations were performed to evaluate laser induced thermal stress parameter, R(sub T) of diamond. It is found that diamond has several orders of magnitude higher in value for R(sub T) compared to other materials. Thus, the laser induced damage threshold (LIDT) of diamond is much higher. Diamond films were grown using a microwave plasma enhanced chemical vapor deposition (MPECVD) system at various conditions of gas composition, pressure, temperature, and substrate materials. A 0.5 percent CH4 in H2 at 20 torr were ideal conditions for growing of high quality diamond films on substrates maintained at 900 C. The diamond films were polycrystalline which were characterized by scanning electron microscopy (SEM) and Raman scattering spectroscopy. The top surface of the growing film is always rough due to the facets of polycrystalline film while the back surface of the film replicates the substrate surface. An analytical model based on two dimensional periodic heat flow was developed to calculate the effective in-plane (face parallel) diffusivity of a two layer system. The effective diffusivity of diamond/silicon samples was measured using a laser pulse technique. The thermal conductivity of the films was measured to be 13.5 W/cm K, which is better than that of a type Ia natural diamond. Laser induced damage experiments were performed on bare Si substrates, diamond film coated Si, and diamond film windows. Significant improvements in the LIDT were obtained for diamond film coated Si compared to the bare Si.

  11. Diamond Nucleation Using Polyethene

    NASA Technical Reports Server (NTRS)

    Morell, Gerardo (Inventor); Makarov, Vladimir (Inventor); Varshney, Deepak (Inventor); Weiner, Brad (Inventor)

    2013-01-01

    The invention presents a simple, non-destructive and non-abrasive method of diamond nucleation using polyethene. It particularly describes the nucleation of diamond on an electrically viable substrate surface using polyethene via chemical vapor deposition (CVD) technique in a gaseous environment.

  12. Diamond nucleation using polyethene

    DOEpatents

    Morell, Gerardo; Makarov, Vladimir; Varshney, Deepak; Weiner, Brad

    2013-07-23

    The invention presents a simple, non-destructive and non-abrasive method of diamond nucleation using polyethene. It particularly describes the nucleation of diamond on an electrically viable substrate surface using polyethene via chemical vapor deposition (CVD) technique in a gaseous environment.

  13. Strength, hardness, and lattice vibrations of Z-carbon and W-carbon: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Li, Zhiping; Gao, Faming; Xu, Ziming

    2012-04-01

    The strength, hardness, and lattice vibrations of two superhard carbon allotropies, Z-carbon and W-carbon are investigated by first-principles calculations. Phonon dispersion calculations indicate that Z-carbon and W-carbon are dynamically stable at least up to 300 GPa. The strength calculations reveal that the failure mode in Z-carbon is dominated by the tensile type, and the [010] direction is the weakest one. In W-carbon, the failure mode is dominated by the shear type, and the (101)[111¯] direction is the weakest one. Although the ideal strength of diamond is distinctly greater than that of Z-carbon and W-carbon, the tensile strength and shear strength for Z-carbon and W-carbon show much lower anisotropies than that of diamond. The hardness calculations indicate that the average hardness of Z-carbon is less than that of diamond but greater than that of the W-carbon, M-carbon, and body-centered-tetragonal-C4 carbon. The simulated Raman spectra show that the Ag modes at 1094 cm-1 for Z-carbon and 1109.7 cm-1 for W-carbon are in agreement with that of 1082 cm-1 observed in the experiment of cold-compressed graphite at 9.8 GPa.

