Science.gov

Sample records for dielectric constant measurements

  1. Capacitive Cells for Dielectric Constant Measurement

    ERIC Educational Resources Information Center

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco

    2015-01-01

    A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.

  2. Dielectric Constant Measurements for Characterizing Lunar Soils

    NASA Technical Reports Server (NTRS)

    Anderson, Robert C.; Buehler, M.; Seshadri, S.; Kuhlman, G.; Schaap, M.

    2005-01-01

    The return to the Moon has ignited the need to characterize the lunar regolith using fast, reliable in-situ methods. Characterizing the physical properties of the rocks and soils can be very difficult because of the many complex parameters that influence the measurements. In particular, soil electrical property measurements are influenced by temperature, mineral type, grain size, porosity, and soil conductivity. Determining the dielectric constant of lunar materials may be very important in providing quick characterization of surface deposits, especially for the Moon. A close examination of the lunar regolith samples collected by the Apollo astronauts indicates that the rocks and soils on the Moon are dominated by silicates and oxides. In this presentation, we will show that determining the dielectric constant measurements can provide a simple, quick detection method for minerals that contain titanium, iron, and water. Their presence is manifest by an unusually large imaginary permittivity.

  3. BOREAS RSS-17 Dielectric Constant Profile Measurements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); McDonald, Kyle C.; Zimmerman, Reiner; Way, JoBea

    2000-01-01

    The BOREAS RSS-17 team acquired and analyzed imaging radar data from the ESA's ERS-1 over a complete annual cycle at the BOREAS sites in Canada in 1994 to detect shifts in radar backscatter related to varying environmental conditions. This data set consists of dielectric constant profile measurements from selected trees at various BOREAS flux tower sites. The relative dielectric constant was measured at C-band (frequency = 5 GHz) as a function of depth into the trunk of three trees at each site, Measurements were made during April 1994 with an Applied Microwave Corporation field PDP fitted with a 0.358-cm (0.141-inch) diameter coaxial probe tip. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  4. Laboratory measurement of the complex dielectric constant of soils

    NASA Technical Reports Server (NTRS)

    Wiebe, M. L.

    1971-01-01

    The dielectric constant of a material is an extremely important parameter when considering passive radiometric remote sensing applications. This is because the emitted energy measured by a microwave radiometer is dependent on the dielectric constant of the surface being scanned. Two techniques of measuring dielectric constants are described. The first method involves a dielectric located in air. The second method uses basically the same theoretical approach, but the dielectric under consideration is located inside a section of waveguide.

  5. Let's Measure the Dielectric Constant of a Piece of Paper!

    ERIC Educational Resources Information Center

    Karlow, Edwin A.

    1991-01-01

    Described is a simple circuit with which students can observe the effect of common dielectric materials in a capacitor and measure the dielectric constant of a piece of paper. Discussed are the theory, apparatus construction, and experimental procedures for this activity. (CW)

  6. Measurements of the dielectric constants for planetary volatiles

    NASA Technical Reports Server (NTRS)

    Anicich, Vincent G.; Huntress, Wesley T., Jr.

    1987-01-01

    The model of Titan at present has the surface temperature, pressure, and composition such that there is a possibility of a binary ethane-methane ocean. Proposed experiments for future Titan flybys include microwave mappers. Very little has been measured of the dielectric properties of the small hydrocarbons at these radar frequencies. An experiment was conducted utilizing a slotted line to measure the dielectric properties of the hydrocarbons, methane to heptane, from room temperature to -180 C. Measurements of the real part of the dielectric constants are accurate to + or - 0.006 and the imaginary part (the loss tangent) of the liquids studied is less than or equal to 0.001. In order to verify this low loss tangent, the real part of the dielectric constant of hexane at 25 C was studied as a function of the frequency range of the slotted line system used. The dielectric constant of hexane at room temperature, between 500 MHz and 3 MHz, is constant within experimental error.

  7. Method of measuring dielectric constant using an oscilloscope

    NASA Astrophysics Data System (ADS)

    Nogi, Yasuyuki; Watanabe, Masayuki; Suzuki, Kiyomitsu; Ohkuma, Yasunori

    2015-09-01

    A simple relationship determining the dielectric constant of a material inserted in a parallel-plate capacitor is formulated from Gauss's law for a uniform electric field and the continuity condition of electric flux at the boundary of the material. The relationship suggests that the dielectric constant can be determined from the dependence of the charge stored on the capacitor on the thicknesses of the material and the air layer between the plates. A uniform field is created by applying an ac voltage to the plates, which includes a guard ring. The stored charge is estimated by using an oscilloscope to measure the voltage across a resistor inserted between the power supply and the capacitor. The results of the measurement are given for planar materials such as soda-lime glass, Bakelite, acrylic glass, and Teflon with a thickness of 0.5-1 cm.

  8. Measurement of the dielectric constant of lunar minerals and regolith

    NASA Astrophysics Data System (ADS)

    Trigwell, S.; Starnes, J.; Brown, C.; White, C.; White, T.; Su, M.; Mahdi, H. H.; Al-Shukri, H. J.; Biris, A.; Non Invasive ProspectingLunar Ores; Minerals

    2010-12-01

    For long-term lunar exploration, the priorities are excavation and beneficiation of lunar regolith for water, oxygen, energy production, and structural and shielding fabrication. This work is part of a project focusing on the utilization of Ground Penetrating Radar (GPR) to identify the presence of enriched areas of sub-surface minerals for excavation and ore processing. GPR detection of sub-surface minerals depends significantly on the differences in dielectric constant of the various minerals. One of the minerals in lunar regolith of interest is ilmenite for its use in oxygen production and a supply of titanium and iron. Several pure minerals (feldspar, spodumene, olivine, and ilmenite) and lunar simulant JSC-1A were sieved into several size fractions (<25, 25-50, 50-75, and 75-100 µm). A test cell with an attached shaker was constructed in a vacuum chamber and measurements of the dielectric constant of the minerals and simulant were taken as a function of particle size and packing density. The results showed that there was a direct correlation between the measured dielectric constant and packing density and that ilmenite had a much higher dielectric constant than the other minerals. Measurements were also taken on Apollo 14 lunar regolith as a comparison and compared to the literature to validate the results. Mixtures of pure silica powder and ilmenite in various concentrations (2, 5, 10, and 15%) were measured and it was determined that approximately 2-4% ilmenite in the mixtures could be distinguished. Core samples taken on the moon for all Apollo missions showed ilmenite concentrations ranging from 0.3-12%, depending upon whether it was in the mare or highlands regions, and so this data may significantly contribute to the use of GPR for mineral prospecting on the moon.

  9. Dielectric Constant Measurements on Lunar Soils and Terrestrial Minerals

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.; Buehler, M. G.; Seshardri, S.; Schaap, M. G.

    2004-01-01

    The return to the Moon has ignited the need to characterize the lunar regolith using in situ methods. An examination of the lunar regolith samples collected by the Apollo astronauts indicates that only a few minerals (silicates and oxides) need be considered for in situ resource utilization (ISRU). This simplifies the measurement requirements and allows a detailed analysis using simple methods. Characterizing the physical properties of the rocks and soils is difficult because of many complex parameters such as soil temperature, mineral type, grain size, porosity, and soil conductivity. In this presentation, we will show that the dielectric constant measurement can provide simple detection for oxides such as TiO2, FeO, and water. Their presence is manifest by an unusually large imaginary permittivity.

  10. Measurement of the dielectric function spectra of low dielectric constant using the spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Horie, Masahiro; Postava, Kamil; Yamaguchi, Tomuo; Akashika, Kumiko; Hayashi, Hideki; Kitamura, Fujikazu

    2003-05-01

    The dielectric function spectra of low dielectric constants (low-k) materials have been determined using spectroscopic ellipsometry, normal incidence spectroscopic reflectometry, and Fourier transform infrared transmission spectrometry over a wide spectral range from 0.03 to 5.4 eV (230nm to 40.5um wavelength region). The electric and ionic contributions to the overall static dielectric constants were determined for representative materials used in the semiconductor industry for interlayer dielectrics: (1) FLARE - organic spin-on polymer, (2) HOSP - spin-on hybrid organic-siloxane polymer from the Honeywell Electric Materials Company, and (3) SiLK- organic dielectric resin from the Dow Chemical Company. The main contributions to the static dielectric constant of the low-k materials studied were found to be the electric and ionic absorption.

  11. Dielectric Constant of Suspensions

    NASA Astrophysics Data System (ADS)

    Mendelson, Kenneth S.; Ackmann, James J.

    1997-03-01

    We have used a finite element method to calculate the dielectric constant of a cubic array of spheres. Extensive calculations support preliminary conclusions reported previously (K. Mendelson and J. Ackmann, Bull. Am. Phys. Soc. 41), 657 (1996).. At frequencies below 100 kHz the real part of the dielectric constant (ɛ') shows oscillations as a function of the volume fraction of suspension. These oscillations disappear at low conductivities of the suspending fluid. Measurements of the dielectric constant (J. Ackmann, et al., Ann. Biomed. Eng. 24), 58 (1996). (H. Fricke and H. Curtis, J. Phys. Chem. 41), 729 (1937). are not sufficiently sensitive to show oscillations but appear to be consistent with the theoretical results.

  12. On the Dielectric Constant for Acetanilide: Experimental Measurements and Effect on Energy Transport

    NASA Astrophysics Data System (ADS)

    Careri, G.; Compatangelo, E.; Christiansen, P. L.; Halding, J.; Skovgaard, O.

    1987-01-01

    Experimental measurements of the dielectric constant for crystalline acetanilide powder for temperatures ranging from - 140°C to 20°C and for different hydration levels are presented. A Davydov-soliton computer model predicts dramatic changes in the energy transport and storage for typically increased values of the dielectric constant.

  13. Measuring the spatial distribution of dielectric constants in polymers through quasi-single molecule microscopy.

    PubMed

    Hess, Chelsea M; Riley, Erin A; Palos-Chávez, Jorge; Reid, Philip J

    2013-06-13

    The variation in dielectric constant is measured for thin films of poly(methyl methacrylate) (PMMA) and poly(vinylidene fluoride) (PVDF) using confocal fluorescence microscopy. Spatial variation in the local dielectric constant of the polymer films on the ~250 nm length scale is measured using the solvochromatic emission from incorporated nile red (NR) at "quasi-single molecule" (10(-7) M) and true single molecule (SM) concentrations (10(-9) M). Correlation of the NR fluorescence wavelength maximum with dielectric constant is used to transform images of NR's emission maxima to spatial variation in local dielectric constant. We demonstrate that the distributions of dielectric environments measured in the quasi- and true SM approaches are equivalent; however, the enhanced signal rates present in the quasi-SM approach result in this technique being more efficient. In addition, the quasi-SM technique reports directly on the continuous spatial variation in dielectric constant, information that is difficult to obtain in true SM studies. With regards to the polymers of interest, the results presented here demonstrate that a limited distribution of dielectric environments is present in PMMA; however, a broad distribution of environments exists in PVDF consistent with this polymer existing as a distribution of structural phases. PMID:23735049

  14. In-line measurement of high temperature dielectric constant in the process of sintering

    SciTech Connect

    Zhou Jian; Cheng Jiping; Tang Yuling; Qiu Jinyu

    1996-12-31

    In this paper, a resonant cavity method is developed and some experimental results for measuring dielectric constants of ceramic samples (e.g., Al{sub 2}O{sub 3}) under different sintering temperatures are reported. The experiments show that this method has higher precision and good prospects of in-line monitoring the high temperature dielectric constant in the process of raising the temperature of the samples. These results provide some scientific experimental basis for physical research of ceramic materials.

  15. High temperature dielectric constant measurement - another analytical tool for ceramic studies?

    SciTech Connect

    Hutcheon, R.M.; Hayward, P.; Alexander, S.B.

    1995-12-31

    The automation of a high-temperature (1400{degrees}C), microwave-frequency, dielectric constant measurement system has dramatically increased the reproducibility and detail of data. One can now consider using the technique as a standard tool for analytical studies of low-conductivity ceramics and glasses. Simultaneous temperature and frequency scanning dielectric analyses (SDA) yield the temperature-dependent complex dielectric constant. The real part of the dielectric constant is especially sensitive to small changes in the distance and distribution of neighboring ions or atoms, while the absorptive part is strongly dependent on the position and population of electron/hole conduction bands, which are sensitive to impurity concentrations in the ceramic. SDA measurements on a few specific materials will be compared with standard differential thermal analysis (DTA) results and an attempt will be made to demonstrate the utility of both the common and complementary aspects of the techniques.

  16. L-band Dielectric Constant Measurements of Seawater (Oral presentation and SMOS Poster)

    NASA Technical Reports Server (NTRS)

    Lang, Roger H.; Utku, Cuneyt; LeVine, David M.

    2003-01-01

    This paper describes a resonant cavity technique for the measurement of the dielectric constant of seawater as a function of its salinity. Accurate relationships between salinity and dielectric constant (which determines emissivity) are needed for sensor systems such as SMOS and Aquarius that will monitor salinity from space in the near future. The purpose of the new measurements is to establish the dependence of the dielectric constant of seawater on salinity in contemporary units (e.g. psu) and to take advantage of modern instrumentation to increase the accuracy of these measurements. The measurement device is a brass cylindrical cavity 16cm in diameter and 7cm in height. The seawater is introduced into the cavity through a slender glass tube having an inner diameter of 0.1 mm. By assuming that this small amount of seawater slightly perturbs the internal fields in the cavity, perturbation theory can be employed. A simple formula results relating the real part of the dielectric constant to the change in resonant frequency of the cavity. In a similar manner, the imaginary part of the dielectric constant is related to the change in the cavity s Q. The expected accuracy of the cavity technique is better than 1% for the real part and 1 to 2% for the imaginary part. Presently, measurements of methanol have been made and agree with precision measurements in the literature to within 1% in both real and imaginary parts. Measurements have been made of the dielectric constant of seawater samples from Ocean Scientific in the United Kingdom with salinities of 10, 30, 35 and 38 psu. All measurements were made at room temperature. Plans to make measurements at a range of temperatures and salinities will be discussed.

  17. In-situ Microfluidic Measurement of the Dielectric Constant of Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Manafirasi, Setareh; Leary, Thomas; Maldarelli, Charles

    2015-11-01

    The ability to manipulate micron-sized colloidal particles or biological cells in a liquid medium in microfluidic geometries is necessary in lab on a chip devices for micro scale biological analysis and diagnostics for sorting and directing the trafficking of the particles. In dielectrophoresis, a nonuniform electric (E) field is applied to move the particles along the gradient of the field energy, and the velocity is a function of the particle's dielectric constant. Measurement of the dielectric constant is necessary in order to scale field strengths for applications, and it is important to undertake this measurement in-situ as the particle's dielectric content can be modified by the suspending medium (e.g. adsorption onto the particle surface). In this talk we measure directly the dielectric constant of colloids in a microfluidic channel by applying an electric field with ``V''-shaped and planar electrodes on opposite sides of the channel. The cusp of the ``V'' shape concentrates the field to provide a sufficient field intensity gradient which is designed to be uniform across the height of the channel and to vary only with its width. Optical measurements of the diffusiophoretic velocity of polymer colloids are compared to simulations based on numerical solution of the E-field and particle hydrodynamics to obtain the particle dielectric constant and investigate the effect of biomolecule adsorption on the particle surface.

  18. A low dielectric constant customized phantom design to measure RF coil nonuniformity.

    PubMed

    Tofts, P S; Barker, G J; Dean, T L; Gallagher, H; Gregory, A P; Clarke, R N

    1997-01-01

    The selection of a suitable low dielectric constant liquid for radiofrequency coil nonuniformity measurements is described. Measurements of dielectric constant (relative permittivity) were made on a range of candidate liquids. After excluding liquids that were too inflammable or too viscous, Esso Bayol 82 oil (dielectric constant epsilon' = 2.37) was chosen. At 1.5 T, a 27 cm diameter cylindrical phantom (test object) filled with Bayol 82 has a maximum nonuniformity of 1.9% arising from radiofrequency standing waves. The maximum diameter cylinder that can be used without the nonuniformity exceeding 2% is given for a range of liquids and field strengths. The construction of customized containers that fit closely inside a radiofrequency head coil from glass fiber reinforced resin ("fiberglass") is described. Thermal expansion of the liquid takes place without a rise in the internal pressure in the container. PMID:9084027

  19. Measurement of x-ray dielectric constants with coherent transition radiation

    SciTech Connect

    Moran, M.J.; Dahling, B.A.; Piestrup, M.A.; Berman, B.L.; Kephart, J.O.

    1986-06-06

    A technique for measuring the energy-resolved angular distribution of longitudinally coherent transition radiation generated in multiple-foil targets has been developed. This paper will demonstrate how data generated by these measurements can be used to determine the dielectric constants of materials in the soft x-ray spectral region.

  20. Accurate measurements of the dielectric constant of seawater at L band

    NASA Astrophysics Data System (ADS)

    Lang, Roger; Zhou, Yiwen; Utku, Cuneyt; Le Vine, David

    2016-01-01

    This paper describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz, the center of the protected band (i.e., passive use only) used in the measurement of sea surface salinity from space. The objective of the measurements is to accurately determine the complex dielectric constant of seawater as a function of salinity and temperature. A resonant cylindrical microwave cavity in transmission mode has been employed to make the measurements. The measurements are made using standard seawater at salinities of 30, 33, 35, and 38 practical salinity units over a range of temperatures from 0°C to 35°C in 5°C intervals. Repeated measurements have been made at each temperature and salinity. Mean values and standard deviations are then computed. The total error budget indicates that the real and imaginary parts of the dielectric constant have a combined standard uncertainty of about 0.3 over the range of salinities and temperatures considered. The measurements are compared with the dielectric constants obtained from the model functions of Klein and Swift and those of Meissner and Wentz. The biggest differences occur at low and high temperatures.

  1. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    NASA Technical Reports Server (NTRS)

    Lang, Roger; Zhou, Yiwen; Utku, Cuneyt; Le Vine, David

    2016-01-01

    This paper describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz, the center of the protected band (i.e., passive use only) used in the measurement of sea surface salinity from space. The objective of the measurements is to accurately determine the complex dielectric constant of seawater as a function of salinity and temperature. A resonant cylindrical microwave cavity in transmission mode has been employed to make the measurements. The measurements are made using standard seawater at salinities of 30, 33, 35, and 38 practical salinity units over a range of temperatures from 0 degree C to 35 degree C in 5 degree C intervals. Repeated measurements have been made at each temperature and salinity. Mean values and standard deviations are then computed. The total error budget indicates that the real and imaginary parts of the dielectric constant have a combined standard uncertainty of about 0.3 over the range of salinities and temperatures considered. The measurements are compared with the dielectric constants obtained from the model functions of Klein and Swift and those of Meissner and Wentz. The biggest differences occur at low and high temperatures.

  2. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    NASA Technical Reports Server (NTRS)

    Lang, Roger H.; Utku, Cuneyt; Tarkocin, Yalcin; LeVine, David M.

    2010-01-01

    This report describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz that is at the center of the L-Sand radiometric protected frequency spectrum. Aquarius will be sensing the sea surface salinity from space in this band. The objective of the project is to refine the model function for the dielectric constant as a function of salinity and temperature so that remote sensing measurements can be made with the accuracy needed to meet the measurement goals (0.2 psu) of the Aquarius mission. The measurements were made, using a microwave cavity operated in the transmission configuration. The cavity's temperature was accurately regulated to 0.02 C by immersing it in a temperature controlled bath of distilled water and ethanol glycol. Seawater had been purchased from Ocean Scientific International Limited (OS1L) at salinities of 30, 35 and 38 psu. Measurements of these seawater samples were then made over a range of temperatures, from l0 C to 35 C in 5 C intervals. Repeated measurements were made at each temperature and salinity, Mean values and standard deviations were then computed. Total error budgets indicated that the real and imaginary parts of the dielectric constant had a relative accuracy of about l%.

  3. Measurements of the complex dielectric constant of sand and dust particles at 11 GHz

    NASA Astrophysics Data System (ADS)

    Al-Rizzo, Hussain M.; Al-Hafid, Hafid T.

    1988-03-01

    Measurements are reported of the refractive index (Delta-n) and loss tangent (tan delta) of dust particles in a laboratory-simulated model of dust storms, carried out at 11 GHz utilizing a confocal microwave open-cavity resonator. Four samples were used namely, sandy, silty, clayey silt, and clayey, for concentrations varying from 10-4 to 4 x 10-3 g/cu cm. The particle-size distribution (PSD) of each sample was measured by seiving along with the hydrometer technique. Dielectric-constant measurements were also conducted at bulk concentrations using the standing-wave technique for the dry samples and as a function of volumetric moisture content for up to 0.5 cu cm/cu cm. The complex dielectric constant of the dust particle material was evaluated by two approaches. In one the data for permittivities obtained over the whole range of measured concentrations were extrapolated to the particle densities of the samples. In the other a mixing formula was utilized for the determination of epsilon(s) from permittivities measured at bulk concentrations.

  4. Molecular properties of alternative refrigerants derived from dielectric-constant measurements

    SciTech Connect

    Barao, M.T.; Castro, C.A.N. de; Mardolcar, U.V.

    1997-03-01

    A review of the current work in Lisbon on the measurement of the dielectric constant of the liquid phase of some environmentally acceptable refrigerants proposed as alternative replacements of the chlorofluorocarbons (CFCs), responsible for the destruction of the ozone layer, is presented. Measurements on HCFC 141b, HCFC 142b, HCFC 123, HFC 134a, HFC 152a, and HFC 32 samples of stated purities of 99.8 mass % or better were performed as a function of pressure and temperature, in the temperature range from 200 to 300 K and at pressures up to 20 MPa. The ratio of the capacitances of a cell filled with the sample and under vacuum was measured with a direct capacitance method. The dielectric-constant measurements have a repeatability of 0.003% and an accuracy of 0.1%. The theory developed by Vedam et al. based on the Eulerian Strain and the Kirkwood equation for the variation of the modified molar polarization with temperature and density were applied to obtain the dipole moments of the refrigerants in the liquid state, to obtain a physical insight of the molecular behavior, and to understand the equilibrium configuration of these liquids.

  5. Quantum-dot size and thin-film dielectric constant: precision measurement and disparity with simple models.

    PubMed

    Grinolds, Darcy D W; Brown, Patrick R; Harris, Daniel K; Bulovic, Vladimir; Bawendi, Moungi G

    2015-01-14

    We study the dielectric constant of lead sulfide quantum dot (QD) films as a function of the volume fraction of QDs by varying the QD size and keeping the ligand constant. We create a reliable QD sizing curve using small-angle X-ray scattering (SAXS), thin-film SAXS to extract a pair-distribution function for QD spacing, and a stacked-capacitor geometry to measure the capacitance of the thin film. Our data support a reduced dielectric constant in nanoparticles. PMID:25531164

  6. The measurement of the dielectric constant of concrete pipes and clay pipes

    NASA Astrophysics Data System (ADS)

    McGraw, David

    To optimize the effectiveness of the rehabilitation of underground utilities, taking in consideration limitation of available resources, there is a need for a cost effective and efficient sensing systems capable of providing effective, in real time and in situ, measurement of infrastructural characteristics. To carry out accurate non-destructive condition assessment of buried and above ground infrastructure such as sewers, bridges, pavements and dams, an advanced ultra-wideband (UWB) based radar was developed at Trenchless Technology Centre (TTC) and Centre for Applied Physics Studies (CAPS) at Louisiana Tech University (LTU). One of the major issues in designing the FCC compliant UWB radar was the contribution of the pipe wall, presence of complex soil types and moderate-to-high moisture levels on penetration depth of the electromagnetic (EM) energy. The electrical properties of the materials involved in designing the UWB radar exhibit a significant variation as a result of the moisture content, mineral content, bulk density, temperature and frequency of the electromagnetic signal propagating through it. Since no measurements of frequency dependence of the dielectric permittivity and conductivities of the pipe wall material in the FCC approved frequency range exist, in this thesis, the dielectric constant of concrete and clay pipes are measured over a microwave frequency range from 1 Ghz to 10 Ghz including the effects of moisture and chloride content. A high performance software package called MU-EPSLN(TM) was used for the calculations. Data reduction routines to calculate the complex permeability and permittivity of materials as well as other parameters are also provided. The results obtained in this work will be used to improve the accuracy of the numerical simulations and the performances of the UWB radar system.

  7. Dielectric constants of soils at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Geiger, F. E.; Williams, D.

    1972-01-01

    A knowledge of the complex dielectric constant of soils is essential in the interpretation of microwave airborne radiometer data of the earth's surface. Measurements were made at 37 GHz on various soils from the Phoenix, Ariz., area. Extensive data have been obtained for dry soil and soil with water content in the range from 0.6 to 35 percent by dry weight. Measurements were made in a two arm microwave bridge and results were corrected for reflections at the sample interfaces by solution of the parallel dielectric plate problem. The maximum dielectric constants are about a factor of 3 lower than those reported for similar soils at X-band frequencies.

  8. Method for rapidly determining the swelling-clay content in shales and shaly sandstone formations by high-frequency dielectric constant measurements

    SciTech Connect

    Kroeger, M.K.; Longo, J.M.; Steiger, R.P.; Leung, P.K.

    1989-10-24

    This patent describes a method for measuring the swelling-clay content of earth formations by dielectric measurements. It comprises: grinding a sample of the earth formation to a size suitable for testing; washing the sample with a fluid having a water activity substantially less than that of water; packing the washed sample into a sample cell suitable for dielectric measurement; measuring the dielectric constant of the washed sample at a preselected frequency; and comparing the measured dielectric constant of the rock sample to a calibration curve, to determine the swelling-clay content of the earth formation.

  9. Recent Results on the Accurate Measurements of the Dielectric Constant of Seawater at 1.413GHZ

    NASA Technical Reports Server (NTRS)

    Lang, R.H.; Tarkocin, Y.; Utku, C.; Le Vine, D.M.

    2008-01-01

    Measurements of the complex. dielectric constant of seawater at 30.00 psu, 35.00 psu and 38.27 psu over the temperature range from 5 C to 3 5 at 1.413 GHz are given and compared with the Klein-Swift results. A resonant cavity technique is used. The calibration constant used in the cavity perturbation formulas is determined experimentally using methanol and ethanediol (ethylene glycol) as reference liquids. Analysis of the data shows that the measurements are accurate to better than 1.0% in almost all cases studied.

  10. Lateral resolution improvement in scanning nonlinear dielectric microscopy by measuring super-higher-order nonlinear dielectric constants

    NASA Astrophysics Data System (ADS)

    Chinone, N.; Yamasue, K.; Hiranaga, Y.; Honda, K.; Cho, Y.

    2012-11-01

    Scanning nonlinear dielectric microscopy (SNDM) can be used to visualize polarization distributions in ferroelectric materials and dopant profiles in semiconductor devices. Without using a special sharp tip, we achieved an improved lateral resolution in SNDM through the measurement of super-higher-order nonlinearity up to the fourth order. We observed a multidomain single crystal congruent LiTaO3 (CLT) sample, and a cross section of a metal-oxide-semiconductor (MOS) field-effect-transistor (FET). The imaged domain boundaries of the CLT were narrower in the super-higher-order images than in the conventional image. Compared to the conventional method, the super-higher-order method resolved the more detailed structure of the MOSFET.

  11. Measurement of pressures up to 7 MPa applying pressure balances for dielectric-constant gas thermometry

    NASA Astrophysics Data System (ADS)

    Zandt, Thorsten; Sabuga, Wladimir; Gaiser, Christof; Fellmuth, Bernd

    2015-10-01

    For the determination of the Boltzmann constant by dielectric-constant gas thermometry, the uncertainty of pressure measurements in helium up to 7 MPa has been decreased compared with previous achievements (Sabuga 2011 PTB-Mitt. 121 247-55). This was possible by performing comprehensive cross-float experiments with a system of six special pressure balances and the synchronization of their effective areas. It is now possible to measure a helium pressure of 7 MPa with a relative standard uncertainty of 1.0 ppm applying a 2 cm2 piston-cylinder unit, the calibration of which is traceable to the SI base units.

  12. Dielectric constant microscopy for biological materials

    NASA Astrophysics Data System (ADS)

    Valavade, A. V.; Kothari, D. C.; Löbbe, C.

    2013-02-01

    This paper describes the work on the development of Dielectric Constant Microscopy for biological materials using double pass amplitude modulation method. The dielectric constant information can be obtained at nanometer scales using this technique. Electrostatic force microscopy images of biological materials are presented. The images obtained from the EFM technique mode clearly show inversion contrast and gives the spatial variation of tip-sample capacitance. The EFM images are further processed to obtain dielectric constant information at nanometer scales.

  13. Dielectric constant of water in the interface.

    PubMed

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V

    2016-07-01

    We define the dielectric constant (susceptibility) that should enter the Maxwell boundary value problem when applied to microscopic dielectric interfaces polarized by external fields. The dielectric constant (susceptibility) of the interface is defined by exact linear-response equations involving correlations of statistically fluctuating interface polarization and the Coulomb interaction energy of external charges with the dielectric. The theory is applied to the interface between water and spherical solutes of altering size studied by molecular dynamics (MD) simulations. The effective dielectric constant of interfacial water is found to be significantly lower than its bulk value, and it also depends on the solute size. For TIP3P water used in MD simulations, the interface dielectric constant changes from 9 to 4 when the solute radius is increased from ∼5 to 18 Å. PMID:27394114

  14. Dielectric constant of water in the interface

    NASA Astrophysics Data System (ADS)

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V.

    2016-07-01

    We define the dielectric constant (susceptibility) that should enter the Maxwell boundary value problem when applied to microscopic dielectric interfaces polarized by external fields. The dielectric constant (susceptibility) of the interface is defined by exact linear-response equations involving correlations of statistically fluctuating interface polarization and the Coulomb interaction energy of external charges with the dielectric. The theory is applied to the interface between water and spherical solutes of altering size studied by molecular dynamics (MD) simulations. The effective dielectric constant of interfacial water is found to be significantly lower than its bulk value, and it also depends on the solute size. For TIP3P water used in MD simulations, the interface dielectric constant changes from 9 to 4 when the solute radius is increased from ˜5 to 18 Å.

  15. Dielectric constant of water at very high temperature and pressure

    PubMed Central

    Pitzer, Kenneth S.

    1983-01-01

    Pertinent statistical mechanical theory is combined with the available measurements of the dielectric constant of water at high temperature and pressure to predict that property at still higher temperature. The dielectric constant is needed in connection with studies of electrolytes such as NaCl/H2O at very high temperature. PMID:16593342

  16. Thermal conductivity and dielectric constant of silicate materials

    NASA Technical Reports Server (NTRS)

    Simon, I.; Wechsler, A. E.

    1968-01-01

    Report on the thermal conductivity and dielectric constant of nonmetallic materials evaluates the mechanisms of heat transfer in evacuated silicate powders and establishes the complex dielectric constant of these materials. Experimental measurements and results are related to postulated lunar surface materials.

  17. Dielectric Constant of Suspensions of Blood Cells

    NASA Astrophysics Data System (ADS)

    Mendelson, Kenneth; Ackmann, James

    1996-03-01

    Measurements of the complex dielectric constant of suspensions of blood cells have recently been reported by Ackmann, et al.(J. J. Ackmann, et al., Ann. Biomed. Eng. 24), 58 (1996). At frequencies below 100 kHz, the real part of the dielectric constant (ɛ') goes through a maximum at a blood cell volume fraction of about 70%. Effective medium approximations do not agree well with this behavior. As a more realistic model, we are studying the grain consolidation model of Roberts and Schwartz(J. N. Roberts and L. M. Schwartz, Phys. Rev. B 31), 5990 (1985). We have used a finite element method to calculate the dielectric constant of this model for a cubic array of spheres. The simulations agree remarkably well with experiment. They suggest, however, that ɛ' may be showing oscillations rather than a simple maximum. Comparison of the simulated and experimental points suggests that this is not an artifact of the periodic array used in the model. Furthermore the simulations indicate that the maximum (or oscillations) disappears at low conductivities of the suspending fluid.

  18. New silicone dielectric elastomers with a high dielectric constant

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Liu, Liwu; Fan, Jiumin; Yu, Kai; Liu, Yanju; Shi, Liang; Leng, Jinsong

    2008-03-01

    Dielectric elastomers (Des) are a type of EAPs with unique electrical properties and mechanical properties: high actuation strains and stresses, fast response times, high efficiency, stability, reliability and durability. The excellent figures of merit possessed by dielectric elastomers make them the most performing materials which can be applied in many domains: biomimetics, aerospace, mechanics, medicals, etc. In this paper, we present a kind of electroactive polymer composites based on silicone Dielectric elastomers with a high dielectric constant. Novel high DEs could be realized by means of a composite approach. By filling an ordinary elastomer (e.g. silicone) with a component of functional ceramic filler having a greater dielectric permittivity, it is possible to obtain a resulting composite showing the fruitful combination of the matrix's advantageous elasticity and the filler's high permittivity. Here we add the ferroelectric relaxor ceramics (mainly BaTiO3) which has high dielectric constant (>3000) to the conventional silicone Dielectric elastomers, to get the dielectric elastomer which can exhibit high elastic energy densities induced by an electric field of about 15 MV/m. Tests of the physical and chemical properties of the dielectric elastomers are conducted, which verify our supposes and offer the experimental data supporting further researches.

