Science.gov

Sample records for differentiated pc12 cells

  1. Regulation of the differentiation of PC12 pheochromocytoma cells.

    PubMed Central

    Fujita, K; Lazarovici, P; Guroff, G

    1989-01-01

    The PC12 clone, developed from a pheochromocytoma tumor of the rat adrenal medulla, has become a premiere model for the study of neuronal differentiation. When treated in culture with nanomolar concentrations of nerve growth factor, PC12 cells stop dividing, elaborate processes, become electrically excitable, and will make synapses with appropriate muscle cells in culture. The changes induced by nerve growth factor lead to cells that, by any number of criteria, resemble mature sympathetic neurons. These changes are accompanied by a series of biochemical alterations occurring in the membrane, the cytoplasm, and the nucleus of the cell. Some of these events are independent of changes in transcription, while others clearly involve changes in gene expression. A number of the alterations seen in the cells involve increases or decreases in the phosphorylation of key cellular proteins. The information available thus far allows the construction of a hypothesis regarding the biochemical basis of PC12 differentiation. PMID:2647474

  2. PC12 Cells Differentiate into Chromaffin Cell-Like Phenotype in Coculture with Adrenal Medullary Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Mizrachi, Yaffa; Naranjo, Jose R.; Levi, Ben-Zion; Pollard, Harvey B.; Lelkes, Peter I.

    1990-08-01

    Previously we described specific in vitro interactions between PC12 cells, a cloned, catecholamine-secreting pheochromocytoma cell line derived from the rat adrenal medulla, and bovine adrenal medullary endothelial cells. We now demonstrate that these interactions induce the PC12 cells to acquire physical and biochemical characteristics reminiscent of chromaffin cells. Under coculture conditions involving direct cell-cell contact, the endothelial cells and the PC12 cells reduced their rates of proliferation; upon prolonged coculture PC12 cells clustered into nests of cells similar to the organization of chromaffin cells seen in vivo. Within 3 days in coculture with endothelial cells, but not with unrelated control cells, PC12 cells synthesized increased levels of [Met]enkephalin. In addition, PC12 cells, growing on confluent endothelial monolayers, failed to extend neurites in response to nerve growth factor. Neither medium conditioned by endothelial cells nor fixed endothelial cells could by themselves induce all of these different phenomena in the PC12 cells. These results suggest that under coculture conditions PC12 cells change their state of differentiation toward a chromaffin cell-like phenotype. The rapid, transient increase in the expression of the protooncogene c-fos suggests that the mechanism(s) inducing the change in the state of differentiation in PC12 cells in coculture with the endothelial cells may be distinct from that described for the differentiation of PC12 cells--e.g., by glucocorticoids. We propose that similar interactions between endothelial cells and chromaffin cell precursors may occur during embryonic development and that these interactions might be instrumental for the organ-specific differentiation of the adrenal medulla in vivo.

  3. DIFFERENTIAL MODULATION OF CATECHOLAMINES BY CHLOROTRIAZINE HERBICIDES IN PHEOCHROMOCYTOMA (PC12) CELLS IN VITRO

    EPA Science Inventory

    Differential modulation of catecholamines by chlorotriazine herbicides in pheochromocytoma (PC12) cells in vitro.

    Das PC, McElroy WK, Cooper RL.

    Curriculum in Toxicology, University of North Carolina, Chapel Hill 27599, USA.

    Epidemiological, wildlife, and lab...

  4. [Effect of Sim2 gene on the differentiation of PC12 cells].

    PubMed

    Meng, Xian-Fang; Zheng, Yao; Xu, Qiang; Shen, Jie; Shi, Jing; Peng, Bin

    2006-07-01

    To observe the effect of Sim2, a Down syndrome critical locus gene, on the differentiation of PC12 cells, and to explore the role of Sim2 in the pathogenesis of Down syndrome, PC12 cells were transfected with the pcDNA3-mSim2 plasmid. The morphology of PC12 cells was observed by phase-contrast microscopy. mRNA expression of mSim2, GAP43 and synapsin I was determined by reverse transcription-polymerase chain reaction (RT-PCR). GAP43 protein expression was detected by flow cytometry. Abundant mSim2 expression was observed in PC12 cells transfected with pcDNA3-mSim2. In these cells, there were less neurites, and their length was shorter (P<0.05). The mRNA expression of GAP43 and synapsin I was significantly decreased. Flow cytometry experiments showed that mSim2-transfected cells had significantly suppressed GAP43 protein expression (P<0.05). All the results suggest that Sim2 may play an important role in the pathogenesis of Down syndrome by influencing neurite growth and inhibiting the differentiation of neurons. PMID:16825162

  5. Effects of NMDA receptor inhibition by phencyclidine on the neuronal differentiation of PC12 cells.

    PubMed

    Lee, Eunsook; Williams, Zakia; Goodman, Carl B; Oriaku, Ebenezer T; Harris, Cynthia; Thomas, Mathews; Soliman, Karam F A

    2006-07-01

    Phencyclidine (PCP) is a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist and exposing the developing brain to PCP has been shown to cause deficits in neurobehavioral functions. In the present study we tested the effects of PCP, as an NMDA receptor inhibitor, on the neuronal differentiation and biogenic amines levels including norepinephrine (NE), epinephrine, dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), serotonin (5-HT), and 5-hydroxyindole-3-acetic acid (5-HIAA) in the rat pheochromocytoma (PC12) cells. After PC12 cells were differentiated with nerve growth factor (NGF) in the presence of PCP, NMDA binding kinetics, biogenic amines analysis and NMDA receptor protein expression assay were conducted. The results showed that NMDA receptor binding activities were significantly increased after differentiated with NGF in PC12 cells. B(max) values were increased in differentiated cells by four-folds, whereas K(d) values were not changed. All of biogenic amines were significantly increased in differentiated cells. On the other hand, PCP at 50 and 100 microM inhibited neuronal differentiation in a dose-dependent manner in NGF-stimulated PC12 cells without affecting cell viability. PCP treatment during differentiation significantly reduced NMDA binding activity and biogenic amine levels. Western blotting analysis revealed that NMDA receptor protein expression was significantly higher in NGF-differentiated cells and PCP treatment decreased the expression of NMDA receptor proteins. These results indicate that NMDA receptor functions and monoaminergic nervous systems are significantly stimulated during NGF-induced differentiation. PCP suppresses neuronal outgrowth and hampers neuronal functions possibly by inhibiting NMDA receptor functions and biogenic amine production, implying the suppressive effects of PCP exposure on neuronal developments. PMID:16580729

  6. Suppression of KV7/KCNQ potassium channel enhances neuronal differentiation of PC12 cells.

    PubMed

    Zhou, Najing; Huang, Sha; Li, Li; Huang, Dongyang; Yan, Yunli; Du, Xiaona; Zhang, Hailin

    2016-10-01

    Membrane potential shift driven by electrical activity is critical in determining the cell fate of proliferation or differentiation. As such, the ion channels that underlie the membrane electrical activity play an important role in cell proliferation/differentiation. KV7/KCNQ potassium channels are critical in determining the resting membrane potentials in many neuronal cells. However, the role of these channels in cell differentiation is not well studied. In the present study, we used PC12 cells as well as primary cultured rat cortical neurons to study the role and mechanism of KV7/KCNQ in neuronal differentiation. NGF induced PC12 cell differentiation into neuron-like cells with growth of neurites showing typical growth cone-like extensions. The Kv7/KCNQ blocker XE991 promoted NGF-induced neurite outgrowth, whereas Kv7/KCNQ opener retigabine (RTG) inhibited outgrowth. M-type Kv7 channels are likely involved in regulating neurite growth because overexpression of KCNQ2/Q3 inhibited neurite growth whereas suppression of KCNQ2/Q3 with shRNA promoted neurite growth. Membrane depolarization possibly underpins enhanced neurite growth induced by the suppression of Kv7/KCNQ. Additionally, high extracellular K(+) likely induced membrane depolarization and also promoted neurite growth. Finally, T-type Ca(2+) channels may be involved in membrane-depolarization-induced neurite growth. This study provides a new perspective for understanding neuronal differentiation as well as KV7/KCNQ channel function. PMID:27450567

  7. NGF-conjugated iron oxide nanoparticles promote differentiation and outgrowth of PC12 cells.

    PubMed

    Marcus, M; Skaat, H; Alon, N; Margel, S; Shefi, O

    2015-01-21

    The search for regenerative agents that promote neuronal differentiation and repair is of great importance. Nerve growth factor (NGF) which is an essential contributor to neuronal differentiation has shown high pharmacological potential for the treatment of central neurodegenerative diseases such as Alzheimer's and Parkinson's. However, growth factors undergo rapid degradation, leading to a short biological half-life. In our study, we describe a new nano-based approach to enhance the NGF activity resulting in promoted neuronal differentiation. We covalently conjugated NGF to iron oxide nanoparticles (NGF-NPs) and studied the effect of the novel complex on the differentiation of PC12 cells. We found that the NGF-NP treatment, at the same concentration as free NGF, significantly promoted neurite outgrowth and increased the complexity of the neuronal branching trees. Examination of neuronal differentiation gene markers demonstrated higher levels of expression in PC12 cells treated with the conjugated factor. By manipulating the NGF specific receptor, TrkA, we have demonstrated that NGF-NPs induce cell differentiation via the regular pathway. Importantly, we have shown that NGF-NPs undergo slower degradation than free NGF, extending their half-life and increasing NGF availability. Even a low concentration of conjugated NGF treatment has led to an effective response. We propose the use of the NGF-NP complex which has magnetic characteristics, also as a useful method to enhance NGF efficiency and activity, thus, paving the way for substantial neuronal repair therapeutics. PMID:25473934

  8. Boolean Modeling Reveals the Necessity of Transcriptional Regulation for Bistability in PC12 Cell Differentiation

    PubMed Central

    Offermann, Barbara; Knauer, Steffen; Singh, Amit; Fernández-Cachón, María L.; Klose, Martin; Kowar, Silke; Busch, Hauke; Boerries, Melanie

    2016-01-01

    The nerve growth factor NGF has been shown to cause cell fate decisions toward either differentiation or proliferation depending on the relative activity of downstream pERK, pAKT, or pJNK signaling. However, how these protein signals are translated into and fed back from transcriptional activity to complete cellular differentiation over a time span of hours to days is still an open question. Comparing the time-resolved transcriptome response of NGF- or EGF-stimulated PC12 cells over 24 h in combination with protein and phenotype data we inferred a dynamic Boolean model capturing the temporal sequence of protein signaling, transcriptional response and subsequent autocrine feedback. Network topology was optimized by fitting the model to time-resolved transcriptome data under MEK, PI3K, or JNK inhibition. The integrated model confirmed the parallel use of MAPK/ERK, PI3K/AKT, and JNK/JUN for PC12 cell differentiation. Redundancy of cell signaling is demonstrated from the inhibition of the different MAPK pathways. As suggested in silico and confirmed in vitro, differentiation was substantially suppressed under JNK inhibition, yet delayed only under MEK/ERK inhibition. Most importantly, we found that positive transcriptional feedback induces bistability in the cell fate switch. De novo gene expression was necessary to activate autocrine feedback that caused Urokinase-Type Plasminogen Activator (uPA) Receptor signaling to perpetuate the MAPK activity, finally resulting in the expression of late, differentiation related genes. Thus, the cellular decision toward differentiation depends on the establishment of a transcriptome-induced positive feedback between protein signaling and gene expression thereby constituting a robust control between proliferation and differentiation. PMID:27148350

  9. Green tea polyphenol epigallocatechin-3-gallate differentially modulates oxidative stress in PC12 cell compartments

    SciTech Connect

    Raza, Haider . E-mail: h.raza@uaeu.ac.ae; John, Annie

    2005-09-15

    Tea polyphenols have been reported to be potent antioxidants and beneficial in oxidative stress related diseases. Prooxidant effects of tea polyphenols have also been reported in cell culture systems. In the present study, we have studied oxidative stress in the subcellular compartments of PC12 cells after treatment with different concentrations of the green tea polyphenol, epigallocatechin-3-gallate (EGCG). We have demonstrated that EGCG has differentially affected the production of reactive oxygen species (ROS), glutathione (GSH) metabolism and cytochrome P450 2E1 activity in the different subcellular compartments in PC12 cells. Our results have shown that although the cell survival was not inhibited by EGCG, there was, however, an increased DNA breakdown and activation of apoptotic markers, caspase 3 and poly- (ADP-ribose) polymerase (PARP) at higher concentrations of EGCG treatment. Our results suggest that the differential effects of EGCG might be related to the alterations in oxidative stress, GSH pools and CYP2E1 activity in different cellular compartments. These results may have implications in determining the chemopreventive therapeutic use of tea polyphenols in vivo.

  10. NGF-conjugated iron oxide nanoparticles promote differentiation and outgrowth of PC12 cells

    NASA Astrophysics Data System (ADS)

    Marcus, M.; Skaat, H.; Alon, N.; Margel, S.; Shefi, O.

    2014-12-01

    The search for regenerative agents that promote neuronal differentiation and repair is of great importance. Nerve growth factor (NGF) which is an essential contributor to neuronal differentiation has shown high pharmacological potential for the treatment of central neurodegenerative diseases such as Alzheimer's and Parkinson's. However, growth factors undergo rapid degradation, leading to a short biological half-life. In our study, we describe a new nano-based approach to enhance the NGF activity resulting in promoted neuronal differentiation. We covalently conjugated NGF to iron oxide nanoparticles (NGF-NPs) and studied the effect of the novel complex on the differentiation of PC12 cells. We found that the NGF-NP treatment, at the same concentration as free NGF, significantly promoted neurite outgrowth and increased the complexity of the neuronal branching trees. Examination of neuronal differentiation gene markers demonstrated higher levels of expression in PC12 cells treated with the conjugated factor. By manipulating the NGF specific receptor, TrkA, we have demonstrated that NGF-NPs induce cell differentiation via the regular pathway. Importantly, we have shown that NGF-NPs undergo slower degradation than free NGF, extending their half-life and increasing NGF availability. Even a low concentration of conjugated NGF treatment has led to an effective response. We propose the use of the NGF-NP complex which has magnetic characteristics, also as a useful method to enhance NGF efficiency and activity, thus, paving the way for substantial neuronal repair therapeutics.The search for regenerative agents that promote neuronal differentiation and repair is of great importance. Nerve growth factor (NGF) which is an essential contributor to neuronal differentiation has shown high pharmacological potential for the treatment of central neurodegenerative diseases such as Alzheimer's and Parkinson's. However, growth factors undergo rapid degradation, leading to a short

  11. The Ubiquitin Ligase Praja1 Reduces NRAGE Expression and Inhibits Neuronal Differentiation of PC12 Cells

    PubMed Central

    Teuber, Jan; Mueller, Bettina; Fukabori, Ryoji; Lang, Daniel; Albrecht, Anne; Stork, Oliver

    2013-01-01

    Evidence suggests that regulated ubiquitination of proteins plays a critical role in the development and plasticity of the central nervous system. We have previously identified the ubiquitin ligase Praja1 as a gene product induced during fear memory consolidation. However, the neuronal function of this enzyme still needs to be clarified. Here, we investigate its involvement in the nerve growth factor (NGF)-induced differentiation of rat pheochromocytoma (PC12) cells. Praja1 co-localizes with cytoskeleton components and the neurotrophin receptor interacting MAGE homologue (NRAGE). We observed an enhanced expression of Praja1 after 3 days of NGF treatment and a suppression of neurite formation upon Praja1 overexpression in stably transfected PC12 cell lines, which was associated with a proteasome-dependent reduction of NRAGE levels. Our data suggest that Praja1, through ubiquitination and degradation of NRAGE, inhibits neuronal differentiation. The two murine isoforms, Praja1.1 and Praja1.2, appear to be functionally homologous in this respect. PMID:23717400

  12. The ubiquitin ligase Praja1 reduces NRAGE expression and inhibits neuronal differentiation of PC12 cells.

    PubMed

    Teuber, Jan; Mueller, Bettina; Fukabori, Ryoji; Lang, Daniel; Albrecht, Anne; Stork, Oliver

    2013-01-01

    Evidence suggests that regulated ubiquitination of proteins plays a critical role in the development and plasticity of the central nervous system. We have previously identified the ubiquitin ligase Praja1 as a gene product induced during fear memory consolidation. However, the neuronal function of this enzyme still needs to be clarified. Here, we investigate its involvement in the nerve growth factor (NGF)-induced differentiation of rat pheochromocytoma (PC12) cells. Praja1 co-localizes with cytoskeleton components and the neurotrophin receptor interacting MAGE homologue (NRAGE). We observed an enhanced expression of Praja1 after 3 days of NGF treatment and a suppression of neurite formation upon Praja1 overexpression in stably transfected PC12 cell lines, which was associated with a proteasome-dependent reduction of NRAGE levels. Our data suggest that Praja1, through ubiquitination and degradation of NRAGE, inhibits neuronal differentiation. The two murine isoforms, Praja1.1 and Praja1.2, appear to be functionally homologous in this respect. PMID:23717400

  13. Organic Photovoltaics and Bioelectrodes Providing Electrical Stimulation for PC12 Cell Differentiation and Neurite Outgrowth.

    PubMed

    Hsiao, Yu-Sheng; Liao, Yan-Hao; Chen, Huan-Lin; Chen, Peilin; Chen, Fang-Chung

    2016-04-13

    Current bioelectronic medicines for neurological therapies generally involve treatment with a bioelectronic system comprising a power supply unit and a bioelectrode device. Further integration of wireless and self-powered units is of practical importance for implantable bioelectronics. In this study, we developed biocompatible organic photovoltaics (OPVs) for serving as wireless electrical power supply units that can be operated under illumination with near-infrared (NIR) light, and organic bioelectronic interface (OBEI) electrode devices as neural stimulation electrodes. The OPV/OBEI integrated system is capable to provide electrical stimulation (ES) as a means of enhancing neuron-like PC12 cell differentiation and neurite outgrowth. For the OPV design, we prepared devices incorporating two photoactive material systems--β-carotene/N,N'-dioctyl-3,4,9,10-perylenedicarboximide (β-carotene/PTCDI-C8) and poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM)--that exhibited open circuit voltages of 0.11 and 0.49 V, respectively, under NIR light LED (NLED) illumination. Then, we connected OBEI devices with different electrode gaps, incorporating biocompatible poly(hydroxymethylated-3,4-ethylenedioxythiophene), to OPVs to precisely tailor the direct current electric field conditions during the culturing of PC12 cells. This NIR light-driven OPV/OBEI system could be engineered to provide tunable control over the electric field (from 220 to 980 mV mm(-1)) to promote 64% enhancement in the neurite length, direct the neurite orientation on chips, or both. The OPV/OBEI integrated systems under NIR illumination appear to function as effective power delivery platforms that should meet the requirements for wirelessly offering medical ES to a portion of the nervous system; they might also be a key technology for the development of next-generation implantable bioelectronics. PMID:26999636

  14. microRNA regulatory mechanism by which PLLA aligned nanofibers influence PC12 cell differentiation

    NASA Astrophysics Data System (ADS)

    Yu, Yadong; Lü, Xiaoying; Ding, Fei

    2015-08-01

    Objective. Aligned nanofibers (AFs) are regarded as promising biomaterials in nerve tissue engineering. However, a full understanding of the biocompatibility of AFs at the molecular level is still challenging. Therefore, the present study focused on identifying the microRNA (miRNA)-mediated regulatory mechanism by which poly-L-lactic acid (PLLA) AFs influence PC12 cell differentiation. Approach. Firstly, the effects of PLLA random nanofibers (RFs)/AFs and PLLA films (control) on the biological responses of PC12 cells that are associated with neuronal differentiation were examined. Then, SOLiD sequencing and cDNA microarray were employed to profile the expressions of miRNAs and mRNAs. The target genes of the misregulated miRNAs were predicted and compared with the mRNA profile data. Functions of the matched target genes (the intersection between the predicted target genes and the experimentally-determined, misregulated genes) were analyzed. Main results. The results revealed that neurites spread in various directions in control and RF groups. In the AF group, most neurites extended in parallel with each other. The glucose consumption and lactic acid production in the RF and AF groups were higher than those in the control group. Compared with the control group, 42 and 94 miRNAs were significantly dysregulated in the RF and AF groups, respectively. By comparing the predicted target genes with the mRNA profile data, five and 87 matched target genes were found in the RF and AF groups, respectively. Three of the matched target genes in the AF group were found to be associated with neuronal differentiation, whereas none had this association in the RF group. The PLLA AFs induced the dysregulation of miRNAs that regulate many biological functions, including axonal guidance, lipid metabolism and long-term potentiation. In particular, two miRNA-matched target gene-biological function modules associated with neuronal differentiation were identified as follows: (1) miR-23b, mi

  15. Nerve growth factor-induced differentiation of PC12 cells is accompanied by elevated adenylyl cyclase activity.

    PubMed

    Yung, H S; Lai, K H; Chow, K B S; Ip, N Y; Tsim, K W K; Wong, Y H; Wu, Z; Wise, H

    2010-01-01

    Rat pheochromocytoma (PC12) cells characteristically undergo differentiation when cultured with nerve growth factor (NGF). Here we show that NGF dramatically increased the adenylyl cyclase-activating property of forskolin in PC12 cells. This effect of NGF was well maintained even when NGF was removed after 4 days, even though the morphological features of neuronal differentiation were rapidly lost on removal of NGF. The enhanced cAMP production in response to forskolin could be due to a synergistic interaction between forskolin and endogenously released agonists acting on G(s)-coupled receptors. However, responses to forskolin were not attenuated by antagonists of adenosine A2 receptors or pituitary adenylate cyclase-activating polypeptide (PACAP) receptors, suggesting that adenosine and PACAP were not involved. Adenylyl cyclases 3, 6 and 9 were the predominant isoforms expressed in PC12 cells, but we found no evidence for NGF-induced changes in expression levels of any of the 9 adenylyl cyclase isoforms, nor in the expression of Gα(s). These findings highlight that NGF has a subtle influence on adenylyl cyclase activity in PC12 cells which may influence more than the neurite extension process classically associated with neuronal differentiation. PMID:20389133

  16. Triptolide Inhibited Cytotoxicity of Differentiated PC12 Cells Induced by Amyloid-Beta25–35 via the Autophagy Pathway

    PubMed Central

    Xu, Pengjuan; Li, Zhigui; Wang, Hui; Zhang, Xiaochen; Yang, Zhuo

    2015-01-01

    Evidence shows that an abnormal deposition of amyloid beta-peptide25–35 (Aβ25–35) was the primary cause of the pathogenesis of Alzheimer’s disease (AD). And the elimination of Aβ25–35 is considered an important target for the treatment of AD. Triptolide (TP), isolated from Tripterygium wilfordii Hook.f. (TWHF), has been shown to possess a broad spectrum of biological profiles, including neurotrophic and neuroprotective effects. In our study investigating the effect and potential mechanism of triptolide on cytotoxicity of differentiated rat pheochromocytoma cell line (the PC12 cell line is often used as a neuronal developmental model) induced by Amyloid-Beta25–35 (Aβ25–35), we used 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide (MTT) assay, flow cytometry, Western blot, and acridine orange staining to detect whether triptolide could inhibit Aβ25–35–induced cell apoptosis. We focused on the potential role of the autophagy pathway in Aβ25–35-treated differentiated PC12 cells. Our experiments show that cell viability is significantly decreased, and the apoptosis increased in Aβ25–35-treated differentiated PC12 cells. Meanwhile, Aβ25–35 treatment increased the expression of microtubule-associated protein light chain 3 II (LC3 II), which indicates an activation of autophagy. However, triptolide could protect differentiated PC12 cells against Aβ25–35-induced cytotoxicity and attenuate Aβ25–35-induced differentiated PC12 cell apoptosis. Triptolide could also suppress the level of autophagy. In order to assess the effect of autophagy on the protective effects of triptolide in differentiated PC12 cells treated with Aβ25–35, we used 3-Methyladenine (3-MA, an autophagy inhibitor) and rapamycin (an autophagy activator). MTT assay showed that 3-MA elevated cell viability compared with the Aβ25–35-treated group and rapamycin inhibits the protection of triptolide. These results suggest that triptolide will repair the

  17. Reconstitution of neurotransmission by determining communication between differentiated PC12 pheochromocytoma and HEL 92.1.7 erythroleukemia cells.

    PubMed

    Shariatmadari, R; Lund, P E; Krijukova, E; Sperber, G O; Kukkonen, J P; Akerman, K E

    2001-05-01

    Neurotransmitter release was monitored using fura-2-loaded HEL 92.1.7 cells dispersed among differentiated PC12 cells (loaded with another Ca2+ indicator fluo-3) and immobilised using transparent polycarbonate membrane filters with uniform pore size. Depolarisation with K+ caused a rapid rise in Ca2+ concentration in the PC12 cells, followed by a delayed secondary Ca2+ response in simultaneously monitored nearby HEL cells. There was a lag period of about 20 s between the responses of the two cell types. Voltage-gated Ca2+ channels in PC12 cells were inhibited by the P/Q-type (omega-conotoxin MVIIC, omega-agatoxin IVA), N-type (omega-conotoxin GVIA) and L-type channel blockers (nifedipine) as determined using fura-2 or whole-cell patch-clamp recordings. The communication between the cell types on the other hand was sensitive to P/Q- and N-type but not to L-type channel blockers. This suggests that, as in neurons, P/Q- and N-type Ca2+ channels mediate the release of neurotransmitters acting on HEL cells. Theoretically, the procedure employed should be sensitive enough to detect single exocytotic events. Our results demonstrate that a random distribution between effector and target cells is sufficient to allow communication between cells in a manner similar to extrasynaptic transmission. PMID:11417230

  18. [NEURONAL DIFFERENTIATION OF PC12 CELL LINE AND MURINE NEURAL STEM CELLS ON THE CARBON NANOTUBES FILMS].

    PubMed

    Posypanova, G A; Gaiduchenko, A I; Moskaleva, E Yu; Fedorov, G E

    2016-01-01

    The study of the interaction of nerve cells with specially designed substrates (scaffolds) with different surface characteristics at the nanoscale is a necessary step in the development of methods of stimulation of regeneration of nervous tissues, as well as to create next generation of bioelectronic devices. A promising material for such scaffolds may be carbon nanotubes (CNT) that are flexible films of graphene rolled into nano-sized cylindrical tubes. CNT were produced by chemical deposition from the gas phase. The analysis of the PC12 cells cultivated on quartz glass coated by carbon nanotubes films using electron and light microscopy has shown that CNT stimulate the proliferation and do not inhibit neuronal differentiation of PC12 cells. We have found that it is possible to obtain differentiated neurons from murine neural stem cells on the quartz glasses covered with CNT films. The data obtained indicate that the CNT films produced by chemical deposition from the gas phase onto quartz glass may be used as the electro conductive scaffold to obtain and study the functions of neural cells and possibly of mature neurons. PMID:27228654

  19. Apoptosis induced clustering of IP(3)R1 in nuclei of non-differentiated PC12 cells.

    PubMed

    Ondrias, Karol; Lencesova, Lubomira; Sirova, Marta; Labudova, Martina; Pastorekova, Silvia; Kopacek, Juraj; Krizanova, Olga

    2011-12-01

    Inositol 1,4,5-trisphosphate (IP(3)) receptors are emerging as key sites for regulation by pro- and anti-apoptotic factors. Induction of apoptosis for 3 h increased mRNA and protein levels of type 1 IP(3) receptors in non-differentiated (ND), but not in differentiated (D) PC12 cells. Inhibitors of the IP(3) R's calcium release-2-aminoethoxydiphenyl borate (2-APB) and xestospongin-completely prevented Bax and caspase-3 mRNA increase after treatment with the apoptosis inducer set (AIK), and this reinforces the importance of IP(3) R1 in the apoptosis of ND PC12 cells. Apoptosis induction not only increases the IP(3) R1 protein, but it also causes formation of IP(3) R1 clusters in the nucleus which most likely result from fusion of the nucleoplasmic reticulum and/or IP(3) R1 translocation to the nucleus. This is quite similar to the observations noted after overexpression of IP(3) R1 in PC12 cells. The amount of IP(3) induced calcium release was higher in control than in AIK-treated cells. From our results we propose that after the apoptosis induction the amount of intranuclear calcium decreased dramatically due to the increase of calcium permeability of the nuclear calcium store vesicles. Therefore, increase of the calcium permeability may result from IP(3) receptors translocation to nuclei that can boost the calcium transport through IP(3) receptors. PMID:21302308

  20. Earthworm extracts facilitate PC12 cell differentiation and promote axonal sprouting in peripheral nerve injury.

    PubMed

    Chen, Chao-Tsung; Lin, Jaung-Geng; Lu, Tung-Wu; Tsai, Fuu-Jen; Huang, Chih-Yang; Yao, Chun-Hsu; Chen, Yueh-Sheng

    2010-01-01

    The present study provides in vitro and in vivo evaluations of earthworm (Pheretima aspergilum) on peripheral nerve regeneration. In the in vitro study, we found the earthworm (EW) water extracts caused a marked enhancement of the nerve growth factor-mediated neurite outgrowth from PC12 cells as well as the expressions of growth associated protein 43 and synapsin I. In the in vivo study, silicone rubber chambers filled with EW extracts were used to bridge a 10 mm sciatic nerve defect in rats. Eight weeks after implantation, the group receiving EW extracts had a much higher success percentage of regeneration (90%) compared to the control (60%) receiving the saline. In addition, quantitative histology of the successfully regenerated nerves revealed that myelinated axons in EW group at 31.25 microg/ml was significantly more than those in the controls (p < 0.05). These results showed that EW extracts can be a potential growth-promoting factor on regenerating peripheral nerves. PMID:20503471

  1. SmgGDS antagonizes BPGAP1-induced Ras/ERK activation and neuritogenesis in PC12 cell differentiation.

    PubMed

    Ravichandran, Aarthi; Low, Boon Chuan

    2013-01-01

    BPGAP1 is a Rho GTPase-activating protein (RhoGAP) that regulates cell morphogenesis, cell migration, and ERK signaling by the concerted action of its proline-rich region (PRR), RhoGAP domain, and the BNIP-2 and Cdc42GAP homology (BCH) domain. Although multiple cellular targets for the PRR and RhoGAP have been identified, and their functions delineated, the mechanism by which the BCH domain regulates functions of BPGAP1 remains unclear. Here we show that its BCH domain induced robust ERK activation leading to PC12 cell differentiation by targeting specifically to K-Ras. Such stimulatory effect was inhibited, however, by both dominant-negative mutants of Mek2 (Mek2-K101A) and K-Ras (K-Ras-S17N) and also by the small G-protein GDP dissociation stimulator (SmgGDS). Consequently SmgGDS knockdown released this inhibition and resulted in a superinduction of K-Ras activation and PC12 differentiation mediated by BCH domain. These results demonstrate the versatility of the BCH domain of BPGAP1 in regulating ERK signaling by involving K-Ras and SmgGDS and support the unique role of BPGAP1 as a dual regulator for Ras and Rho signaling in cell morphogenesis and differentiation. PMID:23155002

  2. Effects of Hoechst 33342 on C2C12 and PC12 cell differentiation.

    PubMed

    Adamski, Danièle; Mayol, Jean-François; Platet, Nadine; Berger, François; Hérodin, Francis; Wion, Didier

    2007-06-26

    Accumulative evidence demonstrates that normal as well as cancer stem cells can be identified as a side population following Hoechst 33342 staining and flow cytometric analysis. This popular method is based on the ability of stem cells to efflux this fluorescent vital dye. We demonstrate that Hoechst 33342 can affect cell differentiation, suggesting potential complications in the interpretation of data. PMID:17560574

  3. Contribution of bradykinin and nitric oxide to AT2 receptor-mediated differentiation in PC12 W cells.

    PubMed

    Zhao, Yi; Biermann, Torsten; Luther, Claudia; Unger, Thomas; Culman, Juraj; Gohlke, Peter

    2003-05-01

    We investigated the effect of angiotensin II on intracellular cyclic GMP content and neurite outgrowth as an indicator of cell differentiation in PC12 W cells. Neurite outgrowth was examined by phase-contrast microscopy. Outgrown neurites were classified as small, medium and large, and were expressed as neurites per 100 cells. Angiotensin II (10-7 m) increased the outgrowth of medium and large neurites by mean +/- SEM 20.2 +/- 2.3 and 6.6 +/- 1.4 compared with 1.66 +/- 0.5 and 0.1 +/- 0.06 neurites per 100 cells in control. Cellular cyclic GMP content increased by 50-250% with angiotensin II at concentrations of 10-6-10-4 m. Both blockade of AT2 receptors and of nitric oxide synthase markedly reduced angiotensin II-induced neurite outgrowth and cyclic GMP production. In contrast, B2 receptor blockade had no effect or even increased these angiotensin II effects. Sodium nitroprusside and 8-bromo-cyclic GMP both mimicked the effects of angiotensin II on cell differentiation. The protein kinase G inhibitor KT-5823 inhibited the neurite outgrowth induced by both angiotensin II and 8-bromo-cyclic GMP. Our results demonstrate that angiotensin II can stimulate cell differentiation in PC12 W cells by nitric oxide-related and cyclic GMP-dependent mechanisms. The effects of angiotensin II on cell differentiation and cyclic GMP production were mediated via the AT2 receptor and further enhanced by bradykinin B2 receptor blockade. PMID:12694402

  4. MECHANISMS OF MANGANESE-INDUCED RAT PHEOCHROMOCYTOMA (PC12) CELL DEATH AND CELL DIFFERENTIATION. (R826248)

    EPA Science Inventory

    Mn is a neurotoxin that leads to a syndrome resembling Parkinson's disease after prolonged exposure to high concentrations. Our laboratory has been investigating the mechanism by which Mn induces neuronal cell death. To accomplish this, we have utilized rat pheochromocytom...

  5. The effect of Cyclin-dependent kinase 5 on voltage-dependent calcium channels in PC12 cells varies according to channel type and cell differentiation state.

