Science.gov

Sample records for diamond light source

  1. Diamond Light Source: status and perspectives

    PubMed Central

    Materlik, Gerhard; Rayment, Trevor; Stuart, David I.

    2015-01-01

    Diamond Light Source, a third-generation synchrotron radiation (SR) facility in the UK, celebrated its 10th anniversary in 2012. A private limited company was set up in April 2002 to plan, construct and operate the new user-oriented SR facility, called in brief Diamond. It succeeded the Synchrotron Radiation Source in Daresbury, a second-generation synchrotron that opened in 1980 as the world's first dedicated X-ray-providing facility, closing finally in 2008, by which time Diamond's accelerators and first beamlines were operating and user experiments were under way. This theme issue of Philosophical Transactions of the Royal Society A gives some examples of the rich diversity of research done in the initial five years, with some glimpses of activity up to 2014. Speakers at the 10 year anniversary symposium were drawn from a small number of major thematic areas and each theme was elaborated by a few speakers whose contributions were placed into a broader context by a leading member of the UK academic community in the role of rapporteur. This introduction gives a summary of the design choices and strategic planning of Diamond as a coherent user facility, a snapshot of its present status and some consideration of future perspectives. PMID:25624517

  2. The Nanoscience Beamline (I06) at Diamond Light Source

    SciTech Connect

    Dhesi, S. S.; Cavill, S. A.; Potenza, A.; Marchetto, H.; Mott, R. A.; Steadman, P.; Peach, A.; Shepherd, E. L.; Ren, X.; Wagner, U. H.; Reininger, R.

    2010-06-23

    The Nanoscience beamline (I06) is one of seven Diamond Phase-I beamlines which has been operational since January 2007 delivering polarised soft x-rays, for a PhotoEmission Electron Microscope (PEEM) and branchline, in the energy range 80-2100 eV. The beamline is based on a collimated plane grating monochromator with sagittal focusing elements, utilising two APPLE II helical undulator sources, and has been designed for high flux density at the PEEM sample position. A {approx}5 {mu}m ({sigma}) diameter beam is focussed onto the sample in the PEEM allowing a range of experiments using x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD) and x-ray magnetic linear dichroism (XMLD) as contrast mechanisms. The beamline is also equipped with a branchline housing a 6T superconducting magnet for XMCD and XMLD experiments. The magnet is designed to move on and off the branchline which allows a diverse range of experiments.

  3. The Nanoscience Beamline (I06) at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Dhesi, S. S.; Cavill, S. A.; Potenza, A.; Marchetto, H.; Mott, R. A.; Steadman, P.; Peach, A.; Shepherd, E. L.; Ren, X.; Wagner, U. H.; Reininger, R.

    2010-06-01

    The Nanoscience beamline (I06) is one of seven Diamond Phase-I beamlines which has been operational since January 2007 delivering polarised soft x-rays, for a PhotoEmission Electron Microscope (PEEM) and branchline, in the energy range 80-2100 eV. The beamline is based on a collimated plane grating monochromator with sagittal focusing elements, utilising two APPLE II helical undulator sources, and has been designed for high flux density at the PEEM sample position. A ˜5 μm (σ) diameter beam is focussed onto the sample in the PEEM allowing a range of experiments using x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD) and x-ray magnetic linear dichroism (XMLD) as contrast mechanisms. The beamline is also equipped with a branchline housing a 6T superconducting magnet for XMCD and XMLD experiments. The magnet is designed to move on and off the branchline which allows a diverse range of experiments.

  4. Beam-based model of broad-band impedance of the Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Smaluk, Victor; Martin, Ian; Fielder, Richard; Bartolini, Riccardo

    2015-06-01

    In an electron storage ring, the interaction between a single-bunch beam and a vacuum chamber impedance affects the beam parameters, which can be measured rather precisely. So we can develop beam-based numerical models of longitudinal and transverse impedances. At the Diamond Light Source (DLS) to get the model parameters, a set of measured data has been used including current-dependent shift of betatron tunes and synchronous phase, chromatic damping rates, and bunch lengthening. A matlab code for multiparticle tracking has been developed. The tracking results and analytical estimations are quite consistent with the measured data. Since Diamond has the shortest natural bunch length among all light sources in standard operation, the studies of collective effects with short bunches are relevant to many facilities including next generation of light sources.

  5. An Update of The Diagnostic Systems Proposed for The New Third Generation UK Light Source, DIAMOND

    NASA Astrophysics Data System (ADS)

    Buckley, Stephen R.; Dufau, Michael J.; Smith, Robert J.

    2002-12-01

    This paper describes the currently proposed systems for electron beam position monitoring (EBPM) and diagnostics for the DIAMOND synchrotron. Although the basic requirements have remained unaltered, the philosophy of implementation has been subject to change, influenced by the experiences of other national light sources, and the emerging availability of commercial equipment, suited to the needs of DIAMOND. This paper focuses in greatest detail on the storage ring systems, including data acquisition and control. Details of Total Current Monitor (TCM) systems, and an active, beam position based interlock system for protecting ID vessels against thermal damage, by beam mis-steer, are also included.

  6. Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source

    SciTech Connect

    Zhu, Diling Feng, Yiping; Lemke, Henrik T.; Fritz, David M.; Chollet, Matthieu; Glownia, J. M.; Alonso-Mori, Roberto; Sikorski, Marcin; Song, Sanghoon; Williams, Garth J.; Messerschmidt, Marc; Boutet, Sébastien; Robert, Aymeric; Stoupin, Stanislav; Shvyd'ko, Yuri V.; Terentyev, Sergey A.; Blank, Vladimir D.; Driel, Tim B. van

    2014-06-15

    A double-crystal diamond monochromator was recently implemented at the Linac Coherent Light Source. It enables splitting pulses generated by the free electron laser in the hard x-ray regime and thus allows the simultaneous operations of two instruments. Both monochromator crystals are High-Pressure High-Temperature grown type-IIa diamond crystal plates with the (111) orientation. The first crystal has a thickness of ∼100 μm to allow high reflectivity within the Bragg bandwidth and good transmission for the other wavelengths for downstream use. The second crystal is about 300 μm thick and makes the exit beam of the monochromator parallel to the incoming beam with an offset of 600 mm. Here we present details on the monochromator design and its performance.

  7. CDApps: integrated software for experimental planning and data processing at beamline B23, Diamond Light Source

    PubMed Central

    Hussain, Rohanah; Benning, Kristian; Javorfi, Tamas; Longo, Edoardo; Rudd, Timothy R.; Pulford, Bill; Siligardi, Giuliano

    2015-01-01

    The B23 Circular Dichroism beamline at Diamond Light Source has been operational since 2009 and has seen visits from more than 200 user groups, who have generated large amounts of data. Based on the experience of overseeing the users’ progress at B23, four key areas requiring the most assistance are identified: planning of experiments and note-keeping; designing titration experiments; processing and analysis of the collected data; and production of experimental reports. To streamline these processes an integrated software package has been developed and made available for the users. The subsequent article summarizes the main features of the software. PMID:25723950

  8. I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source.

    PubMed

    Drakopoulos, Michael; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz

    2015-05-01

    I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50-150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics. PMID:25931103

  9. I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source

    PubMed Central

    Drakopoulos, Michael; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz

    2015-01-01

    I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50–150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics. PMID:25931103

  10. A time resolved microfocus XEOL facility at the Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Mosselmans, J. F. W.; Taylor, R. P.; Quinn, P. D.; Finch, A. A.; Cibin, G.; Gianolio, D.; Sapelkin, A. V.

    2013-03-01

    We have constructed a Time-Resolved X-ray Excited Optical Luminescence (TR-XEOL) detection system at the Microfocus Spectroscopy beamline I18 at the Diamond Light Source. Using the synchrotron in "hybrid bunch mode", the data collection is triggered by the RF clock, and we are able to record XEOL photons with a time resolution of 6.1 ps during the 230 ns gap between the hybrid bunch and the main train of electron bunches. We can detect photons over the range 180-850 nm using a bespoke optical fibre, with X-ray excitation energies between 2 and 20 keV. We have used the system to study a range of feldspars. The detector is portable and has also been used on beamline B18 to collect Optically Determined X-ray Absorption Spectroscopy (OD-XAS) in QEXAFS mode.

  11. The contribution of Diamond Light Source to the study of strongly correlated electron systems and complex magnetic structures

    SciTech Connect

    Radaelli, P. G.; Dhesi, S. S.

    2015-01-26

    We review some of the significant contributions to the field of strongly correlated materials and complex magnets, arising from experiments performed at the Diamond Light Source (Harwell Science and Innovation Campus, Didcot, UK) during the first few years of operation (2007–2014). We provide a comprehensive overview of Diamond research on topological insulators, multiferroics, complex oxides and magnetic nanostructures. Several experiments on ultrafast dynamics, magnetic imaging, photoemission electron microscopy, soft X-ray holography and resonant magnetic hard and soft X-ray scattering are described.

  12. The contribution of Diamond Light Source to the study of strongly correlated electron systems and complex magnetic structures.

    PubMed

    Radaelli, P G; Dhesi, S S

    2015-03-01

    We review some of the significant contributions to the field of strongly correlated materials and complex magnets, arising from experiments performed at the Diamond Light Source (Harwell Science and Innovation Campus, Didcot, UK) during the first few years of operation (2007-2014). We provide a comprehensive overview of Diamond research on topological insulators, multiferroics, complex oxides and magnetic nanostructures. Several experiments on ultrafast dynamics, magnetic imaging, photoemission electron microscopy, soft X-ray holography and resonant magnetic hard and soft X-ray scattering are described. PMID:25624510

  13. Impact of the Diamond Light Source on research in Earth and environmental sciences: current work and future perspectives.

    PubMed

    Burke, Ian T; Mosselmans, J Frederick W; Shaw, Samuel; Peacock, Caroline L; Benning, Liane G; Coker, Victoria S

    2015-03-01

    Diamond Light Source Ltd celebrated its 10th anniversary as a company in December 2012 and has now accepted user experiments for over 5 years. This paper describes the current facilities available at Diamond and future developments that enhance its capacities with respect to the Earth and environmental sciences. A review of relevant research conducted at Diamond thus far is provided. This highlights how synchrotron-based studies have brought about important advances in our understanding of the fundamental parameters controlling highly complex mineral-fluid-microbe interface reactions in the natural environment. This new knowledge not only enhances our understanding of global biogeochemical processes, but also provides the opportunity for interventions to be designed for environmental remediation and beneficial use. PMID:25624516

  14. Impact of the Diamond Light Source on research in Earth and environmental sciences: current work and future perspectives

    PubMed Central

    Burke, Ian T.; Mosselmans, J. Frederick W.; Shaw, Samuel; Peacock, Caroline L.; Benning, Liane G.; Coker, Victoria S.

    2015-01-01

    Diamond Light Source Ltd celebrated its 10th anniversary as a company in December 2012 and has now accepted user experiments for over 5 years. This paper describes the current facilities available at Diamond and future developments that enhance its capacities with respect to the Earth and environmental sciences. A review of relevant research conducted at Diamond thus far is provided. This highlights how synchrotron-based studies have brought about important advances in our understanding of the fundamental parameters controlling highly complex mineral–fluid–microbe interface reactions in the natural environment. This new knowledge not only enhances our understanding of global biogeochemical processes, but also provides the opportunity for interventions to be designed for environmental remediation and beneficial use. PMID:25624516

  15. Developments in Polarization and Energy Control of APPLE-II Undulators at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Longhi, E. C.; Bencok, P.; Dobrynin, A.; Rial, E. C. M.; Rose, A.; Steadman, P.; Thompson, C.; Thomson, A.; Wang, H.

    2013-03-01

    A pair of 2m long APPLE-II type undulators have been built for the I10 BLADE beamline at Diamond Light Source. These 48mm period devices have gap as well as four moveable phase axes which provide the possibility to produce the full range of elliptical polarizations as well as linear polarization tilted through a full 180deg. The mechanical layout chosen has a 'master and slave' arrangement of the phase axes on the top and bottom. This arrangement allows the use of symmetries to provide operational ease for both changing energy using only the master phase while keeping fixed linear horizontal or circular polarization, as well as changing linear polarization angle while keeping fixed energy [1]. The design allows very fast motion of the master phase arrays, without sacrifice of accuracy, allowing the possibility of mechanical polarization switching at 1Hz for dichroism experiments. We present the mechanical design features of these devices, as well as the results of magnetic measurements and shimming from before installation. Finally, we present the results of characterization of these devices by the beamline, including polarimetry, which has been done on the various modes of motion to control energy and polarization. These modes of operation have been available to users since 2011.

  16. Cold vacuum chamber for diagnostics: Analysis of the measurements at the Diamond Light Source and impedance bench measurements

    NASA Astrophysics Data System (ADS)

    Voutta, R.; Gerstl, S.; Casalbuoni, S.; Grau, A. W.; Holubek, T.; Saez de Jauregui, D.; Bartolini, R.; Cox, M. P.; Longhi, E. C.; Rehm, G.; Schouten, J. C.; Walker, R. P.; Migliorati, M.; Spataro, B.

    2016-05-01

    The beam heat load is an important input parameter needed for the cryogenic design of superconducting insertion devices. Theoretical models taking into account the different heating mechanisms of an electron beam to a cold bore predict smaller values than the ones measured with several superconducting insertion devices installed in different electron storage rings. In order to measure and possibly understand the beam heat load to a cold bore, a cold vacuum chamber for diagnostics (COLDDIAG) has been built. COLDDIAG is equipped with temperature sensors, pressure gauges, mass spectrometers as well as retarding field analyzers which allow to measure the beam heat load, total pressure, and gas content as well as the flux of particles hitting the chamber walls. COLDDIAG was installed in a straight section of the Diamond Light Source (DLS). In a previous paper the experimental equipment as well as the installation of COLDDIAG in the DLS are described [S. Gerstl et al., Phys. Rev. ST Accel. Beams 17, 103201 (2014)]. In this paper we present an overview of all the measurements performed with COLDDIAG at the DLS and their detailed analysis, as well as impedance bench measurements of the cold beam vacuum chamber performed at the Karlsruhe Institute of Technology after removal from the DLS. Relevant conclusions for the cryogenic design of superconducting insertion devices are drawn from the obtained results.

  17. X-ray imaging of subsurface dynamics in high-Z materials at the Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Eakins, D. E.; Chapman, D. J.

    2014-12-01

    In this paper, we describe a new approach enabling study of subsurface dynamics in high-Z materials using the unique combination of high-energy synchrotron X-rays, a hybrid bunch structure, and a new dynamic loading platform. We detail the design and operation of the purpose-built, portable small bore gas-gun, which was installed on the I12 high-energy beamline at the Diamond Light Source and used to drive compression waves into solid and porous metal targets. Using a hybrid bunch structure and broadband X-ray pulses of up to 300 keV, radiographic snapshots were captured during various dynamic deformation processes in cm-scale specimens, thereby contributing to a more complete understanding of the evolution of mesoscale damage. Importantly, we highlight strategies for overcoming the challenges associated with using high-energy X-rays, and suggest areas for improvement needed to advance dynamic imaging through large-scale samples of relevance to engineering scenarios. These preliminary measurements demonstrate the feasibility of probing highly transient phenomena using the presented methodology.

  18. All-diamond optical assemblies for a beam-multiplexing X-ray monochromator at the Linac Coherent Light Source.

    PubMed

    Stoupin, S; Terentyev, S A; Blank, V D; Shvyd'ko, Yu V; Goetze, K; Assoufid, L; Polyakov, S N; Kuznetsov, M S; Kornilov, N V; Katsoudas, J; Alonso-Mori, R; Chollet, M; Feng, Y; Glownia, J M; Lemke, H; Robert, A; Sikorski, M; Song, S; Zhu, D

    2014-08-01

    A double-crystal diamond (111) monochromator recently implemented at the Linac Coherent Light Source (LCLS) enables splitting of the primary X-ray beam into a pink (transmitted) and a monochromatic (reflected) branch. The first monochromator crystal, with a thickness of ∼100 µm, provides sufficient X-ray transmittance to enable simultaneous operation of two beamlines. This article reports the design, fabrication and X-ray characterization of the first and second (300 µm-thick) crystals utilized in the monochromator and the optical assemblies holding these crystals. Each crystal plate has a region of about 5 × 2 mm with low defect concentration, sufficient for use in X-ray optics at the LCLS. The optical assemblies holding the crystals were designed to provide mounting on a rigid substrate and to minimize mounting-induced crystal strain. The induced strain was evaluated using double-crystal X-ray topography and was found to be small over the 5 × 2 mm working regions of the crystals. PMID:25242912

  19. All-diamond optical assemblies for a beam-multiplexing X-ray monochromator at the Linac Coherent Light Source

    PubMed Central

    Stoupin, S.; Terentyev, S. A.; Blank, V. D.; Shvyd’ko, Yu. V.; Goetze, K.; Assoufid, L.; Polyakov, S. N.; Kuznetsov, M. S.; Kornilov, N. V.; Katsoudas, J.; Alonso-Mori, R.; Chollet, M.; Feng, Y.; Glownia, J. M.; Lemke, H.; Robert, A.; Sikorski, M.; Song, S.; Zhu, D.

    2014-01-01

    A double-crystal diamond (111) monochromator recently implemented at the Linac Coherent Light Source (LCLS) enables splitting of the primary X-ray beam into a pink (transmitted) and a monochromatic (reflected) branch. The first monochromator crystal, with a thickness of ∼100 µm, provides sufficient X-ray transmittance to enable simultaneous operation of two beamlines. This article reports the design, fabrication and X-ray characterization of the first and second (300 µm-thick) crystals utilized in the monochromator and the optical assemblies holding these crystals. Each crystal plate has a region of about 5 × 2 mm with low defect concentration, sufficient for use in X-ray optics at the LCLS. The optical assemblies holding the crystals were designed to provide mounting on a rigid substrate and to minimize mounting-induced crystal strain. The induced strain was evaluated using double-crystal X-ray topography and was found to be small over the 5 × 2 mm working regions of the crystals. PMID:25242912

  20. X-ray imaging of subsurface dynamics in high-Z materials at the Diamond Light Source

    SciTech Connect

    Eakins, D. E. Chapman, D. J.

    2014-12-15

    In this paper, we describe a new approach enabling study of subsurface dynamics in high-Z materials using the unique combination of high-energy synchrotron X-rays, a hybrid bunch structure, and a new dynamic loading platform. We detail the design and operation of the purpose-built, portable small bore gas-gun, which was installed on the I12 high-energy beamline at the Diamond Light Source and used to drive compression waves into solid and porous metal targets. Using a hybrid bunch structure and broadband X-ray pulses of up to 300 keV, radiographic snapshots were captured during various dynamic deformation processes in cm-scale specimens, thereby contributing to a more complete understanding of the evolution of mesoscale damage. Importantly, we highlight strategies for overcoming the challenges associated with using high-energy X-rays, and suggest areas for improvement needed to advance dynamic imaging through large-scale samples of relevance to engineering scenarios. These preliminary measurements demonstrate the feasibility of probing highly transient phenomena using the presented methodology.

  1. Design, development and use of the spectrometer for investigating coherent THz radiation produced by micro-bunching instabilities at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Finn, Aiveen; Karataev, Pavel; Rehm, Guenther

    2016-07-01

    Schottky barrier diodes (SBDs) are known for their low noise, ultra-fast response and excellent sensitivity. They are often implemented as detectors in the millimetre wavelength regime. Micro-bunch instabilities (MBI) have been detected at many light sources around the world including the Diamond Light Source, UK. These MBI can result in bursts of coherent synchrotron radiation (CSR) with millimetre wavelengths. More research needs to be carried out with regards to the dynamics of MBI in order to confirm the simulations and to eventually harness the power of the CSR bursts. A single shot spectrometer has been designed and is under operation at the Diamond Light Source (DLS). It is composed of eight SBDs ranging from 33-1000 GHz. Unlike previous measurements carried out, each of the SBDs has been individually characterised thus making the results obtained comparable to simulations. In this paper, we present the assessment of each SBD in the spectrometer and the first results of the spectrometer's use in the beam.

  2. Light Source

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Research on food growth for long duration spacecraft has resulted in a light source for growing plants indoors known as Qbeam, a solid state light source consisting of a control unit and lamp. The light source, manufactured by Quantum Devices, Inc., is not very hot, although it generates high intensity radiation. When Ron Ignatius, an industrial partner of WCSAR, realized that terrestrial plant research lighting was not energy efficient enough for space use, he and WCSAR began to experiment with light emitting diodes. A line of LED products was developed, and QDI was formed to market the technology. An LED-based cancer treatment device is currently under development.

  3. A high-throughput system for high-quality tomographic reconstruction of large datasets at Diamond Light Source

    PubMed Central

    Atwood, Robert C.; Bodey, Andrew J.; Price, Stephen W. T.; Basham, Mark; Drakopoulos, Michael

    2015-01-01

    Tomographic datasets collected at synchrotrons are becoming very large and complex, and, therefore, need to be managed efficiently. Raw images may have high pixel counts, and each pixel can be multidimensional and associated with additional data such as those derived from spectroscopy. In time-resolved studies, hundreds of tomographic datasets can be collected in sequence, yielding terabytes of data. Users of tomographic beamlines are drawn from various scientific disciplines, and many are keen to use tomographic reconstruction software that does not require a deep understanding of reconstruction principles. We have developed Savu, a reconstruction pipeline that enables users to rapidly reconstruct data to consistently create high-quality results. Savu is designed to work in an ‘orthogonal’ fashion, meaning that data can be converted between projection and sinogram space throughout the processing workflow as required. The Savu pipeline is modular and allows processing strategies to be optimized for users' purposes. In addition to the reconstruction algorithms themselves, it can include modules for identification of experimental problems, artefact correction, general image processing and data quality assessment. Savu is open source, open licensed and ‘facility-independent’: it can run on standard cluster infrastructure at any institution. PMID:25939626

  4. A high-throughput system for high-quality tomographic reconstruction of large datasets at Diamond Light Source.

    PubMed

    Atwood, Robert C; Bodey, Andrew J; Price, Stephen W T; Basham, Mark; Drakopoulos, Michael

    2015-06-13

    Tomographic datasets collected at synchrotrons are becoming very large and complex, and, therefore, need to be managed efficiently. Raw images may have high pixel counts, and each pixel can be multidimensional and associated with additional data such as those derived from spectroscopy. In time-resolved studies, hundreds of tomographic datasets can be collected in sequence, yielding terabytes of data. Users of tomographic beamlines are drawn from various scientific disciplines, and many are keen to use tomographic reconstruction software that does not require a deep understanding of reconstruction principles. We have developed Savu, a reconstruction pipeline that enables users to rapidly reconstruct data to consistently create high-quality results. Savu is designed to work in an 'orthogonal' fashion, meaning that data can be converted between projection and sinogram space throughout the processing workflow as required. The Savu pipeline is modular and allows processing strategies to be optimized for users' purposes. In addition to the reconstruction algorithms themselves, it can include modules for identification of experimental problems, artefact correction, general image processing and data quality assessment. Savu is open source, open licensed and 'facility-independent': it can run on standard cluster infrastructure at any institution. PMID:25939626

  5. COMPRES X-ray beamlines (X17B3 and X17C) for the diamond anvil cell at the National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Hong, X.; Chen, Z.; Sengupta, A.; Goncharov, A. F.; Ehm, L.; Duffy, T. S.; Weidner, D. J.

    2011-12-01

    The laser heated diamond anvil cell technique can readily achieve the pressure and temperature domain of Earth from upper mantle to outer core. The laser heating diamond anvil cell X-ray facilities (X17-DAC), consists of X17B3 and X17C stations on a superconducting wiggler beamline and a sample preparation/spectroscopy laboratory at the National Synchrotron Light Source). As the first dedicated high-pressure (HP) beamline in the world, X17-DAC has been a workhorse for HP research for two decades, and has led the way in many developments, Here we report current capabilities and recent developments at X17-DAC beamlines including a new double-side laser heating system . At the X17B3 station, high-temperature high-pressure X-ray diffraction experiments can be carried out either with monochromatic beam (~30 keV or ~80 keV), or with white beam for energy dispersive x-ray diffraction. In-situ laser heating system will be available for users in Geosciences starting from September, 2011. With a monochromatic beam at 30 keV, the X-ray beam can be focused to a beam size of ~10 μm. By combing with the laser heating technique, we can support in-situ X-ray diffraction experiments at the domain of temperature and pressure up to Earth's outer core. With high energy at 80 keV, total scattering pair distribution function (PDF) measurements are performed. Originally, this method was used to study amorphous and highly disordered materials, but more recently, it has been used for the analysis of crystalline and nanostructured materials. This novel technique provides useful information about the long- and short-range ordering of the atoms in the materials. It is promising to combine laser heating and total scattering PDF measurements so as to probe phase transitions and phase relations for geophysical important materials at X17B3 station. At X17C, we conduct angle and energy dispersive x-ray diffraction on polycrystalline samples in either axial or radial geometry. Energy dispersive

  6. Artificial light sources.

    PubMed

    Anderson, T F

    1986-04-01

    A wide variety of artificial light sources exists for use in the diagnosis and treatment of photosensitivity disorders. A discussion of the advantages and disadvantages of these light sources (including gas discharge arcs, fluorescent lamps, and other apparatus) illustrates the importance of matching the emission spectrum of the light source, the spectral response of the radiometer, and the photobiologic action spectrum. Environmental and occupational exposure to artificial light sources may contribute to photosensitivity disorders. PMID:3955892

  7. Supernovae as sources of interstellar diamonds

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Allen, John E., Jr.

    1992-01-01

    Small hydrocarbon grains in the vicinity of a supernova could be annealed by the absorption of several far-ultraviolet photons to produce the tiny diamonds found in meteorites. These freshly-synthesized diamond grains would be bombarded by the heavy ions and neutrals in the supernovae outflow and would thereby acquire the distinctive noble-gas isotopic signature by which they were first isolated. Only diamonds formed relatively close to supernovae would acquire such a signature, since grains formed farther out would be subjected to a much diluted and less energetic plasma environment.

  8. Sources of carbon in inclusion bearing diamonds

    NASA Astrophysics Data System (ADS)

    Stachel, Thomas; Harris, Jeff W.; Muehlenbachs, Karlis

    2009-11-01

    The carbon isotopic composition ( δ13C) of diamonds containing peridotitic, eclogitic, websteritic and ultra-deep inclusions is re-evaluated on a detailed level. Applying a binning interval of 0.25‰, the previously recognized mode of peridotitic and eclogitic diamonds at about - 5‰ is shown to reflect at least two subpopulations with abundance peaks at ˜ - 5.75 to - 4.75‰ and ˜ - 4.50 to - 3.50‰. Within the peridotitic suite, diamonds with lherzolitic inclusions overall show higher δ13C values. Evolution away from a δ13C value of ˜ - 5‰, towards both 13C depleted and enriched compositions, is accompanied by decreasing maximum nitrogen contents of peridotitic diamonds. In combination with data on diamonds synthesized under reducing (metal melts) and more oxidizing conditions (carbonate-silicate interactions), this is taken to indicate that nitrogen is a compatible element in diamond that becomes depleted in the growth medium during progressive diamond precipitation. The observed co-variations of nitrogen content and δ13C around - 5‰ can then be modelled as reflecting closed system Rayleigh fractionation during crystallization of diamond from fluids/melts that are both reducing (i.e. methane bearing; evolution from ˜ - 5 to - 10‰) and oxidizing (i.e. CO 32- bearing; evolution from starting points varying between ˜ - 9 to - 5‰ and extending to about 0‰). Lherzolitic diamonds are believed to be mainly derived from diamond forming events subsequent to precipitation of predominantly Mesoarchean harzburgitic diamonds. The shift of lherzolitic diamonds towards higher δ13C values thus may relate to a temporal evolution, with carbonate bearing fluids with an initial isotopic composition ranging between about - 5.5 and - 1.5‰, derived from subducting oceanic crust, becoming increasingly important subsequent to the Mesoarchean. Devolatilization of marine carbonates ( δ13C ˜ 0‰) drives their isotopic composition towards mantle like values and

  9. Photonic crystal light source

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu; Bur, James A.