  14. Anisotropic lattice compression of α- and β-CePdZn

    NASA Astrophysics Data System (ADS)

    Oomi, Gendo; Eto, Tetsujiro; Okada, Taku; Uwatoko, Yoshiya

    2018-05-01

    The lattice constants of ZrNiAl type α-CePdZn and TiNiSi type β-CePdZn were measured at high pressure up to 14 GPa at room temperature using X-ray diffraction (XRD) and a diamond anvil cell. The pressure dependence of lattice constants and volume of α-CePdZn were found to be smooth without any discontinuity, and having a bulk modulus, B0, and its pressure derivative, B0‧, of 67 GPa and 5.1, respectively. On the other hand, the a and b axes as well as volume of β-CePdZn were found to show anomalous pressure dependence at around 8 GPa. B0 and B0‧ of β-CePdZn were 90 GPa and 2.1, respectively. These results suggest that a crossover in the electronic states is induced by applying pressure to β-CePdZn. The origins of these anomalous behaviors are discussed in connection with crossover and change in the topology of Fermi surface.

  15. Transparent nanocrystalline diamond coatings and devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumant, Anirudha V.; Khan, Adam

    2017-08-22

    A method for coating a substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The plasma ball has a diameter. The plasma ball is disposed at a first distance from the substrate and the substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the substrate, and a diamond coating is deposited on the substrate. The diamond coating has a thickness. Furthermore, the diamond coating has an optical transparency of greater than about 80%. The diamond coating can include nanocrystalline diamond. The microwavemore » plasma source can have a frequency of about 915 MHz.« less

  16. Enhanced Spin Conductance of a Thin-Film Insulating Antiferromagnet

    NASA Astrophysics Data System (ADS)

    Bender, Scott A.; Skarsvâg, Hans; Brataas, Arne; Duine, Rembert A.

    2017-08-01

    We investigate spin transport by thermally excited spin waves in an antiferromagnetic insulator. Starting from a stochastic Landau-Lifshitz-Gilbert phenomenology, we obtain the out-of-equilibrium spin-wave properties. In linear response to spin biasing and a temperature gradient, we compute the spin transport through a normal-metal-antiferromagnet-normal-metal heterostructure. We show that the spin conductance diverges as one approaches the spin-flop transition; this enhancement of the conductance should be readily observable by sweeping the magnetic field across the spin-flop transition. The results from such experiments may, on the one hand, enhance our understanding of spin transport near a phase transition, and on the other be useful for applications that require a large degree of tunability of spin currents. In contrast, the spin Seebeck coefficient does not diverge at the spin-flop transition. Furthermore, the spin Seebeck coefficient is finite even at zero magnetic field, provided that the normal metal contacts break the symmetry between the antiferromagnetic sublattices.

  17. Ultimate Atomic Bling: Nanotechnology of Diamonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahl, Jeremy

    2010-05-25

    Diamonds exist in all sizes, from the Hope Diamond to minuscule crystals only a few atoms across. The smallest of these diamonds are created naturally by the same processes that make petroleum. Recently, researchers discovered that these 'diamondoids' are formed in many different structural shapes, and that these shapes can be used like LEGO blocks for nanotechnology. This talk will discuss the discovery of these nano-size diamonds and highlight current SLAC/Stanford research into their applications in electronics and medicine.

  18. Brownian motion and entropic torque driven motion of domain walls in antiferromagnets

    NASA Astrophysics Data System (ADS)

    Yan, Zhengren; Chen, Zhiyuan; Qin, Minghui; Lu, Xubing; Gao, Xingsen; Liu, Junming

    2018-02-01

    We study the spin dynamics in antiferromagnetic nanowire under an applied temperature gradient using micromagnetic simulations on a classical spin model with a uniaxial anisotropy. The entropic torque driven domain-wall motion and the Brownian motion are discussed in detail, and their competition determines the antiferromagnetic wall motion towards the hotter or colder region. Furthermore, the spin dynamics in an antiferromagnet can be well tuned by the anisotropy and the temperature gradient. Thus, this paper not only strengthens the main conclusions obtained in earlier works [Kim et al., Phys. Rev. B 92, 020402(R) (2015), 10.1103/PhysRevB.92.020402; Selzer et al., Phys. Rev. Lett. 117, 107201 (2016), 10.1103/PhysRevLett.117.107201], but more importantly gives the concrete conditions under which these conclusions apply, respectively. Our results may provide useful information on the antiferromagnetic spintronics for future experiments and storage device design.