    PubMed

    Furusawa, Kotaro; Asada, Akiko; Saito, Taro; Hisanaga, Shin-ichi

    2014-08-01

    Cyclin-dependent kinase 5 (Cdk5) is a Ser/Thr kinase that plays an important role in the release of neurotransmitter from pre-synaptic terminals triggered by Ca(2+) influx into the pre-synaptic cytoplasm through voltage-dependent Ca(2+) channels (VDCCs). It is reported that Cdk5 regulates L-, P/Q-, or N-type VDCC, but there is conflicting data as to the effect of Cdk5 on VDCC activity. To clarify the mechanisms involved, we examined the role of Cdk5 in regulating the Ca(2+) -channel property of VDCCs, using PC12 cells expressing endogenous, functional L-, P/Q-, and N-type VDCCs. The Ca(2+) influx, induced by membrane depolarization with high K(+) , was monitored with a fluorescent Ca(2+) indicator protein in both undifferentiated and nerve growth factor (NGF)-differentiated PC12 cells. Overall, Ca(2+) influx was increased by expression of Cdk5-p35 in undifferentiated PC12 cells but suppressed in differentiated PC12 cells. Moreover, we found that different VDCCs are distinctly regulated by Cdk5-p35 depending on the differentiation states of PC12 cells. These results indicate that Cdk5-p35 regulates L-, P/Q-, or N-type VDCCs in a cellular context-dependent manner. Calcium (Ca(2+) ) influx through voltage-dependent Ca(2+) channels (VDCCs) triggers neurotransmitter release from pre-synaptic terminal of neurons. The channel activity of VDCCs is regulated by Cdk5-p35, a neuronal Ser/Thr kinase. However, there have been debates about the regulation of VDCCs by Cdk5. Using PC12 cells, we show that Cdk5-p35 regulates VDCCs in a type (L, P/Q, and N) and differentiation-dependent manner. NGF = nerve growth factor. PMID:24766160

  6. SUB-ACUTE TREATMENT WITH METHYLMERCURY DURING DIFFERENTIATION OF PHEOCHROMOCYTOMA (PC12) CELLS DOES NOT ALTER BINDING OF ION CHANNEL LIGANDS OR CELL MORPHOLOGY.

    EPA Science Inventory

    We demonstrated recently that 6 days of exposure to nanomolar concentrations (3-10 nM) of methylmercury (MeHg) during nerve growth factor (NGF) induced PC12 cell differentiation reduced the amplitude and density of voltage-gated sodium and calcium currents. In the present study,...

  7. Regulation of protein kinase C activity in neuronal differentiation induced by the N-ras oncogene in PC-12 cells.

    PubMed Central

    Lacal, J C; Cuadrado, A; Jones, J E; Trotta, R; Burstein, D E; Thomson, T; Pellicer, A

    1990-01-01

    Expression of the N-ras oncogene under the control of the glucocorticoid-responsive promoter in the pheochromocytoma cell line UR61, a subline of PC-12 cells, has been used to investigate the differentiation process to neuronal cells triggered by ras oncogenes (I. Guerrero, A. Pellicer, and D. E. Burstein, Biochem. Biophys. Res. Commun. 150:1185-1192, 1988). Using ras-inducible cell lines, we observed that expression of the oncogenic N-ras p21 protein interferes with the ability of phorbol esters to induce downregulation of protein kinase C. This effect was associated with the appearance of immunologically detectable protein kinase C as well as the activity of the enzyme as analyzed either by binding of [3H]phorbol-12,13-dibutyrate in intact cells or by in vitro kinase activity. These results indicate a relationship between ras p21 and protein kinase C in neuronal differentiation in this model system. Comparison to the murine fibroblast system suggests that this relationship may be functional. Images PMID:2188105

  8. Changes in morphology and spatial position of coiled bodies during NGF-induced neuronal differentiation of PC12 cells.

    PubMed

    Janevski, J; Park, P C; De Boni, U

    1997-11-01

    Interphase nuclei are organized into structural and functional domains. The coiled body, a nuclear organelle of unknown function, exhibits cell type-specific changes in number and morphology. Its association with nucleoli and with small nuclear ribonucleo-proteins (snRNPs) indicates that it functions in RNA processing. In cycling cells, coiled bodies are round structures not associated with nucleoli. In contrast, in neurons, they frequently present as nucleolar "caps." To test the hypothesis that neuronal differentiation is accompanied by changes in the spatial association of coiled bodies with nucleoli and in their morphology, PC12 cells were differentiated into a neuronal phenotype with nerve growth factor (NGF) and coiled bodies detected by immunocytochemical localization of p80-coilin and snRNPs. The fraction of cells that showed coiled bodies as nucleolar caps increased from 1.6 +/- 0.9% (mean +/- SEM) in controls to 16.5 +/- 1.6% in NGF-differentiated cultures. The fraction of cells with ring-like coiled bodies increased from 17.2 +/- 5.0% in controls to 57.8 +/- 4.4% in differentiated cells. This was accompanied by a decrease, from 81.2 +/- 5.7% to 25.7 +/- 3.1%, in the fraction of cells with small, round coiled bodies. SnRNPs remained associated with typical coiled bodies and with ring-like coiled bodies during NGF-induced recruitment of snRNPs to the nuclear periphery. Together with the observation that coiled bodies are also present as nucleolar caps in sensory neurons, the results indicate that coiled bodies alter their morphology and increase their association with nucleoli during NGF-induced neuronal differentiation. PMID:9358854

  9. EVALUATION OF PROTEIN MARKERS FOR NEURONAL DIFFERENTIATION IN PC12 CELLS.

    EPA Science Inventory

    Chemical-induced injury of the developing nervous system can be manifested as a change in the differentiation or growth of neurons. The present study evaluated the use of proteins associated with axonal growth and synaptogenesis as markers for neuronal differentiation in vitro. ...

  10. Dynamic changes in glucose metabolism accompanying the expression of the neural phenotype after differentiation in PC12 cells.

    PubMed

    Waki, A; Yano, R; Yoshimoto, M; Sadato, N; Yonekura, Y; Fujibayashi, Y

    2001-03-01

    To assess what properties of glucose metabolism are most closely related to expression of the neural phenotype, some parameters of glucose metabolism in PC12 cells before (tumor-type) and after differentiation (neuron-type) were investigated. Neuron-type cells exhibited a 2.7-fold higher level of [3H]DG retention than tumor-type cells, accompanied by a higher glucose transport rate and higher levels of hexokinase activity. [14C]CO2 production from [U-14C]glucose in neuron-type was also more than four-times greater than that in tumor-type cells. The levels of [14C]carbon in macromolecules from [14C]glucose in neuron-type cells were also much higher (10.6-fold) than those in tumor-type cells, and the levels of incorporation of [14C]carbon were almost as high as those of [14C]CO2. From the metabolite analysis, amino acids appeared to be the major compounds converted from glucose. On the other hand, the uptakes of [35S]methionine-[35S]cysteine and [3H]uridine in neuron-type cells were lower than those in tumor-type cells. Following depolarization with 50 mM potassium, [14C]CO2 production increased, but the retention of [14C]carbon was not changed in neuron-type cells. The largest change accompanied by acquisition of the neural phenotype was carbon incorporation into the macromolecules derived from glucose. This property may be important for the expression of the neural phenotype as well as the higher levels of both glucose uptake and oxygen consumption. PMID:11245818

  11. Triterpenoids with Promoting Effects on the Differentiation of PC12 Cells from the Steamed Roots of Panax notoginseng.

    PubMed

    Gu, Cheng-Zhen; Lv, Jun-Jiang; Zhang, Xiao-Xia; Qiao, Yi-Jun; Yan, Hui; Li, Yan; Wang, Dong; Zhu, Hong-Tao; Luo, Huai-Rong; Yang, Chong-Ren; Xu, Min; Zhang, Ying-Jun

    2015-08-28

    The roots of Panax notoginseng, an important Chinese medicinal plant, have been used traditionally in both the raw and processed forms, due to the different chemical constituents and bioactivities found. Thirty-eight dammarane-type triterpenoid saponins were isolated from the steam-processed roots of P. notoginseng, including 18 new substances, namely, notoginsenosides SP1-SP18 (1-18). The structures of 1-18 were determined on the basis of spectroscopic analysis and acidic hydrolysis. The absolute configuration of the hydroxy group at C-24 in 1-4, 19, and 20 was determined in each case by Mo2(AcO)4-induced circular dichroism. The new compounds were found to feature a diversity of highly oxygenated side chains, formed by hydrolysis of the C-20 sugar moiety followed by dehydration, dehydrogenation, epoxidation, hydroxylation, or methoxylation of the main saponins in the raw roots. The new saponins 1, 2, 6-8, 14, and 17 and the known compounds 20-27 showed promoting effects on the differentiation of PC12 cells, at a concentration of 10 μM. PMID:26200131

  12. Propofol Protects Against H2O2-Induced Oxidative Injury in Differentiated PC12 Cells via Inhibition of Ca(2+)-Dependent NADPH Oxidase.

    PubMed

    Chen, Xiao-Hui; Zhou, Xue; Yang, Xiao-Yu; Zhou, Zhi-Bin; Lu, Di-Han; Tang, Ying; Ling, Ze-Min; Zhou, Li-Hua; Feng, Xia

    2016-05-01

    Propofol (2,6-diisopropylphenol) is a widely used general anesthetic with anti-oxidant activities. This study aims to investigate protective capacity of propofol against hydrogen peroxide (H2O2)-induced oxidative injury in neural cells and whether the anti-oxidative effects of propofol occur through a mechanism involving the modulation of NADPH oxidase (NOX) in a manner of calcium-dependent. The rat differentiated PC12 cell was subjected to H2O2 exposure for 24 h to mimic a neuronal in vitro model of oxidative injury. Our data demonstrated that pretreatment of PC12 cells with propofol significantly reversed the H2O2-induced decrease in cell viability, prevented H2O2-induced morphological changes, and reduced the ratio of apoptotic cells. We further found that propofol attenuated the accumulation of malondialdehyde (biomarker of oxidative stress), counteracted the overexpression of NOX core subunit gp91(phox) (NOX2) as well as the NOX activity following H2O2 exposure in PC12 cells. In addition, blocking of L-type Ca(2+) channels with nimodipine reduced H2O2-induced overexpression of NOX2 and caspase-3 activation in PC12 cells. Moreover, NOX inhibitor apocynin alone or plus propofol neither induces a significant downregulation of NOX activity nor increases cell viability compared with propofol alone in the PC12 cells exposed to H2O2. These results demonstrate that the protective effects of propofol against oxidative injury in PC12 cells are mediated, at least in part, through inhibition of Ca(2+)-dependent NADPH oxidase. PMID:26162968

  13. Regulation of N-methyl-D-aspartate receptor expression and N-methyl-D-aspartate-induced cellular response during chronic hypoxia in differentiated rat PC12 cells.

    PubMed

    Kobayashi, S; Millhorn, D E

    2000-01-01

    The purpose of the present study was to examine the effect of chronic hypoxia on N-methyl-D-aspartate-mediated cellular responses in differentiated PC12 cells. PC12 cells were differentiated by treatment with nerve growth factor. Patch-clamp analysis in differentiated PC12 cells showed that extracellularly applied N-methyl-D-aspartate induced an inward current that was abolished by the presence of the N-methyl-D-aspartate receptor antagonist MK-801. Results from Ca(2+) imaging experiments showed that N-methyl-D-aspartate induced an elevation in intracellular free Ca(2+) which was also abolished by MK-801. We also examined the effect of hypoxia on the N-methyl-D-aspartate-induced current in nerve growth factor-treated cells. We found that the N-methyl-D-aspartate-induced inward current and the N-methyl-D-aspartate-induced elevation in intracellular free Ca(2+) were markedly attenuated by chronic hypoxia. We next examined the possibility that the reduced N-methyl-D-aspartate responsiveness was due to down-regulation of N-methyl-D-aspartate receptor levels. Northern blot and immunoblot analyses showed that both messenger RNA and protein levels for N-methyl-D-aspartate receptor subunit 1 were markedly decreased during hypoxia. However, the messenger RNA for N-methyl-D-aspartate receptor subunit 2C was increased, whereas the protein level for subunit 2C did not change. Our results indicate that differentiated PC12 cells express functional N-methyl-D-aspartate receptors and that chronic exposure to hypoxia attenuates the N-methyl-D-aspartate-induced Ca(2+) accumulation in these cells via down-regulation of N-methyl-D-aspartate receptor subunit 1. This mechanism may play an important role in protecting PC12 cells against hypoxic stress. PMID:11113364

  14. Neuroprotective effects of nimodipine and nifedipine in the NGF-differentiated PC12 cells exposed to oxygen-glucose deprivation or trophic withdrawal.

    PubMed

    Lecht, Shimon; Rotfeld, Elena; Arien-Zakay, Hadar; Tabakman, Rinat; Matzner, Henry; Yaka, Rami; Lelkes, Peter I; Lazarovici, Philip

    2012-10-01

    The goal of this study was to compare the neuroprotective properties of the L-type Ca²⁺ channel blockers, nimodipine and nifedipine, using nerve growth factor (NGF)-differentiated PC12 neuronal cultures exposed to oxygen-glucose deprivation (OGD) and trophic withdrawal-induced cell death. Nimodipine (1-100 μM) conferred 65±13% neuroprotection upon exposure to OGD and 35±6% neuroprotection towards different trophic withdrawal-induced cell death measured by lactate dehydrogenase and caspase 3 activities. The time window of nimodipine conferred neuroprotection was detected during the first 5h but not at longer OGD exposures. Nifedipine (1-100 μM), to a lower potency than nimodipine, conferred 30-55±8% neuroprotection towards OGD in PC12 cells and 29±5% in rat hypocampal slices, and 10±3% neuroprotection at 100 μM towards trophic withdrawal-induced PC12 cell death. The ability to demonstrate that nimodipine conferred neuroprotection in a narrow therapeutic time-window indicates that the OGD PC12 model mimics the in vivo models and therefore suitable for neuroprotective drug discovery and development. PMID:22677442

  15. Bidirectional promoters link cAMP signaling with irreversible differentiation through promoter-associated non-coding RNA (pancRNA) expression in PC12 cells

    PubMed Central

    Yamamoto, Naoki; Agata, Kiyokazu; Nakashima, Kinichi; Imamura, Takuya

    2016-01-01

    Bidirectional promoters are the major source of gene activation-associated noncoding RNA (ncRNA). PC12 cells offer an interesting model for understanding the mechanism underlying bidirectional promoter-mediated cell cycle control. Nerve growth factor (NGF)-stimulated PC12 cells elongate neurites, and are in a reversible cell-cycle-arrested state. In contrast, these cells irreversibly differentiate and cannot re-enter the normal cell cycle after NGF plus cAMP treatment. In this study, using directional RNA-seq, we found that bidirectional promoters for protein-coding genes with promoter-associated ncRNA (pancRNA) were enriched for cAMP response element consensus sequences, and were preferred targets for transcriptional regulation by the transcription factors in the cAMP-dependent pathway. A spindle-formation-associated gene, Nusap1 and pancNusap1 were among the most strictly co-transcribed pancRNA–mRNA pairs. This pancRNA–mRNA pair was specifically repressed in irreversibly differentiated PC12 cells. Knockdown (KD) and overexpression experiments showed that pancNusap1 positively regulated the Nusap1 expression in a sequence-specific manner, which was accompanied by histone acetylation at the Nusap1 promoter. Furthermore, pancNusap1 KD recapitulated the effects of cAMP on cell cycle arrest. Thus, we conclude that pancRNA-mediated histone acetylation contributes to the establishment of the cAMP-induced transcription state of the Nusap1 locus and contributes to the irreversible cell cycle exit for terminal differentiation of PC12 cells. PMID:26945044

  16. Bidirectional promoters link cAMP signaling with irreversible differentiation through promoter-associated non-coding RNA (pancRNA) expression in PC12 cells.

    PubMed

    Yamamoto, Naoki; Agata, Kiyokazu; Nakashima, Kinichi; Imamura, Takuya

    2016-06-20

    Bidirectional promoters are the major source of gene activation-associated noncoding RNA (ncRNA). PC12 cells offer an interesting model for understanding the mechanism underlying bidirectional promoter-mediated cell cycle control. Nerve growth factor (NGF)-stimulated PC12 cells elongate neurites, and are in a reversible cell-cycle-arrested state. In contrast, these cells irreversibly differentiate and cannot re-enter the normal cell cycle after NGF plus cAMP treatment. In this study, using directional RNA-seq, we found that bidirectional promoters for protein-coding genes with promoter-associated ncRNA (pancRNA) were enriched for cAMP response element consensus sequences, and were preferred targets for transcriptional regulation by the transcription factors in the cAMP-dependent pathway. A spindle-formation-associated gene, Nusap1 and pancNusap1 were among the most strictly co-transcribed pancRNA-mRNA pairs. This pancRNA-mRNA pair was specifically repressed in irreversibly differentiated PC12 cells. Knockdown (KD) and overexpression experiments showed that pancNusap1 positively regulated the Nusap1 expression in a sequence-specific manner, which was accompanied by histone acetylation at the Nusap1 promoter. Furthermore, pancNusap1 KD recapitulated the effects of cAMP on cell cycle arrest. Thus, we conclude that pancRNA-mediated histone acetylation contributes to the establishment of the cAMP-induced transcription state of the Nusap1 locus and contributes to the irreversible cell cycle exit for terminal differentiation of PC12 cells. PMID:26945044

  17. Label-Free Detection of Neuronal Differentiation in Cell Populations Using High-Throughput Live-Cell Imaging of PC12 Cells

    PubMed Central

    Nascimento, Juliana M.; Knauer, Steffen; Offermann, Barbara; Murphy, Robert F.

    2013-01-01

    Detection of neuronal cell differentiation is essential to study cell fate decisions under various stimuli and/or environmental conditions. Many tools exist that quantify differentiation by neurite length measurements of single cells. However, quantification of differentiation in whole cell populations remains elusive so far. Because such populations can consist of both proliferating and differentiating cells, the task to assess the overall differentiation status is not trivial and requires a high-throughput, fully automated approach to analyze sufficient data for a statistically significant discrimination to determine cell differentiation. We address the problem of detecting differentiation in a mixed population of proliferating and differentiating cells over time by supervised classification. Using nerve growth factor induced differentiation of PC12 cells, we monitor the changes in cell morphology over days by phase-contrast live-cell imaging. For general applicability, the classification procedure starts out with many features to identify those that maximize discrimination of differentiated and undifferentiated cells and to eliminate features sensitive to systematic measurement artifacts. The resulting image analysis determines the optimal post treatment day for training and achieves a near perfect classification of differentiation, which we confirmed in technically and biologically independent as well as differently designed experiments. Our approach allows to monitor neuronal cell populations repeatedly over days without any interference. It requires only an initial calibration and training step and is thereafter capable to discriminate further experiments. In conclusion, this enables long-term, large-scale studies of cell populations with minimized costs and efforts for detecting effects of external manipulation of neuronal cell differentiation. PMID:23451069

  18. RabGEF1/Rabex-5 Regulates TrkA-Mediated Neurite Outgrowth and NMDA-Induced Signaling Activation in NGF-Differentiated PC12 Cells

    PubMed Central

    Tam, See-Ying; Lilla, Jennifer N.; Chen, Ching-Cheng; Kalesnikoff, Janet; Tsai, Mindy

    2015-01-01

    Nerve growth factor (NGF) binds to its cognate receptor TrkA and induces neuronal differentiation by activating distinct downstream signal transduction events. RabGEF1 (also known as Rabex-5) is a guanine nucleotide exchange factor for Rab5, which regulates early endosome fusion and vesicular trafficking in endocytic pathways. Here, we used the antisense (AS) expression approach to induce an NGF-dependent sustained knockdown of RabGEF1 protein expression in stable PC12 transfectants. We show that RabGEF1 is a negative regulator of NGF-induced neurite outgrowth and modulates other cellular and signaling processes that are activated by the interaction of NGF with TrkA receptors, such as cell cycle progression, cessation of proliferation, and activation of NGF-mediated downstream signaling responses. Moreover, RabGEF1 can bind to Rac1, and the activation of Rac1 upon NGF treatment is significantly enhanced in AS transfectants, suggesting that RabGEF1 is a negative regulator of NGF-induced Rac1 activation in PC12 cells. Furthermore, we show that RabGEF1 can also interact with NMDA receptors by binding to the NR2B subunit and its associated binding partner SynGAP, and negatively regulates activation of nitric oxide synthase activity induced by NMDA receptor stimulation in NGF-differentiated PC12 cells. Our data suggest that RabGEF1 is a negative regulator of TrkA-dependent neuronal differentiation and of NMDA receptor-mediated signaling activation in NGF-differentiated PC12 cells. PMID:26588713

  19. In vitro protective effects of Withania somnifera (L.) dunal root extract against hydrogen peroxide and β-amyloid(1-42)-induced cytotoxicity in differentiated PC12 cells.

    PubMed

    Kumar, S; Seal, C J; Howes, M J R; Kite, G C; Okello, E J

    2010-10-01

    Withania somnifera L. Dunal (Solanaceae), also known as 'ashwagandha' in Sanskrit and as 'Indian ginseng', is used widely in Ayurvedic medicine as a nerve tonic and memory enhancer, with antiaging, antistress, immunomodulatory and antioxidant properties. There is a paucity of data on the potential neuroprotective effects of W. somnifera root, as traditionally used, against H(2)O(2)- and Aβ((1-42))-induced cytotoxicity which are current targets for novel approaches to treat dementia, especially dementia of the Alzheimer's type (AD). In this study, an aqueous extract prepared from the dried roots of W. somnifera was assessed for potential protective effects against H(2)O(2)- and Aβ((1-42))-aggregated fibril cytotoxicity by an MTT assay using a differentiated rat pheochromocytoma PC12 cell line. The results suggest that pretreatments of differentiated PC12 cells with aqueous extracts of W. somnifera root significantly protect differentiated PC12 cells against both H(2)O(2)- and Aβ((1-42))-induced cytotoxicity, in a concentration dependent manner. To investigate the compounds that could explain the observed effects, the W. somnifera extract was analysed by liquid chromatography-serial mass spectrometry and numerous withanolide derivatives, including withaferin A, were detected. These results demonstrate the neuroprotective properties of an aqueous extract of W. somnifera root and may provide some explanation for the putative ethnopharmacological uses of W. somnifera for cognitive and other neurodegenerative disorders that are associated with oxidative stress. PMID:20680931

  20. Characterization and differential expression of protein kinase C isoforms in PC12 cells. Differentiation parallels an increase in PKC beta II.

    PubMed

    Wooten, M W; Seibenhener, M L; Soh, Y; Ewald, S J; White, K R; Lloyd, E D; Olivier, A; Parker, P J

    1992-02-17

    Nerve growth factor (NGF) treatment of PC12 cells induced a 2.8-fold increase in protein kinase C activity concomitant with differentiation and acquisition of neuritis. PKC protein isoforms were separated by sequential chromatography on DEAE-Sephacel/hydroxylapatite. A broad peak of PKC activity eluted which corresponded to the alpha PKC isoform. In control cells, message for all six PKC isoforms was detected and expressed as epsilon greater than zeta = gamma greater than delta greater than beta greater than alpha. Western blot of whole cell lysates revealed a large increase in the beta II, while slight changes were observed for the other five PKC isoforms during treatment (1-14 days) with NGF (50 ng/ml). In parallel, coordinate changes in the expression of the individual transcripts for the six isoforms occurred during NGF treatment. Induction and accumulation of PKC beta II may play a role in maintenance of neuronal morphology. PMID:1544425

  1. Reactive Oxygen Species, Ki-Ras, and Mitochondrial Superoxide Dismutase Cooperate in Nerve Growth Factor-induced Differentiation of PC12 Cells*

    PubMed Central

    Cassano, Silvana; Agnese, Savina; D'Amato, Valentina; Papale, Massimo; Garbi, Corrado; Castagnola, Patrizio; Ruocco, Maria Rosaria; Castellano, Immacolata; De Vendittis, Emmanuele; Santillo, Mariarosaria; Amente, Stefano; Porcellini, Antonio; Avvedimento, Enrico Vittorio

    2010-01-01

    Nerve growth factor (NGF) induces terminal differentiation in PC12, a pheochromocytoma-derived cell line. NGF binds a specific receptor on the membrane and triggers the ERK1/2 cascade, which stimulates the transcription of neural genes. We report that NGF significantly affects mitochondrial metabolism by reducing mitochondrial-produced reactive oxygen species and stabilizing the electrochemical gradient. This is accomplished by stimulation of mitochondrial manganese superoxide dismutase (MnSOD) both transcriptionally and post-transcriptionally via Ki-Ras and ERK1/2. Activation of MnSOD is essential for completion of neuronal differentiation because 1) expression of MnSOD induces the transcription of a neuronal specific promoter and neurite outgrowth, 2) silencing of endogenous MnSOD by small interfering RNA significantly reduces transcription induced by NGF, and 3) a Ki-Ras mutant in the polylysine stretch at the COOH terminus, unable to stimulate MnSOD, fails to induce complete differentiation. Overexpression of MnSOD restores differentiation in cells expressing this mutant. ERK1/2 is also downstream of MnSOD, as a SOD mimetic drug stimulates ERK1/2 with the same kinetics of NGF and silencing of MnSOD reduces NGF-induced late ERK1/2. Long term activation of ERK1/2 by NGF requires SOD activation, low levels of hydrogen peroxide, and the integrity of the microtubular cytoskeleton. Confocal immunofluorescence shows that NGF stimulates the formation of a complex containing membrane-bound Ki-Ras, microtubules, and mitochondria. We propose that active NGF receptor induces association of mitochondria with plasma membrane. Local activation of ERK1/2 by Ki-Ras stimulates mitochondrial SOD, which reduces reactive oxygen species and produces H2O2. Low and spatially restricted levels of H2O2 induce and maintain long term ERK1/2 activity and ultimately differentiation of PC12 cells. PMID:20495008

  2. Liquiritin modulates ERK- and AKT/GSK-3β-dependent pathways to protect against glutamate-induced cell damage in differentiated PC12 cells

    PubMed Central

    TENG, LESHENG; MENG, QINGFAN; LU, JIAHUI; XIE, JING; WANG, ZHENZUO; LIU, YAN; WANG, DI

    2014-01-01

    Glutamate has a key role in the neuronal cell damage associated with Alzheimer’s and Parkinson’s diseases. Liquiritin (LQ), a major constituent of Glycyrrhiza Radix, possesses various pharmacological activities. The present study investigated the neuroprotective effect of LQ against glutamate-induced cell damage in the differentiated PC12 (DPC12) rat pheochromocytoma cell line. Pretreatment with 25 and 50 μM LQ for 3 h resulted in a significant increase in cell viability and inhibited excessive lactate dehydrogenase release in glutamate-exposed DPC12 cells. LQ also ameliorated glutamate-induced nuclear and mitochondrial apoptotic alterations, intracellular calcium overload and the abnormal expression of apoptosis-related proteins, including cytochrome c, B-cell lymphoma (Bcl)-2 and Bcl2-associated X protein. Treatment with LQ alone or in combination with glutamate was found to enhance the phosphoactivation of extracellular signal-regulated kinases (ERKs), AKT and its downstream element glycogen synthase kinase-3β (GSK3β), in a time-dependent manner. However, no effect was observed on the expression of total-ERKs, -AKT and -GSK3β. Furthermore, pre-incubation with 10 μM PD98059 or LY94002, inhibitors of ERK and phosphatidylinositide 3-kinase, respectively, for 30 min significantly suppressed the LQ-induced increase in glutamate-exposed DPC12 cell viability. To the best of our knowledge, the present study provides the first experimental evidence that LQ has a neuroprotective effect against glutamate toxicity in DPC12 cells, predominantly through the ERK and AKT/GSK-3β pathways. Therefore, LQ may have potential for the treatment of neurodegenerative diseases. PMID:24888902

  3. Mitochondria Related Pathway Is Essential for Polysaccharides Purified from Sparassis crispa Mediated Neuro-Protection against Glutamate-Induced Toxicity in Differentiated PC12 Cells

    PubMed Central

    Hu, Shuang; Wang, Di; Zhang, Junrong; Du, Mengyan; Cheng, Yingkun; Liu, Yan; Zhang, Ning; Wang, Di; Wu, Yi

    2016-01-01

    The present study aims to explore the neuro-protective effects of purified Sparassis crispa polysaccharides against l-glutamic acid (l-Glu)-induced differentiated PC12 (DPC12) cell damages and its underlying mechanisms. The Sparassis crispa water extract was purified by a DEAE-52 cellulose anion exchange column and a Sepharose G-100 column. A fraction with a molecular weight of 75 kDa and a diameter of 88.9 nm, entitled SCWEA, was obtained. SCWEA was identified with a triple helix with (1→3)-linked Rha in the backbone, and (1→2) linkages and (1→6) linkages in the side bone. Our results indicated that the pre-treatment of DPC12 cells with SCWEA prior to l-Glu exposure effectively reversed the reduction on cell viability (by 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay) and reduced l-Glu-induced apoptosis (by Hoechst staining). SCWEA decreased the accumulation of intracellular reactive oxygen species, blocked Ca2+ influx and prevented depolarization of the mitochondrial membrane potential in DPC12 cells. Furthermore, SCWEA normalized expression of anti-apoptotic proteins in l-Glu-explored DPC12 cells. These results suggested that SCWEA protects against l-Glu-induced neuronal apoptosis in DPC12 cells and may be a promising candidate for treatment against neurodegenerative disease. PMID:26821016

  4. ERKs and mitochondria-related pathways are essential for glycyrrhizic acid-mediated neuroprotection against glutamate-induced toxicity in differentiated PC12 cells

    PubMed Central

    Wang, D.; Guo, T.Q.; Wang, Z.Y.; Lu, J.H.; Liu, D.P.; Meng, Q.F.; Xie, J.; Zhang, X.L.; Liu, Y.; Teng, L.S.

    2014-01-01

    The present study focuses on the neuroprotective effect of glycyrrhizic acid (GA, a major compound separated from Glycyrrhiza Radix, which is a crude Chinese traditional drug) against glutamate-induced cytotoxicity in differentiated PC12 (DPC12) cells. The results showed that GA treatment improved cell viability and ameliorated abnormal glutamate-induced alterations in mitochondria in DPC12 cells. GA reversed glutamate-suppressed B-cell lymphoma 2 levels, inhibited glutamate-enhanced expressions of Bax and cleaved caspase 3, and reduced cytochrome C (Cyto C) release. Exposure to glutamate strongly inhibited phosphorylation of AKT (protein kinase B) and extracellular signal-regulated kinases (ERKs); however, GA pretreatment enhanced activation of ERKs but not AKT. The presence of PD98059 (a mitogen-activated protein/extracellular signal-regulated kinase kinase [MEK] inhibitor) but not LY294002 (a phosphoinositide 3-kinase [PI3K] inhibitor) diminished the potency of GA for improving viability of glutamate-exposed DPC12 cells. These results indicated that ERKs and mitochondria-related pathways are essential for the neuroprotective effect of GA against glutamate-induced toxicity in DPC12 cells. The present study provides experimental evidence supporting GA as a potential therapeutic agent for use in the treatment of neurodegenerative diseases. PMID:25075574

  5. Autophagy Regulates Colistin-Induced Apoptosis in PC-12 Cells

    PubMed Central

    Zhang, Ling; Zhao, Yonghao; Ding, Wenjian; Jiang, Guozheng; Lu, Ziyin; Li, Li; Wang, Jinli

    2015-01-01

    Colistin is a cyclic cationic polypeptide antibiotic with activity against multidrug-resistant Gram-negative bacteria. Our recent study demonstrated that colistin induces apoptosis in primary chick cortex neurons and PC-12 cells. Although apoptosis and autophagy have different impacts on cell fate, there is a complex interaction between them. Autophagy plays an important role as a homeostasis regulator by removing excessive or unnecessary proteins and damaged organelles. The aim of the present study was to investigate the modulation of autophagy and apoptosis regulation in PC-12 cells in response to colistin treatment. PC-12 cells were exposed to colistin (125 to 250 μg/ml), and autophagy was detected by visualization of monodansylcadaverine (MDC)-labeled vacuoles, LC3 (microtubule-associated protein 1 light chain 3) immunofluorescence microscopic examination, and Western blotting. Apoptosis was measured by flow cytometry, Hoechst 33258 staining, and Western blotting. Autophagosomes were observed after treatment with colistin for 12 h, and the levels of LC3-II gene expression were determined; observation and protein levels both indicated that colistin induced a high level of autophagy. Colistin treatment also led to apoptosis in PC-12 cells, and the level of caspase-3 expression increased over the 24-h period. Pretreatment of cells with 3-methyladenine (3-MA) increased colistin toxicity in PC-12 cells remarkably. However, rapamycin treatment significantly increased the expression levels of LC3-II and beclin 1 and decreased the rate of apoptosis of PC-12 cells. Our results demonstrate that colistin induced autophagy and apoptosis in PC-12 cells and that the latter was affected by the regulation of autophagy. It is very likely that autophagy plays a protective role in the reduction of colistin-induced cytotoxicity in neurons. PMID:25645826

  6. Analysis of mutant platelet-derived growth factor receptors expressed in PC12 cells identifies signals governing sodium channel induction during neuronal differentiation.

    PubMed Central

    Fanger, G R; Vaillancourt, R R; Heasley, L E; Montmayeur, J P; Johnson, G L; Maue, R A

    1997-01-01

    The mechanisms governing neuronal differentiation, including the signals underlying the induction of voltage-dependent sodium (Na+) channel expression by neurotrophic factors, which occurs independent of Ras activity, are not well understood. Therefore, Na+ channel induction was analyzed in sublines of PC12 cells stably expressing platelet-derived growth factor (PDGF) beta receptors with mutations that eliminate activation of specific signalling molecules. Mutations eliminating activation of phosphatidylinositol 3-kinase (PI3K), phospholipase C gamma (PLC gamma), the GTPase-activating protein (GAP), and Syp phosphatase failed to diminish the induction of type II Na+ channel alpha-subunit mRNA and functional Na+ channel expression by PDGF, as determined by RNase protection assays and whole-cell patch clamp recording. However, mutation of juxtamembrane tyrosines that bind members of the Src family of kinases upon receptor activation inhibited the induction of functional Na+ channels while leaving the induction of type II alpha-subunit mRNA intact. Mutation of juxtamembrane tyrosines in combination with mutations eliminating activation of PI3K, PLC gamma, GAP, and Syp abolished the induction of type II alpha-subunit mRNA, suggesting that at least partially redundant signaling mechanisms mediate this induction. The differential effects of the receptor mutations on Na+ channel expression did not reflect global changes in receptor signaling capabilities, as in all of the mutant receptors analyzed, the induction of c-fos and transin mRNAs still occurred. The results reveal an important role for the Src family in the induction of Na+ channel expression and highlight the multiplicity and combinatorial nature of the signaling mechanisms governing neuronal differentiation. PMID:8972189

  7. Neuroprotective effects of dimerumic acid and deferricoprogen from Monascus purpureus NTU 568-fermented rice against 6-hydroxydopamine-induced oxidative stress and apoptosis in differentiated pheochromocytoma PC-12 cells.

