Science.gov

Sample records for die casting applications

  1. Vacuum Die Casting of Silicon Sheet for Photovoltaic Applications

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The development of a vacuum die-casting process for producing silicon sheet suitable for photovoltaic cells with a terrestrial efficiency greater than 12 percent and having the potential to be scaled for large quantity production is considered. The initial approach includes: (1) obtaining mechanical design parameters by using boron nitride, which has been shown to non-wetting to silicon; (2) optimizing silicon nitride material composition and coatings by sessile drop experiments; (3) testing effectiveness of fluoride salt interfacial media with a graphite mold; and (4) testing the effect of surface finish using both boron nitride and graphite. When the material and mechanical boundary conditions are established, a finalized version of the prototype assembly will be constructed and the casting variables determined.

  2. Application of High-Temperature Mold Materials to Die Cast Copper Motor Rotor for Improved Efficiency

    SciTech Connect

    John G. Cowie; Edwin F. Brush, Jr.; Dale T. Peters; Stephen P. Midson; Darryl J. Van Son

    2003-05-01

    The objective of the study, Application of High-Temperature Mold Materials to Die Cast Copper Motor Rotor for Improved Efficiency, was to support the Copper Development Association (CDA) in its effort to design, fabricate and demonstrate mold technologies designed to withstand the copper motor rotor die casting environment for an economically acceptable life. The anticipated result from the compiled data and tests were to: (1) identify materials suitable for die casting copper, (2) fabricate motor rotor molds and (3) supply copper rotor motors for testing in actual compressor systems. Compressor manufacturers can apply the results to assess the technical and economical viability of copper rotor motors.

  3. Sputtered protective coatings for die casting dies

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Nieh, C. Y.; Wallace, J. F.

    1981-01-01

    This investigation determined whether selected ion beam sputtered coatings on H-13 die steel would have the potential of improving the thermal fatigue behavior of the steel used as a die in aluminum die casting. The coatings were selected to test candidate insulators and metals capable of providing protection of the die surface. The studies indicate that 1 micrometer thick W and Pt coatings reduced the thermal fatigue more than any other coating tested and are candidates to be used on a die surface to increase die life.

  4. Casting Characteristics of Aluminum Die Casting Alloys

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  5. Case study of lean manufacturing application in a die casting manufacturing company

    NASA Astrophysics Data System (ADS)

    Ching, Ng Tan; Hoe, Clarence Chan Kok; Hong, Tang Sai; Ghobakhloo, Morteza; Pin, Chen Kah

    2015-05-01

    The case study of lean manufacturing aims to study the application of lean manufacturing in a die casting manufacturing company located in Pulau Penang, Malaysia. This case study describes mainly about the important concepts and applications of lean manufacturing which could gradually help the company in increasing the profit by studying and analyzing their current manufacturing process and company culture. Many approaches of lean manufacturing are studied in this project which includes: 5S housekeeping, Kaizen, and Takt Time. Besides, the lean tools mentioned, quality tool such as the House of Quality is being used as an analysis tool to continuously improve the product quality. In short, the existing lean culture in the company is studied and analyzed, with recommendations written at the end of this paper.

  6. Die Soldering in Aluminium Die Casting

    SciTech Connect

    Han, Q.; Kenik, E.A.; Viswanathan, S.

    2000-03-15

    Two types of tests, dipping tests and dip-coating tests were carried out on small steel cylinders using pure aluminum and 380 alloy to investigate the mechanism of die soldering during aluminum die casting. Optical and scanning electron microscopy were used to study the morphology and composition of the phases formed during soldering. A soldering mechanism is postulated based on experimental observations. A soldering critical temperature is postulated at which iron begins to react with aluminum to form an aluminum-rich liquid phase and solid intermetallic compounds. When the temperature at the die surface is higher than this critical temperature, the aluminum-rich phase is liquid and joins the die with the casting during the subsequent solidification. The paper discusses the mechanism of soldering for the case of pure aluminum and 380 alloy casting in a steel mold, the factors that promote soldering, and the strength of the bond formed when soldering occurs. conditions, an aluminum-rich soldering layer may also form over the intermetallic layer. Although a significant amount of research has been conducted on the nature of these intermetallics, little is known about the conditions under which soldering occurs.

  7. Solvent casting flow from slot die

    NASA Astrophysics Data System (ADS)

    Lee, Semi; Nam, Jaewook

    2015-11-01

    A continuous solvent casting method using a slot die can precisely control the film thickness by adjusting the operating conditions, such as the belt speed and pumping rate, not the liquid property. Therefore, it is a suitable method for high precision continuous film production. In this particular method, the dope, or casting solution, is pumped through the feed slot to form a short curtain between the die and the moving belt. Although this method is widely used in producing films for various applications, it is difficult to find indepth analyses of such flow. In this study, we developed a finite element computational model for the steady-state two-dimensional sovent casting flow from the slot die. The effect of die configurations, rheological properties and operating conditions on the behavior and shape of the gas/liquid interfaces and the location of the dynamic contact line, which is the place where the dope meets the moving belt, were investigated.

  8. Measurement of Heat Flux and Heat Transfer Coefficient Due to Spray Application for the Die Casting Process

    SciTech Connect

    Sabau, Adrian S

    2007-01-01

    Lubricant spray application experiments were conducted for the die casting process. The heat flux was measured in situ using a differential thermopile sensor for three application techniques. First, the lubricant was applied under a constant flowrate while the nozzle was held in the same position. Second, the lubricant was applied in a pulsed, static manner, in which the nozzle was held over the same surface while it was turned on and off several times. Third, the lubricant was applied in a sweeping manner, in which the nozzle was moved along the die surface while it was held open. The experiments were conducted at several die temperatures and at sweep speeds of 20, 23, and 68 cm/s. The heat flux data, which were obtained with a sensor that was located in the centre of the test plate, were presented and discussed. The sensor can be used to evaluate lubricants, monitor the consistency of die lubrication process, and obtain useful process data, such as surface temperature, heat flux, and heat transfer coefficients. The heat removed from the die surface during lubricant application is necessary for (a) designing the cooling channels in the die, i.e. their size and placement, and (b) performing accurate numerical simulations of the die casting process.

  9. Energy Consumption of Die Casting Operations

    SciTech Connect

    Jerald Brevick; clark Mount-Campbell; Carroll Mobley

    2004-03-15

    Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.

  10. Prediction of Part Distortion in Die Casting

    SciTech Connect

    R. Allen Miller

    2005-03-30

    The die casting process is one of the net shape manufacturing techniques and is widely used to produce high production castings with tight tolerances for many industries. An understanding of the stress distribution and the deformation pattern of parts produced by die casting will result in less deviation from the part design specification, a better die design and eventually more productivity and cost savings. This report presents methods that can be used to simulate the die casting process in order to predict the deformation and stresses in the produced part and assesses the degree to which distortion modeling is practical for die casting at the current time. A coupled thermal-mechanical finite elements model was used to simulate the die casting process. The simulation models the effect of thermal and mechanical interaction between the casting and the die. It also includes the temperature dependant material properties of the casting. Based on a designed experiment, a sensitivity analysis was conducted on the model to investigate the effect of key factors. These factors include the casting material model, material properties and thermal interaction between casting and dies. To verify the casting distortion predictions, it was compared against the measured dimensions of produced parts. The comparison included dimensions along and across the parting plane and the flatness of one surface.

  11. Application of TPM indicators for analyzing work time of machines used in the pressure die casting

    NASA Astrophysics Data System (ADS)

    Borkowski, Stanisław; Czajkowska, Agnieszka; Stasiak-Betlejewska, Renata; Borade, Atul B.

    2014-05-01

    The article presents the application of total productive maintenance (TPM) to analyze the working time indicators of casting machines with particular emphasis on failures and unplanned downtime to reduce the proportion of emergency operation for preventive maintenance and diagnostics. The article presents that the influence of individual factors of complex machinery maintenance (TPM) is different and depends on the machines' modernity level. In an original way, by using correlation graphs, research findings on the impact of individual TPM factors on the castings quality were presented and interpreted. The examination results conducted for machines with varying modernity degrees allowed to determine changes within the impact of individual TPM factors depending on machine parameters. These results provide a rich source of information for the improvement processes on casting quality of the foundry industry that satisfies the automotive industry demand.

  12. Use of RSP Tooling to Manufacture Die Casting Dies

    SciTech Connect

    Kevin McHugh

    2004-07-01

    The technology and art used to construct die casting dies has seen many improvements over the years. However, the time lag from when a design is finalized to the time a tool is in production has remained essentially the same. The two main causes for the bottleneck are the need to qualify a part design by making prototypes (usually from an alternative process), and the production tooling lead time after the prototypes are approved. Production tooling costs are high due to the labor and equipment costs associated with transforming a forged block of tool steel into a finished tool. CNC machining, sink EDM, benching, engraving and heat treatment unit operations are typically involved. As a result, there is increasing interest in rapid tooling (RT) technologies that shorten the design-to-part cycle and reduce the cost of dies. There are currently more than 20 RT methods being developed and refined around the world (1). The "rapid" in rapid tooling suggests time compression for tool delivery, but does not address robustness as nearly all RT approaches are intended for low-volume prototype work, primarily for molding plastics. Few options exist for die casting. An RT technology suitable for production-quality tooling in the time it normally takes for prototype tooling is highly desirable. In fact, there would be no need for a distinction between prototype and production tooling. True prototype parts could be made using the same processing conditions and materials intended for production. Qualification of the prototype part would allow the manufacturer to go directly into production with the same tool. A relatively new RT technology, Rapid Solidification Process (RSP) Tooling, is capable of making production-quality tooling in an RT timeframe for die casting applications. RSP Tooling, was developed at the Idaho National Engineering and Environmental Laboratory (INEEL), and commercialized with the formation of RSP Tooling, LLC (2). This paper describes the process, and

  13. Wear Properties of Thixoformed and High Pressure Die Cast Aluminium Alloys for Connecting Rod Applications in Compressors

    NASA Astrophysics Data System (ADS)

    Birol, Yücel; Birol, Feriha

    2007-04-01

    Hypereutectic aluminium casting alloys are attractive candidates for connecting rod applications in compressors. The wear properties of these alloys are largely controlled by their microstructural features which in turn are affected by the processing route. Several hypo- and hypereutectic Al-Si alloys were produced by high pressure die casting and thixoforming in the present work. The former route produced a very fine microstructure while relatively coarser, globular α-Al matrix dominated in thixoformed grades. A modified Falex Block on Ring equipment was employed to investigate the wear properties of these alloys. Wear tests were carried out under service conditions in the lubricated state at 75°C. The superior wear properties of hypereutectic alloys produced by high pressure die casting with respect to the thixoformed variety is accounted for by the very fine microstructure with a fine dispersion of primary Si particles in the former. Of the two production routes employed, thixoforming had a favorable effect on wear properties at equal Si levels.

  14. Modeling the Mechanical Performance of Die Casting Dies

    SciTech Connect

    R. Allen Miller

    2004-02-27

    The following report covers work performed at Ohio State on modeling the mechanical performance of dies. The focus of the project was development and particularly verification of finite element techniques used to model and predict displacements and stresses in die casting dies. The work entails a major case study performed with and industrial partner on a production die and laboratory experiments performed at Ohio State.

  15. Enhancements in Magnesium Die Casting Impact Properties

    SciTech Connect

    David Schwam; John F. Wallace; Yulong Zhu; Srinath Viswanathan; Shafik Iskander

    2000-06-30

    % in AM50 to over 9% in AZ91, more of the intermetallic Mg17Al12 is formed in the microstructure. For instance, for 15 increase in the aluminum content from AM50 to AM60, the volume fraction of eutectic present in the microstructure increases by 35%! Eventually, the brittle Mg17Al12 compound forms an interconnected network that reduces ductility and impact resistance. The lower aluminum in AM50 and AM60 are therefore a desirable feature in applications that call for higher impact resistance. Further improvement in impact resistance depends on the processing condition of the casting. Sound castings without porosity and impurities will have better mechanical properties. Since magnesium oxidizes readily, good melting and metal transfer practices are essential. The liquid metal has to be protected from oxidation at all times and entrainment of oxide films in the casting needs to be prevented. In this regard, there is evidence that us of vacuum to evacuate air from the die casting cavity can improve the quality of the castings. Fast cooling rates, leading to smaller grain size are beneficial and promote superior mechanical properties. Micro-segregation and banding are two additional defect types often encountered in magnesium alloys, in particular in AZ91D. While difficult to eliminate, segregation can be minimized by careful thermal management of the dies and the shot sleeve. A major source of segregation is the premature solidification in the shot sleeve. The primary solid dendrites are carried into the casting and form a heterogeneous structure. Furthermore, during the shot, segregation banding can occur. The remedies for this kind of defects include a hotter shot sleeve, use of insulating coatings on the shot sleeve and a short lag time between pouring into the shot sleeve and the shot.

  16. Sputtered protective coatings for die casting dies

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Nieh, C.-Y.; Wallace, J. F.

    1981-01-01

    Three experimental research designs investigating candidate materials and processes involved in protective die surface coating procedures by sputter deposition, using ion beam technologies, are discussed. Various pre-test results show that none of the coatings remained completely intact for 15,000 test cycles. The longest lifetime was observed for coatings such as tungsten, platinum, and molybdenum which reduced thermal fatigue, but exhibited oxidation and suppressed crack initiation only as long as the coating did not fracture. Final test results confirmed earlier findings and coatings with Pt and W proved to be the candidate materials to be used on a die surface to increase die life. In the W-coated specimens, which remained intact on the surface after thermal fatigue testing, no oxidation was found under the coating, although a few cracks formed on the surface where the coating broke down. Further research is planned.

  17. Spray-formed tooling for injection molding and die casting applications

    SciTech Connect

    K. M. McHugh; B. R. Wickham

    2000-06-26

    Rapid Solidification Process (RSP) Tooling{trademark} is a spray forming technology tailored for producing molds and dies. The approach combines rapid solidification processing and net-shape materials processing in a single step. The ability of the sprayed deposit to capture features of the tool pattern eliminates costly machining operations in conventional mold making and reduces turnaround time. Moreover, rapid solidification suppresses carbide precipitation and growth, allowing many ferritic tool steels to be artificially aged, an alternative to conventional heat treatment that offers unique benefits. Material properties and microstructure transformation during heat treatment of spray-formed H13 tool steel are described.

  18. Spray-formed Tooling for Injection Molding and Die Casting Applications

    SciTech Connect

    Mc Hugh, Kevin Matthew

    2000-06-01

    Rapid Solidification Process (RSP) ToolingTM is a spray forming technology tailored for producing molds and dies. The approach combines rapid solidification processing and net-shape materials processing in a single step. The ability of the sprayed deposit to capture features of the tool pattern eliminates costly machining operations in conventional mold making and reduces turnaround time. Moreover, rapid solidification suppresses carbide precipitation and growth, allowing many ferritic tool steels to be artificially aged, an alternative to conventional heat treatment that offers unique benefits. Material properties and microstructure transformation during heat treatment of spray-formed H13 tool steel are described.

  19. Fatigue of die cast zinc alloys

    SciTech Connect

    Schrems, K.K.; Dogan, O.N.; Goodwin, F.E.

    2006-04-01

    The rotating bending fatigue limit of die cast zinc alloy 2, alloy 3, alloy 5, AcuZinc 5, and ZA-8 were determined as a part of an on-going program by ILZRO into the mechanical properties of die cast zinc. The stress-life (S-N) curves of alloys 3, 5, AcuZinc 5, and ZA-8 were determined previously. This presentation reports the results of the S-N curve for Alloy 2 and the calculated fatigue limits for all five alloys. During the previous stress-life testing, the samples were stopped at 10 million cycles and the fatigue limit for alloy 3, alloy 5, and AcuZinc 5 appeared to be higher and the fatigue limit for ZA-8 appeared to be lower than the values reported in the literature. This was further investigated in alloy 5 and ZA-8 by testing continuous cast bulk alloy 5 and ZA-8.

  20. National Metal Casting Research Institute final report. Volume 2, Die casting research

    SciTech Connect

    Jensen, D.

    1994-06-01

    Four subprojects were completed: development and evaluation of die coatings, accelerated die life characterization of die materials, evaluation of fluid flow and solidification modeling programs, selection and characterization of Al-based die casting alloys, and influence of die materials and coatings on die casting quality.

  1. Characterization of Spray Lubricants for the Die Casting Process

    SciTech Connect

    Sabau, Adrian S

    2008-01-01

    During the die casting process, lubricants are sprayed in order to cool the dies and facilitate the ejection of the casting. The cooling effects of the die lubricant were investigated using Thermogravimetric analysis (TGA), heat flux sensors (HFS), and infrared imaging. The evolution of the heat flux and pictures taken using a high speed infrared camera revealed that lubricant application was a transient process. The short time response of the HFS allows the monitoring and data acquisition of the surface temperature and heat flux without additional data processing. A similar set of experiments was performed with deionized water in order to assess the lubricant effect. The high heat flux obtained at 300 C was attributed to the wetting and absorbant properties of the lubricant. Pictures of the spray cone and lubricant flow on the die were also used to explain the heat flux evolution.

  2. A study of erosion in die casting dies by a multiple pin accelerated erosion test

    NASA Astrophysics Data System (ADS)

    Shivpuri, R.; Yu, M.; Venkatesan, K.; Chu, Y.-L.

    1995-04-01

    An accelerated erosion test was developed to evaluate the erosion resistance of die materials and coatings for die casting application. An acceleration in wear was achieved by selecting pyramid-shaped core pins, hypereutectic aluminum silicon casting alloy, high melt temperatures and high gate velocities. Multiple pin design was selected to enable multiple test sites for comparative evaluation. Apilot run was conducted on a 300 ton commercial die casting machine at various sites (pins) to verify the thermal and flow similarities. Subsequently, campaigns were run on two different 300 ton commercial die casting machines to evaluate H13 die material and different coatings for erosive resistance. Coatings and surface treatments evaluated included surface micropeening, titanium nitride, boron carbide, vanadium carbide, and metallic coatings—tungsten, molybdenum, and platinum. Recent campaigns with different melt temperatures have indicated a possible link between soldering phenomena and erosive wear. This paper presents the details of the test set up and the results of the pilot and evaluation tests.

  3. Die Casting Part Distortion: Prediction and Attenuation

    SciTech Connect

    Dr, R. Allen Miller

    2002-02-12

    The goal of this research was to predict the part deformation and residual stresses after ejection from the die and cooling to room temperature. A finite element model was built to achieve this goal and several modeling techniques were investigated throughout this research. Die-casting is a very complex process and the researchers are faced with a large number of hard to solve physical problems when modeling the process. Several assumptions are made in our simulation model. The first significant assumption is the instantaneous cavity filling. This means that the cavity filling stage is not considered in our model. Considering the cavity filling stage increases the modeling complexity as a result of different flow patterns. expected in the shot sleeve, gate, runner and different cavity features. The flow of gas from the cavity through the vents is another problem that is ignored in our model as a result of this assumption. Our second assumption is that the cast metal has uniform temperature distribution inside the cavity, at the starting point of simulation. This temperature is assumed to be over liquidus limit, i.e. the solid fraction is 0.0% of the cast metal. The third assumption is due to ABAQUS (commercial software used in this research) limitations. ABAQUS cannot deal with multi-phase models; therefore we use solid elements to define the casting instead of multi-phase (liquid/solid) elements. Liquid elements can carry the hydrostatic pressure from the shot sleeve and apply it on the cavity surfaces, while the solid elements do not have this capability. To compensate for this assumption we add the cavity pressure as a boundary condition and apply it on the cavity surface separately from the part. Another issue with this assumption is that, liquid casting can follow the cavity shape when it distorts. With the use of solid elements to represent the casting during its liquid state, it loses this capability to follow the cavity. Several techniques were tested to

  4. Deburring die-castings by wet vibratory plant

    NASA Astrophysics Data System (ADS)

    Loeschbart, H. M.

    1980-02-01

    A wet vibratory procedure for the removal of burrs from die castings is described. In this process synthetic abrasive chips and detergent solutions are agitated with the work in such a way as to produce a spiral circulatory movement. Details of various forms of vibrator basin and shapes of abrasive are illustrated. The automation of deburring is illustrated through the application of vibrators of spiral design in combination with transport and drying devices.

  5. Deburring die-castings by wet vibratory plant

    NASA Technical Reports Server (NTRS)

    Loeschbart, H. M.

    1980-01-01

    A wet vibratory procedure for the removal of burrs from die castings is described. In this process synthetic abrasive chips and detergent solutions are agitated with the work in such a way as to produce a spiral circulatory movement. Details of various forms of vibrator basin and shapes of abrasive are illustrated. The automation of deburring is illustrated through the application of vibrators of spiral design in combination with transport and drying devices.

  6. Effect of Some Parameters on the Cast Component Properties in Hot Chamber Die Casting

    NASA Astrophysics Data System (ADS)

    Singh, Rupinder; Singh, Harvir

    2016-04-01

    Hot chamber die casting process is designed to achieve high dimensional accuracy for small products by forcing molten metal under high pressure into reusable moulds, called dies. The present research work is aimed at study of some parameters (as a case study of spring adjuster) on cast component properties in hot chamber die casting process. Three controllable factors of the hot chamber die casting process (namely: pressure at second phase, metal pouring temperature and die opening time) were studied at three levels each by Taguchi's parametric approach and single-response optimization was conducted to identify the main factors controlling surface hardness, dimensional accuracy and weight of the casting. Castings were produced using aluminium alloy, at recommended parameters through hot chamber die casting process. Analysis shows that in hot chamber die casting process the percentage contribution of second phase pressure, die opening time, metal pouring temperature for surface hardness is 82.48, 9.24 and 6.78 % respectively. While in the case of weight of cast component the contribution of second phase pressure is 94.03 %, followed by metal pouring temperature and die opening time (4.58 and 0.35 % respectively). Further for dimensional accuracy contribution of die opening time is 76.97 %, metal pouring temperature is 20.05 % and second phase pressure is 1.56 %. Confirmation experiments were conducted at an optimal condition showed that the surface hardness, dimensional accuracy and weight of the castings were improved significantly.

  7. Mechanical Properties of Die-Cast Magnesium Alloy MRI 230D

    NASA Astrophysics Data System (ADS)

    Aghion, Eli; Moscovitch, Nir; Arnon, Amir

    2009-10-01

    MRI 230D was specially developed to overcome the high-temperature limitations of conventionally die-cast magnesium alloys. This innovative alloy was primarily developed for the automotive industry, mainly for power-train applications operating under high-temperature conditions. The present article aims at evaluating the die-casting characteristics of MRI 230D in comparison with conventional AZ91D Mg alloy. These characteristics are used to evaluate the applicability of this alloy for die-casting operations which are essential for mass production.

  8. Development of Thin Section Zinc Die Casting Technology

    SciTech Connect

    Goodwin, Frank

    2013-10-31

    A new high fluidity zinc high pressure die casting alloy, termed the HF alloy, was developed during laboratory trials and proven in industrial production. The HF alloy permits castings to be achieved with section thicknesses of 0.3 mm or less. Technology transfer activities were conducted to develop usage of the HF high fluidity alloy. These included production of a brochure and a one-hour webinar on the HF alloy. The brochure was then sent to 1,184 product designers in the Interzinc database. There was excellent reception to this mailing, and from this initial contact 5 technology transfer seminars were conducted for 81 participants from 30 companies across a wide range of business sectors. Many of the successful applications to date involve high quality surface finishes. Design and manufacturing assistance was given for development of selected applications.

  9. Evaluation of a Heat Flux Sensor for Spray Cooling for the Die Casting Processes

    SciTech Connect

    Sabau, Adrian S; Wu, Zhuoxi

    2007-02-01

    During the die casting process, lubricants are sprayed in order to cool the dies and facilitate the ejection of the casting. In this paper, a new technique for measuring the heat flux during lubricant application is evaluated. Data from experiments conducted using water spray are first presented. Water spray experiments were conducted for different initial plate temperatures. Measurements were conducted for the application of two different lubricants, of dilution ratios of 1/15 and 1/50 of lubricant in water. The measurement uncertainties were documented. The results show that the surface temperature decreases initially very fast. Numerical simulation results confirmed that the abrupt temperature drop is not an artifact but illustrates the thermal shock experienced by the dies during the initial stages of lubricant application. The lubricant experiments show that the sensor can be successfully used for testing die lubricants with typical dilution ratios encountered in the die casting process.

  10. Microstructures and properties of aluminum die casting alloys

    SciTech Connect

    M. M. Makhlouf; D. Apelian; L. Wang

    1998-10-01

    This document provides descriptions of the microstructure of different aluminum die casting alloys and to relate the various microstructures to the alloy chemistry. It relates the microstructures of the alloys to their main engineering properties such as ultimate tensile strength, yield strength, elongation, fatigue life, impact resistance, wear resistance, hardness, thermal conductivity and electrical conductivity. Finally, it serves as a reference source for aluminum die casting alloys.

  11. Casting defects in low-pressure die-cast aluminum alloy wheels

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Cockcroft, S. L.; Maijer, D. M.; Zhu, J. D.; Phillion, A. B.

    2005-11-01

    Defects in automotive aluminum alloy casting continue to challenge metallurgists and production engineers as greater emphasis is placed on product quality and production cost. A range of casting-related defects found in low-pressure die-cast aluminum wheels were examined metallographically in samples taken from several industrial wheel-casting facilities. The defects examined include macro- and micro- porosity, entrained oxide films, and exogenous oxide inclusions. Particular emphasis is placed on the impact of these defects with respect to the three main casting-related criteria by which automotive wheel quality are judged: wheel cosmetics, air-tightness, and wheel mechanical performance.

  12. The thermal fatigue resistance of H-13 Die Steel for aluminum die casting dies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The effects of welding, five selected surface coatings, and stress relieving on the thermal fatigue resistance of H-13 Die Steel for aluminum die casting dies were studied using eleven thermal fatigue specimens. Stress relieving was conducted after each 5,000 cycle interval at 1050 F for three hours. Four thermal fatigue specimens were welded with H-13 or maraging steel welding rods at ambient and elevated temperatures and subsequently, subjected to different post-weld heat treatments. Crack patterns were examined at 5,000, 10,000, and 15,000 cycles. The thermal fatigue resistance is expressed by two crack parameters which are the average maximum crack and the average cracked area. The results indicate that a significant improvement in thermal fatigue resistance over the control was obtained from the stress-relieving treatment. Small improvements were obtained from the H-13 welded specimens and from a salt bath nitrogen and carbon-surface treatment. The other surface treatments and welded specimens either did not affect or had a detrimental influence on the thermal fatigue properties of the H-13 die steel.

  13. An indicator for fitting castings to a die.

    PubMed

    Troendle, G R; Troendle, K B

    1992-10-01

    This article describes a procedure for making an indicator to be used in fitting a casting to a die. It also describes how to use the indicator in the laboratory. The materials for making the indicator are inexpensive, present no health hazard, and are readily available at any arts and crafts store. PMID:1403953

  14. Evaluation of permanent die coatings to improve the wear resistance of die casting dies. Final project report, January 1, 1995--April 30, 1997

    SciTech Connect

    Shivpuri, R.

    1997-09-18

    Die Casting dies are subject to severe service conditions during the die casting operation. While these severe conditions are necessary to achieve high production rates, they cause the dies which are commonly made of H13 die steel, to suffer frequent failures. The major die failure mechanisms are erosion or washout, Heat checking, soldering and corrosion. Due to their geometrical complexity, die casting dies are very expensive (some dies cost over a million dollars), and thus a large number of parts have to be produced by a die, to justify this cost and leverage the advantages of the die casting process (high production rates, low manpower costs). A potential increase in the die service life, thus has a significant impact on the economics of the die; casting operation. There are many ways to extend die life: developing new wear resistant die materials, developing new surface treatments including coatings, improving heat treatment of existing H13 dies, using better lubricants that can protect the die material, or modifying the die geometry and process parameters to reduce the intensity of wear. Of these the use of coatings to improve the wear resistance of the die surface has shown a lot of promise. Consequently, use of coatings in the die casting industry and their wide use to decrease die wear can improve significantly the productivity of shop operations resulting in large savings in material and energy usage.

  15. Die casting die deflections: Prediction and attenuation. Final report, July 1, 1995--September 30, 1997

    SciTech Connect

    Miller, R.A.; Ahuett-Garza, H.; Choudhury, A.K.; Dedhia, S.

    1998-05-01

    This report summarizes two years of research intended to develop methods to model and predict the deflection patterns in die casting dies. No comprehensive analysis of this type had previously been completed. The die casting process is complex and involves numerous mechanical and thermal phenomena that effect the mechanical behavior of the die. A critical activity in this work was sorting out and evaluating the relative contributions of the various mechanisms to die deflections. This evaluation was accomplished through a series of simple engineering analyses based primarily on the order of magnitude of the influence of each load considered on die deflections. A modeling approach incorporating commercially available finite element analysis software was developed and tested. The model evolved by testing simple models against more comprehensive models and against the limited experimental data that is available. The development of the modeling approach lead to consideration of the die casting machine in more detail than was originally anticipated. The machine is critical and cannot be ignored. A simplified model described as a spring/platen model was developed to account for the machine platens, tie bars, and toggles. The characteristics of this model are described and predictions based on this model are compared against full machine models and measured deflections of machine platens. Details of the modeling approach and the various case studies are provided in the report and in several publications that have resulted from the work.

  16. Manufacture of die casting dies by hot isostatic pressing. CRADA final report

    SciTech Connect

    Viswanathan, S.; Ren, W.; Luk, K.; Brucher, H.G.

    1998-09-01

    The reason for this Cooperative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory (ORNL) and Doehler-Jarvis was to investigate the manufacture die-casting dies with internal water-cooling lines by hot-isostatic pressing (HIPing) of H13 tool steel powder. The use of HIPing will allow the near-net-shape manufacture of dies and the strategic placement of water-cooling lines during manufacture. The production of near-net-shape dies by HIPing involves the generation of HIPing diagrams, the design of the can that can be used for HIPing a die with complex details, strategic placement of water-cooling lines in the die, computer modeling to predict movement of the water lines during HIPing, and the development of strategies for placing water lines in the appropriate locations. The results presented include a literature review, particle analysis and characterization of H13 tool steel powder, and modeling of the HIPing process.

  17. Assessment of Computer Simulation Software and Process Data for High Pressure Die Casting of Magnesium

    SciTech Connect

    Sabau, Adrian S; Hatfield, Edward C; Dinwiddie, Ralph Barton; Kuwana, Kazunori; Viti, Valerio; Hassan, Mohamed I; Saito, Kozo

    2007-09-01

    Computer software for the numerical simulation of solidification and mold filling is an effective design tool for cast structural automotive magnesium components. A review of commercial software capabilities and their validation procedures was conducted. Aside form the software assessment, the program addressed five main areas: lubricant degradation, lubricant application, gate atomization, and heat transfer at metal mold interfaces. A test stand for lubricant application was designed. A sensor was used for the direct measurement of heat fluxes during lubricant application and casting solidification in graphite molds. Spray experiments were conducted using pure deionized water and commercial die lubricants. The results show that the sensor can be used with confidence for measuring heat fluxes under conditions specific to the die lube application. The data on heat flux was presented in forms suitable for use in HPDC simulation software. Severe jet breakup and atomization phenomena are likely to occur due to high gate velocities in HPDC. As a result of gate atomization, droplet flow affects the mold filling pattern, air entrapment, skin formation, and ensuing defects. Warm water analogue dies were designed for obtaining experimental data on mold filling phenomena. Data on break-up jet length, break-up pattern, velocities, and droplet size distribution were obtained experimentally and was used to develop correlations for jet break-up phenomena specific to die casting gate configurations.

  18. Determination of the metal/die interfacial heat transfer coefficient of high pressure die cast B390 alloy

    NASA Astrophysics Data System (ADS)

    Cao, Yongyou; Guo, Zhipeng; Xiong, Shoumei

    2012-07-01

    High-pressure die cast B390 alloy was prepared on a 350 ton cold chamber die casting machine. The metal/die interfacial heat transfer coefficient of the alloy was investigated. Considering the filling process, a "finger"-shaped casting was designed for the experiments. This casting consisted of five plates with different thicknesses (0.05 inch or 1.27 mm to 0.25 inch or 6.35 mm) as well as individual ingates and overflows. Experiments under various operation conditions were conducted, and temperatures were measured at various specific locations inside the die. Based on the results, the interfacial heat transfer coefficient and heat flux were determined by solving the inverse heat transfer problem. The influence of the mold-filling sequence, sensor locations, as well as processing parameters including the casting pressure, die temperature, and fast/slow shot speeds on the heat transfer coefficient were discussed.

  19. Notched bar Izod impact properties of zinc die castings

    SciTech Connect

    Schrems, K.K.; Dogan, O.N.; Goodwin, F.E.

    2007-03-01

    Notched bar Izod impact testing of zinc die cast Alloy 3, Alloy 5, ZA-8, and AcuZinc 5 was performed at five temperatures between -40\\mDC and room temperature in accordance with ASTM E23 for impact testing of metallic materials. A direct comparison between ASTM D256 for impact testing of plastics and ASTM E23 was performed using continuously cast zinc specimens of Alloy 5 and ZA-8 at -40\\mDC and room temperature. There are differences in sample sizes, impact velocity, and striker geometry between the two tests. Bulk zinc tested according to ASTM E23 resulted in higher impact energies at -40\\mDC and lower impact energies at room temperature then did the same alloys when tested according to ASTM D256.

  20. High-Pressure Die-Casting: Contradictions and Challenges

    NASA Astrophysics Data System (ADS)

    Bonollo, Franco; Gramegna, Nicola; Timelli, Giulio

    2015-05-01

    High-pressure die casting (HPDC) is particularly suitable for high production rates and it is applied in several industrial fields; actually, approximately half of the world production of light metal castings is obtained by this technology. An overview of the actual status of HPDC technology is described in the current work, where both critical aspects and potential advantages are evidenced. Specific attention is paid to the quality requirements from the end users, as well as to the achievable production rate, the process monitoring and control, and the European and worldwide scenario. This overview leads to individuate the most relevant challenges for HPDC industry: "zero-defect" production, real-time process control, understanding the role of the process variables, process optimization, introduction of research and development activities, and disseminating the knowledge about HPDC technology. Performing these actions, HPDC foundries could achieve a more mature and efficient approach to large end users and exploit their really relevant potential.

  1. Characterization of pores in high pressure die cast aluminum using active thermography and computed tomography

    NASA Astrophysics Data System (ADS)

    Maierhofer, Christiane; Myrach, Philipp; Röllig, Mathias; Jonietz, Florian; Illerhaus, Bernhard; Meinel, Dietmar; Richter, Uwe; Miksche, Ronald

    2016-02-01

    Larger high pressure die castings (HPDC) and decreasing wall thicknesses are raising the issue of casting defects like pores in aluminum structures. Properties of components are often strongly influenced by inner porosity. As these products are being established more and more in lightweight construction (e.g. automotive and other transport areas), non-destructive testing methods, which can be applied fast and on-site, are required for quality assurance. In this contribution, the application of active thermography for the direct detection of larger pores is demonstrated. The analysis of limits and accuracy of the method are completed by numerical simulation and the method is validated using computed tomography.

  2. The Effects of Externally Solidified Product on Wave Celerity and Quality of Die Cast Products

    SciTech Connect

    Carroll Mobley; Yogeshwar Sahai; Jerry Brevick

    2003-10-10

    The cold chamber die casting process is used to produce essentially all the die cast aluminum products and about 50% of the die cast magnesium products made today. Modeling of the cold chamber die casting process and metallographic observations of cold chamber die cast products indicate that typically 5 to 20% of the shot weight is solidified in the shot sleeve before or during cavity filling. The protion of the resulting die casting which is solidified in the shot sleeve is referred to as externally solidified product, or, when identified as a casting defect, as cold flakes. This project was directed to extending the understanding of the effects of externally solidified product on the cold chamber die casting process and products to enable the production of defect-free die castings and reduce the energy associated with these products. The projected energy savings from controlling the fraction of externally solidified product in die cast components is 40 x 10 Btu through the year 2025.

  3. Microstructural analysis of aluminum high pressure die castings

    NASA Astrophysics Data System (ADS)

    David, Maria Diana

    Microstructural analysis of aluminum high pressure die castings (HPDC) is challenging and time consuming. Automating the stereology method is an efficient way in obtaining quantitative data; however, validating the accuracy of this technique can also pose some challenges. In this research, a semi-automated algorithm to quantify microstructural features in aluminum HPDC was developed. Analysis was done near the casting surface where it exhibited fine microstructure. Optical and Secondary electron (SE) and backscatter electron (BSE) SEM images were taken to characterize the features in the casting. Image processing steps applied on SEM and optical micrographs included median and range filters, dilation, erosion, and a hole-closing function. Measurements were done on different image pixel resolutions that ranged from 3 to 35 pixel/μm. Pixel resolutions below 6 px/μm were too low for the algorithm to distinguish the phases from each other. At resolutions higher than 6 px/μm, the volume fraction of primary α-Al and the line intercept count curves plateaued. Within this range, comparable results were obtained validating the assumption that there is a range of image pixel resolution relative to the size of the casting features at which stereology measurements become independent of the image resolution. Volume fraction within this curve plateau was consistent with the manual measurements while the line intercept count was significantly higher using the computerized technique for all resolutions. This was attributed to the ragged edges of some primary α-Al; hence, the algorithm still needs some improvements. Further validation of the code using other castings or alloys with known phase amount and size may also be beneficial.

  4. Interfacial Heat Transfer during Die Casting of an Al-Si-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Hamasaiid, A.; Wang, G.; Davidson, C.; Dour, G.; Dargusch, M. S.

    2009-12-01

    The relationship between in-cavity pressure, heat flux, and heat-transfer coefficient during high-pressure die casting of an Al-9 pct Si-3 pct Cu alloy was investigated. Detailed measurements were performed using infrared probes and thermocouple arrays that accurately determine both casting and die surface temperatures during the pressure die casting of an aluminum A380 alloy. Concurrent in-cavity pressure measurements were also performed. These measurements enabled the correlation between in-cavity pressure and accurate heat-transfer coefficients in high-pressure die-casting operations.

  5. Die casting die deflections: Prediction and attenuation. Final report, July 1, 1995--September 30, 1997

    SciTech Connect

    Miller, R.Allen; Ahuett-Garza, Horacio; Choudhury, Aswin K.; Dedhia, Sanjay

    1998-05-01

    The objective of this work was to develop and test die casting design evaluation techniques based on the visualization of geometric data that is related to potential defects or problems. Specifically, thickness information is used to provide insight into potential thermal problems in the part and die. Distance from the gate and a special type of animation of the fill pattern is used to provide an assessment of gate, vent and overflow locations. Techniques have been developed to convert part design information in the form of STL files to a volume-based representation called a voxel model. The use of STL files makes the process CAD system independent. Once in voxel form, methods that were developed in this work are used to identify thick regions in the part, thin regions in the part and/or die, distance from user specified entry locations (gates), and the qualitative depiction of the fill pattern. The methods were tested with a prototype implementation on the UNIX platform. The results of comparisons with numerical simulation and field reported defects were surprisingly good. The fill-related methods were also compared against short-shots and a water analog study using high speed video. The report contains the results of the testing plus detailed background material on the construction of voxel models, the methods used for displaying results, and the computational geometric reasoning methods used to create die casting-related information from the voxel model for display to the user.

  6. Investment cast AISI H13 tooling for automotive applications

    SciTech Connect

    Maguire, M.C.; Baldwin, M.D.; Hochanadel, P.W.; Edwards, G.R.

    1995-07-01

    While many techniques exist for production of soft tooling, for die casting there is limited recent experience with cast tooling. The most common US alloy used for manufacture of die casting tooling is wrought AISI H13. If the performance of the cast material is comparable to the wrought counterpart, the use of investment cast HI 3 tooling directly from patterns made via rapid prototyping is of considerable interest. A metallurgical study of investment cast H13 was conducted to evaluate the mechanical behavior in simulated die casting applications. Variable thickness plate investment castings of AISI H13 hot work die steel were produced and characterized in the as-cast and heat-treated conditions. The characterization included light microscopy and mechanical testing. Wrought samples of standard and premium grade H13 were heat-treated and characterized similarly for comparison. Microstructural differences were observed in as-cast samples produced in different section thicknesses. Dendrite cell size and carbide morphology constituted the most prominent microstructural differences observed. After a full heat-treatment, microstructural differences between the wrought material and cast materials were slight regardless of section thickness.The mechanical properties of the cast and heat-treated material proved similar to the properties of the standard heat-treated wrought material. A thermal fatigue testing unit was to con-elate the heat checking susceptibility of H13 steel to its processing and consequent microstructural condition. Surface hardness decreased significantly with thermal cycling, and heat checking was observed in as few as 50 cycles. Thermal softening and thermal fatigue susceptibility were quantified and discussed relative to the microstructural conditions created by processing and heat-treatment. It was found that the premium grade wrought H13 steel provided the best overall resistance to heat checking.

  7. WARM WATER SCALE MODEL EXPERIMENTS FOR MAGNESIUM DIE CASTING

    SciTech Connect

    Sabau, Adrian S

    2006-01-01

    High-pressure die casting (HPDC) involves the filling of a cavity with the molten metal through a thin gate. High gate velocities yield jet break-up and atomization phenomena. In order to improve the quality of magnesium parts, the mold filling pattern, including atomization phenomena, needs to be understood. The goal of this study was to obtain experimental data on jet break-up characteristics for conditions similar to that of magnesium HPDC, and measure the droplet velocity and size distribution. A scale analysis is first presented in order to identify appropriate analogue for liquid magnesium alloys. Based on the scale analysis warm water was chosen as a suitable analogue and different nozzles were manufactured. A 2-D component phase Doppler particle analyzer (PDPA) and 2-D component particle image velocimetry (PIV) were then used to obtain fine particle diameter and velocity distributions in 2-D plane.

  8. Die Materials for Critical Applications and Increased Production Rates

    SciTech Connect

    David Schwam; John Wallace; Sebastian Birceanu

    2002-11-30

    Die materials for aluminum die-casting need to be resistant to heat checking, and have good resistance to washout and to soldering in a fast flow of molten aluminum. To resist heat checking, die materials should have a low coefficient of thermal expansion, high thermal conductivity, high hot yield strength, good temper softening resistance, high creep strength, and adequate ductility. To resist the washout and soldering, die materials should have high hot hardness, good temper resistance, low solubility in molten aluminum and good oxidation resistance. It is difficult for one material to satisfy with all above requirements. In practice, H13 steel is the most popular material for aluminum die casting dies. While it is not an ideal choice, it is substantially less expensive to use than alternative materials. However, in very demanding applications, it is sometimes necessary to use alternative materials to ensure a reasonable die life. Copper-base, nickel-base alloys and superalloys, titanium-,molybdenum-, tungsten-base alloys, and to some extent yttrium and niobium alloys, have all been considered as potential materials for demanding die casting applications. Most of these alloys exhibit superior thermal fatigue resistance, but suffer from other shortcomings.

  9. Modeling and Analysis of The Pressure Die Casting Using Response Surface Methodology

    SciTech Connect

    Kittur, Jayant K.; Herwadkar, T. V.; Parappagoudar, M. B.

    2010-10-26

    Pressure die casting is successfully used in the manufacture of Aluminum alloys components for automobile and many other industries. Die casting is a process involving many process parameters having complex relationship with the quality of the cast product. Though various process parameters have influence on the quality of die cast component, major influence is seen by the die casting machine parameters and their proper settings. In the present work, non-linear regression models have been developed for making predictions and analyzing the effect of die casting machine parameters on the performance characteristics of die casting process. Design of Experiments (DOE) with Response Surface Methodology (RSM) has been used to analyze the effect of effect of input parameters and their interaction on the response and further used to develop nonlinear input-output relationships. Die casting machine parameters, namely, fast shot velocity, slow shot to fast shot change over point, intensification pressure and holding time have been considered as the input variables. The quality characteristics of the cast product were determined by porosity, hardness and surface rough roughness (output/responses). Design of experiments has been used to plan the experiments and analyze the impact of variables on the quality of casting. On the other-hand Response Surface Methodology (Central Composite Design) is utilized to develop non-linear input-output relationships (regression models). The developed regression models have been tested for their statistical adequacy through ANOVA test. The practical usefulness of these models has been tested with some test cases. These models can be used to make the predictions about different quality characteristics, for the known set of die casting machine parameters, without conducting the experiments.

  10. Understanding the Relationship Between Filling Pattern and Part Quality in Die Casting

    SciTech Connect

    Jerald Brevick; R. Allen Miller

    2004-03-15

    The overall objective of this research project was to investigate phenomena involved in the filling of die cavities with molten alloy in the cold chamber die-casting process. It has long been recognized that the filling pattern of molten metal entering a die cavity influences the quality of die-cast parts. Filling pattern may be described as the progression of molten metal filling the die cavity geometry as a function of time. The location, size and geometric configuration of points of metal entry (gates), as well as the geometry of the casting cavity itself, have great influence on filling patterns. Knowledge of the anticipated filling patterns in die-castings is important for designers. Locating gates to avoid undesirable flow patterns that may entrap air in the casting is critical to casting quality - as locating vents to allow air to escape from the cavity (last places to fill). Casting quality attributes that are commonly flow related are non-fills, poor surface finish, internal porosity due to trapped air, cold shuts, cold laps, flow lines, casting skin delamination (flaking), and blistering during thermal treatment.

  11. Investigation of the interface phenomena and its effect on erosion and corrosion in aluminum die casting

    NASA Astrophysics Data System (ADS)

    Chu, Yeou-Li

    When performing an aluminum die casting operation, hot molten metal is injected into the die cavity. The die locks for part solidification. After the part solidifies, the casting will eject from the die. During this operation, the die surface experiences thermal cycling, high velocity impingement, chemical attack and interface friction. Thermal cycling leads to heat checking wear, high velocity impingement to erosive wear, chemical attack to soldering, and interface friction to the part bending and/or galling during ejection. The die casting process is a very capital intensive operation. All the above problems result in down time of the die casting shop. This down time results in loss of production and ultimately loss of capital. The purpose of this study is to (a) investigate the physical and chemical phenomena active at the die-cast aluminum metal interface, and (b) understand the performance of selected die surface treatments in protecting the interface from aluminum foundry alloy. Four laboratory tests were selected to study the aluminum die casting stages: (a) molten metal injection stage (erosive test), (b) filling and solidification (dissolution and wettability tests), and (c) parts ejection stage (friction test). Both qualitative and quantitative results were generated. This research produced many interesting discussions. In erosive testing, in addition to impingement velocity, the melt superheat and alloy types also found to play an important role in the erosion of the die steel. In the past, die casters believed that the higher molten aluminum temperature would cause higher erosive wear loss. However, this study found lower melt temperatures to result in greater erosive wear. In dissolution testing, the alloy elements were found to play an important role. In the past, die casters thought that Fe (Iron) was the main element which affects the dissolution of the die steel into the molten aluminum. This was found not to be necessary true. The Mn and Si

  12. A method for surface quality assessment of die-castings based on laser triangulation

    NASA Astrophysics Data System (ADS)

    Bračun, Drago; Gruden, Valter; Možina, Janez

    2008-04-01

    This paper presents a new method for the surface quality assessment of safety-critical die-castings. We have developed a measurement system that measures the surface of a die-casting and provides quantitative surface quality assessment within a die-casting cycle of 70 s. The measurement system, based on the laser triangulation principle, has an asymmetrical measuring range and is capable of high-resolution measurements of the casting surface (0.02 mm). Geometry specific parameters (flatness of the particular surface region, average deviation of the measured points and height of the surface defects) are calculated from the acquired surface data and then checked whether/how they fit within the tolerances specified in a technical documentation. The method has been tested in the laboratory by examination of a sample of castings taken randomly from the production process. A comparison of the results obtained by this method and by a qualified operator has shown good agreement.

  13. Effect of Process Parameters, Casting Thickness, and Alloys on the Interfacial Heat-Transfer Coefficient in the High-Pressure Die-Casting Process

    NASA Astrophysics Data System (ADS)

    Guo, Zhi-Peng; Xiong, Shou-Mei; Liu, Bai-Cheng; Li, Mei; Allison, John

    2008-12-01

    The heat transfer at the metal-die interface is believed to have great influence on the solidification process and cast structure of the high-pressure die-casting (HPDC) process. The present article focused on the effects of process parameters, casting thickness, and alloys on the metal-die interfacial heat-transfer coefficient (IHTC) in the HPDC process. Experiment was carried out on a cold-chamber die-casting machine with two casting alloys AM50 and ADC12. A special casting, namely, “step-shape” casting, was used and cast against a H13 steel die. The IHTC was determined using an inverse approach based on the temperature measurements inside the die. Results show that the IHTC is different at different steps and changes as the solidification of the casting proceeds. Process parameters only influence the IHTC in its peak value, and for both AM50 and ADC12 alloys, a greater fast shot velocity leads to a greater IHTC peak value at steps 1 and 2. The initial die surface temperature has a more prominent influence on the IHTC peak values at the thicker steps, especially step 5. Results also show that a closer contact between the casting and die could be achieved when the casting alloy is ADC12 instead of AM50, which consequently leads to a higher IHTC.

  14. Secondary Al-Si-Mg High-pressure Die Casting Alloys with Enhanced Ductility

    NASA Astrophysics Data System (ADS)

    Bösch, Dominik; Pogatscher, Stefan; Hummel, Marc; Fragner, Werner; Uggowitzer, Peter J.; Göken, Mathias; Höppel, Heinz Werner

    2015-03-01

    Al-Si-Mg-based secondary cast alloys are attractive candidates for thin-walled high-pressure die castings for applications in the transport industry. The present study investigates the effect of manganese additions at high cooling rates on microstructure, mechanical properties, and on the dominating fracture mechanisms of alloy AlSi10Mg with an elevated iron concentration. Systematic variations of the Mn content from 0.20 to 0.85 wt pct at a constant Fe content of 0.55 wt pct illustrate the key changes in type, phase fraction, and shape of the Fe-containing intermetallic phases, and the corresponding influence on the alloy's ductility. For high-pressure die casting (HPDC), an optimal range of the Mn content between 0.40 and 0.60 wt pct, equivalent to a Mn/Fe ratio of approximately 1, has been identified. At these Mn and Fe contents, the high cooling rates obtained in HPDC result in the formation of fine and homogeneously distributed α-Al15(Fe,Mn)3Si2 phase, and crack initiation is transferred from AlFeSi intermetallics to eutectic silicon. The study interprets the microstructure-property relationship in the light of thermodynamic calculations which reveal a significant increase in undercooling of the α-Al15(Fe,Mn)3Si2 phase with increased Mn content. It concludes that the interdependence of the well-defined Mn/Fe ratio and the high cooling rate in HPDC can generate superior ductility in secondary AlSi10Mg cast alloys.

  15. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Surface Engineered Coating Systems for Aluminum Pressure Die Casting Dies: Towards a 'Smart' Die Coating

    SciTech Connect

    Dr. John J. Moore; Dr. Jianliang Lin,

    2012-07-31

    The main objective of this research program was to design and develop an optimal coating system that extends die life by minimizing premature die failure. In high-pressure aluminum die-casting, the die, core pins and inserts must withstand severe processing conditions. Many of the dies and tools in the industry are being coated to improve wear-resistance and decrease down-time for maintenance. However, thermal fatigue in metal itself can still be a major problem, especially since it often leads to catastrophic failure (i.e. die breakage) as opposed to a wear-based failure (parts begin to go out of tolerance). Tooling costs remain the largest portion of production costs for many of these parts, so the ability prevent catastrophic failures would be transformative for the manufacturing industry.The technology offers energy savings through reduced energy use in the die casting process from several factors, including increased life of the tools and dies, reuse of the dies and die components, reduction/elimination of lubricants, and reduced machine down time, and reduction of Al solder sticking on the die. The use of the optimized die coating system will also reduce environmental wastes and scrap parts. Current (2012) annual energy saving estimates, based on initial dissemination to the casting industry in 2010 and market penetration of 80% by 2020, is 3.1 trillion BTU's/year. The average annual estimate of CO2 reduction per year through 2020 is 0.63 Million Metric Tons of Carbon Equivalent (MM TCE).

