Science.gov

Sample records for die-ing ing proteins

  1. Grow-ING, Age-ING and Die-ING: ING proteins link cancer, senescence and apoptosis

    SciTech Connect

    Russell, Michael; Berardi, Philip; Gong Wei; Riabowol, Karl . E-mail: karl@ucalgary.ca

    2006-04-15

    The INhibitor of Growth (ING) family of plant homeodomain (PHD) proteins induce apoptosis and regulate gene expression through stress-inducible binding of phospholipids with subsequent nuclear and nucleolar localization. Relocalization occurs concomitantly with interaction with a subset of nuclear proteins, including PCNA, p53 and several regulators of acetylation such as the p300/CBP and PCAF histone acetyltransferases (HATs), as well as the histone deacetylases HDAC1 and hSir2. These interactions alter the localized state of chromatin compaction, subsequently affecting the expression of subsets of genes, including those associated with the stress response (Hsp70), apoptosis (Bax, MDM2) and cell cycle regulation (p21{sup WAF1}, cyclin B) in a cell- and tissue-specific manner. The expression levels and subcellular localization of ING proteins are altered in a significant number of human cancer types, while the expression of ING isoforms changes during cellular aging, suggesting that ING proteins may play a role in linking cellular transformation and replicative senescence. The variety of functions attributed to ING proteins suggest that this tumor suppressor serves to link the disparate processes of cell cycle regulation, cell suicide and cellular aging through epigenetic regulation of gene expression. This review examines recent findings in the ING field with a focus on the functions of protein-protein interactions involving ING family members and the mechanisms by which these interactions facilitate the various roles that ING proteins play in tumorigenesis, apoptosis and senescence.

  2. ING1b negatively regulates HIF1α protein levels in adipose-derived stromal cells by a SUMOylation-dependent mechanism.

    PubMed

    Bigot, N; Guérillon, C; Loisel, S; Bertheuil, N; Sensebé, L; Tarte, K; Pedeux, R

    2015-01-01

    Hypoxic niches help maintain mesenchymal stromal cell properties, and their amplification under hypoxia sustains their immature state. However, how MSCs maintain their genomic integrity in this context remains elusive, since hypoxia may prevent proper DNA repair by downregulating expression of BRCA1 and RAD51. Here, we find that the ING1b tumor suppressor accumulates in adipose-derived stromal cells (ADSCs) upon genotoxic stress, owing to SUMOylation on K193 that is mediated by the E3 small ubiquitin-like modifier (SUMO) ligase protein inhibitor of activated STAT protein γ (PIAS4). We demonstrate that ING1b finely regulates the hypoxic response by triggering HIF1α proteasomal degradation. On the contrary, when mutated on its SUMOylation site, ING1b failed to efficiently decrease HIF1α levels. Consistently, we observed that the adipocyte differentiation, generally described to be downregulated by hypoxia, was highly dependent on ING1b expression, during the early days of this process. Accordingly, contrary to what was observed with HIF1α, the absence of ING1b impeded the adipogenic induction under hypoxic conditions. These data indicate that ING1b contributes to adipogenic induction in adipose-derived stromal cells, and thus hinders the phenotype maintenance of ADSCs. PMID:25611387

  3. The ING1b tumor suppressor facilitates nucleotide excision repair by promoting chromatin accessibility to XPA

    SciTech Connect

    Kuo, Wei-Hung W.; Wang Yemin; Wong, Ronald P.C.; Campos, Eric I.; Li Gang . E-mail: gangli@interchange.ubc.ca

    2007-05-01

    ING1b is the most studied ING family protein and perhaps the most ubiquitously and abundantly expressed. This protein is involved in the regulation of various biological functions ranging from senescence, cell cycle arrest, apoptosis, to DNA repair. ING1b is upregulated by UV irradiation and enhances the removal of bulky nucleic acid photoproducts. In this study, we provide evidence that ING1b mediates nucleotide excision repair by facilitating the access to damaged nucleosomal DNA. We demonstrate that ING1b is not recruited to UV-induced DNA lesions but enhances nucleotide excision repair only in XPC-proficient cells, implying an essential role in early steps of the 'access, repair, restore' model. We also find that ING1b alters histone acetylation dynamics upon exposure to UV radiation and induces chromatin relaxation in microccocal nuclease digestion assay, revealing that ING1b may allow better access to nucleotide excision repair machinery. More importantly, ING1b associates with chromatin in a UV-inducible manner and facilitates DNA access to nucleotide excision repair factor XPA. Furthermore, depletion of the endogenous ING1b results to the sensitization of cells at S-phase to UV irradiation. Taken together, these observations establish a role of ING1b acting as a chromatin accessibility factor for DNA damage recognition proteins upon genotoxic injury.

  4. LincRNA-p21 acts as a mediator of ING1b-induced apoptosis

    PubMed Central

    Tran, U M; Rajarajacholan, U; Soh, J; Kim, T-s; Thalappilly, S; Sensen, C W; Riabowol, K

    2015-01-01

    ING1b is a tumor suppressor that affects transcription, cell cycle control and apoptosis. ING1b is deregulated in disease, and its activity is closely linked to that of p53. In addition to regulating protein-coding genes, we found that ING1b also influences the expression of large intergenic non-coding RNAs (lincRNAs). In particular, lincRNA-p21 was significantly induced after DNA-damage stress or by ING1b overexpression. Furthermore, lincRNA-p21 expression in response to DNA damage was significantly attenuated in cells lacking ING1b. LincRNA-p21 is also a target of p53 and can trigger apoptosis in mouse cell models. We found that this function of lincRNA-p21 is conserved in human cell models. Moreover, ING1b and p53 could function independently to influence lincRNA-p21 expression. However, their effects become more additive under conditions of stress. In particular, ING1b regulates lincRNA-p21 levels by binding to its promoter and is required for induction of lincRNA-p21 by p53. The ability of ING1b to cause apoptosis is also impaired in the absence of lincRNA-p21. Surprisingly, deletion of the ING1b plant homeodomain, which allows it to bind histones and regulate chromatin structure, did not alter regulation of lincRNA-p21. Our findings suggest that ING1b induces lincRNA-p21 expression independently of histone 3 lysine 4 trimethylation mark recognition and that lincRNA-p21 functions downstream of ING1b. Thus, regulation at the level of lincRNA-p21 may represent the point at which ING1b and p53 pathways converge to induce apoptosis under specific stress conditions. PMID:25741593

  5. ING5 Is Phosphorylated by CDK2 and Controls Cell Proliferation Independently of p53

    PubMed Central

    Linzen, Ulrike; Lilischkis, Richard; Pandithage, Ruwin; Schilling, Britta; Ullius, Andrea; Lüscher-Firzlaff, Juliane; Kremmer, Elisabeth; Lüscher, Bernhard; Vervoorts, Jörg

    2015-01-01

    Inhibitor of growth (ING) proteins have multiple functions in the control of cell proliferation, mainly by regulating processes associated with chromatin regulation and gene expression. ING5 has been described to regulate aspects of gene transcription and replication. Moreover deregulation of ING5 is observed in different tumors, potentially functioning as a tumor suppressor. Gene transcription in late G1 and in S phase and replication is regulated by cyclin-dependent kinase 2 (CDK2) in complex with cyclin E or cyclin A. CDK2 complexes phosphorylate and regulate several substrate proteins relevant for overcoming the restriction point and promoting S phase. We have identified ING5 as a novel CDK2 substrate. ING5 is phosphorylated at a single site, threonine 152, by cyclin E/CDK2 and cyclin A/CDK2 in vitro. This site is also phosphorylated in cells in a cell cycle dependent manner, consistent with it being a CDK2 substrate. Furthermore overexpression of cyclin E/CDK2 stimulates while the CDK2 inhibitor p27KIP1 represses phosphorylation at threonine 152. This site is located in a bipartite nuclear localization sequence but its phosphorylation was not sufficient to deregulate the subcellular localization of ING5. Although ING5 interacts with the tumor suppressor p53, we could not establish p53-dependent regulation of cell proliferation by ING5 and by phospho-site mutants. Instead we observed that the knockdown of ING5 resulted in a strong reduction of proliferation in different tumor cell lines, irrespective of the p53 status. This inhibition of proliferation was at least in part due to the induction of apoptosis. In summary we identified a phosphorylation site at threonine 152 of ING5 that is cell cycle regulated and we observed that ING5 is necessary for tumor cell proliferation, without any apparent dependency on the tumor suppressor p53. PMID:25860957

  6. ING5 inhibits cancer aggressiveness via preventing EMT and is a potential prognostic biomarker for lung cancer.

    PubMed

    Zhang, Feng; Zhang, Xutao; Meng, Jin; Zhao, Yong; Liu, Xinli; Liu, Yanxia; Wang, Yukun; Li, Yuhua; Sun, Yang; Wang, Zhipeng; Mei, Qibing; Zhang, Tao

    2015-06-30

    The proteins of the Inhibitor of Growth (ING) candidate tumor suppressor family are involved in multiple cellular functions such as cell cycle regulation, apoptosis, and chromatin remodeling. ING5 is the new member of the family whose actual role in tumor suppression is not known. Here we show that ING5 overexpression in lung cancer A549 cells inhibited cell proliferation and invasiveness, while ING5 knockdown in lung cancer H1299 cells promoted cell aggressiveness. ING5 overexpression also abrogated tumor growth and invasive abilities of lung cancer cells in mouse xenograft models. Further study showed that ING5 overexpression inhibited EMT indicated by increase of E-cadherin and decrease of N-cadherin, Snail and slug at mRNA and protein levels, which was accompanied with morphological changes. cDNA microarray and subsequent qRT-PCR validation revealed that ING5 significantly downregulated expression of EMT (epithelial to mesenchymal transition)-inducing genes including CEACAM6, BMP2 and CDH11. Clinical study by tissue microarray showed that nuclear ING5 negatively correlated with clinical stages and lymph node metastasis of lung cancer. Furthermore, high level of nuclear ING5 was associated with a better prognosis. Taken together, these findings uncover an important role for ING5 as a potent tumor suppressor in lung cancer growth and metastasis. PMID:25938545

  7. ING5 inhibits cancer aggressiveness via preventing EMT and is a potential prognostic biomarker for lung cancer

    PubMed Central

    Zhao, Yong; Liu, Xinli; Liu, Yanxia; Wang, Yukun; Li, Yuhua; Sun, Yang; Wang, Zhipeng; Mei, Qibing; Zhang, Tao

    2015-01-01

    The proteins of the Inhibitor of Growth (ING) candidate tumor suppressor family are involved in multiple cellular functions such as cell cycle regulation, apoptosis, and chromatin remodeling. ING5 is the new member of the family whose actual role in tumor suppression is not known. Here we show that ING5 overexpression in lung cancer A549 cells inhibited cell proliferation and invasiveness, while ING5 knockdown in lung cancer H1299 cells promoted cell aggressiveness. ING5 overexpression also abrogated tumor growth and invasive abilities of lung cancer cells in mouse xenograft models. Further study showed that ING5 overexpression inhibited EMT indicated by increase of E-cadherin and decrease of N-cadherin, Snail and slug at mRNA and protein levels, which was accompanied with morphological changes. cDNA microarray and subsequent qRT-PCR validation revealed that ING5 significantly downregulated expression of EMT (epithelial to mesenchymal transition)-inducing genes including CEACAM6, BMP2 and CDH11. Clinical study by tissue microarray showed that nuclear ING5 negatively correlated with clinical stages and lymph node metastasis of lung cancer. Furthermore, high level of nuclear ING5 was associated with a better prognosis. Taken together, these findings uncover an important role for ING5 as a potent tumor suppressor in lung cancer growth and metastasis. PMID:25938545

  8. 75 FR 16456 - Inglis Hydropower, LLC; Notice Soliciting Scoping Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... Energy Regulatory Commission Inglis Hydropower, LLC; Notice Soliciting Scoping Comments March 26, 2010.... c. Date filed: July 22, 2009. d. Applicant: Inglis Hydropower, LLC. e. Name of Project: Inglis Hydropower Project. f. Location: The proposed project would be located at the existing Inglis Bypass...

  9. SHP1-ing thymic selection.

    PubMed

    Gascoigne, Nicholas R J; Brzostek, Joanna; Mehta, Monika; Acuto, Oreste

    2016-09-01

    Thymocyte development and maintenance of peripheral T-cell numbers and functions are critically dependent on T-cell receptor (TCR) signal strength. SHP1 (Src homology region 2 domain-containing phosphatase-1), a tyrosine phosphatase, acts as a negative regulator of TCR signal strength. Moreover, germline SHP1 knockout mice have shown impaired thymic development. However, this has been recently questioned by an analysis of SHP1 conditional knockout mice, which reported normal thymic development of SHP1 deficient thymocytes. Using this SHP1 conditional knockout mice, in this issue of the European Journal of Immunology, Martinez et al. [Eur. J. Immunol. 2016. 46: 2103-2110] show that SHP1 indeed does have a role in the negative regulation of TCR signal strength in positively selected thymocytes, and in the final maturation of single positive thymocytes. They report that thymocyte development in such mice shows loss of mature, post-selection cells. This is due to increased TCR signal transduction in thymocytes immediately post positive-selection, and increased cell death in response to weak TCR ligands. Thus, SHP1-deficiency shows strong similarities to deficiency in the T-cell specific SHP1-associated protein Themis. PMID:27600672

  10. Delivery of inhibitor of growth 4 (ING4) gene significantly inhibits proliferation and invasion and promotes apoptosis of human osteosarcoma cells

    PubMed Central

    Li, Mei; Zhu, Ye; Zhang, Hongbin; Li, Lihua; He, Peng; Xia, Hong; Zhang, Yu; Mao, Chuanbin

    2014-01-01

    Growing evidence has suggested that inhibitor of growth 4 (ING4), a novel member of ING family proteins, plays a critical role in the development and progression of different tumors via multiple pathways. However, the function of ING4 in human osteosarcoma remains unclear. To understand its potential roles and mechanisms in inhibiting osteosarcoma, we constructed an expression vector pEGFP-ING4 and transfected the human osteosarcoma cells using this vector. We then studied the effects of over-expressed ING4 in the transfected cells on the proliferation, apoptosis and invasion of the osteosarcoma cells. The up-regulation of ING4 in the osteosarcoma cells, arising from the stable pEGFP-ING4 gene transfection, was found to significantly inhibit the cell proliferation by the cell cycle alteration with S phase reduction and G0/G1 phase arrest, induce cell apoptosis via the activation of the mitochondria pathway, and suppress cell invasion through the down-regulation of the matrix metalloproteinase 2 (MMP-2) and MMP-9 expression. In addition, increased ING4 level evoked the blockade of NF-κB signaling pathway and down-regulation of its target proteins. Our work suggests that ING4 can suppress osteosarcoma progression through signaling pathways such as mitochondria pathway and NF-κB signaling pathway and ING4 gene therapy is a promising approach to treating osteosarcoma. PMID:25490312

  11. 78 FR 39023 - ING Investments, LLC, et al.;

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... Commission (``Commission''). ACTION: Notice of an application under section 6(c) of the Investment Company... shareholder approval. \\1\\ Portfolio Partners, Inc., et al., Investment Company Act Release Nos. 25558 (Apr. 30..., ING Variable Portfolios Inc., and ING Variable Products Trust (each an ``ING Investment Company''...

  12. ING1 and 5-Azacytidine Act Synergistically to Block Breast Cancer Cell Growth

    PubMed Central

    Thakur, Satbir; Feng, Xiaolan; Qiao Shi, Zhong; Ganapathy, Amudha; Kumar Mishra, Manoj; Atadja, Peter; Morris, Don; Riabowol, Karl

    2012-01-01

    Background Inhibitor of Growth (ING) proteins are epigenetic “readers” that recognize trimethylated lysine 4 of histone H3 (H3K4Me3) and target histone acetyl transferase (HAT) and histone deacetylase (HDAC) complexes to chromatin. Methods and Principal Findings Here we asked whether dysregulating two epigenetic pathways with chemical inhibitors showed synergistic effects on breast cancer cell line killing. We also tested whether ING1 could synergize better with chemotherapeutics that target the same epigenetic mechanism such as the HDAC inhibitor LBH589 (Panobinostat) or a different epigenetic mechanism such as 5-azacytidine (5azaC), which inhibits DNA methyl transferases. Simultaneous treatment of breast cancer cell lines with LBH589 and 5azaC did not show significant synergy in killing cells. However, combination treatment of ING1 with either LBH589 or 5azaC did show synergy. The combination of ING1b with 5azaC, which targets two distinct epigenetic mechanisms, was more effective at lower doses and enhanced apoptosis as determined by Annexin V staining and cleavage of caspase 3 and poly-ADP-ribose polymerase (PARP). ING1b plus 5azaC also acted synergistically to increase γH2AX staining indicating significant levels of DNA damage were induced. Adenoviral delivery of ING1b with 5azaC also inhibited cancer cell growth in a murine xenograft model and led to tumor regression when viral concentration was optimized in vivo. Conclusions These data show that targeting distinct epigenetic pathways can be more effective in blocking cancer cell line growth than targeting the same pathway with multiple agents, and that using viral delivery of epigenetic regulators can be more effective in synergizing with a chemical agent than using two chemotherapeutic agents. This study also indicates that the ING1 epigenetic regulator may have additional activities in the cell when expressed at high levels. PMID:22916295

  13. Co-expression of ING4 and P53 enhances hypopharyngeal cancer chemosensitivity to cisplatin in vivo.

    PubMed

    Ren, Xin; Liu, Hao; Zhang, Mingjie; Wang, Mengjun; Ma, Shiyin

    2016-09-01

    Hypopharyngeal cancer is a distinct type of malignant head and neck tumor, which exhibits low sensitivity to anti-cancer drugs. The importance of developing methods for reducing chemotherapy resistance, and improving and enhancing prognosis has previously been emphasized and is considered a challenge for effective clinical treatment of hypopharyngeal cancer. The current study investigated the effects of co‑expression of inhibitor of growth protein 4 (ING4) and P53, a tumor suppressor gene, on chemosensitivity to cisplatin in human hypopharyngeal cancer xenografts in vivo, and the potential molecular mechanisms involved. A tumor model was established by injecting athymic nude mice with FADU human hypopharyngeal cancer cells. Five days after intratumoral and peritumoral injections of an empty adenoviral vector (Ad), Ad‑ING4‑P53, cisplatin, or a combination of Ad‑ING4‑P53 and cisplatin (Ad‑ING4‑P53 + cisplatin) every other day for 5 days, the mice were euthanized and their tumors, livers, and kidneys were removed. The tumor weights were used to calculate the inhibition rate, and the expression levels of ING4 and P53 were detected by reverse transcription‑polymerase chain reaction. Additionally, apoptotic cells were detected using terminal deoxynucleotidyl transferase dUTP nick end labeling, and immunohistochemistry determined the levels ING4, P53, B‑cell lymphoma‑2 (Bcl‑2) and Bcl‑2 associated X protein (Bax) protein expression. The results demonstrated increased expression of ING4 and P53 in the Ad‑ING4‑P53 groups compared with PBS and Ad groups, indicating successful introduction of the genes into the tumor cells. Notably, the Ad‑ING4‑P53 + cisplatin group exhibited a higher inhibition rate compared with the four other groups. The results of immunohistochemistry analysis demonstrated that Bax expression was increased and Bcl‑2 was decreased in the Ad‑ING4‑P53 + cisplatin group. This suggested that the enhanced

  14. Co-expression of ING4 and P53 enhances hypopharyngeal cancer chemosensitivity to cisplatin in vivo

    PubMed Central

    Ren, Xin; Liu, Hao; Zhang, Mingjie; Wang, Mengjun; Ma, Shiyin

    2016-01-01

    Hypopharyngeal cancer is a distinct type of malignant head and neck tumor, which exhibits low sensitivity to anti-cancer drugs. The importance of developing methods for reducing chemotherapy resistance, and improving and enhancing prognosis has previously been emphasized and is considered a challenge for effective clinical treatment of hypopharyngeal cancer. The current study investigated the effects of co-expression of inhibitor of growth protein 4 (ING4) and P53, a tumor suppressor gene, on chemosensitivity to cisplatin in human hypopharyngeal cancer xenografts in vivo, and the potential molecular mechanisms involved. A tumor model was established by injecting athymic nude mice with FADU human hypopharyngeal cancer cells. Five days after intratumoral and peritumoral injections of an empty adenoviral vector (Ad), Ad-ING4-P53, cisplatin, or a combination of Ad-ING4-P53 and cisplatin (Ad-ING4-P53 + cisplatin) every other day for 5 days, the mice were euthanized and their tumors, livers, and kidneys were removed. The tumor weights were used to calculate the inhibition rate, and the expression levels of ING4 and P53 were detected by reverse transcription-polymerase chain reaction. Additionally, apoptotic cells were detected using terminal deoxynucleotidyl transferase dUTP nick end labeling, and immunohistochemistry determined the levels ING4, P53, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax) protein expression. The results demonstrated increased expression of ING4 and P53 in the Ad-ING4-P53 groups compared with PBS and Ad groups, indicating successful introduction of the genes into the tumor cells. Notably, the Ad-ING4-P53 + cisplatin group exhibited a higher inhibition rate compared with the four other groups. The results of immunohistochemistry analysis demonstrated that Bax expression was increased and Bcl-2 was decreased in the Ad-ING4-P53 + cisplatin group. This suggested that the enhanced cisplatin chemosensitivity with Ad-ING4-P53 gene therapy

  15. Role of the Sin3-Histone Deacetylase Complex in Growth Regulation by the Candidate Tumor Suppressor p33ING1

    PubMed Central

    Kuzmichev, A.; Zhang, Y.; Erdjument-Bromage, H.; Tempst, P.; Reinberg, D.

    2002-01-01

    Sin3 is an evolutionarily conserved corepressor that exists in different complexes with the histone deacetylases HDAC1 and HDAC2. Sin3-HDAC complexes are believed to deacetylate nucleosomes in the vicinity of Sin3-regulated promoters, resulting in a repressed chromatin structure. We have previously found that a human Sin3-HDAC complex includes HDAC1 and HDAC2, the histone-binding proteins RbAp46 and RbAp48, and two novel polypeptides SAP30 and SAP18. SAP30 is a specific component of Sin3 complexes since it is absent in other HDAC1/2-containing complexes such as NuRD. SAP30 mediates interactions with different polypeptides providing specificity to Sin3 complexes. We have identified p33ING1b, a negative growth regulator involved in the p53 pathway, as a SAP30-associated protein. Two distinct Sin3-p33ING1b-containing complexes were isolated, one of which associates with the subunits of the Brg1-based Swi/Snf chromatin remodeling complex. The N terminus of p33ING1b, which is divergent among a family of ING1 polypeptides, associates with the Sin3 complex through direct interaction with SAP30. The N-terminal domain of p33 is present in several uncharacterized human proteins. We show that overexpression of p33ING1b suppresses cell growth in a manner dependent on the intact Sin3-HDAC-interacting domain. PMID:11784859

  16. Dahlen Receives 2003 Inge Lehmann Medal

    NASA Astrophysics Data System (ADS)

    Nolet, Guust; Dahlen, Francis A., Jr.

    2004-01-01

    ``I feel honored and pleased to cite my friend and Princeton colleague Tony Dahlen for the Inge Lehmann medal. Given Tony's wide range of important contributions, there is actually a choice of AGU honors one might cite him for; his influence extends well beyond those fields that are primarily associated with the Lehmann Medal. ``Tony started his scientific journey as an undergraduate at Caltech. By the time he moved on to graduate studies with George Backus and Freeman Gilbert at Scripps he was already applying his many talents to geophysics. He soon pioneered a series of papers on normal modes that represent the first substantial step away from Earth's spherical symmetry. In fact, all of the current research on the use of low-frequency seismic data for the determination of the Earth's three-dimensional structure is based on this early work, its extension to an inverse problem, and subsequent research with Martin Smith and John Woodhouse. His interest in the theory of global tomography has survived until this day: Recently he developed a very elegant and efficient theory to include the frequency-dependent effects of diffraction into body wave tomography, a theoretical improvement that was almost immediately rewarded by the imaging of a large number of mantle plumes. These represent the first concrete seismological evidence that many hot spots originate deep in the mantle, confirming Jason Morgan's long-standing hypothesis.

  17. The ING Studentship, INT Support, and Research Programme

    NASA Astrophysics Data System (ADS)

    Vaduvescu, O.; Dominguez Palmero, L.; Benn, C.

    2014-07-01

    For more than a decade, the ING studentship programme has offered European astronomy students an opportunity to train as observers on a medium-sized ground-based optical telescope, namely the renowned 2.5-m Isaac Newton Telescope (INT) run by the Isaac Newton Group (ING, a UK-SP-NL institution) on the beautiful Spanish island of La Palma in the Canary Islands! Practical training of the European students and hopefully future astronomers is essential in the era of very large telescopes and their queue-scheduled observing, which limits direct access to the observatories by young astronomers. Each year, the ING therefore offers 4--5 talented astronomy students the opportunity to spend one year working as support astronomers at the INT (setting up the instruments, helping visiting observers, and observing few INT discretionary nights) and working with ING staff on technical and science projects. High above the clouds at 2400 m, on the edge of the gorgeous Caldera de Taburiente of La Palma, stands the ''Roque de Los Muchachos'' Observatory (ORM) of the Instituto de Astrofísica de Canarias (IAC), part of the European Northern Observatory (ENO). Year after year, our studentship programme contributes to a better prepared future generation of astronomers. In this poster, we present some recent technical and science achievements of our past ING students, encouraging talented students to apply in the future (announced in February--March via the ING website http://www.ing.iac.es/astronomy/science/studentship.html).

  18. How Inge Lehmann Discovered the Inner Core of the Earth

    ERIC Educational Resources Information Center

    Rousseau, Christiane

    2013-01-01

    The mathematics behind Inge Lehmann's discovery that the inner core of the Earth is solid is explained using data collected around the Earth on seismic waves and their travel time through the Earth.

  19. 78 FR 18634 - ING Life Insurance and Annuity Company, et al; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... (``ING Life''), ING USA Annuity and Life Insurance Company (``ING USA''), ReliaStar Life Insurance Company of New York (``ReliaStar NY''), and Security Life of Denver Insurance Company (each a ``Company'' and together, the ``Companies''), Variable Annuity Account B of ING Life Insurance and Annuity...

  20. Adenovirus-mediated ING4 expression reduces multidrug resistance of human gastric carcinoma cells in vitro and in vivo.

    PubMed

    Mao, Zong-Lei; He, Song-Bing; Sheng, Wei-Hua; Dong, Xiao-Qiang; Yang, Ji-Cheng

    2013-11-01

    Chemotherapy is the primary treatment for both resectable and advanced gastric carcinoma, yet multiple drug resistance (MDR) of gastric carcinoma remains a significant therapeutic obstacle. The development of novel strategies to reduce MDR in gastric carcinoma would yield a better outcome following chemotherapy. ING4, a member of the inhibitor of growth (ING) tumor-suppressor family, possesses antitumor and radiosensitization or chemosensitization effects in a variety of human cancers. The present study investigated the effects and possible mechanisms of action of adenovirus-mediated ING4 (AdVING4) on the reversion of human gastric carcinoma cell MDR in vitro and in vivo in nude mouse xenografts. The data showed that the expression of ING4 mRNA and protein was dramatically downregulated (or lost) in gastric carcinoma SGC7901/CDDP cells after CDDP-induced MDR phenotype and in the parental SGC7901 cells. AdVING4‑induced ING4 expression reversed MDR and induced apoptosis of SGC7901/CDDP cells in vitro and in vivo in the SGC7901/CDDP xenograft tumors. Furthermore, AdVING4 substantially downregulated the expression of MDR-related proteins P-gp and MRP1 and apoptosis‑related proteins Bcl-2 and survivin, but upregulated the expression of apoptosis-related protein Bax in the SGC7901/CDDP xenograft tissues. The reversion effects elicited by AdVING4 on gastric cancer cell MDR were closely associated with the downregulation of ATP-binding cassette transporters and activation of apoptotic pathways. Thus, these findings suggest that AdVING4 may be a feasible modulator for the MDR phenotype of gastric carcinoma cells. PMID:23969950

  1. Caught Nek-ing: cilia and centrioles.

    PubMed

    Quarmby, Lynne M; Mahjoub, Moe R

    2005-11-15

    The Nek family of cell-cycle kinases is widely represented in eukaryotes and includes numerous proteins that were described only recently and remain poorly characterized. Comparing Neks in the context of clades allows us to examine the question of whether microbial eukaryotic Neks, although not strictly orthologs of their vertebrate counterparts, can provide clues to ancestral functions that might be retained in the vertebrate Neks. Relatives of the Nek2/NIMA proteins play important roles at the G2-M transition in nuclear envelope breakdown and centromere separation. Nek6, Nek7 and Nek9 also seem to regulate mitosis. By contrast, Nek1 and Nek8 have been linked with polycystic kidney disease. Results of statistical analysis indicate that the family coevolved with centrioles that function as both microtubule-organizing centers and the basal bodies of cilia. This evolutionary perspective, taken together with functional studies of microbial Neks, provides new insights into the cellular roles of the proteins and disease with which some of them have been linked. PMID:16280549

  2. A personal memoir of Inge Lehmann (1888-1993)

    NASA Astrophysics Data System (ADS)

    Simon, Ruth

    On February 21, the world lost a pioneering woman scientist and I lost a treasured friend.I met Inge Lehmann in the 1950s when she came to Lamont to work on her “Lg” paper. We immediately became friends despite the large difference in our ages. Her quiet dignity, her interest in everything scientific and feminine, her desire to learn all she could about our lives in and out of the observatory astounded me. Inge was shy, almost painfully so. Dr. Ewing arranged for Inge to stay in the guest house where she could do her work and have assistance as needed. One of my most pleasant duties to make her feel at home was to take her on weekly trips to the supermarket. She prepared her own meals in her guest house quarters. I shopped for my own family at the same time, leaving my provisions in the car until it was time to go home after work. Inge kept ice cream and frozen food in her small freezer for me.

  3. Green(ing) English: Voices Howling in the Wilderness?

    ERIC Educational Resources Information Center

    Bruce, Heather E.

    2011-01-01

    The relatively new fields of ecocriticism in literary studies and ecocomposition in rhetoric and composition studies provide a usable foundation for those interested in green(ing) English. Nevertheless, even suggesting that interest in the environment within English studies is a relatively new concern is somewhat misleading. Contemplation of…

  4. 75 FR 10230 - Inglis Hydropower, LLC; Notice of Application Accepted for Filing and Soliciting Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ... Energy Regulatory Commission Inglis Hydropower, LLC; Notice of Application Accepted for Filing and... Hydropower, LLC. e. Name of Project: Inglis Hydropower Project. f. Location: The proposed project would be... Inglis Hydropower Project would operate in a run-of-river mode by using flows released to maintain...

  5. The miR-193a-3p-regulated ING5 gene activates the DNA damage response pathway and inhibits multi-chemoresistance in bladder cancer

    PubMed Central

    Qian, Liting; Xiao, Jun; Zhao, Weidong; Liu, Qi; Zhang, Daming; Wang, Yingwei; Yan, Jun; Zhang, Hongyu; He, Yinghua; Zhu, Jingde

    2015-01-01

    As the major barrier to curative cancer chemotherapy, chemoresistance presents a formidable challenge to both cancer researchers and clinicians. We have previously shown that the bladder cancer (BCa) cell line 5637 is significantly more sensitive to the cytoxicity of five chemotherapeutic agents than H-bc cells. Using an RNA-seq-based omic analysis and validation at both the mRNA and protein levels, we found that the inhibitor of growth 5 (ING5) gene was upregulated in 5637 cells compared with H-bc cells, indicating that it has an inhibitory role in BCa chemoresistance. siRNA-mediated inhibition of ING5 increased the chemoresistance and inhibited the DNA damage response pathway in 5637 cells. Conversely, forced expression of EGFP-ING5 decreased the chemoresistance of and activated the DNA damage response pathway in H-bc cells. We also showed that ING5 gene expression is inhibited by miR-193a-3p and is instrumental in miR-193a-3p's role in activating BCa chemoresistance. Our results demonstrate both the role and mechanism of inhibition of BCa chemoresistance by ING5. PMID:25991669

  6. Bradford H. Hager Receives 2013 Inge Lehmann Medal: Citation

    NASA Astrophysics Data System (ADS)

    Mitrovica, Jerry X.

    2014-01-01

    In the post-plate tectonics world, efforts to map the structure of Earth's interior broadened to include a growing preoccupation with the underlying dynamics. Students of global geophysics recognize the important role that previous recipients of the Inge Lehmann Medal played in this effort, but they would also understand the reasons that Bradford Hager of the Massachusetts Institute of Technology must be included in this honored list. Brad has been a central figure in mantle dynamics for the last 30 years, responsible for many fundamental advances in our understanding of mantle structure and flow and their connection to the geological record.

  7. ING2 controls the progression of DNA replication forks to maintain genome stability

    PubMed Central

    Larrieu, Delphine; Ythier, Damien; Binet, Romuald; Brambilla, Christian; Brambilla, Elisabeth; Sengupta, Sagar; Pedeux, Rémy

    2009-01-01

    Inhibitor of growth 2 (ING2) is a candidate tumour suppressor gene the expression of which is frequently lost in tumours. Here, we identified a new function for ING2 in the control of DNA replication and in the maintenance of genome stability. Global replication rate was markedly reduced during normal S-phase in small interfering RNA (siRNA) ING2 cells, as seen in a DNA fibre spreading experiment. Accordingly, we found that ING2 interacts with proliferating cell nuclear antigen and regulates its amount to the chromatin fraction, allowing normal replication progression and normal cell proliferation. Deregulation of DNA replication has been previously associated with genome instability. Hence, a high proportion of siRNA ING2 cells presented endoreduplication of their genome as well as an increased frequency of sister chromatid exchange. Thus, we propose for the first time that ING2 might function as a tumour suppressor gene by directly maintaining DNA integrity. PMID:19730436

  8. 77 FR 58375 - Inglis Hydropower, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... Energy Regulatory Commission Inglis Hydropower, LLC; Notice of Preliminary Permit Application Accepted..., Inglis Hydropower, LLC filed an application for a preliminary permit, pursuant to section 4(f) of the Federal Power Act (FPA), proposing to study the feasibility of a hydropower project located at the...

  9. Astrophysics on the Edge: New Instrumental Developments at the ING

    NASA Astrophysics Data System (ADS)

    Santander-García, M.; Rodríguez-Gil, P.; Tulloch, S.; Rutten, R. G. M.

    Present and future key instruments at the Isaac Newton Group of Telescopes (ING) are introduced, and their corresponding latest scientific highlights are presented. GLAS (Ground-layer Laser Adaptive optics System): The recently installed 515 nm laser, mounted on the WHT (William Herschel Telescope), produces a bright artificial star at a height of 15 km. This enables almost full-sky access to Adaptive Optics observations. Recent commissioning observations with the NAOMI+GLAS system showed that very significant improvement in image quality can be obtained, e.g. down to 0.16 arcsec in the H band. QUCAM2 and QUCAM3: Two Low Light Level (L3) CCD cameras for fast or faint-object spectroscopy with the twin-armed ISIS spectrograph at the WHT. Their use opens a new window of high time-frequency observations, as well as access to fainter objects. They are powerful instruments for research on compact objects such as white dwarfs, neutron stars or black holes, stellar pulsations, and compact binaries.HARPS-NEF (High-Accuracy Radial-velocity Planet Searcher of the New Earths Facility): An extremely stable, high-resolution (R ˜ 120, 000) spectrograph for the WHT which is being constructed for commissioning in 2009-2010. Its radial velocity stability of < 1 m s- 1 may in the future be even further improved by using a Fabry-Perot laser-comb, a wavelength calibration unit capable of achieving an accuracy of 1 cm s- 1. This instrument will effectively allow to search for earth-like exoplanets.

  10. The ING observatory in the 2015-2025 decade

    NASA Astrophysics Data System (ADS)

    Balcells, M.

    2015-05-01

    The Isaac Newton Group, after nearly 30 years of productive operation of the William Herschel, Isaac Newton and Jacobus Kapteyn telescopes, is reviewing its science focus. The central goal is to respond to the changes in the astronomical landscapes in UK, the Netherlands, and especially in Spain, now a mature world-player community with access to 10-m class telescopes on La Palma and Paranal. The current model, which exploits scientific and instrumentation diversity, will continue to be offered until 2017. In the meantime, an ING-led consortium is building WEAVE, a next-generation spectroscopic facility for the WHT. WEAVE is a multi-fibre system capable of deploying either 1000 single-fibre probes, 25 mini-IFUs or a single large IFU, to feed a two-arm bench spectrograph which delivers resolving powers of either 5000 or 20,000. WEAVE will exploit a new field corrector at the WHT that enlarges the prime-focus FOV diameter from the current 40 arcmin to 2 degrees. WEAVE will be used to carry out massive surveys that exploit Gaia data in topics of Milky Way astronomy and stellar evolution; surveys that carry out galaxy evolution studies linked to various multi-wavelength surveys, including the LOFAR radio telescope; and redshift surveys of distant galaxies for cosmology. Community fibres will be available. The expectation is that these surveys will use 70% of the WHT time until at least 2022. The rest of the time will be available via normal TAC allocations, for use of facility instrumentation. Plans for the INT include involving external institutions in the provision of new instrumentation and/or telescope upgrades in exchange for significant fractions of telescope time.

  11. The novel tumor suppressor p33ING2 enhances UVB-induced apoptosis in human melanoma cells

    SciTech Connect

    Chin, M.Y.; Ng, Kin Cheung P.; Li Gang . E-mail: gangli@interchange.ubc.ca

    2005-04-01

    The roles of p33ING2 as a tumor suppressor candidate have been shown through regulation of gene transcription, induction of cell cycle arrest, and apoptosis. As p33ING2 shares 58.9% homology with p33ING1b, we hypothesized that p33ING2 shares functional similarities with p33ING1b. We previously found that p33ING1b cooperates with p53 to enhance UVB-induced apoptosis. Here, we report that overexpression of p33ING2 enhanced apoptosis in UVB-irradiated and non-irradiated melanoma MMRU cells. We demonstrate that enhancement of apoptosis by p33ING2 requires the presence of functional p53. Furthermore, we found that overexpression of p33ING2 significantly downregulated the expression of Bcl-2 after UVB irradiation, resulting in an increased Bax/Bcl-2 ratio. Moreover, we found that p33ING2 promoted Bax translocation to mitochondria, altered the mitochondrial membrane potential, and induced cytochrome c release and thus the activation of caspases 9 and 3. In addition, we showed that under non-stress conditions p33ING2 upregulates Fas expression and activates caspase 8. Taken together, we demonstrate that p33ING2 cooperates with p53 to regulate apoptosis via activation of both the mitochondrial/intrinsic and death-receptor/extrinsic apoptotic pathways.

  12. Complete genome sequence of the novel Porphyromonadaceae bacterium strain ING2-E5B isolated from a mesophilic lab-scale biogas reactor.

    PubMed

    Hahnke, Sarah; Maus, Irena; Wibberg, Daniel; Tomazetto, Geizecler; Pühler, Alfred; Klocke, Michael; Schlüter, Andreas

    2015-01-10

    In this study, the whole genome sequence of the mesophilic, anaerobic Porphyromonadaceae bacterium strain ING2-E5B (LMG 28429, DSM 28696) is reported. The new isolate belongs to the phylum Bacteroidetes and was obtained from a biogas-producing lab-scale completely stirred tank reactor (CSTR) optimized for anaerobic digestion of maize silage in co-fermentation with pig and cattle manure. The genome of strain ING2-E5B contains numerous genes encoding proteins and enzymes involved in the degradation of complex carbohydrates and proteinaceous compounds. Moreover, it possesses genes catalyzing the production of volatile fatty acids. Hence, this bacterium was predicted to be involved in hydrolysis and acidogenesis during anaerobic digestion and biomethanation. PMID:25444871

  13. LACEwING: LocAting Constituent mEmbers In Nearby Groups

    NASA Astrophysics Data System (ADS)

    Riedel, Adric R.

    2016-01-01

    LACEwING (LocAting Constituent mEmbers In Nearby Groups) uses the kinematics (positions and motions) of stars to determine if they are members of one of 10 nearby young moving groups or 4 nearby open clusters within 100 parsecs. It is written for Python 2.7 and depends upon Numpy, Scipy, and Astropy (ascl:1304.002) modules. LACEwING can be used as a stand-alone code or as a module in other code. Additional python programs are present in the repository for the purpose of recalibrating the code and producing other analyses, including a traceback analysis.

  14. BE-ing @Work: Wearables and Presence of Mind in the Workplace

    ERIC Educational Resources Information Center

    Forbes Oste, Heidi

    2016-01-01

    Expectations and demands in the changing contemporary workplace are driven by emergent technologies. Ubiquitous in nature, they are designed to enhance human and organization potential. These technologies provide access to information and connection at all times. They are increasingly reliant on human relationships and connection. BE-ing one's…

  15. Queer(y)ing and Recrafting Agency: Moving Away from a Model of Coercion versus Escape

    ERIC Educational Resources Information Center

    Gowlett, Christina

    2014-01-01

    This paper applies a Butlerian-inspired "queer(y)ing" methodology to disrupt the utility of agency being framed within the binary of escape and coercion. In particular, it uses Butler's concept of performative resignification to analyse how Simon, a 16-year-old white male student, maneouvres his way through the social conventions of…

  16. 47 CFR 1.1206 - Permit-but-disclose proceed-ings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... presentation was made. The memorandum shall identify plainly on the first page the specific exemption in § 1... 47 Telecommunication 1 2014-10-01 2014-10-01 false Permit-but-disclose proceed-ings. 1.1206 Section 1.1206 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE...

  17. 47 CFR 1.1206 - Permit-but-disclose proceed-ings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... presentation was made. The memorandum shall identify plainly on the first page the specific exemption in § 1... 47 Telecommunication 1 2013-10-01 2013-10-01 false Permit-but-disclose proceed-ings. 1.1206 Section 1.1206 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE...

  18. On Mathematicians' Proof Skimming: A Reply to Inglis and Alcock

    ERIC Educational Resources Information Center

    Weber, Keith; Mejia-Ramos, Juan Pablo

    2013-01-01

    n a recent article, Inglis and Alcock (2012) contended that their data challenge the claim that when mathematicians validate proofs, they initially skim a proof to grasp its main idea before reading individual parts of the proof more carefully. This result is based on the fact that when mathematicians read proofs in their study, on average their…

  19. 75 FR 65620 - Inglis Hydropower, LLC; Notice of Application Ready for Environmental Analysis and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Inglis Hydropower, LLC; Notice of Application Ready for Environmental Analysis and Soliciting Comments, Recommendations, Terms and Conditions, and Prescriptions October 19, 2010. Take notice that the...

  20. An Alternative Framework to Evaluate Proof Productions: A Reply to Alcock and Inglis

    ERIC Educational Resources Information Center

    Weber, Keith; Mejia-Ramos, Juan Pablo

    2009-01-01

    In a recent paper, Alcock and Inglis (in press) noted a distinction between the way that Weber (in press) and they defined syntactic and semantic proof productions. Weber argued that "a syntactic proof production occurs when one works predominantly within the representation system of proof [...] Alternatively, a semantic proof production occurs…

  1. 76 FR 54770 - Public Meeting: Notification by Capital One Financial Corporation, McLean, VA, To Acquire ING...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-02

    ... Public Meeting: Notification by Capital One Financial Corporation, McLean, VA, To Acquire ING Bank, FSB... Financial Corporation, McLean, Virginia, to acquire ING Bank, FSB, Wilmington, Delaware, and indirectly to... Financial Corporation, McLean, Virginia (``Capital One''), requested the Board's approval under the...

  2. Oncogenic Ras suppresses ING4-TDG-Fas axis to promote apoptosis resistance

    PubMed Central

    Sun, Jie; Shen, Qi; Lu, Haiqi; Jiang, Zhinong; Xu, Wenxia; Feng, Lifeng; Li, Ling; Wang, Xian; Cai, Xiujun; Jin, Hongchuan

    2015-01-01

    Ras is aberrantly activated in many cancers and active DNA demethylation plays a fundamental role to establish DNA methylation pattern which is of importance to cancer development. However, it was unknown whether and how Ras regulate DNA demethylation during carcinogenesis. Here we found that Ras downregulated thymine-DNA glycosylase (TDG), a DNA demethylation enzyme, by inhibiting the interaction of transcription activator ING4 with TDG promoter. TDG recruited histone lysine demethylase JMJD3 to the Fas promoter and activated its expression, thus restoring sensitivity to apoptosis. TDG suppressed in vivo tumorigenicity of xenograft pancreatic cancer. Thus, we speculate that reversing Ras-mediated ING4 inhibition to activate Fas expression is a potential therapeutic approach for Ras-driven cancers. PMID:26544625

  3. Complete genome sequence of Peptoniphilus sp. strain ING2-D1G isolated from a mesophilic lab-scale completely stirred tank reactor utilizing maize silage in co-digestion with pig and cattle manure for biomethanation.

    PubMed

    Tomazetto, Geizecler; Hahnke, Sarah; Maus, Irena; Wibberg, Daniel; Pühler, Alfred; Schlüter, Andreas; Klocke, Michael

    2014-12-20

    The bacterium Peptoniphilus sp. strain ING2-D1G (DSM 28672), a mesophilic and obligate anaerobic bacterium belonging to the order Clostridiales was isolated from a biogas-producing lab-scale completely stirred tank reactor (CSTR) optimized for anaerobic digestion of maize silage in co-fermentation with pig and cattle manure. In this study, the whole genome sequence of Peptoniphilus sp. strain ING2-D1G, a new isolate potentially involved in protein breakdown and acidogenesis during biomass degradation, is reported. The chromosome of this strain is 1.6Mb in size and encodes genes predicted to be involved in the production of acetate, lactate and butyrate specifying the acidogenic metabolism of the isolate. PMID:25242663

  4. [Comment on “Seismology in the days of old” by Inge Lehmann] The Lehmann discontinuity

    NASA Astrophysics Data System (ADS)

    Anderson, D. L.; Bolt, B. A.; Morse, S. A.

    Recent reflections by Inge Lehmann on her discovery of the inner core (Eos, January 20, 1987, p. 33; see also Bolt [1987, 1982]) remind us that this outstanding Earth scientist is now in her 100th year. The inner core boundary (ICB) is one of the three great seismic-compositional discontinuities that divide Earth into crust, mantle, core, and inner core. The other two discontinuities are well known by names honoring their discoverers, Andrija Mohorovicic and Beno Gutenberg. In this tradition, it is fitting that the ICB be called the Lehmann Discontinuity in honor of its discoverer.

  5. The PCNA-associated factor KIAA0101/p15{sup PAF} binds the potential tumor suppressor product p33ING1b

    SciTech Connect

    Simpson, Fiona; Lammerts van Bueren, Kelly; Butterfield, Natalie; Bennetts, Jennifer S.; Bowles, Josephine; Adolphe, Christelle; Simms, Lisa A.; Young, Joanne; Walsh, Michael D.; Leggett, Barbara; Fowles, Lindsay F.; Wicking, Carol . E-mail: C.Wicking@imb.uq.edu.au

    2006-01-01

    The KIAA0101/p15{sup PAF}/OEATC-1 protein was initially isolated in a yeast two-hybrid screen for proliferating cell nuclear antigen (PCNA) binding partners, and was shown to bind PCNA competitively with the cell cycle regulator p21{sup WAF}. PCNA is involved in DNA replication and damage repair. Using polyclonal antisera raised against a p15{sup PAF} fusion protein, we have shown that in a range of mammalian tumor and non-tumor cell lines the endogenous p15{sup PAF} protein localises to the nucleus and the mitochondria. Under normal conditions no co-localisation with PCNA could be detected, however following exposure to UV it was possible to co-immunoprecipitate p15{sup PAF} and PCNA from a number of cell lines, suggesting a UV-enhanced association of the two proteins. Overexpression of p15{sup PAF} in mammalian cells was also found to protect cells from UV-induced cell death. Based on similarities between the behaviour of p15{sup PAF} and the potential tumor suppressor product p33ING1b, we have further shown that these two proteins interact in the same complex in cell cultures. This suggests that p15{sup PAF} forms part of a larger protein complex potentially involved in the regulation of DNA repair, apoptosis and cell cycle progression.

  6. MicroRNA-650 targets ING4 to promote gastric cancer tumorigenicity

    SciTech Connect

    Zhang, XueLi; Zhu, WeiYing; Zhang, JiFa; Huo, ShouJun; Zhou, LianMing; Gu, Zhen; Zhang, Min

    2010-04-30

    MicroRNAs (miRNAs) are non-coding RNAs that regulate the expression of target mRNAs. Altered expression of specific miRNAs in human gastric cancer progression has been reported; however, the role of miR-650 in gastric cancer is poorly understood. In this study, we show that miR-650 is involved in lymphatic and distant metastasis in human gastric cancer, and we find that ectopic expression of miR-650 promotes tumorigenesis and proliferation of gastric cancer cells. A luciferase reporter assay demonstrates that Inhibitor of Growth 4 (ING4) is a direct target of miR-650. Collectively, our study demonstrates that over-expression of miR-650 in gastric cancer may promote proliferation and growth of cancer cells, at least partially through directly targeting ING4. These findings help clarify the molecular mechanisms involved in gastric carcinogenesis and indicate that miR-650 modulation may be a bona fide miRNA-based treatment of gastric cancer.

  7. ING5 suppresses proliferation, apoptosis, migration and invasion, and induces autophagy and differentiation of gastric cancer cells: a good marker for carcinogenesis and subsequent progression

    PubMed Central

    Gou, Wen-feng; Shen, Dao-fu; Yang, Xue-feng; Zhao, Shuang; Liu, Yun-peng; Sun, Hong-zhi; Su, Rong-jian; Luo, Jun-sheng; Zheng, Hua-chuan

    2015-01-01

    Here, we found that ING5 overexpression increased autophagy, differentiation, and decreased proliferation, apoptosis, migration, invasion and lamellipodia formation in gastric cancer cells, while ING5 knockdown had the opposite effects. In SGC-7901 transfectants, ING5 overexpression caused G1 arrest, which was positively associated with 14-3-3 overexpression, Cdk4 and c-jun hypoexpression. The induction of Bax hypoexpression, Bcl-2, survivin, 14-3-3, PI3K, p-Akt and p70S6K overexpression by ING5 decreased apoptosis in SGC-7901 cells. The hypoexpression of MMP-9, MAP1B and flotillin 2 contributed to the inhibitory effects of ING5 on migration and invasion of SGC-7901 cells. ING5 overexpression might activate both β-catenin and NF-κB pathways in SGC-7901 cells, and promote the expression of down-stream genes (c-myc, VEGF, Cyclin D1, survivin, and interleukins). Compared with the control, ING5 transfectants displayed drug resistance to triciribine, paclitaxel, cisplatin, SAHA, MG132 and parthenolide, which was positively related to their apoptotic induction and the overexpression of chemoresistance-related genes (MDR1, GRP78, GRP94, IRE, CD147, FBXW7, TOP1, TOP2, MLH1, MRP1, BRCP1 and GST-π). ING5 expression was higher in gastric cancer than matched mucosa. It was inversely associated with tumor size, dedifferentiation, lymph node metastasis and clinicopathological staging of cancer. ING5 overexpression suppressed growth, blood supply and lung metastasis of SGC-7901 cells by inhibiting proliferation, enhancing autophagy and apoptosis in xenograft models. It was suggested that ING5 expression might be employed as a good marker for gastric carcinogenesis and subsequent progression by inhibiting proliferation, growth, migration, invasion and metastasis. ING5 might induce apoptotic and chemotherapeutic resistances of gastric cancer cells by activating β-catenin, NF-κB and Akt pathways. PMID:25980581

  8. ING5 suppresses proliferation, apoptosis, migration and invasion, and induces autophagy and differentiation of gastric cancer cells: a good marker for carcinogenesis and subsequent progression.

    PubMed

    Gou, Wen-feng; Shen, Dao-fu; Yang, Xue-feng; Zhao, Shuang; Liu, Yun-peng; Sun, Hong-zhi; Su, Rong-Jian; Luo, Jun-sheng; Zheng, Hua-chuan

    2015-08-14

    Here, we found that ING5 overexpression increased autophagy, differentiation, and decreased proliferation, apoptosis, migration, invasion and lamellipodia formation in gastric cancer cells, while ING5 knockdown had the opposite effects. In SGC-7901 transfectants, ING5 overexpression caused G1 arrest, which was positively associated with 14-3-3 overexpression, Cdk4 and c-jun hypoexpression. The induction of Bax hypoexpression, Bcl-2, survivin, 14-3-3, PI3K, p-Akt and p70S6K overexpression by ING5 decreased apoptosis in SGC-7901 cells. The hypoexpression of MMP-9, MAP1B and flotillin 2 contributed to the inhibitory effects of ING5 on migration and invasion of SGC-7901 cells. ING5 overexpression might activate both β-catenin and NF-κB pathways in SGC-7901 cells, and promote the expression of down-stream genes (c-myc, VEGF, Cyclin D1, survivin, and interleukins). Compared with the control, ING5 transfectants displayed drug resistance to triciribine, paclitaxel, cisplatin, SAHA, MG132 and parthenolide, which was positively related to their apoptotic induction and the overexpression of chemoresistance-related genes (MDR1, GRP78, GRP94, IRE, CD147, FBXW7, TOP1, TOP2, MLH1, MRP1, BRCP1 and GST-π). ING5 expression was higher in gastric cancer than matched mucosa. It was inversely associated with tumor size, dedifferentiation, lymph node metastasis and clinicopathological staging of cancer. ING5 overexpression suppressed growth, blood supply and lung metastasis of SGC-7901 cells by inhibiting proliferation, enhancing autophagy and apoptosis in xenograft models. It was suggested that ING5 expression might be employed as a good marker for gastric carcinogenesis and subsequent progression by inhibiting proliferation, growth, migration, invasion and metastasis. ING5 might induce apoptotic and chemotherapeutic resistances of gastric cancer cells by activating β-catenin, NF-κB and Akt pathways. PMID:25980581

  9. Queer(y)ing New Schooling Accountabilities through "My School": Using Butlerian Tools to Think Differently about Policy Performativity

    ERIC Educational Resources Information Center

    Gowlett, Christina

    2015-01-01

    This article takes the role of provocateur to "queer(y)" the rules of intelligibility surrounding new schooling accountabilities. Butler's work is seldom used outside the arena of gender and sexualities research. A "queer(y)ing" methodology is subsequently applied in a context very different to where it is frequently…

  10. Linguistic Variation, Context, and Meaning: A Case of "-ing/in'" Variation in North American Workers' Speech.

    ERIC Educational Resources Information Center

    Huspek, Michael R.