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  10. Tracing the Source of Borneo's Cempaka Diamond Deposit

    NASA Astrophysics Data System (ADS)

    White, L. T.; Graham, I.; Armstrong, R. A.; Hall, R.

    2014-12-01

    Several gem quality diamond deposits are found in paleo-alluvial deposits across Borneo. The source of the diamonds and their origin are enigmatic. They could have formed in Borneo and be derived from local sources, or they could be related to diamond deposits in NW Australia, and carried with the Southwest Borneo Block after it rifted from Australia in the Late Jurassic. We collected U-Pb isotopic data from detrital zircons from the Cempaka alluvial diamond deposit in southeast Borneo. Two thirds of the zircons that were dated crystallized between 75 Ma and 110 Ma. The other third are Triassic or older (223 Ma, 314-319 Ma, 353-367 Ma, 402-414 Ma, 474 Ma, 521 Ma, 549 Ma, 1135-1176 Ma, 1535 Ma, 2716 Ma). All of the Cretaceous zircons are angular, euhedral grains with minor evidence of mechanical abrasion. Considering their age and morphology they were likely derived from the nearby Schwaner Granites. The Triassic and older grains are rounded to semi-rounded and were likely derived from Australia before Borneo rifted from Gondwana. Some of the zircons have ages that resemble those of the Merlin and Argyle diamond deposits of Australia. The diamonds themselves have delicate resorption features and overgrowths that would potentially be destroyed with prolonged transport. Geochemical data collected from the diamonds implies they were associated with lamproite intrusions. Deep seismic lines and zircons from igneous rocks suggest SE Borneo, the East Java Sea and East Java are largely underlain by thick lithosphere rifted from NW Australia. Based on several lines of evidence, we propose that diamond-bearing lamproites intruded before rifting of SW Borneo from Australia, or after collision with Sundaland of SW Borneo and the East Java-West Sulawesi Blocks during the Cretaceous. Exposure of the source after the Late Cretaceous led to diamond accumulation in river systems that flowed from the Schwaner Mountains.

  11. Strong light confinement in a photonic amorphous diamond structure

    NASA Astrophysics Data System (ADS)

    Imagawa, Shigeki; Edagawa, Keiichi; Notomi, Masaya

    2012-04-01

    Formation of cavity modes in a recently found unique photonic structure "photonic amorphous diamond (PAD)" has been investigated by finite-difference time domain calculations. A well-confined monopole mode has been found to form when a rod is removed from the structure. The quality (Q) factor and mode volume (Vm) of such a cavity mode in PAD have been evaluated and compared with those in a conventional photonic crystal with a crystalline diamond structure. The two structures have shown nealy the same Q-factor and Vm, leading to the conclusion that strong light confinement is realizable in PAD as well as conventional photonic crystals.

  12. Characterisation of scCVD diamond detectors with γ sources

    NASA Astrophysics Data System (ADS)

    Caiffi, B.; Amapane, N.; Argirò, S.; Battaglieri, M.; Beolé, S.; De Vita, R.; Masera, M.; Mila, G.; Osipenko, M.; Ripani, M.; Taiuti, M.

    2014-08-01

    A single-crystal CVD (Chemical Vapor Deposition) diamond detector was used to measure γ rays in order to assess its performance in terms of energy resolution and linearity. For this purpose, 57Co, 133Ba, 22Na, 207Bi and 137Cs γ sources were used. Electrons scattered by the backward Compton process were detected in the diamond, in coincidence with (backscattered) γs measured in a NaI detector, placed at 180° from the CVD diamond detector with respect to the source. The resulting calibration shows a linear dependence of the charge deposited in the diamond and a resolution of about 24 keV FWHM for the energy of the incident γs between 40 keV (57Co) and 477 keV (137Cs), comparable with the resolution of our electronic chain.

  13. Light Sources and Lighting Circuits

    NASA Astrophysics Data System (ADS)

    Honda, Hisashi; Suwa, Takumi; Yasuda, Takeo; Ohtani, Yoshihiko; Maehara, Akiyoshi; Okada, Atsunori; Komatsu, Naoki; Mannami, Tomoaki

    According to the Machinery Statistics of the Ministry of Economy, Trade and Industry, the production of incandescent lamps in Japan in 2007 was 990 million units (90.0% of the previous year's total), in which the production of incandescent lamps for general lighting was 110 million units (90.0% of the previous year's total) and of tungsten-halogen lamps was 44 million units (96.6% of the previous year's total). The production of fluorescent lamps was 927 million units (93.9% of the previous year's total), in which general fluorescent lamps, excluding those for LCD back lighting, was 320 million units (87.2% of the previous year's total). Also, the production of HID lamps was 10 million units (101.5% of the previous year's total). On the other hand, when the numbers of sales are compared with the sales of the previous year, incandescent lamps for general use was 99.8%, tungsten-halogen lamps was 96.9%, fluorescent lamps was 95.9%, and HID lamps was 98.9%. Self-ballasted fluorescent lamps alone showed an increase in sales as strong as 29 million units, or 121.7% of the previous year's sales. It is considered that the switchover of incandescent lamps to HID lamps was promoted for energy conservation and carbon dioxide reduction with the problem of global warming in the background. In regard to exhibitions, Lighting Fair 2007 was held in Tokyo in March, and LIGHTFAIR INTERNATIONAL 2007 was held in New York in May. Regarding academic conferences, LS:11 (the 11th International Symposium on the Science & Technology of Light Sources) was held in Shanghai in May, and the First International Conference on White LEDs and Solid State Lighting was held in Tokyo in November. Both conferences suggested that there are strong needs and concerns now about energy conservation, saving natural resources, and restrictions of hazardous materials. In regard to incandescent lamps, the development of products aiming at higher efficacy, electric power savings, and longer life was advanced by

  14. National Synchrotron Light Source

    ScienceCinema

    BNL

    2009-09-01

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  15. National Synchrotron Light Source

    ScienceCinema

    None

    2010-01-08

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  16. National Synchrotron Light Source

    SciTech Connect

    2009-03-10

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  17. Incoherent Light Sources

    NASA Astrophysics Data System (ADS)

    Bertram, Dietrich; Born, Matthias; Jüstel, Thomas

    Since the invention and industrialization of incandescent lamps at the end radiation of the 19th century electrical lighting has become a commodity in our daily life. Today, incoherent light sources are used for numerous application areas. Major improvements have been achieved over the past decades with respect to lamp efficiency (Fig. 10.1), lifetime and color properties.

  18. Incoherent Light Sources

    NASA Astrophysics Data System (ADS)

    Bertram, Dietrich; Born, Matthias; Jüstel, Thomas

    Since the invention and industrialization of incandescent lamps at the end of the 19th century electrical lighting has become a commodity in our daily life. Today, incoherent light sources are used for numerous application areas. Major improvements have been achieved over the past decades with respect to lamp efficiency Fig. 10.1, lifetime and color properties.

  19. Light-Triggered Release of Biomolecules from Diamond Nanowire Electrodes.

    PubMed

    Wang, Qian; Coffinier, Yannick; Li, Musen; Boukherroub, Rabah; Szunerits, Sabine

    2016-06-28

    The controlled release of biomolecules from a substrate surface is a challenging task. Photocleavable linkers appear as attractive candidates for light-triggered delivery. We show here the possibility of creating photoactivable diamond nanowire interfaces, from which molecules can be photochemically released upon irradiation at 365 nm for several minutes. The approach is based on the covalent modification of boron-doped diamond nanowires (BDD NWs) with o-nitrobenzyl containing ligands, to which different biomolecules can be attached via amide bond formation. The photodecomposition reaction and the subsequent release of small proteins such as lysozyme or enzymes such as horseradish peroxidase (HRP) are investigated using electrochemical impedance spectroscopy. Using a colorimetric assay, we demonstrate that, while complete cleavage of HRP was achieved upon irradiation for 10 min at 1 W cm(-2), this exposure time resulted in a partial loss of enzymatic activity. PMID:27244476

  20. MEMS Incandescent Light Source

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret; King, Kevin; Kim, Lynn; Hansler, Richard; Jones, Eric; George, Thomas

    2001-01-01

    A MEMS-based, low-power, incandescent light source is being developed. This light source is fabricated using three bonded chips. The bottom chip consists of a reflector on Silicon, the middle chip contains a Tungsten filament bonded to silicon and the top layer is a transparent window. A 25-micrometer-thick spiral filament is fabricated in Tungsten using lithography and wet-etching. A proof-of-concept device has been fabricated and tested in a vacuum chamber. Results indicate that the filament is electrically heated to approximately 2650 K. The power required to drive the proof-of-concept spiral filament to incandescence is 1.25 W. The emitted optical power is expected to be approximately 1.0 W with the spectral peak at 1.1 microns. The micromachining techniques used to fabricate this light source can be applied to other MEMS devices.

  1. Femtosecond tunable light source

    NASA Astrophysics Data System (ADS)

    Miesak, Edward Jozef

    1999-09-01

    A practical source of continuously tunable coherent visible and infrared light would have an enormous impact on science, medicine and technology. While microwave and radio transmitters offer wide tunability at the ``turn of a knob,'' the best known source of coherent optical radiation, the laser, does not possess the same versatility. Dye lasers provide some degree of tunability, but many dyes are needed to cover even the visible region. Ti:sapphire lasers are tunable only over the red to near infra-red portion of the spectrum (about 65 0 nm to about 1.1μm). This presentation documents the development of a unique pulsed light source tunable across the visible and near infrared portion of the spectrum, a femtosecond optical parametric amplifier (OPA). Much work was expended in developing the system itself. But a great deal of work was also done in developing the support equipment (hardware and software) necessary to build as well as maintain and operate an OPA. Once completed, the system characteristics were measured and documented. Initially it possessed ``personality'' which had to be understood and removed as much as possible. In addition, the pump source for this OPA, a regenerative amplifier, is unique in that it uses Cr3+:LiSGaF as the gain medium. This regen was also characterized and compared to other more standard regenerative amplifiers. System verification was done by performing a standard experiment (Z-scan) on well known samples, several of which are well characterized at specific wavelengths (1.06 μm, 0.523 μm) in the nanosecond and picosecond regimes. The results were compared against previously published results. The OPA was also compared against another very similar system which became commercially available during the time of this research. The results were helpful in analyzing the light source(s) and data acquisition systems for areas that could be improved.

  2. Mechanical properties of diamond films: A comparative study of polycrystalline and smooth fine-grained diamonds by Brillouin light scattering

    NASA Astrophysics Data System (ADS)

    Djemia, P.; Dugautier, C.; Chauveau, T.; Dogheche, E.; De Barros, M. I.; Vandenbulcke, L.

    2001-10-01

    Brillouin light scattering, Raman light scattering and x-ray diffraction were used to investigate the elastic and microstructural properties of polycrystalline and smooth fine-grained diamond films of varying diamond quality. They were deposited on a titanium alloy by a two-step microwave plasma-assisted chemical vapor deposition process at 600 °C. Their morphology and roughness were studied by scanning electron microscopy and atomic force microscopy. Their refractive indices were determined by the M-line spectroscopy technique. The diamond purity of all these coatings in terms of the sp3 bonding fraction was deduced from visible and UV Raman spectroscopy as a function of the deposition conditions. All the samples were found to be textured with a <011> crystallographic direction normal to the film plane, leading to essentially hexagonal symmetry of the elastic tensor. By taking advantage of the detection of a number of different acoustic modes, complete elastic characterization of the films was achieved. The elastic constants C11 and C66, respectively, were selectively determined from the frequency of the longitudinal and shear horizontal bulk modes traveling parallel to the film surface. The three remaining elastic constants, namely, C44, C33 and C13, were obtained from detection of the Rayleigh surface wave a bulk shear wave and the bulk longitudinal wave propagating at different angles from the normal to the surface. The values of the elastic constants depend on the deposition conditions and on the microstructural properties of the films, especially the diamond quality and the polycrystalline or smooth fine-grained nature of the diamond. For the polycrystalline diamond film with the best quality, the elastic constants are rather close to the Voigt or Reuss average estimate values using known bulk elastic constants of diamond, whereas those of the smooth fine-grained diamond films are reduced because of the poorer diamond quality leading to lower residual stress

  3. Alpha-Voltaic Sources Using Diamond as Conversion Medium

    NASA Technical Reports Server (NTRS)

    Patel, Jagadish U.; Fleurial, Jean-Pierre; Kolawa, Elizabeth

    2006-01-01

    A family of proposed miniature sources of power would exploit the direct conversion of the kinetic energy of a particles into electricity in diamond semiconductor diodes. These power sources would function over a wide range of temperatures encountered in terrestrial and outer-space environments. These sources are expected to have operational lifetimes of 10 to 20 years and energy conversion efficiencies >35 percent. A power source according to the proposal would include a pair of devices like that shown in the figure. Each device would contain Schottky and p/n diode devices made from high-band-gap, radiation-hard diamond substrates. The n and p layers in the diode portion would be doped sparsely (<1014 cm-3) in order to maximize the volume of the depletion region and thereby maximize efficiency. The diode layers would be supported by an undoped diamond substrate. The source of a particles would be a thin film of 244Cm (half-life 18 years) sandwiched between the two paired devices. The sandwich arrangement would force almost every a particle to go through the active volume of at least one of the devices. Typical a particle track lengths in the devices would range from 20 to 30 microns. The a particles would be made to stop only in the undoped substrates to prevent damage to the crystalline structures of the diode portions. The overall dimensions of a typical source are expected to be about 2 by 2 by 1 mm. Assuming an initial 244Cm mass of 20 mg, the estimated initial output of the source is 20 mW (a current of 20 mA at a potential of 1 V).

  4. Visible-light sensitization of boron-doped nanocrystalline diamond through non-covalent surface modification.

    PubMed

    Krysova, Hana; Vlckova-Zivcova, Zuzana; Barton, Jan; Petrak, Vaclav; Nesladek, Milos; Cigler, Petr; Kavan, Ladislav

    2015-01-14

    A novel simple and versatile synthetic strategy is developed for the surface modification of boron-doped diamond. In a two-step procedure, polyethyleneimine is adsorbed on the hydrogenated diamond surface and subsequently modified with a model light-harvesting donor-π-bridge-acceptor molecule (coded P1). The sensitized diamond exhibits stable cathodic photocurrents under visible-light illumination in aqueous electrolyte solution with dimethylviologen serving as an electron mediator. In spite of the simplicity of the surface sensitization protocol, the photoelectrochemical performance is similar to or better than that of other sensitized diamond electrodes which were reported in previous studies (2008-2014). PMID:25418375

  5. Fourth generation light sources

    SciTech Connect

    Winick, H.

    1997-05-01

    Concepts and designs are now being developed at laboratories around the world for light sources with performance levels that exceed present sources, including the very powerful and successful third generation synchrotron radiation sources that have come on line in the past few years. Workshops, have been held to review directions for future sources. A main thrust is to increase the brightness and coherence of the radiation using storage rings with lower electron-beam emittance or free-electron lasers (FELs). In the infra-red part of the spectrum very high brightness and coherence is already provided by FEL user facilities driven by linacs and storage rings. It now appears possible to extend FEL operation to the VUV, soft X-ray and even hard X-ray spectral range, to wavelengths down to the angstrom range, using high energy linacs equipped with high-brightness rf photoinjectors and bunch-length compressors. R&D to develop such sources is in progress at BNL, DESY, KEK, SLAC and other laboratories. In the absence of mirrors to form optical cavities, short wavelengths are reached in FEL systems in which a high peak current, low-emittance electron beam becomes bunch-density modulated at the optical wavelength in a single pass through a long undulator by self-amplified spontaneous emission (SASE); i.e.; startup from noise. A proposal to use the last kilometer of the 3 kilometer SLAC linac (the first 2 kilometers will be used for injection to the PEP II B-Factory) to provide 15 GeV electron beams to reach 1.5 {angstrom} by SASE in a 100 m long undulator is in preparation.

  6. VCSEL Swept Light Sources

    NASA Astrophysics Data System (ADS)

    Jayaraman, Vijaysekhar; Jiang, James; Potsaid, Benjamin; Robertson, Martin; Heim, Peter J. S.; Burgner, Christopher; John, Demis; Cole, Garrett D.; Grulkowski, Ireneusz; Fujimoto, James G.; Davis, Anjul M.; Cable, Alex E.

    Wavelength-swept light sources are widely recognized as a critical enabling technology for swept source optical coherence tomography (SS-OCT). In recent years, amplified micro-electromechanical systems tunable vertical cavity surface-emitting lasers (MEMS-VCSELs) have emerged as a high performance swept source, providing a unique combination of of wide tuning range, high maximum sweep rate, variable sweep rate, long dynamic coherence length enabled by dynamic mode-hop-free single mode operation, high optical power, and excellent imaging quality. Other important parameters provided by these devices include operation in a stable polarization state, low output power ripple, and linearized wavelength sweeping. This work describes MEMS-VCSEL device design, fabrication, and performance for devices in the 1050nm band relevant to ophthalmic imaging, and the 1310nm band relevant to vascular, skin, and anatomic imaging. Tuning ranges achieved include 100 nm at 1050nm and 150nm at 1310, with the latter result representing the widest tuning range of any MEMS-VCSEL at any wavelength. Both 1050 and 1310nm devices have enabled record imaging speed, record imaging range, and enhanced SS-OCT imaging.

  7. Nitride quantum light sources

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Oliver, R. A.

    2016-02-01

    Prototype nitride quantum light sources, particularly single-photon emitters, have been successfully demonstrated, despite the challenges inherent in this complex materials system. The large band offsets available between different nitride alloys have allowed device operation at easily accessible temperatures. A wide range of approaches has been explored: not only self-assembled quantum dot growth but also lithographic methods for site-controlled nanostructure formation. All these approaches face common challenges, particularly strong background signals which contaminate the single-photon stream and excessive spectral diffusion of the quantum dot emission wavelength. If these challenges can be successfully overcome, then ongoing rapid progress in the conventional III-V semiconductors provides a roadmap for future progress in the nitrides.

  8. Thermal Management of Light Sources

    NASA Astrophysics Data System (ADS)

    Hartmann, J.; Völker, Stephan

    2011-01-01

    The primary task of light sources is illumination, i.e., the emission of visible radiation—light. However, depending on the generation principle, besides light, also heat will be dissipated to the surroundings. Traditional thermal light sources generate light by the electrical heating of a tungsten wire to temperatures of about 3000 K. Even at this high temperature, the majority of the emitted thermal radiation is within the long wavelength range of the spectrum, i.e., not in the visible range of the optical spectrum. Generation of light with discharge lamps is completely different and non-thermal; however, even in this case the electrodes are heated to temperatures well above 2000 K. Thus, discharge lamps also suffer from thermal problems. In the case of solid-state light sources, also non-thermal light sources, the driving electrical current causes heating of the device, for which the temperature is, or should usually be, below 420 K for proper operation. Contrary to thermal or discharge light sources, such relatively low temperatures of solid-state light sources prevent efficient cooling by thermal radiation, requiring convective or conductive cooling. However, for all mentioned light sources, the thermal management, i.e., the adjusting and maintaining of an optimum operation temperature are vital for the efficiency and lifetime of the light sources. This paper deals with the methods of generation and measurement of the thermal load in the respective light sources and discusses ways to optimize the efficiency and lifetime of such light sources. Also, some practical examples are given to emphasize the relevance of such thermal management for industry, pointing out the potential for future more energy-efficient light source concepts.

  9. Ultrabright single-photon source on diamond with electrical pumping at room and high temperatures

    NASA Astrophysics Data System (ADS)

    Fedyanin, D. Yu; Agio, M.

    2016-07-01

    The recently demonstrated electroluminescence of color centers in diamond makes them one of the best candidates for room temperature single-photon sources. However, the reported emission rates are far off what can be achieved by state-of-the-art electrically driven epitaxial quantum dots. Since the electroluminescence mechanism has not yet been elucidated, it is not clear to what extent the emission rate can be increased. Here we develop a theoretical framework to study single-photon emission from color centers in diamond under electrical pumping. The proposed model comprises electron and hole trapping and releasing, transitions between the ground and excited states of the color center as well as structural transformations of the center due to carrier trapping. It provides the possibility to predict both the photon emission rate and the wavelength of emitted photons. Self-consistent numerical simulations of the single-photon emitting diode based on the proposed model show that the photon emission rate can be as high as 100 kcounts s‑1 at standard conditions. In contrast to most optoelectronic devices, the emission rate steadily increases with the device temperature achieving of more than 100 Mcount s‑1 at 500 K, which is highly advantageous for practical applications. These results demonstrate the potential of color centers in diamond as electrically driven non-classical light emitters and provide a foundation for the design and development of single-photon sources for optical quantum computation and quantum communication networks operating at room and higher temperatures.

  10. Trace element analysis of rough diamond by LA-ICP-MS: a case of source discrimination?

    PubMed

    Dalpé, Claude; Hudon, Pierre; Ballantyne, David J; Williams, Darrell; Marcotte, Denis

    2010-11-01

    Current profiling of rough diamond source is performed using different physical and/or morphological techniques that require strong knowledge and experience in the field. More recently, chemical impurities have been used to discriminate diamond source and with the advance of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) empirical profiling of rough diamonds is possible to some extent. In this study, we present a LA-ICP-MS methodology that we developed for analyzing ultra-trace element impurities in rough diamond for origin determination ("profiling"). Diamonds from two sources were analyzed by LA-ICP-MS and were statistically classified by accepted methods. For the two diamond populations analyzed in this study, binomial logistic regression produced a better overall correct classification than linear discriminant analysis. The results suggest that an anticipated matrix match reference material would improve the robustness of our methodology for forensic applications. PMID:20681965

  11. Lithography light source fault detection

    NASA Astrophysics Data System (ADS)

    Graham, Matthew; Pantel, Erica; Nelissen, Patrick; Moen, Jeffrey; Tincu, Eduard; Dunstan, Wayne; Brown, Daniel

    2010-04-01

    High productivity is a key requirement for today's advanced lithography exposure tools. Achieving targets for wafers per day output requires consistently high throughput and availability. One of the keys to high availability is minimizing unscheduled downtime of the litho cell, including the scanner, track and light source. From the earliest eximer laser light sources, Cymer has collected extensive performance data during operation of the source, and this data has been used to identify the root causes of downtime and failures on the system. Recently, new techniques have been developed for more extensive analysis of this data to characterize the onset of typical end-of-life behavior of components within the light source and allow greater predictive capability for identifying both the type of upcoming service that will be required and when it will be required. The new techniques described in this paper are based on two core elements of Cymer's light source data management architecture. The first is enhanced performance logging features added to newer-generation light source software that captures detailed performance data; and the second is Cymer OnLine (COL) which facilitates collection and transmission of light source data. Extensive analysis of the performance data collected using this architecture has demonstrated that many light source issues exhibit recognizable patterns in their symptoms. These patterns are amenable to automated identification using a Cymer-developed model-based fault detection system, thereby alleviating the need for detailed manual review of all light source performance information. Automated recognition of these patterns also augments our ability to predict the performance trending of light sources. Such automated analysis provides several efficiency improvements for light source troubleshooting by providing more content-rich standardized summaries of light source performance, along with reduced time-to-identification for previously

  12. ROLE OF DIAMOND SECONDARY EMITTERS IN HIGH BRIGHTNESS ELECTRON SOURCES.

    SciTech Connect

    RAO, T.; BEN-ZVI, I.; BURRILL, A.; CHANG, X.; GRIMES, J.; RANK, J.; SEGALOV, Z.; SMEDLEY, J.

    2005-09-20

    In this paper we explore the possibility of using diamond secondary emitter in a high average current electron injector to amplify the current from the photocathode and to isolate the cathode and the injector from each other to increase the life time of the cathode and preserve the performance of the injector. Secondary electron yield of 225 and current density of 0.8 a/cm{sup 2} have been measured in the transmission mode from type 2 a natural diamond. Although the diamond will be heated during normal operation in the injector, calculations indicate that by cryogenically cooling the diamond, the temperature gradient along the diamond can be maintained within the acceptable range. The electron energy and temporal distributions are expected to be narrow from this device resulting in high brightness beams. Plans are underway to measure the SEY in emission mode, fabricate photocathode-diamond capsule and test diamond and capsule in superconducting RF injector.

  13. The Linac Coherent Light Source

    SciTech Connect

    White, William E.; Robert, Aymeric; Dunne, Mike

    2015-04-21

    The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.

  14. The Linac Coherent Light Source

    PubMed Central

    White, William E.; Robert, Aymeric; Dunne, Mike

    2015-01-01

    The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed. PMID:25931055

  15. The Linac Coherent Light Source

    DOE PAGESBeta

    White, William E.; Robert, Aymeric; Dunne, Mike

    2015-05-01

    The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.

  16. Identifying the Source of Gem Diamonds: Requirements for a Certification System

    NASA Astrophysics Data System (ADS)

    Shigley, J. E.

    2002-05-01

    Recent civil conflicts in several countries, in which profits from the sales of gem diamonds have supported the rival factions, have forced the jewelry industry to confront the need to certify the geographic sources of gem diamonds. The goals of this program are to prohibit the sale of so-called "conflict diamonds", and to prevent the loss of consumer confidence. Efforts to identify unique characteristics of gem diamonds have been hampered so far by the absence of chemical or physical features that are diagnostic of particular sources, and the lack of a representative collection of diamonds from major producing areas that would be required for a rigorous scientific study. The jewelry industry has therefore adopted plans to track gem diamonds from the mine through the manufacturing process to the consumer. Practical requirements for implementation of such a certification system will be summarized. Any proposed solutions for determining the sources of gem diamonds by some analytical technique, or for following diamonds from the mine, must take into account the annual production of several tens of millions of carats of rough diamonds, which are transformed during manufacturing into several hundreds of millions of polished gemstones (with an average weight of only about 0.03 carat, or 0.006 gram).

  17. The SAGA Light Source

    SciTech Connect

    Yoshida, K.; Iwasaki, Y.; Koda, S.; Okajima, S.; Setoyama, H.; Takabayashi, Y.; Tomimasu, T.; Yoshimura, D.; Ohgaki, H.

    2007-01-19

    Saga prefectural government operates a synchrotron light facility mainly for industrial applications of the synchrotron light. The facility comprises a 1.4 GeV storage ring, a 250 MeV linac as an electron injector and beamlines. The lattice of the storage ring is designed to perform as small emittance as 25 nm-radian and has long straight sections of 2.9 m length for installing insertion devices. Three beam lines have been prepared by Saga prefectural government and one by Saga University.