  16. Plunger Kinematic Parameters Affecting Quality of High-Pressure Die-Cast Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Fiorese, Elena; Bonollo, Franco

    2016-07-01

    The selection of the optimal process parameters in high-pressure die casting has been long recognized as a complex problem due to the involvement of a large number of interconnected variables. Among these variables, the effect of the plunger motion has been proved to play a prominent role, even if a thorough and exhaustive study is still missing in the literature. To overcome this gap, this work aims at identifying the most relevant plunger kinematic parameters and estimates their correlation with the casting quality, by means of a statistically significant sample manufactured with different plunger motion profiles. In particular, slow and fast shot velocities and switching position between two stages have been varied randomly in accordance with design of experiment methodology. The quality has been assessed through the static mechanical properties and porosity percentage. As a further proof, the percentage of oxides has been estimated on the fracture surfaces. These measurements have been correlated to novel parameters, representing the mechanical energy and the inertial force related to the plunger motion, that have been extracted from the time-history of the displacement curves. The application of statistical methods demonstrates that these novel parameters accurately explain and predict the overall quality of castings.

  17. Plunger Kinematic Parameters Affecting Quality of High-Pressure Die-Cast Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Fiorese, Elena; Bonollo, Franco

    2016-04-01

    The selection of the optimal process parameters in high-pressure die casting has been long recognized as a complex problem due to the involvement of a large number of interconnected variables. Among these variables, the effect of the plunger motion has been proved to play a prominent role, even if a thorough and exhaustive study is still missing in the literature. To overcome this gap, this work aims at identifying the most relevant plunger kinematic parameters and estimates their correlation with the casting quality, by means of a statistically significant sample manufactured with different plunger motion profiles. In particular, slow and fast shot velocities and switching position between two stages have been varied randomly in accordance with design of experiment methodology. The quality has been assessed through the static mechanical properties and porosity percentage. As a further proof, the percentage of oxides has been estimated on the fracture surfaces. These measurements have been correlated to novel parameters, representing the mechanical energy and the inertial force related to the plunger motion, that have been extracted from the time-history of the displacement curves. The application of statistical methods demonstrates that these novel parameters accurately explain and predict the overall quality of castings.

  18. High Density Die Casting (HDDC): new frontiers in the manufacturing of heat sinks

    NASA Astrophysics Data System (ADS)

    Sce, Andrea; Caporale, Lorenzo

    2014-07-01

    Finding a good solution for thermal management problems is every day more complex. due to the power density and the required performances. When a solution suitable for high volumes is needed. die-casting and extrusion are the most convenient technologies. However designers have to face the well-known limitations for those processes. High Density Die Casting (HDDC) is a process under advanced development. in order to overcome the extrusion and traditional die casting limits by working with alloys having much better thermal performances than the traditional die-casting process. while keeping the advantages of a flexible 3D design and a low cost for high volumes. HDDC offers the opportunity to design combining different materials (aluminium and copper. aluminium and stainless steel) obtaining a structure with zero porosity and overcoming some of die-casting limits. as shown in this paper. A dedicated process involving embedded heat pipes is currently under development in order to offer the possibility to dramatically improve the heat spreading.

  19. Development of an Innovative Laser-Assisted Coating Process for Extending Lifetime of Metal Casting Dies. Final Report

    SciTech Connect

    Madhav Rao Gonvindaraju

    1999-10-18

    Die casting dies used in the metal casting industry fail due to thermal fatigue cracking accompanied by the presence of residual tensile stresses, corrosion, erosion and wear of die surfaces. This phase 1 SBIR Final Report summarize Karta Technologies research involving the development of an innovative laser coating technology for metal casting dies. The process involves depositing complex protective coatings of nanocrystalline powders of TiC followed by a laser shot peening. The results indicate a significant improvement in corrosion and erosion resistance in molten aluminum for H13 die casting die steels. The laser-coated samples also showed improved surface finish, a homogeneous and uniform coating mircrostructure. The technology developed in this research can have a significant impact on the casting industry by saving the material costs involved in replacing dies, reducing downtime and improving the quality.

  20. Recycling of Al-Si die casting scraps for solar Si feedstock

    NASA Astrophysics Data System (ADS)

    Seo, Kum-Hee; Jeon, Je-Beom; Youn, Ji-Won; Kim, Suk Jun; Kim, Ki-Young

    2016-05-01

    Recycling of aluminum die-casting scraps for solar-grade silicon (SOG-Si) feedstock was performed successfully. 3 N purity Si was extracted from A383 die-casting scrap by using the combined process of solvent refining and an advanced centrifugal separation technique. The efficiency of separating Si from scrap alloys depended on both impurity level of scraps and the starting temperature of centrifugation. Impurities in melt and processing temperature governed the microstructure of the primary Si. The purity of Si extracted from the scrap melt was 99.963%, which was comparable to that of Si extracted from a commercial Al-30 wt% Si alloy, 99.980%. The initial purity of the scrap was 2.2% lower than that of the commercial alloy. This result confirmed that die-casting scrap is a potential source of high-purity Si for solar cells.

  1. The effect of process parameters on the internal quality of an aluminum die casting

    NASA Astrophysics Data System (ADS)

    Dewit, M. C. A. J.

    1986-01-01

    The influence of process parameters on the porosity of an aluminum die casting was investigated. Two types of die one of which had an interchangeable gate and two alloys, AlSi8Cu3 and AlSi7, were used. During the solidification phase of a die casting, air entrapment can occur; the air remains in the die casting under high pressure after solidification. The Rayleigh number which contains the velocity in the gate, the gate diameter, and the liquid metal surface tension, determines the air entrapment. It appears that there are two types of filling: solid front filling at low velocities, and standard spray filling at high velocities. With the former type, the castings contain no air, but the shrinkage is concentrated in big holes; with the latter type the castings contain much air, and the shrinkage is distributed over fine holes. The first phase velocity has no significant influence on the porosity; a decrease of the third phase velocity increases the porosity. Variations of the changeover point between the first and second phase have little influence.

  2. Advances in aluminum casting technology

    SciTech Connect

    Tiryakioglu, M.; Campbell, J.

    1998-01-01

    This symposium focuses on the improvements of aluminum casting quality and reliability through a better understanding of processes and process variables, and explores the latest innovations in casting-process design that allow increasing use of the castings to replace complex assemblies and heavy steel and cast-iron components in aerospace and automotive applications. Presented are 35 papers by international experts in the various aspects of the subject. The contents include: Semisolid casting; Computer-aided designing of molds and castings; Casting-process modeling; Aluminum-matrix composite castings; HIPing of castings; Progress in the US car project; Die casting and die design; and Solidification and properties.

  3. Qualitative Reasoning for Additional Die Casting Applications

    SciTech Connect

    R. Allen Miller; Dehua Cui; Yuming Ma

    2003-05-28

    If manufacturing incompatibility of a product can be evaluated at the early product design stage, the designers can modify their design to reduce the effect of potential manufacturing problems. This will result in fewer manufacturing problems, less redsign, less expensive tooling, lower cost, better quality, and shorter development time. For a given design, geometric reasoning can predict qualitatively the behaviors of a physical manufacturing process by representing and reasoning with incomplete knowledge of the physical phenomena. It integrates a design with manufacturing processes to help designers simultaneously consider design goals and manufacturing constraints during the early design stage. The geometric reasoning approach can encourage design engineers to qualitatively evaluate the compatibility of their design with manufacturing limitations and requirements.

  4. Evolution of Intermetallic Phases in Soldering of the Die Casting of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Song, Jie; Wang, Xiaoming; DenOuden, Tony; Han, Qingyou

    2016-06-01

    Most die failures are resulted from chemical reactions of dies and molten aluminum in the die casting of aluminum. The formation of intermetallic phases between a steel die and molten aluminum is investigated by stationary immersion tests and compared to a real die casting process. Three intermetallic phases are identified in the stationary immersion tests: a composite layer and two compact layers. The composite layer is a mixture of α bcc, Al, and Si phases. The α bcc phase changes in morphology from rod-like to spherical shape, while the growth rate of the layer changes from parabolic to linear pattern with immersion time. The first compact layer forms rapidly after immersion and maintains a relatively constant thickness. The second compact layer forms after 4 hours of immersion and exhibits parabolic growth with immersion time. In comparison, only a composite layer and the first compact layer are observed in a real die casting process. The fresh molten aluminum of high growth rate washes away the second intermetallic layer easily.

  5. Simple visualization techniques for die casting part and die design. Final report, July 1, 1995--September 30, 1997

    SciTech Connect

    Miller, R.A.; Lu, S.C.; Rebello, A.B.

    1998-05-01

    The objective of this work was to develop and test die casting design evaluation techniques based on the visualization of geometric data that is related to potential defects of problems. Specifically, thickness information is used to provide insight into potential thermal problems in the part and die. Distance from the gate and a special type of animation of the fill pattern is used to provide an assessment of gate, vent and overflow locations. Techniques have been developed to convert part design information in the form of STL files to a volume-based representation called a voxel model. The use of STL files makes the process CAD system independent. Once in voxel form, methods that were developed in this work are used to identify thick regions in the part, thin regions in the part and/or die, distance from user specified entry locations (gates), and the qualitative depiction of the fill pattern. The methods were tested with a prototype implementation on the UNIX platform. The results of comparisons with numerical simulation and field reported defects were surprisingly good. The fill-related methods were also compared against short-shots and a water analog study using high speed video. The report contains the results of the testing plus detailed background material on the construction of voxel models, the methods used for displaying results, and the computational geometric reasoning methods used to create die casting-related information from the voxel model for display to the user.

  6. Simple visualization techniques for die casting part and die design. Final report, July 1, 1995--September 30, 1997

    SciTech Connect

    Miller, R.A.; Lu, S.C.; Rebello, A.B.

    1998-05-01

    The objective of this work was to develop and test die casting design evaluation techniques based on the visualization of geometric data that is related to potential defects of problems. Specifically, thickness information is used to provide insight into potential thermal problems in the part and die. Distance from the gate and a special type of animation of the fill pattern is used to provide an assessment of gate, vent and overflow locations. Techniques have been developed to convert part design information in the form of STL files to a volume-based representation called a voxel model. The use of STL files makes the process CAD system independent. Once in voxel form, methods that were developed in this work are used to identify thick regions in the part, thin regions in the part and/or die, distance from user specified entry locations (gates), and the qualitative depiction of the fill pattern. The methods were tested with a prototype implementation on the UNIX platform. The results of comparisons with numerical simulation and field reported defects were surprisingly good. The fill-related methods were also compared against short-shots and a water analog study using high speed video. The report contains the results of the testing plus detailed background material on the construction of voxel models, the methods used for displaying results, and the computational geometric reasoning methods used to create die casting-related information form the voxel model for display to the user.

  7. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    SciTech Connect

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  8. Final report to USAMP on the use of EBPVD in the light metal die casting industry

    SciTech Connect

    Heestand, G.M.

    1996-02-02

    This is the final report to the United States Automotive Materials Partnership (USAMP) on the use of Electron Beam Physical Vapor Deposition (EBPVD) to make rapid tooling for functional prototyping of metal mold processes. Historically this process has been successfully applied to the production of mold inserts for the plastics injection mold industry. Our approach for this project was to use the same technique to produce dies which could be used to make a few thousand light metal (aluminum and magnesium) prototype parts. The difficulty encountered in this project was that the requirements for the die casting industry, both in size and material requirements, were considerably more stringent than those encountered in the plastics injection industry. Consequently our technique, within the allotted time and budget constraints, was not able to meet the requirements set forth by USAMP. The remainder of this report is organized into five sections. The first discusses the technique in some detail while the second discusses a successful application. The third section discusses issues with this process while the fourth specifically discusses the work done in this project. The last is a short summary and conclusion section.

  9. Influence of Sludge Particles on the Tensile Properties of Die-Cast Secondary Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Ferraro, Stefano; Timelli, Giulio

    2015-04-01

    The effects of sludge intermetallic particles on the mechanical properties of a secondary AlSi9Cu3(Fe) die-casting alloy have been studied. Different alloys have been produced by systematically varying the Fe, Mn, and Cr contents within the composition tolerance limits of the standard EN AC-46000 alloy. The microstructure shows primary α-Al x (Fe,Mn,Cr) y Si z sludge particles, with polyhedral and star-like morphologies, although the presence of primary β-Al5FeSi phase is also observed at the highest Fe:Mn ratio. The volume fraction of primary compounds increases as the Fe, Mn, and Cr contents increase and this can be accurately predicts from the Sludge Factor by a linear relationship. The sludge amount seems to not influence the size and the content of porosity in the die-cast material. Furthermore, the sludge factor is not a reliable parameter to describe the mechanical properties of the die-cast AlSi9Cu3(Fe) alloy, because this value does not consider the mutual interaction between the elements. In the analyzed range of composition, the design of experiment methodology and the analysis of variance have been used in order to develop a semi-empirical model that accurately predicts the mechanical properties of the die-cast AlSi9Cu3(Fe) alloys as function of Fe, Mn, and Cr concentrations.

  10. Modeling of microstructure evolution of magnesium alloy during the high pressure die casting process

    NASA Astrophysics Data System (ADS)

    Wu, Mengwu; Xiong, Shoumei

    2012-07-01

    Two important microstructure characteristics of high pressure die cast magnesium alloy are the externally solidified crystals (ESCs) and the fully divorced eutectic which form at the filling stage of the shot sleeve and at the last stage of solidification in the die cavity, respectively. Both of them have a significant influence on the mechanical properties and performance of magnesium alloy die castings. In the present paper, a numerical model based on the cellular automaton (CA) method was developed to simulate the microstructure evolution of magnesium alloy during cold-chamber high pressure die casting (HPDC) process. Modeling of dendritic growth of magnesium alloy with six-fold symmetry was achieved by defining a special neighbourhood configuration and calculating of the growth kinetics from complete solution of the transport equations. Special attention was paid to establish a nucleation model considering both of the nucleation of externally solidified crystals in the shot sleeve and the massive nucleation in the die cavity. Meanwhile, simulation of the formation of fully divorced eutectic was also taken into account in the present CA model. Validation was performed and the capability of the present model was addressed by comparing the simulated results with those obtained by experiments.

  11. Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations

    SciTech Connect

    David Schwam

    2012-12-15

    This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment may be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.

  12. Fatigue Crack Growth Mechanisms in High-Pressure Die-Cast Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    El Kadiri, Haitham; Horstemeyer, M. F.; Jordon, J. B.; Xue, Yibin

    2008-01-01

    Microstructure-affected micromechanisms of fatigue crack growth operating near the limit plasticity regime were experimentally identified for the four main commercial high-pressure die-cast (HPDC) magnesium alloys: AM50, AM60, AZ91, and AE44. These fatigue micromechanisms manifested by the concomitant effects of casting pores, interdendritic Al-rich solid solution layer, β-phase particles, Mn-rich inclusions, rare earth-rich intermetallics, dendrite cell size, and surface segregation phenomena. These concomitant mechanisms clearly delineated the fatigue durability observed for the AM50, AM60, AZ91, and AE44 Mg alloys in both the low- and high-cycle fatigue regimes.

  13. Development of materials for the rapid manufacture of die cast tooling

    NASA Astrophysics Data System (ADS)

    Hardro, Peter Jason

    The focus of this research is to develop a material composition that can be processed by rapid prototyping (RP) in order to produce tooling for the die casting process. Where these rapidly produced tools will be superior to traditional tooling production methods by offering one or more of the following advantages: reduced tooling cost, shortened tooling creation time, reduced man-hours for tool creation, increased tool life, and shortened die casting cycle time. By utilizing RP's additive build process and vast material selection, there was a prospect that die cast tooling may be produced quicker and with superior material properties. To this end, the material properties that influence die life and cycle time were determined, and a list of materials that fulfill these "optimal" properties were highlighted. Physical testing was conducted in order to grade the processability of each of the material systems and to optimize the manufacturing process for the downselected material system. Sample specimens were produced and microscopy techniques were utilized to determine a number of physical properties of the material system. Additionally, a benchmark geometry was selected and die casting dies were produced from traditional tool materials (H13 steel) and techniques (machining) and from the newly developed materials and RP techniques (selective laser sintering (SLS) and laser engineered net shaping (LENS)). Once the tools were created, a die cast alloy was selected and a preset number of parts were shot into each tool. During tool creation, the manufacturing time and cost was closely monitored and an economic model was developed to compare traditional tooling to RP tooling. This model allows one to determine, in the early design stages, when it is advantageous to implement RP tooling and when traditional tooling would be best. The results of the physical testing and economic analysis has shown that RP tooling is able to achieve a number of the research objectives, namely

  14. Casting Technology.

    ERIC Educational Resources Information Center

    Wright, Michael D.; And Others

    1992-01-01

    Three articles discuss (1) casting technology as it relates to industry, with comparisons of shell casting, shell molding, and die casting; (2) evaporative pattern casting for metals; and (3) high technological casting with silicone rubber. (JOW)

  15. Prediction of Thermal Fatigue in Tooling for Die-casting Copper via Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Sakhuja, Amit; Brevick, Jerald R.

    2004-06-01

    Recent research by the Copper Development Association (CDA) has demonstrated the feasibility of die-casting electric motor rotors using copper. Electric motors using copper rotors are significantly more energy efficient relative to motors using aluminum rotors. However, one of the challenges in copper rotor die-casting is low tool life. Experiments have shown that the higher molten metal temperature of copper (1085 °C), as compared to aluminum (660 °C) accelerates the onset of thermal fatigue or heat checking in traditional H-13 tool steel. This happens primarily because the mechanical properties of H-13 tool steel decrease significantly above 650 °C. Potential approaches to mitigate the heat checking problem include: 1) identification of potential tool materials having better high temperature mechanical properties than H-13, and 2) reduction of the magnitude of cyclic thermal excursions experienced by the tooling by increasing the bulk die temperature. A preliminary assessment of alternative tool materials has led to the selection of nickel-based alloys Haynes 230 and Inconel 617 as potential candidates. These alloys were selected based on their elevated temperature physical and mechanical properties. Therefore, the overall objective of this research work was to predict the number of copper rotor die-casting cycles to the onset of heat checking (tool life) as a function of bulk die temperature (up to 650 °C) for Haynes 230 and Inconel 617 alloys. To achieve these goals, a 2D thermo-mechanical FEA was performed to evaluate strain ranges on selected die surfaces. The method of Universal Slopes (Strain Life Method) was then employed for thermal fatigue life predictions.

  16. Microstructural stability and creep properties of die casting Mg-4Al-4RE magnesium alloy

    SciTech Connect

    Rzychon, Tomasz; Kielbus, Andrzej; Cwajna, Jan; Mizera, Jaroslaw

    2009-10-15

    The AE44 (Mg-4Al-4RE) alloy was prepared by a hot-chamber die casting method. The microstructure, microstructural stability and creep properties at 175 deg. C were investigated. The microstructure was analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and the Rietveld method. The results show that die cast AE44 magnesium alloy consists of {alpha}-Mg, Al{sub 11}RE{sub 3}, Al{sub 2}RE and Al{sub 2.12}RE{sub 0.88} phases. The Al{sub 11}RE{sub 3} phase is thermally stable at 175 deg. C whereas the metastable Al{sub 2.12}RE{sub 0.88} phase undergoes a transition into the equilibrium Al{sub 2}RE phase. The alloy investigated is characterized by good creep properties at temperatures of 175 deg. C and 200 {sup o}C.

  17. Fabrication of glass photonic crystal fibers with a die-cast process

    NASA Astrophysics Data System (ADS)

    Guiyao, Zhou; Zhiyun, Hou; Shuguang, Li; Lantian, Hou

    2006-06-01

    We demonstrate a novel method for the fabrication of glass photonic crystal fibers (PCFs) with a die-cast process. SF6 glass is used as the material for PCFs, and the die is made of heat-resisting alloy steel, whose inner structure matches the PCF's structure. The die is put vertically in the vessel with SF6 glass, and the vacuum hose is attached to the top of the die. The die and glass are put in the furnace to heat at 870 K. The die is slowly filled with the softening glass under vacuum conduction until it is full. It is kept in the furnace to anneal at a rate of 20 K/h to remove the thermal stress that could lead to cracks. The outer tube of the die is taken apart when its temperature is close to room temperature, and the fused glass bundle is etched in an acidic solution to remove the heat-resisting alloy steel rods. Thus, the etched bundle is ready to use as a PCF preform. The PCF is observed in the generation of a supercontinuum, with the flat plateau in the spectrum of the output emission stretching from 400 to 1400 nm by experimental measurement. The transmission loss is 0.2-0.3 dB/m at wavelengths of 420-900 nm.

  18. Microstructure and Elevated Temperature Properties of Die-cast AZ91- xNd Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Wang, Limin; An, Jian; Liu, Yongbing

    2008-10-01

    The effect of Nd addition on the microstructure and mechanical properties of a die-cast AZ91 alloy was investigated in the present work. The results show that the die-cast AZ91 alloy is composed of α-Mg matrix and γ-Mg17Al12 phase. Nd addition into the AZ91 alloy leads to the formation of rare earth containing intermetallic phase. Al4Nd phase forms when Nd content is less than or equal to 1.0 wt.%. Al2Nd phase appears simultaneously when Nd content reaches to 3.0 wt.%. The size and volume fraction of γ-Mg17Al12 phase decrease, because of the newly formed Al-Nd phase. And the γ-Mg17Al12 phase distributes from reticular to dispersive. Nd addition has a little effect on the room temperature properties of the die-cast AZ91 alloy, but greatly improves the elevated temperature properties. The tensile strength of AZ91-0.5Nd and AZ91-1.0Nd alloy tested at 150 °C is even close to the room temperature strength. The AZ91-1.0Nd alloy has the optimal properties.

  19. Energy Saving Melting and Revert Reduction Technology: Improved Die Casting Process to Preserve the Life of the Inserts

    SciTech Connect

    David Schwam, PI; Xuejun Zhu, Sr. Research Associate

    2012-09-30

    The goal of this project was to study the combined effects of die design, proper internal cooling and efficient die lubricants on die life. The project targeted improvements in die casting insert life by: Optomized Die Design for Reduced Surface Temperature: The life of die casting dies is significantly shorter when the die is exposed to elevated temperature for significant periods of time. Any die operated under conditions leading to surface temperature in excess of 1050oF undergoes structural changes that reduce its strength. Optimized die design can improve die life significantly. This improvement can be accomplished by means of cooling lines, baffles and bubblers in the die. A key objective of the project was to establish criteria for the minimal distance of the cooling lines from the surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. The Uddeholm Dievar steel evaluated in this program showed superior resistance to thermal fatigue resistance. Based on the experimental evidence, cooling lines could be placed as close as 0.5" from the surface. Die Life Extension by Optimized Die Lubrication: The life of die casting dies is affected by additions made to its surface with the proper lubricants. These lubricants will protect the surface from the considerable temperature peaks that occur when the molten melt enters the die. Dies will reach a significantly higher temperature without this lubricant being applied. The amount and type of the lubricant are critical variables in the die casting process. However, these lubricants must not corrode the die surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. Chem- Trend participated in the program with die

  20. Characterization of Pore Defects and Fatigue Cracks in Die Cast AM60 Using 3D X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.

    2015-08-01

    AM60 high pressure die castings have been used in automobile applications to reduce the weight of vehicles. However, the pore defects that are inherent in die casting may negatively affect mechanical properties, especially the fatigue properties. Here we have studied damage ( e.g., pore defects, fatigue cracks) during strained-controlled fatigue using 3-dimensional X-ray computed tomography (XCT). The fatigue test was interrupted every 2000 cycles and the specimen was removed to be scanned using a desktop micro-CT system. XCT reveals pore defects, cracks, and fracture surfaces. The results show that pores can be accurately measured and modeled in 3D. Defect bands are found to be made of pores under 50 µm (based on volume-equivalent sphere diameter). Larger pores are randomly distributed in the region between the defect bands. Observation of fatigue cracks by XCT is performed in three ways such that the 3D model gives the best illustration of crack-porosity interaction while the other two methods, with the cracks being viewed on transverse or longitudinal cross sections, have better detectability on crack initiation and crack tip observation. XCT is also of value in failure analysis on fracture surfaces. By assessing XCT data during fatigue testing and observing fracture surfaces on a 3D model, a better understanding on the crack initiation, crack-porosity interaction, and the morphology of fracture surface is achieved.

  1. Fatigue behaviour of friction stir processed AZ91 magnesium alloy produced by high pressure die casting

    SciTech Connect

    Cavaliere, P. . E-mail: pasquale.cavaliere@unile.it; De Marco, P.P.

    2007-03-15

    The room temperature fatigue properties of AZ91 magnesium alloy produced by high pressure die casting (HPDC) as cast, heat treated, friction stir processed (FSP) and FSP and heat treated were studied. The fatigue properties of the material were evaluated for the HPDC magnesium alloy in the as-received state and after a solution treatment at 415 deg. C for 2 h and an ageing treatment at 220 deg. C for 4 h. The heat treatment resulted in a significant increase in the fatigue properties of the HPDC material, while no significance influence of heat treatment was recorded in the FSP condition. The morphology of fracture surfaces was examined by employing a field emission gun scanning electron microscope (FEGSEM)

  2. The Effects of Microstructure Heterogeneities and Casting Defects on the Mechanical Properties of High-Pressure Die-Cast AlSi9Cu3(Fe) Alloys

    NASA Astrophysics Data System (ADS)

    Timelli, Giulio; Fabrizi, Alberto

    2014-11-01

    Detailed investigations of the salient microstructural features and casting defects of the high-pressure die-cast (HPDC) AlSi9Cu3(Fe) alloy are reported. These characteristics are addressed to the mechanical properties and reliability of separate HPDC tensile bars. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes throughout the tensile specimen. The results indicate that the die-cast microstructure consists of several microstructural heterogeneities such as positive eutectic segregation bands, externally solidified crystals (ESCs), cold flakes, primary Fe-rich intermetallics (sludge), and porosities. In addition, it results that sludge particles, gas porosity, as well as ESCs, and cold flakes are concentrated toward the casting center while low porosity and fine-grained structure is observed on the surface layer of the castings bars. The local variation of the hardness along the cross section as well as the change of tensile test results as a function of gage diameter of the tensile bars seem to be ascribed to the change of porosity content, eutectic fraction, and amount of sludge. Further, this behavior reflects upon the reliability of the die-cast alloy, as evidenced by the Weibull statistics.

  3. Cast Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2003-01-01

    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent dimensional stability, surface hardness and wear resistant properties.

  4. Flow analysis and validation of numerical modelling for a thin walled high pressure die casting using SPH

    NASA Astrophysics Data System (ADS)

    Cleary, Paul W.; Savage, Gary; Ha, Joseph; Prakash, Mahesh

    2014-09-01

    High pressure die casting (HPDC) is an important process for high throughput manufacturing of complex shaped metallic components. The flow involves significant fragmentation and spray formation as the high pressure liquid jets into the die from the gate system. An important class of die cast components is one with large areas of thin walls. An example of this is the chassis of the laptop computer. Computational modelling provides an opportunity to both better understand the filling process and to optimize the runner, gates, flash overs and venting systems for the die. SPH has previously been found to be very suitable for predicting HPDC for bulkier automotive components. The modelling challenges arising from the very thin sections and the many flow paths in a laptop chassis require careful validation. A water analogue experiment is used to validate the predictions of the SPH model for this representative thin walled casting. SPH predictions are used to understand and characterise the filling process. Finally, comparison of flow lines visible in an etched finished casting with the high speed flow paths in the final filled SPH model show very strong agreement. Together these demonstrate that such an SPH model is able to capture substantial detail from both the water analogue system and the actual casting process and is very suitable for simulating these types of complex thin walled castings.

  5. Strategies to reduce the environmental impact of an aluminium pressure die casting plant: a scenario analysis.

    PubMed

    Neto, Belmira; Kroeze, Carolien; Hordijk, Leen; Costa, Carlos; Pulles, Tinus

    2009-02-01

    This study explores a model (MIKADO) to analyse scenarios for the reduction of the environmental impact of an aluminium die casting plant. Our model calculates the potential to reduce emissions, and the costs associated with implementation of reduction options. In an earlier paper [Neto, B., Kroeze, C., Hordijk, L., Costa, C., 2008. Modelling the environmental impact of an aluminium pressure die casting company and options for control. Environmental Modelling & Software 23 (2) 147-168] we included the model description and explored the model by applying it to a plant in which no reduction options are assumed to be implemented (so-called zero case, reflecting the current practice in the plant). Here, we perform a systematic analysis of reduction options. We analysed seven types of reduction strategies, assuming the simultaneous implementation of different reduction options. These strategies are analysed with respect to their potential to reduce emissions, environmental impact and costs associated with the implementation of options. These strategies were found to differ largely in their potential to reduce the environmental impact of the plant (10-87%), as well as in the costs associated with the implementation of options (-268 to +277keuro/year). We were able to define 11 strategies, reducing the overall environmental impact by more than 50%. Of these, two have net negative costs, indicating that the company may in fact earn money through their implementation. PMID:18342428

  6. An evaluation of direct pressure sensors for monitoring the aluminum die casting process

    SciTech Connect

    Zhang, X.

    1997-12-31

    This study was conducted as part of the US Department of Energy (DOE) sponsored project Die Cavity Instrumentation. One objective of that project was to evaluate thermal, pressure, and gas flow process monitoring sensors in or near the die cavity as a means of securing improved process monitoring and control and better resultant part quality. The objectives of this thesis are to (1) evaluate a direct cavity pressure sensor in a controlled production campaign at the GM Casting Advanced Development Center (CADC) at Bedford, Indiana; and (2) develop correlations between sensor responses and product quality in terms of the casting weight, volume, and density. A direct quartz-based pressure sensor developed and marked by Kistler Instrument Corp. was acquired for evaluating as an in-cavity liquid metal pressure sensor. This pressure sensor is designed for use up to 700 C and 2,000 bars (29,000 psi). It has a pressure overload capacity up to 2,500 bars (36,250 psi).

  7. Annealing of chromium oxycarbide coatings deposited by plasma immersion ion processing (PIIP) for aluminum die casting

    NASA Astrophysics Data System (ADS)

    Peters, A. M.; He, X. M.; Trkula, M.; Nastasi, M.

    2001-04-01

    Chromium oxycarbide coatings have been investigated for use as non-wetting coatings for aluminum die casting. This paper examines Cr-C-O coating stability and non-wetability at elevated temperatures for extended periods. Coatings were deposited onto 304 stainless steel from chromium carbonyl [Cr(CO) 6] by plasma immersion ion processing. The coatings were annealed in air at an aluminum die casting temperature of 700°C up to 8 h. Coatings were analyzed using resonant ion backscattering spectroscopy, nanoindentation and pin-on-disk tribometry. Molten aluminum was used to determine coating wetting and contact angle. Results indicate that the surface oxide layer reaches a maximum thickness of 900 nm. Oxygen concentrations in the coatings increased from 24% to 34%, while the surface concentration rose to almost 45%. Hardness values ranged from 22.1 to 6.7 GPa, wear coefficients ranged from 21 to 8×10 -6 mm3/ Nm and contact angles ranged from 156° to 127°.

  8. Modifying AM60B Magnesium Alloy Die Cast Surfaces by Friction Stir Processing

    SciTech Connect

    Santella, Michael L; Feng, Zhili; Degen, Cassandra; Pan, Dr. Tsung-Yu

    2006-01-01

    These experiments were done to evaluate the feasibility of locally modifying the surface properties of magnesium alloys with friction-stir processing. The magnesium alloy used for the study was high-pressure die-cast AM60B, nominally Mg-6Al-0.13 Mn (wt. %). Friction-stir passes were made with a translation speed of 1.7 mm/s using tool-rotation speeds of 1,250 rpm or 2,500 rpm. Stir passes with good appearance were obtained under both conditions. In some cases up to five passes were overlapped on a single bar to produce stir zones with cross-sectional dimensions of about 1.5 mm x 10 mm. Metallographic examinations indicated that the stir zones were largely comprised of a magnesium solid solution with equiaxed grains on the order of 5-10 {micro}m in size. Hardness mapping showed that the stir zones experienced increases of 16-25% compared to the as-cast metal. Room-temperature testing showed that, compared to the cast metal, the stir zones had flow stresses nearly 20% higher with about twice the tensile elongation.

  9. Improved design and durability of aluminum die casting horizontal shot sleeves

    NASA Astrophysics Data System (ADS)

    Birceanu, Sebastian

    The design and performance of shot sleeves is critical in meeting the engineering requirements of aluminum die cast parts. Improvement in shot sleeve materials have a major impact on dimensional stability, reproducibility and quality of the product. This investigation was undertaken in order to improve the life of aluminum die casting horizontal shot sleeves. Preliminary pin tests were run to evaluate the soldering, wash-out and thermal fatigue behavior of commercially available materials and coatings. An experimental rig was designed and constructed for shot sleeve configuration evaluation. Fabrication and testing of experimental shot sleeves was based upon preliminary results and manufacturing costs. Three shot sleeve designs and materials were compared to a reference nitrided H13 sleeve. Nitrided H13 is the preferred material for aluminum die casting shot sleeves because of wear resistance, strength and relative good soldering and wash-out resistance. The study was directed towards damage evaluation on the area under the pouring hole. This area is the most susceptible to damage because of high temperatures and impingement of molten aluminum. The results of this study showed that tungsten and molybdenum had the least amount of soldering and wash-out damage, and the best thermal fatigue resistance. Low solubility in molten aluminum and stability of intermetallic layers are main factors that determine the soldering and wash-out behavior. Thermal conductivity and thermal expansion coefficient directly influence thermal fatigue behavior. TiAlN nanolayered coating was chosen as the material with the best damage resistance among several commercial PVD coatings, because of relatively large thickness and simple deposition conditions. The results show that molybdenum thermal sprayed coating provided the best protection against damage under the pouring hole. Improved bonding is however required for life extension of the coating. TiAlN PVD coating applied on H13 nitrided

  10. The Effect of Porosity on Fatigue of Die Cast AM60

    NASA Astrophysics Data System (ADS)

    Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.

    2016-07-01

    AM60 high-pressure die castings are known to contain significant porosity which can affect fatigue life. We have studied this using samples drawn from prototype AM60 shock towers by conducting strain-controlled fatigue tests accompanied by X-ray computed tomography analysis. The results show that the machined surface is the preferential location for fatigue crack development, with pores close to these surfaces serving as initiation sites. Fatigue life shows a strong inverse correlation with the size of the fatigue-crack-initiating pore. Pore shape and pore orientation also influence the response. A supplemental study on surface roughness shows that porosity is the dominant factor in fatigue. Tomography enables the link between porosity and fatigue crack initiation to be clearly identified. These data are complemented by SEM observations of the fracture surfaces which are generally flat and full of randomly oriented serration patterns but without long-range fatigue striations.

  11. The Effect of Porosity on Fatigue of Die Cast AM60

    NASA Astrophysics Data System (ADS)

    Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.

    2016-04-01

    AM60 high-pressure die castings are known to contain significant porosity which can affect fatigue life. We have studied this using samples drawn from prototype AM60 shock towers by conducting strain-controlled fatigue tests accompanied by X-ray computed tomography analysis. The results show that the machined surface is the preferential location for fatigue crack development, with pores close to these surfaces serving as initiation sites. Fatigue life shows a strong inverse correlation with the size of the fatigue-crack-initiating pore. Pore shape and pore orientation also influence the response. A supplemental study on surface roughness shows that porosity is the dominant factor in fatigue. Tomography enables the link between porosity and fatigue crack initiation to be clearly identified. These data are complemented by SEM observations of the fracture surfaces which are generally flat and full of randomly oriented serration patterns but without long-range fatigue striations.

  12. Effect of Viscosity Measurement Method to Simulate High Pressure Die Casting of Thin-Wall AlSi10MnMg Alloy Castings

    NASA Astrophysics Data System (ADS)

    Zhu, B. W.; Li, L. X.; Liu, X.; Zhang, L. Q.; Xu, R.

    2015-12-01

    In the present study, a rotating cylinder viscometer (RCV) was adopted to measure the viscosity of AlSi10MnMg aluminum alloy. The results show that the measured viscosity is much higher than previously reported viscosity of aluminum alloys measured by oscillation vessel viscometer. The viscosity measured by RCV was introduced into the simulation of the filling progress of high pressure die casting (HPDC) for thin-walled castings of aluminum alloy (TWCA). The simulated results match well with the experimental results indicating that the RCV is the most appropriate to use for simulations of HPDC for TWCA.

  13. Effects of Pore Distributions on Ductility of Thin-Walled High Pressure Die-Cast Magnesium

    SciTech Connect

    Choi, Kyoo Sil; Li, Dongsheng; Sun, Xin; Li, Mei; Allison, John

    2013-06-01

    In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) Magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses to induce the fracture by element removal, leading to the prediction of ductility. The results in this study show that the ductility monotonically decreases as the pore volume fraction increases and that the effect of ‘skin region’ on the ductility is noticeable under the condition of same local pore volume fraction in the center region of the sample and its existence can be beneficial for the improvement of ductility. The further synthetic microstructure-based 3D finite element analyses are planned to investigate the effects of pore size and pore size distribution.

  14. Quantitative characterization of processing-microstructure-properties relationships in pressure die-cast magnesium alloys

    NASA Astrophysics Data System (ADS)

    Lee, Soon Gi

    The central goal of this research is to quantitatively characterize the relationships between processing, microstructure, and mechanical properties of important high-pressure die-cast (HPDC) Mg-alloys. For this purpose, a new digital image processing technique for automatic detection and segmentation of gas and shrinkage pores in the cast microstructure is developed and it is applied to quantitatively characterize the effects of HPDC process parameters on the size distribution and spatial arrangement of porosity. To get better insights into detailed geometry and distribution of porosity and other microstructural features, an efficient and unbiased montage based serial sectioning technique is applied for reconstruction of three-dimensional microstructures. The quantitative microstructural data have been correlated to the HPDC process parameters and the mechanical properties. The analysis has led to hypothesis of formation of new type of shrinkage porosity called, "gas induced shrinkage porosity" that has been substantiated via simple heat transfer simulations. The presence of inverse surface macrosegregation has been also shown for the first time in the HPDC Mg-alloys. An image analysis based technique has been proposed for simulations of realistic virtual microstructures that have realistic complex pore morphologies. These virtual microstructures can be implemented in the object oriented finite elements framework to model the variability in the fracture sensitive mechanical properties of the HPDC alloys.

  15. Application of TRIZ Theory in Patternless Casting Manufacturing Technique

    NASA Astrophysics Data System (ADS)

    Yang, Weidong; Gan, Dequan; Jiang, Ping; Tian, Yumei

    The ultimate goal of Patternless Casting Manufacturing (referred to as PCM) is how to obtain the casts by casting the sand mold directly. In the previous PCM, the resin content of sand mold is much higher than that required by traditional resin sand, so the casts obtained are difficult to be sound and qualified products, which limits the application of this technique greatly. In this paper, the TRIZ algorithm is introduced to the innovation process in PCM systematically.

  16. A three-die cast technique for duplicating free gingival form in zirconia crowns: two case reports.

    PubMed

    Nozawa, Takeshi; Tanaka, Koji; Tsurumaki, Shunzo; Ookame, Yasuhisa; Enomoto, Hiroaki; Ito, Koichi

    2012-08-01

    This report describes a duplication technique of free gingival form from a provisional restoration to a zirconia crown. Three die casts were manufactured from a silicone impression with an acrylic resin ring tray. The first die cast was for the zirconia framework, the second for the provisionalized transfer coping, and the third for relining the provisional restoration. A free gingival impression was taken using a provisionalized transfer coping, and a soft gingival cast was manufactured. The depth of free gingival transparency was measured using a zirconia shade plate. Then, the zirconia framework was customized to allow for subgingival porcelain space. This technique seems to contribute to the clinical-laboratory interface in computer-aided design/computer-assisted manufacture restorations. PMID:22577656

  17. Casting dimensional control and fatigue life prediction for permanent mold casting dies. Technical progress report, September 29, 1993-- September 30, 1994

    SciTech Connect

    1994-11-01

    First year efforts as part of a three year program to address metal casting dimensional control and fatigue life prediction for permanent mold casting dies are described. Procedures have been developed and implemented to collect dimensional variability data from production steel castings. The influence of process variation and casting geometry variables on dimensional tolerances have been investigated. Preliminary results have shown that these factors have a significant influence on dimensional variability, although this variability is considerably less than the variability indicated in current tolerance standards. Gage repeatability and reproducibility testing must precede dimensional studies to insure that measurement system errors are acceptably small. Also initial efforts leading to the development and validation of a CAD/CAE model to predict the thermal fatigue life of permanent molds for aluminum castings are described. An appropriate thermomechanical property database for metal, mold and coating materials has been constructed. A finite element model has been developed to simulate the mold temperature distribution during repeated casting cycles. Initial validation trials have indicated the validity of the temperature distribution model developed.

  18. The study of flow pattern and phase-change problem in die casting process

    NASA Technical Reports Server (NTRS)

    Wang, T. S.; Wei, H.; Chen, Y. S.; Shang, H. M.

    1996-01-01

    The flow pattern and solidification phenomena in die casting process have been investigated in the first phase study. The flow pattern in filling process is predicted by using a VOF (volume of fluid) method. A good agreement with experimental observation is obtained for filling the water into a die cavity with different gate geometry and with an obstacle in the cavity. An enthalpy method has been applied to solve the solidification problem. By treating the latent heat implicitly into the enthalpy instead of explicitly into the source term, the CPU time can be reduced at least 20 times. The effect of material properties on solidification fronts is tested. It concludes that the dependence of properties on temperature is significant. The influence of the natural convection over the diffusion has also been studied. The result shows that the liquid metal solidification phenomena is diffusion dominant, and the natural convection can affect the shape of the interface. In the second phase study, the filling and solidification processes will be considered simultaneously.

  19. Influence of the fabrication process on the functionality of piezoceramic patch transducers embedded in aluminum die castings

    NASA Astrophysics Data System (ADS)

    Klassen, Alexander; Rübner, Matthias; Ilg, Jürgen; Rupitsch, Stefan J.; Lerch, Reinhard; Singer, Robert F.; Körner, Carolin

    2012-11-01

    Piezoceramic patch transducers are integrated into aluminum components using high-pressure die casting. Expanded metal has proven suitable as a supporting structure for placing the patch transducers inside the die cavity and for stabilization during the injection of molten metal. However, difficulties arise when the transducers are positioned off the neutral axis within the wall of the casting. Numerical simulations of the die filling are performed to analyse the evolution of the integration process. The asymmetric infiltration of the supporting structure is identified as the major factor contributing to the formation of cracks and perforations inside the piezoceramic transducer. By means of measurements and numerical calculations of the electrical impedance of the transducer, a close relation is established between mechanical damage patterns observed in radiographs of the patch transducers and loss of performance.

  20. Low-Cycle Fatigue Behavior of Die-Cast Mg Alloys AZ91 and AM60

    NASA Astrophysics Data System (ADS)

    Rettberg, Luke H.; Jordon, J. Brian; Horstemeyer, Mark F.; Jones, J. Wayne

    2012-07-01

    The influence of microstructure and artificial aging response (T6) on the low-cycle fatigue behavior of super vacuum die-cast (SVDC) AZ91 and AM60 has been investigated. Fatigue lifetimes were determined from the total strain-controlled fatigue tests for strain amplitudes of 0.2 pct, 0.4 pct, 0.6 pct, 0.8 pct, and 1.0 pct under fully reversed loading at a frequency of 5 Hz. Cyclic stress-strain behavior was determined using an incremental step test (IST) and compared with the more traditional constant amplitude test. Two locations in a prototype casting were investigated to examine the role of microstructure and porosity on fatigue behavior. At all total strain amplitudes microstructure refinement had a negligible impact on fatigue life because of significant levels of porosity. AM60 showed an improvement in fatigue life at higher strain amplitudes when compared with AZ91 because of higher ductility. T6 heat treatment had no impact on fatigue life. Cyclic stress-strain behavior obtained via the incremental step test varied from constant amplitude test results due to load history effects. The constant amplitude test is believed to be the more accurate test method. In general, larger initiation pores led to shorter fatigue life. The fatigue life of AZ91 was more sensitive to initiation pore size and pore location than AM60 at the lowest tested strain amplitude of 0.2 pct. Fatigue crack paths did not favor any specific phase, interdentritic structure or eutectic structure. A multistage fatigue (MSF) model showed good correlation to the experimental strain-life results. The MSF model reinforced the dominant role of inclusion (pore) size on the scatter in fatigue life.

  1. 25 CFR 301.4 - Application of dies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false Application of dies. 301.4 Section 301.4 Indians INDIAN ARTS AND CRAFTS BOARD, DEPARTMENT OF THE INTERIOR NAVAJO, PUEBLO, AND HOPI SILVER AND TURQUOISE PRODUCTS; STANDARDS § 301.4 Application of dies. Dies are to be applied to the object with the aid of nothing except hand...

  2. 25 CFR 301.4 - Application of dies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 2 2011-04-01 2011-04-01 false Application of dies. 301.4 Section 301.4 Indians INDIAN ARTS AND CRAFTS BOARD, DEPARTMENT OF THE INTERIOR NAVAJO, PUEBLO, AND HOPI SILVER AND TURQUOISE PRODUCTS; STANDARDS § 301.4 Application of dies. Dies are to be applied to the object with the aid of nothing except hand...

  3. 25 CFR 301.4 - Application of dies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 2 2012-04-01 2012-04-01 false Application of dies. 301.4 Section 301.4 Indians INDIAN ARTS AND CRAFTS BOARD, DEPARTMENT OF THE INTERIOR NAVAJO, PUEBLO, AND HOPI SILVER AND TURQUOISE PRODUCTS; STANDARDS § 301.4 Application of dies. Dies are to be applied to the object with the aid of nothing except hand...

  4. 25 CFR 301.4 - Application of dies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 2 2014-04-01 2014-04-01 false Application of dies. 301.4 Section 301.4 Indians INDIAN ARTS AND CRAFTS BOARD, DEPARTMENT OF THE INTERIOR NAVAJO, PUEBLO, AND HOPI SILVER AND TURQUOISE PRODUCTS; STANDARDS § 301.4 Application of dies. Dies are to be applied to the object with the aid of nothing except hand...

  5. 25 CFR 301.4 - Application of dies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Application of dies. 301.4 Section 301.4 Indians INDIAN ARTS AND CRAFTS BOARD, DEPARTMENT OF THE INTERIOR NAVAJO, PUEBLO, AND HOPI SILVER AND TURQUOISE PRODUCTS; STANDARDS § 301.4 Application of dies. Dies are to be applied to the object with the aid of nothing except hand...

  6. MACHINING ELIMINATION THROUGH APPLICATION OF THREAD FORMING FASTENERS IN NET SHAPED CAST HOLES

    SciTech Connect

    Cleaver, Ryan J; Cleaver, Todd H; Talbott, Richard

    2012-05-02

    The ultimate objective of this work was to eliminate approximately 30% of the machining performed in typical automotive engine and transmission plants by using thread forming fasteners in as-cast holes of aluminum and magnesium cast components. The primary issues at the source of engineers reluctance to implementing thread forming fasteners in lightweight castings are: * Little proof of consistency of clamp load vs. input torque in either aluminum or magnesium castings. * No known data to understand the effect on consistency of clamp load as casting dies wear. The clamp load consistency concern is founded in the fact that a portion of the input torque used to create clamp load is also used to create threads. The torque used for thread forming may not be consistent due to variations in casting material, hole size and shape due to tooling wear and process variation (thermal and mechanical). There is little data available to understand the magnitude of this concern or to form the basis of potential solutions if the range of clamp load variation is very high (> +/- 30%). The range of variation that can be expected in as-cast hole size and shape over the full life cycle of a high pressure die casting die was established in previous work completed by Pacific Northwest National Laboratory, (PNNL). This established range of variation was captured in a set of 12 cast bosses by designing core pins at the size and draft angles identified in the sited previous work. The cast bosses were cut into nuts that could be used in the Ford Fastener Laboratory test-cell to measure clamp load when a thread forming fastener was driven into a cast nut. There were two sets of experiments run. First, a series of cast aluminum nuts were made reflecting the range of shape and size variations to be expected over the life cycle of a die casting die. Taptite thread forming fasteners, (a widely used thread forming fastener suitable for aluminum applications), were driven into the various cored, as-cast

  7. Improved Life of Die Casting Dies of H13 Steel by Attaining Improved Mechanical Properties and Distortion Control During Heat Treatment

    SciTech Connect

    J. F. Wallace; D. Schwam

    1998-10-01

    The ultimate goal of this project is to increase die casting die life by using fast enough quenching rates to obtain good toughness and fatigue resistance in premium grade H-13 steel dies. The main tasks of the project were to compile a database on physical and mechanical properties of H-13; conduct gas quenching experiments to determine cooling rates of dies in difference vacuum furnaces; measure the as-quenched distortion of dies and the residual stresses; generate finite element analysis models to predict cooling rates, distortion, and residual stress of gas quenched dies; and establish rules and create PC-based expert system for prediction of cooling rates, distortion, and residual stress in vacuum/gas quenched H-13 dies. Cooling curves during gas quenching of H-13 blocks and die shapes have been measured under a variety of gas pressure. Dimensional changes caused by the gas quenching processes have been determined by accurate mapping of all surfaces with coordinate measuring machines before and after the quench. Residual stresses were determined by the ASTM E837 hole-drilling strain gage method. To facilitate the computer modeling work, a comprehensive database of H-13 mechanical and physical properties has been compiled. Finite element analysis of the heat treated shapes has been conducted using the TRAST/ABAQUS codes. There is a good fit between the predicted and measured distortion contours. However, the magnitude of the predicted distortion and residual stresses does not match well the measured values. Further fine tuning of the model is required before it can be used to predict distortion and residual stress in a quantitative manner. This last step is a prerequisite to generating rules for a reliable expert system.

  8. Mechanical Properties of Carbon Fiber-Reinforced Aluminum Manufactured by High-Pressure Die Casting

    NASA Astrophysics Data System (ADS)

    Kachold, Franziska; Singer, Robert

    2016-03-01

    Carbon fiber reinforced aluminum was produced by a specially adapted high-pressure die casting process. The MMC has a fiber volume fraction of 27%. Complete infiltration was achieved by preheating the bidirectional, PAN-based carbon fiber body with IR-emitters to temperatures of around 750 °C. The degradation of the fibers, due to attack of atmospheric oxygen at temperatures above 600 °C, was limited by heating them in argon-rich atmosphere. Additionally, the optimization of heating time and temperature prevented fiber degradation. Only the strength of the outer fibers is reduced by 40% at the most. The fibers in core of fiber body are nearly undamaged. In spite of successful manufacturing, the tensile strength of the MMC is below strength of the matrix material. Also unidirectional MMCs with a fiber volume fraction of 8% produced under the same conditions, lack of the reinforcing effect. Two main reasons for the unsatisfactory mechanical properties were identified: First, the fiber-free matrix, which covers the reinforced core, prevents effective load transfer from the matrix to the fibers. And second, the residual stresses in the fiber-free zones are as high as 100 MPa. This causes premature failure in the matrix. From this, it follows that the local reinforcement of an actual part is limited. The stress distribution caused by residual stresses and by loading needs to be known. In this way, the reinforcing phase can be placed and aligned accordingly. Otherwise delamination and premature failure might occur.

  9. Cradle-to-Gate Impact Assessment of a High-Pressure Die-Casting Safety-Relevant Automotive Component

    NASA Astrophysics Data System (ADS)

    Cecchel, Silvia; Cornacchia, Giovanna; Panvini, Andrea

    2016-08-01

    The mass of automotive components has a direct influence on several aspects of vehicle performance, including both fuel consumption and tailpipe emissions, but the real environmental benefit has to be evaluated considering the entire life of the products with a proper life cycle assessment. In this context, the present paper analyzes the environmental burden connected to the production of a safety-relevant aluminum high-pressure die-casting component for commercial vehicles (a suspension cross-beam) considering all the phases connected to its manufacture. The focus on aluminum high-pressure die casting reflects the current trend of the industry and its high energy consumption. This work shows a new method that deeply analyzes every single step of the component's production through the implementation of a wide database of primary data collected thanks to collaborations of some automotive supplier companies. This energy analysis shows significant environmental benefits of aluminum recycling.

  10. The effects of intensification pressure, gate velocity, and intermediate shot velocity on the internal quality of aluminum die castings

    NASA Astrophysics Data System (ADS)

    Karban, Robert, Jr.