    1986-01-01

    Suggests an alternative approach to the variable rule method of accounting for linguistic variability. This alternative approach, which is sensitive to social context and the relevance of meaning, is used to support an analysis of "-ing/in'" variability in some North American industrial workers' speech. (SED)

  11. ING-1(heMAb), a Monoclonal Antibody to Epithelial Cell Adhesion Molecule, Inhibits Tumor Metastases in a Murine Cancer Model

    PubMed Central

    Ruan, Harry H.; Scott, Kristen R.; Bautista, Eddie; Ammons, W. Steve

    2003-01-01

    Abstract ING-1(heMAb), a human-engineered monoclonal antibody (MAb) that specifically targets the epithelial cell adhesion molecule (Ep-CAM), kills adenocarcinoma cells in vitro and inhibits tumor growth in vivo. In the current study, we evaluated the efficacy of ING-1(heMAb) in a murine model of cancer metastases. Mice received intravenous dosing of 1 mg/kg ING-1(heMAb), twice a week, starting on day 2 or day 5. A negative control group received 1 mg/kg human immunoglobulin G with the same dose frequency starting on day 2. A positive control group received weekly 100 mg/kg 5-flurouracil/leucovorin starting on day 2. ING-1(heMAb)/day 2 treatment significantly reduced both the number of visible tumor nodules in body cavities (P < .01) and the number of metastases on lung surfaces (P < .005). The treatment also resulted in a 91% reduction of micrometastases in lung tissues (P < .0001). Delaying ING-1(heMAb) treatment until day 5 caused 54% reduction in micrometastases (P < .005). Our results indicate that a number of parameters, including treatment starting day, dose level, and dose frequency, are critical in achieving the optimal efficacy of ING-1(heMAb). We conclude that ING-1(heMAb) effectively reduced tumor metastases in a murine cancer model. Immunotherapy with ING-1(heMAb) may be beneficial in treating human metastatic diseases. PMID:14965442

  12. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  13. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  14. Expression profiles of inhibitor of growth protein 2 in normal and cancer tissues: An immunohistochemical screening analysis.

    PubMed

    Zhao, Shuang; Yang, Xue-Feng; Gou, Wen-Feng; Lu, Hang; Li, Hua; Zhu, Zhi-Tu; Sun, Hong-Zhi; Zheng, Hua-Chuan

    2016-02-01

    Inhibitor of growth protein 2 (ING2) has an important role in the regulation of chromatin remodeling, cell proliferation, cell‑cycle arrest, senescence and apoptosis. The present study performed an immunohistochemical analysis for expression profiling of ING2 protein in an array of tissues comprising normal mouse and human tissues, as well as human hepatocellular (n=62), renal clear cell (n=62), pancreatic (n=62), esophageal squamous cell (n=45), cervical squamous cell (n=31), breast (n=144), gastric (n=196), colorectal (n=96), ovarian (n=208), endometrial (n=96) and lung (n=192) carcinoma tissues. In mouse tissues, ING2 was detected in the nuclei and cytoplasm of the glandular epithelium of breast, hepatocytes, intestine, bronchium and alveoli, as well as the squamous epithelium of skin and glomeruli, and in myocardial cells, while it was located in the cytoplasm of renal tubules and striated muscle cells. ING2 protein was scattered in the brain and spleen. In human tissues, ING2 protein was principally distributed in the cytoplasm, while in it was present in the cytoplasm and nuclei in the stomach, intestine, cervix, endometrium trachea, breast and pancreas. The nuclear location of ING2 in the stomach was more prominent than that in the cytoplasm. High ING2 immunoreactivity was detected in the tongue, stomach, skin, pancreas, cervix and breast, whereas weakly in the brain stem, thymus, thyroid, lung, striated muscle, testis, bladder and ovary. In total, 617 out of 1,194 of the tested cancer tissues (51.7%) were ING2-positive. In most cases, ING2 expression was found to be restricted to the cytoplasm of all cancer tissues, while in certain cancer types, including renal clear cell, ovarian and colorectal carcinoma, it was occasionally present in the nuclei. Among the cancer tissues examined, ING2 was most frequently expressed in breast cancer (67.4%) and gynecological cancer types, including ovarian cancer (61.5%) and endometrial cancer (57.3%). Compared with

  15. SCF(JFK) is a bona fide E3 ligase for ING4 and a potent promoter of the angiogenesis and metastasis of breast cancer.

    PubMed

    Yan, Ruorong; He, Lin; Li, Zhongwu; Han, Xiao; Liang, Jing; Si, Wenzhe; Chen, Zhe; Li, Lei; Xie, Guojia; Li, Wanjin; Wang, Peiyan; Lei, Liandi; Zhang, Hongquan; Pei, Fei; Cao, Dengfeng; Sun, Luyang; Shang, Yongfeng

    2015-03-15

    Loss of function/dysregulation of inhibitor of growth 4 (ING4) and hyperactivation of NF-κB are frequent events in many types of human malignancies. However, the molecular mechanisms underlying these remarkable aberrations are not understood. Here, we report that ING4 is physically associated with JFK. We demonstrated that JFK targets ING4 for ubiquitination and degradation through assembly of an Skp1-Cul1-F-box (SCF) complex. We showed that JFK-mediated ING4 destabilization leads to the hyperactivation of the canonical NF-κB pathway and promotes angiogenesis and metastasis of breast cancer. Significantly, the expression of JFK is markedly up-regulated in breast cancer, and the level of JFK is negatively correlated with that of ING4 and positively correlated with an aggressive clinical behavior of breast carcinomas. Our study identified SCF(JFK) as a bona fide E3 ligase for ING4 and unraveled the JFK-ING4-NF-κB axis as an important player in the development and progression of breast cancer, supporting the pursuit of JFK as a potential target for breast cancer intervention. PMID:25792601

  16. 'HESPERIA' HORIZON 2020 project: High Energy Solar Particle Events foRecastIng and Analysis

    NASA Astrophysics Data System (ADS)

    Malandraki, Olga; Klein, Karl-Ludwig; Vainio, Rami; Agueda, Neus; Nunez, Marlon; Heber, Bernd; Buetikofer, Rolf; Sarlanis, Christos; Crosby, Norma; Bindi, Veronica; Murphy, Ronald; Tyka, Allan J.; Rodriguez, Juan

    2016-04-01

    Solar energetic particles (SEPs) are of prime interest for fundamental astrophysics. However, due to their high energies they are a space weather concern for technology in space as well as human space exploration calling for reliable tools with predictive capabilities. The two-year EU HORIZON 2020 project HESPERIA (High Energy Solar Particle Events foRecastIng and Analysis, http://www.hesperia-space.eu/) will produce two novel operational SEP forecasting tools based upon proven concepts (UMASEP, REleASE). At the same time the project will advance our understanding of the physical mechanisms that result into high-energy SEP events through the systematic exploitation of the high-energy gamma-ray observations of the FERMI mission and other novel published datasets (PAMELA, AMS), together with in situ SEP measurements near 1 AU. By using multi-frequency observations and performing simulations, the project will address the chain of processes from particle acceleration in the corona, particle transport in the magnetically complex corona and interplanetary space to their detection near 1 AU. Furthermore, HESPERIA will explore the possibility of incorporating the derived results into future innovative space weather services. Publicly available software to invert neutron monitor observations of relativistic SEPs to physical parameters, giving information on the high-energy processes occurring at or near the Sun during solar eruptions, will be provided for the first time. The results of this inversion software will complement the space-borne measurements at adjacent higher energies. In order to achieve these goals HESPERIA will exploit already existing large datasets that are stored into databases built under EU FP7 projects NMDB and SEPServer. The structure of the HESPERIA project, its main objectives and forecasting operational tools, as well as the added value to SEP research will be presented and discussed. Acknowledgement: This project has received funding from the

  17. Pharmacist intervention for glycaemic control in the community (the RxING study)

    PubMed Central

    Al Hamarneh, Yazid N; Charrois, Theresa; Lewanczuk, Richard; Tsuyuki, Ross T

    2013-01-01

    Objective To determine the effect of a community pharmacist prescribing intervention on glycaemic control in patients with poorly controlled type 2 diabetes. Design Pragmatic, before–after design. Setting 12 community pharmacies in Alberta, Canada. Participants Type 2 diabetes receiving oral hypoglycaemic medications and with glycated haemoglobin (HbA1c) of 7.5–11%. Intervention Pharmacists systematically identified potential candidates by inviting patients with type 2 diabetes to test their HbA1c using validated point-of-care technology. Pharmacists prescribed 10 units of insulin glargine at bedtime, adjusted by increments of 1 unit daily to achieve a morning fasting glucose of ≤5.5 mmol/L. The patients were followed up at 2, 4, 8, 14, 20 and 26 weeks. Primary outcome Change in HbA1c from baseline to week 26. Secondary outcomes Proportion of patients achieving target HbA1c, changes in oral hypoglycaemic agents, quality of life and patient satisfaction, persistence on insulin glargine, number of insulin dosage adjustments per patient and number of hypoglycaemic episodes. Results We screened 365 patients of whom 111 were eligible. Of those, 100 (90%) were enrolled in the study; all 11 patients who did not consent refused to use insulin. Average age was 64 years (SD 10.4), while average diabetes duration was 10.2 years (SD 7). HbA1c was reduced from 9.1% (SD 1) at baseline to 7.3% (SD 0.9); a change of 1.8% (95% CI 1.4 to 2, p<0.001). Fasting plasma glucose was reduced from 11 (SD 3.3) to 6.9 mmol/L (SD 1.8); a change of 4.1 mmol/L (95% CI of 3.3 to 5, p=0.007). Fifty-one per cent of the patients achieved the target HbA1c of ≤7% at the end of the study. Conclusions This is the first completed study of independent prescribing by pharmacists. Our results showed similar improvements in glycaemic control as previous physician-led studies. RxING provides further evidence for the benefit of pharmacist care in diabetes. Trial registration

  18. Many metals make the cut: quaternary rare-earth germanides RE4M2InGe4 (M = Fe, Co, Ni, Ru, Rh, Ir) and RE4RhInGe4 derived from excision of slabs in RE2InGe2.

    PubMed

    Oliynyk, Anton O; Stoyko, Stanislav S; Mar, Arthur

    2015-03-16

    The formation of quaternary rare-earth (RE) germanides containing transition metals (M's) from groups 6 to 10 was investigated through arc-melting and annealing reactions at 800 °C; about 50 new compounds were obtained. These include several new series of quaternary germanides RE4M2InGe4 (M = Fe, Co, Ru, Rh, Ir), previously known only for M = Mn and Ni; additional members of RE4Ni2InGe4 extended to other RE substituents; and a different but closely related series RE4RhInGe4. Detailed crystal structures were determined by single-crystal X-ray diffraction studies for 20 compounds. Monoclinic structures in space group C2/m are adopted by RE4M2InGe4 (Ho4Ni2InGe4-type, a = 15.1-16.5 Å, b = 4.1-4.4 Å, c = 6.9-7.3 Å, β = 106.2-108.6°) and RE4RhInGe4 (own type, a = 20.0-20.2 Å, b = 4.2-4.3 Å, c = 10.1-10.2 Å, β = 105.0-105.3°). Both structures contain frameworks built from MGe4 tetrahedra, InGe4 square planes, and Ge2 dimers, delimiting tunnels occupied by RE atoms. These structures can also be derived by cutting slabs along different directions from the more symmetrical RE2InGe2 structure. Although the Ge2 dimers are relatively invariant, the InGe4 square planes can undergo distortion to form two sets of short versus long In-Ge distances. This distortion results from a competition between M-Ge bonding in the MGe4 tetrahedra and In-Ge bonding in the InGe4 square planes. PMID:25731609

  19. After the diabetes care trial ends, now what? A 1-year follow-up of the RxING study

    PubMed Central

    Al Hamarneh, Yazid N; Sauriol, Luc; Tsuyuki, Ross T

    2015-01-01

    Introduction There is strong evidence that pharmacist care improves patients’ glycaemic control. However, the sustainability and durability of such interventions beyond the research period is not known. RxING was the first trial of pharmacist prescribing in diabetes and it showed an improvement in glycated haemoglobin (HbA1c) of 1.8% over 6 months. Objective 1° objective: To evaluate glycaemic control in the RxING study patients 12 months after the end of the formal study follow-up. 2° objective: To assess the patients’ risk of cardiovascular events in the next 10 years. Methods We contacted the participating pharmacists to check if the patients who participated in the RxING study are still taking insulin, the dose of insulin they are taking, and their HbA1c. There were no mandated follow-up visits with the pharmacist after the study completion. Results A total of 100 patients with poorly controlled type 2 diabetes were enrolled in the original RxING study; 93 of them completed the study, while 83 participated in the 12-month follow-up. Seventy-five patients were still taking insulin, with the average dose increasing from 31.1 units (SD 18.4) at study completion to 37.4 units (SD 30.8) (95% CI −13.3 to 0.88, p=0.085). HbA1c was reduced from 9.1% (SD 1) at baseline to 7.3% (SD 0.9) at study completion (95% CI 1.4 to 2, p <0.001), and increased to 8.1% (SD 1.3) 12 months later (95% CI −1.1 to −0.5, p <0.001 vs study completion). Conclusions Twelve months after completing the intervention, approximately half of the glycaemic control gains were lost. This highlights the importance of structured follow-up with the pharmacist in this patient population. Trial registration number clinicaltrials.gov; Identifier: NCT01335763. PMID:26270946

  20. OBITUARY: Eur.Ing. Professor David Dew-Hughes in memoriam

    NASA Astrophysics Data System (ADS)

    Campbell, Archie; Dew-Hughes, Denise; Donaldson, Gordon; Palmer, Richard

    2007-06-01

    We regret to announce the death of David Dew-Hughes, the second Honorary Editor of Superconductor Science and Technology, in Autumn 2006. He was born in Manchester, the eldest of three children, attended Manchester Grammar School and took his first degree in metallurgy at Birmingham, before undertaking a Doctorate of Engineering at Yale University. After initial work for IBM on semiconductors, he returned to England as a lecturer in metallurgy at Cambridge University. There he devoted his career to superconductivity long before it became fashionable, starting a group on the properties of what we now know as type II materials, with his students Jan Evetts, Archie Campbell and Anant Narlikar. Between them they paved the way to our understanding of the magnetic vortex properties of these materials, and thus to the development of modern practical materials for superconducting magnets. Eur.Ing. Professor David Dew-Hughes 1932-2006 In 1965 he became a founding Senior Lecturer in physics at Lancaster University, moving to Brookhaven National Laboratory in 1974. His final academic post was in engineering science at Oxford University where he also held a University College Tutorial Fellowship. As long ago as 1971 David wrote an authoritative review for Reports on Progress in Physics on 'The metallurgical enhancement of type II superconductors'. Following the discovery of high-Tc superconductivity, IOP Publishing launched Superconductor Science and Technology in 1988 and he was a founder member of its Editorial Board. When Jan Evetts retired as Honorary Editor in 1992, David was the natural choice as his successor. He served a five year term and remained on the Board as Deputy Editor until the end of 2000. To mark the 10th anniversary of high-temperature superconductivity in 1997, David edited a special issue of Superconductor Science and Technology in which past and present members of the Editorial Board contributed reviews of their specialities. He noted that at that time

  1. S6K1ing to ResTOR Adipogenesis with Polycomb.

    PubMed

    Juan, Aster H; Sartorelli, Vittorio

    2016-05-01

    Signal-directed chromatin recruitment of mammalian Polycomb complexes is a fundamental component of epigenetic regulation. In this issue, Yi et al. (2016) reveal how mTORC1 activation deploys the ribosomal serine/threonine kinase S6K1 and Polycomb proteins at genomic regulatory regions to repress expression of anti-adipogenic developmental regulators. PMID:27153531

  2. What's so Bor(a)ing about Aurora-A activation?

    PubMed

    Wiese, Christiane; O'Brien, Lori L

    2006-08-01

    Aurora-A kinases are highly conserved mitotic kinases required for cell division. The regulation of Aurora-A activity is less highly conserved and currently poorly understood. Work by Knoblich and coworkers in this issue of Developmental Cell identifies the conserved protein, Aurora Borealis (Bora), as a key regulator of Aurora-A activity during mitosis. PMID:16890151

  3. Tales of Recombinant Femininity: "The Reincarnation of Golden Lotus," the "Chin P'ing Mei," and the Politics of Melodrama in Hong Kong.

    ERIC Educational Resources Information Center

    Fore, Steve

    1993-01-01

    Examines the film "The Reincarnation of Golden Lotus" and the text upon which it is loosely based, the "Chin P'ing Mei," and the relationship between it and modern Chinese culture. States that the film's screenplay is much less an adaptation of the source novel than it is a female-centered reworking of a particular narrative and thematic elements.…

  4. PL3 Amidase, a Tailor-made Lysin Constructed by Domain Shuffling with Potent Killing Activity against Pneumococci and Related Species.

    PubMed

    Blázquez, Blas; Fresco-Taboada, Alba; Iglesias-Bexiga, Manuel; Menéndez, Margarita; García, Pedro

    2016-01-01

    The emergence and spread of antibiotic-resistant bacteria is pushing the need of alternative treatments. In this context, phage therapy is already a reality to successfully fight certain multiresistant bacteria. Among different phage gene products, murein hydrolases responsible of phage progeny liberation (also called lysins or endolysins) are weapons that target specific peptidoglycan bonds, leading to lysis and death of susceptible bacteria when added from the outside. In the pneumococcal system, all but one phage murein hydrolases reported to date share a choline-binding domain that recognizes cell walls containing choline residues in the (lipo)teichoic acids. Some purified pneumococcal or phage murein hydrolases, as well as several chimeric proteins combining natural catalytic and cell wall-binding domains (CBDs) have been used as effective antimicrobials. In this work we have constructed a novel chimeric N-acetylmuramoyl-L-alanine amidase (PL3) by fusing the catalytic domain of the Pal amidase (a phage-coded endolysin) to the CBD of the LytA amidase, the major pneumococcal autolysin. The physicochemical properties of PL3 and the bacteriolytic effect against several pneumococci (including 48 multiresistant representative strain) and related species, like Streptococcus pseudopneumoniae, Streptococcus mitis, and Streptococcus oralis, have been studied. Results have shown that low doses of PL3, in the range of 0.5-5 μg/ml, are enough to practically sterilize all choline-containing strains tested. Moreover, a single 20-μg dose of PL3 fully protected zebrafish embryos from infection by S. pneumoniae D39 strain. Importantly, PL3 keeps 95% enzymatic activity after 4 weeks at 37°C and can be lyophilized without losing activity, demonstrating a remarkable robustness. Such stability, together with a prominent efficacy against a narrow spectrum of human pathogens, confers to PL3 the characteristic to be an effective therapeutic. In addition, our results demonstrate

  5. PL3 Amidase, a Tailor-made Lysin Constructed by Domain Shuffling with Potent Killing Activity against Pneumococci and Related Species

    PubMed Central

    Blázquez, Blas; Fresco-Taboada, Alba; Iglesias-Bexiga, Manuel; Menéndez, Margarita; García, Pedro

    2016-01-01

    The emergence and spread of antibiotic-resistant bacteria is pushing the need of alternative treatments. In this context, phage therapy is already a reality to successfully fight certain multiresistant bacteria. Among different phage gene products, murein hydrolases responsible of phage progeny liberation (also called lysins or endolysins) are weapons that target specific peptidoglycan bonds, leading to lysis and death of susceptible bacteria when added from the outside. In the pneumococcal system, all but one phage murein hydrolases reported to date share a choline-binding domain that recognizes cell walls containing choline residues in the (lipo)teichoic acids. Some purified pneumococcal or phage murein hydrolases, as well as several chimeric proteins combining natural catalytic and cell wall-binding domains (CBDs) have been used as effective antimicrobials. In this work we have constructed a novel chimeric N-acetylmuramoyl-L-alanine amidase (PL3) by fusing the catalytic domain of the Pal amidase (a phage-coded endolysin) to the CBD of the LytA amidase, the major pneumococcal autolysin. The physicochemical properties of PL3 and the bacteriolytic effect against several pneumococci (including 48 multiresistant representative strain) and related species, like Streptococcus pseudopneumoniae, Streptococcus mitis, and Streptococcus oralis, have been studied. Results have shown that low doses of PL3, in the range of 0.5–5 μg/ml, are enough to practically sterilize all choline-containing strains tested. Moreover, a single 20-μg dose of PL3 fully protected zebrafish embryos from infection by S. pneumoniae D39 strain. Importantly, PL3 keeps 95% enzymatic activity after 4 weeks at 37°C and can be lyophilized without losing activity, demonstrating a remarkable robustness. Such stability, together with a prominent efficacy against a narrow spectrum of human pathogens, confers to PL3 the characteristic to be an effective therapeutic. In addition, our results demonstrate

  6. Material development in the SI sub 3 N sub 4 system using glass encapsulated Hip'ing

    SciTech Connect

    Corbin, N.D.; Sundberg, G.J.; Siebein, K.N.; Willkens, C.A.; Pujari, V.K.; Rossi, G.A.; Hansen, J.S.; Chang, C.L.; Hammarstrom, J.L.

    1992-04-01

    This report covers a two-year program to develop fully dense Si{sub 3}N{sub 4} matrix SiC whisker composites with enhanced properties over monolithic Si{sub 3}N{sub 4} materials. The primary goal was to develop a composite with a fracture toughness > 10 MPa{radical}m, capable of using high pressure glass encapsulated HIP'ing. Coating methods were developed to apply thin (<150nm) stoichiometric BN layers to SiC whiskers and also to apply a dual coating of SiC over carbon to the whiskers. Fracture toughness of the composites was determined to increase as the quantity of whiskers (or elongated grains) with their axis perpendicular to the crack plane increased. Of the interface compositions evaluated in this effort, carbon was determined to be the most effective for increasing toughness. The highest toughnesses (6.8--7.0 MPa{radical}m) were obtained with uniaxially aligned carbon coated whiskers. There was no evidence of the carbon coating compromising the oxidation resistance of the composites at 1370{degree}C.

  7. Visits to ING

    NASA Astrophysics Data System (ADS)

    Mendez, J.

    2005-03-01

    A total of 860 visitors split in 42 tours were shown round the WHT and occasionally the INT from September 2004 to January 2005. In total 203 official tours were organised and 5656 visitors shown around in 2004, including Open Days. Visitors included the general secretary of the Swedish Royal Academy of Sciences and Ireland's embassador in Spain. The television programme `Redes' of Spanish TVE and the series `Schrodingers Katt' of the Norwegian NRK TV were filmed, and the programme series `Un Programa Estelar' comprising six chapters filmed in 2003 was shown on the Spanish TVE2 channel twice. From 8 to 14 November the Spanish Education and Science Ministry and the IAC celebrated the European Science Week on La Palma. As part of the activities, an excursion to the observatory was organised in collaboration with the Public Outreach group of OPTICON (accompanying photos).

  8. Still Qcd-Ing

    NASA Astrophysics Data System (ADS)

    Politzer, H. David

    1982-01-01

    In these lectures I have attempted to describe the ideas underlying the most important applications of OCD to high energy physics (as of 1979). The exposition is purposefully informal, in the hope that anyone familiar with Feynman diagrams might profit by a single, casual reading. However, the text is sprinkled with sufficiently many outrageous claims, slanderous libels, and inadequate references that a serious student or even a practicing expert will find much upon which to chew.

  9. Visits to ING

    NASA Astrophysics Data System (ADS)

    Mendez, J.

    2005-12-01

    A total of 2349 visitors split in 117 tours were shown round the WHT and occasionally the INT in 2005. Visitors included Dr. Jan A. C. van de Donk, the Dutch Ministry of Education, Culture and Science and ESO Council member.

  10. Some effects of porosity and HIP`ing on critical currents in internal-tin-processed multifilamentary Nb{sub 3}Sn wires

    SciTech Connect

    Gregory, E.; Ozeryansky, G.M.

    1991-12-31

    The extent and nature of the porosity developed in both tin-core and tin-ring internal tin NB{sub 3}Sn materials has been tentatively explored. The porosity was reduced by HIP`ing either after the final heat treatment or at an intermediate state. The J{sub c} in the HIP`d materials appears to be improved at fields below 15 T, but above this field the HIP`d 19 subelement material shows lower J{sub c}`s at zero applied strain.

  11. Reactivation of HIV latency by a newly modified Ingenol derivative via protein kinase Cδ–NF-κB signaling

    PubMed Central

    Jiang, Guochun; Mendes, Erica A.; Kaiser, Philipp; Sankaran-Walters, Sumathi; Tang, Yuyang; Weber, Mariana G.; Melcher, Greg P.; Thompson, George R.; Tanuri, Amilcar; Pianowski, Luiz F.; Wong, Joseph K.; Dandekar, Satya

    2016-01-01

    Objective Although HAART effectively suppresses viral replication, it fails to eradicate latent viral reservoirs. The ‘shock and kill’ strategy involves the activation of HIV from latent reservoirs and targeting them for eradication. Our goal was to develop new approaches for activating HIV from latent reservoirs. Design We investigated capacity of Ingenol B (IngB), a newly modified derivative of Ingenol ester that was originally isolated from a Brazilian plant in Amazon, for its capacity and mechanisms of HIV reactivation. Methods Reactivation of HIV-1 by IngB was evaluated in J-Lat A1 cell culture model of HIV latency as well as in purified primary CD4+ T cells from long-term HAART-treated virologically-suppressed HIV-infected individuals. The underlining molecular mechanisms of viral reactivation were investigated using flow cytometry, RT-qPCR and chromatin immunoprecipitation. Results IngB is highly effective in reactivating HIV in J-Lat A1 cells with relatively low cellular toxicity. It is also able to reactivate latent HIV in purified CD4+ T cells from HAART-treated HIV-positive individuals ex vivo. Our data show that IngB may reactivate HIV expression by both activating protein kinase C (PKC)δ–nuclear factor kappalight-chain-enhancer of activated B cells (NF-κB) pathway and directly inducing NF-κB protein expression. Importantly, IngB has a synergistic effect with JQ1, a BET bromodomain inhibitor, in latent HIV reactivation. Conclusions IngB is a new promising compound to activate latent HIV reservoirs. Our data suggest that formulating novel derivatives from Ingenol esters may be an innovative approach to develop new lead compounds to reactivate latent HIV. PMID:24804860

  12. Indium flux synthesis of RE4Ni2InGe4 (RE = Dy, Ho, Er, and Tm): an ordered quaternary variation on the binary phase Mg5Si6.

    PubMed

    Salvador, James R; Kanatzidis, Mercouri G

    2006-09-01

    The quaternary compounds RE4Ni2InGe4 (RE = Dy, Ho, Er, and Tm) were obtained as large single crystals in high yields from reactions run in liquid In. The title compounds crystallize in the monoclinic C2/m space group with the Mg(5)Si(6) structure type with lattice parameters a = 15.420(2) A, b = 4.2224(7) A, c = 7.0191(11) A, and beta = 108.589(2) degrees for Dy4Ni2InGe4, a = 15.373(4) A, b = 4.2101(9) A, c = 6.9935(15) A, and beta = 108.600(3) degrees for Ho4Ni2InGe4, a = 15.334(7) A, b = 4.1937(19) A, c = 6.975(3) A, and beta =108.472(7) degrees for Er4Ni2InGe4, and a = 15.253(2) A, b = 4.1747(6) A, c = 6.9460(9) A, and beta = 108.535(2) degrees for Tm4Ni2InGe4. RE4Ni2InGe4 formed in liquid In from a melt that was rich in the rare-earth component. These compounds are polar intermetallic phases with a cationic rare-earth substructure embedded in a transition metal and main group matrix. The rare-earth atoms form a highly condensed network, leading to interatomic distances that are similar to those found in the elemental lanthanides themselves. The Dy and Ho analogues display two maxima in the susceptibility, suggesting antiferromagnetic ordering behavior and an accompanying spin reorientation. The Er analogue shows only one maximum in the susceptibility, and no magnetic ordering was observed for the Tm compound down to 2 K. PMID:16933908

  13. CAX-ing a wide net: Cation/H(+) transporters in metal remediation and abiotic stress signalling.

    PubMed

    Pittman, J K; Hirschi, K D

    2016-09-01

    Cation/proton exchangers (CAXs) are a class of secondary energised ion transporter that are being implicated in an increasing range of cellular and physiological functions. CAXs are primarily Ca(2+) efflux transporters that mediate the sequestration of Ca(2+) from the cytosol, usually into the vacuole. Some CAX isoforms have broad substrate specificity, providing the ability to transport trace metal ions such as Mn(2+) and Cd(2+) , as well as Ca(2+) . In recent years, genomic analyses have begun to uncover the expansion of CAXs within the green lineage and their presence within non-plant species. Although there appears to be significant conservation in tertiary structure of CAX proteins, there is diversity in function of CAXs between species and individual isoforms. For example, in halophytic plants, CAXs have been recruited to play a role in salt tolerance, while in metal hyperaccumulator plants CAXs are implicated in cadmium transport and tolerance. CAX proteins are involved in various abiotic stress response pathways, in some cases as a modulator of cytosolic Ca(2+) signalling, but in some situations there is evidence of CAXs acting as a pH regulator. The metal transport and abiotic stress tolerance functions of CAXs make them attractive targets for biotechnology, whether to provide mineral nutrient biofortification or toxic metal bioremediation. The study of non-plant CAXs may also provide insight into both conserved and novel transport mechanisms and functions. PMID:27061644

  14. S.E.E.ing the Future: Science, Engineering and Education. Commentary from the Scientific Grassroots. A White Paper on the Issues and Need for Public Funding of Basic Science and Engineering Research.

    ERIC Educational Resources Information Center

    Jemison, Mae C., Ed.

    This document reports on the results of an ad hoc workshop called "S.E.E.ing the Future: Science Engineering and Education" Held at Dartmouth College in November of 2000 and sponsored by Dartmouth, the National Science Foundation, the Dow Chemical Company, and Science Service of Washington, DC. This transdisciplinary conference was one of a series…

  15. A Misuse of Bion's "Reverie-ing Mother": Another Weapon in the War against Women as Waged in the Consulting Room.

    PubMed

    Lament, Claudia

    2015-01-01

    "The war against women" is a systemic process of discrimination that seeks to subjugate women. In this essay, I will critically examine a contemporary paper, published in a well-known psychoanalytic journal, that views the patient through the lens of Bion's "reverie-ing mother" concept. I argue that leaning upon any particular theory to explain an individual's complex psychological disturbance adheres to a reductionistic line of reasoning that falls prey to the genetic fallacy; interpreting psychological phenomena in this way becomes a myopically focused perch that narrows the clinician's range of vision in scanning the field for other features that influenced the patient's symptomatology and suffering. It defies what we know about the reorganizational potential of the developmental trajectory wherein early features undergo significant change over the course of growth. Within the context of the war against women, such a constrained perspective places the onus of responsibility upon the mother, making her the "whipping boy" for her child's difficulties. Within a blink of an eye, she turns into the embodiment of the trope of the "bad mother." The consequence of misusing a way of thinking about the early mother-child relationship has the unfortunate effect of promoting the war in our current zeitgeist. PMID:27337811

  16. Redescription of some Spauligodon spp. and Parapharyngodon spp., and of skrjabinodon mabuyae (Sandground, 1936) inglis, 1968 (Pharyngodonidae: Oxyuroidea) from insectivorous South African lizards.

    PubMed

    Hering-Hagenbeck, S F B N; Petter, A J; Boomker, J

    2002-03-01

    As part of a study on the helminth parasites of South African lizards several species of saurians were collected from localities in the North West Province, the Northern Province, Mpumalanga Province and Gauteng Province. Spauligodon blydeensis (Hering-Hagenbeck, 2001) from the Cape thick-toed gecko, Pachydactylus capensis, Spauligodon molpoensis (Hering-Hagenbeck, 2001) from Wahlberg's velvet gecko, Homopholis wahibergii, Parapharyngodon margaritiferi, Hering-Hagenbeck, 2001 from the skink, Mabuya margaritifer, Parapharyngodon gerrhosauri, Hering-Hagenbeck, 2001 from the plated lizard, Gerrhosaurus flavigularis and Skrjabinodon mabuyae (Sandground, 1936) Inglis, 1968 from the skinks Mabuya punctatissima, Mabuya spilogaster and Mabuya varia are redescribed. The different Spauligodon spp. in the subcontnent may be separated on the presence or absence of spicules in the males, the presence or absence of spines on the tail of both the males and females, as well as on the size and shape of the eggs, and the configuration of the polar caps. The Parapharyngodon spp. are distinguished mainly by the morphological characters of the males, such as the width of the caudal alae and the size of the pre- and adanal papillae. Female Parapharyngodon spp. closely resemble each other and some could not be identified to the species level since males were absent. Spinose larvae, together with adult Parapharyngodon spp. were recovered from Mabuya margaritifer. All Parapharyngodon spp. larvae described to date are spinose and since the larvae in this study were collected together with adult Parapharyngodon spp., we consider them to belong to the same genus. Skrjabinodon mabuyae differs from the closely related Skrjabinodon mabuiensis in the presence of a spicule in the male and lateral alae in the female. The former nematode is described for the first time from skinks in South Africa. PMID:12092780

  17. CEE-ing is believing

    PubMed Central

    Lamb, Katrina

    2011-01-01

    Bioscience ventures in Central and Eastern Europe are becoming a presence in world healthcare markets despite a perennially short supply of venture funding and other support mechanisms relative to other world economic regions. Here are three up-and-coming CEE stories worth keeping an eye on. PMID:21869613

  18. "Groom"-ing the Students

    ERIC Educational Resources Information Center

    Cunningham, Karen

    2010-01-01

    Art educators are aware that one way to inspire students is to introduce them to prominent artists. They all know that many students have preconceived notions that artists only become well-known after death, or that a life of art means a life of poverty. To open the students' eyes, the author always tries to include lessons about successful,…

  19. ING116070: A Study of the Pharmacokinetics and Antiviral Activity of Dolutegravir in Cerebrospinal Fluid in HIV-1–Infected, Antiretroviral Therapy–Naive Subjects

    PubMed Central

    Letendre, Scott L.; Mills, Anthony M.; Tashima, Karen T.; Thomas, Deborah A.; Min, Sherene S.; Chen, Shuguang; Song, Ivy H.; Piscitelli, Stephen C.

    2014-01-01

    Background. Dolutegravir (DTG), a once-daily, human immunodeficiency virus type 1 (HIV-1) integrase inhibitor, was evaluated for distribution and antiviral activity in cerebrospinal fluid (CSF). Methods. ING116070 is an ongoing, single-arm, open-label, multicenter study in antiretroviral therapy–naive, HIV-1–infected adults. Subjects received DTG (50 mg) plus abacavir/lamivudine (600/300 mg) once daily. The CSF and plasma (total and unbound) DTG concentrations were measured at weeks 2 and 16. The HIV-1 RNA levels were measured in CSF at baseline and weeks 2 and 16 and in plasma at baseline and weeks 2, 4, 8, 12, and 16. Results. Thirteen white men enrolled in the study; 2 withdrew prematurely, 1 because of a non–drug-related serious adverse event (pharyngitis) and 1 because of lack of treatment efficacy. The median DTG concentrations in CSF were 18 ng/mL (range, 4–23 ng/mL) at week 2 and 13 ng/mL (4–18 ng/mL) at week 16. Ratios of DTG CSF to total plasma concentration were similar to the unbound fraction of DTG in plasma. Median changes from baseline in CSF (n = 11) and plasma (n = 12) HIV-1 RNA were −3.42 and −3.04 log10 copies/mL, respectively. Nine of 11 subjects (82%) had plasma and CSF HIV-1 RNA levels <50 copies/mL and 10 of 11 (91%) had CSF HIV-1 RNA levels <2 copies/mL at week 16. Conclusions. The DTG concentrations in CSF were similar to unbound plasma concentrations and exceeded the in vitro 50% inhibitory concentration for wild-type HIV (0.2 ng/mL), suggesting that DTG achieves therapeutic concentrations in the central nervous system. The HIV-1 RNA reductions were similar in CSF and plasma. Clinical Trials Registration. NCT01499199. PMID:24944232

  20. Protein Condensation

    NASA Astrophysics Data System (ADS)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2007-09-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  1. Protein Condensation

    NASA Astrophysics Data System (ADS)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2014-07-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  2. Total protein

    MedlinePlus

    The total protein test measures the total amount of two classes of proteins found in the fluid portion of your ... nutritional problems, kidney disease or liver disease . If total protein is abnormal, you will need to have more ...

  3. Storage Proteins

    PubMed Central

    Fujiwara, Toru; Nambara, Eiji; Yamagishi, Kazutoshi; Goto, Derek B.; Naito, Satoshi

    2002-01-01

    Plants accumulate storage substances such as starch, lipids and proteins in certain phases of development. Storage proteins accumulate in both vegetative and reproductive tissues and serve as a reservoir to be used in later stages of plant development. The accumulation of storage protein is thus beneficial for the survival of plants. Storage proteins are also an important source of dietary plant proteins. Here, we summarize the genome organization and regulation of gene expression of storage protein genes in Arabidopsis. PMID:22303197

  4. Dietary Proteins

    MedlinePlus

    ... grains and beans. Proteins from meat and other animal products are complete proteins. This means they supply all of the amino acids the body can't make on its own. Most plant proteins are incomplete. You should eat different types of plant proteins every day to get ...

  5. Protein Analysis

    NASA Astrophysics Data System (ADS)

    Chang, Sam K. C.

    Proteins are an abundant component in all cells, and almost all except storage proteins are important for biological functions and cell structure. Food proteins are very complex. Many have been purified and characterized. Proteins vary in molecular mass, ranging from approximately 5000 to more than a million Daltons. They are composed of elements including hydrogen, carbon, nitrogen, oxygen, and sulfur. Twenty α-amino acids are the building blocks of proteins; the amino acid residues in a protein are linked by peptide bonds. Nitrogen is the most distinguishing element present in proteins. However, nitrogen content in various food proteins ranges from 13.4 to 19.1% (1) due to the variation in the specific amino acid composition of proteins. Generally, proteins rich in basic amino acids contain more nitrogen.

  6. Total protein

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003483.htm Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...

  7. Whey Protein

    MedlinePlus

    ... shows that taking whey protein in combination with strength training increases lean body mass, strength, and muscle size. ... grams/kg of whey protein in combination with strength training for 6-10 weeks. For HIV/AIDS-related ...

  8. Protein Microarrays

    NASA Astrophysics Data System (ADS)

    Ricard-Blum, S.

    Proteins are key actors in the life of the cell, involved in many physiological and pathological processes. Since variations in the expression of messenger RNA are not systematically correlated with variations in the protein levels, the latter better reflect the way a cell functions. Protein microarrays thus supply complementary information to DNA chips. They are used in particular to analyse protein expression profiles, to detect proteins within complex biological media, and to study protein-protein interactions, which give information about the functions of those proteins [3-9]. They have the same advantages as DNA microarrays for high-throughput analysis, miniaturisation, and the possibility of automation. Section 18.1 gives a brief overview of proteins. Following this, Sect. 18.2 describes how protein microarrays can be made on flat supports, explaining how proteins can be produced and immobilised on a solid support, and discussing the different kinds of substrate and detection method. Section 18.3 discusses the particular format of protein microarrays in suspension. The diversity of protein microarrays and their applications are then reported in Sect. 18.4, with applications to therapeutics (protein-drug interactions) and diagnostics. The prospects for future developments of protein microarrays are then outlined in the conclusion. The bibliography provides an extensive list of reviews and detailed references for those readers who wish to go further in this area. Indeed, the aim of the present chapter is not to give an exhaustive or detailed analysis of the state of the art, but rather to provide the reader with the basic elements needed to understand how proteins are designed and used.

  9. Protein Structure

    ERIC Educational Resources Information Center

    Asmus, Elaine Garbarino

    2007-01-01

    Individual students model specific amino acids and then, through dehydration synthesis, a class of students models a protein. The students clearly learn amino acid structure, primary, secondary, tertiary, and quaternary structure in proteins and the nature of the bonds maintaining a protein's shape. This activity is fun, concrete, inexpensive and…

  10. Protein folds and protein folding

    PubMed Central

    Schaeffer, R. Dustin; Daggett, Valerie

    2011-01-01

    The classification of protein folds is necessarily based on the structural elements that distinguish domains. Classification of protein domains consists of two problems: the partition of structures into domains and the classification of domains into sets of similar structures (or folds). Although similar topologies may arise by convergent evolution, the similarity of their respective folding pathways is unknown. The discovery and the characterization of the majority of protein folds will be followed by a similar enumeration of available protein folding pathways. Consequently, understanding the intricacies of structural domains is necessary to understanding their collective folding pathways. We review the current state of the art in the field of protein domain classification and discuss methods for the systematic and comprehensive study of protein folding across protein fold space via atomistic molecular dynamics simulation. Finally, we discuss our large-scale Dynameomics project, which includes simulations of representatives of all autonomous protein folds. PMID:21051320

  11. Material development in the SI{sub 3}N{sub 4} system using glass encapsulated Hip`ing. Final report, Phase 2: DOE/ORNL Ceramic Technology Project

    SciTech Connect

    Corbin, N.D.; Sundberg, G.J.; Siebein, K.N.; Willkens, C.A.; Pujari, V.K.; Rossi, G.A.; Hansen, J.S.; Chang, C.L.; Hammarstrom, J.L.

    1992-04-01

    This report covers a two-year program to develop fully dense Si{sub 3}N{sub 4} matrix SiC whisker composites with enhanced properties over monolithic Si{sub 3}N{sub 4} materials. The primary goal was to develop a composite with a fracture toughness > 10 MPa{radical}m, capable of using high pressure glass encapsulated HIP`ing. Coating methods were developed to apply thin (<150nm) stoichiometric BN layers to SiC whiskers and also to apply a dual coating of SiC over carbon to the whiskers. Fracture toughness of the composites was determined to increase as the quantity of whiskers (or elongated grains) with their axis perpendicular to the crack plane increased. Of the interface compositions evaluated in this effort, carbon was determined to be the most effective for increasing toughness. The highest toughnesses (6.8--7.0 MPa{radical}m) were obtained with uniaxially aligned carbon coated whiskers. There was no evidence of the carbon coating compromising the oxidation resistance of the composites at 1370{degree}C.

  12. Protein Dynamics

    NASA Astrophysics Data System (ADS)

    Frauenfelder, Hans

    2011-03-01

    Proteins combine properties of solids, liquids, and glasses. Schrödinger anticipated the main features of biomolecules long ago by stating that they had to be solid-like, but able to assume many different conformations. Indeed proteins can assume a gigantic number of conformational substates with the same primary sequence but different conformations. The different substates are described as craters in a very-high-dimensional energy landscape. The energy landscape is organized in a hierarchy of tiers, craters within craters within craters. Protein motions are pictured as transition between substates - jumps from crater to crater. Initially we assumed that these jumps were controlled by internal barriers between substates, but experiments have shown that nature selected a different approach. Proteins are surrounded by one to two layers of water and are embedded in a bulk solvent. Structural motions of the protein are controlled by the alpha fluctuations in the solvent surrounding the protein. Some internal motions most likely involving side chains are controlled electrostatically by beta fluctuations in the hydration shell. The dynamics of proteins is consequently dominated by the environment (H. Frauenfelder et al. PNAS 106, 5129 (2009). One can speculate that this organization permits exchange of information among biomolecules. The energy landscape is not just organized into two tiers, alpha and beta, but cryogenic experiments have revealed more tiers and protein more properties similar to that of glasses. While proteins function at ambient temperatures, cryogenic studies are necessary to understand the physics relevant for biology.

  13. Interfacial Protein-Protein Associations

    PubMed Central

    Langdon, Blake B.; Kastantin, Mark; Walder, Robert; Schwartz, Daniel K.

    2014-01-01

    While traditional models of protein adsorption focus primarily on direct protein-surface interactions, recent findings suggest that protein-protein interactions may play a central role. Using high-throughput intermolecular resonance energy transfer (RET) tracking, we directly observed dynamic, protein-protein associations of bovine serum albumin on poly(ethylene glycol) modified surfaces. The associations were heterogeneous and reversible, and associating molecules resided on the surface for longer times. The appearance of three distinct RET states suggested a spatially heterogeneous surface – with areas of high protein density (i.e. strongly-interacting clusters) coexisting with mobile monomers. Distinct association states exhibited characteristic behavior, i.e. partial-RET (monomer-monomer) associations were shorter-lived than complete-RET (protein-cluster) associations. While the fractional surface area covered by regions with high protein density (i.e. clusters) increased with increasing concentration, the distribution of contact times between monomers and clusters was independent of solution concentration, suggesting that associations were a local phenomenon, and independent of the global surface coverage. PMID:24274729

  14. The primary structure of component 8c-1, a subunit protein of intermediate filaments in wool keratin. Relationships with proteins from other intermediate filaments.

    PubMed Central

    Dowling, L M; Crewther, W G; Inglis, A S

    1986-01-01

    Component 8c-1, one of four highly homologous component-8 subunit proteins present in the microfibrils of wool, was isolated as its S-carboxymethyl derivative and its amino acid sequence was determined. Large peptides were isolated after cleaving the protein chemically or enzymically and the sequence of each was determined with an automatic Sequenator. The peptides were ordered by sequence overlaps and, in some instances, by homology with known sequences from other component-8 subunits. The C-terminal residues were identified by three procedures. Full details of the various procedures used have been deposited as Supplementary Publication SUP 50133 (4 pp.) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1986) 233, 5. The result showed that the protein comprises 412 residues and has an Mr, including the N-terminal acetyl group, of 48,300. The sequence of residues 98-200 of component 8c-1 was found to correspond to the partial or complete sequences of four homologous type I helical segments previously isolated from helical fragments recovered from chymotryptic digests of microfibrillar proteins of wool [Crewther & Dowling (1971) Appl. Polym. Symp. 18, 1-20; Crewther, Gough, Inglis & McKern (1978) Text. Res. J. 48, 160-162; Gough, Inglis & Crewther (1978) Biochem. J. 173, 385]. Considered in relation to amino acid sequences of other intermediate-filament proteins, the sequence is in accord with the view that keratin filament proteins are of two types [Hanukoglu & Fuchs (1983) Cell (Cambridge, Mass.) 33, 915-924]. Filament proteins from non-keratinous tissues, such as desmin, vimentin, neurofilament proteins and the glial fibrillary acidic protein, which form monocomponent filaments, constitute a third type. It is suggested that as a whole the proteins from intermediate filaments be classed as filamentins, the three types at present identified forming

  15. "Re-story-ing" Our Restorative Practices

    ERIC Educational Resources Information Center

    Rundell, Frida

    2007-01-01

    A metaphor for crossing a frontier into a new territory is explored. The restorative justice principles as used by the United Nations and the International Institute for Restorative Practices (IIRP) help to translate into restorative practice principles. An action research project in South Africa provides the background to an evaluation process.…

  16. "-ing" Project: Encouraging Cohesion in Small Groups

    ERIC Educational Resources Information Center

    McBride, M. Chad

    2006-01-01

    Group cohesiveness is a topic addressed in most small group communication texts and courses and is often defined as the degree of attraction members feel towards one another, the degree of loyalty within a group, or the "groupness" felt among members. Further, groups which are cohesive tend to be happier and more productive. When working on…

  17. EMERGE-ing from the Shadows

    ERIC Educational Resources Information Center

    Grier, Terry B.

    2014-01-01

    Houston school officials noticed their best performing low-income students weren't applying to Ivy League and selective colleges. In response, they created EMERGE, a program that develops and guides talented youths toward a top-college path.

  18. An Ap"peel"ing Activity

    ERIC Educational Resources Information Center

    Urich, Joshua A.; Sasse, Elizabeth A.

    2011-01-01

    This article describes a hands-on mathematics activity wherein students peel oranges to explore the surface area and volume of a sphere. This activity encourages students to make conjectures and hold mathematical discussions with both their peers and their teacher. Moreover, students develop formulas for the surface area and volume of a sphere…

  19. DAM-ing the Digital Flood

    ERIC Educational Resources Information Center

    Raths, David

    2008-01-01

    With the widespread digitization of art, photography, and music, plus the introduction of streaming video, many colleges and universities are realizing that they must develop or purchase systems to preserve their school's digitized objects; that they must create searchable databases so that researchers can find and share copies of digital files;…

  20. STARRR-ing in New York

    ERIC Educational Resources Information Center

    Katzoff, Howard

    2007-01-01

    In this article, the author describes a collaboration between The Actors' Fund of America and 12 schools in the South Bronx. The true purpose of the STARRR (Substitute Teachers for the Arts and 3Rs) program was to establish relationships between artists and schools. Three years later, the author sees the results of those relationships: so many…

  1. Whey Protein

    MedlinePlus

    ... intolerance, for replacing or supplementing milk-based infant formulas, and for reversing weight loss and increasing glutathione ( ... allergic reactions compared to infants who receive standard formula. However, taking why protein might not be helpful ...

  2. Designed protein-protein association.

    PubMed

    Grueninger, Dirk; Treiber, Nora; Ziegler, Mathias O P; Koetter, Jochen W A; Schulze, Monika-Sarah; Schulz, Georg E

    2008-01-11

    The analysis of natural contact interfaces between protein subunits and between proteins has disclosed some general rules governing their association. We have applied these rules to produce a number of novel assemblies, demonstrating that a given protein can be engineered to form contacts at various points of its surface. Symmetry plays an important role because it defines the multiplicity of a designed contact and therefore the number of required mutations. Some of the proteins needed only a single side-chain alteration in order to associate to a higher-order complex. The mobility of the buried side chains has to be taken into account. Four assemblies have been structurally elucidated. Comparisons between the designed contacts and the results will provide useful guidelines for the development of future architectures. PMID:18187656

  3. Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  4. Early bronchodilator action of glycopyrronium versus tiotropium in moderate-to-severe COPD patients: a cross-over blinded randomized study (Symptoms and Pulmonary function in the moRnING)

    PubMed Central

    Marin, Jose M; Beeh, Kai M; Clemens, Andreas; Castellani, Walter; Schaper, Lennart; Saralaya, Dinesh; Gunstone, Anthony; Casamor, Ricard; Kostikas, Konstantinos; Aalamian-Mattheis, Maryam

    2016-01-01

    Background Morning symptoms associated with COPD have a negative impact on patients’ quality of life. Long-acting bronchodilators with rapid onset may relieve patients’ symptoms. In the Symptoms and Pulmonary function in the moRnING study, we prospectively compared the rapid onset bronchodilator profile of glycopyrronium (GLY) and tiotropium (TIO) during the first few hours after dosing in patients with moderate-to-severe COPD. Methods Patients were randomized (1:1) to receive either once-daily GLY (50 μg) or TIO (18 μg) and corresponding placebos in a cross-over design for 28 days. The primary objective was to demonstrate the superiority of GLY versus TIO in area under the curve from 0 to 4 hours (AUC0-4h) forced expiratory volume in 1 second (FEV1) after the first dose. The secondary objective was to compare GLY versus TIO using the patient reported outcomes Morning COPD Symptoms Questionnaire 3 hours post-inhalation. Results One-hundred and twenty-six patients were randomized (male 70.2%; mean age 65.7 years) and 108 patients completed the study. On Day 1, GLY resulted in significantly higher FEV1 AUC0-4h after the first dose versus TIO (treatment difference [Δ], 0.030 L, 95% confidence interval 0.004–0.056, P=0.025). Improvements in morning COPD symptoms from baseline at Days 1 and 28 were similar between GLY and TIO. Post hoc analysis of the FEV1 AUC0-4h by time point on Day 1 showed significant improvements in patients receiving GLY versus TIO at 5 minutes (Δ=0.029 L, P=0.015), 15 minutes (Δ=0.033 L, P=0.026), and 1 hour (Δ=0.044 L, P=0.014). Safety results were comparable between both treatments. Conclusion The SPRING study demonstrates the superiority of GLY versus TIO in terms of superior bronchodilation in the first 4 hours after administration, thus extending the clinical data that support a faster onset of action of GLY versus TIO. PMID:27418815

  5. Bacteriophage protein-protein interactions.

    PubMed

    Häuser, Roman; Blasche, Sonja; Dokland, Terje; Haggård-Ljungquist, Elisabeth; von Brunn, Albrecht; Salas, Margarita; Casjens, Sherwood; Molineux, Ian; Uetz, Peter

    2012-01-01

    Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology. PMID:22748812

  6. Recombinant protein production technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  7. Protein inference: A protein quantification perspective.

    PubMed

    He, Zengyou; Huang, Ting; Liu, Xiaoqing; Zhu, Peijun; Teng, Ben; Deng, Shengchun

    2016-08-01

    In mass spectrometry-based shotgun proteomics, protein quantification and protein identification are two major computational problems. To quantify the protein abundance, a list of proteins must be firstly inferred from the raw data. Then the relative or absolute protein abundance is estimated with quantification methods, such as spectral counting. Until now, most researchers have been dealing with these two processes separately. In fact, the protein inference problem can be regarded as a special protein quantification problem in the sense that truly present proteins are those proteins whose abundance values are not zero. Some recent published papers have conceptually discussed this possibility. However, there is still a lack of rigorous experimental studies to test this hypothesis. In this paper, we investigate the feasibility of using protein quantification methods to solve the protein inference problem. Protein inference methods aim to determine whether each candidate protein is present in the sample or not. Protein quantification methods estimate the abundance value of each inferred protein. Naturally, the abundance value of an absent protein should be zero. Thus, we argue that the protein inference problem can be viewed as a special protein quantification problem in which one protein is considered to be present if its abundance is not zero. Based on this idea, our paper tries to use three simple protein quantification methods to solve the protein inference problem effectively. The experimental results on six data sets show that these three methods are competitive with previous protein inference algorithms. This demonstrates that it is plausible to model the protein inference problem as a special protein quantification task, which opens the door of devising more effective protein inference algorithms from a quantification perspective. The source codes of our methods are available at: http://code.google.com/p/protein-inference/. PMID:26935399

  8. "Miss"ing Me and "Ms"ing the Other: Courtesy Titles for Women in Englishes

    ERIC Educational Resources Information Center

    Winter, Joanne; Pauwels, Anne

    2007-01-01

    The introduction and spread of "Ms" as the courtesy address title for women is a cornerstone of feminist linguistic planning for English. Its introduction aimed to eradicate the discriminatory inequity in the address system that exposed women through their (non)marital relationship with men. The understanding, use and impact of the courtesy title…

  9. Interfacing protein lysine acetylation and protein phosphorylation

    PubMed Central

    Tran, Hue T.; Uhrig, R. Glen; Nimick, Mhairi; Moorhead, Greg B.