  18. Fusion pumped light source

    DOEpatents

    Pappas, Daniel S.

    1989-01-01

    Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

  19. Understanding the source: The nitrogen isotope composition of Type II mantle diamonds

    NASA Astrophysics Data System (ADS)

    Mikhail, Sami; Howell, Dan; Jones, Adrian; Milledge, Judith; Verchovsky, Sasha

    2010-05-01

    Diamonds can be broadly subdivided into 2 groups based on their nitrogen content; type I with > 10ppm nitrogen and type II with < 10ppm (1). Roughly 98 % of upper mantle diamonds are classified as type I, interestingly nearly all lower mantle diamonds are of type II (2). This study aims to identify the processes involved or source of type II diamonds from several localities by measuring their carbon and nitrogen stable isotope compositions simultaneously for the first time. Samples have been categorised as type II using Fourier transform infra-red (FTIR) analysis. The carbon and nitrogen isotopes as well as additional nitrogen content data have been acquired using a custom made a hi-sensitivity gas sourced mass spectrometer built and housed at the Open University, UK. There are two ways in which we can model the petrogenesis of type II diamonds. 1- During diamond growth nitrogen can be incorporated into diamond as a compatible element in a closed system and therefore the N/C ratio in the source can be depleted by Rayleigh fractionation as the first diamonds to crystallise will partition nitrogen atoms into their lattice as a 1:1 substitution for carbon atoms (type I diamonds). However nitrogen may behave as an incompatible element in diamond (and be a compatible element in the metasomatic fluid), this coupled with an open system would lead to the removal of nitrogen by the metasomatic fluids, thus causing the source to progressively become depleted in nitrogen. Continued diamond crystallization in either system will produce diamonds with ever decreasing nitrogen concentrations with time, possibly to the point of them being almost nitrogen free. 2- It is conceivable that type I & II diamonds found in the same deposit and sharing a common paragenesis (eclogitic or peridotitic) may have formed from different metasomatic fluids in separate diamond forming events. The latter has been proposed for samples from the Cullinan mine (South Africa) based on their carbon

  20. Multiple growth events, processes and fluid sources involved in diamond genesis: A micro-analytical study of sulphide-bearing diamonds from Finsch mine, RSA

    NASA Astrophysics Data System (ADS)

    Palot, M.; Pearson, D. G.; Stern, R. A.; Stachel, T.; Harris, J. W.

    2013-04-01

    Twenty-one sulphide inclusion-bearing diamonds from the Finsch mine, South Africa, were analysed for nitrogen abundances and carbon isotope compositions by microbeam methods. On the basis of sulphide Ni contents, one diamond is of peridotitic affinity, the rest belongs to the eclogitic suite. FTIR analyses show nitrogen abundances and aggregation states from 21 to 1093 at.ppm and 0% to 83% IaB, statistically indistinguishable from previous results for Finsch eclogitic silicate inclusion-bearing diamonds (Appleyard et al., 2004) but significantly higher than observed before for diamonds of the peridotitic suite (Deines et al., 1989). Detailed analyses revealed marked variations in nitrogen characteristics within individual diamonds, demonstrating a complex mantle residence, consistent with multiple episodes of diamond growth over time. Linked to the growth stratigraphy of the diamond, SIMS micro-analyses show variations in δ13C from -8.90‰ to -2.80‰ with a mean value of -5.54 ± 1.80‰ (1 standard deviation), closely overlapping the typical worldwide value. The C-isotopic variability within individual diamonds ranges up to 3.26‰. SIMS based nitrogen abundances are 3-2221 at.ppm with heterogeneous distribution within individual diamond. From the δ13C-[N] co-variations within individual diamonds, three major processes of diamond growth for sulphide inclusion-bearing samples at Finsch are proposed. (1) Some diamonds were precipitated during a single event of open system isotopic fractionation, in fluids that varied from oxidised (carbonatitic) to reduced (CH4-rich). In this growth scenario, nitrogen is either compatible or incompatible during diamond growth. (2) Other diamonds show abrupt δ13C-[N] changes indicative of diamond growth involving mixing of several fluid sources. (3) Some diamonds grow from a combination of the two previous processes. The models are consistent with metasomatic diamond growth involving single and multiple fluid sources. Multiple

  1. Design and Application of CVD Diamond Windows for X-Rays at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Jaski, Yifei; Cookson, David

    2007-01-01

    Two types of directly cooled, 0.2-mm-thick, 8-mm-diameter clear aperture CVD diamond windows have been designed and successfully fabricated by two different vendors for use at the Advanced Photon Source (APS). Both windows contain a direct braze joint between the diamond and the cooled OFHC copper. These windows can be used to replace the front-end beryllium windows in high-heat-load applications and can be used as white beam windows in the beamlines. This paper presents the detailed design of the diamond windows, the thermal analysis of the diamond window under different thermal load configurations, as well as a complete list of the existing APS front-end beryllium window configurations and replacement scenarios. Small-angle scattering experiments have been conducted on both diamond windows and a polished beryllium window, and the results are presented.

  2. Design and application of CVD diamond windows for x-rays at the Advanced Photon Source.

    SciTech Connect

    Jaski, Y.; Cookson, D.; Experimental Facilities Division; Univ. of Chicago

    2007-01-01

    Two types of directly cooled, 0.2-mm-thick, 8-mm-diameter clear aperture CVD diamond windows have been designed and successfully fabricated by two different vendors for use at the Advanced Photon Source (APS). Both windows contain a direct braze joint between the diamond and the cooled OFHC copper. These windows can be used to replace the front-end beryllium windows in high-heat-load applications and can be used as white beam windows in the beamlines. This paper presents the detailed design of the diamond windows, the thermal analysis of the diamond window under different thermal load configurations, as well as a complete list of the existing APS front-end beryllium window configurations and replacement scenarios. Small-angle scattering experiments have been conducted on both diamond windows and a polished beryllium window, and the results are presented.

  3. Characterization of multiple light sources

    NASA Astrophysics Data System (ADS)

    Casas, Jessica Marie

    The integrating cavity absorption meter (ICAM) is an instrument that utilizes the absorption of water to detect alien substances in the water. The ICAM was first proposed by Elterman in 1970 and has since been enhanced by other scientists such as Kirk, Leathers, Fry, Musser, and Gray. While others have investigated the structure of the ICAM, little research has been published regarding the most efficient light source. This thesis compares the power consumption, spectral stability, and output intensity of three different light sources to determine which should be used in the ICAM to further develop its capabilities.

  4. Spallation Neutron Source SNS Diamond Stripper Foil Development

    SciTech Connect

    Shaw, Robert W; Plum, Michael A; Wilson, Leslie L; Feigerle, Charles S.; Borden, Michael J.; Irie, Y.; Sugai, I; Takagi, A

    2007-01-01

    Diamond stripping foils are under development for the SNS. Freestanding, flat 300 to 500 {micro}g/cm{sup 2} foils as large as 17 x 25 mm{sup 2} have been prepared. These nano-textured polycrystalline foils are grown by microwave plasma-assisted chemical vapor deposition in a corrugated format to maintain their flatness. They are mechanically supported on a single edge by a residual portion of their silicon growth substrate; fine foil supporting wires are not required for diamond foils. Six foils were mounted on the SNS foil changer in early 2006 and have performed well in commissioning experiments at reduced operating power. A diamond foil was used during a recent experiment where 15 {micro}C of protons, approximately 64% of the design value, were stored in the ring. A few diamond foils have been tested at LANSCE/PSR, where one foil was in service for a period of five months (820 C of integrated injected charge) before it was replaced. Diamond foils have also been tested in Japan at KEK (640 keV H{sup -}) where their lifetimes slightly surpassed those of evaporated carbon foils, but fell short of those for Sugai's new hybrid boron carbon (HBC) foils.

  5. National Synchrotron Light Source II

    SciTech Connect

    Steve Dierker

    2008-03-12

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  6. National Synchrotron Light Source II

    ScienceCinema

    Steve Dierker

    2010-01-08

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  7. The Brazilian Synchrotron Light Source

    SciTech Connect

    Brum, J. A.; Tavares, P. F.

    2007-01-19

    The Brazilian Synchrotron Light Laboratory has been operating the only light source in the southern hemisphere since July 1997. During this period, approximately 28000 hours of beam time were delivered reaching more than 1000 users per year from all over Brazil as well as from 10 other countries. In this paper, we briefly recall the history of the project and describe the present configuration of the machine and associated instrumentation, focusing on improvements and upgrades of the various light source subsystems and beamlines implemented in recent years. Finally, we report on the use of the facility by the national and international scientific communities, its impact on the scientific and technological scene in Brazil and present perspectives for future improvements of the machine.

  8. : Light Interception in Single Row, Twin Row, and Diamond Planting Patterns of Valencia Peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field study was conducted on a growers farm South of Clovis, NM in 2006 to compare light interception and radiation use efficiency in single row, twin row, and diamond planted Valencia peanuts with line quantum sensors (Apogee instruments, Logan) installed across the crop row. Data were recorded ...

  9. Squeezed light from a diamond-turned monolithic cavity.

    PubMed

    Brieussel, A; Shen, Y; Campbell, G; Guccione, G; Janousek, J; Hage, B; Buchler, B C; Treps, N; Fabre, C; Fang, F Z; Li, X Y; Symul, T; Lam, P K

    2016-02-22

    For some crystalline materials, a regime can be found where continuous ductile cutting is feasible. Using precision diamond turning, such materials can be cut into complex optical components with high surface quality and form accuracy. In this work we use diamond-turning to machine a monolithic, square-shaped, doubly-resonant LiNbO3 cavity with two flat and two convex facets. When additional mild polishing is implemented, the Q-factor of the resonator is found to be limited only by the material absorption loss. We show how our monolithic square resonator may be operated as an optical parametric oscillator that is evanescently coupled to free-space beams via birefringent prisms. The prism arrangement allows for independent and large tuning of the fundamental and second harmonic coupling rates. We measure 2.6 ± 0.5 dB of vacuum squeezing at 1064 nm using our system. Potential improvements to obtain higher degrees of squeezing are discussed. PMID:26907056

  10. Unusual Cathodoluminescence in Diamonds: Evidence for Metamorphism or a Source Characteristic

    NASA Astrophysics Data System (ADS)

    Bruce, L. F.; Longo, M.; Kopylova, M.; Ryder, J.

    2009-05-01

    main factor influencing the CL colors of the suites. Diamonds in the volcaniclastic breccias and sedimentary conglomerates may have come from different deep sources, but acquired similar cathodoluminescence due to a metamorphic overprint. Metamorphic fluids have been shown to have a potential to percolate through diamond fractures and affect diamond inclusions. Furthermore, diamonds found in the Kokchetav metamorphic massif are reported to have green CL with an emission at 514-537 nm. The "metamorphic" model is supported by the contrast in the diamond indicator minerals recovered from the volcaniclastic breccias and sedimentary conglomerates. Only the latter contain kimberlite indicator minerals from a proximal source, such as diopside and garnet with preserved kelyphitic rims. The second model suggests the presence of the 520 nm CL peak controlling the green-red CL visible colors is an internal characteristic of the two Wawa diamond suites related to their origin from the same deep source. Currently, we are studying the N content and aggregation state of the conglomerate diamonds using the Fourier transform infrared technique to compare these data with the corresponding values for the breccia diamonds. Further work is needed to determine if either model can explain all observed properties of the Wawa diamond suites.

  11. Quantum teleportation from light beams to vibrational states of a macroscopic diamond

    PubMed Central

    Hou, P.-Y.; Huang, Y.-Y.; Yuan, X.-X.; Chang, X.-Y.; Zu, C.; He, L.; Duan, L.-M.

    2016-01-01

    With the recent development of optomechanics, the vibration in solids, involving collective motion of trillions of atoms, gradually enters into the realm of quantum control. Here, building on the recent remarkable progress in optical control of motional states of diamonds, we report an experimental demonstration of quantum teleportation from light beams to vibrational states of a macroscopic diamond under ambient conditions. Through quantum process tomography, we demonstrate average teleportation fidelity (90.6±1.0)%, clearly exceeding the classical limit of 2/3. The experiment pushes the target of quantum teleportation to the biggest object so far, with interesting implications for optomechanical quantum control and quantum information science. PMID:27240553

  12. Quantum teleportation from light beams to vibrational states of a macroscopic diamond

    NASA Astrophysics Data System (ADS)

    Hou, P.-Y.; Huang, Y.-Y.; Yuan, X.-X.; Chang, X.-Y.; Zu, C.; He, L.; Duan, L.-M.

    2016-05-01

    With the recent development of optomechanics, the vibration in solids, involving collective motion of trillions of atoms, gradually enters into the realm of quantum control. Here, building on the recent remarkable progress in optical control of motional states of diamonds, we report an experimental demonstration of quantum teleportation from light beams to vibrational states of a macroscopic diamond under ambient conditions. Through quantum process tomography, we demonstrate average teleportation fidelity (90.6+/-1.0)%, clearly exceeding the classical limit of 2/3. The experiment pushes the target of quantum teleportation to the biggest object so far, with interesting implications for optomechanical quantum control and quantum information science.

  13. Quantum teleportation from light beams to vibrational states of a macroscopic diamond.

    PubMed

    Hou, P-Y; Huang, Y-Y; Yuan, X-X; Chang, X-Y; Zu, C; He, L; Duan, L-M

    2016-01-01

    With the recent development of optomechanics, the vibration in solids, involving collective motion of trillions of atoms, gradually enters into the realm of quantum control. Here, building on the recent remarkable progress in optical control of motional states of diamonds, we report an experimental demonstration of quantum teleportation from light beams to vibrational states of a macroscopic diamond under ambient conditions. Through quantum process tomography, we demonstrate average teleportation fidelity (90.6±1.0)%, clearly exceeding the classical limit of 2/3. The experiment pushes the target of quantum teleportation to the biggest object so far, with interesting implications for optomechanical quantum control and quantum information science. PMID:27240553

  14. LIGHT SOURCE: Conceptual design of Hefei advanced light source

    NASA Astrophysics Data System (ADS)

    Li, Wei-Min; Wang, Lin; Feng, Guang-Yao; Zhang, Shan-Cai; Wu, Cong-Feng; Xu, Hong-Liang; Liu, Zu-Ping

    2009-06-01

    The conceptual of Hefei Advanced Light Source, which is an advanced VUV and Soft X-ray source, was developed at NSRL of USTC. According to the synchrotron radiation user requirements and the trends of SR source development, some accelerator-based schemes were considered and compared; furthermore storage ring with ultra low emittance was adopted as the baseline scheme of HALS. To achieve ultra low emittance, some focusing structures were studied and optimized in the lattice design. Compromising of emittance, on-momentum and off-momentum dynamic aperture and ring scale, five bend acromat (FBA) was employed. In the preliminary design of HALS, the emittance was reduced to sub nm · rad, thus the radiation up to water window has full lateral coherence. The brilliance of undulator radiation covering several eVs to keVs range is higher than that of HLS by several orders. The HALS should be one of the most advanced synchrotron radiation light sources in the world.

  15. Highly saline fluids from a subducting slab as the source for fluid-rich diamonds.

    PubMed

    Weiss, Yaakov; McNeill, John; Pearson, D Graham; Nowell, Geoff M; Ottley, Chris J

    2015-08-20

    The infiltration of fluids into continental lithospheric mantle is a key mechanism for controlling abrupt changes in the chemical and physical properties of the lithospheric root, as well as diamond formation, yet the origin and composition of the fluids involved are still poorly constrained. Such fluids are trapped within diamonds when they form and so diamonds provide a unique means of directly characterizing the fluids that percolate through the deep continental lithospheric mantle. Here we show a clear chemical evolutionary trend, identifying saline fluids as parental to silicic and carbonatitic deep mantle melts, in diamonds from the Northwest Territories, Canada. Fluid-rock interaction along with in situ melting cause compositional transitions, as the saline fluids traverse mixed peridotite-eclogite lithosphere. Moreover, the chemistry of the parental saline fluids--especially their strontium isotopic compositions--and the timing of host diamond formation suggest that a subducting Mesozoic plate under western North America is the source of the fluids. Our results imply a strong association between subduction, mantle metasomatism and fluid-rich diamond formation, emphasizing the importance of subduction-derived fluids in affecting the composition of the deep lithospheric mantle. PMID:26289205

  16. Highly saline fluids from a subducting slab as the source for fluid-rich diamonds

    NASA Astrophysics Data System (ADS)

    Weiss, Yaakov; McNeill, John; Pearson, D. Graham; Nowell, Geoff M.; Ottley, Chris J.

    2015-08-01

    The infiltration of fluids into continental lithospheric mantle is a key mechanism for controlling abrupt changes in the chemical and physical properties of the lithospheric root, as well as diamond formation, yet the origin and composition of the fluids involved are still poorly constrained. Such fluids are trapped within diamonds when they form and so diamonds provide a unique means of directly characterizing the fluids that percolate through the deep continental lithospheric mantle. Here we show a clear chemical evolutionary trend, identifying saline fluids as parental to silicic and carbonatitic deep mantle melts, in diamonds from the Northwest Territories, Canada. Fluid-rock interaction along with in situ melting cause compositional transitions, as the saline fluids traverse mixed peridotite-eclogite lithosphere. Moreover, the chemistry of the parental saline fluids--especially their strontium isotopic compositions--and the timing of host diamond formation suggest that a subducting Mesozoic plate under western North America is the source of the fluids. Our results imply a strong association between subduction, mantle metasomatism and fluid-rich diamond formation, emphasizing the importance of subduction-derived fluids in affecting the composition of the deep lithospheric mantle.

  17. Light pollution simulations for planar ground-based light sources.

    PubMed

    Kocifaj, Miroslav

    2008-02-20

    The light pollution model is employed to analyze spatial behavior of luminance at the night sky under cloudless and overcast conditions. Enhanced light excess is particularly identified at cloudy skies, because the clouds efficiently contribute to the downward luminous flux. It is evident that size of ground-based light sources can play an important role in the case of overcast sky conditions. Nevertheless, the realistically sized light sources are rarely embedded into light pollution modeling, and rather they are replaced by simple point sources. We discuss the discrepancies between sky luminance distributions when at first the planar light sources are considered and at second the point-source approximation is accepted. The found differences are noticeable if the size of the light source, distance to the observer, and altitude of a cloudy layer are comparable one to the other. Compared with point-source approximation, an inclusion of the size factor into modeling the light sources leads to partial elimination of the steep changes of sky luminance (typical for point sources of light). The narrow and sharp light pillars normally presented on the sky illuminated by point light sources can disappear or fuse together when two or more nearby light sources are considered with their real sizes. Sky elements situated close to the horizon will glow efficiently if luminous flux originates from two-dimensional ground-based entities (such as cities or villages). PMID:18288228

  18. Driver circuit for solid state light sources

    DOEpatents

    Palmer, Fred; Denvir, Kerry; Allen, Steven

    2016-02-16

    A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.

  19. Light Sources and Ballast Circuits

    NASA Astrophysics Data System (ADS)

    Yorifuji, Takashi; Sakai, Makoto; Yasuda, Takeo; Maehara, Akiyoshi; Okada, Atsunori; Gouriki, Takeshi; Mannami, Tomoaki

    discharge models were reported. Further, studies on ultra high-pressure mercury lamps as light sources for projectors are becoming the mainstream of HID lamp related researches. For high-pressure sodium lamps, many studies on plant growing and pest control utilizing low insect attracting aspects were also reported in 2006. Additionally, for discharge lamps, the minimum sustaining electric power for arc tubes employed in electrode-less compact fluorescent lamps was investigated. For Hg-free rare-gas fluorescent lamps, a luminance of 10,000cd/m2 was attained by a 1 meter-long external duplex spiral electrode prototype using Xe/Ne barrier discharge. As to startup circuits, the commercialization of energy saving and high value added products mainly associated with fluorescent lamps and HID lamps are becoming common. Further, the miniaturization of startup circuits for self electronic-ballasted lamps has advanced. Speaking of the overall light sources and startup circuits in 2006 and with the enforcement of RoHS in Europe in July, the momentum toward hazardous substance-free and energy saving initiatives has been enhanced from the perspective of protecting the global environment. It is anticipated that similar restrictions will be globally enforced in the future.

  20. Application of CVD diamonds as dosimeters of soft X-ray emission from plasma sources

    NASA Astrophysics Data System (ADS)

    Krása, J.; Juha, L.; Vorlíček, V.; Cejnarová, A.

    2004-05-01

    The thermoluminescent properties of polycrystalline chemical vapour deposition (CVD) diamond, as free-standing CVD cutting tool material, type CVDITE-CDM (De Beers Company), were studied with respect to its use in the dosimetry of soft X-ray emission from laser-produced plasma. The range of linearity for 5.9-keV radiation was measured to be only two orders of magnitude, ranging from a sensitivity threshold of ˜0.01 to ˜2 Gy. In this linearity range, the sensitivity of CVD diamonds is about 65 times lower than the sensitivity of TLD-100 dosimeters. The unpolished (grained) face of CVD diamonds shows ˜1.5-times higher thermoluminescence (TL) response after irradiation than the polished face, in the high-temperature range, but the polished face shows slightly higher TL response in the low-temperature range. A strong TL sensitivity to the blue portion of the visible light spectrum was measured. Simultaneous irradiation of TLD-100 dosimeters and CVD diamonds by soft X-rays emitted from a laser-produced plasma showed that CVDITE-CDM diamonds can be applied as detectors of intense soft X-ray radiation.

  1. Light source design for machine vision

    NASA Astrophysics Data System (ADS)

    Sieczka, Eric J.; Harding, Kevin G.

    1992-03-01

    There is a lack of commercially available white light sources for machine vision applications. Current commercial sources are typically expensive and primarily designed for workbench use. Because of their benchtop design, these light sources cannot be easily integrated into the inspection system. In most cases a light source must be custom designed and built to suit the needs of the particular machine vision application. The materials being inspected can vary from highly specular to highly diffuse, thus requiring a broad range of illumination levels. Other issues important in machine vision light sources include efficiency, light divergence, spectral content, source size, and packaging. This paper discusses the issues that must be overcome when designing a light source for machine vision applications, and describes the work done by ITI to produce an efficient white light source with computer controlled illumination level.

  2. Test results of a diamond double-crystal monochromator at the advanced photon source

    SciTech Connect

    Fernandez, P.B.; Graber, T.; Krasnicki, S.; Lee, W.; Mills, D.M.; Rogers, C.S.; Assoufid, L.

    1997-07-01

    We have tested the first diamond double-crystal monochromator at the Advanced Photon Source (APS). The monochromator consisted of two synthetic type 1b (111) diamond plates in symmetric Bragg geometry. We tested two pairs of single-crystal plates: the first pair was 6 mm by 5 mm by 0.25 mm and 6 mm by 5 mm by 0.37 mm; the second set was 7 mm by 5.5 mm by 0.44 mm. The monochromator first crystal was indirectly cooled by edge contact with a water-cooled copper holder. We studied the performance of the monochromator under the high-power x-ray beam delivered by the APS undulator A. We found no indication of thermal distortions or strains even at the highest incident power (280 watts) and power density (123W/mm{sup 2} at normal incidence). The calculated maximum power and power density absorbed by the first crystal were 37 watts and 4.3W/mm{sup 2}, respectively. We also compared the maximum intensity delivered by the diamond monochromator and by a silicon (111) cryogenically cooled monochromator. For energies in the range of 6 to 10 keV, the flux through the diamond monochromator was about a factor of two less than through the silicon monochromator, in good agreement with calculations. We conclude that water-cooled diamond monochromators can handle the high-power beams from the undulator beamlines at the APS. As single-crystal diamond plates of larger size and better quality become available, the use of diamond monochromators will become a very attractive option. {copyright} {ital 1997 American Institute of Physics.}

  3. Test results of a diamond double-crystal monochromator at the advanced photon source

    SciTech Connect

    Fernandez, P. B.; Graber, T.; Krasnicki, S.; Lee, W.-K.; Mills, D. M.; Rogers, C. S.; Assoufid, L.

    1997-07-01

    We have tested the first diamond double-crystal monochromator at the Advanced Photon Source (APS). The monochromator consisted of two synthetic type 1b (111) diamond plates in symmetric Bragg geometry. We tested two pairs of single-crystal plates: the first pair was 6 mm by 5 mm by 0.25 mm and 6 mm by 5 mm by 0.37 mm; the second set was 7 mm by 5.5 mm by 0.44 mm. The monochromator first crystal was indirectly cooled by edge contact with a water-cooled copper holder. We studied the performance of the monochromator under the high-power x-ray beam delivered by the APS undulator A. We found no indication of thermal distortions or strains even at the highest incident power (280 watts) and power density (123 W/mm{sup 2} at normal incidence). The calculated maximum power and power density absorbed by the first crystal were 37 watts and 4.3 W/mm{sup 2}, respectively. We also compared the maximum intensity delivered by the diamond monochromator and by a silicon (111) cryogenically cooled monochromator. For energies in the range of 6 to 10 keV, the flux through the diamond monochromator was about a factor of two less than through the silicon monochromator, in good agreement with calculations. We conclude that water-cooled diamond monochromators can handle the high-power beams from the undulator beamlines at the APS. As single-crystal diamond plates of larger size and better quality become available, the use of diamond monochromators will become a very attractive option.

  4. Test results of a diamond double-crystal monochromator at the advanced photon source

    SciTech Connect

    Fernandez, P.B.; Graber, T.; Krasnicki, S.; Lee, W.K.

    1997-06-01

    We have tested the first diamond double-crystal monochromator at the Advanced Photon Source (APS). The monochromator consisted of two synthetic type lb (111) diamond plates in symmetric Bragg geometry. We tested two pairs of single-crystal plates: the first pair was 6 mm by 5 mm by 0.25 mm and 6 mm by 5 mm by 0.37 mm; the second set was 7 mm by 5.5 mm by 0.44 mm. The monochromator first crystal was indirectly cooled by edge contact with a water-cooled copper holder. We studied the performance of the monochromator under the high-power x-ray beam delivered by the APS undulator A. We found no indication of thermal distortions or strains even at the highest incident power (280 watts) and power density (123 W/mm{sup 2} at normal incidence). The calculated maximum power and power density absorbed by the first crystal were 37 watts and 16 W/mm{sup 2} respectively. We also compared the maximum intensity delivered by the diamond monochromator and by a silicon (111) cryogenically cooled monochromator. For energies in the range of 6 to 10 keV, the flux through the diamond monochromator was about a factor of two less than through the silicon monochromator, in good agreement with calculations. We conclude that water-cooled diamond monochromators can handle the high-power beams from the undulator beams from the undulator beamlines at the APS. As single-crystal diamond plates of larger size and better quality become available, the use of diamond monochromators will become a very attractive option.

  5. Advanced Light Source elliptical wiggler

    SciTech Connect

    Hoyer, E.; Akre, J.; Humphries, D.; Marks, S.; Minamihara, Y.; Pipersky, P.