  19. Dielectric constant extraction of graphene nanostructured on SiC substrates from spectroscopy ellipsometry measurement using Gauss-Newton inversion method

    NASA Astrophysics Data System (ADS)

    Maulina, Hervin; Santoso, Iman; Subama, Emmistasega; Nurwantoro, Pekik; Abraha, Kamsul; Rusydi, Andrivo

    2016-04-01

    The extraction of the dielectric constant of nanostructured graphene on SiC substrates from spectroscopy ellipsometry measurement using the Gauss-Newton inversion (GNI) method has been done. This study aims to calculate the dielectric constant and refractive index of graphene by extracting the value of ψ and Δ from the spectroscopy ellipsometry measurement using GNI method and comparing them with previous result which was extracted using Drude-Lorentz (DL) model. The results show that GNI method can be used to calculate the dielectric constant and refractive index of nanostructured graphene on SiC substratesmore faster as compared to DL model. Moreover, the imaginary part of the dielectric constant values and coefficient of extinction drastically increases at 4.5 eV similar to that of extracted using known DL fitting. The increase is known due to the process of interband transition and the interaction between the electrons and electron-hole at M-points in the Brillouin zone of graphene.

  20. Dielectric constant of liquid alkanes and hydrocarbon mixtures

    NASA Technical Reports Server (NTRS)

    Sen, A. D.; Anicich, V. G.; Arakelian, T.

    1992-01-01

    The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.

  1. Investigation of Biodiesel Through Photopyroelectric and Dielectric-Constant Measurements as a Function of Temperature: Freezing/Melting Interval

    NASA Astrophysics Data System (ADS)

    Zanelato, E. B.; Machado, F. A. L.; Rangel, A. B.; Guimarães, A. O.; Vargas, H.; da Silva, E. C.; Mansanares, A. M.

    2015-06-01

    Biodiesel is a promising option for alternative fuels since it derives from natural and renewable materials; it is biodegradable and less polluting than fossil fuels. A gradual replacement of diesel by biodiesel has been adopted by many countries, making necessary the investigation of the physical properties of biodiesel and of its mixture in diesel. Photothermal techniques, specifically the photopyroelectric technique (PPE), have proved to be suitable in the characterization of biodiesel and of its precursor oils, as well as of the biodiesel/diesel mixtures. In this paper, we investigate thermal and electrical properties of animal fat-based biodiesel as a function of temperature, aiming to characterize the freezing/melting interval and the changes in the physical properties from the solid to the liquid phase. The samples were prepared using the transesterification method, by the ethylic route. Optical transmittance experiments were carried out in order to confirm the phase transition interval. Solid and liquid phases present distinct thermal diffusivities and conductivities, as well as dielectric constants. The PPE signal amplitude is governed by the changes in the thermal diffusivity/conductivity. As a consequence, the amplitude of the signal becomes like a step function, which is smoothed and sometimes delayed by the nucleation processes during cooling. A similar behavior is found in the dielectric constant data, which is higher in the liquid phase since the molecules have a higher degree of freedom. Both methods (PPE/dielectric constant) proved to be useful in the characterization of the freezing/melting interval, as well as to establish the distinction in the physical properties of solid and liquid phases. The methodology allowed a discussion of the cloud point and the pour point of the samples in the temperature variation interval.

  2. Dielectric constants of soils at microwave frequencies-2

    NASA Technical Reports Server (NTRS)

    Wang, J.; Schmugge, T.; Williams, D.

    1978-01-01

    The dielectric constants of several soil samples were measured at frequencies of 5 and 19 GHz using the infinite transmission line method. The results of these measurements are presented and discussed with respect to soil types and texture structures. A comparison is made with other measurements at 1.4 GHz. At all three frequencies, the dependence of dielectric constant on soil moisture can be approximated by two straight lines. At low moisture, the slope is less than at high moisture level. The intersection of the two lines is believed to be a function of soil texture.

  3. PECVD of low-dielectric constant films for ULSI

    NASA Astrophysics Data System (ADS)

    Shimogaki, Yukihiro

    1998-10-01

    We studied the reduction mechanism of the dielectric constant of F-doped silicon oxide films prepared by PECVD from SiH_4/N_2O/CF4 mixture. From the estimation of the dielectric constant at various frequencies, ranging from 1MHz to 100THz, using CV measurement, Kramers-Kronig relation and the square of the refractive index, we suggest that the dielectric constant due to ionic and electronic polarization is not the dominant factor in decreasing the dielectric constant. It is important to remove -OH in films to obtain very low dielectric constant F-doped silicon oxide films, because Si-OH is the main factor of the orientational polarization in silicon oxide films made by PECVD. To investigate the reaction mechanism which controls the film structure, we changed the residence time of gas in chamber by varying the flow rate. When the residence time in chamber decreases, the film deposition rate increases. We tried to explain flow rate dependency of the deposition rate using a simple CSTR (continuous stirred tank reactor) model. It can be concluded that there are two paths to deposit the films. One route is a deposition by the precursors with poor step coverage profile, and the other route is deposition through intermediates formed by gas phase reactions that contribute to have better step coverage. The overall gas phase reaction rate constant was estimated from these kinetic studies. Same approach was also carried out on the PECVD of C:F film deposition.

  4. Remote Sensing of Salinity: The Dielectric Constant of Sea Water

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Lang, R.; Utku, C.; Tarkocin, Y.

    2011-01-01

    Global monitoring of sea surface salinity from space requires an accurate model for the dielectric constant of sea water as a function of salinity and temperature to characterize the emissivity of the surface. Measurements are being made at 1.413 GHz, the center frequency of the Aquarius radiometers, using a resonant cavity and the perturbation method. The cavity is operated in a transmission mode and immersed in a liquid bath to control temperature. Multiple measurements are made at each temperature and salinity. Error budgets indicate a relative accuracy for both real and imaginary parts of the dielectric constant of about 1%.

  5. Temperature and moisture dependence of dielectric constant for silica aerogels

    SciTech Connect

    Hrubesh, L.H., LLNL

    1997-03-01

    The dielectric constants of silica aerogels are among the lowest measured for any solid material. The silica aerogels also exhibit low thermal expansion and are thermally stable to temperatures exceeding 500{degrees}C. However, due to the open porosity and large surface areas for aerogels, their dielectric constants are strongly affected by moisture and temperature. This paper presents data for the dielectric constants of silica aerogels as a function of moisture content at 25{degrees}C, and as a function of temperature, for temperatures in the range from 25{degrees}C to 450{degrees}C. Dielectric constant data are also given for silica aerogels that are heat treated in dry nitrogen at 500{degrees}C, then cooled to 25{degrees}C for measurements in dry air. All measurements are made on bulk aerogel spheres at 22GHz microwave frequency, using a cavity perturbation method. The results of the dependence found here for bulk materials can be inferred to apply also to thin films of silica aerogels having similar nano-structures and densities.

  6. Dielectric constant, dielectric virial coefficients, and dipole moments of 1,1,1,2-tetrafluoroethane

    SciTech Connect

    Barao, T.; Castro, C.A.N. de; Mardolcar, U.V.; Okambawa, R.; St-Arnaud, J.M.

    1995-11-01

    In this paper the authors report measurements of the dielectric constant of 1,1,1,2-tetrafluoroethane, HFC-134a, an environmentally acceptable refrigerant, under consideration as an alternative replacement of the chlorofluorocarbons, CFCs. The dipole moment in the gaseous phase was found to be (1.91 {+-} 0.19) D, and in the liquid phase (3.54 {+-} 0.01) D. The authors present values of the first three dielectric virial coefficients in the gaseous phase.

  7. Simple liquid models with corrected dielectric constants.

    PubMed

    Fennell, Christopher J; Li, Libo; Dill, Ken A

    2012-06-14

    Molecular simulations often use explicit-solvent models. Sometimes explicit-solvent models can give inaccurate values for basic liquid properties, such as the density, heat capacity, and permittivity, as well as inaccurate values for molecular transfer free energies. Such errors have motivated the development of more complex solvents, such as polarizable models. We describe an alternative here. We give new fixed-charge models of solvents for molecular simulations--water, carbon tetrachloride, chloroform, and dichloromethane. Normally, such solvent models are parametrized to agree with experimental values of the neat liquid density and enthalpy of vaporization. Here, in addition to those properties, our parameters are chosen to give the correct dielectric constant. We find that these new parametrizations also happen to give better values for other properties, such as the self-diffusion coefficient. We believe that parametrizing fixed-charge solvent models to fit experimental dielectric constants may provide better and more efficient ways to treat solvents in computer simulations. PMID:22397577

  8. Novel Materials with Effective Super Dielectric Constants for Energy Storage

    NASA Astrophysics Data System (ADS)

    Cortes, Francisco Javier Quintero; Phillips, Jonathan

    2015-05-01

    To test a theory of the recently discovered phenomenon of super dielectric behavior at very low frequency, the dielectric constants of several `pastes', composed of porous alumina powders filled to the point of incipient wetness with water containing dissolved sodium chloride, were measured. The effective dielectric low frequency constants of some of the pastes were greater than 1010, dramatically higher than that of any material ever reported. Moreover, the total energy density reported for one capacitor generated with NaCl-based super dielectric material is marginally higher than found in any prior report. These results are consistent with this recently postulated model of low frequency super dielectric behavior in porous, non-conductive materials saturated with ion-containing liquids: upon the application of an electric field, ions dissolved in the saturating liquid contained in the pores will travel to the ends of pore-filling liquid droplets creating giant dipoles. The fields of these giant dipoles oppose the applied field, reducing the net field created per unit of charge on the capacitor plates, effectively increasing charge/voltage ratio, hence capacitance. This is simply a version of the theory of `polarizable media' found in most classic texts on electromagnetism. Other observations reported here include (1) the impact of ion concentration on dielectric values, (2) a maximum voltage similar to that associated with the electrical breakdown of water, (3) the loss of capacitance upon drying, (4) the recovery of capacitance upon the addition of water to a dry super dielectric material, and (5) the linear relationship between capacitance and inverse thickness. All observations are consistent with the earlier proposed model of the super dielectric phenomenon. An extrapolation of results suggests this technology can lead to energy density greater than the best lithium-ion battery.

  9. Defect density and dielectric constant in perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Samiee, Mehran; Konduri, Siva; Ganapathy, Balaji; Kottokkaran, Ranjith; Abbas, Hisham A.; Kitahara, Andrew; Joshi, Pranav; Zhang, Liang; Noack, Max; Dalal, Vikram

    2014-10-01

    We report on measurement of dielectric constant, mid-gap defect density, Urbach energy of tail states in CH3NH3PbIxCl1-x perovskite solar cells. Midgap defect densities were estimated by measuring capacitance vs. frequency at different temperatures and show two peaks, one at 0.66 eV below the conduction band and one at 0.24 eV below the conduction band. The attempt to escape frequency is in the range of 2 × 1011/s. Quantum efficiency data indicate a bandgap of 1.58 eV. Urbach energies of valence and conduction band are estimated to be ˜16 and ˜18 meV. Measurement of saturation capacitance indicates that the relative dielectric constant is ˜18.

  10. Defect density and dielectric constant in perovskite solar cells

    SciTech Connect

    Samiee, Mehran; Konduri, Siva; Abbas, Hisham A.; Joshi, Pranav; Zhang, Liang; Dalal, Vikram; Ganapathy, Balaji; Kottokkaran, Ranjith; Noack, Max; Kitahara, Andrew

    2014-10-13

    We report on measurement of dielectric constant, mid-gap defect density, Urbach energy of tail states in CH{sub 3}NH{sub 3}PbI{sub x}Cl{sub 1−x} perovskite solar cells. Midgap defect densities were estimated by measuring capacitance vs. frequency at different temperatures and show two peaks, one at 0.66 eV below the conduction band and one at 0.24 eV below the conduction band. The attempt to escape frequency is in the range of 2 × 10{sup 11}/s. Quantum efficiency data indicate a bandgap of 1.58 eV. Urbach energies of valence and conduction band are estimated to be ∼16 and ∼18 meV. Measurement of saturation capacitance indicates that the relative dielectric constant is ∼18.

  11. Protein Dielectric Constants Determined from NMR Chemical Shift Perturbations

    PubMed Central

    Kukic, Predrag; Farrell, Damien; McIntosh, Lawrence P.; E., Bertrand García-Moreno; Jensen, Kristine Steen; Toleikis, Zigmantas; Teilum, Kaare; Nielsen, Jens Erik

    2015-01-01

    Understanding the connection between protein structure and function requires a quantitative understanding of electrostatic effects. Structure-based electrostatics calculations are essential for this purpose, but their use have been limited by a long-standing discussion on which value to use for the dielectric constants (εeff and εp) required in Coulombic models and Poisson-Boltzmann models. The currently used values for εeff and εp are essentially empirical parameters calibrated against thermodynamic properties that are indirect measurements of protein electric fields. We determine optimal values for εeff and εp by measuring protein electric fields in solution using direct detection of NMR chemical shift perturbations (CSPs). We measured CSPs in fourteen proteins to get a broad and general characterization of electric fields. Coulomb's law reproduces the measured CSPs optimally with a protein dielectric constant (εeff) from 3 to 13, with an optimal value across all proteins of 6.5. However, when the water-protein interface is treated with finite difference Poisson-Boltzmann calculations, the optimal protein dielectric constant (εp) rangedsfrom 2-5 with an optimum of 3. It is striking how similar this value is to the dielectric constant of 2-4 measured for protein powders, and how different it is from the εp of 6-20 used in models based on the Poisson-Boltzmann equation when calculating thermodynamic parameters. Because the value of εp = 3 is obtained by analysis of NMR chemical shift perturbations instead of thermodynamic parameters such as pKa values, it is likely to describe only the electric field and thus represent a more general, intrinsic, and transferable εp common to most folded proteins. PMID:24124752

  12. Negative Dielectric Constant Material Based on Ion Conducting Materials

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2014-01-01

    Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.

  13. Computing the dielectric constant of liquid water at constant dielectric displacement

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Sprik, Michiel

    2016-04-01

    The static dielectric constant of liquid water is computed using classical force field based molecular dynamics simulation at fixed electric displacement D . The method to constrain the electric displacement is the finite-temperature classical variant of the constant D method developed by Stengel, Spaldin, and Vanderbilt [Nat. Phys. 5, 304 (2009), 10.1038/nphys1185]. There is also a modification of this scheme imposing fixed values of the macroscopic field E . The method is applied to the popular SPC/E model of liquid water. We compare four different estimates of the dielectric constant, two obtained from fluctuations of the polarization at D =0 and E =0 and two from the variation of polarization with finite D and E . It is found that all four estimates agree when properly converged. The computational effort to achieve convergence varies, however, with constant D calculations being substantially more efficient. We attribute this difference to the much shorter relaxation time of longitudinal polarization compared to transverse polarization accelerating constant D calculations.

  14. Functionalised graphene sheets as effective high dielectric constant fillers

    PubMed Central

    2011-01-01

    A new functionalised graphene sheet (FGS) filled poly(dimethyl)siloxane insulator nanocomposite has been developed with high dielectric constant, making it well suited for applications in flexible electronics. The dielectric permittivity increased tenfold at 10 Hz and 2 wt.% FGS, while preserving low dielectric losses and good mechanical properties. The presence of functional groups on the graphene sheet surface improved the compatibility nanofiller/polymer at the interface, reducing the polarisation process. This study demonstrates that functionalised graphene sheets are ideal nanofillers for the development of new polymer composites with high dielectric constant values. PACS: 78.20.Ci, 72.80.Tm, 62.23.Kn PMID:21867505

  15. Role of dielectric constant in electrohydrodynamics of conducting fluids

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.

    1992-01-01

    Electrohydrodynamic (EHD) flows are driven by the interaction of an electric field with variations in electric conductivity or dielectric constant. In reported EHD experiments on the deformation of drops of immiscible dielectric fluids, the role of conductivity has tended to overshadow the role of dielectric constant. Often, large conductivity contrasts were convenient because the conductivities of the dielectric fluid were relatively uncertain. As a result, the observed effects were always qualitatively the same as if there had been no contrast in dielectric constant. Our early experiments studying the EHC deformations of cylindrical streams readily showed the conductivity effect but the dielectric constant effect was not discernible. We have modified our flow chamber and improved our method of observation and can now see an unequivocal dielectric constant effect which is in agreement with the prior theory. In this paper we first give a brief description of the physics of charge buildup at the interface of an immersed spherical drop or flowing cylindrical sample stream and then show how these charge distributions lead to interface distortions and accompanying viscous flows which constitute EHD. We next review theory and experiment describing the deformation of spherical drops. We show that in the reported drop deformation experiments, the contrast in dielectric constant was never sufficient to reverse the deformation due to the conductivity contrast. We review our work describing the deformation of a cylindrical stream of one fluid flowing in a parallel flow of another, and we compare the deformation equations with those for spherical drops. Finally, we show a definite experimental dielectric constant effect for cylindrical stream of aqueous polystyrene latex suspension. The dielectric constant varies with the frequency of the imposed electric field, and the associated EHD flow change is very apparent.

  16. Role of dielectric constant in electrohydrodynamics of conducting fluids

    NASA Astrophysics Data System (ADS)

    Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.

    Electrohydrodynamic (EHD) flows are driven by the interaction of an electric field with variations in electric conductivity or dielectric constant. In reported EHD experiments on the deformation of drops of immiscible dielectric fluids, the role of conductivity has tended to overshadow the role of dielectric constant. Often, large conductivity contrasts were convenient because the conductivities of the dielectric fluid were relatively uncertain. As a result, the observed effects were always qualitatively the same as if there had been no contrast in dielectric constant. Our early experiments studying the EHC deformations of cylindrical streams readily showed the conductivity effect but the dielectric constant effect was not discernible. We have modified our flow chamber and improved our method of observation and can now see an unequivocal dielectric constant effect which is in agreement with the prior theory. In this paper we first give a brief description of the physics of charge buildup at the interface of an immersed spherical drop or flowing cylindrical sample stream and then show how these charge distributions lead to interface distortions and accompanying viscous flows which constitute EHD. We next review theory and experiment describing the deformation of spherical drops. We show that in the reported drop deformation experiments, the contrast in dielectric constant was never sufficient to reverse the deformation due to the conductivity contrast. We review our work describing the deformation of a cylindrical stream of one fluid flowing in a parallel flow of another, and we compare the deformation equations with those for spherical drops. Finally, we show a definite experimental dielectric constant effect for cylindrical stream of aqueous polystyrene latex suspension. The dielectric constant varies with the frequency of the imposed electric field, and the associated EHD flow change is very apparent.

  17. Aluminum nanoparticle/acrylate copolymer nanocomposites for dielectric elastomers with high dielectric constants

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Zhang, Suki N.; Niu, Xiaofan; Liu, Chao; Pei, Qibing

    2014-03-01

    Dielectric elastomers are useful for large-strain actuation and energy harvesting. Their application has been limited by their low dielectric constants and consequently high driving voltage. Various fillers with high dielectric constants have been incorporated into different elastomer systems to improve the actuation strain, force output and energy density of the compliant actuators and generators. However, agglomeration may happen in these nanocomposites, resulting in a decrease of dielectric strength, an increase of leakage current, and in many instances the degree of enhancement of the dielectric constant. In this work, we investigated aluminum nanoparticles as nanofillers for acrylate copolymers. This metallic nanoparticle was chosen because the availability of free electrons could potentially provide an infinite value of dielectric constant as opposed to dielectric materials including ferroelectric nanocrystals. Moreover, aluminum nanoparticles have a self-passivated oxide shell effectively preventing the formation of conductive path. The surfaces of the aluminum nanoparticles were functionalized with methacrylate groups to assist the uniform dispersion in organic solutions and additionally enable copolymerization with acrylate copolymer matrix during bulk polymerization, and thus to suppress large range drifting of the nanoparticles. The resulting Al nanoparticle-acrylate copolymer nanocomposites were found to exhibit higher dielectric constant and increased stiffness. The leakage current under high electric fields were significantly lower than nanocomposites synthesized without proper nanoparticle surface modification. The dielectric strengths of the composites were comparable with the pristine polymers. In dielectric actuation evaluation, the actuation force output and energy specific work density were enhanced in the nanocomposites compared to the pristine copolymer.

  18. Dielectric constant well logging with current and voltage electrodes

    SciTech Connect

    Hoyer, W.A.; Kern, J.W.; Spann, M.M.

    1982-11-30

    This invention provides for methods and systems for measuring the dielectric constant of an earth formation. In a preferred embodiment, an alternating current is passed through a portion of the formation and a reference resistor in series with the portion. The capacitance and the dielectric constant of the portion may be determined from the phase difference between the voltage across the reference resistor and the voltage across the portion. This phase difference may be obtained by generating a voltage which is in phase with the voltage across the reference resistor, but which has the magnitude of the voltage across the portion. To obtain the phase difference by an alternate digital method, the voltage across the referenced resistor and the voltage across the portion are each transformed into a square wave signal. The two square wave signals are then compared to obtain the sign and the magnitude of the phase difference between the two square waves. In an alternate preferred embodiment, an alternating current is passed through the portion of the earth formation and through a capacitor and a resistor connected in series with the portion. The first dc signal is generated by filtering out the high frequency components from the product of the voltages across the capacitor and across the portion. A second dc signal is generated by filtering out the high frequency components from the product of the voltages across the referenced resistor and across the portion. The phase difference between the voltage across the portion and the current through the portion may be determined, from which the capacitance and the dielectric constant of the portion may then be calculated.

  19. An Improved Dielectric Constant Cell for Use in Student and Research Laboratories.

    ERIC Educational Resources Information Center

    Thompson, H. Bradford.; Walmsley, Judith A.

    1979-01-01

    Describes the latest stage in the design of an economical dielectric constant cell, tested in both instructional and research applications, that is suitable for student laboratories and for precision research measurements. (BT)

  20. Three dielectric constants and orientation order parameters in nematic mesophases

    NASA Astrophysics Data System (ADS)

    Yoon, Hyung Guen; Jeong, Seung Yeon; Kumar, Satyendra; Park, Min Sang; Park, Jung Ok; Srinivasarao, M.; Shin, Sung Tae

    2011-03-01

    Temperature dependence of the three components ɛ1 , ɛ2 , and ɛ3 of dielectric constant and orientation order parameters in the nematic phase of mesogens with rod, banana, and zero-order dendritic shape were measured using the in-plane and vertical switching geometries, and micro-Raman technique. Results on the well-known uniaxial (Nu) nematogens, E7 and 5CB, revealed two components ɛ1 = ~ɛ| | and ɛ2 = ~ɛ3 = ~ɛ⊥ , as expected. The three dielectric constants were different for two azo substituted (A131 and A103) and an oxadiazole based (ODBP-Ph-C12) bent core mesogens, and a Ge core tetrapode. In some cases, two of the components became the same indicating a loss of biaxiality at temperatures coinciding with the previously reported Nu to biaxial nematic transition. This interpretation is substantiated by micro-Raman measurements of the uniaxial and biaxial nematic order parameters. Supported by the US Department of Energy, Basic Energy Sciences grant ER46572 and by Samsung Electronics Corporation.

  1. Stability of aspartame in water: organic solvent mixtures with different dielectric constants.

    PubMed

    Sanyude, S; Locock, R A; Pagliaro, L A

    1991-07-01

    In order to examine the influence of solvent composition on the stability of aspartame (N-alpha-L-aspartyl-L-phenylalanine-1-methyl ester) in solution (5 mg/mL), the degradation of aspartame was carried out in water:methanol, water:ethanol, and water:glycerine mixtures with dielectric constant values of 45, 55, and 65, respectively. The rate of disappearance of aspartame was measured by a sensitive HPLC assay. The degradation rate of aspartame increased as the dielectric constant of the solvent mixture decreased in all three solvents systems. For example, at 60 degrees C, the degradation rate constants were 4.1, 5.9, and 8.4 x 10(-3) h-1 at dielectric constant of 65, 55, and 45, respectively. From these results, it can be concluded that the stability of aspartame in aqueous solutions cannot be enhanced by the replacement of water by solvents of lower dielectric constant. PMID:1941567

  2. Advanced concepts for transformers pressboard dielectric constant and mechanical strength

    SciTech Connect

    Not Available

    1982-03-01

    Of the numerous electrical considerations in a material, the value of the dielectric constant serves as an important criterion in designing proper insulation systems. The goal of this project was to find ways to reduce the dielectric constant of solid (fibrous) insulating materials. A literature search was made on cellulosic and synthetic fibers and also additives which offered the potential for dielectric constant reduction of the solid insulation. Sample board structures, were produced in the laboratory and tested for electrical, mechanical and chemical characteristics. Electrical tests determined the suitability of the material at transformer test and operating conditions. The mechanical tests established the physical characteristics of the modified board structures. Chemical tests checked the conductivity of the aqueous extract, acidity, and ash content. Further, compatibility with transformer oil and some aging tests were performed. An actual computer transformer design was made based on one of the modified board structures and the reduction in core steel and transformer losses were shown.

  3. Measuring sap flow, and other plant physiological conditions across a soil salinity gradient in the lower Colorado River at Cibola National Wildlife Refuge: Vegetation and soil physiology linkages with microwave dielectric constant

    NASA Astrophysics Data System (ADS)

    McDonald, K. C.; Lasne, Y.; Schroeder, R.; Morino, K.; Hultine, K. R.; Nagler, P. L.

    2009-12-01

    We used ground measurements to examine stand structure and evapotranspiration of Tamarix in the Cibola National Wildlife Refuge (CNWR) on the Lower Colorado River. Three Tamarix study sites were established at different distances from the Colorado River on a river terrace in the CNWR. The sites were chosen from aerial photographs to represent typical dense stands of Tamarix within the CNWR. The sites were representative of differing saline environments, with each having ground water with distinct salt concentration levels. Wells were established at the site to establish depth to water and the salinity concentration within the ground water. We monitored xylem sap flow within each of the three stands. In addition we measured leaf area index to characterize canopy structure. We compared ET, foliage density, depth to water, and salinity among the Tamarix sites to examine stand-level variability driven by the variations in salinity. We supplemented these collections with measurements to characterize soil and vegetation microwave dielectric properties and their relationship to physiologic parameters. The dielectric properties of a material describe the interaction of an electric field with the material. Previous field experiments have demonstrated that varying degrees of correlation exist between vegetation dielectric properties and tree canopy water status. Temporal variation of the dielectric constant of woody plant tissue may result from changes in water status (e.g., water content) and chemical composition, albeit to varying degrees of sensitivity. The varying amount of ground water salinity at CNWR offers a unique opportunity to examine the relationship between vegetation and soil dielectric constant as related to vegetation ecophysiology. A field portable vector network analyzer is used to measure the microwave dielectric spectrum of the soil and vegetation Combined with measurements of vegetation xylem sap flux and soil chemistry, these measurements allow

  4. Microwave dielectric constants of silicon, gallium arsenide, and quartz

    SciTech Connect

    Seeger, K.

    1988-06-01

    For a determination of the dielectric constants epsilon of semiconductors, a microwave transmission interference method has been applied. For the first time, a calculation is presented which yields the full interference spectrum, not only the position of the extremal points. A comparison of the theoretical and experimental spectra results in a higher precision than previously obtained. A metal evaporation of the sample faces which are in contact with the waveguide walls turns out to be very important. Relative dielectric constants of 11.6 for silicon, 12.8 for gallium arsenide, and 4.6 for crystalline quartz, all +- 0.05, have been obtained.

  5. Effect of vacuum-ultraviolet irradiation on the dielectric constant of low-k organosilicate dielectrics

    SciTech Connect

    Zheng, H.; Shohet, J. L.; Ryan, E. T.; Nishi, Y.

    2014-11-17

    Vacuum ultraviolet (VUV) irradiation is generated during plasma processing in semiconductor fabrications, while the effect of VUV irradiation on the dielectric constant (k value) of low-k materials is still an open question. To clarify this problem, VUV photons with a range of energies were exposed on low-k organosilicate dielectrics (SiCOH) samples at room temperature. Photon energies equal to or larger than 6.0 eV were found to decrease the k value of SiCOH films. VUV photons with lower energies do not have this effect. This shows the need for thermal heating in traditional ultraviolet (UV) curing since UV light sources do not have sufficient energy to change the dielectric constant of SiCOH and additional energy is required from thermal heating. In addition, 6.2 eV photon irradiation was found to be the most effective in decreasing the dielectric constant of low-k organosilicate films. Fourier Transform Infra-red Spectroscopy shows that these 6.2 eV VUV exposures removed organic porogens. This contributes to the decrease of the dielectric constant. This information provides the range of VUV photon energies that could decrease the dielectric constant of low-k materials most effectively.

  6. Graphene encapsulated rubber latex composites with high dielectric constant, low dielectric loss and low percolation threshold.

    PubMed

    Tian, Ming; Zhang, Jing; Zhang, Liqun; Liu, Suting; Zan, Xiaoqing; Nishi, Toshio; Ning, Nanying

    2014-09-15

    A dielectric composite with high dielectric constant, low dielectric loss and low percolation threshold was prepared by using the combined strategy of encapsulating of graphene oxide nanosheets (GONS) on carboxylated nitrile rubber (XNBR) latex particles and the in situ thermal reduction in GONS at a moderate temperature. The encapsulation of GONS on XNBR latex particles was mainly realized via the hydrogen bonding interactions between GONS and XNBR during latex mixing. A segregated graphene network was obtained at a low content of thermally reduced graphene (TRG), resulting in a low percolation threshold (0.25 vol.%). The dielectric constant at 100 Hz obviously increased from 23 for pure XNBR to 2211 and 5542 for the composite with 0.5 vol.% and 0.75 vol.% of TRG, respectively. The dielectric loss of the composites retained at a low value (less than 1.5). Meanwhile, the elastic modulus only slightly increased with the presence of 0.1-0.5 vol.% of TRG, keeping the good flexibility of the dielectric composites. This study provides a simple, low-cost and effective method to prepare high performance dielectric composites, facilitating the wide application of dielectric materials. PMID:24972295

  7. Dielectric constants of multiwall carbon nanotubes from direct current to microwave frequencies.

    PubMed

    Wang, Y C; Lue, J T; Pauw, K F

    2009-03-01

    A cylindrical rod constructed from a uniform mixture of multiwall carbon nanotubes and alumina powders dissolved in paraffin was inserted in the center of a radio frequency cavity. The real and imaginary dielectric constants of carbon tubes at various frequencies were measured, respectively, from the resonant frequencies and the quality factors, by a resistance-inductance-cacitance (RLC) meter and a microwave network analyzer. The dielectric rod benefits the protection of the sample from adsorbing moisture and preventing the rod from filling with air, thus making accurate measurments. A tunable probe specifically designed for the field pattern of a TM010 mode is delineated to improve the microwave coupling of the dielectric microwave resonator. This refined design is expected to facilitate the measurement yielding a significant manner. The real and imaginary parts of the dielectric constant of carbon nanotubes increase and decrease, respectively as frequencies increase satisfactorily in complying with the description from the free electron Drude model. PMID:19435033

  8. Thickness-dependent Dielectric Constant of Few-layer In2Se3 Nano-flakes

    NASA Astrophysics Data System (ADS)

    Wu, Di; Pak, Alexander; Liu, Yingnan; Wu, Xiaoyu; Ren, Yuan; Tsai, Yu-Hao; Lin, Min; Peng, Hailin; Hwang, Gyeong; Lai, Keji

    2015-03-01

    The dielectric constant or relative permittivity of active materials in electronic devices is a critical parameter for charging and screening effects. For layered two-dimensional (2D) materials, it is of great interest to understand how their dielectric constants depend on dimensionalities and the arrangement of crystal lattices. Here we present both experimental and theoretical investigations on the dielectric constant of few-layer In2Se3 nano-flakes grown on mica substrates by van der Waals epitaxy. A nondestructive microwave impedance microscope (MIM) is employed to simultaneously quantify the number of layers and local electrical and optical properties. The measured effective dielectric constant increases monotonically as a function of the thickness and saturates to the bulk value at around 6-8 quintuple layers. The same trend of layer-dependent dielectric constant is also revealed through a density functional theory approach. Our results of the dielectric response are expected to be significant for the applications of layered materials in nano-devices.