    2012-01-01

    Recognition that different protein covalent modifications can operate in concert to regulate a single protein has forced us to re-think the relationship between amino acid side chain modifications and protein function. Results presented by Tran et al. 2012 demonstrate the association of a protein phosphatase (PP2A) with a histone/lysine deacetylase (HDA14) on plant microtubules along with a histone/lysine acetyltransferase (ELP3). This finding reveals a regulatory interface between two prevalent covalent protein modifications, protein phosphorylation and acetylation, emphasizing the integrated complexity of post-translational protein regulation found in nature. PMID:22827947

  10. Length, protein protein interactions, and complexity

    NASA Astrophysics Data System (ADS)

    Tan, Taison; Frenkel, Daan; Gupta, Vishal; Deem, Michael W.

    2005-05-01

    The evolutionary reason for the increase in gene length from archaea to prokaryotes to eukaryotes observed in large-scale genome sequencing efforts has been unclear. We propose here that the increasing complexity of protein-protein interactions has driven the selection of longer proteins, as they are more able to distinguish among a larger number of distinct interactions due to their greater average surface area. Annotated protein sequences available from the SWISS-PROT database were analyzed for 13 eukaryotes, eight bacteria, and two archaea species. The number of subcellular locations to which each protein is associated is used as a measure of the number of interactions to which a protein participates. Two databases of yeast protein-protein interactions were used as another measure of the number of interactions to which each S. cerevisiae protein participates. Protein length is shown to correlate with both number of subcellular locations to which a protein is associated and number of interactions as measured by yeast two-hybrid experiments. Protein length is also shown to correlate with the probability that the protein is encoded by an essential gene. Interestingly, average protein length and number of subcellular locations are not significantly different between all human proteins and protein targets of known, marketed drugs. Increased protein length appears to be a significant mechanism by which the increasing complexity of protein-protein interaction networks is accommodated within the natural evolution of species. Consideration of protein length may be a valuable tool in drug design, one that predicts different strategies for inhibiting interactions in aberrant and normal pathways.

  11. Identification of Epigenetic Factor Proteins Expressed in Human Embryonic Stem Cell-Derived Trophoblasts and in Human Placental Trophoblasts.

    PubMed

    Sarkar, Prasenjit; Mischler, Adam; Randall, Shan M; Collier, Timothy S; Dorman, Karen F; Boggess, Kim A; Muddiman, David C; Rao, Balaji M

    2016-08-01

    Human embryonic stem cells (hESCs) have been used to derive trophoblasts through differentiation in vitro. Intriguingly, mouse ESCs are prevented from differentiation to trophoblasts by certain epigenetic factor proteins such as Dnmt1, thus necessitating the study of epigenetic factor proteins during hESC differentiation to trophoblasts. We used stable isotope labeling by amino acids in cell culture and quantitative proteomics to study changes in the nuclear proteome during hESC differentiation to trophoblasts and identified changes in the expression of 30 epigenetic factor proteins. Importantly, the DNA methyltransferases DNMT1, DNMT3A, and DNMT3B were downregulated. Additionally, we hypothesized that nuclear proteomics of hESC-derived trophoblasts may be used for screening epigenetic factor proteins expressed by primary trophoblasts in human placental tissue. Accordingly, we conducted immunohistochemistry analysis of six epigenetic factor proteins identified from hESC-derived trophoblasts-DNMT1, DNMT3B, BAF155, BAF60A, BAF57, and ING5-in 6-9 week human placentas. Indeed, expression of these proteins was largely, though not fully, consistent with that observed in 6-9 week placental trophoblasts. Our results support the use of hESC-derived trophoblasts as a model for placental trophoblasts, which will enable further investigation of epigenetic factors involved in human trophoblast development. PMID:27378238

  12. EDITORIAL: Precision proteins Precision proteins

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-06-01

    Since the birth of modern day medicine, during the times of Hippocrates in ancient Greece, the profession has developed from the rudimentary classification of disease into a rigorous science with an inspiring capability to treat and cure. Scientific methodology has distilled clinical diagnostic tools from the early arts of prognosis, which used to rely as much on revelation and prophecy, as intuition and judgement [1]. Over the past decade, research into the interactions between proteins and nanosystems has provided some ingenious and apt techniques for delving into the intricacies of anatomical systems. In vivo biosensing has emerged as a vibrant field of research, as much of medical diagnosis relies on the detection of substances or an imbalance in the chemicals in the body. The inherent properties of nanoscale structures, such as cantilevers, make them well suited to biosensing applications that demand the detection of molecules at very low concentrations. Measurable deflections in cantilevers functionalised with antibodies provide quantitative indicators of the presence of specific antigens when the two react. Such developments have roused mounting interest in the interactions of proteins with nanostructures, such as carbon nanotubes [3], which have demonstrated great potential as generic biomarkers. Plasmonic properties are also being exploited in sensing applications, such as the molecular sentinel recently devised by researchers in the US. The device uses the plasmonic properties of a silver nanoparticle linked to a Raman labelled hairpin DNA probe to signal changes in the probe geometry resulting from interactions with substances in the environment. Success stories so far include the detection of two specific genes associated with breast cancer [4]. A greater understanding of how RNA interference regulates gene expression has highlighted the potential of using this natural process as another agent for combating disease in personalized medicine. However, the

  13. EDITORIAL: Precision proteins Precision proteins

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-06-01

    Since the birth of modern day medicine, during the times of Hippocrates in ancient Greece, the profession has developed from the rudimentary classification of disease into a rigorous science with an inspiring capability to treat and cure. Scientific methodology has distilled clinical diagnostic tools from the early arts of prognosis, which used to rely as much on revelation and prophecy, as intuition and judgement [1]. Over the past decade, research into the interactions between proteins and nanosystems has provided some ingenious and apt techniques for delving into the intricacies of anatomical systems. In vivo biosensing has emerged as a vibrant field of research, as much of medical diagnosis relies on the detection of substances or an imbalance in the chemicals in the body. The inherent properties of nanoscale structures, such as cantilevers, make them well suited to biosensing applications that demand the detection of molecules at very low concentrations. Measurable deflections in cantilevers functionalised with antibodies provide quantitative indicators of the presence of specific antigens when the two react. Such developments have roused mounting interest in the interactions of proteins with nanostructures, such as carbon nanotubes [3], which have demonstrated great potential as generic biomarkers. Plasmonic properties are also being exploited in sensing applications, such as the molecular sentinel recently devised by researchers in the US. The device uses the plasmonic properties of a silver nanoparticle linked to a Raman labelled hairpin DNA probe to signal changes in the probe geometry resulting from interactions with substances in the environment. Success stories so far include the detection of two specific genes associated with breast cancer [4]. A greater understanding of how RNA interference regulates gene expression has highlighted the potential of using this natural process as another agent for combating disease in personalized medicine. However, the

  14. Shotgun protein sequencing.

    SciTech Connect

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.

    2009-06-01

    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  15. Protein Crystal Based Nanomaterials

    NASA Technical Reports Server (NTRS)

    Bell, Jeffrey A.; VanRoey, Patrick

    2001-01-01

    This is the final report on a NASA Grant. It concerns a description of work done, which includes: (1) Protein crystals cross-linked to form fibers; (2) Engineering of protein to favor crystallization; (3) Better knowledge-based potentials for protein-protein contacts; (4) Simulation of protein crystallization.

  16. Protein folding, protein homeostasis, and cancer

    PubMed Central

    Van Drie, John H.

    2011-01-01

    Proteins fold into their functional 3-dimensional structures from a linear amino acid sequence. In vitro this process is spontaneous; while in vivo it is orchestrated by a specialized set of proteins, called chaperones. Protein folding is an ongoing cellular process, as cellular proteins constantly undergo synthesis and degradation. Here emerging links between this process and cancer are reviewed. This perspective both yields insights into the current struggle to develop novel cancer chemotherapeutics and has implications for future chemotherapy discovery. PMID:21272445

  17. Split-Protein Systems: Beyond Binary Protein-Protein Interactions

    PubMed Central

    Shekhawat, Sujan S.; Ghosh, Indraneel

    2011-01-01

    It has been estimated that 650,000 protein-protein interactions exist in the human interactome [1], a subset of all possible macromolecular partnerships that dictate life. Thus there is a continued need for the development of sensitive and user-friendly methods for cataloguing biomacromolecules in complex environments and for detecting their interactions, modifications, and cellular location. Such methods also allow for establishing differences in the interactome between a normal and diseased cellular state and for quantifying the outcome of therapeutic intervention. A promising approach for deconvoluting the role of macromolecular partnerships is split-protein reassembly, also called protein fragment complementation. This approach relies on the appropriate fragmentation of protein reporters, such as the green fluorescent protein or firefly luciferase, which when attached to possible interacting partners can reassemble and regain function, thereby confirming the partnership. Split-protein methods have been effectively utilized for detecting protein-protein interactions in cell-free systems, E. coli, yeast, mammalian cells, plants, and live animals. Herein, we present recent advances in engineering split-protein systems that allow for the rapid detection of ternary protein complexes, small molecule inhibitors, as well as a variety of macromolecules including nucleic acids, poly(ADP) ribose, and iron sulfur clusters. We also present advances that combine split-protein systems with chemical inducers of dimerization strategies that allow for regulating the activity of orthogonal split-proteases as well as aid in identifying enzyme inhibitors. Finally, we discuss autoinhibition strategies leading to turn-on sensors as well as future directions in split-protein methodology including possible therapeutic approaches. PMID:22070901

  18. Split-protein systems: beyond binary protein-protein interactions.

    PubMed

    Shekhawat, Sujan S; Ghosh, Indraneel

    2011-12-01

    It has been estimated that 650,000 protein-protein interactions exist in the human interactome (Stumpf et al., 2008), a subset of all possible macromolecular partnerships that dictate life. Thus there is a continued need for the development of sensitive and user-friendly methods for cataloguing biomacromolecules in complex environments and for detecting their interactions, modifications, and cellular location. Such methods also allow for establishing differences in the interactome between a normal and diseased cellular state and for quantifying the outcome of therapeutic intervention. A promising approach for deconvoluting the role of macromolecular partnerships is split-protein reassembly, also called protein fragment complementation. This approach relies on the appropriate fragmentation of protein reporters, such as the green fluorescent protein or firefly luciferase, which when attached to possible interacting partners can reassemble and regain function, thereby confirming the partnership. Split-protein methods have been effectively utilized for detecting protein-protein interactions in cell-free systems, Escherichia coli, yeast, mammalian cells, plants, and live animals. Herein, we present recent advances in engineering split-protein systems that allow for the rapid detection of ternary protein complexes, small molecule inhibitors, as well as a variety of macromolecules including nucleic acids, poly(ADP) ribose, and iron sulfur clusters. We also present advances that combine split-protein systems with chemical inducers of dimerization strategies that allow for regulating the activity of orthogonal split-proteases as well as aid in identifying enzyme inhibitors. Finally, we discuss autoinhibition strategies leading to turn-on sensors as well as future directions in split-protein methodology including possible therapeutic approaches. PMID:22070901

  19. Protein in diet

    MedlinePlus

    ... basic structure of protein is a chain of amino acids. You need protein in your diet to help ... Protein foods are broken down into parts called amino acids during digestion. The human body needs a number ...

  20. Protein-losing enteropathy

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007338.htm Protein-losing enteropathy To use the sharing features on this page, please enable JavaScript. Protein-losing enteropathy is an abnormal loss of protein ...

  1. Protein electrophoresis - serum

    MedlinePlus

    ... digestive tract to absorb proteins ( protein-losing enteropathy ) Malnutrition Kidney disorder called nephrotic syndrome Scarring of the ... may indicate: Abnormally low level of LDL cholesterol Malnutrition Increased gamma globulin proteins may indicate: Bone marrow ...

  2. Domains mediate protein-protein interactions and nucleate protein assemblies.

    PubMed

    Costa, S; Cesareni, G

    2008-01-01

    Cell physiology is governed by an intricate mesh of physical and functional links among proteins, nucleic acids and other metabolites. The recent information flood coming from large-scale genomic and proteomic approaches allows us to foresee the possibility of compiling an exhaustive list of the molecules present within a cell, enriched with quantitative information on concentration and cellular localization. Moreover, several high-throughput experimental and computational techniques have been devised to map all the protein interactions occurring in a living cell. So far, such maps have been drawn as graphs where nodes represent proteins and edges represent interactions. However, this representation does not take into account the intrinsically modular nature of proteins and thus fails in providing an effective description of the determinants of binding. Since proteins are composed of domains that often confer on proteins their binding capabilities, a more informative description of the interaction network would detail, for each pair of interacting proteins in the network, which domains mediate the binding. Understanding how protein domains combine to mediate protein interactions would allow one to add important features to the protein interaction network, making it possible to discriminate between simultaneously occurring and mutually exclusive interactions. This objective can be achieved by experimentally characterizing domain recognition specificity or by analyzing the frequency of co-occurring domains in proteins that do interact. Such approaches allow gaining insights on the topology of complexes with unknown three-dimensional structure, thus opening the prospect of adopting a more rational strategy in developing drugs designed to selectively target specific protein interactions. PMID:18491061

  3. Drugging Membrane Protein Interactions.

    PubMed

    Yin, Hang; Flynn, Aaron D

    2016-07-11

    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind cells to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally "undruggable" regions of membrane proteins, enabling modulation of protein-protein, protein-lipid, and protein-nucleic acid interactions. In this review, we survey the state of the art of high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  4. Protein sensing with engineered protein nanopores*

    PubMed Central

    Mohammad, Mohammad M.; Movileanu, Liviu

    2013-01-01

    The use of nanopores is a powerful new frontier in single-molecule sciences. Nanopores have been used effectively in exploring various biophysical features of small polypeptides and proteins, such as their folding state and structure, ligand interactions, and enzymatic activity. In particular, the α-hemolysin protein pore (αHL) has been used extensively for the detection, characterization and analysis of polypeptides, because this protein nanopore is highly robust, versatile and tractable under various experimental conditions. Inspired by the mechanisms of protein translocation across the outer membrane translocases of mitochondria, we have shown the ability to use nanopore-probe techniques in controlling a single protein using engineered αHL pores. Here, we provide a detailed protocol for the preparation of αHL protein nanopores. Moreover, we demonstrate that placing attractive electrostatic traps is instrumental in tackling single-molecule stochastic sensing of folded proteins. PMID:22528256

  5. Nanotechnologies in protein microarrays.

    PubMed

    Krizkova, Sona; Heger, Zbynek; Zalewska, Marta; Moulick, Amitava; Adam, Vojtech; Kizek, Rene

    2015-01-01

    Protein microarray technology became an important research tool for study and detection of proteins, protein-protein interactions and a number of other applications. The utilization of nanoparticle-based materials and nanotechnology-based techniques for immobilization allows us not only to extend the surface for biomolecule immobilization resulting in enhanced substrate binding properties, decreased background signals and enhanced reporter systems for more sensitive assays. Generally in contemporarily developed microarray systems, multiple nanotechnology-based techniques are combined. In this review, applications of nanoparticles and nanotechnologies in creating protein microarrays, proteins immobilization and detection are summarized. We anticipate that advanced nanotechnologies can be exploited to expand promising fields of proteins identification, monitoring of protein-protein or drug-protein interactions, or proteins structures. PMID:26039143

  6. PREFACE: Protein protein interactions: principles and predictions

    NASA Astrophysics Data System (ADS)

    Nussinov, Ruth; Tsai, Chung-Jung

    2005-06-01

    Proteins are the `workhorses' of the cell. Their roles span functions as diverse as being molecular machines and signalling. They carry out catalytic reactions, transport, form viral capsids, traverse membranes and form regulated channels, transmit information from DNA to RNA, making possible the synthesis of new proteins, and they are responsible for the degradation of unnecessary proteins and nucleic acids. They are the vehicles of the immune response and are responsible for viral entry into the cell. Given their importance, considerable effort has been centered on the prediction of protein function. A prime way to do this is through identification of binding partners. If the function of at least one of the components with which the protein interacts is known, that should let us assign its function(s) and the pathway(s) in which it plays a role. This holds since the vast majority of their chores in the living cell involve protein-protein interactions. Hence, through the intricate network of these interactions we can map cellular pathways, their interconnectivities and their dynamic regulation. Their identification is at the heart of functional genomics; their prediction is crucial for drug discovery. Knowledge of the pathway, its topology, length, and dynamics may provide useful information for forecasting side effects. The goal of predicting protein-protein interactions is daunting. Some associations are obligatory, others are continuously forming and dissociating. In principle, from the physical standpoint, any two proteins can interact, but under what conditions and at which strength? The principles of protein-protein interactions are general: the non-covalent interactions of two proteins are largely the outcome of the hydrophobic effect, which drives the interactions. In addition, hydrogen bonds and electrostatic interactions play important roles. Thus, many of the interactions observed in vitro are the outcome of experimental overexpression. Protein disorder

  7. Protein sequence comparison and protein evolution

    SciTech Connect

    Pearson, W.R.

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. This tutorial examines how the information conserved during the evolution of a protein molecule can be used to infer reliably homology, and thus a shared proteinfold and possibly a shared active site or function. The authors start by reviewing a geological/evolutionary time scale. Next they look at the evolution of several protein families. During the tutorial, these families will be used to demonstrate that homologous protein ancestry can be inferred with confidence. They also examine different modes of protein evolution and consider some hypotheses that have been presented to explain the very earliest events in protein evolution. The next part of the tutorial will examine the technical aspects of protein sequence comparison. Both optimal and heuristic algorithms and their associated parameters that are used to characterize protein sequence similarities are discussed. Perhaps more importantly, they survey the statistics of local similarity scores, and how these statistics can both be used to improve the selectivity of a search and to evaluate the significance of a match. They them examine distantly related members of three protein families, the serine proteases, the glutathione transferases, and the G-protein-coupled receptors (GCRs). Finally, the discuss how sequence similarity can be used to examine internal repeated or mosaic structures in proteins.

  8. Sorghum and millet proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum and millet proteins are an important source of dietary protein for significant numbers of people living throughout Africa and parts of Asia. Compared to other food proteins, such as those found in milk, eggs and wheat, little is known about the functionality of sorghum and millet proteins. ...

  9. Whey protein fractionation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concentrated whey protein products from cheese whey, such as whey protein concentrate (WPC) and whey protein isolate (WPI), contain more than seven different types of proteins: alpha-lactalbumin (alpha-LA), beta-lactoglobulin (beta-LG), bovine serum albumin (BSA), immunoglobulins (Igs), lactoferrin ...

  10. Protein in diet

    MedlinePlus

    ... protein. The basic structure of protein is a chain of amino acids. You need protein in your diet to help your body repair cells and make new ones. Protein is also important for growth and development in children, teens, and pregnant women.

  11. Techniques in protein methylation.

    PubMed

    Lee, Jaeho; Cheng, Donghang; Bedford, Mark T

    2004-01-01

    Proteins can be methylated on the side-chain nitrogens of arginine and lysine residues or on carboxy-termini. Protein methylation is a way of subtly changing the primary sequence of a peptide so that it can encode more information. This common posttranslational modification is implicated in the regulation of a variety of processes including protein trafficking, transcription and protein-protein interactions. In this chapter, we will use the arginine methyltransferases to illustrate different approaches that have been developed to assess protein methylation. Both in vivo and in vitro methylation techniques are described, and the use of small molecule inhibitors of protein methylation will be demonstrated. PMID:15173617

  12. Biochemical Approaches for Discovering Protein-Protein Interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein-protein interactions or protein complexes are indigenous to nearly all cellular processes, ranging from metabolism to structure. Elucidating both individual protein associations and complex protein interaction networks, while challenging, is an essential goal of functional genomics. For ex...

  13. Urine Protein and Urine Protein to Creatinine Ratio

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Urine Protein and Urine Protein to Creatinine Ratio Share this page: Was this page helpful? Also known as: 24-Hour Urine Protein; Urine Total Protein; Urine Protein to Creatinine Ratio; ...

  14. [Protein expression and purification].

    PubMed

    Růčková, E; Müller, P; Vojtěšek, B

    2014-01-01

    Production of recombinant proteins is essential for many applications in both basic research and also in medicine, where recombinant proteins are used as pharmaceuticals. This review summarizes procedures involved in recombinant protein expression and purification, including molecular cloning of target genes into expression vectors, selection of the appropriate expression system, and protein purification techniques. Recombinant DNA technology allows protein engineering to modify protein stability, activity and function or to facilitate protein purification by affinity tag fusions. A wide range of cloning systems enabling fast and effective design of expression vectors is currently available. A first choice of protein expression system is usually the bacteria Escherichia coli. The main advantages of this prokaryotic expression system are low cost and simplicity; on the other hand this system is often unsuitable for production of complex mammalian proteins. Protein expression mediated by eukaryotic cells (yeast, insect and mammalian cells) usually produces properly folded and posttranslationally modified proteins. How-ever, cultivation of insect and, especially, mammalian cells is time consuming and expensive. Affinity tagged recombinant proteins are purified efficiently using affinity chromatography. An affinity tag is a protein or peptide that mediates specific binding to a chromatography column, unbound proteins are removed during a washing step and pure protein is subsequently eluted. PMID:24945544

  15. Protein- protein interaction detection system using fluorescent protein microdomains

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  16. Designing Fluorinated Proteins.

    PubMed

    Marsh, E N G

    2016-01-01

    As methods to incorporate noncanonical amino acid residues into proteins have become more powerful, interest in their use to modify the physical and biological properties of proteins and enzymes has increased. This chapter discusses the use of highly fluorinated analogs of hydrophobic amino acids, for example, hexafluoroleucine, in protein design. In particular, fluorinated residues have proven to be generally effective in increasing the thermodynamic stability of proteins. The chapter provides an overview of the different fluorinated amino acids that have been used in protein design and the various methods available for producing fluorinated proteins. It discusses model proteins systems into which highly fluorinated amino acids have been introduced and the reasons why fluorinated residues are generally stabilizing, with particular reference to thermodynamic and structural studies from our laboratory. Lastly, details of the methodology we have developed to measure the thermodynamic stability of oligomeric fluorinated proteins are presented, as this may be generally applicable to many proteins. PMID:27586337

  17. Surface Mediated Protein Disaggregation

    NASA Astrophysics Data System (ADS)

    Radhakrishna, Mithun; Kumar, Sanat K.

    2014-03-01

    Preventing protein aggregation is of both biological and industrial importance. Biologically these aggregates are known to cause amyloid type diseases like Alzheimer's and Parkinson's disease. Protein aggregation leads to reduced activity of the enzymes in industrial applications. Inter-protein interactions between the hydrophobic residues of the protein are known to be the major driving force for protein aggregation. In the current paper we show how surface chemistry and curvature can be tuned to mitigate these inter-protein interactions. Our results calculated in the framework of the Hydrophobic-Polar (HP) lattice model show that, inter-protein interactions can be drastically reduced by increasing the surface hydrophobicity to a critical value corresponding to the adsorption transition of the protein. At this value of surface hydrophobicity, proteins lose inter-protein contacts to gain surface contacts and thus the surface helps in reducing the inter-protein interactions. Further, we show that the adsorption of the proteins inside hydrophobic pores of optimal sizes are most efficient both in reducing inter-protein contacts and simultaneously retaining most of the native-contacts due to strong protein-surface interactions coupled with stabilization due to the confinement. Department of Energy (Grant No DE-FG02-11ER46811).

  18. PINT: Protein-protein Interactions Thermodynamic Database.

    PubMed

    Kumar, M D Shaji; Gromiha, M Michael

    2006-01-01

    The first release of Protein-protein Interactions Thermodynamic Database (PINT) contains >1500 data of several thermodynamic parameters along with sequence and structural information, experimental conditions and literature information. Each entry contains numerical data for the free energy change, dissociation constant, association constant, enthalpy change, heat capacity change and so on of the interacting proteins upon binding, which are important for understanding the mechanism of protein-protein interactions. PINT also includes the name and source of the proteins involved in binding, their Protein Information Resource, SWISS-PROT and Protein Data Bank (PDB) codes, secondary structure and solvent accessibility of residues at mutant positions, measuring methods, experimental conditions, such as buffers, ions and additives, and literature information. A WWW interface facilitates users to search data based on various conditions, feasibility to select the terms for output and different sorting options. Further, PINT is cross-linked with other related databases, PIR, SWISS-PROT, PDB and NCBI PUBMED literature database. The database is freely available at http://www.bioinfodatabase.com/pint/index.html. PMID:16381844

  19. DNA mimicry by proteins.

    PubMed

    Dryden, D T F; Tock, M R

    2006-04-01

    It has been discovered recently, via structural and biophysical analyses, that proteins can mimic DNA structures in order to inhibit proteins that would normally bind to DNA. Mimicry of the phosphate backbone of DNA, the hydrogen-bonding properties of the nucleotide bases and the bending and twisting of the DNA double helix are all present in the mimics discovered to date. These mimics target a range of proteins and enzymes such as DNA restriction enzymes, DNA repair enzymes, DNA gyrase and nucleosomal and nucleoid-associated proteins. The unusual properties of these protein DNA mimics may provide a foundation for the design of targeted inhibitors of DNA-binding proteins. PMID:16545103

  20. Physics of protein motility and motor proteins

    NASA Astrophysics Data System (ADS)

    Kolomeisky, Anatoly B.

    2013-09-01

    Motor proteins are enzymatic molecules that transform chemical energy into mechanical motion and work. They are critically important for supporting various cellular activities and functions. In the last 15 years significant progress in understanding the functioning of motor proteins has been achieved due to revolutionary breakthroughs in single-molecule experimental techniques and strong advances in theoretical modelling. However, microscopic mechanisms of protein motility are still not well explained, and the collective efforts of many scientists are needed in order to solve these complex problems. In this special section the reader will find the latest advances on the difficult road to mapping motor proteins dynamics in various systems. Recent experimental developments have allowed researchers to monitor and to influence the activity of single motor proteins with a high spatial and temporal resolution. It has stimulated significant theoretical efforts to understand the non-equilibrium nature of protein motility phenomena. The latest results from all these advances are presented and discussed in this special section. We would like to thank the scientists from all over the world who have reported their latest research results for this special section. We are also grateful to the staff and editors of Journal of Physics: Condensed Matter for their invaluable help in handling all the administrative and refereeing activities. The field of motor proteins and protein motility is fast moving, and we hope that this collection of articles will be a useful source of information in this highly interdisciplinary area. Physics of protein motility and motor proteins contents Physics of protein motility and motor proteinsAnatoly B Kolomeisky Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116 Yuan Zhang, Mirkó Palla, Andrew Sun and Jung-Chi Liao The load dependence of the physical properties of a molecular motor

  1. Crystal Structure, Chemical Bonding and Magnetism Studies for Three Quinary Polar Intermetallic Compounds in the (Eu1−xCax)9In8(Ge1−ySny)8 (x = 0.66, y = 0.03) and the (Eu1−xCax)3In(Ge3−ySn1+y) (x = 0.66, 0.68; y = 0.13, 0.27) Phases

    PubMed Central

    Woo, Hyein; Jang, Eunyoung; Kim, Jin; Lee, Yunho; Kim, Jongsik; You, Tae-Soo

    2015-01-01

    Three quinary polar intermetallic compounds in the (Eu1−xCax)9In8(Ge1−ySny)8 (x = 0.66, y = 0.03) and the (Eu1−xCax)3In(Ge3-ySn1+y) (x = 0.66, 0.68; y = 0.13, 0.27) phases have been synthesized using the molten In-metal flux method, and the crystal structures are characterized by powder and single-crystal X-ray diffractions. Two orthorhombic structural types can be viewed as an assembly of polyanionic frameworks consisting of the In(Ge/Sn)4 tetrahedral chains, the bridging Ge2 dimers, either the annulene-like “12-membered rings” for the (Eu1−xCax)9In8(Ge1−ySny)8 series or the cis-trans Ge/Sn-chains for the (Eu1−xCax)3In(Ge3−ySn1+y) series, and several Eu/Ca-mixed cations. The most noticeable difference between two structural types is the amount and the location of the Sn-substitution for Ge: only a partial substitution (11%) occurs at the In(Ge/Sn)4 tetrahedron in the (Eu1−xCax)9In8(Ge1−ySny)8 series, whereas both a complete and a partial substitution (up to 27%) are observed, respectively, at the cis-trans Ge/Sn-chain and at the In(Ge/Sn)4 tetrahedron in the (Eu1−xCax)3In(Ge3−ySn1+y) series. A series of tight-binding linear muffin-tin orbital calculations is conducted to understand overall electronic structures and chemical bonding among components. Magnetic susceptibility measurement indicates a ferromagnetic ordering of Eu atoms below 5 K for Eu1.02(1)Ca1.98InGe2.87(1)Sn1.13. PMID:25913380

  2. Cooking Chicken Breast Reduces Dialyzable Iron Resulting from Digestion of Muscle Proteins

    PubMed Central

    Gokhale, Aditya S.; Mahoney, Raymond R.

    2014-01-01

    The purpose of this research was to study the effect of cooking chicken breast on the production of dialyzable iron (an in vitro indicator of bioavailable iron) from added ferric iron. Chicken breast muscle was cooked by boiling, baking, sautéing, or deep-frying. Cooked samples were mixed with ferric iron and either extracted with acid or digested with pepsin and pancreatin. Total and ferrous dialyzable iron was measured after extraction or digestion and compared to raw chicken samples. For uncooked samples, dialyzable iron was significantly enhanced after both extraction and digestion. All cooking methods led to markedly reduced levels of dialyzable iron both by extraction and digestion. In most cooked, digested samples dialyzable iron was no greater than the iron-only (no sample) control. Cooked samples showed lower levels of histidine and sulfhydryls but protein digestibility was not reduced, except for the sautéed sample. The results showed that, after cooking, little if any dialyzable iron results from digestion of muscle proteins. Our research indicates that, in cooked chicken, residual acid-extractable components are the most important source of dialyzable iron. PMID:26904627

  3. Protein C blood test

    MedlinePlus

    ... a normal substance in the body that prevents blood clotting. A blood test can be done to see ... history of blood clots. Protein C helps control blood clotting. A lack of this protein or problem with ...

  4. Protein S blood test

    MedlinePlus

    ... a normal substance in your body that prevents blood clotting. A blood test can be done to see ... family history of blood clots. Protein S helps control blood clotting. A lack of this protein or problem with ...

  5. Protein electrophoresis - urine

    MedlinePlus

    ... nephropathy Kidney failure Multiple myeloma Nephrotic syndrome Acute urinary tract infection Risks There are no risks associated with this ... Primary amyloidosis Protein in diet Protein urine test Urinary tract infection - adults Update Date 5/29/2014 Updated by: ...

  6. [Protein-losing enteropathy].

    PubMed

    Amiot, A

    2015-07-01

    Protein-losing enteropathy is a rare syndrome of gastrointestinal protein loss. The primary causes can be classified into lymphatic leakage due to increased interstitial pressure and increased leakage of protein-rich fluids due to erosive or non-erosive gastrointestinal disorders. The diagnosis of protein-losing enteropathy should be considered in patients with chronic diarrhea and peripheral oedema. The diagnosis of protein-losing enteropathy is most commonly based on the determination of fecal alpha-1 antitrypsin clearance. Most protein-losing enteropathy cases are the result of either lymphatic obstruction or a variety of gastrointestinal disorders and cardiac diseases, while primary intestinal lymphangiectasia (Waldmann's disease) is less common. Treatment of protein-losing enteropathy targets the underlying disease but also includes dietary modification, such as high-protein and low-fat diet along with medium-chain triglyceride supplementation. PMID:25618488

  7. Learning about Proteins

    MedlinePlus

    ... body, and protecting you from disease. All About Amino Acids When you eat foods that contain protein, the ... called amino (say: uh-MEE-no) acids. The amino acids then can be reused to make the proteins ...

  8. Hydrodynamic effects in proteins

    NASA Astrophysics Data System (ADS)

    Szymczak, Piotr; Cieplak, Marek

    2011-01-01

    Experimental and numerical results pertaining to flow-induced effects in proteins are reviewed. Special emphasis is placed on shear-induced unfolding and on the role of solvent mediated hydrodynamic interactions in the conformational transitions in proteins.

  9. Hydrodynamic effects in proteins.

    PubMed

    Szymczak, Piotr; Cieplak, Marek

    2011-01-26

    Experimental and numerical results pertaining to flow-induced effects in proteins are reviewed. Special emphasis is placed on shear-induced unfolding and on the role of solvent mediated hydrodynamic interactions in the conformational transitions in proteins. PMID:21406855

  10. Understanding protein folding: small proteins in silico.

    PubMed

    Zimmermann, Olav; Hansmann, Ulrich H E

    2008-01-01

    Recent improvements in methodology and increased computer power now allow atomistic computer simulations of protein folding. We briefly review several advanced Monte Carlo algorithms that have contributed to this development. Details of folding simulations of three designed mini proteins are shown. Adding global translations and rotations has allowed us to handle multiple chains and to simulate the aggregation of six beta-amyloid fragments. In a different line of research we have developed several algorithms to predict local features from sequence. In an outlook we sketch how such biasing could extend the application spectrum of Monte Carlo simulations to structure prediction of larger proteins. PMID:18036571

  11. Imaging Protein-protein Interactions in vivo

    PubMed Central

    Seegar, Tom; Barton, William

    2010-01-01

    Protein-protein interactions are a hallmark of all essential cellular processes. However, many of these interactions are transient, or energetically weak, preventing their identification and analysis through traditional biochemical methods such as co-immunoprecipitation. In this regard, the genetically encodable fluorescent proteins (GFP, RFP, etc.) and their associated overlapping fluorescence spectrum have revolutionized our ability to monitor weak interactions in vivo using Förster resonance energy transfer (FRET)1-3. Here, we detail our use of a FRET-based proximity assay for monitoring receptor-receptor interactions on the endothelial cell surface. PMID:20972411

  12. CSF myelin basic protein

    MedlinePlus

    CSF myelin basic protein is a test to measure the level of myelin basic protein (MBP) in the cerebrospinal fluid (CSF). The CSF ... less than 4 ng/mL of myelin basic protein in the CSF. Normal value ranges may vary ...

  13. Modeling Protein Domain Function

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth

    2007-01-01

    This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the…

  14. Palmitoylation of Hedgehog proteins.

    PubMed

    Buglino, John A; Resh, Marilyn D

    2012-01-01

    Hedgehog (Hh) proteins are secreted signaling proteins that contain amide-linked palmitate at the N-terminus and cholesterol at the C-terminus. Palmitoylation of Hh proteins is critical for effective long- and short-range signaling. The palmitoylation reaction occurs during transit of Hh through the secretory pathway, most likely in the lumen of the ER. Attachment of palmitate to Hh proteins is independent of cholesterol modification and autoprocessing and is catalyzed by Hhat (Hedgehog acyltransferase). Hhat is a member of the membrane bound O-acyltransferase (MBOAT) family, a subgroup of multipass membrane proteins that catalyze transfer of fatty acyl groups to lipids and proteins. Several classes of secreted proteins have recently been shown to be substrates for MBOAT acyltransferases, including Hh proteins and Spitz (palmitoylated by Hhat), Wg/Wnt proteins (modified with palmitate and/or palmitoleate by Porcupine) and ghrelin (octanoylated by ghrelin O-acyltransferase). These findings highlight protein fatty acylation as a mechanism that not only influences membrane binding of intracellular proteins but also regulates the signaling range and efficacy of secreted proteins. PMID:22391306

  15. Protein electrophoresis - serum

    MedlinePlus

    Normal value ranges are: Total protein: 6.4 to 8.3 g/dL (grams per deciliter) Albumin: 3.5 to 5.0 g/dL Alpha-1 ... Decreased total protein may indicate: Abnormal loss of protein from the digestive tract or the inability of the digestive tract ...

  16. CSF total protein

    MedlinePlus

    CSF total protein is a test to determine the amount of protein in your spinal fluid, also called cerebrospinal fluid (CSF). ... The normal protein range varies from lab to lab, but is typically about 15 to 60 mg/dL. Note: mg/dL = ...

  17. Modeling Protein Self Assembly

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton Buck; Hull, Elizabeth

    2004-01-01

    Understanding the structure and function of proteins is an important part of the standards-based science curriculum. Proteins serve vital roles within the cell and malfunctions in protein self assembly are implicated in degenerative diseases. Experience indicates that this topic is a difficult one for many students. We have found that the concept…

  18. Texturized dairy proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy proteins are amenable to structural modifications induced by high temperature, shear and moisture; in particular, whey proteins can change conformation to new unfolded states. The change in protein state is a basis for creating new foods. The dairy products, nonfat dried milk (NDM), whey prote...

  19. Destabilized bioluminescent proteins

    DOEpatents

    Allen, Michael S.; Rakesh, Gupta; Gary, Sayler S.

    2007-07-31

    Purified nucleic acids, vectors and cells containing a gene cassette encoding at least one modified bioluminescent protein, wherein the modification includes the addition of a peptide sequence. The duration of bioluminescence emitted by the modified bioluminescent protein is shorter than the duration of bioluminescence emitted by an unmodified form of the bioluminescent protein.

  20. Protein - Which is Best?

    PubMed

    Hoffman, Jay R; Falvo, Michael J

    2004-09-01

    Protein intake that exceeds the recommended daily allowance is widely accepted for both endurance and power athletes. However, considering the variety of proteins that are available much less is known concerning the benefits of consuming one protein versus another. The purpose of this paper is to identify and analyze key factors in order to make responsible recommendations to both the general and athletic populations. Evaluation of a protein is fundamental in determining its appropriateness in the human diet. Proteins that are of inferior content and digestibility are important to recognize and restrict or limit in the diet. Similarly, such knowledge will provide an ability to identify proteins that provide the greatest benefit and should be consumed. The various techniques utilized to rate protein will be discussed. Traditionally, sources of dietary protein are seen as either being of animal or vegetable origin. Animal sources provide a complete source of protein (i.e. containing all essential amino acids), whereas vegetable sources generally lack one or more of the essential amino acids. Animal sources of dietary protein, despite providing a complete protein and numerous vitamins and minerals, have some health professionals concerned about the amount of saturated fat common in these foods compared to vegetable sources. The advent of processing techniques has shifted some of this attention and ignited the sports supplement marketplace with derivative products such as whey, casein and soy. Individually, these products vary in quality and applicability to certain populations. The benefits that these particular proteins possess are discussed. In addition, the impact that elevated protein consumption has on health and safety issues (i.e. bone health, renal function) are also reviewed. Key PointsHigher protein needs are seen in athletic populations.Animal proteins is an important source of protein, however potential health concerns do exist from a diet of protein

  1. Protein crystallization with paper

    NASA Astrophysics Data System (ADS)

    Matsuoka, Miki; Kakinouchi, Keisuke; Adachi, Hiroaki; Maruyama, Mihoko; Sugiyama, Shigeru; Sano, Satoshi; Yoshikawa, Hiroshi Y.; Takahashi, Yoshinori; Yoshimura, Masashi; Matsumura, Hiroyoshi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Takano, Kazufumi

    2016-05-01

    We developed a new protein crystallization method that incorporates paper. A small piece of paper, such as facial tissue or KimWipes, was added to a drop of protein solution in the traditional sitting drop vapor diffusion technique, and protein crystals grew by incorporating paper. By this method, we achieved the growth of protein crystals with reducing osmotic shock. Because the technique is very simple and the materials are easy to obtain, this method will come into wide use for protein crystallization. In the future, it could be applied to nanoliter-scale crystallization screening on a paper sheet such as in inkjet printing.

  2. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  3. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2012-05-01

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  4. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2011-11-29

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  5. Selective Precipitation of Proteins.

    PubMed

    Matulis, Daumantas

    2016-01-01

    Selective precipitation of proteins can be used as a bulk method to recover the majority of proteins from a crude lysate, as a selective method to fractionate a subset of proteins from a protein solution, or as a very specific method to recover a single protein of interest from a purification step. This unit describes a number of methods suitable for selective precipitation. In each of the protocols that are outlined, the physical or chemical basis of the precipitation process, the parameters that can be varied for optimization, and the basic steps for developing an optimized precipitation are described. PMID:26836410

  6. Forces Stabilizing Proteins

    PubMed Central

    Pace, C. Nick; Scholtz, J. Martin; Grimsley, Gerald R.

    2014-01-01

    The goal of this article is to summarize what has been learned about the major forces stabilizing proteins since the late 1980s when site-directed mutagenesis became possible. The following conclusions are derived from experimental studies of hydrophobic and hydrogen bonding variants. 1. Based on studies of 138 hydrophobic interaction variants in 11 proteins, burying a –CH2– group on folding contributes 1.1 ± 0.5 kcal/mol to protein stability. 2. The burial of nonpolar side chains contributes to protein stability in two ways: first, a term that depends on the removal of the side chains from water and, more importantly, the enhanced London dispersion forces that result from the tight packing in the protein interior. 3. Based on studies of 151 hydrogen bonding variants in 15 proteins, forming a hydrogen bond on folding contributes 1.1 ± 0.8 kcal/mol to protein stability. 4. The contribution of hydrogen bonds to protein stability is strongly context dependent. 5. Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. 6. Polar group burial can make a favorable contribution to protein stability even if the polar group is not hydrogen bonded. 7. Hydrophobic interactions and hydrogen bonds both make large contributions to protein stability. PMID:24846139

  7. Mechanism of protein decarbonylation.

    PubMed

    Wong, Chi-Ming; Marcocci, Lucia; Das, Dividutta; Wang, Xinhong; Luo, Haibei; Zungu-Edmondson, Makhosazane; Suzuki, Yuichiro J

    2013-12-01

    Ligand/receptor stimulation of cells promotes protein carbonylation that is followed by the decarbonylation process, which might involve thiol-dependent reduction (C.M. Wong et al., Circ. Res. 102:301-318; 2008). This study further investigated the properties of this protein decarbonylation mechanism. We found that the thiol-mediated reduction of protein carbonyls is dependent on heat-labile biologic components. Cysteine and glutathione were efficient substrates for decarbonylation. Thiols decreased the protein carbonyl content, as detected by 2,4-dinitrophenylhydrazine, but not the levels of malondialdehyde or 4-hydroxynonenal protein adducts. Mass spectrometry identified proteins that undergo thiol-dependent decarbonylation, which include peroxiredoxins. Peroxiredoxin-2 and -6 were carbonylated and subsequently decarbonylated in response to the ligand/receptor stimulation of cells. siRNA knockdown of glutaredoxin inhibited the decarbonylation of peroxiredoxin. These results strengthen the concept that thiol-dependent decarbonylation defines the kinetics of protein carbonylation signaling. PMID:24044890

  8. Pigment-protein complexes

    SciTech Connect

    Siegelman, H W

    1980-01-01

    The photosynthetically-active pigment protein complexes of procaryotes and eucaryotes include chlorophyll proteins, carotenochlorophyll proteins, and biliproteins. They are either integral components or attached to photosynthetic membranes. Detergents are frequently required to solubilize the pigment-protein complexes. The membrane localization and detergent solubilization strongly suggest that the pigment-protein complexes are bound to the membranes by hydrophobic interactions. Hydrophobic interactions of proteins are characterized by an increase in entropy. Their bonding energy is directly related to temperature and ionic strength. Hydrophobic-interaction chromatography, a relatively new separation procedure, can furnish an important method for the purification of pigment-protein complexes. Phycobilisome purification and properties provide an example of the need to maintain hydrophobic interactions to preserve structure and function.

  9. Protein solubility modeling

    NASA Technical Reports Server (NTRS)

    Agena, S. M.; Pusey, M. L.; Bogle, I. D.

    1999-01-01

    A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process. Copyright 1999 John Wiley & Sons, Inc.

  10. Regulation of the expression of zinc finger protein genes by microRNAs enriched within acute lymphoblastic leukemia-derived microvesicles.

    PubMed

    Lu, L; Chen, X M; Tao, H M; Xiong, W; Jie, S H; Li, H Y

    2015-01-01

    Microvesicles (MVs) are submicrometric membrane fragments that can "engulf" cytoplasmic contents such as microRNAs (miRNAs) from their cellular origin. The study of miRNAs carried within MVs might provide insights into the roles that miRNAs play in the underlying pathophysiologic processes of acute lymphoblastic leu-kemia (ALL). We identified numerous dysregulated MV miRNAs in patients with B- and T-cell ALL by using Agilent microarray analysis. Selected miRNAs obtained by microarray profiling were validated us-ing quantitative reverse transcription-polymerase chain reaction. Us-ing bioinformatic tools, we found that 118 and 116 miRNAs from B- and T-ALL MVs, respectively, regulated the expression of zinc finger protein (ZFP) genes. For example, zinc finger protein 238 (ZNF238), known as a tumor suppressor, was regulated by miR-20b over-expres-sion. Conversely, ZNF267, a cancer-promoting factor, was mediated by downregulated miR-23a and miR-23b. Considering that miRNAs are generally believed to repress gene expression, antineoplastic ZNF238 was likely inhibited while the level of oncogenic ZNF267 was likely increased by miRNA dysregulation, leading to modifica-tion of the ALL microenvironment. In addition, gene ontology and sig-naling pathway analysis demonstrated that a subset of the ZFP genes targeted by altered MV miRNAs are involved in cellular biological processes including proliferation, differentiation, apoptosis, and cell cycle regulation. These findings indicated that cancer-associated MV miRNAs and their target ZFP genes might be novel pathogenic factors in ALL. However, the specific roles exerted by MV miRNAs and their target ZFP genes on the pathological mechanisms of ALL remain to be further understood. PMID:26505336

  11. Protein kinesis: The dynamics of protein trafficking and stability

    SciTech Connect

    1995-12-31

    The purpose of this conference is to provide a multidisciplinary forum for exchange of state-of-the-art information on protein kinesis. This volume contains abstracts of papers in the following areas: protein folding and modification in the endoplasmic reticulum; protein trafficking; protein translocation and folding; protein degradation; polarity; nuclear trafficking; membrane dynamics; and protein import into organelles.

  12. Phage display of proteins.

    PubMed

    Kościelska, K; Kiczak, L; Kasztura, M; Wesołowska, O; Otlewski, J

    1998-01-01

    In recent years the phage display approach has become an increasingly popular method in protein research. This method enables the presentation of large peptide and protein libraries on the surface of phage particles from which molecules of desired functional property(ies) can be rapidly selected. The great advantage of this method is a direct linkage between an observed phenotype and encapsulated genotype, which allows fast determination of selected sequences. The phage display approach is a powerful tool in generating highly potent biomolecules, including: search for specific antibodies, determining enzyme specificity, exploring protein-protein and protein-DNA interactions, minimizing proteins, introducing new functions into different protein scaffolds, and searching sequence space of protein folding. In this article many examples are given to illustrate that this technique can be used in different fields of protein science. The phage display has a potential of the natural evolution and its possibilities are far beyond rational prediction. Assuming that we can design the selection agents and conditions we should be able to engineer any desired protein function or feature. PMID:9918498

  13. Energy design for protein-protein interactions

    PubMed Central

    Ravikant, D. V. S.; Elber, Ron

    2011-01-01

    Proteins bind to other proteins efficiently and specifically to carry on many cell functions such as signaling, activation, transport, enzymatic reactions, and more. To determine the geometry and strength of binding of a protein pair, an energy function is required. An algorithm to design an optimal energy function, based on empirical data of protein complexes, is proposed and applied. Emphasis is made on negative design in which incorrect geometries are presented to the algorithm that learns to avoid them. For the docking problem the search for plausible geometries can be performed exhaustively. The possible geometries of the complex are generated on a grid with the help of a fast Fourier transform algorithm. A novel formulation of negative design makes it possible to investigate iteratively hundreds of millions of negative examples while monotonically improving the quality of the potential. Experimental structures for 640 protein complexes are used to generate positive and negative examples for learning parameters. The algorithm designed in this work finds the correct binding structure as the lowest energy minimum in 318 cases of the 640 examples. Further benchmarks on independent sets confirm the significant capacity of the scoring function to recognize correct modes of interactions. PMID:21842951

  14. Modeling Protein Expression and Protein Signaling Pathways

    PubMed Central

    Telesca, Donatello; Müller, Peter; Kornblau, Steven M.; Suchard, Marc A.; Ji, Yuan

    2015-01-01

    High-throughput functional proteomic technologies provide a way to quantify the expression of proteins of interest. Statistical inference centers on identifying the activation state of proteins and their patterns of molecular interaction formalized as dependence structure. Inference on dependence structure is particularly important when proteins are selected because they are part of a common molecular pathway. In that case, inference on dependence structure reveals properties of the underlying pathway. We propose a probability model that represents molecular interactions at the level of hidden binary latent variables that can be interpreted as indicators for active versus inactive states of the proteins. The proposed approach exploits available expert knowledge about the target pathway to define an informative prior on the hidden conditional dependence structure. An important feature of this prior is that it provides an instrument to explicitly anchor the model space to a set of interactions of interest, favoring a local search approach to model determination. We apply our model to reverse-phase protein array data from a study on acute myeloid leukemia. Our inference identifies relevant subpathways in relation to the unfolding of the biological process under study. PMID:26246646

  15. Protein-protein docking with backbone flexibility.

    PubMed

    Wang, Chu; Bradley, Philip; Baker, David

    2007-10-19

    Computational protein-protein docking methods currently can create models with atomic accuracy for protein complexes provided that the conformational changes upon association are restricted to the side chains. However, it remains very challenging to account for backbone conformational changes during docking, and most current methods inherently keep monomer backbones rigid for algorithmic simplicity and computational efficiency. Here we present a reformulation of the Rosetta docking method that incorporates explicit backbone flexibility in protein-protein docking. The new method is based on a "fold-tree" representation of the molecular system, which seamlessly integrates internal torsional degrees of freedom and rigid-body degrees of freedom. Problems with internal flexible regions ranging from one or more loops or hinge regions to all of one or both partners can be readily treated using appropriately constructed fold trees. The explicit treatment of backbone flexibility improves both sampling in the vicinity of the native docked conformation and the energetic discrimination between near-native and incorrect models. PMID:17825317

  16. Energy design for protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Ravikant, D. V. S.; Elber, Ron

    2011-08-01

    Proteins bind to other proteins efficiently and specifically to carry on many cell functions such as signaling, activation, transport, enzymatic reactions, and more. To determine the geometry and strength of binding of a protein pair, an energy function is required. An algorithm to design an optimal energy function, based on empirical data of protein complexes, is proposed and applied. Emphasis is made on negative design in which incorrect geometries are presented to the algorithm that learns to avoid them. For the docking problem the search for plausible geometries can be performed exhaustively. The possible geometries of the complex are generated on a grid with the help of a fast Fourier transform algorithm. A novel formulation of negative design makes it possible to investigate iteratively hundreds of millions of negative examples while monotonically improving the quality of the potential. Experimental structures for 640 protein complexes are used to generate positive and negative examples for learning parameters. The algorithm designed in this work finds the correct binding structure as the lowest energy minimum in 318 cases of the 640 examples. Further benchmarks on independent sets confirm the significant capacity of the scoring function to recognize correct modes of interactions.

  17. Mechanisms Regulating Protein Localization.

    PubMed

    Bauer, Nicholas C; Doetsch, Paul W; Corbett, Anita H

    2015-10-01

    Cellular functions are dictated by protein content and activity. There are numerous strategies to regulate proteins varying from modulating gene expression to post-translational modifications. One commonly used mode of regulation in eukaryotes is targeted localization. By specifically redirecting the localization of a pool of existing protein, cells can achieve rapid changes in local protein function. Eukaryotic cells have evolved elegant targeting pathways to direct proteins to the appropriate cellular location or locations. Here, we provide a general overview of these localization pathways, with a focus on nuclear and mitochondrial transport, and present a survey of the evolutionarily conserved regulatory strategies identified thus far. We end with a description of several specific examples of proteins that exploit localization as an important mode of regulation. PMID:26172624

  18. Electrophoretic separation of proteins.

    PubMed

    Chakavarti, Bulbul; Chakavarti, Deb

    2008-01-01

    Electrophoresis is used to separate complex mixtures of proteins (e.g., from cells, subcellular fractions, column fractions, or immunoprecipitates), to investigate subunit compositions, and to verify homogeneity of protein samples. It can also serve to purify proteins for use in further applications. In polyacrylamide gel electrophoresis, proteins migrate in response to an electrical field through pores in a polyacrylamide gel matrix; pore size decreases with increasing acrylamide concentration. The combination of pore size and protein charge, size, and shape determines the migration rate of the protein. In this unit, the standard Laemmli method is described for discontinuous gel electrophoresis under denaturing conditions, i.e., in the presence of sodium dodecyl sulfate (SDS). PMID:19066548

  19. Outer membrane protein purification.

    PubMed

    Arigita, C; Jiskoot, W; Graaf, M R; Kersten, G F

    2001-01-01

    The major outer membrane proteins (OMPs) from Neisseria meningitidis, which are expressed at high levels, are subdivided in five classes based on molecular weight (1,2) (see Table 1). Table 1 Major Meningococcal Outer-Membrane Proteins Outer-membrane proteins Name Molecular maass Function/characteristics Class 1 PorA 44-47 kDa Porin Class 2/3 PorB 37-42 kDa Porin Class 4 Rmp Reductionmodifiableprotein, unknown Class 5 Opa 26-30 kDa Adhesion,opacity protein Opc 25 kDa Invasion, opacity protein Iron-regulated proteins Mirp 37 kDa Iron acquisition (?);majoriron-regulatedprotein FrpB 70 kDa Ferric enterobactin receptor (also FetA) Adapted from ref. (1). PMID:21336748

  20. Biofilm Matrix Proteins

    PubMed Central

    Fong, Jiunn N. C.; Yildiz, Fitnat H.

    2015-01-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this chapter, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation. PMID:26104709

  1. Principles of Flexible Protein-Protein Docking

    PubMed Central

    Andrusier, Nelly; Mashiach, Efrat; Nussinov, Ruth; Wolfson, Haim J.