    1994-07-01

    A 3.5m long elliptical wiggler, optimized to produce elliptically polarized light in the 50 eV to 10 keV range, is currently under design and construction at the Advanced Light Source (ALS) at Lawrence Berkeley Laboratory. Calculations of spectral performance show that the flux of circularly polarized photons exceeds 10{sup 13} photons/sec over the 50 eV to 10 keV operating range for current of 0.4 amps and 1.5 GeV electron energy. This device features vertical and horizontal magnetic structures of 14 and 14{1/2} periods respectively. The period length is 20.0 cm. The vertical structure is a hybrid permanent magnet design with tapered pole tips that produce a peak field of 2.0 T. The horizontal structure is an iron core electromagnetic design, shifted longitudinally {1/4} period, that is tucked between the upper and lower vertical magnetic structure sections. A maximum peak oscillating field of 0.095 T at a frequency up to 1 Hz will be achieved by excitation of the horizontal poles with a trapezoidal current waveform. The vacuum chamber is an unconventional design that is removable from the magnetic structure, after magnetic measurements, for UHV processing. The chamber is fabricated from non-magnetic stainless steel to minimize the effects of eddy currents. Device design is presented.

  6. Silicon micromachined broad band light source

    NASA Technical Reports Server (NTRS)

    George, Thomas (Inventor); Jones, Eric (Inventor); Tuma, Margaret L. (Inventor); Eastwood, Michael (Inventor); Hansler, Richard (Inventor)

    2004-01-01

    A micro electromechanical system (MEMS) broad band incandescent light source includes three layers: a top transmission window layer; a middle filament mount layer; and a bottom reflector layer. A tungsten filament with a spiral geometry is positioned over a hole in the middle layer. A portion of the broad band light from the heated filament is reflective off the bottom layer. Light from the filament and the reflected light of the filament are transmitted through the transmission window. The light source may operate at temperatures of 2500 K or above. The light source may be incorporated into an on board calibrator (OBC) for a spectrometer.

  7. EDITORIAL: LED light sources (light for the future) LED light sources (light for the future)

    NASA Astrophysics Data System (ADS)

    Grandjean, N.

    2010-09-01

    comprehensive review of the different localization mechanisms and their implication for internal quantum efficiency (IQE) is proposed by Oliver and co-workers from Cambridge University. When discussing IQE in InGaN-based LEDs, the efficiency droop at high-current injection always emerges, which is a major concern for the future of SSL technology. Here, a collaborative work between Samsung and the Gwangju Institute of Science and Technology (Korea) proves that a specific design of the active region can limit this detrimental effect. Once the issue of the IQE is solved, one still has to let the photons out of the chip. Matioli and Weisbuch from the University of California at Santa Barbara introduce the use of photonic crystals (PhCs) to improve light extraction efficiency. They describe different approaches to overcoming the main limitation of LEDs when implementing surface PhCs. The technology of SSL, and in particular of colour rendering, is tackled by Zukauskas et al who studied in detail different white light sources. They show that extreme colour-fidelity indices need to cover the entire spectrum, with a broad-band at 530-610 nm and a component beyond 610 nm. Then, the reliability of GaN-based LEDs is discussed in the paper of Meneghesso and co-workers. The authors consider the most important physical mechanisms that are (i) the degradation of the active layer of LEDs, (ii) the degradation of the package/phosphor system, (iii) the failure of GaN-based LEDs against electrostatic discharge. Finally, GaN LEDs on silicon developed in the group of Egawa at the Nagoya Institute of Technology are presented. This technology could allow a significant decrease in the fabrication cost of white LEDs.

  8. Photometer for tracking a moving light source

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W. (Inventor)

    2009-01-01

    A photometer that tracks a path of a moving light source with little or no motion of the photometer components. The system includes a non-moving, truncated paraboloid of revolution, having a paraboloid axis, a paraboloid axis, a small entrance aperture, a larger exit aperture and a light-reflecting inner surface, that receives and reflects light in a direction substantially parallel to the paraboloid axis. The system also includes a light processing filter to receive and process the redirected light, and to issue the processed, redirected light as processed light, and an array of light receiving elements, at least one of which receives and measures an associated intensity of a portion of the processed light. The system tracks a light source moving along a path and produces a corresponding curvilinear image of the light source path on the array of light receiving elements. Undesired light wavelengths from the light source may be removed by coating a selected portion of the reflecting inner surface or another light receiving surface with a coating that absorbs incident light in the undesired wavelength range.

  9. The LBL advanced light source

    SciTech Connect

    Jackson, A.; Chattopadhyay, S.; Keller, R.; Kim, C.; Nishimura, H.; Selph, F.; Zisman, M.

    1988-06-01

    The LBL Advanced Light Source (ALS) will be a third generation synchrotron radiation facility. It is based on a low emittance 1--2 GeV electron storage ring (natural radial emittance <10 nm-rad), optimized to produce extremely bright beams of electromagnetic radiation (in the energy range from a few eV to around one keV) from insertion devices known as undulators. The storage ring is fed from an injection system consisting of a 50 MeV linac and a 1.5 GeV, 1 Hz, booster synchrotron, which can fill the ring to its normal operating current (400 mA, multibunch, or 7.6 mA, single bunch) in a few minutes. As well as high brightness (which is a consequence of the very small electron beam emittance in the storage ring), the design emphasizes: picosecond timestructure, laserlike coherence properties, narrow bandwidth, and long beam lifetimes. The more familiar continuous synchrotron radiation spectrum will be available from bending magnets and from wiggler magnets. This paper gives a general description of the ALS and discusses some of the significant design issues associated with the low emittance storage ring that is required for this new facility. 7 refs., 6 figs., 2 tabs.

  10. Development of a circadian light source

    NASA Astrophysics Data System (ADS)

    Nicol, David B.; Ferguson, Ian T.

    2002-11-01

    Solid state lighting presents a new paradigm for lighting - controllability. Certain characteristics of the lighting environment can be manipulated, because of the possibility of using multiple LEDs of different emission wavelengths as the illumination source. This will provide a new, versatile, general illumination source due to the ability to vary the spectral power distribution. New effects beyond the visual may be achieved that are not possible with conventional light sources. Illumination has long been the primary function of lighting but as the lighting industry has matured the psychological aspects of lighting have been considered by designers; for example, choosing a particular lighting distribution or color variation in retail applications. The next step in the evolution of light is to consider the physiological effects of lighting that cause biological changes in a person within the environment. This work presents the development of a source that may have important bearing on this area of lighting. A circadian light source has been developed to provide an illumination source that works by modulating its correlated color temperature to mimic the changes in natural daylight through the day. In addition, this source can cause or control physiological effects for a person illuminated by it. The importance of this is seen in the human circadian rhythm's peak response corresponding to blue light at ~460 nm which corresponds to the primary spectral difference in increasing color temperature. The device works by adding blue light to a broadband source or mixing polychromatic light to mimic the variation of color temperature observed for the Planckian Locus on the CIE diagram. This device can have several applications including: a tool for researchers in this area, a general illumination lighting technology, and a light therapy device.

  11. Diamond is on budget

    NASA Astrophysics Data System (ADS)

    Materlik, Gerhard

    2008-02-01

    Your editorial last month, entitled "The £80m black hole" (January p15), was accompanied by a picture of the Diamond Light Source, which some readers may have interpreted as being responsible for the current shortfall in funding for the Science and Technology Facilities Council (STFC). This implication is totally inaccurate and misleading.

  12. The First Sources of Light

    NASA Astrophysics Data System (ADS)

    Loeb, Avi

    2011-09-01

    Looking deep into the Universe through powerful telescopes, we can see images of the Universe when it was younger because of the finite time it takes light to travel to us from distant sources. Existing data sets include an image of the Universe when it was 0.4 million years old (in the form of the cosmic microwave background), as well as images of individual galaxies when the Universe was older than a billion years. But there is a serious challenge: in between these two epochs was a period when the Universe was dark, stars had not yet formed, and the cosmic microwave background no longer traced the distribution of matter. And this is precisely the most interesting period, when the primordial soup evolved into the rich zoo of objects we now see. The observers are moving ahead along several fronts. The first involves the construction of large infrared telescopes on the ground and in space, that will provide us with new photos of the first galaxies. Current plans include ground-based telescopes which are 24-42 meter in diameter, and NASA's successor to the Hubble Space Telescope, called the James Webb Space Telescope. In addition, several observational groups around the globe are constructing radio arrays that will be capable of mapping the three-dimensional distribution of cosmic hydrogen in the infant Universe. These arrays are aiming to detect the long-wavelength (redshifted 21-cm) radio emission from hydrogen atoms. The images from these antenna arrays will reveal how the non-uniform distribution of neutral hydrogen evolved with cosmic time and eventually was extinguished by the ultra-violet radiation from the first galaxies. Theoretical research has focused in recent years on predicting the expected signals for the above instruments and motivating these ambitious observational projects.

  13. Solid-state light sources getting smart.

    PubMed

    Schubert, E Fred; Kim, Jong Kyu

    2005-05-27

    More than a century after the introduction of incandescent lighting and half a century after the introduction of fluorescent lighting, solid-state light sources are revolutionizing an increasing number of applications. Whereas the efficiency of conventional incandescent and fluorescent lights is limited by fundamental factors that cannot be overcome, the efficiency of solid-state sources is limited only by human creativity and imagination. The high efficiency of solid-state sources already provides energy savings and environmental benefits in a number of applications. However, solid-state sources also offer controllability of their spectral power distribution, spatial distribution, color temperature, temporal modulation, and polarization properties. Such "smart" light sources can adjust to specific environments and requirements, a property that could result in tremendous benefits in lighting, automobiles, transportation, communication, imaging, agriculture, and medicine. PMID:15919985

  14. Microwave-driven ultraviolet light sources

    DOEpatents

    Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.

    2002-01-29

    A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.

  15. Candle Synchrotron Light Source Project

    NASA Astrophysics Data System (ADS)

    Tsakanov, V. M.

    CANDLE - Center for the Advancement of Natural Discoveries using Light Emission - is a 3 GeV energy synchrotron light facility project in the Republic of Armenia. The main design features of the new facility are given. The results of the beam physics study in the future facility is overviewed including the machine impedance, single and multi-bunch instabilities, ion trapping and beam lifetime. The preliminary list of first group beamlines is discussed.

  16. Blue enhanced light sources: opportunities and risks

    NASA Astrophysics Data System (ADS)

    Lang, Dieter

    2012-03-01

    Natural daylight is characterized by high proportions of blue light. By proof of a third type of photoreceptor in the human eye which is only sensitive in this spectral region and by subsequent studies it has become obvious that these blue proportions are essential for human health and well being. In various studies beneficial effects of indoor lighting with higher blue spectral proportions have been proven. On the other hand with increasing use of light sources having enhanced blue light for indoor illumination questions are arising about potential health risks attributed to blue light. Especially LED are showing distinct emission characteristics in the blue. Recently the French agency for food, environmental and occupational health & safety ANSES have raised the question on health issues related to LED light sources and have claimed to avoid use of LED for lighting in schools. In this paper parameters which are relevant for potential health risks will be shown and their contribution to risk factors will quantitatively be discussed. It will be shown how to differentiate between photometric parameters for assessment of beneficial as well as hazardous effects. Guidelines will be discussed how blue enhanced light sources can be used in applications to optimally support human health and well being and simultaneously avoid any risks attributed to blue light by a proper design of lighting parameters. In the conclusion it will be shown that no inherent health risks are related to LED lighting with a proper lighting design.

  17. Detection and analysis of diamond fingerprinting feature and its application

    NASA Astrophysics Data System (ADS)

    Li, Xin; Huang, Guoliang; Li, Qiang; Chen, Shengyi

    2011-01-01

    Before becoming a jewelry diamonds need to be carved artistically with some special geometric features as the structure of the polyhedron. There are subtle differences in the structure of this polyhedron in each diamond. With the spatial frequency spectrum analysis of diamond surface structure, we can obtain the diamond fingerprint information which represents the "Diamond ID" and has good specificity. Based on the optical Fourier Transform spatial spectrum analysis, the fingerprinting identification of surface structure of diamond in spatial frequency domain was studied in this paper. We constructed both the completely coherent diamond fingerprinting detection system illuminated by laser and the partially coherent diamond fingerprinting detection system illuminated by led, and analyzed the effect of the coherence of light source to the diamond fingerprinting feature. We studied rotation invariance and translation invariance of the diamond fingerprinting and verified the feasibility of real-time and accurate identification of diamond fingerprint. With the profit of this work, we can provide customs, jewelers and consumers with a real-time and reliable diamonds identification instrument, which will curb diamond smuggling, theft and other crimes, and ensure the healthy development of the diamond industry.

  18. The sources and time-integrated evolution of diamond-forming fluids - Trace elements and isotopic evidence

    NASA Astrophysics Data System (ADS)

    Klein-BenDavid, Ofra; Pearson, D. Graham; Nowell, Geoff M.; Ottley, Chris; McNeill, John C. R.; Logvinova, Alla; Sobolev, Nikolay V.

    2014-01-01

    Sub-micrometer inclusions in fibrous diamond growth zones carry high-density fluids (HDF) from which the host diamonds have precipitated. The chemistry of these fluids is our best opportunity of characterizing the diamond-forming environment. The major and trace element patterns of diamond-forming fluids vary widely. Such elemental signatures can be easily modified by a variety of mantle processes whereas radiogenic isotopes give a clear fingerprint of the time-integrated evolution of the fluid source region. Thus, the combination of elemental and isotope data is a powerful tool in constraining the origin of fluids from which diamonds precipitate. Here we present combined trace element composition (34 diamonds) and Sr isotopic data (23 diamonds) for fluid-rich diamonds from six worldwide locations. The Nd and Pb isotopic composition of two of the diamonds were also obtained. Several of the samples were analyzed in at least 2 locations to investigate variations in the fluid during diamond growth. The data was acquired using an off-line laser sampling technique followed by solution ICPMS and TIMS analysis. The Sr isotopic compositions of diamond fluids from the different suites range between convecting mantle values for Udachnaya (87Sr/86Sr363 = 0.70300 ± 16 to 0.70361 ± 4), to highly enriched values, up to 87Sr/86Sr = 0.72330 ± 3, for a diamond from Congo. No isochronous relationships were observed in any of the suites. The lowest Nd isotopic composition recorded so far in a diamond is from Congo (εNd71 = -40.4), which also contains the most radiogenic Sr isotopic composition. In contrast, a less enriched but still rather unradiogenic Nd isotope composition (εNd540 = -11) was obtained for a diamond from Snap Lake, which has moderately radiogenic Sr isotopic enrichment (87Sr/86Sr540 = 0.70821 ± 1). The Pb isotopic system measured in one diamond indicates a complex evolution for the fluid source, with extreme 207Pb/204Pb ratio (15.810 ± 3) and moderate

  19. Very High Efficiency, Miniaturized, Long-Lived Alpha Particle Power Source Using Diamond Devices for Extreme Space Environments

    NASA Technical Reports Server (NTRS)

    Kolawa, Elizabeth A. (Inventor); Patel, Jagdishbhai U. (Inventor); Fleurial, Jean-Pierre (Inventor)

    2004-01-01

    A power source that converts a-particle energy into electricity by coulomb collision in doped diamond films is described. Alpha particle decay from curium-244 creates electron-hole pairs by free- ing electrons and holes inside the crystal lattice in N- and P-doped diamond films. Ohmic contacts provide electrical connection to an electronic device. Due to the built-in electric field at the rectifying junction across the hT- and P-doped diamond films, the free electrons are constrained to traveling in generally one direction. This one direction then supplies electrons in a manner similar to that of a battery. The radioactive curium layer may be disposed on diamond films for even distribution of a-particle radiation. The resulting power source may be mounted on a diamond substrate that serves to insulate structures below the diamond substrate from a-particle emission. Additional insulation or isolation may be provided in order to prevent damage from a-particle collision. N-doped silicon may be used instead of N-doped diamond.

  20. Quantum teleportation from light beams to vibrational states of a macroscopic diamond

    NASA Astrophysics Data System (ADS)

    Hou, Panyu; Huang, Yuanyuan; Yuan, Xinxing; Chang, Xiuying; Zu, Chong; He, Li; Duan, Luming; Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, PR China Team; Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA Team

    2016-05-01

    Quantum teleportation is an unusual disembodied form of quantum information transfer through pre-shared entanglement and classical communication, which has found important applications for realization of various quantum technologies. It is of both fundamental interest and practical importance to push quantum teleportation towards macroscopic objects. With the recent development of optomechanics, the vibration in solids, involving collective motion of trillions of atoms, gradually enters into the realm of quantum control. Built on the recent remarkable progress in optical control of motional states in diamond, we report an experimental demonstration of quantum teleportation from light beams to vibrational states of a macroscopic diamond under ambient conditions. Through quantum state tomography, we demonstrate an average teleportation fidelity (90.6 +/- 1.0)%, exceeding the classical limit of 2/3. The experiment pushes the target of quantum teleportation to the biggest object so far, with interesting implications for quantum foundational studies, optomechanical quantum control and quantum information science. Center for Quantum Information, IIIS, Tsinghua University.

  1. The Advanced Light Source: Technical Design

    SciTech Connect

    Authors, Various

    1984-05-01

    The Advanced Light Source (ALS) is a synchrotron radiation source consisting of a 50-MeV linear accelerator, a 1.3-GeV 'booster' synchrotron, a 1.3-GeV electron storage ring, and a number of photon beam lines, as shown in Figure 1. As an introduction to a detailed description of the Advanced Light Source, this section provides brief discussions on the characteristics of synchrotron radiation and on the theory of storage rings. Appendix A contents: Introduction to Synchrotron-Radiation Sources; Storage Ring; Injection System; Control System; Insertion Devices; Photon Beam Lines; and References.

  2. National Synchrotron Light Source annual report 1988

    SciTech Connect

    Hulbert, S.; Lazarz, N.; Williams, G.

    1988-01-01

    This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)

  3. [Hygienic evaluation of contemporary light sources].

    PubMed

    Nikitina, V N; Lyashko, G G; Kalinina, N I

    2013-01-01

    The article covers problems of illumination hygiene and electromagnetic safety of workers using contemporary light sources. The authors present results of experimental studies of electromagnetic environment in energy-efficient lamps. PMID:24745182

  4. Advanced Light Source Activity Report 2000

    SciTech Connect

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-04-01

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself.

  5. Advanced Light Source Activity Report 2002

    SciTech Connect

    Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori

    2003-06-12

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  6. Red Shifts with Obliquely Approaching Light Sources.

    ERIC Educational Resources Information Center

    Head, C. E.; Moore-Head, M. E.

    1988-01-01

    Refutes the Doppler effect as the explanation of large red shifts in the spectra of distant galaxies and explains the relativistic effects in which the light sources approach the observer obliquely. Provides several diagrams and graphs. (YP)

  7. Cathodoluminescent light sources: status and prospects

    NASA Astrophysics Data System (ADS)

    Bugaev, A. S.; Kireev, V. B.; Sheshin, E. P.; Kolodyazhnyj, A. J.

    2015-08-01

    A feasible alternative to current energy-saving light sources is environmentally friendly new-generation cathodoluminescent light sources (CLSs) based on luminescence produced by electrons emitted from the field emission cathode. Because of the lack of available optimally designed general-purpose lamps with field emission cathodes, the development of an efficient prototype CLS potentially mass-produced at a low cost is currently the top priority.

  8. Mixed fluid sources involved in diamond growth constrained by Sr-Nd-Pb-C-N isotopes and trace elements

    NASA Astrophysics Data System (ADS)

    Klein-BenDavid, Ofra; Pearson, D. Graham; Nowell, Geoff M.; Ottley, Chris; McNeill, John C. R.; Cartigny, Pierre

    2010-01-01

    Sub-micrometer inclusions in diamonds carry high-density fluids (HDF) from which the host diamonds have precipitated. The chemistry of these fluids is our best opportunity of characterizing the diamond-forming environment. The trace element patterns of diamond fluids vary within a limited range and are similar to those of carbonatitic/kimberlitic melts that originate from beneath the lithospheric mantle. A convecting mantle origin for the fluid is also implied by C isotopic compositions and by a preliminary Sr isotopic study (Akagi, T., Masuda, A., 1988. Isotopic and elemental evidence for a relationship between kimberlite and Zaire cubic diamonds. Nature 336, 665-667.). Nevertheless, the major element chemistry of HDFs is very different from that of kimberlites and carbonatites, varying widely and being characterized by extreme K enrichment (up to ˜ 39 wt.% on a water and carbonate free basis) and high volatile contents. The broad spectrum of major element compositions in diamond-forming fluids has been related to fluid-rock interaction and to immiscibility processes. Elemental signatures can be easily modified by a variety of mantle processes whereas radiogenic isotopes give a clear fingerprint of the time-integrated evolution of the fluid source region. Here we present the results of the first multi radiogenic-isotope (Sr, Nd, Pb) and trace element study on fluid-rich diamonds, implemented using a newly developed off-line laser sampling technique. The data are combined with N and C isotope analysis of the diamond matrix to better understand the possible sources of fluid involved in the formation of these diamonds. Sr isotope ratios vary significantly within single diamonds. The highly varied but unsupported Sr isotope ratios cannot be explained by immiscibility processes or fluid-mineral elemental fractionations occurring at the time of diamond growth. Our results demonstrate the clear involvement of a mixed fluid, with one component originating from ancient

  9. Microelectromechanical Systems (MEMS) Broadband Light Source Developed

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.

    2003-01-01

    A miniature, low-power broadband light source has been developed for aerospace applications, including calibrating spectrometers and powering miniature optical sensors. The initial motivation for this research was based on flight tests of a Fabry-Perot fiberoptic temperature sensor system used to detect aircraft engine exhaust gas temperature. Although the feasibility of the sensor system was proven, the commercial light source optically powering the device was identified as a critical component requiring improvement. Problems with the light source included a long stabilization time (approximately 1 hr), a large amount of heat generation, and a large input electrical power (6.5 W). Thus, we developed a new light source to enable the use of broadband optical sensors in aerospace applications. Semiconductor chip-based light sources, such as lasers and light-emitting diodes, have a relatively narrow range of emission wavelengths in comparison to incandescent sources. Incandescent light sources emit broadband radiation from visible to infrared wavelengths; the intensity at each wavelength is determined by the filament temperature and the materials chosen for the filament and the lamp window. However, present commercial incandescent light sources are large in size and inefficient, requiring several watts of electrical power to obtain the desired optical power, and they emit a large percentage of the input power as heat that must be dissipated. The miniature light source, developed jointly by the NASA Glenn Research Center, the Jet Propulsion Laboratory, and the Lighting Innovations Institute, requires one-fifth the electrical input power of some commercial light sources, while providing similar output light power that is easily coupled to an optical fiber. Furthermore, it is small, rugged, and lightweight. Microfabrication technology was used to reduce the size, weight, power consumption, and potential cost-parameters critical to future aerospace applications. This chip

  10. Light emitting diodes as a plant lighting source

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Tennessen, D. J.; Morrow, R. C.; Tibbitts, T. W.

    1994-01-01

    Electroluminescence in solid materials is defined as the generation of light by the passage of an electric current through a body of solid material under an applied electric field. A specific type of electroluminescence, first noted in 1923, involves the generation of photons when electrons are passed through a p-n junction of certain solid materials (junction of a n-type semiconductor, an electron donor, and a p-type semiconductor, an electron acceptor). The development of this light emitting semiconductor technology dates back less than 30 years. During this period of time, the LED has evolved from a rare and expensive light generating device to one of the most widely used electronic components. A number of LED characteristics are of considerable importance in selecting a light source for plant lighting in a controlled environment facility. Of particular importance is the characteristic that light is generated by an LED at a rate far greater than the corresponding thermal radiation predicted by the bulk temperature of the device as defined by Plank's radiation law. This is in sharp contrast to other light sources, such as an incandescent or high intensity discharge lamp. A plant lighting system for controlled environments must provide plants with an adequate flux of photosynthetically active radiation, plus providing photons in the spectral regions that are involved in the photomorphogenic and phototropic responses that result in normal plant growth and development. Use of light sources that emit photons over a broad spectral range generally meet these two lighting requirements. Since the LED's emit over specific spectral regions, they must be carefully selected so that the levels of photsynthetically active and photomorphogenic and phototropic radiation meet these plant requirements.

  11. Method to fabricate portable electron source based on nitrogen incorporated ultrananocrystalline diamond (N-UNCD)

    DOEpatents

    Sumant, Anirudha V.; Divan, Ralu; Posada, Chrystian M.; Castano, Carlos H.; Grant, Edwin J.; Lee, Hyoung K.

    2016-03-29

    A source cold cathode field emission array (FEA) source based on ultra-nanocrystalline diamond (UNCD) field emitters. This system was constructed as an alternative for detection of obscured objects and material. Depending on the geometry of the given situation a flat-panel source can be used in tomography, radiography, or tomosynthesis. Furthermore, the unit can be used as a portable electron or X-ray scanner or an integral part of an existing detection system. UNCD field emitters show great field emission output and can be deposited over large areas as the case with carbon nanotube "forest" (CNT) cathodes. Furthermore, UNCDs have better mechanical and thermal properties as compared to CNT tips which further extend the lifetime of UNCD based FEA.

  12. Light sources based on semiconductor current filaments

    DOEpatents

    Zutavern, Fred J.; Loubriel, Guillermo M.; Buttram, Malcolm T.; Mar, Alan; Helgeson, Wesley D.; O'Malley, Martin W.; Hjalmarson, Harold P.; Baca, Albert G.; Chow, Weng W.; Vawter, G. Allen

    2003-01-01

    The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

  13. Optical radiation safety of medical light sources

    NASA Astrophysics Data System (ADS)

    Sliney, David H.

    1997-05-01

    The phototoxicity of medical ultraviolet (UV) sources used in dermatology has long been recognized. Less obvious are potential hazards to the eye and skin from many other optical sources - both to the patient and to the health-care worker. To assess potential hazards, one must consider not only the optical and radiometric parameters of the optical source in question but also the geometrical exposure factors. This knowledge is required to accurately determine the irradiances (dose rates) to exposed tissues. Both photochemically and thermally induced damage are possible from intense light sources used in medicine and surgery; however, thermal injury is rare unless the light source is pulsed or nearly in contact with tissue. Generally, photochemical interaction mechanisms are most pronounced at short wavelengths (UV) where photon energies are greatest, and also will be most readily observed for lengthy exposure durations.

  14. Research on Modern Gas Discharge Light Sources

    NASA Astrophysics Data System (ADS)

    Born, M.; Markus, T.

    This article gives an overview of today's gas discharge light sources and their application fields with focus on research aspects. In Sect. 15.1 of this chapter, an introduction to electric light sources, the lighting market and related research topics is outlined. Due to the complexity of the subject, we have focused on selected topics in the field of high intensity discharge (HID) lamps since these represent an essential part of modern lamp research. The working principle and light technical properties of HID lamps are described in Sect. 15.2. Physical and thermochemical modelling procedures and tools as well as experimental analysis are discussed in Sects. 15.3 and 15.4, respectively. These tools result in a detailed scientific insight into the complexity of real discharge lamps. In particular, analysis and modelling are the keys for further improvement and development of existing and new products.

  15. Infrared light sources with semimetal electron injection

    DOEpatents

    Kurtz, Steven R.; Biefeld, Robert M.; Allerman, Andrew A.