  9. Characterization of all the elastic, dielectric, and piezoelectric constants of uniaxially oriented poled PVDF films.

    PubMed

    Roh, Yongrae; Varadan, Vasundara V; Varadan, Vijay K

    2002-06-01

    Polyvinylidene fluoride (PVDF), a piezoelectric material, has many useful applications, for example, as sensors, transducers, and surface acoustic wave (SAW) devices. Models of performance of these devices would be useful engineering tools. However, the benefit of the model is only as accurate as the material properties used in the model. The purpose of this investigation is to measure the elastic, dielectric and piezoelectric properties over a frequency range, including the imaginary part (loss) of these properties. Measurements are difficult because poled material is available as thin films, and not all quantities can be measured in that form. All components of the elastic stiffness, dielectric tensor, and electromechanical coupling tensor are needed in the models. The material studied here is uniaxially oriented poled PVDF that has orthorhombic mm2 symmetry. Presented are the frequency dependence of all nine complex elastic constants, three complex dielectric constants, and five complex piezoelectric constants. The PVDF was produced at Raytheon Research Division, Lexington, MA. Measurements were made on thin films and on stacked, cubical samples. The elastic constants c44D and C55D, the dielectric constants epsilon11T and epsilon22T, as well as the piezoelectric constants g15 and g24 reported here have not been published before. The values were determined by ultrasonic measurements using an impedance analyzer and a least square data-fitting technique. PMID:12075977

  10. Novel Low Temperature Co-Fired Ceramic Material System Composed of Dielectrics with Different Dielectric Constants

    NASA Astrophysics Data System (ADS)

    Sakamoto, Sadaaki; Adachi, Hiroshige; Kaneko, Kazuhiro; Sugimoto, Yasutaka; Takada, Takahiro

    2013-09-01

    We found that the co-firing low temperature co-fired ceramic (LTCC) materials of different dielectric constants (ɛr) with Cu wiring is achievable using a novel, original design. It was confirmed that the dielectric characteristics of the dielectrics designed in this study are very suitable for the use of the dielectrics in electronic components such as filters mounted in high-speed radio communication equipment. The dielectric constants of the lower- and higher-dielectric-coefficient materials were 8.1 and 44.5, respectively, which are sufficiently effective for downsizing LTCC components. Observing the co-fired interface, it was confirmed that excellent co-firing conditions resulted in no mechanical defects such as delamination or cracks. On the basis of the results of wavelength dispersive X-ray spectrometry (WDX) and X-ray diffractometry (XRD), it was confirmed that co-firing with minimal interdiffusion was realized using the same glass for both dielectrics. It is concluded that the materials developed are good for co-firing in terms of the mechanical defects and interdiffusion that appear in them.

  11. Investigation of W-band dielectric constant of coals by free space method

    NASA Astrophysics Data System (ADS)

    Jia, Cheng-yan; Fan, Wei; Hu, Wei; Yang, Chuan-fa; Liu, Ling-yu; Chang, Tian-ying; Cui, Hong-liang

    2015-11-01

    The dielectric constant of Shandong anthracite coals of China was studied in the frequency range of 75~110 GHz (W-band), using the free space method for the first time. The measurement system is based on the Vector Network Analyzer of Agilent Technology and a VDI extension module with frequency range from 75 GHz to 110GHz. The dielectric constants of coals were calculated from the scattering parameters by implementing an algorithm. Correctness of the test results is verified by measuring the dielectric constant of air and timber. The dielectric constant of each selected coal with different moisture contents is investigated. It is found that both the real and imaginary parts of selected coals exhibit an apparent increasing trend with increasing water content of coals. The real part of coals with different water content varies from 2.61 to 4.97, and the imaginary part from 0.06 to 0.41 at the frequency of 110 GHz. We also obtained the diversification of the dielectric constant by increasing the frequency at the W-band. The real part of coals with different frequency varies from 3.85 to 3.91, and the imaginary part from 0.32 to 0.37 at W-band.

  12. Low Dielectric Constant Materials from Hollow Fibers and Plant Oil

    NASA Astrophysics Data System (ADS)

    Hong, Chang K.; Wool, Richard P.

    2003-03-01

    A new low dielectric constant (k) material suited to electronic materials applications was developed using hollow keratin fibers (HF) and chemically modified soyoil. High-speed microelectronics are facilitated by preventing the ``rubber necking", or slow-down of electrons on the printed wires through the use of low-k dielectrics. The unusual low k-value of the HF composite material derives both from the air (k = 1) in the hollow microcrystalline keratin fibers (k = 1.6), and the triglyceride molecules (k = 2.3), and is in the range of 1.7 to 2.7 at 100 MHz, depending on the HF fraction. These values are lower than that of the conventional silicon dioxide, (k = 3.8 to 4.2) or epoxy dielectric insulators. Also, the HF dielectric is lightweight (SG < 1) and rigid (Modulus > 2 GPa), with fracture toughness (1.0 MPa m^1/2) (and approximates the shape and feel of a silicon dioxide insulator. Multi-Chip-Module circuit printing results suggest that the low-cost composite made with HF (from avian sources) and plant oil (from soybean) has the potential to replace the dielectric in microchips and circuit boards in the ever-growing electronic materials field, in addition to many applications as a new lightweight composite material. Supported by EPA and DoE

  13. High strength, low dielectric constant fluorinated silica xerogel films

    NASA Astrophysics Data System (ADS)

    Gorman, B. P.; Orozco-Teran, Rosa A.; Roepsch, Jodi A.; Dong, Hanjiang; Reidy, Richard F.; Mueller, D. W.

    2001-12-01

    The mechanical, electrical, and microstructural properties of low-k fluorinated silica xerogels produced using a one step spin-on process are reported. Derived from a fluorinated silane monomer, these films are easily processed and exhibit very low dielectric constants (2.1 as processed and 2.3 after heat treating at 450 °C in air). Structural determination by Fourier transform infrared spectrophotometry indicates a fluorinated silica structure with shortened Si-O bonds; however, some of the fluorine is lost during annealing. Nanoindentation studies show high elastic moduli (12 GPa) and hardness (1 GPa). Microstructural analyses by transmission and scanning electron microscopy indicate an unusual morphology with highly linked features and pore sizes in the 20-30 nm range. We believe the low dielectric constants and robust mechanical properties are due to the unusual microstructure of these films.

  14. Electronic transport in two-dimensional high dielectric constant nanosystems.

    PubMed

    Ortuño, M; Somoza, A M; Vinokur, V M; Baturina, T I

    2015-01-01

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials. PMID:25860804

  15. Electronic transport in two-dimensional high dielectric constant nanosystems

    DOE PAGESBeta

    Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.

    2015-04-10

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screeningmore » length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.« less

  16. Electronic transport in two-dimensional high dielectric constant nanosystems

    SciTech Connect

    Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.

    2015-04-10

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.

  17. Chemical and mineral composition of dust and its effect on the dielectric constant

    SciTech Connect

    Sharif, S.

    1995-03-01

    Chemical analysis is carried out for dust sample collected from central Sudan and the dust chemical constituents are obtained. The mineral composition of dust are identified by the X-ray diffraction techniques. The mineral quantities are obtained by a technique developed based on the chemical analytical methods. Analyses show that Quartz is the dominant mineral while the SiO{sub 2} is the dominant oxide. A simple model is derived for the dust chemical constituents. This model is used with models for predicting the mixture dielectric constant to estimate the dust dielectric constant; the results of which are seen to be in a good agreement with the measured values. The effects of the different constituents on the dust dielectric constant are studied and results are given.

  18. Preparation of dielectric coating of variable dielectric constant by plasma polymerization

    NASA Technical Reports Server (NTRS)

    Hudis, M.; Wydeven, T. (Inventor)

    1979-01-01

    A plasma polymerization process for the deposition of a dielectric polymer coating on a substrate comprising disposing of the substrate in a closed reactor between two temperature controlled electrodes connected to a power supply is presented. A vacuum is maintained within the closed reactor, causing a monomer gas or gas mixture of a monomer and diluent to flow into the reactor, generating a plasma between the electrodes. The vacuum varies and controls the dielectric constant of the polymer coating being deposited by regulating the gas total and partial pressure, the electric field strength and frequency, and the current density.

  19. Light induced dielectric constant of Alumina doped lead silicate glass based on silica sands

    NASA Astrophysics Data System (ADS)

    Diantoro, Markus; Natalia, Desi Ayu; Mufti, Nandang; Hidayat, Arif

    2016-04-01

    Numerous studies on glass ceramic compounds have been conducted intensively. Two major problems to be solved are to simplify the fabrication process by reducing melting temperature as well as improving various properties for various fields of technological application. To control the dielectric constant, the researchers generally use a specific dopant. So far there is no comprehensive study to control the dielectric constant driven by both of dopant and light intensity. In this study it is used Al2O3 dopant to increase the light induced dielectric constant of the glass. The source of silica was taken from local silica sands of Bancar Tuban. The sands were firstly leached using hydrochloric acid to improve the purity of silica which was investigated by means of XRF. Fabricating the glass samples were performed by using melting-glass method. Silica powder was mixed with various ratio of SiO2:Na2CO3:PbO:Al2O3. Subsequently, a mixture of various Al2O3 doped lead silicate glasses were melted at 970°C and directy continued by annealed at 300°C. The samples were investigated by XRD, FTIR, SEM-EDX and measuring dielectric constant was done using dc-capacitance meter with various light intensities. The investigation result of XRD patterns showed that the crystal structures of the samples are amorphous state. The introduction of Al2O3 does not alter the crystal structure, but significantly change the structure of the functional glass bonding PbO-SiO2 which was shown by the FTIR spectra. It was noted that some new peak peaks were exist in the doped samples. Measuring result of dielectricity shows that the dielectric constant of glass increases with the addition of Al2O3. Increasing the light intensity gives rise to increase their dielectric constant in general. A detail observation of the dielectric seen that there are discontinuous step-like of dielectric. Most likely a specific quantization mechanism occurs when glass exposed under light.

  20. ac conductivity and dielectric constant of conductor-insulator composites

    NASA Astrophysics Data System (ADS)

    Murtanto, Tan Benny; Natori, Satoshi; Nakamura, Jun; Natori, Akiko

    2006-09-01

    We study the complex admittance (ac conductivity and dielectric constant) of conductor-insulator composite material, based on a two-dimensional square network consisting of randomly placed conductors and capacitors. We derived some exact analytical relations between the complex admittances of high and low frequencies and of complementary conductor concentrations. We calculate the complex admittance by applying a transfer-matrix method to a square network and study the dependence on both the frequency and the conductor concentration. The numerical results are compared with an effective-medium theory, and the range of applicability and limitation of the effective-medium theory are clarified.

  1. Thickness-Dependent Dielectric Constant of Few-Layer In₂Se₃ Nanoflakes.

    PubMed

    Wu, Di; Pak, Alexander J; Liu, Yingnan; Zhou, Yu; Wu, Xiaoyu; Zhu, Yihan; Lin, Min; Han, Yu; Ren, Yuan; Peng, Hailin; Tsai, Yu-Hao; Hwang, Gyeong S; Lai, Keji

    2015-12-01

    The dielectric constant or relative permittivity (ε(r)) of a dielectric material, which describes how the net electric field in the medium is reduced with respect to the external field, is a parameter of critical importance for charging and screening in electronic devices. Such a fundamental material property is intimately related to not only the polarizability of individual atoms but also the specific atomic arrangement in the crystal lattice. In this Letter, we present both experimental and theoretical investigations on the dielectric constant of few-layer In2Se3 nanoflakes grown on mica substrates by van der Waals epitaxy. A nondestructive microwave impedance microscope is employed to simultaneously quantify the number of layers and local electrical properties. The measured ε(r) increases monotonically as a function of the thickness and saturates to the bulk value at around 6-8 quintuple layers. The same trend of layer-dependent dielectric constant is also revealed by first-principles calculations. Our results of the dielectric response, being ubiquitously applicable to layered 2D semiconductors, are expected to be significant for this vibrant research field. PMID:26575786

  2. Development of new polymers with ultra-low dielectric constant using gaseous CO2

    NASA Astrophysics Data System (ADS)

    Keshtov, Mukhamed; Said-Galiev, Ernest; Khokhlov, Alexei

    2012-07-01

    Fluorphenylsubstituted Polyphenylenes with low dielectric constant have been synthesized and following exposition of their films in gaseous CO2 and then fast heating at the temperature of 250-280°C give rise to high dielectric properties with dielectric constant of 1.58.

  3. Characterization of the Dielectric Constant in the Trichoderma reesei Cel7B Active Site.

    PubMed

    Song, Xiangfei; Wang, Yefei; Zhang, Shujun; Yan, Shihai; Li, Tong; Yao, Lishan

    2015-07-27

    An attempt is made to evaluate the dielectric constant of the Trichoderma reesei Cel7B active site. Through kinetic measurements, the pKa value of the catalytic acid E201 is determined. Mutations (away from E201) with net charge changes are introduced to perturb the E201 pKa. It is shown that the mutation with a +1 charge change (including G225R, G230R, and A335R) decreases the pKa of E201, whereas the mutation with a -1 charge change (including Q149E, A222D, G225D, and G230D) increases the pKa. This effect is consistent with the electrostatic interaction between the changed charge and the E201 side chain. The fitting of the experimental data yields an apparent dielectric constant of 25-80. Molecular dynamics simulations with explicit water molecules indicate that the high solvent accessibility of the active site contributes largely to the high dielectric constant. ONIOM calculations show that high dielectric constant benefits the catalysis through decreasing the energy of the transition state relative to that of the enzyme substrate complex. PMID:26114648

  4. An Explanation of the Photoinduced Giant Dielectric Constant of Lead Halide Perovskite Solar Cells.

    PubMed

    Almond, Darryl P; Bowen, Chris R

    2015-05-01

    A photoinduced giant dielectric constant of ~10(6) has been found in impedance spectroscopy measurements of lead halide perovskite solar cells. We report similar effects in measurements of a porous lead zirconate titanate (PZT) sample saturated with water. The principal effect of the illumination of the solar cell and of the introduction of water into the pore volume of the PZT sample is a significant increase in conductivity and dielectric loss. This is shown to exhibit low frequency power law dispersion. Application of the Kramers-Kronig relationships show the large measured values of permittivity to be related to the power law changes in conductivity and dielectric loss. The power law dispersions in the electrical responses are consistent with an electrical network model of microstructure. It is concluded that the high apparent values of permittivity are features of the microstructural networks and not fundamental effects in the two perovskite materials. PMID:26263342

  5. Nanocomposites of TiO₂/cyanoethylated cellulose with ultra high dielectric constants.

    PubMed

    Madusanka, Nadeesh; Shivareddy, Sai G; Hiralal, Pritesh; Eddleston, Mark D; Choi, Youngjin; Oliver, Rachel A; Amaratunga, Gehan A J

    2016-05-13

    A novel dielectric nanocomposite containing a high permittivity polymer, cyanoethylated cellulose (CRS) and TiO2 nanoparticles was successfully prepared with different weight percentages (10%, 20% and 30%) of TiO2. The intermolecular interactions and morphology within the polymer nanocomposites were analysed. TiO2/CRS nanofilms on SiO2/Si wafers were used to form metal-insulator-metal type capacitors. Capacitances and loss factors in the frequency range of 1 kHz-1 MHz were measured. At 1 kHz CRS-TiO2 nanocomposites exhibited ultra high dielectric constants of 118, 176 and 207 for nanocomposites with 10%, 20% and 30% weight of TiO2 respectively, significantly higher than reported values of pure CRS (21), TiO2 (41) and other dielectric polymer-TiO2 nanocomposite films. Furthermore, all three CRS-TiO2 nanocomposites show a loss factor <0.3 at 1 kHz and low leakage current densities (10(-6)-10(-7) A cm(-2)). Leakage was studied using conductive atomic force microscopy and it was observed that the leakage is associated with TiO2 nanoparticles embedded in the CRS polymer matrix. A new class of ultra high dielectric constant hybrids using nanoscale inorganic dielectrics dispersed in a high permittivity polymer suitable for energy management applications is reported. PMID:27040504

  6. Nanocomposites of TiO2/cyanoethylated cellulose with ultra high dielectric constants

    NASA Astrophysics Data System (ADS)

    Madusanka, Nadeesh; Shivareddy, Sai G.; Hiralal, Pritesh; Eddleston, Mark D.; Choi, Youngjin; Oliver, Rachel A.; Amaratunga, Gehan A. J.

    2016-05-01

    A novel dielectric nanocomposite containing a high permittivity polymer, cyanoethylated cellulose (CRS) and TiO2 nanoparticles was successfully prepared with different weight percentages (10%, 20% and 30%) of TiO2. The intermolecular interactions and morphology within the polymer nanocomposites were analysed. TiO2/CRS nanofilms on SiO2/Si wafers were used to form metal–insulator–metal type capacitors. Capacitances and loss factors in the frequency range of 1 kHz–1 MHz were measured. At 1 kHz CRS-TiO2 nanocomposites exhibited ultra high dielectric constants of 118, 176 and 207 for nanocomposites with 10%, 20% and 30% weight of TiO2 respectively, significantly higher than reported values of pure CRS (21), TiO2 (41) and other dielectric polymer-TiO2 nanocomposite films. Furthermore, all three CRS-TiO2 nanocomposites show a loss factor <0.3 at 1 kHz and low leakage current densities (10‑6–10‑7 A cm‑2). Leakage was studied using conductive atomic force microscopy and it was observed that the leakage is associated with TiO2 nanoparticles embedded in the CRS polymer matrix. A new class of ultra high dielectric constant hybrids using nanoscale inorganic dielectrics dispersed in a high permittivity polymer suitable for energy management applications is reported.

  7. How does static stretching decrease the dielectric constant of VHB 4910 elastomer?

    NASA Astrophysics Data System (ADS)

    Vu-Cong, T.; Nguyen-Thi, N.; Jean-Mistral, C.; Sylvestre, A.

    2014-03-01

    Subject to a voltage, dielectric elastomers deform by the effect of Maxwell stress which is depended directly on the dielectric constant of the material. The combination of large strain, soft elastic response and good dielectric properties has established VHB 4910 elastomer as the most used material for dielectric elastomer actuators. However, the effect of stretch on the dielectric constant for this elastomer is much debated topic while controversy results are demonstrated in the literature. The dielectric constant of this material is studied and demonstrated that it decreases slightly or hugely among the stretch but any pertinent response and any physic explications are validated by the scientific community. In this paper, we presented a detail study about dielectric behavior of VHB 4910 elastomer versus a broadband of stretch and temperature. We found that the dielectric constant of this material depends strongly on the stretch following a polynomial law. Among all the explanations of stretch dependence of the dielectric constant of VHB 4910 in the literature: the crystallization, the change of glass transition temperature, the decrease of dipole orientation, the electrostriction effect under stress; and based on our experimental result, we conclude that the decrease of dipole orientation seems the main reason to the drop of dielectric constant of VHB 4910 elastomer versus the stretch. We proposed also an accurate model describing the dielectric constant of this material for a large range of stretch and temperature.

  8. Complex dielectric constants for selected near-millimeter-wave materials at 245 GHz

    NASA Technical Reports Server (NTRS)

    Dutta, J. M.; Jones, C. R.; Dave, H.

    1986-01-01

    A double-beam instrument developed in this laboratory has been used to measure the complex dielectric constant of selected materials at 245 GHz. It is reported here the results for crystalline quartz, fused silica (Spectrosil WF and Dynasil 4000), beryllia (iso-pressed), boron nitride (hot-pressed), and a nickel ferrite (Trans-Tech 2-111). Results are compared with the data obtained by other researchers.

  9. Sub-THz complex dielectric constants of smectite clay thin samples with Na+/Ca++ ions

    NASA Astrophysics Data System (ADS)

    Rahman, Rezwanur; McCarty, Douglas K.; Prasad, Manika

    2015-09-01

    We implement a technique to characterize the electromagnetic properties at frequencies 100 to 165 GHz (3 cm-1 to 4.95 cm-1) of oriented smectite samples using an open cavity resonator connected to a submillimeter wave VNA (Vector Network Analyzer). We measured dielectric constants perpendicular to the bedding plane on oriented Na+ ion and Ca++ ion stabilized smectite samples deposited on a glass slide at ambient laboratory conditions (room temperature and room light). The clay layer is much thinner (˜30 μm) than the glass substrate (˜2.18 mm). The real part of dielectric constant, ɛre, is essentially constant over this frequency range but is larger in Na+ ion than in Ca++ ion infused clay. The total electrical conductivity (associated with the imaginary part of dielectric constant, ɛim) of both samples increases monotonically at lower frequencies (<110 GHz) but shows rapid increase for Na+ ions in the regime > 110 GHz. The dispersion of the samples display a dependence on the ionic strength in the clay interlayers, i.e., ζ potential in the Stern layers.

  10. Structure and performance of dielectric films based on self-assembled nanocrystals with a high dielectric constant

    SciTech Connect

    Huang, LM; Liu, SY; Van Tassell, BJ; Liu, XH; Byro, A; Zhang, HN; Leland, ES; Akins, DL; Steingart, DA; Li, J; O'Brien, S

    2013-09-24

    Self-assembled films built from nanoparticles with a high dielectric constant are attractive as a foundation for new dielectric media with increased efficiency and range of operation, due to the ability to exploit nanofabrication techniques and emergent electrical properties originating from the nanoscale. However, because the building block is a discrete one-dimensional unit, it becomes a challenge to capture potential enhancements in dielectric performance in two or three dimensions, frequently due to surface effects or the presence of discontinuities. This is a recurring theme in nanoparticle film technology when applied to the realm of thin film semiconductor and device electronics. We present the use of chemically synthesized. (Ba; Sr)TiO3 nanocrystals, and a novel deposition-polymerization technique, as a means to fabricate the dielectric layer. The effective dielectric constant of the film is tunable according to nanoparticle size, and effective film dielectric constants of up to 34 are enabled. Wide area and multilayer dielectrics of up to 8 cm(2) and 190 nF are reported, for which the building block is an 8 nm nanocrystal. We describe models for assessing dielectric performance, and distinct methods for improving the dielectric constant of a nanocrystal thin film. The approach relies on evaporatively driven assembly of perovskite nanocrystals with uniform size distributions in a tunable 7-30 nm size range, coupled with the use of low molecular weight monomer/polymer precursor chemistry that can infiltrate the porous nanocrystal thin film network post assembly. The intercrystal void space (low k dielectric volume fraction) is minimized, while simultaneously promoting intercrystal connectivity and maximizing volume fraction of the high k dielectric component. Furfuryl alcohol, which has good affinity to the surface of. (Ba; Sr ) TiO3 nanocrystals and miscibility with a range of solvents, is demonstrated

  11. Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization

    NASA Astrophysics Data System (ADS)

    Grill, Alfred; Neumayer, Deborah A.

    2003-11-01

    Carbon doped oxide dielectrics comprised of Si, C, O, and H (SiCOH) have been prepared by plasma enhanced chemical vapor deposition (PECVD) from mixtures of tetramethylcyclotetrasiloxane (TMCTS) and an organic precursor. The films have been analyzed by determining their elemental composition and by Fourier transform infrared spectroscopy with deconvolution of the absorption peaks. The analysis has shown that PECVD of TMCTS produces a highly crosslinked networked SiCOH film. Dissociation of TMCTS appears to dominate the deposition chemistry as evidenced by the multitude of bonding environments and formation of linear chains and branches. Extensive crosslinking of TMCTS rings occurs through Si-Si, Si-CH2-Si, Si-O-Si, and Si-CH2-O-Si moieties. The films deposited from mixtures of TMCTS and organic precursor incorporate hydrocarbon fragments into the films. This incorporation occurs most probably through the reaction of the organic precursor and the Si-H bonds of TMCTS. Annealing the SiCOH films deposited from TMCTS and organic precursor results in a large loss of carbon and hydrogen from the films resulting from the fragmentation and loss of the incorporated organic component. The deconvolution of the Si-O-Si asymmetric stretching band of the annealed films shows the existence of a larger fraction of a cage structure and a correspondingly smaller fraction of a networked (highly crosslinked) structure in the SiCOH films deposited from mixtures of TMCTS with organic precursor relative to the films deposited from TMCTS only. The evolution of the volatile hydrocarbon fragments during annealing results in the formation of nanopores and subsequent reduction of the dielectric constants of the films to extreme low-k values.

  12. Dielectric constant of fluids and fluid mixtures at criticality.

    PubMed

    Losada-Pérez, Patricia; Pérez-Sánchez, Germán; Cerdeiriña, Claudio A; Thoen, Jan

    2010-04-01

    The behavior of the dielectric constant epsilon of pure fluids and binary mixtures near liquid-gas and liquid-liquid critical points is studied within the concept of complete scaling of asymmetric fluid-fluid criticality. While mixing of the electric field into the scaling fields plays a role, pressure mixing is crucial as the asymptotic behavior of the coexistence-curve diameter in the epsilon-T plane is concerned. Specifically, it is found that the diameters, characterized by a |T-Tc|1-alpha singularity in the previous scaling formulation [J. V. Sengers, D. Bedeaux, P. Mazur, and S. C. Greer, Physica A 104, 573 (1980)], gain a more dominant |T-Tc|2beta term, whose existence is shown to be supported by literature experimental data. The widely known |T-Tc|1-alpha singularity of epsilon along the critical isopleth in the one-phase region is found to provide information on the effect of electric fields on the liquid-liquid critical temperature: from experimental data it is inferred that Tc usually decreases as the magnitude of the electric field is enhanced. Furthermore, the behavior of mixtures along an isothermal path of approach to criticality is also analyzed: theory explains why the observed anomalies are remarkably higher than those associated to the usual isobaric path. PMID:20481691

  13. High Apparent Dielectric Constant Inside a Protein Reflects Structural Reorganization Coupled to the Ionization of an Internal Asp

    PubMed Central

    Karp, Daniel A.; Gittis, Apostolos G.; Stahley, Mary R.; Fitch, Carolyn A.; Stites, Wesley E.; García-Moreno E., Bertrand

    2007-01-01

    The dielectric properties of proteins are poorly understood and difficult to describe quantitatively. This limits the accuracy of methods for structure-based calculation of electrostatic energies and pKa values. The pKa values of many internal groups report apparent protein dielectric constants of 10 or higher. These values are substantially higher than the dielectric constants of 2–4 measured experimentally with dry proteins. The structural origins of these high apparent dielectric constants are not well understood. Here we report on structural and equilibrium thermodynamic studies of the effects of pH on the V66D variant of staphylococcal nuclease. In a crystal structure of this protein the neutral side chain of Asp-66 is buried in the hydrophobic core of the protein and hydrated by internal water molecules. Asp-66 titrates with a pKa value near 9. A decrease in the far UV-CD signal was observed, concomitant with ionization of this aspartic acid, and consistent with the loss of 1.5 turns of α-helix. These data suggest that the protein dielectric constant needed to reproduce the pKa value of Asp-66 with continuum electrostatics calculations is high because the dielectric constant has to capture, implicitly, the energetic consequences of the structural reorganization that are not treated explicitly in continuum calculations with static structures. PMID:17172297

  14. The High Dielectric Constant of Staphylococcal Nuclease is Encoded in its Structural Architecture

    PubMed Central

    Goh, Garrett B.; Bertrand, García-Moreno E.; Brooks, Charles L.

    2011-01-01

    The pKa values of Lys-66, Glu-66 and Asp-66 buried in the interior of the staphylococcal nuclease Δ+PHS variant were reported to be shifted by as much as 5 pKa units from their normal values. Reproducing the pKa of these buried ionizable residues using continuum electrostatic calculations required the use of a high protein dielectric constant of 10 or higher. The apparent high dielectric constant has been rationalized as a consequence of a local structural reorganization or increased fluctuations in the microenvironment of the mutation site We have calculated the dielectric constant of Δ+PHS and the Lys-66, Asp-66 and Glu-66 mutants from first principles using the Kirkwood-Fröhlich equation, and discovered that staphylococcal nuclease has a naturally high dielectric constant ranging from 20 to 30. This high dielectric constant does not change significantly with the mutation of residue 66 or with the ionization of the mutated residues. Calculation of the spatial dependence of the dielectric constant for the microenvironment of residue-66 produces a value of about 10, which matches well with the apparent dielectric constant needed to reproduce pKa values from continuum electrostatic calculations. Our results suggest an alternative explanation that the high dielectric constant of staphylococcal nuclease is a property resulting from the intrinsic backbone fluctuations originating from its structural architecture. PMID:22085022

  15. Dielectric property measurement of zirconia fibers at high temperature

    SciTech Connect

    Vogt, G.J.; Tinga, W.R.; Plovnick, R.H.

    1995-12-31

    Using a self-heating, electronically tunable microwave dielectrometer, the complex dielectric constant of zirconia-based filaments was measured at 915 MHz from 350{degrees} to 1100{degrees}C. When exposed to a low temperature environment, this fibrous material cools rapidly within several seconds due to a large surface area to volume ratio. Such rapid sample cooling necessitates the use of a self-heating technique to measure the complex dielectric constant at temperatures up to 1100{degrees}C. Sample temperature was measured with optical fiber thermometry. The effect of sample temperature measurement on data accuracy is discussed.

  16. Use of the finite-element method for a dielectric-constant gas-thermometry experiment

    NASA Astrophysics Data System (ADS)

    Zandt, T.; Gaiser, C.; Fellmuth, B.; Haft, N.; Thiele-Krivoi, B.; Kuhn, A.

    2013-09-01

    The finite-element method is a well-established computational methodology for the numerical treatment of partial differential equations. It is primarily used for solving problems in applied engineering and science. In previous publications, we have shown that the method is suitable to solve problems in temperature metrology, for instance to predict temperature profiles and thermal equilibration processes in complex measurement setups. In this paper, the method is used for a primary thermometry experiment, namely dielectric-constant gas thermometry. Within the framework of an international project directed to the new definition of the base unit kelvin, measurements were performed at the triple point of water in order to determine the Boltzmann constant k. The finite-element method was used for the data evaluation in different ways: calculation of the effective compressibility of the measuring capacitor by describing the deformation of its electrodes under the influence of the pressure of the gas, the dielectric constant of which has to be determined; calculation of resonance frequencies for the determination of the elastic constants of the electrode material by resonant ultrasound spectroscopy; electrostatic simulations for calculating capacitance values; estimation of uncertainty components, which allowed to draw conclusions concerning the future reduction of uncertainty components.

  17. Large change in dielectric constant of CaCu3Ti4O12 under violet laser

    NASA Astrophysics Data System (ADS)

    Masingboon, C.; Thongbai, P.; King, P. D. C.; Maensiri, S.; Meevasana, W.

    2013-03-01

    This work reports the influence of light illumination on the dielectric constant of CaCu3Ti4O12 (CCTO) polycrystals which exhibit giant dielectric constant. When the CCTO samples were exposed to 405-nm laser light, the enhancement in capacitance as high as 22% was observed for the first time, suggesting application of light-sensitive capacitance devices. To understand this change better microscopically, we also performed electronic-structure measurements using photoemission spectroscopy, and measured the electrical conductivity of the CCTO samples under different conditions of light exposure and oxygen partial pressure. All these measurements suggest that this large change is driven by oxygen vacancy induced by the irradiation.

  18. Computing the Kirkwood g-Factor by Combining Constant Maxwell Electric Field and Electric Displacement Simulations: Application to the Dielectric Constant of Liquid Water.

    PubMed

    Zhang, Chao; Hutter, Jürg; Sprik, Michiel

    2016-07-21

    In his classic 1939 paper, Kirkwood linked the macroscopic dielectric constant of polar liquids to the local orientational order as measured by the g-factor (later named after him) and suggested that the corresponding dielectric constant at short-range is effectively equal to the macroscopic value just after "a distance of molecular magnitude" [ Kirkwood, J. Chem. Phys., 1939, 7, 911 ]. Here, we show a simple approach to extract the short-ranged Kirkwood g-factor from molecular dynamics (MD) simulation by superposing the outcomes of constant electric field E and constant electric displacement D simulations [ Zhang and Sprik, Phys. Rev. B: Condens. Matter Mater. Phys., 2016, 93, 144201 ]. Rather than from the notoriously slow fluctuations of the dipole moment of the full MD cell, the dielectric constant can now be estimated from dipole fluctuations at short-range, accelerating the convergence. Exploiting this feature, we computed the bulk dielectric constant of liquid water modeled in the generalized gradient approximation (PBE) to density functional theory and found it to be at least 40% larger than the experimental value. PMID:27352038

  19. High apparent dielectric constants in the interior of a protein reflect water penetration.

    PubMed Central

    Dwyer, J J; Gittis, A G; Karp, D A; Lattman, E E; Spencer, D S; Stites, W E; García-Moreno E, B

    2000-01-01

    A glutamic acid was buried in the hydrophobic core of staphylococcal nuclease by replacement of Val-66. Its pK(a) was measured with equilibrium thermodynamic methods. It was 4.3 units higher than the pK(a) of Glu in water. This increase was comparable to the DeltapK(a) of 4.9 units measured previously for a lysine buried at the same location. According to the Born formalism these DeltapK(a) are energetically equivalent to the transfer of a charged group from water to a medium of dielectric constant of 12. In contrast, the static dielectric constants of dry protein powders range from 2 to 4. In the crystallographic structure of the V66E mutant, a chain of water molecules was seen that hydrates the buried Glu-66 and links it with bulk solvent. The buried water molecules have never previously been detected in >20 structures of nuclease. The structure and the measured energetics constitute compelling and unprecedented experimental evidence that solvent penetration can contribute significantly to the high apparent polarizability inside proteins. To improve structure-based calculations of electrostatic effects with continuum methods, it will be necessary to learn to account quantitatively for the contributions by solvent penetration to dielectric effects in the protein interior. PMID:10969021

  20. Low-temperature 1 /f noise in microwave dielectric constant of amorphous dielectrics in Josephson qubits

    NASA Astrophysics Data System (ADS)

    Burin, Alexander L.; Matityahu, Shlomi; Schechter, Moshe

    2015-11-01

    The analytical solution for the low-temperature 1 /f noise in the microwave dielectric constant of amorphous films at frequency ν0˜5 GHz due to tunneling two-level systems (TLSs) is derived within the standard tunneling model including the weak dipolar or elastic TLS-TLS interactions. The 1 /f frequency dependence is caused by TLS spectral diffusion characterized by the width growing logarithmically with time. Temperature and field dependencies are predicted for the noise spectral density in typical glasses with universal TLSs. The satisfactory interpretation of the recent experiment by J. Burnett et al. [Nat. Commun. 5, 4119 (2014), 10.1038/ncomms5119] in Pt-capped Nb superconducting resonators is attained by assuming a smaller density of TLSs compared to ordinary glasses, which is consistent with the very high internal quality factor in those samples.