    2008-01-01

    Treating flexibility in molecular docking is a major challenge in cell biology research. Here we describe the background and the principles of existing flexible protein-protein docking methods, focusing on the algorithms and their rational. We describe how protein flexibility is treated in different stages of the docking process: in the preprocessing stage, rigid and flexible parts are identified and their possible conformations are modeled. This preprocessing provides information for the subsequent docking and refinement stages. In the docking stage, an ensemble of pre-generated conformations or the identified rigid domains may be docked separately. In the refinement stage, small-scale movements of the backbone and side-chains are modeled and the binding orientation is improved by rigid-body adjustments. For clarity of presentation, we divide the different methods into categories. This should allow the reader to focus on the most suitable method for a particular docking problem. PMID:18655061

  2. Antimicrobial proteins: From old proteins, new tricks.

    PubMed

    Smith, Valerie J; Dyrynda, Elisabeth A

    2015-12-01

    This review describes the main types of antimicrobial peptides (AMPs) synthesised by crustaceans, primarily those identified in shrimp, crayfish, crab and lobster. It includes an overview of their range of microbicidal activities and the current landscape of our understanding of their gene expression patterns in different body tissues. It further summarises how their expression might change following various types of immune challenges. The review further considers proteins or protein fragments from crustaceans that have antimicrobial properties but are more usually associated with other biological functions, or are derived from such proteins. It discusses how these unconventional AMPs might be generated at, or delivered to, sites of infection and how they might contribute to crustacean host defence in vivo. It also highlights recent work that is starting to reveal the extent of multi-functionality displayed by some decapod AMPs, particularly their participation in other aspects of host protection. Examples of such activities include proteinase inhibition, phagocytosis, antiviral activity and haematopoiesis. PMID:26320628

  3. Elastic proteins and elastomeric protein alloys.

    PubMed

    Aghaei-Ghareh-Bolagh, Behnaz; Mithieux, Suzanne M; Weiss, Anthony S

    2016-06-01

    The elastomeric proteins elastin and resilin have been used extensively in the fabrication of biomaterials for tissue engineering applications due to their unique mechanical and biological properties. Tropoelastin is the soluble monomer component of elastin. Tropoelastin and resilin are both highly elastic with high resilience, substantial extensibility, high durability and low energy loss, which makes them excellent candidates for the fabrication of elastic tissues that demand regular and repetitive movement like the skin, lung, blood vessels, muscles and vocal folds. Combinations of these proteins with silk fibroin further enhance their biomechanical and biological properties leading to a new class of protein alloy materials with versatile properties. In this review, the properties of tropoelastin-based and resilin-based biomaterials with and without silk are described in concert with examples of their applications in tissue engineering. PMID:26780495

  4. Protein Crystal Quality Studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Eddie Snell, Post-Doctoral Fellow the National Research Council (NRC) uses a reciprocal space mapping diffractometer for macromolecular crystal quality studies. The diffractometer is used in mapping the structure of macromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystallized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  5. Protein oxidation and peroxidation.

    PubMed

    Davies, Michael J

    2016-04-01

    Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function. Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides inhibit these pathways and this may contribute to the accumulation of modified proteins in cells. Available evidence supports an association between protein oxidation and multiple human pathologies, but whether this link is causal remains to be established. PMID:27026395

  6. Protein oxidation and peroxidation

    PubMed Central

    Davies, Michael J.

    2016-01-01

    Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function. Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides inhibit these pathways and this may contribute to the accumulation of modified proteins in cells. Available evidence supports an association between protein oxidation and multiple human pathologies, but whether this link is causal remains to be established. PMID:27026395

  7. Computer Models of Proteins

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Dr. Marc Pusey (seated) and Dr. Craig Kundrot use computers to analyze x-ray maps and generate three-dimensional models of protein structures. With this information, scientists at Marshall Space Flight Center can learn how proteins are made and how they work. The computer screen depicts a proten structure as a ball-and-stick model. Other models depict the actual volume occupied by the atoms, or the ribbon-like structures that are crucial to a protein's function.

  8. Pressure cryocooling protein crystals

    DOEpatents

    Kim, Chae Un; Gruner, Sol M.

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  9. Protein-protein interactions as drug targets.

    PubMed

    Skwarczynska, Malgorzata; Ottmann, Christian

    2015-10-01

    Modulation of protein-protein interactions (PPIs) is becoming increasingly important in drug discovery and chemical biology. While a few years ago this 'target class' was deemed to be largely undruggable an impressing number of publications and success stories now show that targeting PPIs with small, drug-like molecules indeed is a feasible approach. Here, we summarize the current state of small-molecule inhibition and stabilization of PPIs and review the active molecules from a structural and medicinal chemistry angle, especially focusing on the key examples of iNOS, LFA-1 and 14-3-3. PMID:26510391

  10. Biomolecular membrane protein crystallization

    NASA Astrophysics Data System (ADS)

    Reddy Bolla, Jani; Su, Chih-Chia; Yu, Edward W.

    2012-07-01

    Integral membrane proteins comprise approximately 30% of the sequenced genomes, and there is an immediate need for their high-resolution structural information. Currently, the most reliable approach to obtain these structures is X-ray crystallography. However, obtaining crystals of membrane proteins that diffract to high resolution appears to be quite challenging, and remains a major obstacle in structural determination. This brief review summarizes a variety of methodologies for use in crystallizing these membrane proteins. Hopefully, by introducing the available methods, techniques, and providing a general understanding of membrane proteins, a rational decision can be made about now to crystallize these complex materials.

  11. Self assembling proteins

    DOEpatents

    Yeates, Todd O.; Padilla, Jennifer; Colovos, Chris

    2004-06-29

    Novel fusion proteins capable of self-assembling into regular structures, as well as nucleic acids encoding the same, are provided. The subject fusion proteins comprise at least two oligomerization domains rigidly linked together, e.g. through an alpha helical linking group. Also provided are regular structures comprising a plurality of self-assembled fusion proteins of the subject invention, and methods for producing the same. The subject fusion proteins find use in the preparation of a variety of nanostructures, where such structures include: cages, shells, double-layer rings, two-dimensional layers, three-dimensional crystals, filaments, and tubes.

  12. Consensus protein design.

    PubMed

    Porebski, Benjamin T; Buckle, Ashley M

    2016-07-01

    A popular and successful strategy in semi-rational design of protein stability is the use of evolutionary information encapsulated in homologous protein sequences. Consensus design is based on the hypothesis that at a given position, the respective consensus amino acid contributes more than average to the stability of the protein than non-conserved amino acids. Here, we review the consensus design approach, its theoretical underpinnings, successes, limitations and challenges, as well as providing a detailed guide to its application in protein engineering. PMID:27274091

  13. Prediction of protein-protein interactions based on protein-protein correlation using least squares regression.

    PubMed

    Huang, De-Shuang; Zhang, Lei; Han, Kyungsook; Deng, Suping; Yang, Kai; Zhang, Hongbo

    2014-01-01

    In order to transform protein sequences into the feature vectors, several works have been done, such as computing auto covariance (AC), conjoint triad (CT), local descriptor (LD), moran autocorrelation (MA), normalized moreaubroto autocorrelation (NMB) and so on. In this paper, we shall adopt these transformation methods to encode the proteins, respectively, where AC, CT, LD, MA and NMB are all represented by '+' in a unified manner. A new method, i.e. the combination of least squares regression with '+' (abbreviated as LSR(+)), will be introduced for encoding a protein-protein correlation-based feature representation and an interacting protein pair. Thus there are totally five different combinations for LSR(+), i.e. LSRAC, LSRCT, LSRLD, LSRMA and LSRNMB. As a result, we combined a support vector machine (SVM) approach with LSR(+) to predict protein-protein interactions (PPI) and PPI networks. The proposed method has been applied on four datasets, i.e. Saaccharomyces cerevisiae, Escherichia coli, Homo sapiens and Caenorhabditis elegans. The experimental results demonstrate that all LSR(+) methods outperform many existing representative algorithms. Therefore, LSR(+) is a powerful tool to characterize the protein-protein correlations and to infer PPI, whilst keeping high performance on prediction of PPI networks. PMID:25059329

  14. Human Mitochondrial Protein Database

    National Institute of Standards and Technology Data Gateway

    SRD 131 Human Mitochondrial Protein Database (Web, free access)   The Human Mitochondrial Protein Database (HMPDb) provides comprehensive data on mitochondrial and human nuclear encoded proteins involved in mitochondrial biogenesis and function. This database consolidates information from SwissProt, LocusLink, Protein Data Bank (PDB), GenBank, Genome Database (GDB), Online Mendelian Inheritance in Man (OMIM), Human Mitochondrial Genome Database (mtDB), MITOMAP, Neuromuscular Disease Center and Human 2-D PAGE Databases. This database is intended as a tool not only to aid in studying the mitochondrion but in studying the associated diseases.

  15. PIC: Protein Interactions Calculator.

    PubMed

    Tina, K G; Bhadra, R; Srinivasan, N

    2007-07-01

    Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic-aromatic interactions, aromatic-sulphur interactions and cation-pi interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar-apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside. PMID:17584791

  16. Glycolipid transfer proteins

    PubMed Central

    Brown, Rhoderick E.; Mattjus, Peter

    2007-01-01

    Glycolipid transfer proteins (GLTPs) are small (24 kD), soluble, ubiquitous proteins characterized by their ability to accelerate the intermembrane transfer of glycolipids in vitro. GLTP specificity encompasses both sphingoid- and glycerol-based glycolipids, but with a strict requirement that the initial sugar residue be beta-linked to the hydrophobic lipid backbone. The 3D protein structures of GLTP reveal liganded structures with unique lipid binding modes. The biochemical properties of GLTP action at the membrane surface have been studied rather comprehensively, but the biological role of GLTP remains enigmatic. What is clear is that GLTP differs distinctly from other known glycolipid-binding proteins, such as nonspecific lipid transfer proteins, lysosomal sphingolipid activator proteins, lectins, lung surfactant proteins as well as other lipid binding/transfer proteins. Based on the unique conformational architecture that targets GLTP to membranes and enables glycolipid binding, GLTP is now considered the prototypical and founding member of a new protein superfamily in eukaryotes. PMID:17320476

  17. Engineering therapeutic protein disaggregases.

    PubMed

    Shorter, James

    2016-05-15

    Therapeutic agents are urgently required to cure several common and fatal neurodegenerative disorders caused by protein misfolding and aggregation, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD). Protein disaggregases that reverse protein misfolding and restore proteins to native structure, function, and localization could mitigate neurodegeneration by simultaneously reversing 1) any toxic gain of function of the misfolded form and 2) any loss of function due to misfolding. Potentiated variants of Hsp104, a hexameric AAA+ ATPase and protein disaggregase from yeast, have been engineered to robustly disaggregate misfolded proteins connected with ALS (e.g., TDP-43 and FUS) and PD (e.g., α-synuclein). However, Hsp104 has no metazoan homologue. Metazoa possess protein disaggregase systems distinct from Hsp104, including Hsp110, Hsp70, and Hsp40, as well as HtrA1, which might be harnessed to reverse deleterious protein misfolding. Nevertheless, vicissitudes of aging, environment, or genetics conspire to negate these disaggregase systems in neurodegenerative disease. Thus, engineering potentiated human protein disaggregases or isolating small-molecule enhancers of their activity could yield transformative therapeutics for ALS, PD, and AD. PMID:27255695

  18. Cellulose synthase interacting protein

    PubMed Central

    Somerville, Chris

    2010-01-01

    Cellulose is the most abundant biopolymer on earth. The great abundance of cellulose places it at the forefront as a primary source of biomass for renewable biofuels. However, the knowledge of how plant cells make cellulose remains very rudimentary. Cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes. The only known components of cellulose synthase complexes are cellulose synthase (CESA) proteins until the recent identification of a novel component. CSI1, which encodes CESA interacting protein 1 (CSI1) in Arabidopsis. CSI1, as the first non-CESA proteins associated with cellulose synthase complexes, opens up many opportunities. PMID:21150290

  19. Consensus protein design

    PubMed Central

    Porebski, Benjamin T.; Buckle, Ashley M.

    2016-01-01

    A popular and successful strategy in semi-rational design of protein stability is the use of evolutionary information encapsulated in homologous protein sequences. Consensus design is based on the hypothesis that at a given position, the respective consensus amino acid contributes more than average to the stability of the protein than non-conserved amino acids. Here, we review the consensus design approach, its theoretical underpinnings, successes, limitations and challenges, as well as providing a detailed guide to its application in protein engineering. PMID:27274091

  20. Acanthamoeba castellanii STAT protein.

    PubMed

    Kicinska, Anna; Leluk, Jacek; Jarmuszkiewicz, Wieslawa

    2014-01-01

    STAT (signal transducers and activators of transcription) proteins are one of the important mediators of phosphotyrosine-regulated signaling in metazoan cells. We described the presence of STAT protein in a unicellular, free-living amoebae with a simple life cycle, Acanthamoeba castellanii. A. castellanii is the only, studied to date, Amoebozoan that does not belong to Mycetozoa but possesses STATs. A sequence of the A. castellanii STAT protein includes domains similar to those of the Dictyostelium STAT proteins: a coiled coil (characteristic for Dictyostelium STAT coiled coil), a STAT DNA-binding domain and a Src-homology domain. The search for protein sequences homologous to A. castellanii STAT revealed 17 additional sequences from lower eukaryotes. Interestingly, all of these sequences come from Amoebozoa organisms that belong to either Mycetozoa (slime molds) or Centramoebida. We showed that there are four separated clades within the slime mold STAT proteins. The A. castellanii STAT protein branches next to a group of STATc proteins from Mycetozoa. We also demonstrate that Amoebozoa form a distinct monophyletic lineage within the STAT protein world that is well separated from the other groups. PMID:25338074

  1. Engineering therapeutic protein disaggregases

    PubMed Central

    Shorter, James

    2016-01-01

    Therapeutic agents are urgently required to cure several common and fatal neurodegenerative disorders caused by protein misfolding and aggregation, including amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and Alzheimer’s disease (AD). Protein disaggregases that reverse protein misfolding and restore proteins to native structure, function, and localization could mitigate neurodegeneration by simultaneously reversing 1) any toxic gain of function of the misfolded form and 2) any loss of function due to misfolding. Potentiated variants of Hsp104, a hexameric AAA+ ATPase and protein disaggregase from yeast, have been engineered to robustly disaggregate misfolded proteins connected with ALS (e.g., TDP-43 and FUS) and PD (e.g., α-synuclein). However, Hsp104 has no metazoan homologue. Metazoa possess protein disaggregase systems distinct from Hsp104, including Hsp110, Hsp70, and Hsp40, as well as HtrA1, which might be harnessed to reverse deleterious protein misfolding. Nevertheless, vicissitudes of aging, environment, or genetics conspire to negate these disaggregase systems in neurodegenerative disease. Thus, engineering potentiated human protein disaggregases or isolating small-molecule enhancers of their activity could yield transformative therapeutics for ALS, PD, and AD. PMID:27255695

  2. Ultrafiltration of pegylated proteins

    NASA Astrophysics Data System (ADS)

    Molek, Jessica R.

    There is considerable clinical interest in the use of "second-generation" therapeutics produced by conjugation of a native protein with various polymers including polyethylene glycol (PEG). PEG--protein conjugates, so-called PEGylated proteins, can exhibit enhanced stability, half-life, and bioavailability. One of the challenges in the commercial production of PEGylated proteins is the purification required to remove unreacted polymer, native protein, and in many cases PEGylated proteins with nonoptimal degrees of conjugation. The overall objective of this thesis was to examine the use of ultrafiltration for the purification of PEGylated proteins. This included: (1) analysis of size-based separation of PEGylated proteins using conventional ultrafiltration membranes, (2) use of electrically-charged membranes to exploit differences in electrostatic interactions, and (3) examination of the effects of PEGylation on protein fouling. The experimental results were analyzed using appropriate theoretical models, with the underlying physical properties of the PEGylated proteins evaluated using size exclusion chromatography, capillary electrophoresis, dynamic light scattering, and reverse phase chromatography. PEGylated proteins were produced by covalent attachment of activated PEG to a protein via primary amines on the lysine residues. A simple model was developed for the reaction kinetics, which was used to explore the effect of reaction conditions and mode of operation on the distribution of PEGylated products. The effective size of the PEGylated proteins was evaluated using size exclusion chromatography, with appropriate correlations developed for the size in terms of the molecular weight of the native protein and attached PEG. The electrophoretic mobility of the PEGylated proteins were evaluated by capillary electrophoresis with the data in good agreement with a simple model accounting for the increase in protein size and the reduction in the number of protonated amine

  3. Protein metabolism and requirements.

    PubMed

    Biolo, Gianni

    2013-01-01

    Skeletal muscle adaptation to critical illness includes insulin resistance, accelerated proteolysis, and increased release of glutamine and the other amino acids. Such amino acid efflux from skeletal muscle provides precursors for protein synthesis and energy fuel to the liver and to the rapidly dividing cells of the intestinal mucosa and the immune system. From these adaptation mechanisms, severe muscle wasting, glutamine depletion, and hyperglycemia, with increased patient morbidity and mortality, may ensue. Protein/amino acid nutrition, through either enteral or parenteral routes, plays a pivotal role in treatment of metabolic abnormalities in critical illness. In contrast to energy requirement, which can be accurately assessed by indirect calorimetry, methods to determine individual protein/amino acid needs are not currently available. In critical illness, a decreased ability of protein/amino acid intake to promote body protein synthesis is defined as anabolic resistance. This abnormality leads to increased protein/amino acid requirement and relative inefficiency of nutritional interventions. In addition to stress mediators, immobility and physical inactivity are key determinants of anabolic resistance. The development of mobility protocols in the intensive care unit should be encouraged to enhance the efficacy of nutrition. In critical illness, protein/amino acid requirement has been defined as the intake level associated with the lowest rate of catabolism. The optimal protein-sparing effects in patients receiving adequate energy are achieved when protein/amino acids are administered at rates between 1.3 and 1.5 g/kg/day. Extra glutamine supplementation is required in conditions of severe systemic inflammatory response. Protein requirement increases during hypocaloric feeding and in patients with acute renal failure on continuous renal replacement therapy. Evidence suggests that receiving adequate protein/amino acid intake may be more important than achieving

  4. Binding Efficiency of Protein-Protein Complexes

    PubMed Central

    Day, Eric S.; Cote, Shaun M.; Whitty, Adrian

    2012-01-01

    We examine the relationship between binding affinity and interface size for reversible protein-protein interactions (PPI), using cytokines from the tumor necrosis factor (TNF) superfamily and their receptors as a test case. Using surface plasmon resonance, we measured single-site binding affinities for the large receptor TNFR1 binding to its ligands TNFα (KD = 1.4 ± 0.4 nM) and lymphotoxin-α (KD = 50 ± 10 nM), and also for the small receptor Fn14 binding to TWEAK (KD = 70 ± 10 nM). We additionally assembled data for all other TNF/TNFR family complexes for which reliable single site binding affinities have been reported. We used these values to calculate the binding efficiency – defined as binding energy per Å2 of surface area buried at the contact interface – for the nine of these complexes for which co-crystal structures are available, and compared the results to those for a set of 144 protein-protein complexes with published affinity values. The results show that the most efficient PPI complexes generate ~20 cal.mol−1/Å2 of binding energy. A minimum contact area of ~500 Å2 is required for a stable complex, required to generate sufficient interaction energy to pay the entropic cost of co-localizing two proteins from 1 M solution. The most compact and efficient TNF/TNFR complex was BAFF/BR3, which achieved ~80% of the maximum achievable binding efficiency. Other small receptors also gave high binding efficiencies, while the larger receptors generated only 44-49% of this limit despite interacting primarily through just a single small domain. The results provide new insight into how much binding energy can be generated by a PPI interface of a given size, and establish a quantitative method to predict how large a natural or engineered contact interface must be to achieve a given level of binding affinity. PMID:23088250

  5. Protein Attachment on Nanodiamonds.

    PubMed

    Lin, Chung-Lun; Lin, Cheng-Huang; Chang, Huan-Cheng; Su, Meng-Chih

    2015-07-16

    A recent advance in nanotechnology is the scale-up production of small and nonaggregated diamond nanoparticles suitable for biological applications. Using detonation nanodiamonds (NDs) with an average diameter of ∼4 nm as the adsorbents, we have studied the static attachment of three proteins (myoglobin, bovine serum albumin, and insulin) onto the nanoparticles by optical spectroscopy, mass spectrometry, and dynamic light scattering, and electrophoretic zeta potential measurements. Results show that the protein surface coverage is predominantly determined by the competition between protein-protein and protein-ND interactions, giving each protein a unique and characteristic structural configuration in its own complex. Specifically, both myoglobin and bovine serum albumin show a Langmuir-type adsorption behavior, forming 1:1 complexes at saturation, whereas insulin folds into a tightly bound multimer before adsorption. The markedly different adsorption patterns appear to be independent of the protein concentration and are closely related to the affinity of the individual proteins for the NDs. The present study provides a fundamental understanding for the use of NDs as a platform for nanomedical drug delivery. PMID:25815400

  6. Poxviral Ankyrin Proteins

    PubMed Central

    Herbert, Michael H.; Squire, Christopher J.; Mercer, Andrew A

    2015-01-01

    Multiple repeats of the ankyrin motif (ANK) are ubiquitous throughout the kingdoms of life but are absent from most viruses. The main exception to this is the poxvirus family, and specifically the chordopoxviruses, with ANK repeat proteins present in all but three species from separate genera. The poxviral ANK repeat proteins belong to distinct orthologue groups spread over different species, and align well with the phylogeny of their genera. This distribution throughout the chordopoxviruses indicates these proteins were present in an ancestral vertebrate poxvirus, and have since undergone numerous duplication events. Most poxviral ANK repeat proteins contain an unusual topology of multiple ANK motifs starting at the N-terminus with a C-terminal poxviral homologue of the cellular F-box enabling interaction with the cellular SCF ubiquitin ligase complex. The subtle variations between ANK repeat proteins of individual poxviruses suggest an array of different substrates may be bound by these protein-protein interaction domains and, via the F-box, potentially directed to cellular ubiquitination pathways and possible degradation. Known interaction partners of several of these proteins indicate that the NF-κB coordinated anti-viral response is a key target, whilst some poxviral ANK repeat domains also have an F-box independent affect on viral host-range. PMID:25690795

  7. Proteins and Amino Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the most abundant substances in living organisms and cells. All proteins are constructed from the same twenty amino acids that are linked together by covalent bonds. Shorter chains of two or more amino acids can be linked by covalent bonds to form polypeptides. There are twenty amino...

  8. Proteins and glasses

    SciTech Connect

    Frauenfelder, H.

    1997-12-31

    The structure, the energy landscape, and the dynamics of proteins and glasses are similar. Both types of systems display characteristic nonexponential time dependencies of relaxation phenomena. Experiments suggest that both, proteins and glasses, are heterogeneous and that this fact causes the observed time dependence. This result is discussed in terms of the rough energy landscape characteristic of complex systems.

  9. Synthesis of Lipidated Proteins.

    PubMed

    Mejuch, Tom; Waldmann, Herbert

    2016-08-17

    Protein lipidation is one of the major post-translational modifications (PTM) of proteins. The attachment of the lipid moiety frequently determines the localization and the function of the lipoproteins. Lipidated proteins participate in many essential biological processes in eukaryotic cells, including vesicular trafficking, signal transduction, and regulation of the immune response. Malfunction of these cellular processes usually leads to various diseases such as cancer. Understanding the mechanism of cellular signaling and identifying the protein-protein and protein-lipid interactions in which the lipoproteins are involved is a crucial task. To achieve these goals, fully functional lipidated proteins are required. However, access to lipoproteins by means of standard expression is often rather limited. Therefore, semisynthetic methods, involving the synthesis of lipidated peptides and their subsequent chemoselective ligation to yield full-length lipoproteins, were developed. In this Review we summarize the commonly used methods for lipoprotein synthesis and the development of the corresponding chemoselective ligation techniques. Several key studies involving full-length semisynthetic lipidated Ras, Rheb, and LC3 proteins are presented. PMID:27444727

  10. The AVIT protein family

    PubMed Central

    Kaser, Alexandra; Winklmayr, Martina; Lepperdinger, Günther; Kreil, Günther

    2003-01-01

    Homologues of a protein originally isolated from snake venom and frog skin secretions are present in many vertebrate species. They contain 80–90 amino acids, 10 of which are cysteines with identical spacing. Various names have been given to these proteins, such as mamba intestinal protein 1 (MIT1), Bv8 (Bombina variegata molecular mass ∼8 kDa), prokineticins and endocrine-gland vascular endothelial growth factor (EG-VEGF). Their amino-terminal sequences are identical, and so we propose that the sequence of their first four residues, AVIT, is used as a name for this family. From a comparison of the sequences, two types of AVIT proteins can be discerned. These proteins seem to be distributed widely in mammalian tissues and are known to bind to G-protein-coupled receptors. Members of this family have been shown to stimulate contraction of the guinea pig ileum, to cause hyperalgesia after injection into rats and to be active as specific growth factors. Moreover, the messenger RNA level of one of these AVIT proteins changes rhythmically in the region of the brain known as the suprachiasmatic nucleus. This shows that members of this new family of small proteins are involved in diverse biological processes. PMID:12728244

  11. Protein Kinases and Addiction

    PubMed Central

    Lee, Anna M.; Messing, Robert O.

    2011-01-01

    Although drugs of abuse have different chemical structures and interact with different protein targets, all appear to usurp common neuronal systems that regulate reward and motivation. Addiction is a complex disease that is thought to involve drug-induced changes in synaptic plasticity due to alterations in cell signaling, gene transcription, and protein synthesis. Recent evidence suggests that drugs of abuse interact with and change a common network of signaling pathways that include a subset of specific protein kinases. The best studied of these kinases are reviewed here and include extracellular signal-regulated kinase, cAMP-dependent protein kinase, cyclin-dependent protein kinase 5, protein kinase C, calcium/calmodulin-dependent protein kinase II, and Fyn tyrosine kinase. These kinases have been implicated in various aspects of drug addiction including acute drug effects, drug self-administration, withdrawal, reinforcement, sensitization, and tolerance. Identifying protein kinase substrates and signaling pathways that contribute to the addicted state may provide novel approaches for new pharma-cotherapies to treat drug addiction. PMID:18991950

  12. Drugging Membrane Protein Interactions

    PubMed Central

    Yin, Hang; Flynn, Aaron D.

    2016-01-01

    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind the cell to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally “undruggable” regions of membrane proteins, enabling modulation of protein–protein, protein–lipid, and protein–nucleic acid interactions. In this review, we survey the state of the art in high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  13. Manipulating and Visualizing Proteins

    SciTech Connect

    Simon, Horst D.

    2003-12-05

    ProteinShop Gives Researchers a Hands-On Tool for Manipulating, Visualizing Protein Structures. The Human Genome Project and other biological research efforts are creating an avalanche of new data about the chemical makeup and genetic codes of living organisms. But in order to make sense of this raw data, researchers need software tools which let them explore and model data in a more intuitive fashion. With this in mind, researchers at Lawrence Berkeley National Laboratory and the University of California, Davis, have developed ProteinShop, a visualization and modeling program which allows researchers to manipulate protein structures with pinpoint control, guided in large part by their own biological and experimental instincts. Biologists have spent the last half century trying to unravel the ''protein folding problem,'' which refers to the way chains of amino acids physically fold themselves into three-dimensional proteins. This final shape, which resembles a crumpled ribbon or piece of origami, is what determines how the protein functions and translates genetic information. Understanding and modeling this geometrically complex formation is no easy matter. ProteinShop takes a given sequence of amino acids and uses visualization guides to help generate predictions about the secondary structures, identifying alpha helices and flat beta strands, and the coil regions that bind them. Once secondary structures are in place, researchers can twist and turn these pre-configurations until they come up with a number of possible tertiary structure conformations. In turn, these are fed into a computationally intensive optimization procedure that tries to find the final, three-dimensional protein structure. Most importantly, ProteinShop allows users to add human knowledge and intuition to the protein structure prediction process, thus bypassing bad configurations that would otherwise be fruitless for optimization. This saves compute cycles and accelerates the entire process, so

  14. Proteins, fluctuations and complexity

    SciTech Connect

    Frauenfelder, Hans; Chen, Guo; Fenimore, Paul W

    2008-01-01

    Glasses, supercooled liquids, and proteins share common properties, in particular the existence of two different types of fluctuations, {alpha} and {beta}. While the effect of the {alpha} fluctuations on proteins has been known for a few years, the effect of {beta} fluctuations has not been understood. By comparing neutron scattering data on the protein myoglobin with the {beta} fluctuations in the hydration shell measured by dielectric spectroscopy we show that the internal protein motions are slaved to these fluctuations. We also show that there is no 'dynamic transition' in proteins near 200 K. The rapid increase in the mean square displacement with temperature in many neutron scattering experiments is quantitatively predicted by the {beta} fluctuations in the hydration shell.

  15. Structures of membrane proteins

    PubMed Central

    Vinothkumar, Kutti R.; Henderson, Richard

    2010-01-01

    In reviewing the structures of membrane proteins determined up to the end of 2009, we present in words and pictures the most informative examples from each family. We group the structures together according to their function and architecture to provide an overview of the major principles and variations on the most common themes. The first structures, determined 20 years ago, were those of naturally abundant proteins with limited conformational variability, and each membrane protein structure determined was a major landmark. With the advent of complete genome sequences and efficient expression systems, there has been an explosion in the rate of membrane protein structure determination, with many classes represented. New structures are published every month and more than 150 unique membrane protein structures have been determined. This review analyses the reasons for this success, discusses the challenges that still lie ahead, and presents a concise summary of the key achievements with illustrated examples selected from each class. PMID:20667175

  16. Protein sequence databases.

    PubMed

    Apweiler, Rolf; Bairoch, Amos; Wu, Cathy H

    2004-02-01

    A variety of protein sequence databases exist, ranging from simple sequence repositories, which store data with little or no manual intervention in the creation of the records, to expertly curated universal databases that cover all species and in which the original sequence data are enhanced by the manual addition of further information in each sequence record. As the focus of researchers moves from the genome to the proteins encoded by it, these databases will play an even more important role as central comprehensive resources of protein information. Several the leading protein sequence databases are discussed here, with special emphasis on the databases now provided by the Universal Protein Knowledgebase (UniProt) consortium. PMID:15036160

  17. Proteins in unexpected locations.

    PubMed Central

    Smalheiser, N R

    1996-01-01

    Members of all classes of proteins--cytoskeletal components, secreted growth factors, glycolytic enzymes, kinases, transcription factors, chaperones, transmembrane proteins, and extracellular matrix proteins--have been identified in cellular compartments other than their conventional sites of action. Some of these proteins are expressed as distinct compartment-specific isoforms, have novel mechanisms for intercompartmental translocation, have distinct endogenous biological actions within each compartment, and are regulated in a compartment-specific manner as a function of physiologic state. The possibility that many, if not most, proteins have distinct roles in more than one cellular compartment has implications for the evolution of cell organization and may be important for understanding pathological conditions such as Alzheimer's disease and cancer. PMID:8862516

  18. OD-ing on Reality: An Interview with Alex Flinn

    ERIC Educational Resources Information Center

    Lesesne, Teri S.

    2005-01-01

    Alex Flinn discusses her debut novel, Breathing Underwater, which received much critical acclaim. She absolutely felt like her second book was being compared to Breathing Underwater at first. Breaking Point (which was completed before Breathing Underwater was published) was very different in tone. It was darker. The voice was different. The ending…

  19. "Value"ing Children Differently? Migrant Children in Education

    ERIC Educational Resources Information Center

    Devine, Dympna

    2013-01-01

    This paper considers dilemmas around "value" and the "valuing" of children and childhood(s) in schools. I argue that in neo-liberal contexts, processes of children's identity making become aligned with the idea of the corporate citizen--value and worth derived from the capacity to produce, excel, self-regulate as well as…

  20. "RIF"-ing New York City's Schools: Some Afterthoughts

    ERIC Educational Resources Information Center

    New York University Education Quarterly, 1978

    1978-01-01

    Representatives of the New York City Board of Education, the United Federation of Teachers, and the Public Education Association probe the decision making that governed the "Reduction in Force" of 16,000 New York City schoolteachers during the 1975-1977 fiscal crisis. (Editor)

  1. Adult Graduates' Negotiations of Age(ing) and Employability

    ERIC Educational Resources Information Center

    Siivonen, Päivi; Isopahkala-Bouret, Ulpukka

    2016-01-01

    In this article, we will explore Finnish adult graduates' social positioning in relation to age and ageing, and the new discursive framing of employability that is firmly expressed in national as well as in European policy agendas. Age is here understood as a social construction and ageing as a lifelong process. We will analyse our joint interview…

  2. FISH-ing for Genes: Modeling Fluorescence "in situ" Hybridization

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton Buck

    2006-01-01

    Teaching methods of genetic analysis such as fluorescence in situ hybridization (FISH) can be an important part of instructional units in biology, microbiology, and biotechnology. Experience, however, indicates that these topics are difficult for many students. The authors of this article describe how they created an activity that effectively…

  3. Rho’ing in and out of cells

    PubMed Central

    Van den Broeke, Céline; Jacob, Thary; Favoreel, Herman W

    2014-01-01

    Rho GTPases are key regulators of actin and microtubule dynamics and organization. Increasing evidence shows that many viruses have evolved diverse interactions with Rho GTPase signaling and manipulate them for their own benefit. In this review, we discuss how Rho GTPase signaling interferes with many steps in the viral replication cycle, especially entry, replication, and spread. Seen the diversity between viruses, it is not surprising that there is considerable variability in viral interactions with Rho GTPase signaling. However, several largely common effects on Rho GTPases and actin architecture and microtubule dynamics have been reported. For some of these processes, the molecular signaling and biological consequences are well documented while for others we just begin to understand them. A better knowledge and identification of common threads in the different viral interactions with Rho GTPase signaling and their ultimate consequences for virus and host may pave the way toward the development of new antiviral drugs that may target different viruses. PMID:24691164

  4. ADMiER-ing thin but complex fluids

    NASA Astrophysics Data System (ADS)

    McDonnell, Amarin G.; Bhattacharjee, Pradipto K.; Pan, Sharadwata; Hill, David; Danquah, Michael K.; Friend, James R.; Yeo, Leslie Y.; Prabhakar, Ranganathan

    2011-12-01

    The Acoustics Driven Microfluidic Extensional Rheometer (ADMiER) utilises micro litre volumes of liquid, with viscosities as low as that of water, to create valid and observable extensional flows, liquid bridges that pinch off due to capillary forces in this case. ADMiER allows the study fluids that have been beyond conventional methods and also study more subtle fluid properties. We can observe polymeric fluids with solvent viscosities far below those previously testable, accentuating elastic effects. Also, it has enabled the testing of aqueous solutions of living motile particles, which significantly change fluid properties, opening up the potential for diagnostic applications.

  5. Medicine Wheel Imag(in)ings: Exploring Holistic Curriculum Perspectives

    ERIC Educational Resources Information Center

    Kind, Sylvia; Irwin, Rita L.; Grauer, Kit; de Cosson, Alex

    2005-01-01

    Education is longing for a deeper more connected, more inclusive, and more aware way of knowing. One that connects heart and hand and head and does not split knowledge into dualities of thought and being, mind and body, emotion and intellect, but resonates with a wholeness and fullness that engages every part of one's being. Engagement with the…

  6. Music Education Desire(ing): Language, Literacy, and Lieder

    ERIC Educational Resources Information Center

    Gould, Elizabeth

    2009-01-01

    Issues of desire in music education are integral and anathema to the profession. Constituted of and by desire, we bodily engage music emotionally and cognitively; yet references to the body are limited to how it may be better managed in order to produce more satisfactory (desired) sounds, thus disciplining desire as we focus on the content of…

  7. Taking (or Is that "Tech"ing) Back the Future

    ERIC Educational Resources Information Center

    Foster, Forrest C.

    2011-01-01

    Technology has ushered itself into our culture without borders or boundaries. Students and educators have fallen victim to the notion of "information at your fingertips" and "easy access" while taking many things for granted. In the past few years, there have been several articles written about the use of textbooks in the academic library. Most of…

  8. When Hexokinase Gets that NAG-ing Feeling….

    PubMed

    O'Sullivan, David; Kelly, Beth; Pearce, Erika L

    2016-08-01

    Immune cell recognition of bacterial products usually occurs via specific pattern recognition receptors, but new research recently published in Cell by Wolf et al. (2016) demonstrates that the glycolytic enzyme hexokinase can act as an innate immune sensor by binding to bacterial derived N-acetylglucosamine (NAG). PMID:27508867

  9. Function-ing in a World of Motion.

    ERIC Educational Resources Information Center

    Dixon, Juli K.; Glickman, Cynthia L.; Wright, Terri L.; Nimer, Michelle T.

    2000-01-01

    Presents a lesson designed to give teachers the know-how to offer secondary school students opportunities to model real-world phenomena through a variety of functions and construct and draw inferences from tables and graphs summarizing data from these situations. Investigates the roller-coaster questions in a graduate class on methods of teaching…

  10. Chk'ing p53-deficient breast cancers.

    PubMed

    Schoppy, David W; Brown, Eric J

    2012-04-01

    Loss or functional impairment of p53 occurs in many human cancers, and its absence is often associated with a poor response to conventional chemotherapy. Hence, much effort is currently devoted to developing novel treatments for p53-deficient malignancies. One approach is to target pathways that are selectively required for the survival of p53-deficient cancer cells, thus exploiting a synthetic lethal interaction. Previous studies have demonstrated that inhibition of the ataxia telangiectasia and Rad3-related (ATR) and checkpoint kinase 1 (Chk1) pathway in p53-deficient cells can induce such a synthetic lethal outcome. In this issue of the JCI, Ma et al. take these findings a step closer to the clinic by demonstrating that highly specific inhibitors of Chk1 synergize with chemotherapy to stem progression of p53-deficient triple-negative breast cancers in a xenotransplant model of this disease. Together with other recent studies, this report highlights the promise of ATR and Chk1 inhibitors in targeted cancer treatment. PMID:22446183

  11. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1993-01-01

    Proteins account for 50% or more of the dry weight of most living systems and play a crucial role in virtually all biological processes. Since the specific functions of essentially all biological molecules are determined by their three-dimensional structures, it is obvious that a detailed understanding of the structural makeup of a protein is essential to any systematic research pertaining to it. At the present time, protein crystallography has no substitute, it is the only technique available for elucidating the atomic arrangements within complicated biological molecules. Most macromolecules are extremely difficult to crystallize, and many otherwise exciting and promising projects have terminated at the crystal growth stage. There is a pressing need to better understand protein crystal growth, and to develop new techniques that can be used to enhance the size and quality of protein crystals. There are several aspects of microgravity that might be exploited to enhance protein crystal growth. The major factor that might be expected to alter crystal growth processes in space is the elimination of density-driven convective flow. Another factor that can be readily controlled in the absence of gravity is the sedimentation of growing crystal in a gravitational field. Another potential advantage of microgravity for protein crystal growth is the option of doing containerless crystal growth. One can readily understand why the microgravity environment established by Earth-orbiting vehicles is perceived to offer unique opportunities for the protein crystallographer. The near term objectives of the Protein Crystal Growth in a Microgravity Environment (PCG/ME) project is to continue to improve the techniques, procedures, and hardware systems used to grow protein crystals in Earth orbit.

  12. Broad distribution of the multidrug resistance-related vault lung resistance protein in normal human tissues and tumors.

    PubMed

    Izquierdo, M A; Scheffer, G L; Flens, M J; Giaccone, G; Broxterman, H J; Meijer, C J; van der Valk, P; Scheper, R J

    1996-03-01

    Multidrug resistance (MDR) to anticancer drugs is a major cause of treatment failure in cancer. The lung resistance protein LRP is a newly described protein related to MDR in several in vitro models. LRP has been shown to be a strong predictor of poor response to chemotherapy and prognosis in acute myeloid leukemia and in ovarian carcinoma patients. Recently, based on a 57% and 88% amino acid identity with major vault proteins from Dictyostelium discoideum and Rattus norvegicus, respectively, we identified LRP as the human major vault protein, the main component of highly conserved cellular organelles named vaults. We have studied the immunohistochemical expression of LRP in freshly frozen normal human tissues and 174 cancer specimens of 28 tumor types. LRP was broadly distributed in normal and malignant cells, but distinct patterns of expression were noticed. High LRP expression was seen in bronchus, digestive tract, renal proximal tubules, keratinocytes, macrophages, and adrenal cortex whereas varying ing levels were observed in other organs. LRP was detected in all tumor types examined, but its frequency varied, fairly reflecting the chemosensitivity of different cancers. For example, low rates of LRP positivity were seen in testicular cancer, neuroblastoma, and acute myeloid leukemia; intermediate in ovarian cancer; and high in colon, renal, and pancreatic carcinomas. The wide occurrence of LRP in normal and transformed cells in humans, its similar distribution to that of vaults in other species, as well as the high level of conservation among eukaryotic cells of both the amino acid sequence of the major vault protein and the composition and structure of vaults, suggest that vault function is important to eukaryotic cells. PMID:8774142

  13. The centrality of cancer proteins in human protein-protein interaction network: a revisit.

    PubMed

    Xiong, Wei; Xie, Luyu; Zhou, Shuigeng; Liu, Hui; Guan, Jihong

    2014-01-01

    Topological analysis of protein-protein interaction (PPI) networks has been widely applied to the investigation on cancer mechanisms. However, there is still a debate on whether cancer proteins exhibit more topological centrality compared to the other proteins in the human PPI network. To resolve this debate, we first identified four sets of human proteins, and then mapped these proteins into the yeast PPI network by homologous genes. Finally, we compared these proteins' properties in human and yeast PPI networks. Experiments over two real datasets demonstrated that cancer proteins tend to have higher degree and smaller clustering coefficient than non-cancer proteins. Experimental results also validated that cancer proteins have larger betweenness centrality compared to the other proteins on the STRING dataset. However, on the BioGRID dataset, the average betweenness centrality of cancer proteins is larger than that of disease and control proteins, but smaller than that of essential proteins. PMID:24878726

  14. Protein Regulation in Signal Transduction.

    PubMed

    Lee, Michael J; Yaffe, Michael B

    2016-01-01

    SUMMARYCells must respond to a diverse, complex, and ever-changing mix of signals, using a fairly limited set of parts. Changes in protein level, protein localization, protein activity, and protein-protein interactions are critical aspects of signal transduction, allowing cells to respond highly specifically to a nearly limitless set of cues and also to vary the sensitivity, duration, and dynamics of the response. Signal-dependent changes in levels of gene expression and protein synthesis play an important role in regulation of protein levels, whereas posttranslational modifications of proteins regulate their degradation, localization, and functional interactions. Protein ubiquitylation, for example, can direct proteins to the proteasome for degradation or provide a signal that regulates their interactions and/or location within the cell. Similarly, protein phosphorylation by specific kinases is a key mechanism for augmenting protein activity and relaying signals to other proteins that possess domains that recognize the phosphorylated residues. PMID:27252361

  15. Bacterial Ice Crystal Controlling Proteins

    PubMed Central

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  16. Protein Binding Pocket Dynamics.

    PubMed

    Stank, Antonia; Kokh, Daria B; Fuller, Jonathan C; Wade, Rebecca C

    2016-05-17

    The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five

  17. 7 Å Resolution in Protein 2-Dimentional-Crystal X-Ray Diffraction at Linac Coherent Light Source

    SciTech Connect

    Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido; Padeste, Celestino; Hunter, Mark; Zatsepin, Nadia A.; Barty, Anton; Benner, Henry; Boutet, Sebastien; Feld, Geoffrey K.; Hau-Riege, Stefan; Kirian, Rick; Kupitz, Christopher; Messerschmidt, Marc; Ogren, John I.; Pardini, Tommaso; Segelke, Brent; Williams, Garth J.; Spence , John C.; Abela, Rafael; Coleman, Matthew A.; Evans, James E.; Schertler, Gebhard; Frank, Matthias; Li, Xiao-Dan

    2014-06-09

    Membrane proteins arranged as two-dimensional (2D) crystals in the lipid en- vironment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. X-ray diffraction from individual 2D crystals did not represent a suitable investigation tool because of radiation damage. The recent availability of ultrashort pulses from X-ray Free Electron Lasers (X-FELs) has now provided a mean to outrun the damage. Here we report on measurements performed at the LCLS X-FEL on bacteriorhodopsin 2D crystals mounted on a solid support and kept at room temperature. By merg- ing data from about a dozen of single crystal diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 °A, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase of resolution. The presented results pave the way to further X-FEL studies on 2D crystals, which may include pump-probe experiments at subpicosecond time resolution.

  18. PSC: protein surface classification

    PubMed Central

    Tseng, Yan Yuan; Li, Wen-Hsiung

    2012-01-01

    We recently proposed to classify proteins by their functional surfaces. Using the structural attributes of functional surfaces, we inferred the pairwise relationships of proteins and constructed an expandable database of protein surface classification (PSC). As the functional surface(s) of a protein is the local region where the protein performs its function, our classification may reflect the functional relationships among proteins. Currently, PSC contains a library of 1974 surface types that include 25 857 functional surfaces identified from 24 170 bound structures. The search tool in PSC empowers users to explore related surfaces that share similar local structures and core functions. Each functional surface is characterized by structural attributes, which are geometric, physicochemical or evolutionary features. The attributes have been normalized as descriptors and integrated to produce a profile for each functional surface in PSC. In addition, binding ligands are recorded for comparisons among homologs. PSC allows users to exploit related binding surfaces to reveal the changes in functionally important residues on homologs that have led to functional divergence during evolution. The substitutions at the key residues of a spatial pattern may determine the functional evolution of a protein. In PSC (http://pocket.uchicago.edu/psc/), a pool of changes in residues on similar functional surfaces is provided. PMID:22669905

  19. Structure Prediction of Protein Complexes

    NASA Astrophysics Data System (ADS)

    Pierce, Brian; Weng, Zhiping

    Protein-protein interactions are critical for biological function. They directly and indirectly influence the biological systems of which they are a part. Antibodies bind with antigens to detect and stop viruses and other infectious agents. Cell signaling is performed in many cases through the interactions between proteins. Many diseases involve protein-protein interactions on some level, including cancer and prion diseases.

  20. (PCG) Protein Crystal Growth Canavalin

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Canavalin. The major storage protein of leguminous plants and a major source of dietary protein for humans and domestic animals. It is studied in efforts to enhance nutritional value of proteins through protein engineerings. It is isolated from Jack Bean because of it's potential as a nutritional substance. Principal Investigator on STS-26 was Alex McPherson.

  1. Protein Crystal Quality Studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Eddie Snell (standing), Post-Doctoral Fellow the National Research Council (NRC),and Marc Pusey of Marshall Space Flight Center (MSFC) use a reciprocal space mapping diffractometer for marcromolecular crystal quality studies. The diffractometer is used in mapping the structure of marcromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystalized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  2. Protein Crystal Malic Enzyme

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Malic Enzyme is a target protein for drug design because it is a key protein in the life cycle of intestinal parasites. After 2 years of effort on Earth, investigators were unable to produce any crystals that were of high enough quality and for this reason the structure of this important protein could not be determined. Crystals obtained from one STS-50 were of superior quality allowing the structure to be determined. This is just one example why access to space is so vital for these studies. Principal Investigator is Larry DeLucas.

  3. Piezoelectric allostery of protein

    NASA Astrophysics Data System (ADS)

    Ohnuki, Jun; Sato, Takato; Takano, Mitsunori

    2016-07-01

    Allostery is indispensable for a protein to work, where a locally applied stimulus is transmitted to a distant part of the molecule. While the allostery due to chemical stimuli such as ligand binding has long been studied, the growing interest in mechanobiology prompts the study of the mechanically stimulated allostery, the physical mechanism of which has not been established. By molecular dynamics simulation of a motor protein myosin, we found that a locally applied mechanical stimulus induces electrostatic potential change at distant regions, just like the piezoelectricity. This novel allosteric mechanism, "piezoelectric allostery", should be of particularly high value for mechanosensor/transducer proteins.

  4. Emerging fluorescent protein technologies.

    PubMed

    Enterina, Jhon Ralph; Wu, Lanshi; Campbell, Robert E

    2015-08-01

    Fluorescent proteins (FPs), such as the Aequorea jellyfish green FP (GFP), are firmly established as fundamental tools that enable a wide variety of biological studies. Specifically, FPs can serve as versatile genetically encoded markers for tracking proteins, organelles, or whole cells, and as the basis for construction of biosensors that can be used to visualize a growing array of biochemical events in cells and tissues. In this review we will focus on emerging applications of FPs that represent unprecedented new directions for the field. These emerging applications include new strategies for using FPs in biosensing applications, and innovative ways of using FPs to manipulate protein function or gene expression. PMID:26043278

  5. Piezoelectric allostery of protein.

    PubMed

    Ohnuki, Jun; Sato, Takato; Takano, Mitsunori

    2016-07-01

    Allostery is indispensable for a protein to work, where a locally applied stimulus is transmitted to a distant part of the molecule. While the allostery due to chemical stimuli such as ligand binding has long been studied, the growing interest in mechanobiology prompts the study of the mechanically stimulated allostery, the physical mechanism of which has not been established. By molecular dynamics simulation of a motor protein myosin, we found that a locally applied mechanical stimulus induces electrostatic potential change at distant regions, just like the piezoelectricity. This novel allosteric mechanism, "piezoelectric allostery", should be of particularly high value for mechanosensor/transducer proteins. PMID:27575163

  6. Protein crystallography prescreen kit

    DOEpatents

    Segelke, Brent W.; Krupka, Heike I.; Rupp, Bernhard

    2007-10-02

    A kit for prescreening protein concentration for crystallization includes a multiplicity of vials, a multiplicity of pre-selected reagents, and a multiplicity of sample plates. The reagents and a corresponding multiplicity of samples of the protein in solutions of varying concentrations are placed on sample plates. The sample plates containing the reagents and samples are incubated. After incubation the sample plates are examined to determine which of the sample concentrations are too low and which the sample concentrations are too high. The sample concentrations that are optimal for protein crystallization are selected and used.

  7. Protein crystallography prescreen kit

    DOEpatents

    Segelke, Brent W.; Krupka, Heike I.; Rupp, Bernhard

    2005-07-12

    A kit for prescreening protein concentration for crystallization includes a multiplicity of vials, a multiplicity of pre-selected reagents, and a multiplicity of sample plates. The reagents and a corresponding multiplicity of samples of the protein in solutions of varying concentrations are placed on sample plates. The sample plates containing the reagents and samples are incubated. After incubation the sample plates are examined to determine which of the sample concentrations are too low and which the sample concentrations are too high. The sample concentrations that are optimal for protein crystallization are selected and used.

  8. Evolution of proteins.

    NASA Technical Reports Server (NTRS)

    Dayhoff, M. O.

    1971-01-01

    The amino acid sequences of proteins from living organisms are dealt with. The structure of proteins is first discussed; the variation in this structure from one biological group to another is illustrated by the first halves of the sequences of cytochrome c, and a phylogenetic tree is derived from the cytochrome c data. The relative geological times associated with the events of this tree are discussed. Errors which occur in the duplication of cells during the evolutionary process are examined. Particular attention is given to evolution of mutant proteins, globins, ferredoxin, and transfer ribonucleic acids (tRNA's). Finally, a general outline of biological evolution is presented.

  9. Protein based Block Copolymers

    PubMed Central

    Rabotyagova, Olena S.; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    Advances in genetic engineering have led to the synthesis of protein-based block copolymers with control of chemistry and molecular weight, resulting in unique physical and biological properties. The benefits from incorporating peptide blocks into copolymer designs arise from the fundamental properties of proteins to adopt ordered conformations and to undergo self-assembly, providing control over structure formation at various length scales when compared to conventional block copolymers. This review covers the synthesis, structure, assembly, properties, and applications of protein-based block copolymers. PMID:21235251

  10. A Bayesian Estimator of Protein-Protein Association Probabilities

    SciTech Connect

    Gilmore, Jason M.; Auberry, Deanna L.; Sharp, Julia L.; White, Amanda M.; Anderson, Kevin K.; Daly, Don S.

    2008-07-01

    The Bayesian Estimator of Protein-Protein Association Probabilities (BEPro3) is a software tool for estimating probabilities of protein-protein association between bait and prey protein pairs using data from multiple-bait, multiple-replicate, protein pull-down LC-MS assay experiments. BEPro3 is open source software that runs on both Windows XP and Mac OS 10.4 or newer versions, and is freely available from http://www.pnl.gov/statistics/BEPro3.

  11. Interactive protein manipulation

    SciTech Connect

    SNCrivelli@lbl.gov

    2003-07-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures.

  12. Protein Colloidal Aggregation Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    To investigate the pathways and kinetics of protein aggregation to allow accurate predictive modeling of the process and evaluation of potential inhibitors to prevalent diseases including cataract formation, chronic traumatic encephalopathy, Alzheimer's Disease, Parkinson's Disease and others.

  13. Engineered Proteins for Bioelectrochemistry

    NASA Astrophysics Data System (ADS)

    Akram, Muhammad Safwan; Rehman, Jawad Ur; Hall, Elizabeth A. H.

    2014-06-01

    It is only in the past two decades that excellent protein engineering tools have begun to meet parallel advances in materials chemistry, nanofabrication, and electronics. This is revealing scenarios from which synthetic enzymes can emerge, which were previously impossible, as well as interfaces with novel electrode materials. That means the control of the protein structure, electron transport pathway, and electrode surface can usher us into a new era of bioelectrochemistry. This article reviews the principle of electron transfer (ET) and considers how its application at the electrode, within the protein, and at a redox group is directing key advances in the understanding of protein structure to create systems that exhibit better efficiency and unique bioelectrochemistry.