    1999-01-01

    An infrared light source is disclosed that comprises a layered semiconductor active region having a semimetal region and at least one quantum-well layer. The semimetal region, formed at an interface between a GaAsSb or GalnSb layer and an InAsSb layer, provides electrons and holes to the quantum-well layer to generate infrared light at a predetermined wavelength in the range of 2-6 .mu.m. Embodiments of the invention can be formed as electrically-activated light-emitting diodes (LEDs) or lasers, and as optically-pumped lasers. Since the active region is unipolar, multiple active regions can be stacked to form a broadband or multiple-wavelength infrared light source.

  16. Infrared light sources with semimetal electron injection

    SciTech Connect

    Kurtz, S.R.; Biefeld, R.M.; Allerman, A.A.

    1999-11-30

    An infrared light source is disclosed that comprises a layered semiconductor active region having a semimetal region and at least one quantum-well layer. The semimetal region, formed at an interface between a GaAsSb or GaInSb layer and an InAsSb layer, provides electrons and holes to the quantum-well layer to generate infrared light at a predetermined wavelength in the range of 2--6 {mu}m. Embodiments of the invention can be formed as electrically-activated light-emitting diodes (LEDs) or lasers, and as optically-pumped lasers. Since the active region is unipolar, multiple active regions can be stacked to form a broadband or multiple-wavelength infrared light source.

  17. Physics Challenges for ERL Light Sources

    SciTech Connect

    Lia Merminga

    2004-07-01

    We present an overview of the physics challenges encountered in the design and operation of Energy Recovering Linac (ERL) based light sources. These challenges include the generation and preservation of low emittance, high-average current beams, manipulating and preserving the transverse and longitudinal phase space, control of the multipass beam breakup instability, efficient extraction of higher order mode power and RF control and stability of the superconducting cavities. These key R&D issues drive the design and technology choices for proposed ERL light sources. Simulations and calculations of these processes will be presented and compared with experimental data obtained at the Jefferson Lab FEL Upgrade, a 10 mA ERL light source presently in commissioning, and during a 1 GeV demonstration of energy recovery at CEBAF.

  18. Solid-State Spectral Light Source System

    NASA Technical Reports Server (NTRS)

    Maffione, Robert; Dana, David

    2011-01-01

    A solid-state light source combines an array of light-emitting diodes (LEDs) with advanced electronic control and stabilization over both the spectrum and overall level of the light output. The use of LEDs provides efficient operation over a wide range of wavelengths and power levels, while electronic control permits extremely stable output and dynamic control over the output. In this innovation, LEDs are used instead of incandescent bulbs. Optical feedback and digital control are used to monitor and regulate the output of each LED. Because individual LEDs generate light within narrower ranges of wavelengths than incandescent bulbs, multiple LEDs are combined to provide a broad, continuous spectrum, or to produce light within discrete wavebands that are suitable for specific radiometric sensors.

  19. Chemical Analysis of Impurity Boron Atoms in Diamond Using Soft X-ray Emission Spectroscopy

    SciTech Connect

    Muramatsu, Yasuji; Iihara, Junji; Takebe, Toshihiko; Denlinger, Jonathan D.

    2008-03-29

    To analyze the local structure and/or chemical states of boron atoms in boron-doped diamond, which can be synthesized by the microwave plasma-assisted chemical vapor deposition method (CVD-B-diamond) and the temperature gradient method at high pressure and high temperature (HPT-B-diamond), we measured the soft X-ray emission spectra in the CK and BK regions of B-diamonds using synchrotron radiation at the Advanced Light Source (ALS). X-ray spectral analyses using the fingerprint method and molecular orbital calculations confirm that boron atoms in CVD-B-diamond substitute for carbon atoms in the diamond lattice to form covalent B-C bonds, while boron atoms in HPT-B-diamond react with the impurity nitrogen atoms to form hexagonal boron nitride. This suggests that the high purity diamond without nitrogen impurities is necessary to synthesize p-type B-diamond semiconductors.

  20. Microfabrication of diamond-based slow-wave circuits for mm-wave and THz vacuum electronic sources

    NASA Astrophysics Data System (ADS)

    Lueck, M. R.; Malta, D. M.; Gilchrist, K. H.; Kory, C. L.; Mearini, G. T.; Dayton, J. A.

    2011-06-01

    Planar and helical slow-wave circuits for THz radiation sources have been made using novel microfabrication and assembly methods. A biplanar slow-wave circuit for a 650 GHz backward wave oscillator (BWO) was fabricated through the growth of diamond into high aspect ratio silicon molds and the selective metallization of the tops and sidewalls of 90 µm tall diamond features using lithographically created shadow masks. Helical slow-wave circuits for a 650 GHz BWO and a 95 GHz traveling wave tube were created through the patterning of trenches in thin film diamond, electroplating of gold half-helices, and high accuracy bonding of helix halves. The development of new techniques for the microfabrication of vacuum electronic components will help to facilitate compact and high-power sources for terahertz range radiation.

  1. Tunable pulsed narrow bandwidth light source

    DOEpatents

    Powers, Peter E.; Kulp, Thomas J.

    2002-01-01

    A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.

  2. An Upgrade for the Advanced Light Source

    SciTech Connect

    Chemla, Daniel S.; Feinberg, Benedict; Hussain, Zahid; Kirz, Janos; Krebs, Gary F.; Padmore, Howard A.; Robin, David S.; Robinson, Arthur L.; Smith, Neville V.

    2004-09-01

    One of the first third-generation synchrotron light sources, the ALS, has been operating for almost a decade at Berkeley Lab, where experimenters have been exploiting its high brightness for forefront science. However, accelerator and insertion-device technology have significantly changed since the ALS was designed. As a result, the performance of the ALS is in danger of being eclipsed by that of newer, more advanced sources. The ALS upgrade that we are planning includes full-energy, top-off injection with higher storage-ring current and the replacement of five first-generation insertion devices with nine state-of-the art insertion devices and four new application-specific beamlines now being identified in a strategic planning process. The upgrade will help keep the ALS at the forefront of soft x-ray synchrotron light sources for the next two decades.

  3. PREFACE: Science's gem: diamond science 2009 Science's gem: diamond science 2009

    NASA Astrophysics Data System (ADS)

    Mainwood, Alison; Newton, Mark E.; Stoneham, Marshall

    2009-09-01

    Natural diamond has been valued for its appearance and mechanical properties for at least two thousand years. As a gem stone diamond is unsurpassed. However, scientific work, especially in the last 20 years, has demonstrated that diamond has numerous surprising properties and many unique ones. Some of the extreme properties have been known for many years, but the true scale of diamond's other highly desirable features is still only coming to light as control in the synthesis of diamond, and hence material perfection, improves. The ultimate prize for man-made diamond is surely not in the synthesis of gem stones, but in delivering technological solutions enabled by diamond to the challenges facing our society today. If the special properties are to be exploited to their full potential, at least four crucial factors must be considered. First, there must be sufficient scientific understanding of diamond to make applications effective, efficient and economical. Secondly, the means of fabrication and control of properties have to be achieved so that diamond's role can be optimised. Thirdly, it is not enough that its properties are superior to existing materials: they must be so much better that it is worth initiating new technologies to exploit them. Finally, any substantial applications will have to address the society's major needs worldwide. The clear technology drivers for the 21st century come from the biomedical technologies, the demand for energy subject to global constraints, and the information technologies, where perhaps diamond will provide the major enabling technology [1]. The papers in this volume concern the solid state physics of diamond, and primarily concern the first two factors: understanding, and control of properties. They address many of the outstanding basic problems, such as the identification of existing defects, which affect the material's properties, both desirable and less so. Regarding future substantial applications, one paper discusses

  4. Adherent diamond like carbon coatings on metals via plasma source ion implantation

    SciTech Connect

    Walter, K.C.; Nastasi, M.; Munson, C.P.

    1996-12-01

    Various techniques are currently used to produce diamond-like carbon (DLC) coatings on various materials. Many of these techniques use metallic interlayers, such as Ti or Si, to improve the adhesion of a DLC coating to a ferrous substrate. An alternative processing route would be to use plasma source ion implantation (PSII) to create a carbon composition gradient in the surface of the ferrous material to serve as the interface for a DLC coating. The need for interlayer deposition is eliminated by using a such a graded interfaces PSII approach has been used to form adherent DLC coatings on magnesium, aluminum, silicon, titanium, chromium, brass, nickel, and tungsten. A PSII process tailored to create a graded interface allows deposition of adherent DLC coatings even on metals that exhibit a positive heat of formation with carbon, such as magnesium, iron, brass and nickel.

  5. IR beamline at the Swiss Light Source

    NASA Astrophysics Data System (ADS)

    Ph, Lerch; L, Quaroni; J, Wambach; J, Schneider; B, Armstrong D.; D, Rossetti; L, Mueller F.; P, Peier; V, Schlott; L, Carroll; P, Friedli; H, Sigg; S, Stutz; M, Tran

    2012-05-01

    The infrared beamline at the Swiss light source uses dipole radiation and is designed to transport light to four experimental stations, A, B, C, D. Branch A is dedicated to far IR work in vacuum; branch B is a micro-spectrometer; branch C is dedicated to high resolution spectroscopy in the gas phase; branch D is a pump and probe set-up. This contribution describes the optical layout and provides a brief survey of currently available experimental stations. The beamline is in regular user operation since 2009.

  6. First Operation of an Ungated Diamond Field-Emission Array Cathode in a L-Band Radiofrequency Electron Source

    SciTech Connect

    Piot, P.; Brau, C. A.; Choi, B. K.; Blomberg, B.; Gabella, W. E.; Ivanov, B.; Jarvis, J.; Mendenhall, M. H.; Mihalcea, D.; Panuganti, S.; Prieto, P.; Reid, J.

    2014-06-30

    We report on the first successful operation of a field-emitter-array cathode in a conventional L-band radio-frequency electron source. The cathode consisted of an array of $\\sim 10^6$ diamond diamond tips on pyramids. Maximum current on the order of 15~mA were reached and the cathode did not show appreciable signs of fatigue after weeks of operation. The measured Fowler-Nordheim characteristics, transverse beam density, and current stability are discussed. Numerical simulations of the beam dynamics are also presented.

  7. Effect of source gas chemistry on tribological performance of diamond-like carbon films.

    SciTech Connect

    Erdemir, A.; Eryilmaz, O. L.; Fenske, G. R.; Nilufer, I. B.

    1999-08-23

    In this study, we investigated the effects of various source gases (i. e., methane, ethane, ethylene, acetylene and methane + hydrogen) on friction and wear performance of diamond-like carbon (DLC) films. Specifically, we described the anomalous nature and fundamental friction and wear mechanisms of DLC films derived from gas discharge plasmas with very low to very high hydrogen content. The films were deposited on steel substrates by a plasma enhanced chemical vapor deposition process at room temperature and the tribological tests were performed in dry nitrogen. The results of tribological tests revealed a close correlation between the friction and wear coefficients of the DLC films and the source gas chemistry. Specifically, films grown in source gases with higher hydrogen-to-carbon ratios had much lower friction coefficients and wear rates than the films derived from source gases with lower hydrogen-to-carbon ratios. The lowest friction coefficient (0.002) was achieved with a film derived from 25% methane--75% hydrogen while the films derived from acetylene had a coefficient of 0.15. Similar correlations were observed on wear rates. Specifically, the films derived from hydrogen rich plasmas had the least wear while the films derived from pure acetylene suffered the highest wear. We used a combination of scanning and transmission electron microscopy and Raman spectroscopy to characterize the structural chemistry of the resultant DLC films.

  8. Transparency of the strong shock-compressed diamond for 532 nm laser light

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyu; Zhao, Yang; Yang, Jiamin

    2016-04-01

    An optical reflectivity and transmissivity model for the shock-compressed diamond is established and used to calculate the optical reflectivity and transmissivity of the diamond under different shock compressions. The simulated results indicate that the reflection occurs at the shock front and does not depend on the thickness of the compressed diamond, but the transmissivity decreases with the thickness. The simulated reflectivity is consistent with the experimental results in the literature, which validates the model. It is shown that the diamond keeps transparent when the shock pressure is lower than 2.00 Mbar, and becomes opaque but does not reflect the probe laser as the shock pressure increases from 2.00 Mbar to 4.60 Mbar and reflects the probe laser markedly when the shock pressure is higher than 4.60 Mbar.

  9. Rf capacitively-coupled electrodeless light source

    DOEpatents

    Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.; Fugitt, Jock A.

    2000-01-01

    An rf capacitively-coupled electrodeless light source is provided. The light source comprises a hollow, elongated chamber and at least one center conductor disposed within the hollow, elongated chamber. A portion of each center conductor extends beyond the hollow, elongated chamber. At least one gas capable of forming an electronically excited molecular state is contained within each center conductor. An electrical coupler is positioned concentric to the hollow, elongated chamber and the electrical coupler surrounds the portion of each center conductor that extends beyond the hollow, elongated chamber. A rf-power supply is positioned in an operable relationship to the electrical coupler and an impedance matching network is positioned in an operable relationship to the rf power supply and the electrical coupler.

  10. Photon Science at Modern Light Sources

    NASA Astrophysics Data System (ADS)

    Arthur, John

    2009-12-01

    More than 50 large x-ray and UV light sources based on high-energy electron accelerators are in operation around the world, serving a scientific community numbering in the tens of thousands. These sources generate synchrotron radiation from accelerated electrons or positrons. The development of synchrotron light sources over the last 40 years has fueled an exponential increase in x-ray source brightness of more than 10 orders of magnitude. The next large advance in source potential is now underway, with the commissioning of the first x-ray Free-Electron Laser (FEL) sources. Using high-energy electron linear accelerators, these facilities produce sub-picosecond pulses of hard x-rays with peak brightness more than 10 orders of magnitude greater than current synchrotron facilities. FEL x-ray facilities will soon be operational in the US, Japan, and Germany. Research at modern light sources makes use of a wide range of experimental techniques. Many experiments are designed to study the structure of matter at the atomic scale using elastic x-ray scattering. This technique has been particularly effective for determining the structures of biological molecules, such as proteins, viruses, and drugs. Inelastic x-ray scattering, or x-ray absorption followed by emission of electrons or photons, can give information about the electronic structures of atoms, which can be used to deduce local environment information such as atomic species, bonding state, geometry of neighboring atoms, or magnetic state. For some techniques involving x-ray emission from a sample, cryogenic detectors with energy resolution at the ˜10 eV level or better would be very helpful. Shifts in electron energy levels associated with bonding states and magnetic states are typically several eV, while the energy structure associated with Compton inelastic scattering is typically in the range of a few tens of eV. Current energy-resolving detectors used at synchrotron light sources are hampered by either poor

  11. Invitation to the World of the Plasma for Light Source 3.Light Source Measurement 3.1 Laser Diagnostics of Plasmas for Light Sources

    NASA Astrophysics Data System (ADS)

    Motomura, Hideki; Jinno, Masafumi

    Examples and basic theories of various methods of laser diagnostics of plasmas for light sources are introduced. Most introduced papers were presented at International Symposium on the Science and Technology of Light Sources (LS), which is the only international symposium on the science and technology of light sources.

  12. Final Report, Photocathodes for High Repetition Rate Light Sources

    SciTech Connect

    Ben-Zvi, Ilan

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-antimonide cathodes b) Development and testing of a diamond amplifier for photocathodes c) Tests of both cathodes in superconducting RF photoguns and copper RF photoguns

  13. Linac Coherent Light Source Monte Carlo Simulation

    Energy Science and Technology Software Center (ESTSC)

    2006-03-15

    This suite consists of codes to generate an initial x-ray photon distribution and to propagate the photons through various objects. The suite is designed specifically for simulating the Linac Coherent Light Source, and x-ray free electron laser (XFEL) being built at the Stanford Linear Accelerator Center. The purpose is to provide sufficiently detailed characteristics of the laser to engineers who are designing the laser diagnostics.

  14. Backscatter absorption gas imaging systems and light sources therefore

    DOEpatents

    Kulp, Thomas Jan; Kliner, Dahv A. V.; Sommers, Ricky; Goers, Uta-Barbara; Armstrong, Karla M.

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  15. High brightness EUV light source modeling

    NASA Astrophysics Data System (ADS)

    Zakharov, Sergey V.; Choi, Peter; Zakharov, Vasily S.

    2010-04-01

    EUV source for actinic mask metrology, particularly for defect inspection, requires extremely high brightness. The selfabsorption of radiation limits the in-band EUV radiance of the source plasma and the etendue constraint limits the usable power of a conventional single unit EUV source. Theoretical study and numerical modelling has been carried out to address fundamental issues in tin and xenon plasmas and to optimize the performance of EUV sources. The highly ionized xenon plasma in the presence of fast electrons demonstrates the enhanced radiance. Theoretical models and robust modelling tools are being further developed under an international collaboration project FIRE in the frame of the EU FP7 IAPP program. NANO-UV is delivering a new generation of EUV light source with an intrinsic photon collector. Extensive numerical modelling has provided basic numbers to select the optimal regimes for tin and xenon based source operation. From these designs, a family of specially configured multiplexed source structures is being introduced to address the mask metrology needs.

  16. Sources of light in the deep ocean

    NASA Astrophysics Data System (ADS)

    Reynolds, G. T.; Lutz, R. A.

    2001-02-01

    Studies during recent decades have shown that the deep ocean (depths below where solar luminance plays a direct environmental role) is far from a dark, cold, lifeless region. Evidence obtained by utilizing a variety of photo-optical devices, providing spatial, temporal, and spectral information, has demonstrated that this portion of the Earth is a region rich in life and light. Findings to date have provided challenges for geologists, physicists, biologists, chemists, and oceanographers, and the sharing of techniques and expertise among these disciplines has demonstrated the rewards to be gained from interdisciplinary research. Bioluminescence has been found far below the depths at which it has received most attention historically. The study of this phenomenon is complicated by the fact that the measuring apparatus itself causes a stimulation of the luminescence so that a true background will be difficult to determine. Nuclear physics has played a role in that the electron resulting from the decay of an isotope of potassium (K40) provides an ubiquitous background of light through a process known as Cerenkov radiation. The possibility of light generated by cosmic rays must also be taken into account. An intriguing source of light at the very bottom of the sea is found at hydrothermal vents. Here are found not only light but also abundant life. At the vent orifice, temperatures are found to be as high as 250°-400°C. A large component of the light is due to thermal radiation. However, the light in the wavelengths 450-600 nm is significantly greater than the thermal flux at those wavelengths. Identifying the physical mechanisms that may account for this excess is important in providing insight into the processes occurring in the vents and plumes and in the accompanying ecosystem.

  17. The JLab high power ERL light source

    SciTech Connect

    G.R. Neil; C. Behre; S.V. Benson; M. Bevins; G. Biallas; J. Boyce; J. Coleman; L.A. Dillon-Townes; D. Douglas; H.F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; M.J. Kelley; L. Merminga; J. Mammosser; W. Moore; N. Nishimori; E. Pozdeyev; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; C. Tennant; R. Walker; G.P. Williams and S. Zhang

    2005-03-19

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz {approx} half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made

  18. The JLab high power ERL light source

    NASA Astrophysics Data System (ADS)

    Neil, G. R.; Behre, C.; Benson, S. V.; Bevins, M.; Biallas, G.; Boyce, J.; Coleman, J.; Dillon-Townes, L. A.; Douglas, D.; Dylla, H. F.; Evans, R.; Grippo, A.; Gruber, D.; Gubeli, J.; Hardy, D.; Hernandez-Garcia, C.; Jordan, K.; Kelley, M. J.; Merminga, L.; Mammosser, J.; Moore, W.; Nishimori, N.; Pozdeyev, E.; Preble, J.; Rimmer, R.; Shinn, M.; Siggins, T.; Tennant, C.; Walker, R.; Williams, G. P.; Zhang, S.

    2006-02-01

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ˜ half cycle pulse whose average brightness is >5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10 kW of average power in the IR from 1 to 14 μm in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 ms long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the

  19. Creation of deep blue light emitting nitrogen-vacancy center in nanosized diamond

    SciTech Connect

    Himics, L. Tóth, S.; Veres, M.; Koós, M.; Balogh, Z.

    2014-03-03

    This paper reports on the formation of complex defect centers related to the N3 center in nanosized diamond by employing plasma immersion and focused ion beam implantation methods. He{sup +} ion implantation into nanosized diamond “layer” was performed with the aim of creating carbon atom vacancies in the diamond structure, followed by the introduction of molecular N{sub 2}{sup +} ion and heat treatment in vacuum at 750 °C to initiate vacancy diffusion. To decrease the sp{sup 2} carbon content of nanosized diamond formed during the implantation processes, a further heat treatment at 450 °C in flowing air atmosphere was used. The modification of the bonding properties after each step of defect creation was monitored by Raman scattering measurements. The fluorescence measurements of implanted and annealed nanosized diamond showed the appearance of an intensive and narrow emission band with fine structures at 2.98 eV, 2.83 eV, and 2.71 eV photon energies.

  20. Superbend upgrade of the Advanced Light Source

    SciTech Connect

    Robin, D.; Krupnick, J.; Schlueter, R.; Steier, C.; Marks, S.; Wang, B.; Zbasnik, J.; Benjegerdes, R.; Biocca, A.; Bish, P.; Brown, W.; Byrne, W.; Chen, J.; Decking, W.; DeVries, J.; DeMarco, W.R.; Fahmie, M.; Geyer, A.; Harkins, J.; Henderson, T.; Hinkson, J.; Hoyer, E.; Hull, D.; Jacobson, S.; McDonald, J.; Molinari, P.; Mueller, R.; Nadolski, L.; Nishimura, H.; Nishimura, K.; Ottens, F.; Paterson, J.A.; Pipersky, P.; Portmann, G.; Richie, A.; Rossi, S.; Salvant, B.; Scarvie, T.; Schmidt,A.; Spring, J.; Taylor, C.; Thur, W.; Timossi, C.; Wandesforde, A.

    2004-05-26

    The Advanced Light Source (ALS) is a third generation synchrotron light source located at Lawrence Berkeley National Laboratory (LBNL). There was an increasing demand at the ALS for additional high brightness hard x-ray beamlines in the 7 to 40 keV range. In response to that demand, the ALS storage ring was modified in August 2001. Three 1.3 Tesla normal conducting bending magnets were removed and replaced with three 5 Tesla superconducting magnets (Superbends). The radiation produced by these Superbends is an order of magnitude higher in photon brightness and flux at 12 keV than that of the 1.3 Tesla bends, making them excellent sources of hard x-rays for protein crystallography and other hard x-ray applications. At the same time the Superbends did not compromise the performance of the facility in the VUV and soft x-ray regions of the spectrum. The Superbends will eventually feed 12 new beamlines greatly enhancing the facility's capability and capacity in the hard x-ray region. The Superbend project is the biggest upgrade to the ALS storage ring since it was commissioned in 1993. In this paper we present an overview of the Superbend project, its challenges and the resulting impact on the ALS.

  1. High-performance diamond-based single-photon sources for quantum communication

    NASA Astrophysics Data System (ADS)

    Su, Chun-Hsu; Greentree, Andrew D.; Hollenberg, Lloyd C. L.

    2009-11-01

    Quantum communication places stringent requirements on single-photon sources. Here we report a theoretical study of the cavity Purcell enhancement of two diamond point defects, the nickel-nitrogen (NE8) and silicon-vacancy (SiV) centers, for high-performance, near on-demand single-photon generation. By coupling the centers strongly to high-finesse optical photonic-band-gap cavities with modest quality factor Q=O(104) and small mode volume V=O(λ3) , these system can deliver picosecond single-photon pulses at their zero-phonon lines with probabilities of 0.954 (NE8) and 0.812 (SiV) under a realistic optical excitation scheme. The undesirable blinking effect due to transitions via metastable states can also be suppressed with O(10-4) blinking probability. We analyze the application of these enhanced centers, including the previously studied cavity-enhanced nitrogen-vacancy (NV) center, to long-distance Bennett-Brassard 1984 protocol quantum key distribution (QKD) in fiber-based, open-air terrestrial and satellite-ground setups. In this comparative study, we show that they can deliver performance comparable with decoy state implementation with weak coherent sources, and are most suitable for open-air communication.

  2. Plasma-based EUV light source

    DOEpatents

    Shumlak, Uri; Golingo, Raymond; Nelson, Brian A.

    2010-11-02

    Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.

  3. Advanced Light Source beam position monitor

    SciTech Connect

    Hinkson, J.

    1991-10-28

    The Advanced Light Source (ALS) is a synchrotron radiation facility nearing completion at LBL. As a third-generation machine, the ALS is designed to produce intense light from bend magnets, wigglers, and undulators (insertion devices). The facility will include a 50 MeV electron linear accelerator, a 1.5 GeV booster synchrotron, beam transport lines, a 1--2 GeV storage ring, insertion devices, and photon beam lines. Currently, the beam injection systems are being commissioned, and the storage ring is being installed. Electron beam position monitors (BPM) are installed throughout the accelerator and constitute the major part of accelerator beam diagnostics. The design of the BPM instruments is complete, and 50 units have been constructed for use in the injector systems. We are currently fabricating 100 additional instruments for the storage ring. In this paper I discuss engineering fabrication, testing and performance of the beam pickup electrodes and the BPM electronics.

  4. Operator scheduling at the Advanced Light Source

    SciTech Connect

    Miller, B.

    1998-06-01

    Scheduling Operations staff at the Advanced Light Source (ALS) has evolved from 5 shifts/week for commissioning operations in 1992 to the present 24 hour/day, 21 shift coverage as the ALS went to full operation for users. A number of schedules were developed and implemented in an effort to accommodate changing ALS shift coverage requirements. The present work schedule and the lessons learned, address a number of issues that are useful to any facility that is operating 24 hours/day, 7 days/week.

  5. Magnet costs for the Advanced Light Source

    SciTech Connect

    Tanabe, J.; Krupnick, J.; Hoyer, E.; Paterson, A.

    1993-05-01

    The Advanced Light Source (ALS) accelerator is now completed. The numerous conventional magnets required for the booster ring, the storage ring and the low and high energy transfer lines were installed during the last two years. This paper summarizes the various costs associated with the quantity fabrication of selected magnet families. These costs include the costs of prototypes, tooling, coil and core fabrication, assembly and magnetic measurements. Brief descriptions of the magnets and specialized requirements for magnetic measurements are included in order to associate the costs with the relative complexities of the various magnet systems.

  6. Status of the Linac Coherent Light Source

    SciTech Connect

    Galayda, John N.; /SLAC

    2011-11-04

    The Linac Coherent Light Source (LCLS) is a free electron laser facility in construction at Stanford Linear Accelerator Center. It is designed to operate in the wavelength range 0.15-1.5 nanometers. At the time of this conference, civil construction of new tunnels and buildings is complete, the necessary modifications to the SLAC linac are complete, and the undulator system and x-ray optics/diagnostics are being installed. The electron gun, 135 MeV injector linac and 250 MeV bunch compressor were commissioned in 2007. Accelerator commissioning activities are presently devoted to the achievement of performance goals for the completed 14 GeV linac.

  7. Coded source imaging simulation with visible light

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Zou, Yubin; Zhang, Xueshuang; Lu, Yuanrong; Guo, Zhiyu

    2011-09-01

    A coded source could increase the neutron flux with high L/ D ratio. It may benefit a neutron imaging system with low yield neutron source. Visible light CSI experiments were carried out to test the physical design and reconstruction algorithm. We used a non-mosaic Modified Uniformly Redundant Array (MURA) mask to project the shadow of black/white samples on a screen. A cooled-CCD camera was used to record the image on the screen. Different mask sizes and amplification factors were tested. The correlation, Wiener filter deconvolution and Richardson-Lucy maximum likelihood iteration algorithm were employed to reconstruct the object imaging from the original projection. The results show that CSI can benefit the low flux neutron imaging with high background noise.