  1. Dielectric measurements of selected ceramics at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Dahiya, J. N.; Templeton, C. K.

    1994-01-01

    Dielectric measurements of strontium titanate and lead titanate zirconate ceramics are conducted at microwave frequencies using a cylindrical resonant cavity in the TE(sub 011) mode. The perturbations of the electric field are recorded in terms of the frequency shift and Q-changes of the cavity signal. Slater's perturbation equations are used to calculate e' and e" of the dielectric constant as a function of temperature and frequency.

  2. A dielectric resonator method of measuring dielectric properties of low loss materials in the microwave region

    NASA Astrophysics Data System (ADS)

    Sheen, Jyh

    2008-05-01

    A technique for the measurement of dielectric properties of low loss and homogeneously isotropic media in the microwave region is studied. The measuring structure is a resonator made up of a cylindrical dielectric rod and conducting plates. The dielectric constants and loss tangents are computed from the resonant frequencies, structure dimensions and unloaded Qs of the TE01δ mode. A simple field model is introduced to analyze this resonator structure. Unlike other simple models, this model does not have the defect of low measurement accuracy of dielectric properties. Important factors affecting the dielectric properties measurements are introduced. Error sources for measurements are also discussed. The measurement accuracy is justified by comparing the results with those of other techniques. In addition, various methods for calculating the power factor and conducting loss and for measuring the conductivity of the conducting plates are discussed. The accuracies of certain of these methods have not previously been studied, but are given in this paper. The swept frequency capability was also studied. It was found that dielectric properties in microwave frequencies could be measured within a frequency range of 3 GHz.

  3. Photoinduced Electron Transfer Elicits a Change in the Static Dielectric Constant of a de Novo Designed Protein.

    PubMed

    Polizzi, Nicholas F; Eibling, Matthew J; Perez-Aguilar, Jose Manuel; Rawson, Jeff; Lanci, Christopher J; Fry, H Christopher; Beratan, David N; Saven, Jeffery G; Therien, Michael J

    2016-02-24

    We provide a direct measure of the change in effective dielectric constant (εS) within a protein matrix after a photoinduced electron transfer (ET) reaction. A linked donor-bridge-acceptor molecule, PZn-Ph-NDI, consisting of a (porphinato)Zn donor (PZn), a phenyl bridge (Ph), and a naphthalene diimide acceptor (NDI), is shown to be a "meter" to indicate protein dielectric environment. We calibrated PZn-Ph-NDI ET dynamics as a function of solvent dielectric, and computationally de novo designed a protein SCPZnI3 to bind PZn-Ph-NDI in its interior. Mapping the protein ET dynamics onto the calibrated ET catalogue shows that SCPZnI3 undergoes a switch in the effective dielectric constant following photoinduced ET, from εS ≈ 8 to εS ≈ 3. PMID:26840013

  4. Dielectric constant enhancement of epoxy thermosets via formation of polyelectrolyte nanophases.

    PubMed

    Cong, Houluo; Li, Jingang; Li, Lei; Zheng, Sixun

    2014-12-18

    Poly(ethylene oxide)-block-poly(sodium p-styrenesulfonate) (PEO-b-PSSNa) diblock copolymer was synthesized and then incorporated into epoxy to obtain the nanostructured epoxy thermosets containing polyelectrolyte nanophases. This PEO-b-PSSNa diblock copolymer was synthesized via the radical polymerization of p-styrenesulfonate mediated with 4-cyano-4-(thiobenzoylthio)valeric ester-terminated poly(ethylene oxide). The formation of polyelectrolyte (i.e., PSSNa) nanophases in epoxy followed a self-assembly mechanism. The precursors of epoxy acted as the selective solvent of the diblock copolymer, and thus, the self-assembled nanostructures were formed. The self-organized nanophases were fixed through the subsequent curing reaction. By means of transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS), the morphologies of the nanostructured epoxy thermosets containing PSSNa nanophases were investigated. In the glassy state, the epoxy matrixes were significantly reinforced by the spherical PSSNa nanodomains, as evidenced by dynamic mechanical analysis. The measurement of dielectric properties showed that, with the incorporation of PSSNa nanophases, the dielectric constants of the epoxy thermoset were significantly increased. Compared to the control epoxy, the dielectric loss of the nanostructured thermosets still remained at quite a low level, although the values of dielectric loss were slightly increased with inclusion of PSSNa nanophases. PMID:25482332

  5. Critical behaviors of the conductivity and dielectric constant of Ti3SiC2/Al2O3 hybrids

    NASA Astrophysics Data System (ADS)

    Wu, Rui-Fen; Pan, Wei; Shi, Sui-Lin; Han, Ruo-Bing

    2007-09-01

    Ti3SiC2/Al2O3 hybrids were prepared by a spark plasma sintering process. The effective dc conductivity of the hybrids was measured at room temperature, which agrees with the percolation theory and follows the power law around the percolation threshold. The ac conductivity and dielectric constants of the hybrids were also characterized and follow the power law when the concentration of the conductive phase is close to the percolation threshold; meanwhile, the dielectric constant could increase over three orders of magnitude compared with Al2O3.

  6. Structure and performance of dielectric films based on self-assembled nanocrystals with a high dielectric constant

    NASA Astrophysics Data System (ADS)

    Huang, Limin; Liu, Shuangyi; Van Tassell, Barry J.; Liu, Xiaohua; Byro, Andrew; Zhang, Henan; Leland, Eli S.; Akins, Daniel L.; Steingart, Daniel A.; Li, Jackie; O'Brien, Stephen

    2013-10-01

    Self-assembled films built from nanoparticles with a high dielectric constant are attractive as a foundation for new dielectric media with increased efficiency and range of operation, due to the ability to exploit nanofabrication techniques and emergent electrical properties originating from the nanoscale. However, because the building block is a discrete one-dimensional unit, it becomes a challenge to capture potential enhancements in dielectric performance in two or three dimensions, frequently due to surface effects or the presence of discontinuities. This is a recurring theme in nanoparticle film technology when applied to the realm of thin film semiconductor and device electronics. We present the use of chemically synthesized (Ba,Sr)TiO3 nanocrystals, and a novel deposition-polymerization technique, as a means to fabricate the dielectric layer. The effective dielectric constant of the film is tunable according to nanoparticle size, and effective film dielectric constants of up to 34 are enabled. Wide area and multilayer dielectrics of up to 8 cm2 and 190 nF are reported, for which the building block is an 8 nm nanocrystal. We describe models for assessing dielectric performance, and distinct methods for improving the dielectric constant of a nanocrystal thin film. The approach relies on evaporatively driven assembly of perovskite nanocrystals with uniform size distributions in a tunable 7-30 nm size range, coupled with the use of low molecular weight monomer/polymer precursor chemistry that can infiltrate the porous nanocrystal thin film network post assembly. The intercrystal void space (low k dielectric volume fraction) is minimized, while simultaneously promoting intercrystal connectivity and maximizing volume fraction of the high k dielectric component. Furfuryl alcohol, which has good affinity to the surface of (Ba,Sr)TiO3 nanocrystals and miscibility with a range of solvents, is demonstrated to be ideal for the production of nanocomposites. The

  7. Thickness and electric-field-dependent polarizability and dielectric constant in phosphorene

    NASA Astrophysics Data System (ADS)

    Kumar, Piyush; Bhadoria, B. S.; Kumar, Sanjay; Bhowmick, Somnath; Chauhan, Yogesh Singh; Agarwal, Amit

    2016-05-01

    Based on extensive first-principles calculations, we explore the thickness-dependent effective dielectric constant and slab polarizability of few-layer black phosphorene. We find that the dielectric constant in ultrathin phosphorene is thickness-dependent and it can be further tuned by applying an out-of-plane electric field. The decreasing dielectric constant with reducing number of layers of phosphorene is a direct consequence of the lower permittivity of the outer layers and the increasing surface-to-volume ratio. We also show that the slab polarizability depends linearly on the number of layers, implying a nearly constant polarizability per phosphorus atom. Our calculation of the thickness- and electric-field-dependent dielectric properties will be useful for designing and interpreting transport experiments in gated phosphorene devices, wherever electrostatic effects such as capacitance and charge screening are important.

  8. The effect of diamic acid additives on the dielectric constant of polyimides

    NASA Technical Reports Server (NTRS)

    Stoakley, Diane M.; St. Clair, Anne K.

    1988-01-01

    The effect of six selected diamic acids additives (including 2,2-prime bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride-aniline (An); 4,4-prime-oxydiphthalic anhydride-An, 3,3-prime diaminodiphenyl sulfone-phthalic anhydride (PA); 4,4-prime-oxydianiline-PA; 2,2-bis 4(4-aminophenoxy)phenyl hexafluoropropane-PA; and 2,2-bis 4(3-aminophenoxy)phenyl hexafluoropropane-PA) on the dielectric constants of low-dielectric-constant polyimide resins was evaluated. It was found that the effect of the incorporation of the diamic acids on reducing the dielectric constant of polyimides may be limited as the dielectric constant of the base resin itself becomes very low. The additives were found to lower the resin's values of glass transition temperature, with no effect on thermooxidative stability.

  9. High dielectric constant nickel-doped titanium oxide films prepared by liquid-phase deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Yen, Chih-Feng; Fan, Cho-Han

    2014-09-01

    The electrical characteristics of nickel-doped titanium oxide films prepared by liquid-phase deposition on p-type (100) silicon substrate were investigated. The aqueous solutions of ammonium hexafluorotitanate and boric acid were used as precursors for the growth of titanium oxide films and the dielectric constant is 29. The dielectric constant can be improved to 94 by nickel doping at the thermal annealing at 700 °C in nitrous oxide.

  10. Development of low dielectric constant alumina-based ceramics for microelectronic substrates

    SciTech Connect

    Wu, S. J.

    1993-05-01

    The performance of high speed computers depends not only on IC chips, but also on the signal propagation speed between these chips. The signal propagation delay in a computer is determined by the dielectric constant of the substrate material to which the IC chips are attached. In this study, a ceramic substrate with a low dielectric constant (k {approx} 5.0) has been developed. When compared with the traditional alumina substrate (k {approx} 10.0), the new material corresponds to a 37% decrease in the signal propagation delay. Glass hollow spheres are used to introduce porosity (k = 1.0) to the alumina matrix in a controlled manner. A surface coating technique via heterogeneous nucleation in aqueous solution has been used to improve the high temperature stability of these spheres. After sintering at 1,400 C, isolated spherical pores are uniformly distributed in the almost fully dense alumina matrix; negligible amounts of matrix defects can be seen. All pores are isolated from each other. Detailed analyses of the chemical composition find that the sintered sample consists of {alpha}-alumina, mullite and residual glass. Mullite is the chemical reaction product of alumina and the glass spheres. Residual glass exists because current firing conditions do not complete the mullitization reaction. The dielectric constant of the sintered sample is measured and then compared with the predicted value using Maxwell`s model. Mechanical strength is evaluated by a four-point bending test. Although the flexural strength decreases exponentially with porosity, samples with 34% porosity (k {approx} 5.0) still maintain adequate mechanical strength for the proper operation of a microelectronic substrate.

  11. Thermally driven sign switch of static dielectric constant of VO2 thin film

    NASA Astrophysics Data System (ADS)

    Kana Kana, J. B.; Vignaud, G.; Gibaud, A.; Maaza, M.

    2016-04-01

    Smart multifunctional materials exhibiting phase transition and tunable optical and/electrical properties provide a new direction towards engineering switchable devices. Specifically, the reversible, tunable and sign switch dielectric constants via external temperature stimuli observed in vanadium dioxide (VO2) make it a candidate of choice for tunable and switchable technologies devices. Here we report new aspect of the metal-insulator transition (MIT) through the sign switch of the static dielectric constant εS of pure VO2. As it is shown, the static dielectric constant showed an abrupt change from positive at T < 70 °C to negative at T > 70 °C. εS > 0 confirms the insulating phase where charges are localized while εS < 0 confirms the metallic phase of VO2 where charges are delocalized. We report for the first time the tunability of the dielectric constant from a negative sign for the static dielectric constant of VO2 thin film rarely found in real physical systems. We also demonstrate the tunability and switchability of the real and imaginary part of the dielectric constant (ε) via external temperature stimuli. More specifically, the real (ε) and Imaginary (ε) showed an abrupt thermal hysteresis which clearly confirms the phase transition.

  12. Low dielectric constant a-SiOC:H films as copper diffusion barrier

    NASA Astrophysics Data System (ADS)

    Koh, Yee Wee; Loh, Kian Ping; Rong, Liu; Wee, A. T. S.; Huang, Liu; Sudijono, J.

    2003-01-01

    A low-k dielectric barrier based on silicon oxycarbide for copper damascene processes has been developed in this work. The optimal process conditions that allow the deposition of silicon oxycarbide films with a dielectric constant of 3.74 and copper diffusion depth of 290 Å after thermal stress at 400 °C for 3 h has been identified. Copper diffusion depth is defined as the copper and dielectric interfacial region with three-order magnitude reduction in copper concentration. A multilayered structure consisting of black diamond/SiOC/Cu/TaN/Si is fabricated. 3-methyl silane and oxygen in varying concentration is used for the deposition of SiOC using plasma enhanced chemical vapor deposition. The composition of the films is studied by Fourier transform infrared spectroscopy. Dielectric constant and dielectric breakdown of the films are also evaluated. Secondary ion mass spectrometry is employed to investigate the copper diffusion property of the films. The electronic component of the dielectric constant has been found to be most significant in affecting the overall dielectric constant in SiOC films.

  13. Evaluation of the dielectric constant for RF shimming at high field MRI

    NASA Astrophysics Data System (ADS)

    Jayatilake, Mohan; Storrs, Judd; Chu, Wen-Jang; Lee, Jing-Huei

    2010-10-01

    Optimal image quality for Magnetic Resonance Imaging (MRI) at high fields requires a homogeneous RF (B1) field; however, the dielectric properties of the human brain result in B1 field inhomogeneities and signal loss at the periphery of the head. These result from constructive and destructive RF interactions of complex wave behaviour, which become worse with increasing magnetic field strength. Placement of a shim object with high-dielectric constant adjacent to the body has been proposed as a method for reducing B1 inhomogeneity by altering wave propagation within the volume of interest. Selecting the appropriate permittivity and quantity of material for the shim is essential. Whereas previous work has determined the dielectric properties of the shim empirically, this work introduces an improved theoretical framework for determining the requisite dielectric constant of the passive shim material directly by increasing the axial or minimizing the radial propagation constant.

  14. An investigation of the relationship between tree water potential and dielectric constant

    NASA Technical Reports Server (NTRS)

    Mcdonald, Kyle C.; Zimmermann, Reiner; Way, Jobea; Oren, Ram

    1992-01-01

    An experiment that has been performed to verify the relationship between the dielectric constant of several tree species and their respective water potentials is described. The water potential, xylem flow and dielectric properties of five tree species were continuously monitored while simultaneously manipulating canopy transpiration and water status. An analysis of the data recorded during these manipulations is presented. Results of this analysis demonstrate a clear coincidence of change in dielectric constant and water status. The implication of this relationship for the utilization of remotely sensed data to study canopy water relations is explored. Preliminary backscatter modeling results demonstrate that the changes in dielectric constant that occur as a result of changes in water status are significant enough to be observable with microwave radar.

  15. Image brightening in samples of high dielectric constant

    NASA Astrophysics Data System (ADS)

    Tropp, James

    2004-03-01

    An analytic solution is given for the electromagnetic problem of a lossy dielectric cylinder of infinite length, irradiated by a circularly polarized radiofrequency (RF) magnetic field; the NMR-active components of the field inside the cylinder are projected out by transforming the RF Hamiltonian to the rotating frame and retaining only those terms independent of time; it is noted that the resulting cartesian field components are required to be real. The squared magnitude of the NMR-active fields are then used to calculate the gradient-recalled images of the cylinder, for small tip angles of the magnetization; and the result is shown to predict almost quantitatively the intensity patterns of experimental proton images at 3.0 and 4.0 T, in a cylindrical phantom of radius 9.25 cm, filled with 0.05 M aqueous NaCl. In particular, the artifactual brightening at the center of the recorded image is convincingly reproduced in a simulation, whose underlying model excludes wave propagation along the direction of the cylinder axis. Formation of the artifact is explained in terms of the focussing of the RF magnetic field at the center of the cylinder, as illustrated by contour plots showing the time evolution of the rotating flux. An extended electromagnetic model—having the dielectric cylinder enclosed in a long, shielded volume resonator (e.g., of bird cage type)—is then sketched. The mathematical details appear in Appendix A; and the simulated images are shown to be virtually indistinguishable from those of the simpler original model. The theory of the Q, or quality factor, of the dielectric cylinder—considered itself as a resonant object—is developed for the enclosed cylinder model, where flux containment by the shield permits an unambiguous treatment of both the stored energy and the radiative losses. This is extended to treat the Q of a lossy dielectric sphere without shielding. Further plots of flux contours are given for the sphere, excited at 208 MHz with a

  16. Image brightening in samples of high dielectric constant.

    PubMed

    Tropp, James

    2004-03-01

    An analytic solution is given for the electromagnetic problem of a lossy dielectric cylinder of infinite length, irradiated by a circularly polarized radiofrequency (RF) magnetic field; the NMR-active components of the field inside the cylinder are projected out by transforming the RF Hamiltonian to the rotating frame and retaining only those terms independent of time; it is noted that the resulting cartesian field components are required to be real. The squared magnitude of the NMR-active fields are then used to calculate the gradient-recalled images of the cylinder, for small tip angles of the magnetization; and the result is shown to predict almost quantitatively the intensity patterns of experimental proton images at 3.0 and 4.0T, in a cylindrical phantom of radius 9.25cm, filled with 0.05M aqueous NaCl. In particular, the artifactual brightening at the center of the recorded image is convincingly reproduced in a simulation, whose underlying model excludes wave propagation along the direction of the cylinder axis. Formation of the artifact is explained in terms of the focussing of the RF magnetic field at the center of the cylinder, as illustrated by contour plots showing the time evolution of the rotating flux. An extended electromagnetic model--having the dielectric cylinder enclosed in a long, shielded volume resonator (e.g., of bird cage type)--is then sketched. The mathematical details appear in Appendix A; and the simulated images are shown to be virtually indistinguishable from those of the simpler original model. The theory of the Q, or quality factor, of the dielectric cylinder--considered itself as a resonant object--is developed for the enclosed cylinder model, where flux containment by the shield permits an unambiguous treatment of both the stored energy and the radiative losses. This is extended to treat the Q of a lossy dielectric sphere without shielding. Further plots of flux contours are given for the sphere, excited at 208 MHz with a uniform

  17. Microwave measurement and modeling of the dielectric properties of vegetation

    NASA Astrophysics Data System (ADS)

    Shrestha, Bijay Lal

    Some of the important applications of microwaves in the industrial, scientific and medical sectors include processing and treatment of various materials, and determining their physical properties. The dielectric properties of the materials of interest are paramount irrespective of the applications, hence, a wide range of materials covering food products, building materials, ores and fuels, and biological materials have been investigated for their dielectric properties. However, very few studies have been conducted towards the measurement of dielectric properties of green vegetations, including commercially important plant crops such as alfalfa. Because of its high nutritional value, there is a huge demand for this plant and its processed products in national and international markets, and an investigation into the possibility of applying microwaves to improve both the net yield and quality of the crop can be beneficial. Therefore, a dielectric measurement system based upon the probe reflection technique has been set up to measure dielectric properties of green plants over a frequency range from 300 MHz to 18 GHz, moisture contents from 12%, wet basis to 79%, wet basis, and temperatures from -15°C to 30°C. Dielectric properties of chopped alfalfa were measured with this system over frequency range of 300 MHz to 18 GHz, moisture content from 11.5%, wet basis, to 73%, wet basis, and density over the range from 139 kg m-3 to 716 kg m-3 at 23°C. The system accuracy was found to be +/-6% and +/-10% in measuring the dielectric constant and loss factor respectively. Empirical, semi empirical and theoretical models that require only moisture content and operating frequency were determined to represent the dielectric properties of both leaves and stems of alfalfa at 22°C. The empirical models fitted the measured dielectric data extremely well. The root mean square error (RMSE) and the coefficient of determination (r2) for dielectric constant and loss factor of leaves

  18. Microwave dielectric constant of liquid hydrocarbons: Application to the depth estimation of Titan's lakes

    NASA Astrophysics Data System (ADS)

    Paillou, Philippe; Mitchell, Karl; Wall, Stephen; Ruffié, Gilles; Wood, Charles; Lorenz, Ralph; Stofan, Ellen; Lunine, Jonathan; Lopes, Rosaly; Encrenaz, Pierre

    2008-03-01

    Cassini RADAR reveals the surface of Titan since flyby Ta acquired on October 2004. The RADAR instrument discovered volcanic structures, craters, dunes, channels, lakes and seas. In particular, flyby T16 realized in July 2006 imaged tens of radar-dark features close to Titan's north pole. They are interpreted as lakes filled with liquid hydrocarbons - mainly methane, a key material in the geologic and climatic history of Titan. In order to perform quantitative analysis and modeling of the radar response of Titan's lakes, the dielectric constant of liquid hydrocarbons is a crucial parameter, in particular to estimate the radar wave attenuation. We present here first measurements of the dielectric constant of LNG (Liquefied Natural Gas), mainly composed of methane, at Ku-band (10-13 GHz): we obtained a value $\\varepsilon$ = 1.75 - 0.002j. This value is used to model the radar backscattering of lakes observed during T16 flyby. Using a two-layer scattering model, we derive a relationship that is used to estimate a minimum depth for Titan's lakes. The proposed relationship is also coherent with the observation that the larger and then the deeper lakes are also the darker in radar images.

  19. Integration of high-dielectric constant Ta2O5 oxides on diamond for power devices

    NASA Astrophysics Data System (ADS)

    Cheng, Shaoheng; Sang, Liwen; Liao, Meiyong; Liu, Jiangwei; Imura, Masataka; Li, Hongdong; Koide, Yasuo

    2012-12-01

    The authors report on the direct integration of high-dielectric constant (high-k) Ta2O5 films on p-type single crystal diamond for high-power electronic devices. Crystallized hexagonal phase δ-Ta2O5 film is achieved on diamond by annealing the amorphous Ta2O5 film deposited by a sputter-deposition technique. The electrical properties of the Ta2O5 thin films are investigated by fabricating metal-insulator-semiconductor (MIS) diodes. The leakage current of the MIS diode is as low as 10-8 A/cm2 for the as-deposited amorphous Ta2O5 film and 10-2 A/cm2 for the crystallized film, which is 108 and 102 times lower than that of the Schottky diode at a forward bias of -3 V, respectively. The dielectric constant of the amorphous Ta2O5 films is measured to be 16 and increases to 29 after annealing at 800 °C. Different current leakage mechanisms and charge trapping behaviors are proposed for the amorphous and crystallized Ta2O5 thin films.

  20. Supercritical carbon dioxide extraction of porogens for the preparation of ultralow-dielectric-constant films

    SciTech Connect

    Toney, Michael F

    2003-06-20

    Supercritical carbon dioxide (SCCO2) extraction of a CO{sub 2}-soluble poly(propylene glycol) (PPG) porogen from poly(methylsilsesquioxane) (PMSSQ) cured to temperatures adequate to initiate matrix condensation, but still below the decomposition temperature of the porogen is demonstrated to produce nanoporous, ultralow dielectric constant thin films. Both closed and open cell porous structures were prepared simply by varying the porogen load in the organic/inorganic hybrid films. The porogen loads investigated in the present work ranged from 25-55 wt.%. Structural characterization of the samples conducted using transmission electron microscope (TEM), small angle X-ray scattering (SAXS) and Fourier transform infrared spectroscopy (FTIR) confirms the successful extraction of the porogen from the PMSSQ matrix at relatively low temperatures ({le} 200 C). The standard thermal decomposition process is performed at much higher temperatures (typically in the range of 400 C-450 C). The values of dielectric constants and refractive indices measured are in good agreement with the structural properties of these samples.

  1. Solving constant-coefficient differential equations with dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Weixuan; Qu, Che; Zhang, Xiangdong

    2016-07-01

    Recently, the concept of metamaterial analog computing has been proposed (Silva et al 2014 Science 343 160–3). Some mathematical operations such as spatial differentiation, integration, and convolution, have been performed by using designed metamaterial blocks. Motivated by this work, we propose a practical approach based on dielectric metamaterial to solve differential equations. The ordinary differential equation can be solved accurately by the correctly designed metamaterial system. The numerical simulations using well-established numerical routines have been performed to successfully verify all theoretical analyses.

  2. Polymethyl methacrylate (PMMA)-bismuth ferrite (BFO) nanocomposite: low loss and high dielectric constant materials with perceptible magnetic properties.

    PubMed

    Tamboli, Mohaseen S; Palei, Prakash K; Patil, Santosh S; Kulkarni, Milind V; Maldar, Noormahmad N; Kale, Bharat B

    2014-09-21

    Herein, poly(methyl methacrylate)-bismuth ferrite (PMMA-BFO) nanocomposites were successfully prepared by an in situ polymerization method for the first time. Initially, the as prepared bismuth ferrite (BFO) nanoparticles were dispersed in the monomer, (methyl methacrylate) by sonication. Benzoyl peroxide was used to initiate the polymerization reaction in ethyl acetate medium. The nanocomposite films were subjected to X-ray diffraction analysis (XRD), (1)H NMR, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), infrared spectroscopy (IR), dielectric and magnetic characterizations. The dielectric measurement of the nanocomposites was investigated at a frequency range of 10 Hz to 1 MHz. It was found that the nanocomposites not only showed a significantly increased value of the dielectric constant with an increase in the loading percentage of BFO as compared to pure PMMA, but also exhibited low dielectric loss values over a wide range of frequencies. The values of the dielectric constant and dielectric loss of the PMMA-BFO5 (5% BFO loading) sample at 1 kHz frequency was found be ~14 and 0.037. The variation of the ferromagnetic response of the nanocomposite was consistent with the varying volume percentage of the nanoparticles. The remnant magnetization (Mr) and saturation magnetization (Ms) values of the composites were found to be enhanced by increasing the loading percentage of BFO. The value of Ms for PMMA-BFO5 was found to be ~6 emu g(-1). The prima facie observations suggest that the nanocomposite is a potential candidate for application in high dielectric constant capacitors. Significantly, based on its magnetic properties the composite will also be useful for use in hard disk components. PMID:25050918

  3. A Conductivity and Dielectric Constant of Systems Near the Percolation Threshold.

    NASA Astrophysics Data System (ADS)

    Song, Yi.

    The ac conductivity and dielectric constant of macroscopically inhomogeneous systems near the percolation threshold vary as a power of the frequency, with (sigma) (PROPORTIONAL) (omega)('x), and (epsilon) (PROPORTIONAL) (omega)('-y). The two critical exponents x and y should satisfy a general scaling relation x + y = 1, if (sigma) and (epsilon) both obey scaling forms that have a single characteristic time scale. Two different percolation systems were studied experi- mentally in order to find the critical exponents x and y. The ac con- ductance and capacitance of these two systems were measured in the frequency range from 10 Hz to 13 MHz. The ac conductivity exponent x and ac dielectric constant exponent y from a three dimensional randomly mixed carbon-teflon system were found to be 0.86 (+OR-) 0.06 and 0.12 (+OR-) 0.04, respectively. The same critical exponents x and y were obtained on a planar chromium film system. Their values were x = 0.98 (+OR-) 0.09 and y = 0.08 (+OR-) 0.04. In order to complete the study, the dc conductivity exponent t and dc dielectric constant exponent s of these systems were also measured. They were in good agreement with well-established values. Two important mechanisms are responsible for the power law dependence of the ac conductivity and dielectric constant of systems near the percolation threshold. They are the interaction between percolation clusters and the fractal nature of these clus- ters. Two independent models based on these two mechanisms separately, namely the intercluster polarization (IP) model and the anomalous diffusion (AD) model, both predict power law behavior for (sigma) and (epsilon). The IP model predicts x (DBLTURN) 0.72 and y (DBLTURN) 0.28 for three dimensional (3D) systems and x = y = 0.5 for two dimensional (2D) systems; while the AD model predicts x (DBLTURN) 0.58 and y (DBLTURN) 0.42 for 3D systems and x (DBLTURN) 0.33 and y (DBLTURN) 0.67 for 2D systems. The experimental results of the ac conductivity

  4. Techniques for Measuring the Dielectric Properties of Agricultural Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectrics and dielectric properties of materials are defined generally, and methods for measuring dielectric properties of agricultural products are described for several frequency ranges from audio frequencies through microwave frequencies. These include measurement with impedance and admittance...

  5. Increase of dielectric constant in PVDF by incorporating La1.8Sr0.2NiO4 into its matrix

    NASA Astrophysics Data System (ADS)

    Kumar, Rajnish; Goswami, Ashwin M.; Kar, Manoranjan

    2016-05-01

    To obtain the material with high dielectric constant and high dielectric strength for the technological applications, nanocomposite of Lanthanum Strontium Nickelete (La1.8Sr0.2NiO4) as nanofiller and polyvinylidene fluoride (PVDF) as polymer matrix has been prepared. The different nanofiler weight concentration varies from 2-8 weight percent. X-ray diffraction technique confirms the phase formation of nanocomposite. Differential scanning calorimeter (DSC) has been employed to study the percentage of crystallinity and Impedance measurement has been carried out to study the dielectric constant. DSC analysis shows decreasing trend of crystallinity whereas impedance analysis gives increasing dielectric constant with increasing La1.8Sr0.2NiO4 concentration in the nanocomposite. Also, these materials can be used as insulator in the transformer as the strength and dielectric behavior of present composite meets the technological requirements.

  6. Observation of giant dielectric constant in CdCu 3Ti 4O 12 ceramics

    NASA Astrophysics Data System (ADS)

    Zuo, Rongqing; Feng, Lixin; Yan, Yueyue; Chen, Bin; Cao, Guanghan

    2006-04-01

    Although CdCu 3Ti 4O 12 is isostructural to CaCu 3Ti 4O 12, the room temperature low-frequency dielectric constant of the former compound was reported to be ˜400, only 1/25 of that of the latter material [M.A. Subramanian, et al., J. Solid State Chem. 151 (2000) 323]. In this communication, we report that the dielectric constant of CdCu 3Ti 4O 12 can be remarkably increased by elevating the sintering temperature. The room temperature dielectric constant at 100 kHz achieves 9000, almost as much as that of CaCu 3Ti 4O 12, for the sample sintered at 1283 K. The appearance of giant dielectric constant in CdCu 3Ti 4O 12 is explained in terms of internal barrier layer capacitance (IBLC) effect with the subgrain boundary as the barrier. Our result supplies an approach in searching for new giant-dielectric-constant materials in the CaCu 3Ti 4O 12 family.

  7. Syndiotactic Polystyrene/Hybrid Silica Spheres of POSS Siloxane Composites Exhibiting Ultralow Dielectric Constant.

    PubMed

    Joseph, Angel Mary; Nagendra, Baku; Surendran, K P; Gowd, E Bhoje

    2015-09-01

    Homogeneously dispersed hybrid silica/syndiotactic polystyrene composites were investigated for low-κ dielectric applications. The composites were prepared by a solution blending method, and their microstructures were analyzed by SEM, TEM, and AFM. Crystallization and phase transformation behavior of sPS were investigated using differential scanning calorimetry and wide-angle X-ray diffraction. These composites exhibited improved thermal stability and reduced thermal expansion coefficients. Promising dielectric properties were observed for the composites in the microwave frequency region with a dielectric constant (κ = 1.95) and loss (tan δ = 10(-4)) at 5 GHz. PMID:26287385

  8. Introduction of effective dielectric constant to the Poisson-Nernst-Planck model

    NASA Astrophysics Data System (ADS)

    Sawada, Atsushi

    2016-05-01

    The Poisson-Nernst-Planck (PNP) model has been widely used for analyzing impedance or dielectric spectra observed for dilute electrolytic cells. In the analysis, the behavior of mobile ions in the cell under an external electric field has been explained by a conductive nature regardless of ionic concentrations. However, if the cell has parallel-plate blocking electrodes, the mobile ions may also play a role as a dielectric medium in the cell by the effect of space-charge polarization when the ionic concentration is sufficiently low. Thus the mobile ions confined between the blocking electrodes can have conductive and dielectric natures simultaneously, and their intensities are affected by the ionic concentration and the adsorption of solvent molecules on the electrodes. The balance of the conductive and dielectric natures is quantitatively determined by introducing an effective dielectric constant to the PNP model in the data analysis. The generalized PNP model with the effective dielectric constant successfully explains the anomalous frequency-dependent dielectric behaviors brought about by the mobile ions in dilute electrolytic cells, for which the conventional PNP model fails in interpretation.