    The purpose of this study was to investigate the effects of intensification pressure, gate velocity, and intermediate shot velocity on the internal quality of aluminum die castings. An experimental design was developed to analyze two levels of intensification pressure, two levels of gate velocity, and four levels of intermediate shot velocity. These parameters were chosen because of the ease of their manipulation on the manufacturing floor in an effort to develop an optimum process for a given die design. Internal casting quality is measured by the density of the casting produced as compared to the theoretical density of the alloy being molded. The study also included monitoring of the biscuit length of the samples collected. A statistical analysis was conducted to determine any correlation between or among any of the independent variables or the other parameter monitored. The results of this study indicate that there is a statistical significance among and between the independent variables that were controlled in this experiment. The results also indicated a significant positive relationship between biscuit length and the density of the resultant castings.

  11. Application of Numerical Optimization to Aluminum Alloy Wheel Casting

    NASA Astrophysics Data System (ADS)

    Duan, J.; Reilly, C.; Maijer, D. M.; Cockcroft, S. L.; Phillion, A. B.

    2015-06-01

    A method of numerically optimizing the cooling conditions in a low- pressure die casting process from the standpoint of maintaining good directional solidification, high cooling rates and reduced cycle times has been developed for the production of aluminumalloy wheels. The method focuses on the optimization of cooling channel timing and utilizes an open source numerical optimization algorithm coupled with an experimentally validated, ABAQUS-based, heat transfer model of the casting process. Key features of the method include: 1) carefully designed constraint functions to ensure directional solidification along the centerlineof the wheel; and 2) carefully formulated objective functions to maximize cooling rate. The method has been implemented on a prototype production die and the results have been tested with plant trial test.

  12. Development of a 3D Filling Model of Low-Pressure Die-Cast Aluminum Alloy Wheels

    NASA Astrophysics Data System (ADS)

    Duan, Jianglan; Maijer, Daan; Cockcroft, Steve; Reilly, Carl

    2013-12-01

    A two-phase computational fluid dynamics model of the low-pressure die-cast process for the production of A356 aluminum alloy wheels has been developed to predict the flow conditions during die filling. The filling model represents a 36-deg section of a production wheel, and was developed within the commercial finite-volume package, ANSYS CFX, assuming isothermal conditions. To fully understand the behavior of the free surface, a novel technique was developed to approximate the vent resistances as they impact on the development of a backpressure within the die cavity. The filling model was first validated against experimental data, and then was used to investigate the effects of venting conditions and pressure curves during die filling. It was found that vent resistance and vent location strongly affected die filling time, free surface topography, and air entrainment for a given pressure fill-curve. With regard to the pressure curve, the model revealed a strong relation between the pressure curve and the flow behavior in the hub, which is an area prone to defect formation.

  13. Advanced Pattern Material for Investment Casting Applications

    SciTech Connect

    F. Douglas Neece Neil Chaudhry

    2006-02-08

    Cleveland Tool and Machine (CTM) of Cleveland, Ohio in conjunction with Harrington Product Development Center (HPDC) of Cincinnati, Ohio have developed an advanced, dimensionally accurate, temperature-stable, energy-efficient and cost-effective material and process to manufacture patterns for the investment casting industry. In the proposed technology, FOPAT (aFOam PATtern material) has been developed which is especially compatible with the investment casting process and offers the following advantages: increased dimensional accuracy; increased temperature stability; lower cost per pattern; less energy consumption per pattern; decreased cost of pattern making equipment; decreased tooling cost; increased casting yield. The present method for investment casting is "the lost wax" process, which is exactly that, the use of wax as a pattern material, which is then melted out or "lost" from the ceramic shell. The molten metal is then poured into the ceramic shell to produce a metal casting. This process goes back thousands of years and while there have been improvements in the wax and processing technology, the material is basically the same, wax. The proposed technology is based upon an established industrial process of "Reaction Injection Molding" (RIM) where two components react when mixed and then "molded" to form a part. The proposed technology has been modified and improved with the needs of investment casting in mind. A proprietary mix of components has been formulated which react and expand to form a foam-like product. The result is an investment casting pattern with smooth surface finish and excellent dimensional predictability along with the other key benefits listed above.

  14. The corrosion performance of die-cast magnesium alloy MRI230D in 3.5% NaCl solution saturated with Mg(OH){sub 2}

    SciTech Connect

    Aghion, E. Lulu, N.

    2010-11-15

    The environmental behavior of die-cast magnesium alloy MRI230D designated for high-temperature applications was evaluated in comparison with regular AZ91D alloy. The microstructure examination was carried out using SEM, TEM, and X-ray diffraction analysis; the corrosion performance in 3.5% NaCl solution was evaluated by immersion test, salt spray testing, potentiodynamic polarization analysis, and stress corrosion behavior by Slow Strain Rate Testing (SSRT). Although the general corrosion resistance of MRI230D was slightly improved compared to that of AZ91D alloy its stress corrosion resistance was relatively reduced. The variations in the environmental behavior of the two alloys were mainly due to the differences in their chemical composition and microstructure after die casting. In particular, the differences were related to the reduced Al content in MRI230D and the addition of Ca to this alloy, which consequently affected its relative microstructure and electrochemical characteristics. - Research Highlights: {yields}Corrosion and SCC resistance of a new Mg alloy MRI230D was evaluated vs. regular AZ91D. {yields}MRI230D has a minor advantage in corrosion performance compared with AZ91D. {yields}The SCC resistance of MRI230D by SSRT analysis was relatively reduced. {yields}The reduced SCC resistance of MRI230D was due to the detrimental effect of Ca on ductility.

  15. [Application to dental casting machine of the rapid heating infrared image furnace (author's transl)].

    PubMed

    Etchu, Y; Noguchi, H

    1980-10-01

    The authors tried to manufacture a casting machine in dentistry by application of the infrared image furnace with a high heating speed and an easy control of a heating temperature. This machine melts an alloy in a carbon crucible set in the furnace, held in the horizontal position. Then, the furnace is turned to the vertical position to drop a melted alloy on the casting mold, and the alloy is cast in the mold by the pressure of Argon gas. The functions of trial casting machine were follows. 1. The trial casting machine was capable of heating to 1250 degrees C within one minute under 4 kW electric power. 2. The castability of the 20% Au-Pd-Ag commercial alloy cast in all casting conditions by the trial casting machine was higher than that of Thermotrol D-2 automatic centrifugal casting machine. 3. Castings of the trial casting machine showed higher tensile strength and elongation than those of the centrifugal casting machine, and the deviation of values got by the trial casting machine was small. In particular, some casting of the trial casting machine showed three times or over elongation values as compared with those of the centrifugal casting machine. 4. When casting conditions (casting temperature, casting pressure) of the trial casting machine changed, the physical properties of castings did not change so much. However, when the mold was not prevented from heating by the furnace in casting, the elongation of castings increased. PMID:7017037

  16. Thermal fatigue behavior of H-13 die steel for aluminum die casting with various ion sputtered coatings

    NASA Technical Reports Server (NTRS)

    Nieh, C. Y.; Wallace, J. F.

    1981-01-01

    Sputtered coatings of Mo, W, Pt, Ag, Au, Co, Cr, Ni, Ag + Cu, Mo + Pt, Si3N4, A1N, Cr3C2, Ta5Si3, and ZrO2 were applied to a 2-inch-square, 7-inch-long thermal fatigue test specimen which was then internally water cooled and alternately immersed in molten aluminum and cooled in air. After 15,000 cycles the thermal fatigue cracks at the specimen corners were measured. Results indicate that a significant improvement in thermal fatigue resistance was obtained with platinum, molybdenum, and tungsten coatings. Metallographic examination indicates that the improvement in thermal fatigue resistance resulted from protection of the surface of the die steel from oxidation. The high yield strength and ductility of molybdenum and tungsten contributed to the better thermal fatigue resistance.

  17. Process Modeling of Low-Pressure Die Casting of Aluminum Alloy Automotive Wheels

    NASA Astrophysics Data System (ADS)

    Reilly, C.; Duan, J.; Yao, L.; Maijer, D. M.; Cockcroft, S. L.

    2013-09-01

    Although on initial inspection, the aluminum alloy automotive wheel seems to be a relatively simple component to cast based on its shape, further insight reveals that this is not the case. Automotive wheels are in a select group of cast components that have strict specifications for both mechanical and aesthetic characteristics due to their important structural requirements and their visibility on a vehicle. The modern aluminum alloy automotive wheel continues to experience tightened tolerances relating to defects to improve mechanical performance and/or the physical appearance. Automotive aluminum alloy wheels are assessed against three main criteria: wheel cosmetics, mechanical performance, and air tightness. Failure to achieve the required standards in any one of these categories will lead to the wheel either requiring costly repair or being rejected and remelted. Manufacturers are becoming more reliant on computational process modeling as a design tool for the wheel casting process. This article discusses and details examples of the use of computational process modeling as a predictive tool to optimize the casting process from the standpoint of defect minimization with the emphasis on those defects that lead to failure of aluminum automotive wheels, namely, macroporosity, microporosity, and oxide films. The current state of applied computational process modeling and its limitations with regard to wheel casting are discussed.

  18. Study and application on accelerated algorithm of ray-casting

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoping; Wu, Jian; Cui, Zhiming; Ma, Jianlin

    2007-12-01

    Medical image 3D reconstruct is an important application filed for volume rendering, for it special using, it required fast interactive speed and high image quality. The ray casting algorithm (RCA) is a widely used basic volume rendering algorithm. It can get high quality image but the rendering speed is very slowly for powerful computing capacity. Due to these shortcomings and deficiencies, the accelerated ray casting algorithm is presented in this paper to improve its rendering speed and apply it to medical image 3D reconstruct. Firstly, accelerate algorithms for ray casting are fully studied and compared. Secondly, improved tri-linear interpolation technology has been selected and extended to continuous ray casting in order to reduce matrix computation by matrix transformation characteristics of re-sampling points. Then ray interval casting technology is used to reduce the number of rays. Utilizing volume data sets cropping technology that improving boundary box technique avoids the sampling in empty voxel. Finally, the synthesized accelerate algorithm has been proposed. The result shown that compare with standard ray casting algorithm, the accelerate algorithm not only improve the rendering speed but also produce the required quality images.

  19. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties.

    PubMed

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-01-01

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA. PMID:27023546

  20. Effect of strontium modification on near-threshold fatigue crack growth in an Al-Si-Cu die cast alloy

    SciTech Connect

    Schaefer, M.; Fournelle, R.A.

    1996-05-01

    The effects of strontium modification on microstructure and fatigue properties in a die cast commercial aluminum-silicon alloy are demonstrated. Strontium additions of 0.010 and 0.018 wt pct drastically change the morphology of the eutectic silicon. The influence of these microstructural changes on fatigue properties is evaluated through fatigue crack growth testing. Examination of the fracture surfaces and the crack path establish distinct fatigue fracture modes for the modified and unmodified eutectic structures. Changes in fracture mode and crack path are correlated to the microstructure changes. A higher energy fracture mode and increased crack path tortuosity explain the observed improvement in fatigue properties for the modified alloys. Strontium modified alloys exhibit a 10 to 20 pct higher fatigue crack growth threshold compared to an unmodified alloy for testing at a load ratio of 0.5. No difference was observed for testing at a load ratio of 0.1.

  1. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    PubMed Central

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-01-01

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA. PMID:27023546

  2. 40 CFR 464.20 - Applicability; description of the copper casting subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... copper casting subcategory. 464.20 Section 464.20 Protection of Environment ENVIRONMENTAL PROTECTION... Copper Casting Subcategory § 464.20 Applicability; description of the copper casting subcategory. The... introduction of pollutants into publicly owned treatment works resulting from copper casting operations...

  3. 40 CFR 464.20 - Applicability; description of the copper casting subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... copper casting subcategory. 464.20 Section 464.20 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Copper Casting Subcategory § 464.20 Applicability; description of the copper casting subcategory... introduction of pollutants into publicly owned treatment works resulting from copper casting operations...

  4. 40 CFR 464.20 - Applicability; description of the copper casting subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... copper casting subcategory. 464.20 Section 464.20 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Copper Casting Subcategory § 464.20 Applicability; description of the copper casting subcategory... introduction of pollutants into publicly owned treatment works resulting from copper casting operations...

  5. 40 CFR 464.20 - Applicability; description of the copper casting subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... copper casting subcategory. 464.20 Section 464.20 Protection of Environment ENVIRONMENTAL PROTECTION... Copper Casting Subcategory § 464.20 Applicability; description of the copper casting subcategory. The... introduction of pollutants into publicly owned treatment works resulting from copper casting operations...

  6. 40 CFR 464.20 - Applicability; description of the copper casting subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... copper casting subcategory. 464.20 Section 464.20 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Copper Casting Subcategory § 464.20 Applicability; description of the copper casting subcategory... introduction of pollutants into publicly owned treatment works resulting from copper casting operations...

  7. 40 CFR 464.10 - Applicability; description of the aluminum casting subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... aluminum casting subcategory. 464.10 Section 464.10 Protection of Environment ENVIRONMENTAL PROTECTION... Aluminum Casting Subcategory § 464.10 Applicability; description of the aluminum casting subcategory. The... introduction of pollutants into publicly owned treatment works resulting from aluminum casting operations...

  8. 40 CFR 464.10 - Applicability; description of the aluminum casting subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... aluminum casting subcategory. 464.10 Section 464.10 Protection of Environment ENVIRONMENTAL PROTECTION... Aluminum Casting Subcategory § 464.10 Applicability; description of the aluminum casting subcategory. The... introduction of pollutants into publicly owned treatment works resulting from aluminum casting operations...

  9. Application of particle method to the casting process simulation

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Zulaida, Y. M.; Anzai, K.

    2012-07-01

    Casting processes involve many significant phenomena such as fluid flow, solidification, and deformation, and it is known that casting defects are strongly influenced by the phenomena. However the phenomena complexly interacts each other and it is difficult to observe them directly because the temperature of the melt and other apparatus components are quite high, and they are generally opaque; therefore, a computer simulation is expected to serve a lot of benefits to consider what happens in the processes. Recently, a particle method, which is one of fully Lagrangian methods, has attracted considerable attention. The particle methods based on Lagrangian methods involving no calculation lattice have been developed rapidly because of their applicability to multi-physics problems. In this study, we combined the fluid flow, heat transfer and solidification simulation programs, and tried to simulate various casting processes such as continuous casting, centrifugal casting and ingot making. As a result of continuous casting simulation, the powder flow could be calculated as well as the melt flow, and the subsequent shape of interface between the melt and the powder was calculated. In the centrifugal casting simulation, the mold was smoothly modeled along the shape of the real mold, and the fluid flow and the rotating mold are simulated directly. As a result, the flow of the melt dragged by the rotating mold was calculated well. The eccentric rotation and the influence of Coriolis force were also reproduced directly and naturally. For ingot making simulation, a shrinkage formation behavior was calculated and the shape of the shrinkage agreed well with the experimental result.

  10. SiC Die Attach for High-Temperature Applications

    NASA Astrophysics Data System (ADS)

    Drevin-Bazin, A.; Lacroix, F.; Barbot, J.-F.

    2013-11-01

    Eutectic solders AuIn19 and AuGe12 and nanosilver paste were investigated for SiC die attach in high-temperature (300°C) applications. The soldering or sintering conditions were optimized through die shear tests performed at room temperature. In particular, application of static pressure (3.5 MPa) during sintering resulted in greatly improved mechanical behavior of the nanosilver-based joint. Microstructural study of the eutectic solders showed formation of Au-rich grains in AuGe die attach and significant diffusion of Au and In through the Ni layer in AuIn19 die attach, which could lead to formation of intermetallic compounds. Die shear tests versus temperature showed that the behaviors of the studied die attaches are different; nevertheless they present suitable shear strengths required for high-temperature applications. The mechanical behavior of joints under various levels of thermal and mechanical stress was also studied. Creep experiments were carried out on the eutectic solders to describe the thermomechanical behavior of the complete module; only one creep mechanism was observed in the working range.

  11. Heat transfer during quenching of modified and unmodified gravity die-cast A357 cylindrical bars

    NASA Astrophysics Data System (ADS)

    Prabhu, K. N.; Hemanna, P.

    2006-06-01

    Heat transfer during quenching of chill-cast modified and unmodified A357 Al-Si alloy was examined using a computer-aided cooling curve analysis. Water at 60 °C and a vegetable oil (palm oil) were used as quench media. The measured temperatures inside cylindrical probes of the A357 alloy were used as inputs in an inverse heat-conduction model to estimate heat flux transients at the probe/quenchant interface and the surface temperature of the probe in contact with the quench medium. It was observed that modified alloy probes yielded higher cooling rates and heat flux transients. The investigation clearly showed that the heat transfer during quenching depends on the casting history. The increase in the cooling rate and peak heat flux was attributed to the increase in the thermal conductivity of the material on modification melt treatment owing to the change in silicon morphology. Fine and fibrous silicon particles in modified A357 probes increase the conductance of the probe resulting in higher heat transfer rates. This was confirmed by measuring the electrical conductivity of modified samples, which were found to be higher than those of unmodified samples. The ultrasound velocity in the probes decreased on modification.

  12. 21 CFR 888.5980 - Manual cast application and removal instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual cast application and removal instrument... SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.5980 Manual cast application and removal instrument. (a) Identification. A manual cast application and removal instrument is...

  13. On the performance of low pressure die-cast Al-Cu based automotive alloys: Role of additives

    NASA Astrophysics Data System (ADS)

    Zaki, Gergis Adel

    The present study focuses on the effect of alloying elements, namely, strontium (Sr), titanium (Ti), zirconium (Zr), scandium (Sc) and silver(Ag) individually or in combination, on the performance of a newly developed Al-2%Cu based alloy. A total of thirteen alloy compositions were used in the study. Tensile test bar castings were prepared employing the low pressure die casting (LPDC) technique. The test bars were solution heat treated at 495°C for 8 hours, followed by quenching in warm water, and then subjected to different isochronal aging treatments using an aging time of 5 hours and aging temperatures of 155°C, 180°C, 200°C, 240°C and 300°C. Tensile testing of as-cast and heat-treated test bars was carried out at room temperature using a strain rate of 4 x 10-4s-1. Five test bars were used per alloy composition/condition. Hardness measurements were also carried out on these alloys using a Brinell hardness tester. The microstructures of selected samples were examined using optical microscopy and electron probe microanalysis (EPMA). The results showed that adding Ti in the amount of 0.15 wt% in the form of Al-5%Ti-1%B master alloy is sufficient to refine the grains in the cast structure in the presence of 200 ppm Sr (0.02 wt%). Addition of Zr and Sc did not contribute further to the grain refining effect. The main role of addition of these two elements appeared in the formation of complex compounds with Al and Ti. Their presence resulted in extending the aging temperature range before the onset of softening. Mathematical analysis of the hardness and tensile data was carried out using the Minitab statistical software program. It was determined that the alloy containing (0.5wt% Zr + 0.15wt% Ti) is the most effective in maximizing the alloy tensile strength over the range of aging temperatures, from 155°C to 300°C. Addition of Ag is beneficial at high aging temperatures, in the range of 240°C-300°C. However, it is less effective compared to the (Zr + Ti

  14. An Application of Trapped-Air Analysis to Large Complex High-Pressure Magnesium Casting

    SciTech Connect

    Prindiville, J; Lee, S; Gokhale, A

    2004-07-08

    The usual method for simulating die-castings consists of a solidification analysis of the casting process - a computer calculation of heat transfer between the casting and the die components. The use of cyclic simulations, coupled with the geometric accuracy of the finite element method, has advanced this procedure to the point where it is routinely used for reliable prediction of shrinkage defects in die-castings. Filling analysis is also routinely used to get a glimpse of cavity filling and ensures that overflows are at their most effective location. When coupled with heat transfer, a filling analysis is also very effective in demonstrating the effects of heat loss in the fluid and how it consequentially can negatively affect filling.

  15. The effect of microstructure on the thermal fatigue resistance of investment cast and wrought AISI H13 hot work die steel

    SciTech Connect

    Hochanadel, P.W.; Edwards, G.R.; Maguire, M.C.; Baldwin, M.D.

    1995-07-01

    Variable thickness plate investment castings of AISI H13 hot work die steel were pour and characterized in the as-cast and heat treated conditions. The characterization included light microscopy and mechanical testing. Wrought samples of standard and premium grade H13 steel were heat treated and characterized similarly for comparison. Microstructural differences were observed in as-cast samples poured to different section thicknesses. Dendrite cell size and carbide morphology constituted the most prominent microstructural differences observed. After a full heat treatment, however, Microstructural differences between the wrought material and cast materials were slight regardless of section thickness. The mechanical properties of the cast and heat treated material proved similar to the properties of the standard heat treated wrought material. A thermal fatigue testing unit was designed and built to correlate the heat checking susceptibility of AISI H13 steel to its processing and consequent microstructural condition. Surface hardness decreased significantly with thermal cycling, and heat checking was noticed in as few as 50 cycles. Thermal softening and thermal fatigue susceptibility were quantified and discussed relative to the microstructural conditions created by processing and heat treatment. It was found that the premium grade wrought H13 steel provided the best overall resistance to heat checking; however, the heat-treat cast and as-cast H13 tool steel (made from standard grade wrought H13 tool steel) provided comparable resistance to heat checking in terms Of area fraction of heat checking and maximum crack length.

  16. Low Cost Al-Si Casting Alloy As In-Situ Composite for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2000-01-01

    A new aluminum-silicon (Al-Si) alloy has been successfully developed at NASA- Marshall Space Flight Center (MSFC) that has significant improvement in tensile and fatigue strength at elevated temperatures (500 F-700 F). The alloy offers a number of benefits such as light weight, high hardness, low thermal expansion and high surface wear resistance. In hypereutectic form, this alloy is considered as an in-situ Al-Si composite with tensile strength of about 90% higher than the auto industry 390 alloy at 600 F. This composite is very economically produced by using either conventional permanent steel molds or die casting. The projected material cost is less than $0.90 per pound, and automotive components such as pistons can be cast for high production rate using conventional casting techniques with a low and fully accounted cost. Key Words: Metal matrix composites, In-situ composite, aluminum-silicon alloy, hypereutectic alloy, permanent mold casting, die casting.

  17. 40 CFR 464.40 - Applicability; description of the zinc casting subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Applicability; description of the zinc... Zinc Casting Subcategory § 464.40 Applicability; description of the zinc casting subcategory. The... introduction of pollutants into publicly owned treatment works resulting from zinc casting operations...

  18. 40 CFR 464.40 - Applicability; description of the zinc casting subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the zinc... Zinc Casting Subcategory § 464.40 Applicability; description of the zinc casting subcategory. The... introduction of pollutants into publicly owned treatment works resulting from zinc casting operations...

  19. 40 CFR 464.40 - Applicability; description of the zinc casting subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Applicability; description of the zinc... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Zinc Casting Subcategory § 464.40 Applicability; description of the zinc casting subcategory. The provisions of...

  20. 40 CFR 464.40 - Applicability; description of the zinc casting subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the zinc... Zinc Casting Subcategory § 464.40 Applicability; description of the zinc casting subcategory. The... introduction of pollutants into publicly owned treatment works resulting from zinc casting operations...

  1. 40 CFR 464.40 - Applicability; description of the zinc casting subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the zinc... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Zinc Casting Subcategory § 464.40 Applicability; description of the zinc casting subcategory. The provisions of...

  2. Predicting the Influence of Pore Characteristics on Ductility of Thin-Walled High Pressure Die Casting Magnesium

    SciTech Connect

    Sun, Xin; Choi, Kyoo Sil; Li, Dongsheng

    2013-06-10

    In this paper, a two-dimensional microstructure-based finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die casting Mg materials on their ductility. For this purpose, the cross-sections of AM50 and AM60 casting samples are first examined using optical microscope to obtain the overall information on the pore characteristics. The experimentally quantified pore characteristics are then used to generate a series of synthetic microstructures with different pore sizes, pore volume fractions and pore size distributions. Pores are explicitly represented in the synthetic microstructures and meshed out for the subsequent finite element analysis. In the finite element analysis, an intrinsic critical strain value is used for the Mg matrix material, beyond which work-hardening is no longer permissible. With no artificial failure criterion prescribed, ductility levels are predicted for the various microstructures in the form of strain localization. Mesh size effect study is also conducted, from which a mesh size dependent critical strain curve is determined. A concept of scalability of pore size effects is then presented and examined with the use of the mesh size dependent critical strain curve. The results in this study show that, for the regions with lower pore size and lower volume fraction, the ductility generally decreases as the pore size and pore volume fraction increase whereas, for the regions with larger pore size and larger pore volume fraction, other factors such as the mean distance between the pores begin to have some substantial influence on the ductility. The results also indicate that the pore size effects may be scalable for the models with good-representative pore shape and distribution with the use of the mesh size dependent critical strain curve.

  3. Neurobehavioral testing of subjects exposed residentially to groundwater contaminated from an aluminum die-casting plant and local referents.

    PubMed

    Kilburn, K H; Warshaw, R H

    1993-08-01

    Residents adjoining a die-casting plant had excessive headaches, numbness of hands and feet, dizziness, blurred vision, staggering, sweating, abnormal heart rhythm, and depression, which led to measurements of neurobehavioral performance, affective status, and the frequency of symptoms. They had all been exposed via well water and proximity to the plant to volatile organic chemicals (VOC) and to polychlorinated biphenyls (PCBs). The 117 exposed women and men and 46 unexposed referents were studied together for simple and choice visual reaction time, body sway speed, blink reflex latency, color discrimination, Culture Fair (a nonverbal nonarithmetic intelligence test), recall of stories, figures, and numbers, cognitive and psychomotor control (slotted pegboard and trail making A and B), long-term memory, profile of mood states (POMS), and scores and frequencies of 34 symptoms. Choice reaction time, sway speed, and blink latency were impaired in both sexes of the exposed group and trail making B was impaired in exposed women. The POMS scores and frequencies of 30 of 34 symptoms were elevated in both sexes, compared to referents. Recall, long-term memory, psychomotor speed, and other cognitive function tests were reduced in exposed subjects and in the referents as compared to national referents. Neurophysiological impairment, and cognitive and psychomotor dysfunction and affective disorders, especially depression and excessive frequency of symptoms, were associated with the use of wells contaminated with VOCs, TCE and PCBs. PMID:8345533

  4. Fatigue characterization of high pressure die-cast magnesium AM60B alloy using experimental and computational investigations

    NASA Astrophysics Data System (ADS)

    Lu, You

    The object of the current dissertation is to foster fundamental advances in microstructure-fatigue characteristics of a high pressure die cast magnesium AM60B alloy. First, high cycle fatigue staircase experiments were conducted on specimens extracted from automobile instrument panels. The resulting fracture surfaces were then examined with scanning electron microscopic imaging to elucidate the fatigue crack initiation sites and propagation paths at different stages of the fatigue life. Due to the fact that the qualification of the crack initiation and propagation mechanisms through experiment alone is difficult, complementary micromechanical finite element simulations were conducted. Particularly, the effects of different applied loading conditions and the porosity morphology (e.g. pore shape, pore size, pore spacing, proximity to the free surface) on the maximum plastic shear strain range, as a driving force for crack initiation, were analyzed. Moreover, at the microstructually small crack (MSC) propagation stage, the shielding effects of beta-phase Mg17Al12 particles were systematically studied. Based on the distribution of the maximum principal stress within the particles and the maximum hydrostatic stress along the particle/matrix interfaces, the relative influence of the pre-damaged (fractured or debonded) particles and various particle cluster morphologies were carefully investigated. In the finite element simulations, the constitutive behaviours of AM60B alloy and the alpha-matrix were simulated by the advanced kinematic hardening law tuned with experimentally determined material parameters under cyclic loading.

  5. Influence of Electrolytic Plasma Oxidation Coating on Tensile Behavior of Die-Cast AM50 Alloy Subjected to Salt Corrosion

    NASA Astrophysics Data System (ADS)

    Han, Lihong; Nie, Xueyuan; Zhang, Peng; Zhang, Qiang; Hu, Henry

    Three different thickness ceramic coatings were deposited on die-cast AM50 magnesium alloy in KOH and NaAlO2 solution using electrolytic plasma oxidation (EPO) technology for corrosion prevention. Immersion corrosion tests were carried out in 3.5% NaCl solution for 336 hours to investigate the effect of coating thicknesses on tensile and fracture behaviors of the coated AM50 alloys. The results show that the yield strength (YS) and ultimate tensile strength (UTS) of the coated AM50 alloy subjected to immersion corrosion increase with an increase in coating thicknesses. Further analyses on stress and strain curves indicate that the coating enhances the strain-hardening rates of the corroded alloy during its plastic deformation. SEM examination on the fractured surface manifests that the substrate AM50 alloys exhibit characteristics of ductile deformation with deep dimples. However, brittle features prevail on the fractured surface of the mixed layer of coating plus oxidation corrosion product. Micro cracks were observed between the mixed layer and the AM50 alloy substrate induced by corrosion and within the mixed layer induced by EPO process, which could be responsible for the brittle fracture.

  6. Neurobehavioral testing of subjects exposed residentially to groundwater contaminated from an aluminum die-casting plant and local referents

    SciTech Connect

    Kilburn, K.H.; Warshaw, R.H. )

    1993-08-01

    Residents adjoining a die-casting plant had excessive headaches, numbness of hands and feet, dizziness, blurred vision, staggering, sweating, abnormal heart rhythm, and depression, which led to measurements of neurobehavioral performance, affective status, and the frequency of symptoms. They had all been exposed via well water and proximity to the plant to volatile organic chemicals (VOC) and to polychlorinated biphenyls (PCBs). The 117 exposed women and men and 46 unexposed referents were studied together for simple and choice visual reaction time, body sway speed, blink reflex latency, color discrimination, Culture Fair (a nonverbal nonarithmetic intelligence test), recall of stories, figures, and numbers, cognitive and psychomotor control (slotted pegboard and trail making A and B), long-term memory, profile of mood states (POMS), and scores and frequencies of 34 symptoms. Choice reaction time, sway speed, and blink latency were impaired in both sexes of the exposed group and trail making B was impaired in exposed women. The POMS scores and frequencies of 30 of 34 symptoms were elevated in both sexes, compared to referents. Recall, long-term memory, psychomotor speed, and other cognitive function tests were reduced in exposed subjects and in the referents as compared to national referents. Neurophysiological impairment, and cognitive and psychomotor dysfunction and affective disorders, especially depression and excessive frequency of symptoms, were associated with the use of wells contaminated with VOCs, TCE and PCBs.

  7. Microstructure and corrosion behavior of die-cast AM60B magnesium alloys in a complex salt solution. A slow positron beam study

    SciTech Connect

    Liu, Y. F.; Yang, W.; Qin, Q. L.; Wen, W.; Zhai, T.; Yu, B.; Liu, D. Y.; Luo, A.; Song, GuangLing

    2013-12-15

    The microstructure and corrosion behavior of high pressure die-cast (HPDC) and super vacuum die-cast (SVDC) AM60B magnesium alloys were investigated in a complex salt solution using slow positron beam technique and potentiodynamic polarization tests. The experiments revealed that a CaCO3 film was formed on the surface of the alloys and that the rate of CaCO3 formation for the SVDC alloy with immersion time was slower than that of the HPDC alloy. The larger volume fraction of b-phase in the skin layer of the SVDC alloy than that of the HPDC alloy was responsible for the better corrosion resistance.

  8. 40 CFR 464.10 - Applicability; description of the aluminum casting subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... aluminum casting subcategory. 464.10 Section 464.10 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Aluminum Casting Subcategory § 464.10 Applicability; description of the aluminum casting... the introduction of pollutants into publicly owned treatment works resulting from aluminum...

  9. 40 CFR 464.10 - Applicability; description of the aluminum casting subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aluminum casting subcategory. 464.10 Section 464.10 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Aluminum Casting Subcategory § 464.10 Applicability; description of the aluminum casting... the introduction of pollutants into publicly owned treatment works resulting from aluminum...

  10. 40 CFR 464.10 - Applicability; description of the aluminum casting subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... aluminum casting subcategory. 464.10 Section 464.10 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Aluminum Casting Subcategory § 464.10 Applicability; description of the aluminum casting... the introduction of pollutants into publicly owned treatment works resulting from aluminum...

  11. 40 CFR 466.20 - Applicability; description of the cast iron basis material subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... iron basis material subcategory. 466.20 Section 466.20 Protection of Environment ENVIRONMENTAL... CATEGORY Cast Iron Basis Material Subcategory § 466.20 Applicability; description of the cast iron basis... of pollutants into publicly owned treatment works from porcelain enameling of cast iron...

  12. 40 CFR 466.20 - Applicability; description of the cast iron basis material subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... iron basis material subcategory. 466.20 Section 466.20 Protection of Environment ENVIRONMENTAL... Cast Iron Basis Material Subcategory § 466.20 Applicability; description of the cast iron basis... of pollutants into publicly owned treatment works from porcelain enameling of cast iron...

  13. 40 CFR 466.20 - Applicability; description of the cast iron basis material subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... iron basis material subcategory. 466.20 Section 466.20 Protection of Environment ENVIRONMENTAL... Cast Iron Basis Material Subcategory § 466.20 Applicability; description of the cast iron basis... of pollutants into publicly owned treatment works from porcelain enameling of cast iron...

  14. 40 CFR 466.20 - Applicability; description of the cast iron basis material subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... iron basis material subcategory. 466.20 Section 466.20 Protection of Environment ENVIRONMENTAL... CATEGORY Cast Iron Basis Material Subcategory § 466.20 Applicability; description of the cast iron basis... of pollutants into publicly owned treatment works from porcelain enameling of cast iron...

  15. 40 CFR 466.20 - Applicability; description of the cast iron basis material subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... iron basis material subcategory. 466.20 Section 466.20 Protection of Environment ENVIRONMENTAL... CATEGORY Cast Iron Basis Material Subcategory § 466.20 Applicability; description of the cast iron basis... of pollutants into publicly owned treatment works from porcelain enameling of cast iron...

  16. Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications.

    PubMed

    Fu, Qiang; Rahaman, Mohamed N; Dogan, Fatih; Bal, B Sonny

    2008-06-01

    Freeze casting of aqueous suspensions was investigated as a method for preparing porous hydroxyapatite (HA) scaffolds for eventual application to bone tissue engineering. Suspensions of HA particles (10-20 volume percent) were frozen unidirectionally in a cylindrical mold placed on a cold steel substrate (-20 degrees C). After sublimation of the ice, sintering for 3 h at 1350 degrees C produced constructs with dense HA lamellae, with porosity of approximately 50%, and inter-lamellar pore widths of 5-30 microm. These constructs had compressive strengths of 12 +/- 1 MPa and 5 +/- 1 MPa in the directions parallel and perpendicular to the freezing direction, respectively. Manipulation of the microstructure was achieved by modifying the solvent composition of the suspension used for freeze casting. The use of water-glycerol mixtures (20 wt% glycerol) resulted in the production of constructs with finer pores (1-10 microm) and a larger number of dendritic growth connecting the HA lamellae, and higher strength. On the other hand, the use of water-dioxane mixtures (60 wt% dioxane) resulted in a cellular-type microstructure with larger pores (90-110 microm). The mechanical response showed high strain tolerance (5-10% at the maximum stress), high strain for failure (>20%) and sensitivity to the loading rate. The favorable mechanical behavior of the porous constructs, coupled with the ability to modify their microstructure, indicates the potential of the present freeze casting route for the production of porous scaffolds for bone tissue engineering. PMID:18458369

  17. Tape cast bioactive metal-ceramic laminates for structural application

    NASA Astrophysics Data System (ADS)

    Clupper, Daniel Christopher

    Bioglass 45S5, is a silica based glass which is able to rapidly form strong bonds with bone and soft tissue in vivo. It is used clinically to replace damaged ear ossicles and in dental surgery to help maintain the structural integrity of the jaw bone. The goal of the research was to demonstrate that Bioglass can be toughened by lamination with metallic layers while maintaining bioactivity. Improvement of the mechanical properties of Bioglass 45SS would allow for additional clinical applications, such as fracture fixation plates, or vertebral spacers. Bioglass 45S5 was tape cast and laminated with clinically relevant metals (316L, stainless steel and titanium) as well as copper in an effort to demonstrate that the effective toughness, or area under the load-deflection diagram can be increased significantly through ductile layer lamination. The average strength of monolithic tape cast sintered Bioglass was as high as 150 MPa and the toughness measured approximately 1.0 MPa m1/2. Copper-Bioglass laminates clearly demonstrated the toughening effect of metal layers on tape cast sintered Bioglass 45S5. Steel-Bioglass laminates, although less tough than the copper-Bioglass laminates, showed higher strengths. In vitro bioactivity tests of both titanium and steel Bioglass laminates showed the formation of mature and thick hydroxyapatite layers after 24 hours in Tris buffer solution. Under the standard test conditions, the bioactivity of monolithic tape cast sintered Bioglass increased with increasing sintering temperature. For samples sintered at 1000°C, thick crystalline layers of hydroxyapatite formed within 24 hours in Tris buffer solution. The bioactivity of these samples approached that of amorphous bulk Bioglass. Samples processed at 800°C were able to form thick crystalline hydroxyapatite layer after 24 hours when the test solution volume was increased by eight times.

  18. 43 CFR 2803.12 - What happens to my application or grant if I die?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What happens to my application or grant if I die? 2803.12 Section 2803.12 Public Lands: Interior Regulations Relating to Public Lands... What happens to my application or grant if I die? (a) If an applicant or grant holder dies,...

  19. 43 CFR 2803.12 - What happens to my application or grant if I die?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What happens to my application or grant if I die? 2803.12 Section 2803.12 Public Lands: Interior Regulations Relating to Public Lands... What happens to my application or grant if I die? (a) If an applicant or grant holder dies,...

  20. 43 CFR 2883.14 - What happens to my application, grant, or TUP if I die?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What happens to my application, grant, or TUP if I die? 2883.14 Section 2883.14 Public Lands: Interior Regulations Relating to Public Lands... happens to my application, grant, or TUP if I die? (a) If an applicant or grant or TUP holder dies,...

  1. 43 CFR 2883.14 - What happens to my application, grant, or TUP if I die?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What happens to my application, grant, or TUP if I die? 2883.14 Section 2883.14 Public Lands: Interior Regulations Relating to Public Lands... happens to my application, grant, or TUP if I die? (a) If an applicant or grant or TUP holder dies,...

  2. 43 CFR 2803.12 - What happens to my application or grant if I die?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What happens to my application or grant if I die? 2803.12 Section 2803.12 Public Lands: Interior Regulations Relating to Public Lands... What happens to my application or grant if I die? (a) If an applicant or grant holder dies,...

  3. 43 CFR 2883.14 - What happens to my application, grant, or TUP if I die?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What happens to my application, grant, or TUP if I die? 2883.14 Section 2883.14 Public Lands: Interior Regulations Relating to Public Lands... happens to my application, grant, or TUP if I die? (a) If an applicant or grant or TUP holder dies,...

  4. 43 CFR 2883.14 - What happens to my application, grant, or TUP if I die?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What happens to my application, grant, or TUP if I die? 2883.14 Section 2883.14 Public Lands: Interior Regulations Relating to Public Lands... happens to my application, grant, or TUP if I die? (a) If an applicant or grant or TUP holder dies,...

  5. 43 CFR 2803.12 - What happens to my application or grant if I die?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What happens to my application or grant if I die? 2803.12 Section 2803.12 Public Lands: Interior Regulations Relating to Public Lands... What happens to my application or grant if I die? (a) If an applicant or grant holder dies,...

  6. 43 CFR 3202.13 - What happens if the applicant dies before the lease is issued?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What happens if the applicant dies before...) GEOTHERMAL RESOURCE LEASING Lessee Qualifications § 3202.13 What happens if the applicant dies before the lease is issued? If the applicant dies before the lease is issued, BLM will issue the lease to...

  7. 43 CFR 3202.13 - What happens if the applicant dies before the lease is issued?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What happens if the applicant dies before...) GEOTHERMAL RESOURCE LEASING Lessee Qualifications § 3202.13 What happens if the applicant dies before the lease is issued? If the applicant dies before the lease is issued, BLM will issue the lease to...

  8. 43 CFR 3202.13 - What happens if the applicant dies before the lease is issued?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What happens if the applicant dies before...) GEOTHERMAL RESOURCE LEASING Lessee Qualifications § 3202.13 What happens if the applicant dies before the lease is issued? If the applicant dies before the lease is issued, BLM will issue the lease to...

  9. 43 CFR 3202.13 - What happens if the applicant dies before the lease is issued?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What happens if the applicant dies before...) GEOTHERMAL RESOURCE LEASING Lessee Qualifications § 3202.13 What happens if the applicant dies before the lease is issued? If the applicant dies before the lease is issued, BLM will issue the lease to...

  10. 38 CFR 11.128 - Veteran dies without having filed application for final settlement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Veteran dies without... Amended (pub. L. 120, 68th Cong.) § 11.128 Veteran dies without having filed application for final settlement. If the veteran dies without having filed application for final settlement under the...

  11. 38 CFR 11.128 - Veteran dies without having filed application for final settlement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Veteran dies without... Amended (pub. L. 120, 68th Cong.) § 11.128 Veteran dies without having filed application for final settlement. If the veteran dies without having filed application for final settlement under the...

  12. 38 CFR 11.128 - Veteran dies without having filed application for final settlement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Veteran dies without... Amended (pub. L. 120, 68th Cong.) § 11.128 Veteran dies without having filed application for final settlement. If the veteran dies without having filed application for final settlement under the...

  13. 38 CFR 11.128 - Veteran dies without having filed application for final settlement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Veteran dies without... Amended (pub. L. 120, 68th Cong.) § 11.128 Veteran dies without having filed application for final settlement. If the veteran dies without having filed application for final settlement under the...

  14. 38 CFR 11.128 - Veteran dies without having filed application for final settlement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Veteran dies without... Amended (pub. L. 120, 68th Cong.) § 11.128 Veteran dies without having filed application for final settlement. If the veteran dies without having filed application for final settlement under the...

  15. Development of a Fluid-Particle Model in Simulating the Motion of External Solidified Crystals and the Evolution of Defect Bands in High-Pressure Die Casting

    NASA Astrophysics Data System (ADS)

    Bi, Cheng; Xiong, Shoumei; Li, Xiaobo; Guo, Zhipeng

    2016-04-01

    A numerical fluid-particle model was developed to simulate the motion of external solidified crystals (ESCs) in the melt during the filling process of high-pressure die casting (HPDC). Simulation results on a tensile bar casting with two types of ingates (semi-circle and circle) revealed that for a long time scale the ESCs tended to distribute in a ring pattern around the specimen center, whereas for a short time scale the ESC distribution changed constantly from the ring pattern to either the center pattern or the ring-center pattern. It was proposed that the defect bands would form at these areas where two solidification fronts met (where solidification shrinkage occurred), including one originating from the skin layer of the specimen and the other from the ESC region. Accordingly, three types of defect band patterns, which were commonly observed in HPDC experiment, could be successfully simulated and explained using this model.

  16. The Structure and Properties of Inductively Coupled Plasma Assisted Magnetron Sputtered Nanocrystalline NbN Coatings in Corrosion Protective Die Casting Molds.

    PubMed

    Chun, Sung-Yong

    2016-02-01

    Niobium nitride coatings for the surface modified die casting molds with various ICP powers have been prepared using ICP assisted magnetron sputtering. The applied ICP power was varied from 0 to 200 W. The deposited coatings were characterized post-deposition using X-ray diffractometry (XRD) and atomic force microscopy (AFM). Single NbN phased coatings with nano-grain sized (<7.6 nm) were identified. The corrosion resistance and hardness of each coating were evaluated from potentiostat and nanoindentator. Superior corrosion protective coatings in excess of 13.9 GPa were deposited with assistance of ICP plasma during sputtering. PMID:27433719

  17. Improved life of die casting dies of H13 steel by attaining improved mechanical properties and distortion control during heat treatment. Year 1 report, October 1994--September 1995

    SciTech Connect

    Wallace, J.F.; Schwam, D.

    1995-03-01

    Optimum heat treatment of dies (quenching) is critical in ensuring satisfactory service performance: rapid cooling rates increase the thermal fatigue/heat checking resistance of the steel, although very fast cooling rates can also lead to distortion and lower fracture toughness, increasing the danger of catastrophic fracture. Goal of this project is to increase die life by using fast enough quenching rates (> 30 F/min ave cooling rate from 1750 to 550 F, 1/2 in. below working surfaces) to obtain good toughness and fatigue resistance in Premium grade H-13 steel dies. An iterative approach of computer modeling validated by experiment was taken. Cooling curves during gas quenching of H-13 blocks and die shapes were measured under 2, 5, and 7.5 bar N2 and 4 bar Ar. Resulting dimensional changes and residual stresses were determined. To facilitate the computer modeling work, a database of H-13 mechanical and physical properties was compiled. Finite element analysis of the heat treated shapes was conducted. Good fit of modeled vs measured quenched rates was demonstrated for simple die shapes. The models predict well the phase transformation products from the quench. There is good fit between predicted and measured distortion contours; however magnitude of predicted distortion and residual stresses does not match well the measured values. Further fine tuning of the model is required.

  18. Energy and Technolgy Assessment of Zinc and Magnesium Casting Plants, Technical Report Close-out, August 25,2006

    SciTech Connect

    Twin City Die Castings Company; Tom Heider; North American Die Castings Association

    2006-08-25

    Twin City Die Castings Company of Minneapolis, Minnesota, Twin City Die Castings Company was awarded project No. DE-FG36-05GO15097 to perform plant wide assessments of ten (10) die casting facilities that produce zinc and magnesium alloy castings in order to determine improvements and potential cost savings in energy use. Mr. Heider filled the role of team leader for the project and utilized the North American Die Casting Association (NADCA) to conduct audits at team participant plants so as to hold findings specific to each plant proprietary. The intended benefits of the project were to improve energy use through higher operational and process efficiency for the plants assessed. An improvement in energy efficiency of 5 – 15% was targeted. The primary objectives of the project was to: 1) Expand an energy and technology tool developed by the NADCA under a previous DOE project titled, “Energy and Technology Assessment for Die Casting Plants” for assessing aluminum die casting plants to be more specifically applicable to zinc and magnesium die casting facilities. 2) Conduct ten (10) assessments of zinc and magnesium die casting plants, within eight (8) companies, utilizing the assessment tool to identify, evaluate and recommend opportunities to enhance energy efficiency, minimize waste, and improve productivity. 3) Transfer the assessment tool to the die casting industry at large.

  19. Clean Metal Casting

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  20. Casting materials and their application in research and teaching.

    PubMed

    Haenssgen, Kati; Makanya, Andrew N; Djonov, Valentin

    2014-04-01

    From a biological point of view, casting refers to filling of anatomical and/or pathological spaces with extraneous material that reproduces a three-dimensional replica of the space. Casting may be accompanied by additional procedures such as corrosion, in which the soft tissue is digested out, leaving a clean cast, or the material may be mixed with radiopaque substances to allow x-ray photography or micro computed topography (µCT) scanning. Alternatively, clearing of the surrounding soft tissue increases transparency and allows visualization of the casted cavities. Combination of casting with tissue fixation allows anatomical dissection and didactic surgical procedures on the tissue. Casting materials fall into three categories namely, aqueous substances (India ink, Prussian blue ink), pliable materials (gelatins, latex, and silicone rubber), or hard materials (methyl methacrylates, polyurethanes, polyesters, and epoxy resins). Casting has proved invaluable in both teaching and research and many phenomenal biological processes have been discovered through casting. The choice of a particular material depends inter alia on the targeted use and the intended subsequent investigative procedures, such as dissection, microscopy, or µCT. The casting material needs to be pliable where anatomical and surgical manipulations are intended, and capillary-passable for ultrastructural investigations. PMID:24564951

  1. 78 FR 38682 - Information Collection; Application for Payment of Amounts Due Persons Who Have Died, Disappeared...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ...; Application for Payment of Amounts Due Persons Who Have Died, Disappeared, or Have Been Declared Incompetent... Amounts Due Persons Who Have Died, Disappeared, or Have Been Declared Incompetent. OMB Control Number... declared incompetent must complete a form FSA-325, Application for Payment of Amounts Due Persons Who...

  2. Predicting Pattern Tooling and Casting Dimensions for Investment Casting - Phase II

    SciTech Connect

    Sabau, Adrian S

    2005-09-01

    The investment casting process allows the production of complex-shape parts and close dimensional tolerances. One of the most important phases in the investment casting process is the design of the pattern die. Pattern dies are used to create wax patterns by injecting wax into dies. The wax patterns are used to create a ceramic shell by the application of a series of ceramic coatings, and the alloy is cast into the dewaxed shell mold (Fig. 1.1). However, the complexity of shape and the close dimensional tolerances required in the final casting make it difficult to determine tooling dimensions. The final linear dimension of the casting depends on the cumulative effects of the linear expansions or contractions in each step of the investment casting process (Fig. 1.2). In most cases, the mold geometry or cores restrict the shrinkage of the pattern or the cast part, and the final casting dimensions may be affected by time-dependent processes such as viscoelastic deformation of the wax, and viscoplastic creep and plastic deformations of the shell and alloy. The pattern die is often reworked several times to produce castings whose dimensions are within acceptable tolerances. To date, investment casting technology has been based on hands-on training and experience. Technical literature is limited to experimental, phenomenological studies aimed at obtaining empirical correlations for quick and easy application in industry. The goal of this project was to predict casting dimensions for investment castings in order to meet blueprint nominal during the first casting run. Several interactions have to be considered in a coupled manner to determine the shrinkage factors: these are the die-wax, wax-shell, and shell-alloy interactions (as illustrated in Fig. 1.3). In this work, the deformations of the die-wax and shell-alloy systems were considered in a coupled manner, while the coupled deformation of the wax-shell system was not considered. Future work is needed in order to

  3. Application of alcohol based spraying coating on green sand mould for steel casting

    NASA Astrophysics Data System (ADS)

    Xu, Z. L.; Wang, J.; Yang, S. S.; He, Q. L.; Xiong, H. Sh

    2015-12-01

    A kind of coating suitable for green sand steel casting was developed. The practical application showed that the strength of the coating was high enough with no crack and no peeling under room temperature after drying the spraying coating, the performance of the coating for anti-cracking was good under high temperature, and the gas evolution of the coating was low. Using the coating, the casting surfaces finish appeared very good.

  4. Quantified diagnostic work-up casts: applications for interdisciplinary treatment planning.

    PubMed

    Solow, Roger A

    2016-01-01

    Diagnostic casts that accurately replicate a patient's occlusion are essential for planning comprehensive care and interdisciplinary treatment. These casts can reveal the actual problem in the spatial relationship between the maxilla and the mandible, which may not be apparent on intraoral examination. Duplicate casts can be altered and measured to quantify the extent of the correction necessary for a predictable result. Treatment planning for interdisciplinary cases requires thorough evaluation of the entire problem and solution set as well as coordination of all procedures. Severe problems and invasive treatments require precise treatment planning. This case report illustrates these principles through multiple applications of quantified diagnostic work-up casts for a patient requiring orthognathic surgery, orthodontics, and occlusal adjustment after a mandibular subcondylar fracture. PMID:27148655

  5. Fastcast: Integration and application of rapid prototyping and computational simulation to investment casting

    SciTech Connect

    Maguire, M.C.; Baldwin, M.D.; Atwood, C.L.

    1996-09-01

    The emergence of several rapid prototyping and manufacturing (RP and M) technologies is having a dramatic impact on investment casting. While the most successful of the rapid prototyping technologies are almost a decade old, relatively recent process advances in their application have produced some remarkable success in utilizing their products as patterns for investment castings. Sandia National Laboratories has been developed highly coupled experimental and computational capabilities to examine the investment casting process with the intention of reducing the amount of time required to manufacture castings, and to increase the quality of the finished product. This presentation will begin with process aspects of RP and M pattern production and handling, shell fabrication, burnout, and casting. The emphasis will be on how the use of Stereolithography (SL) or Selective Laser Sintered (SLS) patterns differs from more traditional wax pattern processes. Aspects of computational simulation to couple design, thermal analysis, and mold filling will be discussed. Integration of these topics is probably the greatest challenge to the use of concurrent engineering principles with investment casting. Sandia has conducted several experiments aimed at calibrating computer codes and providing data for input into these simulations. Studies involving materials as diverse as stainless steel and gold have been conducted to determine liquid metal behavior in molds via real time radiography. The application of these experiments to predictive simulations will be described.