  8. Carbon isotope fractionation between Fe-carbide and diamond; a light C isotope reservoir in the deep Earth and Core?

    NASA Astrophysics Data System (ADS)

    Mikhail, S.; Jones, A. P.; Hunt, S. A.; Guillermier, C.; Dobson, D. P.; Tomlinson, E.; Dan, H.; Milledge, H.; Franchi, I.; Wood, I.; Beard, A.; Verchovsky, S.

    2010-12-01

    The largest accessible reservoir for terrestrial carbon is the mantle; however the core may yield even more. Carbon is commonly proposed as the light element (or one of) to make up the observed density deficit in the earth’s metallic core (NAKAJIMA et al., 2009). The potential isotopic effects of carbon incorporation into the core have not yet been investigated. In-situ ion probe (nanoSIMS) mapping and imaging of carbon isotope variations across rare sub-mm-scale Fe-rich carbide inclusions in mantle diamond (from Jagersfontein, South Africa) show the carbide to be significantly depleted in 13C relative to their diamond host. Distinctive textures suggest metallic liquid precipitates similar in geometry to (giant) nitrogen platelets, controlled by the octahedral symmetry of diamond, which we interpret as syngenic formation. The difference in δ13C values between the two natural phases for diamond-Fe carbide, gives an isotopic fractionation factor (ΔC) which agrees well with HPHT multi-anvil experiments (5-9 GPa and >1400°C). Our measured ΔC between Fe-carbide and diamond may only have local significance, but the measured isotopic values represent characterization of the highest PT carbide known (i.e. > minimum depth of the diamond stability field ≈ 150 km). The direction and magnitude of ΔC agrees with observations of the ΔC between cohenite-graphite in iron meteorites (DEINES and WICKMAN, 1975) and both agree with HPHT experiments, thus suggesting that carbon in the deep Earth, and particularly in the core, may be similarly fractionated (i.e. depleted in the 13C). Since metallic liquid drained from the silicate mantle to form the core during the early Earth, we can use our values as a proxy to constrain evolution of deep carbon reservoirs such as the core and bulk silicate Earth. For example, we can test the suggestion of Grady et al (2004) that the upper mantle value of δ13C ≈ -5 ‰ may not be representative of the bulk Earth, since solar system

  9. Ultraviolet Light Source Using Electrodeless Microwave Discharge

    NASA Astrophysics Data System (ADS)

    Nishikawa, Taku; Toyoda, Hirotaka

    2015-09-01

    Surface treatment technologies using ultraviolet (UV) light, such as organic residue removal, surface modification or sterilization, are widely used. So far, UV lamps using DC discharge with electrodes inside the lamp tube is commonly used. However, sputtering of electrode materials sometimes causes deposition on the inner tube surface as well as degradation of the electrodes, resulting in short life time of the lamp tube. In this study, we propose an electrodeless UV mercury (Hg) lamp source using microwave power. 2.45 GHz Microwave power (<4 kW) from a power supply is divided into four power lines using branch waveguides. A mercury lamp tube (diameter: 9.6 mm, length: 42 cm, Hg: 13.5 mg, Ar: 1 Torr) is inserted into the branch waveguides and microwave power is coupled to the plasma. Emission from the lamp is monitored by a monochromator and an 254 nm UV monitor. Lamp temperature is also measured by a thermography camera and tube temperature up to 900 K with good uniformity along ~ 30 cm was observed. Uniformity of the 254 nm UV light intensity was +15 % along the lamp tube. The maximum UV light intensity of 64 mW/cm2 was observed at a microwave power of 4 kW.

  10. Advanced Light Source: Activity report 1993

    SciTech Connect

    Not Available

    1994-11-01

    The Advanced Light Source (ALS) produces the world`s brightest light in the ultraviolet and soft x-ray regions of the spectrum. The first low-energy third-generation synchrotron source in the world, the ALS provides unprecedented opportunities for research in science and technology not possible anywhere else. This year marked the beginning of operations and the start of the user research program at the ALS, which has already produced numerous high quality results. A national user facility located at Lawrence Berkeley Laboratory of the University of California, the ALS is available to researchers from academia, industry, and government laboratories. This report contains the following: (1) director`s message; (2) operations overview; (3) user program; (4) users` executive committee; (5) industrial outreach; (6) accelerator operations; (7) beamline control system; (8) insertion devices; (9) experimental systems; (10) beamline engineering; (11) first results from user beamlines; (12) beamlines for 1994--1995; (13) special events; (14) publications; (15) advisory panels; and (16) ALS staff.

  11. Status of the Synchrotron Light Source DELTA

    SciTech Connect

    Berges, U.; Sternemann, C.; Tolan, M.; Westphal, C.; Weis, T.; Wille, K.

    2007-01-19

    The Dortmund Electron Accelerator DELTA, a 1.5 GeV synchrotron light source located at University of Dortmund, is operated for 3000 h per year including 2000 h beam time for synchrotron radiation use and 1000 h for machine physics, optimisation and maintenance. The status of the synchrotron light source is presented with emphasis on the operation, commissioning and installation of beamlines and insertion devices. The soft X-ray undulator beamlines provide photon energies between 5 to 400 eV (U250) and 55 and 1500 eV (U55), respectively. One dipole beamline covers soft X-rays between 6 to 200 eV, and a second dipole beamline is used without a monochromator at 2.2 keV critical energy of the dipole spectrum. For photons in the hard X-ray regime, a superconducting asymmetric wiggler (SAW) with a field of 5.3 T and 7.9 keV critical energy was installed, providing circularly polarized X-rays in the range of 2 to 30 keV. Due to its broad radiation fan, three beamlines are simultaneously served. The first SAW-beamline with an energy range between 4 to 30 keV is in full operation, the second is under commissioning, serving the energy range between 2 to 30 keV. The third SAW beamline is near completion, additional dipole beamlines are under construction.

  12. A novel amblyopia treatment system based on LED light source

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Chen, Qingshan; Wang, Xiaoling

    2011-05-01

    A novel LED (light emitting diode) light source of five different colors (white, red, green, blue and yellow) is adopted instead of conventional incandescent lamps for an amblyopia treatment system and seven training methods for rectifying amblyopia are incorporated so as for achieving an integrated therapy. The LED light source is designed to provide uniform illumination, adjustable light intensity and alterable colors. Experimental tests indicate that the LED light source operates steadily and fulfills the technical demand of amblyopia treatment.

  13. A novel amblyopia treatment system based on LED light source

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Chen, Qingshan; Wang, Xiaoling

    2010-12-01

    A novel LED (light emitting diode) light source of five different colors (white, red, green, blue and yellow) is adopted instead of conventional incandescent lamps for an amblyopia treatment system and seven training methods for rectifying amblyopia are incorporated so as for achieving an integrated therapy. The LED light source is designed to provide uniform illumination, adjustable light intensity and alterable colors. Experimental tests indicate that the LED light source operates steadily and fulfills the technical demand of amblyopia treatment.

  14. EDITORIAL: Special Issue on Light Sources

    NASA Astrophysics Data System (ADS)

    Wharmby, D. O.

    2008-07-01

    The papers in this Special Issue of Journal of Physics D: Applied Physics originate from the 11th International Symposium on the Science and Technology of Light Sources (LS:11) held at Fudan University, Shanghai, China, during 20 24 May 2007. Abstracts of all papers were published in the conference book Light Sources 2007 (Sheffield: FAST-LS) edited by Muqing Liu and R Devonshire. Special issues were produced after LS:9 and LS:10 and have proved to be well-cited and important sources of information for this community. The Symposia occur at three-year intervals. In this one over 200 papers were presented—the majority as posters—with ample time provided for active discussion. As all submitted papers had to be refereed in the normal way for J. Phys. D: Appl. Phys., I was concerned that too many submissions would overwhelm the small number of referees available in this area. To ensure a broad spread of interests and opinions, I invited 10 senior colleagues to give me their recommendations about who should be asked to submit papers for this Special Issue. The criteria were that the work should be new, complete and within the scope of the journal. As a result of their suggestions 42 authors were asked to submit papers. Not all authors were able to submit a manuscript in time and some, at my request, combined their work into a single paper. The 28 papers published here are the result of that process. The issue starts with a comprehensive review by Benilov of the remarkable progress that has been made in the past 15 years in understanding the behaviour of cathode and anode terminations in arcs. It is fair to say that we now have a fundamental understanding of the formerly baffling behaviour of spot and diffuse terminations, at least in the quasi-steady state. A number of following papers cover applications of this theory, extensions to time dependence and examination of the effects of the different gaseous atmospheres in which lighting arcs operate. Mercury has very

  15. Operation of an ungated diamond field-emission array cathode in a L-band radiofrequency electron source

    SciTech Connect

    Piot, P.; Brau, C. A.; Gabella, W. E.; Ivanov, B.; Mendenhall, M. H.; Choi, B. K.; Blomberg, B.; Mihalcea, D.; Panuganti, H.; Jarvis, J.; Prieto, P.; Reid, J.

    2014-06-30

    We report on the operation of a field-emitter-array cathode in a conventional L-band radio-frequency electron source. The cathode consisted of an array of ∼10{sup 6} diamond tips on pyramids. Maximum current on the order of 15 mA was reached and the cathode did not show appreciable signs of fatigue after weeks of operation. The measured Fowler-Nordheim characteristics, transverse beam density, and current stability are discussed.

  16. Status of the SAGA Light Source

    SciTech Connect

    Kaneyasu, T.; Takabayashi, Y.; Iwasaki, Y.; Koda, S.

    2010-06-23

    The SAGA Light Source (SAGA-LS) is a synchrotron radiation facility consisting of a 255 MeV injector linac and a 1.4 GeV storage ring that is 75.6 m in circumference. The SAGA-LS has been stably providing synchrotron radiation to users since it first started user operation in February 2006. Along with the user operation, various machine improvements have been made over the past years, including upgrading the injector linac control system, replacing a septum magnet and constructing a beam diagnostic system. In addition to these improvements, insertion devices have been developed and installed. An APPLE-II type variable polarization undulator was installed in 2008. To address the demand from users for high-flux hard x-rays, a superconducting 4 T class wiggler is being developed. An experimental setup for generating MeV photons by laser Compton scattering is being constructed for beam monitoring and future user experiments.

  17. Energy Recovery Linacs for Light Source Applications

    SciTech Connect

    George Neil

    2011-04-01

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

  18. Status of the SAGA Light Source

    NASA Astrophysics Data System (ADS)

    Kaneyasu, T.; Takabayashi, Y.; Iwasaki, Y.; Koda, S.

    2010-06-01

    The SAGA Light Source (SAGA-LS) is a synchrotron radiation facility consisting of a 255 MeV injector linac and a 1.4 GeV storage ring that is 75.6 m in circumference. The SAGA-LS has been stably providing synchrotron radiation to users since it first started user operation in February 2006. Along with the user operation, various machine improvements have been made over the past years, including upgrading the injector linac control system, replacing a septum magnet and constructing a beam diagnostic system. In addition to these improvements, insertion devices have been developed and installed. An APPLE-II type variable polarization undulator was installed in 2008. To address the demand from users for high-flux hard x-rays, a superconducting 4 T class wiggler is being developed. An experimental setup for generating MeV photons by laser Compton scattering is being constructed for beam monitoring and future user experiments.

  19. Performance of the Advanced Light Source

    SciTech Connect

    Jackson, A.

    1994-06-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is the first of the lower energy (1--2 GeV) third-generation synchrotron radiation facilities to come into operation. Designed with very small electron beam emittances to operate with long insertion devices producing very high brightness beams of synchrotron radiation in the VUV and soft x-ray regions of the spectrum, these facilities are complementary to the higher energy (6--9 GeV) facilities designed for harder x-radiation. The ALS storage ring began operation in October 1993. In this paper, we will review the operational performance of the ALS, including the effects of the 4.5 m long undulators (period 5 cm), and discuss the overall performance of the facility.

  20. The Linac Cooherent Light Source (LCLS) Accelerator

    SciTech Connect

    Wu, Juhao; Emma, P.; /SLAC

    2007-03-21

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) based on the final kilometer of the Stanford Linear Accelerator. Such an FEL requires a high energy, high brightness electron beam to drive the FEL instability to saturation. When fed by an RF-photocathode gun, and modified to include two bunch compressor chicanes, the SLAC linac will provide such a high quality beam at 14 GeV and 1-{micro}m normalized emittance. In this paper, we report on recent linac studies, including beam stability and tolerances, longitudinal and transverse feedback systems, conventional and time-resolved diagnostics, and beam collimation systems. Construction and installation of the injector through first bunch compressor will be completed by December 2006, and electron commissioning is scheduled to begin in January of 2007.

  1. LED intense headband light source for fingerprint analysis

    DOEpatents

    Villa-Aleman, Eliel

    2005-03-08

    A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.

  2. On the role of multiphoton light absorption in pulsed laser nanoablation of diamond

    NASA Astrophysics Data System (ADS)

    Komlenok, M. S.; Kononenko, V. V.; Gololobov, V. M.; Konov, V. I.

    2016-02-01

    The rates of multipulse nanoablation of the diamond surface in air by pico- and nanosecond laser pulses that cause singlephoton, two-photon, three-photon and four-photon absorption in diamond are measured. In the experiments the radiation of ArF, KrF and Ti : Al2O3 lasers and the second harmonic of the Yb : YAG laser was used. The power dependence of the material etching rate on the fluence of laser pulses was found. The power exponent of this dependence appeared to be twice lower than that found earlier for femtosecond pulses. We discuss the causes of the difference in the nanoablation regularities for 'short' and 'long' laser pulses.

  3. Status of the Metrology Light Source

    SciTech Connect

    Klein, R.; Ulm, G.; Feikes, J.; Hartrott, M. von; Wuestefeld, G.

    2010-06-23

    The Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute, has set up the low-energy electron storage ring Metrology Light Source (MLS) in close cooperation with the Helmholtz-Zentrum Berlin (HZB, formerly BESSY). This new storage ring has been in regular user operation since April 2008 and is dedicated to synchrotron-radiation-based metrology and technological developments in the far-IR/THz, IR, UV, VUV and EUV spectral range. The MLS has a double-bend-achromate lattice structure, injection is from a 105 MeV racetrack microtron. The electron energy can be ramped to any value from 105 MeV up to 630 MeV and the electron beam current covers the range from one stored electron (1 pA) up to 200 mA. The MLS is the first electron storage ring optimized for the generation of coherent synchrotron radiation, based on an electron bunch shortening mode. In this mode, MLS delivers coherent radiation in the far-IR/THz spectral range with enhanced intensity as compared to the normal mode of operation. Several beamlines are in operation or in construction, including one undulator beamline, bending magnet beamlines for the calibration of radiation sources and detectors and for reflectometry, an EUV metrology beamline and three IR/THz beamlines.

  4. National Synchrotron Light Source 2008 Activity Report

    SciTech Connect

    Nasta,K.

    2009-05-01

    Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R&D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for work

  5. A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills.

    PubMed

    Nemchin, Alexander A; Whitehouse, Martin J; Menneken, Martina; Geisler, Thorsten; Pidgeon, Robert T; Wilde, Simon A

    2008-07-01

    The recent discovery of diamond-graphite inclusions in the Earth's oldest zircon grains (formed up to 4,252 Myr ago) from the Jack Hills metasediments in Western Australia provides a unique opportunity to investigate Earth's earliest known carbon reservoir. Here we report ion microprobe analyses of the carbon isotope composition of these diamond-graphite inclusions. The observed delta(13)C(PDB) values (expressed using the PeeDee Belemnite standard) range between -5 per mil and -58 per mil with a median of -31 per mil. This extends beyond typical mantle values of around -6 per mil to values observed in metamorphic and some eclogitic diamonds that are interpreted to reflect deep subduction of low-delta(13)C(PDB) biogenic surface carbon. Low delta(13)C(PDB) values may also be produced by inorganic chemical reactions, and therefore are not unambiguous evidence for life on Earth as early as 4,250 Myr ago. Regardless, our results suggest that a low-delta(13)C(PDB) reservoir may have existed on the early Earth. PMID:18596808

  6. The 4th Generation Light Source at Jefferson Lab

    SciTech Connect

    Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Albert Grippo; Christopher Gould; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; Kevin Jordan; John Klopf; Steven Moore; George Neil; Thomas Powers; Joseph Preble; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Shukui Zhang; Gwyn Williams

    2007-04-25

    A number of "Grand Challenges" in Science have recently been identified in reports from The National Academy of Sciences, and the U.S. Dept. of Energy, Basic Energy Sciences. Many of these require a new generation of linac-based light source to study dynamical and non-linear phenomena in nanoscale samples. In this paper we present a summary of the properties of such light sources, comparing them with existing sources, and then describing in more detail a specific source at Jefferson Lab. Importantly, the JLab light source has developed some novel technology which is a critical enabler for other new light sources.

  7. The 4th generation light source at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Benson, S.; Biallas, G.; Boyce, J.; Bullard, D.; Coleman, J.; Douglas, D.; Dylla, F.; Evans, R.; Evtushenko, P.; Grippo, A.; Gould, C.; Gubeli, J.; Hardy, D.; Hernandez-Garcia, C.; Jordan, K.; Klopf, J. M.; Moore, W.; Neil, G.; Powers, T.; Preble, J.; Sexton, D.; Shinn, M.; Tennant, C.; Walker, R.; Zhang, S.; Williams, G. P.

    2007-11-01

    A number of "Grand Challenges" in Science have recently been identified in reports from The National Academy of Sciences, and the US Department of Energy, Basic Energy Sciences. Many of these require a new generation of linac-based light source to study dynamical and non-linear phenomena in nanoscale samples. In this paper we present a summary of the properties of such light sources, comparing them with existing sources, and then describing in more detail a specific source at Jefferson Lab (JLab). Importantly, the JLab light source has developed some novel technology which is a critical enabler for other new light sources.

  8. Collimated Light Source Using Patterned Organic Light-Emitting Diodes and Microlens

    NASA Astrophysics Data System (ADS)

    Sukekazu Aratani,; Masaya Adachi,; Masao Shimizu,; Tatsuya Sugita,; Toshinari Shibasaki,; Katsusuke Shimazaki,

    2010-04-01

    We developed for the first time a collimated organic light-emitting diode (OLED) light source using a patterned OLED and a microlens. The structure of the collimated OLED light source was designed by conventional ray-tracking simulation. We demonstrated that the collimated OLED light source enhanced the luminance of a liquid crystal display (LCD) with a low aperture ratio by a factor of more than two compared with a conventional OLED light source, which was not patterned. The collimated OLED light source with the patterned OLED and microlens is thus very effective for achieving a highly efficient LCD with OLED backlight.

  9. The Sun: the Earth light source

    NASA Astrophysics Data System (ADS)

    Berrilli, Francesco; Giovannelli, Luca; Del Moro, Dario; Piazzesi, Roberto; Catena, Liu` Maria; Amicucci, Giordano; Vittorio, Nicola

    2015-04-01

    We have implemented at Department of Physics of University of Rome Tor Vergata a project called "The Sun: the Earth light source". The project obtained the official endorsement from the IAU Executive Committee Working Group for the International Year of Light. The project, specifically designed for high school students, is focused on the "scientific" study of Sun light by means of a complete acquisition system based on "on the shelf" appropriately CMOS low-cost sensor with free control s/w and self-assembled telescopes. The project (hereafter stage) plan is based on a course of two weeks (60 hours in total). The course contains 20 hours of theoretical lectures, necessary to learn basics about Sun, optics, telescopes and image sensors, and 40 hours of laboratory. During the course, scientists and astronomers share with high schools students, work activities in real research laboratories. High schools teachers are intensely involved in the project. Their role is to share activities with university teachers and realize outreach actions in the home institutions. Simultaneously, they are introduced to innovative teaching methods and the project in this way is regarded as a professional development course. Sun light analysis and Sun-Earth connection through light are the main scientific topics of this project. The laboratory section of the stage is executed in two phases (weeks): First phase aims are the realization of a keplerian telescope and low-cost acquisition system. During this week students are introduced to astronomical techniques used to safety collect and acquire solar light; Second phase aims is the realization of a low-cost instrument to analyse sunlight extracting information about the solar spectrum, solar irradiance and Sun-Earth connection. The proposed stage has been already tested in Italy reached the fifth edition in 2014. Since 2010, the project has been a cornerstone outreach program of the University of Rome Tor Vergata, the Italian Ministry of

  10. LIGHT SOURCE: TW Laser system for Thomson scattering X-ray light source at Tsinghua University

    NASA Astrophysics Data System (ADS)

    Yan, Li-Xm; Du, Ying-Chao; Du, Qiang; Li, Ren-Kai; Hua, Jian-Fei; Huang, Wen-Hui; Tang, Chuan-Xiang

    2009-06-01

    A TW (Tera Watt) laser system based on Ti:sapphire mainly for the Tsinghua Thomson scattering X-ray light source (TTX) is being built. Both UV (ultraviolet) laser pulse for driving the photocathode radio-frequency (RF) gun and the IR (infrared) laser pulse as the electron-beam-scattered-light are provided by the system. Efforts have also been made in laser pulse shaping and laser beam transport to optimize the high-brightness electron beam production by the photocathode RF gun.

  11. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2001-01-01

    An overview of the industrial diamond industry is provided. More than 90 percent of the industrial diamond consumed in the U.S. and the rest of the world is manufactured diamond. Ireland, Japan, Russia, and the U.S. produce 75 percent of the global industrial diamond output. In 2000, the U.S. was the largest market for industrial diamond. Industrial diamond applications, prices for industrial diamonds, imports and exports of industrial diamonds, the National Defense Stockpile of industrial diamonds, and the outlook for the industrial diamond market are discussed.

  12. Lower pressure synthesis of diamond material

    DOEpatents

    Lueking, Angela; Gutierrez, Humberto; Narayanan, Deepa; Burgess Clifford, Caroline E.; Jain, Puja

    2010-07-13

    Methods of synthesizing a diamond material, particularly nanocrystalline diamond, diamond-like carbon and bucky diamond are provided. In particular embodiments, a composition including a carbon source, such as coal, is subjected to addition of energy, such as high energy reactive milling, producing a milling product enriched in hydrogenated tetrahedral amorphous diamond-like carbon compared to the coal. A milling product is treated with heat, acid and/or base to produce nanocrystalline diamond and/or crystalline diamond-like carbon. Energy is added to produced crystalline diamond-like carbon in particular embodiments to produce bucky diamonds.

  13. The Jefferson Lab High Power Light Source

    SciTech Connect

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  14. The age of predictable primary diamond sources in the northeastern Siberian Platform

    NASA Astrophysics Data System (ADS)

    Grakhanov, S. A.; Zinchuk, N. N.; Sobolev, N. V.

    2015-12-01

    The U-Pb (SHRIMP) age was determined for zircons collected from 26 observation and sampling sites of diamonds and index minerals in the northeastern Siberian Platform. This part of the region hosts 15 low-diamondiferous Paleozoic and Mesozoic kimberlite fields, excluding the near economic Triassic Malokuonapskaya pipe in the Kuranakh field. Four epochs of kimberlite formation (Silurian, Late Devonian to Early Carboniferous, Middle to Late Triassic, and Middle to Late Jurassic) of the Siberian Platform, including its northeastern part, are confirmed as a result of our studies. Most observation points, including economic Quaternary diamond placers, contain Middle to Late Triassic zircons, which confirms the abundant Late Triassic volcanism in this region. The positive correlation of diamonds and major index minerals of kimberlites (mostly, garnets) at some observation sites indicates the possible Triassic age of the predictable diamondiferous kimberlites.

  15. Multiple carbon and nitrogen sources associated with the parental mantle fluids of fibrous diamonds from Diavik, Canada, revealed by SIMS microanalysis

    NASA Astrophysics Data System (ADS)

    Petts, D. C.; Stachel, T.; Stern, R. A.; Hunt, L.; Fomradas, G.

    2016-02-01

    separate pulses of fluid that remained isotopically uniform throughout the duration of growth. Significant isotopic and abundance differences were observed between the gem and fibrous growth zones, including in one detailed isotopic profile δ 13C and δ 15N offsets of ~-2.4 and ~-3.7 ‰, respectively, and a ~230 at. ppm increase in N-abundance. Combined with the well-defined gem-fibrous boundaries in plane light and CL, these sharp isotopic differences indicate separate parental fluid histories. Notably, in the combined fibrous diamond dataset prominent C- and N-isotope differences between the whole-crystal cuboid and fibrous rim data were observed, including a consistent ~1.3 ‰ offset in δ 15N values between the two growth types. This bimodal N-isotope distribution is interpreted as formation from separate parental fluids, associated with distinct nitrogen sources. The bimodal N-isotope distribution could also be explained by differences in N-speciation between the respective parental fluids, which would largely be controlled by the oxidation state of the fibrous rim and cuboid growth environments (i.e., N2 vs. NH4 + or NH3). We also note that this C- and N-isotope variability could indicate temporal changes to the source(s) of the respective parental fluids, such that each stage of fibrous diamond growth reflects the emplacement of separate pulses of proto-kimberlitic fluid—from distinct carbon and nitrogen sources, and/or with varying N-species—into the lithospheric mantle.

  16. Matrix light and pixel light: optical system architecture and requirements to the light source

    NASA Astrophysics Data System (ADS)

    Spinger, Benno; Timinger, Andreas L.

    2015-09-01

    Modern Automotive headlamps enable improved functionality for more driving comfort and safety. Matrix or Pixel light headlamps are not restricted to either pure low beam functionality or pure high beam. Light in direction of oncoming traffic is selectively switched of, potential hazard can be marked via an isolated beam and the illumination on the road can even follow a bend. The optical architectures that enable these advanced functionalities are diverse. Electromechanical shutters and lens units moved by electric motors were the first ways to realize these systems. Switching multiple LED light sources is a more elegant and mechanically robust solution. While many basic functionalities can already be realized with a limited number of LEDs, an increasing number of pixels will lead to more driving comfort and better visibility. The required optical system needs not only to generate a desired beam distribution with a high angular dynamic, but also needs to guarantee minimal stray light and cross talk between the different pixels. The direct projection of the LED array via a lens is a simple but not very efficient optical system. We discuss different optical elements for pre-collimating the light with minimal cross talk and improved contrast between neighboring pixels. Depending on the selected optical system, we derive the basic light source requirements: luminance, surface area, contrast, flux and color homogeneity.

  17. LIGHT SOURCE: Conceptual design of Hefei Advanced Light Source (HALS) injection system

    NASA Astrophysics Data System (ADS)

    Zhang, Shan-Cai; Wang, Lin; Feng, Guang-Yao; Wu, Cong-Feng; Li, Wei-Min; Xu, Hong-Liang; Liu, Zu-Ping

    2009-06-01

    The Hefei Advanced Light Source(HALS) is a super low emittance storage ring and has a very short beam life time. In order to run the ring stablely, top-up injection will be necessary. The injection system will greatly affect the quality of beam. This article first gives a physics design of the injecting system. Then the injecting system is tracked under different errors. The responses of storage beam and injecting beam are given in the article.