  9. Elastomeric composites with high dielectric constant for use in Maxwell stress actuators

    NASA Astrophysics Data System (ADS)

    Szabo, Jeffrey P.; Hiltz, Johnathan A.; Cameron, Colin G.; Underhill, Royale S.; Massey, Jason; White, Brian; Leidner, Jacob

    2003-07-01

    Electroactive polymer actuators that utilize the Maxwell stress effect have generated considerable interest in recent years for use in applications such as artificial muscles, sensors, and parasitic energy capture. In order to maximize performance, the dielectric layer in Maxwell stress actuators should ideally have a high dielectric constant and high dielectric breakdown strength. In this study, the effect of high dielectric constant fillers on the electrical and mechanical properties of thin elastomeric films was examined. The fillers studied included the inorganic compounds titanium dioxide (TiO2), barium titanate (BaTiO3), and lead magnesium niobate-lead titanate (Pb(Mg1/3Nb2/3)O3-PbTiO). A high dielectric constant filler based on a polymeric conjugated ligand-metal complex, poly(copper phthalocyanine), was also synthesized and studied. Maxwell stress actuators fabricated with BaTiO3 dispersed in a silicone elastomer matrix were evaluated and compared with unfilled systems. A model was presented which relates filler volume fraction to actuation stress, strain, and elastic energy density at fields below dielectric breakdown. The model and experimental results suggest that for the case of strong filler particle-elastomer matrix interaction, actuation strain decreases with increasing filler content.

  10. Experimental study of the complex resistivity and dielectric constant of chrome-contaminated soil

    NASA Astrophysics Data System (ADS)

    Liu, Haorui; Yang, Heli; Yi, Fengyan

    2016-08-01

    Heavy metals such as arsenic and chromium often contaminate soils near industrialized areas. Soil samples, made with different water content and chromate pollutant concentrations, are often needed to test soil quality. Because complex resistivity and complex dielectric characteristics of these samples need to be measured, the relationship between these measurement results and chromium concentration as well as water content was studied. Based on soil sample observations, the amplitude of the sample complex resistivity decreased with an increase of contamination concentration and water content. The phase of complex resistivity takes on a tendency of initially decrease, and then increase with the increasing of contamination concentration and water content. For a soil sample with the same resistivity, the higher the amplitude of complex resistivity, the lower the water content and the higher the contamination concentration. The real and imaginary parts of the complex dielectric constant increase with an increase in contamination concentration and water content. Note that resistivity and complex resistivity methods are necessary to adequately evaluate pollution at various sites.

  11. Reduction of methylene green by EDTA: a relation between dielectric constant of medium and activated state.

    PubMed

    Qamar, Noshab; Azmat, Rafia; Naz, Raheela

    2013-01-01

    Kinetics of an alkaline reduction of the methylene green with ethylenediaminetetraaceticacid (EDTA) as a role of dielectric constant of the medium with anecdotal ionic strength in a diverse solvent system (aqueous mixtures of methanol) (10-30%) was studied by measuring the specific rate constant of the reaction spectrophotometrically at λ (max) = 660nm. An effort has been made to give an elucidation of vital role of dielectric constant of the medium captivating into reflection of single sphere and double sphere complex in reaction assortment. This investigation leads to disclose that single sphere complex of the dye and reductant was found to be the most suitable complex existed in a varied organic solvent. The deviation of the theoretical values from experimental results for single sphere and double sphere complex model in the presence of an alkali and nitrate ions were justified through HPLC analysis. HPLC analysis recommended that a considerable amount of the dye degrades in the existence of nitrate ion and alkali and additional peaks which may be of by-product were obtained. This leads to confirm the non identical values of single sphere and double sphere model in the occurrence of nitrate and an alkali. Rate of deletion of color showed a linear liaison with respect to water content below 30% and temperature between 20-40(o)C whereas an increase in the concentration of organic solvent showed the inhibition of dye decoloration at given optimum condition. Therefore study was restricted up to 30% of methanol binary mixtures. A mechanism of reduction of dye has been proposed based on verdict. PMID:23261728

  12. Dielectric Constant of Titan's South Polar Region from Cassini Radio Science Bistatic Scattering Observations

    NASA Astrophysics Data System (ADS)

    Marouf, E.; Rappaport, N.; French, R.; Simpson, R.; Kliore, A.; McGhee, C.; Schinder, P.; Anabtawi, A.

    2008-12-01

    Four out of six Radio Science bistatic scattering (bistatic-radar) observations of Titan's surface completed during the Cassini nominal mission yielded detectable quasi-specular 3.6 cm-λ (X-band) surface echoes, making Titan the most distant solar system object for which bistatic echoes have been successfully detected. Right circularly polarized sinusoidal signal was transmitted by Cassini and both the right and left circularly polarized (RCP and LCP) surface reflected components were observed at the 70-m stations of NASA Deep Space Network. Cassini was maneuvered continuously to track the region of Titan's surface where mirror-like (quasi-specular) reflected signals may be observed. The experiments were designed for incidence angles θ close to the Brewster, or polarization, angle of likely surface compositions. Careful measurement of the system noise temperature allowed determination of the absolute power in each polarized echo component and hence their ratio. The polarization ratio, the known observation geometry, and Fresnel reflection theory were then used to determine the dielectric constant ɛ. Three near-equatorial (~ 5 to 15° S) observations on flyby T14 inbound and outbound and on flyby T34 inbound yielded weak but clearly detectable echoes. The echoes were intermittent along the ground track, indicating mostly rough terrain occasionally interrupted by patches of relatively flat areas. For the two observations on T14, polarization ratio measurements for two localized but widely separated surface regions (~ 15° S, ~ 14 and 140° W) conducted at angles θ ~ 56° and 64°, close to the Brewster angle for ices, imply ɛ ~ 1.6 for both regions, suggesting liquid hydrocarbons although alternative interpretations are possible (Marouf et al., 2006 Fall AGU, P11A- 07). In sharp contrast, a single high latitude (~81-86° S, ~ 45-155° W) observation on T27 inbound yielded much stronger surface echoes that lasted for almost the full duration of the experiment

  13. Direct correlation between free volume and dielectric constant in a fluorine-containing polyimide blend

    NASA Astrophysics Data System (ADS)

    Ramani, R.; Ramachandran, R.; Amarendra, G.; Alam, S.

    2015-06-01

    The dielectric constant of fluorinated polyimides and their blends is known to decrease with increase in free volume due to decrease in the number of polarizable groups per unit volume. Interestingly, we report here a polyimide which when blended with a fluoro- polymer showed a positive deviation of dielectric constant with free volume. In our experiment, we have used a blend of poly(ether imide) and poly(vinylidene fluorine-co-hexafluoropropylene) and the interaction between them was studied using FTIR, XRD, TGA and SEM. The blend was investigated by PALS, DB and DEA. Surprisingly, with the increase in the free volume content in this blend, the dielectric constant also increases. This change is attributed to additional space available for the polarizable groups to orient themselves to the applied electric field.

  14. Boron Nitride Nanotube Mat as a Low- k Dielectric Material with Relative Dielectric Constant Ranging from 1.0 to 1.1

    NASA Astrophysics Data System (ADS)

    Hong, Xinghua; Wang, Daojun; Chung, D. D. L.

    2016-01-01

    This paper reports that a boron nitride nanotube (BNNT) mat containing air and 1.4 vol.% BNNTs is a low- k dielectric material for microelectronic packaging, exhibiting relative dielectric constant of 1.0 to 1.1 (50 Hz to 2 MHz) and elastic modulus of 10 MPa. The mat is prepared by compacting BNNTs at 5.8 kPa. This paper also presents measurements of the dielectric properties of BNNTs (mostly multiwalled). The relative dielectric constant of the BNNT solid in the mat decreases with increasing frequency, with attractively low values ranging from 3.0 to 6.2; the alternating-current (AC) electrical conductivity increases with increasing frequency, with attractively low values ranging from 10-10 S/m to 10-6 S/m and an approximately linear relationship between log conductivity and log frequency. The specific contact capacitance of the interface between BNNTs and the electrical contact decreases with increasing frequency, with attractively high values ranging from 1.6 μF/m2 to 2.3 μF/m2. The AC electrical resistivity of the BNNT-contact interface decreases with increasing frequency, with high values ranging from 0.14 MΩ cm2 to 440 MΩ cm2.

  15. Effects of porous carbon additives and induced fluorine on low dielectric constant polyimide synthesized with an e-beam

    SciTech Connect

    Im, Ji Sun; Bae, Tae-Sung; Lee, Sung Kyu; Lee, Sei-Hyun; Jeong, Euigyung; Kang, Phil Hyun; Lee, Young-Seak

    2010-11-15

    We report the synthesis of a polyimide matrix with a low dielectric constant for application as an intercalation material between metal interconnections in electronic devices. Porous activated carbon was embedded in the polyimide to reduce the dielectric constant, and a thin film of the complex was obtained using the spin-coating and e-beam irradiation methods. The surface of the thin film was modified with fluorine functional groups to impart water resistance and reduce the dielectric constant further. The water resistance was significantly improved by the modification with hydrophobic fluorine groups. The dielectric constant was effectively decreased by porous activated carbon. The fluorine modification also resulted in a low dielectric constant on the polyimide surface by reducing the polar surface free energy. The dielectric constant of polyimide film decreased from 2.98 to 1.9 by effects of porous activated carbon additive and fluorine surface modification.

  16. Microwave dielectric measurements of erythrocyte suspensions.

    PubMed

    Bao, J Z; Davis, C C; Swicord, M L

    1994-06-01

    Complex dielectric constants of human erythrocyte suspensions over a frequency range from 45 MHz to 26.5 GHz and a temperature range from 5 to 40 degrees C have been determined with the open-ended coaxial probe technique using an automated vector network analyzer (HP 8510). The spectra show two separate major dispersions (beta and gamma) and a much smaller dispersion between them. The two major dispersions are analyzed with a dispersion equation containing two Cole-Cole functions by means of a complex nonlinear least squares technique. The parameters of the equation at different temperatures have been determined. The low frequency behavior of the spectra suggests that the dielectric constant of the cell membrane increases when the temperature is above 35 degrees C. The real part of the dielectric constant at approximately 3.4 GHz remains almost constant when the temperature changes. The dispersion shifts with temperature in the manner of a thermally activated process, and the thermal activation enthalpies for the beta- and gamma-dispersions are 9.87 +/- 0.42 kcal/mol and 4.80 +/- 0.06 kcal/mol, respectively. PMID:8075351

  17. Dielectric constants of liquid formamide, N-methylformamide and dimethylformamide via molecular Ornstein-Zernike theory

    NASA Astrophysics Data System (ADS)

    Richardi, Johannes; Krienke, Hartmut; Fries, Pascal H.

    1997-07-01

    Kirkwood factors, yielding dielectric constants, are calculated from pair correlation functions, which are numerical solutions of the hypernetted-chain approximation of molecular Ornstein-Zernike (MOZ) theory. The combined influence of the molecular polarizability and the hydrogen bond strength is investigated. Using a reasonable diameter for the hydrogen size in the amide group, the MOZ Kirkwood factors and dielectric constants are in good agreement with the experimental values. This is explained by the statistical correlations between the orientations of two near molecules. This is consistent with hydrogen bonds, forming networks in formamide and chains in N-methylformamide.

  18. PREFACE: Dielectrics 2009: Measurement Analysis and Applications

    NASA Astrophysics Data System (ADS)

    Vaughan, Alun; Williams, Graham

    2009-07-01

    The conference Dielectrics 2009: Measurements, Analysis and Applications represents a significant milestone in the evolution of dielectrics research in the UK. It is reasonable to state that the academic study of dielectrics has led to many fundamental advances and that dielectric materials underpin the modern world in devices ranging from field effect transistors, which operate at extremely high fields, albeit low voltages, to the high voltage plants that provide the energy that powers our economy. The origins of the Dielectrics Group of the Institute of Physics (IOP), which organized this conference, can be traced directly back to the early 1960s, when Professor Mansel Davies was conducting research into the dielectric relaxation behaviour of polar liquids and solids at The Edward Davies Chemical Laboratories of the University College of Wales, Aberystwyth. He was already well-known internationally for his studies of molecular structure and bonding of small molecules, using infra-red-spectroscopy, and of the physical properties of hydrogen-bonded liquids and solids, using thermodynamic methods. Dielectric spectroscopy was a fairly new area for him and he realized that opportunities for scientists in the UK to gather together and discuss their research in this developing area of physical chemistry/chemical physics were very limited. He conceived the idea of forming a Dielectrics Discussion Group (DDG), which would act as a meeting point and provide a platform for dielectrics research in the UK and beyond and, as a result, a two-day Meeting was convened in the spring of 1968 at Gregynog Hall of the University of Wales, near Newtown, Montgomeryshire. It was organized by Mansel Davies, Alun Price and Graham Williams, all physical chemists from the UCW, Aberystwyth. Fifty scientists attended, being a mix of physical chemists, theoretical chemists, physicists, electrical engineers, polymer and materials scientists, all from the UK, except Dr Brendan Scaife of Trinity

  19. Dielectric Constant Modelling with Soil–Air Composition and Its Effect on Sar Radar Signal Backscattered over Soil Surface

    PubMed Central

    Zribi, Mehrez; Le Morvan, Aurélie; Baghdadi, Nicolas

    2008-01-01

    The objective of this paper is to present the contribution of a new dielectric constant characterisation for the modelling of radar backscattering behaviour. Our analysis is based on a large number of radar measurements acquired during different experimental campaigns (Orgeval'94, Pays de Caux'98, 99). We propose a dielectric constant model, based on the combination of contributions from both soil and air fractions. This modelling clearly reveals the joint influence of the air and soil phases, in backscattering measurements over rough surfaces with large clods. A relationship is established between the soil fraction and soil roughness, using the Integral Equation Model (IEM), fitted to real radar data. Finally, the influence of the air fraction on the linear relationship between moisture and the backscattered radar signal is discussed.

  20. Technique for Performing Dielectric Property Measurements at Microwave Frequencies

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Jackson, Henry W.

    2010-01-01

    A paper discusses the need to perform accurate dielectric property measurements on larger sized samples, particularly liquids at microwave frequencies. These types of measurements cannot be obtained using conventional cavity perturbation methods, particularly for liquids or powdered or granulated solids that require a surrounding container. To solve this problem, a model has been developed for the resonant frequency and quality factor of a cylindrical microwave cavity containing concentric cylindrical samples. This model can then be inverted to obtain the real and imaginary dielectric constants of the material of interest. This approach is based on using exact solutions to Maxwell s equations for the resonant properties of a cylindrical microwave cavity and also using the effective electrical conductivity of the cavity walls that is estimated from the measured empty cavity quality factor. This new approach calculates the complex resonant frequency and associated electromagnetic fields for a cylindrical microwave cavity with lossy walls that is loaded with concentric, axially aligned, lossy dielectric cylindrical samples. In this approach, the calculated complex resonant frequency, consisting of real and imaginary parts, is related to the experimentally measured quantities. Because this approach uses Maxwell's equations to determine the perturbed electromagnetic fields in the cavity with the material(s) inserted, one can calculate the expected wall losses using the fields for the loaded cavity rather than just depending on the value of the fields obtained from the empty cavity quality factor. These additional calculations provide a more accurate determination of the complex dielectric constant of the material being studied. The improved approach will be particularly important when working with larger samples or samples with larger dielectric constants that will further perturb the cavity electromagnetic fields. Also, this approach enables the ability to have a

  1. Application of the compensated Arrhenius formalism to explain the dielectric constant dependence of rates for Menschutkin reactions.

    PubMed

    Petrowsky, Matt; Glatzhofer, Daniel T; Frech, Roger

    2013-11-21

    The dependence of the reaction rate on solvent dielectric constant is examined for the reaction of trihexylamine with 1-bromohexane in a series of 2-ketones over the temperature range 25-80 °C. The rate constant data are analyzed using the compensated Arrhenius formalism (CAF), where the rate constant assumes an Arrhenius-like equation that also contains a dielectric constant dependence in the exponential prefactor. The CAF activation energies are substantially higher than those obtained using the simple Arrhenius equation. A master curve of the data is observed by plotting the prefactors against the solvent dielectric constant. The master curve shows that the reaction rate has a weak dependence on dielectric constant for values approximately less than 10 and increases more rapidly for dielectric constant values greater than 10. PMID:24156502

  2. Giant voltage-induced deformation of a dielectric elastomer under a constant pressure

    NASA Astrophysics Data System (ADS)

    Godaba, Hareesh; Foo, Choon Chiang; Zhang, Zhi Qian; Khoo, Boo Cheong; Zhu, Jian

    2014-09-01

    Dielectric elastomer actuators coupled with liquid have recently been developed as soft pumps, soft lenses, Braille displays, etc. In this paper, we investigate the performance of a dielectric elastomer actuator, which is coupled with water. The experiments demonstrate that the membrane of a dielectric elastomer can achieve a giant voltage-induced area strain of 1165%, when subject to a constant pressure. Both theory and experiment show that the pressure plays an important role in determining the electromechanical behaviour. The experiments also suggest that the dielectric elastomer actuators, when coupled with liquid, may suffer mechanical instability and collapse after a large amount of liquid is enclosed by the membrane. This failure mode needs to be taken into account in designing soft actuators.

  3. Dependence of the dielectric constant of electrolyte solutions on ionic concentration: A microfield approach

    NASA Astrophysics Data System (ADS)

    Gavish, Nir; Promislow, Keith

    2016-07-01

    We present a microfield approach for studying the dependence of the orientational polarization of the water in aqueous electrolyte solutions upon the salt concentration and temperature. The model takes into account the orientation of the solvent dipoles due to the electric field created by ions, and the effect of thermal fluctuations. The model predicts a dielectric functional dependence of the form ɛ (c ) =ɛw-β L (3 α c /β ) ,β =ɛw-ɛms , where L is the Langevin function, c is the salt concentration, ɛw is the dielectric of pure water, ɛms is the dielectric of the electrolyte solution at the molten salt limit, and α is the total excess polarization of the ions. The functional form gives a remarkably accurate description of the dielectric constant for a variety of salts and a wide range of concentrations.

  4. Dependence of the dielectric constant of electrolyte solutions on ionic concentration: A microfield approach.

    PubMed

    Gavish, Nir; Promislow, Keith

    2016-07-01

    We present a microfield approach for studying the dependence of the orientational polarization of the water in aqueous electrolyte solutions upon the salt concentration and temperature. The model takes into account the orientation of the solvent dipoles due to the electric field created by ions, and the effect of thermal fluctuations. The model predicts a dielectric functional dependence of the form ɛ(c)=ɛ_{w}-βL(3αc/β),β=ɛ_{w}-ɛ_{ms}, where L is the Langevin function, c is the salt concentration, ɛ_{w} is the dielectric of pure water, ɛ_{ms} is the dielectric of the electrolyte solution at the molten salt limit, and α is the total excess polarization of the ions. The functional form gives a remarkably accurate description of the dielectric constant for a variety of salts and a wide range of concentrations. PMID:27575183

  5. Correlation between the dielectric constant and porosity of nanoporous silica thin films deposited by the gas evaporation technique

    NASA Astrophysics Data System (ADS)

    Si, J. J.; Ono, H.; Uchida, K.; Nozaki, S.; Morisaki, H.; Itoh, N.

    2001-11-01

    Nanoporous silica thin films with low dielectric constants were deposited by gas evaporation of SiO2 nanoparticles in an argon atmosphere. With increasing gas pressure during the evaporation, the dielectric constant decreases, while the porosity increases. The correlation between the dielectric constant and porosity is well modeled by a serial connection of two capacitors, one with air and the other with SiO2 as the dielectric medium. This suggests that the dielectric constant of the nanoporous silica thin film using the gas evaporation technique is more effectively lowered by forming "uniformly" distributed voids of closed gaps than those of the nanoporous silica films with pores extending from the back to front surface. Therefore, the former nanoporous silica thin film requires less porosity to obtain a low dielectric constant and is regarded as an ideal low-k material.

  6. Estimation of dielectric constant of lunar material by HF sounder observation

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Ono, T.

    Space borne radio sounding observation has been one of indispensable items in planetary missions An HF sounder Lunar Radar Sounder LRS will be onboard SELENE a lunar exploration program of Japan in 2007 Its primary objective is subsurface geologic structure of the Moon Especially mare regions are of strong interest of investigators because of its relatively smooth surface it is thought that smooth surface allows us to see subsurface feature with less difficulty However even if a clear subsurface image is obtained the data does not provide us with quantitative information unless the dielectric constant of the lunar subsurface material We propose a technique to estimate the dielectric constant of lunar material that utilizes HF sounder data of closely located multiple orbits The technique is applied to SAR images that are produced from HF sounder data and stands on the fact that the apparent position of subsurface object varies as a function of the dielectric constant of subsurface material Assuming a uniform subsurface material the displacement of images of a subsurface target should be consistent with that of observation orbits if the correct dielectric constant of the subsurface material is assumed A numerical model on geometrical optics estimates that the proposed technique requires a synthetic aperture larger than about 50km provided that the orbit altitude is 100km subsurface target depth is a few km and that the observation frequency is 5MHz with 2MHz bandwidth Some laboratory experiments were conducted to demonstrate validity of the

  7. Process for lowering the dielectric constant of polyimides using diamic acid additives

    NASA Technical Reports Server (NTRS)

    Stoakley, Diane M. (Inventor); St.clair, Anne K. (Inventor)

    1990-01-01

    Linear aromatic polyimides with low dielectric constants are produced by adding a diamic acid additive to the polyamic acid resin formed by the condensation of an aromatic dianhydride with an aromatic diamine. The resulting modified polyimide is a better electrical insulator than state-of-the-art commercially available polyimides.

  8. THE ONSET OF ELECTRICAL BREAKDOWN IN DUST LAYERS: II. EFFECTIVE DIELECTRIC CONSTANT AND LOCAL FIELD ENHANCEMENT

    EPA Science Inventory

    Part 1 of the work has shown that electrical breakdown in dust layers obeys Paschen's Law, but occurs at applied field values which appear too small to initiate the breakdown. In this paper the authors show how an effective dielectric constant characterizing the dust layer can be...

  9. A miniaturized flexible antenna printed on a high dielectric constant nanopaper composite.

    PubMed

    Inui, Tetsuji; Koga, Hirotaka; Nogi, Masaya; Komoda, Natsuki; Suganuma, Katsuaki

    2015-02-01

    A high-dielectric-constant and flexible cellulose nanopaper composite is prepared by mixing a small amount of silver nanowires with cellulose nanofibers. The nanopaper antenna is downsized by about a half when using the nanopaper substrate. The nanopaper antenna has potential in wearable wireless communication devices. PMID:25530578

  10. Dielectric Property Measurements to Support Interpretation of Cassini Radar Data

    NASA Astrophysics Data System (ADS)

    Jamieson, Corey; Barmatz, M.

    2012-10-01

    Radar observations are useful for constraining surface and near-surface compositions and illuminating geologic processes on Solar System bodies. The interpretation of Cassini radiometric and radar data at 13.78 GHz (2.2 cm) of Titan and other Saturnian icy satellites is aided by laboratory measurements of the dielectric properties of relevant materials. However, existing dielectric measurements of candidate surface materials at microwave frequencies and low temperatures is sparse. We have set up a microwave cavity and cryogenic system to measure the complex dielectric properties of liquid hydrocarbons relevant to Titan, specifically methane, ethane and their mixtures to support the interpretation of spacecraft instrument and telescope radar observations. To perform these measurements, we excite and detect the TM020 mode in a custom-built cavity with small metal loop antennas powered by a Vector Network Analyzer. The hydrocarbon samples are condensed into a cylindrical quartz tube that is axially oriented in the cavity. Frequency sweeps through a resonance are performed with an empty cavity, an empty quartz tube inserted into the cavity, and with a sample-filled quartz tube in the cavity. These sweeps are fit by a Lorentzian line shape, from which we obtain the resonant frequency, f, and quality factor, Q, for each experimental arrangement. We then derive dielectric constants and loss tangents for our samples near 13.78 GHz using a new technique ideally suited for measuring liquid samples. We will present temperature-dependent, dielectric property measurements for liquid methane and ethane. The full interpretation of the radar and radiometry observations of Saturn’s icy satellites depends critically on understanding the dielectric properties of potential surface materials. By investigating relevant liquids and solids we will improve constrains on lake depths, volumes and compositions, which are important to understand Titan’s carbon/organic cycle and inevitably

  11. PREFACE: Dielectrics 2009: Measurement Analysis and Applications

    NASA Astrophysics Data System (ADS)

    Vaughan, Alun; Williams, Graham

    2009-07-01

    The conference Dielectrics 2009: Measurements, Analysis and Applications represents a significant milestone in the evolution of dielectrics research in the UK. It is reasonable to state that the academic study of dielectrics has led to many fundamental advances and that dielectric materials underpin the modern world in devices ranging from field effect transistors, which operate at extremely high fields, albeit low voltages, to the high voltage plants that provide the energy that powers our economy. The origins of the Dielectrics Group of the Institute of Physics (IOP), which organized this conference, can be traced directly back to the early 1960s, when Professor Mansel Davies was conducting research into the dielectric relaxation behaviour of polar liquids and solids at The Edward Davies Chemical Laboratories of the University College of Wales, Aberystwyth. He was already well-known internationally for his studies of molecular structure and bonding of small molecules, using infra-red-spectroscopy, and of the physical properties of hydrogen-bonded liquids and solids, using thermodynamic methods. Dielectric spectroscopy was a fairly new area for him and he realized that opportunities for scientists in the UK to gather together and discuss their research in this developing area of physical chemistry/chemical physics were very limited. He conceived the idea of forming a Dielectrics Discussion Group (DDG), which would act as a meeting point and provide a platform for dielectrics research in the UK and beyond and, as a result, a two-day Meeting was convened in the spring of 1968 at Gregynog Hall of the University of Wales, near Newtown, Montgomeryshire. It was organized by Mansel Davies, Alun Price and Graham Williams, all physical chemists from the UCW, Aberystwyth. Fifty scientists attended, being a mix of physical chemists, theoretical chemists, physicists, electrical engineers, polymer and materials scientists, all from the UK, except Dr Brendan Scaife of Trinity

  12. Using DelPhi capabilities to mimic protein’s conformational reorganization with amino acid specific dielectric constants

    PubMed Central

    Wang, Lin; Zhang, Zhe; Rocchia, Walter; Alexov, Emil

    2011-01-01

    Many molecular events are associated with small or large conformational changes occurring in the corresponding proteins. Modeling such changes is a challenge and requires significant amount of computing time. From point of view of electrostatics, these changes can be viewed as a reorganization of local charges and dipoles in response to the changes of the electrostatic field, if the cause is insertion or deletion of a charged amino acid. Here we report a large scale investigation of modeling the changes of the folding energy due to single mutations involving charged group. This allows the changes of the folding energy to be considered mostly electrostatics in origin and to be calculated with DelPhi assigning residue-specific value of the internal dielectric constant of protein. The predicted energy changes are benchmarked against experimentally measured changes of the folding energy on a set of 257 single mutations. The best fit between experimental values and predicted changes is used to find out the effective value of the internal dielectric constant for each type of amino acid. The predicted folding free energy changes with the optimal, amino acid specific, dielectric constants are within RMSD=0.86 kcal/mol from experimentally measured changes. PMID:24683422

  13. Low dielectric constant-based organic field-effect transistors and metal-insulator-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Ukah, Ndubuisi Benjamin

    This thesis describes a study of PFB and pentacene-based organic field-effect transistors (OFET) and metal-insulator-semiconductor (MIS) capacitors with low dielectric constant (k) poly(methyl methacrylate) (PMMA), poly(4-vinyl phenol) (PVP) and cross-linked PVP (c-PVP) gate dielectrics. A physical method -- matrix assisted pulsed laser evaporation (MAPLE) -- of fabricating all-polymer field-effect transistors and MIS capacitors that circumvents inherent polymer dissolution and solvent-selectivity problems, is demonstrated. Pentacene-based OFETs incorporating PMMA and PVP gate dielectrics usually have high operating voltages related to the thickness of the dielectric layer. Reduced PMMA layer thickness (≤ 70 nm) was obtained by dissolving the PMMA in propylene carbonate (PC). The resulting pentacene-based transistors exhibited very low operating voltage (below -3 V), minimal hysteresis in their transfer characteristics, and decent electrical performance. Also low voltage (within -2 V) operation using thin (≤ 80 nm) low-k and hydrophilic PVP and c-PVP dielectric layers obtained via dissolution in high dipole moment and high-k solvents -- PC and dimethyl sulfoxide (DMSO), is demonstrated to be a robust means of achieving improved electrical characteristics and high operational stability in OFETs incorporating PVP and c-PVP dielectrics.

  14. Dielectric constant and loss tangent of Eccofoam PT, at 2.3 GHz, for various packing densities

    NASA Technical Reports Server (NTRS)

    Lane, F. L.

    1973-01-01

    The dielectric constant and loss tangent for Eccofoam PT, at various densities, are determined; the resulting density gradients are provided. The range of densites over which the dielectric constant and loss tangent are determined are from approximately 320 to 1280 kg/cu m (20 to 80 lb/cu ft).

  15. New high dielectric constant materials for tailoring the B1+ distribution at high magnetic fields

    NASA Astrophysics Data System (ADS)

    Haines, K.; Smith, N. B.; Webb, A. G.

    2010-04-01

    The spatial distribution of electromagnetic fields within the human body can be tailored using external dielectric materials. Here, we introduce a new material with high dielectric constant, and also low background MRI signal. The material is based upon metal titanates, which can be made into a geometrically-formable suspension in de-ionized water. The material properties of the suspension are characterized from 100 to 400 MHz. Results obtained at 7 T show a significant increase in image intensity in areas such as the temporal lobe and base of the brain with the new material placed around the head, and improved performance compared to purely water-based gels.

  16. Dielectric Maps of the Martian Polar Regions from MARSIS/Mex Surface Reflectivity Measurements

    NASA Astrophysics Data System (ADS)

    Beck, P.; Mouginot, J.; Pommerol, A.; Kofman, W. W.; Clifford, S. M.

    2011-12-01

    Most of classic remote-sensing methods probe the surface and very close subsurface of the Martian crust and are thus only sensitive to processes that occurred under the Amazonian climate. Sounding radar has the potential to probe deeper into the crust, revealing processes that occurred in a distant past.We report here on the completion and improvement of dielectric maps of the Martian polar regions assembled from MARSIS measurements, building upon the initial work of [1]. New data collected by MARSIS since 2008 have been incorporated to greatly increase the level of details in the northern hemisphere. In our presentation, we will briefly discuss the method used to extract values of dielectric con-stant from MARSIS measurements which was explained in details by [1]. As a reasonable ap-proximation, we show that these maps are representative of the average dielectric constant of the first 50 to 100 meters below the surface. We compare the dielectric maps of the northern and southern polar regions of Mars and note a stricking difference between both hemispheres. In the south, a strong decrease of the dielectric constant is consistent with the inferred limit for the presence of stable water ice in the ground. In the north, a similar decrease of dielectric constant is observed but it compasses a much broader area than the one where water ice is at equilibrium under the current climate. The dielectric constant pattern displays a much better correlation with the global topography and, to some extent, with the putative shorelines of the past ocean. Ancient water activity is likely responsible for the observed dielectric pattern. To test the link between the geologic nature of the terrains and the value of dielectric con-stant, we produced a composite geologic / dielectric map from the geologic map of [2] and our dielectric map. A detailed examination of this map confirms the strong link between the geologic nature of the formations and their dielectric constant. Hesperian

  17. Latest rocket measurements of the solar constant

    NASA Technical Reports Server (NTRS)

    Duncan, C. H.; Willson, R. C.; Kendall, J. M.; Harrison, R. G.; Hickey, J. R.

    1982-01-01

    Three rocket flights which carried a payload of absolute radiometers to measure the solar constant with an accuracy of plus or minus 0.5 per cent have been accomplished. Several of the rocket radiometers were duplicates of those aboard the Solar Maximum Mission and Nimbus spacecrafts. The values for the solar constant obtained by the rocket sensors for the three flight dates indicate an increase between the first and latter two flights approximately equivalent to the uncertainty of the measurements. The values for the solar constant for the three flights are 1367, 1372 and 1374 W/sq m.