  19. High-frequency effects in antiferromagnetic Sr3Ir2O7

    NASA Astrophysics Data System (ADS)

    Williamson, Morgan; Seinige, Heidi; Shen, Shida; Wang, Cheng; Cao, Gang; Zhou, Jianshi; Goodenough, John; Tsoi, Maxim

    Antiferromagnetic (AFM) spintronics is one of many promising routes for `beyond the CMOS' technologies where unique properties of AFM materials are exploited to achieve new and improved functionalities. AFMs are especially interesting for high-speed memory applications thanks to their high natural frequencies. Here we report the effects of high-frequency (microwave) currents on transport properties of antiferromagnetic Mott insulator Sr3Ir2O7. The microwaves at 3-7 GHz were found to affect the material's current-voltage characteristic and produce resonance-like features that we tentatively associate with the dissipationless magnonics recently predicted to occur in antiferromagnetic insulators subject to ac electric fields. Our observations support the potential of antiferromagnetic materials for high-speed/high-frequency spintronic applications. This work was supported in part by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA, by NSF Grants DMR-1207577, DMR-1265162, DMR-1600057, and DMR-1122603, and by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2015-CRG4-2626.

  20. Spin caloric effects in antiferromagnets assisted by an external spin current

    NASA Astrophysics Data System (ADS)

    Gomonay, O.; Yamamoto, Kei; Sinova, Jairo

    2018-07-01

    Searching for novel spin caloric effects in antiferromagnets, we study the properties of thermally activated magnons in the presence of an external spin current and temperature gradient. We predict the spin Peltier effect—generation of a heat flux by spin accumulation—in an antiferromagnetic insulator with cubic or uniaxial magnetic symmetry. This effect is related to the spin-current induced splitting of the relaxation times of the magnons with the opposite spin direction. We show that the Peltier effect can trigger antiferromagnetic domain wall motion with a force whose value grows with the temperature of a sample. At a temperature larger than the energy of the low-frequency magnons, this force is much larger than the force caused by direct spin transfer between the spin current and the domain wall. We also demonstrate that the external spin current can induce the magnon spin Seebeck effect. The corresponding Seebeck coefficient is controlled by the current density. These spin-current assisted caloric effects open new ways for the manipulation of the magnetic states in antiferromagnets.

  1. Optical properties of antiferromagnetic/ion-crystal superlattices

    NASA Astrophysics Data System (ADS)

    Ta, Jin-Xing; Song, Yu-Ling; Wang, Xuan-Zhang

    2012-01-01

    Transmission, refraction and absorption properties of an antiferromagnetic/ion-crystal superlattice are investigated. The transmission spectra based on FeF2/TlBr superlattices reveal that there exist two intriguing guided modes in a wide stop band. Additionally, FeF2/TlBr superlattices possess either the negative refraction or the quasi left-handedness, or even simultaneously hold them at certain frequencies of two guided modes, which require both negative magnetic permeability of antiferromagnetic layers and negative permittivity of ion-crystal layers. Frequency regimes of the guided modes will be dependent on the magnitude of the external magnetic field. Therefore, handedness and refraction properties of the system can be manipulated by modifying the external magnetic field. Absorption spectra exhibit that absorption corresponding to guided modes is noticeable.

  2. Ultrafast Photoinduced Multimode Antiferromagnetic Spin Dynamics in Exchange-Coupled Fe/RFeO3 (R = Er or Dy) Heterostructures.