  18. Linac Coherent Light Source - Status and Prospects

    SciTech Connect

    Galayda, John N.; /SLAC

    2005-11-09

    The Linac Coherent Light Source (LCLS) Project will be an x-ray free-electron laser. It is intended to produce pulses of 800-8,000 eV photons. Each pulse, produced with a repetition frequency of up to 120 Hz, will provide >10{sup 12} photons within a duration of less than 200 femtoseconds. The project employs the last kilometer of the SLAC linac to provide a low-emittance electron beam in the energy range 4-14 GeV to a single undulator. Two experiment halls, located 100m and 350m from the undulator exit, will house six experiment stations for research in atomic/molecular physics, pump-probe dynamics of materials and chemical processes, x-ray imaging of clusters and complex molecules, and plasma physics. Engineering design activities began in 2003, and the project is to be completed in March 2009. The project design permits straightforward expansion of the LCLS to multiple undulators.

  19. Status Of The Synchrotron Light Source DELTA

    SciTech Connect

    Berges, U.; Friedl, J.; Hartmann, P.; Schirmer, D.; Schmidt, G.; Sternemann, C.; Tolan, M.; Weis, T.; Westphal, C.; Wille, K.

    2004-05-12

    The Dortmund Electron Accelerator DELTA, located at the University of Dortmund, changed its scope during the last years into a 1.5 GeV synchrotron light source. DELTA is now operated for 3000 h per year including 2000 h dedicated beam time for synchrotron radiation use and 1000 h for machine physics, optimization and maintenance. The status of the accelerator complex is presented together with the beam operation, the installation and commissioning of beamlines and insertion devices. To serve user demands of photon energies up to more than 10 keV a 5.3 T superconducting asymmetric multipole wiggler (SAW) with a critical energy of 7.9 keV has been installed serving three beamlines in the hard X-ray regime with also circular polarization. Two undulator beamlines for photon energies between 5 and 400 eV (U250) and between 55 and 1500 eV (U55) and several dipole beamlines up to 200 eV are under operation. The construction and operation of the different beamlines is done by various universities and laboratories in Nordrhein-Westfalen.

  20. Wigglers at the Advanced Light Source

    SciTech Connect

    Hoyer, E.; Akre, J.; Humphries, D.

    1995-04-01

    Two 3.4 m long wigglers are being designed and constructed at Lawrence Berkeley Laboratory`s (LBL) Advanced Light Source (ALS). A 19 period planar wiggler with 16.0 cm period length is designed to provide photons up to 12.4 keV for protein crystallography. This device features a hybrid permanent magnet structure with tapered poles and designed to achieve 2.0 T at a 1.4 cm magnetic gap. An elliptical wiggler is being designed to provide circularly polarized photons in the energy range of 50 eV to 10 keV for magnetic circular dichroism spectroscopy. This device features vertical and horizontal magnetic structures of 14 and 14 {1/2} periods respectively of 20 cm period length. The vertical magnetic structure is a 2.0 T hybrid permanent magnet configuration. The horizontal structure is an iron core electromagnetic design, shifted longitudinally {1/4} period with respect to the vertical magnetic structure. A maximum horizontal peak field of 0.1 T at an oscillating frequency up to 1 Hz will be achieved by excitation of the horizontal poles with a trapezoidal current waveform.

  1. First undulators for the Advanced Light Source

    SciTech Connect

    Hoyer, E.; Akre, J.; Chin, J.

    1993-05-01

    The first three undulators, each 4.6 m in length, for the Advanced Light source (ALS) at Lawrence Berkeley Laboratory (LBL), are near completion and are undergoing qualification tests before installation into the storage ring. Two devices have 5.0-cm period lengths, 89 periods, and achieve an effective field of 0.85 T at the 14 mm minimum magnetic gap. The other device has a period length of 8.0 cm, 55 periods, and an effective field of 1.2 T at the minimum 14 mm gap. Measurements on the first 5 cm period device show the uncorrelated field errors to be 0.23%, which is less than the required 0.25%. Measurements of gap control show reproducibility of {plus_minus}5 microns or better. The first vacuum chamber, 5.0 m long, is flat to within 0.53 mm over the 4.6 m magnetic structure section and a 4 x 10{sup -11} Torr pressure was achieved during vacuum tests. Device description, fabrication, and measurements are presented.

  2. National Synchrotron Light Source 2010 Activity Report

    SciTech Connect

    Rowe, M.; Snyder, K. J.

    2010-12-29

    This is a very exciting period for photon sciences at Brookhaven National Laboratory. It is also a time of unprecedented growth for the Photon Sciences Directorate, which operates the National Synchrotron Light Source (NSLS) and is constructing NSLS-II, both funded by the Department of Energy's Office of Science. Reflecting the quick pace of our activities, we chose the theme 'Discovery at Light Speed' for the directorate's 2010 annual report, a fiscal year bookended by October 2009 and September 2010. The year began with the news that NSLS users Venki Ramakrishnan of Cambridge University (also a former employee in Brookhaven's biology department) and Thomas A. Steitz of Yale University were sharing the 2009 Nobel Prize in Chemistry with Ada E. Yonath of the Weizmann Institute of Science. Every research project has the potential for accolades. In 2010, NSLS users and staff published close to 900 papers, with about 170 appearing in premiere journals. Those are impressive stats for a facility nearly three decades old, testament to the highly dedicated team keeping NSLS at peak performance and the high quality of its user community. Our NSLS users come from a worldwide community of scientists using photons, or light, to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. All are looking forward to the new capabilities enabled by NSLS-II, which will offer unprecedented resolution at the nanoscale. The new facility will produce x-rays more than 10,000 times brighter than the current NSLS and host a suite of sophisticated instruments for cutting-edge science. Some of the scientific discoveries we anticipate at NSLS-II will lead to major advances in alternative energy technologies, such as hydrogen and solar. These discoveries could pave the way to: (1) catalysts that split water with sunlight for hydrogen production; (2) materials that can reversibly store large quantities of electricity or hydrogen; (3

  3. Filter selection based on light source for multispectral imaging

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Xu, Haisong

    2016-07-01

    In multispectral imaging, it is necessary to select a reduced number of filters to balance the imaging efficiency and spectral reflectance recovery accuracy. Due to the combined effect of filters and light source on reflectance recovery, the optimal filters are influenced by the employed light source in the multispectral imaging system. By casting the filter selection as an optimization issue, the selection of optimal filters corresponding to the employed light source proceeds with respect to a set of target samples utilizing one kind of genetic algorithms, regardless of the detailed spectral characteristics of the light source, filters, and sensor. Under three light sources with distinct spectral power distributions, the proposed filter selection method was evaluated on a filter-wheel based multispectral device with a set of interference filters. It was verified that the filters derived by the proposed method achieve better spectral and colorimetric accuracy of reflectance recovery than the conventional one under different light sources.

  4. Simulation of Charge Collection in Diamond Detectors Irradiated with Deuteron-Triton Neutron Sources

    SciTech Connect

    Milocco, Alberto; Trkov, Andrej; Pillon, Mario

    2011-12-13

    Diamond-based neutron spectrometers exhibit outstanding properties such as radiation hardness, low sensitivity to gamma rays, fast response and high-energy resolution. They represent a very promising application of diamonds for plasma diagnostics in fusion devices. The measured pulse height spectrum is obtained from the collection of helium and beryllium ions produced by the reactions on {sup 12}C. An original code is developed to simulate the production and the transport of charged particles inside the diamond detector. The ion transport methodology is based on the well-known TRIM code. The reactions of interest are triggered using the ENDF/B-VII.0 nuclear data for the neutron interactions on carbon. The model is implemented in the TALLYX subroutine of the MCNP5 and MCNPX codes. Measurements with diamond detectors in a {approx}14 MeV neutron field have been performed at the FNG (Rome, Italy) and IRMM (Geel, Belgium) facilities. The comparison of the experimental data with the simulations validates the proposed model.

  5. Inorganic volumetric light source excited by ultraviolet light

    DOEpatents

    Reed, S.; Walko, R.J.; Ashley, C.S.; Brinker, C.J.

    1994-04-26

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light. 4 figures.

  6. Inorganic volumetric light source excited by ultraviolet light

    DOEpatents

    Reed, Scott; Walko, Robert J.; Ashley, Carol S.; Brinker, C. Jeffrey

    1994-01-01

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light.

  7. Monolithic LED arrays, next generation smart lighting sources

    NASA Astrophysics Data System (ADS)

    Lagrange, Alexandre; Bono, Hubert; Templier, François

    2016-03-01

    LED have become the main light sources of the future as they open the path for intelligent use of light in time, intensity and color. In many usages, strong energy economy is done by adjusting these properties. The smart lighting has three dimensions, energy efficiency brought by GaN blue emitting LEDs, integration of electronics, sensors, microprocessors in the lighting system and development of new functionalities and services provided by the light. Monolithic LED arrays allow two major innovations, the spatial control of light emission and the adjustment of the electrical properties of the source.

  8. Common operation metrics for storage ring light sources

    NASA Astrophysics Data System (ADS)

    Lüdeke, A.; Bieler, M.; Farias, R. H. A.; Krecic, S.; Müller, R.; Pont, M.; Takao, M.

    2016-08-01

    Storage ring light sources aim for high operational reliability. Very often beam availability is used as an operation metric to measure the reliability. A survey of several light sources reveals that the calculation of availability varies significantly between facilities. This complicates useful comparisons of reliability. Furthermore the beam availability does not provide insight regarding reliability of beam characteristics such as orbit and beam size stability. The authors propose specific metrics to evaluate the reliability of storage ring light sources; these metrics allow a detailed and meaningful comparison across facilities. Such comparisons are useful to further optimize the reliability of storage ring light source facilities.

  9. Achromatic lattice comparison for light sources

    SciTech Connect

    Kramer, S.L.; Crosbie, E.A.; Cho, Y.

    1988-01-01

    The next generation of synchrotron light sources are being designed to support a large number of undulators and require long dispersion-free insertion regions. With less demand for radiation from the dipole magnets, the storage ring cost per undulator beam can be reduced by decreasing the number of dipole magnets and increasing the number of dispersion free straight sections. The two simplest achromatic lattices are the Chasman-Green or double-bend achromatic (DBA) and the three-bend achromat (TBA). The DBA in its simplest form consists of a single horizontally-focussing quadrupole between the two dipole magnets. Since this quadrupole strength is fixed by the achromatic condition, the natural emittance (/var epsilon//sub n/) may vary as the beta functions in the insertion region (IR) are varied. The expanded Chasman-Green (also DBA) uses multiple quadrupoles in the dispersive section to provide emittance control independent of the beta functions in the IR. Although this provides flexibility in the ID beta functions, the horizontal phase advance is constrained to /phi/ /approx equal/ 180/degree/ between approximately the centers of the dipole magnets. If small /var epsilon//sub n/ is required, the horizontal phase advance between the dipoles will be near one and the lattice properties will be dominated by this systematic resonance. The TBA lattice places a third dipole between the DBA dipoles, eliminating the 180/degree/ horizontal phase advance constraint. However, the requirement of small /var epsilon//sub n/ limits the range of tune, since /mu//sub x/ /approx equal/ 1.29 in the dipoles alone for /var epsilon//sub n/ near its minimum value. The minimum emittance is five times smaller for the TBA than for the DBA with the same number of periods and, therefore, its phase advance can be relaxed more than the DBA for the same natural emittance. 5 refs., 4 figs., 1 tab.

  10. Light absorption by biomass burning source emissions

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan; Engling, Guenter; Moosmüller, Hans; Arnott, W. Patrick; Chen, L.-W. Antony; Wold, Cyle E.; Hao, Wei Min; He, Ke-bin

    2016-02-01

    Black carbon (BC) aerosol has relatively short atmospheric lifetimes yet plays a unique and important role in the Earth's climate system, making it an important short-term climate mitigation target. Globally, biomass burning is the largest source of BC emissions into the atmosphere. This study investigated the mass absorption efficiency (MAE) of biomass burning BC generated by controlled combustion of various wildland fuels during the Fire Laboratory at Missoula Experiments (FLAME). MAE values derived from a photoacoustic spectrometer (∼7.8 m2/g at a wavelength of 532 nm) were in good agreement with those suggested for uncoated BC when the emission ratios of organic carbon (OC) to elemental carbon (EC) were extremely low (i.e., below 0.3). With the increase of OC/EC, two distinct types of biomass smoke were identified. For the first type, MAE exhibited a positive dependence on OC/EC, while the overestimation of the light absorption coefficient (babs) by a filter-based method was less significant and could be estimated by a nearly constant correction factor. For the second type, MAE was biased low and correlated negatively with OC/EC, while the overestimation of babs by the filter-based method was much more significant and showed an apparent OC/EC dependence. This study suggests that BC emission factors determined by the commonly used thermal-optical methods might be sustantially overestimated for some types of biomass burning emissions. Our results also indicate that biomass burning emissions may include some liquid-like organics that can significantly bias filter-based babs measurements.

  11. Barium light source method and apparatus

    NASA Technical Reports Server (NTRS)

    Curry, John J. (Inventor); MacDonagh-Dumler, Jeffrey (Inventor); Anderson, Heidi M. (Inventor); Lawler, James E. (Inventor)

    2002-01-01

    Visible light emission is obtained from a plasma containing elemental barium including neutral barium atoms and barium ion species. Neutral barium provides a strong green light emission in the center of the visible spectrum with a highly efficient conversion of electrical energy into visible light. By the selective excitation of barium ionic species, emission of visible light at longer and shorter wavelengths can be obtained simultaneously with the green emission from neutral barium, effectively providing light that is visually perceived as white. A discharge vessel contains the elemental barium and a buffer gas fill therein, and a discharge inducer is utilized to induce a desired discharge temperature and barium vapor pressure therein to produce from the barium vapor a visible light emission. The discharge can be induced utilizing a glow discharge between electrodes in the discharge vessel as well as by inductively or capacitively coupling RF energy into the plasma within the discharge vessel.

  12. Phosphor-Free Solid State Light Sources

    SciTech Connect

    Nause, Jeff E; Ferguson, Ian; Doolittle, Alan

    2007-02-28

    The objective of this work was to demonstrate a light emitting diode that emitted white light without the aid of a phosphor. The device was based on the combination of a nitride LED and a fluorescing ZnO substrate. The early portion of the work focused on the growth of ZnO in undoped and doped form. The doped ZnO was successfully engineered to emit light at specific wavelengths by incorporating various dopants into the crystalline lattice. Thereafter, the focus of the work shifted to the epitaxial growth of nitride structures on ZnO. Initially, the epitaxy was accomplished with molecular beam epitaxy (MBE). Later in the program, metallorganic chemical vapor deposition (MOCVD) was successfully used to grow nitrides on ZnO. By combining the characteristics of the doped ZnO substrate with epitaxially grown nitride LED structures, a phosphor-free white light emitting diode was successfully demonstrated and characterized.

  13. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2003-01-01

    Statistics on the production, consumption, cost, trade, and government stockpile of natural and synthetic industrial diamond are provided. The outlook for the industrial diamond market is also considered.

  14. 21 CFR 352.71 - Light source (solar simulator).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Light source (solar simulator). 352.71 Section 352... Light source (solar simulator). A solar simulator used for determining the SPF of a sunscreen drug... total energy output contributed by nonsolar wavelengths shorter than 290 nanometers; and it has not...

  15. 21 CFR 352.71 - Light source (solar simulator).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Light source (solar simulator). 352.71 Section 352... Light source (solar simulator). A solar simulator used for determining the SPF of a sunscreen drug... total energy output contributed by nonsolar wavelengths shorter than 290 nanometers; and it has not...

  16. 21 CFR 352.71 - Light source (solar simulator).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Light source (solar simulator). 352.71 Section 352... Light source (solar simulator). A solar simulator used for determining the SPF of a sunscreen drug... total energy output contributed by nonsolar wavelengths shorter than 290 nanometers; and it has not...

  17. 21 CFR 352.71 - Light source (solar simulator).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Light source (solar simulator). 352.71 Section 352... Light source (solar simulator). A solar simulator used for determining the SPF of a sunscreen drug... total energy output contributed by nonsolar wavelengths shorter than 290 nanometers; and it has not...

  18. 21 CFR 352.71 - Light source (solar simulator).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Light source (solar simulator). 352.71 Section 352... Light source (solar simulator). A solar simulator used for determining the SPF of a sunscreen drug... total energy output contributed by nonsolar wavelengths shorter than 290 nanometers; and it has not...

  19. Perception of light source distance from shading patterns.

    PubMed

    Schütt, Heiko H; Baier, Franziska; Fleming, Roland W

    2016-01-01

    Varying the distance of a light source from an object alters both the intensity and spatial distribution of surface shading patterns. We tested whether observers can use such cues to infer light source distance. Participants viewed stereoscopic renderings of rough objects with diffuse and glossy surfaces, which were illuminated by a point source at a range of distances. In one task, they adjusted the position of a small probe dot in three dimensions to report the apparent location of the light in the scene. In a second task, they adjusted the shading on one object (by moving an invisible light source) until it appeared to be illuminated from the same distance as another object. Participants' responses increased linearly with the true light source distance, suggesting that they have clear intuitions about how light source distance affects shading patterns for a variety of different surfaces. However, there were also systematic errors: Subjects overestimated light source distance in the probe adjustment task, and in both experiments, roughness and glossiness affected responses. We find the pattern of results is predicted surprisingly well by a simplistic model based only on the area of the image that exceeds a certain intensity threshold. Thus, although subjects can report light source distance, they may rely on simple--sometimes erroneous--heuristics to do so. PMID:26868887

  20. Kimberlitic sources of super-deep diamonds in the Juina area, Mato Grosso State, Brazil

    NASA Astrophysics Data System (ADS)

    Kaminsky, Felix V.; Sablukov, Sergei M.; Belousova, Elena A.; Andreazza, Paulo; Tremblay, Mousseau; Griffin, William L.

    2010-01-01

    The Juina diamond field, in the 1970-80s, was producing up to 5-6 million carats per year from rich placer deposits, but no economic primary deposits had been found in the area. In 2006-2007, Diagem Inc. discovered a group of diamondiferous kimberlitic pipes within the Chapadão Plateau (Chapadão, or Pandrea cluster), at the head of a drainage system which has produced most of the alluvial diamonds mined in the Juina area. Diamonds from placer deposits and newly discovered kimberlites are identical; they have super-deep origins from the upper-mantle and transition zone. Field observations and petrographic studies have identified crater-facies kimberlitic material at seven separate localities. Kimberlitic material is represented by tuffs, tuffisites and various epiclastic sediments containing chrome spinel, picroilmenite, manganoan ilmenite, zircon and diamond. The diamond grade varies from 0.2-1.8 ct/m 3. Chrome spinel has 30-61 wt.% Cr 2O 3. Picroilmenite contains 6-14 wt.% MgO and 0.2-4 wt.% Cr 2O 3. Manganoan ilmenite has less than 3 wt.% MgO and 0.38-1.41 wt.% MnO. The 176Hf/ 177Hf ratio in kimberlitic zircons is 0.028288-0.28295 with ɛHf = 5.9-8.3, and lies on the average kimberlite trend between depleted mantle and CHUR. The previously known barren and weakly diamondiferous kimberlites in the Juina area have ages of 79-80 Ma. In contrast, zircons from the newly discovered Chapadão kimberlites have a mean 206Pb/ 238U age of 93.6 ± 0.4 Ma, corresponding to a time of magmatic activity related to the opening of the southern part of the Atlantic Ocean. The most likely mechanism of the origin of kimberlitic magma is super-deep subduction process that initiated partial melting of zones in lower mantle with subsequent ascent of proto-kimberlitic magma.

  1. Synchrotron light sources: A powerful tool for science and technology

    SciTech Connect

    Schlachter, F.; Robinson, A.

    1996-01-01

    A new generation of synchrotron light sources is producing extremely bright beams of vacuum-ultraviolet and x-ray radiation, powerful new tools for research in a wide variety of basic and applied sciences. Spectromicroscopy using high spectral and spatial resolution is a new way of seeing, offering many opportunities in the study of matter. Development of a new light source provides the country or region of the world in which the light source is located many new opportunities: a focal point for research in many scientific and technological areas, a means of upgrading the technology infrastructure of the country, a means of training students, and a potential service to industry. A light source for Southeast Asia would thus be a major resource for many years. Scientists and engineers from light sources around the world look forward to providing assistance to make this a reality in Southeast Asia.

  2. New results in atomic physics at the Advanced Light Source

    SciTech Connect

    Schlachter, A.S.

    1995-01-01

    The Advanced Light Source is the world's first low-energy third-generation synchrotron radiation source. It has been running reliably and exceeding design specifications since it began operation in October 1993. It is available to a wide community of researchers in many scientific fields, including atomic and molecular science and chemistry. Here, new results in atomic physics at the Advanced Light Source demonstrate the opportunities available in atomic and molecular physics at this synchrotron light source. The unprecedented brightness allows experiments with high flux, high spectral resolution, and nearly 100% linear polarization.

  3. Utraviolet Light Source in an Old Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Hubble Space Telescope's exquisite resolution has allowed astronomers to resolve, for the first time, hot blue stars deep inside an elliptical galaxy. The swarm of nearly 8,000 blue stars resembles a blizzard of snowflakes near the core (lower right) of the neighboring galaxy M32, located 2.5 million light-years away in the constellation Andromeda. Hubble confirms that the ultraviolet light comes from a population of extremely hot helium-burning stars at a late stage in their lives. Unlike the Sun, which burns hydrogen into helium, these old stars exhausted their central hydrogen long ago, and now burn helium into heavier elements. The observations, taken in October 1998, were made with the camera mode of the Space Telescope Imaging Spectrograph (STIS) in ultraviolet light. The STIS field of view is only a small portion of the entire galaxy, which is 20 times wider on the sky. For reference, the full moon is 70 times wider than the STIS field-of-view. Thirty years ago, the first ultraviolet observations of elliptical galaxies showed that they were surprisingly bright when viewed in ultraviolet light. Before those pioneering UV observations, old groups of stars were assumed to be relatively cool and thus extremely faint in the ultraviolet. Over the years since the initial discovery of this unexpected ultraviolet light, indirect evidence has accumulated that it originates in a population of old, but hot, helium-burning stars. Now Hubble provides the first direct visual evidence.

  4. NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 1998.

    SciTech Connect

    ROTHMAN,E.

    1999-05-01

    thereafter for half of the running time in FY 1998. In combination with the development of narrow gap undulators this mode opens the possibility of new undulators which could produce hard X-rays in the fundamental, perhaps up to 10 keV. On 27 September 1998, a low horizontal emittance lattice became operational at 2.584 GeV. This results in approximately a 50% decrease in the horizontal beam-size on dipole bending magnet beamlines, and somewhat less of a decrease on the insertion device lines. The beam lifetime is not degraded by the low emittance lattice. This represents an important achievement, enhancing for all users the x-ray ring brightness. The reduced horizontal emittance electron beam will produce brighter x-ray beams for all the beamlines, both bending magnets and insertion devices, adding to other recent increases in the X-Ray ring brightness. During FY 1999 users will gain experience of the new running mode and plans are in place to do the same at 2.8GeV during further studies sessions. Independent evidence of the reduced emittance is shown in Figure 2. This is a pinhole camera scan showing the X-ray beam profile, obtained on the diagnostic beamline X28. Finally, work has begun to update and refine the proposal of the Phase III upgrade endorsed by the Birgeneau panel and BESAC last year. With the whole NSLS facility in teenage years and with many demonstrated enhancements available, the time has come to herald in the next stage of life at the Light Source.

  5. Advanced capabilities for future light sources

    SciTech Connect

    Kim, K.J.

    1997-11-01

    Methods to extend the capabilities beyond those available from the current generation synchrotron radiation sources based on undulators in electron storage rings are discussed. Taking advantage of the radiation-particle interaction and/or the availability of high power, ultrashort, optical lasers, it is possible to develop sources with higher brightness, smaller temporal resolution, or higher photon energy.

  6. Femtosecond Light Source for Phase-Controlled Multiphoton Ionization

    SciTech Connect

    Sokolov, A. V.; Walker, D. R.; Yavuz, D. D.; Yin, G. Y.; Harris, S. E.

    2001-07-16

    We describe a femtosecond Raman light source with more than an octave of optical bandwidth. We use this source to demonstrate phase control of multiphoton ionization under conditions where ionization requires eleven photons of the lowest frequency of the spectrum or five photons of the highest frequency. The nonlinearity of the photoionization process allows us to characterize the light source. Experiment-to-theory comparison implies generation of a near single-cycle waveform.

  7. Cathodoluminescent Source of Intense White Light

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2007-01-01

    The device described exploits cathodoluminescence to generate intense light in the visible and near-infrared regions of the spectrum. In this device, the material to be excited to luminescence is a layer of quartz or alumina powder on an electrically conductive plate exposed to a low-pressure plasma discharge. The plate is electrically biased positively to collect electron current.

  8. Rapidly pulsed, high intensity, incoherent light source

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1974-01-01

    A rapid pulsing, high intensity, incoherent light is produced by selectively energizing a plurality of discharge lamps with a triggering circuit. Each lamp is connected to a capacitor, and a power supply is electrically connected to all but one of the capacitors. This last named capacitor is electrically connected to a discharge lamp which is connected to the triggering circuit.

  9. A New Storage-Ring Light Source

    NASA Astrophysics Data System (ADS)

    Chao, Alex

    2015-07-01

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  10. A New Storage-Ring Light Source

    NASA Astrophysics Data System (ADS)

    Chao, Alex

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  11. Laser produced plasma light source for EUVL

    NASA Astrophysics Data System (ADS)

    Fomenkov, Igor V.; Ershov, Alex I.; Partlo, William N.; Myers, David W.; Brown, Daniel; Sandstrom, Richard L.; La Fontaine, Bruno; Bykanov, Alexander N.; Vaschenko, Georgiy O.; Khodykin, Oleh V.; Böwering, Norbert R.; Das, Palash; Fleurov, Vladimir B.; Zhang, Kevin; Srivastava, Shailendra N.; Ahmad, Imtiaz; Rajyaguru, Chirag; De Dea, Silvia; Hou, Richard R.; Dunstan, Wayne J.; Baumgart, Peter; Ishihara, Toshihiko; Simmons, Rod D.; Jacques, Robert N.; Bergstedt, Robert A.; Brandt, David C.

    2011-04-01

    This paper describes the development of laser-produced-plasma (LPP) extreme-ultraviolet (EUV) source architecture for advanced lithography applications in high volume manufacturing. EUV lithography is expected to succeed 193 nm immersion technology for sub-22 nm critical layer patterning. In this paper we discuss the most recent results from high qualification testing of sources in production. Subsystem performance will be shown including collector protection, out-of-band (OOB) radiation measurements, and intermediate-focus (IF) protection as well as experience in system use. This presentation reviews the experimental results obtained on systems with a focus on the topics most critical for an HVM source.