  18. Chemical vapor deposition and characterization of zirconium tin titanate as a high dielectric constant material for potential electronic applications

    NASA Astrophysics Data System (ADS)

    Mays, Ebony Lynn

    Integrated circuit (IC) manufacturers increasingly need new high dielectric constant (epsilon) materials for gate stacks to maintain the pace of developing faster, higher capacity CMOS and DRAM devices. Identification of new high-epsilon materials that can be integrated into current manufacturing processes is critical to the continued development of IC devices. Using magnetron sputtering and a compositional spread approach, a key composition of amorphous zirconium tin titanate (a-ZTT) films was found to exhibit a dielectric constant from 50 to 70 and leakage currents from 10-9 to 10 -7 A/cm2 at 1 MV/cm. Chemical Vapor Deposition (CVD) is an attractive technique for deposition of ZTT films because it offers several advantages over sputter deposition. Many processing parameters can be controlled and varied in the optimization of the film microstructure and composition. In addition, high-epsilon phases of the compounds might be achieved at low temperatures by using plasma enhancement of the CVD process. Alternatively, use of ozone or other oxidants may allow complete oxidation of metal precursors at lower processing temperatures. The following discussion details the construction and modification of a CVD reactor for the deposition of ZTT thin films. In addition, characterization of a precursor "cocktail"---a solution containing all the metal components of the film---for the deposition of ZTT thin films is discussed. Discussion includes experiments characterizing the dielectric and device properties (dielectric constant, dielectric loss, capacitance, and leakage current) of CVD-grown, a-ZTT thin films using the precursor "cocktail". The importance of the relationship of the cation ratio in the precursor that is translated to the film and its relationship to the dielectric properties are shown. The device properties of ZTT films were measured using Capacitance-Voltage (CV) and Current-Voltage (IV) analysis, while dielectric properties were explored using Impedance

  19. RAPID COMMUNICATION: Control of grain size and size effect on the dielectric constant of diamond films

    NASA Astrophysics Data System (ADS)

    Ye, Haitao; Sun, Chang Q.; Hing, Peter

    2000-12-01

    This work reports that the optimum diamond grain size can be controlled by adjusting the flow rate of Ar/H2 in the reaction chamber through orthogonal optimization. The dielectric properties of the diamond films were investigated using an RCL (resistance-capacitance-inductance) meter. It was found that (i) the dominating factors in controlling the grain size are in the following order: Ar/H2 gas ratio, gas total pressure, plasma power and substrate temperature; (ii) increasing the Ar gas fraction reduces the grain size of synthetic diamond films; and (iii) reducing the grain size lowers the dielectric constant. The grain size effect on the dielectric behaviour can be explained by the change of the crystal field caused by surface bond contraction of the nanosized particles.

  20. Utilizing Calibrated GPS Reflected Signals to Estimate Soil Reflectivity and Dielectric Constant: Results from SMEX02

    NASA Technical Reports Server (NTRS)

    Katzberg, Stephen J.; Torres, Omar; Grant, Michael S.; Masters, Dallas

    2006-01-01

    Extensive reflected GPS data was collected using a GPS reflectometer installed on an HC130 aircraft during the Soil Moisture Experiment 2002 (SMEX02) near Ames, Iowa. At the same time, widespread surface truth data was acquired in the form of point soil moisture profiles, areal sampling of near-surface soil moisture, total green biomass and precipitation history, among others. Previously, there have been no reported efforts to calibrate reflected GPS data sets acquired over land. This paper reports the results of two approaches to calibration of the data that yield consistent results. It is shown that estimating the strength of the reflected signals by either (1) assuming an approximately specular surface reflection or (2) inferring the surface slope probability density and associated normalization constants give essentially the same results for the conditions encountered in SMEX02. The corrected data is converted to surface reflectivity and then to dielectric constant as a test of the calibration approaches. Utilizing the extensive in-situ soil moisture related data this paper also presents the results of comparing the GPS-inferred relative dielectric constant with the Wang-Schmugge model frequently used to relate volume moisture content to dielectric constant. It is shown that the calibrated GPS reflectivity estimates follow the expected dependence of permittivity with volume moisture, but with the following qualification: The soil moisture value governing the reflectivity appears to come from only the top 1-2 centimeters of soil, a result consistent with results found for other microwave techniques operating at L-band. Nevertheless, the experimentally derived dielectric constant is generally lower than predicted. Possible explanations are presented to explain this result.

  1. Quantum theory of the complex dielectric constant of free carriers in polar semiconductors

    SciTech Connect

    Jensen, B.

    1982-09-01

    The optical constants and reflectivity of a semiconductor are known as functions of the real and imaginary parts of the complex dielectric constant. The imaginary part of the complex dielectric constant e/sub 2/ is proportional to the optical conductivity, which has recently been calculated from the quantum density matrix equation of motion. The expression obtained for e/sub 2/ reduces to the Drude result, as obtained from the quasi-classical Boltzmann transport equation, in the limit of low frequencies and elastic scattering mechanisms, and to the quantum result found using time dependent perturbation theory in the limit of high frequencies. This paper derives the real part of the complex dielectric constant e/sub 1/ for a III-V or II-VI semiconductor with the band structure of the Kane theory, using the quantum density matrix method. The relation of e/sub 1/ to the second order perturbation energy of the system is shown, and the reflectivity is a minimum when the second order perturbation energy vanishes. The quantum calculation for e/sub 1/ gives approximately the same result as the Drude theory, except near the fundamental absorption edge, and reduces to the Drude result at low frequencies. Using the complex dielectric constant, the real and imaginary parts of the complex refractive index, the skin depth, and surface impedance, and the reflectivity are found. The plasma resonance is examined. The surface impedance and the skin depth are shown to reduce to the usual classical result in the limit that e/sub 1/ = 0 and w tau << 1, where w is the angular frequency of the applied field and tau is the electron scattering time.

  2. Hysteresis behaviour of low-voltage organic field-effect transistors employing high dielectric constant polymer gate dielectrics

    NASA Astrophysics Data System (ADS)

    Kim, Se Hyun; Yun, Won Min; Kwon, Oh-Kwan; Hong, Kipyo; Yang, Chanwoo; Choi, Woon-Seop; Eon Park, Chan

    2010-11-01

    Here, we report on the fabrication of low-voltage-operating pentacene-based organic field-effect transistors (OFETs) that utilize crosslinked cyanoethylated poly(vinyl alcohol) (CR-V) gate dielectrics. The crosslinked CR-V-based OFET could be operated successfully at low voltages (below 4 V), but abnormal behaviour during device operation, such as uncertainty in the field-effect mobility (μ) and hysteresis, was induced by the slow polarization of moieties embedded in the gate dielectric (e.g. polar functionalities, ionic impurities, water and solvent molecules). In an effort to improve the stability of OFET operation, we measured the dependence of μ and hysteresis on dielectric thickness, CR-V crosslinking conditions and sweep rate of the gate bias. The influence of the CR-V surface properties on μ, hysteresis, and the structural and morphological features of the pentacene layer grown on the gate dielectric was characterized and compared with the properties of pentacene grown on a polystyrene surface.

  3. Sol–gel composite material characteristics caused by different dielectric constant sol–gel phases

    NASA Astrophysics Data System (ADS)

    Kimoto, Keisuke; Matsumoto, Makoto; Kaneko, Tsukasa; Kobayashi, Makiko

    2016-07-01

    Ultrasonic transducers prepared by a sol–gel composite method have been investigated in the field of nondestructive testing (NDT). Sol–gel composite materials could be ideal piezoelectric materials for ultrasonic transducer applications in the NDT field, and a new sol–gel composite with desirable characteristics has been developed. Three kinds of sol–gel composite materials composed of different dielectric constant sol–gel phases, Pb(Zr,Ti)O3 (PZT), Bi4Ti3O12 (BiT), and BaTiO3 (BT), and the same piezoelectric powder phase, PbTiO3 (PT), were fabricated and their properties were compared quantitatively. As a result, the PT/BT, sol–gel composite with the highest dielectric constant sol–gel phase showed the highest d 33 and signal strength. In addition, only PT/BT was successfully poled by room-temperature corona poling with reasonable signal strength.

  4. Improved ground-state electronic structure and optical dielectric constants with a semilocal exchange functional

    NASA Astrophysics Data System (ADS)

    Vlček, Vojtěch; Steinle-Neumann, Gerd; Leppert, Linn; Armiento, Rickard; Kümmel, Stephan

    2015-01-01

    A recently published generalized gradient approximation functional within density functional theory (DFT) has shown, in a few paradigm tests, an improved KS orbital description over standard (semi)local approximations. The characteristic feature of this functional is an enhancement factor that diverges like s ln(s ) for large reduced density gradients s which leads to unusual properties. We explore the improved orbital description of this functional more thoroughly by computing the electronic band structure, band gaps, and the optical dielectric constants in semiconductors, Mott insulators, and ionic crystals. Compared to standard semilocal functionals, we observe improvement in both the band gaps and the optical dielectric constants. In particular, the results are similar to those obtained with orbital functionals or by perturbation theory methods in that it opens band gaps in systems described as metallic by standard (semi)local density functionals, e.g., Ge, α -Sn, and CdO.

  5. The super- and sub-critical effects for dielectric constant in diethyl ether.

    PubMed

    Drozd-Rzoska, Aleksandra; Rzoska, Sylwester J

    2016-06-14

    Results of dielectric constant (ε) studies in diethyl ether for the surrounding of the gas - liquid critical point, TC - 130 K < T < TC + 50 K, are presented. The analysis recalls the physics of critical phenomena for portraying ε (T) evolution along branches of the coexistence curve, along its diameter (d(T)) and in the supercritical domain for T > TC. For the ultrasound sonicated system, the split into coexisting phases disappeared and dielectric constant approximately followed the pattern of the diameter. This may indicate the possibility of the extension of the "supercritical technology" into the ultrasound "homogenized" subcritical domain: the "strength" and the range of the precritical effect of d(T) are ca. 10× larger than for ε (T > TC). PMID:27306017

  6. The super- and sub-critical effects for dielectric constant in diethyl ether

    NASA Astrophysics Data System (ADS)

    Drozd-Rzoska, Aleksandra; Rzoska, Sylwester J.

    2016-06-01

    Results of dielectric constant (ɛ) studies in diethyl ether for the surrounding of the gas - liquid critical point, TC - 130 K < T < TC + 50 K, are presented. The analysis recalls the physics of critical phenomena for portraying ɛ (T) evolution along branches of the coexistence curve, along its diameter (d(T)) and in the supercritical domain for T > TC. For the ultrasound sonicated system, the split into coexisting phases disappeared and dielectric constant approximately followed the pattern of the diameter. This may indicate the possibility of the extension of the "supercritical technology" into the ultrasound "homogenized" subcritical domain: the "strength" and the range of the precritical effect of d(T) are ca. 10× larger than for ɛ (T > TC).

  7. A molecular site-site integral equation that yields the dielectric constant

    NASA Astrophysics Data System (ADS)

    Dyer, Kippi M.; Perkyns, John S.; Stell, George; Pettitt, B. Montgomery

    2008-09-01

    Our recent derivation [K. M. Dyer et al., J. Chem. Phys. 127, 194506 (2007)] of a diagrammatically proper, site-site, integral equation theory using molecular angular expansions is extended to polar fluids. With the addition of atomic site charges we take advantage of the formal long-ranged potential field cancellations before renormalization to generate a set of numerically stable equations. Results for calculations in a minimal (spherical) angular basis set are presented for the radial distribution function, the first dipolar (110) projection, and the dielectric constant for two model diatomic systems. All results, when compared to experiment and simulation, are a significant quantitative and qualitative improvement over previous site-site theories. More importantly, the dielectric constant is not trivial and close to simulation and experiment.

  8. Anomalous change in dielectric constant of CaCu3Ti4O12 under violet-to-ultraviolet irradiation

    NASA Astrophysics Data System (ADS)

    Masingboon, C.; Eknapakul, T.; Suwanwong, S.; Buaphet, P.; Nakajima, H.; Mo, S.-K.; Thongbai, P.; King, P. D. C.; Maensiri, S.; Meevasana, W.

    2013-05-01

    The influence of light illumination on the dielectric constant of CaCu3Ti4O12 (CCTO) polycrystals is studied in this work. When exposed to 405-nm laser light, a reversible enhancement in the room temperature capacitance as high as 22% was observed, suggesting application of light-sensitive capacitance devices. To uncover the microscopic mechanisms mediating this change, we performed electronic structure measurements, using photoemission spectroscopy, and measured the electrical conductivity of the CCTO samples under different conditions of light exposure and oxygen partial pressure. Together, these results suggest that the large capacitance enhancement is driven by oxygen vacancies induced by the irradiation.

  9. Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Mendoza Herrera, Luis J.; Arboleda, David Muñetón; Schinca, Daniel C.; Scaffardi, Lucía B.

    2014-12-01

    This paper develops a novel method for simultaneously determining the plasma frequency ωP and the damping constant γfr e e in the bulk damped oscillator Drude model, based on experimentally measured real and imaginary parts of the metal refractive index in the IR wavelength range, lifting the usual approximation that restricts frequency values to the UV-deep UV region. Our method was applied to gold, silver, and copper, improving the relative uncertainties in the final values for ωp (0.5%-1.6%) and for γfr e e (3%-8%), which are smaller than those reported in the literature. These small uncertainties in ωp and γfr e e determination yield a much better fit of the experimental complex dielectric function. For the case of nanoparticles (Nps), a series expansion of the Drude expression (which includes ωp and γfr e e determined using our method) enables size-dependent dielectric function to be written as the sum of three terms: the experimental bulk dielectric function plus two size corrective terms, one for free electron, and the other for bound-electron contributions. Finally, size distribution of nanometric and subnanometric gold Nps in colloidal suspension was determined through fitting its experimental optical extinction spectrum using Mie theory based on the previously determined dielectric function. Results are compared with size histogram obtained from Transmission Electron Microscopy (TEM).

  10. Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles

    SciTech Connect

    Mendoza Herrera, Luis J.; Arboleda, David Muñetón; Schinca, Daniel C.; Scaffardi, Lucía B.

    2014-12-21

    This paper develops a novel method for simultaneously determining the plasma frequency ω{sub P}   and the damping constant γ{sub free} in the bulk damped oscillator Drude model, based on experimentally measured real and imaginary parts of the metal refractive index in the IR wavelength range, lifting the usual approximation that restricts frequency values to the UV-deep UV region. Our method was applied to gold, silver, and copper, improving the relative uncertainties in the final values for ω{sub p} (0.5%–1.6%) and for γ{sub free} (3%–8%), which are smaller than those reported in the literature. These small uncertainties in ω{sub p} and γ{sub free} determination yield a much better fit of the experimental complex dielectric function. For the case of nanoparticles (Nps), a series expansion of the Drude expression (which includes ω{sub p} and γ{sub free} determined using our method) enables size-dependent dielectric function to be written as the sum of three terms: the experimental bulk dielectric function plus two size corrective terms, one for free electron, and the other for bound-electron contributions. Finally, size distribution of nanometric and subnanometric gold Nps in colloidal suspension was determined through fitting its experimental optical extinction spectrum using Mie theory based on the previously determined dielectric function. Results are compared with size histogram obtained from Transmission Electron Microscopy (TEM)

  11. Improved SPC force field of water based on the dielectric constant: SPC/ ε

    NASA Astrophysics Data System (ADS)

    Fuentes-Azcatl, Raúl; Mendoza, Noé; Alejandre, José

    2015-02-01

    In a recent work, Fuentes and Alejandre (2014) found that for TIP4P models there is a dipole moment of minimum density at 240 K and that the Lennard-Jones parameters can be adjusted to match the experimental dielectric constant at 300 K and the temperature of maximum density, respectively. The same procedure is used in this work to re-parameterize the simple point charge (SPC) model keeping the original geometry. The new model fails to reproduce the experimental self-diffusion coefficient and shear viscosity but improves the results at different temperatures and pressures of dielectric constant, isothermal compressibility, thermal expansion coefficient, surface tension, coexisting densities at the liquid-vapor interface, equation of state of ice Ih and equation of state of liquids at high pressures. A second model that reproduces the dielectric constant, self-diffusion coefficient and shear viscosity is proposed but the temperature of maximum density is 250 K, compared with the experimental value of 277 K. Both models improve the SPC/E results for almost all properties. The TIP3P model was also analyzed but the liquid density at 240 K always increases and a minimum in the dipole moment was not found. It is not possible to adjust for that model the charge distribution and short range interaction parameters to reproduce at the same time the target properties.

  12. Density fluctuations and dielectric constant of water in low and high density liquid states

    NASA Astrophysics Data System (ADS)

    Lascaris, Erik; Zhang, Cui; Galli, Giulia A.; Franzese, Giancarlo; Stanley, H. Eugene

    2012-02-01

    The hypothesis of a liquid-liquid critical point (LLCP) in the phase diagram of water, though first published many years ago, still remains the subject of a heated debate. According to this hypothesis there exists a critical point near T 244 K, and P 215 MPa, located at the end of a coexistence line between a high density liquid (HDL) and a low density liquid state (LDL). The LLCP lies below the homogenous nucleation temperature of water and it has so far remained inaccessible to experiments. We study a model of water exhibiting a liquid-liquid phase transition (that is a liquid interacting through the ST2 potential) and investigate the properties of dipolar fluctuations as a function of density, in the HDL and LDL. We find an interesting correlation between the macroscopic dielectric constants and the densities of the two liquids in the vicinity of the critical point, and we discuss possible implications for measurements close to the region where the LLCP may be located.

  13. Structure-property relationships of nano-foam polyimide films with low dielectric constant and high thermal stability

    SciTech Connect

    Cha, H.J.; Hedrick, J.; DiPietro, R.A.

    1996-10-01

    Thin polyimide films with dispersed nano-foam morphology have been prepared successfully for the purpose of obtaining low dielectric polymer insulators for microelectronic applications. They were obtained by utilizing triblock copolymers where the thermally stable polyimide component was derived from pyromellitic dianhydride (PMDA) with 1,1-bis(4-aminophenyl)-1-phenyl-2,2,2-trifluroroethane (3F) and thermally labile (polypropylene oxide) (PO) component comprised the outside block of the ABA triblock architecture. The domain shapes in thin films before foaming were irregular due to the non-equilibrium nature of preparation conditions. Final nano-foam shapes and sizes seem very similar to the initial morphology of PO domains. The measured dielectric constant was found to decrease to {approximately}2.3 for the foamed polyimide film with 18% porosity, as compared with ca. 2.9 for the homopolymer, and to remain stable at high temperatures.

  14. Microclimate, Water Potential, Transpiration, and Bole Dielectric Constant of Coniferous and Deciduous Tree Species in the Continental Boreal Ecotone of Central Alaska

    NASA Technical Reports Server (NTRS)

    Zimmermann, R.; McDonald, K.; Way, J.; Oren, R.

    1994-01-01

    Tree canopy microclimate, xylem water flux and xylem dielectric constant have been monitored in situ since June 1993 in two adjacent natural forest stands in central Alaska. The deciduous stand represents a mature balsam poplar site on the Tanana River floodplain, while the coniferous stand consists of mature white spruce with some black spruce mixed in. During solstice in June and later in summer, diurnal changes of xylem water potential were measured to investigate the occurrence and magnitude of tree transpiration and dielectric constant changes in stems.

  15. An all-organic composite actuator material with a high dielectric constant

    NASA Astrophysics Data System (ADS)

    Zhang, Q. M.; Li, Hengfeng; Poh, Martin; Xia, Feng; Cheng, Z.-Y.; Xu, Haisheng; Huang, Cheng

    2002-09-01

    Electroactive polymers (EAPs) can behave as actuators, changing their shape in response to electrical stimulation. EAPs that are controlled by external electric fields-referred to here as field-type EAPs-include ferroelectric polymers, electrostrictive polymers, dielectric elastomers and liquid crystal polymers. Field-type EAPs can exhibit fast response speeds, low hysteresis and strain levels far above those of traditional piezoelectric materials, with elastic energy densities even higher than those of piezoceramics. However, these polymers also require a high field (>70Vµm-1) to generate such high elastic energy densities (>0.1Jcm-3 refs 4, 5, 9, 10). Here we report a new class of all-organic field-type EAP composites, which can exhibit high elastic energy densities induced by an electric field of only 13Vµm-1. The composites are fabricated from an organic filler material possessing very high dielectric constant dispersed in an electrostrictive polymer matrix. The composites can exhibit high net dielectric constants while retaining the flexibility of the matrix. These all-organic actuators could find applications as artificial muscles, `smart skins' for drag reduction, and in microfluidic systems for drug delivery.

  16. Low dielectric constant fibers from a fluorinated polymide for electronic packaging

    SciTech Connect

    Eashoo, M.; Buckley, L.J.; St. Clair, A.K.

    1996-10-01

    As the electronics industry moves toward higher frequencies, the need for laminate materials with enhanced dielectric properties is crucial. Since uniaxial composites are highly filled with reinforcing materials, fibers will play a significant role in lowering the overall dielectric constant of multi-layer printed wiring boards. Past fibers from a low dielectric constant ({epsilon}{prime} = 2.5) polyimide made from 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 2,2-bis [4-(4-aminophenoxy) phenyl] hexafluoropropane (4BDAF) were wet-spun into an ethyl alcohol/water bath using a dimethylacetamide (DMAc)/Polymer solution. Relatively weak filaments ({Epsilon}{prime} = 5.1 GPa) result from processing with DMAc, as the fiber core is very porous. A new spinning method, using controlled miscibility between the solvent and the coagulant, yielded solid core fibers using methylene chloride as the solvent. These 6FDA-4BDAF fibers have textile-like mechanical properties having; a modulus of 7-8 GPa, a tensile strength of 300-380 MPa, and a break strain of 4-7%.

  17. Sulfone-Containing Dipolar Glass Polymers with High Dielectric Constant and Low Loss Property

    NASA Astrophysics Data System (ADS)

    Zhu, Yufeng; Zhang, Zhongbo; Litt, Morton; Zhu, Lei

    Sulfone-containing polyoxetanes are designed and synthesized for high dielectric constant and low loss dipolar glasses. The precursor polymer, poly(3,3-bis(chloromethyl)oxetane) (PBCMO) is synthesized by bulk cationic polymerization with boron trifluoride diethyl etherate as initiator. The number-average molecular weight of PBCMO is 73 kDa, with a polydispersity of 1.53 as obtained from size-exclusion chromatography results. Post-modification of PBCMO yields the dipolar glass polymer, poly(3,3-bis(methylsulfonylmethyl)oxetane) (MST). Nuclear magnetic resonance result shows 100% conversion. Differential scanning calorimetry result indicates that MST has a glass transition temperature of ca. 120 °C. Due to the large dipole moment (4.25 D) and small size of the side-chain sulfone groups, MST exhibits a high dielectric constant of 8.7 and a low dissipation factor of 0.01 at 25 °C and 1 Hz. This study suggests that dipolar glass polymers with large dipole moments and small-sized dipoles in the side chains are promising candidates for high energy density and low loss dielectric applications. This work is supported by NSF Polymers Program (DMR-1402733).

  18. Improved Approximation of Water Dielectric Permittivity for Calculation of Hamaker Constants.

    PubMed

    Nguyen

    2000-09-15

    Due to the highly polar nature with a multipeak absorption spectrum of water, the contribution of the relaxation in the microwave and infrared regions to the water dielectric spectrum is significant. The old data obtained by the Cauchy plot analysis of the parameters of the single-relaxation representation of water dielectric spectrum produce the discrepancy in the Hamaker constants computed by the complete continuum theory. New data are obtained by the direct fitting of the single-relaxation model to the complete water dielectric spectrum. The Hamaker constants computed using the improved approximate and the complete spectra for water permittivity are in good agreement. The Hamaker function of quartz-water-quartz and quartz-water-air systems computed using the improved approximation for water and the Cauchy plot approximation for quartz also agrees with that computed using the complete spectrum for both liquid water and crystalline quartz. The new data are to be used, instead of the old Cauchy plot analysis data, in the calculation of the van der Waals interaction across water films based on the available simplified expressions. Copyright 2000 Academic Press. PMID:10985848

  19. Dielectric Constants of Refrigerants R113, R114, R114B2, R115, R116, and R124

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Hiroshi; Harada, Noboru; Tanaka, Yoshiyuki; Kubota, Hironobu; Makita, Tadashi

    The dielectric constants of six refrigerants have been measured in both gaseous and liquid phases. The fluids used and the experimental ranges of temperature and pressure are as follows : R113 (1, 2, 2- Trichlorotrifluoroethane CClF2CCl2F) : 298.15-423.15K, 0.1-17.3MPa, R1l4 (1, 2- Dichlorotetrafluoroethane CClF2CClF2) : 298.15-423.15K, 0.2-17.2MPa, R114B2 (1, 2- Dibromotetrafluoroethane CBrF2CBrF2) : 298.15-423.15K, 0.2-17.3MPa, R1l5 (Chloropentafluoroethane CClF2CF3) : 298.15 373.15K. O.1-17.1MPa, R1l6 (Hexafluoroethane CF3CF3) : 283.15-373.15 K, 0.2-16.9MPa, R124 (1-Chloro-2, 2, 2, -tetrafluoroethane CHClFCF3) : 273.15 373.15K, 0.1-10.5MPa The measurements were performed using a frequency-counting method on a relative basis with an uncertainty less than ±0.1%.The experimental results are given by polynomial equations. The smoothed value tables are also given for practical convenience. The pressure dependence of dielectric constants in liquid phase is represented by a similar expression to the Tait equation. The effects of pressure, temperature, and density on the dielectric constant and the molar polarization defined by the Clausius-Mossotti relation are discussed in term of polarity of molecules of each refrigerant.

  20. Enhancement of dielectric constant in transition metal doped ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Singh, Swati; Dey, P.; Roy, J. N.; Mandal, S. K.

    2014-09-01

    We have presented dielectric studies on Zn1-xCoxO, Zn1-xFexO, and Zn1-xFex/2Cox/2O (x = doping level) semiconducting nanoparticles (˜2-40 nm). For all those samples, dielectric constant (є) is found to exhibit a maximum with x. Enhancement of є is found to be ˜250 times for Zn0.85Co0.15O and ˜400 times for Zn0.8Fe0.1Co0.1O from that of ZnO. Presence of effective higher oxidation state of transition metals ions in ZnO due to Fe/Co doping resulting in space charge polarization possibly yields this effect. The simultaneous existence of high є, semiconducting, and ferromagnetic like behaviour at 300 K seems to propose Zn0.8Fe0.1Co0.1O, promising for technological application.

  1. Spectral characterization of dielectric materials using terahertz measurement systems

    NASA Astrophysics Data System (ADS)

    Seligman, Jeffrey M.

    The performance of modern high frequency components and electronic systems are often limited by the properties of the materials from which they are made. Over the past decade, there has been an increased emphasis on the development of new, high performance dielectrics for use in high frequency systems. The development of these materials requires novel broadband characterization, instrumentation, and extraction techniques, from which models can be formulated. For this project several types of dielectric sheets were characterized at terahertz (THz) frequencies using quasi-optical (free-space) techniques. These measurement systems included a Fourier Transform Spectrometer (FTS, scalar), a Time Domain Spectrometer (TDS, vector), a Scalar Network Analyzer (SNA), and a THz Vector Network Analyzer (VNA). Using these instruments the THz spectral characteristics of dielectric samples were obtained. Polarization based anisotropy was observed in many of the materials measured using vector systems. The TDS was the most informative and flexible instrument for dielectric characterization at THz frequencies. To our knowledge, this is the first such comprehensive study to be performed. Anisotropy effects within materials that do not come into play at microwave frequencies (e.g. ~10 GHz) were found, in many cases, to increase measured losses at THz frequencies by up to an order of magnitude. The frequency dependent properties obtained during the course of this study included loss tangent, permittivity (index of refraction), and dielectric constant. The results were largely consistent between all the different systems and correlated closely to manufacturer specifications over a wide frequency range (325 GHz-1.5 THz). Anisotropic behavior was observed for some of the materials. Non-destructive evaluation and testing (NDE/NDT) techniques were used throughout. A precision test fixture was developed to accomplish these measurements. Time delay, insertion loss, and S-parameters were

  2. Quantum theory of the dielectric constant of a magnetized plasma and astrophysical applications. I.

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Ventura, J.

    1972-01-01

    A quantum mechanical treatment of an electron plasma in a constant and homogeneous magnetic field is considered, with the aim of (1) defining the range of validity of the magnetoionic theory (2) studying the deviations from this theory, in applications involving high densities, and intense magnetic field. While treating the magnetic field exactly, a perturbation approach in the photon field is used to derive general expressions for the dielectric tensor. Numerical estimates on the range of applicability of the magnetoionic theory are given for the case of the 'one-dimensional' electron gas, where only the lowest Landau level is occupied.

  3. Effect of species structure and dielectric constant on C-band forest backscatter

    NASA Technical Reports Server (NTRS)

    Lang, R. H.; Landry, R.; Kilic, O.; Chauhan, N.; Khadr, N.; Leckie, D.

    1993-01-01

    A joint experiment between Canadian and USA research teams was conducted early in Oct. 1992 to determine the effect of species structure and dielectric variations on forest backscatter. Two stands, one red pine and one jack pine, in the Petawawa National Forestry Institute (PNFI) were utilized for the experiment. Extensive tree architecture measurements had been taken by the Canada Centre for Remote Sensing (CCRS) several months earlier by employing a Total Station surveying instrument which provides detailed information on branch structure. A second part of the experiment consisted of cutting down several trees and using dielectric probes to measure branch and needle permittivity values at both sites. The dielectric and the tree geometry data were used in the George Washington University (GWU) Vegetation Model to determine the C band backscattering coefficients of the individual stands for VV polarization. The model results show that backscatter at C band comes mainly from the needles and small branches and the upper portion of the trunks acts only as an attenuator. A discussion of variation of backscatter with specie structure and how dielectric variations in needles for both species may affect the total backscatter returns is provided.

  4. Measurement of dielectric and magnetic properties of soil

    SciTech Connect

    Patitz, W.E.; Brock, B.C.; Powell, E.G.

    1995-11-01

    The possibility of subsurface imaging using SAR technology has generated a considerable amount of interest in recent years. One requirement for the successful development of a subsurface imagin system is an understanding of how the soil affects the signal. In response to a need for an electromagnetic characterization of the soil properties, the Radar/Antenna department has developed a measurement system which determines the soils complex electric permittivity and magnetic permeability at UHF frequencies. The one way loss in dB is also calculated using the measured values. There are many reports of measurements of the electric properties of soil in the literature. However, most of these are primarily concerned with measuring only a real dielectric constant. Because some soils have ferromagnetic constituents it is desirable to measure both the electric and magnetic properties of the soil.

  5. Strain-induced phase variation and dielectric constant enhancement of epitaxial Gd2O3

    NASA Astrophysics Data System (ADS)

    Shekhter, P.; Schwendt, D.; Amouyal, Y.; Wietler, T. F.; Osten, H. J.; Eizenberg, M.

    2016-07-01

    One of the approaches for realizing advanced high k insulators for metal oxide semiconductor field effect transistors based devices is the use of rare earth oxides. When these oxides are deposited as epitaxial thin films, they demonstrate dielectric properties that differ greatly from those that are known for bulk oxides. Using structural and spectroscopic techniques, as well as first-principles calculations, Gd2O3 films deposited on Si (111) and Ge (111) were characterized. It was seen that the same 4 nm thick film, grown simultaneously on Ge and Si, presents an unstrained lattice on Ge while showing a metastable phase on Si. This change from the cubic lattice to the distorted metastable phase is characterized by an increase in the dielectric constant of more than 30% and a change in band gap. The case in study shows that extreme structural changes can occur in ultra-thin epitaxial rare earth oxide films and modify their dielectric properties when the underlying substrate is altered.

  6. Dielectric constant estimation of the uppermost Basal Unit layer in the martian Boreales Scopuli region

    NASA Astrophysics Data System (ADS)

    Lauro, Sebastian E.; Mattei, Elisabetta; Soldovieri, Francesco; Pettinelli, Elena; Orosei, Roberto; Vannaroni, Giuliano

    2012-05-01

    An electromagnetic inversion model has been applied to echoes from the subsurface sounding Shallow Radar (SHARAD) to retrieve the dielectric properties of the uppermost Basal Unit (BU) beneath the North Polar Layered Deposits of Mars. SHARAD data have been carefully selected to satisfy the assumption of the inversion model which requires a stratigraphy consisting of mostly plane parallel layers. The resulting values of the dielectric constant have been interpreted in terms of a variable percentage of dust in an ice-dust mixture through the use of a mixing model for dielectric properties. The resulting dust content exceeds 65%, reaching perhaps 95%, depending on the permittivity values assumed for the dust. Such a concentration is higher than that obtained by Selvans et al. (Selvans, M.M., Plaut, J.J., Aharonson, O. [2010]. J. Geophys. Res, 115, E09003). This discrepancy could be justified considering that our observations refer to the uppermost BU layer, whereas Selvans et al. (Selvans, M.M., Plaut, J.J., Aharonson, O. [2010]. J. Geophys. Res, 115, E09003) probed the BU full thickness. Moreover, if the BU is considered spatially inhomogeneous, with very different dust content and thickness (Tanaka, K.L., Skinner, J.A., Fortezzo, C.M., Herkenhoff, K.E., Rodriguez, J.A.P., Bourke, M.C., Kolb, E.J., Okubo, C.H. [2008]. Icarus, 196, 318-358), the discrepancy could be furtherly reconciled.