    PubMed

    Tang, Jin; Ke, Yajiao; He, Wei; Zhang, Xiangqun; Zhang, Wei; Li, Na; Zhang, Yongsheng; Li, Yan; Cheng, Zhaohua

    2018-05-25

    Antiferromagnetic spin dynamics is important for both fundamental and applied antiferromagnetic spintronic devices; however, it is rarely explored by external fields because of the strong exchange interaction in antiferromagnetic materials. Here, the photoinduced excitation of ultrafast antiferromagnetic spin dynamics is achieved by capping antiferromagnetic RFeO 3 (R = Er or Dy) with an exchange-coupled ferromagnetic Fe film. Compared with antiferromagnetic spin dynamics of bare RFeO 3 orthoferrite single crystals, which can be triggered effectively by ultrafast laser heating just below the phase transition temperature, the ultrafast photoinduced multimode antiferromagnetic spin dynamic modes, for exchange-coupled Fe/RFeO 3 heterostructures, including quasiferromagnetic resonance, impurity, coherent phonon, and quasiantiferromagnetic modes, are observed in a temperature range of 10-300 K. These experimental results not only offer an effective means to trigger ultrafast antiferromagnetic spin dynamics of rare-earth orthoferrites, but also shed light on the ultrafast manipulation of antiferromagnetic magnetization in Fe/RFeO 3 heterostructures. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Antiferromagnetic exchange bias of a ferromagnetic semiconductor by a ferromagnetic metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olejnik, K.; Wadley, P.; Haigh, J.

    2009-11-05

    We demonstrate an exchange bias in (Ga,Mn)As induced by antiferromagnetic coupling to a thin overlayer of Fe. Bias fields of up to 240 Oe are observed. Using element-specific x-ray magnetic circular dichroism measurements, we distinguish an interface layer that is strongly pinned antiferromagnetically to the Fe. The interface layer remains polarized at room temperature.

  4. Theoretical Study of Diamond-Like Carbons and Nucleation of Diamond

    NASA Astrophysics Data System (ADS)

    Lee, Choon-Heung

    Different forms of amorphous carbon and hydrocarbons with varying elastic and optical properties, hardness, density and hydrogen content exist depending on the preparation technique. The structure can vary from graphitic to diamond -like, i.e., from mainly threefold coordinated to mainly four-fold coordinated. In order to study the properties of such materials, microscopic models must be developed. These studies include the modelling of crosslinked defective graphite, diamond nucleation along the graphite edges, and diamond-like carbons. Tamor's proposed structure for diamondlike carbon consists of crosslinked graphitic regions. We studied a concrete realization of this model in which the cross -links are produced by shortening the interplanar bond lengths. The model study was accomplished with a pure rhombohedral graphite cell. For this study we used a semi-empirical potential based on Tersoff's environment-dependent potential which contains angular terms. It is enhanced by a long-range potential which describes the interplanar interactions. We found a configuration corresponding to a local minimum. More general features such as the randomness of the distribution of cross-links are needed for a realistic model. A model study of diamond/graphite interfaces was motivated by recent observations by Li and Angus. They observed a significant enhancement of diamond nucleation on the graphite edge planes with the preferential orientation relationship: {0001} _{g} | {111 }_{d}, < 1120 >_{g} | < 101>_{d}. Two possible interface structures were studied using the Tersoff potential. We found that the models have comparable low interface energies even if they contain some dangling bonds. Moreover, lower interface energies were found when the dangling bonds of the non-bonded diamond layer were satisfied with hydrogen. We have proposed a growth mechanism based on this study. Finally, we constructed realistic models of dense amorphous carbon. The WWW (introduced earlier for a

  5. X-ray topographic study of diamonds: implications for the genetic nature of inclusions in diamond

    NASA Astrophysics Data System (ADS)

    Agrosì, Giovanna; Nestola, Fabrizio; Tempesta, Gioacchino; Bruno, Marco; Scandale, Eugenio; Harris, Jeff W.