    PubMed

    Tseng, Wei-Ting; Hsu, Ya-Wen; Pan, Tzu-Ming

    2016-08-01

    Context Oxidative stress plays a key role in neurodegenerative disorders, including Parkinson's disease (PD). Rice fermented with Monascus purpureus Went (Monascaceae) NTU 568 (red mould rice) was found to contain antioxidants, including dimerumic acid (DMA) and deferricoprogen (DFC). Objective The effects of DMA and DFC on 6-hydroxydopamine (6-OHDA)-induced cytotoxicity and potential protective mechanisms in differentiated PC-12 pheochromocytoma cells were investigated. Materials and methods DMA (0-60 μM) or DFC (0-10 μM) was co-treated with 6-OHDA (200 μM, 24 h exposure) in differentiated PC-12 cells. Cell viability and intercellular reactive oxygen species (ROS) were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assays, respectively. Cell apoptosis was determined by DNA fragmentation analysis and propidium iodide staining by flow cytometry. Western blot analysis was used to measure the levels of cell protein expression. Results DMA and DFC significantly increased cell viability to 72% and 81% in 6-OHDA-induced differentiated PC-12 cell cultures, respectively. Furthermore, DMA and DFC reduced 6-OHDA-induced formation of extracellular and intercellular ROS by 25% and 20%, respectively, and decreased NADPH oxidase-2 expression in differentiated PC-12 cells. DMA and DFC inhibited 6-OHDA-induced apoptosis and decreased activation of caspase-3 via regulation of Bcl-2-associated X protein (Bax) and Bcl-2 protein expression in differentiated PC-12 cells. Conclusion DMA and DFC may protect against 6-OHDA toxicity by inhibiting ROS formation and apoptosis. These results showed that the metabolites from M. purpureus NTU 568 fermentation were potential therapeutic agents for PD induced by oxidative damage and should be encouraged for further research. PMID:26794209

  8. Lipoprotein-associated lysolipids are differentially involved in high-density lipoprotein- and its oxidized form-induced neurite remodeling in PC12 cells.

    PubMed

    Sato, Koichi; Tobo, Masayuki; Mogi, Chihiro; Murata, Naoya; Kotake, Mie; Kuwabara, Atsushi; Im, Dong-Soon; Okajima, Fumikazu

    2014-03-01

    Oxidatively damaged proteins and lipid peroxidation products have been shown to accumulate in the brain of neurodegenerative diseases, such as Alzheimer's disease and multiple sclerosis, and oxidized lipoprotein is considered to be toxic and neurodegenerative. However, the role of lipoprotein and its oxidized form in neurite remodeling has not been well understood. In the present study, we have aimed to clarify whether and, if so, how high-density lipoprotein (HDL) and oxidized HDL (oxHDL) affect neuritogenesis. In the presence of nerve growth factor, exposure of PC12 cells to either HDL or oxHDL induces a rapid neurite retraction, which is followed by re-outgrowth of neurites in either case; however, oxHDL-treated cells exhibit much longer outgrowths than do basal and HDL-treated cells. Thus, processes in the morphological changes of neuronal cells after lipoprotein treatment are composed of two phases: the reversible retraction phase and the extension phase. Characterization of the active fractions of lipids and experiments with desensitization and knockdown of receptors have indicated that the reversible retraction phase involves mainly sphingosine 1-phosphate for HDL and lysophosphatidic acid for oxHDL. The change in the components responsible for the retraction response is comparable with the change in sphingosine 1-phosphate and lysophosphatidic acid contents by the oxidation of HDL. In the extension phase, lysophosphatidylcholine, which is increased by the oxidation of HDL, may play a stimulatory role in neurite outgrowth. We conclude that lipoprotein and its oxidized form differentially regulate neuritogenesis through lipoprotein-associated lysolipid molecules. PMID:24589770

  9. Effect of morphine on PC12 cells with molecular radar

    NASA Astrophysics Data System (ADS)

    Shi, Chen; Yu, Xiaoli; Lu, Jiuyi; Zhang, Chunyang; Jin, Lei; Ma, Hui; Zhang, Dacheng; Chen, Die Yan

    2000-10-01

    Molecular Radar (MR) is a new method to detect biological processes in living cells at the level of molecular, it is also the newest means to get intracellular information. In this paper we study the effect of morphine on PC12 cells using MR. The results show that the effect of morphine on PC12 cells is time- and concentration-dependent. Morphine treating for short time induces the increase and fluctuation of intracellular (CA2+), while morphine treating for long time induces chromatin condensation, loss of mitochondria membrane potential apoptosis.

  10. C-terminal trans-activation sub-region of VP16 is uniquely required for forskolin-induced herpes simplex virus type 1 reactivation from quiescently infected-PC12 cells but not for replication in neuronally differentiated-PC12 cells.

    PubMed

    Danaher, Robert J; Cook, Ross K; Wang, Chunmei; Triezenberg, Steven J; Jacob, Robert J; Miller, Craig S

    2013-02-01

    The HSV-1 tegument protein VP16 contains a trans-activation domain (TAD) that is required for induction of immediate early (IE) genes during lytic infection and induced reactivation from latency. Here we report the differential contributions of the two sub-regions of the TAD in neuronal and non-neuronal cells during activation of IE gene expression, virus replication, and reactivation from quiescently infected (QIF)-PC12 cells. Our studies show that VP16- and chemical (hexamethylenebisacetamide)-induced IE gene activation is attenuated in neuronal cells. Irrespective of neuronal or non-neuronal cell backgrounds, IE gene activation demonstrated a greater requirement for the N-terminal sub-region of VP16 TAD (VP16N) than the C-terminal sub-region (VP16C). In surprising contrast to these findings, a recombinant virus (RP4) containing the VP16N deletion was capable of modest forskolin-induced reactivation whereas a recombinant (RP3) containing a deletion of VP16C was incapable of stress-induced reactivation from QIF-PC12 cells. These unique process-dependent functions of the VP16 TAD sub-regions may be important during particular stages of the virus life cycle (lytic, entrance, and maintenance of a quiescent state and reactivation) when viral DNA would be expected to be differentially modified. PMID:23192733

  11. Induction of cytoprotective autophagy in PC-12 cells by cadmium

    SciTech Connect

    Wang, Qiwen; Zhu, Jiaqiao; Zhang, Kangbao; Jiang, Chenyang; Wang, Yi; Yuan, Yan; Bian, Jianchun; Liu, Xuezhong; Gu, Jianhong; Liu, Zongping

    2013-08-16

    Highlights: •Cadmium can promote early upregulation of autophagy in PC-12 cells. •Autophagy precedes apoptosis in cadmium-treated PC-12 cells. •Cadmium-induced autophagy is cytoprotective in PC-12 cells. •Class III PI3K/beclin-1/Bcl-2 signaling pathway plays a positive role in cadmium-triggered autophagy. -- Abstract: Laboratory data have demonstrated that cadmium (Cd) may induce neuronal apoptosis. However, little is known about the role of autophagy in neurons. In this study, cell viability decreased in a dose- and time-dependent manner after treatment with Cd in PC-12 cells. As cells were exposed to Cd, the levels of LC3-II proteins became elevated, specific punctate distribution of endogenous LC3-II increased, and numerous autophagosomes appeared, which suggest that Cd induced a high level of autophagy. In the late stages of autophagy, an increase in the apoptosis ratio was observed. Likewise, pre-treatment with chloroquine (an autophagic inhibitor) and rapamycin (an autophagic inducer) resulted in an increased and decreased percentage of apoptosis in contrast to other Cd-treated groups, respectively. The results indicate that autophagy delayed apoptosis in Cd-treated PC-12 cells. Furthermore, co-treatment of cells with chloroquine reduced autophagy and cell activity. However, rapamycin had an opposite effect on autophagy and cell activity. Moreover, class III PI3 K/beclin-1/Bcl-2 signaling pathways served a function in Cd-induced autophagy. The findings suggest that Cd can induce cytoprotective autophagy by activating class III PI3 K/beclin-1/Bcl-2 signaling pathways. In sum, this study strongly suggests that autophagy may serve a positive function in the reduction of Cd-induced cytotoxicity.

  12. Extracellular toxicity of 6-hydroxydopamine on PC12 cells.

    PubMed

    Blum, D; Torch, S; Nissou, M F; Benabid, A L; Verna, J M

    2000-04-14

    6-hydroxydopamine (6-OHDA) is usually thought to cross cell membrane through dopamine uptake transporters, to inhibit mitochondrial respiration and to generate intracellular reactive oxygen species. In this study, we show that the anti-oxidants catalase, glutathione and N-acetyl-cysteine are able to reverse the toxic effects of 6-OHDA. These two latter compounds considerably slow down 6-OHDA oxidation in a cell free system suggesting a direct chemical interaction with the neurotoxin. Moreover, desipramine does not protect PC12 cells and 6-OHDA is also strongly toxic towards non-catecholaminergic C6 and NIH3T3 cells. These results thus suggest that 6-OHDA toxicity on PC12 cells mainly involves an extracellular process. PMID:10754220

  13. Capsaicin induces apoptosis in PC12 cells through ER stress.

    PubMed

    Krizanova, Olga; Steliarova, Iveta; Csaderova, Lucia; Pastorek, Michal; Hudecova, Sona

    2014-02-01

    Capsaicin, the pungent agent in chili peppers, has been shown to act as a tumor-suppressor in cancer. In our previous study, capsaicin was shown to induce apoptosis in the rat pheochromocytoma cell line (PC12 cells). Thus, the aim of the present study was to determine the potential mechanism by which capsaicin induces apoptosis. We treated PC12 cells with 50, 100 and 500 µM capsaicin and measured the reticular calcium content and expression of the reticular calcium transport systems. These results were correlated with endoplasmic reticulum (ER) stress markers CHOP, ATF4 and X-box binding protein 1 (XBP1), as well as with apoptosis induction. We observed that capsaicin decreased reticular calcium in a concentration-dependent manner. Simultaneously, expression levels of the sarco/endoplasmic reticulum pump and ryanodin receptor of type 2 were modified. These changes were accompanied by increased ER stress, as documented by increased stress markers. Thus, from these results we propose that in PC12 cells capsaicin induces apoptosis through increased ER stress. PMID:24337105

  14. Functionality of NGF-protected PC12 cells following exposure to 6-hydroxydopamine

    SciTech Connect

    Kavanagh, Edel T.; Loughlin, John P.; Herbert, Kate Reed; Dockery, Peter; Samali, Afshin; Doyle, Karen M.; Gorman, Adrienne M. . E-mail: adrienne.gorman@nuigalway.ie

    2006-12-29

    6-Hydroxydopamine (6-OHDA) is often used in models of Parkinson's disease since it can selectively target and kill dopaminergic cells of the substantia nigra. In this study, pre-treatment of PC12 cells with nerve growth factor (NGF) inhibited apoptosis and necrosis by 6-OHDA, including caspase activity and lactate dehydrogenase release. Notably, cells exposed to 6-OHDA in the presence of NGF were subsequently capable of proliferation (when replated without NGF), or neurite outgrowth (with continued presence of NGF). Following 7 days growth in the presence of NGF, expression of {beta}III tubulin and tyrosine hydroxylase and increased intracellular catecholamines was detectable in PC12 cells, features characteristic of functional dopaminergic neurons. NGF-pre-treated PC12 cells retained expression of {beta}III-tubulin and tyrosine hydroxylase, but not catecholamine content following 6-OHDA exposure. These data indicate that NGF-protected cells maintained some aspects of functionality and were subsequently capable of proliferation or differentiation.

  15. Manganese oxidation state mediates toxicity in PC12 cells

    SciTech Connect

    Reaney, S.H. . E-mail: stevereaney@hotmail.com; Smith, D.R.

    2005-06-15

    The role of the manganese (Mn) oxidation state on cellular Mn uptake and toxicity is not well understood. Therefore, undifferentiated PC12 cells were exposed to 0-200 {mu}M Mn(II)-chloride or Mn(III)-pyrophosphate for 24 h, after which cellular manganese levels were measured along with measures of cell viability, function, and cytotoxicity (trypan blue exclusion, medium lactate dehydrogenase (LDH), 8-isoprostanes, cellular ATP, dopamine, serotonin, H-ferritin, transferrin receptor (TfR), Mn-superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (CuZnSOD) protein levels). Exposures to Mn(III) >10 {mu}M produced 2- to 5-fold higher cellular manganese levels than equimolar exposures to Mn(II). Cell viability and ATP levels both decreased at the highest Mn(II) and Mn(III) exposures (150-200 {mu}M), while Mn(III) exposures produced increases in LDH activity at lower exposures ({>=}50 {mu}M) than did Mn(II) (200 {mu}M only). Mn(II) reduced cellular dopamine levels more than Mn(III), especially at the highest exposures (50% reduced at 200 {mu}M Mn(II)). In contrast, Mn(III) produced a >70% reduction in cellular serotonin at all exposures compared to Mn(II). Different cellular responses to Mn(II) exposures compared to Mn(III) were also observed for H-ferritin, TfR, and MnSOD protein levels. Notably, these differential effects of Mn(II) versus Mn(III) exposures on cellular toxicity could not simply be accounted for by the different cellular levels of manganese. These results suggest that the oxidation state of manganese exposures plays an important role in mediating manganese cytotoxicity.

  16. A Novel Ligustrazine Derivative T-VA Prevents Neurotoxicity in Differentiated PC12 Cells and Protects the Brain against Ischemia Injury in MCAO Rats

    PubMed Central

    Li, Guoling; Tian, Yufei; Zhang, Yuzhong; Hong, Ying; Hao, Yingzhi; Chen, Chunxiao; Wang, Penglong; Lei, Haimin

    2015-01-01

    Broad-spectrum drugs appear to be more promising for the treatment of acute ischemic stroke. In our previous work, a new ligustrazine derivative (3,5,6-trimethylpyrazin-2-yl) methyl 3-methoxy-4-[(3,5,6-trimethylpyrazin-2-yl)methoxy]benzoate (T-VA) showed neuroprotective effect on injured PC12 cells (EC50 = 4.249 µM). In the current study, we show that this beneficial effect was due to the modulation of nuclear transcription factor-κB/p65 (NF-κB/p65) and cyclooxygenase-2 (COX-2) expressions. We also show that T-VA exhibited neuroprotective effect in a rat model of ischemic stroke with concomitant improvement of motor functions. We propose that the protective effect observed in vivo is owing to increased vascular endothelial growth factor (VEGF) expression, decreased oxidative stress, and up-regulation of Ca2+–Mg2+ ATP enzyme activity. Altogether, our results warrant further studies on the utility of T-VA for the potential treatment of ischemic brain injuries, such as stroke. PMID:26370988

  17. Regulation of CREB by moderate hypoxia in PC12 cells.

    PubMed

    Beitner-Johnson, D; Rust, R T; Hsieh, T; Millhorn, D E

    2000-01-01

    The mechanisms by which excitable cells adapt and respond to changes in O2 levels remain largely unknown. We have investigated the effect of hypoxia on the cyclic AMP response element binding protein (CREB) transcription factor. PC12 cells were exposed to moderate levels of hypoxia (5% O2) for various times between 20 min and 6 hr. We found that hypoxia rapidly and persistently induced ser133 phosphorylation of CREB. This effect was more robust than that produced by exposing PC12 cells to either forskolin, KCl, or NGF. This effect was not due to activation of any of the previously known CREB kinases, including PKA, CaMK, PKC, p70s6k, or MAPKAP kinase-2. Thus, hypoxia may induce activation of a novel CREB kinase. To test whether phosphorylation of CREB was associated with an activation of CRE-dependent gene expression, cells were transfected with wild type and mutated regions of the 5'-flanking region of the tyrosine hydroxylase (TH) gene fused to a CAT reporter gene. Mutation of the CRE element in a TH reporter gene reduced, but did not abolish, the effects of hypoxia on TH gene expression. However, hypoxia did not induce transactivation of a GAL4-luciferase reporter by a GAL4-CREB fusion protein. Thus, the mechanism by which hypoxia regulates CREB is distinct, and more complex, than that induced by forskolin, depolarization, or nerve growth factor. PMID:10849656

  18. Habituation in the Single Cell: Diminished Secretion of Norepinephrine with Repetitive Depolarization of PC12 Cells

    NASA Astrophysics Data System (ADS)

    McFadden, Philip N.; Koshland, Daniel E., Jr.

    1990-03-01

    Neuronally differentiated PC12 cells secrete decreasing amounts of [^3H]norepinephrine when repetitively stimulated by depolarizing concentrations of potassium ion. The decreasing response shows attributes that have been classically ascribed to response habituation, a behavior commonly observed in nervous systems but found here in a homogeneous cell type. Alteration of the habituation pattern was caused by activators of the protein kinase C pathway and of voltage-gated calcium channels.

  19. Lysophosphatidylethanolamine increases intracellular Ca(2+) through LPA(1) in PC-12 neuronal cells.

    PubMed

    Lee, Jung-Min; Park, Soo-Jin; Im, Dong-Soon

    2015-05-29

    G protein-coupled receptors (GPCRs) have been implicated in lysophosphatidylethanolamine (LPE)-induced increases in intracellular Ca(2+) ([Ca(2+)]i), but in different cell types, this response may be dependent or independent of lysophosphatidic acid (LPA) GPCR. The effects of LPEs from Grifola frondosa on the neuronal differentiation and apoptosis of PC-12 neuronal cells have been previously reported. In the present study, the authors sought to identify the mechanism responsible for the effects of LPEs in PC-12 neuronal cells. LPE increase [Ca(2+)]i concentration-dependently in PC-12 neuronal cells, but this LPE-induced [Ca(2+)]i increase was less than that elicited by LPA. Studies using specific inhibitors showed that LPE-induced Ca(2+) response was mediated via pertussis toxin-sensitive Gi/o proteins, edelfosine-sensitive phospholipase C, and 2-APB-sensitive IP3 receptor and by Ca(2+) influx across the cell membrane, and that this did not involve the conversion of LPE to LPA. Furthermore, LPE- and LPA-induced responses were found to show homologous and heterologous desensitization in PC-12 cells. VPC32183 and Ki16425 (antagonists of LPA1 and LPA3) inhibited LPE-induced [Ca(2+)]i increases. Furthermore, AM-095 (a specific inhibitor of LPA1) inhibited LPE-induced Ca(2+) response completely in PC-12 cells. These findings indicate LPE increases [Ca(2+)]i via a LPA1/Gi/o proteins/phospholipase C/IP3/Ca(2+) rise/Ca(2+) influx pathway in PC-12 neuronal cells. PMID:25888792

  20. Calcium regulation of exocytosis in PC12 cells.

    PubMed

    Chen, Y A; Scales, S J; Duvvuri, V; Murthy, M; Patel, S M; Schulman, H; Scheller, R H

    2001-07-13

    The calcium (Ca(2+)) regulation of neurotransmitter release is poorly understood. Here we investigated several aspects of this process in PC12 cells. We first showed that osmotic shock by 1 m sucrose stimulated rapid release of neurotransmitters from intact PC12 cells, indicating that most of the vesicles were docked at the plasma membrane. Second, we further investigated the mechanism of rescue of botulinum neurotoxin E inhibition of release by recombinant SNAP-25 COOH-terminal coil, which is known to be required in the triggering stage. We confirmed here that Ca(2+) was required simultaneously with the SNAP-25 peptide, with no significant increase in release if either the peptide or Ca(2+) was present during the priming stage as well as the triggering, suggesting that SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) complex assembly was involved in the final Ca(2+)-triggered event. Using this rescue system, we also identified a series of acidic surface SNAP-25 residues that rescued better than wild-type when mutated, due to broadened Ca(2+) sensitivity, suggesting that this charged patch may interact electrostatically with a negative regulator of membrane fusion. Finally, we showed that the previously demonstrated stimulation of exocytosis in this system by calmodulin required calcium binding, since calmodulin mutants defective in Ca(2+)-binding were not able to enhance release. PMID:11359785

  1. The neurite-initiating effect of microbial extracellular glycolipids in PC12 cells.

    PubMed

    Isoda, H; Shinmoto, H; Matsumura, M; Nakahara, T

    1999-09-01

    The effects of several kinds of microbial extracellular glycolipids on neurite initiation in PC12 cells were examined. Addition of mannosylerythritol lipid-A (MEL-A), MEL-B, and sophorose lipid (SL) to PC12 cells caused significant neurite outgrowth. Other glycolipids, such as polyol lipid (PL), rhamnose lipid (RL), succinoyl trehalose lipid-A (STL-A) and STL-B caused no neurite-initiation. MEL-A increased acetylcholine esterase (AChE) activity to an extent similar to nerve growth factor (NGF). However, MEL-A induced one or two long neurites from the cell body, while NGF induced many neurites. In addition, MEL-A-induced differentiation was transient, and after 48 h, percentage of cells with neurites started to decrease in contrast to neurons induced by NGF, which occurred in a time-dependent manner. MEL-A could induce neurite outgrowth after treatment of PC12 cells with an anti-NGF receptor antibody that obstructed NGF action. These results indicate that MEL-A and NGF induce differentiation of PC12 cells through different mechanisms. PMID:19003137

  2. Ninjin'yoeito and ginseng extract prevent oxaliplatin-induced neurodegeneration in PC12 cells.

    PubMed

    Suzuki, Toshiaki; Yamamoto, Ayano; Ohsawa, Masahiro; Motoo, Yoshiharu; Mizukami, Hajime; Makino, Toshiaki

    2015-10-01

    Ninjin'yoeito (NYT) is a formula of Japanese traditional kampo medicine composed of 12 crude drugs, and is designed to improve the decline in constitution after recovery from disease, fatigue, anemia, anorexia, perspiration during sleep, cold limbs, slight fever, chills, persistent cough, malaise, mental disequilibrium, insomnia, and constipation. Oxaliplatin (L-OHP) is a platinum-based anticancer drug used to treat colorectal, pancreatic, and stomach cancers. However, it often causes acute and chronic peripheral neuropathies including cold allodynia and mechanical hyperalgesia. In this study, we investigated the preventive effects of NYT on neuronal degeneration caused by L-OHP using PC12 cells, which are derived from the rat adrenal medulla and differentiate into nerve-like cells after exposure to nerve growth factor. L-OHP treatment decreased the elongation of neurite-like projection outgrowths in differentiated PC12 cells. When PC12 cells were treated with NYT hot water extract, neurodegeneration caused by L-OHP was significantly prevented in a concentration-dependent manner. Among the 12 crude drugs composing NYT, the extract of Ginseng (the root of Panax ginseng) exhibited the strongest preventive effects on neurodegeneration in differentiated PC12 cells. By activity-guided fractionation, we found that the fraction containing ginsenosides displayed preventive activity and, among several ginsenosides, ginsenoside F2 exhibited significant preventive effects on L-OHP-induced decreases in neurite-like outgrowths in differentiated PC12 cells. These results suggest that NYT and ginseng are promising agents for preventing L-OHP-induced neuropathies and present ginsenoside F2 as one of the active ingredients in ginseng. PMID:26014046

  3. Curcumin Protects β-Lactoglobulin Fibril Formation and Fibril-Induced Neurotoxicity in PC12Cells

    PubMed Central

    Mazaheri, Mansooreh; Moosavi-Movahedi, Ali Akbar; Saboury, Ali Akbar; Khodagholi, Fariba; Shaerzadeh, Fatemeh; Sheibani, Nader

    2015-01-01

    In this study the β-lactoglobulin fibrillation, in the presence or absence of lead ions, aflatoxin M1 and curcumin, was evaluated using ThT fluorescence, Circular dichroism spectroscopy and atomic force microscopy. To investigate the toxicity of the different form of β-Lg fibrils, in the presence or absence of above toxins and curcumin, we monitored changes in the level of reactive oxygen species and morphology of the differentiated neuron-like PC12 cells. The cell viability, cell body area, average neurite length, neurite width, number of primary neurites, percent of bipolar cells and node/primary neurite ratios were used to assess the growth and complexity of PC12 cells exposed to different form of β-Lg fibrils. Incubation of β-Lg with curcumin resulted in a significant decrease in ROS levels even in the presence of lead ions and aflatoxin M1. The β-Lg fibrils formed in the presence of lead ions and aflatoxin M1 attenuated the growth and complexity of PC12 cells compared with other form of β-Lg fibrils. However, the adverse effects of these toxins and protein fibrils were negated in the presence of curcumin. Furthermore, the antioxidant and inhibitory effects of curcumin protected PC12 cells against fibril neurotoxicity and enhanced their survival. Thus, curcumin may provide a protective effect toward β-Lg, and perhaps other protein, fibrils mediated neurotoxicity. PMID:26186474

  4. Treatment of PC12 cells with nerve growth factor increases iron uptake.

    PubMed Central

    Mwanjewe, J; Hui, B K; Coughlin, M D; Grover, A K

    2001-01-01

    Phaeochromocytoma PC12 cells treated with nerve growth factor (NGF) differentiate into a neuronal phenotype. Here we compare the uptake of transferrin-bound and non-transferrin-bound iron in NGF-treated (neuronal phenotype) and control (proliferating) PC12 cells. The non-transferrin-bound iron uptake was greater in the NGF-treated cells than in the control, independently of the uptake time, the iron-chelating agents used, the oxidation state of iron (Fe(2+) or Fe(3+)) and the iron concentration tested. The NGF-treated cells expressed L-type and N-type voltage-operated Ca(2+) channels. Nitrendipine (an L-type inhibitor) and possibly omega-conotoxin (an N-type inhibitor) inhibited the iron uptake by 20%. Thapsigargin inhibits the endoplasmic reticulum Ca(2+) pump and allowed Mn(2+) entry into cells. Preincubating PC12 cells with thapsigargin increased the iron uptake. The rate of transferrin-bound iron uptake was less than 1% of the non-transferrin-bound iron uptake and the maximum transferrin-bound iron uptake was also very low. We conclude that an increase in the iron uptake by multiple pathways accompanies the transition of PC12 cells from the proliferating to the neuronal phenotype. PMID:11463361

  5. Neurosecretory Habituation in PC12 Cells: Modulation During Parallel Habituation

    NASA Astrophysics Data System (ADS)

    Martin, Paul T.; Koshland, Daniel E., Jr.

    1995-05-01

    PC12 cells habituate during repetitive stimulation with acetylcholine, bradykinin, or high potassium. Interspersing these stimulants did not affect the rate of habituation of the others, but it could modulate the amplitude of the norepinephrine secretion each could achieve. Stimulation with acetylcholine inhibited norepinephrine secretion caused by high potassium and bradykinin stimulation, while high potassium had no effect on acetylcholine or bradykinin, and bradykinin increased secretion caused by acetylcholine. Changes in norepinephrine secretion resulting from any of these stimulants correlated with changes in internal calcium levels. Cyclic AMP-, protein kinase C-, and calmodulin-dependent second messenger pathways all modulated norepinephrine secretion caused by acetylcholine and high potassium and showed a distinct hierarchy in their effectiveness. These data demonstrate that different receptor pathways can change the norepinephrine response of one another while not changing the levels of the molecules responsible for habituation.

  6. Nitric oxide synthase mediates PC12 differentiation induced by the surface topography of nanostructured TiO2

    PubMed Central

    2013-01-01

    Background Substrate nanoscale topography influences cell proliferation and differentiation through mechanisms that are at present poorly understood. In particular the molecular mechanism through which cells 'sense’ and adapt to the substrate and activate specific intracellular signals, influencing cells survival and behavior, remains to be clarified. Results To characterize these processes at the molecular level we studied the differentiation of PC12 cells on nanostructured TiO2 films obtained by supersonic cluster beam deposition. Our findings indicate that, in PC12 cells grown without Nerve Growth Factor (NGF), the roughness of nanostructured TiO2 triggers neuritogenesis by activating the expression of nitric oxide synthase (NOS) and the phospho-extracellular signal-regulated kinase 1/2 (pERK1/2) signaling. Differentiation is associated with an increase in protein nitration as observed in PC12 cells grown on flat surfaces in the presence of NGF. We demonstrate that cell differentiation and protein nitration induced by topography are not specific for PC12 cells but can be regarded as generalized effects produced by the substrate on different neuronal-like cell types, as shown by growing the human neuroblastoma SH-SY5Y cell line on nanostructured TiO2. Conclusion Our data provide the evidence that the nitric oxide (NO) signal cascade is involved in the differentiation process induced by nanotopography, adding new information on the mechanism and proteins involved in the neuritogenesis triggered by the surface properties. PMID:24119372

  7. Hydrogen peroxide induces lysosomal protease alterations in PC12 cells.

    PubMed

    Lee, Daniel C; Mason, Ceceile W; Goodman, Carl B; Holder, Maurice S; Kirksey, Otis W; Womble, Tracy A; Severs, Walter B; Palm, Donald E

    2007-09-01

    Alterations in lysosomal proteases have been implicated in many neurodegenerative diseases. The current study demonstrates a concentration-dependent decrease in PC12 cell viability and transient changes in cystatin C (CYSC), cathepsin B (CATB), cathepsin D (CATD) and caspase-3 following exposure to H2O2. Furthermore, activation of CATD occurred following exposure to H2O2 and cysteine protease suppression, while inhibition of CATD with pepstatin A significantly improved cell viability. Additionally, significant PARP cleavage, suggestive of caspase-3-like activity, was observed following H2O2 exposure, while inhibition of caspase-3 significantly increased cell viability compared to H2O2 administration alone. Collectively, our data suggest that H2O2 induced cell death is regulated at least in part by caspase-3 and CATD. Furthermore, cysteine protease suppression increases CATD expression and activity. These studies provide insight for alternate pathways and potential therapeutic targets of cell death associated with oxidative stress and lysosomal protease alterations. PMID:17440810

  8. An electroporation protocol for efficient DNA transfection in PC12 cells.

    PubMed

    Covello, Giuseppina; Siva, Kavitha; Adami, Valentina; Denti, Michela A

    2014-08-01

    A wide variety of mammalian cell types is used in gene transfection studies. Establishing transfection methods that enable highly efficient DNA uptake has become increasingly important. PC12 is an established rat pheochromocytoma cell line, which responds to exposure to NGF with cessation of growth, expression of cytoplasmic processes, and differentiation into cells resembling sympathetic neurons. Although PC12 cells represent an important model system to study a variety of neuronal functions, they proved relatively difficult to transfect. We have compared the efficiency of three different chemical transfection reagents (Lipofectamine 2000, Lipofectamine LTX and TransIT-LT1) and of two electroporation systems (Neon and Gene Pulser Xcell) in transiently transfecting undifferentiated PC12 cells. By comparing efficiencies from replicate experiments we proved electroporation (in particular Neon) to be the method of choice. By optimizing different parameters (voltage, pulse width and number of pulses) we reached high efficiency of transfection (90 %) and viability (99 %). We also demonstrated that, upon electroporation, cells are not altered by the transfection and maintain their ability to differentiate. PMID:23846478

  9. Platycodin D induced apoptosis and autophagy in PC-12 cells through mitochondrial dysfunction pathway

    NASA Astrophysics Data System (ADS)

    Zeng, Chuan-Chuan; Zhang, Cheng; Yao, Jun-Hua; Lai, Shang-Hai; Han, Bing-Jie; Li, Wei; Tang, Bing; Wan, Dan; Liu, Yun-Jun

    2016-11-01

    In this article, the in vitro cytotoxicity of platycodin D was evaluated in human PC-12, SGC-7901, BEL-7402, HeLa and A549 cancer cell lines. PC-12 cells were sensitive to platycodin D treatment, with an IC50 value of 13.5 ± 1.2 μM. Morphological and comet assays showed that platycodin D effectively induced apoptosis in PC-12 cells. Platycodin D increased the levels of reactive oxygen species (ROS) and induced a decrease in mitochondrial membrane potential. Platycodin D induced cell cycle arrest at the G0/G1 phase in the PC-12 cell line. Platycodin D can induce autophagy. In addition, platycodin D can down-regulate the expression of Bcl-2 and Bcl-x, and up-regulate the levels of Bid protein in the PC-12 cells. The results demonstrated that platycodin D induced PC-12 cell apoptosis through a ROS-mediated mitochondrial dysfunction pathway.

  10. Platycodin D induced apoptosis and autophagy in PC-12 cells through mitochondrial dysfunction pathway.

    PubMed

    Zeng, Chuan-Chuan; Zhang, Cheng; Yao, Jun-Hua; Lai, Shang-Hai; Han, Bing-Jie; Li, Wei; Tang, Bing; Wan, Dan; Liu, Yun-Jun

    2016-11-01

    In this article, the in vitro cytotoxicity of platycodin D was evaluated in human PC-12, SGC-7901, BEL-7402, HeLa and A549 cancer cell lines. PC-12 cells were sensitive to platycodin D treatment, with an IC50 value of 13.5±1.2μM. Morphological and comet assays showed that platycodin D effectively induced apoptosis in PC-12 cells. Platycodin D increased the levels of reactive oxygen species (ROS) and induced a decrease in mitochondrial membrane potential. Platycodin D induced cell cycle arrest at the G0/G1 phase in the PC-12 cell line. Platycodin D can induce autophagy. In addition, platycodin D can down-regulate the expression of Bcl-2 and Bcl-x, and up-regulate the levels of Bid protein in the PC-12 cells. The results demonstrated that platycodin D induced PC-12 cell apoptosis through a ROS-mediated mitochondrial dysfunction pathway. PMID:27294548

  11. Synergistic effect of topography, surface chemistry and conductivity of the electrospun nanofibrous scaffold on cellular response of PC12 cells.

    PubMed

    Tian, Lingling; Prabhakaran, Molamma P; Hu, Jue; Chen, Menglin; Besenbacher, Flemming; Ramakrishna, Seeram

    2016-09-01

    Electrospun nanofibrous nerve implants is a promising therapy for peripheral nerve injury, and its performance can be tailored by chemical cues, topographical features as well as electrical properties. In this paper, a surface modified, electrically conductive, aligned nanofibrous scaffold composed of poly (lactic acid) (PLA) and polypyrrole (Ppy), referred to as o-PLAPpy_A, was fabricated for nerve regeneration. The morphology, surface chemistry and hydrophilicity of nanofibers were characterized by Scanning Electron Microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle, respectively. The effects of these nanofibers on neuronal differentiation using PC12 cells were evaluated. A hydrophilic surface was created by Poly-ornithine coating, which was able to provide a better environment for cell attachment, and furthermore aligned fibers were proved to be able to guide PC12 cells grow along the fiber direction and be beneficial for neurite outgrowth. The cellular response of PC12 cells to pulsed electrical stimulation was evaluated by NF 200 and alpha tubulin expression, indicating that electrical stimulation with a voltage of 40mV could enhance the neurite outgrowth. The PC12 cells stimulated with electrical shock showed greater level of neurite outgrowth and smaller cell body size. Moreover, the PC12 cells under electrical stimulation showed better viability. In summary, the o-PLAPpy_A nanofibrous scaffold supported the attachment, proliferation and differentiation of PC12 cells in the absence of electrical stimulation, which could be potential candidate for nerve regeneration applications. PMID:27232305

  12. Endothelin (ET)-1-induced inhibition of ATP release from PC-12 cells is mediated by the ETB receptor: differential response to ET-1 on ATP, neuropeptide Y, and dopamine levels.