  14. Protein Model Database

    SciTech Connect

    Fidelis, K; Adzhubej, A; Kryshtafovych, A; Daniluk, P

    2005-02-23

    The phenomenal success of the genome sequencing projects reveals the power of completeness in revolutionizing biological science. Currently it is possible to sequence entire organisms at a time, allowing for a systemic rather than fractional view of their organization and the various genome-encoded functions. There is an international plan to move towards a similar goal in the area of protein structure. This will not be achieved by experiment alone, but rather by a combination of efforts in crystallography, NMR spectroscopy, and computational modeling. Only a small fraction of structures are expected to be identified experimentally, the remainder to be modeled. Presently there is no organized infrastructure to critically evaluate and present these data to the biological community. The goal of the Protein Model Database project is to create such infrastructure, including (1) public database of theoretically derived protein structures; (2) reliable annotation of protein model quality, (3) novel structure analysis tools, and (4) access to the highest quality modeling techniques available.

  15. The Pentapeptide Repeat Proteins

    SciTech Connect

    Vetting,M.; Hegde, S.; Fajardo, J.; Fiser, A.; Roderick, S.; Takiff, H.; Blanchard, J.

    2006-01-01

    The Pentapeptide Repeat Protein (PRP) family has over 500 members in the prokaryotic and eukaryotic kingdoms. These proteins are composed of, or contain domains composed of, tandemly repeated amino acid sequences with a consensus sequence of [S, T,A, V][D, N][L, F]-[S, T,R][G]. The biochemical function of the vast majority of PRP family members is unknown. The three-dimensional structure of the first member of the PRP family was determined for the fluoroquinolone resistance protein (MfpA) from Mycobacterium tuberculosis. The structure revealed that the pentapeptide repeats encode the folding of a novel right-handed quadrilateral {beta}-helix. MfpA binds to DNA gyrase and inhibits its activity. The rod-shaped, dimeric protein exhibits remarkable size, shape and electrostatic similarity to DNA.

  16. Untying knots in proteins.

    PubMed

    Sułkowska, Joanna I; Sułkowski, Piotr; Szymczak, Piotr; Cieplak, Marek

    2010-10-13

    A shoelace can be readily untied by pulling its ends rather than its loops. Attempting to untie a native knot in a protein can also succeed or fail depending on where one pulls. However, thermal fluctuations induced by the surrounding water affect conformations stochastically and may add to the uncertainty of the outcome. When the protein is pulled by the termini, the knot can only get tightened, and any attempt at untying results in failure. We show that, by pulling specific amino acids, one may easily retract a terminal segment of the backbone from the knotting loop and untangle the knot. At still other amino acids, the outcome of pulling can go either way. We study the dependence of the untying probability on the way the protein is grasped, the pulling speed, and the temperature. Elucidation of the mechanisms underlying this dependence is critical for a successful experimental realization of protein knot untying. PMID:20857930

  17. Membrane Protein Prediction Methods

    PubMed Central

    Punta, Marco; Forrest, Lucy R.; Bigelow, Henry; Kernytsky, Andrew; Liu, Jinfeng; Rost, Burkhard

    2007-01-01

    We survey computational approaches that tackle membrane protein structure and function prediction. While describing the main ideas that have led to the development of the most relevant and novel methods, we also discuss pitfalls, provide practical hints and highlight the challenges that remain. The methods covered include: sequence alignment, motif search, functional residue identification, transmembrane segment and protein topology predictions, homology and ab initio modeling. Overall, predictions of functional and structural features of membrane proteins are improving, although progress is hampered by the limited amount of high-resolution experimental information available. While predictions of transmembrane segments and protein topology rank among the most accurate methods in computational biology, more attention and effort will be required in the future to ameliorate database search, homology and ab initio modeling. PMID:17367718

  18. Bence-Jones protein - quantitative

    MedlinePlus

    Immunoglobulin light chains - urine; Urine Bence-Jones protein ... Bence-Jones proteins are a part of regular antibodies called light chains. These proteins are not normally in urine. Sometimes, when ...

  19. Protein Nitrogen Determination

    NASA Astrophysics Data System (ADS)

    Nielsen, S. Suzanne

    The protein content of foods can be determined by numerous methods. The Kjeldahl method and the nitrogen combustion (Dumas) method for protein analysis are based on nitrogen determination. Both methods are official for the purposes of nutrition labeling of foods. While the Kjeldahl method has been used widely for over a hundred years, the recent availability of automated instrumentation for the Dumas method in many cases is replacing use of the Kjeldahl method.

  20. The Malignant Protein Puzzle.

    PubMed

    Walker, Lary C; Jucker, Mathias

    2016-01-01

    When most people hear the words malignant and brain, cancer immediately comes to mind. But our authors argue that proteins can be malignant too, and can spread harmfully through the brain in neurodegenerative diseases that include Alzheimer's, Parkinson's, CTE, and ALS. Studying how proteins such as PrP, amyloid beta, tau, and others aggregate and spread, and kill brain cells, represents a crucial new frontier in neuroscience. PMID:27408676

  1. Recombinant Collagenlike Proteins

    NASA Technical Reports Server (NTRS)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  2. Protein conducting nanopores

    NASA Astrophysics Data System (ADS)

    Harsman, Anke; Krüger, Vivien; Bartsch, Philipp; Honigmann, Alf; Schmidt, Oliver; Rao, Sanjana; Meisinger, Christof; Wagner, Richard

    2010-11-01

    About 50% of the cellular proteins have to be transported into or across cellular membranes. This transport is an essential step in the protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma membrane. Almost all proteins of the endosymbiotic organelles chloroplasts and mitochondria are synthesized on cytosolic ribosomes and posttranslationally imported. Genetic, biochemical and biophysical approaches led to rather detailed knowledge on the composition of the translocon-complexes which catalyze the membrane transport of the preproteins. Comprehensive concepts on the targeting and membrane transport of polypeptides emerged, however little detail on the molecular nature and mechanisms of the protein translocation channels comprising nanopores has been achieved. In this paper we will highlight recent developments of the diverse protein translocation systems and focus particularly on the common biophysical properties and functions of the protein conducting nanopores. We also provide a first analysis of the interaction between the genuine protein conducting nanopore Tom40SC as well as a mutant Tom40SC (\\mathrm {S}_{54} \\to E ) containing an additional negative charge at the channel vestibule and one of its native substrates, CoxIV, a mitochondrial targeting peptide. The polypeptide induced a voltage-dependent increase in the frequency of channel closure of Tom40SC corresponding to a voltage-dependent association rate, which was even more pronounced for the Tom40SC S54E mutant. The corresponding dwelltime reflecting association/transport of the peptide could be determined with \\bar {t}_{\\mathrm {off}} \\cong 1.1 ms for the wildtype, whereas the mutant Tom40SC S54E displayed a biphasic dwelltime distribution (\\bar {t}_{\\mathrm {off}}^1 \\cong 0.4 ms \\bar {t}_{\\mathrm {off}}^2 \\cong 4.6 ms).

  3. Cotton and Protein Interactions

    SciTech Connect

    Goheen, Steven C.; Edwards, J. V.; Rayburn, Alfred R.; Gaither, Kari A.; Castro, Nathan J.

    2006-06-30

    The adsorbent properties of important wound fluid proteins and cotton cellulose are reviewed. This review focuses on the adsorption of albumin to cotton-based wound dressings and some chemically modified derivatives targeted for chronic wounds. Adsorption of elastase in the presence of albumin was examined as a model to understand the interactive properties of these wound fluid components with cotton fibers. In the chronic non-healing wound, elastase appears to be over-expressed, and it digests tissue and growth factors, interfering with the normal healing process. Albumin is the most prevalent protein in wound fluid, and in highly to moderately exudative wounds, it may bind significantly to the fibers of wound dressings. Thus, the relative binding properties of both elastase and albumin to wound dressing fibers are of interest in the design of more effective wound dressings. The present work examines the binding of albumin to two different derivatives of cotton, and quantifies the elastase binding to the same derivatives following exposure of albumin to the fiber surface. An HPLC adsorption technique was employed coupled with a colorimetric enzyme assay to quantify the relative binding properties of albumin and elastase to cotton. The results of wound protein binding are discussed in relation to the porosity and surface chemistry interactions of cotton and wound proteins. Studies are directed to understanding the implications of protein adsorption phenomena in terms of fiber-protein models that have implications for rationally designing dressings for chronic wounds.

  4. Stretching to Understand Proteins

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek

    2007-03-01

    Mechanical stretching of single proteins has been studied experimentally for about 50 proteins yielding a variety of force patterns and values of the peak forces. We have performed a theoretical survey of 7749 proteins of known native structure and map out the landscape of possible dynamical behaviors unders stretching at constant speed. The model used is constructed based on the native geometry. It is solved by methods of molecular dynamics and validated by comparing the theoretical predictions to experimental results. We characterize the distribution of peak forces and on correlations with the system size and with the structure classification as characterized by the CATH scheme. We identify proteins with the biggest forces and show that they belong to few topology classes. We determine which protein segments act as mechanical clamps and show that, in most cases, they correspond to long stretches of parallel beta-strands, but other mechanisms are also possible. We then consider stretching by fluid flows. We show that unfolding induced by a uniform flow shows a richer behavior than that in the force clamp. The dynamics of unfolding is found to depend strongly on the selection of the amino acid, usually one of the termini, which is anchored. These features offer potentially wider diagnostic tools to investigate structure of proteins compared to experiments based on the atomic force microscopy.

  5. Fast protein folding kinetics

    PubMed Central

    Gelman, Hannah; Gruebele, Martin

    2014-01-01

    Fast folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast folding proteins has provided insight into the mechanisms which allow some proteins to find their native conformation well less than 1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even “slow” folding processes: fast folders are small, relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast folding proteins and provides an overview of the major findings of fast folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general as well as some work that is left to do. PMID:24641816

  6. Use of protein-protein interactions in affinity chromatography.

    PubMed

    Muronetz, V I; Sholukh, M; Korpela, T

    2001-10-30

    Biospecific recognition between proteins is a phenomenon that can be exploited for designing affinity-chromatographic purification systems for proteins. In principle, the approach is straightforward, and there are usually many alternative ways, since a protein can be always found which binds specifically enough to the desired protein. Routine immunoaffinity chromatography utilizes the recognition of antigenic epitopes by antibodies. However, forces involved in protein-protein interactions as well the forces keeping the three-dimensional structures of proteins intact are complicated, and proteins are easily unfolded by various factors with unpredictable results. Because of this and because of the generally high association strength between proteins, the correct adjustment of binding forces between an immobilized protein and the protein to be purified as well as the release of bound proteins in biologically active form from affinity complexes are the main problem. Affinity systems involving interactions like enzyme-enzyme, subunit-oligomer, protein-antibody, protein-chaperone and the specific features involved in each case are presented as examples. This article also aims to sketch prospects for further development of the use of protein-protein interactions for the purification of proteins. PMID:11694271

  7. Protein crystal growth in space

    NASA Technical Reports Server (NTRS)

    Bugg, C. E.; Clifford, D. W.

    1987-01-01

    The advantages of protein crystallization in space, and the applications of protein crystallography to drug design, protein engineering, and the design of synthetic vaccines are examined. The steps involved in using protein crystallography to determine the three-dimensional structure of a protein are discussed. The growth chamber design and the hand-held apparatus developed for protein crystal growth by vapor diffusion techniques (hanging-drop method) are described; the experimental data from the four Shuttle missions are utilized to develop hardware for protein crystal growth in space and to evaluate the effects of gravity on protein crystal growth.

  8. Multifunctional protein: cardiac ankyrin repeat protein*

    PubMed Central

    Zhang, Na; Xie, Xiao-jie; Wang, Jian-an

    2016-01-01

    Cardiac ankyrin repeat protein (CARP) not only serves as an important component of muscle sarcomere in the cytoplasm, but also acts as a transcription co-factor in the nucleus. Previous studies have demonstrated that CARP is up-regulated in some cardiovascular disorders and muscle diseases; however, its role in these diseases remains controversial now. In this review, we will discuss the continued progress in the research related to CARP, including its discovery, structure, and the role it plays in cardiac development and heart diseases. PMID:27143260

  9. Bioinformatics and Moonlighting Proteins.

    PubMed

    Hernández, Sergio; Franco, Luís; Calvo, Alejandra; Ferragut, Gabriela; Hermoso, Antoni; Amela, Isaac; Gómez, Antonio; Querol, Enrique; Cedano, Juan

    2015-01-01

    Multitasking or moonlighting is the capability of some proteins to execute two or more biochemical functions. Usually, moonlighting proteins are experimentally revealed by serendipity. For this reason, it would be helpful that Bioinformatics could predict this multifunctionality, especially because of the large amounts of sequences from genome projects. In the present work, we analyze and describe several approaches that use sequences, structures, interactomics, and current bioinformatics algorithms and programs to try to overcome this problem. Among these approaches are (a) remote homology searches using Psi-Blast, (b) detection of functional motifs and domains, (c) analysis of data from protein-protein interaction databases (PPIs), (d) match the query protein sequence to 3D databases (i.e., algorithms as PISITE), and (e) mutation correlation analysis between amino acids by algorithms as MISTIC. Programs designed to identify functional motif/domains detect mainly the canonical function but usually fail in the detection of the moonlighting one, Pfam and ProDom being the best methods. Remote homology search by Psi-Blast combined with data from interactomics databases (PPIs) has the best performance. Structural information and mutation correlation analysis can help us to map the functional sites. Mutation correlation analysis can only be used in very specific situations - it requires the existence of multialigned family protein sequences - but can suggest how the evolutionary process of second function acquisition took place. The multitasking protein database MultitaskProtDB (http://wallace.uab.es/multitask/), previously published by our group, has been used as a benchmark for the all of the analyses. PMID:26157797

  10. Self-Assembling Protein Microarrays

    NASA Astrophysics Data System (ADS)

    Ramachandran, Niroshan; Hainsworth, Eugenie; Bhullar, Bhupinder; Eisenstein, Samuel; Rosen, Benjamin; Lau, Albert Y.; C. Walter, Johannes; LaBaer, Joshua

    2004-07-01

    Protein microarrays provide a powerful tool for the study of protein function. However, they are not widely used, in part because of the challenges in producing proteins to spot on the arrays. We generated protein microarrays by printing complementary DNAs onto glass slides and then translating target proteins with mammalian reticulocyte lysate. Epitope tags fused to the proteins allowed them to be immobilized in situ. This obviated the need to purify proteins, avoided protein stability problems during storage, and captured sufficient protein for functional studies. We used the technology to map pairwise interactions among 29 human DNA replication initiation proteins, recapitulate the regulation of Cdt1 binding to select replication proteins, and map its geminin-binding domain.

  11. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2001-07-03

    The present invention relates to purine analogs that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such purine analogs to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  12. Benchtop Detection of Proteins

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Varaljay, Vanessa

    2007-01-01

    A process, and a benchtop-scale apparatus for implementing the process, have been developed to detect proteins associated with specific microbes in water. The process and apparatus may also be useful for detection of proteins in other, more complex liquids. There may be numerous potential applications, including monitoring lakes and streams for contamination, testing of blood and other bodily fluids in medical laboratories, and testing for microbial contamination of liquids in restaurants and industrial food-processing facilities. A sample can be prepared and analyzed by use of this process and apparatus within minutes, whereas an equivalent analysis performed by use of other processes and equipment can often take hours to days. The process begins with the conjugation of near-infrared-fluorescent dyes to antibodies that are specific to a particular protein. Initially, the research has focused on using near-infrared dyes to detect antigens or associated proteins in solution, which has proven successful vs. microbial cells, and streamlining the technique in use for surface protein detection on microbes would theoretically render similar results. However, it is noted that additional work is needed to transition protein-based techniques to microbial cell detection. Consequently, multiple such dye/antibody pairs could be prepared to enable detection of multiple selected microbial species, using a different dye for each species. When excited by near-infrared light of a suitable wavelength, each dye fluoresces at a unique longer wavelength that differs from those of the other dyes, enabling discrimination among the various species. In initial tests, the dye/antibody pairs are mixed into a solution suspected of containing the selected proteins, causing the binding of the dye/antibody pairs to such suspect proteins that may be present. The solution is then run through a microcentrifuge that includes a membrane that acts as a filter in that it retains the dye/antibody/protein

  13. Solid State NMR and Protein-Protein Interactions in Membranes

    PubMed Central

    Miao, Yimin; Cross, Timothy A.

    2013-01-01

    Solid state NMR spectroscopy has evolved rapidly in recent years into an excellent tool for the characterization of membrane proteins and their complexes. In the past few years it has also become clear that the structure of membrane proteins, especially helical membrane proteins is determined, in part, by the membrane environment. Therefore, the modeling of this environment by a liquid crystalline lipid bilayer for solid state NMR has generated a unique tool for the characterization of native conformational states, local and global dynamics, and high resolution structure for these proteins. Protein-protein interactions can also benefit from this solid state NMR capability to characterize membrane proteins in a native-like environment. These complexes take the form of oligomeric structures and hetero-protein interactions both with water soluble proteins and other membrane proteins. PMID:24034903

  14. Solid state NMR and protein-protein interactions in membranes.

    PubMed

    Miao, Yimin; Cross, Timothy A

    2013-12-01

    Solid state NMR spectroscopy has evolved rapidly in recent years into an excellent tool for the characterization of membrane proteins and their complexes. In the past few years it has also become clear that the structure of membrane proteins, especially helical membrane proteins is determined, in part, by the membrane environment. Therefore, the modeling of this environment by a liquid crystalline lipid bilayer for solid state NMR has generated a unique tool for the characterization of native conformational states, local and global dynamics, and high-resolution structure for these proteins. Protein-protein interactions can also benefit from this solid state NMR capability to characterize membrane proteins in a native-like environment. These complexes take the form of oligomeric structures and hetero-protein interactions both with water-soluble proteins and other membrane proteins. PMID:24034903

  15. The detection of DNA-binding proteins by protein blotting.

    PubMed Central

    Bowen, B; Steinberg, J; Laemmli, U K; Weintraub, H

    1980-01-01

    A method, called "protein blotting," for the detection of DNA-binding proteins is described. Proteins are separated on an SDA-polyacrylamide gel. The gel is sandwiched between 2 nitrocellulose filters and the proteins allowed to diffuse out of the gel and onto the filters. The proteins are tightly bound to each filter, producing a replica of the original gel pattern. The replica is used to detect DNA-binding proteins, RNA-binding proteins or histone-binding proteins by incubation of the filter with [32P]DNA, [125I]RNA, or [125I] histone. Evidence is also presented that specific protein-DNA interactions may be detected by this technique; under appropriate conditions, the lac repressor binds only to DNA containing the lac operator. Strategies for the detection of specific protein-DNA interactions are discussed. Images PMID:6243775

  16. Histophilus somni Surface Proteins.

    PubMed

    Corbeil, Lynette B

    2016-01-01

    The pathogen surface is usually the first site of interaction with the host. Histophilus somni was earlier thought to only have an outer membrane on its surface. Now it is known that the surface is composed of many virulence factors, including outer membrane proteins, lipooligosaccharide or endotoxin, a fibrillar network, and an exopolysaccharide. Outer membrane blebs, endotoxin, the fibrillar network, and the exopolysaccharide are also shed from the surface. This review will focus on the surface proteins of this pathogen that may colonize the mucosal surface of ruminants as a commensal or may cause pneumonia, septicemia, myocarditis, thrombotic meningoencephalitis, arthritis, and/or abortion. The major outer membrane protein has been well studied. Since its size and epitopes vary from strain to strain, it may be useful for typing strains. Iron-regulated OMPs have also received much attention because of their role in iron uptake for in vivo growth of H. somni. Other OMPs may be protective, based on passive immunization with monospecific antibodies and active immunization experiments. The surface and shed fibrillar network has been shown to be an immunoglobulin-binding protein in that it binds bovine IgG2 by the Fc portion. Two repeat domains (DR1 and DR2) have cytotoxic Fic motifs. Vaccine studies with recombinant DR2 are promising. Studies of the bacterial genome as well as comparison of surface proteins of different strains from the various H. somni syndromes and carrier states will be discussed and have provided much insight into pathogenesis and protection. PMID:26728061

  17. Plant protein kinase substrates identification using protein microarrays.

    PubMed

    Ma, Shisong; Dinesh-Kumar, Savithramma P

    2015-01-01

    Protein kinases regulate signaling pathways by phosphorylating their targets. They play critical roles in plant signaling networks. Although many important protein kinases have been identified in plants, their substrates are largely unknown. We have developed and produced plant protein microarrays with more than 15,000 purified plant proteins. Here, we describe a detailed protocol to use these microarrays to identify plant protein kinase substrates via in vitro phosphorylation assays on these arrays. PMID:25930701

  18. How Many Protein-Protein Interactions Types Exist in Nature?

    PubMed Central

    Mitra, Pralay; Zhang, Yang

    2012-01-01

    Protein quaternary structure universe” refers to the ensemble of all protein-protein complexes across all organisms in nature. The number of quaternary folds thus corresponds to the number of ways proteins physically interact with other proteins. This study focuses on answering two basic questions: Whether the number of protein-protein interactions is limited and, if yes, how many different quaternary folds exist in nature. By all-to-all sequence and structure comparisons, we grouped the protein complexes in the protein data bank (PDB) into 3,629 families and 1,761 folds. A statistical model was introduced to obtain the quantitative relation between the numbers of quaternary families and quaternary folds in nature. The total number of possible protein-protein interactions was estimated around 4,000, which indicates that the current protein repository contains only 42% of quaternary folds in nature and a full coverage needs approximately a quarter century of experimental effort. The results have important implications to the protein complex structural modeling and the structure genomics of protein-protein interactions. PMID:22719985

  19. How many protein-protein interactions types exist in nature?

    PubMed

    Garma, Leonardo; Mukherjee, Srayanta; Mitra, Pralay; Zhang, Yang

    2012-01-01

    "Protein quaternary structure universe" refers to the ensemble of all protein-protein complexes across all organisms in nature. The number of quaternary folds thus corresponds to the number of ways proteins physically interact with other proteins. This study focuses on answering two basic questions: Whether the number of protein-protein interactions is limited and, if yes, how many different quaternary folds exist in nature. By all-to-all sequence and structure comparisons, we grouped the protein complexes in the protein data bank (PDB) into 3,629 families and 1,761 folds. A statistical model was introduced to obtain the quantitative relation between the numbers of quaternary families and quaternary folds in nature. The total number of possible protein-protein interactions was estimated around 4,000, which indicates that the current protein repository contains only 42% of quaternary folds in nature and a full coverage needs approximately a quarter century of experimental effort. The results have important implications to the protein complex structural modeling and the structure genomics of protein-protein interactions. PMID:22719985

  20. Computational drug design targeting protein-protein interactions.

    PubMed

    Bienstock, Rachelle J

    2012-01-01

    Novel discoveries in molecular disease pathways within the cell, combined with increasing information regarding protein binding partners has lead to a new approach in drug discovery. There is interest in designing drugs to modulate protein-protein interactions as opposed to solely targeting the catalytic active site within a single enzyme or protein. There are many challenges in this new approach to drug discovery, particularly since the protein-protein interface has a larger surface area, can comprise a discontinuous epitope, and is more amorphous and less well defined than the typical drug design target, a small contained enzyme-binding pocket. Computational methods to predict modes of protein-protein interaction, as well as protein interface hot spots, have garnered significant interest, in order to facilitate the development of drugs to successfully disrupt and inhibit protein-protein interactions. This review summarizes some current methods available for computational protein-protein docking, as well as tabulating some examples of the successful design of antagonists and small molecule inhibitors for protein-protein interactions. Several of these drugs are now beginning to appear in the clinic. PMID:22316151

  1. Advanced protein formulations

    PubMed Central

    Wang, Wei

    2015-01-01

    It is well recognized that protein product development is far more challenging than that for small-molecule drugs. The major challenges include inherent sensitivity to different types of stresses during the drug product manufacturing process, high rate of physical and chemical degradation during long-term storage, and enhanced aggregation and/or viscosity at high protein concentrations. In the past decade, many novel formulation concepts and technologies have been or are being developed to address these product development challenges for proteins. These concepts and technologies include use of uncommon/combination of formulation stabilizers, conjugation or fusion with potential stabilizers, site-specific mutagenesis, and preparation of nontraditional types of dosage forms—semiaqueous solutions, nonfreeze-dried solid formulations, suspensions, and other emerging concepts. No one technology appears to be mature, ideal, and/or adequate to address all the challenges. These gaps will likely remain in the foreseeable future and need significant efforts for ultimate resolution. PMID:25858529

  2. Thermodynamics of Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Osborne, Kenneth L.; Barz, Bogdan; Bachmann, Michael; Strodel, Birgit

    Amyloid protein aggregation characterizes many neurodegenerative disorders, including Alzheimer's, Parkinson's, and Creutz- feldt-Jakob disease. Evidence suggests that amyloid aggregates may share similar aggregation pathways, implying simulation of full-length amyloid proteins is not necessary for understanding amyloid formation. In this study we simulate GNNQQNY, the N-terminal prion-determining domain of the yeast protein Sup35 to investigate the thermodynamics of structural transitions during aggregation. We use a coarse-grained model with replica-exchange molecular dynamics to investigate the association of 3-, 6-, and 12-chain GNNQQNY systems and we determine the aggregation pathway by studying aggregation states of GN- NQQNY. We find that the aggregation of the hydrophilic GNNQQNY sequence is mainly driven by H-bond formation, leading to the formation of /3-sheets from the very beginning of the assembly process. Condensation (aggregation) and ordering take place simultaneously, which is underpinned by the occurrence of a single heat capacity peak only.

  3. Collapse transition in proteins.

    PubMed

    Ziv, Guy; Thirumalai, D; Haran, Gilad

    2009-01-01

    The coil-globule transition, a tenet of the physics of polymers, has been identified in recent years as an important unresolved aspect of the initial stages of the folding of proteins. We describe the basics of the collapse transition, starting with homopolymers and continuing with proteins. Studies of denatured-state collapse under equilibrium are then presented. An emphasis is placed on single-molecule fluorescence experiments, which are particularly useful for measuring properties of the denatured state even under conditions of coexistence with the folded state. Attempts to understand the dynamics of collapse, both theoretically and experimentally, are then described. Only an upper limit for the rate of collapse has been obtained so far. Improvements in experimental and theoretical methodology are likely to continue to push our understanding of the importance of the denatured-state thermodynamics and dynamics for protein folding in the coming years. PMID:19081910

  4. Polarizable protein packing.

    PubMed

    Ng, Albert H; Snow, Christopher D

    2011-05-01

    To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full energy while maintaining tractability. We represent the polarizable packing problem for protein G as a hypergraph and solve for optimal rotamers with the FASTER combinatorial optimization algorithm. These approximate energy models can be improved to high accuracy [root mean square deviation (rmsd) < 1 kJ mol(-1)] via ridge regression. The resulting trained approximations are used to efficiently identify new, low-energy solutions. The approach is general and should allow combinatorial optimization of other many-body problems. PMID:21264879

  5. Matricellular proteins and biomaterials

    PubMed Central

    Morris, Aaron H.; Kyriakides, Themis R.

    2014-01-01

    Biomaterials are essential to modern medicine as components of reconstructive implants, implantable sensors, and vehicles for localized drug delivery. Advances in biomaterials have led to progression from simply making implants that are nontoxic to making implants that are specifically designed to elicit particular functions within the host. The interaction of implants and the extracellular matrix during the foreign body response is a growing area of concern for the field of biomaterials, because it can lead to implant failure. Expression of matricellular proteins is modulated during the foreign body response and these proteins interact with biomaterials. The design of biomaterials to specifically alter the levels of matricellular proteins surrounding implants provides a new avenue for the design and fabrication of biomimetic biomaterials. PMID:24657843

  6. Electron transfer in proteins.

    PubMed

    Gray, H B; Winkler, J R

    1996-01-01

    Electron-transfer (ET) reactions are key steps in a diverse array of biological transformations ranging from photosynthesis to aerobic respiration. A powerful theoretical formalism has been developed that describes ET rates in terms of two parameters: the nuclear reorganization energy (lambda) and the electronic-coupling strength (HAB). Studies of ET reactions in ruthenium-modified proteins have probed lambda and HAB in several metalloproteins (cytochrome c, myoglobin, azurin). This work has shown that protein reorganization energies are sensitive to the medium surrounding the redox sites and that an aqueous environment, in particular, leads to large reorganization energies. Analyses of electronic-coupling strengths suggest that the efficiency of long-range ET depends on the protein secondary structure: beta sheets appear to mediate coupling more efficiently than alpha-helical structures, and hydrogen bonds play a critical role in both. PMID:8811189

  7. Protein Crystal Serum Albumin

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As the most abundant protein in the circulatory system albumin contributes 80% to colloid osmotic blood pressure. Albumin is also chiefly responsible for the maintenance of blood pH. It is located in every tissue and bodily secretion, with extracellular protein comprising 60% of total albumin. Perhaps the most outstanding property of albumin is its ability to bind reversibly to an incredible variety of ligands. It is widely accepted in the pharmaceutical industry that the overall distribution, metabolism, and efficiency of many drugs are rendered ineffective because of their unusually high affinity for this abundant protein. An understanding of the chemistry of the various classes of pharmaceutical interactions with albumin can suggest new approaches to drug therapy and design. Principal Investigator: Dan Carter/New Century Pharmaceuticals

  8. Protein crystallization studies

    NASA Technical Reports Server (NTRS)

    Lyne, James Evans

    1996-01-01

    The Structural Biology laboratory at NASA Marshall Spaceflight Center uses x-ray crystallographic techniques to conduct research into the three-dimensional structure of a wide variety of proteins. A major effort in the laboratory involves an ongoing study of human serum albumin (the principal protein in human plasma) and its interaction with various endogenous substances and pharmaceutical agents. Another focus is on antigenic and functional proteins from several pathogenic organisms including the human immunodeficiency virus (HIV) and the widespread parasitic genus, Schistosoma. My efforts this summer have been twofold: first, to identify clinically significant drug interactions involving albumin binding displacement and to initiate studies of the three-dimensional structure of albumin complexed with these agents, and secondly, to establish collaborative efforts to extend the lab's work on human pathogens.

  9. New MAPS for misfolded proteins.

    PubMed

    Volkmar, Norbert; Fenech, Emma; Christianson, John C

    2016-06-28

    Clearing misfolded proteins from the cytoplasm is essential to maintain cellular homeostasis. Now, a parallel clearance system is described that uses the deubiquitylase USP19 to enable secretion of misfolded cytoplasmic proteins when conventional proteasomal degradation is compromised. Misfolding-associated protein secretion (MAPS) has important implications for protein quality control and prion-like transmission. PMID:27350445

  10. SOY PROTEIN NANOPARTICLES AND NANOCOMPOSITES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy protein isolate (SPI) is obtained from soybean by removing soybean oil and soy carbohydrates. SPI contains more than 90% protein. Structurally, SPI is a globular protein and its aggregates in water consist of sphere-like protein particles. The number average aggregate size of SPI at pH=5.2 is...

  11. FLOW BEHAVIOR OF PROTEIN BLENDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blending proteins can increase textural strength or enhance taste or mouth feel, such as blending soy with whey to improve taste. In this study, we measured the viscosity of various combinations of six proteins (whey protein isolates, calcium caseinate, soy protein isolates, wheat gluten, egg album...

  12. Bioinformatics and Moonlighting Proteins

    PubMed Central

    Hernández, Sergio; Franco, Luís; Calvo, Alejandra; Ferragut, Gabriela; Hermoso, Antoni; Amela, Isaac; Gómez, Antonio; Querol, Enrique; Cedano, Juan

    2015-01-01

    Multitasking or moonlighting is the capability of some proteins to execute two or more biochemical functions. Usually, moonlighting proteins are experimentally revealed by serendipity. For this reason, it would be helpful that Bioinformatics could predict this multifunctionality, especially because of the large amounts of sequences from genome projects. In the present work, we analyze and describe several approaches that use sequences, structures, interactomics, and current bioinformatics algorithms and programs to try to overcome this problem. Among these approaches are (a) remote homology searches using Psi-Blast, (b) detection of functional motifs and domains, (c) analysis of data from protein–protein interaction databases (PPIs), (d) match the query protein sequence to 3D databases (i.e., algorithms as PISITE), and (e) mutation correlation analysis between amino acids by algorithms as MISTIC. Programs designed to identify functional motif/domains detect mainly the canonical function but usually fail in the detection of the moonlighting one, Pfam and ProDom being the best methods. Remote homology search by Psi-Blast combined with data from interactomics databases (PPIs) has the best performance. Structural information and mutation correlation analysis can help us to map the functional sites. Mutation correlation analysis can only be used in very specific situations – it requires the existence of multialigned family protein sequences – but can suggest how the evolutionary process of second function acquisition took place. The multitasking protein database MultitaskProtDB (http://wallace.uab.es/multitask/), previously published by our group, has been used as a benchmark for the all of the analyses. PMID:26157797

  13. Modeling Mercury in Proteins.

    PubMed

    Parks, J M; Smith, J C

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively nontoxic, other forms such as Hg(2+) and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg(2+) can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg(2+) to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed molecular picture and circumvent issues associated with toxicity. Here, we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intraprotein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand-binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confer mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multiscale model of environmental mercury cycling. PMID:27497164

  14. Epistasis in protein evolution.

    PubMed

    Starr, Tyler N; Thornton, Joseph W

    2016-07-01

    The structure, function, and evolution of proteins depend on physical and genetic interactions among amino acids. Recent studies have used new strategies to explore the prevalence, biochemical mechanisms, and evolutionary implications of these interactions-called epistasis-within proteins. Here we describe an emerging picture of pervasive epistasis in which the physical and biological effects of mutations change over the course of evolution in a lineage-specific fashion. Epistasis can restrict the trajectories available to an evolving protein or open new paths to sequences and functions that would otherwise have been inaccessible. We describe two broad classes of epistatic interactions, which arise from different physical mechanisms and have different effects on evolutionary processes. Specific epistasis-in which one mutation influences the phenotypic effect of few other mutations-is caused by direct and indirect physical interactions between mutations, which nonadditively change the protein's physical properties, such as conformation, stability, or affinity for ligands. In contrast, nonspecific epistasis describes mutations that modify the effect of many others; these typically behave additively with respect to the physical properties of a protein but exhibit epistasis because of a nonlinear relationship between the physical properties and their biological effects, such as function or fitness. Both types of interaction are rampant, but specific epistasis has stronger effects on the rate and outcomes of evolution, because it imposes stricter constraints and modulates evolutionary potential more dramatically; it therefore makes evolution more contingent on low-probability historical events and leaves stronger marks on the sequences, structures, and functions of protein families. PMID:26833806

  15. Single-cell proteins

    SciTech Connect

    Litchfield, J.H.

    1983-02-11

    Both photosynthetic and nonphotosynthetic microorganisms, grown on various carbon and energy sources, are used in fermentation processes for the production of single-cell proteins. Commercial-scale production has been limited to two algal processes, one bacterial process, and several yeast and fungal processes. High capital and operating costs and the need for extensive nutritional and toxicological assessments have limited the development and commercialization of new processes. Any increase in commercial-scale production appears to be limited to those regions of the world where low-cost carbon and energy sources are available and conventional animal feedstuff proteins, such as soybean meal or fish meal, are in short supply. (Refs. 59).

  16. Protein-based ferrogels.

    PubMed

    Mody, Puja; Hart, Cassidy; Romano, Siena; El-Magbri, Mariam; Esson, Moira M; Ibeh, Trisha; Knowlton, Elizabeth D; Zhang, Ming; Wagner, Michael J; Hartings, Matthew R

    2016-06-01

    We present a novel synthesis in which hemoglobin and Fe(2+) react, in the presence of KNO3 and KOH, to produce protein microgels that contain magnetic iron oxide nanoparticles. The synthesis results in microgels with polymer properties (denaturing and glass transition temperatures) that are consistent with the dried protein. The iron oxide nanoparticles that exhibit an average diameter of 22nm, are ferrimagnetic, and display properties consistent with Fe3O4. The multiple functional capabilities displayed by these materials: biocompatibility, magnetism, dye uptake and controlled release, and other properties archetypal of hydrogels, will make the magnetic hydrogels attractive for a number of biomedical applications. PMID:26901627

  17. Late embryogenesis abundant proteins

    PubMed Central

    Olvera-Carrillo, Yadira; Reyes, José Luis

    2011-01-01

    Late Embryogenesis Abundant (LEA) proteins accumulate at the onset of seed desiccation and in response to water deficit in vegetative plant tissues. The typical LEA proteins are highly hydrophilic and intrinsically unstructured. They have been classified in different families, each one showing distinctive conserved motifs. In this manuscript we present and discuss some of the recent findings regarding their role in plant adaptation to water deficit, as well as those concerning to their possible function, and how it can be related to their intrinsic structural flexibility. PMID:21447997

  18. Congenital protein hypoglycosylation diseases

    PubMed Central

    Sparks, Susan E

    2012-01-01

    Glycosylation is an essential process by which sugars are attached to proteins and lipids. Complete lack of glycosylation is not compatible with life. Because of the widespread function of glycosylation, inherited disorders of glycosylation are multisystemic. Since the identification of the first defect on N-linked glycosylation in the 1980s, there are over 40 different congenital protein hypoglycosylation diseases. This review will include defects of N-linked glycosylation, O-linked glycosylation and disorders of combined N- and O-linked glycosylation. PMID:23776380

  19. Lipid-transfer proteins.

    PubMed

    Ng, Tzi Bun; Cheung, Randy Chi Fai; Wong, Jack Ho; Ye, Xiujuan

    2012-01-01

    Lipid-transfer proteins (LTPs) are basic proteins found in abundance in higher plants. LTPs play lots of roles in plants such as participation in cutin formation, embryogenesis, defense reactions against phytopathogens, symbiosis, and the adaptation of plants to various environmental conditions. In addition, LTPs from field mustard and Chinese daffodil exhibit antiproliferative activity against human cancer cells. LTPs from chili pepper and coffee manifest inhibitory activity against fungi pathogenic to humans such as Candida species. The intent of this article is to review LTPs in the plant kingdom. PMID:23193591

  20. DELIVERY OF THERAPEUTIC PROTEINS

    PubMed Central

    Pisal, Dipak S.; Kosloski, Matthew P.; Balu-Iyer, Sathy V.

    2009-01-01

    The safety and efficacy of protein therapeutics are limited by three interrelated pharmaceutical issues, in vitro and in vivo instability, immunogenicity and shorter half-lives. Novel drug modifications for overcoming these issues are under investigation and include covalent attachment of poly(ethylene glycol) (PEG), polysialic acid, or glycolic acid, as well as developing new formulations containing nanoparticulate or colloidal systems (e.g. liposomes, polymeric microspheres, polymeric nanoparticles). Such strategies have the potential to develop as next generation protein therapeutics. This review includes a general discussion on these delivery approaches. PMID:20049941

  1. Conformation Distributions in Adsorbed Proteins.

    NASA Astrophysics Data System (ADS)

    Meuse, Curtis W.; Hubbard, Joseph B.; Vrettos, John S.; Smith, Jackson R.; Cicerone, Marcus T.

    2007-03-01

    While the structural basis of protein function is well understood in the biopharmaceutical and biotechnology industries, few methods for the characterization and comparison of protein conformation distributions are available. New methods capable of measuring the stability of protein conformations and the integrity of protein-protein, protein-ligand and protein-surface interactions both in solution and on surfaces are needed to help the development of protein-based products. We are developing infrared spectroscopy methods for the characterization and comparison of molecular conformation distributions in monolayers and in solutions. We have extracted an order parameter describing the orientational and conformational variations of protein functional groups around the average molecular values from a single polarized spectrum. We will discuss the development of these methods and compare them to amide hydrogen/deuterium exchange methods for albumin in solution and on different polymer surfaces to show that our order parameter is related to protein stability.

  2. Extreme multifunctional proteins identified from a human protein interaction network

    PubMed Central

    Chapple, Charles E.; Robisson, Benoit; Spinelli, Lionel; Guien, Céline; Becker, Emmanuelle; Brun, Christine

    2015-01-01

    Moonlighting proteins are a subclass of multifunctional proteins whose functions are unrelated. Although they may play important roles in cells, there has been no large-scale method to identify them, nor any effort to characterize them as a group. Here, we propose the first method for the identification of ‘extreme multifunctional' proteins from an interactome as a first step to characterize moonlighting proteins. By combining network topological information with protein annotations, we identify 430 extreme multifunctional proteins (3% of the human interactome). We show that the candidates form a distinct sub-group of proteins, characterized by specific features, which form a signature of extreme multifunctionality. Overall, extreme multifunctional proteins are enriched in linear motifs and less intrinsically disordered than network hubs. We also provide MoonDB, a database containing information on all the candidates identified in the analysis and a set of manually curated human moonlighting proteins. PMID:26054620

  3. Protein-protein interactions: methods for detection and analysis.

    PubMed Central

    Phizicky, E M; Fields, S

    1995-01-01

    The function and activity of a protein are often modulated by other proteins with which it interacts. This review is intended as a practical guide to the analysis of such protein-protein interactions. We discuss biochemical methods such as protein affinity chromatography, affinity blotting, coimmunoprecipitation, and cross-linking; molecular biological methods such as protein probing, the two-hybrid system, and phage display: and genetic methods such as the isolation of extragenic suppressors, synthetic mutants, and unlinked noncomplementing mutants. We next describe how binding affinities can be evaluated by techniques including protein affinity chromatography, sedimentation, gel filtration, fluorescence methods, solid-phase sampling of equilibrium solutions, and surface plasmon resonance. Finally, three examples of well-characterized domains involved in multiple protein-protein interactions are examined. The emphasis of the discussion is on variations in the approaches, concerns in evaluating the results, and advantages and disadvantages of the techniques. PMID:7708014

  4. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    SciTech Connect

    Yu,P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behavior and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.

  5. Transient protein-protein interactions visualized by solution NMR.

    PubMed

    Liu, Zhu; Gong, Zhou; Dong, Xu; Tang, Chun

    2016-01-01

    Proteins interact with each other to establish their identities in cell. The affinities for the interactions span more than ten orders of magnitude, and KD values in μM-mM regimen are considered transient and are important in cell signaling. Solution NMR including diamagnetic and paramagnetic techniques has enabled atomic-resolution depictions of transient protein-protein interactions. Diamagnetic NMR allows characterization of protein complexes with KD values up to several mM, whereas ultraweak and fleeting complexes can be modeled with the use of paramagnetic NMR especially paramagnetic relaxation enhancement (PRE). When tackling ever-larger protein complexes, PRE can be particularly useful in providing long-range intermolecular distance restraints. As NMR measurements are averaged over the ensemble of complex structures, structural information for dynamic protein-protein interactions besides the stereospecific one can often be extracted. Herein the protein interaction dynamics are exemplified by encounter complexes, alternative binding modes, and coupled binding/folding of intrinsically disordered proteins. Further integration of NMR with other biophysical techniques should allow better visualization of transient protein-protein interactions. In particular, single-molecule data may facilitate the interpretation of ensemble-averaged NMR data. Though same structures of proteins and protein complexes were found in cell as in diluted solution, we anticipate that the dynamics of transient protein protein-protein interactions be different, which awaits awaits exploration by NMR. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. PMID:25896389

  6. Preparing Protein Samples

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Cindy Barnes of University Space Research Association (USRA) at NASA's Marshall Space Flight Center pipettes a protein solution in preparation to grow crystals as part of NASA's structural biology program. Research on Earth helps scientists define conditions and specimens they will use in space experiments.

  7. Protein Crystal Bovine Insulin

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The comparison of protein crystal, Bovine Insulin space-grown (left) and earth-grown (right). Facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  8. Cosolvent assisted protein refolding.

    PubMed

    Cleland, J L; Wang, D I

    1990-12-01

    The use of cosolvents in aqueous systems has been shown to enhance protein refolding and decrease aggregation. In this study, we have used polyethylene glycol (PEG) in the molecular weight range of 1000 to 8000 Daltons to effectively increase the rate of refolding and prevent aggregation of the model protein, bovine carbonic anhydrase B (CAB). At concentrations of 3 and 30 g/l, PEG increased the rate of recovery of active protein in the absence of aggregation. Using 3 g/l PEG (3350 MW), the refolding rate was three fold greater than the observed normal refolding rate. The observed rate enhancement was caused by PEG acting on the first intermediate in the CAB refolding pathway to increase the rate of formation of the second intermediate. The interaction of PEG with the first intermediate also prevented its self-association during refolding and at equilibrium. The stabilization of this first intermediate resulted in complete recovery of active protein under normal aggregating conditions. PMID:1367488

  9. The Protein Ensemble Database.

    PubMed

    Varadi, Mihaly; Tompa, Peter

    2015-01-01

    The scientific community's major conceptual notion of structural biology has recently shifted in emphasis from the classical structure-function paradigm due to the emergence of intrinsically disordered proteins (IDPs). As opposed to their folded cousins, these proteins are defined by the lack of a stable 3D fold and a high degree of inherent structural heterogeneity that is closely tied to their function. Due to their flexible nature, solution techniques such as small-angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR) spectroscopy and fluorescence resonance energy transfer (FRET) are particularly well-suited for characterizing their biophysical properties. Computationally derived structural ensembles based on such experimental measurements provide models of the conformational sampling displayed by these proteins, and they may offer valuable insights into the functional consequences of inherent flexibility. The Protein Ensemble Database (http://pedb.vib.be) is the first openly accessible, manually curated online resource storing the ensemble models, protocols used during the calculation procedure, and underlying primary experimental data derived from SAXS and/or NMR measurements. By making this previously inaccessible data freely available to researchers, this novel resource is expected to promote the development of more advanced modelling methodologies, facilitate the design of standardized calculation protocols, and consequently lead to a better understanding of how function arises from the disordered state. PMID:26387108

  10. Protein Requirements during Aging.

    PubMed

    Courtney-Martin, Glenda; Ball, Ronald O; Pencharz, Paul B; Elango, Rajavel

    2016-01-01

    Protein recommendations for elderly, both men and women, are based on nitrogen balance studies. They are set at 0.66 and 0.8 g/kg/day as the estimated average requirement (EAR) and recommended dietary allowance (RDA), respectively, similar to young adults. This recommendation is based on single linear regression of available nitrogen balance data obtained at test protein intakes close to or below zero balance. Using the indicator amino acid oxidation (IAAO) method, we estimated the protein requirement in young adults and in both elderly men and women to be 0.9 and 1.2 g/kg/day as the EAR and RDA, respectively. This suggests that there is no difference in requirement on a gender basis or on a per kg body weight basis between younger and older adults. The requirement estimates however are ~40% higher than the current protein recommendations on a body weight basis. They are also 40% higher than our estimates in young men when calculated on the basis of fat free mass. Thus, current recommendations may need to be re-assessed. Potential rationale for this difference includes a decreased sensitivity to dietary amino acids and increased insulin resistance in the elderly compared with younger individuals. PMID:27529275

  11. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Atomic force microscopy uses laser technology to reveal a defect, a double-screw dislocation, on the surface of this crystal of canavalin, a major source of dietary protein for humans and domestic animals. When a crystal grows, attachment kinetics and transport kinetics are competing for control of the molecules. As a molecule gets close to the crystal surface, it has to attach properly for the crystal to be usable. NASA has funded investigators to look at those attachment kinetics from a theoretical standpoint and an experimental standpoint. Dr. Alex McPherson of the University of California, Irvine, is one of those investigators. He uses X-ray diffraction and atomic force microscopy in his laboratory to answer some of the many questions about how protein crystals grow. Atomic force microscopy provides a means of looking at how individual molecules are added to the surface of growing protein crystals. This helps McPherson understand the kinetics of protein crystal growth. McPherson asks, How fast do crystals grow? What are the forces involved? Investigators funded by NASA have clearly shown that such factors as the level of supersaturation and the rate of growth all affect the habit [characteristic arrangement of facets] of the crystal and the defects that occur in the crystal.

  12. Protein-protein and protein-salt interactions in aqueous protein solutions containing concentrated electrolytes

    SciTech Connect

    Curtis, R.A.; Blanch, H.W.; Prausnitz, J.M.

    1998-01-05

    Protein-protein and protein-salt interactions have been obtained for ovalbumin in solutions of ammonium sulfate and for lysozyme in solutions of ammonium sulfate, sodium chloride, potassium isothiocyanate, and potassium chloride. The two-body interactions between ovalbumin molecules in concentrated ammonium-sulfate solutions can be described by the DLVO potentials plus a potential that accounts for the decrease in free volume available to the protein due to the presence of the salt ions. The interaction between ovalbumin and ammonium sulfate is unfavorable, reflecting the kosmotropic nature of sulfate anions. Lysozyme-lysozyme interactions cannot be described by the above potentials because anion binding to lysozyme alters these interactions. Lysozyme-isothiocyanate complexes are strongly attractive due to electrostatic interactions resulting from bridging by the isothiocyanate ion. Lysozyme-lysozyme interactions in sulfate solutions are more repulsive than expected, possibly resulting from a larger excluded volume of a lysozyme-sulfate bound complex or perhaps, hydration forces between the lysozyme-sulfate complexes.

  13. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  14. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  15. Ribosome-inactivating proteins

    PubMed Central

    Walsh, Matthew J; Dodd, Jennifer E; Hautbergue, Guillaume M

    2013-01-01

    Ribosome-inactivating proteins (RIPs) were first isolated over a century ago and have been shown to be catalytic toxins that irreversibly inactivate protein synthesis. Elucidation of atomic structures and molecular mechanism has revealed these proteins to be a diverse group subdivided into two classes. RIPs have been shown to exhibit RNA N-glycosidase activity and depurinate the 28S rRNA of the eukaryotic 60S ribosomal subunit. In this review, we compare archetypal RIP family members with other potent toxins that abolish protein synthesis: the fungal ribotoxins which directly cleave the 28S rRNA and the newly discovered Burkholderia lethal factor 1 (BLF1). BLF1 presents additional challenges to the current classification system since, like the ribotoxins, it does not possess RNA N-glycosidase activity but does irreversibly inactivate ribosomes. We further discuss whether the RIP classification should be broadened to include toxins achieving irreversible ribosome inactivation with similar turnovers to RIPs, but through different enzymatic mechanisms. PMID:24071927

  16. Protein Requirements during Aging

    PubMed Central

    Courtney-Martin, Glenda; Ball, Ronald O.; Pencharz, Paul B.; Elango, Rajavel

    2016-01-01

    Protein recommendations for elderly, both men and women, are based on nitrogen balance studies. They are set at 0.66 and 0.8 g/kg/day as the estimated average requirement (EAR) and recommended dietary allowance (RDA), respectively, similar to young adults. This recommendation is based on single linear regression of available nitrogen balance data obtained at test protein intakes close to or below zero balance. Using the indicator amino acid oxidation (IAAO) method, we estimated the protein requirement in young adults and in both elderly men and women to be 0.9 and 1.2 g/kg/day as the EAR and RDA, respectively. This suggests that there is no difference in requirement on a gender basis or on a per kg body weight basis between younger and older adults. The requirement estimates however are ~40% higher than the current protein recommendations on a body weight basis. They are also 40% higher than our estimates in young men when calculated on the basis of fat free mass. Thus, current recommendations may need to be re-assessed. Potential rationale for this difference includes a decreased sensitivity to dietary amino acids and increased insulin resistance in the elderly compared with younger individuals. PMID:27529275

  17. Protein states and proteinquakes.

    PubMed Central

    Ansari, A; Berendzen, J; Bowne, S F; Frauenfelder, H; Iben, I E; Sauke, T B; Shyamsunder, E; Young, R D

    1985-01-01

    After photodissociation of carbon monoxide bound to myoglobin, the protein relaxes to the deoxy equilibrium structure in a quake-like motion. Investigation of the proteinquake and of related intramolecular equilibrium motions shows that states and motions have a hierarchical glass-like structure. PMID:3860839

  18. Thermal unfolding of proteins

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek; Sułkowska, Joanna I.

    2005-11-01

    Thermal unfolding of proteins is compared to folding and mechanical stretching in a simple topology-based dynamical model. We define the unfolding time and demonstrate its low-temperature divergence. Below a characteristic temperature, contacts break at separate time scales and unfolding proceeds approximately in a way reverse to folding. Features in these scenarios agree with experiments and atomic simulations on titin.

  19. Dynamics of protein conformations

    NASA Astrophysics Data System (ADS)

    Stepanova, Maria

    2010-10-01

    A novel theoretical methodology is introduced to identify dynamic structural domains and analyze local flexibility in proteins. The methodology employs a multiscale approach combining identification of essential collective coordinates based on the covariance analysis of molecular dynamics trajectories, construction of the Mori projection operator with these essential coordinates, and analysis of the corresponding generalized Langevin equations [M.Stepanova, Phys.Rev.E 76(2007)051918]. Because the approach employs a rigorous theory, the outcomes are physically transparent: the dynamic domains are associated with regions of relative rigidity in the protein, whereas off-domain regions are relatively soft. This also allows scoring the flexibility in the macromolecule with atomic-level resolution [N.Blinov, M.Berjanskii, D.S.Wishart, and M.Stepanova, Biochemistry, 48(2009)1488]. The applications include the domain coarse-graining and characterization of conformational stability in protein G and prion proteins. The results are compared with published NMR experiments. Potential applications for structural biology, bioinformatics, and drug design are discussed.

  20. Protein denaturing on Nanospheres

    NASA Astrophysics Data System (ADS)

    Forrest, James; Teichroeb, Jonathan

    2007-03-01

    We have used localized surface plasmon resonance (LSPR) to monitor the structural changes that accompany thermal denaturing of Bovine Serum Albumin(BSA) adsorbed onto gold nanospheres of size 5nm-60nm. The effect of the protein on the LSPR was monitored by visible extinction spectroscopy. The position of the resonance is affected by the conformation of the adsorbed protein layer, and as such can be used as a very sensitive probe of thermal denaturing that is specific to the adsorbed protein. The results are compared to detailed calculations and show that full calculations can lead to significant increases in knowledge where gold nanospheres are used as biosensors. Thermal denaturing on spheres with diameter > 20 nm show strong similarity to bulk calorimetric studies of BSA in solution. BSA adsorbed on nanospheres with d<= 15 nm shows a qualitative difference in behavior, suggesting a sensitivity of denaturing characteristics on local surface curvature. Studies of isothermal denaturing kinetics were used to obtain an activatiuon barrier for thermal denaturing. This activation barrier also exhibited a strong dependence on nanoparticle size. These results may have important implications for other protein-nanoparticle interactions.

  1. [ALR, the multifunctional protein].