  6. Improved ceramic slip casting technique. [application to aircraft model fabrication

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M. (Inventor); Vasquez, Peter (Inventor)

    1993-01-01

    A primary concern in modern fluid dynamics research is the experimental verification of computational aerothermodynamic codes. This research requires high precision and detail in the test model employed. Ceramic materials are used for these models because of their low heat conductivity and their survivability at high temperatures. To fabricate such models, slip casting techniques were developed to provide net-form, precision casting capability for high-purity ceramic materials in aqueous solutions. In previous slip casting techniques, block, or flask molds made of plaster-of-paris were used to draw liquid from the slip material. Upon setting, parts were removed from the flask mold and cured in a kiln at high temperatures. Casting detail was usually limited with this technique -- detailed parts were frequently damaged upon separation from the flask mold, as the molded parts are extremely delicate in the uncured state, and the flask mold is inflexible. Ceramic surfaces were also marred by 'parting lines' caused by mold separation. This adversely affected the aerodynamic surface quality of the model as well. (Parting lines are invariably necessary on or near the leading edges of wings, nosetips, and fins for mold separation. These areas are also critical for flow boundary layer control.) Parting agents used in the casting process also affected surface quality. These agents eventually soaked into the mold, the model, or flaked off when releasing the case model. Different materials were tried, such as oils, paraffin, and even an algae. The algae released best, but some of it remained on the model and imparted an uneven texture and discoloration on the model surface when cured. According to the present invention, a wax pattern for a shell mold is provided, and an aqueous mixture of a calcium sulfate-bonded investment material is applied as a coating to the wax pattern. The coated wax pattern is then dried, followed by curing to vaporize the wax pattern and leave a shell

  7. Commercialization of NASA's High Strength Cast Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2003-01-01

    In this paper, the commercialization of a new high strength cast aluminum alloy, invented by NASA-Marshall Space Flight Center, for high temperature applications will be presented. Originally developed to meet U.S. automotive legislation requiring low- exhaust emission, the novel NASA aluminum alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (450 F-750 F), which can lead to reducing part weight and cost as well as improving performance for automotive engine applications. It is an ideal low cost material for cast components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. NASA alloy also offers greater wear resistance, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys, and the new alloy can be produced economically from sand, permanent mold and investment casting. Since 2001, this technology was licensed to several companies for automotive and marine internal combustion engines applications.

  8. Acquired localized hypertrichosis induced by internal fixation and plaster cast application.

    PubMed

    Ma, Hui-Jun; Yang, Yang; Ma, Hui-Yong; Jia, Chi-Yu; Li, Ting-Hui

    2013-08-01

    Hypertrichosis refers to increased vellus hair growth and is independent to androgen excess. The acquired localized hypertrichosis (ALH) is one of the typical hypertrichosis, which mainly results from chronic irritation, inflammation, friction, and occlusion by plaster of Paris. Here, we report a young boy who had ALH on his right hand following a closed fracture with internal fixation and plaster cast application. The case is unusual because the hairy area is limited to the operative region of internal fixation. We suggest that the local vascular changes and skin inflammation induced by internal fixation and plaster cast application may be associated with ALH. PMID:24003283

  9. 40 CFR 420.60 - Applicability; description of the continuous casting subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the continuous casting subcategory. 420.60 Section 420.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE...

  10. The application of cast SiC/Al to rotary engine components

    NASA Technical Reports Server (NTRS)

    Stoller, H. M.; Carluccio, J. R.; Norman, J. P.

    1986-01-01

    A silicon carbide reinforced aluminum (SiC/Al) material fabricated by Dural Aluminum Composites Corporation was tested for various components of rotary engines. Properties investigated included hardness, high temperature strength, wear resistance, fatigue resistance, thermal conductivity, and expansion. SiC/Al appears to be a viable candidate for cast rotors, and may be applicable to other components, primarily housings.

  11. Cast CF8C-Plus Stainless Steel for Turbocharger Applications

    SciTech Connect

    Maziasz, P.J.; Shyam, A.; Evans, N.D.; Pattabiraman, K. (Honeywell Turbo Technologies

    2010-06-30

    The purpose of this Cooperative Research and Development Agreement (CRADA) project is to provide the critical test data needed to qualify CF8C-Plus cast stainless steel for commercial production and use for turbocharger housings with upgraded performance and durability relative to standard commercial cast irons or stainless steels. The turbocharger technologies include, but are not limited to, heavy-duty highway diesel engines, and passenger vehicle diesel and gasoline engines. This CRADA provides additional critical high-temperature mechanical properties testing and data analysis needed to quality the new CF8C-Plus steels for turbocharger housing applications.

  12. Feasibility Assessment for Pressure Casting of Ceramic-Aluminum Composites for NASA's Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2005-01-01

    Feasibility assessment of pressure casting of ceramic-aluminum composites for NASA% propulsion applications is summarized. A combination of several demonstration projects to produce three unique components for liquid hydrogen-oxygen rocket engine% flanges, valves and turbo-pump housing are conducted. These components are made from boron carbide, silicon carbide and alumina powders fabricated into complex net shaped parts using dry green powder compaction, slip casting or a novel 3D ink-jet printing process, followed by sintering to produce performs that can be pressure cast by infiltration with molten aluminum. I n addition, joining techniques are also explored to insure that these components can be assembled into a structure without degrading their highly tailored properties. The feasibility assessment was made to determine if these new materials could provide a significant weight savings, thereby reducing vehicle launch costs, while being durable materials to increase safety and performance for propulsion system.

  13. Development of cast ferrous alloys for Stirling engine application

    NASA Technical Reports Server (NTRS)

    Lemkey, F. D.

    1982-01-01

    Low cost cast ferrous base alloys that can be used for cylinder and regenerator housing components of the Stirling engine were investigated. The alloys must meet the requirements of high strength and thermal fatigue resistance to approximately 1500 F, compatibility and low permeability with hydrogen, good elevated temperature oxidation/corrosion resistance, and contain a minimum of strategic elements. The phase constituents of over twenty alloy iterations were examined by X-ray diffraction. These alloy candidates were further screened for their tensile and stress rupture strength and surface stability in air at 1450 and 1600 F, respectively. Two alloys, NASAUT 1G (Fe-10Mn-20Cr-1.5C-1.0Si) and NASAUT 4G (Fe-15Mn-12Cr-3Mo-1.5C-1.0Si-1.0Nb), were chosen for more extensive elevated temperature testing. These alloys were found to exhibit nearly equivalent elevated temperature creep strength and oxidation resistance. Silicon present in these alloys at the 1 w/o level permitted the achievement of oxide scale adherence to 1600 F without loss of strength (or ductility) as was noted for equivalent additions of aluminum.

  14. Cast Aluminum Alloys for High Temperature Applications Using Nanoparticles Al2O3 and Al3-X Compounds (X = Ti, V, Zr)

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2009-01-01

    In this paper, the effect of nanoparticles Al2O3 and Al3-X compounds (X = Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their low cost, chemical stability and low diffusions rates in aluminum at high temperatures. The strengthening mechanism at high temperature for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. For Al2O3 nanoparticles, the test samples were prepared from special Al2O3 preforms, which were produced using ceramic injection molding process and then pressure infiltrated by molten aluminum. In another method, Al2O3 nanoparticles can also be homogeneously mixed with fine aluminum powder and consolidated into test samples through hot pressing and sintering. With the Al3-X nanoparticles, the test samples are produced as precipitates from in-situ reactions with molten aluminum using conventional permanent mold or die casting techniques. It is found that cast aluminum alloy using nanoparticles Al3-X is the most cost effective method to produce high strength aluminum alloys for high temperature applications in comparison to nanoparticles Al2O3. Furthermore, significant mechanical properties retention in high temperature environment could be achieved with Al3-X nanoparticles, resulting in tensile strength of nearly 3 times higher than most 300- series conventional cast aluminum alloys tested at 600 F.

  15. Urinary casts

    MedlinePlus

    ... Casts in the urine; Fatty casts; Red blood cell casts; White blood cell casts ... The absence of cellular casts or presence of a few hyaline casts is normal. The examples above are common measurements for results of ...

  16. Urinary casts

    MedlinePlus

    ... people with advanced kidney disease and chronic kidney failure . White blood cell (WBC) casts are more common ... Hyaline casts; Granular casts; Renal tubular epithelial casts; Waxy casts; Casts in the ...

  17. Steel castings by the electroslag casting technique

    NASA Astrophysics Data System (ADS)

    Sikka, V. K.; Mitchell, A.

    1984-10-01

    Electroslag casting facilities in Canada and the United States were reviewed. Several value body castings of 2 1/4 Cr-1 Mo, 9 Cr-1 Mo, and 18% Cr-8% Ni (Mo) steels were made at the University of British Columbia facility. These castings were examined for surface finish, chemical segregation, and macrostructure in the as-cast condition and after various heat treatments. Castings were subjected to tensile, charpy impact, and creep testing. Results of these tests were compared with similar data on wrought material and where applicable, with data on sand castings.

  18. Steel castings by the electroslag casting technique

    SciTech Connect

    Sikka, V.K.; Mitchell, A.

    1984-10-01

    Electroslag casting facilities in Canada and the United States were reviewed. Several valve body castings of 2 1/4 Cr-1 Mo, 9 Cr-1 Mo, and 18% Cr-8% Ni(Mo) steels were made at the University of British Columbia facility. These castings were examined for surface finish, chemical segregation, and macrostructure in the as-cast condition and after various heat treatments. Castings were subjected to tensile, Charpy impact, and creep testing. Results of these tests were compared with similar data on wrought material and, where applicable, with data on sand castings. 22 figures.

  19. Ni3Al-based alloys for die and tool application

    DOEpatents

    Liu, Chain T.; Bloom, Everett E.

    2001-01-01

    A novel Ni.sub.3 Al-based alloy exhibits strengths and hardness in excess of the standard base alloy IC-221M at temperatures of up to about 1000.degree. C. The alloy is useful in tool and die applications requiring such temperatures, and for structural elements in engineering systems exposed to such temperatures.

  20. Comment on the reported fiber attenuations in the visible regime in 'Fabrication of glass photonic crystal fibers with a die-cast process'

    SciTech Connect

    Feng Xian; Loh, Wei H.; Richardson, David J

    2008-10-01

    We comment on the recent paper by Zhou et al. [Appl. Opt.45, 4433 (2006)APOPAI0003-693510.1364/AO.45.004433], in which transmission losses of 0.2-0.3 dB/m were claimed across the wavelength range 420-900 nm in a high-index (nd=1.80518 at 587.6 nm) SF6 glass-based photonic crystal fiber fabricated by novel die-cast technique. If confirmed, these losses are at least 1 order of magnitude lower than previous reported losses of SF6 photonic crystal fibers from other fabrication approaches. Here we present a statistic survey on the relationship between the refractive index and the bulk material attenuation, based on a large number of commercial Schott optical glasses with the nd ranging between 1.40 and 2.05. It shows that the loss of a high-index (nd=1.80) glass optical fiber should be at the levels of 10-50 dB/m at 420 nm and 1-10 dB/m at 500 nm, respectively. Moreover, the material attenuation of such a high-index glass fiber should intrinsically show a large decay, from 10-50 dB/m at 420 nm to the level of 1 dB/m at 700 nm, which arises from the tail on the UV absorption edge of the high-index glass extending to the visible region. Therefore, we conclude that: (1) the low loss of 0.2-0.3 dB/m reported in the cited paper is abnormally one or two magnitudes lower than the material attenuation that a high-index (nd=1.80) glass optical fiber should have in the range between 420 and 500 nm and that (2) the flat loss curve between 420 and 700 nm in the cited paper deviates greatly from the intrinsic behavior of a high-index (nd=1.80) glass fiber.

  1. Matched metal die compression molded structural random fiber sheet molding compound flywheel. [Patent application

    DOEpatents

    Kulkarni, S.V.; Christensen, R.M.; Toland, R.H.

    1980-09-24

    A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel may be economically produced by a matched metal die compression molding process. The flywheel makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  2. Compaction die for forming a solid annulus on a right circular cylinder. [Patent application

    DOEpatents

    Harlow, J.L.

    1981-09-14

    A compacting die is disclosed wherein the improvement comprises providing a screen in the die cavity, the screen being positioned parallel to the side walls of said die and dividing the die cavity into center and annular compartments. In addition, the use of this die in a method for producing an annular clad ceramic fuel material is disclosed.

  3. Cryogenic Fracture Toughness Evaluation of an Investment Cast Al-Be Alloy for Structural Applications

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.; McGill, P. B.

    2006-01-01

    Aluminum-Beryllium metal matrix composite materials are useful due to their desirable performance characteristics for aerospace applications. Desirable characteristics of this material includes light-weight, dimensional stability, stiffness, good vibration damping characteristics, low coefficient of thermal expansion, and workability, This material is 3.5 times stiffer and 22% lighter than conventional aluminum alloys. electro-optical systems, advanced sensor and guidance components for flight and satellite systems, components for light-weight high-performance aircraft engines, and structural components for helicopters. Aluminum-beryllium materials are now available in the form of near net shape investment castings. In this materials properties characterization study, the cryogenic tensile and fracture properties of an investment casting alloy, Beralcast 363, were determined. Tensile testing was performed at 21 C (70 F), -73.3 C (-100 F), -195.5 C (-320 F) and -252.8 C (-423 F), and fracture (K(sub lc) and da/dN) testing was performed at -73.3 C (-100 F), -195.5 C (-320 F) and -252.8 C (-423 F). Their use is attractive for weight critical structural applications such as advanced

  4. Investment casting of {gamma}-TiAl-based alloys: Microstructure and data base for gas turbine applications

    SciTech Connect

    Wagner, R.; Appel, F.; Dogan, B.

    1995-12-31

    Investment casting is regarded as an economic processing technology for the production of {gamma}-TiAl based components for gas turbine applications. Near net-shape parts can be cast such that they are free from pores and flaws after adequate `HIP`ping. The inhomogeneous cast microstructure which results from locally varying cooling rates (e.g. in the root and foil of a blade), however, is often retained even after heat-treatments necessary to achieve a balance of properties for a given application. Appropriate modifications of the alloy chemistry may lead to an improved microstructural homogeneity in the cast parts. Data bases of properties (tensile properties, creep, fatigue and rupture strength, fracture and impact toughness, oxidation and corrosion resistance) which are relevant for potential gas turbine applications have been assessed for different cast {gamma}-TiAl alloys with different microstructures. These are compared with corresponding properties of nickel-based and iron-based superalloys {gamma}-TiAl is competing with for substitution.

  5. Contactless inductive flow tomography: basic principles and first applications in the experimental modelling of continuous casting

    NASA Astrophysics Data System (ADS)

    Stefani, F.; Eckert, S.; Ratajczak, M.; Timmel, K.; Wondrak, T.

    2016-07-01

    Contactless inductive flow tomography (CIFT) aims at reconstructing the flow structure of a liquid metal from the magnetic fields measured at various positions outside the fluid body which are induced by the flow under the influence of one or multiple applied magnetic fields. We recap the basic mathematical principles of CIFT and the results of an experiment in which the propeller-driven three-dimensional flow in a cylindrical had been reconstructed. We also summarize the recent activities to utilize CIFT in various problems connected with the experimental simulation of the continuous casting process. These include flow reconstructions in single-phase and two-phase flow problems in the Mini-LIMMCAST model of slab-casting, studies of the specific effects of an electromagnetic stirrer attached to the Submerged Entry Nozzle (SEN), as well as first successful applications of CIFT on the background of a strong electromagnetic brake field. We conclude by discussing some remaining obstacles for the deployment of CIFT in a real caster.

  6. Effect of composition and processing on the thermal fatigue and toughness of high performance die steels. Year 1 report

    SciTech Connect

    Wallace, J.F.; Wang, Yumin; Schwam, D.

    1996-06-01

    The goal of this project is to extend the lifetime of dies for die casting by 20%. Since the die contributes about 10% to the cost of die cast parts, such an improvement in lifetime would result in annual savings of over $200 Million dollars. This is based on the estimated annual die production of one Billion dollars in the US. The major tasks of this two year project are: (1) Evaluate NEW DIE STEEL COMPOSITIONS that have been developed for demanding applications and compare them to Premium Grade H-13 die steel. (2) Optimize the AUSTENITIZING TREATMENT of the new composition. Assess the effects of fast, medium and slow COOLING RATES DURING HEAT TREATMENT, on the thermal fatigue resistance and toughness of the die steel. (3) Determine the effect of ELECTRO-DISCHARGE MACHINING (EDM) on the thermal fatigue resistance and impact properties of the steel. (4) Select demanding components and conduct IN-PLANT TESTING by using the new steel. Compare the performance of the new steel with identical components made of Premium Grade H-13. The immersion thermal fatigue specimen developed at CWRU is being used to determine resistance to heat checking, and the Charpy V-notch test for evaluating the toughness. The overall result of this project will be identification of the best steel available on the market and the best processing methods for aluminum die casting dies. This is an interim report for year 1 of the project.

  7. 75 FR 20387 - Contech Castings, LLC, Including Workers Whose Unemployment Insurance (UI) Wages Are Reported...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... workers are engaged in activities related to the production of aluminum and magnesium die casted component... who were adversely affected by increased imports of aluminum and magnesium die casted component...

  8. Laser assisted die bending: a new application of high power diode lasers

    NASA Astrophysics Data System (ADS)

    Schuöcker, D.; Schumi, T.; Spitzer, O.; Bammer, F.; Schuöcker, G.; Sperrer, G.

    2015-02-01

    Nowadays high power lasers are mainly used for cutting of sheet metals, for welding, hardening and rapid prototyping. In the forming of sheet metals as bending or deep drawing lasers are not used. Nevertheless a few years ago a new application of high power lasers has been invented, where bending of materials that break at room temperature becomes possible by heating them along the bending edge with high power lasers thus allowing their treatment without cracks and rupture. For this purpose a large number of diode lasers are arranged in the bottom tool of a bending machine (a V-shaped die) which heat up the initially flat sheet metal during the bending process what is performed by pressing it into the die with a knife shaped upper tool where due to the laser heating the material is softened and thus cracks are avoided. For the technical realization of the new process of laser assisted die bending, modules equipped with numerous laser diodes and a total beam power of 2,5 kW are used. The light emitted by these modules enters a tool with a length of 15cm and is deflected towards the workpiece. By using ten of these modules with adjacent dies and by integrating those in a bending press a bending edge of sheet metals with a length of 1500mm can be realized. Such a bending press with laser assistance also needs energization with a power of practically 50kW, a respective water flow, a heat exchanger system and also a control for all functions of this system. Special measures have also been developed to avoid radiating of those tools that are not covered by a workpiece in the case of bending edges shorter than the full length of the bending tools whereas individual short circuiting of diode modules can be performed. Specific measures to ensure a safe operation without any harm to the operational person have been realized. Exploitation of the bending process has been carried out for titanium, where material thicknesses up to 3mm have been bent successfully.

  9. Modeling and control of casting and welding processes

    SciTech Connect

    Kou, S.; Mehrabian, R.

    1986-01-01

    This book contains papers divided among the following sections: process monitor and control in welding; plasma processing and refining; strip casting; modelling of welding processes; CAD/CAM in casting; investment and die casting; ingot, continuous and other shape casting; and rapid solidification and microstructural evolution.

  10. The improvement of aluminium casting process control by application of the new CRIMSON process

    NASA Astrophysics Data System (ADS)

    Dai, X.; Jolly, M.; Zeng, B.

    2012-07-01

    All The traditional foundry usually not only uses batch melting where the aluminium alloys are melted and held in a furnace for long time, but also uses the gravity filling method in both Sand Casting Process (SCP) and Investment Casting Process (ICP). In the gravity filling operation, the turbulent behaviour of the liquid metal causes substantial entrainment of the surface oxide films which are subsequently trapped into the liquid and generate micro cracks and casting defects. In this paper a new CRIMSON process is introduced which features instead of gravity filling method, using the single shot up-casting method to realize the rapid melting and rapid filling mould operations which reduce the contact time between the melt and environment thus reducing the possibility of defect generation. Another advantage of the new process is the drastic reduction of energy consumption due to shortened melting and filling time. Two types of casting samples from SCP and ICP were compared with the new process. The commercial software was used to simulate the filling and solidification processes of the casting samples. The results show that the new process has a more improved behaviour during filling a mould and solidification than the two conventional casting processes.

  11. Application of continuous casting steel 100Cr6 (SAE 52100) for bearing balls

    SciTech Connect

    Stahl, F.; Hirsch, Th.; Mayr, P.

    1998-12-31

    The objective of the investigation was to study the feasibility of applying continuous casting steel 100Cr6 (SAE 52100) for bearing balls. It was found that two of three continuous casted steel batches have longer or at least similar rolling contact fatigue lifetimes compared to one ingot casted batch. For one of the continuous casted batches, the rolling contact fatigue lifetime was 30% less. The micro- and macrostructure and the residual stresses below the surface of the balls were comparable. There is also no obvious difference between the four batches in the metallurgical parameters like contents of oxygen, titanium and sulfur as well as in the distribution of carbides and their network. The reason for the shorter lifetime of one batch finally was found to be due not to the continuous casting process itself. There was a difference in the cross section of the different casting moulds, and by this in the speed of solidification. As a consequence an increased segregation of alloying elements was observed. So the primary carbides of this batch were of bigger size and higher amounts have been detected within a larger cross section of the bloom. Finally the inferior distribution and size of carbides in the layers of maximum equivalent stress below the surface were found to be crack initiation points. The reduced lifetime of one batch therefore could be correlated to these metallurgical differences. It has been demonstrated that bearing balls made from continuous casted steel 100Cr6 (SAE 52100) have similar or better rolling contact fatigue lifetime than bearing balls made from ingot casted material. However, it is necessary to have minimal amounts of micro- and macro-inclusions as well as a homogeneous distribution of carbides, particularly in the main segregation areas. For that reason, the steel quality of every type of continuous casting machine has to be evaluated separately.

  12. Low-gravity solidification of cast iron and space technology applications

    NASA Technical Reports Server (NTRS)

    Graham, J. A.

    1984-01-01

    Two types of analyses relating to cast iron solidification were conducted. A theoretical analysis using a computer to predict the cooling versus time relationship throughout the test specimen was performed. Tests were also conducted in a ground-based laboratory to generate a cooling time curve for cast iron. In addition, cast iron was cooled through the solidification period on a KC-135 and an F-104 aircraft while these aircraft were going through a period of low gravity. Future subjects for low gravity tests are enumerated.

  13. Application of Internal Fusible Chills in Thick-Walled Castings Made of EN-GJS with an Optimized Microstructure

    NASA Astrophysics Data System (ADS)

    Krupa, Wojciech; Tonn, Babette

    2011-01-01

    permanent moulds using fusible cooling plates at Gontermann-Peipers GmbH. Homogenous microstructures as well as higher mechanical properties were achieved. This new method shows good perspectives for further applications in composite casting technologies.

  14. Recent advances in the application of modeling to the investment casting process

    SciTech Connect

    Foran, R.K.; Hansen, T.; Mueller, B.

    1995-12-31

    Process modeling is being used to reduce development cycle time and cost, and improve the quality of investment castings. A critical component of modeling development is to improve model accuracy. Accuracy improvements are necessary not only for basic solutions such as fluid flow and thermal gradients, but they are also a prerequisite for more sophisticated analysis such as thermal stress and nonfill. This paper discusses accuracy improvements resulting from more complete and accurate thermophysical databases, improved estimates of the contact conductance between different materials, and more metallurgically correct methods to track latent heat evolution. Nonfill prediction techniques have been developed for the case of metal freeze off and applied to titanium castings. These results are being used to develop economical, high quality products and investment casting processes.

  15. Application of the Billet Casting Method to Determine the Onset of Incipient Melting of 319 Al Alloy Engine Blocks

    NASA Astrophysics Data System (ADS)

    Lombardi, A.; Ravindran, C.; MacKay, R.

    2015-06-01

    The increased use of Al for automotive applications has resulted from the need to improve vehicle fuel efficiency. Aluminum alloy engine blocks fulfil the need of lightweighting. However, there are many challenges associated with thermo-mechanical mismatch between Al and the gray cast iron cylinder liners, which result in large tensile residual stress along the cylinder bores. This requires improced mechanical properties in this region to prevent premature engine failure. In this study, replicating billet castings were used to simulate the engine block solution heat treatment process and determine the onset of incipient melting. Microstructural changes during heat treatment were assessed with SEM and EDX, while thermal analysis was carried out using differential scanning calorimetry. The results suggest that solution heat treatment at 500 °C was effective in dissolving secondary phase particles, while solutionizing at 515 or 530 °C caused incipient melting of Al2Cu and Al5Mg8Cu2Si6. Incipient melting caused the formation ultra-fine eutectic clusters consisting of Al, Al2Cu, and Al5Mg8Cu2Si6 on quenching. In addition, DSC analysis found that incipient melting initiated at 507 °C for all billets, although the quantity of local melting reduced with microstructural refinement as evidenced by smaller endothermic peaks and energy absorption. The results from this study will assist in improving engine block casting integrity and process efficiency.

  16. Exploratory study on H13 steel dies

    SciTech Connect

    Sunwoo, A.J.

    1994-04-01

    Ultrahigh-strength H13 steel is a recommended die material for aluminum die casting; dies made from H13 steel can be safely water- cooled during hot working operations without cracking. However, after time the dies exhibited surface cracking and excessive wear. Erosive wear also occurs owing to high pressure injection of molten Al. An exploratory study was made of the causes for surface cracking of H13 dies. Results suggest that surface cracking is caused by interrelated factors, internal to the die material as well as externally induced conditions.

  17. Overview of the ToxCast Research Program: Applications to Predictive Toxicology and Chemical Prioritization

    EPA Science Inventory

    EPA’s ToxCast program, the NTP’s HTS initiative, and the NCGC’s Molecular Libraries Initiative into a collaborative research program focused on identifying toxicity pathways and developing in vitro assays to characterize the ability of chemicals to perturb those pathways. The go...

  18. Standard specification for castings, zirconium-base, corrosion resistant, for general application. ASTM standard

    SciTech Connect

    1998-02-01

    This specification is under the jurisdiction of ASTM Committee B-10 on Reactive and Refractory Metals and Alloys and is the direct responsibility of Subcommittee B10.05 on Castings. Current edition approved Oct. 10, 1997 and published February 1998. Originally published as B 752-85. Last previous edition was B 752-91(1995).

  19. Overview of the ToxCast Research Program: Applications to Predictive Toxicology and Chemical Prioritization (SETAC)

    EPA Science Inventory

    Understanding the potential health risks posed by environmental chemicals is a significant challenge driven by the large number of diverse chemicals with generally uncharacterized exposures, mechanisms and toxicities. The U.S. EPA’s ToxCast chemical prioritization research projec...

  20. The Second Phase of ToxCast and Initial Applications to Chemical Prioritization

    EPA Science Inventory

    Tens of thousands of chemicals and other contaminants exist in our environment, but only a fraction of these have been characterized for their potential hazard to humans. ToxCast is focused on closing this data gap and improving the management of chemical risk through a high thro...

  1. 43 CFR 3502.40 - What happens if an applicant or successful bidder for a permit or lease dies before the permit or...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What happens if an applicant or successful bidder for a permit or lease dies before the permit or lease is issued? 3502.40 Section 3502.40 Public... successful bidder for a permit or lease dies before the permit or lease is issued? (a) If probate of...

  2. 43 CFR 3502.40 - What happens if an applicant or successful bidder for a permit or lease dies before the permit or...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What happens if an applicant or successful bidder for a permit or lease dies before the permit or lease is issued? 3502.40 Section 3502.40 Public... successful bidder for a permit or lease dies before the permit or lease is issued? (a) If probate of...

  3. 43 CFR 3502.40 - What happens if an applicant or successful bidder for a permit or lease dies before the permit or...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What happens if an applicant or successful bidder for a permit or lease dies before the permit or lease is issued? 3502.40 Section 3502.40 Public... successful bidder for a permit or lease dies before the permit or lease is issued? (a) If probate of...

  4. 43 CFR 3502.40 - What happens if an applicant or successful bidder for a permit or lease dies before the permit or...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What happens if an applicant or successful bidder for a permit or lease dies before the permit or lease is issued? 3502.40 Section 3502.40 Public... successful bidder for a permit or lease dies before the permit or lease is issued? (a) If probate of...

  5. Precision cast vs. wrought superalloys

    NASA Technical Reports Server (NTRS)

    Tien, J. K.; Borofka, J. C.; Casey, M. E.

    1986-01-01

    While cast polycrystalline superalloys recommend themselves in virtue of better 'buy-to-fly' ratios and higher strengthening gamma-prime volume fractions than those of wrought superalloys, the expansion of their use into such critical superalloy applications as gas turbine hot section components has been slowed by insufficient casting process opportunities for microstructural control. Attention is presently drawn, however, to casting process developments facilitating the production of defect-tolerant superalloy castings having improved fracture reliability. Integrally bladed turbine wheel and thin-walled turbine exhaust case near-net-shape castings have been produced by these means.

  6. Application of EDS microanalysis in the identification of inhomogeneities in surface protective layers on ductile cast iron parts

    NASA Astrophysics Data System (ADS)

    Boroń, Ł.; Tchórz, A.

    2010-02-01

    In this study, the results of the application of both scanning electron microscopy and EDS microanalysis in investigations of the process of the protective layer formation on the surface of ductile cast iron (the substrate material) turbine blades are presented. The turbine blades, designated for operation in an aggressive environment, were coated with protective chromium carbide layers using plasma spraying methods. The first turbine blade was coated using a standard plasma spraying technique, followed by superficial remelting treatment, while the second one was coated using a modified plasma technology, i.e., HVOF (High Velocity Oxy Fuel) spraying technique.

  7. Low Temperature Consolidation of Micro/Nanosilver Die-Attach Preforms

    NASA Astrophysics Data System (ADS)

    McCoppin, Jared; Reitz, Thomas L.; Miller, Ryan; Vijwani, Hema; Mukhopadhyay, Sharmila; Young, Daniel

    2014-09-01

    Organically passivated silver nanopowder paste-based sintering is considered a promising solution for die-attach in high temperature power and sensing electronic devices. However, oxygen requirements during burnout and inherently high shrinkage rates limit their use to small die sizes. This work reports an alternative fabrication method that resolves decomposition and shrinkage issues of the die-attach by utilizing a prestressed optimized tape cast mixture of micro- and nanosilver particles with a polypropylene carbonate binder. The effects of prestressing, micro/nanosilver bimodal distribution, and polymer content on resulting microstructure and shear strength were investigated. Prior to application as a die-attach, uniaxial compression of the tape was found to significantly decrease shrinkage and improve green strength. This pre-stressing strategy allows for a decoupling of the resulting die-attach materials properties from the pressure applied during assembly. Bimodal mixtures consisting of 1-3 μm spherical powders with nanosilver resulted in shear strengths comparable to those of pure nanosilver. Shear strength decreased as bimodal particle size increased above 5 μm. A polymer content of ˜10 wt.% polypropylene carbonate combined with prestressing was identified as optimal for maximizing die-attach shear strength while still maintaining pliability and formability. Tape casts that were prestressed to 212 MPa by uniaxially compression and formulated with 10 wt.% of polypropylene carbonate resulted in a die-attach material with a shear strength of 54 MPa when sintered. These materials were used to demonstrate void-free 25-mm2 die-attach assemblies, suggesting that tape cast micro/nanosilver materials may be a promising die-attach method for high temperature and large-area electronics devices.

  8. Application of emulsifiers in the manufacture of cast boosters and related products

    SciTech Connect

    Joginadham, C.; Shankar, P.S.; Gupta, A.N.

    1996-12-01

    Cast boosters made with pentaerythritol tetranitrate (PETN) and trinitro toluene (TNT) give high velocities of detonation and are sensitive to initiation even under high pressures. However, the manufacture of the same involves heating of TNT to its melting temperature and mixing of dry PETN in it. In the present work, wet PETN, TNT and water soluble nitrate salts were used for the manufacture of the boosters. The nitrate salt solution formed with the excess water available in wet PETN was emulsified with the aid of emulsifiers. The velocities of detonation of boosters with various percentages of water were determined. The data of explosive characters of these boosters were compared with normal pentolite cast boosters.

  9. Processing of Advanced Cast Alloys for A-USC Steam Turbine Applications

    NASA Astrophysics Data System (ADS)

    Jablonski, Paul D.; Hawk, Jeffery A.; Cowen, Christopher J.; Maziasz, Philip J.

    2012-02-01

    The high-temperature components within conventional supercritical coal-fired power plants are manufactured from ferritic/martensitic steels. To reduce greenhouse-gas emissions, the efficiency of pulverized coal steam power plants must be increased to as high a temperature and pressure as feasible. The proposed steam temperature in the DOE/NETL Advanced Ultra Supercritical power plant is high enough (760°C) that ferritic/martensitic steels will not work for the majority of high-temperature components in the turbine or for pipes and tubes in the boiler due to temperature limitations of this class of materials. Thus, Ni-based superalloys are being considered for many of these components. Off-the-shelf forged nickel alloys have shown good promise at these temperatures, but further improvements can be made through experimentation within the nominal chemistry range as well as through thermomechanical processing and subsequent heat treatment. However, cast nickel-based superalloys, which possess high strength, creep resistance, and weldability, are typically not available, particularly those with good ductility and toughness that are weldable in thick sections. To address those issues related to thick casting for turbine casings, for example, cast analogs of selected wrought nickel-based superalloys such as alloy 263, Haynes 282, and Nimonic 105 have been produced. Alloy design criteria, melt processing experiences, and heat treatment are discussed with respect to the as-processed and heat-treated microstructures and selected mechanical properties. The discussion concludes with the prospects for full-scale development of a thick section casting for a steam turbine valve chest or rotor casing.

  10. Optimization of Composition and Heat Treating of Die Steels for Extended Lifetime

    SciTech Connect

    David Schwam; John F. Wallace; Quanyou Zhou

    2002-01-30

    An ''average'' die casting die costs fifty thousand dollars. A die used in making die cast aluminum engine blocks can cost well over one million dollars. These costs provide a strong incentive for extension of die life. While vacuum quenched Premium Grade H13 dies have become the most widely used in the United States, tool makers and die casters are constantly searching for new steels and heat treating procedures to extend die life. This project was undertaken to investigate the effects of composition and heat treating on die life and optimize these parameters.

  11. Low Frequency Phased Array Application for Crack Detection in Cast Austenitic Piping

    SciTech Connect

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2006-10-01

    As part of a multi-year program funded by the United States Nuclear Regulatory Commission (US NRC) to address nondestructive examination (NDE) reliability of inservice inspection (ISI) programs, studies conducted at the Pacific N¬orthwest National Laboratory (PNNL) in Richland, Washington, have focused on assessing novel NDE approaches for the inspection of coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the US NRC on the utility, effec¬tiveness and reliability of ultrasonic testing (UT) as related to the ISI of primary piping components in US commercial nuclear power plants. This paper describes progress, recent developments and results from an assessment of a portion of the work relating to the ultrasonic low frequency phased array inspection technique. Westinghouse Owner’s Group (WOG) cast stainless steel pipe segments with thermal and mechanical fatigue cracks, PNNL samples containing thermal fatigue cracks and several blank vintage specimens having very coarse grains that are representative of early centrifugally cast piping installed in PWRs, were used for assessing the inspection method. The phased array approach was implemented using an R/D Tech Tomoscan III system operating at 1.0 MHz and 500 kHz, providing composite volumetric images of the samples. Several dual, transmit-receive, custom designed low-frequency arrays were employed in laboratory trials. Results from laboratory studies for assessing detection, localization and length sizing effectiveness are discussed.

  12. Effect of Titanium on the Mechanical Properties and Microstructure of Gray Cast Iron for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Gelfi, M.; Gorini, D.; Pola, A.; La Vecchia, G. M.

    2016-07-01

    Lamellar gray cast iron, with a mainly pearlitic microstructure, is widely used in the automotive industry, mostly in the manufacturing of brake disks. This work analyzes in depth the effects of small variations of titanium content on the microstructure and mechanical properties of cast iron brake disks. For this purpose, eight different heats of EN-GJL-250 cast iron were selected, with a similar chemical composition but with different titanium contents, varying from 0.013 to 0.031%. The drops in mechanical strength and hardness values measured on the high-Ti samples were correlated to microstructural variations quantitatively observed by means of optical and scanning electron microscope. It was found that titanium combines to form titanium nitrides, suppressing the beneficial microstructural effects of nitrogen at solidification. Residual nitrogen, if present in sufficient quantity, promotes the nucleation of primary austenite from the liquid and the formation of a fine microstructure, with small eutectic cells and lower graphite content. Such a microstructure provides brake disks with better mechanical properties. The interpretation of results was further supported by thermal analysis and thermodynamic calculations.

  13. PREFACE: International Conference on Advancement in Science and Technology 2012 (iCAST): Contemporary Mathematics, Mathematical Physics and their Applications

    NASA Astrophysics Data System (ADS)

    Ganikhodjaev, Nasir; Mukhamedov, Farrukh; Hee, Pah Chin

    2013-04-01

    The 4th International Conference on the Advancement of Science and Technology 2012 (iCAST 2012), with theme 'Contemporary Mathematics, Mathematical Physics and their Applications', took place in Kuantan, Malaysia, from Wednesday 7 to Friday 9 November 2012. The conference was attended by more than 100 participants, and hosted about 160 oral and poster papers by more than 140 pre-registered authors. The key topics of the 4th iCAST 2012 include Pure Mathematics, Applied Mathematics, Theoretical/Mathematical Physics, Dynamical Systems, Statistics and Financial Mathematics. The scientific program was rather full since after the Keynote and Invited Talks in the morning, four parallel sessions ran every day. However, according to all attendees, the program was excellent with a high level of talks and the scientific environment was fruitful; thus all attendees had a creative time. The conference aimed to promote the knowledge and development of high-quality research in mathematical fields concerned with the application of other scientific fields as well as modern technological trends in physics, chemistry, biology, medicine, economics, sociology and environmental sciences. We would like to thank the Keynote and the Invited Speakers for their significant contributions to 4th iCAST 2012. We would also like to thank the members of the International Scientific Committee and the members of the Organizing Committee. We cannot end without expressing our many thanks to International Islamic University Malaysia and our sponsors for their financial support . This volume presents selected papers which have been peer-reviewed. The editors hope that it may be useful and fruitful for scholars, researchers, and advanced technical members of the industrial laboratory facilities for developing new tools and products. Guest Editors Nasir Ganikhodjaev, Farrukh Mukhamedov and Pah Chin Hee The PDF contains the committee lists, board list and biographies of the plenary speakers.

  14. Application of heat pipe technology in permanent mold casting of nonferrous alloys

    NASA Astrophysics Data System (ADS)

    Elalem, Kaled

    The issue of mold cooling is one, which presents a foundry with a dilemma. On the one hand; the use of air for cooling is safe and practical, however, it is not very effective and high cost. On the other hand, water-cooling can be very effective but it raises serious concerns about safety, especially with a metal such as magnesium. An alternative option that is being developed at McGill University uses heat pipe technology to carry out the cooling. The experimental program consisted of designing a permanent mold to produce AZ91E magnesium alloy and A356 aluminum alloy castings with shrinkage defects. Heat pipes were then used to reduce these defects. The heat pipes used in this work are novel and are patent pending. They are referred to as McGill Heat Pipes. Computer modeling was used extensively in designing the mold and the heat pipes. Final designs for the mold and the heat pipes were chosen based on the modeling results. Laboratory tests of the heat pipe were performed before conducting the actual experimental plan. The laboratory testing results verified the excellent performance of the heat pipes as anticipated by the model. An industrial mold made of H13 tool steel was constructed to cast nonferrous alloys. The heat pipes were installed and initial testing and actual industrial trials were conducted. This is the first time where a McGill heat pipe was used in an industrial permanent mold casting process for nonferrous alloys. The effects of cooling using heat pipes on AZ91E and A356 were evaluated using computer modeling and experimental trials. Microstructural analyses were conducted to measure the secondary dendrite arm spacing, SDAS, and the grain size to evaluate the cooling effects on the castings. The modeling and the experimental results agreed quite well. The metallurgical differences between AZ91E and A356 were investigated using modeling and experimental results. Selected results from modeling, laboratory and industrial trials are presented. The

  15. High-Strength Aluminum Casting Alloy for High-Temperature Applications (MSFC Center Director's Discretionary Fund Final Project No. 97-10)

    NASA Technical Reports Server (NTRS)

    Lee, J. A.

    1998-01-01

    A new aluminum-silicon alloy has been successfully developed at Marshall Space Flight Center that has a significant improvement in tensile strength at elevated temperatures (550 to 700 F). For instance, the new alloy shows in average tensile strength of at least 90 percent higher than the current 390 aluminum piston alloy tested at 500 F. Compared to conventional aluminum alloys, automotive engines using the new piston alloy will have improved gas mileage, and may produce less air pollution in order to meet the future U.S. automotive legislative requirements for low hydrocarbon emissions. The projected cost for this alloy is less than $0.95/lb, and it readily allows the automotive components to be cast at a high production volume with a low, fully accounted cost. It is economically produced by pouring molten metal directly into conventional permanent steel molds or die casting.

  16. Impact properties of zinc die cast alloys

    SciTech Connect

    Schrems, Karol K.; Dogan, Omer N.; Manahan, M.P.; Goodwin, F.E.

    2005-01-01

    Alloys 3, 5, AcuZinc 5, and ZA-8 were tested at five temperatures between -40 C and room temperature to determine impact properties. Izod impact energy data was obtained in accordance with ASTM D256. Unlike ASTM E23, these samples were tested with a milled notch in order to compare with plastic samples. In addition, flexural data was obtained for design use.

  17. Application of statistical methods for analyzing the relationship between casting distortion, mold filling, and interfacial heat transfer in sand molds

    SciTech Connect

    Y. A. Owusu

    1999-03-31

    This report presents a statistical method of evaluating geometric tolerances of casting products using point cloud data generated by coordinate measuring machine (CMM) process. The focus of this report is to present a statistical-based approach to evaluate the differences in dimensional and form variations or tolerances of casting products as affected by casting gating system, molding material, casting thickness, and casting orientation at the mold-metal interface. Form parameters such as flatness, parallelism, and other geometric profiles such as angularity, casting length, and height of casting products were obtained and analyzed from CMM point cloud data. In order to relate the dimensional and form errors to the factors under consideration such as flatness and parallelism, a factorial analysis of variance and statistical test means methods were performed to identify the factors that contributed to the casting distortion at the mold-metal interface.

  18. Die-away kinetics of aerosolized bacteria from sprinkler application of wastewater.

    PubMed

    Teltsch, B; Shuval, H I; Tadmor, J

    1980-06-01

    A methodology for estimating, under field conditions, the microbial die-away constant (lambda) is presented. This constant may be used in predicting the aerosolized pathogenic microorganism concentrations downwind from a wastewater spray or aeration site by means of modified atmospheric diffusion equations. The mean lambda of Escherichia coli for very early morning runs was 8.8 X 10(-3)s-1, and that for afternoon runs was 6.6 X 10(-2)s-1. PMID:6996614

  19. A Comparative Study between Closed Reduction and Cast Application Versus Percutaneous K- Wire Fixation for Extra-Articular Fracture Distal end of Radius

    PubMed Central

    Venkatesh, Raghu Begur; Narayanappa, Roshan Kumar Bangalore

    2016-01-01

    Introduction In extra-articular distal radius fractures closed reduction and casting has been the mainstay of treatment, difficulty lies in predicting and maintaining the proper reduction at final union. Percutaneous K-wire stabilization is also a widely accepted treatment option, but there is no consensus on its outcome in comparison to closed reduction and casting. Aim To evaluate the results of closed reduction and casting versus closed reduction with percutaneous K wire fixation and casting in the treatment of the distal radius extra-articular fracture with reference to the restoration of radial height, radial inclination, volar tilt of the distal articular surface and to assess the functional outcome of the same measured by the Gartland and Werley demerit scoring system. Materials and Methods Prospective study was conducted on 60 patients attending the Department of Orthopaedics, from December 2013 to May 2015 with extra-articular fractures (AO type 23-A2 and 23-A3) of distal radius and fulfilling all the inclusion and exclusion criteria. The cases were randomly divided into two equal groups of 30 patients, the first group treated by closed reduction and below elbow cast application, while the second group were treated by closed reduction percutaneous K-wire application and below elbow cast application. The radiological outcome of both groups were evaluated by measuring the Volar inclination, Radial inclination and Radial height, while the functional outcome was evaluated by the demerit scoring system of Gartland and Werley. Results The Cast application group had 13 excellent, 9 good, 7 fair and 1 poor result the mean outcome score of the group was 5.2. The K wiring group had 11 excellent, 13 good, 5 fair and 1 poor result, the mean score of the group was 5.17. The unpaired student’s t-test on the values obtained from both groups yielded a p-value of 0.9816. The mean radial height in the Cast application group was 8.033mm while the mean in the k wiring group

  20. Application of the cost-per-good-die metric for process design co-optimization

    NASA Astrophysics Data System (ADS)

    Jhaveri, Tejas; Arslan, Umut; Rovner, Vyacheslav; Strojwas, Andrzej; Pileggi, Larry

    2010-03-01

    The semiconductor industry has pursued a rapid pace of technology scaling to achieve an exponential component cost reduction. Over the years the goal of technology scaling has been distilled down to two discrete targets. Process engineers focus on sustaining wafer costs, while manufacturing smaller dimensions whereas design engineers work towards creating newer IC designs that can feed the next generation of electronic products. In doing so, the impact of process choices made by manufacturing community on the design of ICs and vice-versa were conveniently ignored. Hoever, with the lack of cost effective lithography solutions at the forefront, the process and design communities are struggling to minimize IC die costs by following the described traditional scaling practices. In this paper we discuss a framework for quantifying the economic impact of design and process decisions on the overall product by comparing the cost-per-good-die. We discuss the intricacies involved in computing the cost-per-good-die as we make design and technology choices. We also discuss the impact of design and lithography choices for the 32nm and 22nm technology node. The results demonstrate a strong volume dependence on the optimum design style and corresponding lithography and strategy. Most importantly, using this framework process and design engineers can collaborate to define design style and lithography solutions that will lead to continued IC cost scaling.

  1. Classification techniques based on AI application to defect classification in cast aluminum

    NASA Astrophysics Data System (ADS)

    Platero, Carlos; Fernandez, Carlos; Campoy, Pascual; Aracil, Rafael

    1994-11-01

    This paper describes the Artificial Intelligent techniques applied to the interpretation process of images from cast aluminum surface presenting different defects. The whole process includes on-line defect detection, feature extraction and defect classification. These topics are discussed in depth through the paper. Data preprocessing process, as well as segmentation and feature extraction are described. At this point, algorithms employed along with used descriptors are shown. Syntactic filter has been developed to modelate the information and to generate the input vector to the classification system. Classification of defects is achieved by means of rule-based systems, fuzzy models and neural nets. Different classification subsystems perform together for the resolution of a pattern recognition problem (hybrid systems). Firstly, syntactic methods are used to obtain the filter that reduces the dimension of the input vector to the classification process. Rule-based classification is achieved associating a grammar to each defect type; the knowledge-base will be formed by the information derived from the syntactic filter along with the inferred rules. The fuzzy classification sub-system uses production rules with fuzzy antecedent and their consequents are ownership rates to every defect type. Different architectures of neural nets have been implemented with different results, as shown along the paper. In the higher classification level, the information given by the heterogeneous systems as well as the history of the process is supplied to an Expert System in order to drive the casting process.

  2. Predicting Pattern Tooling and Casting Dimensions for Investment Casting, Phase II

    SciTech Connect

    Nick Cannell; Adrian S. Sabau

    2005-09-30

    The investment casting process allows the production of complex-shape parts and close dimensional tolerances. One of the most important phases in the investment casting process is the design of the pattern die. Pattern dies are used to create wax patterns by injecting wax into dies. The first part of the project involved preparation of reports on the state of the art at that time for all the areas under consideration (die-wax, wax-shell, and shell-alloy). The primary R&D focus during Phase I was on the wax material since the least was known about it. The main R&D accomplishments during this phase were determination of procedures for obtaining the thermal conductivity and viscoelastic properties of an unfilled wax and validating those procedures. Phase II focused on die-wax and shell-alloy systems. A wax material model was developed based on results obtained during the previous R&D phase, and a die-wax model was successfully incorporated into and used in commercial computer programs. Current computer simulation programs have complementary features. A viscoelastic module was available in ABAQUS but unavailable in ProCAST, while the mold-filling module was available in ProCAST but unavailable in ABAQUS. Thus, the numerical simulation results were only in good qualitative agreement with experimental results, the predicted shrinkage factors being approximately 2.5 times larger than those measured. Significant progress was made, and results showed that the testing and modeling of wax material had great potential for industrial applications. Additional R&D focus was placed on one shell-alloy system. The fused-silica shell mold and A356 aluminum alloy were considered. The experimental part of the program was conducted at ORNL and commercial foundries, where wax patterns were injected, molds were invested, and alloys were poured. It was very important to obtain accurate temperature data from actual castings, and significant effort was made to obtain temperature profiles in

  3. Magnesium for automotive applications

    SciTech Connect

    VanFleteren, R.

    1996-05-01

    Die cast magnesium parts are rapidly replacing steel and aluminum structural components in automotive applications, as design engineers seek to reduce assembly costs, raise fuel efficiency, and improve safety. Dozens of automotive components are now die cast from magnesium alloys, including seat stanchions, valve covers, steering wheels, and a variety of steering column components. Because of their excellent castability, complex magnesium die castings can sometimes consolidate several components and eliminate assembly steps. Highly ductile magnesium alloys such as AM60B (6% aluminum) and AM50A (5% aluminum) are important in helping to meet automotive industry crash-energy requirements for car seating and steering components. AZ91D (9% aluminum, 1% zinc) alloys are making removable rear seats in new minivans much easier to handle.

  4. Melting and casting of FeAl-based cast alloy

    SciTech Connect

    Sikka, V.K.; Wilkening, D.; Liebetrau, J.; Mackey, B.

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  5. Thermal and Kinetic Modelling of Elastomer Flow—Application to an Extrusion Die

    NASA Astrophysics Data System (ADS)

    Launay, J.; Allanic, N.; Mousseau, P.; Deterre, R.

    2011-05-01

    This paper reports and discusses the thermal and kinetic behaviour of elastomer flow inside an extrusion die. The reaction progress through the runner was modeled by using a particle tracking technique. The aim is to analyze viscous dissipation phenomena to control scorch arisen, improve the rubber compound curing homogeneity and reduce the heating time in the mould using the progress of the induction time. The heat and momentum equations were solved in three dimensions with Ansys Polyflow. A particle tracking technique was set up to calculate the reaction progress. Several simulations were performed to highlight the influence of process parameters and geometry modifications on the rubber compound thermal and cure homogeneity.

  6. The application of integrated computational material engineering (ICME) in metal castings simulation

    NASA Astrophysics Data System (ADS)

    Guo, Jianzheng; Cao, Weisheng; Samonds, Mark

    2012-07-01

    Integrated Computational Materials Engineering (ICME) is emerging as a methodology for developing advanced materials, manufacturing processing, and engineering components in a faster and more cost effective way. For casting processes, ICME involves many physical phenomena such as thermodynamics, heat transfer, fluid flow, stress, defect formation, microstructure evaluation, and thermophysical and mechanical properties. In this paper, the integration of thermodynamic calculations, thermophysical and mechanical property predictions, and the prediction of microstructure and defects during solidification and heat treatment will be presented. Such integration is helpful to understand the effects of alloy chemistry and processing conditions, and their relationship to microstructure, defect formation, and the final mechanical properties from solidification to heat treatment. Eventually the alloy chemistry and processing parameters can be optimized with the help of the integrated computational modelling.

  7. SPHERICAL DIE

    DOEpatents

    Livingston, J.P.

    1959-01-27

    A die is presented for pressing powdered materials into a hemispherical shape of uniforin density and wall thickness comprising a fcmale and male die element held in a stationary spaced relation with the space being equivalent to the wall thickness and defining the hemispherical shape, a pressing ring linearly moveable along the male die element, an inlet to fill the space with powdered materials, a guiding system for moving the pressing ring along the male die element so as to press the powdered material and a heating system for heating the male element so that the powdered material is heated while being pressed.

  8. Rapid Tooling via Investment Casting and Rapid Prototype Patterns

    SciTech Connect

    Baldwin, Michael D.