    2014-05-01

    In recent years, several studies have focused on the growth conditions of the diamonds through the analysis of the mineral inclusions trapped in them (Howell, 2012 and references therein). Nevertheless, to obtain rigorous information about chemical and physical conditions of diamond formation, it is crucial to determine if the crystallization of the inclusions occurred before (protogenetic nature), during (syngenetic nature) or after (epigenetic nature) the growth of diamond (Wiggers de Vries et al., 2011). X-ray topography (XRDT) can be a helpful tool to verify the genetic nature of inclusions in diamond. This technique characterizes the extended defects and reconstructs the growth history of the samples (Agrosì et al., 2013 and references therein) and, consequently contributes to elucidation of the relationship between the inclusions and the host-diamond. With this aim a diamond from the Udachnaya kimberlite, Siberia, was investigated. The diamond crystal was the one previously studied by Nestola et al. (2011) who performed in-situ crystal structure refinement of the inclusions to obtain data about the formation pressure. The inclusions were iso-oriented olivines that did not show evident cracks and subsequently could not be considered epigenetic. Optical observations revealed an anomalous birefringence in the adjacent diamond and the inclusions had typical "diamond-imposed cubo-octahedral" shape for the largest olivine. The diffraction contrast study shows that the diamond exhibits significant deformation fields related to plastic post growth deformation. The crystallographic direction of strains was established applying the extinction criterion. Section topographs were taken to minimize the overlapping of the strain field associate with the different defects and revealed that no dislocations nucleated from the olivine inclusions. Generally, when a solid inclusion has been incorporated in the growing crystal, the associated volume distortion can be minimized by

  6. Spin Wave Theory in Two-Dimensional Coupled Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Shimahara, Hiroshi

    2018-04-01

    We apply spin wave theory to two-dimensional coupled antiferromagnets. In particular, we primarily examine a system that consists of small spins coupled by a strong exchange interaction J1, large spins coupled by a weak exchange interaction J2, and an anisotropic exchange interaction J12 between the small and large spins. This system is an effective model of the organic antiferromagnet λ-(BETS)2FeCl4 in its insulating phase, in which intriguing magnetic phenomena have been observed, where the small and large spins correspond to π electrons and 3d spins, respectively. BETS stands for bis(ethylenedithio)tetraselenafulvalene. We obtain the antiferromagnetic transition temperature TN and the sublattice magnetizations m(T) and M(T) of the small and large spins, respectively, as functions of the temperature T. When T increases, m(T) is constant with a slight decrease below TN, even where M(T) decreases significantly. When J1 ≫ J12 and J2 = 0, an analytical expression for TN is derived. The estimated value of TN and the behaviors of m(T) and M(T) agree with the observations of λ-(BETS)2FeCl4.

  7. Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase

    NASA Astrophysics Data System (ADS)

    Neogi, S. K.; Karmakar, R.; Misra, A. K.; Banerjee, A.; Das, D.; Bandyopadhyay, S.

    2013-11-01

    Structural, morphological, optical, and magnetic properties of nanocrystalline Zn1-xMnxO samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol-gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV-visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO3) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components τ1 and τ2 are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. Single phase structure has been observed up to 6 at% of Mn doping. Impurity phase has been developed above 6 at% of Mn doping. Antiferromagnetic and paramagnetic interactions are present in the samples. Defect parameters show sharp fall as Mn concentration above 6 at%. The magnetic and defect properties are modified by the formation of impurity phase.

  8. Conversion of fullerenes to diamond

    DOEpatents

    Gruen, Dieter M.

    1994-01-01

    A method of forming synthetic diamond on a substrate. The method involves providing a substrate surface covered with a fullerene or diamond coating, positioning a fullerene in an ionization source, creating a fullerene vapor, ionizing fullerene molecules, accelerating the fullerene ions to energies above 250 eV to form a fullerene ion beam, impinging the fullerene ion beam on the substrate surface and continuing these steps to obtain a diamond film thickness on the substrate.