    PubMed

    Balogh, Tibor; Szarka, András

    2015-03-29

    ALR is a mystic protein. It has a so called "long" 22 kDa and a "short" 15 kDa forms. It has been described after partial hepatectomy and it has just been considered as a key protein of liver regeneration. At the beginning of the 21st century it has been revealed that the "long" form is localized in the mitochondrial intermembrane space and it is an element of the mitochondrial protein import and disulphide relay system. Several proteins of the substrates of the mitochondrial disulphide relay system are necessary for the proper function of the mitochondria, thus any mutation of the ALR gene leads to mitochondrial diseases. The "short" form of ALR functions as a secreted extracellular growth factor and it promotes the protection, regeneration and proliferation of hepatocytes. The results gained on the recently generated conditional ALR mutant mice suggest that ALR can play an important role in the pathogenesis of alcoholic and non-alcoholic steatosis. Since the serum level of ALR is modified in several liver diseases it can be a promising marker molecule in laboratory diagnostics. PMID:25796277

  2. The Protein Data Bank

    PubMed Central

    Berman, Helen M.; Westbrook, John; Feng, Zukang; Gilliland, Gary; Bhat, T. N.; Weissig, Helge; Shindyalov, Ilya N.; Bourne, Philip E.

    2000-01-01

    The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource. PMID:10592235

  3. Tuber Storage Proteins

    PubMed Central

    SHEWRY, PETER R.

    2003-01-01

    A wide range of plants are grown for their edible tubers, but five species together account for almost 90 % of the total world production. These are potato (Solanum tuberosum), cassava (Manihot esculenta), sweet potato (Ipomoea batatus), yams (Dioscorea spp.) and taro (Colocasia, Cyrtosperma and Xanthosoma spp.). All of these, except cassava, contain groups of storage proteins, but these differ in the biological properties and evolutionary relationships. Thus, patatin from potato exhibits activity as an acylhydrolase and esterase, sporamin from sweet potato is an inhibitor of trypsin, and dioscorin from yam is a carbonic anhydrase. Both sporamin and dioscorin also exhibit antioxidant and radical scavenging activity. Taro differs from the other three crops in that it contains two major types of storage protein: a trypsin inhibitor related to sporamin and a mannose‐binding lectin. These characteristics indicate that tuber storage proteins have evolved independently in different species, which contrasts with the highly conserved families of storage proteins present in seeds. Furthermore, all exhibit biological activities which could contribute to resistance to pests, pathogens or abiotic stresses, indicating that they may have dual roles in the tubers. PMID:12730067

  4. Protein specific polymeric immunomicrospheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1980-01-01

    Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such as hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.

  5. Perspectives on protein crystallisation

    SciTech Connect

    Ochi, T.; Stojanoff, V.; Bolanos-Garcia, V.M.; Moreno, A.

    2009-12-11

    This final part on 'perspectives' is focused on new strategies that can be used to crystallise proteins and improve the crystal quality of macromolecular complexes using any of the methods reviewed in this focused issue. Some advantages and disadvantages, limitations, and plausible applications to high-resolution X-ray crystallography are discussed.

  6. Bayesian Estimator of Protein-Protein Association Probabilities

    Energy Science and Technology Software Center (ESTSC)

    2008-05-28

    The Bayesian Estimator of Protein-Protein Association Probabilities (BEPro3) is a software tool for estimating probabilities of protein-protein association between bait and prey protein pairs using data from multiple-bait, multiple-replicate, protein LC-MS/MS affinity isolation experiments. BEPro3 is public domain software, has been tested on Windows XP and version 10.4 or newer of the Mac OS 10.4, and is freely available. A user guide, example dataset with analysis and additional documentation are included with the BEPro3 download.

  7. Homeodomain proteins: an update.

    PubMed

    Bürglin, Thomas R; Affolter, Markus

    2016-06-01

    Here, we provide an update of our review on homeobox genes that we wrote together with Walter Gehring in 1994. Since then, comprehensive surveys of homeobox genes have become possible due to genome sequencing projects. Using the 103 Drosophila homeobox genes as example, we present an updated classification. In animals, there are 16 major classes, ANTP, PRD, PRD-LIKE, POU, HNF, CUT (with four subclasses: ONECUT, CUX, SATB, and CMP), LIM, ZF, CERS, PROS, SIX/SO, plus the TALE superclass with the classes IRO, MKX, TGIF, PBC, and MEIS. In plants, there are 11 major classes, i.e., HD-ZIP (with four subclasses: I to IV), WOX, NDX, PHD, PLINC, LD, DDT, SAWADEE, PINTOX, and the two TALE classes KNOX and BEL. Most of these classes encode additional domains apart from the homeodomain. Numerous insights have been obtained in the last two decades into how homeodomain proteins bind to DNA and increase their specificity by interacting with other proteins to regulate cell- and tissue-specific gene expression. Not only protein-DNA base pair contacts are important for proper target selection; recent experiments also reveal that the shape of the DNA plays a role in specificity. Using selected examples, we highlight different mechanisms of homeodomain protein-DNA interaction. The PRD class of homeobox genes was of special interest to Walter Gehring in the last two decades. The PRD class comprises six families in Bilateria, and tinkers with four different motifs, i.e., the PAIRED domain, the Groucho-interacting motif EH1 (aka Octapeptide or TN), the homeodomain, and the OAR motif. Homologs of the co-repressor protein Groucho are also present in plants (TOPLESS), where they have been shown to interact with small amphipathic motives (EAR), and in yeast (TUP1), where we find an EH1-like motif in MATα2. PMID:26464018

  8. Phosphorylation of human link proteins

    SciTech Connect

    Oester, D.A.; Caterson, B.; Schwartz, E.R.

    1986-06-13

    Three link proteins of 48, 44 and 40 kDa were purified from human articular cartilage and identified with monoclonal anti-link protein antibody 8-A-4. Two sets of lower molecular weight proteins of 30-31 kDa and 24-26 kDa also contained link protein epitopes recognized by the monoclonal antibody and were most likely degradative products of the intact link proteins. The link proteins of 48 and 40 kDa were identified as phosphoproteins while the 44 kDa link protein did not contain /sup 32/P. The phosphorylated 48 and 40 kDa link proteins contained approximately 2 moles PO/sub 4//mole link protein.

  9. Identifying the hub proteins from complicated membrane protein network systems.

    PubMed

    Shen, Yi-Zhen; Ding, Yong-Sheng; Gu, Quan; Chou, Kuo-Chen

    2010-05-01

    The so-called "hub proteins" are those proteins in a protein-protein interaction network system that have remarkably higher interaction relations (or degrees) than the others. Therefore, the information of hub proteins can provide very useful insights for selecting or prioritizing targets during drug development. In this paper, by combining the multi-agent-based method with the graphical spectrum analysis and immune-genetic algorithm, a novel simulator for identifying the hub proteins from membrane protein interaction networks is proposed. As a demonstration of using the simulator, two hub membrane proteins, YPL227C and YIL147C, were identified from a complicated network system consisting of 1500 membrane proteins. Meanwhile, along with the two identified hub proteins, their molecular functions, biological processes, and cellular components were also revealed. It is anticipated that the hub-protein-simulator may become a very useful tool for system biology and drug development, particularly in deciphering unknown protein functions, determining protein complexes, and in identifying the key targets from a complicated disease system. PMID:20507268

  10. Direct Probing of Protein-Protein Interactions

    SciTech Connect

    Noy, A; Sulchek, T A; Friddle, R W

    2005-03-10

    This project aimed to establish feasibility of using experimental techniques based on direct measurements of interaction forces on the single molecule scale to characterize equilibrium interaction potentials between individual biological molecules. Such capability will impact several research areas, ranging from rapid interaction screening capabilities to providing verifiable inputs for computational models. It should be one of the enabling technologies for modern proteomics research. This study used a combination of Monte-Carlo simulations, theoretical considerations, and direct experimental measurements to investigate two model systems that represented typical experimental situations: force-induced melting of DNA rigidly attached to the tip, and force-induced unbinding of a protein-antibody pair connected to flexible tethers. Our results establish that for both systems researchers can use force spectroscopy measurements to extract reliable information about equilibrium interaction potentials. However, the approaches necessary to extract these potentials in each case--Jarzynski reconstruction and Dynamic Force Spectroscopy--are very different. We also show how the thermodynamics and kinetics of unbinding process dictates the choice between in each case.

  11. Hydrogels Constructed from Engineered Proteins.

    PubMed

    Li, Hongbin; Kong, Na; Laver, Bryce; Liu, Junqiu

    2016-02-24

    Due to their various potential biomedical applications, hydrogels based on engineered proteins have attracted considerable interest. Benefitting from significant progress in recombinant DNA technology and protein engineering/design techniques, the field of protein hydrogels has made amazing progress. The latest progress of hydrogels constructed from engineered recombinant proteins are presented, mainly focused on biorecognition-driven physical hydrogels as well as chemically crosslinked hydrogels. The various bio-recognition based physical crosslinking strategies are discussed, as well as chemical crosslinking chemistries used to engineer protein hydrogels, and protein hydrogels' various biomedical applications. The future perspectives of this fast evolving field of biomaterials are also discussed. PMID:26707834

  12. Redox control of protein degradation

    PubMed Central

    Pajares, Marta; Jiménez-Moreno, Natalia; Dias, Irundika H.K.; Debelec, Bilge; Vucetic, Milica; Fladmark, Kari E.; Basaga, Huveyda; Ribaric, Samo; Milisav, Irina; Cuadrado, Antonio

    2015-01-01

    Intracellular proteolysis is critical to maintain timely degradation of altered proteins including oxidized proteins. This review attempts to summarize the most relevant findings about oxidant protein modification, as well as the impact of reactive oxygen species on the proteolytic systems that regulate cell response to an oxidant environment: the ubiquitin-proteasome system (UPS), autophagy and the unfolded protein response (UPR). In the presence of an oxidant environment, these systems are critical to ensure proteostasis and cell survival. An example of altered degradation of oxidized proteins in pathology is provided for neurodegenerative diseases. Future work will determine if protein oxidation is a valid target to combat proteinopathies. PMID:26381917

  13. Protein-protein interactions in DNA mismatch repair.

    PubMed

    Friedhoff, Peter; Li, Pingping; Gotthardt, Julia

    2016-02-01

    The principal DNA mismatch repair proteins MutS and MutL are versatile enzymes that couple DNA mismatch or damage recognition to other cellular processes. Besides interaction with their DNA substrates this involves transient interactions with other proteins which is triggered by the DNA mismatch or damage and controlled by conformational changes. Both MutS and MutL proteins have ATPase activity, which adds another level to control their activity and interactions with DNA substrates and other proteins. Here we focus on the protein-protein interactions, protein interaction sites and the different levels of structural knowledge about the protein complexes formed with MutS and MutL during the mismatch repair reaction. PMID:26725162

  14. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion

    NASA Astrophysics Data System (ADS)

    Dong, Jinlan; Bruening, Merlin L.

    2015-07-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO2 nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  15. Affinity purification of proteins binding to GST fusion proteins.

    PubMed

    Swaffield, J C; Johnston, S A

    2001-05-01

    This unit describes the use of proteins fused to glutathione-S-transferase (GST fusion proteins) to affinity purify other proteins, a technique also known as GST pulldown purification. The describes a strategy in which a GST fusion protein is bound to agarose affinity beads and the complex is then used to assay the binding of a specific test protein that has been labeled with [35S]methionine by in vitro translation. However, this method can be adapted for use with other types of fusion proteins; for example, His6, biotin tags, or maltose-binding protein fusions (MBP), and these may offer particular advantages. A describes preparation of an E. coli extract that is added to the reaction mixture with purified test protein to reduce nonspecific binding. PMID:18265191

  16. How do oncoprotein mutations rewire protein-protein interaction networks?

    PubMed

    Bowler, Emily H; Wang, Zhenghe; Ewing, Rob M

    2015-01-01

    The acquisition of mutations that activate oncogenes or inactivate tumor suppressors is a primary feature of most cancers. Mutations that directly alter protein sequence and structure drive the development of tumors through aberrant expression and modification of proteins, in many cases directly impacting components of signal transduction pathways and cellular architecture. Cancer-associated mutations may have direct or indirect effects on proteins and their interactions and while the effects of mutations on signaling pathways have been widely studied, how mutations alter underlying protein-protein interaction networks is much less well understood. Systematic mapping of oncoprotein protein interactions using proteomics techniques as well as computational network analyses is revealing how oncoprotein mutations perturb protein-protein interaction networks and drive the cancer phenotype. PMID:26325016

  17. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2004-10-12

    The present invention relates to 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  18. Protein identification and Peptide expression resolver: harmonizing protein identification with protein expression data.

    PubMed

    Kearney, Paul; Butler, Heather; Eng, Kevin; Hugo, Patrice

    2008-01-01

    Proteomic discovery platforms generate both peptide expression information and protein identification information. Peptide expression data are used to determine which peptides are differentially expressed between study cohorts, and then these peptides are targeted for protein identification. In this paper, we demonstrate that peptide expression information is also a powerful tool for enhancing confidence in protein identification results. Specifically, we evaluate the following hypothesis: tryptic peptides originating from the same protein have similar expression profiles across samples in the discovery study. Evidence supporting this hypothesis is provided. This hypothesis is integrated into a protein identification tool, PIPER (Protein Identification and Peptide Expression Resolver), that reduces erroneous protein identifications below 5%. PIPER's utility is illustrated by application to a 72-sample biomarker discovery study where it is demonstrated that false positive protein identifications can be reduced below 5%. Consequently, it is recommended that PIPER methodology be incorporated into proteomic studies where both protein expression and identification data are collected. PMID:18062667

  19. Predicting Disease-Related Proteins Based on Clique Backbone in Protein-Protein Interaction Network

    PubMed Central

    Yang, Lei; Zhao, Xudong; Tang, Xianglong

    2014-01-01

    Network biology integrates different kinds of data, including physical or functional networks and disease gene sets, to interpret human disease. A clique (maximal complete subgraph) in a protein-protein interaction network is a topological module and possesses inherently biological significance. A disease-related clique possibly associates with complex diseases. Fully identifying disease components in a clique is conductive to uncovering disease mechanisms. This paper proposes an approach of predicting disease proteins based on cliques in a protein-protein interaction network. To tolerate false positive and negative interactions in protein networks, extending cliques and scoring predicted disease proteins with gene ontology terms are introduced to the clique-based method. Precisions of predicted disease proteins are verified by disease phenotypes and steadily keep to more than 95%. The predicted disease proteins associated with cliques can partly complement mapping between genotype and phenotype, and provide clues for understanding the pathogenesis of serious diseases. PMID:25013377

  20. Understanding Protein Non-Folding

    PubMed Central

    Uversky, Vladimir N.; Dunker, A. Keith

    2010-01-01

    This review describes the family of intrinsically disordered proteins, members of which fail to form rigid 3-D structures under physiological conditions, either along their entire lengths or only in localized regions. Instead, these intriguing proteins/regions exist as dynamic ensembles within which atom positions and backbone Ramachandran angles exhibit extreme temporal fluctuations without specific equilibrium values. Many of these intrinsically disordered proteins are known to carry out important biological functions which, in fact, depend on the absence of specific 3-D structure. The existence of such proteins does not fit the prevailing structure-function paradigm, which states that unique 3-D structure is a prerequisite to function. Thus, the protein structure-function paradigm has to be expanded to include intrinsically disordered proteins and alternative relationships among protein sequence, structure, and function. This shift in the paradigm represents a major breakthrough for biochemistry, biophysics and molecular biology, as it opens new levels of understanding with regard to the complex life of proteins. This review will try to answer the following questions: How were intrinsically disordered proteins discovered? Why don't these proteins fold? What is so special about intrinsic disorder? What are the functional advantages of disordered proteins/regions? What is the functional repertoire of these proteins? What are the relationships between intrinsically disordered proteins and human diseases? PMID:20117254

  1. Protein Structure Databases.

    PubMed

    Laskowski, Roman A

    2016-01-01

    Web-based protein structure databases come in a wide variety of types and levels of information content. Those having the most general interest are the various atlases that describe each experimentally determined protein structure and provide useful links, analyses, and schematic diagrams relating to its 3D structure and biological function. Also of great interest are the databases that classify 3D structures by their folds as these can reveal evolutionary relationships which may be hard to detect from sequence comparison alone. Related to these are the numerous servers that compare folds-particularly useful for newly solved structures, and especially those of unknown function. Beyond these are a vast number of databases for the more specialized user, dealing with specific families, diseases, structural features, and so on. PMID:27115626

  2. A magnetic protein biocompass.

    PubMed

    Qin, Siying; Yin, Hang; Yang, Celi; Dou, Yunfeng; Liu, Zhongmin; Zhang, Peng; Yu, He; Huang, Yulong; Feng, Jing; Hao, Junfeng; Hao, Jia; Deng, Lizong; Yan, Xiyun; Dong, Xiaoli; Zhao, Zhongxian; Jiang, Taijiao; Wang, Hong-Wei; Luo, Shu-Jin; Xie, Can

    2016-02-01

    The notion that animals can detect the Earth's magnetic field was once ridiculed, but is now well established. Yet the biological nature of such magnetosensing phenomenon remains unknown. Here, we report a putative magnetic receptor (Drosophila CG8198, here named MagR) and a multimeric magnetosensing rod-like protein complex, identified by theoretical postulation and genome-wide screening, and validated with cellular, biochemical, structural and biophysical methods. The magnetosensing complex consists of the identified putative magnetoreceptor and known magnetoreception-related photoreceptor cryptochromes (Cry), has the attributes of both Cry- and iron-based systems, and exhibits spontaneous alignment in magnetic fields, including that of the Earth. Such a protein complex may form the basis of magnetoreception in animals, and may lead to applications across multiple fields. PMID:26569474

  3. Bone Morphogenetic Proteins.

    PubMed

    Katagiri, Takenobu; Watabe, Tetsuro

    2016-01-01

    Bone morphogenetic proteins (BMPs), originally identified as osteoinductive components in extracts derived from bone, are now known to play important roles in a wide array of processes during formation and maintenance of various organs including bone, cartilage, muscle, kidney, and blood vessels. BMPs and the related "growth and differentiation factors" (GDFs) are members of the transforming growth factor β (TGF-β) family, and transduce their signals through type I and type II serine-threonine kinase receptors and their intracellular downstream effectors, including Smad proteins. Furthermore, BMP signals are finely tuned by various agonists and antagonists. Because deregulation of the BMP activity at multiple steps in signal transduction is linked to a wide variety of human diseases, therapeutic use of activators and inhibitors of BMP signaling will provide potential avenues for the treatment of the human disorders that are caused by hypo- and hyperactivation of BMP signals, respectively. PMID:27252362

  4. Protein mediated membrane adhesion

    NASA Astrophysics Data System (ADS)

    Carlson, Andreas; Mahadevan, L.

    2015-05-01

    Adhesion in the context of mechanical attachment, signaling, and movement in cellular dynamics is mediated by the kinetic interactions between membrane-embedded proteins in an aqueous environment. Here, we present a minimal theoretical framework for the dynamics of membrane adhesion that accounts for the kinetics of protein binding, the elastic deformation of the membrane, and the hydrodynamics of squeeze flow in the membrane gap. We analyze the resulting equations using scaling estimates to characterize the spatiotemporal features of the adhesive patterning and corroborate them using numerical simulations. In addition to characterizing aspects of cellular dynamics, our results might also be applicable to a range of phenomena in physical chemistry and materials science where flow, deformation, and kinetics are coupled to each other in slender geometries.

  5. Electron Flow through Proteins

    PubMed Central

    Gray, Harry B.; Winkler, Jay R.

    2009-01-01

    Electron transfers in photosynthesis and respiration commonly occur between metal-containing cofactors that are separated by large molecular distances. Employing laser flash-quench triggering methods, we have shown that 20-Å, coupling-limited FeII to RuIII and CuI to RuIII electron tunneling in Ru-modified cytochromes and blue copper proteins can occur on the microsecond timescale both in solutions and crystals. Redox equivalents can be transferred even longer distances by multistep tunneling, often called hopping, through intervening amino acid side chains. Our work has established that 20-Å hole hopping through an intervening tryptophan is two orders of magnitude faster than single-step electron tunneling in a Re-modified blue copper protein. PMID:20161522

  6. A magnetic protein biocompass

    NASA Astrophysics Data System (ADS)

    Qin, Siying; Yin, Hang; Yang, Celi; Dou, Yunfeng; Liu, Zhongmin; Zhang, Peng; Yu, He; Huang, Yulong; Feng, Jing; Hao, Junfeng; Hao, Jia; Deng, Lizong; Yan, Xiyun; Dong, Xiaoli; Zhao, Zhongxian; Jiang, Taijiao; Wang, Hong-Wei; Luo, Shu-Jin; Xie, Can

    2016-02-01

    The notion that animals can detect the Earth’s magnetic field was once ridiculed, but is now well established. Yet the biological nature of such magnetosensing phenomenon remains unknown. Here, we report a putative magnetic receptor (Drosophila CG8198, here named MagR) and a multimeric magnetosensing rod-like protein complex, identified by theoretical postulation and genome-wide screening, and validated with cellular, biochemical, structural and biophysical methods. The magnetosensing complex consists of the identified putative magnetoreceptor and known magnetoreception-related photoreceptor cryptochromes (Cry), has the attributes of both Cry- and iron-based systems, and exhibits spontaneous alignment in magnetic fields, including that of the Earth. Such a protein complex may form the basis of magnetoreception in animals, and may lead to applications across multiple fields.

  7. The interface of protein structure, protein biophysics, and molecular evolution

    PubMed Central

    Liberles, David A; Teichmann, Sarah A; Bahar, Ivet; Bastolla, Ugo; Bloom, Jesse; Bornberg-Bauer, Erich; Colwell, Lucy J; de Koning, A P Jason; Dokholyan, Nikolay V; Echave, Julian; Elofsson, Arne; Gerloff, Dietlind L; Goldstein, Richard A; Grahnen, Johan A; Holder, Mark T; Lakner, Clemens; Lartillot, Nicholas; Lovell, Simon C; Naylor, Gavin; Perica, Tina; Pollock, David D; Pupko, Tal; Regan, Lynne; Roger, Andrew; Rubinstein, Nimrod; Shakhnovich, Eugene; Sjölander, Kimmen; Sunyaev, Shamil; Teufel, Ashley I; Thorne, Jeffrey L; Thornton, Joseph W; Weinreich, Daniel M; Whelan, Simon

    2012-01-01

    Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction. PMID:22528593

  8. Improved method for protein complex detection using bottleneck proteins

    PubMed Central

    2013-01-01

    Background Detecting protein complexes is one of essential and fundamental tasks in understanding various biological functions or processes. Therefore accurate identification of protein complexes is indispensable. Methods For more accurate detection of protein complexes, we propose an algorithm which detects dense protein sub-networks of which proteins share closely located bottleneck proteins. The proposed algorithm is capable of finding protein complexes which allow overlapping with each other. Results We applied our algorithm to several PPI (Protein-Protein Interaction) networks of Saccharomyces cerevisiae and Homo sapiens, and validated our results using public databases of protein complexes. The prediction accuracy was even more improved over our previous work which used also bottleneck information of the PPI network, but showed limitation when predicting small-sized protein complex detection. Conclusions Our algorithm resulted in overlapping protein complexes with significantly improved F1 score over existing algorithms. This result comes from high recall due to effective network search, as well as high precision due to proper use of bottleneck information during the network search. PMID:23566214

  9. Heat shock proteins: molecular chaperones of protein biogenesis.

    PubMed Central

    Craig, E A; Gambill, B D; Nelson, R J

    1993-01-01

    Heat shock proteins (Hsps) were first identified as proteins whose synthesis was enhanced by stresses such as an increase in temperature. Recently, several of the major Hsps have been shown to be intimately involved in protein biogenesis through a direct interaction with a wide variety of proteins. As a reflection of this role, these Hsps have been referred to as molecular chaperones. Hsp70s interact with incompletely folded proteins, such as nascent chains on ribosomes and proteins in the process of translocation from the cytosol into mitochondria and the endoplasmic reticulum. Hsp60 also binds to unfolded proteins, preventing aggregation and facilitating protein folding. Although less well defined, other Hsps such as Hsp90 also play important roles in modulating the activity of a number of proteins. The function of the proteolytic system is intertwined with that of molecular chaperones. Several components of this system, encoded by heat-inducible genes, are responsible for the degradation of abnormal or misfolded proteins. The budding yeast Saccharomyces cerevisiae has proven very useful in the analysis of the role of molecular chaperones in protein maturation, translocation, and degradation. In this review, results of experiments are discussed within the context of experiments with other organisms in an attempt to describe the current state of understanding of these ubiquitous and important proteins. PMID:8336673

  10. Path to protein crystallization

    SciTech Connect

    2010-01-01

    Growth of two-dimensional S-layer crystals on supported lipid bilayers observed in solution using in situ atomic force microscopy. This movie shows proteins sticking onto the supported lipid bilayer, forming a mobile phase that condenses into amorphous clusters, and undergoing a phase transition to crystalline clusters composed of 2 to 15 tetramers. These initial clusters then enter a growth phase in which new tetramers form exclusively at unoccupied lattice sites along the cluster edges.

  11. Protein Crystal Isocitrate Lyase

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The comparison of protein crystal, Isocitrate Lyase earth-grown (left) and space-grown (right). This is a target enzyme for fungicides. A better understanding of this enzyme should lead to the discovery of more potent fungicides to treat serious crop diseases such as rice blast; it regulates the flow of metabolic intermediates required for cell growth. Principal Investigator is Larry DeLucas.

  12. Bone morphogenetic protein

    SciTech Connect

    Xiao Yongtao; Xiang Lixin; Shao Jianzhong

    2007-10-26

    Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the transforming growth factor-beta superfamily. It has been demonstrated that BMPs had been involved in the regulation of cell proliferation, survival, differentiation and apoptosis. However, their hallmark ability is that play a pivotal role in inducing bone, cartilage, ligament, and tendon formation at both heterotopic and orthotopic sites. In this review, we mainly concentrate on BMP structure, function, molecular signaling and potential medical application.

  13. Protein threading by learning

    PubMed Central

    Chang, Iksoo; Cieplak, Marek; Dima, Ruxandra I.; Maritan, Amos; Banavar, Jayanth R.

    2001-01-01

    By using techniques borrowed from statistical physics and neural networks, we determine the parameters, associated with a scoring function, that are chosen optimally to ensure complete success in threading tests in a training set of proteins. These parameters provide a quantitative measure of the propensities of amino acids to be buried or exposed and to be in a given secondary structure and are a good starting point for solving both the threading and design problems. PMID:11717394

  14. HRTEM in protein crystallography

    NASA Astrophysics Data System (ADS)

    Dyson, P. W.; Spargo, A. E. C.; Tulloch, P. A.; Johnson, A. W. S.

    Electron microscopy/diffraction (ED/D) using spot-scan and low-dose imaging has been successfully applied to investigate microcrystals of an alpha-helical coiled-coil protein extracted from ootheca of the praying mantis. Fourier transforms of the images show resolution out to 4 A and can be used to phase the corresponding ED data which shows reflections out to 2 A.

  15. Distortions in protein helices.

    PubMed

    Geetha, V

    1996-08-01

    alpha-helices are the most common secondary structures in observed proteins. However, they are not always found in ideal helical conformation and they often exhibit structural distortions. Quantification of these irregularities become essential in understanding the packing of helices and therefore, their role in the functional characteristics of the protein. The backbone torsions phi, psi are of limited utility in this endeavor, because distorted helices often maintain the backbone geometry. The local compensatory effects are responsible for the preservation of the entire hydrogen bond network of the helical stretch. Earlier descriptions of helical linearity and curvature rest mostly on approximation, thus motivating the search for a better method for understanding and quantifying helical irregularities. We developed a method which involves the rotation and superposition of identical repeating units of the protein by the quaternion method. The set of parameters derived from the rotation-superposition algorithm helps in identifying the bends and kinks which are not necessarily induced by unusual amino acids like proline. The quantification of irregularities of observed helices might lead to a better understanding of their packing interactions. PMID:8842770

  16. Papillomavirus E6 proteins

    SciTech Connect

    Howie, Heather L.; Katzenellenbogen, Rachel A.; Galloway, Denise A.

    2009-02-20

    The papillomaviruses are small DNA viruses that encode approximately eight genes, and require the host cell DNA replication machinery for their viral DNA replication. Thus papillomaviruses have evolved strategies to induce host cell DNA synthesis balanced with strategies to protect the cell from unscheduled replication. While the papillomavirus E1 and E2 genes are directly involved in viral replication by binding to and unwinding the origin of replication, the E6 and E7 proteins have auxillary functions that promote proliferation. As a consequence of disrupting the normal checkpoints that regulate cell cycle entry and progression, the E6 and E7 proteins play a key role in the oncogenic properties of human papillomaviruses with a high risk of causing anogenital cancers (HR HPVs). As a consequence, E6 and E7 of HR HPVs are invariably expressed in cervical cancers. This article will focus on the E6 protein and its numerous activities including inactivating p53, blocking apoptosis, activating telomerase, disrupting cell adhesion, polarity and epithelial differentiation, altering transcription and reducing immune recognition.

  17. Type Zero Copper Proteins

    PubMed Central

    Lancaster, Kyle M.; DeBeer George, Serena; Yokoyama, Keiko; Richards, John H.; Gray, Harry B.

    2009-01-01

    Copper proteins play key roles in biological processes such as electron transfer and dioxygen activation; the active site of each of these proteins is classified as either type 1, 2, or 3, depending on its optical and electron paramagnetic resonance properties. We have built a new type of site that we call “type zero copper” by incorporating leucine, isoleucine, or phenylalanine in place of methionine at position 121 in C112D Pseudomonas aeruginosa azurin. X-ray crystallographic analysis shows that these sites adopt distorted tetrahedral geometries, with an unusually short Cu-O(G45 carbonyl) bond (2.35–2.55 Å). Relatively weak absorption near 800 nm and narrow parallel hyperfine splittings in EPR spectra are the spectroscopic signatures of type zero copper. Copper K-edge x-ray absorption spectra suggest elevated Cu(II) 4p character in the d-electron ground state. Cyclic voltammetric experiments demonstrate that the electron transfer reactivities of type zero azurins are enhanced relative to that of the corresponding type 2 (C112D) protein. PMID:20305734

  18. Hydrolyzed Proteins in Allergy.

    PubMed

    Salvatore, Silvia; Vandenplas, Yvan

    2016-01-01

    Hydrolyzed proteins are used worldwide in the therapeutic management of infants with allergic manifestations and have long been proposed as a dietetic measure to prevent allergy in at risk infants. The degree and method of hydrolysis, protein source and non-nitrogen components characterize different hydrolyzed formulas (HFs) and may determine clinical efficacy, tolerance and nutritional effects. Cow's milk (CM)-based HFs are classified as extensively (eHF) or partially HF (pHF) based on the percentage of small peptides. One whey pHF has been shown to reduce atopic dermatitis in high-risk infants who are not exclusively breastfed. More studies are needed to determine the benefit of these formulas in the prevention of CM allergy (CMA) and in the general population. eHFs represent up to now the treatment of choice for most infants with CMA. However, new developments, such as an extensively hydrolyzed rice protein-based formula, could become alternative options if safety and nutritional and therapeutic efficacy are confirmed as this type of formula is less expensive. In some countries, an extensive soy hydrolysate is available. PMID:27336625

  19. Infrared Protein Crystallography

    SciTech Connect

    J Sage; Y Zhang; J McGeehan; R Ravelli; M Weik; J van Thor

    2011-12-31

    We consider the application of infrared spectroscopy to protein crystals, with particular emphasis on exploiting molecular orientation through polarization measurements on oriented single crystals. Infrared microscopes enable transmission measurements on individual crystals using either thermal or nonthermal sources, and can accommodate flow cells, used to measure spectral changes induced by exposure to soluble ligands, and cryostreams, used for measurements of flash-cooled crystals. Comparison of unpolarized infrared measurements on crystals and solutions probes the effects of crystallization and can enhance the value of the structural models refined from X-ray diffraction data by establishing solution conditions under which they are most relevant. Results on several proteins are consistent with similar equilibrium conformational distributions in crystal and solutions. However, the rates of conformational change are often perturbed. Infrared measurements also detect products generated by X-ray exposure, including CO{sub 2}. Crystals with favorable symmetry exhibit infrared dichroism that enhances the synergy with X-ray crystallography. Polarized infrared measurements on crystals can distinguish spectral contributions from chemically similar sites, identify hydrogen bonding partners, and, in opportune situations, determine three-dimensional orientations of molecular groups. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.

  20. The caveolin proteins

    PubMed Central

    Williams, Terence M; Lisanti, Michael P

    2004-01-01

    The caveolin gene family has three members in vertebrates: caveolin-1, caveolin-2, and caveolin-3. So far, most caveolin-related research has been conducted in mammals, but the proteins have also been found in other animals, including Xenopus laevis, Fugu rubripes, and Caenorhabditis elegans. Caveolins can serve as protein markers of caveolae ('little caves'), invaginations in the plasma membrane 50-100 nanometers in diameter. Caveolins are found predominantly at the plasma membrane but also in the Golgi, the endoplasmic reticulum, in vesicles, and at cytosolic locations. They are expressed ubiquitously in mammals, but their expression levels vary considerably between tissues. The highest levels of caveolin-1 (also called caveolin, Cav-1 and VIP2I) are found in terminally-differentiated cell types, such as adipocytes, endothelia, smooth muscle cells, and type I pneumocytes. Caveolin-2 (Cav-2) is colocalized and coexpressed with Cav-1 and requires Cav-1 for proper membrane targeting; the Cav-2 gene also maps to the same chromosomal region as Cav-1 (7q31.1 in humans). Caveolin-3 (Cav-3) has greater protein-sequence similarity to Cav-1 than to Cav-2, but it is expressed mainly in muscle cells, including smooth, skeletal, and cardiac myocytes. Caveolins participate in many important cellular processes, including vesicular transport, cholesterol homeostasis, signal transduction, and tumor suppression. PMID:15003112

  1. A polymetamorphic protein

    PubMed Central

    Stewart, Katie L; Dodds, Eric D; Wysocki, Vicki H; Cordes, Matthew H J

    2013-01-01

    Arc repressor is a homodimeric protein with a ribbon-helix–helix fold. A single polar-to-hydrophobic substitution (N11L) at a solvent-exposed position leads to population of an alternate dimeric fold in which 310 helices replace a β-sheet. Here we find that the variant Q9V/N11L/R13V (S-VLV), with two additional polar-to-hydrophobic surface mutations in the same β-sheet, forms a highly stable, reversibly folded octamer with approximately half the✠α-helical content of wild-type Arc. At low protein concentration and low ionic strength, S-VLV also populates both dimeric topologies previously observed for N11L, as judged by NMR chemical shift comparisons. Thus, accumulation of simple hydrophobic mutations in Arc progressively reduces fold specificity, leading first to a sequence with two folds and then to a manifold bridge sequence with at least three different topologies. Residues 9–14 of S-VLV form a highly hydrophobic stretch that is predicted to be amyloidogenic, but we do not observe aggregates of higher order than octamer. Increases in sequence hydrophobicity can promote amyloid aggregation but also exert broader and more complex effects on fold specificity. Altered native folds, changes in fold coupled to oligomerization, toxic pre-amyloid oligomers, and amyloid fibrils may represent a near continuum of accessible alternatives in protein structure space. PMID:23471712

  2. Bioinformatics in protein analysis.

    PubMed

    Persson, B

    2000-01-01

    The chapter gives an overview of bioinformatic techniques of importance in protein analysis. These include database searches, sequence comparisons and structural predictions. Links to useful World Wide Web (WWW) pages are given in relation to each topic. Databases with biological information are reviewed with emphasis on databases for nucleotide sequences (EMBL, GenBank, DDBJ), genomes, amino acid sequences (Swissprot, PIR, TrEMBL, GenePept), and three-dimensional structures (PDB). Integrated user interfaces for databases (SRS and Entrez) are described. An introduction to databases of sequence patterns and protein families is also given (Prosite, Pfam, Blocks). Furthermore, the chapter describes the widespread methods for sequence comparisons, FASTA and BLAST, and the corresponding WWW services. The techniques involving multiple sequence alignments are also reviewed: alignment creation with the Clustal programs, phylogenetic tree calculation with the Clustal or Phylip packages and tree display using Drawtree, njplot or phylo_win. Finally, the chapter also treats the issue of structural prediction. Different methods for secondary structure predictions are described (Chou-Fasman, Garnier-Osguthorpe-Robson, Predator, PHD). Techniques for predicting membrane proteins, antigenic sites and postranslational modifications are also reviewed. PMID:10803381

  3. Protein secretion in Bacillus species.

    PubMed Central

    Simonen, M; Palva, I

    1993-01-01

    Bacilli secrete numerous proteins into the environment. Many of the secretory proteins, their export signals, and their processing steps during secretion have been characterized in detail. In contrast, the molecular mechanisms of protein secretion have been relatively poorly characterized. However, several components of the protein secretion machinery have been identified and cloned recently, which is likely to lead to rapid expansion of the knowledge of the protein secretion mechanism in Bacillus species. Comparison of the presently known export components of Bacillus species with those of Escherichia coli suggests that the mechanism of protein translocation across the cytoplasmic membrane is conserved among gram-negative and gram-positive bacteria differences are found in steps preceding and following the translocation process. Many of the secretory proteins of bacilli are produced industrially, but several problems have been encountered in the production of Bacillus heterologous secretory proteins. In the final section we discuss these problems and point out some possibilities to overcome them. PMID:8464403

  4. Microtubules, Tubulins and Associated Proteins.

    ERIC Educational Resources Information Center

    Raxworthy, Michael J.

    1988-01-01

    Reviews much of what is known about microtubules, which are biopolymers consisting predominantly of subunits of the globular protein, tubulin. Describes the functions of microtubules, their structure and assembly, microtube associated proteins, and microtubule-disrupting agents. (TW)

  5. Current Protocols in Protein Science

    PubMed Central

    Huynh, Kathy

    2015-01-01

    The purification of recombinant proteins for biochemical assays and structural studies is time-consuming and presents inherent difficulties that depend on the optimization of protein stability. The use of dyes to monitor thermal denaturation of proteins with sensitive fluorescence detection enables the rapid and inexpensive determination of protein stability using real-time PCR instruments. By screening a wide range of solution conditions and additives in 96-well format, the thermal shift assay easily identifies conditions that significantly enhance the stability of recombinant proteins. The same approach can be used as a low cost, initial screen to discover new protein:ligand interactions by capitalizing on increases in protein stability that typically occur upon ligand binding. This unit presents a methodological workflow for the small-scale, high-throughout thermal denaturation of recombinant proteins in the presence of SYPRO Orange dye. PMID:25640896

  6. Stabilized polyacrylic saccharide protein conjugates

    DOEpatents

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1996-02-20

    This invention is directed to water soluble protein polymer conjugates which are stable in hostile environments. The conjugate comprises a protein which is linked to an acrylic polymer at multiple points through saccharide linker groups. 16 figs.

  7. How do chaperonins fold protein?

    PubMed Central

    Motojima, Fumihiro

    2015-01-01

    Protein folding is a biological process that is essential for the proper functioning of proteins in all living organisms. In cells, many proteins require the assistance of molecular chaperones for their folding. Chaperonins belong to a class of molecular chaperones that have been extensively studied. However, the mechanism by which a chaperonin mediates the folding of proteins is still controversial. Denatured proteins are folded in the closed chaperonin cage, leading to the assumption that denatured proteins are completely encapsulated inside the chaperonin cage. In contrast to the assumption, we recently found that denatured protein interacts with hydrophobic residues at the subunit interfaces of the chaperonin, and partially protrude out of the cage. In this review, we will explain our recent results and introduce our model for the mechanism by which chaperonins accelerate protein folding, in view of recent findings.

  8. Stabilized polyacrylic saccharide protein conjugates

    DOEpatents

    Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.

    1996-01-01

    This invention is directed to water soluble protein polymer conjugates which are stabile in hostile environments. The conjugate comprises a protein which is linked to an acrylic polymer at multiple points through saccharide linker groups.

  9. Controlling allosteric networks in proteins

    NASA Astrophysics Data System (ADS)

    Dokholyan, Nikolay

    2013-03-01

    We present a novel methodology based on graph theory and discrete molecular dynamics simulations for delineating allosteric pathways in proteins. We use this methodology to uncover the structural mechanisms responsible for coupling of distal sites on proteins and utilize it for allosteric modulation of proteins. We will present examples where inference of allosteric networks and its rewiring allows us to ``rescue'' cystic fibrosis transmembrane conductance regulator (CFTR), a protein associated with fatal genetic disease cystic fibrosis. We also use our methodology to control protein function allosterically. We design a novel protein domain that can be inserted into identified allosteric site of target protein. Using a drug that binds to our domain, we alter the function of the target protein. We successfully tested this methodology in vitro, in living cells and in zebrafish. We further demonstrate transferability of our allosteric modulation methodology to other systems and extend it to become ligh-activatable.

  10. Lattice Tube Model of Proteins

    NASA Astrophysics Data System (ADS)

    Banavar, Jayanth R.; Cieplak, Marek; Maritan, Amos

    2004-11-01

    We present a new lattice model for proteins that incorporates a tubelike anisotropy by introducing a preference for mutually parallel alignments in the conformations. The model is demonstrated to capture many aspects of real proteins.

  11. Geometry and physics of proteins

    NASA Astrophysics Data System (ADS)

    Banavar, Jayanth R.; Cieplak, Marek; Hoang, Trinh X.; Maritan, Amos

    2005-03-01

    We recall some of the key lessons of protein research over the last several decades and show that they strongly suggest a new framework for understanding proteins. The unified framework is useful for understanding protein folding, amyloid formation and protein interactions and has important implications for natural selection. The experimental data and our new approach, supported by computer simulations, reveal an astonishing simplicity underlying the protein problem. REFERENCES: Banavar, J. R. and Maritan, A. (2003). Colloquium: Geometrical approach to protein folding: A tube picture. Rev. Mod. Phys. 75, 23. Banavar, J. R., Hoang, T. X., Maritan, A., Seno, F. and Trovato, A., (2004). A unified perspective on proteins -- a physics approach. Phys. Rev. E 70, 041905. Banavar, J. R., Cieplak, M. and Maritan, A., (2004). Lattice tube model of proteins, Phys. Rev. Lett. (in press).

  12. Computational Characterization of Moonlighting Proteins

    PubMed Central

    Khan, Ishita K; Kihara, Daisuke

    2016-01-01

    Moonlighting proteins perform multiple independent cellular functions within one polypeptide chain. Moonlighting proteins switch functions depending on various factors including the cell type in which they are expressed, cellular location, oligomerization status, and the binding of different ligands at different sites. Although an increasing number of moonlighting proteins have been experimentally identified in recent years, the quantity of known moonlighting proteins is insufficient to elucidate their overall landscape. Moreover, most moonlighting proteins have been identified as a serendipitous discovery. Hence, characterization of moonlighting proteins using bioinformatics approaches can have a significant impact on the overall understanding of protein function. In this work, we provide a short review of existing computational approaches for illuminating the functional diversity of moonlighting proteins. PMID:25399606

  13. Leptospira Protein Expression During Infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We are characterizing protein expression in vivo during experimental leptospirosis using immunofluorescence microscopy. Coding regions for several proteins were identified through analysis of Leptospira interrogans serovar Copenhageni and L. borgpetersenii serovar Hardjo genomes. In addition, codi...

  14. Sorting sweet sorting. Protein secretion.

    PubMed

    Ponnambalam, S; Banting, G

    1996-09-01

    Membrane-spanning, lectin-like proteins in the eukaryotic secretory pathway seem to operate quality-control checkpoints by fine tuning protein exit or retention within each subcompartment. PMID:8805362

  15. Protein corona: Opportunities and challenges.

    PubMed

    Zanganeh, Saeid; Spitler, Ryan; Erfanzadeh, Mohsen; Alkilany, Alaaldin M; Mahmoudi, Morteza

    2016-06-01

    In contact with biological fluids diverse type of biomolecules (e.g., proteins) adsorb onto nanoparticles forming protein corona. Surface properties of the coated nanoparticles, in terms of type and amount of associated proteins, dictate their interactions with biological systems and thus biological fate, therapeutic efficiency and toxicity. In this perspective, we will focus on the recent advances and pitfalls in the protein corona field. PMID:26783938

  16. Knot theory in understanding proteins.

    PubMed

    Mishra, Rama; Bhushan, Shantha

    2012-12-01

    This paper aims to enthuse mathematicians, especially topologists, knot theorists and geometers to examine problems in the study of proteins. We have highlighted those advances and breakthroughs in knot theory that directly and indirectly help in understanding proteins. We have discussed the phenomena of knotting of protein backbone. This paper also provides a few open questions for knot theorists, the answers to which will help in further understanding of proteins. PMID:22105789

  17. Nanobiotechnology: protein-nanomaterial interactions.

    PubMed

    Kane, Ravi S; Stroock, Abraham D

    2007-01-01

    We review recent research that involves the interaction of nanomaterials such as nanoparticles, nanowires, and carbon nanotubes with proteins. We begin with a focus on the fundamentals of the structure and function of proteins on nanomaterials. We then review work in three areas that exploit these interactions: (1) sensing, (2) assembly of nanomaterials by proteins and proteins by nanomaterials, and (3) interactions with cells. We conclude with the identification of challenges and opportunities for the future. PMID:17335286

  18. Protein Separation and Characterization Procedures

    NASA Astrophysics Data System (ADS)

    Smith, Denise M.

    Many protein separation techniques are available to food scientists. Several of the separation techniques described in this chapter are used commercially for the production of food or food ingredients, whereas others are used to purify a protein from a food for further study in the laboratory. In general, separation techniques exploit the biochemical differences in protein solubility, size, charge, adsorption characteristics, and biological affinities for other molecules. These physical characteristics then are used to purify individual proteins from complex mixtures.

  19. Protein function annotation using protein domain family resources.

    PubMed

    Das, Sayoni; Orengo, Christine A

    2016-01-15

    As a result of the genome sequencing and structural genomics initiatives, we have a wealth of protein sequence and structural data. However, only about 1% of these proteins have experimental functional annotations. As a result, computational approaches that can predict protein functions are essential in bridging this widening annotation gap. This article reviews the current approaches of protein function prediction using structure and sequence based classification of protein domain family resources with a special focus on functional families in the CATH-Gene3D resource. PMID:26434392

  20. Implication of Terminal Residues at Protein-Protein and Protein-DNA Interfaces.

    PubMed

    Martin, Olivier M F; Etheve, Loïc; Launay, Guillaume; Martin, Juliette

    2016-01-01

    Terminal residues of protein chains are charged and more flexible than other residues since they are constrained only on one side. Do they play a particular role in protein-protein and protein-DNA interfaces? To answer this question, we considered large sets of non-redundant protein-protein and protein-DNA complexes and analyzed the status of terminal residues and their involvement in interfaces. In protein-protein complexes, we found that more than half of terminal residues (62%) are either modified by attachment of a tag peptide (10%) or have missing coordinates in the analyzed structures (52%). Terminal residues are almost exclusively located at the surface of proteins (94%). Contrary to charged residues, they are not over or under-represented in protein-protein interfaces, but strongly prefer the peripheral region of interfaces when present at the interface (83% of terminal residues). The almost exclusive location of terminal residues at the surface of the proteins or in the rim regions of interfaces explains that experimental methods relying on tail hybridization can be successfully applied without disrupting the complexes under study. Concerning conformational rearrangement in protein-protein complexes, despite their expected flexibility, terminal residues adopt similar locations between the free and bound forms of the docking benchmark. In protein-DNA complexes, N-terminal residues are twice more frequent than C-terminal residues at interfaces. Both N-terminal and C-terminal residues are under-represented in interfaces, in contrast to positively charged residues, which are strongly favored. When located in protein-DNA interfaces, terminal residues prefer the periphery. N-terminal and C-terminal residues thus have particular properties with regard to interfaces, which cannot be reduced to their charged nature. PMID:27611671

  1. Identification of essential proteins based on ranking edge-weights in protein-protein interaction networks.

    PubMed

    Wang, Yan; Sun, Huiyan; Du, Wei; Blanzieri, Enrico; Viero, Gabriella; Xu, Ying; Liang, Yanchun

    2014-01-01

    Essential proteins are those that are indispensable to cellular survival and development. Existing methods for essential protein identification generally rely on knock-out experiments and/or the relative density of their interactions (edges) with other proteins in a Protein-Protein Interaction (PPI) network. Here, we present a computational method, called EW, to first rank protein-protein interactions in terms of their Edge Weights, and then identify sub-PPI-networks consisting of only the highly-ranked edges and predict their proteins as essential proteins. We have applied this method to publicly-available PPI data on Saccharomyces cerevisiae (Yeast) and Escherichia coli (E. coli) for essential protein identification, and demonstrated that EW achieves better performance than the state-of-the-art methods in terms of the precision-recall and Jackknife measures. The highly-ranked protein-protein interactions by our prediction tend to be biologically significant in both the Yeast and E. coli PPI networks. Further analyses on systematically perturbed Yeast and E. coli PPI networks through randomly deleting edges demonstrate that the proposed method is robust and the top-ranked edges tend to be more associated with known essential proteins than the lowly-ranked edges. PMID:25268881

  2. Evolution of Chloroplast J Proteins

    PubMed Central

    Chiu, Chi-Chou; Chen, Lih-Jen; Su, Pai-Hsiang; Li, Hsou-min

    2013-01-01

    Hsp70 chaperones are involved in multiple biological processes and are recruited to specific processes by designated J domain-containing cochaperones, or J proteins. To understand the evolution and functions of chloroplast Hsp70s and J proteins, we identified the Arabidopsis chloroplast J protein constituency using a combination of genomic and proteomic database searches and individual protein import assays. We show that Arabidopsis chloroplasts have at least 19 J proteins, the highest number of confirmed J proteins for any organelle. These 19 J proteins are classified into 11 clades, for which cyanobacteria and glaucophytes only have homologs for one clade, green algae have an additional three clades, and all the other 7 clades are specific to land plants. Each clade also possesses a clade-specific novel motif that is likely used to interact with different client proteins. Gene expression analyses indicate that most land plant-specific J proteins show highly variable expression in different tissues and are down regulated by low temperatures. These results show that duplication of chloroplast Hsp70 in land plants is accompanied by more than doubling of the number of its J protein cochaperones through adding new J proteins with novel motifs, not through duplications within existing families. These new J proteins likely recruit chloroplast Hsp70 to perform tissue specific functions related to biosynthesis rather than to stress resistance. PMID:23894646

  3. Transglutaminase Polymerization of Peanut Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    INTRODUCTION: Transglutaminase (TGase) [protein-glutamine:amine gamma-glutamyl-transferase, EC 2.3.2.13]promotes protein cross-linking reactions through an acyl transferase mechanism involving protein-bound glutaminyl residues and primary amines (1), including the epsilon-amino group of lysine resid...

  4. Role of regulator of G protein signaling proteins in bone

    PubMed Central

    Keinan, David; Yang, Shuying; Cohen, Robert E.; Yuan, Xue; Liu, Tongjun; Li, Yi-Ping

    2014-01-01

    Regulators of G protein signaling (RGS) proteins are a family with more than 30 proteins that all contain an RGS domain. In the past decade, increasing evidence has indicated that RGS proteins play crucial roles in the regulation of G protein coupling receptors (GPCR), G proteins, and calcium signaling during cell proliferation, migration, and differentiation in a variety of tissues. In bone, those proteins modulate bone development and remodeling by influencing various signaling pathways such as GPCR-G protein signaling, Wnt, calcium oscillations and PTH. This review summarizes the recent advances in the understanding of the regulation of RGS genes expression, as well as the functions and mechanisms of RGS proteins, especially in regulating GPCR-G protein signaling, Wnt signaling, calcium oscillations signaling and PTH signaling during bone development and remodeling. This review also highlights the regulation of different RGS proteins in osteoblasts, chondrocytes and osteoclasts. The knowledge from the recent advances of RGS study summarized in the review would provide the insights into new therapies for bone diseases. PMID:24389209

  5. Biophysics of protein evolution and evolutionary protein biophysics

    PubMed Central

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599

  6. Protein subcellular localization assays using split fluorescent proteins

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  7. Commercial Protein Crystal Growth: Protein Crystallization Facility (CPCG-H)

    NASA Astrophysics Data System (ADS)

    DeLucas, Lawrence J.

    2002-12-01

    Within the human body, there are thousands of different proteins that serve a variety of different functions, such as making it possible for red blood cells to carry oxygen in our bodies. Yet proteins can also be involved in diseases. Each protein has a particular chemical structure, which means it has a unique shape. It is this three-dimensional shape that allows each protein to do its job by interacting with chemicals or binding with other proteins. If researchers can determine the shape, or shapes, of a protein, they can learn how it works. This information can then be used by the pharmaceutical industry to develop new drugs or improve the way medications work. The NASA Commercial Space Center sponsoring this experiment - the Center for Biophysical Sciences and Engineering at the University of Alabama at Birmingham - has more than 60 industry and academic partners who grow protein crystals and use the information in drug design projects.

  8. Current Experimental Methods for Characterizing Protein-Protein Interactions.

    PubMed

    Zhou, Mi; Li, Qing; Wang, Renxiao

    2016-04-19

    Protein molecules often interact with other partner protein molecules in order to execute their vital functions in living organisms. Characterization of protein-protein interactions thus plays a central role in understanding the molecular mechanism of relevant protein molecules, elucidating the cellular processes and pathways relevant to health or disease for drug discovery, and charting large-scale interaction networks in systems biology research. A whole spectrum of methods, based on biophysical, biochemical, or genetic principles, have been developed to detect the time, space, and functional relevance of protein-protein interactions at various degrees of affinity and specificity. This article presents an overview of these experimental methods, outlining the principles, strengths and limitations, and recent developments of each type of method. PMID:26864455

  9. Protein – Which is Best?

    PubMed Central

    Hoffman, Jay R.; Falvo, Michael J.