    PubMed

    Gardner, A; Westfall, T C; Macarthur, H

    2005-06-01

    During sympathetic neurotransmitter release, there is evidence for differential modulation of cotransmitter release by endothelin (ET)-1. Using nerve growth factor (NGF)-differentiated PC12 cells, the effects of ET-1 on K(+)-stimulated release of ATP, dopamine (DA), and neuropeptide Y (NPY) were quantified using high-pressure liquid chromatography or radioimmunoassay. ET-1, in a concentration-dependent manner, inhibited the release of ATP, but not DA and NPY. Preincubation with the ET(A/B) antagonist, PD 142893 (N-acetyl-beta-phenyl-D-Phe-Leu-Asp-Ile-Ile-Trp), reversed the inhibitory effect of ET-1 on ATP release, which remained unaffected in the presence of the ET(A)-specific antagonist BQ123 [cyclo(D-Asp-Pro-D-Val-Leu-D-Trp)]. The ET(B) agonists, sarafotoxin 6c (Cys-Thr-Cys-Asn-Asp-Met-Thr-Asp-Glu-Glu-Cys-Leu-Asn-Phe-Cys-His-Gln-Asp-Val-Ile-Trp), BQ 3020 (N-acetyl-[Ala(11,15)]-endothelin 1 fragment 6-21Ac-Leu-Met-Asp-Lys-Glu-Ala-Val-Tyr-Phe-Ala-His-Leu-Asp-IIe-IIe-Trp), and IRL 1620 (N-succinyl-[Glu(9), Ala(11,15)]-endothelin 1 fragment 8-21Suc-Asp-Glu-Glu-Ala-Val-Tyr-Phe-Ala-His-Leu-Asp-Ile-Ile-Trp), decreased K(+)-stimulated release of ATP in a dose-dependent manner, and this effect was reversed by the ET(B) antagonists RES 701-1 [cyclic (Gly1-Asp9) (Gly-Asn-Trp-His-Gly-Thr-Ala-Pro-Asp-Trp-Phe-Phe-Asn-Tyr-Tyr-Trp)] and BQ 788 (N-[N-[N-[(2,6-dimethyl-1-piperidinyl)carbonyl]-4-methyl-l-leucyl]-1-(methoxycarbonyl)-D-tryptophyl]-D-norleucine sodium salt). Preincubation of PC12 cells with pertussis toxin reversed the ET-1-induced inhibition of the K(+)-evoked ATP release. Real-time intracellular calcium level recordings were performed on PC-12 cell suspensions, and ET-1 induced a dose-dependent decrease in the K(+)-evoked calcium levels. Nifedipine, the L-type voltage-dependent Ca(2+) channel antagonist, caused inhibition of the K(+)-stimulated ATP release, but the N-type Ca(2+) channel antagonist, omega-conotoxin GVIA, did not reverse the effect on ATP release

  13. Potential neuroprotective effects of SIRT1 induced by glucose deprivation in PC12 cells.

    PubMed

    Fujino, Kotaro; Ogura, Yurina; Sato, Kazunori; Nedachi, Taku

    2013-12-17

    Nutrient availability is one of the most important signals regulating cellular fates including cell growth, differentiation, and death. Recent evidence suggests that the NAD(+)-dependent histone deacetylase sirtuin 1 (SIRT1) plays a prominent role in linking changes in nutritional availability with cellular fate regulation. SIRT1 expression is observed in neurons, yet the expressional and functional regulation of this protein is not fully understood. In the present study, we examined whether extracellular glucose concentration affects the expression and localization of SIRT1 in PC12 cells. Further, we examined levels of forkhead box O3a (FoxO3a), which is also controlled by changes in extracellular glucose concentration. We observed the total expression levels of SIRT1 and FoxO3a in PC12 cells were reduced when glucose availability increased via gene expressional control, at least in part. Nuclear localization of SIRT1 and FoxO3a was increased by glucose deprivation. Even though the changes in extracellular glucose concentration regulated SIRT1 and FoxO3a in a similar direction, the effects of nerve growth factor on these two proteins were completely different. Finally, we found the potent SIRT1 inhibitor enhanced glucose deprivation-induced cell death. Therefore, we propose that glucose deprivation-induced SIRT1 expression potentially plays a major role in protecting PC12 cells. PMID:24183892

  14. A novel function of the human oncogene Stil: Regulation of PC12 cell toxic susceptibility through the Shh pathway.

    PubMed

    Li, Lei; Carr, Aprell L; Sun, Lei; Drewing, Audrey; Lee, Jessica; Rao, Zihe

    2015-01-01

    The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in vertebrate species. Here, we report new findings of Stil in the regulation of toxic susceptibility in mammalian dopaminergic (DA)-like PC12 cells. RNAi-mediated knockdown of Stil expression did not affect the survival of proliferating PC12 cells but caused a significant amount of cell death in differentiated neurons after toxic drug treatment. In contrast, overexpression of Stil increased toxic susceptibility only in proliferating cells but produced no effect in mature neurons. Exogenetic inactivation or activation of the Sonic hedgehog (Shh) signaling transduction mimicked the effect of Stil knockdown or overexpression in regulation of PC12 cell toxic susceptibility, suggesting that Stil exerts its role through the Shh pathway. Together, the data provide evidence for novel functions of the human oncogene Stil in neural toxic susceptibility. PMID:26549353

  15. A novel function of the human oncogene Stil: Regulation of PC12 cell toxic susceptibility through the Shh pathway

    PubMed Central

    Li, Lei; Carr, Aprell L.; Sun, Lei; Drewing, Audrey; Lee, Jessica; Rao, Zihe

    2015-01-01

    The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in vertebrate species. Here, we report new findings of Stil in the regulation of toxic susceptibility in mammalian dopaminergic (DA)-like PC12 cells. RNAi-mediated knockdown of Stil expression did not affect the survival of proliferating PC12 cells but caused a significant amount of cell death in differentiated neurons after toxic drug treatment. In contrast, overexpression of Stil increased toxic susceptibility only in proliferating cells but produced no effect in mature neurons. Exogenetic inactivation or activation of the Sonic hedgehog (Shh) signaling transduction mimicked the effect of Stil knockdown or overexpression in regulation of PC12 cell toxic susceptibility, suggesting that Stil exerts its role through the Shh pathway. Together, the data provide evidence for novel functions of the human oncogene Stil in neural toxic susceptibility. PMID:26549353

  16. Cellular uptake of Nigella sativa oil-PLGA microparticle by PC-12 cell line.

    PubMed

    Doolaanea, Abd Almonem; Mansor, Nur 'Izzati; Mohd Nor, Nurul Hafizah; Mohamed, Farahidah

    2014-01-01

    The aim of this study is to investigate the cell uptake of Nigella sativa oil (NSO)-PLGA microparticle by neuron-like PC-12 cells in comparison to surfactants; hydrophilic (Tween 80 & Triton X100) and hydrophobic (Span 80). Solvent evaporation was used to precisely control the size, zeta potential and morphology of the particle. The results revealed varying efficiencies of the cell uptake by PC-12 cells, which may be partially attributed to the surface hydrophobicity of the microparticles. Interestingly, the uptake efficiency of PC-12 cells was higher with the more hydrophilic microparticle. NSO microparticle showed evidence of being preferably internalised by mitotic cells. Tween 80 microparticle showed the highest cell uptake efficiency with a concentration-dependent pattern suggesting its use as uptake enhancer for non-scavenging cells. In conclusion, PC-12 cells can take up NSO-PLGA microparticle which may have potential in the treatment of neurodegenerative disease. PMID:24697178

  17. Antibody-mediated inhibition of Nogo-A signaling promotes neurite growth in PC-12 cells

    PubMed Central

    Yazdi, Iman K; Taghipour, Nima; Hmaidan, Sarah; Palomba, Roberto; Scaria, Shilpa; Munoz, Alvaro; Boone, Timothy B; Tasciotti, Ennio

    2016-01-01

    The use of a monoclonal antibody to block the neurite outgrowth inhibitor Nogo-A has been of great interest for promoting axonal recovery as a treatment for spinal cord injury. While several cellular and non-cellular assays have been developed to quantify the bioactive effects of Nogo-A signaling, demand still exists for the development of a reliable approach to characterize the effectiveness of the anti-Nogo-A antibody. In this study, we developed and validated a novel cell-based approach to facilitate the biological quantification of a Nogo-A antibody using PC-12 cells as an in vitro neuronal cell model. Changes in the mRNA levels of the neuronal differentiation markers, growth-associated protein 43 and neurofilament light-polypeptide, suggest that activation of the Nogo-A pathway suppresses axonal growth and dendrite formation in the tested cell line. We found that application of anti-Nogo-A monoclonal antibody can significantly enhance the neuronal maturity of PC-12 cells by blocking the Nogo-A inhibitory effects, providing enhanced effects on neural maturity at the molecular level. No adverse effects were observed on cell viability. PMID:27027860

  18. Sphingosine kinase expression regulates apoptosis and caspase activation in PC12 cells.

    PubMed

    Edsall, L C; Cuvillier, O; Twitty, S; Spiegel, S; Milstien, S

    2001-03-01

    Sphingosine-1-phosphate (SPP), a bioactive sphingolipid metabolite, suppresses apoptosis of many types of cells, including rat pheochromocytoma PC12 cells. Elucidating the molecular mechanism of action of SPP is complicated by many factors, including uptake and metabolism, as well as activation of specific G-protein-coupled SPP receptors, known as the endothelial differentiation gene-1 (EDG-1) family. In this study, we overexpressed type 1 sphingosine kinase (SPHK1), the enzyme that converts sphingosine to SPP, in order to examine more directly the role of intracellularly generated SPP in neuronal survival. Enforced expression of SPHK1 in PC12 cells resulted in significant increases in kinase activity, with corresponding increases in intracellular SPP levels and concomitant decreases in both sphingosine and ceramide, and marked suppression of apoptosis induced by trophic factor withdrawal or by C(2)-ceramide. NGF, which protects PC12 cells from serum withdrawal-induced apoptosis, also stimulated SPHK1 activity. Surprisingly, overexpression of SPHK1 had no effect on activation of two known NGF-stimulated survival pathways, extracellular signal regulated kinase ERK 1/2 and Akt. However, trophic withdrawal-induced activation of the stress activated protein kinase, c-Jun amino terminal kinase (SAPK/JNK), and activation of the executionary caspases 2, 3 and 7, were markedly suppressed. Moreover, this abrogation of caspase activation, which was prevented by the SPHK inhibitor N,N-dimethylsphingosine, was not affected by pertussis toxin treatment, indicating that the cytoprotective effect was likely not mediated by binding of SPP to cell surface G(i)-coupled SPP receptors. In agreement, there was no detectable release of SPP into the culture medium, even after substantially increasing cellular SPP levels by NGF or sphingosine treatment. In contrast to PC12 cells, C6 astroglioma cells secreted SPP, suggesting that SPP might be one of a multitude of known neurotrophic

  19. Capillary Isoelectric Focusing-Tandem Mass Spectrometry And Reversed-Phase Liquid Chromatography-Tandem Mass Spectrometry For Quantitative Proteomic Analysis Of Differentiating PC12 Cells By Eight-Plex iTRAQ

    PubMed Central

    Zhu, Guijie; Sun, Liangliang; Keithley, Richard B.; Dovichi, Norman J.

    2013-01-01

    We report the application of capillary isoelectric focusing for quantitative analysis of a complex proteome. Biological duplicates were generated from PC12 cells at days 0, 3, 7, and 12 following treatment with nerve growth factor. These biological duplicates were digested with trypsin, labeled using eight-plex iTRAQ chemistry, and pooled. The pooled peptides were separated into 25 fractions using reversed-phase liquid chromatography (RPLC). Technical duplicates of each fraction were separated by capillary isoelectric focusing (cIEF) using a set of amino acids as ampholytes. The cIEF column was interfaced to an Orbitrap Velos mass spectrometer with an electrokinetically-pumped sheath-flow nanospray interface. This HPLC-cIEF-ESIMS/MS approach identified 835 protein groups and produced 2,329 unique peptides IDs. The biological duplicates were analyzed in parallel using conventional strong-cation exchange (SCX) – RPLC-ESIMS/MS. The iTRAQ peptides were first separated into eight fractions using SCX. Each fraction was then analyzed by RPLC-ESI-MS/MS. The SCX-RPLC approach generated 1,369 protein groups and 3,494 unique peptide IDs. For protein quantitation, 96 and 198 differentially expressed proteins were obtained with RPLC-cIEF and SCX-RPLC, respectively. The combined set identified 231 proteins. Protein expression changes measured by RPLC-cEIF and SCX-RPLC were highly correlated. PMID:23822771

  20. Polysaccharides purified from Cordyceps cicadae protects PC12 cells against glutamate-induced oxidative damage.

    PubMed

    Olatunji, Opeyemi J; Feng, Yan; Olatunji, Oyenike O; Tang, Jian; Wei, Yuan; Ouyang, Zhen; Su, Zhaoliang

    2016-11-20

    Two polysaccharides CPA-1 and CPB-2 were isolated purified from Cordyceps cicadae by hot water extraction, ethanol precipitation and purification using anion exchange and gel filtration chromatography. Preliminary structural characterization of CPA-1 and CPB-2 were performed. The protective effect of CPA-1 and CPB-2 against glutamate-induced oxidative toxicity in PC12 cells was analyzed. The results indicated that pretreatment of PC12 cells with CPA-1 and CPB-2 significantly increased cell survival, Ca(2+) overload and ROS generation. CPA-1 and CPB-2 also markedly up-regulated the antioxidant status of pretreated PC12 cells. Our results suggested that Cordyceps cicadae polysaccharides can protect PC12 cells against glutamate excitotoxicity and might serve as therapeutic agents for neuronal disorders. PMID:27561486

  1. Mannosylerythritol lipid increases levels of galactoceramide in and neurite outgrowth from PC12 pheochromocytoma cells.

    PubMed

    Shibahara, M; Zhao, X; Wakamatsu, Y; Nomura, N; Nakahara, T; Jin, C; Nagaso, H; Murata, T; Yokoyama, K K

    2000-07-01

    We report here that a microbial extracellular glycolipid,mannosylerythritol lipid (MEL), induces the outgrowth ofneurites from and enhances the activity of acetylcholinesterase(AChE) in PC12 pheochromocytoma cells. Furthermore, treatment ofPC12 cells with MEL increased levels of galactosylceramide(Galbeta1-1'Cer; GalCer). Exposure of PC12 cells to exogenous GalCer caused the dose-dependent outgrowth ofneurites. By contrast, treatment of PC12 cells with nerve growthfactor (NGF) did not increase the level of GalCer in the cells. The neurite-related morphological changes induced by GalCerdifferend from those induced by NGF, indicating differencesbetween the signal transduction pathways triggered by NGF and by GalCer. PMID:19002832

  2. Cerebrolysin protects PC12 cells from CoCl2-induced hypoxia employing GSK3β signaling.

    PubMed

    Hartwig, Kerstin; Fackler, Viktoria; Jaksch-Bogensperger, Heidi; Winter, Stefan; Furtner, Tanja; Couillard-Despres, Sebastien; Meier, Dieter; Moessler, Herbert; Aigner, Ludwig

    2014-11-01

    Cerebrolysin (EVER Neuro Pharma GmbH, Austria) is a peptidergic drug indicated for clinical use in stroke, traumatic brain injury and dementia. The therapeutic effect of Cerebrolysin is thought to ensure from its neurotrophic activity, which shares some properties with naturally occurring neurotrophic factors. However, the exact mechanism of action of Cerebrolysin is yet to be fully deciphered. This study aimed to investigate the neuroprotective effect of Cerebrolysin in a widely used in vitro model of hypoxia-induced neuronal cytotoxicity, namely cobalt chloride (CoCl2)-treatment of PC12 cells. CoCl2-cytotoxicity was indicated by a reduced cell-diameter, cell shrinkage, increased pro-apoptotic Caspase-activities and a decreased metabolic activity. Cerebrolysin maintained the cell-diameter of CoCl2-treated naïve PC12 cells, decreased the activation of Caspase 3/7 in CoCl2-stressed naïve PC12 cells and restored the cells' metabolic activity in CoCl2-impaired naïve and differentiated PC12 cells. Cerebrolysin treatment also decreased the levels of superoxide observed after exposure to CoCl2. Investigating the mechanism of action, we could demonstrate that Cerebrolysin application to CoCl2-stressed PC12 cells increased the phosphorylation of GSK3β, resulting in the inhibition of GSK3β. This might become clinically relevant for Alzheimer's disease, since GSK3β activity has been linked to the production of amyloid beta. Taken together, Cerebrolysin was found to have neuroprotective effects in CoCl2-induced cytotoxicity in PC12 cells. PMID:25093704

  3. ALTERATION OF CATECHOLAMINES IN PHOECHROMOCYTOMA (PC12) CELLS IN VITRO BY THE METABOLITES OF CHLOROTRIAZINE HERBICIDE

    EPA Science Inventory

    The effects of four major chlorotriazine metabolites on the constitutive synthesis of the catecholamines dopamine (DA) and norepinephrine (NE) were examined using undifferentiated PC12 cells. NE release and intracellular DA and NE concentrations were quantified following treatme...

  4. Changes in intracellular copper concentration and copper-regulating gene expression after PC12 differentiation into neurons.

    PubMed

    Ogra, Yasumitsu; Tejima, Aya; Hatakeyama, Naohiro; Shiraiwa, Moeko; Wu, Siyuan; Ishikawa, Tsutomu; Yawata, Ayako; Anan, Yasumi; Suzuki, Noriyuki

    2016-01-01

    It is suspected that some neurodegenerative diseases are a result of the disturbance of copper (Cu) homeostasis, although it remains unclear whether the disturbance of Cu homeostasis has aberrant effects on neurons. Herein, we investigated Cu metabolism specifically in neurons in terms of changes in the intracellular Cu concentration and the expression of Cu-regulating genes, such as Cu transporters and metallothioneins (MTs), before and after the differentiation of rat pheochromocytoma cells (PC12 cells) into neurons. After the differentiation, Cu and Zn imaging with fluorescent probes revealed an increase in intracellular Cu concentration. The concentrations of other essential metals, which were determined by an inductively coupled plasma mass spectrometer, were not altered. The mRNA expression of the Cu influx transporter, Ctr1, was decreased after the differentiation, and the differentiated cells acquired tolerance to Cu and cisplatin, another substrate of Ctr1. In addition, the expression of MT-3, a brain-specific isoform, was increased, contrary to the decreased expression of MT-1 and MT-2. Taken together, the differentiation of PC12 cells into neurons induced MT-3 expression, thereby resulting in intracellular Cu accumulation. The decrease in Ctr1 expression was assumed to be a response aimed at abolishing the physiological accumulation of Cu after the differentiation. PMID:27623342

  5. Inhibitory effect of tetrandrine on dopamine biosynthesis and tyrosine hydroxylase in PC12 cells.

    PubMed

    Zhang, Y H; Fang, L H

    2001-02-01

    The effect of tetrandrine, a bis-benzylisoquinoline alkaloid, on dopamine biosynthesis in PC12 cells was investigated. Tetrandrine at a concentration of 3.0 microM decreased dopamine content by 59.4% (IC50 = 2.4 microM) and intracellular tyrosine hydroxylase (TH) activity was inhibited by the treatment of tetrandrine (49.8% inhibition at 3.0 microM) compared with control. We next examined the effects of tetrandrine on the kinetics of PC12 TH. The PC12 TH was obtained from PC12 cells with minor purification. Tetrandrine inhibited the PC12 TH activity by 40.6% at a concentration of 45 microM and exhibited noncompetitive inhibition on the enzyme using L-tyrosine as a substrate (Ki = 60.8 microM). These results suggest that the inhibition of TH activity by tetrandrine may partially contribute to the decrease in dopamine biosynthesis in PC12 cells. PMID:11270728

  6. Neuroprotective effects of pramipexole against tunicamycin-induced cell death in PC12 cells.

    PubMed

    Nakayama, Hitoshi; Zhao, Jing; Ei-Fakhrany, Amany; Isosaki, Minoru; Satoh, Hiroyasu; Kyotani, Yoji; Yoshizumi, Masanori

    2009-12-01

    1. Pramipexole (PPX), a dopamine D2 and D3 receptor agonist, exerts neuroprotective effects via both dopamine receptor-mediated and non-dopaminergic mechanisms. In the present study, we demonstrate that PPX reduces the toxicity of tunicamycin, a typical endoplasmic reticulum (ER) stressor, in PC12h cells, a subline of PC12 cells. 2. The PC12h cells were treated with 300 micromol / L PPX in the presence of 0.5 micromol / L tunicamycin for 24 h. The neuroprotective effects of PPX against tunicamycin-induced cell death were evaluated using 3-(4,5-dimethyl-2 thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release assays, Hoechst 33258 staining and western blot analysis. 3. Tunicamycin (0.2, 0.3 and 0.5 microg / mL) dose-dependently decreased MTT activity and increased LDH release from PC12h cells. Treatment with 300 micromol / L PPX rescued the tunicamycin-induced decrease in cell viability. 4. Spiperone (10 micromol / L), a dopamine D2 and D4 receptor antagonist, had no effect on PPX neuroprotection against tunicamycin in these cells. Marker proteins of ER stress and apoptosis are known to be upregulated by tunicamycin, but we detected no significant effects of PPX on these factors. 5. In conclusion, we speculate that a combination of several mechanisms may be involved in PPX-induced neuroprotection. PMID:19515063

  7. Internalization and cellular pools of never growth factor in pheochromocytoma (PC12) cells

    SciTech Connect

    Neet, K.E.; Kasaian, M.

    1987-05-01

    Nerve Growth Factor (NGF) binds to a cell surface receptor on responsive neuronal cells to initiate cell maintenance and/or differentiation regimes. The purpose of these studies was to define quantitatively the fate of NGF in PC12 cells with respect to various cellular compartments in a single series of biochemical experiments. Different binding methodologies were evaluated in suspension and on plates. 50 pM SVI-NGF was bound to rat PC12 cells in suspension for 30 min at 37, followed by various methods and combinations of methods to remove subsets of bound ligand. Distinction could be made between NGF bound to fast vs. slow cell surface receptors, NGF bound to slow receptors at the cell surface vs. cell interior, and detergent-soluble vs. cytoskeletally-attached NGF. These treatments defined the relative size of five pools, including the fast receptor (65%), two intracellular compartments (12% and 3%) susceptible to nonionic detergent, and a detergent-stable intracellular pool of ligand (16%). At 37 the cold chase stable and the acid stable pools were about the same size because of rapid internalization, but the slow receptor was measurable at 4. Inhibitors were used to define the route of NGF through the cell from the plasma membrane to degradation. Chloroquine caused accumulation of NGF only in pools that were not associated with the cytoskeleton, implicating this compartment in supplying ligand to the lysosome. Results with cytochalasin B and colchicine and suggested both microfilament and microtubule pathways in NGF degradation. A model for the movement of NGF through the cell was developed based on these observations.

  8. Development of microarray device for functional evaluation of PC12D cell axonal extension ability

    NASA Astrophysics Data System (ADS)

    Nakamachi, Eiji; Yanagimoto, Junpei; Murakami, Shinya; Morita, Yusuke

    2014-04-01

    In this study, we developed a microarray bio-MEMS device that could trap PC12D (rat pheochromocytoma cells) cells to examine the intercellular interaction effect on the cell activation and the axonal extension ability. This is needed to assign particular patterns of PC12D cells to establish a cell functional evaluation technique. This experimental observation-based technique can be used for design of the cell sheet and scaffold for peripheral and central nerve regeneration. We have fabricated a micropillar-array bio-MEMS device, whose diameter was approximately 10 μm, by using thick photoresist SU-8 on the glass slide substrate. A maximum trapped PC12D cell ratio, 48.5%, was achieved. Through experimental observation of patterned PC12D "bi-cells" activation, we obtained the following results. Most of the PC12D "bi-cells" which had distances between 40 and 100 μm were connected after 24 h with a high probability. On the other hand, "bi-cells" which had distances between 110 and 200 μm were not connected. In addition, we measured axonal extension velocities in cases where the intercellular distance was between 40 and 100 μm. A maximum axonal extension velocity, 86.4 μm/h, was obtained at the intercellular distance of 40 μm.

  9. Neurite development in PC12 cells cultured on nanopillars and nanopores with sizes comparable with filopodia

    PubMed Central

    Haq, Furqan; Anandan, Venkatramani; Keith, Charles; Zhang, Guigen

    2007-01-01

    We investigated the effect of nanoscale topography on neurite development in pheochromocytoma (PC12 cells) by culturing the cells on substrates having nanoscale pillars and pores with sizes comparable with filipodia. We found that cells on nanopillars and nanopores developed fewer and shorter neurites than cells on smooth substrates, and that cells on nanopores developed more and longer neurites than cells on nanopillars. These results suggest that PC12 cells were spatially aware of the difference in the nanoscale structures of the underlying substrates and responded differently in their neurite extension. This finding points to the possibility of using nanoscale topographic features to control neurite development in neurons. PMID:17722518

  10. Quantitative Assessment of Neurite Outgrowth in PC12 Cells

    EPA Science Inventory

    In vitro test methods can provide a rapid approach for the screening of large numbers of chemicals for their potential to produce toxicity. In order to identify potential developmental neurotoxicants, assessment of critical neurodevelopmental processes such as neuronal differenti...

  11. Selective translocation of protein kinase C-delta in PC12 cells during nerve growth factor-induced neuritogenesis.

    PubMed Central

    O'Driscoll, K R; Teng, K K; Fabbro, D; Greene, L A; Weinstein, I B

    1995-01-01

    The specific intracellular signals initiated by nerve growth factor (NGF) that lead to neurite formation in PC12 rat pheochromocytoma cells are as of yet unclear. Protein kinase C-delta (PKC delta) is translocated from the soluble to the particulate subcellular fraction during NGF-induced-neuritogenesis; however, this does not occur after treatment with the epidermal growth factor, which is mitogenic but does not induce neurite formation. PC12 cells also contain both Ca(2+)-sensitive and Ca(2+)-independent PKC enzymatic activities, and express mRNA and immunoreactive proteins corresponding to the PKC isoforms alpha, beta, delta, epsilon, and zeta. There are transient decreases in the levels of immunoreactive PKCs alpha, beta, and epsilon after 1-3 days of NGF treatment, and after 7 days there is a 2.5-fold increase in the level of PKC alpha, and a 1.8-fold increase in total cellular PKC activity. NGF-induced PC12 cell neuritogenesis is enhanced by 12-O-tetradecanoyl phorbol-13-acetate (TPA) in a TPA dose- and time-dependent manner, and this differentiation coincides with abrogation of the down-regulation of PKC delta and other PKC isoforms, when the cells are treated with TPA. Thus a selective activation of PKC delta may play a role in neuritogenic signals in PC12 cells. Images PMID:7626808

  12. Phase II enzyme induction by a carotenoid, lutein, in a PC12D neuronal cell line

    SciTech Connect

    Miyake, Seiji; Kobayashi, Saori; Tsubota, Kazuo; Ozawa, Yoko

    2014-04-04

    Highlights: • Lutein reduced ROS levels in a PC12D neuronal cell line. • Lutein induced mRNAs of phase II antioxidative enzymes in PC12D neuronal cells. • Lutein increased protein levels of HO-1, SOD2, and NQO-1 in PC12D neuronal cells. • Lutein had no effect on intranuclear Nrf2 levels in PC12D neuronal cells. • Lutein did not activate potential upstream Nrf2 nuclear translocation pathways. - Abstract: The mechanism by which lutein, a carotenoid, acts as an antioxidant in retinal cells is still not fully understood. Here, lutein treatment of a neuronal cell line (PC12D) immediately resulted in reduced intracellular ROS levels, implying that it has a direct role in ROS scavenging. Significantly, lutein treatment also induced phase II antioxidative enzyme expression, probably via a nuclear factor-like 2 (Nrf2) independent pathway. This latter mechanism could explain why lutein acts diversely to protect against oxidative/cytotoxic stress, and why it is physiologically involved in the human neural tissue, such as the retina.

  13. Neurite outgrowth resistance to rho kinase inhibitors in PC12 Adh cell.

    PubMed

    Yin, Hua; Hou, Xiaolin; Tao, Tingrui; Lv, Xiaoman; Zhang, Luyong; Duan, Weigang

    2015-05-01

    Rho kinase (ROCK) inhibitor is a promising agent for neural injury disorders, which mechanism is associated with neurite outgrowth. However, neurite outgrowth resistance occurred when PC12 Adh cell was treated with ROCK inhibitors for a longer time. PC12 Adh cells were treated with ROCK inhibitor Y27632 or NGF for different durations. Neurite outgrowth resistance occurred when PC12 Adh cell exposed to Y27632 (33 µM) for 3 or more days, but not happen when exposed to nerve growth factor (NGF, 100 ng/mL). The gene expression in the PC12 Adh cells treated with Y27632 (33 µM) or NGF (100 ng/mL) for 2 or 4 days was assayed by gene microarray, and the reliability of the results were confirmed by real-time RT-PCR. Cluster analysis proved that the gene expression profile of PC12 Adh cell treated with Y27632 for 4 days was different from that treated with Y27632 for 2 days and those treated with NGF for 2 and 4 days, respectively. Pathway analysis hinted that the neurite outgrowth resistance could be associated with up-regulation of inflammatory pathways, especially rno04610 (complement and coagulation cascades), and down-regulation of cell cycle pathways, especially rno04110. PMID:25571866

  14. Nerve growth factor inhibits the synthesis of a single-stranded DNA binding protein in pheochromocytoma cells (clone PC12).

    PubMed Central

    Biocca, S; Cattaneo, A; Calissano, P

    1984-01-01

    Arrest of mitosis and neurite outgrowth induced by nerve growth factor (NGF) in rat pheochromocytoma cells (clone PC12) is accompanied by a progressive inhibition of the synthesis of a protein that binds to single-stranded but not to double-stranded DNA. Time course experiments show that this inhibition is already apparent after a 2-day incubation with NGF and is maximum (85-95%) upon achievement of complete PC12 cell differentiation. Inhibition of the synthesis of this single-stranded DNA binding protein after 48 hr of incubation with NGF is potentiated by concomitant treatment of PC12 cells with antimitotic drugs acting at different levels of DNA replication. Purification on a preparative scale of this protein and analysis of its major physicochemical properties show that: (i) it constitutes 0.5% of total soluble proteins of naive PC12 cells; (ii) its molecular weight measured by NaDodSO4/PAGE is Mr 34,000 (sucrose gradient centrifugation under nondenaturing conditions yields a sedimentation coefficient s20,w of 8.1 S, indicating that the native protein is an oligomer); (iii) amino acid analysis demonstrates a preponderance of acidic over basic residues, while electrofocusing experiments show that it has an isoelectric point around 8.0; (iv) approximately 15% of the protein is phosphorylated in vivo. It is postulated that control of the synthesis of this protein is connected with activation of a differentiative program triggered by NGF in the PC12 neoplastic cell line at some step(s) of DNA activity. Images PMID:6585787

  15. PC12 Cells that Lack Synaptotagmin I Exhibit Loss of a Subpool of Small Dense Core Vesicles

    PubMed Central

    Adams, Robert D.; Harkins, Amy B.

    2014-01-01

    Neurons communicate by releasing neurotransmitters that are stored in intracellular vesicular compartments. PC12 cells are frequently used as a model secretory cell line that is described to have two subpools of vesicles: small clear vesicles and dense core vesicles. We measured transmitter molecules released from vesicles in NGF-differentiated PC12 cells using carbon-fiber amperometry, and relative diameters of individual vesicles using electron microscopy. Both amperometry and electron micrograph data were analyzed by statistical and machine learning methods for Gaussian mixture models. An electron microscopy size correction algorithm was used to predict and correct for observation bias of vesicle size due to tangential slices through some vesicles. Expectation maximization algorithms were used to perform maximum likelihood estimation for the Gaussian parameters of different populations of vesicles, and were shown to be better than histogram and cumulative distribution function methods for analyzing mixed populations. The Bayesian information criterion was used to determine the most likely number of vesicle subpools observed in the amperometric and electron microscopy data. From this analysis, we show that there are three major subpools, not two, of vesicles stored and released from PC12 cells. The three subpools of vesicles include small clear vesicles and two subpools of dense core vesicles, a small and a large dense core vesicle subpool. Using PC12 cells stably transfected with short-hairpin RNA targeted to synaptotagmin I, an exocytotic Ca2+ sensor, we show that the presence and release of the small dense core vesicle subpool is dependent on synaptotagmin I. Furthermore, synaptotagmin I also plays a role in the formation and/or maintenance of the small dense core vesicle subpool in PC12 cells. PMID:25517150

  16. Carbachol stimulates a different phospholipid metabolism than nerve growth factor and basic fibroblast growth factor in PC12 cells.