  9. Diamond formation through isochemical cooling of CHO fluids vs redox buffering: examples from Marange peridotitic and Zimmi eclogitic diamonds

    NASA Astrophysics Data System (ADS)

    Smit, Karen V.; Stachel, Thomas; Stern, Richard A.; Shirey, Steven B.; Steele, Andrew

    2017-04-01

    Traditional models for diamond formation within the lithospheric mantle invoke either carbonate reduction or methane oxidation. Both these mechanisms require some oxygen exchange with the surrounding wall-rock at the site of diamond precipitation. However, peridotite does not have sufficient buffering capacity to allow for diamond formation via these traditional models and instead peridotitic diamonds may form through isochemical cooling of H2O-rich CHO fluids [1]. Marange mixed-habit diamonds from eastern Zimbabwe provide the first natural confirmation of this new diamond growth model [2]. Although Marange diamonds do not contain any silicate or sulphide inclusions, they contain Ni-N-vacancy complexes detected through photoluminescence (PL) spectroscopy that suggest the source fluids equilibrated in the Ni-rich depleted peridotitic lithosphere. Cuboid sectors also contain abundant micro-inclusions of CH4, the first direct observation of reduced CH4-rich fluids that are thought to percolate through the lithospheric mantle [2]. In fluid inclusion-free diamonds, core-to-rim trends in δ13C and N content are used to infer the speciation of the diamond-forming fluid. Core to rim trends of increasing δ13C with decreasing N content are interpreted as diamond growth from oxidized CO2- or carbonate-bearing fluids. Diamond growth from reduced species should show the opposite trends - decreasing δ13C from core to rim with decreasing N content. Within the CH4-bearing growth sectors of Marange diamonds, however, such a 'reduced' trend is not observed. Rather, δ13C increases from core to rim within a homogeneously grown zone [2]. These contradictory observations can be explained through either mixing between CH4- and CO2-rich end-members of hydrous fluids [2] or through closed system precipitation from an already mixed CH4-CO2 H2O-maximum fluid with XCO2 (CO2/[CO2+CH4]) between 0.3 and 0.7 [3]. These results demonstrate that Marange diamonds precipitated from cooling CH4-CO2

  10. Vertex functions at finite momentum: Application to antiferromagnetic quantum criticality

    NASA Astrophysics Data System (ADS)

    Wölfle, Peter; Abrahams, Elihu

    2016-02-01

    We analyze the three-point vertex function that describes the coupling of fermionic particle-hole pairs in a metal to spin or charge fluctuations at nonzero momentum. We consider Ward identities, which connect two-particle vertex functions to the self-energy, in the framework of a Hubbard model. These are derived using conservation laws following from local symmetries. The generators considered are the spin density and particle density. It is shown that at certain antiferromagnetic critical points, where the quasiparticle effective mass is diverging, the vertex function describing the coupling of particle-hole pairs to the spin density Fourier component at the antiferromagnetic wave vector is also divergent. Then we give an explicit calculation of the irreducible vertex function for the case of three-dimensional antiferromagnetic fluctuations, and show that it is proportional to the diverging quasiparticle effective mass.

  11. Multiplying Electrons With Diamond

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As researchers in the Space Communications Division of NASA s Glenn Research Center in 1992, Dr. Gerald Mearini, Dr. Isay Krainsky, and Dr. James Dayton made a secondary electron emission discovery that became the foundation for Mearini s company, GENVAC AeroSpace Corporation. Even after Mearini departed Glenn, then known as Lewis Research Center, his contact with NASA remained strong as he was awarded Small Business Innovation Research (SBIR) contracts to further develop his work. Mearini s work for NASA began with the investigation of diamond as a material for the suppression of secondary electron emissions. The results of his research were the opposite of what was expected diamond proved to be an excellent emitter rather than absorber. Mearini, Krainsky, and Dayton discovered that laboratory-grown diamond films can produce up to 45 electrons from a single incident electron. Having built an electron multiplier prototype at NASA, Mearini decided to start his own company to develop diamond structures usable in electron beam devices.