    1999-06-01

    The objective of this work to develop the materials processing and design technologies required to reduce the die development time for metal mold processes from 12 months to 3 months, using die casting of Al and Mg as the example process. Sandia demonstrated that investment casting, using rapid prototype patterns produced from Stereo lithography or Selective laser Sintering, was a viable alternative/supplement to the current technology of machining form wrought stock. A demonstration die insert (ejector halt) was investment cast and subsequently tested in the die casting environment. The stationary half of the die insert was machined from wrought material to benchmark the cast half. The two inserts were run in a die casting machine for 3,100 shots of aluminum and at the end of the run no visible difference could be detected between the cast and machined inserts. Inspection concluded that the cast insert performed identically to the machined insert. Both inserts had no indications of heat checking or degradation.

  9. Pigmented casts.

    PubMed

    Miteva, Mariya; Romanelli, Paolo; Tosti, Antonella

    2014-01-01

    Pigmented casts have been reported with variable frequency in scalp biopsies from alopecia areata, trichotillomania, chemotherapy-induced alopecia and postoperative (pressure induced) alopecia. Their presence and morphology in other scalp disorders has not been described. The authors assessed for the presence and morphology of pigmented casts in 308 transversely bisected scalp biopsies from nonscarring and scarring alopecia, referred to the Department of Dermatology, University of Miami within a year. The pigmented casts were present in 21 of 29 cases of alopecia areata (72%), 7 of 7 cases of trichotillomania (100%), 1 case of friction alopecia, 4 of 28 cases of central centrifugal cicatricial alopecia (14%), and 4 of 4 cases of dissecting cellulitis (100%). They did not show any distinguishing features except for the morphology in trichotillomania, which included twisted, linear (zip), and "button"-like pigment aggregation. The linear arrangement was found also in friction alopecia and dissecting cellulitis. Pigmented casts in the hair canals of miniaturized/vellus hairs was a clue to alopecia areata. Pigmented casts can be observed in biopsies of different hair disorders, but they are not specific for the diagnosis. Horizontal sections allow to better assess their morphology and the follicular level of presence of pigmented casts, which in the context of the other follicular findings may be a clue to the diagnosis. PMID:23823025

  10. High density tape casting system

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor)

    1989-01-01

    A system is provided for casting thin sheets (or tapes) of particles bound together, that are used for oxygen membranes and other applications, which enables the particles to be cast at a high packing density in a tape of uniform thickness. A slurry contains the particles, a binder, and a solvent, and is cast against the inside walls of a rotating chamber. Prior to spraying the slurry against the chamber walls, a solvent is applied to a container. The solvent evaporates to saturate the chamber with solvent vapor. Only then is the slurry cast. As a result, the slurry remains fluid long enough to spread evenly over the casting surface formed by the chamber, and for the slurry particles to become densely packed. Only then is the chamber vented to remove solvent, so the slurry can dry. The major novel feature is applying solvent vapor to a rotating chamber before casting slurry against the chamber walls.

  11. Micromechanical die attachment surcharge

    DOEpatents

    Filter, William F.; Hohimer, John P.

    2002-01-01

    An attachment structure is disclosed for attaching a die to a supporting substrate without the use of adhesives or solder. The attachment structure, which can be formed by micromachining, functions purely mechanically in utilizing a plurality of shaped pillars (e.g. round, square or polygonal and solid, hollow or slotted) that are formed on one of the die or supporting substrate and which can be urged into contact with various types of mating structures including other pillars, a deformable layer or a plurality of receptacles that are formed on the other of the die or supporting substrate, thereby forming a friction bond that holds the die to the supporting substrate. The attachment structure can further include an alignment structure for precise positioning of the die and supporting substrate to facilitate mounting the die to the supporting substrate. The attachment structure has applications for mounting semiconductor die containing a microelectromechanical (MEM) device, a microsensor or an integrated circuit (IC), and can be used to form a multichip module. The attachment structure is particularly useful for mounting die containing released MEM devices since these devices are fragile and can otherwise be damaged or degraded by adhesive or solder mounting.

  12. Application of ultrasonic waves to assess grain structure in cast stainless steel

    SciTech Connect

    Kupperman, D.S.; Reimann, K.J.; Abrego-Lopez, J.

    1985-04-01

    Although the ASME code requires the inspection of cast stainless steel (CSS) piping in nuclear reactors, it has not been possible to demonstrate unambiguously that current inspection techniques are adequate. Ultrasonic inspection is difficult because the microstructure of CSS can vary considerably, from elastically isotropic with equiaxed, relatively small grains to elastically anisotropic with a columnar grain structure to a combination of the two. For the near term, improvements that may increase the reliability of ultrasonic inspection include (a) the development of methods to establish the microstructure of the material (to help optimize the inspection technique), (b) the identification of calibration standards that are more representative of the material to be inspected and (c) the use of cracked CSS samples for training purposes. In this paper, the results of experiments to characterize the microstructure of CSS by use of ultrasonic waves will be discussed. Shear waves may be more effective for isotropic material, whereas longitudinal waves may be better for the anisotropic case because of beam-focusing effects. Sound velocity and beam skewing can be measured accurately enough to characterize CSS even in thick-walled reactor components. 5 refs., 6 figs., 2 tabs.

  13. ShakeCast Manual

    USGS Publications Warehouse

    Lin, Kuo-Wan; Wald, David J.

    2008-01-01

    ShakeCast is a freely available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users? facilities, and generates potential damage assessment notifications, facility damage maps, and other Web-based products for emergency managers and responders.

  14. Project CAST.

    ERIC Educational Resources Information Center

    Charles County Board of Education, La Plata, MD. Office of Special Education.

    The document outlines procedures for implementing Project CAST (Community and School Together), a community-based career education program for secondary special education students in Charles County, Maryland. Initial sections discuss the role of a learning coordinator, (including relevant travel reimbursement and mileage forms) and an overview of…

  15. A comparative study of the centrifugal and vacuum-pressure techniques of casting removable partial denture frameworks.

    PubMed

    Shanley, J J; Ancowitz, S J; Fenster, R K; Pelleu, G B

    1981-01-01

    A study was undertaken to evaluate two techniques for casting accuracy on removable partial denture frameworks: centrifugal casting and vacuum-pressure casting. A standard metal die with predetermined reference points in a horizontal plane was duplicated in refractory investment. The casts were waxed, and castings of nickel-chrome alloy were fabricated by the two techniques. Both the casts and the castings were measured between the reference points with a measuring microscope. With both casting methods, the differences between the casts and the castings were significant, but no significant differences were found between castings produced by the two techniques. Vertical measurements at three designated points also showed no significant differences between the castings. Our findings indicate that dental laboratories should be able to use the vacuum-pressure method of casting removable partial denture frameworks and achieve accuracy similar to that obtained by the centrifugal method of casting. PMID:7007622

  16. Cold-Cracking Assessment in AA7050 Billets during Direct-Chill Casting by Thermomechanical Simulation of Residual Thermal Stresses and Application of Fracture Mechanics

    NASA Astrophysics Data System (ADS)

    Lalpoor, M.; Eskin, D. G.; Katgerman, L.

    2009-12-01

    Thermally induced strains and stresses developed during direct-chill (DC) semicontinuous casting of high strength aluminum alloys can result in formation of micro-cracks in different locations of the billet. Rapid propagation of such micro-cracks in tensile thermal stress fields can lead to catastrophic failure of ingots in the solid state called cold cracking. Numerical models can simulate the thermomechanical behavior of an ingot during casting and after solidification and reveal the critical cooling conditions that result in catastrophic failure, provided that the constitutive parameters of the material represent genuine as-cast properties. Application of fracture mechanics, on the other hand, can help to derive the critical crack length leading to failure. In the present research work, the state of residual thermal stresses was determined in an AA7050 billet during DC casting by means of ALSIM5. Simulation results showed that in the steady-state conditions, large compressive stresses form near the surface of the billet in the circumferential direction, whereas in the center, the stresses are tensile in all directions. Magnitudes of von Mises effective stresses, the largest component of principal stresses and the fracture mechanics concepts, were then applied to investigate the crack susceptibility of the billet.

  17. Alloy Design and Development of Cast Cr-W-V Ferritic Steels for Improved High-Temperature Strength for Power Generation Applications

    SciTech Connect

    Klueh, R L; Maziasz, P J; Vitek, J M; Evans, N D; Hashimoto, N

    2006-09-23

    Economic and environmental concerns demand that the power-generation industry seek increased efficiency for gas turbines. Higher efficiency requires higher operating temperatures, with the objective temperature for the hottest sections of new systems {approx} 593 C, and increasing to {approx} 650 C. Because of their good thermal properties, Cr-Mo-V cast ferritic steels are currently used for components such as rotors, casings, pipes, etc., but new steels are required for the new operating conditions. The Oak Ridge National Laboratory (ORNL) has developed new wrought Cr-W-V steels with 3-9% Cr, 2-3% W, 0.25% V (compositions are in wt.%), and minor amounts of additional elements. These steels have the strength and toughness required for turbine applications. Since cast alloys are expected to behave differently from wrought material, work was pursued to develop new cast steels based on the ORNL wrought compositions. Nine casting test blocks with 3, 9, and 11% Cr were obtained. Eight were Cr-W-V-Ta-type steels based on the ORNL wrought steels; the ninth was COST CB2, a 9Cr-Mo-Co-V-Nb cast steel, which was the most promising cast steel developed in a European alloy-development program. The COST CB2 was used as a control to which the new compositions were compared, and this also provided a comparison between Cr-W-V-Ta and Cr-Mo-V-Nb compositions. Heat treatment studies were carried out on the nine castings to determine normalizing-and-tempering treatments. Microstructures were characterized by both optical and transmission electron microscopy (TEM). Tensile, impact, and creep tests were conducted. Test results on the first nine cast steel compositions indicated that properties of the 9Cr-Mo-Co-V-Nb composition of COST CB2 were better than those of the 3Cr-, 9Cr-, and 11Cr-W-V-Ta steels. Analysis of the results of this first iteration using computational thermodynamics raised the question of the effectiveness in cast steels of the Cr-W-V-Ta combination versus the Cr

  18. Casting methods

    DOEpatents

    Marsden, Kenneth C.; Meyer, Mitchell K.; Grover, Blair K.; Fielding, Randall S.; Wolfensberger, Billy W.

    2012-12-18

    A casting device includes a covered crucible having a top opening and a bottom orifice, a lid covering the top opening, a stopper rod sealing the bottom orifice, and a reusable mold having at least one chamber, a top end of the chamber being open to and positioned below the bottom orifice and a vacuum tap into the chamber being below the top end of the chamber. A casting method includes charging a crucible with a solid material and covering the crucible, heating the crucible, melting the material, evacuating a chamber of a mold to less than 1 atm absolute through a vacuum tap into the chamber, draining the melted material into the evacuated chamber, solidifying the material in the chamber, and removing the solidified material from the chamber without damaging the chamber.

  19. CASTING APPARATUS

    DOEpatents

    Gray, C.F.; Thompson, R.H.

    1958-09-23

    An apparatus is described for casting small quantities of uranlum. It consists of a crucible having a hole in the bottom with a mold positioned below. A vertical rcd passes through the hole in the crucible and has at its upper end a piercing head adapted to break the oxide skin encasing a molten uranium body. An air tight cylinder surrounds the crucible and mold, and is arranged to be evacuated.

  20. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Mechanical Performance of Dies

    SciTech Connect

    R. Allen Miller, Principal Investigator; Kabiri-Bamoradian, Contributors: Khalil; Delgado-Garza, Abelardo; Murugesan, Karthik; Ragab, Adham

    2011-09-13

    provided to NADCA for distribution to the industry. Power law based meta-models for predicting machine tie bar loading and for predicting maximum parting surface separation were successfully developed and tested against simulation results for a wide range of machines and experimental data. The models proved to be remarkably accurate, certainly well within the requirements for practical application. In addition to making die structural modeling more accessible, the work advanced the state-of-the-art by developing improved modeling of cavity pressure effects, which is typically modeled as a hydrostatic boundary condition, and performing a systematic analysis of the influence of ejector die design variables on die deflection and parting plane separation. This cavity pressure modeling objective met with less than complete success due to the limits of current finite element based fluid structure interaction analysis methods, but an improved representation of the casting/die interface was accomplished using a combination of solid and shell elements in the finite element model. This approximation enabled good prediction of final part distortion verified with a comprehensive evaluation of the dimensions of test castings produced with a design experiment. An extra deliverable of the experimental work was development of high temperature mechanical properties for the A380 die casting alloy. The ejector side design objective was met and the results were incorporated into the metamodels described above. This new technology was predicted to result in an average energy savings of 2.03 trillion BTU's/year over a 10 year period. Current (2011) annual energy saving estimates over a ten year period, based on commercial introduction in 2009, a market penetration of 70% by 2014 is 4.26 trillion BTU's/year by 2019. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring

  1. Simulating the deformation of dies in the foundry

    NASA Astrophysics Data System (ADS)

    Chabod, A.; Longa, Y.; Dracon, J. M.; Chailler, K.; Hairy, P.; Da Silva, A.

    2012-07-01

    Digital simulation (QuikCAST, ProCAST) is already used extensively when designing metallic dies for founding, in particular to design filling and gating systems. Simulation of the steady-state temperature cycles of dies has also been mastered. With large castings, the temperature gradient induced between the moulding surface and the rear surfaces of the die leads to deformations that may be large enough to measure, and incompatible with the required dimensional accuracy. The temperature gradient also creates thermal fatigue stresses that cause crazing of the die surface. In the study conducted by CTIF, aimed at measuring tooling deformations, various ways of measuring displacements at high temperatures (with and without contact) were investigated in order to evaluate their capabilities and limitations. An experimental device was designed - a test bench combining a metallic die having a simple geometry, in which an aluminium part could be cast, and instrumentation (temperature and displacement sensors). The deformations of the die were measured during first cycles of temperature homogenization. Concurrently, thermomechanical calculations were carried out on the same geometry using PROCAST. The calculation results are well correlated with the experimental measurements and validate the tools and the calculation methods. This thermomechanical approach makes it possible to optimize die design in the foundry and to predict high-temperature deformations as early as the design stage. Knowledge of these deformations makes it possible in turn to anticipate the geometrical and dimensional variations undergone by the castings themselves and so to improve their accuracy. The designer can act on the temperature of the die or the design of the casting, or create a die in which the expected thermal deformation is reversed so as to produce a casting having the correct dimensions. In short, thermomechanical simulation can be applied to this problem to achieve a better understanding

  2. Mechanical evaluation of a soft cast material.

    PubMed

    Zmurko, M G; Belkoff, S M; Herzenberg, J E

    1997-08-01

    In this study, the structural and material properties of a new semi-rigid material, Scotchcast SoftCast (SCS), were compared to the properties of two rigid materials, plaster of paris (POP) and Scotchcast Plus (SCP). Cylinders and flat beams made from 4, 6, 8, and 10 layers of each casting material were tested in three-point bending and diametrical compression. Initial stiffness and yield force values of SCS casts were significantly lower than for casts of SCP and POP made of the same number of layers. Casts made from SCS may be indicated for non-rigid applications, but not where rigid immobilization is required. PMID:9263288

  3. Correlating Hardness Retention and Phase Transformations of Al and Mg Cast Alloys for Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Kasprzak, W.; Czerwinski, F.; Niewczas, M.; Chen, D. L.

    2015-03-01

    The methodology based on correlating hardness and phase transformations was developed and applied to determine the maximum temperature of hardness retention of selected Al-based and Mg-based alloys for aerospace applications. The Al alloys: A356, F357, and C355 experienced 34-66% reduction of the initial hardness, in comparison to 4-22% hardness reduction observed in Mg alloys: QE22A, EV31A, ZE41A, and WE43B after the same annealing to 450 °C. For Al alloys the hardness reduction showed a steep transition between 220 and 238 °C. In contrast, Mg alloys showed a gradual hardness decrease occurring at somewhat higher temperatures between 238 and 250 °C. The hardness data were correlated with corresponding phase transformation kinetics examined by dilatometer and electrical resistivity measurements. Although Mg alloys preserved hardness to higher temperatures, their room temperature tensile strength and hardness were lower than Al alloys. The experimental methodology used in the present studies appears to be very useful in evaluating the softening temperature of commercial Al- and Mg-based alloys, permitting to assess their suitability for high-temperature applications.

  4. Cast aluminum denture base.

    PubMed

    Barco, M T; Dembert, M L

    1987-08-01

    The laboratory procedures for a cast aluminum base denture have been presented. If an induction casting machine is not available, the "two-oven technique" works well, provided the casting arm is kept spinning manually for 4 minutes after casting. If laboratory procedures are executed precisely and with care, the aluminum base denture can be cast with good results. PMID:3305884

  5. USGS ShakeCast

    USGS Publications Warehouse

    Wald, David; Lin, Kuo-Wan

    2007-01-01

    Automating, Simplifying, and Improving the Use of ShakeMap for Post-Earthquake Decisionmaking and Response. ShakeCast is a freely available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users facilities, and generates potential damage assessment notifications, facility damage maps, and other Web-based products for emergency managers and responders.

  6. Casting the Spirit: A Handmade Legacy

    ERIC Educational Resources Information Center

    Rutenberg, Mona

    2008-01-01

    This article discusses how an art therapist working in a hospital palliative care unit has incorporated a ritual of hand casting to help bring closure to dying patients and family members who are grieving as death approaches. The finished hand sculptures depict the hands of the patients and, sometimes, of their loved ones. They are faithful and…

  7. Casting materials

    DOEpatents

    Chaudhry, Anil R.; Dzugan, Robert; Harrington, Richard M.; Neece, Faurice D.; Singh, Nipendra P.

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  8. Investigate on the application of elliptical drawing dies during the manufacturing process of Bi-2223/Ag superconducting tapes

    NASA Astrophysics Data System (ADS)

    Liu, R.; Qu, T.-M.; Zhang, J.-S.; Song, X.-H.; Liang, T.; Liu, Q.; Han, Z.

    2008-09-01

    Elliptical drawing (ED) dies were used during the manufacturing process of Bi-2223/Ag superconducting tapes and their influence on the tapes’ homogeneity and critical currents ( Ic) has been investigated. By comparing two types of HTS tapes drawn by ED dies and a set of reference round dies, we found that the ED process can improve the qualities of the rolled tapes, such as improving the homogeneity of both the center and the peripheral filaments of the tapes, reducing the micro-cracks caused by the rolling process. Thus, the ED process can increase the Ic and engineering critical current density ( Je) values of HTS tapes.

  9. The application and field experience of high strength 12% Cr centrifugally cast pipe for gas gathering system

    SciTech Connect

    Yoshitake, A.; Teraoka, M.; Torigoe, T.; Amako, S.

    1995-10-01

    Centrifugal cast method is one of the processes to provide high quality seamless pipe. The advantages of the process are (1) heavy wall pipe can be manufactured (2) relatively flexible in material selection for manufacturing pipe. For sweet corrosion environment caused by CO{sub 2} where carbon steels can not be used, centrifugally cast 12% Cr martensitic stainless steel pipes and fittings have been developed. One of the key factors of this material applied to pipeline is the weldability, especially high hardness of the welds or its heat affected zone which causes for brittle rupture as well as stress corrosion cracking of the pipeline. Cast 12% Cr pipe which has high strength with low hardness even at the weld joint has been developed. Besides of the development of straight pipe, several types of fittings have been developed. These pipes and fittings have been used for natural gas gathering lines and booster compression lines in sweet corrosion service.

  10. Development of an inverse heat conduction model and its application to determination of heat transfer coefficient during casting solidification

    NASA Astrophysics Data System (ADS)

    Zhang, Liqiang; Reilly, Carl; Li, Luoxing; Cockcroft, Steve; Yao, Lu

    2014-07-01

    The interfacial heat transfer coefficient (IHTC) is required for the accurate simulation of heat transfer in castings especially for near net-shape processes. The large number of factors influencing heat transfer renders quantification by theoretical means a challenge. Likewise experimental methods applied directly to temperature data collected from castings are also a challenge to interpret because of the transient nature of many casting processes. Inverse methods offer a solution and have been applied successfully to predict the IHTC in many cases. However, most inverse approaches thus far focus on use of in-mold temperature data, which may be a challenge to obtain in cases where the molds are water-cooled. Methods based on temperature data from the casting have the potential to be used however; the latent heat released during the solidification of the molten metal complicates the associated IHTC calculations. Furthermore, there are limits on the maximum distance the thermocouples can be placed from the interface under analysis. An inverse conduction based method have been developed, verified and applied successfully to temperature data collected from within an aluminum casting in proximity to the mold. A modified specific heat method was used to account for latent heat evolution in which the rate of change of fraction solid with temperature was held constant. An analysis conducted with the inverse model suggests that the thermocouples must be placed no more than 2 mm from the interface. The IHTC values calculated for an aluminum alloy casting were shown to vary from 1,200 to 6,200 Wm-2 K-1. Additionally, the characteristics of the time-varying IHTC have also been discussed.

  11. Application of a Pore Fraction Hot Tearing Model to Directionally Solidified and Direct Chill Cast Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Dou, Ruifeng; Phillion, A. B.

    2016-06-01

    Hot tearing susceptibility is commonly assessed using a pressure drop equation in the mushy zone that includes the effects of both tensile deformation perpendicular to the thermal gradient as well as shrinkage feeding. In this study, a Pore Fraction hot tearing model, recently developed by Monroe and Beckermann (JOM 66:1439-1445, 2014), is extended to additionally include the effect of strain rate parallel to the thermal gradient. The deformation and shrinkage pore fractions are obtained on the basis of the dimensionless Niyama criterion and a scaling variable method. First, the model is applied to the binary Al-Cu system under conditions of directional solidification. It is shown that for the same Niyama criterion, a decrease in the cooling rate increases both the deformation and shrinkage pore fractions because of an increase in the time spent in the brittle temperature region. Second, the model is applied to the industrial aluminum alloy AA5182 as part of a finite element simulation of the Direct Chill (DC) casting process. It is shown that an increase in the casting speed during DC casting increases the deformation and shrinkage pore fractions, causing the maximum point of pore fraction to move towards the base of the casting. These results demonstrate that including the strain rate parallel to the thermal gradient significantly improves the predictive quality of hot tearing criteria based on the pressure drop equation.

  12. Application of a Pore Fraction Hot Tearing Model to Directionally Solidified and Direct Chill Cast Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Dou, Ruifeng; Phillion, A. B.

    2016-08-01

    Hot tearing susceptibility is commonly assessed using a pressure drop equation in the mushy zone that includes the effects of both tensile deformation perpendicular to the thermal gradient as well as shrinkage feeding. In this study, a Pore Fraction hot tearing model, recently developed by Monroe and Beckermann (JOM 66:1439-1445, 2014), is extended to additionally include the effect of strain rate parallel to the thermal gradient. The deformation and shrinkage pore fractions are obtained on the basis of the dimensionless Niyama criterion and a scaling variable method. First, the model is applied to the binary Al-Cu system under conditions of directional solidification. It is shown that for the same Niyama criterion, a decrease in the cooling rate increases both the deformation and shrinkage pore fractions because of an increase in the time spent in the brittle temperature region. Second, the model is applied to the industrial aluminum alloy AA5182 as part of a finite element simulation of the Direct Chill (DC) casting process. It is shown that an increase in the casting speed during DC casting increases the deformation and shrinkage pore fractions, causing the maximum point of pore fraction to move towards the base of the casting. These results demonstrate that including the strain rate parallel to the thermal gradient significantly improves the predictive quality of hot tearing criteria based on the pressure drop equation.

  13. Superplastic Response of Continuously Cast AZ31B Magnesium Sheet Alloys

    NASA Astrophysics Data System (ADS)

    Boileau, J. M.; Friedman, P. A.; Houston, D. Q.; Luckey, S. G.

    2010-06-01

    Magnesium sheet is typically produced for commercial applications with the traditional DC-ingot casting method. As a result of the hexagonal close-packed crystallographic structure in magnesium, multiple rolling passes and annealing steps are required to reduce the thickness of the ingots. Thus, high fabrication costs characterize the creation of magnesium sheet suitable for common forming operations. Recently, continuous casting (CC) technology, where molten metal is solidified directly into sheet form, has been applied to magnesium alloys; this method has shown the potential to significantly reduce the cost of fabricating magnesium sheet alloys. In order to understand the viability of the CC process, a study was conducted to investigate the superplastic potential of alloys produced by this method. This study focused on AZ31B Mg that was continuously-cast on twin-roll casters from three different suppliers. These three materials were compared with a production DC-cast AZ31B alloy in terms of microstructure, elevated-temperature tensile properties, and superplastic forming response. The data from this study found that microstructural features such as grain size and segregation can significantly affect the forming response. Additionally, the CC alloys can have equivalent or superior SPF response compared to DC-cast alloys, as demonstrated in both elevated temperature tensile tests and superplastic forming trials using a rectangular pan die.

  14. Modeling of cast systems using smoothed-particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Cleary, Paul; Prakash, Mahesh; Ha, Joseph; Sinnott, Matthew; Nguyen, Thang; Grandfield, John

    2004-03-01

    To understand and control the filling process for metals in high-pressure die casting and ingot casting, researchers have used new flow-simulation software for the modeling of mold filling. Smoothed-particle hydrodynamics (SPH) is a non-conventional computational fluid dynamics method that has been successfully applied to these problems. Due to its mesh-free nature, it can handle complex splashing free surface flows and the differential motion of multiple solid-casting equipment components relatively easily. The ability of SPH to predict the detailed filling patterns of real large-scale automotive die castings is demonstrated in this study, and the use of SPH simulation for wheel shape optimization in ingot casting based on minimizing oxide generation while increasing the throughput is also presented.

  15. Thin Wall Iron Castings

    SciTech Connect

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  16. Application of film-casting technique to investigate drug-polymer miscibility in solid dispersion and hot-melt extrudate.

    PubMed

    Parikh, Tapan; Gupta, Simerdeep Singh; Meena, Anuprabha K; Vitez, Imre; Mahajan, Nidhi; Serajuddin, Abu T M

    2015-07-01

    Determination of drug-polymer miscibility is critical for successful development of solid dispersions. This report details a practical method to predict miscibility and physical stability of drug with various polymers in solid dispersion and, especially, in melt extrudates by applying a film-casting technique. Mixtures of itraconazole (ITZ) with hydroxypropylmethylcellulose phthalate (HPMCP), Kollidon(®) VA 64, Eudragit(®) E PO, and Soluplus(®) were film-casted, exposed to 40°C/75% RH for 1 month and then analyzed using differential scanning calorimetry (DSC), powder X-ray diffractometry, and polarized light microscopy (PLM). ITZ had the highest miscibility with HPMCP, being miscible at drug to polymer ratio of 6:4 (w/w). There was a downward trend of lower miscibility with Soluplus(®) (miscible at 3:7, w/w, and a few microcrystals present at 4:6, w/w), Kollidon(®) VA 64 (2:8, w/w) and Eudragit(®) E PO (<1:9, w/w). PLM was found more sensitive to detect drug crystallization than DSC and powder X-ray diffractometry. There was general correlation between results of film casting and hot-melt extrusion (HME) using a twin screw extruder. For ITZ-Soluplus(®) mixtures, HME at 4:6 (w/w) resulted in a single phase, whereas drug crystallization was observed at higher drug load. HME of ITZ-Kollidon(®) VA 64 mixtures also correlated well with the miscibility predicted by film casting. PMID:25917333

  17. Fatigue Characteristics and Quality Index of A357 Type Semi-Solid Aluminum Castings Used for Automotive Application

    NASA Astrophysics Data System (ADS)

    Bouazara, M.; Bouaicha, A.; Ragab, Kh. A.

    2015-08-01

    The present work aims to investigate the fatigue characteristics of automotive lower suspension arm made of semi-solid A357 aluminum castings using metallurgical and analytical approaches. The fatigue life calculations of analytical model are used to identify and introduce the model parameters based on the suspension arm material followed by analyzing the load-number of cycles fatigue curve. The critical stress areas capable of initiating cracks during fatigue tests are detected using ABAQUS software followed by the installation of strain gages on the suspension arm to calculate maximum stress. The fatigue experiments are carried out to compare the results of the analytical method with the experimental endurance curves traced by lower suspension arm samples. Microstructure characteristics of the semi-solid A357 under T6 heat treatment conditions are examined using scanning electron microscope. The results show that the fatigue life and the quality index of alloys investigated are affected by casting technique, castings design, microstructural characterization, and heat treatment condition.

  18. Microstructure and mechanical properties of as-cast Ti-Mo-xCr alloy for biomedical application

    NASA Astrophysics Data System (ADS)

    Senopati, Galih; Sutowo, Cahya; P. A., I. Nyoman Gede; Utomo, Edy Priyanto; Amal, M. Ikhlasul

    2016-02-01

    Beta Ti alloys is one of the most attractive biomaterials due to their better corrosion resistance, biocompatibility, greater specific strength and lower elastic modulus than stainless steels and Co-Cr based alloys. Cr is the strong beta Ti stabilizer and has lower density than Nb, Sn and Ta. In this study As cast Ti-12Mo and Ti-12-xCr with Cr content range 1, 3, 5, and 10 wt.% prepared by using arc melting vacuum-pressure casting were investigated. The as cast Ti-Mo and Ti-Mo-xCr examined using X-ray diffraction (XRD), optical microscope (OM) and Vickers hardness tester. Experimental result indicate Ti-12Mo-xNb match for β phase peaks but TiO2 phase occurred in all alloys. The vickers hardness values of all the Ti-12Mo-xCr alloys are higher than HV 1000. The optical microscope investigation indicate Cr content influence Ti-Mo-xCr microstructure.

  19. Optimization of Squeeze Casting for Aluminum Alloy Parts

    SciTech Connect

    David Schwam; John F. Wallace; Qingming Chang; Yulong Zhu

    2002-07-30

    This study was initiated with the installation of a new production size UBE 350 Ton VSC Squeeze Casting system in the Metal Casting Laboratory at Case Western University. A Lindberg 75k W electrical melting furnace was installed alongside. The challenge of installation and operation of such industrial-size equipment in an academic environment was met successfully. Subsequently, a Sterling oil die heater and a Visi-Track shot monitoring system were added. A significant number of inserts were designed and fabricated over the span of the project, primarily for squeeze casting different configurations of test bars and plates. A spiral ''ribbon insert'' for evaluation of molten metal fluidity was also fabricated. These inserts were used to generate a broad range of processing conditions and determine their effect on the quality of the squeeze cast parts. This investigation has studied the influence of the various casting variables on the quality of indirect squeeze castings primarily of aluminum alloys. The variables studied include gating design, fill time and fill patter, metal pressure and die temperature variations. The quality of the die casting was assessed by an analysis of both their surface condition and internal soundness. The primary metal tested was an aluminum 356 alloy. In addition to determining the effect of these casting variables on casting quality as measured by a flat plate die of various thickness, a number of test bar inserts with different gating designs have been inserted in the squeeze casting machine. The mechanical properties of these test bars produced under different squeeze casting conditions were measured and reported. The investigation of the resulting properties also included an analysis of the microstructure of the squeeze castings and the effect of the various structural constituents on the resulting properties. The main conclusions from this investigation are as follows: The ingate size and shape are very important since it must

  20. Evaluation of Heat Checking and Washout of Heat Resistant Superalloys and Coatings for Die inserts

    SciTech Connect

    David Schwam; John F. Wallace; Yulong Zhu; Edward Courtright; Harold Adkins

    2005-01-30

    This project had two main objectives: (1) To design, fabricate and run a full size test for evaluating soldering and washout in die insert materials. This test utilizes the unique capabilities of the 350 Ton Squeeze Casting machine available in the Case Meal Casting Laboratory. Apply the test to evaluate resistance of die materials and coating, including heat resistant alloys to soldering and washout damage. (2) To evaluate materials and coatings, including heat resistant superalloys, for use as inserts in die casting of aluminum alloys.

  1. The effect of four sprue shapes on the quality of cobalt-chromium cast removable partial denture frame-works

    PubMed Central

    Viswambaran, M.; Agarwal, S. K.

    2013-01-01

    Statement of Problem: Sprue design is a factor that controls the velocity and adequate supply of metal to the mould. Currently various manufacturers recommend different shapes of sprue, which have not been advocated in textbooks and literature is lacking for their routine applications. Purpose: This in vitro study was carried out to determine the efficacy of four sprue shapes in producing complete, void free cobalt-chrome removable partial denture frameworks. Materials and Methods: A brass metal die with a Kennedy class III, modification 1, partially edentulous arch was used and four sprue shapes (Group A-Ribbon, Group B-Square, Group C-Round and Group D- Round with reservoir) were evaluated. 40 refractory casts were made, 10 wax patterns for each sprue design were waxed up, invested with phosphate bonded investment material and castings done with induction casting machine by the same operator under standardized protocols. The cast frameworks were evaluated for 1. The defects observed visually before finishing and polishing procedures, 2. Fit on the master die as seen with naked eye and 3. Defects on radiographic evaluation. Data were tabulated and statistically analyzed with 1-way ANOVA followed by Student ‘t’ test. Results: The results differed significantly (P < 0.0001) between the Groups with maximum defects in the castings of Group A followed in decreasing order by Group B, Group C and Group D. When comparing between the Groups (P < 0.05), the defects in Groups C and D was significantly lower than Group A and Group B. Conclusions: Round sprues with reservoir produced most satisfactory fit of castings with minimum number of internal and external defects. PMID:24014998

  2. Pb-Free Glass Paste: A Metallization-Free Die-Attachment Solution for High-Temperature Application on Ceramic Substrates

    NASA Astrophysics Data System (ADS)

    Sharif, Ahmed; Lim, Jun zhang; Made, Riko I.; Lau, Fu Long; Phua, Eric Jian Rong; Lim, Ju Dy; Wong, Chee Cheong; Gan, Chee Lip; Chen, Zhong

    2013-08-01

    A lead-free glass frit paste as a die-attach material for high-temperature microelectronic application is proposed in this study. The glass paste containing Bi-based powder with a moderate amount of solvent was used for joining Si dice on ceramic substrates without any metallization preparation for either of the bonding surfaces. The die was bonded to a ceramic substrate at 430°C for 10 min. The study focuses on the mechanical and microstructural characterization of the joints with Si dice on two different types of ceramic substrate. Shear strength measurements were carried out at both ambient and 250°C to evaluate room- and high-temperature performance. Furthermore, the effect of aging at 300°C for 500 h on the mechanical properties is presented. The results of the mechanical and microstructural characterization demonstrate that low-temperature glass frit bonding is an effective die-attach method for harsh-environment electronic packaging.

  3. DIE Deflection Modeling: Empirical Validation and Tech Transfer

    SciTech Connect

    R. Allen Miller

    2003-05-28

    This report summarizes computer modeling work that was designed to help understand how the die casting die and machine contribute to parting plane separation during operation. Techniques developed in earlier research (8) were applied to complete a large computational experiment that systematically explored the relationship between the stiffness of the machine platens and key dimensional and structural variables (platen area covered, die thickness, platen thickness, thickness of insert and the location of the die with respect to the platen) describing the die/machine system. The results consistently show that there are many significant interactions among the variables and it is the interactions, more than the individual variables themselves, which determine the performance of the machine/die system. That said, the results consistently show that it is the stiffness of the machine platens that has the largest single impact on die separation.

  4. Improving Tribological Properties of Cast Al-Si Alloys through Application of Wear-Resistant Thermal Spray Coatings

    NASA Astrophysics Data System (ADS)

    Culliton, David; Betts, Anthony; Carvalho, Sandra; Kennedy, David

    2013-04-01

    Flame Spray Thermal Spray coatings are low-cost, high-wear surface-treatment technologies. However, little has been reported on their potential effects on cast automotive aluminum alloys. The aim of this research was to investigate the tribological properties of as-sprayed NiCrBSi and WC/12Co Flame Spray coatings applied to two cast aluminum alloys: high-copper LM24 (AlSi8Cu3Fe), and low-copper LM25 (AlSi7Mg). Potential interactions between the mechanical properties of the substrate and the deposited coatings were deemed to be significant. Microstructural, microhardness, friction, and wear (pin-on-disk, microabrasion, Taber abrasion, etc.) results are reported, and the performance differences between coatings on the different substrates were noted. The coefficient of friction was reduced from 0.69-0.72 to 0.12-0.35. Wear (pin-on-disk) was reduced by a factor of 103-104, which was related to the high surface roughness of the coatings. Microabrasion wear was dependent on coating hardness and applied load. Taber abrasion results showed a strong dependency on the substrate, coating morphology, and homogeneity.

  5. A Benchmark Study on Casting Residual Stress

    SciTech Connect

    Johnson, Eric M.; Watkins, Thomas R; Schmidlin, Joshua E; Dutler, S. A.

    2012-01-01

    Stringent regulatory requirements, such as Tier IV norms, have pushed the cast iron for automotive applications to its limit. The castings need to be designed with closer tolerances by incorporating hitherto unknowns, such as residual stresses arising due to thermal gradients, phase and microstructural changes during solidification phenomenon. Residual stresses were earlier neglected in the casting designs by incorporating large factors of safety. Experimental measurement of residual stress in a casting through neutron or X-ray diffraction, sectioning or hole drilling, magnetic, electric or photoelastic measurements is very difficult and time consuming exercise. A detailed multi-physics model, incorporating thermo-mechanical and phase transformation phenomenon, provides an attractive alternative to assess the residual stresses generated during casting. However, before relying on the simulation methodology, it is important to rigorously validate the prediction capability by comparing it to experimental measurements. In the present work, a benchmark study was undertaken for casting residual stress measurements through neutron diffraction, which was subsequently used to validate the accuracy of simulation prediction. The stress lattice specimen geometry was designed such that subsequent castings would generate adequate residual stresses during solidification and cooling, without any cracks. The residual stresses in the cast specimen were measured using neutron diffraction. Considering the difficulty in accessing the neutron diffraction facility, these measurements can be considered as benchmark for casting simulation validations. Simulations were performed using the identical specimen geometry and casting conditions for predictions of residual stresses. The simulation predictions were found to agree well with the experimentally measured residual stresses. The experimentally validated model can be subsequently used to predict residual stresses in different cast

  6. Wege in die Zukunft

    NASA Astrophysics Data System (ADS)

    Kauermann, Göran; Mosler, Karl

    Die Zukunft stellt große Herausforderungen an die Arbeit der Deutschen Statistischen Gesellschaft. Sie betreffen die gestiegenen Anforderungen der Nutzer von Statistik, die Kommunikationsmöglichkeiten des Internets sowie die Dynamik der statistischen Wissenschaften und ihrer Anwendungsgebiete. Das Kapitel 5 beschreibt, wie sich die Gesellschaft diesen Herausforderungen stellt und welche Ziele sie sich in der wissenschaftlichen Zusammenarbeit und im Kampf gegen das Innumeratentum gesetzt hat.

  7. Interfacial heat transfer in squeeze casting of magnesium alloy AM60 with variation of applied pressures and casting wall-thicknesses

    NASA Astrophysics Data System (ADS)

    Zhang, Xuezhi; Fang, Li; Sun, Zhizhong; Hu, Henry; Nie, Xueyuan; Tjong, Jimi

    2015-12-01

    The heat transfer coefficient at the casting-die interface is the most important factor on the solidification process. With the 75-ton hydraulic press machine and P20 steel die mold, 5-step castings of magnesium alloy AM60 with different wall-thicknesses (3, 5, 8, 12, 20 mm) were poured under various hydraulic pressures (30, 60, and 90 MPa) using an indirect squeeze casting process. Thermal histories throughout the die wall and the casting surface have been recorded by fine type-K thermocouples. The in-cavity local pressures measured by pressure transducers were explored at the casting-die interfaces of 5 steps. The casting-die interfacial heat transfer coefficients (IHTC) initially reached a maximum peak value followed by a gradually decline to the lower level. Similar characteristics of IHTC peak values can be observed at the applied pressures of 30, 60 and 90 MPa. With the applied pressure of 90 MPa, the peak IHTC values from steps 1 to 5 varied from 5623 to 10,649 W/m2 K. As the applied hydraulic pressure increased, the IHTC peak value of each step was increased accordingly. The wall thickness also affected IHTC peak values significantly. The peak IHTC value and heat flux increased as the step became thicker. The empirical equations relating the IHTCs to the local pressures and the solidification temperature at the casting surface were developed based on the multivariate linear and polynomial regression.

  8. Magnesium-lithium casting alloys

    NASA Technical Reports Server (NTRS)

    Latenko, V. P.; Silchenko, T. V.; Tikhonov, V. A.; Maltsev, V. P.; Korablin, V. P.

    1974-01-01

    The strength properties of magnesium-lithium alloys at room, low, and high temperatures are investigated. It is found that the alloys may have practical application at ambient temperatures up to 100 C, that negative temperatures have a favorable influence on the alloy strength, and that cyclic temperature variations have practically no effect on the strength characteristics. The influence of chemical coatings on corrosion resistance of the MgLi alloys is examined. Several facilities based on pressure casting machines, low-pressure casting machines, and magnetodynamic pumps were designed for producing MgLi alloy castings. Results were obtained for MgLi alloys reinforced with fibers having a volumetric content of 15%.

  9. Cool Cast Facts

    MedlinePlus

    ... outer layer is usually made of plaster or fiberglass. Fiberglass casts are made of fiberglass, which is a plastic that can be shaped. Fiberglass casts come in many different colors — if you' ...

  10. Computer simulation applied to jewellery casting: challenges, results and future possibilities

    NASA Astrophysics Data System (ADS)

    Tiberto, Dario; Klotz, Ulrich E.

    2012-07-01

    Computer simulation has been successfully applied in the past to several industrial processes (such as lost foam and die casting) by larger foundries and direct automotive suppliers, while for the jewelry sector it is a procedure which is not widespread, and which has been tested mainly in the context of research projects. On the basis of a recently concluded EU project, the authors here present the simulation of investment casting, using two different softwares: one for the filling step (Flow-3D®), the other one for the solidification (PoligonSoft®). A work on material characterization was conducted to obtain the necessary physical parameters for the investment (used for the mold) and for the gold alloys (through thermal analysis). A series of 18k and 14k gold alloys were cast in standard set-ups to have a series of benchmark trials with embedded thermocouples for temperature measurement, in order to compare and validate the software output in terms of the cooling curves for definite test parts. Results obtained with the simulation included the reduction of micro-porosity through an optimization of the feeding channels for a controlled solidification of the metal: examples of the predicted porosity in the cast parts (with metallographic comparison) will be shown. Considerations on the feasibility of applying the casting simulation in the jewelry sector will be reached, underlining the importance of the software parametrization necessary to obtain reliable results, and the discrepancies found with the experimental comparison. In addition an overview on further possibilities of application for the CFD in jewellery casting, such as the modeling of the centrifugal and tilting processes, will be presented.

  11. Investigation on Tool Wear Rate for Modified and Unmodified Aluminium-Silicon Casting Alloy

    NASA Astrophysics Data System (ADS)

    Haque, M. M.; Khan, A. A.; Ismail, Ahmad F.

    This study demonstrates and explains the effect of strontium modification on machinability of aluminium-silicon eutectic (LM-6 type) alloy. This alloy is known to have many favourable features including weight to strength ratio, high corrosion resistance and excellent castability. However, normal unmodified LM-6 alloy has poor machinability, which reduces its applications range. In this work, various samples of LM-6 alloy were cast using sand and metallic chill mould with and without strontium addition. Machining on each cast product, was carried out using recommended cutting parameters for Al-Si alloys. Strontium modified samples have recorded a reduction in average flank wear, an increase in shear plane angles and a reduction in chip thickness. The main reason for this improvement is the refining effect of strontium, which reduces the size of the hard silicon particles. As a result, their abrasive action on the tool face has reduced a lot. Dramatic reductions in tool wear rate were recorded when the microstructures were refined. On the other hand, when no refinement of microstructure occurs, tool wear rate becomes high. Chip analysis showed that strontium modified sample produced a thinner chip thickness with a larger shear plane angle, requiring less cutting forces. The tool wear depends not only on the phases present in the work material, but also on their sizes and distribution over entire structure. Thus, strontium modification has better effect on machinability of die cast alloy compared to that of the sand cast LM-6 alloy.

  12. LLNL casting technology

    SciTech Connect

    Shapiro, A.B.; Comfort, W.J. III

    1994-01-01

    Competition to produce cast parts of higher quality, lower rejection rate, and lower cost is a fundamental factor in the global economy. To gain an edge on foreign competitors, the US casting industry must cut manufacturing costs and reduce the time from design to market. Casting research and development (R&D) are the key to increasing US compentiveness in the casting arena. Lawrence Livermore National Laboratory (LLNL) is the home of a wide range of R&D projects that push the boundaries of state-of-the art casting. LLNL casting expertise and technology include: casting modeling research and development, including numerical simulation of fluid flow, heat transfer, reaction/solidification kinetics, and part distortion with residual stresses; special facilities to cast toxic material; extensive experience casting metals and nonmetals; advanced measurement and instrumentation systems. Department of Energy (DOE) funding provides the leverage for LLNL to collaborate with industrial partners to share this advanced casting expertise and technology. At the same time, collaboration with industrial partners provides LLNL technologists with broader insights into casting industry issues, casting process data, and the collective, experience of industry experts. Casting R&D is also an excellent example of dual-use technology; it is the cornerstone for increasing US industrial competitiveness and minimizing waste nuclear material in weapon component production. Annual funding for casting projects at LLNL is $10M, which represents 1% of the total LLNL budget. Metal casting accounts for about 80% of the funding. Funding is nearly equally divided between development directed toward US industrial competitiveness and weapon component casting.

  13. LLNL casting technology

    NASA Astrophysics Data System (ADS)

    Shapiro, A. B.; Comfort, W. J., III

    1994-01-01

    Competition to produce cast parts of higher quality, lower rejection rate, and lower cost is a fundamental factor in the global economy. To gain an edge on foreign competitors, the US casting industry must cut manufacturing costs and reduce the time from design to market. Casting research and development (R&D) are the key to increasing US competiveness in the casting arena. Lawrence Livermore National Laboratory (LLNL) is the home of a wide range of R&D projects that push the boundaries of state-of-the art casting. LLNL casting expertise and technology include: casting modeling research and development, including numerical simulation of fluid flow, heat transfer, reaction/solidification kinetics, and part distortion with residual stresses; special facilities to cast toxic material; extensive experience casting metals and nonmetals; advanced measurement and instrumentation systems. Department of Energy (DOE) funding provides the leverage for LLNL to collaborate with industrial partners to share this advanced casting expertise and technology. At the same time, collaboration with industrial partners provides LLNL technologists with broader insights into casting industry issues, casting process data, and the collective experience of industry experts. Casting R&D is also an excellent example of dual-use technology; it is the cornerstone for increasing US industrial competitiveness and minimizing waste nuclear material in weapon component production. Annual funding for casting projects at LLNL is $10M, which represents 1% of the total LLNL budget. Metal casting accounts for about 80% of the funding. Funding is nearly equally divided between development directed toward US industrial competitiveness and weapon component casting.

  14. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Tape Casting TiC+Si Powders

    SciTech Connect

    Henager, Charles H.; Kurtz, Richard J.; Canfield, Nathan L.; Shin, Yongsoon; Luscher, Walter G.; Mansurov, Jirgal; Roosendaal, Timothy J.; Borlaug, Brennan A.

    2013-08-06

    The use of SiC composites in fusion environments likely requires joining of plates using reactive joining or brazing. One promising reactive joining method uses solid-state displacement reactions between Si and TiC to produce Ti3SiC2 + SiC. We continue to explore the processing envelope for this joint for the TITAN collaboration in order to produce optimal joints to undergo irradiation studies in HFIR. One noted feature of the joints produced using tape-calendared powders of TiC+Si has been the large void regions that have been apparently unavoidable. Although the produced joints are very strong, these voids are undesirable. In addition, the tapes that were made for this joining were produced about 20 years ago and were aging. Therefore, we embarked on an effort to produce some new tape cast powders of TiC and Si that could replace our aging tape calendared materials.

  15. Vacuum casting of thick polymeric films

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Moacanin, J.

    1979-01-01

    Bubble formation and layering, which often plague vacuum-evaporated films, are prevented by properly regulating process parameters. Vacuum casting may be applicable to forming thick films of other polymer/solvent solutions.

  16. Rapid tooling for functional prototyping of metal mold processes: Literature review on cast tooling

    SciTech Connect

    Baldwin, M.D.; Hochanadel, P.W.

    1995-11-01

    This report is a literature review on cast tooling with the general focus on AISI H13 tool steel. The review includes processing of both wrought and cast H13 steel along with the accompanying microstructures. Also included is the incorporation of new rapid prototyping technologies, such as Stereolithography and Selective Laser Sintering, into the investment casting of tool steel. The limiting property of using wrought or cast tool steel for die casting is heat checking. Heat checking is addressed in terms of testing procedures, theories regarding the mechanism, and microstructural aspects related to the cracking.

  17. Materials processing threshold report: 2. Use of low gravity for cast iron process development

    NASA Technical Reports Server (NTRS)

    Frankhouser, W. L.

    1980-01-01

    Potential applications of a low gravity environment of interest to the commercial producers of cast iron were assessed to determine whether low gravity conditions offer potential opportunities to producers for improving cast iron properties and expanding the use of cast irons. The assessment is limited to the gray and nodular types of iron, however, the findings are applicable to all cast irons. The potential advantages accrued through low gravity experiments with cast irons are described.

  18. Evaluation of electroslag castings

    SciTech Connect

    Judkins, R.R.; Sikka, V.K.

    1985-01-01

    Results of evaluations of electroslag castings of ferritic (2-1/4 Cr-1 Mo and 9 Cr-1 Mo) and austenitic (CF8M or type 316) steels are presented. The castings have been characterized for surface finish, cracking, solidification structure, chemical composition, hardness, ferrite distribution, tensile properties, Charpy impact properties, and creep properties. Pertinent data are compared with equivalent data for sand castings and wrought products of the same materials. Based on the results of these studies, the properties of electroslag castings compare favorably with those of sand castings and wrought materials.

  19. Methods and apparatus for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics

    DOEpatents

    Stoddard, Nathan G

    2014-01-14

    Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of monocrystalline silicon may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm is provided.

  20. Methods and apparatuses for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics

    DOEpatents

    Stoddard, Nathan G.

    2011-11-01

    Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of monocrystalline silicon may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm is provided.

  1. Shrinkage Prediction for the Investment Casting of Stainless Steels

    SciTech Connect

    Sabau, Adrian S

    2007-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine in order to obtain the actual tooling allowances. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. The numerical simulation results for the shrinkage factors were compared with experimental results.

  2. Prediction of ALLOY SHRINKAGE FACTORS FOR THE INVESTMENT CASTING PROCESS

    SciTech Connect

    Sabau, Adrian S

    2006-01-01

    This study deals with the experimental measurements and numerical predictions of alloy shrinkage factors (SFs) related to the investment casting process. The dimensions of the A356 aluminum alloy casting were determined from the numerical simulation results of solidification, heat transfer, fluid dynamics, and deformation phenomena. The investment casting process was carried out using wax patterns of unfilled wax and shell molds that were made of fused silica with a zircon prime coat. The dimensions of the die tooling, wax pattern, and casting were measured, in order to determine the actual tooling allowances. Several numerical simulations were carried out, to assess the level of accuracy for the casting shrinkage. The solid fraction threshold, at which the transition from the fluid dynamics to the solid dynamics occurs, was found to be important in predicting shrinkage factors (SFs). It was found that accurate predictions were obtained for all measued dimensions when the shell mold was considered a deformable material.

  3. Processing of IN-718 Lattice Block Castings

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.

    2002-01-01

    Recently a low cost casting method known as lattice block casting has been developed by JAM Corporation, Wilmington, Massachusetts for engineering materials such as aluminum and stainless steels that has shown to provide very high stiffness and strength with only a fraction of density of the alloy. NASA Glenn Research Center has initiated research to investigate lattice block castings of high temperature Ni-base superalloys such as the model system Inconel-718 (IN-718) for lightweight nozzle applications. Although difficulties were encountered throughout the manufacturing process , a successful investment casting procedure was eventually developed. Wax formulation and pattern assembly, shell mold processing, and counter gravity casting techniques were developed. Ten IN-718 lattice block castings (each measuring 15-cm wide by 30-cm long by 1.2-cm thick) have been successfully produced by Hitchiner Gas Turbine Division, Milford, New Hampshire, using their patented counter gravity casting techniques. Details of the processing and resulting microstructures are discussed in this paper. Post casting processing and evaluation of system specific mechanical properties of these specimens are in progress.