    PubMed Central

    Pessin, M S; Altin, J G; Jarpe, M; Tansley, F; Bradshaw, R A; Raben, D M

    1991-01-01

    We have examined 1,2-diglycerides (DGs) generated in PC12 cells in response to the muscarinic agonist carbachol and compared them with those generated in response to the differentiation factors nerve growth factor and basic fibroblast growth factor. Whereas carbachol stimulates a greater release of inositol phosphates, all three agonists generate similar levels of DGs. In this report, we have analyzed the molecular species of PC12 DGs generated in response to these three agonists. Additionally, we have analyzed the molecular species of PC12 phospholipids. The data indicate that 1) after 1 min of either nerve growth factor or basic fibroblast growth factor stimulation, DGs arise primarily from phosphoinositide hydrolysis; 2) in contrast, after 1 min of carbachol stimulation, DG are generated equally by both phosphoinositide and phosphatidylcholine hydrolysis; and 3) after 15 min of stimulation by any of these agonists, DGs are generated largely by phosphatidylcholine hydrolysis, with a smaller component arising from the phosphoinositides. These results suggest that at least part of the mechanism by which PC12 cells distinguish between different agonists is via alterations in phospholipid sources and kinetics of DG generation. PMID:1892912

  17. Autophagy Alleviates Melamine-Induced Cell Death in PC12 Cells Via Decreasing ROS Level.

    PubMed

    Wang, Hui; Gao, Na; Li, Zhigui; Yang, Zhuo; Zhang, Tao

    2016-04-01

    Since melamine was illegally added to raw milk for increasing the apparent protein content, such a scandal has not been quite blown out. Previous studies showed that melamine induced apoptosis and oxidative damage in both in vivo and in vitro experiments. It is well known that autophagy is closely related to oxidative stress. In the present study, we examined whether autophagy played an important role in protecting PC12 cells, which were damaged by melamine. Immunofluorescence assay showed that melamine enhanced the number of punctuate dot, indicating the increase of autophagosomes. Western blot assay presented that melamine significantly elevated the expression level of autophagy markers including LC3-II/LC3-I ratio, beclin-1, and Atg 7. Rapamycin further enhanced the effect, whereas 3-methyadenine (3-MA) inhibited it. MTT assay exhibited that rapamycin significantly enhanced the cell viability (P < 0.01), while 3-MA considerably reduced it in melamine-treated PC12 cells (P < 0.01). Furthermore, flow cytometry assay showed that rapamycin considerably reduced the reactive oxygen species (ROS) level of the cells (P < 0.01), but 3-MA increased the generation of ROS (P < 0.01). Additionally, the superoxide dismutase (SOD) activity was notably increased by rapamycin in melamine-treated PC12 cells (P < 0.01), while the activity of which was prominently decreased by 3-MA (P < 0.01). Malondialdehyde (MDA) assay showed that rapamycin remarkably decreased the MDA level of the cells (P < 0.05), while 3-MA increased it (P < 0.01). Consequently, this study demonstrated that autophagy protected PC12 cells from melamine-induced cell death via inhibiting the excessive generation of ROS. Regulating autophagy may become a new targeted therapy to relieve the damage induced by melamine. PMID:25724280

  18. SOD2 Mediates Amifostine-Induced Protection against Glutamate in PC12 Cells

    PubMed Central

    Jia, Ji; Zhang, Lei; Shi, Xiaolei; Wu, Mingchun; Zhou, Xiang; Liu, Xiaonan; Huo, Tingting

    2016-01-01

    Background. Cytoprotectant amifostine attenuates radiation-induced oxidative injury by increasing intracellular manganese superoxide dismutase (SOD2) in peripheral tissue. However, whether amifostine could protect neuronal cells against oxidative injury has not been reported. The purpose of this study is to explore the protection of amifostine in PC12 cells. Methods. PC12 cells exposed to glutamate were used to mimic neuronal oxidative injury. SOD assay kit was taken to evaluate intracellular Cu/Zn SOD (SOD1) and SOD2 activities; western blot analysis and immunofluorescence staining were performed to investigate SOD2 protein expression; MTT, lactate dehydrogenase (LDH), release and cell morphology were used to evaluate cell injury degree, and apoptotic rate and cleaved caspase-3 expression were taken to assess apoptosis; mitochondrial superoxide production, intracellular reactive oxygen species (ROS), and glutathione (GSH) and catalase (CAT) levels were evaluated by reagent kits. Results. Amifostine increased SOD2 activity and expression, decreased cell injury and apoptosis, reduced mitochondrial superoxide production and intracellular ROS generation, and restored intracellular GSH and CAT levels in PC12 cells exposed to glutamate. SOD2-siRNA, however, significantly reversed the amifostine-induced cytoprotective and antioxidative actions. Conclusion. SOD2 mediates amifostine-induced protection in PC12 cells exposed to glutamate. PMID:26770652

  19. Enhanced proliferation of PC12 neural cells on untreated, nanotextured glass coverslips.

    PubMed

    Islam, Muhymin; Atmaramani, Rahul; Mukherjee, Siddhartha; Ghosh, Santaneel; Iqbal, Samir M

    2016-10-14

    Traumatic injury to the central nervous system is a significant health problem. There is no effective treatment available partly because of the complexity of the system. Implementation of multifunctional micro- and nano-device based combinatorial therapeutics can provide biocompatible and tunable approaches to perform on-demand release of specific drugs. This can help the damaged cells to improve neuronal survival, regeneration of axons, and their reconnection to appropriate targets. Nano-topological features induced rapid cell growth is especially important towards the design of effective platforms to facilitate damaged neural circuit reconstruction. In this study, for the first time, feasibility of neuron-like PC12 cell growth on untreated and easy to prepare nanotextured surfaces has been carried out. The PC12 neuron-like cells were cultured on micro reactive ion etched  nanotextured glass coverslips. The effect of nanotextured topology as physical cue for the growth of PC12 cells was observed exclusively, eliminating the possible influence(s) of the enhanced concentration of coated materials on the surface. The cell density was observed to increase by almost 200% on nanotextured coverslips compared to plain coverslips. The morphology study indicated that PC12 cell attachment and growth on the nanotextured substrates did not launch any apoptotic machinery of the cell. Less than 5% cells deformed and depicted condensed nuclei with apoptotic bodies on nanotextured surfaces which is typical for the normal cell handling and culture. Enhanced PC12 cell proliferation by such novel and easy to prepare substrates is not only attractive for neurite outgrowth and guidance, but may be used to increase the affinity of similar cancerous cells (ex: B35 neuroblastoma) and rapid proliferation thereafter-towards the development of combinatorial theranostics to diagnose and treat aggressive cancers like neuroblastoma. PMID:27587351

  20. Effects of 60-GHz millimeter waves on neurite outgrowth in PC12 cells using high-content screening.

    PubMed

    Haas, Alexis J; Le Page, Yann; Zhadobov, Maxim; Sauleau, Ronan; Le Dréan, Yves

    2016-04-01

    Technologies for wireless telecommunication systems using millimeter waves (MMW) will be widely deployed in the near future. Forthcoming applications in this band, especially around 60GHz, are mainly developed for high data-rate local and body-centric telecommunications. At those frequencies, electromagnetic radiations have a very shallow penetration into biological tissues, making skin keratinocytes, and free nerve endings of the upper dermis the main targets of MMW. Only a few studies assessed the impact of MMW on neuronal cells, and none of them investigated a possible effect on neuronal differentiation. We used a neuron-like cell line (PC12), which undergoes neuronal differentiation when treated with the neuronal growth factor (NGF). PC12 cells were exposed at 60.4GHz for 24h, at an incident power density averaged over the cell monolayer of 10mW/cm(2). Using a large scale cell-by-cell analysis based on high-content screening microscopy approach, we assessed potential effects of MMW on PC12 neurite outgrowth and cytoskeleton protein expression. No differences were found in protein expression of the neuronal marker β3-tubulin nor in internal expression control β-tubulin. On the other hand, our data showed a slight increase, although insignificant, in neurite outgrowth, induced by MMW exposure. However, experimental controls demonstrated that this increase was related to heating. PMID:26921450

  1. Beneficial effects of chlorogenic acid on alcohol-induced damage in PC12 cells.

    PubMed

    Fang, Shi-Qi; Wang, Yong-Tang; Wei, Jing-Xiang; Shu, Ya-Hai; Xiao, Lan; Lu, Xiu-Min

    2016-04-01

    As one of the most commonly abused psychotropic substances, ethanol exposure has deleterious effects on the central nervous system (CNS). The most detrimental results of ethanol exposure during development are the loss of neurons in brain regions such as the hippocampus and neocortex, which may be related to the apoptosis and necrosis mediated by oxidative stress. Recent studies indicated that a number of natural drugs from plants play an important role in protection of nerve cells from damage. Among these, it has been reported that chlorogenic acid (CA) has neuroprotective effects against oxidative stress. Thus, it may play some beneficial effects on ethanol-induced neurotoxicity. However, the effects of CA on ethanol-induced nerve damage remain unclear. In order to investigate the protective effects of CA on alcohol-induced apoptosis in rat pheochromocytoma PC12 cells, in the present study, cell viability and the optimal dosage of CA were first quantified by MTT assay. Then, the cell apoptosis and cell cycle were respectively investigated by Hoechst 33258 staining and flow cytometer (FCM). To further clarify the possible mechanism, followed with the test of mitochondria transmembrane potential with Rhodamine 123 (Rho 123) staining, the expression of Bcl-2, Capase-3 and growth associated protein-43 (GAP-43) were analyzed by immunofluorescence assay separately. The results showed that treatment with 500mM alcohol decreased the cell viability and then significantly induced apoptosis in PC12 cells. However, when pretreated with different concentrations of CA (1, 5, 10, 50μM), cell viability increased in different degree. Comparatively, CA with the concentration of 10μM most effectively promoted the proliferation of damaged cells, increased the distribution ratio of the cells at the G2/M and S phases, and enhanced mitochondria transmembrane potential. This appears to be in agreement with up-regulation of the expression of Bcl-2 and GAP-43, and down-regulation of the

  2. Cytotoxic, Genotoxic, and Neurotoxic Effects of Mg, Pb, and Fe on Pheochromocytoma (PC-12) Cells

    PubMed Central

    Sanders, Talia; Liu, Yi-Ming; Tchounwou, Paul B.

    2014-01-01

    Metals such as lead (Pb), magnesium (Mg), and iron (Fe) are ubiquitous in the environment as a result of natural occurrence and anthropogenic activities. Although Mg, Fe and others are considered essential elements, high level of exposure has been associated with severe adverse health effects including cardiovascular, hematological, nephrotoxic, hepatotoxic, and neurologic abnormalities in humans. In the present study we hypothesized that Mg, Pb, and Fe are cytotoxic, genotoxic and neurotoxic, and their toxicity is mediated through oxidative stress and alteration in protein expression. To test the hypothesis, we used the pheochromocytoma (PC-12) cell line as a neuro cell model and performed the LDH assay for cell viability, Comet assay for DNA damage, Western blot for oxidative stress, and HPLC-MS to assess the concentration levels of neurological biomarkers such as glutamate, dopamine (DA), and 3-methoxytyramine (3-MT). The results of this study clearly show that Mg, Pb, and Fe, respectively in the form of MgSO4, Pb(NO3)2, FeCl2, and FeCl3 induce cytotoxicity, oxidative stress, and genotoxicity in PC-12 cells. In addition, exposure to these metallic compounds caused significant changes in the concentration levels of glutamate, dopamine, and 3-MT in PC-12 cells. Taken together the findings suggest that MgSO4, Pb(NO3)2, FeCl2, and FeCl3 have the potential to induce substantial toxicity to PC-12 cells. PMID:24942330

  3. Protective effects of pinostrobin on β-amyloid-induced neurotoxicity in PC12 cells.

    PubMed

    Xian, Yan-Fang; Ip, Siu-Po; Lin, Zhi-Xiu; Mao, Qing-Qiu; Su, Zi-Ren; Lai, Xiao-Ping

    2012-11-01

    Beta-Amyloid peptide (Aβ), a major protein component of brain senile plaques in Alzheimer's disease (AD), has been considered as a critical cause in the pathogenesis of AD. Pinostrobin, a potent flavonoid inducer, is the major and most active ingredient of Folium cajani. The present study aimed to investigate whether pinostrobin could provide protective effect against Aβ(25-35)-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. The PC12 cells were pretreated with different concentrations of pinostrobin for 2 h, followed by the challenge with 20 μM Aβ(25-35) for 24 h. The results showed that pretreatment with pinostrobin significantly elevated cell viability, decreased the lactate dehydrogenase activity, the levels of intracellular reactive oxygen species and calcium, and mitochondrial membrane potential in Aβ(25-35)-treated PC12 cells. In addition, pinostrobin significantly suppressed the formation of DNA fragmentation and increased the ratio of Bcl-2/Bax. These results indicate that pinostrobin was able to exert a neuroprotective effect against Aβ(25-35)-induced neurotoxicity in PC12 cells, at least in part, via inhibiting oxidative damage and calcium overload, as well as suppressing the mitochondrial pathway of cellular apoptosis. PMID:22565301

  4. POTENTIAL MECHANISMS RESPONSIBLE FOR CHLOROTRIAZINE-INDUCED ALTERATIONS IN CATECHOLAMINES IN PHEOCHROMOCYTOMA (PC12) CELLS

    EPA Science Inventory

    ABSTRACT

    Potential Mechanisms Responsible for Chlorotriazine-induced Changes in Catecholamine Metabolism in Pheochromocytoma (PC12) Cells*
    PARIKSHIT C. DAS1, WILLIAM K. McELROY2 , AND RALPH L. COOPER2+
    1Curriculum in Toxicology, University of North Carolina, Chape...

  5. Thiazolidinediones inhibit the growth of PC12 cells both in vitro and in vivo

    SciTech Connect

    Kim, Sang Wan; Choi, Ok Kyung; Chang, Mee Soo; Shin, Chan Soo; Park, Kyong Soo; Kim, Seong Yeon

    2008-06-27

    Thiazolidinediones (TZDs) have recently been proposed as a therapy for PPAR{gamma}-expressing tumors. Pheochromocytoma (PHEO) is associated with high morbidity and mortality due to excess catecholamine production, and few effective drug therapies currently exist. We investigated the effects of TZDs on PHEO both in vitro and in vivo. PPAR{gamma} protein was expressed in human adrenal PHEO tissues as well as in rat PHEO cells, PC12. TZDs, including rosiglitazone (RGZ) and pioglitazone (PGZ), inhibited proliferation of PC12 cells in a dose-dependent manner and increased casapse-3 expression of PC12 cells. TZDs also reduced expression of cyclin E and cyclin-dependent kinase2. RGZ inhibited nerve growth factor-induced neurite outgrowth and reduced expression of catecholamine-synthesizing enzymes. Finally, rat PHEO growth generated by subcutaneous injection of PC12 cells was slowed in an RGZ-treated mouse. These data suggest that TZDs may be a promising therapeutic approach for medical treatment for PHEO.

  6. Hypoxia regulates glutamate metabolism and membrane transport in rat PC12 cells.

    PubMed

    Kobayashi, S; Millhorn, D E

    2001-03-01

    We investigated the effect of hypoxia on glutamate metabolism and uptake in rat pheochromocytoma (PC12) cells. Various key enzymes relevant to glutamate production, metabolism and transport were coordinately regulated by hypoxia. PC12 cells express two glutamate-metabolizing enzymes, glutamine synthetase (GS) and glutamate decarboxylase (GAD), as well as the glutamate-producing enzyme, phosphate-activated glutaminase (PAG). Exposure to hypoxia (1% O(2)) for 6 h or longer increased expression of GS mRNA and protein and enhanced GS enzymatic activity. In contrast, hypoxia caused a significant decrease in expression of PAG mRNA and protein, and also decreased PAG activity. In addition, hypoxia led to an increase in GAD65 and GAD67 protein levels and GAD enzymatic activity. PC12 cells express three Na(+)-dependent glutamate transporters; EAAC1, GLT-1 and GLAST. Hypoxia increased EAAC1 and GLT-1 protein levels, but had no effect on GLAST. Chronic hypoxia significantly enhanced the Na(+)-dependent component of glutamate transport. Furthermore, chronic hypoxia decreased cellular content of glutamate, but increased that of glutamine. Taken together, the hypoxia-induced changes in enzymes related to glutamate metabolism and transport are consistent with a decrease in the extracellular concentration of glutamate. This may have a role in protecting PC12 cells from the cytotoxic effects of glutamate during chronic hypoxia. PMID:11259512

  7. Lignosus rhinocerus (Cooke) Ryvarden: A Medicinal Mushroom That Stimulates Neurite Outgrowth in PC-12 Cells

    PubMed Central

    Eik, Lee-Fang; Naidu, Murali; David, Pamela; Wong, Kah-Hui; Tan, Yee-Shin; Sabaratnam, Vikineswary

    2012-01-01

    A national treasure mushroom, Lignosus rhinocerus, has been used to treat variety of ailments by local and indigenous communities in Malaysia. The aim of this study was to investigate the potential of the most valuable part of L. rhinocerus, the sclerotium, on neurite outgrowth activity by using PC-12Adh cell line. Differentiated cells with one thin extension at least double the length of the cell diameter were scored positive. Our results showed that aqueous sclerotium L. rhinocerus extract induced neurite outgrowths of 24.4% and 42.1% at 20 μg/mL (w/v) of aqueous extract alone and a combination of 20 μg/mL (w/v) aqueous extract and 30 ng/mL (w/v) of NGF, respectively. Combination of NGF and sclerotium extract had additive effects and enhanced neurite outgrowth. Neuronal differentiation was demonstrated by indirect immunofluorescence of neurofilament protein. Aqueous sclerotium extract contained neuroactive compounds that stimulated neurite outgrowth in vitro. To our knowledge this is the first report on neurite-stimulating activities of L. rhinocerus. PMID:22203867

  8. Nitric-oxide-induced necrosis and apoptosis in PC12 cells mediated by mitochondria.

    PubMed

    Bal-Price, A; Brown, G C

    2000-10-01

    Nitric oxide (NO) can trigger either necrotic or apoptotic cell death. We have used PC12 cells to investigate the extent to which NO-induced cell death is mediated by mitochondria. Addition of NO donors, 1 mM S-nitroso-N-acetyl-DL-penicillamine (SNAP) or 1 mM diethylenetriamine-NO adduct (NOC-18), to PC12 cells resulted in a steady-state level of 1-3 microM: NO, rapid and almost complete inhibition of cellular respiration (within 1 min), and a rapid decrease in mitochondrial membrane potential within the cells. A 24-h incubation of PC12 cells with NO donors (SNAP or NOC-18) or specific inhibitors of mitochondrial respiration (myxothiazol, rotenone, or azide), in the absence of glucose, caused total ATP depletion and resulted in 80-100% necrosis. The presence of glucose almost completely prevented the decrease in ATP level and the increase in necrosis induced by the NO donors or mitochondrial inhibitors, suggesting that the NO-induced necrosis in the absence of glucose was due to the inhibition of mitochondrial respiration and subsequent ATP depletion. However, in the presence of glucose, NO donors and mitochondrial inhibitors induced apoptosis of PC12 cells as determined by nuclear morphology. The presence of apoptotic cells was prevented completely by benzyloxycarbonyl-Val-Ala-fluoromethyl ketone (a nonspecific caspase inhibitor), indicating that apoptosis was mediated by caspase activation. Indeed, both NO donors and mitochondrial inhibitors in PC12 cells caused the activation of caspase-3- and caspase-3-processing-like proteases. Caspase-1 activity was not activated. Cyclosporin A (an inhibitor of the mitochondrial permeability transition pore) decreased the activity of caspase-3- and caspase-3-processing-like proteases after treatment with NO donors, but was not effective in the case of the mitochondrial inhibitors. The activation of caspases was accompanied by the release of cytochrome c from mitochondria into the cytosol, which was partially prevented by

  9. Dp71, utrophin and beta-dystroglycan expression and distribution in PC12/L6 cell cocultures

    PubMed Central

    Ilarraza-Lomeli, Ramses; Cisneros-Vega, Bulmaro; Romo-Yañez, Jose; Cervantes-Gomez, Maria De Lourdes; Mornet, Dominique; Montañez, Cecilia

    2007-01-01

    Dystrophin Dp71 is the most ubiquitous and highest expressed dystrophin isoform in brain, however, Dp71 function and those specific for its spliced d- and ab- isoforms remains undetermined. To study Dp71, utrophin and β-dystroglycan in cell-to-cell interactions, we first established a co-culture model using PC 12 cells and L6 myotubes. Confocal microscopy assays of these co-cultures, in which PC 12 cells are differentiated in the presence of L6 myotubes, showed that the Dp71d isoform accumulates in PC 12 nuclei, Golgi-complex- and endoplasmic reticulum-like structures, being depleted from neurites and cytoplasm, while Dp71ab concentrates at neurite tips and cytoplasm and colocalizes with β-dystroglycan, utrophin, synaptophysin and acetylcholine receptors. Evidences suggest Dp71ab isoform unlike Dp71d, may take part in neurite-related processes. This is the first work on the role of dystrophins as well as members of the DAP complex in a cell-line based co-culturing system, which may prove useful in determining protein associations in a more controlled environment than ex-vivo systems. PMID:17921863

  10. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells

    PubMed Central

    Wang, X; Gerdes, H-H

    2015-01-01

    Tunneling nanotubes (TNTs) are F-actin-based membrane tubes that form between cells in culture and in tissues. They mediate intercellular communication ranging from electrical signalling to the transfer of organelles. Here, we studied the role of TNTs in the interaction between apoptotic and healthy cells. We found that pheochromocytoma (PC) 12 cells treated with ultraviolet light (UV) were rescued when cocultured with untreated PC12 cells. UV-treated cells formed a different type of TNT with untreated PC12 cells, which was characterized by continuous microtubule localized inside these TNTs. The dynamic behaviour of mCherry-tagged end-binding protein 3 and the accumulation of detyrosinated tubulin in these TNTs indicate that they are regulated structures. In addition, these TNTs show different biophysical properties, for example, increased diameter allowing dye entry, prolonged lifetime and decreased membrane fluidity. Further studies demonstrated that microtubule-containing TNTs were formed by stressed cells, which had lost cytochrome c but did not enter into the execution phase of apoptosis characterized by caspase-3 activation. Moreover, mitochondria colocalized with microtubules in TNTs and transited along these structures from healthy to stressed cells. Importantly, impaired formation of TNTs and untreated cells carrying defective mitochondria were unable to rescue UV-treated cells in the coculture. We conclude that TNT-mediated transfer of functional mitochondria reverse stressed cells in the early stages of apoptosis. This provides new insights into the survival mechanisms of damaged cells in a multicellular context. PMID:25571977

  11. Effect of mouse Sim2 gene on the cell cycle of PC12 cells.

    PubMed

    Meng, Xianfang; Shi, Jing; Peng, Bin; Zou, Xiaojing; Zhang, Chun

    2006-04-01

    Sim2 gene plays an important role in the pathogenesis of Down syndrome (DS). To observe the effect of mouse Sim2 (mSim2) on the cell cycle of PC12 cells in vitro and explore the role of Sim2 in the pathogenesis of DS, we cloned the full open reading frame of mSim2 into the pcDNA3 vector and transfected it into PC12 cells, before analysing the effect of mSim2 on the cell cycle. A eukaryotic expression vector of mSim2 (pcDNA3-mSim2) was successfully constructed. There was notable expression of mSim2 mRNA in the cells transfected with pcDNA3-Sim2. Flow cytometry showed that there were more cells in G(0)/G(1) phase in the Sim2-transfected cells than that in the controls (P < 0.01), and significantly fewer in G(2)/M phase (P < 0.01). The mRNA and protein expressions of cyclin E decreased in the Sim2-transfected cells, while p27 expression increased significantly (P < 0.01). It is concluded that Sim2 may play an important role in the pathogenesis of DS by inhibiting the cell cycle, which is related to the decreased expression of cyclin E and increased expression of p27. PMID:16530433

  12. Binding and internalization of nerve growth factor by PC12 cells

    SciTech Connect

    Kasaian, M.T.

    1987-01-01

    The interaction of nerve growth factor (NGF) with its cell surface receptors has been studied using both fluorescent- and radio-labelled NGF. The fluorescence studies were done by flow cytometry, and gave information about the concentration dependence and time course of NGF binding to rat pheochromocytoma cells (PC12) and human melanoma cells (A875). /sup 125/I-NGF was used to study the fate of NGF in PC12 cells following its association with cell surface receptors. Variations of the PC12 binding assay were used to distinguish ligand bound to fast and slowly dissociating receptors at the cell surface, internalized ligand, and cytoskeletally-associated NGF. Ligand uptake into each of these pools was followed in untreated cells, as well as in cells exposed to colchicine and/or cytochalasin B to disrupt the cytoskeleton. NGF degradation was also followed in these cells, and chloroquine was used to inhibit this process. In a separate project, NGF activity was assayed in samples of human amniotic fluid and cerebrospinal fluid (CSF). A range of activities was found in these samples, with the CSF samples containing somewhat more activity than the amniotic fluid samples.

  13. Low Doses of Camptothecin Induced Hormetic and Neuroprotective Effects in PC12 Cells

    PubMed Central

    Zhang, Chao; Chen, Shenghui; Bao, Jiaolin; Zhang, Yulin; Huang, Borong; Jia, Xuejing; Chen, Meiwan; Wan, Jian-Bo; Su, Huanxing; Wang, Yitao

    2015-01-01

    Hormetic response is an adaptive mechanism for a cell or organism surviving in an unfavorable environment. It has been an intriguing subject of researches covering a broad range of biological and medical disciplines, in which the underlying significance and molecular mechanisms are under intensive investigation. In the present study, we demonstrated that topoisomerase I inhibitor camptothecin (CPT), a potent anticancer agent, induced an obvious hormetic response in rat pheochromocytoma PC12 cells. Camptothecin inhibited PC12 cell growth at relative high doses as generally acknowledged while stimulated the cell growth by as much as 39% at low doses. Moreover, low doses of CPT protected the cells from hydrogen peroxide (H2O2)-induced cell death. Phosphoinositide 3-kinase (PI3K)/Akt and nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathways were reported playing pivotal roles in protecting cells from oxidative stress. We observed that these 2 pathways were upregulated by low doses of CPT, as evidenced by increased levels of phosphorylated PI3K, phosphorylated Akt, phosphorylated mammalian target of rapamycin, Nrf2, and HO-1; and abolishment of the growth-promoting and neuroprotective effects of CPT by LY294002, a PI3K inhibitor. These results suggest that the hormetic and neuroprotective effects of CPT at low doses on PC12 cells were attributable, at least partially, to upregulated PI3K/Akt and Nrf2/HO-1 pathways. PMID:26674066

  14. Cross-talk between androgen receptor/filamin A and TrkA regulates neurite outgrowth in PC12 cells

    PubMed Central

    Di Donato, Marzia; Bilancio, Antonio; D'Amato, Loredana; Claudiani, Pamela; Oliviero, Maria Antonietta; Barone, Maria Vittoria; Auricchio, Alberto; Appella, Ettore; Migliaccio, Antimo; Auricchio, Ferdinando; Castoria, Gabriella

    2015-01-01

    Steroids and growth factors control neuronal development through their receptors under physiological and pathological conditions. We show that PC12 cells harbor endogenous androgen receptor (AR), whose inhibition or silencing strongly interferes with neuritogenesis stimulated by the nonaromatizable synthetic androgen R1881 or NGF. This implies a role for AR not only in androgen signaling, but also in NGF signaling. In turn, a pharmacological TrkA inhibitor interferes with NGF- or androgen-induced neuritogenesis. In addition, androgen or NGF triggers AR association with TrkA, TrkA interaction with PI3-K δ, and downstream activation of PI3-K δ and Rac in PC12 cells. Once associated with AR, filamin A (FlnA) contributes to androgen or NGF neuritogenesis, likely through its interaction with signaling effectors, such as Rac. This study thus identifies a previously unrecognized reciprocal cross-talk between AR and TrkA, which is controlled by β1 integrin. The contribution of FlnA/AR complex and PI3-K δ to neuronal differentiation by androgens and NGF is also novel. This is the first description of AR function in PC12 cells. PMID:26063730

  15. Epigenomics of Neural Cells: REST-Induced Down- and Upregulation of Gene Expression in a Two-Clone PC12 Cell Model

    PubMed Central

    Garcia-Manteiga, Jose M.; Bonfiglio, Silvia; Malosio, Maria Luisa; Lazarevic, Dejan; Stupka, Elia; Cittaro, Davide; Meldolesi, Jacopo

    2015-01-01

    Cell epigenomics depends on the marks released by transcription factors operating via the assembly of complexes that induce focal changes of DNA and histone structure. Among these factors is REST, a repressor that, via its strong decrease, governs both neuronal and neural cell differentiation and specificity. REST operation on thousands of possible genes can occur directly or via indirect mechanisms including repression of other factors. In previous studies of gene down- and upregulation, processes had been only partially investigated in neural cells. PC12 are well-known neural cells sharing properties with neurons. In the widely used PC12 populations, low-REST cells coexist with few, spontaneous high-REST PC12 cells. High- and low-REST PC12 clones were employed to investigate the role and the mechanisms of the repressor action. Among 15,500 expressed genes we identified 1,770 target and nontarget, REST-dependent genes. Functionally, these genes were found to operate in many pathways, from synaptic function to extracellular matrix. Mechanistically, downregulated genes were predominantly repressed directly by REST; upregulated genes were mostly governed indirectly. Among other factors, Polycomb complexes cooperated with REST for downregulation, and Smad3 and Myod1 participated in upregulation. In conclusion, we have highlighted that PC12 clones are a useful model to investigate REST, opening opportunities to development of epigenomic investigation. PMID:26413508

  16. An In Vitro HSV-1 Reactivation Model Containing Quiescently Infected PC12 Cells

    PubMed Central

    Hogk, Ina; Kaufmann, Michaela; Finkelmeier, Doris; Rupp, Steffen

    2013-01-01

    Abstract Advances in the understanding of the infection and reactivation process of herpes simplex type 1 (HSV-1) are generally gained by monolayer cultures or extensive and cost-intensive animal models. So far, no reliable in vitro skin model exists either to investigate the molecular mechanisms involved in controlling latency and virus reactivation or to test pharmaceuticals. Here we demonstrate the first in vitro HSV-1 reactivation model generated by using the human keratinocyte cell line HaCaT grown on a collagen substrate containing primary human fibroblasts. We integrated the unique feature of a quiescently infected neuronal cell line, the rat pheochromocytoma line PC12, within the dermal layer of the three-dimensional skin equivalent. Transmission electron microscopy, a cell-based TCID50 assay, and polymerase chain reaction analysis were used to verify cell latency. Thereby viral DNA could be detected, whereas extracellular as well as intracellular virus activity could not be found. Further, the infected PC12 cells show no spontaneous reactivation within the in vitro skin equivalent. In order to simulate a physiologically comparable HSV-1 infection, we achieved a specific and pointed reactivation of quiescently HSV-1 infected PC12 cells by UVB irradiation at 1000 mJ/cm2. PMID:23914331

  17. Neuroprotective effect of some plant extracts in cultured CT105-induced PC12 cells.

    PubMed

    Kim, Sang Tae; Kim, Jeong Do; Lyu, Yeoung-Su; Lee, Min-Yung; Kang, Hyung-Won

    2006-10-01

    Carboxyl-terminal fragments of APP (CT) have been found in plaques, microvessels and the neurofibrillary tangles in the brains of AD patients. These carboxyl-terminal fragments, which contain the complete Abeta sequence, appear to be toxic to neurons in culture cells. However, the possible role of other cleaved products of APP is less clear. We showed that a recombinant carboxy-terminal 105 amino acid fragment (CT105) of APP induced strong neurotoxicity in PC12 cells. We prepared alcoholic extract from Oriental herbal plants and screened their protective effects against CT105-induced cell death in PC12 cells after the treatment of these extracts. Of the 10 kinds of plant extracts, 12 kinds of extracts had considerable protective effects against CT105-induced cell death, especially, Uncariae Ramulus et Uncus (UREU), Gastrodia elata (GAE), Evodia officinalis (EO) and Panax ginseng (PAG) showed the most protective effect at the concentration of 50 microg/ml. BuOH extract of UREU and GAE possessed the strongest protective effects against neurotoxicity of CT105-induced PC12 cells and showed inhibitory effect with IC50 values of 4.8 and 8.3 microg/ml, respectively. These plants are promising candidates of neuroprotective effects and would be useful for the treatment of the neuronal degenerative diseases such as Alzheimer's diseases. PMID:17015944

  18. Protective effects of ginsenoside Rg2 against glutamate-induced neurotoxicity in PC12 cells.

    PubMed

    Li, Na; Liu, Bin; Dluzen, Dean E; Jin, Yi

    2007-05-22

    We investigated the effect of ginsenoside Rg2 on neurotoxic activities induced by glutamate in PC12 cells. The cells were incubated with glutamate (1 mmol/L), glutamate and ginsenoside Rg2 (0.05, 0.1, 0.2 mmol/L) or nimodipine (5 micromol/L) for 24 h. The cellular viability was assessed by MTT assay. The lipid peroxidation products malondialdehyde (MDA) and nitrogen oxide (NO) were measured by a spectrophotometric method. Fura-2/AM, as a cell permeable fluorescent probe for Ca2+, was used to detect intracellular Ca2+ concentration ([Ca2+]i) using a monespectrofluorometer. Immunocytochemical techniques were employed to check the protein expression levels of calpain II, caspase-3 and beta-amyloid (Abeta)1-40 in PC12 cells. The results showed that glutamate decreased the cell viability, increased [Ca2+]i, lipid peroxidation (the excessive production of MDA, NO) and the protein expression levels of calpain II, caspase-3 and Abeta1-40 in PC12 cells. Ginsenoside Rg2 significantly attenuated glutamate-induced neurotoxic effects upon these parameters at all doses tested. Our study suggests that ginsenoside Rg2 has a neuroprotective effect against glutamate-induced neurotoxicity through mechanisms related to anti-oxidation and anti-apoptosis. In addition, the inhibitory effect of ginsenoside Rg2 against the formation of Abeta1-40 suggests that ginsenoside Rg2 may also represent a potential treatment strategy for Alzheimer's disease. PMID:17257792

  19. A polysaccharide from Polygonatum sibiricum attenuates amyloid-β-induced neurotoxicity in PC12 cells.

    PubMed

    Zhang, Huixue; Cao, Yuze; Chen, Lixia; Wang, Jianjian; Tian, Qinghua; Wang, Ning; Liu, Zhaojun; Li, Jie; Wang, Na; Wang, Xiaokun; Sun, Piyun; Wang, Lihua

    2015-03-01

    One of the pathological hallmarks of Alzheimer's disease (AD) is the progressive accumulation of beta-amyloid (Aβ) in the form of senile plaques, and Aβ induced neurotoxicity has been identified as a major cause of the onset of AD. In this study, we investigated the protective effects of a polysaccharide (PS-WNP) from Polygonatum sibiricum against the Aβ(25-35)-induced neurotoxicity in PC12 cells and explored the underlying mechanism. The results showed that pretreatment with PS-WNP significantly attenuated cell death and the elevated Bax/Bcl-2 ratio evoked by Aβ(25-35), and subsequently inhibited mitochondrial dysfunction and cytochrome c release into the cytosol. Moreover, PS-WNP significantly inhibited Aβ(25-35) induced caspase-3 activation and enhanced the protein levels of phosphorylated Akt (p-Akt) in PC12 cells. Additionally, pretreatment with the PI3K inhibitor (LY294002) completely abolished the protective effects of PS-WNP against Aβ(25-35)-induced neuronal cell apoptosis. These observations unambiguously suggested that the protective effect of PS-WNP against Aβ(25-35)-induced apoptosis in PC12 cells was associated with the enhancement of PI3K/Akt signaling pathway. PMID:25498712

  20. Phosphatidylinositol-anchored glycoproteins of PC12 pheochromocytoma cells and brain

    SciTech Connect

    Margolis, R.K.; Goossen, B.; Margolis, R.U.

    1988-05-03

    PC12 pheochromocytoma cells and cultures of early postnatal rat cerebellium were labeled with (/sup 3/H)glucosamine, (/sup 3/H)fucose, (/sup 3/H)leucine, (/sup 3/H)ethanolamine, or sodium (/sup 35/S)sulfate and treated with a phosphatidylinositol-specific phospholipase C. Enzyme treatment of (/sup 3/H) glucosamine- or (/sup 3/H)fucose-labeled PC12 cells led to a 15-fold increase in released glycoproteins. On sodium dodecyl sulfate-polyacrylamide gel ectrophoresis, most of the released material migrated as a broad band with an apparent molecular size of 32,000 daltons (Da), which was specifically immunoprecipitated by a monoclonal antibody to the Thy-l glycoprotein. A second glycoprotein, with an apparent molecular size of 158,000 Da, was also released. After treatment with endo-..beta..-galactosidase, 40-45% of the (/sup 3/H)glucosamine of (/sup 3/H)fucose radioactivity in the phospholipase-released glycoproteins was converted to products of disaccharide size, and the molecular size of the 158-kDa glycoprotein decreased to 145 kDa, demonstrating that it contains fucosylated poly-(N-acetyllactosaminyl) oligosaccharides. The phospholipase also released labeled Thy-1 and the 158-kDa glycoprotein from PC12 cells cultured in the presence of (/sup 3/H)ethanolamine, which specifically labels this component of the phosphatidylinositol membrane-anchoring sequence,while in the lipid-free protein residue of cells not treated with phospholipase, Thy-1 and a doublet at 46/48 kDa were the only labeled proteins. Sulfated glycoproteins of 155, 132/134, 61, and 21 kDa are the predominant species released by phospholipase, which does not affect a major 44-kDa protein seen in (/sup 3/H)ethanolamine-labeled brain cultures. The 44-48- and 155/158-kDa proteins may be common to both PC12 cells and brain.