  12. Field-Induced Transitions in Anisotropic Kondo Lattice — Application to CeT2Al10 —

    NASA Astrophysics Data System (ADS)

    Kikuchi, Taku; Hoshino, Shintaro; Shibata, Naokazu; Kuramoto, Yoshio

    2017-09-01

    The magnetic properties of an anisotropic Kondo lattice are investigated under a magnetic field using dynamical mean field theory and the continuous-time quantum Monte Carlo method. The magnetic phase diagram is determined from the temperature dependence of both uniform and staggered magnetizations in magnetic fields. We find a spin-flop transition inside the antiferromagnetic (AF) phase, whose transition field increases with increasing Kondo coupling while the AF transition temperature decreases. These results cannot be described by a simple spin Hamiltonian and are consistent with the experimental results of the field-induced transition observed in CeT2Al10 (T = Ru, Os). The anisotropic susceptibilities of CeT2Al10 are reproduced in the whole temperature range by incorporating the effects of the crystalline electric field (CEF) in the anisotropic Kondo lattice. We also propose a possible explanation for the difference in anisotropies between the magnetic susceptibility and AF moments observed in experiments.

  13. Magnetic structure and local lattice distortion in giant negative thermal expansion material Mn3Cu1-xGexN

    NASA Astrophysics Data System (ADS)

    Iikubo, S.; Kodama, K.; Takenaka, K.; Takagi, H.; Shamoto, S.

    2010-11-01

    Magnetic and local structures in an antiperovskite system, Mn3Cu1-xGexN, with a giant negative thermal expansion have been studied by neutron powder diffraction measurement. We discuss (1) an importance of an averaged cubic crystal structure and a ΓG5g antiferromagnetic spin structure for the large magneto-volume effect (MVE) in this itinerant electron system, (2) an unique role of a local lattice distortion well described by the low temperature tetragonal structure of Mn3GeN for the broadening of MVE.

  14. Diamond nanowires: fabrication, structure, properties, and applications.

    PubMed

    Yu, Yuan; Wu, Liangzhuan; Zhi, Jinfang

    2014-12-22

    C(sp(3) )C-bonded diamond nanowires are wide band gap semiconductors that exhibit a combination of superior properties such as negative electron affinity, chemical inertness, high Young's modulus, the highest hardness, and room-temperature thermal conductivity. The creation of 1D diamond nanowires with their giant surface-to-volume ratio enhancements makes it possible to control and enhance the fundamental properties of diamond. Although theoretical comparisons with carbon nanotubes have shown that diamond nanowires are energetically and mechanically viable structures, reproducibly synthesizing the crystalline diamond nanowires has remained challenging. We present a comprehensive, up-to-date review of diamond nanowires, including a discussion of their synthesis along with their structures, properties, and applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Diamond Technology Initiative

    DTIC Science & Technology

    1994-05-01

    thermal stresses of 10 million Watts per meter, 1,000 times better than Zerodur *. This property is also important for many thermal management...products UTD has coated to date include: • Optical windows, lenses, and mirrors . Zinc sulfide infrared windows coated with a 2.5 micron-thick...implants 16, 49 microwave plasma-enhanced CVD 2 mirrors , diamond-coated 49 models of diamond growth 10, 25, 33, 34, 39 moderators 10

  16. Candidate for a fully frustrated square lattice in a verdazyl-based salt

    NASA Astrophysics Data System (ADS)

    Yamaguchi, H.; Tamekuni, Y.; Iwasaki, Y.; Hosokoshi, Y.