  12. A new storage-ring light source

    SciTech Connect

    Chao, Alex

    2015-06-01

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  13. An experiment on the color rendering of different light sources

    NASA Astrophysics Data System (ADS)

    Fumagalli, Simonetta; Bonanomi, Cristian; Rizzi, Alessandro

    2013-02-01

    The color rendering index (CRI) of a light source attempts to measure how much the color appearance of objects is preserved when they are illuminated by the given light source. This problem is of great importance for various industrial and scientific fields, such as lighting architecture, design, ergonomics, etc. Usually a light source is specified through the Correlated Color Temperature or CCT. However two (or more) light sources with the same CCT but different spectral power distribution can exist. Therefore color samples viewed under two light sources with equal CCTs can appear different. Hence, the need for a method to assess the quality of a given illuminant in relation to color. Recently CRI has had a renewed interest because of the new LED-based lighting systems. They usually have a color rendering index rather low, but good preservation of color appearance and a pleasant visual appearance (visual appeal). Various attempts to develop a new color rendering index have been done so far, but still research is working for a better one. This article describes an experiment performed by human observers concerning the appearance preservation of color under some light sources, comparing it with a range of available color rendering indices.

  14. Infrared Absorption Investigations Confirm the Extraterrestrial Origin of Carbonado Diamonds

    SciTech Connect

    Garai,J.; Haggerty, S.; Rekhi, S.; Chance, M.

    2007-01-01

    The first complete infrared FTIR absorption spectra for carbonado-diamond confirm the interstellar origin for the most enigmatic diamonds known as carbonado. All previous attempts failed to measure the absorption of carbonado-diamond in the most important IR-range of 1000-1300 cm{sup -1} (10.00-7.69 {mu}m) because of silica inclusions. In our investigation, KBr pellets were made from crushed silica-free carbonado-diamond and thin sections were also prepared. The 100 to 1000 times brighter synchrotron infrared radiation permits a greater spatial resolution. Inclusions and pore spaces were avoided and/or sources of chemical contamination were removed. The FTIR spectra of carbonado-diamond mostly depict the presence of single nitrogen impurities, and hydrogen. The lack of identifiable nitrogen aggregates in the infrared spectra, the presence of features related to hydrocarbon stretch bonds, and the resemblance of the spectra to CVD and presolar diamonds indicate that carbonado-diamonds formed in a hydrogen-rich interstellar environment. This is consistent with carbonado-diamond being sintered and porous, with extremely reduced metals, metal alloys, carbides and nitrides, light carbon isotopes, surfaces with glassy melt-like patinas, deformation lamellae, and a complete absence of primary, terrestrial mineral inclusions. The 2.6-3.8 billion year old fragmented body was of asteroidal proportions.

  15. Thermal effects of cold light sources used in otologic surgery.

    PubMed

    Aksoy, Fadlullah; Dogan, Remzi; Ozturan, Orhan; Eren, Sabri Baki; Veyseller, Bayram; Gedik, Ozge

    2015-10-01

    The objective of this study was to investigate the thermal effects of cold light sources and endoscopes on the inner ear. 25 male guinea pigs were assigned equally to five groups (1: Halogen-1 min, 2: Halogen-5 min, 3: Xenon-1 min, 4: Xenon-5 min, 5: Controls). After both bullae of the guinea pigs were opened, light sources and endoscopes were positioned in the middle ears of the first four groups for specific time periods. DPOAE and ABR tests were conducted on all animals at the beginning of the study, at the end of surgery, and 2 h after surgery. The temperatures of cold light sources were measured by a thermocouple thermometer, and the surface temperatures of the endoscopes were measured by an infrared thermometer. DPOAE and ABR measurements performed right after and 2 h after surgery in group 1, 2, 3, and 5 did not reveal any significant difference. In group 4, DPOAE values were significantly lower and ABR threshold values were significantly higher than those in the other groups, right after and 2 h after surgery. Thermocouple thermometer readings showed that, after the first minute, the Xenon light source generated significantly more temperature rise than the Halogen light source. The surface temperatures of all endoscopes returned to normal approximately 1 min after light sources were turned off. Our study demonstrated that when an endoscope using a Xenon light source was applied to the middle ear for a specific time periods, inner ear functions deteriorated, as reflected by audiologic tests. PMID:25118982

  16. A numerical experiment on light pollution from distant sources

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.

    2011-08-01

    To predict the light pollution of the night-time sky realistically over any location or measuring point on the ground presents quite a difficult calculation task. Light pollution of the local atmosphere is caused by stray light, light loss or reflection of artificially illuminated ground objects or surfaces such as streets, advertisement boards or building interiors. Thus it depends on the size, shape, spatial distribution, radiative pattern and spectral characteristics of many neighbouring light sources. The actual state of the atmospheric environment and the orography of the surrounding terrain are also relevant. All of these factors together influence the spectral sky radiance/luminance in a complex manner. Knowledge of the directional behaviour of light pollution is especially important for the correct interpretation of astronomical observations. From a mathematical point of view, the light noise or veil luminance of a specific sky element is given by a superposition of scattered light beams. Theoretical models that simulate light pollution typically take into account all ground-based light sources, thus imposing great requirements on CPU and MEM. As shown in this paper, a contribution of distant sources to the light pollution might be essential under specific conditions of low turbidity and/or Garstang-like radiative patterns. To evaluate the convergence of the theoretical model, numerical experiments are made for different light sources, spectral bands and atmospheric conditions. It is shown that in the worst case the integration limit is approximately 100 km, but it can be significantly shortened for light sources with cosine-like radiative patterns.

  17. Microwave Plasma Source for Fabrication of Micro- and Nano-Crystalline Diamond Thin Films for Electronic Devices

    NASA Astrophysics Data System (ADS)

    Paosawatyanyong, Boonchoat; Rujisamphan, Nopporn; Bhanthumnavin, Worawan

    2013-01-01

    The design and utilization of an affordable compact-size high-density plasma reactor for micro- and nano-crystalline diamond (MCD/NCD) thin film deposition is presented. The system is based on a 2.45 GHz domestic microwave oven magnetron. A switching power supply module, which yields a low-voltage high-current AC filament feeding and a high-voltage low-current DC cathode bias, is constructed to serve as the magnetron power source. With a high stability of the power module combined with the usage of water cooling gaskets, over 100 h of plasma processing time was achieved without overheating or causing any damage to the magnetron. Depositions of well-faceted MCD/NCD thin films, with distinct diamond Raman characteristics, were obtained using H2-CH4 discharge with 1-5% CH4. Metal-semiconductor diode structures were fabricated using gold and aluminum as ohmic and rectifying contacts, respectively, and their responses to DC signals revealed a high rectification ratio of up to 106 in the intrinsic MCD/NCD devices.

  18. NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2004

    SciTech Connect

    MILLER,L.

    2005-05-01

    for the environmental science community, is also very important, as it will help to satisfy the large over subscription rate for this technique at the NSLS. Two other important upgrades that were initiated this past year are the replacement of the X25 wiggler with an undulator and the construction of the X9 undulator beamline for small-angle scattering, with an emphasis on nanoscience research. Another key activity that will benefit all users was the restoration of the x-ray ring lattice symmetry, which reduced the horizontal emittance and made the operational lattice more robust. Similarly, all users will benefit from the introduction of the PASS (Proposal Allocation Safety Scheduling) system this past year, which has greatly improved the process of proposal submission, review, allocation, and scheduling. This coming year we will work to add Rapid Access to the capabilities of PASS. Overall, the success of these and the many other projects that space does not permit listing is a testament to the dedication, hard work, and skill of the NSLS staff. Safety has always been an important issue at a large, complex scientific facility like the NSLS and in 2004 it received renewed attention. Safety is our highest priority and we spent a great deal of time reviewing and refining our safety practices and procedures. A new 'Safety Highlights' web page was created for safety news, and a large number of safety meetings and discussions were held. These reviews and meetings generated many ideas on how the NSLS might improve its safety practices, and we are committed to putting these in place and improving our already very good safety program. We had no lost-time accidents in 2004, which is a notable accomplishment. Our goal is to be best in class and I'm confident that by working together we can achieve that status. Several activities took place this past year to advance our proposal to replace the NSLS with a new National Synchrotron Light Source-II facility. These included a major

  19. Measurement of the speed of light from extraterrestrial sources

    NASA Astrophysics Data System (ADS)

    Wu, Jingshown; Huang, Yen-Ru; Tsao, Hen-Wai; Lee, San-Liang; Chang, Shenq-Tsong; Tsay, Ho-Lin; Young, Hong-Tsu

    2015-09-01

    The conventional measurements of the speed of light were performed before the early twentieth century. Only few used extraterrestrial sources and got the result with large uncertainty. We design a transmitter to modulate the rays from the local infrared light source and the extraterrestrial sources simultaneously into pulses. Both are received by a distant receiver. We have the white light travelling exactly along the path of the starlight pulses for calibration. It is found that the travel times of Aldebaran and Capella pulses are longer than that of Vega pulses. The results indicate that the speeds of starlights are different.

  20. Improving Efficiency of Diamond Thin Film Deposition In an ECR Sputter Source

    NASA Astrophysics Data System (ADS)

    Newby, Michael; Ross, Jerry; Zwicker, Andrew

    2010-11-01

    Having some of the most extreme physical properties of any material, diamond thin films are used to reinforce vacuum windows, as a semiconductor in electronic devices and to coat knives among other things. In our experiment, a 5 KW microwave ignites Argon or Hydrogen-Methane gas to create plasma at a low pressure which sputters a graphite target to create a diamond thin film on silicon substrates. The microwave matching system used to do this has an output frequency of 2.45GHz which is sent through a SmartMatch AX3060 impedance matching tuner. The SmartMatch uses three tuning stubs to match the load impedance and optimize the microwave power into the plasma. Problems arise when the SmartMatch tunes to something other than the plasma, such as the o-rings at the quartz window vacuum interface. This project focused on troubleshooting these issues by enabling the control of and communication with the microwave matching system.

  1. An improved light source for laser ranging

    NASA Technical Reports Server (NTRS)

    Hamal, Karel; Richardson, Martin

    1993-01-01

    The development of a new laser material, Cr-doped LiSAF, makes possible the development of a laser source for satellite ranging systems that is more superior in performance capabilities than current Nd:YAG-based laser sources. This new material offers the potential of shorter pulses and more preferable wavelengths (850 and 425 nm) than multiwavelength Nd:YAG systems, leading to superior ranging resolution and greater detection sensitivity. We are embarking on a feasibility study of a two-wavelength, mode-locked laser system based on Cr:LiSAF, providing shorter pulses for improved ranging resolution.

  2. Synchronization System for Next Generation Light Sources

    SciTech Connect

    Zavriyev, Anton

    2014-03-27

    An alternative synchronization technique – one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

  3. The use of thin diamond films in fiber-optic low-coherence interferometers

    NASA Astrophysics Data System (ADS)

    Milewska, D.; Karpienko, K.

    2016-01-01

    In this paper we present the use of thin diamond films in fiber-optic low-coherence interferometers. Two kinds of diamond surfaces were used: undoped diamond film and boron- doped diamond film. They were deposited on glass plates as well as silicon layers. A conventionally used mirror was used as a reference layer. Diamond films were deposited using Microwave Plasma Enhanced Chemical Vapour Deposition (μPE CVD) system. Measurements were performed using two superluminescent diodes (SLD) with wavelengths of 1300 mm and 1550 mm. The optimal conditions for each layers were examined: the required wavelength of the light source and the length of Fabry-Perot interferometer cavity. Metrological parameters of Fabry-Perot interferometer with different mirrors were compared. The presented thin diamond films may be an interesting alternative to the commonly used reflective surfaces.

  4. Effect of light sources and light intensity on growth performance and behaviour of female turkeys.

    PubMed

    Denbow, D M; Leighton, A T; Hulet, R M

    1990-09-01

    1. The effect of different light sources (incandescent, sodium vapour, daylight fluorescent and warm fluorescent) and light intensities (10.8 and 86.1 lux) on growth performance and behaviour of female turkeys was investigated in two experiments conducted at different times of the year. 2. Although light source influenced body weight and efficiency of food utilisation, there was no consistent effect between experiments in favour of any particular source. 3. Light intensity had no effect on body weight, efficiency of food utilisation or behaviour. PMID:2245342

  5. Open-source products for a lighting experiment device.

    PubMed

    Gildea, Kevin M; Milburn, Nelda

    2014-12-01

    The capabilities of open-source software and microcontrollers were used to construct a device for controlled lighting experiments. The device was designed to ascertain whether individuals with certain color vision deficiencies were able to discriminate between the red and white lights in fielded systems on the basis of luminous intensity. The device provided the ability to control the timing and duration of light-emitting diode (LED) and incandescent light stimulus presentations, to present the experimental sequence and verbal instructions automatically, to adjust LED and incandescent luminous intensity, and to display LED and incandescent lights with various spectral emissions. The lighting device could easily be adapted for experiments involving flashing or timed presentations of colored lights, or the components could be expanded to study areas such as threshold light perception and visual alerting systems. PMID:24281687

  6. Interference of light from independent sources

    SciTech Connect

    Pegg, David T.

    2006-12-15

    We extend and generalize previous work on the interference of light from independent cavities that began with the suggestion of Pfleegor and Mandel [Phys. Rev. 159, 1084 (1967)] that their observed interference of laser beams should not be associated too closely with particular states of the beams but more with the detection process itself. In particular we examine how the detection of interference induces a nonrandom-phase difference between internal cavity states with initial random phases for a much broader range of such states than has previously been considered. We find that a subsequent interference measurement should give results consistent with the induced phase difference. The inclusion of more cavities in the interference measurements enables the construction in principle of a laboratory in the sense used by Aharonov and Susskind, made up of cavity fields that can serve as frames of phase reference. We also show reasonably simply how intrinsic phase coherence of a beam of light leaking from a single cavity arises for any internal cavity state, even a photon number state. Although the work presented here may have some implications for the current controversy over whether or not a typical laboratory laser produces a coherent state, it is not the purpose of this paper to enter this controversy; rather it is to examine the interesting quantum physics that arises for cavities with more general internal states.

  7. Lighting system combining daylight concentrators and an artificial source

    DOEpatents

    Bornstein, Jonathan G.; Friedman, Peter S.

    1985-01-01

    A combined lighting system for a building interior includes a stack of luminescent solar concentrators (LSC), an optical conduit made of preferably optical fibers for transmitting daylight from the LSC stack, a collimating lens set at an angle, a fixture for receiving the daylight at one end and for distributing the daylight as illumination inside the building, an artificial light source at the other end of the fixture for directing artifical light into the fixture for distribution as illumination inside the building, an automatic dimmer/brightener for the artificial light source, and a daylight sensor positioned near to the LSC stack for controlling the automatic dimmer/brightener in response to the daylight sensed. The system also has a reflector positioned behind the artificial light source and a fan for exhausting heated air out of the fixture during summer and for forcing heated air into the fixture for passage into the building interior during winter.

  8. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOEpatents

    Sze, Robert C.; Quigley, Gerard P.

    1996-01-01

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source. A contamination-free VUV light source having a 225 cm.sup.2 emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm.sup.2 at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing.

  9. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOEpatents

    Sze, R.C.; Quigley, G.P.

    1996-12-17

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.

  10. Interferometer combines laser light source and digital counting system

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Measurement of small linear displacements in digital readouts with extreme accuracy and sensitivity is achieved by an interferometer. The instrument combines a digital electro-optical fringe-counting system and a laser light source.

  11. Light source for narrow and broadband coherent Raman scattering microspectroscopy.

    PubMed

    Brinkmann, Maximilian; Dobner, Sven; Fallnich, Carsten

    2015-12-01

    We present a light source that is well adapted to both narrow- and broadband coherent Raman scattering (CRS) methods. Based on a single oscillator, the light source delivers synchronized broadband pulses via supercontinuum generation and narrowband, frequency-tunable pulses via four-wave mixing in a photonic crystal fiber. Seeding the four-wave mixing with a spectrally filtered part of the supercontinuum yields high-pulse energies up to 8 nJ and the possibility of scanning a bandwidth of 2000  cm(-1) in 25 ms. All pulses are emitted with a repetition frequency of 1 MHz, which ensures efficient generation of CRS signals while avoiding significant damage of the samples. Consequently, the light source combines the performance of individual narrow- and broadband CRS light sources in one setup, thus enabling hyperspectral imaging and rapid single-resonance imaging in parallel. PMID:26625022

  12. Status report on the Advanced Light Source control system

    SciTech Connect

    Magyary, S.; Chin, M.; Fahmie, M.; Lancaster, H.; Molinari, P.; Robb, A.; Timossi, C.; Young, J.

    1991-11-11

    This paper is a status report on the ADVANCED LIGHT SOURCE (ALS) control system. The current status, performance data, and future plans will be discussed. Manpower, scheduling, and costs issues are addressed.

  13. Diffusion filter eliminates fringe effects of coherent laser light source

    NASA Technical Reports Server (NTRS)

    Olsasky, M. J.

    1970-01-01

    Diffusion filter comprised of small particles in colloidal suspension reduces the coherence of a laser beam used as a photographic light source. Interference patterns which obscure details in photographic film are eliminated, the intensity and collimation are moderately affected.

  14. Science and Technology of Future Light Sources

    SciTech Connect

    Dierker,S.; Bergmann, U.; Corlett, J.; Dierker, S.; Falcone, R.; Galayda, J.; Gibson, M.; Hastings, J.; Hettel, B.; Hill, J.; Hussain, Z.; Kao, C.-C.; Kirx, J.; Long, G.; McCurdy, B.; Raubenheimer, T.; Sannibale, F.; Seeman, J.; Shen, Z.-X.; Shenoy, g.; Schoenlein, B.; Shen, Q.; Stephenson, B.; Stohr, J.; Zholents, A.

    2008-12-01

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects. The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of

  15. Science and Technology of Future Light Sources

    SciTech Connect

    Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, Janos; Long, Danielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z. -X.; Schenoy, Gopal; Schoenlein, Bob; Shen, Qun; Stephenson, Brian; Stohr, Joachim; Zholents, Alexander

    2009-01-28

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of

  16. Development and evaluation of a light-emitting diode endoscopic light source

    NASA Astrophysics Data System (ADS)

    Clancy, Neil T.; Li, Rui; Rogers, Kevin; Driscoll, Paul; Excel, Peter; Yandle, Ron; Hanna, George; Copner, Nigel; Elson, Daniel S.

    2012-03-01

    Light-emitting diode (LED) based endoscopic illumination devices have been shown to have several benefits over arclamp systems. LEDs are energy-efficient, small, durable, and inexpensive, however their use in endoscopy has been limited by the difficulty in efficiently coupling enough light into the endoscopic light cable. We have demonstrated a highly homogenised lightpipe LED light source that combines the light from four Luminus LEDs emitting in the red, green, blue and violet using innovative dichroics that maximise light throughput. The light source spectrally combines light from highly divergent incoherent sources that have a Lambertian intensity profile to provide illumination matched to the acceptance numerical aperture of a liquid light guide or fibre bundle. The LED light source was coupled to a standard laparoscope and performance parameters (power, luminance, colour temperature) compared to a xenon lamp. Although the total illuminance from the endoscope was lower, adjustment of the LEDs' relative intensities enabled contrast enhancement in biological tissue imaging. The LED light engine was also evaluated in a minimally invasive surgery (MIS) box trainer and in vivo during a porcine MIS procedure where it was used to generate 'narrowband' images. Future work using the violet LED could enable photodynamic diagnosis of bladder cancer.

  17. Survey, alignment, and beam stability at the Advanced Light Source

    SciTech Connect

    Krebs, G.F.

    1997-10-01

    This paper describes survey and alignment at the Lawrence Berkeley Laboratories Advanced Light Source (ALS) accelerators from 1993 to 1997. The ALS is a third generation light source requiring magnet alignment to within 150 microns. To accomplish this, a network of monuments was established and maintained. Monthly elevation surveys show the movement of the floor over time. Inclinometers have recently been employed to give real time information about magnet, vacuum tank and magnet girder motion in the ALS storage ring.

  18. New Directions in X-Ray Light Sources

    ScienceCinema

    Falcone, Roger

    2010-01-08

    July 15, 2008 Berkeley Lab lecture: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

  19. New Directions in X-Ray Light Sources

    SciTech Connect

    Falcone, Roger

    2008-07-18

    July 15, 2008 Berkeley Lab lecture: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

  20. Passivation of quartz for halogen-containing light sources

    DOEpatents

    Falkenstein, Zoran

    1999-01-01

    Lifetime of halogen containing VUV, UV, visible or IR light sources can be extended by passivating the quartz or glass gas containers with halogens prior to filling the quartz with the halogen and rare gas mixtures used to produce the light.

  1. Solid state light source for wavelength multiplex 3D

    NASA Astrophysics Data System (ADS)

    Huang, Junejei

    2012-10-01

    A solid state light source provided for wavelength multiplex 3D Display is proposed. The system of solid state light source includes blue laser arrays of two wavelengths, a 2-ring phosphor wheel, a multi-band filter and a TIR prism. Green and red phosphors excited by blue lasers provide the original green and red lights of wide bandwidth. By passing through or reflected by a multi-band filter, two groups of green and red lights of narrow bandwidth for left or right eyes are selected. Blue lasers of two wavelengths also provide two blue lights for left and right eyes. Instead of using a second rotated narrow band filters that synchronized with the first phosphor wheel, a wheel having two rings coated with mirrors and phosphors is used to replace the synchronization existing in the conventional two wheels method. After passing the 2-ring wheel, the light source switches between two light paths that lead to be reflected or transmitting through the multiband filter. The multi-band filter can be disposed in a telecentric optical path to secure a high efficiency for the filter. A compact spectral multiplex light source is realized and can be directly attached to any existing optical engine.

  2. Hyperspectral microscopy to identify foodborne bacteria with optimum lighting source

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperspectral microscopy is an emerging technology for rapid detection of foodborne pathogenic bacteria. Since scattering spectral signatures from hyperspectral microscopic images (HMI) vary with lighting sources, it is important to select optimal lights. The objective of this study is to compare t...

  3. Advanced light source, User`s Handbook, Revision 1

    SciTech Connect

    1995-07-01

    The Advanced Light Source (ALS) is a national facility for scientific research and development located at the Lawrence Berkeley National Laboratory (LBNL) of the University of California. Its purpose is to generate beams of very bright light in the ultraviolet and soft x-ray regions of the spectrum. The facility is open to researchers from industry, universities, and government laboratories.

  4. An active lighting module with natural light guiding system and solid state source for indoor illumination

    NASA Astrophysics Data System (ADS)

    Chen, Chi-An; Chen, Yi-Yung; Whang, Allen Jong-Woei

    2009-08-01

    Recently, many researches focus on healthy lighting with sunlight. A Natural Light Guiding System includes collecting, transmitting, and lighting parts. In general, the lighting module of the Natural Light Guiding System only uses scattering element, such as diffuser, to achieve uniform illumination. With the passive lighting module, the application of the Natural Light Guiding System is limited because sunlight is dynamic source. When the sunlight is weak at morning, at evening, or on cloudy day, the illumination system is fail. In this paper, we provide an active lighting module that includes the lighting part of Natural Light Guiding System, LED auxiliary sources, optical elements, and optical detector. We use optical simulation tool to design and simulate the efficiency of the active module. The optical element can redistribute the sunlight only, LED light only, or sunlight with LED light to achieve uniform illumination. With the feedback of the detector, the active lighting module will adjust the intensity of LED to provide a steady illumination. Moreover, the module could replace the backlight module of LCD TV when the house has Natural Light Guiding System for saving energy and higher performance of image.

  5. A compact Einstein-Podolsky-Rosen entangled light source

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Jun; Yang, Wen-Hai; Zheng, Yao-Hui; Peng, Kun-Chi

    2015-07-01

    We present a stable entangled light source that integrates the pump laser, entanglement generator, detectors, and electronic control systems. By optimizing the design of the mechanical elements and the optical path, the size of the source is minimized, and the quantum correlations over 6 dB can be directly provided by the entangled source. The compact and stable entangled light source is suitable for practical applications in quantum information science and technology. The presented protocol provides a useful reference for manufacturing products of bright entangled light sources. Project supported by the National Natural Science Foundation of China (Grant No. 61227015) and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China.

  6. Light source employing laser-produced plasma

    SciTech Connect

    Tao, Yezheng; Tillack, Mark S

    2013-09-17

    A system and a method of generating radiation and/or particle emissions are disclosed. In at least some embodiments, the system includes at least one laser source that generates a first pulse and a second pulse in temporal succession, and a target, where the target (or at least a portion the target) becomes a plasma upon being exposed to the first pulse. The plasma expand after the exposure to the first pulse, the expanded plasma is then exposed to the second pulse, and at least one of a radiation emission and a particle emission occurs after the exposure to the second pulse. In at least some embodiments, the target is a solid piece of material, and/or a time period between the first and second pulses is less than 1 microsecond (e.g., 840 ns).

  7. National Synchrotron Light Source annual report 1991

    SciTech Connect

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

  8. Low coherence interferometry modelling using combined broadband Gaussian light sources

    NASA Astrophysics Data System (ADS)

    Jansz, Paul; Wild, Graham; Richardson, Steven; Hinckley, Steven

    2012-02-01

    Using a Low Coherence Interferometry (LCI) model, a comparison of broadband single-Gaussian and multi-Gaussian light sources has been undertaken. For single-Gaussian sources, the axial resolution improved with source bandwidth, confirming the coherence length relation that resolution for single Gaussian sources improves with increasing spectral bandwidth. However, narrow bandwidth light sources resulted in interferograms with overlapping strata peaks and the loss of individual strata information. For multiple-Gaussian sources with the same bandwidth, spectral side lobes increased, reducing A-scan reliability to show accurate layer information without eliminating the side lobes. The simulations show the conditions needed for resolution of strata information for broadband light sources using both single and multiple Gaussian models. The potential to use the model to study LCI and OCT light sources, optical delays and sample structures can better characterise these LCI and OCT elements. Forecasting misinformation in the interferogram, may allow preliminary corrections. With improvements to the LCI-OCT model, more applications are envisaged.

  9. A multi-source portable light emitting diode spectrofluorometer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A portable luminescence spectrofluorometer weighing only 1.5 kg that uses multiple light emitting diodes (LEDs) as excitation sources was developed and evaluated. Excitation using a sequence of seven individual broad-band LED emission sources enabled the generation of excitation-emission spectra usi...

  10. Demonstration of the light source color on a photograph

    NASA Astrophysics Data System (ADS)

    Yamauchi, Rumi; Ikeda, Mitsuo; Shinoda, Hiroyuki

    2002-06-01

    We don't normally perceive the light source color in a night scene photograph even at the spot of a shining lamp, although of course we do perceive the color if we are in the corresponding real world. This different experience can be nicely explained by the concept of the recognized visual space of illumination, RVSI. We see the light source color for a shining lamp in a real world because its luminance is too high to be included within the RVSI constructed for the world. On the contrary, the luminance of the shining lamp in the photograph never goes beyond that of N10 in Munsell Value and it is easily included within the RVSI constructed for the space where the photograph is observed. The spot should appear a mere white, not a light source color. We proposed in the present paper a new method to perceive the light source color in a printed photograph. A subject used a dimension-up goggle to input only the photograph into his/her monocular eye so that he/she can perceive a 3D scene in it. The RVSI of a small brightness size was made for the scene by employing a night scene photograph and a spot in the scene was perceived as the light source color when the area had lightness 8.1 or larger in Munsell Value.