  1. Astroglia overexpressing heme oxygenase-1 predispose co-cultured PC12 cells to oxidative injury.

    PubMed

    Song, Linyang; Song, Wei; Schipper, Hyman M

    2007-08-01

    The mechanisms responsible for the progressive degeneration of dopaminergic neurons and pathologic iron deposition in the substantia nigra pars compacta of patients with Parkinson's disease (PD) remain unclear. Heme oxygenase-1 (HO-1), the rate-limiting enzyme in the oxidative degradation of heme to ferrous iron, carbon monoxide, and biliverdin, is upregulated in affected PD astroglia and may contribute to abnormal mitochondrial iron sequestration in these cells. To determine whether glial HO-1 hyper-expression is toxic to neuronal compartments, we co-cultured dopaminergic PC12 cells atop monolayers of human (h) HO-1 transfected, sham-transfected, or non-transfected primary rat astroglia. We observed that PC12 cells grown atop hHO-1 transfected astrocytes, but not the astroglia themselves, were significantly more susceptible to dopamine (1 microM) + H(2)O(2) (1 microM)-induced death (assessed by nuclear ethidium monoazide bromide staining and anti-tyrosine hydroxylase immunofluorescence microscopy) relative to control preparations. In the experimental group, PC12 cell death was attenuated significantly by the administration of the HO inhibitor, SnMP (1.5 microM), the antioxidant, ascorbate (200 microM), or the iron chelators, deferoxamine (400 microM), and phenanthroline (100 microM). Exposure to conditioned media derived from HO-1 transfected astrocytes also augmented PC12 cell killing in response to dopamine (1 microM) + H(2)O(2) (1 microM) relative to control media. In PD brain, overexpression of HO-1 in nigral astroglia and accompanying iron liberation may facilitate the bioactivation of dopamine to neurotoxic free radical intermediates and predispose nearby neuronal constituents to oxidative damage. PMID:17526019

  2. Neuroprotective effects of constituents of Eragrostis ferruginea against Aβ-induced toxicity in PC12 cells.

    PubMed

    Na, Chae Sun; Hong, Seong Su; Choi, Yun-Hyeok; Lee, Yong Ho; Hong, Sun Hee; Lim, Ji-Youn; Kang, Byeong Hoa; Park, So-Young; Lee, Dongho

    2010-07-01

    A new flavonoid, 7-demethylageconyflavone A (1), and five known compounds, tricin (2), ageconyflavone A (3), corylin (4), nectandrin B (5), and 4-ketopinoresinol (6) were isolated from the aerial parts of Eragrostis ferruginea. Their structures were determined using spectroscopic techniques, including 1D- and 2D-NMR. All compounds were tested for the neuroprotective effects against amyloid beta peptide (Abeta) using PC12 cells, a major cause of the pathology of Alzheimer's disease. Tricin (2) was found to have a neuroprotective effect with an ED(50) value of 20.3 microM against Abeta-induced toxicity in PC12 cells. Ageconyflavone A (3), nectandrin B (5) and 4-ketopinoresinol (6) demonstrated moderate neuroprotective effects with ED(50) values of 58.7, 44.1, and 54.8 microM, respectively. PMID:20661708

  3. Immunosuppressant FK506 promotes neurite outgrowth in cultures of PC12 cells and sensory ganglia.

    PubMed Central

    Lyons, W E; George, E B; Dawson, T M; Steiner, J P; Snyder, S H

    1994-01-01

    The immunosuppressant drug FK506 acts by binding to receptor proteins, FK506-binding proteins (FKBPs), which in turn can bind to and regulate a Ca(2+)-dependent phosphatase, calcineurin, and a Ca2+ release channel, the ryanodine receptor. Based on our findings in regeneration models that levels of FKBPs during neural regeneration parallel those of growth-associated protein GAP43, a calcineurin substrate that regulates neurite extension, we examined effects of FK506 in PC12 rat pheochromocytoma cells and in rat sensory ganglia. FK506 enhances neurite outgrowth in both systems by increasing sensitivity to nerve growth factor. Blockade of FK506 actions in sensory ganglia by rapamycin, an FK506 antagonist, establishes that these effects involve FKBPs. Rapamycin itself stimulates neurite outgrowth in PC12 cells. These drug effects are detected at subnanomolar concentrations, suggesting therapeutic application in diseases involving neural degeneration. Images PMID:7512727

  4. Genomic and physiological analysis of oxygen sensitivity and hypoxia tolerance in PC12 cells.

    PubMed

    Seta, Karen; Kim, Hie-Won; Ferguson, Tsuneo; Kim, Richard; Pathrose, Peterson; Yuan, Yong; Lu, Gang; Spicer, Zachary; Millhorn, David E

    2002-10-01

    The mechanisms by which cells adapt and respond to changes in oxygen tension remain largely unknown. Our laboratory has used the PC12 cell line to study both biophysical and molecular responses to hypoxia. This chapter summarizes our findings. We found that membrane depolarization that occurred when PC12 cells were exposed to reduced O(2) was mediated by a specific potassium channel, the Kv1.2 channel. The membrane depolarization leads to increased Ca(2+) conductance through a voltage-sensitive channel, which in turn mediates the release of the neurotransmitters dopamine, adenosine, glutamate, and GABA. In addition, increased intracellular Ca(2+) and other signaling systems regulate hypoxia-induced gene expression, which contributes to the adaptive response to reduced O(2+). We identified several critical signaling pathways that regulate a complex gene expression profile in PC12 cells during hypoxia. These include the cAMP-protein kinase A, Ca(2+)-calmodulin, p42/44 mitogen-activated protein kinase (MAPK), stress-activated protein kinase (SAPK; p38 kinase), and the phosphatidylinositol 3-kinase-AKT as regulators of gene expression. Several of these pathways regulate hypoxia-specific transcription factors that are members of the hypoxia-inducible factor (HIF) family. Recently, we have successfully used subtractive cDNA libraries and microarray analysis to identify the genomic profile that mediates the cellular response to hypoxia. PMID:12438156

  5. Hypoxia regulates the cAMP- and Ca2+/calmodulin signaling systems in PC12 cells.

    PubMed

    Beitner-Johnson, D; Leibold, J; Millhorn, D E

    1998-01-01

    Hypoxic/ischemic trauma is a primary factor in the pathology of various disease states. Yet, very little is known about the molecular mechanisms involved in cellular responses and adaptations to hypoxia. As a means of identifying intracellular signaling systems that are regulated in response to hypoxia, the effects of acute and chronic hypoxia on the activity of protein kinase A (PKA) and Ca2+/CaM-dependent protein kinase II (CaMK-II) were evaluated in rat pheochromocytoma (PC12) cells. Chronic (> 6 hr), but not acute exposure to hypoxia (5% O2) significantly decreased both PKA enzyme activity and immunoreactivity compared to control levels. This effect was not due to hypoxia-induced alterations in cell number or viability. Similarly, chronic hypoxia significantly decreased CaMK-II enzyme activity and protein levels in PC12 cells. These data demonstrate that down-regulation of the cAMP and Ca2+/CaM-signaling systems is a mechanism by which PC12 cells adapt to long-term hypoxia. PMID:9439610

  6. Amyloid β-abrogated TrkA ubiquitination in PC12 cells analogous to Alzheimer's disease.

    PubMed

    Zheng, Chen; Geetha, Thangiah; Gearing, Marla; Babu, Jeganathan Ramesh

    2015-06-01

    Amyloid beta (Aβ) protein is the primary proteinaceous deposit found in the brains of patients with Alzheimer's disease (AD). Evidence suggests that Aβ plays a central role in the development of AD pathology. Here, we show in PC12 cells, Aβ impairs tropomyosin receptor kinase A (TrkA) ubiquitination, phosphorylation, and its association with p75(NTR), p62, and TRAF6 induced by nerve growth factor. The ubiquitination and tyrosine phosphorylation of TrkA was also found to be impaired in postmortem human AD hippocampus compared to control. Interestingly, the nitrotyrosylation of TrkA was increased in AD hippocampus and this explains why the phosphotyrosylation and ubiquitination of TrkA was impaired. In AD brain, the production of matrix metalloproteinase-7 (MMP-7), which cleaves proNGF, was reduced, thereby leading to the accumulation of pro-NGF and a decrease in the level of active NGF. TrkA signaling events, including Ras/MAPK and phosphatidylinositol 3-kinase (PI3K)/Akt pathways, are deactivated with Aβ and in the human AD hippocampus. Findings show that Aβ blocks the TrkA ubiquitination and downstream signaling similar to AD hippocampus. Cell survival and differentiation are essential for living organisms. We propose that under normal conditions, nerve growth factor (NGF) leads to Tropomyosin receptor kinase A (TrkA) phosphorylation, ubiquitination and its association with p75(NTR), p62 and TRAF6, thereby promoting cell survival and differentiation. In diseased conditions such as Alzheimer's, proNGF leads to nitrotyrosylation of TrkA, thereby impairing its ubiquitination and downstream signaling which results in apoptosis. TRAF6 = tumor necrosis factor receptor-associated factor 6; Ub = ubiquitin. PMID:25708205

  7. Diethylstilbestrol alters the morphology and calcium levels of growth cones of PC12 cells in vitro.

    PubMed

    Janevski, J; Choh, V; Stopper, H; Schiffmann, D; De Boni, U

    1993-01-01

    Diethylstilbestrol (DES) is a synthetic estrogen with carcinogenic properties. DES is known to alter cytoskeletal components, including the organization of actin stress fibres in C6 rat glioma cells. In a test of the hypothesis that DES disrupts actin filaments of growth cones in neuron-like cells, DES-induced changes in filopodial lengths were quantified in rat pheochromocytoma (PC12) cells in vitro. DES significantly altered growth cone morphology, with collapse of growth cone filopodia and neurite retraction invariably occurring at a concentration of 10 microM. At 5 microM DES, transient reductions in total filopodial lengths occurred. At DES concentrations of 0.1 nM and 1 nM, reductions in total filopodial lengths occurred in a fraction of growth cones. Evidence exists which shows that growth cone activity and morphology are intimately linked to levels of intracellular, free calcium and that DES increases such levels. Measurements of free intracellular calcium levels by fluorescence microscopy, at times concurrent with the DES-induced reduction in total filopodial lengths, showed that calcium levels were indeed significantly increased by 10 microM DES. Labelling of filamentous actin (f-actin) with FITC-phalloidin showed that the f-actin distribution in growth cones exposed to DES could not be differentiated from the distribution found in spontaneously retracting growth cones. Together with evidence which showed that growth cone motility was not affected, the results are taken to indicate that DES, rather than acting directly on the cytoskeleton, exerts its effects indirectly, by a calcium-induced destabilization of actin filaments in the growth cone. PMID:8164893

  8. Effects of selenocystine on lead-exposed Chinese hamster ovary (CHO) and PC-12 cells

    SciTech Connect

    Aykin-Burns, Nukhet; Ercal, Nuran . E-mail: nercal@umr.edu

    2006-07-15

    Lead is a pervasive environmental toxin that affects multiple organ systems, including the nervous, renal, reproductive, and hematological systems. Even though it is probably the most studied toxic metal, some of the symptoms of lead toxicity still cannot be explained by known molecular mechanisms. Therefore, lead-induced oxidative stress has recently started to gain attention. This in vitro study confirms the existence of oxidative stress due to lead exposure. Administration of lead acetate (PbA) to cultures of Chinese hamster ovary cells (CHO) had a concentration-dependent inhibitory effect on colony formation and cell proliferation. This inhibition was eliminated by 5 {mu}M selenocystine (SeCys). In order to evaluate the nature of SeCys's effect, we measured glutathione (GSH), its oxidized form glutathione disulfide (GSSG), malondialdehyde (MDA), catalase, and GSH peroxidase (GPx) activities in lead-exposed CHO cells both in the presence and absence of SeCys. Increases in MDA, catalase, and GPx activities were observed in cultures that received only PbA, but supplementation with SeCys returned these measures to pretreatment levels. The ratio of GSH to GSSG increased in lead-exposed cells incubated in SeCys-enhanced media but declined in cultures treated with PbA only. In order to determine whether SeCys also reverses lead-induced neurotoxicity, a neuronal cell line, PC-12 cells, was used. Lead's inhibition on neurite formation was significantly eliminated by SeCys in PC-12 cells. Our results suggest that SeCys can confer protection against lead-induced toxicity in CHO cells and neurotoxicity in PC-12 cells.

  9. Partial Protection of PC12 Cells from Cellular Stress by Low-Dose Sodium Nitroprusside Pre-treatment.

    PubMed

    Varga, Judit; Bátor, Judit; Nádasdi, Gergő; Árvai, Zita; Schipp, Renáta; Szeberényi, József

    2016-10-01

    The PC12 rat pheochromocytoma cell line is an in vitro model system widely used for the investigation of intracellular signaling events contributing to neuronal differentiation and cell death. We found earlier that the nitric oxide donor compound sodium nitroprusside (SNP) induced apoptosis of PC12 cells if it was applied in high concentration (400 µM). Yoshioka et al. (J Pharmacol Sci 101:126-134, 2006) reported that cell death evoked by cytotoxic concentrations of SNP could be prevented by a 100 µM SNP pre-treatment in a murine macrophage cell line. The apoptosis caused by toxic-dose SNP treatment (400 µM) could be partially overcome in PC12 cells as well by the low-dose SNP pre-treatment. The partial inhibition of apoptosis was accompanied by reduced phosphorylation of certain proteins (such as stress-activated protein kinases, the p53, and the eIF2α proteins), decreased caspase activation, and less intense internucleosomal DNA fragmentation. The 100 µM SNP pre-treatment reduced the pro-apoptotic potential of certain other stress stimuli (serum withdrawal, cisplatin and tunicamycin treatments) as well, although the underlying biochemical changes were not entirely uniform. On the contrary, the 100 µM SNP pre-treatment was unable to prevent cell death caused by the protein synthesis inhibitor anisomycin. Further clarification of the above-mentioned processes may be important in understanding the mechanisms by which mild nitrosative stress protects cells against certain forms of cellular stress conditions. PMID:26626595

  10. Evaluation of antioxidant and cytoprotective activities of Artemisia ciniformis extracts on PC12 cells

    PubMed Central

    Mojarrab, Mahdi; Nasseri, Sajjad; Hosseinzadeh, Leila; Farahani, Farah

    2016-01-01

    Objective(s): In the current study antioxidant capacities of five different extracts of Artemisia ciniformis aerial parts were evaluated by cell-free methods. Then seven fractions of the potent extract were selected and their antioxidant capacity was assayed by cell free and cell based methods. Materials and Methods: Antioxidant ability was measured using the: 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging test, β-carotene bleaching (BCB) method and ferrous ion chelating (FIC) assay. Total phenolic contents (TPC) of all the samples also were determined. The cytoprotective effect of fractions was evaluated by measuring the viability of cells after exposure to doxorubicin (DOX). The mechanism of action was studied by investigating caspase-3, mitochondrial membrane potential (MMP), the level of super-oxide dismutase (SOD) and intracellular reactive oxygen species (ROS). Results: Hydroethanolic extract exhibited a notably higher antioxidant activity and phenolic content. Among the fractions (A to G) of hydroethanolic extract, the highest antioxidant capacity was observed in the Fraction E. Moreover, 24 hr pretreatment of PC12 cells with fractions B, C and D decreased DOX-induced cytotoxicity. In addition, pre-treatment of cells with fraction B resulted in significant decrease in generation of the reactive oxygen species (ROS) and increase in the activity of SOD. We were able to demonstrate remarkable reduction in the activity of caspase-3 and increase in MMP in PC12 cells following pretreatment with fraction B. Conclusion: Our observations indicated that the fraction B of A. ciniformis hydroetanolic extract possessed protective effect on oxidative stress and apoptosis induced by DOX in PC12 cells. PMID:27279988

  11. Magnetic micro-device for manipulating PC12 cell migration and organization.

    PubMed

    Alon, N; Havdala, T; Skaat, H; Baranes, K; Marcus, M; Levy, I; Margel, S; Sharoni, A; Shefi, O

    2015-05-01

    Directing neuronal migration and growth has an important impact on potential post traumatic therapies. Magnetic manipulation is an advantageous method for remotely guiding cells. In the present study, we have generated highly localized magnetic fields with controllable magnetic flux densities to manipulate neuron-like cell migration and organization at the microscale level. We designed and fabricated a unique miniaturized magnetic device composed of an array of rectangular ferromagnetic bars made of permalloy (Ni80Fe20), sputter-deposited onto glass substrates. The asymmetric shape of the magnets enables one to design a magnetic landscape with high flux densities at the poles. Iron oxide nanoparticles were introduced into PC12 cells, making the cells magnetically sensitive. First, we manipulated the cells by applying an external magnetic field. The magnetic force was strong enough to direct PC12 cell migration in culture. Based on time lapse observations, we analysed the movement of the cells and estimated the amount of MNPs per cell. We plated the uploaded cells on the micro-patterned magnetic device. The cells migrated towards the high magnetic flux zones and aggregated at the edges of the patterned magnets, corroborating that the cells with magnetic nanoparticles are indeed affected by the micro-magnets and attracted to the bars' magnetic poles. Our study presents an emerging method for the generation of pre-programmed magnetic micro-'hot spots' to locate and direct cellular growth, setting the stage for implanted magnetic devices. PMID:25792133

  12. Minocycline protects PC12 cells against NMDA-induced injury via inhibiting 5-lipoxygenase activation.

    PubMed

    Song, Ying; Wei, Er-Qing; Zhang, Wei-Ping; Ge, Qiu-Fu; Liu, Jian-Ren; Wang, Meng-Ling; Huang, Xiao-Jia; Hu, Xin; Chen, Zhong

    2006-04-26

    Recently, we have reported that minocycline, a semi-synthetic tetracycline with neuroprotective effects, inhibits the in vitro ischemic-like injury and 5-lipoxygenase (5-LOX) activation in PC12 cells. In the present study, we further determined whether minocycline protects PC12 cells from excitotoxicity via inhibiting 5-LOX activation. We used N-methyl-d-aspartate (NMDA, 200 microM) to induce early (exposure for 6 h) and delayed (exposure for 6 h followed by 24 h recovery) injuries. We found that NMDA receptor antagonist ketamine, 5-LOX inhibitor caffeic acid and minocycline concentration dependently attenuated NMDA-induced early and delayed cell injuries (viability reduction and cell death). However, only ketamine (1 microM) inhibited NMDA-evoked elevation of intracellular calcium. In addition, immunohistochemical analysis showed that NMDA induced 5-LOX translocation to the nuclear membrane after 1- to 6-h exposure which was confirmed by Western blotting, indicating that 5-LOX was activated. Ketamine, caffeic acid and minocycline (each at 1 microM) inhibited 5-LOX translocation after early injury. After delayed injury, PC12 cells were shrunk, and 5-LOX was translocated to the nuclei and nuclear membrane; ketamine, caffeic acid and minocycline inhibited both cell shrinking and 5-LOX translocation. As a control, 12-LOX inhibitor baicalein showed a weak effect on cell viability and death, but no effect on 5-LOX translocation. Therefore, we conclude that the protective effect of minocycline on NMDA-induced injury is partly mediated by inhibiting 5-LOX activation. PMID:16574083

  13. Protection against hydrogen peroxide-induced cytotoxicity in PC12 cells by scutellarin.

    PubMed

    Hong, Hao; Liu, Guo-Qing

    2004-04-30

    The present study investigated the protective actions of the antioxidant scutellarin against the cytotoxicity produced by exposure to H2O2 in PC12 cells. This was done by assaying for MTT (3,(4,5-dimethylthiazole-2-yl)2,5-diphenyl-tetrazolium bromide) reduction and lactate dehydrogenase (LDH) release. Reactive oxygen species (ROS) and Ca2+ in cells were evaluated by fluorescent microplate reader using DCFH and Fura 2-AM, respectively, as probes. Lipid peroxidation was quantified using thiobarbituric acid-reactive substances (TBARS). Mitochondrial membrane potential (MMP) was assessed by the retention of rhodamine123 (Rh123), a specific fluorescent cationic dye that is readily sequestered by active mitochondria, depending on their transmembrane potential. The DNA content and percentage of apoptosis were monitored with flow cytometry. Vitamin E, a potent antioxidant, was employed as a comparative agent. Preincubation of PC12 cells with scutellarin prevented cytotoxicity induced by H2O2. Intracellular accumulation of ROS, Ca2+ and products of lipid peroxidation, resulting from H2O2 were significantly reduced by scutellarin. Incubation of cells with H2O2 caused a marked decrease in MMP, which was significantly inhibited by scutellarin. PC12 cells treated with H2O2 underwent apoptotic death as determined by flow cytometric assay. The percentage of this H2O2-induced apoptosis in the cells was decreased in the presence of different concentrations of scutellarin. Scutellarin exhibited significantly higher potency compared to the antioxidant vitamin E. The present findings showed that scutellarin attenuated H2O2-induced cytotoxicity, intracellular accumulation of ROS and Ca2+, lipid peroxidation, and loss of MMP and DNA, which may represent the cellular mechanisms for its neuroprotective action. PMID:15051420

  14. Toxicity induced by cumene hydroperoxide in PC12 cells: protective role of thiol donors.

    PubMed

    Vimard, F; Saucet, M; Nicole, O; Feuilloley, M; Duval, D

    2011-01-01

    Oxidative shock and production of reactive oxygen species are known to play a major role in situations leading to neuron degeneration, but the precise mechanisms responsible for cell degeneration remain uncertain. In the present article, we have studied in PC 12 cells the effect of cumene hydroxyperoxide on both cell metabolism and morphology. We observed that relatively low concentrations of the drug (100 μM) led to a significant decrease in the cellular content of ATP and reduced glutathione as well as to a decreased mitochondrial potential. These metabolic alterations were followed by an important increase in intracellular free calcium and membrane disruption and death. In parallel, we observed profound changes in cell morphology with a shortening of cell extensions, the formation of ruffles and blebs at the cell surface, and a progressive detachment of the cells from the surface of the culture flasks. We also showed that addition of thiol donors such as N-acetylcysteine or β-mercaptoethanol, which were able to enhance cell glutathione content, almost completely protected PC 12 cells from the toxic action of cumene hydroperoxide whereas pretreatment by buthionine sulfoximine, a selective inhibitor of GSH synthesis, enhanced its action. PMID:21812070

  15. Synthesis of functional polyester for fabrication of nano-fibrous scaffolds and its effect on PC12 cells.

    PubMed

    Qiang, Na; Tang, Shuo; Shi, Xiao-jun; Li, Hao; Ma, Yi-hong; Tao, Hai-xia; Lin, Qiang

    2016-01-01

    An ideal scaffold should mimic the advantageous characteristics of a natural extracellular matrix for cell attachment, proliferation, and differentiation. In this study, well-defined block copolymer with functional groups was synthesized. The structure of the block copolymer was characterized by nuclear magnetic resonance, gel permeation chromatography, and differential scanning calorimetry. Thermally induced phase separation was employed to fabricate nano-fibrous scaffolds based on the synthesized block copolymer. The scaffold, with fiber diameter ranging from 400 to 500 nm, was fabricated for in vitro culture of PC12 cells. The carboxyl groups on the side chain resulted in increased hydrophilicity of nano-fibrous scaffolds and enhanced cell proliferation. In addition, this scaffold structure was beneficial in directing the growth of regenerating axons in nerve tissue engineering. Results of 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay and scanning electron microscopy confirmed that the nano-fibrous scaffolds with functional groups were suitable for PC12 cells growth. Moreover, the carboxyl groups were suitable for coupling with biological signals. Thus, the nano-fibrous scaffolds have potential applications in tissue engineering. PMID:26514960

  16. Expression profiling and Ingenuity biological function analyses of interleukin-6- versus nerve growth factor-stimulated PC12 cells

    PubMed Central

    Kunz, Dieter; Walker, Gaby; Bedoucha, Marc; Certa, Ulrich; März-Weiss, Pia; Dimitriades-Schmutz, Beatrice; Otten, Uwe

    2009-01-01

    Background The major goal of the study was to compare the genetic programs utilized by the neuropoietic cytokine Interleukin-6 (IL-6) and the neurotrophin (NT) Nerve Growth Factor (NGF) for neuronal differentiation. Results The designer cytokine Hyper-IL-6 in which IL-6 is covalently linked to its soluble receptor s-IL-6R as well as NGF were used to stimulate PC12 cells for 24 hours. Changes in gene expression levels were monitored using Affymetrix GeneChip technology. We found different expression for 130 genes in IL-6- and 102 genes in NGF-treated PC12 cells as compared to unstimulated controls. The gene set shared by both stimuli comprises only 16 genes. A key step is upregulation of growth factors and functionally related external molecules known to play important roles in neuronal differentiation. In particular, IL-6 enhances gene expression of regenerating islet-derived 3 alpha (REG3A; 1084-fold), regenerating islet-derived 3 beta (REG3B/PAPI; 672-fold), growth differentiation factor 15 (GDF15; 80-fold), platelet-derived growth factor alpha (PDGFA; 69-fold), growth hormone releasing hormone (GHRH; 30-fold), adenylate cyclase activating polypeptide (PACAP; 20-fold) and hepatocyte growth factor (HGF; 5-fold). NGF recruits GDF15 (131-fold), transforming growth factor beta 1 (TGFB1; 101-fold) and brain-derived neurotrophic factor (BDNF; 89-fold). Both stimuli activate growth-associated protein 43 (GAP-43) indicating that PC12 cells undergo substantial neuronal differentiation. Moreover, IL-6 activates the transcription factors retinoic acid receptor alpha (RARA; 20-fold) and early growth response 1 (Egr1/Zif268; 3-fold) known to play key roles in neuronal differentiation. Ingenuity biological function analysis revealed that completely different repertoires of molecules are recruited to exert the same biological functions in neuronal differentiation. Major sub-categories include cellular growth and differentiation, cell migration, chemotaxis, cell adhesion, small

  17. Protective effect of Bajijiasu against β-amyloid-induced neurotoxicity in PC12 cells.

    PubMed

    Chen, Di-Ling; Zhang, Peng; Lin, Li; Shuai, Ou; Zhang, He-Ming; Liu, Song-Hao; Wang, Jin-Yu

    2013-08-01

    Beta-amyloid peptide (Aβ), a major protein component of senile plaques associated with Alzheimer's disease (AD), is also directly neurotoxic. Mitigation of Aβ-induced neurotoxicity is thus a possible therapeutic approach to delay or prevent onset and progression of AD. This study evaluated the protective effect of Bajijiasu (β- D-fructofuranosyl (2-2) β- D-fructofuranosyl), a dimeric fructose isolated from the Chinese herb Radix Morinda officinalis, on Aβ-induced neurotoxicity in pheochromocytoma (PC12) cells. Bajijiasu alone had no endogenous neurotoxicity up to 200 μM. Brief pretreatment with 10-40 μM Bajijiasu (2 h) significantly reversed the reduction in cell viability induced by subsequent 24 h exposure to Aβ25-35 (21 μM) as measured by MTT and LDH assays, and reduced Aβ25-35-induced apoptosis as indicated by reduced annexin V-EGFP staining. Bajijiasu also decreased the accumulation of intracellular reactive oxygen species and the lipid peroxidation product malondialdehyde in PC12 cells, upregulated expression of glutathione reductase and superoxide dismutase, prevented depolarization of the mitochondrial membrane potential (Ψm), and blocked Aβ25-35-induced increases in [Ca(2+)] i . Furthermore, Bajijiasu reversed Aβ25-35-induced changes in the expression levels of p21, CDK4, E2F1, Bax, NF-κB p65, and caspase-3. Bajijiasu is neuroprotective against Aβ25-35-induced neurotoxicity in PC12 cells, likely by protecting against oxidative stress and ensuing apoptosis. PMID:23812758

  18. Gene Interference with Morpholinos in a Gold Nanoparticle-Based Delivery Platform in Rat PC12 Cells.

    PubMed

    Deng, Wei; Farnham, Melissa M J; Goldys, Ewa M; Mohammed, Suja; Pilowsky, Paul M

    2015-12-01

    For the first time the efficiency of gene knockdown of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor 1 (PAC1R) is demonstrated by employing gold nanocomplexes. This gene knockdown subsequently affects the action of PACAP on neurite outgrowth in PC12 cells. These nanocomplexes comprise cholera toxin B (CTB)-gold nanoparticle conjugates loaded with double-stranded morpholinos (MOs) (photo MO and antisense MO). Nanocomplexes are introduced into cells via lipid raft-dependent endocytosis. After UV light exposure, the photolinker in the photo MO is cleaved, bisecting the photo MO and releasing the antisense MO from the conjugate. The antisense MO then binds the PAC1R mRNA and decreases gene expression. The maximal efficiency of gene knockdown is observed after 24 hours, resulting in a 65% ± 12 reduction of the protein level. This reduction in PAC1R impairs the responsiveness of cells to PACAP exposure. Following PAC1R gene knockdown, only 10% ± 8 and 11%± 9 of cells exhibit neurite outgrowth after 4-day exposure to PACAP-38 and PACAP-27, respectively. These results demonstrate an efficient PAC1R gene knockdown and noticeable difference in response to PACAP action on neural cell differentiation, adding an extra dimension to determine the involvement of PACAP and its PAC1R in the neurotropic effect to PC12 cells. PMID:26510306

  19. ProNGF derived from rat sciatic nerves downregulates neurite elongation and axon specification in PC12 cells

    PubMed Central

    Trigos, Anna Sofía; Longart, Marines; García, Lisbeth; Castillo, Cecilia; Forsyth, Patricia; Medina, Rafael

    2015-01-01

    Several reports have shown that a sciatic nerve conditioned media (CM) causes neuronal-like differentiation in PC12 cells. This differentiation is featured by neurite outgrowth, which are exclusively dendrites, without axon or sodium current induction. In previous studies, our group reported that the CM supplemented with a generic inhibitor for tyrosine kinase receptors (k252a) enhanced the CM-induced morphological differentiation upregulating neurite outgrowth, axonal formation and sodium current elicitation. Sodium currents were also induced by depletion of endogenous precursor of nerve growth factorr (proNGF) from the CM (pNGFd-CM). Given that sodium currents, neurite outgrowth and axon specification are important features of neuronal differentiation, in the current manuscript, first we investigated if proNGF was hindering the full PC12 cell neuronal-like differentiation. Second, we studied the effects of exogenous wild type (pNGFwt) and mutated (pNGFmut) proNGF isoforms over sodium currents and whether or not their addition to the pNGFd-CM would prevent sodium current elicitation. Third, we investigated if proNGF was exerting its negative regulation through the sortilin receptor, and for this, the proNGF action was blocked with neurotensin (NT), a factor known to compete with proNGF for sortilin. Thereby, here we show that pNGFd-CM enhanced cell differentiation, cell proportion with long neurites, total neurite length, induced axonal formation and sodium current elicitation. Interestingly, treatment of PC12 cells with wild type or mutated proNGF isoforms elicited sodium currents. Supplementing pNGFd-CM with pNGFmut reduced 35% the sodium currents. On the other hand, pNGFd-CM+pNGFwt induced larger sodium currents than pNGFd-CM. Finally, treatments with CM supplemented with NT showed that sortilin was mediating proNGF negative regulation, since its blocking induced similar effects than the pNGFd-CM treatment. Altogether, our results suggest that proNGF within the

  20. Nanostructured Polyaniline Coating on ITO Glass Promotes the Neurite Outgrowth of PC 12 Cells by Electrical Stimulation.