  7. Modification of low dielectric constant materials for ULSI multilevel interconnection by ion implantation

    NASA Astrophysics Data System (ADS)

    Roy, Alok Nandini Usha

    As integrated circuit (IC) dimensions continue to decrease, RC delay, cross-talk noise, and power dissipation of the interconnect structure become limiting factors for ultra-large-scale integration of integrated circuits. Low dielectric constant materials are being introduced and developed to replace silicon dioxide as inter level dielectrics into current interconnect technologies to meet RC delay goals and minimize cross-talk. These low kappa films generally have dielectric constants less than 3 (vs. 4 for silicon dioxide) and very poor mechanical strength. The elastic modulus (E) of the low kappa film is typically less than 10Gpa, compared with 70Gpa for SiO2. The poor mechanical strength of the low kappa dielectric films increases the risk of thermo-mechanical failures within the Cu/low kappa interconnect structure; e.g. thin film delamination and cracking. Maintaining the mechanical integrity of the low kappa films with the stresses of fab processing, packaging and reliability testing has proven challenging. Therefore, surface hardening is necessary to withstand processing (e.g. CMP). This research work will address the methods to enhance the mechanical strength of low dielectric films. Results of two classes of material (i.e. Xerogel (porous) and methyl silsesquioxane (MSQ (organic)) are discussed. Thin films of Ultra-Low kappa materials such as Xerogel (kappa = 1.76) and porous MSQ (kappa = 2.2) were implanted with argon, neon, nitrogen, carbon and helium with 2 x 1015 cm-2 and 1 x 1016 cm-2 dose at energies varying from 20 to 150 keV at room temperature. In this work we showed that the surface hardness of the porous films can be improved five times as compared to the as-deposited porous films by implanting Ar with 1 x 10 16 cm-2 doses at 50 keV, sacrificing only a slight increase (˜15%) in dielectric constant (e.g., from 1.76 to 2.0). The hardness persists after 450°C annealing. The ion implantation process suppressed the moisture uptake in the porous low

  8. Dielectric function and magneto-optical Voigt constant of Cu2O: A combined spectroscopic ellipsometry and polar magneto-optical Kerr spectroscopy study

    NASA Astrophysics Data System (ADS)

    Haidu, Francisc; Fronk, Michael; Gordan, Ovidiu D.; Scarlat, Camelia; Salvan, Georgeta; Zahn, Dietrich R. T.

    2011-11-01

    Cuprous oxide is a highly interesting material for the emerging field of transparent oxide electronics. In this work the energy dispersion of the dielectric function of Cu2O bulk material is revised by spectroscopic ellipsometry measurements in an extended spectral range from 0.73 to 10 eV. For the first time, the magneto-optical Kerr effect was measured in the spectral range from 1.7 to 5.5 eV and the magneto-optical Voigt constant of Cu2O was obtained by numerical calculations from the magneto-optical Kerr effect spectra and the dielectric function.

  9. Theoretical Study of the Transverse Dielectric Constant of Superlattices and Their Alloys. Ph.D Thesis

    NASA Technical Reports Server (NTRS)

    Kahen, K. B.

    1986-01-01

    The optical properties of III to V binary and ternary compounds and GaAs-Al(x)Ga(1-x)As superlattices are determined by calculating the real and imaginary parts of the transverse dielectric constant. Emphasis is given to determining the influence of different material and superlattice parameters on the values of the index of refraction and absorption coefficient. In order to calculate the optical properties of a material, it is necessary to compute its electronic band structure. This was accomplished by introducing a partition band structure approach based on a combination of the vector k x vector p and nonlocal pseudopotential techniques. The advantages of this approach are that it is accurate, computationally fast, analytical, and flexible. These last two properties enable incorporation of additional effects into the model, such as disorder scattering, which occurs for alloy materials and excitons. Furthermore, the model is easily extended to more complex structures, for example multiple quantum wells and superlattices. The results for the transverse dielectric constant and absorption coefficient of bulk III to V compounds compare well with other one-electron band structure models and the calculations show that for small frequencies, the index of refraction is determined mainly by the contibution of the outer regions of the Brillouin zone.

  10. Porous AlN with a Low Dielectric Constant Synthesized Based on the Physical Vapor Transport Principle

    NASA Astrophysics Data System (ADS)

    Wang, Hua-Jie; Liu, Xue-Chao; Kong, Hai-Kuan; Xin, Jun; Gao, Pan; Shi, Er-Wei

    2016-07-01

    Porous AlN with low dielectric constant has been synthesized by the sacrificial template method based on the physical vapor transport principle. It is quite different from the traditional method that mixes the matrix with a pore-forming agent and utilizes liquid-phase sintering. The method consists of two parts. Firstly, AlN powder is placed in a graphite crucible. C/AlN composite can be formed by mixing decomposed AlN vapor and volatile carbon originated from a crucible at high temperature. Secondly, pores are formed after removing carbon from the C/AlN composite by an annealing process. The structure, morphology, porosity and properties of porous AlN are characterized. It is shown the obtained porous AlN has a thermal conductivity of 37.3 W/(m K) and a reduced dielectric constant of 5.5-6.1 (at 1 MHz). The porosity measured by a mercury porosimeter is 24.09%. It has been experimentally proved that porous AlN with a sufficiently porous structure and properties can be synthesized based on the vapor-phase principle.

  11. Study of Fluorine Addition Influence in the Dielectric Constant of Diamond-Like Carbon Thin Film Deposited by Reactive Sputtering

    NASA Astrophysics Data System (ADS)

    Trippe, S. C.; Mansano, R. D.

    The hydrogenated amorphous carbon films (a-C:H) or DLC (Diamond-Like Carbon) films are well known for exhibiting high electrical resistivity, low dielectric constant, high mechanical hardness, low friction coefficient, low superficial roughness and also for being inert. In this paper, we produced fluorinated DLC films (a-C:F), and studied the effect of adding CF4 on the above-mentioned properties of DLC films. These films were produced by a reactive RF magnetron sputtering system using a target of pure carbon in stable graphite allotrope. We performed measurements of electrical characteristic curves of capacitance as a function of applied tension (C-V) and current as a function of the applied tension (I-V). We showed the dielectric constant (k) and the resistivity (ρ) as functions of the CF4 concentration. On films with 65% CF4, we found that k = 2.7, and on films with 70% CF4, ρ = 12.3 × 1011 Ω cm. The value of the electrical breakdown field to films with 70% CF4 is 5.3 × 106 V/cm.

  12. Porous AlN with a Low Dielectric Constant Synthesized Based on the Physical Vapor Transport Principle

    NASA Astrophysics Data System (ADS)

    Wang, Hua-Jie; Liu, Xue-Chao; Kong, Hai-Kuan; Xin, Jun; Gao, Pan; Shi, Er-Wei

    2016-05-01

    Porous AlN with low dielectric constant has been synthesized by the sacrificial template method based on the physical vapor transport principle. It is quite different from the traditional method that mixes the matrix with a pore-forming agent and utilizes liquid-phase sintering. The method consists of two parts. Firstly, AlN powder is placed in a graphite crucible. C/AlN composite can be formed by mixing decomposed AlN vapor and volatile carbon originated from a crucible at high temperature. Secondly, pores are formed after removing carbon from the C/AlN composite by an annealing process. The structure, morphology, porosity and properties of porous AlN are characterized. It is shown the obtained porous AlN has a thermal conductivity of 37.3 W/(m K) and a reduced dielectric constant of 5.5-6.1 (at 1 MHz). The porosity measured by a mercury porosimeter is 24.09%. It has been experimentally proved that porous AlN with a sufficiently porous structure and properties can be synthesized based on the vapor-phase principle.

  13. Exploratory studies of new avenues to achieve high electromechanical response and high dielectric constant in polymeric materials

    NASA Astrophysics Data System (ADS)

    Huang, Cheng

    High performance soft electronic materials are key elements in advanced electronic devices for broad range applications including capacitors, actuators, artificial muscles and organs, smart materials and structures, microelectromechanical (MEMS) and microfluidic devices, acoustic devices and sensors. This thesis exploits new approaches to improve the electromechanical response and dielectric response of these materials. By making use of novel material phenomena such as large anisotropy in dipolar response in liquid crystals (LCs) and all-organic composites in which high dielectric constant organic solids and conductive polymers are either physically blended into or chemically grafted to a polymer matrix, we demonstrate that high dielectric constant and high electromechanical conversion efficiency comparable to that in ceramic materials can be achieved. Nano-composite approach can also be utilized to improve the performance of the electronic electroactive polymers (EAPs) and composites, for example, exchange coupling between the fillers and matrix with very large dielectric contrast can lead to significantly enhance the dielectric response as well as electromechanical response when the heterogeneity size of the composite is comparable to the exchange length. In addition to the dielectric composites, in which high dielectric constant fillers raise the dielectric constant of composites, conductive percolation can also lead to high dielectric constant in polymeric materials. An all-polymer percolative composite is introduced which exhibits very high dielectric constant (>7,000). The flexible all-polymer composites with a high dielectric constant make it possible to induce a high electromechanical response under a much reduced electric field in the field effect electroactive polymer (EAP) actuators (a strain of 2.65% with an elastic energy density of 0.18 J/cm3 can be achieved under a field of 16 V/mum). Agglomeration of the particles can also be effectively prevented

  14. Attenuation measurement of very low-loss dielectric waveguides by the cavity resonator method in the millimeter/submillimeter wavelength range

    NASA Astrophysics Data System (ADS)

    Shimabukuko, F. I.; Yeh, C.

    1989-03-01

    A dielectric waveguide shorted at both ends is constructed as a cavity resonator. By measuring the Q of this cavity, one can determine the attenuation constant of the guided mode on this dielectric structure. The complex permittivity of the dielectric waveguide material can also be derived from these measurements. Measurement were made at Ka-band for dielectric waveguides constructed of nonpolar, low-loss polymers such as Teflon, polypropylene, polyethylene, polyethylene, and Rexolite.

  15. Fundamentals of dielectric properties measurements and agricultural applications.

    PubMed

    Nelson, Stuart O

    2010-01-01

    Dielectrics and dielectric properties are defined generally and dielectric measurement methods and equipment are described for various frequency ranges from audio frequencies through microwave frequencies. These include impedance and admittance bridges, resonant frequency, transmission-line, and free-space methods in the frequency domain and time-domain and broadband techniques. Many references are cited describing methods in detail and giving sources of dielectric properties data. Finally a few applications for such data are presented and sources of tabulated and dielectric properties data bases are identified. PMID:21721322

  16. Stiff, strong, yet tough free-standing dielectric films of graphene nanosheets-polyurethane nanocomposites with very high dielectric constant and loss

    NASA Astrophysics Data System (ADS)

    Jan, Rahim; Habib, Amir; Gul, Iftikhar Hussain

    2016-01-01

    In this study, graphene nanosheets (GNS) prepared through a liquid exfoliation technique are dispersed in thermoplastic polyurethane (TPU) at a volume fraction (Vf) of up to 0.19. Then, the electrical and mechanical properties of the obtained composites are characterized. The dielectric spectroscopy shows an excessive variation in dielectric constant (1.1 to 3.53 × 107) and dielectric tangent loss (0.03 to 2515) with varying Vf over the frequency range of 25 kHz to 5 MHz. A considerable enhancement in electrical conductivity (DC) is found, from 3.87 × 10-10 S/m (base polymer) to 53.5 S/m for the 0.19 Vf GNS-TPU nanocomposite. The GNS-TPU composites are mechanically robust, with a considerable increase in stiffness (˜4-fold) and strength (almost twice), maintaining its ductility up to 0.09 Vf GNS. The high dielectric constant at lower frequencies is attributed to the well-established Maxwell-Wagner polarization effect, whereas the high dielectric tangent loss is due to leakage currents as a physical conducting network is formed at high filler loadings. The layered structure, high aspect ratio, and improved dispersion of GNS are the main reasons for the improvement in both the dielectric characteristics and the mechanical properties of the host polymer. [Figure not available: see fulltext.

  17. Spatially resolved dielectric constant of confined water and its connection to the non-local nature of bulk water.

    PubMed

    Schaaf, Christian; Gekle, Stephan

    2016-08-28

    We use molecular dynamics simulations to compute the spatially resolved static dielectric constant of water in cylindrical and spherical nanopores as occurring, e.g., in protein water pockets or carbon nanotubes. For this, we derive a linear-response formalism which correctly takes into account the dielectric boundary conditions in the considered geometries. We find that in cylindrical confinement, the axial component behaves similar as the local density akin to what is known near planar interfaces. The radial dielectric constant shows some oscillatory features when approaching the surface if their radius is larger than about 2 nm. Most importantly, however, the radial component exhibits pronounced oscillations at the center of the cavity. These surprising features are traced back quantitatively to the non-local dielectric nature of bulk water. PMID:27586940

  18. The change in dielectric constant, AC conductivity and optical band gaps of polymer electrolyte film: Gamma irradiation

    SciTech Connect

    Raghu, S. Subramanya, K. Sharanappa, C. Mini, V. Archana, K. Sanjeev, Ganesh Devendrappa, H.

    2014-04-24

    The effects of gamma (γ) irradiation on dielectric and optical properties of polymer electrolyte film were investigated. The dielectric constant and ac conductivity increases with γ dose. Also optical band gap decreased from 4.23 to 3.78ev after irradiation. A large dependence of the polymer properties on the irradiation dose was noticed. This suggests that there is a possibility of improving polymer electrolyte properties on gamma irradiation.

  19. Investigation on thermo-mechanical instability of porous low dielectric constant materials

    NASA Astrophysics Data System (ADS)

    Zin, Emil Hyunbae

    This study investigates the structural stability of porous low dielectric constant materials (PLK) under thermal and mechanical load and the influence of contributing factors including porosity as intrinsic factor and plasma damage and moisture absorption as extrinsic factors on thermo-mechanical instability of PLK in advanced Cu/PLK interconnects. For this purpose, a ball indentation creep test technique was developed to examine the thermal and mechanical instability of PLK at relevant load and temperature conditions in the interconnect structure. Our exploration with the ball indentation creep test found that PLK films plastically deforms with time, indicating that viscoplastic deformation does occur under relevant conditions of PLK processing. On the basis of the results that the increase of the indentation depth with time shows more noticeable difference in PLK films with higher porosity, plasma exposure, and moisture absorption, it is our belief that PLK stability is greatly affected by porosity, plasma damage and moisture. Viscous flow was found to be mechanism for the viscoplastic deformation at the temperature and load of real PLK integration processing. This finding was obtained from the facts that the kinetics of the indentation creep fit very well with the viscous flow model and the extracted stress exponent is close to unity. Based on the results of temperature dependence in all PLK films, the activation energy(~1.5eV) of the viscosity back calculated from the experimental value of the kinetics was found to be much small than that of a pure glass (> 4eV). This suggests that the viscous flow of PLK is controlled by chemical reaction happening in PLK matrix. The FT-IR measurement for the examination of chemical bond reconfiguration shows that the intensity of Si-OH bonds increases with the flow while that of Si-O-Si, -CHX and Si-CH 3 bonds decreases, indicating that chemical reactions are involved in the deformation process. From these findings, it is

  20. Skeletal silica characterization in porous-silica low-dielectric-constant films by infrared spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Takada, Syozo; Hata, Nobuhiro; Seino, Yutaka; Fujii, Nobutoshi; Kikkawa, Takamaro

    2005-06-01

    Porous-silica low-dielectric-constant (low-k) films were prepared using a sol-gel method based on the self-assembly of surfactant templates. No change in the refractive index at 633 nm nor in the infrared-absorption intensities of C-H and O-H stretching vibrations at around 2900 and 3400cm-1 of porous-silica low-k films were observed after annealing at each temperature from 523 to 723 K. On the other hand, the Young's elastic modulus and hardness increased with the increase of annealing temperature. The structure in the complex dielectric function of porous-silica low-k films observed in between 1000 and 1400cm-1 is assigned as the asymmetric stretching vibration mode of the Si-O-Si bond. By applying the effective-medium theory by Bruggeman to the experimental results from infrared spectroscopic ellipsometry, we analyzed the skeletal silica structures. The peak positions of transverse (ωTO) and longitudinal (ωLO) vibration modes for Si-O-Si network in the silica skeleton of porous-silica films changed from 1061 to 1068cm-1 and from 1219 to 1232cm-1, respectively, with the annealing temperature. It is shown that the ωLO2/ωTO2 of skeletal silica correlates with Young's elastic modulus of porous-silica low-k films.

  1. Electronic structure, optical dielectric constant and born effective charge of EuAlO3

    NASA Astrophysics Data System (ADS)

    Sakhya, Anup Pradhan; Dutta, Alo; Shannigrahi, Santiranjan; Sinha, TP

    2016-01-01

    EuAlO3 (EAO) is synthesized by the sol-gel process. The Rietveld refinement of the X-ray diffraction data shows that the material has orthorhombic structure with Pbnm space group. The density functional theory calculations are initiated with the experimental lattice parameters. The full potential linearized augmented plane wave method and projector augmented wave method are used to investigate the ground state properties of EAO. An indirect band gap of 1.8 eV is observed with the valence band maximum at the Γ point and the conduction band minimum at the R point. The X-ray photoemission spectroscopy (XPS) spectra of EAO are obtained in the energy window of 0-1000 eV. Using the electronic density of states, the valence band (VB) spectrum of EAO is generated and compared with the observed VB-XPS spectrum. The optical dielectric constant and the refractive index of the material are calculated for the photon energy radiation. The optical properties show a considerable anisotropy in the material. The Born effective charge of various elements and the dielectric tensor of EAO have been calculated.

  2. Segmental Dynamics and Dielectric Constant of Polysiloxane Polar Copolymers as Plasticizers for Polymer Electrolytes.

    PubMed

    Choi, U Hyeok; Liang, Siwei; Chen, Quan; Runt, James; Colby, Ralph H

    2016-02-10

    Dielectric relaxation spectroscopy was used to investigate the segmental dynamics of a series of siloxane-based polar copolymers combining pendant cyclic carbonates and short poly(ethylene oxide) (PEO) chains. The homopolymer with cyclic carbonate as the only side chain exhibits higher glass transition temperature Tg and dielectric constant εs than the one with only PEO side chains. For their copolymers the observed Tg (agreeing well with the predicted values from the Fox equation) and εs decrease with increasing PEO side chain content. These polar polymers exhibit a glassy β relaxation with Arrhenius character, attributed to local chain motions of side groups attached to the main chain, and a segmental α relaxation, associated with the glass transition with a Vogel temperature dependence. As PEO side chain content increases, narrowing of the local glassy β relaxation was observed in the copolymers. The segmental α dynamics were observed to be faster, with an increase in breadth and decrease in strength with increasing PEO side chain content. Owing to the trade-off between Tg and εs, copolymers of intermediate composition result in the highest ionic conductivity when these copolymers are used to plasticize Li single-ion conducting ionomers. PMID:26735584

  3. The effect of PECVD plasma decomposition on the wettability and dielectric constant changes in silicon modified DLC films for potential MEMS and low stiction applications

    SciTech Connect

    Ogwu, A. A.; Okpalugo, T. I. T.; McLaughlin, J. A. D.

    2012-09-15

    We have carried out investigations aimed at understanding the mechanism responsible for a water contact angle increase of up to ten degrees and a decrease in dielectric constant in silicon modified hydrogenated amorphous carbon films compared to unmodified hydrogenated amorphous carbon films. Our investigations based on surface chemical constituent analysis using Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), SIMS, FTIR, contact angle / surface energy measurements and spectroscopic ellipsometry suggests the presence of hydrophobic chemical entities on the surface of the films. This observation is consistent with earlier theoretical plasma chemistry predictions and observed Raman peak shifts in the films. These surface hydrophobic entities also have a lower polarizability than the bonds in the un-modified films thereby reducing the dielectric constant of the silicon modified films measured by spectroscopic ellipsometry. Ellipsometric dielectric constant measurement is directly related to the surface energy through Hamaker's constant. Our current finding is expected to be of benefit to understanding stiction, friction and lubrication in areas that range from nano-tribology to microfluidics.

  4. A Simple Method for Estimation of Dielectric Constants and Polarizabilities of Nonpolar and Slightly Polar Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Panuganti, Sai R.; Wang, Fei; Chapman, Walter G.; Vargas, Francisco M.

    2016-07-01

    Many of the liquids that are used as electrical insulators are nonpolar or slightly polar petroleum-derived hydrocarbons, such as the ones used for cable and/or transformer oils. In this work, semi-empirical expressions with no adjustable parameters for the dielectric constant and the polarizability of nonpolar and slightly polar hydrocarbons and their mixtures are proposed and validated. The expressions that were derived using the Vargas-Chapman One-Third rule require the mass density and the molecular weight of the substance of interest. The equations were successfully tested for various hydrocarbons and polymers with dipole moments <0.23 and densities from 500 to 1200 kg\\cdot hbox {m}^{-3}. The predictions are in good agreement with the experimental data in a wide range of temperatures and pressures. The proposed expressions eliminate the need of extensive experimental data and require less input parameters compared to existing correlations.

  5. Dramatic increase in the oxygen reduction reaction for platinum cathodes from tuning the solvent dielectric constant.

    PubMed

    Fortunelli, Alessandro; Goddard, William A; Sha, Yao; Yu, Ted H; Sementa, Luca; Barcaro, Giovanni; Andreussi, Oliviero

    2014-06-23

    Hydrogen fuel cells (FC) are considered essential for a sustainable economy based on carbon-free energy sources, but a major impediment are the costs. First-principles quantum mechanics (density functional theory including solvation) is used to predict how the energies and barriers for the mechanistic steps of the oxygen reduction reaction (ORR) over the fcc(111) platinum surface depend on the dielectric constant of the solvent. The ORR kinetics can be strongly accelerated by decreasing the effective medium polarizability from the high value it has in water. Possible ways to realize this experimentally are suggested. The calculated volcano structure for the dependence of rate on solvent polarization is considered to be general, and should be observed in other electrochemical systems. PMID:24828005

  6. Determination of High-Frequency Dielectric Constant and Surface Potential of Graphene Oxide and Influence of Humidity by Kelvin Probe Force Microscopy.

    PubMed

    Salomão, Francisco C; Lanzoni, Evandro M; Costa, Carlos A; Deneke, Christoph; Barros, Eduardo B

    2015-10-20

    We use Kelvin probe force microscopy (KPFM) and capacitance coupling (dC/dz) to study the electrical properties of graphene oxide (GO). We propose using the dC/dz signal to probe the high frequency dielectric constant of mono- and few-layer GO. Our measurements suggest that the dynamic dielectric constant of GO is on the order of εGO ≅ 3.0 ε0, in the high frequency limit, and independent of the number of GO layers. The measurements are performed at a humidity controlled environment (5% of humidity). The effects of increasing humidity on both the dC/dz and KPFM measurements are analyzed. PMID:26393406

  7. Impact of electric-field dependent dielectric constants on two-dimensional electron gases in complex oxides

    SciTech Connect

    Peelaers, H.; Gordon, L.; Steiauf, D.; Janotti, A.; Van de Walle, C. G.; Krishnaswamy, K.; Sarwe, A.

    2015-11-02

    High-density two-dimensional electron gas (2DEG) can be formed at complex oxide interfaces such as SrTiO{sub 3}/GdTiO{sub 3} and SrTiO{sub 3}/LaAlO{sub 3}. The electric field in the vicinity of the interface depends on the dielectric properties of the material as well as on the electron distribution. However, it is known that electric fields can strongly modify the dielectric constant of SrTiO{sub 3} as well as other complex oxides. Solving the electrostatic problem thus requires a self-consistent approach in which the dielectric constant varies according to the local magnitude of the field. We have implemented the field dependence of the dielectric constant in a Schrödinger-Poisson solver in order to study its effect on the electron distribution in a 2DEG. Using the SrTiO{sub 3}/GdTiO{sub 3} interface as an example, we demonstrate that including the field dependence results in the 2DEG being confined closer to the interface compared to assuming a single field-independent value for the dielectric constant. Our conclusions also apply to SrTiO{sub 3}/LaAlO{sub 3} as well as other similar interfaces.

  8. FDR probe structure influence on the soil dielectric spectrum measurement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soil dielectric spectrum are related to the soil physical properties, and those are affected by the structure of the probe too. In order to determine how the probe structure influence the soil dielectric spectrum measurement, the two kinds of soils were measured at four water content level by 10...

  9. RF Field Enhancement with High Dielectric Constant (HDC) Pads in a Receive Array Coil at 3.0 T

    PubMed Central

    Yang, Qing X.; Luo, Wei; Rupprecht, Sebastian; Herse, Zachary; Sica, Christopher; Wang, Jianli; Cao, Zhipeng; Vesek, Jeffrey; Lanagan, Michael T.; Carluccio, Giuseppe; Ryu, Yeun-Chul; Collins, Christopher M.

    2012-01-01

    Purpose To investigate the use of a new high-dielectric constant (HDC) material for improving SNR and transmission efficiency for clinical MRI applications at 3T with cervical spine imaging. Materials and Methods Human subjects were imaged using a commercial cervical spine receive array coil on a clinical system with and without pads containing Barium Titanate beads in deuterium water placed around the neck. Numerical electromagnetic field simulations of the same configuration were also performed. Results Experimental and simulated maps of transmit and receive fields showed greater efficiency for imaging the cervical spine when the pads were present. Experimental measurements showed a significant improvement in SNR with the pads present and an average input power reduction of 46%. Conclusion Use of HDC material can enhance SNR and transmission efficiency for clinical imaging of the cervical spine at 3.0 T. PMID:23293090

  10. Enhanced Dielectric Constant for Efficient Electromagnetic Shielding Based on Carbon-Nanotube-Added Styrene Acrylic Emulsion Based Composite

    PubMed Central

    2010-01-01

    An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs)-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE) of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σac) of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2–12.4 GHz), showing a good agreement with the measured results. PMID:20596498

  11. Enhanced dielectric constant for efficient electromagnetic shielding based on carbon-nanotube-added styrene acrylic emulsion based composite.

    PubMed

    Li, Yong; Chen, Changxin; Li, Jiang-Tao; Zhang, Song; Ni, Yuwei; Cai, Seng; Huang, Jie

    2010-01-01

    An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs)-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE) of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σac) of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2-12.4 GHz), showing a good agreement with the measured results. PMID:20596498

  12. Mesostructured HfxAlyO2 Thin Films as Reliable and Robust Gate Dielectrics with Tunable Dielectric Constants for High-Performance Graphene-Based Transistors.

    PubMed

    Lee, Yunseong; Jeon, Woojin; Cho, Yeonchoo; Lee, Min-Hyun; Jeong, Seong-Jun; Park, Jongsun; Park, Seongjun

    2016-07-26

    We introduce a reliable and robust gate dielectric material with tunable dielectric constants based on a mesostructured HfxAlyO2 film. The ultrathin mesostructured HfxAlyO2 film is deposited on graphene via a physisorbed-precursor-assisted atomic layer deposition process and consists of an intermediate state with small crystallized parts in an amorphous matrix. Crystal phase engineering using Al dopant is employed to achieve HfO2 phase transitions, which produce the crystallized part of the mesostructured HfxAlyO2 film. The effects of various Al doping concentrations are examined, and an enhanced dielectric constant of ∼25 is obtained. Further, the leakage current is suppressed (∼10(-8) A/cm(2)) and the dielectric breakdown properties are enhanced (breakdown field: ∼7 MV/cm) by the partially remaining amorphous matrix. We believe that this contribution is theoretically and practically relevant because excellent gate dielectric performance is obtained. In addition, an array of top-gated metal-insulator-graphene field-effect transistors is fabricated on a 6 in. wafer, yielding a capacitance equivalent oxide thickness of less than 1 nm (0.78 nm). This low capacitance equivalent oxide thickness has important implications for the incorporation of graphene into high-performance silicon-based nanoelectronics. PMID:27355098

  13. Effects of adding HfO2 on the microstructure and dielectric properties of giant dielectric constant ceramic CaCu3Ti4O12

    NASA Astrophysics Data System (ADS)

    Yuan, W. X.; Hark, S. K.

    2010-03-01

    CaCu3Ti4O12 (CCTO), an unusual perovskite-like ceramic, is known for its extraordinarily high (˜10^4) and relatively frequency independent dielectric constant. It has drawn a lot of attention recently because of its potential applications in microelectronics and microwave devices. In this investigation, HfO2 powder was added to a pre-reacted CCTO powder, which was synthesized by a conventional solid-state reaction, at different concentrations from 1 to 70 wt% and the mixture was sintered into disc-shaped ceramic samples. The effects of adding HfO2 on the microstructure and dielectric properties of CCTO ceramics were investigated. In general, we found that the dielectric constant tends to increase with HfO2 addition up to 8 wt% and then decrease with further addition. Moreover, the dielectric loss was also influenced by the addition of HfO2, and a low loss tangent of ˜0.035 was obtained. The ac conductivity, impedance, complex dielectric permittivity and electric modulus graphs were used to analyze the data. These observations were explained on the basis of the internal-barrier-layer capacitor model with Maxwell-Wagner relaxations.

  14. Dielectric Loss Measurements on Raw Materials.

    ERIC Educational Resources Information Center

    Mwanje, J.

    1980-01-01

    Describes an experiment used to study dielectric properties of materials. Values of the dielectric loss tangent can be determined at low frequencies from Lissajous figures formed on an oscilloscope. Some mineral rock specimens show Debye-type relaxation peaks at frequencies in the region of 1 to 500 Hz. (Author/DS)

  15. Visualization of dielectric constant-electric field-temperature phase maps for imprinted relaxor ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Frederick, J. C.; Kim, T. H.; Maeng, W.; Brewer, A. A.; Podkaminer, J. P.; Saenrang, W.; Vaithyanathan, V.; Li, F.; Chen, L.-Q.; Schlom, D. G.; Trolier-McKinstry, S.; Rzchowski, M. S.; Eom, C. B.

    2016-03-01

    The dielectric phase transition behavior of imprinted lead magnesium niobate-lead titanate relaxor ferroelectric thin films was mapped as a function of temperature and dc bias. To compensate for the presence of internal fields, an external electric bias was applied while measuring dielectric responses. The constructed three-dimensional dielectric maps provide insight into the dielectric behaviors of relaxor ferroelectric films as well as the temperature stability of the imprint. The transition temperature and diffuseness of the dielectric response correlate with crystallographic disorder resulting from strain and defects in the films grown on strontium titanate and silicon substrates; the latter was shown to induce a greater degree of disorder in the film as well as a dielectric response lower in magnitude and more diffuse in nature over the same temperature region. Strong and stable imprint was exhibited in both films and can be utilized to enhance the operational stability of piezoelectric devices through domain self-poling.

  16. Stress measurements of planar dielectric elastomer actuators.

    PubMed

    Osmani, Bekim; Aeby, Elise A; Müller, Bert

    2016-05-01

    Dielectric elastomer actuator (DEA) micro- and nano-structures are referred to artificial muscles because of their specific continuous power and adequate time response. The bending measurement of an asymmetric, planar DEA is described. The asymmetric cantilevers consist of 1 or 5 μm-thin DEAs deposited on polyethylene naphthalate (PEN) substrates 16, 25, 38, or 50 μm thick. The application of a voltage to the DEA electrodes generates an electrostatic pressure in the sandwiched silicone elastomer layer, which causes the underlying PEN substrate to bend. Optical beam deflection enables the detection of the bending angle vs. applied voltage. Bending radii as large as 850 m were reproducibly detected. DEA tests with electric fields of up to 80 V/μm showed limitations in electrode's conductivity and structure failures. The actuation measurement is essential for the quantitative characterization of nanometer-thin, low-voltage, single- and multi-layer DEAs, as foreseen for artificial sphincters to efficiently treat severe urinary and fecal incontinence. PMID:27250436

  17. Measuring the cosmological constant with redshift surveys

    NASA Astrophysics Data System (ADS)

    Ballinger, W. E.; Peacock, J. A.; Heavens, A. F.

    1996-10-01

    It has been proposed that the cosmological constant {LAMBDA} might be measured from geometric effects on large-scale structure. A positive vacuum density leads to correlation function contours which are squashed in the radial direction when calculated assuming a matter-dominated model. We show that this effect will be somewhat harder to detect than previous calculations have suggested: the squashing factor is likely to be < 1.3, given realistic constraints on the matter contribution to {OMEGA}. Moreover, the geometrical distortion risks being confused with the redshift-space distortions caused by the peculiar velocities associated with the growth of galaxy clustering. These depend on the density and bias parameters via the combination β = {OMEGA}^0.6/b, and we show that the main practical effect of a geometrical flattening factor F is to simulate gravitational instability with B_eff_ ~ 0.5(F - 1). Nevertheless, with datasets of sufficient size it is possible to distinguish the two effects, We discuss in detail how this should be done, and give a maximum-likelihood method for extracting {LAMBDA} and βb from anisotropic power-spectrum data. New-generation redshift surveys of galaxies and quasars are potentially capable of detecting a non-zero vacuum density, if it exists at a cosmologically interesting level.

  18. Dielectric spectroscopy measurements for moisture prediction in vidalia onions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microwave sensing offers an opportunity to determine nondestructively the amount of moisture in materials by sensing the dielectric properties of the material. Dielectric properties of Vidalia onions grown in southeastern Georgia were measured with an open-ended coaxial-line probe and network analyz...

  19. Effect of organic flux on the colossal dielectric constant of CaCu3Ti4O12 (CCTO)

    NASA Astrophysics Data System (ADS)

    Razdan, Vishnu; Singh, Abhishek; Arnold, Brad; Choa, Fow-Sen; Kelly, Lisa; Singh, N. B.

    2015-05-01

    We have used low temperature organics to achieve orientation of the grains of Ca2/3Cu3Ti4O12 (CCTO) compound to increase the resistivity. During the past fifteen years CCTO has been studied extensively for its performance as a dielectric capacitor. We have synthesized and grown large grains of pure Ca2/3Cu3Ti4O12 and doped compound, and studied the dielectric constant and resistivity. The grains were aligned by using a naphthalene-camphor eutectic. CCTO was mixed in the organic melt and oriented by the directional solidification method. This material has different characteristics than pure processed CCTO material. The effect of solidification conditions and its effect on the morphology and the dielectric constant, resistivity and loss tan delta of pure and doped CCTO are described in this article.