    2018-05-01

    We present an experimental realization of an S =1 /2 fully frustrated square lattice (FFSL) composed of a verdazyl-based salt (p -MePy-V) (TCNQ ) .(CH3)2CO . Ab initio molecular orbital calculations indicate that there are four types of competing ferro- and antiferromagnetic nearest-neighbor interactions present in the system, which combine to form an S =1 /2 FFSL. Below room temperature, the magnetic susceptibility of the material can be considered to arise from the S =1 /2 FFSL formed by the p -MePy-V and indicates that the system forms a quantum valence-bond solid state whose excitation energy is gapped. Furthermore, we also observe semiconducting behavior arising from the one-dimensional chain structure of the TCNQ molecules.

  17. Materials, Devices and Spin Transfer Torque in Antiferromagnetic Spintronics: A Concise Review

    NASA Astrophysics Data System (ADS)

    Coileáin, Cormac Ó.; Wu, Han Chun

    From historical obscurity, antiferromagnets are recently enjoying revived interest, as antiferromagnetic (AFM) materials may allow the continued reduction in size of spintronic devices. They have the benefit of being insensitive to parasitic external magnetic fields, while displaying high read/write speeds, and thus poised to become an integral part of the next generation of logical devices and memory. They are currently employed to preserve the magnetoresistive qualities of some ferromagnetic based giant or tunnel magnetoresistance systems. However, the question remains how the magnetic states of an antiferromagnet can be efficiently manipulated and detected. Here, we reflect on AFM materials for their use in spintronics, in particular, newly recognized antiferromagnet Mn2Au with its in-plane anisotropy and tetragonal structure and high Néel temperature. These attributes make it one of the most promising candidates for AFM spintronics thus far with the possibility of architectures freed from the need for ferromagnetic (FM) elements. Here, we discuss its potential for use in ferromagnet-free spintronic devices.

  18. Spin transfer and spin pumping in disordered normal metal-antiferromagnetic insulator systems

    NASA Astrophysics Data System (ADS)

    Gulbrandsen, Sverre A.; Brataas, Arne

    2018-02-01

    We consider an antiferromagnetic insulator that is in contact with a metal. Spin accumulation in the metal can induce spin-transfer torques on the staggered field and on the magnetization in the antiferromagnet. These torques relate to spin pumping: the emission of spin currents into the metal by a precessing antiferromagnet. We investigate how the various components of the spin-transfer torque are affected by spin-independent disorder and spin-flip scattering in the metal. Spin-conserving disorder reduces the coupling between the spins in the antiferromagnet and the itinerant spins in the metal in a manner similar to Ohm's law. Spin-flip scattering leads to spin-memory loss with a reduced spin-transfer torque. We discuss the concept of a staggered spin current and argue that it is not a conserved quantity. Away from the interface, the staggered spin current varies around a 0 mean in an irregular manner. A network model explains the rapid decay of the staggered spin current.

  19. Effects of size, shape, and frequency on the antiferromagnetic resonance linewidth of MnF

    NASA Technical Reports Server (NTRS)

    Obrien, K. C.

    1973-01-01

    The research concerning the properties and application of solid state materials at submillimeter frequencies is summarized. Work reported includes: far infrared Fourier spectroscopy; studies of the antiferromagnetic resonance line in MnF2 at millimeter wavelengths; numerical solution of the equations of motion of a general two-sublattice antiferromagnet; study of antiferromagnetic resonance line in NiO powder; and resonance investigations of several indium thisospinels at millimeter wavelengths.

  20. Note: Evaluation of microfracture strength of diamond materials using nano-polycrystalline diamond spherical indenter

    NASA Astrophysics Data System (ADS)

    Sumiya, H.; Hamaki, K.; Harano, K.

    2018-05-01

    Ultra-hard and high-strength spherical indenters with high precision and sphericity were successfully prepared from nanopolycrystalline diamond (NPD) synthesized by direct conversion sintering from graphite under high pressure and high temperature. It was shown that highly accurate and stable microfracture strength tests can be performed on various super-hard diamond materials by using the NPD spherical indenters. It was also verified that this technique enables quantitative evaluation of the strength characteristics of single crystal diamonds and NPDs which have been quite difficult to evaluate.