    PubMed

    Wang, Liping; Huang, Qianwei; Wang, Jin-Ye

    2015-11-10

    A conducting polymer polyaniline (PANI) with nanostructure was synthesized on indium tin oxide (ITO) glass. The effect of electrical stimulation on the proliferation and the length of neurites of PC 12 cells was investigated. The dynamic protein adsorption on PANI and ITO surfaces in a cell culture medium was also compared with and without electrical stimulation. The adsorbed proteins were characterized using SDS-PAGE. A PANI coating on ITO surface was shown with 30-50 nm spherical nanostructure. The number of PC 12 cells was significantly greater on the PANI/ITO surface than on ITO and plate surfaces after cell seeding for 24 and 36 h. This result confirmed that the PANI coating is nontoxic to PC 12 cells. The electrical stimulation for 1, 2, and 4 h significantly enhanced the cell numbers for both PANI and ITO conducting surfaces. Moreover, the application of electrical stimulation also improved the neurite outgrowth of PC 12 cells, and the number of PC 12 cells with longer neurite lengths increased obviously under electrical stimulation for the PANI surface. From the mechanism, the adsorption of DMEM proteins was found to be enhanced by electrical stimulation for both PANI/ITO and ITO surfaces. A new band 2 (around 37 kDa) was observed from the collected adsorbed proteins when PC 12 cells were cultured on these surfaces, and culturing PC 12 cells also seemed to increase the amount of band 1 (around 90 kDa). When immersing PANI/ITO and ITO surfaces in a DMEM medium without a cell culture, the number of band 3 (around 70 kDa) and band 4 (around 45 kDa) proteins decreased compared to that of PC 12 cell cultured surfaces. These results are valuable for the design and improvement of the material performance for neural regeneration. PMID:25992643

  1. Protection of PC12 cells from chemical ischemia induced oxidative stress by Fagonia arabica.

    PubMed

    Satpute, Ravindra M; Kashyap, Rajpal S; Deopujari, Jayant Y; Purohit, Hemant J; Taori, Girdhar M; Daginawala, Hatim F

    2009-11-01

    Fagonia arabica (Zygophyllaceae) is an important Ayurvedic herb, grows throughout arid regions of India, has been widely used as a folk remedy by the indigenous people for its anti-inflammatory, analgesic and antipyretic effects. In the present study, antioxidant potential of F. arabica and the associated mechanism of antioxidant defence in rat pheochromocytoma (PC12) cells subjected to chemical ischemia was studied. Effect of total extract of F. arabica was studied for its antioxidant potential on the chemical ischemia induced PC12 cells. Alterations in the activities of cellular antioxidant enzymes (SOD, CAT, GSH-Px and GSH-R) were measured. Antioxidant potential of herb (ABTS), extent of lipid peroxidation (MDA and 4-HAE), total antioxidant status (TAS) and total glutathione (reduced, oxidized and their ratio) were evaluated. F. arabica scavenges the free radicals (ABTS(.)+), and showed a concentration dependent antioxidant activity, highest being at 1000 microg/ml. Its treatment with ischemic cells ameliorates the GSH and TAS levels and also helps the cells to restore the activities of the cellular antioxidative enzymes and also reduced the degree of lipid peroxidation. F. arabica scavenges the free radicals and attenuates oxidative stress mediated cell injury during ischemia. PMID:19520135

  2. Hypoxia activates Akt and induces phosphorylation of GSK-3 in PC12 cells.

    PubMed

    Beitner-Johnson, D; Rust, R T; Hsieh, T C; Millhorn, D E

    2001-01-01

    Akt is a serine/threonine kinase that has been shown to play a central role in promoting cell survival and opposing apoptosis. We evaluated the effect of hypoxia on Akt in rat pheochromocytoma (PC12) cells. PC12 cells were exposed to varying levels of hypoxia, including 21%, 15%, 10%, 5%, and 1% O(2). Hypoxia dramatically increased phosphorylation of Akt (Ser(473)). This effect peaked after 6 h exposure to hypoxia, but persisted strongly for up to 24 h. Phosphorylation of Akt was paralleled with a progressive increase in phosphorylation of glycogen synthase kinase-3 (GSK-3), one of its downstream substrates. The effect of hypoxia on phosphorylation of Akt was completely blocked by pretreatment of the cells with wortmannin (100 nM), indicating that this effect is mediated by phosphatidylinositol 3-kinase (P13K). In contrast, whereas hypoxia also strongly induced phosphorylation of the transcription factors CREB and EPAS1, these effects persisted in the presence of wortmannin. Thus, hypoxia regulates both P13K-dependent and P13K-independent signaling pathways. Furthermore, activation of the P13K and Akt signaling pathways may be one mechanism by which cells adapt and survive under conditions of hypoxia. PMID:11257444

  3. Simulated microgravity promotes cellular senescence via oxidant stress in rat PC12 cells.

    PubMed

    Wang, Jinghua; Zhang, Jifei; Bai, Shasha; Wang, Guangyou; Mu, Lili; Sun, Bo; Wang, Dandan; Kong, Qingfei; Liu, Yumei; Yao, Xiuhua; Xu, Ying; Li, Hulun

    2009-12-01

    Microgravity has a unique effect on biological organisms. Organs exposed to microgravity display cellular senescence, a change that resembles the aging process. To directly investigate the influence of simulated microgravity on neuronal original rat PC12 cells, we used a rotary cell culture system that simulates the microgravity environment on the earth. We found that simulated microgravity induced partial G1 phase arrest, upregulated senescence-associated beta-galactosidase (SA-beta-gal) activity, and activated both p53 and p16 protein pathways linked to cell senescence. The amount of reactive oxygen species (ROS) was also increased. The activity of intracellular antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT), was all significantly increased at 12h after the microgravity onset, yet decreased at 96h. Furthermore, concomitant block of ROS by the antioxidant N-acetylcysteine significantly inhibited the microgravity-induced upregulation of SA-beta-gal activity. These results suggest that exposure to simulated microgravity induces cellular senescence in PC12 cells via an increased oxidant stress. PMID:19616052

  4. Identification of coffee components that stimulate dopamine release from pheochromocytoma cells (PC-12).

    PubMed

    Walker, J; Rohm, B; Lang, R; Pariza, M W; Hofmann, T; Somoza, V

    2012-02-01

    Coffee and caffeine are known to affect the limbic system, but data on the influence of coffee and coffee constituents on neurotransmitter release is limited. We investigated dopamine release and Ca(2+)-mobilization in pheochromocytoma cells (PC-12 cells) after stimulation with two lyophilized coffee beverages prepared from either Coffea arabica (AR) or Coffea canephora var. robusta (RB) beans and constituents thereof. Both coffee lyophilizates showed effects in dilutions between 1:100 and 1:10,000. To identify the active coffee compound, coffee constituents were tested in beverage and plasma representative concentrations. Caffeine, trigonelline, N-methylpyridinium, chlorogenic acid, catechol, pyrogallol and 5-hydroxytryptamides increased calcium signaling and dopamine release, although with different efficacies. While N-methylpyridinium stimulated the Ca(2+)-mobilization most potently (EC(200): 0.14±0.29μM), treatment of the cells with pyrogallol (EC(200): 48±14nM) or 5-hydroxytryptamides (EC(200): 10±3nM) lead to the most pronounced effect on dopamine release. In contrast, no effect was seen for the reconstituted biomimetic mixture. We therefore conclude that each of the coffee constituents tested stimulated the dopamine release in PC-12 cells. Since no effect was found for their biomimetic mixture, we hypothesize other coffee constituents being responsible for the dopamine release demonstrated for AR and RB coffee brews. PMID:22019894

  5. Protective Effects of Costunolide against Hydrogen Peroxide-Induced Injury in PC12 Cells.

    PubMed

    Cheong, Chong-Un; Yeh, Ching-Sheng; Hsieh, Yi-Wen; Lee, Ying-Ray; Lin, Mei-Ying; Chen, Chung-Yi; Lee, Chien-Hsing

    2016-01-01

    Oxidative stress-mediated cellular injury has been considered as a major cause of neurodegenerative diseases including Alzheimer's and Parkinson's diseases. The scavenging of reactive oxygen species (ROS) mediated by antioxidants may be a potential strategy for retarding the diseases' progression. Costunolide (CS) is a well-known sesquiterpene lactone, used as a popular herbal remedy, which possesses anti-inflammatory and antioxidant activity. This study aimed to investigate the protective role of CS against the cytotoxicity induced by hydrogen peroxide (H₂O₂) and to elucidate potential protective mechanisms in PC12 cells. The results showed that the treatment of PC12 cells with CS prior to H₂O₂ exposure effectively increased the cell viability. Furthermore, it decreased the intracellular ROS, stabilized the mitochondria membrane potential (MMP), and reduced apoptosis-related protein such as caspase 3. In addition, CS treatment attenuated the cell injury by H₂O₂ through the inhibition of phosphorylation of p38 and the extracellular signal-regulated kinase (ERK). These results demonstrated that CS is promising as a potential therapeutic candidate for neurodegenerative diseases resulting from oxidative damage and further research on this topic should be encouraged. PMID:27409597

  6. Quinolinic acid induces cell apoptosis in PC12 cells through HIF-1-dependent RTP801 activation.

    PubMed

    Huang, Xiaojia; Yang, Kaiyong; Zhang, Yi; Wang, Qiang; Li, Yongjin

    2016-04-01

    Neurological disease comprises a series of disorders featuring brain dysfunction and neuronal cell death. Among the factors contributing to neuronal death, excitotoxicity induced by excitatory amino acids, such as glutamate, plays a critical role. However, the mechanisms about how the excitatory amino acids induce neuronal death remain elucidated. In this study, we investigated the role of HIF-1α (hypoxia inducible factor-1α) and RTP801 in cell apoptosis induced by quinolinic acid (QUIN), a glutamatergic agonist, in PC12 cells. We found that QUIN at 5 μM increased the expression of HIF-1α significantly with a peak at 24 h. After the treatment with QUIN (5-20 μM) for 24 h, the cells exhibited decreased viability and cell apoptosis with a concomitant increased expression of apoptosis related proteins. QUIN treatment also induced the generation of intracellular reactive oxygen species and RTP801 up-regulation in a HIF-1α-dependent manner that were inhibited by 2-methoxyestradiol, a HIF-1α inhibitor. Importantly, HIF-1 or RTP801 invalidation by siRNA rescued the cell apoptosis induced by QUIN or cobalt chloride, a chemical inducer of HIF-1. Taken together, these findings support the concept that neurotoxicity induced by QUIN is associated with HIF-1-dependent RTP801 activation and provide insight into the potential of RTP801 inhibitor in treatment of neurological disorders. PMID:26738727

  7. A Simple HPLC-UV Method for the Determination of Glutathione in PC-12 Cells

    PubMed Central

    Appala, Raju N.; Appala, Raju V. V. S. S.

    2016-01-01

    A highly sensitive and simple HPLC-UV method was developed and validated for the assay of glutathione (GSH) in PC-12 cells. Glutathione is a major intracellular antioxidant having multiple biological effects, best known for its cytoprotective effects against cell damage from reactive oxygen species and toxic reactive metabolites and regulating the cellular redox homeostasis. Due to its own sulfhydryl (SH) group, GSH readily reacts with Ellman's reagent to form a stable dimer which allows for quantitative estimation of GSH in biological systems by UV detection. The separation was achieved using a C8 column with a mobile phase consisting of phosphate buffer adjusted to pH 2.5 (mobile phase A) and acetonitrile (mobile phase B), running in a segmented gradient manner at a flow rate of 0.8 mL/min, and UV detection was performed at 280 nm. The developed HPLC-UV method was validated with respect to precision, accuracy, robustness, and linearity within a range of 1–20 μg/mL. Limit of detection (LOD) and limit of quantification (LOQ) were 0.05 and 0.1 μg/mL, respectively. Furthermore, the method shows the applicability for monitoring the oxidative stress in PC-12 cells. PMID:27127683

  8. Noncanonical Activin A Signaling in PC12 Cells: A Self-Limiting Feedback Loop.

    PubMed

    Wang, Jiao-Qi; Liang, Wen-Zhao; Cui, Yang; He, Jin-Ting; Liu, Hong-Yu; Wang, Yue; Xue, Long-Xing; Ji, Qiu-Ye; Shi, Wei; Shao, Yan-Kun; Mang, Jing; Xu, Zhong-Xin

    2016-05-01

    Activin A (Act A), a member of transforming growth factor-β superfamily, plays a neuroprotective role in multiple neurological diseases through Act A/Smads signal activation. Traditionally, the up-regulation of Act A gene and extracellular Act A accumulation show the signal activation as a linear pathway. However, one of our discoveries indicated that Act A could lead a loop signaling in ischemic injury. To clarify the characteristic of this loop signaling in a non-pathological state, we up-regulated the expression of Act A, monitored extracellular Act A accumulation and examined the activity of Act A signaling, which was quantified by the expression of phosphorylated Smad3 and the fluorescence intensity of Smad4 in nuclei. The results demonstrated a noncanonical Act A signal loop with self-amplifying property in PC12 cells. Further, it showed self-limiting behavior due to temporary activation and spontaneous attenuation. This periodic behavior of Act A signal loop was found to be regulated by the level of Smad anchor for receptor activation (SARA). Moreover, increased activity of Act A signal loop could promote PC12 cell proliferation and enhance the survival rate of cells to Oxygen-Glucose Deprivation. These practical discoveries will bring new insight on the functional outcome of Act A signaling in neurological diseases by the further understanding: loop signaling. PMID:26721511

  9. Cytoprotective effect of chlorogenic acid against α-synuclein-related toxicity in catecholaminergic PC12 cells

    PubMed Central

    Teraoka, Mari; Nakaso, Kazuhiro; Kusumoto, Chiaki; Katano, Satoshi; Tajima, Naoko; Yamashita, Atsushi; Zushi, Teppei; Ito, Satoru; Matsura, Tatsuya

    2012-01-01

    Parkinson’s disease is a major neurodegenerative disease involving the selective degeneration of dopaminergic neurons and α-synuclein containing Lewy bodies formation in the substantia nigra. Although α-synuclein is a key molecule for both dopaminergic neuron death and the formation of inclusion bodies, the mechanism of α-synuclein induction of Parkinson’s disease-related pathogenesis is not understood. In the present study, we found that the interaction between dopamine and α-synuclein requires the oxidation of dopamine. Furthermore, we examined the protective effect of chlorogenic acid, a major polyphenol contained in coffee, against α-syn and dopamine-related toxicity. Chlorogenic acid inhibits several DA/α-synuclein-related phenomenon, including the oxidation of dopamine, the interaction of oxidized dopamine with α-synuclein, and the oligomerization of α-synuclein under dopamine existing conditions in vitro. Finally, we showed that the cytoprotective effect against α-synuclein-related toxicity in PC12 cells that can be controlled by the Tet-Off system. Although the induction of α-synuclein in catecholaminergic PC12 cells causes a decrease in cell viability, chlorogenic acid rescued this cytotoxicity significantly in a dose dependent manner. These results suggest that the interaction of oxidized DA with α-synuclein may be a novel therapeutic target for Parkinson’s disease, and polyphenols, including chlorogenic acid, are candidates as protective and preventive agents for Parkinson’s disease onset. PMID:22962530

  10. A Simple HPLC-UV Method for the Determination of Glutathione in PC-12 Cells.

    PubMed

    Appala, Raju N; Chigurupati, Sridevi; Appala, Raju V V S S; Krishnan Selvarajan, Kesavanarayanan; Islam Mohammad, Jahidul

    2016-01-01

    A highly sensitive and simple HPLC-UV method was developed and validated for the assay of glutathione (GSH) in PC-12 cells. Glutathione is a major intracellular antioxidant having multiple biological effects, best known for its cytoprotective effects against cell damage from reactive oxygen species and toxic reactive metabolites and regulating the cellular redox homeostasis. Due to its own sulfhydryl (SH) group, GSH readily reacts with Ellman's reagent to form a stable dimer which allows for quantitative estimation of GSH in biological systems by UV detection. The separation was achieved using a C8 column with a mobile phase consisting of phosphate buffer adjusted to pH 2.5 (mobile phase A) and acetonitrile (mobile phase B), running in a segmented gradient manner at a flow rate of 0.8 mL/min, and UV detection was performed at 280 nm. The developed HPLC-UV method was validated with respect to precision, accuracy, robustness, and linearity within a range of 1-20 μg/mL. Limit of detection (LOD) and limit of quantification (LOQ) were 0.05 and 0.1 μg/mL, respectively. Furthermore, the method shows the applicability for monitoring the oxidative stress in PC-12 cells. PMID:27127683

  11. Serotonin induces the migration of PC12 cells via the serotonin receptor 6/cAMP/ERK pathway

    PubMed Central

    KOIZUMI, KEITA; NAKAJIMA, HIDEO

    2014-01-01

    Serotonin (5-HT) functions as a chemoattractant that modulates neural migration during prenatal and early postnatal development. However, its molecular mechanism remains to be elucidated. The effect of 5-HT on neural cell migration was examined using PC12 neuron-like cell line. Transwell migration assay was used to determine the effect of 5-HT on PC12 cell migration. The results demonstrated that 5-HT and nerve growth factor (NGF) induced PC12 cell migration in a dose-dependent manner. Additionally, 5-HT receptor antagonists suggest that 5-HT-induced migration was mediated by serotonin receptor 6 (5-HT6), a Gs-protein coupled receptor that elevates the intercellular cAMP level. By contrast, antagonists of serotonin receptor 3 (5-HT3) did not show any effects on PC12 cell migration. Clozapine, an inhibitor of cAMP accumulation mediated by 5-HT6, significantly reduced the effect of 5-HT on the PC12 cell migration. An inhibitor of extracellular signal-regulated kinase (ERK) also suppressed migration. These results suggest that 5-HT induces PC12 cell migration by activating cAMP/ERK signaling pathways, which is mediated by 5-HT6 receptor. PMID:24649064

  12. Ketamine Metabolites Enantioselectively Decrease Intracellular D-Serine Concentrations in PC-12 Cells

    PubMed Central

    Singh, Nagendra S.; Rutkowska, Ewelina; Plazinska, Anita; Khadeer, Mohammed; Moaddel, Ruin; Jozwiak, Krzysztof; Bernier, Michel; Wainer, Irving W.

    2016-01-01

    D-Serine is an endogenous NMDA receptor co-agonist that activates synaptic NMDA receptors modulating neuronal networks in the cerebral cortex and plays a key role in long-term potentiation of synaptic transmission. D-serine is associated with NMDA receptor neurotoxicity and neurodegeneration and elevated D-serine concentrations have been associated with Alzheimer’s and Parkinsons’ diseases and amyotrophic lateral sclerosis. Previous studies have demonstrated that the ketamine metabolites (rac)-dehydronorketamine and (2S,6S)-hydroxynorketamine decrease intracellular D-serine concentrations in a concentration dependent manner in PC-12 cells. In the current study, PC-12 cells were incubated with a series of ketamine metabolites and the IC50 values associated with attenuated intracellular D-serine concentrations were determined. The results demonstrate that structural and stereochemical features of the studied compounds contribute to the magnitude of the inhibitory effect with (2S,6S)-hydroxynorketamine and (2R,6R)-hydroxynorketamine displaying the most potent inhibition with IC50 values of 0.18 ± 0.04 nM and 0.68 ± 0.09 nM. The data was utilized to construct a preliminary 3D-QSAR/pharmacophore model for use in the design of new and more efficient modulators of D-serine. PMID:27096720

  13. Protective effect of Hibiscus sabdariffa against serum/glucose deprivation-induced PC12 cells injury

    PubMed Central

    Bakhtiari, Elham; Hosseini, Azar; Mousavi, Seyed Hadi

    2015-01-01

    Objectives: Findings natural products with antioxidant and antiapoptotic properties has been one of the interesting challenges in the search for the treatment of neurodegenerative diseases including ischemic stroke. Serum/glucose deprivation (SGD) has been used as a model for the understanding of the molecular mechanisms of neuronal damage during ischemia in vitro and for the expansion of neuroprotective drugs against ischemia-induced brain injury. Recent studies showed that Hibiscus sabdariffa exert pharmacological actions such as potent antioxidant. Therefore, in this study we investigated the protective effect of extract of H. sabdariffa against SGD-induced PC12 cells injury. Materials and Methods: Cells were pretreated with different concentrations of H. sabdariffa extract (HSE) for 2 hr, and then exposed to SGD condition for 6, 12 and 18 hr. Results: SGD caused a major reduction in cell viability after 6, 12, and 18 hr as compared with control cells (p< 0.001). Pretreatment with HSE (30-500 𝜇g/mL) significantly increased cell viability following SGD insult for 6, 12 and 18 hr. A significant increase in cell apoptosis was seen in cells under SGD condition after 12hr as compared with control cells (p< 0.001). Pretreatment with HSE significantly decreased cell apoptosis subsequent SGD conditionafter12hr at concentration of 60, 125 and 250. Conclusion: These data showed that HSE had a protective property under SGD condition in PC12 cells, suggesting that H. sabdariffa has the potential to be used as a new therapeutic approach for neurodegenerative disorders. PMID:26101756

  14. Astragaloside IV Attenuates Glutamate-Induced Neurotoxicity in PC12 Cells through Raf-MEK-ERK Pathway

    PubMed Central

    Chen, Bingyang; Zhao, Jing; He, Weiwei; Yuan, Hu; Yuan, Xing; Gao, Na; Wu, Guozhen; Jin, Huizi; Shan, Lei; Zhang, Weidong

    2015-01-01

    Astragaloside IV (AGS-IV) is a main active ingredient of Astragalus membranaceus Bunge, a medicinal herb prescribed as an immunostimulant, hepatoprotective, antiperspirant, a diuretic or a tonic as documented in Chinese Materia Medica. In the present study, we employed a high-throughput comparative proteomic approach based on 2D-nano-LC-MS/MS to investigate the possible mechanism of action involved in the neuroprotective effect of AGS-IV against glutamate-induced neurotoxicity in PC12 cells. Differential proteins were identified, among which 13 proteins survived the stringent filter criteria and were further included for functional discussion. Two proteins (vimentin and Gap43) were randomly selected, and their expression levels were further confirmed by western blots analysis. The results matched well with those of proteomics. Furthermore, network analysis of protein-protein interactions (PPI) and pathways enrichment with AGS-IV associated proteins were carried out to illustrate its underlying molecular mechanism. Proteins associated with signal transduction, immune system, signaling molecules and interaction, and energy metabolism play important roles in neuroprotective effect of AGS-IV and Raf-MEK-ERK pathway was involved in the neuroprotective effect of AGS-IV against glutamate-induced neurotoxicity in PC12 cells. This study demonstrates that comparative proteomics based on shotgun approach is a valuable tool for molecular mechanism studies, since it allows the simultaneously evaluate the global proteins alterations. PMID:25961569

  15. Oxygen sensing in neuroendocrine cells and other cell types: pheochromocytoma (PC12) cells as an experimental model.

    PubMed

    Spicer, Zachary; Millhorn, David E

    2003-01-01

    A steady supply of oxygen is an absolute requirement for mammalian cells to maintain normal cellular functions. To answer the challenge that oxygen deprivation represents, mammals have evolved specialized cell types that can sense changes in oxygen tension and alter gene expression to enhance oxygen delivery to hypoxic areas. These oxygensensing cells are rare and difficult to study in vivo. As a result, pheochromocytoma (PC12) cells have become a vital in vitro model system for deciphering the molecular events that confer the hypoxia-resistant and oxygen-sensing phenotypes. Research over the last few years has revealed that the hypoxia response in PC12 cells involves the interactions of several signal transduction pathways (Ca2+/calmodulin-dependent kinases, Akt, SAPKs, and MAPKs) and transcription factors (HIFs, CREB, and c-fos/junB). This review summarizes the current understanding of the role these signal transduction pathways and transcription factors play in determining the hypoxic response. PMID:14739486

  16. Opioids inhibit dopamine secretion from PC12 rat pheochromocytoma cells in a naloxone-reversible manner.

    PubMed

    Venihaki, M; Gravanis, A; Margioris, A N

    1996-01-01

    Opioids inhibit the release of catecholamines in the nervous system. Normal adrenal chromaffin cells produce delta opioids and they respond to them by suppressing the release of their catecholamines. Chromaffin cell tumors, the pheochromocytomas, produce mainly kappa opioids. The aim of this work was: (a) to test if pheochromocytomas retain the response of normal chromaffin cell catecholamines to delta opioids and to naloxone (a general opioid antagonist), and (b) to test if kappa opioids exert any specific effect on catecholamine release from these tumors. Since we have previously shown that, in common with human pheochromocytomas, the PC12 rat pheochromocytoma cells express the prodynorphin gene and secret its kappa opioid products, we used these cells to examine the effect of several opioid agonists and of naloxone on basal, nicotine-, and KCl-induced dopamine release. Dopamine is the main PC12 catecholamine. We have found that the specific kappa opioid agonist U-69593 inhibited the release of dopamine in a dose-dependent manner (IC50=0.5 x 10(-8)M). Under basal conditions the mean concentration of dopamine in the culture media was 11.25 +/- 0.57 ng/mg of total cellular protein (n=13). A 30 min exposure to U-69593 at 10(-6) M suppressed basal dopamine release to 58 +/- 2% (n=7) of controls. A 12 hr pre-incubation with U-69593 caused the same degree of suppression. The effect of the synthetic kappa opioid agonist dynorphin A was indistinguishable from that of U-69593. DADLE (a mu and delta synthetic opioid agonist) was significantly less effective in suppressing dopamine release (IC50=10(-7)M). The concentration of dopamine following exposure to 10-6 M of DADLE for 30 min was 74 +/- 5% of the controls (n=4). The mu opioid agonist DAGO was ineffective. The suppressive effect of all opioid agonists was blocked by naloxone suggesting that conventional opioid receptors were involved. PMID:8628113

  17. Calcium channel antagonist properties of the antineoplastic antiestrogen tamoxifen in the PC12 neurosecretory cell line

    SciTech Connect

    Greenberg, D.A.; Carpenter, C.L.; Messing, R.O.

    1987-01-01

    In view of existing evidence that Ca2+ may be important for tumor cell growth and metastasis, we investigated the effects of three antineoplastic drugs on K+-stimulated /sup 45/Ca2+ uptake through voltage-dependent Ca2+ channels of the PC12 neurosecretory cell line. The agents chosen for study (vinblastine, doxorubicin, and tamoxifen) were those previously shown to inhibit Ca2+/calmodulin- or Ca2+/phospholipid-activated protein kinases. Neither vinblastine nor doxorubicin altered /sup 45/Ca2+ uptake at concentrations that inhibit these Ca2+-dependent enzymes. However, tamoxifen reduced uptake (50% inhibitory dose, 8.6 +/- 0.9 (SE) microM) and competed for Ca2+ channel antagonist binding sites labeled by (/sup 3/H)-(+)PN200-110 (ki = 2.2 +/- 0.3 microM). Ca2+ channel antagonist properties may contribute to the effects of antineoplastic agents such as tamoxifen.

  18. Protective effects of apigenin against 1-methyl-4-phenylpyridinium ion‑induced neurotoxicity in PC12 cells.

    PubMed

    Liu, Weihai; Kong, Songzhi; Xie, Qingfeng; Su, Jiyan; Li, Wenjie; Guo, Huizhen; Li, Shanshan; Feng, Xuexuan; Su, Ziren; Xu, Yang; Lai, Xiaoping

    2015-03-01

    Parkinson's disease is recognized as the second most common neurodegenerative disorder after Alzheimer's disease, characterized by the loss of dopominergic neurons in the substantia nigra pars compacta and can be experimentally mimicked by the use of the neurotoxin, 1‑methyl‑4‑phenylpyridinium ion (MPP(+)), in in vitro models. In this study, we investigated the potential protective effects of apigenin (AP), galangin and genkwanin, naturally occurring plant flavonoids, on the MPP(+)‑induced cytotoxicity in cultured rat adrenal pheochromocytoma cells (PC12 cells). The PC12 cells were pre-treated with various concentrations of the test compounds for 4 h, followed by the challenge with 1,000 µM MPP(+) for 48 h. We found that only pre-treatment with AP (3, 6 and 12 µM) before injury significantly increased cell viability, decreased the release of lactate dehydrogenase, reduced the level of intracellular reactive oxygen species and elevated mitochondrial membrane potential in the MPP(+)‑treated PC12 cells. In addition, AP markedly suppressed the increased rate of apoptosis and the reduced Bcl‑2/Bax ratio induced by MPP(+) in the PC12 cells. Taken together, the findings of this study demonstrate that AP exerts neuroprotective effects against MPP(+)‑induced neurotoxicity in PC12 cells, at least in part, through the inhibition of oxidative damage and the suppression of apoptosis through the mitochondrial pathway. PMID:25573459

  19. Osthole attenuates doxorubicin-induced apoptosis in PC12 cells through inhibition of mitochondrial dysfunction and ROS production.

    PubMed

    Shokoohinia, Yalda; Hosseinzadeh, Leila; Moieni-Arya, Maryam; Mostafaie, Ali; Mohammadi-Motlagh, Hamid-Reza

    2014-01-01

    Doxorubicin (DOX) is a potent, broad-spectrum chemotherapeutic drug used for treatment of several types of cancers. Despite its effectiveness, it has a wide range of toxic side effects, many of which most likely result from its inherent prooxidant activity. It has been reported that DOX has toxic effects on normal tissues, including brain tissue. In the current study, we investigated the protective effect of osthole isolated from Prangos ferulacea (L.) Lindl. on oxidative stress and apoptosis induced by DOX in PC12 as a neuronal model cell line. PC12 cells were pretreated with osthole 2 h after treatment with different concentrations of DOX. 24 h later, the cell viability, mitochondrial membrane potential (MMP), the activity of caspase-3, the expression ratio of Bax/Bcl-2, and the generation of intracellular ROS were detected. We found that pretreatment with osthole on PC12 cells significantly reduced the loss of cell viability, the activity of caspase-3, the increase in Bax/Bcl-2 ratio, and the generation of intracellular ROS induced by DOX. Moreover, pretreatment with osthole led to an increase in MMP in PC12 cells. In conclusion, our results indicated that pretreatment with nontoxic concentrations of osthole protected PC12 cells from DOX-mediated apoptosis by inhibition of ROS production. PMID:25013759

  20. Secretory phospholipases A2 induce neurite outgrowth in PC12 cells.

    PubMed Central

    Nakashima, Satoru; Ikeno, Yutaka; Yokoyama, Tatsuya; Kuwana, Masakazu; Bolchi, Angelo; Ottonello, Simone; Kitamoto, Katsuhiko; Arioka, Manabu

    2003-01-01

    sPLA(2)s (secretory phospholipases A(2)) belong to a broad and structurally diverse family of enzymes that hydrolyse the sn -2 ester bond of glycerophospholipids. We previously showed that a secreted fungal 15 kDa protein, named p15, as well as its orthologue from Streptomyces coelicolor (named Scp15) induce neurite outgrowth in PC12 cells at nanomolar concentrations. We report here that both p15 and Scp15 are members of a newly identified group of fungal/bacterial sPLA(2)s. The phospholipid-hydrolysing activity of p15 is absolutely required for neurite outgrowth induction. Mutants with a reduced PLA(2) activity exhibited a comparable reduction in neurite-inducing activity, and the ability to induce neurites closely matched the capacity of various p15 forms to promote fatty acid release from live PC12 cells. A structurally divergent member of the sPLA(2) family, bee venom sPLA(2), also induced neurites in a phospholipase activity-dependent manner, and the same effect was elicited by mouse group V and X sPLA(2)s, but not by group IB and IIA sPLA(2)s. Lysophosphatidylcholine, but not other lysophospholipids, nor arachidonic acid, elicited neurite outgrowth in an L-type Ca(2+) channel activity-dependent manner. In addition, p15-induced neuritogenesis was unaffected by various inhibitors that block arachidonic acid conversion into bioactive eicosanoids. Altogether, these results delineate a novel, Ca(2+)- and lysophosphatidylcholine-dependent neurotrophin-like role of sPLA(2)s in the nervous system. PMID:12967323

  1. Dystrophin Dp71f associates with the beta1-integrin adhesion complex to modulate PC12 cell adhesion

    PubMed Central

    Cerna, Joel; Cerecedo, Doris; Ortega, Arturo; García-Sierra, Francisco; Centeno, Federico; Garrido, Efrain; Mornet, Dominique; Cisneros, Bulmaro

    2006-01-01

    Dystrophin Dp71 is the main product of the Duchenne muscular dystrophy gene in the brain; however, its function is unknown. To study the role of Dp71 in neuronal cells, we previously generated by antisense treatment PC12 neuronal cell clones with decreased Dp71 expression (antisense-Dp71 cells). PC12 cells express two different splicing isoforms of Dp71, a cytoplasmic variant called Dp71f and a nuclear isoform called Dp71d. We previously reported that antisense-Dp71 cells display deficient adhesion to substrate and reduced immunostaining of β1-integrin in the cell area contacting the substrate. In this study, we isolated additional antisenseDp71 clones to analyze in detail the potential involvement of Dp71f isoform with the β1-integrin adhesion system of PC12 cells. Immunofluorescence analyses as well as immunoprecipitation assays demonstrated that the PC12 cell β1-integrin adhesion complex is composed of β1-integrin, talin, paxillin, α-actinin, FAK and actin. In addition, our results showed that Dp71f associates with most of the β1-integrin complex components (β1-integrin, FAK, α-actinin, talin and actin). In the antisense-Dp71 cells, the deficiency of Dp71 provokes a significant reduction of the β1-integrin adhesion complex and, consequently, the deficient adhesion of these cells to laminin. In vitro binding experiments confirmed the interaction of Dp71f with FAK and β1-integrin. Our data indicate that Dp71f is a structural component of the β1-integrin adhesion complex of PC12 cells that modulates PC12 cell adhesion by conferring proper complex assembly and/or maintenance. PMID:16935300

  2. Sargaquinoic acid supports the survival of neuronal PC12D cells in a nerve growth factor-independent manner.

    PubMed

    Tsang, Chi Kwan; Kamei, Yuto

    2004-03-19

    Sargaquinoic acid (designated previously as MC14) was isolated from a marine brown alga Sargassum macrocarpum, and has been found to possess a novel nerve growth factor (NGF)-dependent neurite outgrowth promoting activity in PC12D cells. In this study, we explored the neuroprotective effects of MC14 in terms of its survival supporting, antioxidant and neurite-regenerating activities under NGF deficient or deprived conditions. Intriguingly, MC14 did not only promote the NGF-induced survival support on neuronal PC12D cells, but also significantly abated neuronal PC12D cell death even in the absence of NGF. The pharmacological inhibition of phosphatidylinositol-3 kinase (PI3K) by wortmannin significantly suppressed the survival supporting activity of MC14, whereas the NGF receptor (tyrosine kinase A or TrkA) inhibitor K252a showed no detectable effect on MC14 activity. These results demonstrate that MC14 supports survival of neuronal PC12D cells in an NGF-independent manner, and that PI3K may be required for the neuroprotective activity of MC14. In addition, we have shown that MC14 markedly enhanced neurite-regeneration and protected PC12D cells from hydrogen peroxide (H(2)O(2))-induced oxidative stress. These pharmacological features suggest that MC14 may be a potentially important neuroprotective agent. PMID:15044030

  3. Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25–35)

    PubMed Central

    Liang, Huimin; Zhang, Yaozhou; Shi, Xiaoyan; Wei, Tianxiang; Lou, Jiyu

    2014-01-01

    Recent studies have demonstrated that Notch-1 expression is increased in the hippocampus of Alzheimer's disease patients. We speculate that Notch-1 signaling may be involved in PC12 cell apoptosis induced by amyloid beta-peptide (25–35) (Aβ25–35). In the present study, PC12 cells were cultured with different doses (0, 0.1, 1.0, 10 and 100 nmol/L) of N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester, a Notch-1 signaling pathway inhibitor, for 30 minutes. Then cultured cells were induced with Aβ25–35 for 48 hours. Pretreatment of PC12 cells with high doses of N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (> 10 nmol/L) prolonged the survival of PC12 cells after Aβ25–35 induction, decreased the expression of apoptosis-related proteins caspase-3, -8, -9, increased the activity of oxidative stress-related superoxide dismutase and catalase, inhibited the production of active oxygen, and reduced nuclear factor kappa B expression. This study indicates that the Notch-1 signaling pathway plays a pivotal role in Aβ25–35-induced PC12 apoptosis. PMID:25221582

  4. Preparation, characterisation, and in vitro evaluation of electrically conducting poly(ɛ-caprolactone)-based nanocomposite scaffolds using PC12 cells.

    PubMed

    Gopinathan, Janarthanan; Quigley, Anita F; Bhattacharyya, Amitava; Padhye, Rajiv; Kapsa, Robert M I; Nayak, Rajkishore; Shanks, Robert A; Houshyar, Shadi

    2016-04-01

    In the current study, we describe the synthesis, material characteristics, and cytocompatibility of conducting poly (ɛ-caprolactone) (PCL)-based nano-composite films. Electrically conducting carbon nano-fillers (carbon nano-fiber (CNF), nano-graphite (NG), and liquid exfoliated graphite (G)) were used to prepare porous film type scaffolds using modified solvent casting methods. The electrical conductivity of the nano-composite films was increased when carbon nano-fillers were incorporated in the PCL matrix. CNF-based nano-composite films showed the highest increase in electrical conductivity. The presence of an ionic solution significantly improved the conductivity of some of the polymers, however at least 24 h was required to absorb the simulated ion solutions. CNF-based nano-composite films were found to have good thermo-mechanical properties compared to other conducting polymer films due to better dispersion and alignment in the critical direction. Increased nano-filler content increased the crystallisation temperature. Analysis of cell viability revealed no increase in cell death on any of the polymers compared to tissue culture plastic controls, or compared to PCL polymer without nano-composites. The scaffolds showed some variation when tested for PC12 cell attachment and proliferation, however all the polymers supported PC12 attachment and differentiation in the absence of cell adhesion molecules. In general, CNF-based nano-composite films with highest electrical conductivity and moderate roughness showed highest cell attachment and proliferation. These polymers are promising candidates for use in neural applications in the area of bionics and tissue engineering due to their unique properties. PMID:26646762

  5. Changes in Lipid Composition During Manganese-Induced Apoptosis in PC12 Cells.

    PubMed

    Corsetto, P A; Ferrara, G; Buratta, S; Urbanelli, L; Montorfano, G; Gambelunghe, A; Chiaradia, E; Magini, A; Roderi, P; Colombo, I; Rizzo, A M; Emiliani, C

    2016-02-01

    Lipid composition of membranes is fundamental to modulate signaling pathways relying on lipid metabolites and/or membrane proteins, thus resulting in the regulation of important cell processes such as apoptosis. In this case, membrane remodeling is an early event important for the activation of signaling leading to cell death and removal of apoptotic cells. In the present study, we analyzed phospholipid, cholesterol and fatty acid content during apoptosis induced by manganese in PC12 cells. Lipid analysis of whole cells and detergent-resistant membranes was carried out by HPLC/GC. Results showed that apoptosis is associated with changes in lipid composition detectable in whole cell extracts, namely cholesterol, phosphatidylserine and phosphatidylethanolamine decreases. Noteworthy, phosphatidylserine level reduction was detectable before to the detection of apoptosis, in correlation with our previous study carried out by radioactive labelling. By contrast, phosphatidylserine and phosphatidylethanolamine changes were not detected in detergent resistant membranes, which instead showed an altered composition in phosphatidylinositol, phosphatidylcholine and sphingomyelin in apoptotic cells. PMID:26671766

  6. Nerve growth factor regulates the expression and activity of p33cdk2 and p34cdc2 kinases in PC12 pheochromocytoma cells.