  20. Dynamics of a caged imidazolium cation-toward understanding the order-disorder phase transition and the switchable dielectric constant.

    PubMed

    Zhang, Xi; Shao, Xiu-Dan; Li, Si-Chao; Cai, Ying; Yao, Ye-Feng; Xiong, Ren-Gen; Zhang, Wen

    2015-03-18

    A molecular compass-like behaviour is found in a perovskite-type cage compound (HIm)2[KCo(CN)6] (HIm = imidazolium cation). The dynamic changes in the HIm cation from the static to rotating state along with the rearrangement of the host cage result in switchable and anisotropic dielectric constants. PMID:25579450

  1. Dipole correlation effects on the local field and the effective dielectric constant in composite dielectrics containing high-k inclusions.

    PubMed

    Allahyarov, Elshad; Löwen, Hartmut; Zhu, Lei

    2016-07-28

    Mixing dielectric polymers with high permittivity (high-k) inclusions can affect their electrical properties. In actuation applications of dielectric elastomers, the polarized inclusions generate additional volume polarization-related electrostriction. In energy storage applications, it is possible to store more energy in dielectric composites because of additional polarization of the inclusions and interfaces. However, mixing an electroactive polymer with high-k inclusions also brings several disadvantages. The expulsion of the field from the interior of high-k fillers and the presence of two poles on the filler surface along the applied field direction result in higher local fields EL near the inclusion poles. The resulting field enhancement lowers the breakdown field (Eb) threshold for the material and therefore compromises the actuation and energy storage capabilities of dielectric composites. To mitigate this issue, the dependence of EL on the morphology of inclusion distribution, the field localization effect in chained configurations, and the role of the dipole-dipole correlation effects in the enhancement of the dipolar field of inclusions are analyzed. We show that the dipolar correlation effects are strong in large inclusion composites and their contribution to the inclusion dipole moment μ and to the local fields EL can reach 30-50%. A new method for deriving the composite permittivity from the field EL distribution, based on a caged probe technique, is also presented. PMID:27357433

  2. Silicon Dioxide Film with Low Dielectric Constants using Liquid-Phase Deposition

    NASA Astrophysics Data System (ADS)

    Chanthamaly, Phonekeo; Arakawa, Taro; Haneji, Nobuo

    1999-10-01

    We propose a method which is advantageous for forming F bonds in the Si O network without any external energy assistance. This method can be used to grow SiO2 films in supersaturated fluorosilicic acid (H2SiF6) at room temperature. The dissociation reaction between H2SiF6 and H2O leads to the formation of silica and the deposition of SiO2 films on the surface of substrates. Because the reaction involves an aqueous acid which contains fluorine, F bonds are formed in the films naturally. The percentage of F atoms increased from 3.5 to 4.75% according to X-ray photoelectron sectroscopy (XPS) survey, and the F1S peak changed from 687.72 to 687.18 eV with an increase in concentration from 2.25 to 3.25 mol/l, respectively. In addition, due to the effect of F bonds inside the film, the dielectric constant also decreased from 3.7 to about 3. Atomic force microscopy (AFM) images showed that the surface roughness increased with increasing H2SiF6 concentration due to the attack of F; however, the maximum surface roghness was less than 0.5 nm.

  3. High-relative-dielectric-constant bismuth-niobium-oxide films prepared using Nb-rich precursor solution

    NASA Astrophysics Data System (ADS)

    Ariga, Tomoki; Inoue, Satoshi; Matsumoto, Shin; Onoue, Masatoshi; Miyasako, Takaaki; Tokumitsu, Eisuke; Shimoda, Tatsuya

    2015-09-01

    Various ceramic materials have been developed for electronic devices. Bismuth-niobium-oxide (BNO) films prepared by a chemical solution deposition (CSD) method have the cubic pyrochlore phase, high relative dielectric constant, and low tangent loss (tan δ). We found that a BNO cubic pyrochlore crystal was Nb-rich, even though its pyrochlore formula is A2B2O7. The crystallization temperature of BNO increased with increasing Nb ratio. The relative dielectric constants of BNO films were related to the Nb ratio in the precursor solution. The dielectric constant of the BNO films was 250 when the Bi and Nb ratios in BNO precursor solutions were 4 and 6, respectively, and the sintering temperature was 600 °C. In addition, the tan δ was less than 0.01 at 1 kHz, which is higher than the reported values of BNO systems despite using the CSD method. These results show that the properties of BNO films prepared by the CSD method were associated with the Nb ratio in the precursor solution. Furthermore, the dielectric characteristics indicated that the Nb-rich BNO films have potential applications in electronic devices.

  4. The evolution of dielectric properties measurement techniques for agricultural products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The important applications for dielectric properties, or electric permittivities, of agricultural products are described and the evolution of techniques used for their measurement over frequencies ranging from audio to microwave ranges are described briefly. References are cited for further informat...

  5. Optical constants, dispersion energy parameters and dielectric properties of ultra-smooth nanocrystalline BiVO4 thin films prepared by rf-magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Das, N. S.; Chattopadhyay, K. K.

    2014-07-01

    BiVO4 thin films have been prepared through radio frequency (rf) magnetron sputtering of a pre-fabricated BiVO4 target on ITO coated glass (ITO-glass) substrate and bare glass substrates. BiVO4 target material was prepared through solid-state reaction method by heating Bi2O3 and V2O5 mixture at 800 °C for 8 h. The films were characterized by X-ray diffraction, UV-Vis spectroscopy, LCR meter, field emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy. BiVO4 thin films deposited on the ITO-glass substrate are much smoother compared to the thin films prepared on bare glass substrate. The rms surface roughness calculated from the AFM images comes out to be 0.74 nm and 4.2 nm for the films deposited on the ITO-glass substrate and bare glass substrate for the deposition time 150 min respectively. Optical constants and energy dispersion parameters of these extra-smooth BiVO4 thin films have been investigated in detail. Dielectric properties of the BiVO4 thin films on ITO-glass substrate were also investigated. The frequency dependence of dielectric constant of the BiVO4 thin films has been measured in the frequency range from 20 Hz to 2 MHz. It was found that the dielectric constant increased from 145 to 343 at 20 Hz as the film thickness increased from 90 nm to 145 nm (deposition time increased from 60 min to 150 min). It shows higher dielectric constant compared to the literature value of BiVO4.

  6. Analysis of the Dielectric constant of saline-alkali soils and the effect on radar backscattering coefficient: a case study of soda alkaline saline soils in Western Jilin Province using RADARSAT-2 data.

    PubMed

    Li, Yang-yang; Zhao, Kai; Ren, Jian-hua; Ding, Yan-ling; Wu, Li-li

    2014-01-01

    Soil salinity is a global problem, especially in developing countries, which affects the environment and productivity of agriculture areas. Salt has a significant effect on the complex dielectric constant of wet soil. However, there is no suitable model to describe the variation in the backscattering coefficient due to changes in soil salinity content. The purpose of this paper is to use backscattering models to understand behaviors of the backscattering coefficient in saline soils based on the analysis of its dielectric constant. The effects of moisture and salinity on the dielectric constant by combined Dobson mixing model and seawater dielectric constant model are analyzed, and the backscattering coefficient is then simulated using the AIEM. Simultaneously, laboratory measurements were performed on ground samples. The frequency effect of the laboratory results was not the same as the simulated results. The frequency dependence of the ionic conductivity of an electrolyte solution is influenced by the ion's components. Finally, the simulated backscattering coefficients measured from the dielectric constant with the AIEM were analyzed using the extracted backscattering coefficient from the RADARSAT-2 image. The results show that RADARSAT-2 is potentially able to measure soil salinity; however, the mixed pixel problem needs to be more thoroughly considered. PMID:25101317

  7. Analysis of the Dielectric Constant of Saline-Alkali Soils and the Effect on Radar Backscattering Coefficient: A Case Study of Soda Alkaline Saline Soils in Western Jilin Province Using RADARSAT-2 Data

    PubMed Central

    Li, Yang-yang; Zhao, Kai; Ren, Jian-hua; Ding, Yan-ling; Wu, Li-li

    2014-01-01

    Soil salinity is a global problem, especially in developing countries, which affects the environment and productivity of agriculture areas. Salt has a significant effect on the complex dielectric constant of wet soil. However, there is no suitable model to describe the variation in the backscattering coefficient due to changes in soil salinity content. The purpose of this paper is to use backscattering models to understand behaviors of the backscattering coefficient in saline soils based on the analysis of its dielectric constant. The effects of moisture and salinity on the dielectric constant by combined Dobson mixing model and seawater dielectric constant model are analyzed, and the backscattering coefficient is then simulated using the AIEM. Simultaneously, laboratory measurements were performed on ground samples. The frequency effect of the laboratory results was not the same as the simulated results. The frequency dependence of the ionic conductivity of an electrolyte solution is influenced by the ion's components. Finally, the simulated backscattering coefficients measured from the dielectric constant with the AIEM were analyzed using the extracted backscattering coefficient from the RADARSAT-2 image. The results show that RADARSAT-2 is potentially able to measure soil salinity; however, the mixed pixel problem needs to be more thoroughly considered. PMID:25101317

  8. Measuring the dielectric properties of soil-organic mixtures using coaxial impedance dielectric reflectometry

    NASA Astrophysics Data System (ADS)

    Francisca, Franco M.; Montoro, Marcos A.

    2012-05-01

    Contamination of soils with non-aqueous phase liquids (NAPLs) is frequently produced by accidental spills and storage tanks or pipes leakage. The main goals dealing with soil and groundwater contamination include determining the extension of the affected zone, monitoring the contaminant plume and quantifying the pollution degree. The objective of this work is to evaluate the potential of dielectric permittivity measurements to detect the presence of NAPLs in sands. Tested samples were fine, medium, coarse and silty sand with different volumetric contents of water and paraffin oil. The dielectric permittivity was measured by means of a Coaxial Impedance Dielectric Reflectometry method in specimens with either known fluid content or at different stages during immiscible displacement tests. A simplified method was developed to quantify the amount of oil from dielectric permittivity measurements and effective mixture media models. Obtained results showed that groundwater contamination with NAPL and the monitoring of immiscible fluid displacement in saturated porous media can be clearly identified from dielectric measurements. Finally, very accurate results can be obtained when computing the contamination degree with the proposed method in comparison with the real volumetric content of NAPL (r2 > 90%).

  9. Critical interparticle distance for the remarkably enhanced dielectric constant of BaTiO3-Ag hybrids filled polyvinylidene fluoride composites

    NASA Astrophysics Data System (ADS)

    Luo, Suibin; Yu, Shuhui; Fang, Fang; Lai, Maobai; Sun, Rong; Wong, Ching-Ping

    2014-06-01

    Discrete nano Ag-deposited BaTiO3 (BT-Ag) hybrids with varied Ag content were synthesized, and the hybrids filled polyvinylidene fluoride (PVDF) composites were prepared. The effect of Ag content on the dielectric properties of the composites were analyzed based on the diffused electrical double layer theory. Results showed that with a higher Ag content in BT-Ag hybrids, the dielectric constant of BT-Ag/PVDF composites increases fast with the filler loading, while the dielectric loss and conductivity showed a suppressed and moderate increase. The dielectric constant of BT-0.61Ag/PVDF (61 wt. % of Ag in BT-Ag hybrid) composites reached 613, with the dielectric loss of 0.29 at 1 kHz. It was deduced that remarkably enhanced dielectric constant appeared when the interparticle distance decreased to a critical value of about 20 nm.

  10. Technique for Performing Dielectric Property Measurements at Microwave Frequencies

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Jackson, Henry W. (Inventor)

    2014-01-01

    A method, system, apparatus, and computer readable medium has been provided with the ability to obtain a complex permittivity dielectric or a complex permeability micron of a sample in a cavity. One or more complex-valued resonance frequencies f(sub m) of the cavity, wherein each f(sub m) is a measurement, are obtained. Maxwell's equations are solved exactly for dielectric, and/or micron, using the f(sub m) as known quantities, thereby obtaining the dielectric and/or micron of the sample.

  11. Double-stacked dielectric resonator for sensitive EPR measurements.

    PubMed

    Jaworski, M; Sienkiewicz, A; Scholes, C P

    1997-01-01

    A new approximate method for predicting the resonant frequencies and for solving the field distribution problem of a cylindrical dielectric resonator (DR) is developed. The model proposed in this paper bridges the gap between rigorous and accurate finite-element or Green function-based numerical methods on the one hand and on the other hand, simple approximate solutions in which the field distribution can be described analytically, but the resulting frequency is accurate within a few percent only. In the method described here, the approximate solution for the microwave field distribution is modified by substituting different values of the radial separation constants inside and outside of the diskshaped DR. The model is generalized for the double-stacked DR structure and enables one to introduce corrections that take into account the presence of the shielding walls and of the cylindrical sample hole. Good agreement is found between experimental and calculated results for both the single and double-stacked structures that are designed around commercially available X-band DRs (9-10 GHz). For the resonant frequency of the lowest transverse-electric TEzero1 delta mode that is commonly used for EPR measurements, the accuracy of the method is better than 1%. Experimentally measured resonator filling factors are also in good agreement with those theoretically estimated. Both the theory and the experimental results suggest that the double-stacked DR structure with finite spacing between the ceramic cylinders is the most suitable for EPR measurements of long lossy samples. PMID:9169212

  12. Corrosion in low dielectric constant Si-O based thin films: Buffer concentration effects

    SciTech Connect

    Zeng, F. W.; Lane, M. W.; Gates, S. M.

    2014-05-15

    Organosilicate glass (OSG) is often used as an interlayer dielectric (ILD) in high performance integrated circuits. OSG is a brittle material and prone to stress-corrosion cracking reminiscent of that observed in bulk glasses. Of particular concern are chemical-mechanical planarization techniques and wet cleans involving solvents commonly encountered in microelectronics fabrication where the organosilicate film is exposed to aqueous environments. Previous work has focused on the effect of pH, surfactant, and peroxide concentration on the subcritical crack growth of these films. However, little or no attention has focused on the effect of the conjugate acid/base concentration in a buffer. Accordingly, this work examines the “strength” of the buffer solution in both acidic and basic environments. The concentration of the buffer components is varied keeping the ratio of acid/base and therefore pH constant. In addition, the pH was varied by altering the acid/base ratio to ascertain any additional effect of pH. Corrosion tests were conducted with double-cantilever beam fracture mechanics specimens and fracture paths were verified with ATR-FTIR. Shifts in the threshold fracture energy, the lowest energy required for bond rupture in the given environment, G{sub TH}, were found to shift to lower values as the concentration of the base in the buffer increased. This effect was found to be much larger than the effect of the hydroxide ion concentration in unbuffered solutions. The results are rationalized in terms of the salient chemical bond breaking process occurring at the crack tip and modeled in terms of the chemical potential of the reactive species.

  13. New Dielectric Measurement Data to Determine the Permittivity of Seawater at 1.4313 Hz

    NASA Technical Reports Server (NTRS)

    Lang, R.; Zhou, Y.; Utku, C.; Levine, D.

    2012-01-01

    This paper describes the new measurements - made in 2010-2011 - of the dielectric constant of seawater at 1.413 GHz using a resonant cavity technique. The purpose of these measurements is to develop an accurate relationship concerning the dependence of the dielectric constant of seawater on temperature and salinity for use by the Aquarius inversion algorithm. Aquarius is a NASA/CONAE satellite mission launched in June of 2011 with the primary mission of measuring global sea surface salinity with a 1.413 GHz radiometer to an accuracy of 0.2 psu. A brass microwave cavity resonant at 1.413 GHz has been used to measure the dielectric constant of seawater. The seawater is introduced into the cavity through a capillary glass tube having an inner diameter of 0.1 mm. The change of resonant frequency and the cavity Q value are used to determine the real and imaginary parts of the dielectric constant of seawater. Measurements are automated with Visual Basic software developed at the George Washington University. In this paper, new results from measurements made since September 2010 will be presented for salinities of 30, 35 and 38 psu with a temperature range of 0 C to 35 C in intervals of 5 C. These measurements are more accurate than earlier measurements made in 2008. The new results will be compared to the Klein-Swift (KS) and Meissner-Wentz (MW) model functions. The importance of an accurate model function will be illustrated by using these model functions to invert the Aquarius brightness temperature to retrieve the salinity values. The salinity values will be compared to co-located in situ data collected by Argo buoys.

  14. Anomalous change in dielectric constant of CaCu{sub 3}Ti{sub 4}O{sub 12} under violet-to-ultraviolet irradiation

    SciTech Connect

    Masingboon, C.; Eknapakul, T.; Suwanwong, S.; Buaphet, P.; Nakajima, H.; Mo, S.-K.; Thongbai, P.; King, P. D. C.; Maensiri, S.; Meevasana, W.

    2013-05-20

    The influence of light illumination on the dielectric constant of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) polycrystals is studied in this work. When exposed to 405-nm laser light, a reversible enhancement in the room temperature capacitance as high as 22% was observed, suggesting application of light-sensitive capacitance devices. To uncover the microscopic mechanisms mediating this change, we performed electronic structure measurements, using photoemission spectroscopy, and measured the electrical conductivity of the CCTO samples under different conditions of light exposure and oxygen partial pressure. Together, these results suggest that the large capacitance enhancement is driven by oxygen vacancies induced by the irradiation.

  15. Molten salt synthesis of nanocrystalline phase of high dielectric constant material CaCu3Ti4O12.

    PubMed

    Prakash, B Shri; Varma, K B R

    2008-11-01

    Nanocrystalline powders of giant dielectric constant material, CaCu3Ti4O12 (CCTO), have been prepared successfully by the molten salt synthesis (MSS) using KCl at 750 degrees C/10 h, which is significantly lower than the calcination temperature (approximately 1000 degrees C) that is employed to obtain phase pure CCTO in the conventional solid-state reaction route. The water washed molten salt synthesized powder, characterized by X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM) confirmed to be a phase pure CCTO associated with approximately 150 nm sized crystallites of nearly spherical shape. The decrease in the formation temperature/duration of CCTO in MSS method was attributed to an increase in the diffusion rate or a decrease in the diffusion length of reacting ions in the molten salt medium. As a consequence of liquid phase sintering, pellets of as-synthesized KCl containing CCTO powder exhibited higher sinterability and grain size than that of KCl free CCTO samples prepared by both MSS method and conventional solid-state reaction route. The grain size and the dielectric constant of KCl containing CCTO ceramics increased with increasing sintering temperature (900 degrees C-1050 degrees C). Indeed the dielectric constants of these ceramics were higher than that of KCl free CCTO samples prepared by both MSS method and those obtained via the solid-state reaction route and sintered at the same temperature. Internal barrier layer capacitance (IBLC) model was invoked to correlate the observed dielectric constant with the grain size in these samples. PMID:19198302

  16. Dielectric constant and low-frequency infrared spectra for liquid water and ice Ih within the E3B model

    SciTech Connect

    Shi, L.; Ni, Y.; Drews, S. E. P.; Skinner, J. L.

    2014-08-28

    Two intrinsic difficulties in modeling condensed-phase water with conventional rigid non-polarizable water models are: reproducing the static dielectric constants for liquid water and ice Ih, and generating the peak at about 200 cm{sup −1} in the low-frequency infrared spectrum for liquid water. The primary physical reason for these failures is believed to be the missing polarization effect in these models, and consequently various sophisticated polarizable water models have been developed. However, in this work we pursue a different strategy and propose a simple empirical scheme to include the polarization effect only on the dipole surface (without modifying a model's intermolecular interaction potential). We implement this strategy for our explicit three-body (E3B) model. Our calculated static dielectric constants and low-frequency infrared spectra are in good agreement with experiment for both liquid water and ice Ih over wide temperature ranges, albeit with one fitting parameter for each phase. The success of our modeling also suggests that thermal fluctuations about local minima and the energy differences between different proton-disordered configurations play minor roles in the static dielectric constant of ice Ih. Our analysis shows that the polarization effect is important in resolving the two difficulties mentioned above and sheds some light on the origin of several features in the low-frequency infrared spectra for liquid water and ice Ih.

  17. Low-dielectric-constant fluorinated diamond-like carbon thin films by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yi, Jeong Woo

    Fluorinated amorphous carbon (a-C:F) thin films are developed for a low dielectric constant interlayer dielectric material from hexafluorobenze (C 6F6) or 1,1,1,2-tetrafluoroethane (FCH2CF 4) as the source gas and argon as the diluent gas in an asymmetric capacitively coupled rf (radio frequency) plasma reactor and an inductively coupled plasma reactor. Effects of input rf power, fluorination, applied bias voltage and post annealing on the properties of a-C:F films are investigated. For depositing a-C:F films from highly diluted C6F6 (3%) and argon (97%) in the capacitively rf plasma reactor at 150 mTorr, the dielectric constant of the film increases from 2.0 to 2.8 as the rf power is increased from 10 W to 70 W, while the optical energy gap decreases from 2.6 eV to 1.9 eV and the transparency in a ultra-violet range is degraded. At input power of 100 W, the deposited film exhibits high residual stress of 40 MPa and easily peeled off by a Scotch tape test. This is due to high self-bias voltage (-230 V) developed at the substrate holder during deposition. When depositing amorphous carbon films from tetrafluoroethane (TFE) and methane in the capacitively coupled plasma reactor, the incorporation of fluorine in the film is increased with increasing TFE fraction in the feed gas mixture. The dielectric constant of the a-C:F film deposited from pure TFE is as low as 2.3, but the film exhibits poor thermal stability while a-C:H (diamond-like carbon) film deposited from pure methane has a dielectric constant of 3.8 and shows good thermal stability up to 400°C. As the TFE content in the feed is increased, the dielectric constant and the refractive index decrease while the transparency of the film is enhanced significantly. When depositing a-C:F films from C6F6 (4 sccm) and Ar (5 sccm) in the inductively coupled rf plasma reactor, the bias voltage (from a separate 100 KHz source) applied to the substrate holder affects the film properties significantly. As the negative bias

  18. SILC decay in La 2O 3 gate dielectrics grown on Ge substrates subjected to constant voltage stress

    NASA Astrophysics Data System (ADS)

    Rahman, M. S.; Evangelou, E. K.; Androulidakis, I. I.; Dimoulas, A.; Mavrou, G.; Galata, S.

    2010-09-01

    The effect of constant voltage stress (CVS) on Pt/La 2O 3/ n-Ge MOS devices biased at accumulation is investigated and reported. It is found that the stress induced leakage current (SILC) initially increases due to electron charge trapping on pre-existing bulk oxide defects. After 10 s approximately, a clear decay of SILC commences which follows a t-n power law, with n lying between 0.56 and 0.75. This decay of SILC is not changed or reversed when the stressing voltage stops for short time intervals. The effect is attributed to the creation of new positively charged defects in the oxide because of the applied stressing voltage, while other mechanism such as dielectric relaxation proposed in the past is proved insufficient to explain the experimental data. Also high frequency capacitance vs. gate voltage ( C- V g) curves measured under different CVS conditions divulge the creation of defects and charge trapping characteristics of La 2O 3 preciously. At low CVS exemplify the generation positively charged defects, however at higher CVS charge trapping obeys a model that was previously proposed and is a continuous distribution of traps.

  19. Resonant ultrasound spectroscopy for elastic constant measurements

    SciTech Connect

    Dixon, R.D.; Migliori, A.; Roe, L.H.

    1993-12-31

    All objects exhibit vibrational resonances when mechanically excited. These resonant frequencies are determined by density, geometry, and elastic moduli. Resonant ultrasound spectroscopy (RUS) takes advantage of the known relationship between the parameters. In particular, for a freely suspended object, with three of the four parameters (vibrational spectra, density, geometry, or elastic moduli) known the remaining one can be calculated. From a materials characterization standpoint it is straight-forward to measure density and geometry but less so to measure all the elastic moduli. It has recently become possible to quickly and accurately measure vibrational spectra, and using code written at Los Alamos, calculate all the elastic moduli simultaneously. This is done to an accuracy of better than one percent for compression and 0.1 percent for shear. RUS provides rapid acquisition of materials information here-to-fore obtainable only with difficulty. It will greatly facilitate the use of real materials properties in models and thus make possible more realistic modeling results. The technique is sensitive to phase changes and microstructure. This offers a change to input real data into microstructure and phase change models. It will also enable measurement of moduli at locations in and about a weld thus providing information for a validating coupled thermomechanical calculations.

  20. Ellipsometric method for the measurement of temperature and optical constants of incandescent transition metals

    NASA Technical Reports Server (NTRS)

    Hansen, George P.; Krishnan, Shankar; Hauge, Robert H.; Margrave, John L.

    1989-01-01

    The development of a unique noncontact temperature measurement device utilizing rotating analyzer ellipsometry is described. The technique circumvents the necessity of spectral emissivity estimation by direct measurement concomitant with radiance brightness. Simultaneous determinations of dielectric constants and refractive indices allow changes in the physical and chemical state of a heated surface to be monitored. The results of optical property measurements at 633 nm as functions of temperature between 1000 and 2500 K for eight transition metals including Hf, Ir, Mo, Nb, Pd, Pt, Ta, and V are presented together with preliminary results of oxidation studies on iridium.

  1. Ellipsometric method for the measurement of temperature and optical constants of incandescent transition metals.

    PubMed

    Hansen, G P; Krishnan, S; Hauge, R H; Margrave, J L

    1989-05-15

    The development of a unique noncontact temperature measurement device utilizing rotating analyzer ellipsometry is described. The technique circumvents the necessity of spectral emissivity estimation by direct measurement concomitant with radiance brightness. Simultaneous determinations of dielectric constants and refractive indices allow changes in the physical and chemical state of a heated surface to be monitored. The results of optical property measurements at 633 nm as functions of temperature between 1000 and 2500 K for eight transition metals including Hf, Ir, Mo, Nb, Pd, Pt, Ta, and V are presented together with preliminary results of oxidation studies on iridium. PMID:20548762

  2. The electro-mechanical phase transition of Gent model dielectric elastomer tube with two material constants

    NASA Astrophysics Data System (ADS)

    Liu, Liwu; Luo, Xiaojian; Fei, Fan; Wang, Yixing; Leng, Jinsong; Liu, Yanju

    2013-04-01

    Applied to voltage, a dielectric elastomer membrane may deform into a mixture of two states under certain conditions. One of which is the flat state and the other is the wrinkled state. In the flat state, the membrane is relatively thick with a small area, while on the contrary, in the wrinkled state, the membrane is relatively thin with a large area. The coexistence of these two states may cause the electromechanical phase transition of dielectric elastomer. The phase diagram of idea dielectric elastomer membrane under unidirectional stress and voltage inspired us to think about the liquid-to-vapor phase transition of pure substance. The practical working cycle of a steam engine includes the thermodynamical process of liquid-to-vapor phase transition, the fact is that the steam engine will do the maximum work if undergoing the phase transition process. In this paper, in order to consider the influence of coexistent state of dielectric elastomer, we investigate the homogeneous deformation of the dielectric elastomer tube. The theoretical model is built and the relationship between external loads and stretch are got, we can see that the elastomer tube experiences the coexistent state before reaching the stretching limit from the diagram. We think these results can guide the design and manufacture of energy harvesting equipments.

  3. Planck’s constant as a natural unit of measurement

    NASA Astrophysics Data System (ADS)

    Quincey, Paul

    2013-09-01

    The proposed revision of SI units would embed Planck’s constant into the definition of the kilogram, as a fixed constant of nature. Traditionally, Planck’s constant is not readily interpreted as the size of something physical, and it is generally only encountered by students in the mathematics of quantum physics. Richard Feynman’s path integral formulation of quantum mechanics allows a neat visualization of the constant as the circumference of a surveyor’s wheel for measuring action along each path, making Planck’s constant a natural yardstick, almost literally. This approach is shown to have other benefits in the presentation of other basic quantum phenomena.

  4. Assembly of a high-dielectric constant thin TiOx layer directly on H-terminated semiconductor diamond

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Liu, Jiangwei; Sang, Liwen; Liao, Meiyong; Coathup, David; Imura, Masataka; Shi, Baogui; Gu, Changzhi; Koide, Yasuo; Ye, Haitao

    2016-01-01

    A high-dielectric constant (high-k) TiOx thin layer was fabricated on hydrogen-terminated diamond (H-diamond) surface by low temperature oxidation of a thin titanium layer in ambient air. The metallic titanium layer was deposited by sputter deposition. The dielectric constant of the resultant TiOx was calculated to be around 12. The capacitance density of the metal-oxide-semiconductor (MOS) based on the TiOx/H-diamond was as high as 0.75 μF/cm2 contributed from the high-k value and the very thin thickness of the TiOx layer. The leakage current was lower than 10-13 A at reverse biases and 10-7A at the forward bias of -2 V. The MOS field-effect transistor based on the high-k TiOx/H-diamond was demonstrated. The utilization of the high-k TiOx with a very thin thickness brought forward the features of an ideally low subthreshold swing slope of 65 mV per decade and improved drain current at low gate voltages. The advantages of the utilization high-k dielectric for diamond metal-oxide semiconductor field effect transistors are anticipated.

  5. Monitoring Coaxial-Probe Contact Force for Dielectric Properties Measurement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A means is described for measuring and monitoring the contact force applied to a material sample with an open-ended coaxial-line probe for purposes of measuring the dielectric properties of semisolid material samples such as fruit, vegetable and animal tissues. The equipment consists of a stainless...

  6. Measurement of the dielectric properties of high-purity sapphire at 1.865 GHZ from 2-10 Kelvin

    SciTech Connect

    N. Pogue, P. McIntyre, Akhdiyor Sattarov, Charles Reece

    2012-06-01

    A dielectric test cavity was designed and tested to measure the microwave dielectric properties of ultrapure sapphire at cryogenic temperatures. Measurements were performed by placing a large cylindrical crystal of sapphire in a Nb superconducting cavity operating in the TE01 mode at 1.865 GHz. The dielectric constant, heat capacity, and loss tangent were all calculated using experimental data and RF modeling software. The motivation for these measurements was to determine if such a sapphire could be used as a dielectric lens to focus the magnetic field onto a sample wafer in a high field wafer test cavity. The measured properties have been used to finalize the design of the wafer test cavity.

  7. Four-probe methods for measurement of piezoresistance constants

    SciTech Connect

    Lyubimskii, V.M.; Semenov, A.I.

    1987-08-01

    Methods are described for simultaneous measurement of longitudinal and transverse piezoresistance constants, as well as measurement of the relative change in resistivity under deformation. The methods presented are simple and quicker than traditional four-probe methods.

  8. Cathode fall measurement in a dielectric barrier discharge in helium

    SciTech Connect

    Hao, Yanpeng; Zheng, Bin; Liu, Yaoge

    2013-11-15

    A method based on the “zero-length voltage” extrapolation is proposed to measure cathode fall in a dielectric barrier discharge. Starting, stable, and discharge-maintaining voltages were measured to obtain the extrapolation zero-length voltage. Under our experimental conditions, the “zero-length voltage” gave a cathode fall of about 185 V. Based on the known thickness of the cathode fall region, the spatial distribution of the electric field strength in dielectric barrier discharge in atmospheric helium is determined. The strong cathode fall with a maximum field value of approximately 9.25 kV/cm was typical for the glow mode of the discharge.

  9. Investigation of temperature dependent dielectric constant of a sputtered TiN thin film by spectroscopic ellipsometry

    SciTech Connect

    Tripura Sundari, S. Ramaseshan, R.; Jose, Feby; Dash, S.; Tyagi, A. K.

    2014-01-21

    The temperature dependence of optical constants of titanium nitride thin film is investigated using Spectroscopic Ellipsometry (SE) between 1.4 and 5 eV in the temperature range of 300 K to 650 K in steps of 50 K. The real and imaginary parts of the dielectric functions ε{sub 1}(E) and ε{sub 2}(E) marginally increase with increase in temperature. A Drude Lorentz dielectric analysis based on free electron and oscillator model are carried out to describe the temperature behavior. With increase in temperature, the unscreened plasma frequency and broadening marginally decreased and increased, respectively. The parameters of the Lorentz oscillator model also showed that the relaxation time decreased with temperature while the oscillator energies increased. This study shows that owing to the marginal change in the refractive index with temperature, titanium nitride can be employed for surface plasmon sensor applications even in environments where rise in temperature is imminent.

  10. FDTD simulations and analysis of thin sample dielectric properties measurements using coaxial probes

    SciTech Connect

    Bringhurst, S.; Iskander, M.F.; White, M.J.

    1996-12-31

    A metallized ceramic probe has been designed for high temperature broadband dielectric properties measurements. The probe was fabricated out of an alumina tube and rod as the outer and inner conductors respectively. The alumina was metallized with a 3 mil layer of moly-manganese and then covered with a 0.5 mil protective layer of nickel plating. The probe has been used to make complex dielectric properties measurements over the complete frequency band from 500 MHz to 3 GHz, and for temperatures as high as 1,000 C. A 3D Finite-Difference Time-Domain (FDTD) code was used to help investigate the feasibility of this probe to measure the complex permittivity of thin samples. It is shown that by backing the material under test with a standard material of known dielectric constant, the complex permittivity of thin samples can be measured accurately using the developed FDTD algorithm. This FDTD procedure for making thin sample dielectric properties measurements will be described.