  4. Die drool and die drool theory

    NASA Astrophysics Data System (ADS)

    Schmalzer, A. M.; Giacomin, A. Jeffrey

    2013-04-01

    When molten plastic is extruded from a die, it sometimes collects on the open face of the die. Known as die drool, this phenomenon costs plastics manufacturers by requiring die cleaning. This has been attributed to many causes, but none of these has led to an equation for the drool rate. In this work we provide an exact analytical solution for the drool rate, and we base this solution on a postulate of a cohesive slip layer near the die walls. We thus attribute die drool to cohesive failure within the fluid at an internal surface where the fluid slips on itself. We adimensionalize the drool rate with the production rate, and call this the build up ratio, BR. We provide an exact analytical solution for BR when the cohesive slip layer either sticks at the wall. We examine the slit geometry corresponding to sheet or film extrusion.

  5. Application of the ToxMiner Database: Network Analysis of Linkage between ToxCast Phase I Chemicals and Thyroid Related Disease Outcomes

    EPA Science Inventory

    The US EPA ToxCast program is using in vitro HTS (High-Throughput Screening) methods to profile and model bioactivity of environmental chemicals. The main goals of the ToxCast program are to generate predictive signatures of toxicity, and ultimately provide rapid and cost-effecti...

  6. Application of the ToxMiner Database: Network Analysis Linking the ToxCast Chemicals to Known Disease-Gene Associations

    EPA Science Inventory

    The US EPA ToxCast program is using in vitro HTS (High-Throughput Screening) methods to profile and model bioactivity of environmental chemicals. The main goals of the ToxCast program are to generate predictive signatures of toxicity, and ultimately provide rapid and cost-effecti...

  7. Formation of blade and slot die coated small molecule multilayers for OLED applications studied theoretically and by XPS depth profiling

    NASA Astrophysics Data System (ADS)

    Peters, Katharina; Raupp, Sebastian; Hummel, Helga; Bruns, Michael; Scharfer, Philip; Schabel, Wilhelm

    2016-06-01

    Slot die coaters especially designed for low material consumption and doctor blades were used to process small molecule solutions for organic light-emitting diodes (OLEDs). Optimum process parameters were developed for the large-scale coating techniques to generate stable single and multiple layers only a few nanometers thick. Achieving a multilayer architecture for solution-processed OLEDs is the most challenging step. X-ray photoelectron spectroscopy sputter depth profiling was performed to determine defined interfaces between coated organic layers. Commercially available small molecules NPB (N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine) and BAlq (Bis(8-hdroxy-2methylquinoline)-(4-phenylphenoxy)aluminum), originally developed for vacuum deposition, were used as hole, respectively electron transport material. Defined double-layers were processed with both scalable coating methods using the orthogonal solvent approach. The use of non-orthogonal solvents resulted in complete intermixing of the material. The results are explained by calculations of solubilities and simulating drying and diffusion kinetics of the small molecule solutions.

  8. SLIP CASTING METHOD

    DOEpatents

    Allison, A.G.

    1959-09-01

    S>A process is described for preparing a magnesium oxide slip casting slurry which when used in conjunction with standard casting techniques results in a very strong "green" slip casting and a fired piece of very close dimensional tolerance. The process involves aging an aqueous magnestum oxide slurry, having a basic pH value, until it attains a specified critical viscosity at which time a deflocculating agent is added without upsetting the basic pH value.

  9. Analytical stress modeling of high-energy laser windows: Application to fusion-cast calcium fluoride windows

    NASA Astrophysics Data System (ADS)

    Klein, Claude A.

    2005-08-01

    The performance of a laser-window material must be assessed not only in terms of its ability to transmit high-power beams without generating undue optical distortion but also in terms of the constraints imposed by stress-related failure modes. In operational use, the stress field images the superposition of stresses originating from the mechanical load created by the pressure differential and the thermal load created by the laser beam. Here, we provide the tools to carry out an analysis of both pressure- and beam-induced stresses, and illustrate the procedure in the context of assessing the performance of a "model" window made of fusion-cast CaF2. The analysis assumes (a) operation on a time scale such that lateral heat diffusion can be ignored, and (b) cylindrically symmetric Gaussian beam shapes, which permit straightforward calculations of stress distributions that should be representative of worst case situations. Pressure-induced stresses strongly depend on the window's aspect ratio, which suggests increasing the thickness to minimize the stress, but considerations relating to the optical performance require minimum allowable thicknesses based on a Weibull statistical analysis of the fracture probability. Beam-induced stresses are best evaluated in terms of (a) thickness-averaged radial and azimuthal stresses, which increase linearly with exposure time and depend on radial distances through the truncation parameter, and (b) across-the-thickness stress deviations relative to the average stress, which are caused by surface absorption and reach steady-state configurations on a time scale much shorter than the characteristic time for lateral heat transport. The average stress is always compressive and equibiaxial in the central region of the window, but its azimuthal component turns tensile in the rim region, thus threatening the structural integrity through brittle fracture. In addition, the coating-induced stress results in on-axis surface compressions that may

  10. Displaced capillary dies

    DOEpatents

    Kalejs, Juris P.; Chalmers, Bruce; Surek, Thomas

    1984-01-01

    An asymmetrical shaped capillary die made exclusively of graphite is used to grow silicon ribbon which is capable of being made into solar cells that are more efficient than cells produced from ribbon made using a symmetrically shaped die.

  11. Displaced capillary dies

    DOEpatents

    Kalejs, Juris P.; Chalmers, Bruce; Surek, Thomas

    1982-01-01

    An asymmetrical shaped capillary die made exclusively of graphite is used to grow silicon ribbon which is capable of being made into solar cells that are more efficient than cells produced from ribbon made using a symmetrically shaped die.

  12. Packaged die heater

    SciTech Connect

    Spielberger, Richard; Ohme, Bruce Walker; Jensen, Ronald J.

    2011-06-21

    A heater for heating packaged die for burn-in and heat testing is described. The heater may be a ceramic-type heater with a metal filament. The heater may be incorporated into the integrated circuit package as an additional ceramic layer of the package, or may be an external heater placed in contact with the package to heat the die. Many different types of integrated circuit packages may be accommodated. The method provides increased energy efficiency for heating the die while reducing temperature stresses on testing equipment. The method allows the use of multiple heaters to heat die to different temperatures. Faulty die may be heated to weaken die attach material to facilitate removal of the die. The heater filament or a separate temperature thermistor located in the package may be used to accurately measure die temperature.

  13. Cast Metals Coalition Technology Transfer and Program Management Final Report

    SciTech Connect

    Gwyn, Mike

    2009-03-31

    , new technologies enabling energy efficiencies and environment-friendly improvements are slow to develop, and have trouble obtaining a broad application. The CMC team was able to effectively and efficiently transfer the results of DOE's metalcasting R&D projects to industry by utilizing and delivering the numerous communication vehicles identified in the proposal. The three metalcasting technical associations achieved significant technology transition results under this program. In addition to reaching over 23,000 people per year through Modern Casting and 28,000 through Engineered Casting Solutions, AFS had 84 national publications and reached over 1,200 people annually through Cast Metals Institute (CMI) education courses. NADCA's education department reached over 1,000 people each year through their courses, in addition to reaching over 6,000 people annually through Die Casting Engineer, and publishing 58 papers. The SFSA also published 99 research papers and reached over 1,000 people annually through their member newsletters. In addition to these communication vehicles, the CMC team conducted numerous technical committee meetings, project reviews, and onsite visits. All of these efforts to distribute the latest metalcasting technologies contributed to the successful deployment of DOE's R&D projects into industry. The DOE/CMC partnership demonstrated significant success in the identification and review of relevant and easy-to-implement metalcasting energy-saving processes and technologies so that the results are quickly implemented and become general practice. The results achieved in this program demonstrate that sustained technology transfer efforts are a critical step in the deployment of R&D projects to industry.

  14. Metallic Fuel Casting Development and Parameter Optimization Simulations

    SciTech Connect

    R.S. Fielding; J. Crapps; C. Unal; J.R. Kennedy

    2013-03-01

    One of the advantages of metallic fuel is the abilility to cast the fuel slugs to near net shape with little additional processing. However, the high aspect ratio of the fuel is not ideal for casting. EBR-II fuel was cast using counter gravity injection casting (CGIC) but, concerns have been raised concerning the feasibility of this process for americium bearing alloys. The Fuel Cycle Research and Development program has begun developing gravity casting techniques suitable for fuel production. Compared to CGIC gravity casting does not require a large heel that then is recycled, does not require application of a vacuum during melting, and is conducive to re-usable molds. Development has included fabrication of two separate benchscale, approximately 300 grams, systems. To shorten development time computer simulations have been used to ensure mold and crucible designs are feasible and to identify which fluid properties most affect casting behavior and therefore require more characterization.

  15. NWIS MEASUREMENTS FOR URANIUM METAL ANNULAR CASTINGS

    SciTech Connect

    MATTINGLY, J.K.; VALENTINE, T.E.; MIHALCZO, J.T.

    1998-03-13

    This report describes measurements performed with annular uranium metal castings of different enrichments to investigate the use of {sup 252}Cf-source-driven noise analysis measurements as a means to quantify the amount of special nuclear material (SNM) in the casting. This work in FY 97 was sponsored by the Oak Ridge Y-12 Plant and the DOE Office of Technology Development Programs. Previous measurements and calculational studies have shown that many of the signatures obtained from the source-driven measurement are very sensitive to fissile mass. Measurements were performed to assess the applicability of this method to standard annular uranium metal castings at the Oak Ridge Y-12 plant under verification by the International Atomic Energy Agency (IAEA) using the Nuclear Weapons Identification System (NWIS) processor. Before the measurements with different enrichments, a limited study of source-detector-casting moderator configurations was performed to enhance the correlated information. These configurations consisted of a casting with no reflector and with various thicknesses of polyethylene reflectors up to 10.16 cm in 2.54 cm steps. The polyethylene moderator thickness of 7.62 cm was used for measurements with castings of different enrichments reported here. The sensitivity of the measured parameters to fissile mass was investigated using four castings each with a different enrichment. The high sensitivity of this measurement method to fissile mass and to other material and configurations provides some advantages over existing safeguards methods.

  16. Study of protective coatings for aluminum die casting molds

    NASA Astrophysics Data System (ADS)

    Peter, Ildiko; Rosso, Mario; Gobber, Federico Simone

    2015-12-01

    In this paper, the development and characterization of some protective coatings on steel substrate are presented. The coatings are realized by plasma spray techniques. The substrate material used is a Cr-Mo-V based hot work tool steel, initially submitted to vacuum heat treatment to achieve homogeneous hardness. The main attention is focused on the study of wear and on the characterization of the interface between the substrate material and the coating layer, because of their key role in determining the resistance of the coating layer. Simulation of friction and wear processes is performed by pin-on-disk test and the tested samples are observed by scanning electron microscopy.

  17. Casting Footprints for Eternity

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Apollo 11 Astronaut Buzz Aldrin has his footprints casted during the dedication ceremony of the rocket fountain at Building 4200 at Marshall Space Flight Center. The casts of Aldrin's footprints will be placed in the newly constructed Von Braun courtyard representing the accomplishments of the Apollo 11 lunar landing.

  18. HIGH PRESSURE DIES

    DOEpatents

    Wilson, W.B.

    1960-05-31

    A press was invented for subjecting specimens of bismuth, urania, yttria, or thoria to high pressures and temperatures. The press comprises die parts enclosing a space in which is placed an electric heater thermally insulated from the die parts so as not to damage them by heat. The die parts comprise two opposed inner frustoconical parts and an outer part having a double frustoconical recess receiving the inner parts. The die space decreases in size as the inner die parts move toward one another against the outer part and the inner parts, though very hard, do not fracture because of the mode of support provided by the outer part.

  19. Japanese R&D on new cast alloys and materials

    SciTech Connect

    Hayden, H.W.

    1996-05-01

    On the basis of observations of the JTEC team, it appears that Japanese universities and research institutes are leading long-term R&D thrusts for development of new materials casting technologies. Significant efforts include amorphous metals, intermetallics, application of MHD in continuous casting of steel, and energy efficient furnace technology. Industrial R&D seems focused more on process improvements than on new product technologies, but significant efforts in new cast materials included cast metal matrix composites, materials substitutions for thinner wall products, and advanced ceramic products for foundry industry applications.

  20. Effects of chromium and nitrogen content on the microstructures and mechanical properties of as-cast Co-Cr-Mo alloys for dental applications.

    PubMed

    Yoda, Keita; Suyalatu; Takaichi, Atsushi; Nomura, Naoyuki; Tsutsumi, Yusuke; Doi, Hisashi; Kurosu, Shingo; Chiba, Akihiko; Igarashi, Yoshimasa; Hanawa, Takao

    2012-07-01

    The microstructure and mechanical properties of as-cast Co-(20-33)Cr-5Mo-N alloys were investigated to develop ductile Co-Cr-Mo alloys without Ni addition for dental applications that satisfy the requirements of the type 5 criteria in ISO 22674. The effects of the Cr and N contents on the microstructure and mechanical properties are discussed. The microstructures were evaluated using scanning electron microscopy with energy-dispersive X-ray spectroscopy (EDS), X-ray diffractometry (XRD), and electron back-scattered diffraction pattern analysis. The mechanical properties were evaluated using tensile testing. The proof strength and elongation of N-containing 33Cr satisfied the type 5 criteria in ISO 22674. ε-phase with striations was formed in the N-free (20-29)Cr alloys, while there was slight formation of ε-phase in the N-containing (20-29)Cr alloys, which disappeared in N-containing 33Cr. The lattice parameter of the γ-phase increased with increasing Cr content (i.e. N content) in the N-containing alloys, although the lattice parameter remained almost the same in the N-free alloys because of the small atomic radius difference between Co and Cr. Compositional analyses by EDS and XRD revealed that in the N-containing alloys Cr and Mo were concentrated in the cell boundary, which became enriched in N, stabilizing the γ-phase. The mechanical properties of the N-free alloys were independent of the Cr content and showed low strength and limited elongation. Strain-induced martensite was formed in all the N-free alloys after tensile testing. On the other hand, the proof strength, ultimate tensile strength, and elongation of the N-containing alloys increased with increasing Cr content (i.e. N content). Since formation of ε-phase after tensile testing was confirmed in the N-containing alloys the deformation mechanism may change from strain-induced martensite transformation to another form, such as twinning or dislocation slip, as the N content increases. Thus the N

  1. Casting the Die before the Die Is Cast: The Importance of the Home Numeracy Environment for Preschool Children

    ERIC Educational Resources Information Center

    Niklas, Frank; Schneider, Wolfgang

    2014-01-01

    Mathematical competencies are important not only for academic achievement at school but also for professional success later in life. Although we know a lot about the impact of "Home Literacy Environment" on the development of early linguistic competencies, research on "Home Numeracy Environment" (HNE) and the assessment of its…

  2. Application of Rapid Prototyping to the Investment Casting of Test Hardware (MSFC Center Director's Discretionary Fund Final Report, Project No. 98-08)

    NASA Technical Reports Server (NTRS)

    Cooper, K. G.; Wells, D.

    2000-01-01

    Investment casting masters of a selected propulsion hardware component, a fuel pump housing, were rapid prototyped on the several processes in-house, along with the new Z-Corp process acquired through this project. Also, tensile samples were prototyped and cast using the same significant parameters. The models were then shelled in-house using a commercial grade zircon-based slurry and stucco technique. Next, the shelled models were fired and cast by our in-house foundry contractor (IITRI), with NASA-23, a commonly used test hardware metal. The cast models are compared by their surface finish and overall appearance (i.e., the occurrence of pitting, warping, etc.), as well as dimensional accuracy.

  3. Acquired localised hypertrichosis in a Chinese child after cast immobilisation.

    PubMed

    Yuen, M W; Lai, Loretta K P; Chan, P F; Chao, David V K

    2015-08-01

    Hypertrichosis refers to excessive hair growth that is independent of any androgen effect. Hypertrichosis could be congenital or acquired, localised or generalised. The phenomenon of acquired localised hypertrichosis following cast application for a fracture is well known to orthopaedic surgeons, but is rarely encountered by primary care physicians. We describe a 28-month-old Chinese boy who had fracture of right leg as a result of an injury. He had a cast applied by an orthopaedic surgeon as treatment. On removal of the cast 6 weeks later, he was noticed to have significant hair growth on his right leg compared with the left leg. The patient was reassessed 3 months after removal of the cast. The hypertrichosis resolved completely with time. This patient was one of the youngest among the reported cases of acquired localised hypertrichosis after cast application. We illustrate the significance of management of post-cast-acquired localised hypertrichosis in the primary care setting. PMID:26238136

  4. Impact of Simulation Technology on Die and Stamping Business

    NASA Astrophysics Data System (ADS)

    Stevens, Mark W.

    2005-08-01

    Over the last ten years, we have seen an explosion in the use of simulation-based techniques to improve the engineering, construction, and operation of GM production tools. The impact has been as profound as the overall switch to CAD/CAM from the old manual design and construction methods. The changeover to N/C machining from duplicating milling machines brought advances in accuracy and speed to our construction activity. It also brought significant reductions in fitting sculptured surfaces. Changing over to CAD design brought similar advances in accuracy, and today's use of solid modeling has enhanced that accuracy gain while finally leading to the reduction in lead time and cost through the development of parametric techniques. Elimination of paper drawings for die design, along with the process of blueprinting and distribution, provided the savings required to install high capacity computer servers, high-speed data transmission lines and integrated networks. These historic changes in the application of CAE technology in manufacturing engineering paved the way for the implementation of simulation to all aspects of our business. The benefits are being realized now, and the future holds even greater promise as the simulation techniques mature and expand. Every new line of dies is verified prior to casting for interference free operation. Sheet metal forming simulation validates the material flow, eliminating the high costs of physical experimentation dependent on trial and error methods of the past. Integrated forming simulation and die structural analysis and optimization has led to a reduction in die size and weight on the order of 30% or more. The latest techniques in factory simulation enable analysis of automated press lines, including all stamping operations with corresponding automation. This leads to manufacturing lines capable of running at higher levels of throughput, with actual results providing the capability of two or more additional strokes per

  5. The twin-roll casting of magnesium alloys

    NASA Astrophysics Data System (ADS)

    Park, S. S.; Park, W.-J.; Kim, C. H.; You, B. S.; Kim, Nack J.

    2009-08-01

    Recently, technologies for twin-roll casting have been widely developed to efficiently fabricate the lightweight Mg alloy sheets that are quite attractive for numerous weight-sensitive applications. This paper reviews the recent progress in the twin-roll casting of Mg alloys, focusing on the processing aspects that have close relations to the solidification behavior of Mg alloy strips. In addition, recent attempts to develop new Mg alloys utilizing the metallurgical advantages attainable by this novel casting process are also presented.

  6. INTERIOR VIEW WITH LARGE PIPE CASTING MACHINE CASTING A 48' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH LARGE PIPE CASTING MACHINE CASTING A 48' PIPE OPERATOR SPRAYING A POWDER TO HELP SOLIDIFY THE PIPE BEING CENTRIFUGALLY CAST. - United States Pipe & Foundry Company Plant, Pipe Casting & Testing Area, 2023 St. Louis Avenue at I-20/59, Bessemer, Jefferson County, AL

  7. Casting in Sport

    PubMed Central

    DeCarlo, Mark; Malone, Kathy; Darmelio, John; Rettig, Arthur

    1994-01-01

    Attempts by sports medicine professionals to return high school athletes with hand and wrist injuries to competition quickly and safely have been the source of confusion and debate on many playing fields around the country. In addition to the differing views regarding the appropriateness of playing cast usage in high school football, a debate exists among sports medicine professionals as to which material is best suited for playing cast construction. Materials used in playing cast construction should be hard enough to provide sufficient stabilization to the injured area and include adequate padding to absorb blunt impact forces. The purpose of the biomechanical portion of this investigation was to attempt to determine the most appropriate materials for use in constructing playing casts for the hand and wrist by assessing different materials for: 1) hardness using a Shore durometer, and 2) ability to absorb impact using a force platform. Results revealed that RTV11 and Scotchcast were the “least hard” of the underlying casting materials and that Temper Stick foam greatly increased the ability of RTV11 to absorb impact. Assessment of the mechanical properties of playing cast materials and review of current developments in high school football rules are used to aid practitioners in choosing the most appropriate materials for playing cast construction. ImagesFig 1.Fig 2.Fig 3. PMID:16558257

  8. CASTING METHOD AND APPARATUS

    DOEpatents

    Gray, C.F.; Thompson, R.H.

    1958-10-01

    An improved apparatus for the melting and casting of uranium is described. A vacuum chamber is positioned over the casting mold and connected thereto, and a rod to pierce the oxide skin of the molten uranium is fitted into the bottom of the melting chamber. The entire apparatus is surrounded by a jacket, and operations are conducted under a vacuum. The improvement in this apparatus lies in the fact that the top of the melting chamber is fitted with a plunger which allows squeezing of the oxide skin to force out any molten uranium remaining after the skin has been broken and the molten charge has been cast.

  9. CENTRIFUGAL CASTING MACHINE

    DOEpatents

    Shuck, A.B.

    1958-04-01

    A device is described that is specifically designed to cast uraniumn fuel rods in a vacuunn, in order to obtain flawless, nonoxidized castings which subsequently require a maximum of machining or wastage of the expensive processed material. A chamber surrounded with heating elements is connected to the molds, and the entire apparatus is housed in an airtight container. A charge of uranium is placed in the chamber, heated, then is allowed to flow into the molds While being rotated. Water circulating through passages in the molds chills the casting to form a fine grained fuel rod in nearly finished form.

  10. Numerical Optimization of the Method of Cooling of a Massive Casting of Ductile Cast-Iron

    NASA Astrophysics Data System (ADS)

    Dobrovska, Jana; Kavicka, Frantisek; Stransky, Karel; Sekanina, Bohumil; Stetina, Josef

    2010-06-01

    The numerical models of the temperature field of solidifying castings, according to various authors, have been observing two main goals—directed solidification as the basic assumption for the healthiness of a casting and the optimization of the technology while maintaining the optimal product properties. The achievement of these goals is conditioned by the ability to analyze and, successively, to control the effect of the deciding factors, which either characterize the process or accompany it. An original application of ANSYS simulated the forming of the temperature field of a massive casting from ductile cast-iron during the application various methods of its cooling using steel chills. The numerical model managed to optimize more than one method of cooling but, in addition to that, provided serious results for the successive model of structural and chemical heterogeneity, and so it also contributes to influencing the pouring structure. The file containing the acquired results from both models, as well as from their organic unification, brings new and, simultaneously, remarkable findings of causal relationships between the structural and chemical heterogeneity (i.e. between the sizes of the spheroids of graphite, the cells, density of the spheroids of graphite, etc.) and the local solidification time in any point of the casting. The determined relations therefore enable the prediction of the face density of the spheroids of graphite in dependence on the local solidification time. The calculated temperature field of a two-ton 500×500×1000 mm casting of ductile cast-iron with various methods of cooling has successfully been compared with temperatures obtained experimentally. The casting was cast in sand mould. The calculated model of the kinetics of the temperature field of the casting was verified during casting with temperature measurements in selected points. This has created a tool for the optimization of the structure with an even distribution of the

  11. Die singulation method

    SciTech Connect

    Swiler, Thomas P; Garcia, Ernest J; Francis, Kathryn M

    2014-01-07

    A method is disclosed for singulating die from a semiconductor substrate (e.g. a semiconductor-on-insulator substrate or a bulk silicon substrate) containing an oxide layer (e.g. silicon dioxide or a silicate glass) and one or more semiconductor layers (e.g. monocrystalline or polycrystalline silicon) located above the oxide layer. The method etches trenches through the substrate and through each semiconductor layer about the die being singulated, with the trenches being offset from each other around at least a part of the die so that the oxide layer between the trenches holds the substrate and die together. The trenches can be anisotropically etched using a Deep Reactive Ion Etching (DRIE) process. After the trenches are etched, the oxide layer between the trenches can be etched away with a HF etchant to singulate the die. A release fixture can be located near one side of the substrate to receive the singulated die.

  12. Die singulation method

    SciTech Connect

    Swiler, Thomas P.; Garcia, Ernest J.; Francis, Kathryn M.

    2013-06-11

    A method is disclosed for singulating die from a semiconductor substrate (e.g. a semiconductor-on-insulator substrate or a bulk silicon substrate) containing an oxide layer (e.g. silicon dioxide or a silicate glass) and one or more semiconductor layers (e.g. monocrystalline or polycrystalline silicon) located above the oxide layer. The method etches trenches through the substrate and through each semiconductor layer about the die being singulated, with the trenches being offset from each other around at least a part of the die so that the oxide layer between the trenches holds the substrate and die together. The trenches can be anisotropically etched using a Deep Reactive Ion Etching (DRIE) process. After the trenches are etched, the oxide layer between the trenches can be etched away with an HF etchant to singulate the die. A release fixture can be located near one side of the substrate to receive the singulated die.

  13. Extrusion die and method

    DOEpatents

    Lipp, G. Daniel

    1994-04-26

    A method and die apparatus for manufacturing a honeycomb body of rhombic cell cross-section by extrusion through an extrusion die of triangular cell discharge slot configuration, the die incorporating feedholes at selected slot intersections only, such that slot segments communicating directly with the feedholes discharge web material and slot segments not so connected do not discharge web material, whereby a rhombic cell cross-section in the extruded body is provided.

  14. The Ambiguous Dying Syndrome

    ERIC Educational Resources Information Center

    Bern-Klug, Mercedes

    2004-01-01

    More than one-half of the 2.4 million deaths that will occur in the United States in 2004 will be immediately preceded by a time in which the likelihood of dying can best be described as "ambiguous." Many people die without ever being considered "dying" or "at the end of life." These people may miss out on the opportunity to close important…

  15. Old soldiers never die ....

    PubMed Central

    2012-01-01

    An ancestral supersoldier phenotype of Pheidole ants can be recovered when selection for supersoldiers re-emerges, indicating that the developmental potential for caste pathways is retained. PMID:22356770

  16. A Comparison of Creep-Rupture Tested Cast Alloys HR282, IN740 and 263 for Possible Application in Advanced Ultrasupercritical Steam Turbine and Boiler

    SciTech Connect

    Jablonski, P D; Evens, N; Yamamoto, Y; Maziasz, P

    2011-02-27

    Cast forms of traditionally wrought Ni-base precipitation-strengthened superalloys are being considered for service in the ultra-supercritical conditions (760°C, 35MPa) of next-generation steam boilers and turbines. After casting and homogenization, these alloys were given heat-treatments typical for each in the wrought condition to develop the gamma-prime phase. Specimens machined from castings were creep-rupture tested in air at 800°C. In their wrought forms, alloy 282 is expected to precipitate M23C6 within grain boundaries, alloy 740 is expected to precipitate several grain boundary phases including M23C6, G Phase, and η phase, and alloy 263 has M23C6 and MC within its grain boundaries. This presentation will correlate the observed creep-life of these cast alloys with the microstructures developed during creep-rupture tests, with an emphasis on the phase identification and chemistry of precipitated grain boundary phases. The suitability of these cast forms of traditionally wrought alloys for turbine and boiler components will also be discussed.

  17. MOLDS FOR CASTING PLUTONIUM

    DOEpatents

    Anderson, J.W.; Miley, F.; Pritchard, W.C.

    1962-02-27

    A coated mold for casting plutonium comprises a mold base portion of a material which remains solid and stable at temperatures as high as the pouring temperature of the metal to be cast and having a thin coating of the order of 0.005 inch thick on the interior thereof. The coating is composed of finely divided calcium fluoride having a particle size of about 149 microns. (AEC)

  18. Method of casting aerogels

    DOEpatents

    Poco, J.F.

    1993-09-07

    The invention describes a method for making monolithic castings of transparent silica aerogel with densities in the range from 0.001 g/cm[sup 3] to 0.6 g/cm[sup 3]. Various shapes of aerogels are cast in flexible polymer molds which facilitate removal and eliminate irregular surfaces. Mold dimensions are preselected to account for shrinkage of aerogel which occurs during the drying step of supercritical extraction of solvent. 2 figures.

  19. Method of casting aerogels

    DOEpatents

    Poco, John F.

    1993-01-01

    The invention describes a method for making monolithic castings of transparent silica aerogel with densities in the range from 0.001 g/cm.sup.3 to 0.6 g/cm.sup.3. Various shapes of aerogels are cast in flexible polymer molds which facilitate removal and eliminate irregular surfaces. Mold dimensions are preselected to account for shrinkage of alcogel which occurs during the drying step of supercritical extraction of solvent.

  20. Viability changes: Microbiological analysis of dental casts

    PubMed Central

    Žilinskas, Juozas; Junevičius, Jonas; Ramonaitė, Agnė; Pavilonis, Alvydas; Gleiznys, Alvydas; Sakalauskienė, Jurgina

    2014-01-01

    Background This study evaluated the survival of the most prevalent oral bacteria and fungi (Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, and Candida albicans) in dental casts, and compared changes in the amounts of these microorganisms at different time intervals to determine how long dental casts may pose threat to the health of dental personnel and patients. Material/Methods When manufacturing the casts, regular water was replaced with sterile distilled water, where suspensions of the studied bacteria or the fungus at certain concentrations were prepared. When the dental casts were fully set (solidified), plaster shavings were examined immediately after the contact of the studied microorganism with the plaster, as well as after 1, 2, 24, 48, 72, 96, and 120 hours. Following that, we measured how the amount of the studied bacteria and fungi in 1 gram of the plaster changed within the studied period of time. Results Klebsiella pneumoniae survived in plaster for up to 4 days, and the reduction in the number of these bacteria became statistically significant after 1 day (p<0.05). Staphylococcus aureus remained viable in plaster for up to 4 days, and the number of these bacteria dropped after 1 day (p<0.05). Escherichia coli disappeared after 2 days, and a reduction was already observed after 2 hours (p<0.05). Candida albicans in plaster models died within 2 days, and a reduction in their number was observed after 1 day (p<0.05). Conclusions The microorganisms did not multiply in the gypsum casts and their number significantly dropped instead of increasing. PMID:24902637

  1. A Winning Cast

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Howmet Research Corporation was the first to commercialize an innovative cast metal technology developed at Auburn University, Auburn, Alabama. With funding assistance from NASA's Marshall Space Flight Center, Auburn University's Solidification Design Center (a NASA Commercial Space Center), developed accurate nickel-based superalloy data for casting molten metals. Through a contract agreement, Howmet used the data to develop computer model predictions of molten metals and molding materials in cast metal manufacturing. Howmet Metal Mold (HMM), part of Howmet Corporation Specialty Products, of Whitehall, Michigan, utilizes metal molds to manufacture net shape castings in various alloys and amorphous metal (metallic glass). By implementing the thermophysical property data from by Auburn researchers, Howmet employs its newly developed computer model predictions to offer customers high-quality, low-cost, products with significantly improved mechanical properties. Components fabricated with this new process replace components originally made from forgings or billet. Compared with products manufactured through traditional casting methods, Howmet's computer-modeled castings come out on top.

  2. (Continuous casting 1985)

    SciTech Connect

    Wilde, R.A.

    1985-06-12

    The report covers the Continuous Casting '85 Conference including informal discussions with conference attendees. In general, the papers presented at the conference concerned an overview of continuous steel casting worldwide, state-of-the-art aspects of steel continuous casting technology including caster startup problems, modifications, control system strategies, energy use profiles, quality control aspects, steel chemistry control, refractories, operational aspects of continuous casters, etc. No papers were presented in the development of thin section or thin strip casting of steel. Informal discussions were held with several conference attendees including (1) Bernard Trentini, Executive Director of the Association Technique De La Siderurgie Francaise in Paris, France (similar to the American Iron and Steel Institute); (2) Dr. Wolfgang Reichelt and Dr. Peter Voss-Spilker both of Mannesmann Demag Huttentechnik -a continuous casting and other steel making machine builder in-lieu of meeting at their plant in Duisburg, FRG on May 31; (3) Ewan C. Hewitt of Devote McKee Corp., Sheffield, England; (4) Wilfried Heinemann, head of R D Dept. at Concast Standard AG in Zurich, Switzerland; and (5) Hideo Ueno, engineer of melting section, Mitsubishi Steel Mfg. Co. Ltd, Tokyo Japan. A visit was made to the Teesside Laboratories of British Steel Corp. for discussions of their thin section casting research program in particular and R D program in general.

  3. Salvaged castings and methods of salvaging castings with defective cast cooling bumps

    DOEpatents

    Johnson, Robert Alan; Schaeffer, Jon Conrad; Lee, Ching-Pang; Abuaf, Nesim; Hasz, Wayne Charles

    2002-01-01

    Castings for gas turbine parts exposed on one side to a high-temperature fluid medium have cast-in bumps on an opposite cooling surface side to enhance heat transfer. Areas on the cooling surface having defectively cast bumps, i.e., missing or partially formed bumps during casting, are coated with a braze alloy and cooling enhancement material to salvage the part.

  4. Neutron radiography inspection of investment castings.

    PubMed

    Richards, W J; Barrett, J R; Springgate, M E; Shields, K C

    2004-10-01

    Investment casting, also known as the lost wax process, is a manufacturing method employed to produce near net shape metal articles. Traditionally, investment casting has been used to produce structural titanium castings for aero-engine applications with wall thickness less than 1 in (2.54 cm). Recently, airframe manufacturers have been exploring the use of titanium investment casting to replace components traditionally produced from forgings. Use of titanium investment castings for these applications reduces weight, cost, lead time, and part count. Recently, the investment casting process has been selected to produce fracture critical structural titanium airframe components. These airframe components have pushed the traditional inspection techniques to their physical limits due to cross sections on the order of 3 in (7.6 cm). To overcome these inspection limitations, a process incorporating neutron radiography (n-ray) has been developed. In this process, the facecoat of the investment casting mold material contains a cocalcined mixture of yttrium oxide and gadolinium oxide. The presence of the gadolinium oxide, allows for neutron radiographic imaging (and eventual removal and repair) of mold facecoat inclusions that remain within these thick cross sectional castings. Probability of detection (POD) studies have shown a 3 x improvement of detecting a 0.050 x 0.007 in2 (1.270 x 0.178 mm2) inclusion of this cocalcined material using n-ray techniques when compared to the POD using traditional X-ray techniques. Further, it has been shown that this n-ray compatible mold facecoat material produces titanium castings of equal metallurgical quality when compared to the traditional materials. Since investment castings can be very large and heavy, the neutron radiography facilities at the University of California, Davis McClellan Nuclear Radiation Center (UCD/MNRC) were used to develop the inspection techniques. The UCD/MNRC has very unique facilities that can handle large

  5. The effect of Sr and Fe additions on the microstructure and mechanical properties of a direct squeeze cast Al-7Si-0.3Mg alloy

    SciTech Connect

    Dong, J.X.; Karnezis, P.A.; Durrant, G.; Cantor, B.

    1999-05-01

    This article describes the results of an investigation into the microstructure and mechanical properties of a gravity die cast and direct squeeze cast LM25 alloy (Al-7Si-0.3Mg-0.3Fe). The direct squeeze cast LM25 alloy has superior mechanical properties compared to the gravity die cast LM25 alloy, especially with regard to ductility, which is increased from {approximately}1.7 pct for the gravity die cast LM25 alloy to {approximately}8.0 pct for the direct squeeze cast LM25 alloy in the T6 heat-treated conditions. This increase in ductility is due to (1) the removal of porosity, (2) a decrease in Si particle size, and (3) a refinement of the Fe-Si-aluminide particles. High cooling rates in direct squeeze casting result in quench modification of the Si particles, such that chemical modification with Sr or Na may not be required. In addition, direct squeeze casting is more tolerant of Fe impurities in the alloy, due to the formation of smaller Fe-Si-aluminide particles than those in gravity die cast material. The direct squeeze cast LM25 + Fe alloy (Al-7Si-0.3Mg-1.0Fe) has a ductility of {approximately}6.5 pct, compared to that of {approximately}0.5 pct for the gravity die cast LM25 + Fe alloy in the T6 heat-treated condition. This increase in tolerance to Fe impurities can lead to a substantial reduction in manufacturing costs due to (1) reduced raw-material costs, (2) reduced die sticking, and (3) improved die life.

  6. The effect of Sr and Fe additions on the microstructure and mechanical properties of a direct squeeze cast Al-7Si-0.3Mg alloy

    NASA Astrophysics Data System (ADS)

    Dong, J. X.; Karnezis, P. A.; Durrant, G.; Cantor, B.

    1999-05-01

    This article describes the results of an investigation into the microstructure and mechanical properties of a gravity die cast and direct squeeze cast LM25 alloy (Al-7Si-0.3Mg-0.3Fe). The direct squeeze cast LM25 alloy has superior mechanical properties compared to the gravity die cast LM25 alloy, especially with regard to ductility, which is increased from ˜1.7 pct for the gravity die cast LM25 alloy to ˜8.0 pct for the direct squeeze cast LM25 alloy in the T6 heat-treated condition. This increase in ductility is due to (1) the removal of porosity, (2) a decrease in Si particle size, and (3) a refinement of the Fe-Si-aluminide particles. High cooling rates in direct squeeze casting result in quench modification of the Si particles, such that chemical modification with Sr or Na may not be required. In addition, direct squeeze casting is more tolerant of Fe impurities in the alloy, due to the formation of smaller Fe-Si-aluminide particles than those in gravity die cast material. The direct squeeze cast LM25+Fe alloy (Al-7Si-0.3Mg-1.0Fe) has a ductility of ˜6.5 pct, compared to that of ˜0.5 pct for the gravity die cast LM25 + Fe alloy in the T6 heat-treated condition. This increase in tolerance to Fe impurities can lead to a substantial reduction in manufacturing costs due to (1) reduced raw-material costs, (2) reduced die sticking, and (3) improved die life.

  7. A method for determining adequate resistance form of complete cast crown preparations.

    PubMed

    Weed, R M; Baez, R J

    1984-09-01

    A diagram with various degrees of occlusal convergence, which takes into consideration the length and diameter of complete crown preparations, was designed as a guide to assist the dentist to obtain adequate resistance form. To test the validity of the diagram, five groups of complete cast crown stainless steel dies were prepared (3.5 mm long, occlusal convergence 10, 13, 16, 19, and 22 degrees). Gold copings were cast for each of the 50 preparations. Displacement force was applied to the casting perpendicularly to a simulated 30-degree cuspal incline until the casting was displaced. Castings were deformed at margins except for the 22-degree group. Castings from this group were displaced without deformation, and it was concluded that there was a lack of adequate resistance form as predicted by the diagram. The hypothesis that the diagram could be used to predict adequate or inadequate resistance form was confirmed by this study. PMID:6384470

  8. Two from One Casting. Art Education: 6681.20.

    ERIC Educational Resources Information Center

    Hilf, Anne

    Two From One Casting is a studio course dealing with exploratory applications of casting methods and materials for students in grades 7 through 12 who wish to make permanent those creations easily destroyed by time or negligence. Course rationale, enrollment guidelines, objectives, outline of content, descriptions of activities and procedures,…

  9. Is Dying Young Worse than Dying Old?

    ERIC Educational Resources Information Center

    Jecker, Nancy S.; Schneiderman, Lawrence J.

    1994-01-01

    Notes that, in contemporary Western society, people feel death of small child is greater injustice than death of older adult and experience correspondingly greater sorrow, anger, regret, or bitterness when very young person dies. Contrasts these attitudes with those of ancient Greece and shows relevance that different attitudes toward death have…

  10. Extrusion die and method

    DOEpatents

    Lipp, G. Daniel

    1994-05-03

    A method and die apparatus for manufacturing a honeycomb body of triangular cell cross-section and high cell density, the die having a combination of (i) feedholes feeding slot intersections and (ii) feedholes feeding slot segments not supplied from slot intersections, whereby a reduction in feedhole count is achieved while still retaining good extrusion efficiency and extrudate uniformity.

  11. Steel castings by the electroslag casting technique. [CF8M

    SciTech Connect

    Sikka, V.K.; Mitchell, A.

    1984-01-01

    ELectroslag casting facilities in Canada and the United States were reviewed. Several valve body castings of 2-1/4 Cr-1 Mo, 9 Cr-1 Mo, and 18% Cr-8% Ni(Mo) steels were made at the University of British Columbia facility. These castings were examined for surface finish, chemical segregation, and macrostructure in the as-cast condition and after various heat treatments. Castings were subjected to tensile, Charpy impact, and creep testing. Results of these tests were compared with similar data on wrought material and sand castings.

  12. Methods and apparatuses for manufacturing geometric multicrystalline cast silicon and geometric multicrystalline cast silicon bodies for photovoltaics

    SciTech Connect

    Stoddard, Nathan G

    2015-02-10

    Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of geometrically ordered multi-crystalline silicon may be formed that is free or substantially free of radially-distributed impurities and defects and having at least two dimensions that are each at least about 10 cm is provided.

  13. Spray casting project final report

    SciTech Connect

    Churnetski, S.R.; Thompson, J.E.

    1996-08-01

    Lockheed Martin Energy Systems, Inc. (Energy Systems), along with other participating organizations, has been exploring the feasibility of spray casting depleted uranium (DU) to near-net shape as a waste minimization effort. Although this technology would be useful in a variety of applications where DU was the material of choice, this effort was aimed primarily at gamma-shielding components for use in storage and transportation canisters for high-level radioactive waste, particularly in the Multipurpose Canister (MPC) application. In addition to the waste-minimization benefits, spray casting would simplify the manufacturing process by allowing the shielding components for MPC to be produced as a single component, as opposed to multiple components with many fabrication and assembly steps. In earlier experiments, surrogate materials were used to simulate the properties (specifically reactivity and density) of DU. Based on the positive results from those studies, the project participants decided that further evaluation of the issues and concerns that would accompany spraying DU was warranted. That evaluation occupied substantially all of Fiscal Year 1995, yielding conceptual designs for both an intermediate facility and a production facility and their associated engineering estimates. An intermediate facility was included in this study to allow further technology development in spraying DU. Although spraying DU to near-net shape seems to be feasible, a number of technical, engineering, and safety issues would need to be evaluated before proceeding with a production facility. This report is intended to document the results from the spray-casting project and to provide information needed by anyone interested in proceeding to the next step.

  14. Application of Targeted Functional Assays to Assess a Putative Vascular Disruption Developmental Toxicity Pathway Informed By ToxCast High-Throughput Screening Data

    EPA Science Inventory

    Chemical perturbation of vascular development is a putative toxicity pathway which may result in developmental toxicity. EPA’s high-throughput screening (HTS) ToxCast program contains assays which measure cellular signals and biological processes critical for blood vessel develop...

  15. Extending the Derek-Meteor Workflow to Predict Chemical-Toxicity Space Impacted by Metabolism: Application to ToxCast and Tox21 Chemical Inventories

    EPA Science Inventory

    A central aim of EPA’s ToxCast project is to use in vitro high-throughput screening (HTS) profiles to build predictive models of in vivo toxicity. Where assays lack metabolic capability, such efforts may need to anticipate the role of metabolic activation (or deactivation). A wo...

  16. Standard specification for castings of iron-chromium-nickel-molybdenum corrosion-resistant, duplex (austenitic/ferritic) for general application. ASTM standard

    SciTech Connect

    1998-08-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel, and Related Alloys and is the direct responsibility of Subcommittee A01.18 on Castings. Current edition approved Nov. 10, 1997 and published August 1998. Originally published as A 890-88. Last previous edition was A 890/A 890M-94a.

  17. Application of cast iron-platinum keeper to a collapsible denture for a patient with constricted oral opening: a clinical report.

    PubMed

    Ohkubo, Chikahiro; Watanabe, Ikuya; Tanaka, Yasuhiro; Hosoi, Toshio

    2003-07-01

    Insertion of a denture is especially difficult for patents with a constricted oral opening. This report describes the fabrication of a collapsible removable partial denture with a cast iron-platinum attachment for a partially edentulous woman with a constricted oral opening resulting from rheumatoid arthritis and a craniotomy for a subarachnoid hemorrhage. PMID:12869968

  18. Tox21 and ToxCast Chemical Landscapes: Laying the Foundation for 21st Century Toxicology - Application of the Strategy to Chemical Testing

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s ToxCast project and the related, multi-Agency Tox21 project are employing high-throughput technologies to screen hundreds to thousands of chemicals in hundreds of assays, probing a wide diversity of biological targets, pathways and mecha...

  19. 20150323 - The U.S. EPA ToxCast Program: Moving from Data Generation to Application (SOT Tox21 update symposium presentation)

    EPA Science Inventory

    The U.S. EPA ToxCast program is entering its tenth year. Significant learning and progress have occurred towards collection, analysis, and interpretation of the data. The library of ~1,800 chemicals has been subject to ongoing characterization (e.g., identity, purity, stability...

  20. Cheminformatics Analysis of EPA ToxCast Chemical Libraries to Identify Domains of Applicability for Predictive Toxicity Models and Prioritize Compounds for Toxicity Testing

    EPA Science Inventory

    An important goal of toxicology research is the development of robust methods that use in vitro and chemical structure information to predict in vivo toxicity endpoints. The US EPA ToxCast program is addressing this goal using ~600 in vitro assays to create bioactivity profiles o...

  1. Adapt or die?

    PubMed

    Visser, S S; Nel, A H

    1996-12-01

    The worldwide economic recession and the concomitant limited stock of finances have had an influence on the available money of every household and have also inhibited the improvement of socio-economic conditions and medicine. The Reconstruction and Development Programme (RDP) has the objective of improving the living conditions of the people with regard to housing, education, training and health care. The latter seems to be a major problem which has to be addressed with the emphasis on the preventive and promotional aspects of health care. A comprehensive health care system did not come into being property in the past because of the maldistribution of health care services, personnel and differences in culture and health care beliefs and values. The question that now arises, is how to render a quality health care service within the constraints of inadequate financing and resources. A comprehensive literature study has been done with reference to quality health care and financing followed by a survey of existing health services and finances. Recommendations are made about minimum requirements to be accepted if one were to adapt rather than die in terms of the provision of healthcare: the decentralization and rationalization of the administration of health care, the stress on and realization of effective and efficient primary health care, the acceptance of participative management in health providing organizations, the provision of financial management training for health care managers and the application of management accounting principles for the improvement of the efficiency and effectiveness of management. PMID:9283343

  2. Die zwei Kulturen

    NASA Astrophysics Data System (ADS)

    Ankolekar, Anupriya; Krötzsch, Markus; Tran, Than; Vrandecic, Denny

    Oft werden zwei mögliche Entwicklungen des Webs diskutiert - das Web 2.0 und das Semantic Web. Wenn wir diese zwei Visionen für das zukünftige Web unter die Lupe nehmen, dann lässt sich feststellen, dass sich die Ideen in ihrem Kern und ihren Technologien gegenseitig ergänzen. Dementsprechend können und sollen beide Visionen von den Erfahrungen und Stärken der anderen profitieren. Wir glauben daran, dass zukünftige Webanwendungen den Web 2.0-Fokus auf Community und Benutzerfreundlichkeit beibehalten und, darüber hinaus, auch von Technologien des Semantic Web zur Vereinfachung der mashupähnlichen Datenintegration profitieren werden. Auf Basis eines Semantic Blog-Szenarios werden wir hier die Vorteile einer möglichen Kombination von Semantic Web und Web 2.0 illustrieren, die zeitnah realisiert werden kann. Wir werden auch auf technische Probleme eingehen, die bei der Erweiterung dieses Szenarios entstehen. Wir stellen dar, wie aktuelle Entwicklungen in der Semantic Web Forschung diese Probleme angehen können, und setzen zugleich auch Schwerpunkte für die zukünftige Forschung, die in diesem Zusammenhang relevant sind.

  3. Microporosity Prediction and Validation for Ni-based Superalloy Castings

    NASA Astrophysics Data System (ADS)

    Guo, J.; Beckermann, C.; Carlson, K.; Hirvo, D.; Bell, K.; Moreland, T.; Gu, J.; Clews, J.; Scott, S.; Couturier, G.; Backman, D.

    2015-06-01

    Microporosityin high performance aerospace castings can reduce mechanical properties and consequently degrade both component life and durability. Therefore, casting engineers must be able to both predict and reduce casting microporosity. A dimensionless Niyama model has been developed [1] that predicts local microporosity by accounting for local thermal conditions during casting as well as the properties and solidification characteristics of the cast alloy. Unlike the well-known Niyama criterion, application of the dimensionless Niyama model avoids the need to find a threshold Niyama criterion below which shrinkage porosity forms - a criterion which can be determined only via extensive alloy dependent experimentation. In the present study, the dimensionless Niyama model is integrated with a commercial finite element casting simulation software, which can now more accurately predict the location-specific shrinkage porosity volume fraction during solidification of superalloy castings. These microporosity predictions are validated by comparing modelled results against radiographically and metallographically measured porosity for several Ni-based superalloy equiaxed castings that vary in alloy chemistry with a focus on plates of changing draft angle and thickness. The simulation results agree well with experimental measurements. The simulation results also show that the dimensionless Niyama model can not only identify the location but also the average volume fraction of microporosity distribution in these equiaxed investment cast Ni-based superalloy experiments of relatively simple geometry.

  4. Evaluation of cast creep occurring during simulated clubfoot correction.

    PubMed

    Cohen, Tamara L; Altiok, Haluk; Wang, Mei; McGrady, Linda M; Krzak, Joseph; Graf, Adam; Tarima, Sergey; Smith, Peter A; Harris, Gerald F

    2013-08-01

    The Ponseti method is a widely accepted and highly successful conservative treatment of pediatric clubfoot involving weekly manipulations and cast applications. Qualitative assessments have indicated the potential success of the technique with cast materials other than standard plaster of Paris. However, guidelines for clubfoot correction based on the mechanical response of these materials have yet to be investigated. The current study sought to characterize and compare the ability of three standard cast materials to maintain the Ponseti-corrected foot position by evaluating cast creep response. A dynamic cast testing device, built to model clubfoot correction, was wrapped in plaster of Paris, semi-rigid fiberglass, and rigid fiberglass. Three-dimensional motion responses to two joint stiffnesses were recorded. Rotational creep displacement and linearity of the limb-cast composite were analyzed. Minimal change in position over time was found for all materials. Among cast materials, the rotational creep displacement was significantly different (p < 0.0001). The most creep displacement occurred in the plaster of Paris (2.0°), then the semi-rigid fiberglass (1.0°), and then the rigid fiberglass (0.4°). Torque magnitude did not affect creep displacement response. Analysis of normalized rotation showed quasi-linear viscoelastic behavior. This study provided a mechanical evaluation of cast material performance as used for clubfoot correction. Creep displacement dependence on cast material and insensitivity to torque were discovered. This information may provide a quantitative and mechanical basis for future innovations for clubfoot care. PMID:23636764

  5. CAST FLOOR WITH VIEW OF TORPEDO LADLE (BENEATH CAST FLOOR) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CAST FLOOR WITH VIEW OF TORPEDO LADLE (BENEATH CAST FLOOR) AND KEEPERS OF THE CAST HOUSE FLOOR, S.L. KIMBROUGH AND DAVID HOLMES. - U.S. Steel, Fairfield Works, Blast Furnace No. 8, North of Valley Road, West of Ensley-Pleasant Grove Road, Fairfield, Jefferson County, AL

  6. Composites for Advanced Space Transportation Systems (CASTS)

    NASA Technical Reports Server (NTRS)

    Davis, J. G., Jr. (Compiler)

    1979-01-01

    A summary is given of the in-house and contract work accomplished under the CASTS Project. In July 1975 the CASTS Project was initiated to develop graphite fiber/polyimide matrix (GR/PI) composite structures with 589K (600 F) operational capability for application to aerospace vehicles. Major tasks include: (1) screening composites and adhesives, (2) developing fabrication procedures and specifications, (3) developing design allowables test methods and data, and (4) design and test of structural elements and construction of an aft body flap for the Space Shuttle Orbiter Vehicle which will be ground tested. Portions of the information are from ongoing research and must be considered preliminary. The CASTS Project is scheduled to be completed in September 1983.

  7. A new casting defect healing technology

    SciTech Connect

    Hodge, E.S.; Reddoch, T.W.; Viswanathan, S.