    2004-01-01

    Protein intake that exceeds the recommended daily allowance is widely accepted for both endurance and power athletes. However, considering the variety of proteins that are available much less is known concerning the benefits of consuming one protein versus another. The purpose of this paper is to identify and analyze key factors in order to make responsible recommendations to both the general and athletic populations. Evaluation of a protein is fundamental in determining its appropriateness in the human diet. Proteins that are of inferior content and digestibility are important to recognize and restrict or limit in the diet. Similarly, such knowledge will provide an ability to identify proteins that provide the greatest benefit and should be consumed. The various techniques utilized to rate protein will be discussed. Traditionally, sources of dietary protein are seen as either being of animal or vegetable origin. Animal sources provide a complete source of protein (i.e. containing all essential amino acids), whereas vegetable sources generally lack one or more of the essential amino acids. Animal sources of dietary protein, despite providing a complete protein and numerous vitamins and minerals, have some health professionals concerned about the amount of saturated fat common in these foods compared to vegetable sources. The advent of processing techniques has shifted some of this attention and ignited the sports supplement marketplace with derivative products such as whey, casein and soy. Individually, these products vary in quality and applicability to certain populations. The benefits that these particular proteins possess are discussed. In addition, the impact that elevated protein consumption has on health and safety issues (i.e. bone health, renal function) are also reviewed. Key Points Higher protein needs are seen in athletic populations. Animal proteins is an important source of protein, however potential health concerns do exist from a diet of protein

  10. Protein-protein interactions of mitochondrial-associated protein via bioluminescence resonance energy transfer

    PubMed Central

    Koshiba, Takumi

    2015-01-01

    Protein-protein interactions are essential biological reactions occurring at inter- and intra-cellular levels. The analysis of their mechanism is generally required in order link to understand their various cellular functions. Bioluminescence resonance energy transfer (BRET), which is based on an enzymatic activity of luciferase, is a useful tool for investigating protein-protein interactions in live cells. The combination of the BRET system and biomolecular fluorescence complementation (BiFC) would provide us a better understanding of the hetero-oligomeric structural states of protein complexes. In this review, we discuss the application of BRET to the protein-protein interactions of mitochondrial-associated proteins and discuss its physiological relevance. PMID:27493852

  11. Membrane Bending by Protein Crowding

    NASA Astrophysics Data System (ADS)

    Stachowiak, Jeanne

    2014-03-01

    From endosomes and synaptic vesicles to the cristae of the mitochondria and the annulus of the nuclear pore, highly curved membranes are fundamental to the structure and physiology of living cells. The established view is that specific families of proteins are able to bend membranes by binding to them. For example, inherently curved proteins are thought to impose their structure on the membrane surface, while membrane-binding proteins with hydrophobic motifs are thought to insert into the membrane like wedges, driving curvature. However, computational models have recently revealed that these mechanisms would require specialized membrane-bending proteins to occupy nearly 100% of a curved membrane surface, an improbable physiological situation given the immense density and diversity of membrane-bound proteins, and the low expression levels of these specialized proteins within curved regions of the membrane. How then does curvature arise within the complex and crowded environment of cellular membranes? Our recent work using proteins involved in clathrin-mediated endocytosis, as well as engineered protein-lipid interactions, has suggested a new hypothesis - that lateral pressure generated by collisions between membrane-bound proteins can drive membrane bending. Specifically, by correlating membrane bending with quantitative optical measurements of protein density on synthetic membrane surfaces and simple physical models of collisions among membrane-bound proteins, we have demonstrated that protein-protein steric interactions can drive membrane curvature. These findings suggest that a simple imbalance in the concentration of membrane-bound proteins across a membrane surface can drive a membrane to bend, providing an efficient mechanism by which essentially any protein can contribute to shaping membranes.

  12. Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network

    PubMed Central

    2014-01-01

    Background MADS domain proteins are transcription factors that coordinate several important developmental processes in plants. These proteins interact with other MADS domain proteins to form dimers, and it has been proposed that they are able to associate as tetrameric complexes that regulate transcription of target genes. Whether the formation of functional tetramers is a widespread property of plant MADS domain proteins, or it is specific to few of these transcriptional regulators remains unclear. Results We analyzed the structure of the network of physical interactions among MADS domain proteins in Arabidopsis thaliana. We determined the abundance of subgraphs that represent the connection pattern expected for a MADS domain protein heterotetramer. These subgraphs were significantly more abundant in the MADS domain protein interaction network than in randomized analogous networks. Importantly, these subgraphs are not significantly frequent in a protein interaction network of TCP plant transcription factors, when compared to expectation by chance. In addition, we found that MADS domain proteins in tetramer-like subgraphs are more likely to be expressed jointly than proteins in other subgraphs. This effect is mainly due to proteins in the monophyletic MIKC clade, as there is no association between tetramer-like subgraphs and co-expression for proteins outside this clade. Conclusions Our results support that the tendency to form functional tetramers is widespread in the MADS domain protein-protein interaction network. Our observations also suggest that this trend is prevalent, or perhaps exclusive, for proteins in the MIKC clade. Because it is possible to retrodict several experimental results from our analyses, our work can be an important aid to make new predictions and facilitates experimental research on plant MADS domain proteins. PMID:24468197

  13. Green fluorescent protein: A perspective

    PubMed Central

    Remington, S James

    2011-01-01

    A brief personal perspective is provided for green fluorescent protein (GFP), covering the period 1994–2011. The topics discussed are primarily those in which my research group has made a contribution and include structure and function of the GFP polypeptide, the mechanism of fluorescence emission, excited state protein transfer, the design of ratiometric fluorescent protein biosensors and an overview of the fluorescent proteins derived from coral reef animals. Structure-function relationships in photoswitchable fluorescent proteins and nonfluorescent chromoproteins are also briefly covered. PMID:21714025

  14. Information contained in protein shapes

    NASA Technical Reports Server (NTRS)

    Sundaram, K.; Viswanadhan, V. N.; Macelroy, R. D.

    1983-01-01

    The sequence of local conformations at C-alpha atoms of a protein has been considered as an informational message string. The total self-information contents and self-information per letter have been evaluated for 83 globular proteins whose structures are known from X-ray crystallography. The derived information contents provide a method of quantitating structural specificity of proteins. This method of analysis enables repeating, intricate structural features to be recognized. Among the globular proteins whose structures have been solved, high potential iron protein stands out with the largest three-letter dependence.

  15. Selective chemical labeling of proteins.

    PubMed

    Chen, Xi; Wu, Yao-Wen

    2016-06-28

    Over the years, there have been remarkable efforts in the development of selective protein labeling strategies. In this review, we deliver a comprehensive overview of the currently available bioorthogonal and chemoselective reactions. The ability to introduce bioorthogonal handles to proteins is essential to carry out bioorthogonal reactions for protein labeling in living systems. We therefore summarize the techniques that allow for site-specific "installation" of bioorthogonal handles into proteins. We also highlight the biological applications that have been achieved by selective chemical labeling of proteins. PMID:26940577

  16. Viruses and viral proteins

    PubMed Central

    Verdaguer, Nuria; Ferrero, Diego; Murthy, Mathur R. N.

    2014-01-01

    For more than 30 years X-ray crystallography has been by far the most powerful approach for determining the structures of viruses and viral proteins at atomic resolution. The information provided by these structures, which covers many important aspects of the viral life cycle such as cell-receptor recognition, viral entry, nucleic acid transfer and genome replication, has extensively enriched our vision of the virus world. Many of the structures available correspond to potential targets for antiviral drugs against important human pathogens. This article provides an overview of the current knowledge of different structural aspects of the above-mentioned processes. PMID:25485129

  17. Probing High-density Functional Protein Microarrays to Detect Protein-protein Interactions.

    PubMed

    Fasolo, Joseph; Im, Hogune; Snyder, Michael P

    2015-01-01

    High-density functional protein microarrays containing ~4,200 recombinant yeast proteins are examined for kinase protein-protein interactions using an affinity purified yeast kinase fusion protein containing a V5-epitope tag for read-out. Purified kinase is obtained through culture of a yeast strain optimized for high copy protein production harboring a plasmid containing a Kinase-V5 fusion construct under a GAL inducible promoter. The yeast is grown in restrictive media with a neutral carbon source for 6 hr followed by induction with 2% galactose. Next, the culture is harvested and kinase is purified using standard affinity chromatographic techniques to obtain a highly purified protein kinase for use in the assay. The purified kinase is diluted with kinase buffer to an appropriate range for the assay and the protein microarrays are blocked prior to hybridization with the protein microarray. After the hybridization, the arrays are probed with monoclonal V5 antibody to identify proteins bound by the kinase-V5 protein. Finally, the arrays are scanned using a standard microarray scanner, and data is extracted for downstream informatics analysis to determine a high confidence set of protein interactions for downstream validation in vivo. PMID:26274875

  18. Intrinsic Localized Modes in Proteins

    PubMed Central

    Nicolaï, Adrien; Delarue, Patrice; Senet, Patrick

    2015-01-01

    Protein dynamics is essential for proteins to function. Here we predicted the existence of rare, large nonlinear excitations, termed intrinsic localized modes (ILMs), of the main chain of proteins based on all-atom molecular dynamics simulations of two fast-folder proteins and of a rigid α/β protein at 300 K and at 380 K in solution. These nonlinear excitations arise from the anharmonicity of the protein dynamics. The ILMs were detected by computing the Shannon entropy of the protein main-chain fluctuations. In the non-native state (significantly explored at 380 K), the probability of their excitation was increased by a factor between 9 and 28 for the fast-folder proteins and by a factor 2 for the rigid protein. This enhancement in the non-native state was due to glycine, as demonstrated by simulations in which glycine was mutated to alanine. These ILMs might play a functional role in the flexible regions of proteins and in proteins in a non-native state (i.e. misfolded or unfolded states). PMID:26658321

  19. Intrinsic Localized Modes in Proteins.

    PubMed

    Nicolaï, Adrien; Delarue, Patrice; Senet, Patrick

    2015-01-01

    Protein dynamics is essential for proteins to function. Here we predicted the existence of rare, large nonlinear excitations, termed intrinsic localized modes (ILMs), of the main chain of proteins based on all-atom molecular dynamics simulations of two fast-folder proteins and of a rigid α/β protein at 300 K and at 380 K in solution. These nonlinear excitations arise from the anharmonicity of the protein dynamics. The ILMs were detected by computing the Shannon entropy of the protein main-chain fluctuations. In the non-native state (significantly explored at 380 K), the probability of their excitation was increased by a factor between 9 and 28 for the fast-folder proteins and by a factor 2 for the rigid protein. This enhancement in the non-native state was due to glycine, as demonstrated by simulations in which glycine was mutated to alanine. These ILMs might play a functional role in the flexible regions of proteins and in proteins in a non-native state (i.e. misfolded or unfolded states). PMID:26658321

  20. The Papillomavirus E2 proteins

    SciTech Connect

    McBride, Alison A.

    2013-10-15

    The papillomavirus E2 proteins are pivotal to the viral life cycle and have well characterized functions in transcriptional regulation, initiation of DNA replication and partitioning the viral genome. The E2 proteins also function in vegetative DNA replication, post-transcriptional processes and possibly packaging. This review describes structural and functional aspects of the E2 proteins and their binding sites on the viral genome. It is intended to be a reference guide to this viral protein. - Highlights: • Overview of E2 protein functions. • Structural domains of the papillomavirus E2 proteins. • Analysis of E2 binding sites in different genera of papillomaviruses. • Compilation of E2 associated proteins. • Comparison of key mutations in distinct E2 functions.

  1. Protein Repeats from First Principles.

    PubMed

    Turjanski, Pablo; Parra, R Gonzalo; Espada, Rocío; Becher, Verónica; Ferreiro, Diego U

    2016-01-01

    Some natural proteins display recurrent structural patterns. Despite being highly similar at the tertiary structure level, repeating patterns within a single repeat protein can be extremely variable at the sequence level. We use a mathematical definition of a repetition and investigate the occurrences of these in sequences of different protein families. We found that long stretches of perfect repetitions are infrequent in individual natural proteins, even for those which are known to fold into structures of recurrent structural motifs. We found that natural repeat proteins are indeed repetitive in their families, exhibiting abundant stretches of 6 amino acids or longer that are perfect repetitions in the reference family. We provide a systematic quantification for this repetitiveness. We show that this form of repetitiveness is not exclusive of repeat proteins, but also occurs in globular domains. A by-product of this work is a fast quantification of the likelihood of a protein to belong to a family. PMID:27044676

  2. Protein Repeats from First Principles

    PubMed Central

    Turjanski, Pablo; Parra, R. Gonzalo; Espada, Rocío; Becher, Verónica; Ferreiro, Diego U.

    2016-01-01

    Some natural proteins display recurrent structural patterns. Despite being highly similar at the tertiary structure level, repeating patterns within a single repeat protein can be extremely variable at the sequence level. We use a mathematical definition of a repetition and investigate the occurrences of these in sequences of different protein families. We found that long stretches of perfect repetitions are infrequent in individual natural proteins, even for those which are known to fold into structures of recurrent structural motifs. We found that natural repeat proteins are indeed repetitive in their families, exhibiting abundant stretches of 6 amino acids or longer that are perfect repetitions in the reference family. We provide a systematic quantification for this repetitiveness. We show that this form of repetitiveness is not exclusive of repeat proteins, but also occurs in globular domains. A by-product of this work is a fast quantification of the likelihood of a protein to belong to a family. PMID:27044676

  3. Protein Adsorption in Three Dimensions

    PubMed Central

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  4. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenblum, William M.; Delucas, Lawrence J.; Wilson, William W.

    1989-01-01

    Major advances have been made in several of the experimental aspects of protein crystallography, leaving protein crystallization as one of the few remaining bottlenecks. As a result, it has become important that the science of protein crystal growth is better understood and that improved methods for protein crystallization are developed. Preliminary experiments with both small molecules and proteins indicate that microgravity may beneficially affect crystal growth. For this reason, a series of protein crystal growth experiments using the Space Shuttle was initiated. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth. Various optical techniques are being utilized to monitor the crystal growth process from the incipient or nucleation stage and throughout the growth phase. The eventual goal of these studies is to develop a system which utilizes optical monitoring for dynamic control of the crystallization process.

  5. Mathematical methods for protein science

    SciTech Connect

    Hart, W.; Istrail, S.; Atkins, J.

    1997-12-31

    Understanding the structure and function of proteins is a fundamental endeavor in molecular biology. Currently, over 100,000 protein sequences have been determined by experimental methods. The three dimensional structure of the protein determines its function, but there are currently less than 4,000 structures known to atomic resolution. Accordingly, techniques to predict protein structure from sequence have an important role in aiding the understanding of the Genome and the effects of mutations in genetic disease. The authors describe current efforts at Sandia to better understand the structure of proteins through rigorous mathematical analyses of simple lattice models. The efforts have focused on two aspects of protein science: mathematical structure prediction, and inverse protein folding.

  6. Protein Repeats from First Principles

    NASA Astrophysics Data System (ADS)

    Turjanski, Pablo; Parra, R. Gonzalo; Espada, Rocío; Becher, Verónica; Ferreiro, Diego U.

    2016-04-01

    Some natural proteins display recurrent structural patterns. Despite being highly similar at the tertiary structure level, repeating patterns within a single repeat protein can be extremely variable at the sequence level. We use a mathematical definition of a repetition and investigate the occurrences of these in sequences of different protein families. We found that long stretches of perfect repetitions are infrequent in individual natural proteins, even for those which are known to fold into structures of recurrent structural motifs. We found that natural repeat proteins are indeed repetitive in their families, exhibiting abundant stretches of 6 amino acids or longer that are perfect repetitions in the reference family. We provide a systematic quantification for this repetitiveness. We show that this form of repetitiveness is not exclusive of repeat proteins, but also occurs in globular domains. A by-product of this work is a fast quantification of the likelihood of a protein to belong to a family.

  7. Bioinformatic Prediction of WSSV-Host Protein-Protein Interaction

    PubMed Central

    Sun, Zheng; Xiang, Jianhai

    2014-01-01

    WSSV is one of the most dangerous pathogens in shrimp aquaculture. However, the molecular mechanism of how WSSV interacts with shrimp is still not very clear. In the present study, bioinformatic approaches were used to predict interactions between proteins from WSSV and shrimp. The genome data of WSSV (NC_003225.1) and the constructed transcriptome data of F. chinensis were used to screen potentially interacting proteins by searching in protein interaction databases, including STRING, Reactome, and DIP. Forty-four pairs of proteins were suggested to have interactions between WSSV and the shrimp. Gene ontology analysis revealed that 6 pairs of these interacting proteins were classified into “extracellular region” or “receptor complex” GO-terms. KEGG pathway analysis showed that they were involved in the “ECM-receptor interaction pathway.” In the 6 pairs of interacting proteins, an envelope protein called “collagen-like protein” (WSSV-CLP) encoded by an early virus gene “wsv001” in WSSV interacted with 6 deduced proteins from the shrimp, including three integrin alpha (ITGA), two integrin beta (ITGB), and one syndecan (SDC). Sequence analysis on WSSV-CLP, ITGA, ITGB, and SDC revealed that they possessed the sequence features for protein-protein interactions. This study might provide new insights into the interaction mechanisms between WSSV and shrimp. PMID:24982879

  8. A new protein structure representation for efficient protein function prediction.

    PubMed

    Maghawry, Huda A; Mostafa, Mostafa G M; Gharib, Tarek F

    2014-12-01

    One of the challenging problems in bioinformatics is the prediction of protein function. Protein function is the main key that can be used to classify different proteins. Protein function can be inferred experimentally with very small throughput or computationally with very high throughput. Computational methods are sequence based or structure based. Structure-based methods produce more accurate protein function prediction. In this article, we propose a new protein structure representation for efficient protein function prediction. The representation is based on three-dimensional patterns of protein residues. In the analysis, we used protein function based on enzyme activity through six mechanistically diverse enzyme superfamilies: amidohydrolase, crotonase, haloacid dehalogenase, isoprenoid synthase type I, and vicinal oxygen chelate. We applied three different classification methods, naïve Bayes, k-nearest neighbors, and random forest, to predict the enzyme superfamily of a given protein. The prediction accuracy using the proposed representation outperforms a recently introduced representation method that is based only on the distance patterns. The results show that the proposed representation achieved prediction accuracy up to 98%, with improvement of about 10% on average. PMID:25343279

  9. LEA proteins prevent protein aggregation due to water stress

    PubMed Central

    Goyal, Kshamata; Walton, Laura J.; Tunnacliffe, Alan

    2005-01-01

    LEA (late embryogenesis abundant) proteins in both plants and animals are associated with tolerance to water stress resulting from desiccation and cold shock. However, although various functions of LEA proteins have been proposed, their precise role has not been defined. Recent bioinformatics studies suggest that LEA proteins might behave as molecular chaperones, and the current study was undertaken to test this hypothesis. Recombinant forms of AavLEA1, a group 3 LEA protein from the anhydrobiotic nematode Aphelenchus avenae, and Em, a group 1 LEA protein from wheat, have been subjected to functional analysis. Heat-stress experiments with citrate synthase, which is susceptible to aggregation at high temperatures, suggest that LEA proteins do not behave as classical molecular chaperones, but they do exhibit a protective, synergistic effect in the presence of the so-called chemical chaperone, trehalose. In contrast, both LEA proteins can independently protect citrate synthase from aggregation due to desiccation and freezing, in keeping with a role in water-stress tolerance; similar results were obtained with lactate dehydrogenase. This is the first evidence of anti-aggregation activity of LEA proteins due to water stress. Again, a synergistic effect of LEA and trehalose was observed, which is significant given that non-reducing disaccharides are known to accumulate during dehydration in plants and nematodes. A model is proposed whereby LEA proteins might act as a novel form of molecular chaperone, or ‘molecular shield’, to help prevent the formation of damaging protein aggregates during water stress. PMID:15631617

  10. Protein-protein interaction network analysis of cirrhosis liver disease

    PubMed Central

    Safaei, Akram; Rezaei Tavirani, Mostafa; Arefi Oskouei, Afsaneh; Zamanian Azodi, Mona; Mohebbi, Seyed Reza; Nikzamir, Abdol Rahim

    2016-01-01

    Aim: Evaluation of biological characteristics of 13 identified proteins of patients with cirrhotic liver disease is the main aim of this research. Background: In clinical usage, liver biopsy remains the gold standard for diagnosis of hepatic fibrosis. Evaluation and confirmation of liver fibrosis stages and severity of chronic diseases require a precise and noninvasive biomarkers. Since the early detection of cirrhosis is a clinical problem, achieving a sensitive, specific and predictive novel method based on biomarkers is an important task. Methods: Essential analysis, such as gene ontology (GO) enrichment and protein-protein interactions (PPI) was undergone EXPASy, STRING Database and DAVID Bioinformatics Resources query. Results: Based on GO analysis, most of proteins are located in the endoplasmic reticulum lumen, intracellular organelle lumen, membrane-enclosed lumen, and extracellular region. The relevant molecular functions are actin binding, metal ion binding, cation binding and ion binding. Cell adhesion, biological adhesion, cellular amino acid derivative, metabolic process and homeostatic process are the related processes. Protein-protein interaction network analysis introduced five proteins (fibroblast growth factor receptor 4, tropomyosin 4, tropomyosin 2 (beta), lectin, Lectin galactoside-binding soluble 3 binding protein and apolipoprotein A-I) as hub and bottleneck proteins. Conclusion: Our result indicates that regulation of lipid metabolism and cell survival are important biological processes involved in cirrhosis disease. More investigation of above mentioned proteins will provide a better understanding of cirrhosis disease. PMID:27099671

  11. Peptides and proteins

    SciTech Connect

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  12. Introduction to protein crystallization

    PubMed Central

    McPherson, Alexander; Gavira, Jose A.

    2014-01-01

    Protein crystallization was discovered by chance about 150 years ago and was developed in the late 19th century as a powerful purification tool and as a demonstration of chemical purity. The crystallization of proteins, nucleic acids and large biological complexes, such as viruses, depends on the creation of a solution that is supersaturated in the macromolecule but exhibits conditions that do not significantly perturb its natural state. Supersaturation is produced through the addition of mild precipitating agents such as neutral salts or polymers, and by the manipulation of various parameters that include temperature, ionic strength and pH. Also important in the crystallization process are factors that can affect the structural state of the macromolecule, such as metal ions, inhibitors, cofactors or other conventional small molecules. A variety of approaches have been developed that combine the spectrum of factors that effect and promote crystallization, and among the most widely used are vapor diffusion, dialysis, batch and liquid–liquid diffusion. Successes in macromolecular crystallization have multiplied rapidly in recent years owing to the advent of practical, easy-to-use screening kits and the application of laboratory robotics. A brief review will be given here of the most popular methods, some guiding principles and an overview of current technologies. PMID:24419610

  13. Introduction to protein crystallization.

    PubMed

    McPherson, Alexander; Gavira, Jose A

    2014-01-01

    Protein crystallization was discovered by chance about 150 years ago and was developed in the late 19th century as a powerful purification tool and as a demonstration of chemical purity. The crystallization of proteins, nucleic acids and large biological complexes, such as viruses, depends on the creation of a solution that is supersaturated in the macromolecule but exhibits conditions that do not significantly perturb its natural state. Supersaturation is produced through the addition of mild precipitating agents such as neutral salts or polymers, and by the manipulation of various parameters that include temperature, ionic strength and pH. Also important in the crystallization process are factors that can affect the structural state of the macromolecule, such as metal ions, inhibitors, cofactors or other conventional small molecules. A variety of approaches have been developed that combine the spectrum of factors that effect and promote crystallization, and among the most widely used are vapor diffusion, dialysis, batch and liquid-liquid diffusion. Successes in macromolecular crystallization have multiplied rapidly in recent years owing to the advent of practical, easy-to-use screening kits and the application of laboratory robotics. A brief review will be given here of the most popular methods, some guiding principles and an overview of current technologies. PMID:24419610

  14. Chirality and protein folding

    NASA Astrophysics Data System (ADS)

    Kwiecinska, Joanna I.; Cieplak, Marek

    2005-05-01

    There are several simple criteria of folding to a native state in model proteins. One of them involves crossing of a threshold value of the root mean square deviation distance away from the native state. Another checks whether all native contacts are established, i.e. whether the interacting amino acids come closer than some characteristic distance. We use Go-like models of proteins and show that such simple criteria may prompt one to declare folding even though fragments of the resulting conformations have a wrong sense of chirality. We propose that a better condition of folding should augment the simple criteria with the requirement that most of the local values of the chirality should be nearly native. The kinetic discrepancy between the simple and compound criteria can be substantially reduced in the Go-like models by providing the Hamiltonian with a term which favours native values of the local chirality. We study the effects of this term as a function of its amplitude and compare it to other models such as ones with side groups and ones with angle-dependent potentials.

  15. Hyperquenching for protein cryocrystallography

    PubMed Central

    Warkentin, Matthew; Berejnov, Viatcheslav; Husseini, Naji S.; Thorne, Robert E.

    2010-01-01

    When samples having volumes characteristic of protein crystals are plunge cooled in liquid nitrogen or propane, most cooling occurs in the cold gas layer above the liquid. By removing this cold gas layer, cooling rates for small samples and modest plunge velocities are increased to 1.5 × 104 K s−1, with increases of a factor of 100 over current best practice possible with 10 μm samples. Glycerol concentrations required to eliminate water crystallization in protein-free aqueous mixtures drop from ∼28% w/v to as low as 6% w/v. These results will allow many crystals to go from crystallization tray to liquid cryogen to X-ray beam without cryoprotectants. By reducing or eliminating the need for cryoprotectants in growth solutions, they may also simplify the search for crystallization conditions and for optimal screens. The results presented here resolve many puzzles, such as why plunge cooling in liquid nitrogen or propane has, until now, not yielded significantly better diffraction quality than gas-stream cooling. PMID:20461232

  16. Water-transporting proteins.

    PubMed

    Zeuthen, Thomas

    2010-04-01

    Transport through lipids and aquaporins is osmotic and entirely driven by the difference in osmotic pressure. Water transport in cotransporters and uniporters is different: Water can be cotransported, energized by coupling to the substrate flux by a mechanism closely associated with protein. In the K(+)/Cl(-) and the Na(+)/K(+)/2Cl(-) cotransporters, water is entirely cotransported, while water transport in glucose uniporters and Na(+)-coupled transporters of nutrients and neurotransmitters takes place by both osmosis and cotransport. The molecular mechanism behind cotransport of water is not clear. It is associated with the substrate movements in aqueous pathways within the protein; a conventional unstirred layer mechanism can be ruled out, due to high rates of diffusion in the cytoplasm. The physiological roles of the various modes of water transport are reviewed in relation to epithelial transport. Epithelial water transport is energized by the movements of ions, but how the coupling takes place is uncertain. All epithelia can transport water uphill against an osmotic gradient, which is hard to explain by simple osmosis. Furthermore, genetic removal of aquaporins has not given support to osmosis as the exclusive mode of transport. Water cotransport can explain the coupling between ion and water transport, a major fraction of transepithelial water transport and uphill water transport. Aquaporins enhance water transport by utilizing osmotic gradients and cause the osmolarity of the transportate to approach isotonicity. PMID:20091162

  17. Signature Product Code for Predicting Protein-Protein Interactions

    SciTech Connect

    Martin, Shawn B.; Brown, William M.

    2004-09-25

    The SigProdV1.0 software consists of four programs which together allow the prediction of protein-protein interactions using only amino acid sequences and experimental data. The software is based on the use of tensor products of amino acid trimers coupled with classifiers known as support vector machines. Essentially the program looks for amino acid trimer pairs which occur more frequently in protein pairs which are known to interact. These trimer pairs are then used to make predictions about unknown protein pairs. A detailed description of the method can be found in the paper: S. Martin, D. Roe, J.L. Faulon. "Predicting protein-protein interactions using signature products," Bioinformatics, available online from Advance Access, Aug. 19, 2004.

  18. Protein-protein interactions and genetic diseases: The Interactome

    PubMed Central

    Lage, Kasper

    2014-01-01

    Protein-protein interactions mediate essentially all biological processes. Despite the quality of these data being widely questioned a decade ago, the reproducibility of large-scale protein interaction data is now much improved and there is little question that the latest screens are of high quality. Moreover, common data standards and coordinated curation practices between the databases that collect the interactions have made these valuable data available to a wide group of researchers. Here, I will review how protein-protein interactions are measured, collected and quality controlled. I discuss how the architecture of molecular protein networks have informed disease biology, and how these data are now being computationally integrated with the newest genomic technologies, in particular genome-wide association studies and exome-sequencing projects, to improve our understanding of molecular processes perturbed by genetics in human diseases. PMID:24892209

  19. Protein secretion in Pichia pastoris and advances in protein production.

    PubMed

    Damasceno, Leonardo M; Huang, Chung-Jr; Batt, Carl A

    2012-01-01

    Yeast expression systems have been successfully used for over 20 years for the production of recombinant proteins. With the growing interest in recombinant protein expression for various uses, yeast expression systems, such as the popular Pichia pastoris, are becoming increasingly important. Although P. pastoris has been successfully used in the production of many secreted and intracellular recombinant proteins, there is still room for improvement of this expression system. In particular, secretion of recombinant proteins is still one of the main reasons for using P. pastoris. Therefore, endoplasmic reticulum protein folding, correct glycosylation, vesicular transport to the plasma membrane, gene dosage, secretion signal sequences, and secretome studies are important considerations for improved recombinant protein production. PMID:22057543

  20. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis

    PubMed Central

    He, J.; Cooper, H. M.; Reyes, A.; Di Re, M.; Sembongi, H.; Litwin, T. R.; Gao, J.; Neuman, K. C.; Fearnley, I. M.; Spinazzola, A.; Walker, J. E.; Holt, I. J.

    2012-01-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion. PMID:22453275

  1. Protein-water dynamics in antifreeze protein III activity

    NASA Astrophysics Data System (ADS)

    Xu, Yao; Bäumer, Alexander; Meister, Konrad; Bischak, Connor G.; DeVries, Arthur L.; Leitner, David M.; Havenith, Martina

    2016-03-01

    We combine Terahertz absorption spectroscopy (THz) and molecular dynamics (MD) simulations to investigate the underlying molecular mechanism for the antifreeze activity of one class of antifreeze protein, antifreeze protein type III (AFP-III) with a focus on the collective water hydrogen bond dynamics near the protein. After summarizing our previous work on AFPs, we present a new investigation of the effects of cosolutes on protein antifreeze activity by adding sodium citrate to the protein solution of AFP-III. Our results reveal that for AFP-III, unlike some other AFPs, the addition of the osmolyte sodium citrate does not affect the hydrogen bond dynamics at the protein surface significantly, as indicated by concentration dependent THz measurements. The present data, in combination with our previous THz measurements and molecular simulations, confirm that while long-range solvent perturbation is a necessary condition for the antifreeze activity of AFP-III, the local binding affinity determines the size of the hysteresis.

  2. Revisiting the Voronoi description of protein-protein interfaces.

    PubMed

    Cazals, Frédéric; Proust, Flavien; Bahadur, Ranjit P; Janin, Joël

    2006-09-01

    We developed a model of macromolecular interfaces based on the Voronoi diagram and the related alpha-complex, and we tested its properties on a set of 96 protein-protein complexes taken from the Protein Data Bank. The Voronoi model provides a natural definition of the interfaces, and it yields values of the number of interface atoms and of the interface area that have excellent correlation coefficients with those of the classical model based on solvent accessibility. Nevertheless, some atoms that do not lose solvent accessibility are part of the interface defined by the Voronoi model. The Voronoi model provides robust definitions of the curvature and of the connectivity of the interfaces, and leads to estimates of these features that generally agree with other approaches. Our implementation of the model allows an analysis of protein-water contacts that highlights the role of structural water molecules at protein-protein interfaces. PMID:16943442

  3. Signature Product Code for Predicting Protein-Protein Interactions

    Energy Science and Technology Software Center (ESTSC)

    2004-09-25

    The SigProdV1.0 software consists of four programs which together allow the prediction of protein-protein interactions using only amino acid sequences and experimental data. The software is based on the use of tensor products of amino acid trimers coupled with classifiers known as support vector machines. Essentially the program looks for amino acid trimer pairs which occur more frequently in protein pairs which are known to interact. These trimer pairs are then used to make predictionsmore » about unknown protein pairs. A detailed description of the method can be found in the paper: S. Martin, D. Roe, J.L. Faulon. "Predicting protein-protein interactions using signature products," Bioinformatics, available online from Advance Access, Aug. 19, 2004.« less

  4. Proteins interacting with cloning scars: a source of false positive protein-protein interactions

    PubMed Central

    Banks, Charles A. S.; Boanca, Gina; Lee, Zachary T.; Florens, Laurence; Washburn, Michael P.

    2015-01-01

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine “cloning scar” present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected. PMID:25704442

  5. Characterization of Protein Complexes and Subcomplexes in Protein-Protein Interaction Databases

    PubMed Central

    Zaki, Nazar; Mohamed, Elfadil A.; Mora, Antonio

    2015-01-01

    The identification and characterization of protein complexes implicated in protein-protein interaction data are crucial to the understanding of the molecular events under normal and abnormal physiological conditions. This paper provides a novel characterization of subcomplexes in protein interaction databases, stressing definition and representation issues, quantification, biological validation, network metrics, motifs, modularity, and gene ontology (GO) terms. The paper introduces the concept of “nested group” as a way to represent subcomplexes and estimates that around 15% of those nested group with the higher Jaccard index may be a result of data artifacts in protein interaction databases, while a number of them can be found in biologically important modular structures or dynamic structures. We also found that network centralities, enrichment in essential proteins, GO terms related to regulation, imperfect 5-clique motifs, and higher GO homogeneity can be used to identify proteins in nested complexes. PMID:25722891

  6. A computational system for modelling flexible protein-protein and protein-DNA docking.

    PubMed

    Sternberg, M J; Aloy, P; Gabb, H A; Jackson, R M; Moont, G; Querol, E; Aviles, F X

    1998-01-01

    A computational system is described that predicts the structure of protein/protein and protein/DNA complexes starting from unbound coordinate sets. The approach is (i) a global search with rigid-body docking for complexes with shape complementarity and favourable electrostatics; (ii) use of distance constraints from experimental (or predicted) knowledge of critical residues; (iii) use of pair potential to screen docked complexes and (iv) refinement and further screening by protein-side chain optimisation and interfacial energy minimisation. The system has been applied to model ten protein/protein and eight protein-repressor/DNA (steps i to iii only) complexes. In general a few complexes, one of which is close to the true structure, can be generated. PMID:9783224

  7. Proteins aggregation and human diseases

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  8. Protein Adaptations in Archaeal Extremophiles

    PubMed Central

    Reed, Christopher J.; Lewis, Hunter; Trejo, Eric; Winston, Vern; Evilia, Caryn

    2013-01-01

    Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity. PMID:24151449

  9. Laboratory-Directed Protein Evolution

    PubMed Central

    Yuan, Ling; Kurek, Itzhak; English, James; Keenan, Robert

    2005-01-01

    Systematic approaches to directed evolution of proteins have been documented since the 1970s. The ability to recruit new protein functions arises from the considerable substrate ambiguity of many proteins. The substrate ambiguity of a protein can be interpreted as the evolutionary potential that allows a protein to acquire new specificities through mutation or to regain function via mutations that differ from the original protein sequence. All organisms have evolutionarily exploited this substrate ambiguity. When exploited in a laboratory under controlled mutagenesis and selection, it enables a protein to “evolve” in desired directions. One of the most effective strategies in directed protein evolution is to gradually accumulate mutations, either sequentially or by recombination, while applying selective pressure. This is typically achieved by the generation of libraries of mutants followed by efficient screening of these libraries for targeted functions and subsequent repetition of the process using improved mutants from the previous screening. Here we review some of the successful strategies in creating protein diversity and the more recent progress in directed protein evolution in a wide range of scientific disciplines and its impacts in chemical, pharmaceutical, and agricultural sciences. PMID:16148303

  10. EH domain proteins regulate cardiac membrane protein targeting

    PubMed Central

    Gudmundsson, Hjalti; Hund, Thomas J.; Wright, Patrick J.; Kline, Crystal F.; Snyder, Jedidiah S.; Qian, Lan; Koval, Olha M.; Cunha, Shane R.; George, Manju; Rainey, Mark A.; Kashef, Farshid E.; Dun, Wen; Boyden, Penelope A.; Anderson, Mark E.; Band, Hamid; Mohler, Peter J.

    2010-01-01

    Rationale Cardiac membrane excitability is tightly regulated by an integrated network of membrane-associated ion channels, transporters, receptors, and signaling molecules. Membrane protein dynamics in health and disease are maintained by a complex ensemble of intracellular targeting, scaffolding, recycling, and degradation pathways. Surprisingly, despite decades of research linking dysfunction in membrane protein trafficking with human cardiovascular disease, essentially nothing is known regarding the molecular identity or function of these intracellular targeting pathways in excitable cardiomyocytes. Objective We sought to discover novel pathways for membrane protein targeting in primary cardiomyocytes. Methods and Results We report the initial characterization of a large family of membrane trafficking proteins in human heart. We employed a tissue-wide screen for novel ankyrin-associated trafficking proteins and identified four members of a unique Eps15 homology (EH) domain-containing protein family (EHD1, EHD2, EHD3, EHD4) that serve critical roles in endosome-based membrane protein targeting in other cell types. We show that EHD1-4 directly associate with ankyrin, provide the first information on the expression and localization of these molecules in primary cardiomyocytes, and demonstrate that EHD1-4 are co-expressed with ankyrin-B in the myocyte perinuclear region. Notably, the expression of multiple EHD proteins is increased in animal models lacking ankyrin-B, and EHD3-deficient cardiomyocytes display aberrant ankyrin-B localization and selective loss of Na/Ca exchanger expression and function. Finally, we report significant modulation of EHD expression following myocardial infarction, suggesting that these proteins may play a key role in regulating membrane excitability in normal and diseased heart. Conclusions Our findings identify and characterize a new class of cardiac trafficking proteins, define the first group of proteins associated with the ankyrin

  11. Geminivirus C3 Protein: Replication Enhancement and Protein Interactions

    PubMed Central

    Settlage, Sharon B.; See, Renee G.; Hanley-Bowdoin, Linda

    2005-01-01

    Most dicot-infecting geminiviruses encode a replication enhancer protein (C3, AL3, or REn) that is required for optimal replication of their small, single-stranded DNA genomes. C3 interacts with C1, the essential viral replication protein that initiates rolling circle replication. C3 also homo-oligomerizes and interacts with at least two host-encoded proteins, proliferating cell nuclear antigen (PCNA) and the retinoblastoma-related protein (pRBR). It has been proposed that protein interactions contribute to C3 function. Using the C3 protein of Tomato yellow leaf curl virus, we examined the impact of mutations to amino acids that are conserved across the C3 protein family on replication enhancement and protein interactions. Surprisingly, many of the mutations did not affect replication enhancement activity of C3 in tobacco protoplasts. Other mutations either enhanced or were detrimental to C3 replication activity. Analysis of mutated proteins in yeast two-hybrid assays indicated that mutations that inactivate C3 replication enhancement activity also reduce or inactivate C3 oligomerization and interaction with C1 and PCNA. In contrast, mutated C3 proteins impaired for pRBR binding are fully functional in replication assays. Hydrophobic residues in the middle of the C3 protein were implicated in C3 interaction with itself, C1, and PCNA, while polar resides at both the N and C termini of the protein are important for C3-pRBR interaction. These experiments established the importance of C3-C3, C3-C1, and C3-PCNA interactions in geminivirus replication. While C3-pRBR interaction is not required for viral replication in cycling cells, it may play a role during infection of differentiated cells in intact plants. PMID:16014949

  12. Essential protein identification based on essential protein-protein interaction prediction by Integrated Edge Weights.

    PubMed

    Jiang, Yuexu; Wang, Yan; Pang, Wei; Chen, Liang; Sun, Huiyan; Liang, Yanchun; Blanzieri, Enrico

    2015-07-15

    Essential proteins play a crucial role in cellular survival and development process. Experimentally, essential proteins are identified by gene knockouts or RNA interference, which are expensive and often fatal to the target organisms. Regarding this, an alternative yet important approach to essential protein identification is through computational prediction. Existing computational methods predict essential proteins based on their relative densities in a protein-protein interaction (PPI) network. Degree, betweenness, and other appropriate criteria are often used to measure the relative density. However, no matter what criterion is used, a protein is actually ordered by the attributes of this protein per se. In this research, we presented a novel computational method, Integrated Edge Weights (IEW), to first rank protein-protein interactions by integrating their edge weights, and then identified sub PPI networks consisting of those highly-ranked edges, and finally regarded the nodes in these sub networks as essential proteins. We evaluated IEW on three model organisms: Saccharomyces cerevisiae (S. cerevisiae), Escherichia coli (E. coli), and Caenorhabditis elegans (C. elegans). The experimental results showed that IEW achieved better performance than the state-of-the-art methods in terms of precision-recall and Jackknife measures. We had also demonstrated that IEW is a robust and effective method, which can retrieve biologically significant modules by its highly-ranked protein-protein interactions for S. cerevisiae, E. coli, and C. elegans. We believe that, with sufficient data provided, IEW can be used to any other organisms' essential protein identification. A website about IEW can be accessed from http://digbio.missouri.edu/IEW/index.html. PMID:25892709

  13. Protein degradation and protection against misfolded or damaged proteins

    NASA Astrophysics Data System (ADS)

    Goldberg, Alfred L.

    2003-12-01

    The ultimate mechanism that cells use to ensure the quality of intracellular proteins is the selective destruction of misfolded or damaged polypeptides. In eukaryotic cells, the large ATP-dependent proteolytic machine, the 26S proteasome, prevents the accumulation of non-functional, potentially toxic proteins. This process is of particular importance in protecting cells against harsh conditions (for example, heat shock or oxidative stress) and in a variety of diseases (for example, cystic fibrosis and the major neurodegenerative diseases). A full understanding of the pathogenesis of the protein-folding diseases will require greater knowledge of how misfolded proteins are recognized and selectively degraded.

  14. Membrane Protein Solubilization and Composition of Protein Detergent Complexes.

    PubMed

    Duquesne, Katia; Prima, Valérie; Sturgis, James N

    2016-01-01

    Membrane proteins are typically expressed in heterologous systems with a view to in vitro characterization. A critical step in the preparation of membrane proteins after expression in any system is the solubilization of the protein in aqueous solution, typically using detergents and lipids, to obtain the protein in a form suitable for purification, structural or functional analysis. This process is particularly difficult as the objective is to prepare the protein in an unnatural environment, a protein detergent complex, separating it from its natural lipid partners while causing the minimum destabilization or modification of the structure. Although the process is difficult, and relatively hard to master, an increasing number of membrane proteins have been successfully isolated after expression in a wide variety of systems. In this chapter we give a general protocol for preparing protein detergent complexes that is aimed at guiding the reader through the different critical steps. In the second part of the chapter we illustrate how to analyze the composition of protein detergent complexes; this analysis is important as it has been found that compositional variation often causes irreproducible results. PMID:27485340

  15. Protein-protein interactions and prediction: a comprehensive overview.

    PubMed

    Sowmya, Gopichandran; Ranganathan, Shoba

    2014-01-01

    Molecular function in cellular processes is governed by protein-protein interactions (PPIs) within biological networks. Selective yet specific association of these protein partners contributes to diverse functionality such as catalysis, regulation, assembly, immunity, and inhibition in a cell. Therefore, understanding the principles of protein-protein association has been of immense interest for several decades. We provide an overview of the experimental methods used to determine PPIs and the key databases archiving this information. Structural and functional information of existing protein complexes confers knowledge on the principles of PPI, based on which a classification scheme for PPIs is then introduced. Obtaining high-quality non-redundant datasets of protein complexes for interaction characterisation is an essential step towards deciphering their underlying binding principles. Analysis of physicochemical features and their documentation has enhanced our understanding of the molecular basis of protein-protein association. We describe the diverse datasets created/collected by various groups and their key findings inferring distinguishing features. The currently available interface databases and prediction servers have also been compiled. PMID:23855658

  16. Novel computational methods to design protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Zhou, Alice Qinhua; O'Hern, Corey; Regan, Lynne

    2014-03-01

    Despite the abundance of structural data, we still cannot accurately predict the structural and energetic changes resulting from mutations at protein interfaces. The inadequacy of current computational approaches to the analysis and design of protein-protein interactions has hampered the development of novel therapeutic and diagnostic agents. In this work, we apply a simple physical model that includes only a minimal set of geometrical constraints, excluded volume, and attractive van der Waals interactions to 1) rank the binding affinity of mutants of tetratricopeptide repeat proteins with their cognate peptides, 2) rank the energetics of binding of small designed proteins to the hydrophobic stem region of the influenza hemagglutinin protein, and 3) predict the stability of T4 lysozyme and staphylococcal nuclease mutants. This work will not only lead to a fundamental understanding of protein-protein interactions, but also to the development of efficient computational methods to rationally design protein interfaces with tunable specificity and affinity, and numerous applications in biomedicine. NSF DMR-1006537, PHY-1019147, Raymond and Beverly Sackler Institute for Biological, Physical and Engineering Sciences, and Howard Hughes Medical Institute.

  17. Nanosecond Relaxation Dynamics of Hydrated Proteins: Water versus protein contributions

    SciTech Connect

    Khodadadi, S; Curtis, J. E.; Sokolov, Alexei P

    2011-01-01

    We have studied picosecond to nanosecond dynamics of hydrated protein powders using dielectric spectroscopy and molecular dynamics (MD) simulations. Our analysis of hydrogen-atom single particle dynamics from MD simulations focused on main ( main tens of picoseconds) and slow ( slow nanosecond) relaxation processes that were observed in dielectric spectra of similar hydrated protein samples. Traditionally, the interpretation of these processes observed in dielectric spectra has been ascribed to the relaxation behavior of hydration water tightly bounded to a protein and not to protein atoms. Detailed analysis of the MD simulations and comparison to dielectric data indicate that the observed relaxation process in the nanosecond time range of hydrated protein spectra is mainly due to protein atoms. The relaxation processes involve the entire structure of protein including atoms in the protein backbone, side chains, and turns. Both surface and buried protein atoms contribute to the slow processes; however, surface atoms demonstrate slightly faster relaxation dynamics. Analysis of the water molecule residence and dipolar relaxation correlation behavior indicates that the hydration water relaxes at much shorter time scales.

  18. Protein-protein interface prediction based on hexagon structure similarity.

    PubMed

    Guo, Fei; Ding, Yijie; Li, Shuai Cheng; Shen, Chao; Wang, Lusheng

    2016-08-01

    Studies on protein-protein interaction are important in proteome research. How to build more effective models based on sequence information, structure information and physicochemical characteristics, is the key technology in protein-protein interface prediction. In this paper, we study the protein-protein interface prediction problem. We propose a novel method for identifying residues on interfaces from an input protein with both sequence and 3D structure information, based on hexagon structure similarity. Experiments show that our method achieves better results than some state-of-the-art methods for identifying protein-protein interface. Comparing to existing methods, our approach improves F-measure value by at least 0.03. On a common dataset consisting of 41 complexes, our method has overall precision and recall values of 63% and 57%. On Benchmark v4.0, our method has overall precision and recall values of 55% and 56%. On CAPRI targets, our method has overall precision and recall values of 52% and 55%. PMID:26936323

  19. Noninvasive imaging of protein-protein interactions in living animals

    NASA Astrophysics Data System (ADS)

    Luker, Gary D.; Sharma, Vijay; Pica, Christina M.; Dahlheimer, Julie L.; Li, Wei; Ochesky, Joseph; Ryan, Christine E.; Piwnica-Worms, Helen; Piwnica-Worms, David

    2002-05-01

    Protein-protein interactions control transcription, cell division, and cell proliferation as well as mediate signal transduction, oncogenic transformation, and regulation of cell death. Although a variety of methods have been used to investigate protein interactions in vitro and in cultured cells, none can analyze these interactions in intact, living animals. To enable noninvasive molecular imaging of protein-protein interactions in vivo by positron-emission tomography and fluorescence imaging, we engineered a fusion reporter gene comprising a mutant herpes simplex virus 1 thymidine kinase and green fluorescent protein for readout of a tetracycline-inducible, two-hybrid system in vivo. By using micro-positron-emission tomography, interactions between p53 tumor suppressor and the large T antigen of simian virus 40 were visualized in tumor xenografts of HeLa cells stably transfected with the imaging constructs. Imaging protein-binding partners in vivo will enable functional proteomics in whole animals and provide a tool for screening compounds targeted to specific protein-protein interactions in living animals.

  20. Methods for analyzing and quantifying protein-protein interaction.

    PubMed

    Syafrizayanti; Betzen, Christian; Hoheisel, Jörg D; Kastelic, Damjana

    2014-02-01

    Genome sequencing has led to the identification of many proteins, which had not been recognized before. In consequence, the basic set of human proteins is generally known. Far less information, however, exists about protein-protein interactions, which are required and responsible for cellular activities and their control. Many protein isoforms that result from mutations, splice-variations and post-translational modifications also come into play. Until recently, interactions of only few protein partners could be analyzed in a single experiment. However, this does not meet the challenge of investigating the highly complex interaction patterns in cellular systems. It is made even more demanding by the need to determine the intensity of interactions quantitatively in order to properly understand protein interplay. Currently available techniques vary with respect to accuracy, reliability, reproducibility and throughput and their performances range from a mere qualitative demonstration of binding to a quantitative characterization of affinities. In this article, an overview is given of the methodologies available for analysis of protein-protein interactions. PMID:24393018

  1. Cry Protein Crystals: A Novel Platform for Protein Delivery

    PubMed Central

    Bonnegarde-Bernard, Astrid; Wallace, Julie A.; Dean, Donald H.; Ostrowski, Michael C.; Burry, Richard W.; Boyaka, Prosper N.; Chan, Michael K.

    2015-01-01

    Protein delivery platforms are important tools in the development of novel protein therapeutics and biotechnologies. We have developed a new class of protein delivery agent based on sub-micrometer-sized Cry3Aa protein crystals that naturally form within the bacterium Bacillus thuringiensis. We demonstrate that fusion of the cry3Aa gene to that of various reporter proteins allows for the facile production of Cry3Aa fusion protein crystals for use in subsequent applications. These Cry3Aa fusion protein crystals are efficiently taken up and retained by macrophages and other cell lines in vitro, and can be delivered to mice in vivo via multiple modes of administration. Oral delivery of Cry3Aa fusion protein crystals to C57BL/6 mice leads to their uptake by MHC class II cells, including macrophages in the Peyer’s patches, supporting the notion that the Cry3Aa framework can be used to stabilize cargo protein against degradation for delivery to gastrointestinal lymphoid tissues. PMID:26030844

  2. Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In order to rapidly and efficiently grow crystals, tools were needed to automatically identify and analyze the growing process of protein crystals. To meet this need, Diversified Scientific, Inc. (DSI), with the support of a Small Business Innovation Research (SBIR) contract from NASA s Marshall Space Flight Center, developed CrystalScore(trademark), the first automated image acquisition, analysis, and archiving system designed specifically for the macromolecular crystal growing community. It offers automated hardware control, image and data archiving, image processing, a searchable database, and surface plotting of experimental data. CrystalScore is currently being used by numerous pharmaceutical companies and academic and nonprofit research centers. DSI, located in Birmingham, Alabama, was awarded the patent Method for acquiring, storing, and analyzing crystal images on March 4, 2003. Another DSI product made possible by Marshall SBIR funding is VaporPro(trademark), a unique, comprehensive system that allows for the automated control of vapor diffusion for crystallization experiments.

  3. Carotenoid-Protein Interactions

    NASA Astrophysics Data System (ADS)

    Britton, George; Helliwell, John R.

    Chapter 5 shows that the aggregation of carotenoid molecules can have a profound effect on their properties and hence their functioning in biological systems. Another important influence is the interaction between carotenoids and other molecules. The way that interactions of carotenoids with lipid bilayers influence the structure and properties of membranes and membrane-asociated processes is discussed in Chapter 10, and the aggregation of carotenoid molecules within the bilayers in Chapter 5. Of particular importance, though, are interactions between carotenoids and proteins. These allow the hydrophobic carotenoids to be transported, to exist, and to function in an aqueous environment. In some cases they may modify strongly the light-absorption properties and hence the colour and photochemistry of the carotenoids.

  4. Protein detection system

    DOEpatents

    Fruetel, Julie A.; Fiechtner, Gregory J.; Kliner, Dahv A. V.; McIlroy, Andrew

    2009-05-05

    The present embodiment describes a miniature, microfluidic, absorption-based sensor to detect proteins at sensitivities comparable to LIF but without the need for tagging. This instrument utilizes fiber-based evanescent-field cavity-ringdown spectroscopy, in combination with faceted prism microchannels. The combination of these techniques will increase the effective absorption path length by a factor of 10.sup.3 to 10.sup.4 (to .about.1-m), thereby providing unprecedented sensitivity using direct absorption. The coupling of high-sensitivity absorption with high-performance microfluidic separation will enable real-time sensing of biological agents in aqueous samples (including aerosol collector fluids) and will provide a general method with spectral fingerprint capability for detecting specific bio-agents.

  5. Protein Hormones and Immunity‡

    PubMed Central

    Kelley, Keith W.; Weigent, Douglas A.; Kooijman, Ron

    2007-01-01

    A number of observations and discoveries over the past 20 years support the concept of important physiological interactions between the endocrine and immune systems. The best known pathway for transmission of information from the immune system to the neuroendocrine system is humoral in the form of cytokines, although neural transmission via the afferent vagus is well documented also. In the other direction, efferent signals from the nervous system to the immune system are conveyed by both the neuroendocrine and autonomic nervous systems. Communication is possible because the nervous and immune systems share a common biochemical language involving shared ligands and receptors, including neurotransmitters, neuropeptides, growth factors, neuroendocrine hormones and cytokines. This means that the brain functions as an immune-regulating organ participating in immune responses. A great deal of evidence has accumulated and confirmed that hormones secreted by the neuroendocrine system play an important role in communication and regulation of the cells of the immune system. Among protein hormones, this has been most clearly documented for prolactin (PRL), growth hormone (GH), and insulin-like growth factor-1 (IGF-I), but significant influences on immunity by thyroid stimulating hormone (TSH) have also been demonstrated. Here we review evidence obtained during the past 20 years to clearly demonstrate that neuroendocrine protein hormones influence immunity and that immune processes affect the neuroendocrine system. New findings highlight a previously undiscovered route of communication between the immune and endocrine systems that is now known to occur at the cellular level. This communication system is activated when inflammatory processes induced by proinflammatory cytokines antagonize the function of a variety of hormones, which then causes endocrine resistance in both the periphery and brain. Homeostasis during inflammation is achieved by a balance between cytokines and

  6. Protein extraction from activated sludge.

    PubMed

    Denecke, M

    2006-01-01

    Two methods for the separation of protein originating from activated sludge were compared. In one method, the total protein was isolated out of the activated sludge (crude extract). These samples included all dissolved proteins originating from the bacterial cells and biofilm made up of extracellular polymeric substances (EPS). Every time polyacrylamide gel electrophoresis (PAGE) was done, the protein bands from samples of crude extract were covered by polymeric substances including carbohydrates, uronic acids or humic compounds. Using the immunoblot technique it was possible to demonstrate the presence of the heat shock protein HSP70 in crude extracts of activated sludge. The comparison of protein fingerprints required that clear and distinct bands appear on the PAGE analysis. To this end, a procedure to separates bacterial cells from the EPS was developed. Bacterial cells were separated by incubation with EDTA and subsequent filtration. The isolated cells were directly incubated in a sample buffer. PMID:16898150

  7. Advantages of proteins being disordered

    PubMed Central

    Liu, Zhirong; Huang, Yongqi

    2014-01-01

    The past decade has witnessed great advances in our understanding of protein structure-function relationships in terms of the ubiquitous existence of intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs). The structural disorder of IDPs/IDRs enables them to play essential functions that are complementary to those of ordered proteins. In addition, IDPs/IDRs are persistent in evolution. Therefore, they are expected to possess some advantages over ordered proteins. In this review, we summarize and survey nine possible advantages of IDPs/IDRs: economizing genome/protein resources, overcoming steric restrictions in binding, achieving high specificity with low affinity, increasing binding rate, facilitating posttranslational modifications, enabling flexible linkers, preventing aggregation, providing resistance to non-native conditions, and allowing compatibility with more available sequences. Some potential advantages of IDPs/IDRs are not well understood and require both experimental and theoretical approaches to decipher. The connection with protein design is also briefly discussed. PMID:24532081

  8. Intrinsically disordered proteins and biomineralization.

    PubMed

    Boskey, Adele L; Villarreal-Ramirez, Eduardo

    2016-01-01

    In vertebrates and invertebrates, biomineralization is controlled by the cell and the proteins they produce. A large number of these proteins are intrinsically disordered, gaining some secondary structure when they interact with their binding partners. These partners include the component ions of the mineral being deposited, the crystals themselves, the template on which the initial crystals form, and other intrinsically disordered proteins and peptides. This review speculates why intrinsically disordered proteins are so important for biomineralization, providing illustrations from the SIBLING (small integrin binding N-glycosylated) proteins and their peptides. It is concluded that the flexible structure, and the ability of the intrinsically disordered proteins to bind to a multitude of surfaces is crucial, but details on the precise-interactions, energetics and kinetics of binding remain to be determined. PMID:26807759

  9. Synthetic Peptides as Protein Mimics

    PubMed Central

    Groß, Andrea; Hashimoto, Chie; Sticht, Heinrich; Eichler, Jutta

    2016-01-01

    The design and generation of molecules capable of mimicking the binding and/or functional sites of proteins represents a promising strategy for the exploration and modulation of protein function through controlled interference with the underlying molecular interactions. Synthetic peptides have proven an excellent type of molecule for the mimicry of protein sites because such peptides can be generated as exact copies of protein fragments, as well as in diverse chemical modifications, which includes the incorporation of a large range of non-proteinogenic amino acids as well as the modification of the peptide backbone. Apart from extending the chemical and structural diversity presented by peptides, such modifications also increase the proteolytic stability of the molecules, enhancing their utility for biological applications. This article reviews recent advances by this and other laboratories in the use of synthetic protein mimics to modulate protein function, as well as to provide building blocks for synthetic biology. PMID:26835447

  10. Protein Degradation and Iron Homeostasis

    PubMed Central

    Thompson, Joel W.; Bruick, Richard K.

    2013-01-01

    Regulation of both systemic and cellular iron homeostasis requires the capacity to sense iron levels and appropriately modify the expression of iron metabolism genes. These responses are coordinated through the efforts of several key regulatory factors including F-box and Leucine-rich Repeat Protein 5 (FBXL5), Iron Regulatory Proteins (IRPs), Hypoxia Inducible Factor (HIF), and ferroportin. Notably, the stability of each of these proteins is regulated in response to iron. Recent discoveries have greatly advanced our understanding of the molecular mechanisms governing iron-sensing and protein degradation within these pathways. It has become clear that iron’s privileged roles in both enzyme catalysis and protein structure contribute to its regulation of protein stability. Moreover, these multiple pathways intersect with one another in larger regulatory networks to maintain iron homeostasis. PMID:22349011

  11. Protein degradation and iron homeostasis.

    PubMed

    Thompson, Joel W; Bruick, Richard K

    2012-09-01

    Regulation of both systemic and cellular iron homeostasis requires the capacity to sense iron levels and appropriately modify the expression of iron metabolism genes. These responses are coordinated through the efforts of several key regulatory factors including F-box and Leucine-rich Repeat Protein 5 (FBXL5), Iron Regulatory Proteins (IRPs), Hypoxia Inducible Factor (HIF), and ferroportin. Notably, the stability of each of these proteins is regulated in response to iron. Recent discoveries have greatly advanced our understanding of the molecular mechanisms governing iron-sensing and protein degradation within these pathways. It has become clear that iron's privileged roles in both enzyme catalysis and protein structure contribute to its regulation of protein stability. Moreover, these multiple pathways intersect with one another in larger regulatory networks to maintain iron homeostasis. This article is part of a Special Issue entitled: Cell Biology of Metals. PMID:22349011

  12. Quantum dots and prion proteins

    PubMed Central

    Sobrova, Pavlina; Blazkova, Iva; Chomoucka, Jana; Drbohlavova, Jana; Vaculovicova, Marketa; Kopel, Pavel; Hubalek, Jaromir; Kizek, Rene; Adam, Vojtech

    2013-01-01

    A diagnostics of infectious diseases can be done by the immunologic methods or by the amplification of nucleic acid specific to contagious agent using polymerase chain reaction. However, in transmissible spongiform encephalopathies, the infectious agent, prion protein (PrPSc), has the same sequence of nucleic acids as a naturally occurring protein. The other issue with the diagnosing based on the PrPSc detection is that the pathological form of prion protein is abundant only at late stages of the disease in a brain. Therefore, the diagnostics of prion protein caused diseases represent a sort of challenges as that hosts can incubate infectious prion proteins for many months or even years. Therefore, new in vivo assays for detection of prion proteins and for diagnosis of their relation to neurodegenerative diseases are summarized. Their applicability and future prospects in this field are discussed with particular aim at using quantum dots as fluorescent labels. PMID:24055838

  13. Biofoams and natural protein surfactants

    PubMed Central

    Cooper, Alan; Kennedy, Malcolm W.

    2010-01-01

    Naturally occurring foam constituent and surfactant proteins with intriguing structures and functions are now being identified from a variety of biological sources. The ranaspumins from tropical frog foam nests comprise a range of proteins with a mixture of surfactant, carbohydrate binding and antimicrobial activities that together provide a stable, biocompatible, protective foam environment for developing eggs and embryos. Ranasmurfin, a blue protein from a different species of frog, displays a novel structure with a unique chromophoric crosslink. Latherin, primarily from horse sweat, but with similarities to salivary, oral and upper respiratory tract proteins, illustrates several potential roles for surfactant proteins in mammalian systems. These proteins, together with the previously discovered hydrophobins of fungi, throw new light on biomolecular processes at air–water and other interfaces. This review provides a perspective on these recent findings, focussing on structure and biophysical properties. PMID:20615601

  14. The Cost of Protein Production

    PubMed Central

    Kafri, Moshe; Metzl-Raz, Eyal; Jona, Ghil; Barkai, Naama

    2015-01-01

    Summary The economy of protein production is central to cell physiology, being intimately linked with cell division rate and cell size. Attempts to model cellular physiology are limited by the scarcity of experimental data defining the molecular processes limiting protein expression. Here, we distinguish the relative contribution of gene transcription and protein translation to the slower proliferation of budding yeast producing excess levels of unneeded proteins. In contrast to widely held assumptions, rapidly growing cells are not universally limited by ribosome content. Rather, transcription dominates cost under some conditions (e.g., low phosphate), translation in others (e.g., low nitrogen), and both in other conditions (e.g., rich media). Furthermore, cells adapted to enforced protein production by becoming larger and increasing their endogenous protein levels, suggesting limited competition for common resources. We propose that rapidly growing cells do not exhaust their resources to maximize growth but maintain sufficient reserves to accommodate changing requirements. PMID:26725116

  15. Algorithmic complexity of a protein

    NASA Astrophysics Data System (ADS)

    Dewey, T. Gregory

    1996-07-01

    The information contained in a protein's amino acid sequence dictates its three-dimensional structure. To quantitate the transfer of information that occurs in the protein folding process, the Kolmogorov information entropy or algorithmic complexity of the protein structure is investigated. The algorithmic complexity of an object provides a means of quantitating its information content. Recent results have indicated that the algorithmic complexity of microstates of certain statistical mechanical systems can be estimated from the thermodynamic entropy. In the present work, it is shown that the algorithmic complexity of a protein is given by its configurational entropy. Using this result, a quantitative estimate of the information content of a protein's structure is made and is compared to the information content of the sequence. Additionally, the mutual information between sequence and structure is determined. It is seen that virtually all the information contained in the protein structure is shared with the sequence.

  16. Theoretical studies of protein-protein and protein-DNA binding rates

    NASA Astrophysics Data System (ADS)

    Alsallaq, Ramzi A.

    Proteins are folded chains of amino acids. Some of the amino acids (e.g. Lys, Arg, His, Asp, and Glu) carry charges under physiological conditions. Proteins almost always function through binding to other proteins or ligands, for example barnase is a ribonuclease protein, found in the bacterium Bacillus amyloliquefaceus. Barnase degrades RNA by hydrolysis. For the bacterium to inhibit the potentially lethal action of Barnase within its own cell it co-produces another protein called barstar which binds quickly, and tightly, to barnase. The biological function of this binding is to block the active site of barnase. The speeds (rates) at which proteins associate are vital to many biological processes. They span a wide range (from less than 103 to 108 M-1s-1 ). Rates greater than ˜ 106 M -1s-1 are typically found to be manifestations of enhancements by long-range electrostatic interactions between the associating proteins. A different paradigm appears in the case of protein binding to DNA. The rate in this case is enhanced through attractive surface potential that effectively reduces the dimensionality of the available search space for the diffusing protein. This thesis presents computational and theoretical models on the rate of association of ligands/proteins to other proteins or DNA. For protein-protein association we present a general strategy for computing protein-protein rates of association. The main achievements of this strategy is the ability to obtain a stringent reaction criteria based on the landscape of short-range interactions between the associating proteins, and the ability to compute the effect of the electrostatic interactions on the rates of association accurately using the best known solvers for Poisson-Boltzmann equation presently available. For protein-DNA association we present a mathematical model for proteins targeting specific sites on a circular DNA topology. The main achievements are the realization that a linear DNA with reflecting ends

  17. TGF-beta signaling proteins and the Protein Ontology

    PubMed Central

    Arighi, Cecilia N; Liu, Hongfang; Natale, Darren A; Barker, Winona C; Drabkin, Harold; Blake, Judith A; Smith, Barry; Wu, Cathy H

    2009-01-01

    Background The Protein Ontology (PRO) is designed as a formal and principled Open Biomedical Ontologies (OBO) Foundry ontology for proteins. The components of PRO extend from a classification of proteins on the basis of evolutionary relationships at the homeomorphic level to the representation of the multiple protein forms of a gene, including those resulting from alternative splicing, cleavage and/or post-translational modifications. Focusing specifically on the TGF-beta signaling proteins, we describe the building, curation, usage and dissemination of PRO. Results PRO is manually curated on the basis of PrePRO, an automatically generated file with content derived from standard protein data sources. Manual curation ensures that the treatment of the protein classes and the internal and external relationships conform to the PRO framework. The current release of PRO is based upon experimental data from mouse and human proteins wherein equivalent protein forms are represented by single terms. In addition to the PRO ontology, the annotation of PRO terms is released as a separate PRO association file, which contains, for each given PRO term, an annotation from the experimentally characterized sub-types as well as the corresponding database identifiers and sequence coordinates. The annotations are added in the form of relationship to other ontologies. Whenever possible, equivalent forms in other species are listed to facilitate cross-species comparison. Splice and allelic variants, gene fusion products and modified protein forms are all represented as entities in the ontology. Therefore, PRO provides for the representation of protein entities and a resource for describing the associated data. This makes PRO useful both for proteomics studies where isoforms and modified forms must be differentiated, and for studies of biological pathways, where representations need to take account of the different ways in which the cascade of events may depend on specific protein

  18. Evolution of Robustness to Protein Mistranslation by Accelerated Protein Turnover

    PubMed Central

    Farkas, Zoltán; Horvath, Peter; Bódi, Zoltán; Daraba, Andreea; Szamecz, Béla; Gut, Ivo; Bayes, Mónica; Santos, Manuel A. S.; Pál, Csaba

    2015-01-01

    Translational errors occur at high rates, and they influence organism viability and the onset of genetic diseases. To investigate how organisms mitigate the deleterious effects of protein synthesis errors during evolution, a mutant yeast strain was engineered to translate a codon ambiguously (mistranslation). It thereby overloads the protein quality-control pathways and disrupts cellular protein homeostasis. This strain was used to study the capacity of the yeast genome to compensate the deleterious effects of protein mistranslation. Laboratory evolutionary experiments revealed that fitness loss due to mistranslation can rapidly be mitigated. Genomic analysis demonstrated that adaptation was primarily mediated by large-scale chromosomal duplication and deletion events, suggesting that errors during protein synthesis promote the evolution of genome architecture. By altering the dosages of numerous, functionally related proteins simultaneously, these genetic changes introduced large phenotypic leaps that enabled rapid adaptation to mistranslation. Evolution increased the level of tolerance to mistranslation through acceleration of ubiquitin-proteasome–mediated protein degradation and protein synthesis. As a consequence of rapid elimination of erroneous protein products, evolution reduced the extent of toxic protein aggregation in mistranslating cells. However, there was a strong evolutionary trade-off between adaptation to mistranslation and survival upon starvation: the evolved lines showed fitness defects and impaired capacity to degrade mature ribosomes upon nutrient limitation. Moreover, as a response to an enhanced energy demand of accelerated protein turnover, the evolved lines exhibited increased glucose uptake by selective duplication of hexose transporter genes. We conclude that adjustment of proteome homeostasis to mistranslation evolves rapidly, but this adaptation has several side effects on cellular physiology. Our work also indicates that

  19. Protein models: The Grand Challenge of protein docking

    PubMed Central

    Anishchenko, Ivan; Kundrotas, Petras J.; Tuzikov, Alexander V.; Vakser, Ilya A.

    2016-01-01

    Characterization of life processes at the molecular level requires structural details of protein–protein interactions (PPIs). The number of experimentally determined protein structures accounts only for a fraction of known proteins. This gap has to be bridged by modeling, typically using experimentally determined structures as templates to model related proteins. The fraction of experimentally determined PPI structures is even smaller than that for the individual proteins, due to a larger number of interactions than the number of individual proteins, and a greater difficulty of crystallizing protein–protein complexes. The approaches to structural modeling of PPI (docking) often have to rely on modeled structures of the interactors, especially in the case of large PPI networks. Structures of modeled proteins are typically less accurate than the ones determined by X-ray crystallography or nuclear magnetic resonance. Thus the utility of approaches to dock these structures should be assessed by thorough benchmarking, specifically designed for protein models. To be credible, such benchmarking has to be based on carefully curated sets of structures with levels of distortion typical for modeled proteins. This article presents such a suite of models built for the benchmark set of the X-ray structures from the Dockground resource (http://dockground.bioinformatics.ku.edu) by a combination of homology modeling and Nudged Elastic Band method. For each monomer, six models were generated with predefined Cα root mean square deviation from the native structure (1, 2, . . ., 6 Å). The sets and the accompanying data provide a comprehensive resource for the development of docking methodology for modeled proteins. PMID:23934791

  20. Intracellular targeting with engineered proteins.

    PubMed

    Miersch, Shane; Sidhu, Sachdev S

    2016-01-01

    If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action

  1. Scientist prepare Lysozyme Protein Crystal

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Dan Carter and Charles Sisk center a Lysozyme Protein crystal grown aboard the USML-2 shuttle mission. Protein isolated from hen egg-white and functions as a bacteriostatic enzyme by degrading bacterial cell walls. First enzyme ever characterized by protein crystallography. It is used as an excellent model system for better understanding parameters involved in microgravity crystal growth experiments. The goal is to compare kinetic data from microgravity experiments with data from laboratory experiments to study the equilibrium.

  2. Protein Multifunctionality: Principles and Mechanisms

    PubMed Central

    Zaretsky, Joseph Z.; Wreschner, Daniel H.

    2008-01-01

    In the review, the nature of protein multifunctionality is analyzed. In the first part of the review the principles of structural/functional organization of protein are discussed. In the second part, the main mechanisms involved in development of multiple functions on a single gene product(s) are analyzed. The last part represents a number of examples showing that multifunctionality is a basic feature of biologically active proteins. PMID:21566747

  3. Containerless protein crystal growth method

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Chung, Sang K.

    1991-01-01

    A method of growing protein crystals from levitated drops is introduced and unique features of containerless approach in 1-g and micro-G laboratories are discussed. Electrostatic multidrop levitation system which is capable of simultaneous four drop levitation is described. A method of controlling protein saturation level in a programmed way is introduced and discussed. Finally, some of the unique features of containerless approach of protein crystal growth in space are discussed and summarized.

  4. Intracellular targeting with engineered proteins

    PubMed Central

    Miersch, Shane; Sidhu, Sachdev S.

    2016-01-01

    If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action

  5. Developing algorithms for predicting protein-protein interactions of homology modeled proteins.

    SciTech Connect

    Martin, Shawn Bryan; Sale, Kenneth L.; Faulon, Jean-Loup Michel; Roe, Diana C.

    2006-01-01

    The goal of this project was to examine the protein-protein docking problem, especially as it relates to homology-based structures, identify the key bottlenecks in current software tools, and evaluate and prototype new algorithms that may be developed to improve these bottlenecks. This report describes the current challenges in the protein-protein docking problem: correctly predicting the binding site for the protein-protein interaction and correctly placing the sidechains. Two different and complementary approaches are taken that can help with the protein-protein docking problem. The first approach is to predict interaction sites prior to docking, and uses bioinformatics studies of protein-protein interactions to predict theses interaction site. The second approach is to improve validation of predicted complexes after docking, and uses an improved scoring function for evaluating proposed docked poses, incorporating a solvation term. This scoring function demonstrates significant improvement over current state-of-the art functions. Initial studies on both these approaches are promising, and argue for full development of these algorithms.

  6. The influence of protein coding sequences on protein folding rates of all-β proteins.

    PubMed

    Li, Rui Fang; Li, Hong

    2011-06-01

    It is currently believed that the protein folding rate is related to the protein structures and its amino acid sequence. However, few studies have been done on the problem that whether the protein folding rate is influenced by its corresponding mRNA sequence. In this paper, we analyzed the possible relationship between the protein folding rates and the corresponding mRNA sequences. The content of guanine and cytosine (GC content) of palindromes in protein coding sequence was introduced as a new parameter and added in the Gromiha's model of predicting protein folding rates to inspect its effect in protein folding process. The multiple linear regression analysis and jack-knife test show that the new parameter is significant. The linear correlation coefficient between the experimental and the predicted values of the protein folding rates increased significantly from 0.96 to 0.99, and the population variance decreased from 0.50 to 0.24 compared with Gromiha's results. The results show that the GC content of palindromes in the corresponding protein coding sequence really influences the protein folding rate. Further analysis indicates that this kind of effect mostly comes from the synonymous codon usage and from the information of palindrome structure itself, but not from the translation information from codons to amino acids. PMID:21613670

  7. Harvesting blood proteins from grain.

    PubMed Central

    Robinson, A

    1995-01-01

    A multidisciplinary team of researchers at the University of Ottawa has expressed a human blood protein, granulocyte-macrophage colony stimulating factor, in tobacco seeds as part of a series of experiments whose ultimate goal is to express human blood proteins in cereal crops. Success in these experiments may lead to the development of a new, relatively inexpensive and ready supply of these proteins from a biologic source that is generally recognized as safe. The team is also studying the possibility of expressing in seeds proteins that may be used as vaccines against infectious diseases. Images p428-a Fig. 1 PMID:7634220

  8. Protein phosphorylation in stomatal movement

    PubMed Central

    Zhang, Tong; Chen, Sixue; Harmon, Alice C

    2014-01-01

    As research progresses on how guard cells perceive and transduce environmental cues to regulate stomatal movement, plant biologists are discovering key roles of protein phosphorylation. Early research efforts focused on characterization of ion channels and transporters in guard cell hormonal signaling. Subsequent genetic studies identified mutants of kinases and phosphatases that are defective in regulating guard cell ion channel activities, and recently proteins regulated by phosphorylation have been identified. Here we review the essential role of protein phosphorylation in ABA-induced stomatal closure and in blue light-induced stomatal opening. We also highlight evidence for the cross-talk between different pathways, which is mediated by protein phosphorylation. PMID:25482764

  9. Conformational changes of adsorbed proteins

    NASA Astrophysics Data System (ADS)

    Allen, Scott

    2005-03-01

    The adsorption of bovine serum albumin (BSA) and pepsin to gold surfaces has been studied using surface plasmon resonance (SPR). Proteins are adsorbed from solution onto a gold surface and changes in the conformation of the adsorbed proteins are induced by changing the buffer solution. We selected pH and ionic strength values for the buffer solutions that are known from our circular dichroism measurements to cause conformational changes of the proteins in bulk solution. We find that for both BSA and pepsin the changes in conformation are impeded by the interaction of the protein with the gold surface.

  10. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown. PMID:23406937

  11. Cellular senescence and protein degradation

    PubMed Central

    Deschênes-Simard, Xavier; Lessard, Frédéric; Gaumont-Leclerc, Marie-France; Bardeesy, Nabeel; Ferbeyre, Gerardo

    2014-01-01

    Autophagy and the ubiquitin–proteasome pathway (UPP) are the major protein degradation systems in eukaryotic cells. Whereas the former mediate a bulk nonspecific degradation, the UPP allows a rapid degradation of specific proteins. Both systems have been shown to play a role in tumorigenesis, and the interest in developing therapeutic agents inhibiting protein degradation is steadily growing. However, emerging data point to a critical role for autophagy in cellular senescence, an established tumor suppressor mechanism. Recently, a selective protein degradation process mediated by the UPP was also shown to contribute to the senescence phenotype. This process is tightly regulated by E3 ubiquitin ligases, deubiquitinases, and several post-translational modifications of target proteins. Illustrating the complexity of UPP, more than 600 human genes have been shown to encode E3 ubiquitin ligases, a number which exceeds that of the protein kinases. Nevertheless, our knowledge of proteasome-dependent protein degradation as a regulated process in cellular contexts such as cancer and senescence remains very limited. Here we discuss the implications of protein degradation in senescence and attempt to relate this function to the protein degradation pattern observed in cancer cells. PMID:24866342

  12. Amyloidogenesis of Natively Unfolded Proteins

    PubMed Central

    Uversky, Vladimir N.

    2009-01-01

    Aggregation and subsequent development of protein deposition diseases originate from conformational changes in corresponding amyloidogenic proteins. The accumulated data support the model where protein fibrillogenesis proceeds via the formation of a relatively unfolded amyloidogenic conformation, which shares many structural properties with the pre-molten globule state, a partially folded intermediate first found during the equilibrium and kinetic (un)folding studies of several globular proteins and later described as one of the structural forms of natively unfolded proteins. The flexibility of this structural form is essential for the conformational rearrangements driving the formation of the core cross-beta structure of the amyloid fibril. Obviously, molecular mechanisms describing amyloidogenesis of ordered and natively unfolded proteins are different. For ordered protein to fibrillate, its unique and rigid structure has to be destabilized and partially unfolded. On the other hand, fibrillogenesis of a natively unfolded protein involves the formation of partially folded conformation; i.e., partial folding rather than unfolding. In this review recent findings are surveyed to illustrate some unique features of the natively unfolded proteins amyloidogenesis. PMID:18537543

  13. [Protein toxins of Staphylococcus aureus].

    PubMed

    Shamsutdinov, A F; Tiurin, Iu A

    2014-01-01

    Main scientific-research studies regarding protein bacterial toxins of the most widespread bacteria that belong to Staphylococcus spp. genus and in particular the most pathogenic species for humans--Staphylococcus aureus, are analyzed. Structural and biological properties of protein toxins that have received the name of staphylococcus pyrogenic toxins (PTSAg) are presented. Data regarding genetic regulation of secretion and synthesis of these toxins and 3 main regulatory genetic systems (agr--accessory gene regulator, xpr--extracellular protein regulator, sar--staphylococcal accessory regulator) that coordinate synthesis of the most important protein toxins and enzymes for virulence of S. aureus, are presented. PMID:25051707

  14. Therapeutic proteins: A to Z.

    PubMed

    Ozgur, Aykut; Tutar, Yusuf

    2013-12-01

    In recent years, therapeutic proteins have become an important growing class of drugs in the pharmaceutics industry. The development of recombinant DNA technology has caused to appreciation of therapeutic value of many proteins and peptides in medicine. Currently, approximately 100 therapeutic proteins obtained approval from Food and Drug Administration (FDA) and they are widely used in the treatment of various diseases such as cancer, diabetes, anemia and infections. This paper will summarize the production processes, pharmaceuticals and physicochemical properties and important classes of therapeutic proteins with their potential use in clinical applications. PMID:24261980

  15. Membrane Protein Assembly into Nanodiscs

    PubMed Central

    Bayburt, Timothy H.; Sligar, Stephen G.

    2016-01-01

    Nanodiscs are soluble nanoscale phospholipid bilayers which can self-assemble integral membrane proteins for biophysical, enzymatic or structural investigations. This means for rendering membrane proteins soluble at the single molecule level offers advantages over liposomes or detergent micelles in terms of size, stability, ability to add genetically modifiable features to the Nanodisc structure and ready access to both sides of the phospholipid bilayer domain. Thus the Nanodisc system provides a novel platform for understanding membrane protein function. We provide an overview of the Nanodisc approach and document through several examples many of the applications to the study of the structure and function of integral membrane proteins. PMID:19836392

  16. Structure Prediction of Membrane Proteins

    NASA Astrophysics Data System (ADS)

    Hu, Xiche

    Membrane proteins play a central role in many cellular and physiological processes. It is estimated that integral membrane proteins make up about 20-30% of the proteome (Krogh et al., 2001b; Stevens and Arkin, 2000; von Heijne, 1999). They are essential mediators of material and information transfer across cell membranes. Their functions include active and passive transport of molecules into and out of cells and organelles; transduction of energy among various forms (light, electrical, and chemical energy); as well as reception and transduction of chemical and electrical signals across membranes (Avdonin, 2005; Bockaert et al., 2002; Pahl, 1999; Rehling et al., 2004; Stack et al., 1995). Identifying these transmembrane (TM) proteins and deciphering their molecular mechanisms, then, is of great importance, particularly as applied to biomedicine. Membrane proteins are the targets of a large number of pharmacologically and toxicologically active substances, and are directly involved in their uptake, metabolism, and clearance (Bettler et al., 1998; Cohen, 2002; Heusser and Jardieu, 1997; Tibes et al., 2005; Xu et al., 2005). Despite the importance of membrane proteins, the knowledge of their high-resolution structures and mechanisms of action has lagged far behind in comparison to that of water-soluble proteins: less than 1% of all three-dimensional structures deposited in the Protein Data Bank are of membrane proteins. This unfortunate disparity stems from difficulties in overexpression and the crystallization of membrane proteins (Grisshammer and Tate, 1995; Michel, 1991).

  17. Molecular dynamics of membrane proteins.

    SciTech Connect

    Woolf, Thomas B.; Crozier, Paul Stewart; Stevens, Mark Jackson

    2004-10-01

    Understanding the dynamics of the membrane protein rhodopsin will have broad implications for other membrane proteins and cellular signaling processes. Rhodopsin (Rho) is a light activated G-protein coupled receptor (GPCR). When activated by ligands, GPCRs bind and activate G-proteins residing within the cell and begin a signaling cascade that results in the cell's response to external stimuli. More than 50% of all current drugs are targeted toward G-proteins. Rho is the prototypical member of the class A GPCR superfamily. Understanding the activation of Rho and its interaction with its Gprotein can therefore lead to a wider understanding of the mechanisms of GPCR activation and G-protein activation. Understanding the dark to light transition of Rho is fully analogous to the general ligand binding and activation problem for GPCRs. This transition is dependent on the lipid environment. The effect of lipids on membrane protein activity in general has had little attention, but evidence is beginning to show a significant role for lipids in membrane protein activity. Using the LAMMPS program and simulation methods benchmarked under the IBIG program, we perform a variety of allatom molecular dynamics simulations of membrane proteins.

  18. Nanotube-assisted protein deactivation

    NASA Astrophysics Data System (ADS)

    Joshi, Amit; Punyani, Supriya; Bale, Shyam Sundhar; Yang, Hoichang; Borca-Tasciuc, Theodorian; Kane, Ravi S.

    2008-01-01

    Conjugating proteins onto carbon nanotubes has numerous applications in biosensing, imaging and cellular delivery. However, remotely controlling the activity of proteins in these conjugates has never been demonstrated. Here we show that upon near-infrared irradiation, carbon nanotubes mediate the selective deactivation of proteins in situ by photochemical effects. We designed nanotube-peptide conjugates to selectively destroy the anthrax toxin, and also optically transparent coatings that can self-clean following either visible or near-infrared irradiation. Nanotube-assisted protein deactivation may be broadly applicable to the selective destruction of pathogens and cells, and will have applications ranging from antifouling coatings to functional proteomics.

  19. Nucleation precursors in protein crystallization

    PubMed Central

    Vekilov, Peter G.; Vorontsova, Maria A.

    2014-01-01

    Protein crystal nucleation is a central problem in biological crystallography and other areas of science, technology and medicine. Recent studies have demonstrated that protein crystal nuclei form within crucial precursors. Here, methods of detection and characterization of the precursors are reviewed: dynamic light scattering, atomic force microscopy and Brownian microscopy. Data for several proteins provided by these methods have demonstrated that the nucleation precursors are clusters consisting of protein-dense liquid, which are metastable with respect to the host protein solution. The clusters are several hundred nanometres in size, the cluster population occupies from 10−7 to 10−3 of the solution volume, and their properties in solutions supersaturated with respect to crystals are similar to those in homogeneous, i.e. undersaturated, solutions. The clusters exist owing to the conformation flexibility of the protein molecules, leading to exposure of hydrophobic surfaces and enhanced intermolecular binding. These results indicate that protein conformational flexibility might be the mechanism behind the metastable mesoscopic clusters and crystal nucleation. Investigations of the cluster properties are still in their infancy. Results on direct imaging of cluster behaviors and characterization of cluster mechanisms with a variety of proteins will soon lead to major breakthroughs in protein biophysics. PMID:24598910

  20. High throughput protein production screening

    DOEpatents

    Beernink, Peter T.; Coleman, Matthew A.; Segelke, Brent W.

    2009-09-08

    Methods, compositions, and kits for the cell-free production and analysis of proteins are provided. The invention allows for the production of proteins from prokaryotic sequences or eukaryotic sequences, including human cDNAs using PCR and IVT methods and detecting the proteins through fluorescence or immunoblot techniques. This invention can be used to identify optimized PCR and WT conditions, codon usages and mutations. The methods are readily automated and can be used for high throughput analysis of protein expression levels, interactions, and functional states.

  1. Protein phosphorylation in stomatal movement.

    PubMed

    Zhang, Tong; Chen, Sixue; Harmon, Alice C

    2014-01-01

    As research progresses on how guard cells perceive and transduce environmental cues to regulate stomatal movement, plant biologists are discovering key roles of protein phosphorylation. Early research efforts focused on characterization of ion channels and transporters in guard cell hormonal signaling. Subsequent genetic studies identified mutants of kinases and phosphatases that are defective in regulating guard cell ion channel activities, and recently proteins regulated by phosphorylation have been identified. Here we review the essential role of protein phosphorylation in ABA-induced stomatal closure and in blue light-induced stomatal opening. We also highlight evidence for the cross-talk between different pathways, which is mediated by protein phosphorylation. PMID:25482764

  2. Immunoprofiling Using NAPPA Protein Microarrays

    PubMed Central

    Sibani, Sahar; LaBaer, Joshua

    2012-01-01

    Protein microarrays provide an efficient method to immunoprofile patients in an effort to rapidly identify disease immunosignatures. The validity of using autoantibodies in diagnosis has been demonstrated in type 1 diabetes, rheumatoid arthritis, and systemic lupus, and is now being strongly considered in cancer. Several types of protein microarrays exist including antibody and antigen arrays. In this chapter, we describe the immunoprofiling application for one type of antigen array called NAPPA (nucleic acids programmable protein array). We provide a guideline for setting up the screening study and designing protein arrays to maximize the likelihood of obtaining quality data. PMID:21370064

  3. The Protein 4.1 family: hub proteins in animals for organizing membrane proteins.

    PubMed

    Baines, Anthony J; Lu, Hui-Chun; Bennett, Pauline M

    2014-02-01

    Proteins of the 4.1 family are characteristic of eumetazoan organisms. Invertebrates contain single 4.1 genes and the Drosophila model suggests that 4.1 is essential for animal life. Vertebrates have four paralogues, known as 4.1R, 4.1N, 4.1G and 4.1B, which are additionally duplicated in the ray-finned fish. Protein 4.1R was the first to be discovered: it is a major mammalian erythrocyte cytoskeletal protein, essential to the mechanochemical properties of red cell membranes because it promotes the interaction between spectrin and actin in the membrane cytoskeleton. 4.1R also binds certain phospholipids and is required for the stable cell surface accumulation of a number of erythrocyte transmembrane proteins that span multiple functional classes; these include cell adhesion molecules, transporters and a chemokine receptor. The vertebrate 4.1 proteins are expressed in most tissues, and they are required for the correct cell surface accumulation of a very wide variety of membrane proteins including G-Protein coupled receptors, voltage-gated and ligand-gated channels, as well as the classes identified in erythrocytes. Indeed, such large numbers of protein interactions have been mapped for mammalian 4.1 proteins, most especially 4.1R, that it appears that they can act as hubs for membrane protein organization. The range of critical interactions of 4.1 proteins is reflected in disease relationships that include hereditary anaemias, tumour suppression, control of heartbeat and nervous system function. The 4.1 proteins are defined by their domain structure: apart from the spectrin/actin-binding domain they have FERM and FERM-adjacent domains and a unique C-terminal domain. Both the FERM and C-terminal domains can bind transmembrane proteins, thus they have the potential to be cross-linkers for membrane proteins. The activity of the FERM domain is subject to multiple modes of regulation via binding of regulatory ligands, phosphorylation of the FERM associated domain and

  4. Proteins interacting with Membranes: Protein Sorting and Membrane Shaping

    NASA Astrophysics Data System (ADS)

    Callan-Jones, Andrew

    2015-03-01

    Membrane-bound transport in cells requires generating membrane curvature. In addition, transport is selective, in order to establish spatial gradients of membrane components in the cell. The mechanisms underlying cell membrane shaping by proteins and the influence of curvature on membrane composition are active areas of study in cell biophysics. In vitro approaches using Giant Unilamellar Vesicles (GUVs) are a useful tool to identify the physical mechanisms that drive sorting of membrane components and membrane shape change by proteins. I will present recent work on the curvature sensing and generation of IRSp53, a protein belonging to the BAR family, whose members, sharing a banana-shaped backbone, are involved in endocytosis. Pulling membrane tubes with 10-100 nm radii from GUVs containing encapsulated IRSp53 have, unexpectedly, revealed a non-monotonic dependence of the protein concentration on the tube as a function of curvature. Experiments also show that bound proteins alter the tube mechanics and that protein phase separation along the tube occurs at low tensions. I will present accompanying theoretical work that can explain these findings based on the competition between the protein's intrinsic curvature and the effective rigidity of a membrane-protein patch.

  5. Water sorption by proteins: milk and whey proteins.

    PubMed

    Kinsella, J E; Fox, P F

    1986-01-01

    The content and physical state of water in foods influence their physical, chemical, quality, safety, and functional behavior. Information concerning the sorption behavior of dairy proteins, in the water activity (Aw) range 0 to 0.9, is collated in this paper. The sorption behavior of proteins in general, the kinetics of absorption, factors affecting water binding, the phenomenon of desorption hysteresis, and the chemical and physical nature of water/protein interactions are reviewed in general terms. This is followed by a discussion of thermodynamic aspects of sorption phenomena and the adequacy of the various equations for describing sorption isotherms of proteins. After a discussion of the methods available for measuring sorption by milk proteins, the sorption behavior of various milk protein preparations, i.e., nonfat dry milk, whey proteins, caseins, and milk powders is summarized. Finally, the water activity of cheese and its relationship to solute mobility and solvent water are discussed. Some of the unique features of protein behavior, i.e., conformational changes, swelling, and solubilization are cited as possible sources of disparities between various reports. PMID:3527564

  6. Website on Protein Interaction and Protein Structure Related Work

    NASA Technical Reports Server (NTRS)

    Samanta, Manoj; Liang, Shoudan; Biegel, Bryan (Technical Monitor)

    2003-01-01

    In today's world, three seemingly diverse fields - computer information technology, nanotechnology and biotechnology are joining forces to enlarge our scientific knowledge and solve complex technological problems. Our group is dedicated to conduct theoretical research exploring the challenges in this area. The major areas of research include: 1) Yeast Protein Interactions; 2) Protein Structures; and 3) Current Transport through Small Molecules.

  7. Non-enzymatic protein acetylation detected by NAPPA protein arrays*

    PubMed Central

    Olia, Adam S.; Barker, Kristi; McCullough, Cheryl E.; Tang, Hsin-Yao; Speicher, David W.; Qiu, Ji; LaBaer, Joshua; Marmorstein, Ronen

    2015-01-01

    Acetylation is a post-translational modification that occurs on thousands of proteins located in many cellular organelles. This process mediates many protein functions and modulates diverse biological processes. In mammalian cells, where acetyl-CoA is the primary acetyl donor, acetylation in the mitochondria is thought to occur by chemical means due to the relatively high concentration of acetyl-CoA located in this organelle. In contrast, acetylation outside of the mitochondria is thought to be mediated predominantly by acetyltransferase enzymes. Here we address the possibility that non-enzymatic chemical acetylation outside of the mitochondria may be more common than previously appreciated. We employed the Nucleic Acid Programmable Protein Array platform to perform an unbiased screen for human proteins that undergo chemical acetylation, which resulted in the identification of a multitude of proteins with diverse functions and cellular localization. Mass spectrometry analysis revealed that basic residues typically precede the acetylated lysine in the −7 to −3 position, and we show by mutagenesis that these basic residues contribute to chemical acetylation capacity. We propose that these basic residues lower the pKa of the substrate lysine for efficient chemical acetylation. Many of the identified proteins reside outside of the mitochondria, and have been previously demonstrated to be acetylated in vivo. As such, our studies demonstrate that chemical acetylation occurs more broadly throughout the eukaryotic cell than previously appreciated, and suggests that this post-translational protein modification may have more diverse roles in protein function and pathway regulation. PMID:26083674

  8. MYCOPLASMA GENITALIUM PROTEIN RESEMBLING THE MYCOPLASMA PNEUMONIAE ATTACHMENT PROTEIN

    EPA Science Inventory

    In previous studies with hyperimmune rabbit sera and monoclonal antibodies against P1 protein of M. pneumoniae, we obtained evidence of a shared antigenic determinant with a single protein of M. genitalium. ecause of biological and morphological similarities between these two hum...

  9. Eukaryotic LYR Proteins Interact with Mitochondrial Protein Complexes.

    PubMed

    Angerer, Heike

    2015-01-01

    In eukaryotic cells, mitochondria host ancient essential bioenergetic and biosynthetic pathways. LYR (leucine/tyrosine/arginine) motif proteins (LYRMs) of the Complex1_LYR-like superfamily interact with protein complexes of bacterial origin. Many LYR proteins function as extra subunits (LYRM3 and LYRM6) or novel assembly factors (LYRM7, LYRM8, ACN9 and FMC1) of the oxidative phosphorylation (OXPHOS) core complexes. Structural insights into complex I accessory subunits LYRM6 and LYRM3 have been provided by analyses of EM and X-ray structures of complex I from bovine and the yeast Yarrowia lipolytica, respectively. Combined structural and biochemical studies revealed that LYRM6 resides at the matrix arm close to the ubiquinone reduction site. For LYRM3, a position at the distal proton-pumping membrane arm facing the matrix space is suggested. Both LYRMs are supposed to anchor an acyl-carrier protein (ACPM) independently to complex I. The function of this duplicated protein interaction of ACPM with respiratory complex I is still unknown. Analysis of protein-protein interaction screens, genetic analyses and predicted multi-domain LYRMs offer further clues on an interaction network and adaptor-like function of LYR proteins in mitochondria. PMID:25686363

  10. Including Ligand Induced Protein Flexibility into Protein Tunnel Prediction

    PubMed Central

    Kingsley, Laura J.; Lill, Markus A.

    2014-01-01

    In proteins with buried active sites, understanding how ligands migrate through the tunnels that connect the exterior of the protein to the active site can shed light on substrate specificity and enzyme function. A growing body of evidence highlights the importance of protein flexibility in the binding site upon ligand binding; however, the influence of protein flexibility throughout the body of the protein during ligand entry and egress is much less characterized. We have developed a novel tunnel prediction and evaluation method named IterTunnel, which includes the influence of ligand-induced protein flexibility, guarantees ligand egress, and provides detailed free energy information as the ligand proceeds along the egress route. IterTunnel combines geometric tunnel prediction with steered MD in an iterative process to identify tunnels that open as a result of ligand migration and calculates the potential of mean force (PMF) of ligand egress through a given tunnel. Applying this new method to cytochrome P450 2B6 (CYP2B6), we demonstrate the influence of protein flexibility on the shape and accessibility of tunnels. More importantly, we demonstrate that the ligand itself, while traversing through a tunnel, can reshape tunnels due to its interaction with the protein. This process results in the exposure of new tunnels and the closure of pre-existing tunnels as the ligand migrates from the active site. PMID:25043499

  11. Ribo-Proteomics Approach to Profile RNA-Protein and Protein-Protein Interaction Networks.

    PubMed

    Yeh, Hsin-Sung; Chang, Jae-Woong; Yong, Jeongsik

    2016-01-01

    Characterizing protein-protein and protein-RNA interaction networks is a fundamental step to understanding the function of an RNA-binding protein. In many cases, these interactions are transient and highly dynamic. Therefore, capturing stable as well as transient interactions in living cells for the identification of protein-binding partners and the mapping of RNA-binding sequences is key to a successful establishment of the molecular interaction network. In this chapter, we will describe a method for capturing the molecular interactions in living cells using formaldehyde as a crosslinker and enriching a specific RNA-protein complex from cell extracts followed by mass spectrometry and Next-Gen sequencing analyses. PMID:26965265

  12. Truly Absorbed Microbial Protein Synthesis, Rumen Bypass Protein, Endogenous Protein, and Total Metabolizable Protein from Starchy and Protein-Rich Raw Materials: Model Comparison and Predictions.

    PubMed

    Parand, Ehsan; Vakili, Alireza; Mesgaran, Mohsen Danesh; van Duinkerken, Gert; Yu, Peiqiang

    2015-07-29

    This study was carried out to measure truly absorbed microbial protein synthesis, rumen bypass protein, and endogenous protein loss, as well as total metabolizable protein, from starchy and protein-rich raw feed materials with model comparisons. Predictions by the DVE2010 system as a more mechanistic model were compared with those of two other models, DVE1994 and NRC-2001, that are frequently used in common international feeding practice. DVE1994 predictions for intestinally digestible rumen undegradable protein (ARUP) for starchy concentrates were higher (27 vs 18 g/kg DM, p < 0.05, SEM = 1.2) than predictions by the NRC-2001, whereas there was no difference in predictions for ARUP from protein concentrates among the three models. DVE2010 and NRC-2001 had highest estimations of intestinally digestible microbial protein for starchy (92 g/kg DM in DVE2010 vs 46 g/kg DM in NRC-2001 and 67 g/kg DM in DVE1994, p < 0.05 SEM = 4) and protein concentrates (69 g/kg DM in NRC-2001 vs 31 g/kg DM in DVE1994 and 49 g/kg DM in DVE2010, p < 0.05 SEM = 4), respectively. Potential protein supplies predicted by tested models from starchy and protein concentrates are widely different, and comparable direct measurements are needed to evaluate the actual ability of different models to predict the potential protein supply to dairy cows from different feedstuffs. PMID:26118653

  13. PPIM: A Protein-Protein Interaction Database for Maize.

    PubMed

    Zhu, Guanghui; Wu, Aibo; Xu, Xin-Jian; Xiao, Pei-Pei; Lu, Le; Liu, Jingdong; Cao, Yongwei; Chen, Luonan; Wu, Jun; Zhao, Xing-Ming

    2016-02-01

    Maize (Zea mays) is one of the most important crops worldwide. To understand the biological processes underlying various traits of the crop (e.g. yield and response to stress), a detailed protein-protein interaction (PPI) network is highly demanded. Unfortunately, there are very few such PPIs available in the literature. Therefore, in this work, we present the Protein-Protein Interaction Database for Maize (PPIM), which covers 2,762,560 interactions among 14,000 proteins. The PPIM contains not only accurately predicted PPIs but also those molecular interactions collected from the literature. The database is freely available at http://comp-sysbio.org/ppim with a user-friendly powerful interface. We believe that the PPIM resource can help biologists better understand the maize crop. PMID:26620522

  14. Prediction and redesign of protein-protein interactions.

    PubMed

    Lua, Rhonald C; Marciano, David C; Katsonis, Panagiotis; Adikesavan, Anbu K; Wilkins, Angela D; Lichtarge, Olivier

    2014-01-01

    Understanding the molecular basis of protein function remains a central goal of biology, with the hope to elucidate the role of human genes in health and in disease, and to rationally design therapies through targeted molecular perturbations. We review here some of the computational techniques and resources available for characterizing a critical aspect of protein function - those mediated by protein-protein interactions (PPI). We describe several applications and recent successes of the Evolutionary Trace (ET) in identifying molecular events and shapes that underlie protein function and specificity in both eukaryotes and prokaryotes. ET is a part of analytical approaches based on the successes and failures of evolution that enable the rational control of PPI. PMID:24878423

  15. Control of repeat protein curvature by computational protein design

    PubMed Central

    Park, Keunwan; Shen, Betty W.; Parmeggiani, Fabio; Huang, Po-Ssu; Stoddard, Barry L.; Baker, David

    2014-01-01

    Shape complementarity is an important component of molecular recognition, and the ability to precisely adjust the shape of a binding scaffold to match a target of interest would greatly facilitate the creation of high affinity protein reagents and therapeutics. Here we describe a general approach to control the shape of the binding surface on repeat protein scaffolds, and apply it to leucine rich repeat proteins. First, a set of self-compatible building block modules are designed that when polymerized each generate surfaces with unique but constant curvatures. Second, a set of junction modules that connect the different building blocks are designed. Finally, new proteins with custom designed shapes are generated by appropriately combining building block and junction modules. Crystal structures of the designs illustrate the power of the approach in controlling repeat protein curvature. PMID:25580576

  16. Protein-protein interaction networks (PPI) and complex diseases

    PubMed Central

    Safari-Alighiarloo, Nahid; Taghizadeh, Mohammad; Rezaei-Tavirani, Mostafa; Goliaei, Bahram

    2014-01-01

    The physical interaction of proteins which lead to compiling them into large densely connected networks is a noticeable subject to investigation. Protein interaction networks are useful because of making basic scientific abstraction and improving biological and biomedical applications. Based on principle roles of proteins in biological function, their interactions determine molecular and cellular mechanisms, which control healthy and diseased states in organisms. Therefore, such networks facilitate the understanding of pathogenic (and physiologic) mechanisms that trigger the onset and progression of diseases. Consequently, this knowledge can be translated into effective diagnostic and therapeutic strategies. Furthermore, the results of several studies have proved that the structure and dynamics of protein networks are disturbed in complex diseases such as cancer and autoimmune disorders. Based on such relationship, a novel paradigm is suggested in order to confirm that the protein interaction networks can be the target of therapy for treatment of complex multi-genic diseases rather than individual molecules with disrespect the network. PMID:25436094

  17. Information-driven structural modelling of protein-protein interactions.

    PubMed

    Rodrigues, João P G L M; Karaca, Ezgi; Bonvin, Alexandre M J J

    2015-01-01

    Protein-protein docking aims at predicting the three-dimensional structure of a protein complex starting from the free forms of the individual partners. As assessed in the CAPRI community-wide experiment, the most successful docking algorithms combine pure laws of physics with information derived from various experimental or bioinformatics sources. Of these so-called "information-driven" approaches, HADDOCK stands out as one of the most successful representatives. In this chapter, we briefly summarize which experimental information can be used to drive the docking prediction in HADDOCK, and then focus on the docking protocol itself. We discuss and illustrate with a tutorial example a "classical" protein-protein docking prediction, as well as more recent developments for modelling multi-body systems and large conformational changes. PMID:25330973

  18. Text Mining for Protein Docking

    PubMed Central

    Badal, Varsha D.; Kundrotas, Petras J.; Vakser, Ilya A.

    2015-01-01

    The rapidly growing amount of publicly available information from biomedical research is readily accessible on the Internet, providing a powerful resource for predictive biomolecular modeling. The accumulated data on experimentally determined structures transformed structure prediction of proteins and protein complexes. Instead of exploring the enormous search space, predictive tools can simply proceed to the solution based on similarity to the existing, previously determined structures. A similar major paradigm shift is emerging due to the rapidly expanding amount of information, other than experimentally determined structures, which still can be used as constraints in biomolecular structure prediction. Automated text mining has been widely used in recreating protein interaction networks, as well as in detecting small ligand binding sites on protein structures. Combining and expanding these two well-developed areas of research, we applied the text mining to structural modeling of protein-protein complexes (protein docking). Protein docking can be significantly improved when constraints on the docking mode are available. We developed a procedure that retrieves published abstracts on a specific protein-protein interaction and extracts information relevant to docking. The procedure was assessed on protein complexes from Dockground (http://dockground.compbio.ku.edu). The results show that correct information on binding residues can be extracted for about half of the complexes. The amount of irrelevant information was reduced by conceptual analysis of a subset of the retrieved abstracts, based on the bag-of-words (features) approach. Support Vector Machine models were trained and validated on the subset. The remaining abstracts were filtered by the best-performing models, which decreased the irrelevant information for ~ 25% complexes in the dataset. The extracted constraints were incorporated in the docking protocol and tested on the Dockground unbound benchmark set

  19. Are protein-protein interfaces special regions on a protein's surface?

    NASA Astrophysics Data System (ADS)

    Tonddast-Navaei, Sam; Skolnick, Jeffrey

    2015-12-01

    Protein-protein interactions (PPIs) are involved in many cellular processes. Experimentally obtained protein quaternary structures provide the location of protein-protein interfaces, the surface region of a given protein that interacts with another. These regions are termed half-interfaces (HIs). Canonical HIs cover roughly one third of a protein's surface and were found to have more hydrophobic residues than the non-interface surface region. In addition, the classical view of protein HIs was that there are a few (if not one) HIs per protein that are structurally and chemically unique. However, on average, a given protein interacts with at least a dozen others. This raises the question of whether they use the same or other HIs. By copying HIs from monomers with the same folds in solved quaternary structures, we introduce the concept of geometric HIs (HIs whose geometry has a significant match to other known interfaces) and show that on average they cover three quarters of a protein's surface. We then demonstrate that in some cases, these geometric HI could result in real physical interactions (which may or may not be biologically relevant). The composition of the new HIs is on average more charged compared to most known ones, suggesting that the current protein interface database is biased towards more hydrophobic, possibly more obligate, complexes. Finally, our results provide evidence for interface fuzziness and PPI promiscuity. Thus, the classical view of unique, well defined HIs needs to be revisited as HIs are another example of coarse-graining that is used by nature.

  20. Protein Cross-Linking Capillary Electrophoresis for Protein-Protein Interaction Analysis.

    PubMed

    Ouimet, Claire M; Shao, Hao; Rauch, Jennifer N; Dawod, Mohamed; Nordhues, Bryce; Dickey, Chad A; Gestwicki, Jason E; Kennedy, Robert T

    2016-08-16

    Capillary electrophoresis (CE) has been identified as a useful platform for detecting, quantifying, and screening for modulators of protein-protein interactions (PPIs). In this method, one protein binding partner is labeled with a fluorophore, the protein binding partners are mixed, and then, the complex is separated from free protein to allow direct determination of bound to free ratios. Although it possesses many advantages for PPI studies, the method is limited by the need to have separation conditions that both prevent protein adsorption to capillary and maintain protein interactions during the separation. In this work, we use protein cross-linking capillary electrophoresis (PXCE) to overcome this limitation. In PXCE, the proteins are cross-linked under binding conditions and then separated. This approach eliminates the need to maintain noncovalent interactions during electrophoresis and facilitates method development. We report PXCE methods for an antibody-antigen interaction and heterodimer and homodimer heat shock protein complexes. Complexes are cross-linked by short treatments with formaldehyde after reaching binding equilibrium. Cross-linked complexes are separated by electrophoretic mobility using free solution CE or by size using sieving electrophoresis of SDS complexes. The method gives good quantitative results; e.g., a lysozyme-antibody interaction was found to have Kd = 24 ± 3 nM by PXCE and Kd = 17 ± 2 nM using isothermal calorimetry (ITC). Heat shock protein 70 (Hsp70) in complex with bcl2 associated athanogene 3 (Bag3) was found to have Kd = 25 ± 5 nM by PXCE which agrees with Kd values reported without cross-linking. Hsp70-Bag3 binding site mutants and small molecule inhibitors of Hsp70-Bag3 were characterized by PXCE with good agreement to inhibitory constants and IC50 values obtained by a bead-based flow cytometry protein interaction assay (FCPIA). PXCE allows rapid method development for quantitative analysis of PPIs. PMID:27434096