    1997-01-01

    A new technology is presented for healing of defects in 356 aluminium alloys that provides economic upgrading of these cast alloys. It uses pneumatic isostatic forging (PIF) to produce high quality Al alloys products with enhanced mechanical properties uniform throughout the part, allowing higher design allowables and increased usage of Al alloy castings. The fundamental mechanism underlying PIF is a single mode plastic deformation process that uses isostatic application of pressures for 10-30 seconds at temperature. The process can be integrated in-line with other production operations, i.e., using the latent heat from the previous casting step. Results of applying the PIF process indicate lower cost and significant improvement in mechanical properties that rival and often exceed corresponding properties of other technologies like hot isostatic pressing and related processes. This process offers many advantages that are described in this paper in addition to presenting case histories of property enhancement by PIF and the mechanism responsible for property enhancement.

  8. Die Zeitung der Zukunft

    NASA Astrophysics Data System (ADS)

    Wieser, Christoph; Schaffert, Sebastian

    Schon lange wird spekuliert, wie wir in Zukunft Zeitung lesen werden. Werden wir am Frühstückstisch wie gewohnt in einer Zeitung aus Papier schmökern oder werden wir die Zeitung als biegsame Folie beschrieben mit elektronischer Tinte in Händen halten? Wird die Zeitung mit anderen Medien wie Radio und Fernsehen verschmelzen? Viele Varianten sind denkbar. Heute lässt sich schon ein Trend ablesen: Immer mehr Leser entdecken die Online-Zeitung als Informationsmedium, eine Voraussetzung für die Nutzung neuer Technologien in der Zeitung der Zukunft. In diesem Kapitel stellen wir Entwicklungsmöglichkeiten der Online-Zeitung dar, wie sie im Social Semantic Web möglich werden.

  9. When Somebody Dies

    MedlinePlus

    ... alguien muere All living things — including bugs and fish and people — die. It's difficult, even for grownups, ... kind of death for families and friends to deal with because it happens so fast. There is ...

  10. Method for casting polyethylene pipe

    NASA Technical Reports Server (NTRS)

    Elam, R. M., Jr.

    1973-01-01

    Short lengths of 7-cm ID polyethylene pipe are cast in a mold which has a core made of room-temperature-vulcanizable (RTV) silicone. Core expands during casting and shrinks on cooling to allow for contraction of the polyethylene.

  11. Casting Of Multilayer Ceramic Tapes

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1991-01-01

    Procedure for casting thin, multilayer ceramic membranes, commonly called tapes, involves centrifugal casting at accelerations of 1,800 to 2,000 times normal gravitational acceleration. Layers of tape cast one at a time on top of any previous layer or layers. Each layer cast from slurry of ground ceramic suspended in mixture of solvents, binders, and other components. Used in capacitors, fuel cells, and electrolytic separation of oxygen from air.

  12. Application of X-ray microtomography to study the influence of the casting microstructure upon the tensile behaviour of an Al-Si alloy

    NASA Astrophysics Data System (ADS)

    Limodin, Nathalie; El Bartali, Ahmed; Wang, Long; Lachambre, Joël; Buffiere, Jean-Yves; Charkaluk, Eric

    2014-04-01

    In cast aluminium alloys used in the automotive industry the microstructure inherited from the foundry process has a strong influence on the mechanical properties. In the cylinder heads produced by the Lost Foam Casting process, the microstructure consists of hard intermetallic phases and large gas and microshrinkage pores. To study its influence, full field measurements at the microstructure scale were performed during a tensile test performed in situ under X-ray microtomography. Intermetallics were used as a natural speckle pattern. Feasibility of Digital Volume Correlation on this alloy was proved and the accuracy of the measurement was assessed and discussed in light of the small volume fraction of intermetallics and in comparison with the accuracy of Digital Image Correlation performed on optical images at a finer spatial resolution.

  13. Creep Behavior at 1273 K (1000 °C) in Nb-Bearing Austenitic Heat-Resistant Cast Steels Developed for Exhaust Component Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Yinhui; Li, Mei; Godlewski, Larry A.; Zindel, Jacob W.; Feng, Qiang

    2016-05-01

    ABSTRACT A series of Nb-bearing austenitic heat-resistant cast steels with variations of N/C ratios were investigated, and the morphological change of Nb(C,N) from faceted blocks, mixed flake-blocks to "Chinese-script" was observed as N/C ratios decreased. The creep behavior of these alloys was studied at 1273 K (1000 °C), and the longest creep life and lowest creep rate occurred in model alloys with script Nb(C,N). Residual δ-ferrites and (Cr,Fe)23C6 were adverse to creep properties. This work indicates that the control of N/C ratio is required for the as-cast microstructural strengthening.

  14. Creep Behavior at 1273 K (1000 °C) in Nb-Bearing Austenitic Heat-Resistant Cast Steels Developed for Exhaust Component Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Yinhui; Li, Mei; Godlewski, Larry A.; Zindel, Jacob W.; Feng, Qiang

    2016-07-01

    A series of Nb-bearing austenitic heat-resistant cast steels with variations of N/C ratios were investigated, and the morphological change of Nb(C,N) from faceted blocks, mixed flake-blocks to "Chinese-script" was observed as N/C ratios decreased. The creep behavior of these alloys was studied at 1273 K (1000 °C), and the longest creep life and lowest creep rate occurred in model alloys with script Nb(C,N). Residual δ-ferrites and (Cr,Fe)23C6 were adverse to creep properties. This work indicates that the control of N/C ratio is required for the as-cast microstructural strengthening.

  15. Bioinspired Design: Magnetic Freeze Casting

    NASA Astrophysics Data System (ADS)

    Porter, Michael Martin

    Nature is the ultimate experimental scientist, having billions of years of evolution to design, test, and adapt a variety of multifunctional systems for a plethora of diverse applications. Next-generation materials that draw inspiration from the structure-property-function relationships of natural biological materials have led to many high-performance structural materials with hybrid, hierarchical architectures that fit form to function. In this dissertation, a novel materials processing method, magnetic freeze casting, is introduced to develop porous scaffolds and hybrid composites with micro-architectures that emulate bone, abalone nacre, and other hard biological materials. This method uses ice as a template to form ceramic-based materials with continuously, interconnected microstructures and magnetic fields to control the alignment of these structures in multiple directions. The resulting materials have anisotropic properties with enhanced mechanical performance that have potential applications as bone implants or lightweight structural composites, among others.

  16. Mix/Cast Contamination Control

    NASA Technical Reports Server (NTRS)

    Wallentine, M.

    2005-01-01

    Presented is a training handbook for Mix/Cast Contamination Control; a part of a series of training courses to qualify access to Mix/Cast facilities. Contents: List Contamination Control Requirements; Identify foreign objects debris (FOD), Control Areas and their guidelines; Describe environmental monitoring; List Contamination Control Initiatives; Describe concern for Controlled Materials; Identify FOD Controlled Areas in Mix/Cast.

  17. Casting and Angling.

    ERIC Educational Resources Information Center

    Little, Mildred J.; Bunting, Camille

    The self-contained packet contains background information, lesson plans, 15 transparency and student handout masters, drills and games, 2 objective examinations, and references for teaching a 15-day unit on casting and angling to junior high and senior high school students, either as part of a regular physical education program or as a club…

  18. Extrusion cast explosive

    DOEpatents

    Scribner, Kenneth J.

    1985-01-01

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants.

  19. Hair Casts or Pseudonits

    PubMed Central

    França, Katlein; Villa, Ricardo Tadeu; Silva, Isabella Rezende; de Carvalho, Cristine Almeida; Bedin, Valcinir

    2011-01-01

    Hair casts or pseudonits are thin, elongated, cylindrical concretions that encircle the hair shaft and can be easily dislodged. A case of pseudonits in a 9-year-old girl is reported. Though not unusual, false diagnoses are common. PMID:22223977

  20. Casting and Angling.

    ERIC Educational Resources Information Center

    Smith, Julian W.

    As part of a series of books and pamphlets on outdoor education, this manual consists of easy-to-follow instructions for fishing activities dealing with casting and angling. The manual may be used as a part of the regular physical education program in schools and colleges or as a club activity for the accomplished weekend fisherman or the…

  1. Killing, letting die and euthanasia.

    PubMed

    Husak, D N

    1979-12-01

    Medical ethicists debate whether or not the moral assessment of cases of euthanasia should depend on whether the patient is 'killed' or 'allowed to die'. The usual presupposition is that a clear distinction between killing and letting die can be drawn so that this substantive question is not begged. I contend that the categorisation of cases of instances of killing rather than as instances of letting die depends in part on a prior moral assessment of the case. Hence is it trivially rather than substantively true that the distinction has moral significance. But even if a morally neutral (ie non-question begging) distinction could be drawn, its application to the euthanasia controversy is problematic. I illustrate the difficulties of employing this distinction to reach moral conclusions by critically discussing Philippa Foot's recent treatment of euthanasia. I conclude that even if an act of euthanasia is an instance of killing, and there exists a prima facie moral duty not to kill, and no more stringent duty overrides this duty, one still cannot determine such an act to be morally impermissible. PMID:541821

  2. Evaluation of an improved centrifugal casting machine.

    PubMed

    Donovan, T E; White, L E

    1985-05-01

    A Type III gold alloy, a silver-palladium alloy, and a base metal alloy were cast in two different centrifugal casting machines. With the number of complete cast mesh squares as an indicator of castability, the Airspin casting machine produced superior castings with all three alloys. The base metal alloy produced the greatest number of complete squares with both casting machines. PMID:3889295

  3. Computer cast blast modelling

    SciTech Connect

    Chung, S.; McGill, M.; Preece, D.S.

    1994-07-01

    Cast blasting can be designed to utilize explosive energy effectively and economically for coal mining operations to remove overburden material. The more overburden removed by explosives, the less blasted material there is left to be transported with mechanical equipment, such as draglines and trucks. In order to optimize the percentage of rock that is cast, a higher powder factor than normal is required plus an initiation technique designed to produce a much greater degree of horizontal muck movement. This paper compares two blast models known as DMC (Distinct Motion Code) and SABREX (Scientific Approach to Breaking Rock with Explosives). DMC, applies discrete spherical elements interacted with the flow of explosive gases and the explicit time integration to track particle motion resulting from a blast. The input to this model includes multi-layer rock properties, and both loading geometry and explosives equation-of-state parameters. It enables the user to have a wide range of control over drill pattern and explosive loading design parameters. SABREX assumes that heave process is controlled by the explosive gases which determines the velocity and time of initial movement of blocks within the burden, and then tracks the motion of the blocks until they come to a rest. In order to reduce computing time, the in-flight collisions of blocks are not considered and the motion of the first row is made to limit the motion of subsequent rows. Although modelling a blast is a complex task, the DMC can perform a blast simulation in 0.5 hours on the SUN SPARCstation 10--41 while the new SABREX 3.5 produces results of a cast blast in ten seconds on a 486-PC computer. Predicted percentage of cast and face velocities from both computer codes compare well with the measured results from a full scale cast blast.

  4. AMCC casting development, volume 2

    NASA Technical Reports Server (NTRS)

    1995-01-01

    PCC successfully cast and performed nondestructive testing, FPI and x-ray, on seventeen AMCC castings. Destructive testing, lab analysis and chemical milling, was performed on eleven of the castings and the remaining six castings were shipped to NASA or Aerojet. Two of the six castings shipped, lots 015 and 016, were fully processed per blueprint requirements. PCC has fully developed the gating and processing parameters of this part and feels the part could be implemented into production, after four more castings have been completed to ensure the repeatability of the process. The AMCC casting has been a technically challenging part due to its size, configuration, and alloy type. The height and weight of the wax pattern assembly necessitated the development of a hollow gating system to ensure structural integrity of the shell throughout the investment process. The complexity in the jacket area of the casting required the development of an innovative casting technology that PCC has termed 'TGC' or thermal gradient control. This method of setting up thermal gradients in the casting during solidification represents a significant process improvement for PCC and has been successfully implemented on other programs. The alloy, JBK75, is a relatively new alloy in the investment casting arena and required our engineering staff to learn the gating, processing, and dimensional characteristics of the material.

  5. Effects of squeeze casting on the properties of Zn-Bi monotectic alloy

    NASA Astrophysics Data System (ADS)

    Savas, M. A.; Altintas, S.; Erturan, H.

    1997-07-01

    In composite production, the shortest route is via an in situ composite in which a melt dissociates simultaneously into two rather different solid phases. The monotectic alloys can be included in this group. The present work was aimed at extending our recent squeeze casting experience on the Zn-Bi monotectic alloy in order to increase its cast quality and mechanical properties. A squeeze casting unit was built, and its die and punch were machined. The molten monotectic alloy was squeezed in this unit under pressures up to 120 MPa in its freezing range until it solidified completely. It was found that an increase in squeeze casting pressure provided increases in density, tensile strength, and Vickers hardness, which resulted in decreases in chip length and electrical resistivity. Before the squeeze casting practice, the freezing characteristics of this monotectic were estimated using basic solidification principles.

  6. Energy Saving Melting andRevert Reduction Technology (E0SMARRT): Predicting Pattern Tooling and Casting Dimension for Investment Casting

    SciTech Connect

    Nick Cannell; Dr. Mark Samonds; Adi Sholapurwalla; Sam Scott

    2008-11-21

    The investment casting process is an expendable mold process where wax patterns of the part and rigging are molded, assembled, shelled and melted to produce a ceramic mold matching the shape of the component to be cast. Investment casting is an important manufacturing method for critical parts because of the ability to maintain dimensional shape and tolerances. However, these tolerances can be easily exceeded if the molding components do not maintain their individual shapes well. In the investment casting process there are several opportunities for the final casting shape to not maintain the intended size and shape, such as shrinkage of the wax in the injection tool, the modification of the shape during shell heating, and with the thermal shrink and distortion in the casting process. Studies have been completed to look at the casting and shell distortions through the process in earlier phases of this project. Dr. Adrian Sabau at Oak Ridge National Labs performed characterizations and validations of 17-4 PH stainless steel in primarily fused silica shell systems with good agreement between analysis results and experimental data. Further tasks provided material property measurements of wax and methodology for employing a viscoelastic definition of wax materials into software. The final set of tasks involved the implementation of the findings into the commercial casting analysis software ProCAST, owned and maintained by ESI Group. This included: o the transfer of the wax material property data from its raw form into separate temperature-dependent thermophysical and mechanical property datasets o adding this wax material property data into an easily viewable and modifiable user interface within the pre-processing application of the ProCAST suite, namely PreCAST o and validating the data and viscoelastic wax model with respect to experimental results

  7. Properties of a hybrid plaster-fibreglass cast

    PubMed Central

    Charles, Mark N.; Yen, David

    2000-01-01

    Objective To examine the suitability of a plaster-fibreglass hybrid cast for orthopedic applications, comparing them to plaster of Paris (POP) and fibreglass constructs. Method Groups of 10 standardized hybrid, POP and fibreglass casts were studied. An Instron servo-hydraulic system was used to test the casts in 3-point bending and shear. Outcome measures Strength, stiffness, weight, thickness and cost of the 3 types of cast, and shear strength at the interface between the POP and fibreglass in the hybrid casts. Results The hybrid casts were twice as strong as the POP constructs, were stiffer and weighed 14% less but were thicker and cost 2.5 times more. They were almost as strong as and less than half the cost of the fibreglass constructs but were thicker, not as stiff, and weighed 42% more. The shear strength of the POP–fibreglass interface in the hybrid casts was higher than the 3-point bending strength of this construct by a factor of 3. Conclusions Plaster-fibreglass hybrid casts should be considered for orthopedic use on the basis of their strength, stiffness, weight and cost, combined with their acknowledged advantages of good moulding ability and water resistance. PMID:11045095

  8. Issues with dying patients.

    PubMed

    Valent, P

    1978-04-22

    Doctors have the privilege of looking after patients from the moment of birth to the moment of death. Yet, the holistic approach to patients is interfered with by the doctor's role as a warrior against death, where death's everpresent claim on our lives, and its final victory, are ignored. This paper attempts to explore why doctors are in their current position, the mechanisms for ignoring death which are shared by doctors and patients, the nature of the fear of death, and practical implications for the treatment of dying patients. More and more patients die now in medical settings. It is incumbent on doctors to understand the dying process, if much unnecessary suffering is to be prevented. PMID:661717

  9. Experiences of the dying.

    PubMed

    Schoenbeck, Susan L

    2011-01-01

    It is often a mystery to us how we have come to know and believe in certain things. Beliefs are like guests who come up to a door. They come in only if the host opens it and invites them in. Otherwise they are turned away, unable to enter. LPNs/LVNs are invited to reflect on their experiences and expand their knowledge and beliefs. There is growing recognition that bedside talks of the dying, spirit travel and near-death events are real events for the people who experience them. LPNs/ LVNs are encouraged to expand their knowledge and beliefs about dying. PMID:23252027

  10. Assisted Dying in Canada.

    PubMed

    Schuklenk, Udo

    2014-01-01

    This paper makes an affirmative ethical case in favour of the decriminalization of assisted dying in Canada. It then proceeds to defending the affirmative case against various slippery-slope arguments that are typically deployed by opponents of assisted dying. Finally, a recent case of questionable professional conduct by anti-euthanasia campaigners cum academics is flagged as a warning to all of us not to permit the quality of the professional debate to deteriorate unacceptably, despite the personal emotional investments involved on all sides of the debate. PMID:26871530

  11. Volume MLS ray casting.

    PubMed

    Ledergerber, Christian; Guennebaud, Gaël; Meyer, Miriah; Bächer, Moritz; Pfister, Hanspeter

    2008-01-01

    The method of Moving Least Squares (MLS) is a popular framework for reconstructing continuous functions from scattered data due to its rich mathematical properties and well-understood theoretical foundations. This paper applies MLS to volume rendering, providing a unified mathematical framework for ray casting of scalar data stored over regular as well as irregular grids. We use the MLS reconstruction to render smooth isosurfaces and to compute accurate derivatives for high-quality shading effects. We also present a novel, adaptive preintegration scheme to improve the efficiency of the ray casting algorithm by reducing the overall number of function evaluations, and an efficient implementation of our framework exploiting modern graphics hardware. The resulting system enables high-quality volume integration and shaded isosurface rendering for regular and irregular volume data. PMID:18988986

  12. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-11-26

    Disclosed is an improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  13. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-01-29

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  14. Computer cast blast modelling

    SciTech Connect

    Chung, S.; McGill, M.; Preece, D.S.

    1994-12-31

    Cast blasting can be designed to utilize explosive energy effectively and economically for coal mining operations to remove overburden material. This paper compares two blast models known as DMC (Distinct Motion Code) and SABREX (Scientific Approach to Breaking Rock with Explosives). DMC applies discrete spherical elements interacted with the flow of explosive gases and the explicit time integration to track particle motion resulting from a blast. The input to this model includes multi-layer rock properties, and both loading geometry and explosives equation-of-state parameters. It enables the user to have a wide range of control over drill pattern and explosive loading design parameters. SABREX assumes that heave process is controlled by the explosive gases which determines the velocity and time of initial movement of blocks within the burden, and then tracks the motion of the blocks until they come to a rest. In order to reduce computing time, the in-flight collisions of blocks are not considered and the motion of the first row is made to limit the motion of subsequent rows. Although modelling a blast is a complex task, the advance in computer technology has increased the computing power of small work stations as well as PC (personal computers) to permit a much shorter turn-around time for complex computations. The DMC can perform a blast simulation in 0.5 hours on the SUN SPARC station 10-41 while the new SABREX 3.5 produces results of a cast blast in ten seconds on a 486-PC. Predicted percentage of cast and face velocities from both computer codes compare well with the measured results from a full scale cast blast.

  15. [Casting faults and structural studies on bonded alloys comparing centrifugal castings and vacuum pressure castings].

    PubMed

    Fuchs, P; Küfmann, W

    1978-07-01

    The casting processes in use today such as centrifugal casting and vacuum pressure casting were compared with one another. An effort was made to answer the question whether the occurrence of shrink cavities and the mean diameter of the grain of the alloy is dependent on the method of casting. 80 crowns were made by both processes from the baked alloys Degudent Universal, Degudent N and the trial alloy 4437 of the firm Degusa. Slice sections were examined for macro and micro-porosity and the structural appearance was evaluated by linear analysis. Statistical analysis showed that casting faults and casting structure is independent of the method used and their causes must be found in the conditions of casting and the composition of the alloy. PMID:352670

  16. Casting larger polycrystalline silicon ingots

    SciTech Connect

    Wohlgemuth, J.; Tomlinson, T.; Cliber, J.; Shea, S.; Narayanan, M.

    1995-08-01

    Solarex has developed and patented a directional solidification casting process specifically designed for photovoltaics. In this process, silicon feedstock is melted in a ceramic crucible and solidified into a large grained semicrystalline silicon ingot. In-house manufacture of low cost, high purity ceramics is a key to the low cost fabrication of Solarex polycrystalline wafers. The casting process is performed in Solarex designed casting stations. The casting operation is computer controlled. There are no moving parts (except for the loading and unloading) so the growth process proceeds with virtually no operator intervention Today Solarex casting stations are used to produce ingots from which 4 bricks, each 11.4 cm by 11.4 cm in cross section, are cut. The stations themselves are physically capable of holding larger ingots, that would yield either: 4 bricks, 15 cm by 15 an; or 9 bricks, 11.4 cm by 11.4 an in cross-section. One of the tasks in the Solarex Cast Polycrystalline Silicon PVMaT Program is to design and modify one of the castings stations to cast these larger ingots. If successful, this effort will increase the production capacity of Solarex`s casting stations by 73% and reduce the labor content for casting by an equivalent percentage.

  17. Poetry and the Dying.

    ERIC Educational Resources Information Center

    Kramer, Aaron

    1992-01-01

    Demonstrates roles poetry can play as people confront the death of loved ones and their own dying. Gives examples of Heinrich Heine transforming his agony into art and, from the poetry of two college students, both in advanced stages of neurological disease, which was read aloud in class, teaching all present something about how to approach their…

  18. Tool & Die Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains 23 units to consider for use in a tech prep competency profile for the occupation of tool and die technician. All the units listed will not necessarily apply to every situation or tech prep consortium, nor will all the competencies within each unit be appropriate. Several units appear within each specific occupation and…

  19. When a Baby Dies.

    ERIC Educational Resources Information Center

    Church, Martha Jo; And Others

    Written especially for grieving mothers whose babies have died, this booklet offers an overview of stages and experiences through which bereaved parents commonly pass. Specifically, the text is intended to give comfort to bereaved parents, offer insight into the grieving process, and provide thoughts on leave-taking ceremonies. The first section…

  20. Characterization of Ni-Cr alloys using different casting techniques and molds.

    PubMed

    Chen, Wen-Cheng; Teng, Fu-Yuan; Hung, Chun-Cheng

    2014-02-01

    This study differentiated the mechanical properties of nickel-chromium (Ni-Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni-Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, "casting mold," significantly influenced all mechanical properties. The graphite mold casting of the Ni-Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni-Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. PMID:24411373

  1. Advanced Cast Austenitic Stainless Steels for High Temperature Components

    SciTech Connect

    Maziasz, P.J.; Shingledecker, J.P.; Evans, N.D.; Pollard, M.J.

    2008-10-09

    In July of 2002, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Caterpillar, Inc. (Caterpillar Technical Center) to develop and commercialize new cast stainless steels invented and initially tested on a prior CRADA. This CRADA is a direct follow-on project to CRADA ORNL-99-0533 for diesel engine exhaust component and gas turbine engine structural component applications. The goal of this new CRADA was to develop and commercialize the newly discovered cast stainless steels (primarily CF8C-Plus) with improved performance and reliability, as lower-cost upgrade alternatives to more costly cast Ni-based superalloys.

  2. Navigating "Assisted Dying".

    PubMed

    Schipper, Harvey

    2016-02-01

    Carter is a bellwether decision, an adjudication on a narrow point of law whose implications are vast across society, and whose impact may not be realized for years. Coupled with Quebec's Act Respecting End-of-life Care it has sharply changed the legal landscape with respect to actively ending a person's life. "Medically assisted dying" will be permitted under circumstances, and through processes, which have yet to be operationally defined. This decision carries with it moral assumptions, which mean that it will be difficult to reach a unifying consensus. For some, the decision and Act reflect a modern acknowledgement of individual autonomy. For others, allowing such acts is morally unspeakable. Having opened the Pandora's Box, the question becomes one of navigating a tolerable societal path. I believe it is possible to achieve a workable solution based on the core principle that "medically assisted dying" should be a very rarely employed last option, subject to transparent ongoing review, specifically as to why it was deemed necessary. My analysis is based on 1. The societal conditions in which have fostered demand for "assisted dying", 2. Actions in other jurisdictions, 3. Carter and Quebec Bill 52, 4. Political considerations, 5. Current medical practice. Leading to a series of recommendations regarding. 1. Legislation and regulation, 2. The role of professional regulatory agencies, 3. Medical professions education and practice, 4. Public education, 5. Health care delivery and palliative care. Given the burden of public opinion, and the legal steps already taken, a process for assisted-dying is required. However, those legal and regulatory steps should only be considered a necessary and defensive first step in a two stage process. The larger goal, the second step, is to drive the improvement of care, and thus minimize assisted-dying. PMID:27169205

  3. Modal Vibration Analysis of Large Castings

    NASA Technical Reports Server (NTRS)

    Werlink, Rudolph J.; Margasahayam, Ravi N.

    2009-01-01

    The art of experimental modal vibration analysis (MVA) has been extended to apply to large castings. This extension was made to enable the use of experimental MVA as a relatively inexpensive, simple means of assessing the internal structural integrity of tread shoes of crawler transporters used to move spacecraft to the launch pad at Kennedy Space Center. Each tread shoe is made from cast iron and weighs about a ton (has a mass .907 kg). The present extended version of experimental MVA could also be applied to other large castings. It could be especially useful to manufacturers as a means of rapidly discriminating against large castings that contain unacceptably large concentrations of internal defects. The use of experimental MVA to assess structural integrity is not new. What are new here are those aspects of the extension of experimental MVA that pertain to the application of MVA to objects so massive that it may not be practical or cost effective to mount them in special test fixtures that impose special test boundary conditions to test them in place under normal conditions of use.

  4. Herausforderungen durch die deutsche Wiedervereinigung

    NASA Astrophysics Data System (ADS)

    Stäglin, Reiner

    Die Wiedervereinigung stellte auch die Statistik vor große Aufgaben. Die als Organ der staatlichen Planung staatsnah orientierte Statistik der DDR musste auf das zur Neutralität und wissenschaftlichen Unabhängigkeit verpflichtete System der Bundesrepublik umgestellt werden. Ebenso verlangten die Universitäten eine Neuorientierung. Die Deutsche Statistische Gesellschaft hat sich vor allem dreier Aufgaben mit großem Engagement, aber auch mit Bedachtsamkeit angenommen: Aufnahme und Integration der Statistiker aus den neuen Bundesländern in die Gesellschaft, Begleitung der Neuausrichtung des Faches Statistik an deren Hochschulen und Sicherung sowie Nutzung von Datenbeständen der ehemaligen DDR.

  5. The application of a probabilistic particle model for turbulent combustion modelling in combustors. (German Title: Die Anwendung eines probabilistischen Partikelmodells für die Modellierung der turbulenten Verbrennung in Brennkammern)

    NASA Astrophysics Data System (ADS)

    Aumeier, Thomas

    2011-12-01

    The modeling of combustion phenomena in turbulent flows is an important requirement to calculate the effects on the underlying flow field and thus to use the results for design studies and optimization processes in technical applications. Complex chemical systems arise due to the large amount of species participating in combustion reactions as well as multiple reaction paths which are represented by a set of reaction equations. These systems have to be solved with suitable numerical techniques and must consider the influence of turbulence in the mean transport equations, respectively. Compared to the time scales in the flow, chemical reactions occur on a more expanded range of time at a molecular level. This effect reflects in the formulation of the equations for the calculation of chemical reaction rates, which are given in a Lagrangian formulation and therefore only depends on time. In practical cases specific combustion models are used depending on the combustion regime which is associated within an application. In this thesis a combustion model for turbulence chemistry interactions is presented, which can be used, independently of the combustion regime, for both diffusion and premixed flames as well as for partially premixed flames in realistic combustors. With the aid of the model the mean chemical source terms can be coupled to the species transport equations and the energy equation of the commercial CFD - solver FLUENT®. This is done within the solver by a user-friendly interface, the so-called User Defined Functions (UDF). Transport equations for each specie progressing in the chemical reactions are solved and its source terms are calculated with the aid of a detailed reaction mechanism. In the presented model the calculation of the mean values is performed by coupling a Lagrangian solution procedure with an Eulerian finite volume solver. A very large amount of individual particles are considered where for each particle additional Lagrangian equations

  6. Cast dielectric composite linear accelerator

    DOEpatents

    Sanders, David M.; Sampayan, Stephen; Slenes, Kirk; Stoller, H. M.

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  7. Development of an Optimization Methodology for the Aluminum Alloy Wheel Casting Process

    NASA Astrophysics Data System (ADS)

    Duan, Jianglan; Reilly, Carl; Maijer, Daan M.; Cockcroft, Steve L.; Phillion, Andre B.

    2015-08-01

    An optimization methodology has been developed for the aluminum alloy wheel casting process. The methodology is focused on improving the timing of cooling processes in a die to achieve improved casting quality. This methodology utilizes (1) a casting process model, which was developed within the commercial finite element package, ABAQUS™—ABAQUS is a trademark of Dassault Systèms; (2) a Python-based results extraction procedure; and (3) a numerical optimization module from the open-source Python library, Scipy. To achieve optimal casting quality, a set of constraints have been defined to ensure directional solidification, and an objective function, based on the solidification cooling rates, has been defined to either maximize, or target a specific, cooling rate. The methodology has been applied to a series of casting and die geometries with different cooling system configurations, including a 2-D axisymmetric wheel and die assembly generated from a full-scale prototype wheel. The results show that, with properly defined constraint and objective functions, solidification conditions can be improved and optimal cooling conditions can be achieved leading to process productivity and product quality improvements.

  8. Replacing London's cast iron mains

    SciTech Connect

    Thorne, A. ); Mathews, P. )

    1992-07-01

    This paper discusses the cast iron gas distribution systems that exist in many cities and contains considerable amounts of pipe that vary in age from 20 to 150 years. In many ways, cast iron is an excellent material. It is inherently corrosion resistant, easy to install and cheap. However, it is also brittle and smaller diameter cast iron pipe has a relatively low beam strength. This can lead, under some circumstances, to failure without external warning, with typically a full-circumferential failure. In congested areas this can lead to serious consequences. As a result, cast iron replacement programs are a common feature in such urban gas distribution systems.

  9. Care of the Dying: A Swedish Perspective

    ERIC Educational Resources Information Center

    Feigenberg, Loma; Fulton, Robert

    1977-01-01

    This article illustrates various aspects of terminal care, and shows that rules and norms for such care do not exist today. The authors advocate the formulation of an aim for humane treatment of dying patients, and its application in a manner appropriate to Swedish medical concepts and Swedish conditions. (Author)

  10. First Results of Energy Saving at Process Redesign of Die Forging Al-Alloys

    SciTech Connect

    Pepelnjak, Tomaz; Kuzman, Karl; Kokol, Anton

    2011-05-04

    The contribution deals with eco-friendly solutions for shortened production chains of forging light alloys. During the die forging operations a remarkable amount of material goes into the flash and later on into chips during finish machining. These low value side products are rich with embedded energy therefore recycling or reprocessing could be very energy saving procedure.In cooperation with a die forging company a shortened reprocessing cycle has been studied starting from re-melting the forging flash and without additional heating to cast preforms for subsequent die forging. As such preforms have not as good formability characteristics as those done from extruded billets the isothermal forging process has been adopted. First results showed that without cracks and other defects the formability is sufficient for a broad spectrum of forgings.To improve the formability a homogenization process of cast preforms has been implemented. As the process started immediately after casting, amount of additional energy for heating was minimized. To reduce voids forging process was redesigned in a way to assure greater hydrostatic pressures in parts during forging. First results were promising therefore research is going towards improving processes without adding significantly more energy as it is needed for casting with homogenization and die forging.

  11. Melting, casting, and alpha-phase extrusion of the uranium-2. 4 weight percent niobium alloy

    SciTech Connect

    Anderson, R C; Beck, D E; Kollie, T G; Zorinsky, E J; Jones, J M

    1981-10-01

    The experimental details of the melting, casting, homogenization, and alpha-phase extrusion process used to fabricate the uranium-2.4 wt % niobium alloy into 46-mm-diameter rods is described. Extrusion defects that were detected by an ultrasonic technique were eliminated by proper choice of extrusion parameters; namely, reduction ratio, ram speed, die angle, and billet preheat temperature.

  12. Heated die facilitates tungsten forming

    NASA Technical Reports Server (NTRS)

    Chattin, J. H.; Haystrick, J. E.; Laughlin, J. C.; Leidy, R. A.

    1966-01-01

    Tungsten forming in a press brake employs a bottom die assembly with a heating manifold between two water-cooled die sections. The manifold has hydrogen-oxygen burners spaced along its length for even heat during forming.

  13. Casting Equipment. Casting and Angling Skills Series. Instructor Manual.

    ERIC Educational Resources Information Center

    Staton, Robert D., Jr.

    Part of a series of self-contained instructional units designed by the Missouri Department of Conservation to teach Missourians how to use outdoor resources wisely and skillfully, the instructor manual, the first in the casting and angling series, is intended both as a reference book on casting equipment and as an introduction to the sport.…

  14. Columnar to equiaxed transition in high Cr white iron castings

    SciTech Connect

    Dogan, O.N.

    1996-07-15

    White cast irons are frequently used in applications requiring high wear resistance. High Cr white cast irons have a composite microstructure composed of hard (Fe,Cr){sub 7}C{sub 3} carbides in a steel matrix. In thick section castings, long rod-shaped carbides may grow perpendicular to the mold wall to form the columnar zone of the casting, or their long axes may grow in random directions to form equiaxed grains. Previous research has indicated that the equiaxed region of these high Cr white iron castings is much more wear resistant under high stress abrasive conditions than the columnar region, when the carbides are oriented perpendicular to the wear surface. Therefore, in order to maximize their abrasion resistance, it is essential that wear resistant cast parts with thick sections be produced with completely equiaxed macrostructures to maximize their abrasion resistance. In the present study, the effect of both the chemical composition, particularly carbon content, and the pouring superheat of the melt on the macrostructure of high Cr white iron castings is investigated.

  15. A new freeze casting technique for ceramics

    NASA Astrophysics Data System (ADS)

    Araki, Kiyoshi

    A new freeze casting technique for ceramics capable of manufacturing near room temperature with a sublimable vehicle has been developed in order to eliminate expensive processes under extremely cold temperatures in the conventional freeze casting. Fluid concentrated slurries of Al2O 3 powder in molten camphene (C10H16) were successfully prepared at 55°C with a small amount of a dispersant. These slurries were quickly solidified (frozen) at room temperature to yield a rigid solid green body, where the frozen camphene was easily removed by sublimation (freeze-drying) with negligible shrinkage. Sintering was successfully conducted without any special binder burnout process to yield dense sintered bodies (over 98% T.D). An organic alloy with a eutectic composition in the naphthalene (C 10H8)-camphor (C10H16O) binary system with a eutectic temperature of 31°C was also found to be a successful vehicle for the new ceramic freeze casting. The fabrication processes are almost the same as those with camphene. It was found that vehicles with off-eutectic compositions resulted in large voids in the sintered body due to the ceramic particle rejection by pro-eutectic crystals during freezing. At the eutectic composition, fine lamellar microstructure in the solidified vehicle inhibits the particle rejection. The proposed advantages of the new freeze casting technique with a sublimable vehicle include; (1) elimination of extremely cold temperatures used in conventional freeze casting; (2) elimination of troublesome binder burnout process; and (3) fast manufacturing cycle due to quick solidification. Porous ceramic bodies with unique interconnected pore channels were fabricated by the new freeze casting with lower solid content. The unique channels surrounded by fully dense walls have nearly circular cross-sections unlike conventional aqueous freeze casting. The porosity and the channel diameters are controllable by the solid content in the slurry. The unique channels are

  16. Psychotherapy with Older Dying Persons.

    ERIC Educational Resources Information Center

    Dye, Carol J.

    Psychotherapy with older dying patients can lead to problems of countertransference for the clinician. Working with dying patients requires flexibility to adapt basic therapeutics to the institutional setting. Goals of psychotherapy must be reconceptualized for dying clients. The problems of countertransference arise because clinicians themselves…

  17. When Your Child Needs a Cast

    MedlinePlus

    ... hard bandage that's usually made of material like fiberglass or plaster. Casts keep bones in place while ... water. Plaster of Paris casts are heavier than fiberglass casts and don't hold up as well ...

  18. Milling strategies evaluation when simulating the forming dies' functional surfaces production

    NASA Astrophysics Data System (ADS)

    Ižol, Peter; Tomáš, Miroslav; Beňo, Jozef

    2016-05-01

    The paper deals with selection and evaluation of milling strategies, available in CAM systems and applicable when complicated shape parts are produced, such as forming dies. A method to obtain samples is proposed and this stems from real forming die surface machined by proper strategies. The strategy applicability for the whole part - forming die - is reviewed by the particular specimen evaluation. The presented methodology has been verified by machining model die and comparing it to the production procedure proposed in other CAM systems.

  19. Lost-Soap Aluminum Casting.

    ERIC Educational Resources Information Center

    Mihalow, Paula

    1980-01-01

    Lost-wax casting in sterling silver is a costly experience for the average high school student. However, this jewelry process can be learned at no cost if scrap aluminum is used instead of silver, and soap bars are used instead of wax. This lost-soap aluminum casting process is described. (Author/KC)

  20. Electroslag component casting. [Nickel aluminide

    SciTech Connect

    Sikka, V.K.

    1986-01-01

    This project is directed toward the development of electroslag-casting (ESC) technology for use in coal conversion components such as valve bodies, pump housings, and pipe fittings. The aim is also to develop a sufficient data base to permit electroslag casting to become an ASME Code-accepted process. It is also intended to transfer the ESC process technology to private industry. A total of 32 electroslag castings of 2.25Cr-1Mo, 9Cr-1Mo, type 316, and nickel aluminide were procured from four facilities for evaluation (Table 1). The most complex castings procured during this program were the valve bodies shown in Figure 2. The castings were subjected to various heat treatments (Table 2), checked for chemical composition uniformity from top to bottom, and subjected to macrostructural evaluation and mechanical properties testing. Results are discussed. 10 refs., 7 figs., 3 tabs.

  1. Low Background Micromegas in CAST

    NASA Astrophysics Data System (ADS)

    Garza, J. G.; Aune, S.; Aznar, F.; Calvet, D.; Castel, J. F.; Christensen, F. E.; Dafni, T.; Davenport, M.; Decker, T.; Ferrer-Ribas, E.; Galán, J.; García, J. A.; Giomataris, I.; Hill, R. M.; Iguaz, F. J.; Irastorza, I. G.; Jakobsen, A. C.; Jourde, D.; Mirallas, H.; Ortega, I.; Papaevangelou, T.; Pivovaroff, M. J.; Ruz, J.; Tomás, A.; Vafeiadis, T.; Vogel, J. K.

    2015-11-01

    Solar axions could be converted into x-rays inside the strong magnetic field of an axion helioscope, triggering the detection of this elusive particle. Low background x-ray detectors are an essential component for the sensitivity of these searches. We report on the latest developments of the Micromegas detectors for the CERN Axion Solar Telescope (CAST), including technological pathfinder activities for the future International Axion Observatory (IAXO). The use of low background techniques and the application of discrimination algorithms based on the high granularity of the readout have led to background levels below 10-6 counts/keV/cm2/s, more than a factor 100 lower than the first generation of Micromegas detectors. The best levels achieved at the Canfranc Underground Laboratory (LSC) are as low as 10-7 counts/keV/cm2/s, showing good prospects for the application of this technology in IAXO. The current background model, based on underground and surface measurements, is presented, as well as the strategies to further reduce the background level. Finally, we will describe the R&D paths to achieve sub-keV energy thresholds, which could broaden the physics case of axion helioscopes.

  2. Volatile species retention during metallic fuel casting

    NASA Astrophysics Data System (ADS)

    Fielding, Randall S.; Porter, Douglas L.

    2013-10-01

    Metallic nuclear fuels are candidate transmutation fuel forms for advanced fuel cycles. Through the operation of the Experimental Breeder Reactor II metallic nuclear fuels have been shown to be robust and easily manufactured. However, concerns have been raised concerning loss of americium during the casting process because of its high vapor pressure. In order to address these concerns a gaseous diffusion model was developed and a series of experiments using both manganese and samarium as surrogates for americium were conducted. The modeling results showed that volatility losses can be controlled to essentially no losses with a modest overpressure. Experimental results also showed volatile species retention down to no detectable losses through overpressure, and although the loss values varied from the model results the same trend was seen. Based on these results it is very probable that americium losses through volatility can be controlled to no detectable losses through application of a modest overpressure during casting.

  3. Volatile Species Retention During Metallic Fuel Casting

    SciTech Connect

    Randall S. Fielding; Douglas L. Proter

    2013-10-01

    Metallic nuclear fuels are candidate transmutation fuel forms for advanced fuel cycles. Through the operation of the Experimental Breeder Reactor II metallic nuclear fuels have been shown to be robust and easily manufactured. However, concerns have been raised concerning loss of americium during the casting process because of its high vapor pressure. In order to address these concerns a gaseous diffusion model was developed and a series of experiments using both manganese and samarium as surrogates for americium were conducted. The modeling results showed that volatility losses can be controlled to essentially no losses with a modest overpressure. Experimental results also showed volatile species retention down to no detectable losses through overpressure, although the loss values varied from the model results the same trend was seen. Bases on these results it is very probably that americium losses through volatility can be controlled to no detectable losses through application of a modest overpressure during casting.

  4. Laser-Ultrasonic Inspection of MG/AL Castings

    SciTech Connect

    Blouin, Alain; Levesque, Daniel; Monchalin, Jean-Pierre; Baril, Eric; Fischersworring-Bunk, Andreas

    2005-04-09

    Laser-ultrasonics is used to assess the metallurgical bond between Mg/Al materials in die-cast Magnesium/Aluminum composite. The acoustic impedances of Mg, Al and air are such that the amplitude of ultrasonic echoes reflected back from a void is many times larger than the amplitude of those reflected back from a well-bonded interface. In addition, the polarity of echoes from a void is inverted compared to that from a well-bonded interface. Laser-ultrasonic F-SAFT is also used for imaging tilted Mg/Al interfaces. Experimental setup, signal processing and results for detecting voids in the Mg/Al interface of cast parts are presented.

  5. Physicochemical and mechanical properties of freeze cast hydroxyapatite-gelatin scaffolds with dexamethasone loaded PLGA microspheres for hard tissue engineering applications.

    PubMed

    Ghorbani, Farnaz; Nojehdehian, Hanieh; Zamanian, Ali

    2016-12-01

    Hydroxyapatite (HA)-gelatin scaffolds incorporated with dexamethasone-loaded polylactic-co-glycolic acid (PLGA) microspheres were synthesized by freeze casting technique. Scanning electron microscopy (SEM) micrographs demonstrated a unidirectional microstructure and a decrease in the pore size as a function of temperature gradient. Higher amounts of HA resulted in a decrease in the pore size. According to the results, at lower cooling rates, the formation of a lamellar structure decreased the mechanical strength, but at the same time, enhanced the swelling ratio, biodegradation rate and drug release level. On the other hand, higher weight ratios of HA increased the compressive strength, and reduced the swelling ratio, biodegradation rate and drug release level. The results obtained by furrier transform infrared spectroscopy (FTIR) and bioactivity analysis illustrated that the interactions of the materials support the apatite formation in the simulated body fluid (SBF) solution. Based on the obtained results, the synthesized composite scaffolds have the necessary mechanical and physicochemical features to support the regeneration of defects and to maintain their stability during the neo-tissue formation. PMID:27612706

  6. A New Method For Advanced Virtual Design Of Stamping Tools For Automotive Industry: Application To Nodular Cast Iron EN-GJS-600-3

    NASA Astrophysics Data System (ADS)

    Ben-Slima, Khalil; Penazzi, Luc; Mabru, Catherine; Ronde-Oustau, François; Rezaï-Aria, Farhad

    2011-05-01

    This contribution presents an approach combining the stamping numerical processing simulations and structure analysis in order to improve the design for optimizing the tool fatigue life. The method consists in simulating the stamping process via AutoForm® (or any FEM Code) by considering the tool as a perfect rigid body. The estimated contact pressure is then used as boundary condition for FEM structure loading analysis. The result of this analysis is used for life prediction of the tool using S-N fatigue curve. If the prescribed tool life requirements are not satisfied, then the critical region of the tool is redesigned and the whole simulation procedures are reactivated. This optimization method is applied for a cast iron EN-GJS-600-3 as candidate stamping tool materiel. The room temperature fatigue S-N curves of this alloy are established in laboratory under uniaxial push/pull cyclic experiments on cylindrical specimens under a load ratio of R (σmin/σmax) = -2.

  7. Nitriding of Aluminum Extrusion Die: Effect of Die Geometry

    NASA Astrophysics Data System (ADS)

    Akhtar, S. S.; Arif, A. F. M.; Yilbas, B. S.

    2010-04-01

    Nitriding of complex-shaped extrusion dies may result in non-uniform nitride layers and hence a required hardness may not be achieved in some regions of the bearing area. The present study is carried out to assess the effect of extrusion die profile on the characteristics and growth behavior of nitride layers so that the critical die design feature can be identified to enhance the uniformity of the nitride layer. For this purpose, AISI H13 steel samples have been manufactured with profiles similar to those of hot extrusion dies. The samples were then gas nitrided under controlled nitriding potential. The uniformity and depth of nitride layers have been investigated in terms of compound layer and total nitride case depth for selected die features. The results of this study indicated the need to include the effect of profile on the nitride layer for the optimal die design with improved service life.

  8. Flexible, Ultra-Thin, Embedded Die Packaging

    NASA Astrophysics Data System (ADS)

    McPherson, Ryan J.

    As thin, flexible electronics solutions become more robust, their integration into everyday life becomes more likely. With possible applications in wearable electronics, biomedical sensors, or 'peel and stick' sensors, the reliability of these ultra-thin packages becomes paramount. Likewise, the density achievable with stacked packages benefits greatly from thinner die stacks. To this end, techniques previously developed have demonstrated packages with die thinned to approximately 20mum. Covered in this work are methods for thinning and packaging silicon die, as well as information on common materials used in these processes. The author's contribution is a fabrication process for embedding ultra-thin (approximately 10mum) silicon die in polyimide substrates. This method is fully illustrated in Chapter 3 and enumerated in the Appendix as a quick reference. Additionally, thermal cycle testing of passive daisy chain assemblies has shown promising reliability data. Packages were mounted in three alignments: flat, concave, and convex, and placed into thermal shock testing. Finally, the author discusses possible applications for this fabrication process, including the fabrication of multi-chip-modules.

  9. Accurate defect die placement and nuisance defect reduction for reticle die-to-die inspections

    NASA Astrophysics Data System (ADS)

    Wen, Vincent; Huang, L. R.; Lin, C. J.; Tseng, Y. N.; Huang, W. H.; Tuo, Laurent C.; Wylie, Mark; Chen, Ellison; Wang, Elvik; Glasser, Joshua; Kelkar, Amrish; Wu, David

    2015-10-01

    Die-to-die reticle inspections are among the simplest and most sensitive reticle inspections because of the use of an identical-design neighboring-die for the reference image. However, this inspection mode can have two key disadvantages: (1) The location of the defect is indeterminate because it is unclear to the inspector whether the test or reference image is defective; and (2) nuisance and false defects from mask manufacturing noise and tool optical variation can limit the usable sensitivity. The use of a new sequencing approach for a die-to-die inspection can resolve these issues without any additional scan time, without sacrifice in sensitivity requirement, and with a manageable increase in computation load. In this paper we explore another approach for die-to-die inspections using a new method of defect processing and sequencing. Utilizing die-to-die double arbitration during defect detection has been proven through extensive testing to generate accurate placement of the defect in the correct die to ensure efficient defect disposition at the AIMS step. The use of this method maintained the required inspection sensitivity for mask quality as verified with programmed-defectmask qualification and then further validated with production masks comparing the current inspection approach to the new method. Furthermore, this approach can significantly reduce the total number of defects that need to be reviewed by essentially eliminating the nuisance and false defects that can result from a die-to-die inspection. This "double-win" will significantly reduce the effort in classifying a die-to-die inspection result and will lead to improved cycle times.

  10. Sixty Years of Casting Research

    NASA Astrophysics Data System (ADS)

    Campbell, John

    2015-11-01

    The 60 years of solidification research since the publication of Chalmer's constitutional undercooling in 1953 has been a dramatic advance of understanding which has and continues to be an inspiration. In contrast, 60 years of casting research has seen mixed fortunes. One of its success stories relates to improvements in inoculation of gray irons, and another to the discovery of spheroidal graphite iron, although both of these can be classified as metallurgical rather than casting advances. It is suggested that true casting advances have dated from the author's lab in 1992 when a critical surface turbulence condition was defined for the first time. These last 20 years have seen the surface entrainment issues of castings developed to a sufficient sophistication to revolutionize the performance of light alloy and steel foundries. However, there is still a long way to go, with large sections of the steel and Ni-base casting industries still in denial that casting defects are important or even exist. The result has been that special ingots are still cast poorly, and shaped casting operations have suffered massive losses. For secondary melted and cast materials, electro-slag remelting has the potential to be much superior to expensive vacuum arc remelting, which has cost our aerospace and defense industries dearly over the years. This failure to address and upgrade our processing of liquid metals is a serious concern, since the principle entrainment defect, the bifilm, is seen as the principle initiator of cracks in metals; in general, bifilms are the Griffith cracks that initiate failures by cracking. A new generation of crack resistant metals and engineering structures can now be envisaged.

  11. Strip casting with fluxing agent applied to casting roll

    DOEpatents

    Williams, Robert S.; O'Malley, Ronald J.; Sussman, Richard C.

    1997-01-01

    A strip caster (10) for producing a continuous strip (24) includes a tundish (12) for containing a melt (14), a pair of horizontally disposed water cooled casting rolls (22) and devices (29) for electrostatically coating the outer peripheral chill surfaces (44) of the casting rolls with a powder flux material (56). The casting rolls are juxtaposed relative to one another for forming a pouting basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). A preferred flux is boron oxide having a melting point of about 550.degree. C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll.

  12. Strip casting with fluxing agent applied to casting roll

    DOEpatents

    Williams, R.S.; O`Malley, R.J.; Sussman, R.C.

    1997-07-29

    A strip caster for producing a continuous strip includes a tundish for containing a melt, a pair of horizontally disposed water cooled casting rolls and devices for electrostatically coating the outer peripheral chill surfaces of the casting rolls with a powder flux material. The casting rolls are juxtaposed relative to one another for forming a pouting basin for receiving the melt through a teeming tube thereby establishing a meniscus between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line to a sealing chamber. A preferred flux is boron oxide having a melting point of about 550 C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll. 3 figs.

  13. Strip casting apparatus and method

    DOEpatents

    Williams, R.S.; Baker, D.F.

    1988-09-20

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip. 6 figs.

  14. Biomimetic Materials by Freeze Casting

    NASA Astrophysics Data System (ADS)

    Porter, Michael M.; Mckittrick, Joanna; Meyers, Marc A.

    2013-06-01

    Natural materials, such as bone and abalone nacre, exhibit exceptional mechanical properties, a product of their intricate microstructural organization. Freeze casting is a relatively simple, inexpensive, and adaptable materials processing method to form porous ceramic scaffolds with controllable microstructural features. After infiltration of a second polymeric phase, hybrid ceramic-polymer composites can be fabricated that closely resemble the architecture and mechanical performance of natural bone and nacre. Inspired by the narwhal tusk, magnetic fields applied during freeze casting can be used to further control architectural alignment, resulting in freeze-cast materials with enhanced mechanical properties.

  15. Slip-Cast Superconductive Parts

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Buckley, John D.; Vasquez, Peter; Buck, Gregory M.; Hicks, Lana P.; Hooker, Matthew W.; Taylor, Theodore D.

    1993-01-01

    Complex shapes fabricated without machining. Nonaqueous slip-casting technique used to form complexly shaped parts from high-temperature superconductive materials like YBa(2)Cu(3)O(7-delta). Such parts useful in motors, vibration dampers, and bearings. In process, organic solvent used as liquid medium. Ceramic molds made by lost-wax process used instead of plaster-of-paris molds, used in aqueous slip-casting but impervious to organic solvents and cannot drain away liquid medium. Organic-solvent-based castings do not stick to ceramic molds as they do to plaster molds.

  16. Strip casting apparatus and method

    DOEpatents

    Williams, Robert S.; Baker, Donald F.

    1988-01-01

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip.

  17. 14 CFR 23.621 - Casting factors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... structural castings except castings that are pressure tested as parts of hydraulic or other fluid systems and do not support structural loads. (b) Bearing stresses and surfaces. The casting factors specified in... of § 23.305 at an ultimate load corresponding to a casting factor of 1.25; and (ii) The...

  18. 14 CFR 23.621 - Casting factors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... structural castings except castings that are pressure tested as parts of hydraulic or other fluid systems and do not support structural loads. (b) Bearing stresses and surfaces. The casting factors specified in... of § 23.305 at an ultimate load corresponding to a casting factor of 1.25; and (ii) The...

  19. 14 CFR 23.621 - Casting factors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... structural castings except castings that are pressure tested as parts of hydraulic or other fluid systems and do not support structural loads. (b) Bearing stresses and surfaces. The casting factors specified in... of § 23.305 at an ultimate load corresponding to a casting factor of 1.25; and (ii) The...

  20. 14 CFR 23.621 - Casting factors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... structural castings except castings that are pressure tested as parts of hydraulic or other fluid systems and do not support structural loads. (b) Bearing stresses and surfaces. The casting factors specified in... of § 23.305 at an ultimate load corresponding to a casting factor of 1.25; and (ii) The...

  1. Graphite/Thermoplastic-Pultrusion Die

    NASA Technical Reports Server (NTRS)

    Wilson, Maywood L.; Frye, Mark W.; Johnson, Gary S.; Stanfield, Clarence E.

    1990-01-01

    Attachment to extruder produces thermoplastic-impregnated graphite tape. Consists of profile die, fiber/resin collimator, and crosshead die body. Die designed to be attached to commercially available extrusion machine capable of extruding high-performance thermoplastics. Simple attachment to commercial extruder enables developers of composites to begin experimenting with large numbers of proprietary resins, fibers, and hybrid composite structures. With device, almost any possible fiber/resin combination fabricated.

  2. Continuous Casting for Aluminum Sheet: a Product Perspective

    NASA Astrophysics Data System (ADS)

    Sanders, Robert E.

    2012-02-01

    Continuous casting processes have been used successfully for more than 50 years to reduce the cost of manufacturing a variety of aluminum rolled products. Approximately 25% of North American flat-rolled sheet and foil is sourced from twin-roll cast or slab cast processes. Twin roll-casters provide a cost-effective solution for producing foil and light-gauge sheet from relatively low-alloyed aluminum (1xxx and 8xxx alloys). Slab casters, particularly Hazelett twin-belt machines, are well utilized in the production of 3xxx or 5xxx painted building products which require moderate strength and good corrosion resistance. Both foil and painted sheet are cost-sensitive commodity products with well-known metallurgical and quality requirements. There have been extensive trials and modest successes with continuous cast can stock and automotive sheet. However, they have not been widely adopted commercially due to generally lower levels of surface quality and formability compared with sheet produced from scalped direct chill (DC) cast ingot. The metallurgical requirements for can and auto sheet are considered in more detail with emphasis on the microstructural features which limit their application, e.g., particle distribution, grain size, and texture. Looking forward, slab casting offers the most viable opportunity for producing strong (i.e., higher alloy content), formable structural auto sheet with acceptable surface quality.

  3. Quantitative biomechanical comparison of ankle fracture casting methods.

    PubMed

    Shipman, Alastair; Alsousou, Joseph; Keene, David J; Dyson, Igor N; Lamb, Sarah E; Willett, Keith M; Thompson, Mark S

    2015-06-01

    The incidence of ankle fractures is increasing rapidly due to the ageing demographic. In older patients with compromised distal circulation, conservative treatment of fractures may be indicated. High rates of malunion and complications due to skin fragility motivate the design of novel casting systems, but biomechanical stability requirements are poorly defined. This article presents the first quantitative study of ankle cast stability and hypothesises that a newly proposed close contact cast (CCC) system provides similar biomechanical stability to standard casts (SC). Two adult mannequin legs transected at the malleoli, one incorporating an inflatable model of tissue swelling, were stabilised with casts applied by an experienced surgeon. They were cyclically loaded in torsion, measuring applied rotation angle and resulting torque. CCC stiffness was equal to or greater than that of SC in two measures of ankle cast resistance to torsion. The effect of swelling reduction at the ankle site was significantly greater on CCC than on SC. The data support the hypothesis that CCC provides similar biomechanical stability to SC and therefore also the clinical use of CCC. They suggest that more frequent re-application of CCC is likely required to maintain stability following resolution of swelling at the injury site. PMID:25719278

  4. Investment casting design of experiment. Final report

    SciTech Connect

    Owens, R.

    1997-10-01

    Specific steps in the investment casting process were analyzed in a designed experiment. The casting`s sensitivity to changes in these process steps was experimentally determined Dimensional and radiographic inspection were used to judge the sensitivity of the casting. Thirty-six castings of different pedigrees were poured and measured. Some of the dimensional inspection was conducted during the processing. It was confirmed that wax fixturing, number of gates, gate location, pour and mold temperature, pour speed, and cooling profile all affected the radiographic quality of the casting. Gate and runner assembly techniques, number of gates, and mold temperature affect the dimensional quality of the casting.

  5. Interface Formation During Fusion™ Casting of AA3003/AA4045 Aluminum Alloy Ingots

    NASA Astrophysics Data System (ADS)

    Di Ciano, Massimo; Caron, E. J. F. R.; Weckman, D. C.; Wells, M. A.

    2015-12-01

    Fusion™ casting is a unique Direct Chill continuous casting process whereby two different alloys can be cast simultaneously, producing a laminated ingot for rolling into clad sheet metal such as AA3003/AA4045 brazing sheet. Better understanding of the wetting and interface formation process during Fusion™ casting is required to further improve process yields and also explore use of other alloy systems for new applications. In this research, AA3003-core/AA4045-clad ingots were cast using a well-instrumented lab-scale Fusion™ casting system. As-cast Fusion™ interfaces were examined metallurgically and by mechanical testing. Computational fluid dynamic analyses of the FusionTM casts were also performed. It was shown that the liquid AA4045-clad alloy was able to successfully wet and create an oxide-free, metallurgical, and mechanically sound interface with the lightly oxidized AA3003-core shell material. Based on the results of this study, it is proposed that the bond formation process at the alloys interface during casting is a result of discrete penetration of AA4045 liquid at defects in the preexisting AA3003 oxide, dissolution of underlying AA3003 by liquid AA4045, and subsequent bridging between penetration sites. Spot exudation on the AA3003 chill cast surface due to remelting and inverse segregation may also improve the wetting and bonding process.

  6. Foreigners dying in Istanbul.

    PubMed

    Uzun, Ibrahim; Celbis, Osman; Baydar, Cetin Lutfi; Alkan, Nevzat; Arslan, Murat Nihat

    2009-09-01

    The study included 411 deaths selected from 14,647 medicolegal deaths autopsied in the Morgue Department of Forensic Medicine Institute Directorate, affiliated with the Ministry of Justice, between 1998 and 2002. Data were collected from court documents, coroner's investigation reports, and autopsy reports. The parameters of age, gender, nationality and origin, cause and place of death in foreigners dying in Istanbul were evaluated in the study. Out of 14,647 medicolegal deaths, 3.5% were foreigners from 34 different nationalities. The nationality with the highest rate of foreigner deaths (34%) was Romanian. Out of 411 deaths, 74.3% were male and 25.7% were female. Of all cases, 64.4% were tourists visiting Istanbul and 35.6% had a job in Istanbul. Of 146 foreigners employed in Istanbul, 94.5% did not have a work permit, while only 5.5% had a work permit. PMID:19674242

  7. The nature of urinary casts

    PubMed Central

    McQueen, E. G.

    1962-01-01

    The composition of hyaline casts has been investigated. The major constituent appears to be the urinary mucoprotein described by Tamm and Horsfall. Small amounts only of serum proteins are present. Neither the amounts excreted nor the concentration of Tamm-Horsfall protein appeared to determine the rate of cast formation. The only invariable association of hyaline cast formation was with the presence of significant amounts of serum proteins in the urine. In vitro it was found that aqueous solutions of serum albumin were particularly effective in producing precipitation of Tamm-Horsfall protein. This interaction was inhibited in normal urine but occurred to a greater extent in nephrotic urine and is suggested as the possible mechanism of hyaline cast formation. Images PMID:16810981

  8. Advanced casting: Today and tomorrow

    NASA Astrophysics Data System (ADS)

    Mietrach, D.

    The state of aluminum casting technology in terms of processes, component sizes, design and material-scientific data as well as mechanical characteristics was established during visits to foundries in the USA, Canada, France, Italy, Great Britain and the Federal Republic of Germany. Components of the primary structure of Tornado and ALPHA aircraft, (pylon, intake floor) classified according to the degree of difficulty during casting, were used to compare existing designs (riveted sheet metal and machined parts) and cast versions with regard to cost reduction and technical reliability. Visual inspection, dimensional checks, chemical composition analysis, penetrant tests, X-ray tests, metallographic investigations, and tensile tests were carried out. Cost savings of 25% and weight savings of 20% can be achieved by using castings.

  9. Casting Using A Polystyrene Pattern

    NASA Technical Reports Server (NTRS)

    Vasquez, Peter; Guenther, Bengamin; Vranas, Thomas; Veneris, Peter; Joyner, Michael

    1993-01-01

    New technique for making metal aircraft models saves significant amount of time and effort in comparison with conventional lost-wax method. Produces inexpensive, effective wind-tunnel models. Metal wind-tunnel model cast by use of polystyrene pattern.

  10. Quantitative chemical analysis of nickel-chromium dental casting alloys.

    PubMed

    Nagayama, K; Kuroiwa, A; Ando, Y; Hashimoto, H

    1990-01-01

    Twenty-nine brands of dental casting nickel-chromium alloys made in Japan for small castings were analyzed by electron probe X-ray microanalyzer. Nickel-chromium alloys for metal-ceramic application were composed primarily of nickel, chromium, and molybdenum with the exception of one brand. Of the nickel-chromium alloys for inlay, crown, and bridgework applications, 11 of the 22 alloys were up to the standard of the Ministry of Welfare specifications. And additive metal elements of these alloys were molybdenum, iron, copper, manganese, aluminum, silicon, tin, indium, silver, titanium, and gallium. PMID:2134288

  11. Casting evaluation of U-Zr alloy system fuel slug for SFR prepared by injection casting method

    SciTech Connect

    Song, Hoon; Kim, Jong-Hwan; Kim, Ki-Hwan; Lee, Chan-Bock

    2013-07-01

    Metal fuel slugs of U-Pu-Zr alloys for Sodium-cooled Fast Reactor (SFR) have conventionally been fabricated by a vacuum injection casting method. Recently, management of minor actinides (MA) became an important issue because direct disposal of the long-lived MA can be a long-term burden for a tentative repository up to several hundreds of thousand years. In order to recycle transuranic elements (TRU) retained in spent nuclear fuel, remote fabrication capability in a shielded hot cell should be prepared. Moreover, generation of long-lived radioactive wastes and loss of volatile species should be minimized during the recycled fuel fabrication step. In order to prevent the evaporation of volatile elements such as Am, alternative fabrication methods of metal fuel slugs have been studied applying gravity casting, and improved injection casting in KAERI, including melting under inert atmosphere. And then, metal fuel slugs were examined with casting soundness, density, chemical analysis, particle size distribution and microstructural characteristics. Based on these results there is a high level of confidence that Am losses will also be effectively controlled by application of a modest amount of overpressure. A surrogate fuel slug was generally soundly cast by improved injection casting method, melted fuel material under inert atmosphere.

  12. Moldless casting by laser

    NASA Astrophysics Data System (ADS)

    McLean, Marc A.; Shannon, G. J.; Steen, William M.

    1997-09-01

    The principle of laser cladding involves the use of high power carbon-dioxide lasers and powder deposition technology to provide wear and corrosion resistant surface coatings to engineering components. By injecting metal powder into a laser generated melt pool on a moving substrate a solidified metal track can be produced. Deposition of successive tracks produces a multi-layer build. Laser direct casting (LDC) utilizes a coaxial nozzle enabling consistent omnidirectional deposition to produce 3D components from a selection of metal powders. The influence of the principal process parameters over the process features namely, powder catchment efficiency, beam shape and build rates are presented with several successfully generated 3D components. Nickel, stainless steel and satellite powders were deposited at laser powders of 0.4 to 1.4 kW and speeds of 500 to 1000 mm/min achieving build rates of 3 to 9 mm3/s. Fully dense metallurgical structures have been produced with no cracking or porosity and powder catchment efficiencies up to 85% have been achieved.

  13. Effect of chemical composition and superheat on macrostructure of high Cr white iron castings

    SciTech Connect

    Dogan, Omer N.

    2005-08-01

    White cast irons are frequently used in applications requiring high wear resistance. High Cr white cast irons have a composite microstructure composed of hard (Fe,Cr)7C3 carbides in a steel matrix. Previous research has indicated that the equiaxed region of these high Cr white iron castings is much more wear resistant under high stress abrasive conditions than the columnar region, when the carbides are oriented perpendicular to the wear surface. In the present study, the effect of both the chemical composition, particularly carbon content, and the pouring superheat of the melt on the macrostructure of high Cr white iron castings is investigated.

  14. A Membrane Process for Recycling Die Lube from Wastewater Solutions

    SciTech Connect

    Eric S. Peterson; Jessica Trudeau; Bill Cleary; Michael Hackett; William A. Greene

    2003-04-01

    An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20–25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the die lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.

  15. A Membrane Process for Recycling Die Lube from Wastewater Solutions

    SciTech Connect

    Peterson, E. S.; Trudeau, J.; Cleary, B.; Hackett, M.; Greene, W. A.

    2003-04-30

    An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20-25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the die lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.

  16. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Light Metals Permanent Mold Casting

    SciTech Connect

    Fasoyinu, Yemi

    2014-03-31

    Current vehicles use mostly ferrous components for structural applications. It is possible to reduce the weight of the vehicle by substituting these parts with those made from light metals such as aluminum and magnesium. Many alloys and manufacturing processes can be used to produce these light metal components and casting is known to be most economical. One of the high integrity casting processes is permanent mold casting which is the focus of this research report. Many aluminum alloy castings used in automotive applications are produced by the sand casting process. Also, aluminum-silicon (Al-Si) alloys are the most widely used alloy systems for automotive applications. It is possible that by using high strength aluminum alloys based on an aluminum-copper (Al-Cu) system and permanent mold casting, the performance of these components can be enhanced significantly. This will also help to further reduce the weight. However, many technological obstacles need to be overcome before using these alloys in automotive applications in an economical way. There is very limited information in the open literature on gravity and low-pressure permanent mold casting of high strength aluminum alloys. This report summarizes the results and issues encountered during the casting trials of high strength aluminum alloy 206.0 (Al-Cu alloy) and moderate strength alloy 535.0 (Al-Mg alloy). Five engineering components were cast by gravity tilt-pour or low pressure permanent mold casting processes at CanmetMATERIALS (CMAT) and two production foundries. The results of the casting trials show that high integrity engineering components can be produced successfully from both alloys if specific processing parameters are used. It was shown that a combination of melt processing and mold temperature is necessary for the elimination of hot tears in both alloys.

  17. Informatics approach using metabolic reactivity classifiers to link in vitro to in vivo data in application to the ToxCast Phase I dataset

    EPA Science Inventory

    Strategic combinations and tiered application of alternative testing methods to replace or minimize the use of animal models is attracting much attention. With the advancement of high throughput screening (HTS) assays and legacy databases providing in vivo testing results, suffic...

  18. CAST STONE TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    SciTech Connect

    MINWALL HJ

    2011-04-08

    Cast stone technology is being evaluated for potential application in the treatment and immobilization of Hanford low-activity waste. The purpose of this document is to provide background information on cast stone technology. The information provided in the report is mainly based on a pre-conceptual design completed in 2003.

  19. 76 FR 5840 - The Basic Aluminum Castings Co., Cleveland, OH; Notice of Revised Determination on Reconsideration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ... was published in the Federal Register on November 3, 2010 (75 FR 67773). Workers at the subject firm... Employment and Training Administration The Basic Aluminum Castings Co., Cleveland, OH; Notice of Revised... Assistance (TAA) applicable to workers and former workers of The Basic Aluminum Castings Co., Cleveland,...

  20. Two Piece Compaction Die Design

    SciTech Connect

    Coffey, Ethan N

    2010-03-01

    Compaction dies used to create europium oxide and tantalum control plates were modeled using ANSYS 11.0. Two-piece designs were considered in order to make the dies easier to assemble than the five-piece dies that were previously used. The two areas of concern were the stresses at the interior corner of the die cavity and the distortion of the cavity wall due to the interference fit between the two pieces and the pressure exerted on the die during the compaction process. A successful die design would have stresses less than the yield stress of the material and a maximum wall distortion on the order of 0.0001 in. Design factors that were investigated include the inner corner radius, the value of the interference fit, the compaction force, the size of the cavity, and the outer radius and geometry of the outer ring. The results show that for the europium oxide die, a 0.01 in. diameter wire can be used to create the cavity, leading to a 0.0055 in. radius corner, if the radial interference fit is 0.003 in. For the tantalum die, the same wire can be used with a radial interference fit of 0.001 in. Also, for the europium oxide die with a 0.003 in. interference fit, it is possible to use a wire with a diameter of 0.006 in. for the wire burning process. Adding a 10% safety factor to the compaction force tends to lead to conservative estimates of the stresses but not for the wall distortion. However, when the 10% safety factor is removed, the wall distortion is not affected enough to discard the design. Finally, regarding the europium oxide die, when the cavity walls are increased by 0.002 in. per side or the outer ring is made to the same geometry as the tantalum die, all the stresses and wall distortions are within the desired range. Thus, the recommendation is to use a 0.006 in. diameter wire and a 0.003 in. interference fit for the europium oxide die and a 0.01 in. diameter wire and a 0.001 in. interference fit for the tantalum die. The dies can also be made to have the

  1. Titan Casts Revealing Shadow

    NASA Astrophysics Data System (ADS)

    2004-05-01

    A rare celestial event was captured by NASA's Chandra X-ray Observatory as Titan -- Saturn's largest moon and the only moon in the Solar System with a thick atmosphere -- crossed in front of the X-ray bright Crab Nebula. The X-ray shadow cast by Titan allowed astronomers to make the first X-ray measurement of the extent of its atmosphere. On January 5, 2003, Titan transited the Crab Nebula, the remnant of a supernova explosion that was observed to occur in the year 1054. Although Saturn and Titan pass within a few degrees of the Crab Nebula every 30 years, they rarely pass directly in front of it. "This may have been the first transit of the Crab Nebula by Titan since the birth of the Crab Nebula," said Koji Mori of Pennsylvania State University in University Park, and lead author on an Astrophysical Journal paper describing these results. "The next similar conjunction will take place in the year 2267, so this was truly a once in a lifetime event." Animation of Titan's Shadow on Crab Nebula Animation of Titan's Shadow on Crab Nebula Chandra's observation revealed that the diameter of the X-ray shadow cast by Titan was larger than the diameter of its solid surface. The difference in diameters gives a measurement of about 550 miles (880 kilometers) for the height of the X-ray absorbing region of Titan's atmosphere. The extent of the upper atmosphere is consistent with, or slightly (10-15%) larger, than that implied by Voyager I observations made at radio, infrared, and ultraviolet wavelengths in 1980. "Saturn was about 5% closer to the Sun in 2003, so increased solar heating of Titan may account for some of this atmospheric expansion," said Hiroshi Tsunemi of Osaka University in Japan, one of the coauthors on the paper. The X-ray brightness and extent of the Crab Nebula made it possible to study the tiny X-ray shadow cast by Titan during its transit. By using Chandra to precisely track Titan's position, astronomers were able to measure a shadow one arcsecond in

  2. Study of Thermal Fatigue of H13 Die Steel with Various Surface Treatments

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Ferguson, W. G.; Paine, I. R.

    Surfaces of die-casting dies are subjected to very severe conditions of cyclical thermal and mechanical load, and chemical and mechanical wear. Dies mostly fail due to a combination of heat checking, erosion, corrosion and soldering. It is conceivable that appropriate surface treatments and coatings have a favourable influence on the temperature dependant performance of the surface of the die. The objective of this study was to examine various surface treatments and coatings. including shot peening, nitriding, nitro-carburizing, laser hardening and remelting, electro-spark alloying (deposition) and plasma spraying, under thermal fatigue conditions. Thermal cycling tests were conducted by alternate dipping of treated samples in an LM24 melt and in water. Results and interpretation are presented in this paper. The best thermal fatigue resistance was shown for a double surface treatment of laser hardening plus electro-spark deposition.

  3. Dying and multiplying life.

    PubMed

    Rodríguez-Arias, David

    2014-09-01

    It was only after James P. Lovette's death, in 2006, that I discovered that the twenty-four-year-old colleague and friend with whom I had spent so many afternoons debating issues in organ transplantation had been the first successful child heart transplantee in the world and one of the longest-living survivors of a second transplant. During the years we met, he never even hinted at the fact that three different hearts had beaten in his chest. The revelation that his life had been an almost uninterrupted chain of medical challenges suddenly made me appreciate his quirkiness in a whole new light. Organ transplantation crudely exemplifies a traditional moral dilemma between means and ends: in order to save a life, someone else has to die. Bioethicists involved in this field have the role of identifying the ethical issues surrounding organ donation and helping others to argue in an intelligible and convincing way. In my view, bioethicists have the obligation to foster a discussion as open and transparent as possible on these matters. Still, I sometimes fear that I may be helping to cause unnecessary harms to potential recipients who are desperately waiting for a vital organ. Scholars would be chillingly cold if their quest for truth systematically came at the cost of lives lost. Every life can be meaningful and provide meaning to many others. This is true even with organ recipients, who often have short lives full of considerable suffering. PMID:25231665

  4. Fillability of Thin-Wall Steel Castings

    SciTech Connect

    Robert C. Voigt; Joseph Bertoletti; Andrew Kaley; Sandi Ricotta; Travis Sunday

    2002-07-30

    The use of steel components is being challenged by lighter nonferrous or cast iron components. The development of techniques for enhancing and ensuring the filability of thin-wall mold cavities is most critical for thinner wall cast steel production. The purpose of this research was to develop thin-wall casting techniques that can be used to reliably produce thin-wall castings from traditional gravity poured sand casting processes. The focus of the research was to enhance the filling behavior to prevent misrunds. Experiments were conducted to investigate the influence of various foundry variables on the filling of thin section steel castings. These variables include casting design, heat transfer, gating design, and metal fluidity. Wall thickness and pouring temperature have the greatest effect on casting fill. As wall thickness increases the volume to surface area of the casting increases, which increases the solidification time, allowing the metal to flow further in thicker sect ions. Pouring time is another significant variable affecting casting fill. Increases or decreases of 20% in the pouring time were found to have a significant effect on the filling of thin-wall production castings. Gating variables, including venting, pouring head height, and mold tilting also significantly affected thin-wall casting fill. Filters offer less turbulent, steadier flow, which is appropriate for thicker castings, but they do not enhance thin-wall casting fill.

  5. Cast adrift: Gortex cast liners allow greater patient activity.

    PubMed

    Dubowitz, Gerald; Miller, Deborah M

    2003-01-01

    Extremity fractures are a common injury, with nearly 1.5 million cases reported in the United States in 1998. Treatment often involves lengthy periods of immobilization. This report outlines the use of a Gortex cast liner by a subject who was able to engage in swimming and scuba diving during the healing process. We report that a Gortex cast liner may be considered for an active patient who is keen to return to limited activities during fracture healing. Apparently because of a lack of knowledge of their existence, physicians currently are underutilizing this method of casting in active patients. The use of Gortex liners elsewhere has been reported to have higher patient and physician satisfaction in both use and performance, with no reported detrimental effects on outcome. PMID:14518627

  6. Instant Casting Movie Theater: The Future Cast System

    NASA Astrophysics Data System (ADS)

    Maejima, Akinobu; Wemler, Shuhei; Machida, Tamotsu; Takebayashi, Masao; Morishima, Shigeo

    We have developed a visual entertainment system called “Future Cast” which enables anyone to easily participate in a pre-recorded or pre-created film as an instant CG movie star. This system provides audiences with the amazing opportunity to join the cast of a movie in real-time. The Future Cast System can automatically perform all the processes required to make this possible, from capturing participants' facial characteristics to rendering them into the movie. Our system can also be applied to any movie created using the same production process. We conducted our first experimental trial demonstration of the Future Cast System at the Mitsui-Toshiba pavilion at the 2005 World Exposition in Aichi Japan.

  7. Differences in microstructure and texture of Al-Mg sheets produced by twin-roll continuous casting and by direct-chill casting

    SciTech Connect

    Slamova, M.; Karlik, M.; Robaut, F.; Slama, P.; Veron, M

    2002-10-15

    Over the last two decades, the use of aluminum sheets in automotive applications has increased. Aluminum sheets are currently produced from direct-chill (DC) cast plates. The need for low-cost aluminum sheets is a challenge for the development of new materials produced by twin-roll continuous (TRC) casting and cold rolling. It is expected that the sheets produced from these different casting procedures can differ in their microstructure. Therefore, they can exhibit different formability behavior. The paper presents the results of the microstructural characterization and texture evaluation of aluminum sheets produced by both technologies. Sheets produced from twin-roll cast materials have much finer and more numerous second-phase particles, the grain structures of both types of materials are similar. Electron backscatter diffraction (EBSD) and X-ray diffraction techniques were used for texture evaluation and both confirmed the presence of stronger cube texture in the strips produced from DC-cast plates.

  8. Factors contributing to the temperature beneath plaster or fiberglass cast material

    PubMed Central

    Hutchinson, Michael J; Hutchinson, Mark R

    2008-01-01

    Background Most cast materials mature and harden via an exothermic reaction. Although rare, thermal injuries secondary to casting can occur. The purpose of this study was to evaluate factors that contribute to the elevated temperature beneath a cast and, more specifically, evaluate the differences of modern casting materials including fiberglass and prefabricated splints. Methods The temperature beneath various types (plaster, fiberglass, and fiberglass splints), brands, and thickness of cast material were measured after they were applied over thermometer which was on the surface of a single diameter and thickness PVC tube. A single layer of cotton stockinette with variable layers and types of cast padding were placed prior to application of the cast. Serial temperature measurements were made as the cast matured and reached peak temperature. Time to peak, duration of peak, and peak temperature were noted. Additional tests included varying the dip water temperature and assessing external insulating factors. Ambient temperature, ambient humidity and dip water freshness were controlled. Results Outcomes revealed that material type, cast thickness, and dip water temperature played key roles regarding the temperature beneath the cast. Faster setting plasters achieved peak temperature quicker and at a higher level than slower setting plasters. Thicker fiberglass and plaster casts led to greater peak temperature levels. Likewise increasing dip-water temperature led to elevated temperatures. The thickness and type of cast padding had less of an effect for all materials. With a definition of thermal injury risk of skin injury being greater than 49 degrees Celsius, we found that thick casts of extra fast setting plaster consistently approached dangerous levels (greater than 49 degrees for an extended period). Indeed a cast of extra-fast setting plaster, 20 layers thick, placed on a pillow during maturation maintained temperatures over 50 degrees of Celsius for over 20

  9. Yield improvement and defect reduction in steel casting

    SciTech Connect

    Kent Carlson

    2004-03-16

    This research project investigated yield improvement and defect reduction techniques in steel casting. Research and technology development was performed in the following three specific areas: (1) Feeding rules for high alloy steel castings; (2) Unconventional yield improvement and defect reduction techniques--(a) Riser pressurization; and (b) Filling with a tilting mold; and (3) Modeling of reoxidation inclusions during filling of steel castings. During the preparation of the proposal for this project, these areas were identified by the High Alloy Committee and Carbon and Low Alloy Committee of the Steel Founders' Society of America (SFSA) as having the highest research priority to the steel foundry industry. The research in each of the areas involved a combination of foundry experiments, modeling and simulation. Numerous SFSA member steel foundries participated in the project through casting trials and meetings. The technology resulting from this project will result in decreased scrap and rework, casting yield improvement, and higher quality steel castings produced with less iteration. This will result in considerable business benefits to steel foundries, primarily due to reduced energy and labor costs, increased capacity and productivity, reduced lead-time, and wider use and application of steel castings. As estimated using energy data provided by the DOE, the technology produced as a result of this project will result in an energy savings of 2.6 x 10{sup 12} BTU/year. This excludes the savings that were anticipated from the mold tilting research. In addition to the energy savings, and corresponding financial savings this implies, there are substantial environmental benefits as well. The results from each of the research areas listed above are summarized.

  10. Bioreactor-free tissue engineering: directed tissue assembly by centrifugal casting.

    PubMed

    Mironov, Vladimir; Kasyanov, Vladimir; Markwald, Roger R; Prestwich, Glenn D

    2008-02-01

    Casting is a process by which a material is introduced into a mold while it is liquid, allowed to solidify in a predefined shape inside the mold, and then removed to give a fabricated object, part or casing. Centrifugal casting could be defined as a process of molding using centrifugal forces. Although the centrifugal casting technology has a long history in metal manufacturing and in the plastics industry, only recently has this technology attracted the attention of tissue engineers. Initially, centrifugation was used to optimize cell seeding on a solid scaffold. More recently, centrifugal casting has been used to create tubular scaffolds and both tubular and flat multilayered, living tissue constructs. These newer applications were enabled by a new class of biocompatible in situ crosslinkable hydrogels that mimic the extracellular matrix. Herein the authors summarize the state of the art of centrifugal casting technology in tissue engineering, they outline associated technological challenges, and they discuss the potential future for clinical applications. PMID:18194071

  11. High-chromium and high-silicon cast irons

    SciTech Connect

    Reynaud, A.

    1996-02-01

    High-chromium and high-silicon alloyed cast irons are not well known, although they are very corrosion-resistant materials and provide technical solutions to some difficult corrosion problems. This article reviews these alloys` chemical compositions and properties. It also highlights some industrial applications in which they are useful.

  12. Office orthopedics: thumb spica casting for scaphoid fractures.

    PubMed

    Richard, J R

    1995-09-15

    Fracture of the scaphoid bone of the wrist is a common orthopedic problem and is accurately diagnosed by determining the mechanism of injury based on the history, performing a specific physical examination maneuvers and interpreting radiographic findings. Skill in the application of the thumb spica cast enables the family physician to provide appropriate and definitive care for many of these patients. PMID:7668203

  13. Strain Rate Dependency of Bronze Metal Matrix Composite Mechanical Properties as a Function of Casting Technique

    NASA Astrophysics Data System (ADS)

    Brown, Lloyd; Joyce, Peter; Radice, Joshua; Gregorian, Dro; Gobble, Michael

    2012-07-01

    Strain rate dependency of mechanical properties of tungsten carbide (WC)-filled bronze castings fabricated by centrifugal and sedimentation-casting techniques are examined, in this study. Both casting techniques are an attempt to produce a functionally graded material with high wear resistance at a chosen surface. Potential applications of such materials include shaft bushings, electrical contact surfaces, and brake rotors. Knowledge of strain rate-dependent mechanical properties is recommended for predicting component response due to dynamic loading or impact events. A brief overview of the casting techniques for the materials considered in this study is followed by an explanation of the test matrix and testing techniques. Hardness testing, density measurement, and determination of the volume fraction of WC particles are performed throughout the castings using both image analysis and optical microscopy. The effects of particle filling on mechanical properties are first evaluated through a microhardness survey of the castings. The volume fraction of WC particles is validated using a thorough density survey and a rule-of-mixtures model. Split Hopkinson Pressure Bar (SHPB) testing of various volume fraction specimens is conducted to determine strain dependence of mechanical properties and to compare the process-property relationships between the two casting techniques. The baseline performances of C95400 bronze are provided for comparison. The results show that the addition of WC particles improves microhardness significantly for the centrifugally cast specimens, and, to a lesser extent, in the sedimentation-cast specimens, largely because the WC particles are more concentrated as a result of the centrifugal-casting process. Both metal matrix composites (MMCs) demonstrate strain rate dependency, with sedimentation casting having a greater, but variable, effects on material response. This difference is attributed to legacy effects from the casting process, namely

  14. Tape-cast sensors and method of making

    DOEpatents

    Mukundan, Rangachary; Brosha, Eric L.; Garzon, Fernando H.

    2009-08-18

    A method of making electrochemical sensors in which an electrolyte material is cast into a tape. Prefabricated electrodes are then partially embedded between two wet layers of the electrolyte tape to form a green sensor, and the green sensor is then heated to sinter the electrolyte tape around the electrodes. The resulting sensors can be used in applications such as, but not limited to, combustion control, environmental monitoring, and explosive detection. A electrochemical sensor formed by the tape-casting method is also disclosed.

  15. Texturing polymer surfaces by transfer casting. [cardiovascular prosthesis

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Sovey, J. S. (Inventor)

    1982-01-01

    A technique for fabricating textured surfaces on polymers without altering their surface chemistries is described. A surface of a fluorocarbon polymer is exposed to a beam of ions to texture it. The polymer which is to be surface-roughened is then cast over the textured surface of the fluorocarbon polymer. After curing, the cast polymer is peeled off the textured fluorocarbon polymer, and the peeled off surface has negative replica of the textured surface. The microscopic surface texture provides large surface areas for adhesive bonding. In cardiovascular prosthesis applications the surfaces are relied on for the development of a thin adherent well nourished thrombus.

  16. The Effects of Casting Porosity on the Tensile Behavior of Investment Cast 17-4PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Susan, D. F.; Crenshaw, T. B.; Gearhart, J. S.

    2015-08-01

    The effect of casting porosity on the mechanical behavior of investment cast 17-4PH stainless steel was studied as well as the effect of heat treatment on the alloy's sensitivity to casting defects. Interdendritic porosity, formed during solidification and shrinkage of the alloy, reduces the yield strength and ultimate tensile strength roughly in proportion to the reduction in load bearing cross-section. The effects of casting porosity on ductility (% strain, % reduction in area) are more severe, in agreement with research on other alloy systems. In this study, 10% porosity reduced the ductility of 17-4PH stainless steel by almost 80% for the high-strength H925 condition. Tensile testing at -10°C (263 K) further reduces the alloy ductility with and without pores present. In the lower strength H1100 condition, the ductility is higher than the H925 condition, as expected, and somewhat less sensitive to porosity. By measuring the area % porosity on the fracture surface of tensile specimens, the trend in failure strain versus area % porosity was obtained and analyzed using two methods: an empirical approach to determine an index of defect susceptibility with a logarithmic fit and an analytical approach based on the constitutive stress-strain behavior and critical strain concentration in the vicinity of the casting voids. The applicability of the second method depends on the amount of non-uniform strain (necking) and, as such, the softer H1100 material did not correlate well to the model. The behavior of 17-4PH was compared to previous work on cast Al alloys, Mg alloys, and other cast materials.

  17. Casting propellant in rocket engine

    NASA Technical Reports Server (NTRS)

    Roach, J. E.; Froehling, S. C. (Inventor)

    1976-01-01

    A method is described for casting a solid propellant in the casing of a rocket engine having a continuous wall with a single opening which is formed by leaves of a material which melt at a temperature of the propellant and with curved edges concentric to the curvature of the spherical casing. The leaves are inserted into the spherical casing through the opening forming a core having a greater width than the width of the single opening and with curved peripheral edges. The cast propellant forms a solid mass and then heated to melt the leaves and provide a central opening with radial projecting flutes.

  18. Cementite Solidification in Cast Iron

    NASA Astrophysics Data System (ADS)

    Coronado, J. J.; Sinatora, A.; Albertin, E.

    2014-06-01

    Two hypereutectic cast irons (5.01 pct Cr and 5.19 pct V) were cast and the polished surfaces of test pieces were deep-etched and analyzed via scanning electron microscopy. The results show that graphite lamellae intersect the cementite and a thin austenite film nucleates and grows on the cementite plates. For both compositions, graphite and cementite can coexist as equilibrium phases, with the former always nucleating and growing first. The eutectic carbides grow from the austenite dendrites in a direction perpendicular to the primary plates.

  19. Rapid prototyping: A paradigm shift in investment casting

    SciTech Connect

    Atwood, C.L.; Maguire, M.C.; Baldwin, M.D.; Pardo, B.T.

    1996-09-01

    The quest for fabricating complex metal parts rapidly and with minimal cost has brought rapid prototyping (RP) processes to the forefront of the investment casting industry. Relatively recent advances in DTM Corporation`s selective laser sintering (SLS) and 3D Systems stereolithography (SL) processes have had a significant impact on the overall quality of patterns produced using these rapid prototyping processes. Sandia National Laboratories uses patterns generated from rapid prototyping processes to reduce the cycle time and cost of fabricating prototype and small lot production parts in support of a program called FASTCAST. The SLS process is used to fabricate patterns from materials such as investment casting wax, polycarbonate, and a new material called TrueForm PM{trademark}. With the timely introduction of each of these materials, the quality of patterns fabricated has improved. The development and implementation of SL QuickCast{trademark} software has enabled this process to produce highly accurate patterns for use in investment casting. This paper focuses on the successes with these new pattern materials and the infrastructure required to cast rapid prototyping patterns successfully. In addition, a brief overview of other applications of rapid prototyping at Sandia will be discussed.

  20. Materials for Advanced Ultrasupercritical Steam Turbines Task 4: Cast Superalloy Development

    SciTech Connect

    Thangirala, Mani

    2015-09-30

    The Steam Turbine critical stationary structural components are high integrity Large Shell and Valve Casing heavy section Castings, containing high temperature steam under high pressures. Hence to support the development of advanced materials technology for use in an AUSC steam turbine capable of operating with steam conditions of 760°C (1400°F) and 35 Mpa (5000 psia), Casting alloy selection and evaluation of mechanical, metallurgical properties and castability with robust manufacturing methods are mandated. Alloy down select from Phase 1 based on producability criteria and creep rupture properties tested by NETL-Albany and ORNL directed the consortium to investigate cast properties of Haynes 282 and Haynes 263. The goals of Task 4 in Phase 2 are to understand a broader range of mechanical properties, the impact of manufacturing variables on those properties. Scale up the size of heats to production levels to facilitate the understanding of the impact of heat and component weight, on metallurgical and mechanical behavior. GE Power & Water Materials and Processes Engineering for the Phase 2, Task 4.0 Castings work, systematically designed and executed casting material property evaluation, multiple test programs. Starting from 15 lbs. cylinder castings to world’s first 17,000 lbs. poured weight, heavy section large steam turbine partial valve Haynes 282 super alloy casting. This has demonstrated scalability of the material for steam Turbine applications. Activities under Task 4.0, Investigated and characterized various mechanical properties of Cast Haynes 282 and Cast Nimonic 263. The development stages involved were: 1) Small Cast Evaluation: 4 inch diam. Haynes 282 and Nimonic 263 Cylinders. This provided effects of liquidus super heat range and first baseline mechanical data on cast versions of conventional vacuum re-melted and forged Ni based super alloys. 2) Step block castings of 300 lbs. and 600 lbs. Haynes 282 from 2 foundry heats were evaluated which

  1. Casting behavior of titanium alloys in a centrifugal casting machine.

    PubMed

    Watanabe, K; Miyakawa, O; Takada, Y; Okuno, O; Okabe, T

    2003-05-01

    Since dental casting requires replication of complex shapes with great accuracy, this study examined how well some commercial titanium alloys and experimental titanium-copper alloys filled a mold cavity. The metals examined were three types of commercial dental titanium [commercially pure titanium (hereinafter noted as CP-Ti), Ti-6Al-4V (T64) and Ti-6Al-7Nb (T67)], and experimental titanium-copper alloys [3%, 5% and 10% Cu (mass %)]. The volume percentage filling the cavity was evaluated in castings prepared in a very thin perforated sheet pattern and cast in a centrifugal casting machine. The flow behavior of the molten metal was also examined using a so-called "tracer element technique." The amounts of CP-Ti and all the Ti-Cu alloys filling the cavity were similar; less T64 and T67 filled the cavity. However, the Ti-Cu alloys failed to reach the end of the cavities due to a lower fluidity compared to the other metals. A mold prepared with specially designed perforated sheets was effective at differentiating the flow behavior of the metals tested. The present technique also revealed that the more viscous Ti-Cu alloys with a wide freezing range failed to sequentially flow to the end of the cavity. PMID:12593955

  2. Feasibility Study for Casting of High Temperature Refractory Superalloy Composites

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    1998-01-01

    Abstract This study investigated the feasibility of using conventional casting technique to fabricate refractory wires reinforced superalloy composites. These composites were being developed for advanced rocket engine turbine blades and other high temperature applications operating up to 2000 F. Several types of refractory metal wires such as W- Th, W-Re, Mo-Hf-C and W-HF-C reinforced waspaloy were experimentally cast and heat treated at 2000 F up to 48 hrs. Scanning electron microscope analysis was conducted in regions adjacent to the wire-matrix interface to determine the reaction zone and chemical compatibility resulting from material interdiffusion. It was concluded that fabrication using conventional casting may be feasible because the wire-matrix reaction zone thickness was comparable to similar composites produced by arc-sprayed monotape with hot isostatic pressing technique, Moreover, it was also found that the chemical compatibility could be improved significantly through a slight modification of the superalloy matrix compositions.

  3. What Happens When Someone Dies?

    MedlinePlus

    ... and sleepiness Mental confusion Constipation or incontinence Nausea Refusal to eat or drink Each of these symptoms, ... having a "non-hospital DNR" (see Understanding Health Care Decisions ) if the person is dying at home. ...

  4. INTERIOR VIEW WITH CASTING MACHINE AND A 4" DUCTILE IRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH CASTING MACHINE AND A 4" DUCTILE IRON PIPE BEING EXTRACTED FROM CASTING MACHINE - McWane Cast Iron Pipe Company, Pipe Casting Area, 1201 Vanderbilt Road, Birmingham, Jefferson County, AL

  5. INTERIOR VIEW OF CASTING MACHINE WITH 4' DUCTILE IRON PIPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF CASTING MACHINE WITH 4' DUCTILE IRON PIPE BEING WEIGHED ON SCALES AT CASTING MACHINE. - McWane Cast Iron Pipe Company, Pipe Casting Area, 1201 Vanderbilt Road, Birmingham, Jefferson County, AL

  6. INTERIOR VIEW WITH CASTING MACHINE AND A 4' DUCTILE IRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH CASTING MACHINE AND A 4' DUCTILE IRON PIPE BEING CENTRIFUGALLY CAST, AS OPERATOR WATCHES TO ENSURE QUALITY. - McWane Cast Iron Pipe Company, Pipe Casting Area, 1201 Vanderbilt Road, Birmingham, Jefferson County, AL

  7. INTERIOR VIEW WITH CASTING MACHINE COOLING A 20' IRON PIPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH CASTING MACHINE COOLING A 20' IRON PIPE PRIOR TO EXTRACTION FROM CASTING MACHINE. - McWane Cast Iron Pipe Company, Pipe Casting Area, 1201 Vanderbilt Road, Birmingham, Jefferson County, AL

  8. CIR Casting System for making transtibial sockets.

    PubMed

    Wu, Yeongchi; Casanova, Hector R; Reisinger, Kim D; Smith, William K; Childress, Dudley S

    2009-03-01

    This paper describes a new casting system for transtibial socket fabrication. Like the earlier CIR Sand Casting System, the CIR Casting System is based on the 'dilatancy' principle that is similar to the packaging process for coffee beans by which loose beans become a solid mass when a vacuum is applied. The main difference from the CIR Sand Casting System is that the CIR Casting System uses light-weight, polystyrene beads in place of silica sand as the primary material for casting the negative mold. The formed negative mold can be converted into a positive sand model for modification and socket formation. With the new plaster-less casting system, the prosthetist can fabricate a transtibial prosthesis in about one hour. It reduces the set-up cost, overall weight and size of the casting system, and increases portability for service in remote areas. The System also creates minimal waste and is energy-conserving and environmentally-friendly. PMID:19235060

  9. Properties of electroslag castings: Part 1

    SciTech Connect

    Sikka, V.K.

    1984-11-01

    This part of several reports to be published on the properties of electroslag castings of 2 1/4 Cr-1 Mo, 9 Cr-1 Mo, and type 316 stainless steel describes the properties of three electroslag-cast valve bodies of type 316 stainless steel. These castings were electroslag cast at the University of British Columbia in Canada from ORNL-supplied electrodes. The castings have been characterized for surface finish, cracking, solidification structure, chemical analysis, hardness, ferrite distribution, tensile properties, Charpy impact properties, and creep properties. Tensile data on these castings were compared with the American Society of Mechanical Engineers (ASME) code minimum values for sand castings. The creep data were compared with the data on sand castings and the ASME code minimum curve for wrought material. 29 figures, 7 tables.

  10. REFRACTORY DIE FOR EXTRUDING URANIUM

    DOEpatents

    Creutz, E.C.

    1959-08-11

    A die is presented for the extrusion of metals, said die being formed of a refractory complex oxide having the composition M/sub n/O/sub m/R/sub x/O/sub y/ where M is magnesium, zinc, manganese, or iron, R is aluminum, chromic chromium, ferric iron, or manganic manganese, and m, n, x, and y are whole numbers. Specific examples are spinel, magnesium aluminate, magnetite, magnesioferrite, chromite, and franklinite.

  11. Improving care of dying children.

    PubMed Central

    Martinson, I M

    1995-01-01

    Every year about 5,000 children aged 0 to 14 years need hospice care in the United States. Children seem to know that they are dying, although this is difficult for parents to accept. Clear, empathic understanding is needed. Communication with clarity and understanding is imperative with the changes in goals from cure to palliation to comfort. The ideal place for most dying children is at home, where symptoms can be managed as effectively as in a hospital. PMID:7571589

  12. Development and Demonstration of Adanced Tooling Alloys for Molds and Dies

    SciTech Connect

    Kevin M. McHugh; Enrique J. Lavernia

    2006-01-01

    This report summarizes research results in the project Development and Demonstration of Advanced Tooling Alloys for Molds and Dies. Molds, dies and related tooling are used to manufacture most of the plastic and metal products we use every day. Conventional fabrication of molds and dies involves a multiplicity of machining, benching and heat treatment unit operations. This approach is very expensive and time consuming. Rapid Solidifcation Process (RSP) Tooling is a spray-forming technology tailored for producing molds and dies. The appraoch combines rapid solidifcation processing and net-shape materials processing in a single step. An atomized spray of a tool-forming alloy, typically a tool steel, is deposited onto an easy-to-form tool pattern to replicate the pattern's shape and surface features. By so doing, the approach eliminates many machining operations in conventional mold making, significantly reducing cost, lead time and energy. Moreover, rapid solidification creates unique microstructural features by suppressing carbide precipitation and growth, and creating metastable phases. This can result in unique material properties following heat treatment. Spray-formed and aged tool steel dies have exhibited extended life compared to conventional dies in many forming operations such as forging, extrusion and die casting. RSP Tooling technolocy was commercialized with the formation of RSP Tooling, LLC in Solon, Oh.

  13. Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography

    NASA Astrophysics Data System (ADS)

    Bae, Chang-Jun

    Superalloy airfoils are produced by investment casting (IC), which uses ceramic cores and wax patterns with ceramic shell molds. Hollow cored superalloy airfoils in a gas turbine engine are an example of complex IC parts. The complex internal hollow cavities of the airfoil are designed to conduct cooling air through one or more passageways. These complex internal passageways have been fabricated by a lost wax process requiring several processing steps; core preparation, injection molding for wax pattern, and dipping process for ceramic shell molds. Several steps generate problems such as high cost and decreased accuracy of the ceramic mold. For example, costly tooling and production delay are required to produce mold dies for complex cores and wax patterns used in injection molding, resulting in a big obstacle for prototypes and smaller production runs. Rather than using separate cores, patterns, and shell molds, it would be advantageous to directly produce a mold that has the casting cavity and the ceramic core by one process. Ceramic stereolithography (CerSLA) can be used to directly fabricate the integrally cored ceramic casting mold (ICCM). CerSLA builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This dissertation addresses the integrally cored casting ceramic mold (ICCM), the ceramic core with a ceramic mold shell in a single patternless construction, fabricated by ceramic stereolithography (CerSLA). CerSLA is considered as an alternative method to replace lost wax processes, for small production runs or designs too complex for conventional cores and patterns. The main topic is the development of methods to successfully fabricate an ICCM by CerSLA from refractory silica, as well as related issues. The related issues are the segregation of coarse fused silica powders in a layer, the degree of segregation parameter to

  14. Effect of ferrite on cast stainless steels

    SciTech Connect

    Nadezhdin, A.; Cooper, K. ); Timbers, G. . Kraft Pulp Division)

    1994-09-01

    Premature failure of stainless steel castings in bleach washing service is attributed to poor casting quality high porosity and to a high ferrite content, which makes the castings susceptible to corrosion by hot acid chloride solutions. A survey of the chemical compositions and ferrite contents of corrosion-resistant castings in bleach plants at three pulp mills found high [delta]-ferrite levels in the austenitic matrix due to the improper balance between austenite and ferrite stabilizers.

  15. Initial solidification phenomena: Factors affecting heat transfer in strip casting

    NASA Astrophysics Data System (ADS)

    Nolli, Paolo

    In the last few years a few companies have announced the final stage of the commercial development of strip casting of steels. In strip casting heat extraction and productivity are limited by the thermal resistance at the interface between processed material and moving mold (rolls for twin-roll strip casters). Among many factors influencing interfacial heat transfer, films of various composition, either formed during casting or deposited before casting on the surface of the rolls, melt superheat and gas atmosphere composition can have a significantly positive or negative effect on the achieved heat transfer rate. From an industrial point view, methods to improve interfacial heat transfer rates must be found, in order to increase productivity. The objective of this research project is to assess if it is feasible to improve heat transfer rates during solidification of steel in direct contact with a copper mold: (1) by the application of thin coatings on the mold surface; (2) by adding a reactive gas species containing sulfur in the gas shrouding where casting is performed. To address the former, solidification experiments were performed with the mold surface either kept uncoated or coated with coatings of different compositions. To address the latter, the experiments were performed in gas shrouding atmospheres with or without sulphydric acid. It was observed that the resulting heat extraction rates were improved by the application of certain coatings and by the addition of H2S to the gas atmosphere. These findings prove that the application of coatings and the use of small amounts of reactive gaseous species containing sulfur may be methods to increase productivity in strip casting. The effect of superheat and the effect of naturally deposited oxides (Mn-oxide) were also evaluated experimentally. A numerical study of the effect of the critical undercooling on the productivity of a twin-roll strip caster showed that the maximum allowable casting speed can be increased

  16. 14 CFR 27.621 - Casting factors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... approved specifications. Paragraphs (c) and (d) of this section apply to structural castings except... structural loads. (b) Bearing stresses and surfaces. The casting factors specified in paragraphs (c) and (d... at an ultimate load corresponding to a casting factor of 1.25; and (ii) The deformation...

  17. 14 CFR 27.621 - Casting factors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... approved specifications. Paragraphs (c) and (d) of this section apply to structural castings except... structural loads. (b) Bearing stresses and surfaces. The casting factors specified in paragraphs (c) and (d... at an ultimate load corresponding to a casting factor of 1.25; and (ii) The deformation...

  18. 14 CFR 29.621 - Casting factors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... approved specifications. Paragraphs (c) and (d) of this section apply to structural castings except... structural loads. (b) Bearing stresses and surfaces. The casting factors specified in paragraphs (c) and (d... at an ultimate load corresponding to a casting factor of 1.25; and (ii) The deformation...

  19. 14 CFR 29.621 - Casting factors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... approved specifications. Paragraphs (c) and (d) of this section apply to structural castings except... structural loads. (b) Bearing stresses and surfaces. The casting factors specified in paragraphs (c) and (d... at an ultimate load corresponding to a casting factor of 1.25; and (ii) The deformation...

  20. 14 CFR 27.621 - Casting factors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... approved specifications. Paragraphs (c) and (d) of this section apply to structural castings except... structural loads. (b) Bearing stresses and surfaces. The casting factors specified in paragraphs (c) and (d... at an ultimate load corresponding to a casting factor of 1.25; and (ii) The deformation...