    PubMed Central

    Buchkovich, K J; Ziff, E B

    1994-01-01

    In the absence of serum, nerve growth factor (NGF) promotes the survival and differentiation of the PC12 pheochromocytoma cell line. In the presence of serum, NGF acts primarily as a differentiation factor and negative regulator of cell cycling. To investigate NGF control of cell cycling, we have analyzed the regulation of cyclin dependent kinases during PC12 cell differentiation. NGF treatment leads to a reduction in the steady-state protein levels of p33cdk2 and p34cdc2, two key regulators of cell cycle progression. The decrease in p33cdk2 and p34cdc2 coincides with a decrease in the enzymatic activity of cyclinA-p34cdc2, cyclinB-p34cdc2, cyclinE-p33cdk2, and cyclinA-p33cdk2 kinases. The decline in p33cdk2 and p34cdc2 kinase activity in response to NGF is accelerated in cells that over-express the p140trk NGF receptor, suggesting that the timing of the down- regulation is dependent on the level of p140trk and the strength of the NGF signal. The level of cyclin A, a regulatory subunit of p33cdk2 and p34cdc2, is relatively constant during PC12 differentiation. Nevertheless, the DNA binding activity of the cyclinA-associated transcription factor E2F/DP decreases. Thus, NGF down-regulates the activity of cyclin dependent kinases and cyclin-transcription factor complexes during PC12 differentiation. Images PMID:7865886

  7. p53 Mediates Colistin-Induced Autophagy and Apoptosis in PC-12 Cells.

    PubMed

    Zhang, Ling; Xie, Daoyuan; Chen, Xueping; Hughes, Maria L R; Jiang, Guozheng; Lu, Ziyin; Xia, Chunli; Li, Li; Wang, Jinli; Xu, Wei; Sun, Yuan; Li, Rui; Wang, Rui; Qian, Feng; Li, Jian; Li, Jichang

    2016-09-01

    The mechanism of colistin-induced neurotoxicity is still unknown. Our recent study (L. Zhang, Y. H. Zhao, W. J. Ding, G. Z. Jiang, Z. Y. Lu, L. Li, J. L. Wang, J. Li, and J. C. Li, Antimicrob Agents Chemother 59:2189-2197, 2015, http://dx.doi.org/10.1128/AAC.04092-14; H. Jiang, J. C. Li, T. Zhou, C. H. Wang, H. Zhang, and H. Wang, Int J Mol Med 33:1298-1304, 2014, http://dx.doi.org/10.3892/ijmm.2014.1684) indicates that colistin induces autophagy and apoptosis in rat adrenal medulla PC-12 cells, and there is interplay between both cellular events. As an important cellular stress sensor, phosphoprotein p53 can trigger cell cycle arrest and apoptosis and regulate autophagy. The aim of the present study was to investigate the involvement of the p53 pathway in colistin-induced neurotoxicity in PC-12 cells. Specifically, cells were treated with colistin (125 μg/ml) in the absence and presence of a p53 inhibitor, pifithrin-α (PFT-α; 20 nM), for 12 h and 24 h, and the typical hallmarks of autophagy and apoptosis were examined by fluorescence/immunofluorescence microscopy and electron microscopy, real-time PCR, and Western blotting. The results indicate that colistin had a stimulatory effect on the expression levels of the target genes and proteins involved in autophagy and apoptosis, including LC3-II/I, p53, DRAM (damage-regulated autophagy modulator), PUMA (p53 upregulated modulator of apoptosis), Bax, p-AMPK (activated form of AMP-activated protein kinase), and caspase-3. In contrast, colistin appeared to have an inhibitory effect on the expression of p-mTOR (activated form of mammalian target of rapamycin), which is another target protein in autophagy. Importantly, analysis of the levels of p53 in the cells treated with colistin revealed an increase in nuclear p53 at 12 h and cytoplasmic p53 at 24 h. Pretreatment of colistin-treated cells with PFT-α inhibited autophagy and promoted colistin-induced apoptosis. This is the first study to demonstrate that colistin

  8. Huperzine B, a novel acetylcholinesterase inhibitor, attenuates hydrogen peroxide induced injury in PC12 cells.

    PubMed

    Zhang, H Y; Tang, X C

    2000-09-29

    A number of studies indicate that free radicals are involved in the neurodegeneration in Alzheimer's disease (AD). The present study was mainly conducted to examine the effect of Huperzine B on H(2)O(2) induced toxicity in rat pheochromocytoma line PC12 by measuring cell lesion, level of lipid peroxidation and antioxidant enzyme activities. Following a 30 min exposure of the cells to H(2)O(2) (150 microM), a marked decrease in cell survival, activities of glutathione peroxidase and catalase as well as increased production of malondialdehyde (MDA) were found. Pretreatment of the cells with huperzine B (10-100 microM) prior to H(2)O(2) exposure significantly elevated the cell survival, antioxidant enzyme activities and decreased the level of MDA. The above-mentioned neuroprotective effects are also observed with tacrine (1 microM), donepezil (10 microM) and galanthamine (10 microM), suggesting that the neuroprotective effects of cholinesterase inhibitor might partly contribute to the clinical efficacy in AD treatment. PMID:10996445

  9. Arecoline Induces Neurotoxicity to PC12 Cells: Involvement in ER Stress and Disturbance of Endogenous H2S Generation.

    PubMed

    Jiang, Jia-Mei; Wang, Li; Gu, Hong-Feng; Wu, Keng; Xiao, Fan; Chen, Ying; Guo, Run-Min; Tang, Xiao-Qing

    2016-08-01

    Arecoline is a major alkaloid of areca nut and has been effect on central nervous system. Although arecoline-induced neurotoxicity has been reported, the possible underlying neurotoxic mechanisms have not yet been elucidated. Increasing evidences have shown that both excessive endoplasmic reticulum (ER) stress and disturbance of hydrogen sulfide (H2S) production are involved in the pathophysiology of numerous neurodegenerative diseases. Here, the purpose of present study was to verify whether ER stress and the disturbance of endogenous H2S generation are also involved in arecoline-caused neurotoxicity. We found that treatment of PC12 cells with arecoline induced the down-regulation of cells viability and up-regulation of apoptosis and the activity of caspase-3, indicating the neurotoxic role of arecoline to PC12 cells. In addition, arecoline also increased the expression of Bax (pro-apoptotic protein) and attenuated the expression of Bcl-2 (anti-apoptotic protein) in PC12 cells. Simultaneously, arecoline caused excessive ER stress in PC12 cells, as evidenced by the up-regulations of Glucose-regulated protein 78 (GRP78), CCAAT/enhancer binding protein homologous protein (CHOP), and Cleaved caspase-12 expressions. Notably, the level of H2S in the culture supernatant and the expressions of cystathionine β-synthase and 3-mercaptopyruvate sulfurtransferase (two major enzymes for endogenous H2S generation in PC12 cells) were also reduced by arecoline treatment. These results indicate that arecoline-caused neurotoxicity to PC12 cells is involved in ER stress and disturbance of endogenous H2S generation and suggest that the modulation of ER stress and endogenous H2S generation may be potential therapeutic approach in treatment of arecoline-caused neurotoxicity. PMID:27255601

  10. Cholesterol biosynthesis and the pro-apoptotic effects of the p75 nerve growth factor receptor in PC12 pheochromocytoma cells.

    PubMed

    Yan, Chaohua; Mirnics, Zeljka Korade; Portugal, Carmel F; Liang, Ye; Nylander, Karen D; Rudzinski, Marcelo; Zaccaro, Clara; Saragovi, H Uri; Schor, Nina Felice

    2005-10-01

    Neocarzinostatin (NCS), an enediyne antimitotic agent, induces cell death in both p75NTR neurotrophin receptor (NTR)-positive and p75NTR-negative PC12 cells in a concentration-dependent fashion. However, p75NTR-positive cells demonstrate a higher susceptibility to NCS-induced cell damage. Furthermore, treatment of p75NTR-positive cells with the p75NTR-specific ligand, MC192, resulted in apoptosis, while treatment of these cells with the TrkA-specific ligand, NGF-mAbNGF30, protected them from NCS-induced death, implying that both the naked and liganded p75NTR receptors have a pro-apoptotic effect on PC12 cells. Microarray studies aimed at examining differential gene expression between p75NTR-positive and p75NTR-negative cells suggested that enzymes of the cholesterol biosynthetic pathway are differentially expressed. We therefore tested the hypothesis that altered cholesterol biosynthesis contributes directly to the pro-apoptotic effects of p75NTR in this PC12 cell-NCS model. Subsequent Northern blotting studies confirmed that the expression of p75NTR is associated with the upregulation of cholesterol biosynthetic enzymes including 3-hydroxy-3-methylglutaryl CoA reductase (HMG CoA reductase), farnesyl-diphosphate synthase, and 7-dehydro-cholesterol reductase. Mevastatin, an HMG CoA reductase inhibitor, converts the apoptosis susceptibility of p75NTR-positive cells to that of p75NTR-negative cells. It does so at concentrations that do not themselves alter cell survival. These studies provide evidence that the pro-apoptotic effects of p75NTR in PC12 cells are related to the upregulation of cholesterol biosynthetic enzymes and consequent increased cholesterol biosynthesis. PMID:15967538

  11. NAMPT protects against 6-hydroxydopamine-induced neurotoxicity in PC12 cells through modulating SIRT1 activity.

    PubMed

    Zou, Xiao-Dong; Guo, Shao-Qing; Hu, Zhi-Wei; Li, Wei-Lang

    2016-05-01

    Parkinson's disease (PD) is the second most common progressive neurodegenerative movement disorder. Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the first rate‑limiting step in the nicotinamide adenine dinucleotide (NAD+) biosynthetic pathway in mammals, is a substrate for NAD+‑dependent enzymes, such as sirtuin 1 (SIRT1), and contributes to cell fate decisions. However, the role of NAMPT in PD has remained to be fully elucidated. In the present study, PC12 cells were treated with the neurotoxin 6-hydroxydopamine (6‑OHDA) to establish an in vitro model of PD, following which an obvious inhibitory effect on the levels of NAMPT and NAD+ as well as the NAD+/NADH ratio was detected. In addition, pre‑incubation with FK866, a highly specific NAMPT inhibitor, enhanced the inhibitory effects of 6‑OHDA on the viability of PC12, while pre‑incubation with nicotinamide mononucleotide (NMN), am enzymatic product of NAMPT, had the opposite effect. Furthermore, it was revealed that NMN markedly attenuated 6‑OHDA‑induced decreases in superoxide dismutase activity and glutathione levels, as well as 6‑OHDA‑induced increases in malondialdehyde and lactate dehydrogenase in PC12 cells. Furthermore, 6‑OHDA significantly reduced SIRT1 activity in PC12 cells, which was inhibited by NMN. The pharmacological activator resveratrol also significantly inhibited 6‑OHDA‑mediated decreases in PC12 cell viability while reversing 6‑OHDA‑induced decreases in SIRT1 levels. The results of the present study suggested that NMT protected against 6‑OHDA‑induced decreases in PC12 cell viability, and that SIRT1 activation had a role in this process. Treatment with NMN to activate SIRT1 may represent a novel therapeutic strategy for treating PD. PMID:27035562

  12. Effects of Sodium Fluoride on Lipid Peroxidation and PARP, XBP-1 Expression in PC12 Cell.

    PubMed

    Ke, Lulu; Zheng, Xiangren; Sun, Yan; Ouyang, Wei; Zhang, Zigui

    2016-09-01

    This study aims to clarify the molecular mechanism of fluorine exposure that leads to nerve injury. PC12 cells were treated with fluorine at different concentrations (0.5, 1.0, 1.5, and 2.0 mM). Cytoactivity was detected at different time points (2, 4, 6, 8, 12, 24, and 48 h). After 2 h, DCF was used to detect and mark the level of reactive oxygen species (ROS) within cells. After 24 h, cellular metamorphosis was observed using an inverted microscope. After 2 h, Hoechst-33342 was used to detect apoptosis. After 24 h, Western blot analysis was performed to detect apoptosis-related poly (ADP-ribose) polymerase (PARP) protein, p-elF, and expression of the endoplasmic reticulum stress-related X-box binding protein 1 (XBP-1). The results showed that Fluorine exposure resulted in a reduction of cell viability, which was negatively correlated with fluorine dose. Within certain fluorine exposure duration, the ROS level within the cell and the apoptotic level are linearly related to fluorine exposure level. XBP-1 and PARP protein are sensitive to variations in fluorine concentration, which indicates that oxidative stress from fluorine exposure can lead to apoptosis. XBP-1 and PARP may be the key proteins during the entire process. These results provide a valid basis for fluorine-induced free radical injury theory. PMID:26883836

  13. Cordycepin protects PC12 cells against 6-hydroxydopamine induced neurotoxicity via its antioxidant properties.

    PubMed

    Olatunji, Opeyemi J; Feng, Yan; Olatunji, Oyenike O; Tang, Jian; Ouyang, Zhen; Su, Zhaoliang

    2016-07-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by degeneration and loss of dopaminergic neurons of the substantia nigra. Increasing evidence has indicated that oxidative stress plays a pivotal role in the pathogenesis of Parkinson's disease (PD). Therapeutic options that target the antioxidant machinery may have potential in the treatment of PD. Cordycepin, a nucleoside isolated from Cordyceps species displayed potent antioxidant, anti-inflammatory and anticancer properties. However, its neuroprotective effect against 6-OHDA neurotoxicity as well as underlying mechanisms is still unclear. In this present study, we investigated the protective effect of cordycepin against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity and its underlying mechanism. We observed that cordycepin effectively inhibited 6-OHDA-induced cell death, apoptosis and mitochondrial dysfunction. Cordycepin also inhibited cell apoptosis induced by 6-OHDA as observed in the reduction of cytochrome c release from the mitochondrial as well as the inhibition of caspase-3. In addition cordycepin markedly reduced cellular malondialdehyde (MDA) content and intracellular reactive oxygen species (ROS) level. Cordycepin also significantly increased the antioxidant enzymes; superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in 6-OHDA-treated cells. The results obtained unambiguously demonstrated that cordycepin protects PC12 cells against 6-OHDA-induced neurotoxicity through its potent antioxidant activity. PMID:27261571

  14. Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function.

    PubMed

    Ostrovidov, Serge; Ahadian, Samad; Ramon-Azcon, Javier; Hosseini, Vahid; Fujie, Toshinori; Parthiban, S Prakash; Shiku, Hitoshi; Matsue, Tomokazu; Kaji, Hirokazu; Ramalingam, Murugan; Bae, Hojae; Khademhosseini, Ali

    2014-11-13

    Engineered muscle tissues demonstrate properties far from native muscle tissue. Therefore, fabrication of muscle tissues with enhanced functionalities is required to enable their use in various applications. To improve the formation of mature muscle tissues with higher functionalities, we co-cultured C2C12 myoblasts and PC12 neural cells. While alignment of the myoblasts was obtained by culturing the cells in micropatterned methacrylated gelatin (GelMA) hydrogels, we studied the effects of the neural cells (PC12) on the formation and maturation of muscle tissues. Myoblasts cultured in the presence of neural cells showed improved differentiation, with enhanced myotube formation. Myotube alignment, length and coverage area were increased. In addition, the mRNA expression of muscle differentiation markers (Myf-5, myogenin, Mefc2, MLP), muscle maturation markers (MHC-IId/x, MHC-IIa, MHC-IIb, MHC-pn, α-actinin, sarcomeric actinin) and the neuromuscular markers (AChE, AChR-ε) were also upregulated. All these observations were amplified after further muscle tissue maturation under electrical stimulation. Our data suggest a synergistic effect on the C2C12 differentiation induced by PC12 cells, which could be useful for creating improved muscle tissue. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25393357

  15. Effects of ethanol on neurotransmitter release and intracellular free calcium in PC12 cells

    SciTech Connect

    Rabe, C.S.; Weight, F.F.

    1988-02-01

    The effect of ethanol on muscarine-stimulated release of l-(/sup 3/H)norepinephrine ((/sup 3/H)NE) was studied using the rat pheochromocytoma cell line, PC12. At concentrations of 25 mM and above, ethanol produced a dose-dependent inhibition of muscarine-stimulated release of (/sup 3/H)NE. The inhibition of muscarine-stimulated transmitter release occurred in the absence of any detectable effect of ethanol on (/sup 3/H)NE uptake or on muscarinic binding to the cells. However, ethanol produced an inhibition of muscarine-stimulated elevation of intracellular free Ca++ which corresponded with the inhibition of transmitter release. At concentrations greater than 100 mM, ethanol produced an increase in the basal release of (/sup 3/H)NE. Intracellular free Ca++ also was increased by ethanol concentrations greater than 100 mM. The elevation of basal transmitter release and intracellular free Ca++ by concentrations of ethanol greater than 100 mM occurred independently of the inhibition by ethanol of muscarine-stimulated elevation of intracellular free Ca++ and transmitter secretion. These results suggest that the effects of ethanol on neurotransmitter release are associated with the effects of ethanol on intracellular free Ca++.

  16. Ethanol's effects on neurotransmitter release and intracellular free calcium in PC12 cells

    SciTech Connect

    Rabe, C.S.; Weight, F.F.

    1988-01-01

    The effect of ethanol on muscarine-stimulated release of (/sup 3/H)NE was studied using the rat pheochromocytoma cell line, PC12. At concentrations of 25 mM and above, ethanol produced a dose dependent inhibition of muscarine-stimulated release of (/sup 3/H)NE. The inhibition of muscarine-stimulated transmitter release occurred in the absence of any effect of ethanol on (/sup 3/H)NE uptake, metabolism or on muscarinic binding to the cells. However, ethanol produced an inhibition of muscarine-stimulated elevation of intracellular free Ca2+ which corresponded with the inhibition of transmitter release. At concentrations greater than 100 mM, ethanol produced both a stimulation of the release of (/sup 3/H)NE as well as an increase in intracellular free Ca2+. The increase in basal transmitter release and intracellular free Ca2+ occurred independent of the inhibition by ethanol of muscarine-stimulated elevation of intracellular free Ca2+ or transmitter section. These results demonstrate the relationship of the effects of ethanol on cellular free Ca2+ and neurotransmitter release.

  17. Manipulating location, polarity, and outgrowth length of neuron-like pheochromocytoma (PC-12) cells on patterned organic electrode arrays.

    PubMed

    Hsiao, Yu-Sheng; Lin, Chung-Chih; Hsieh, Hsin-Jui; Tsai, Shih-Min; Kuo, Chiung-Wen; Chu, Chih-Wei; Chen, Peilin

    2011-11-01

    In this manuscript, we describe a biocompatible organic electrode system, comprising poly(3,4-ethylenedioxythiophene) (PEDOT) microelectrode arrays on indium tin oxide (ITO) glass, that can be used to regulate the neuron type, location, polarity, and outgrown length of neuron-like cells (PC-12). We fabricated a PEDOT microelectrode array with four different sizes (flat; 20, 50, and 100 μm) through electrochemical polymerization. Extracellular matrix proteins absorbed well on these organic electrodes; cells absorbed selectively on the organic electrodes when we used polyethylene oxide/polypropylene oxide/polyethylene oxide triblock copolymers (PEO/PPO/PEO, Pluronic™ F108) as the anti-adhesive coating. In this system, the neurite polarities and neuron types could be manipulated by varying the width of the PEDOT microelectrode arrays. On the unpatterned PEDOT electrode, PC-12 cells were randomly polarized, with approximately 80% having multi-polar cell types. In contrast, when we cultured PC-12 cells on the 20 μm wide PEDOT line array, the neurites aligned along the direction of the organic electrodes, with the percentage of uni- and bipolar PC-12 cells increasing to greater than 90%. The outgrowth of neurites on the microelectrodes was promoted by ~60% with an applied electrical stimulation. Therefore, these electroactive PEDOT microelectrode arrays have potential for use in tissue engineering related to the development and regeneration of mammalian nervous systems. PMID:21922117

  18. Antioxidant Potential of Fagonia arabica against the Chemical Ischemia-Induced in PC12 Cells.

    PubMed

    Satpute, Ravindra; Bhattacharya, Rahul; S Kashyap, Rajpal; J Purohit, Hemant; Y Deopujari, Jayant; M Taori, Girdhar; F Daginawala, Hatim

    2012-01-01

    The imbalance between pro-oxidants and anti-oxidants leads to generation of oxygen/nitrogen free radicals which are implicated in several neurodegenerative diseases. Fagonia arabica is an ethno-pharmacologically important Ayurvedic herb known to have many medicinal properties like anti-inflammatory, analgesic and antipyretic effects. However, its antioxidant potential has not been investigated so far. The present study was designed to investigate the antioxidant potential of F. arabica and its neuroprotective effect on chemical ischemia induced in PC12 cells. Chemical ischemia was induced through exposing the cells to uncoupler of oxidative phosphorylation sodium azide (5.0 mM) and competitive inhibitor of glycolysis 2-deoxy-glucose (2.0 mM) for 2 h followed by 24 h reperfusion with normal culture medium. Total polyphenolic content (TPC) and antioxidant potential of the herb was measured using DPPH and ABTS•+ scavenging and ferric ion reducing antioxidant potential (FRAP) assays; its effect on neuroprotection and energy metabolism was also studied. The ischemic injury was characterized by impaired energy status as indicated by decreased ATP levels in the cells, accompanied by increased lactic acid content. Both the changes favourably responded to F. arabica and offered considerable neuroprotection from ischemia and helped to maintain the cellular viability and mitochondrial integrity of the cells. F. arabica showed considerable amount of TPC and antioxidant activity. This study reveals the antioxidant potential of F. arabica and its protective efficacy against ischemia/reperfusion mediated cell death. F. arabica thus can be considered for further studies for the development of the prophylactic or therapeutic agent for the treatment of ischemic stroke. PMID:24250453

  19. Antioxidant Potential of Fagonia arabica against the Chemical Ischemia-Induced in PC12 Cells

    PubMed Central

    Satpute, Ravindra; Bhattacharya, Rahul; S Kashyap, Rajpal; J Purohit, Hemant; Y Deopujari, Jayant; M Taori, Girdhar; F. Daginawala, Hatim

    2012-01-01

    The imbalance between pro-oxidants and anti-oxidants leads to generation of oxygen/nitrogen free radicals which are implicated in several neurodegenerative diseases. Fagonia arabica is an ethno-pharmacologically important Ayurvedic herb known to have many medicinal properties like anti-inflammatory, analgesic and antipyretic effects. However, its antioxidant potential has not been investigated so far. The present study was designed to investigate the antioxidant potential of F. arabica and its neuroprotective effect on chemical ischemia induced in PC12 cells. Chemical ischemia was induced through exposing the cells to uncoupler of oxidative phosphorylation sodium azide (5.0 mM) and competitive inhibitor of glycolysis 2-deoxy-glucose (2.0 mM) for 2 h followed by 24 h reperfusion with normal culture medium. Total polyphenolic content (TPC) and antioxidant potential of the herb was measured using DPPH and ABTS•+ scavenging and ferric ion reducing antioxidant potential (FRAP) assays; its effect on neuroprotection and energy metabolism was also studied. The ischemic injury was characterized by impaired energy status as indicated by decreased ATP levels in the cells, accompanied by increased lactic acid content. Both the changes favourably responded to F. arabica and offered considerable neuroprotection from ischemia and helped to maintain the cellular viability and mitochondrial integrity of the cells. F. arabica showed considerable amount of TPC and antioxidant activity. This study reveals the antioxidant potential of F. arabica and its protective efficacy against ischemia/reperfusion mediated cell death. F. arabica thus can be considered for further studies for the development of the prophylactic or therapeutic agent for the treatment of ischemic stroke. PMID:24250453

  20. MAGNETIC FIELD INFLUENCE ON NGF-STIMULATED NEURITE OUTGROWTH IN PC-12 CELLS: EFFECT OF PAINT FUMES

    EPA Science Inventory

    MAGNETIC FIELD INFLUENCE ON NGF-STIMULATED NEURITE OUTGROWTH IN PC-12 CELLS: EFFECT OF PAINT FUMES. C. F. Blackman1, D. E. House2*, S. G. Benane3*, A. Ubeda4, M.A. TrilIo4. 1 National Health and Environmental Effects Research Laboratory, EPA,
    Research Triangle Park, North Caro...

  1. Protective effects of veskamide, enferamide, becatamide, and oretamide on H2O2-induced apoptosis of PC-12 cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Veskamide, enferamide, becatamide, and oretamide are phenolic amides whose analogues are found in plants. In this study, the four amides were prepared by chemical synthesis and their protective effects on H(2)O(2)-induced apoptosis in PC-12 cells were investigated. The syntheses were relatively si...

  2. Chronic hypoxia enhances adenosine release in rat PC12 cells by altering adenosine metabolism and membrane transport.

    PubMed

    Kobayashi, S; Zimmermann, H; Millhorn, D E

    2000-02-01

    Acute exposure to hypoxia causes a release of adenosine (ADO) that is inversely related to the O2 levels in oxygen-sensitive pheochromocytoma (PC12) cells. In the current study, chronic exposure (48 h) of PC12 cells to moderate hypoxia (5% O2) significantly enhanced the release of ADO during severe, acute hypoxia (1% O2). Investigation into the intra- and extracellular mechanisms underpinning the secretion of ADO in PC12 cells chronically exposed to hypoxia revealed changes in gene expression and activities of several key enzymes associated with ADO production and metabolism, as well as the down-regulation of a nucleoside transporter. Decreases in the enzymatic activities of ADO kinase and ADO deaminase accompanied by an increase in those of cytoplasmic and ecto-5'-nucleotidases bring about an increased capacity to produce intra- and extracellular ADO. This increased potential to generate ADO and decreased capacity to metabolize ADO indicate that PC12 cells shift toward an ADO producer phenotype during hypoxia. The reduced function of the rat equilibrative nucleoside transporter rENT1 also plays a role in controlling extracellular ADO levels. The hypoxia-induced alterations in the ADO metabolic enzymes and the rENT1 transporter seem to increase the extracellular concentration of ADO. The biological significance of this regulation is unclear but is likely to be associated with modulating cellular activity during hypoxia. PMID:10646513

  3. MELATONIN-INDUCED SUPPRESSION OF PC12 CELL GROWTH IS MEDIATED BY ITS GI COUPLED TRANSMEMBRANE RECEPTORS. (R826248)

    EPA Science Inventory

    The effects of pertussis toxin, an uncoupler of Gi protein from adenylate cyclase, and luzindole, a competitive inhibitor of melatonin receptor binding, were examined for their ability to inhibit melatonin-induced suppression of PC12 cell growth. Both agents inhibited the mela...

  4. Development of a mechanistically-based genetically engineered PC12 cell system to detect p53-mediated cytotoxicity.

    PubMed

    van Vliet, Erwin; Eskes, Chantra; Stingele, Silvia; Gartlon, Joanne; Price, Anna; Farina, Massimo; Ponti, Jessica; Hartung, Thomas; Sabbioni, Enrico; Coecke, Sandra

    2007-06-01

    The human wild type p53 gene, key for apoptosis, was introduced into the pheochromocytoma (PC12) cell line, to create a mechanistically-based in vitro test model for the detection of p53-mediated toxicity. Expression of the wt p53 gene was regulated by a system, which allowed or blocked expression p53 by absence or presence of tetracycline in the culture media. Western blot analyses confirmed an inducible and tetracycline-dependent expression of the wt p53 protein. Functionality of the p53 protein was verified by camptothecin treatment, known to induce p53-dependent apoptosis. Results showed that p53-expressing cells were significantly more sensitive to camptothecin induced cytotoxicity compared to non-expressing cells, and presented a significantly higher incidence of apoptosis. A screening study on 31 metal compounds, showed that the classified human carcinogens (NaAsO2, CdSO4 .8H2O, Na2CrO4 .4H2O, MnCl2, (NH4)2PtCl6) significantly increased cytotoxicity in p53-expressing cells compared to non-expressing cells, suggesting that their cytotoxicity was p53-mediated. Finally, acute and subchronic treatment with methyl mercury showed no significant differences in cytotoxicity and the percentage of apoptosis or necrosis between p53-expressing and non-expressing differentiated cells, suggesting that methyl mercury cytotoxicity was p53-independent. PMID:17258428

  5. Sargaquinoic acid promotes neurite outgrowth via protein kinase A and MAP kinases-mediated signaling pathways in PC12D cells.

    PubMed

    Kamei, Yuto; Tsang, Chi Kwan

    2003-08-01

    We previously isolated a nerve growth factor (NGF)-dependent neurite outgrowth promoting substance MC14 (sargaquinoic acid) from a marine brown alga, Sargassum macrocarpum. In the present study, the NGF-potentiating activity of MC14 to neural differentiation of PC12D cells was investigated in detail. The treatment of cells with 3 microg/ml MC14 in the presence of 1.25-100 ng/ml NGF markedly enhanced the proportion of neurite-bearing cells compared with the NGF-only controls. In addition, MC14 significantly elevated the NGF-induced specific acetylcholinesterase (AchE) activity in PC12D cells, suggesting that MC14 could morphologically and biochemically promote the differentiation of PC12D cells. The mechanism of action of MC14 was further investigated by pharmacological inhibition of several intracellular signaling molecules. Results indicated that the neurite outgrowth promoting activity of MC14 was almost completely blocked by 10 microM PD98059, suggesting that a TrkA-dependent MAP kinases-mediated signaling pathway may play a crucial role in modulating the effect of MC14. Besides, the MC14-enhanced neurite outgrowth was substantially suppressed by the pretreatment with 10 ng/ml protein kinase A (PKA) inhibitor, demonstrating that the adenylate cyclase-PKA signaling cascade was also involved in the action of MC14. In contrast, a PKC inhibitor chelerythrine chloride did not inhibit the neurite outgrowth promoting activity of MC14. Altogether, these results demonstrate that MC14 enhances the neurite outgrowth by cooperating at least two separated signaling pathways, a TrkA-MAP kinases pathway and an adenylate cyclase-PKA pathway, in PC12D cells. PMID:12850058

  6. Photosensitizer-induced fluorescence of the rat adrenal gland and rat pheochromocytoma cells (PC 12) by meso-tetra(hydroxyphenyl)chlorin (mTHPC)

    NASA Astrophysics Data System (ADS)

    Colombo-Benkmann, Mario; Muhm, Markus; Gahlen, Johannes; Heym, Christine; Senninger, Norbert

    1997-12-01

    Rat adrenal glands exhibit an intense mTHPC-induced fluorescence. The objective of our study was the identification of adrenal cells exhibiting mTHPC-induced fluorescence under normal conditions and under stimulation of adrenal proliferation by reserpine. Furthermore mTHPC-uptake of rat pheochromocytoma (PC 12) cells was investigated. Four male Wistar rats received 0.5 mg mTHPC/kg iv 48 hours before perfusion. Furthermore four rats received reserpine (2 mg/kg im od), bromo-deoxy-uridine (BrdU; 50 mg/kg ip od) each for one week and mTHPC (0.5 mg/kg) 48 hours before perfusion. BrdU was detected immunohistochemically. PC 12-cells were incubated with 0.5 mg mTHPC/l culture medium for 24 or 48 hours. Cells and tissues were examined by fluorescence microscopy. The adrenal cortex exhibited an intense mTHPC-induced fluorescence. The adrenal medulla fluoresced faintly. Reserpine increased fluorescence of intramedullary cells, not coinciding with adrenal proliferation. Cortical fluorescence remained unchanged. PC 12-cells lying singly or in small groups and differentiating cells showed a more intense mTHPC- induced fluorescence than confluent cells. Differences of cortical and medullary uptake of mTHPC are independent of proliferation and may be explained by lipophilia of mTHPC, since adrenocytes have an uptake mechanism for cholesterol. The difference of mTHPC-uptake between PC 12-cells and chromaffin cells implicate the possibility of photodynamic applications for medullary neoplasia.

  7. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos

    SciTech Connect

    Lee, Jeong Eun; Park, Jae Hyeon; Shin, In Chul; Koh, Hyun Chul

    2012-09-01

    Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity as well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease. -- Highlights: ► Chlorpyrifos induces apoptosis. ► Chlorpyrifos inhibits mitochondrial complex I activity. ► ROS is involved in chlorpyrifos-induced apoptosis. ► Chlorpyrifos affects cellular antioxidant systems. ► Chlorpyrifos-induced apoptosis mediates activation of MAPK.

  8. Modification of annexin II expression in PC12 cell lines does not affect Ca(2+)-dependent exocytosis.

    PubMed Central

    Graham, M E; Gerke, V; Burgoyne, R D

    1997-01-01

    The Ca2+/phospholipid/cytoskeletal-binding protein annexin II has been proposed to play an important role in Ca(2+)-dependent exocytosis; however, the evidence for this role is inconclusive. More direct evidence obtained by manipulating annexin II levels in cells is still required. We have attempted to do this by generating stably transfected PC12 cell lines expressing proteins which elevate or lower functional annexin II levels and using these cell lines to investigate Ca(2+)-dependent exocytosis. Three cell lines were generated: one expressing an annexin II mutant which aggregates annexin II in at least a proportion of the cells, thereby removing functional protein from the cell; a mixed clonal cell line constitutively overexpressing human annexin II; and a clonal cell line capable of over-expressing annexin II in the presence of sodium butyrate. After digitonin permeabilization, Ca(2+)-dependent dopamine release from these cell lines was compared with that from control nontransfected cells, and, in addition, release was compared in induced to uninduced cells. There were no significant differences in Ca(2+)-dependent exocytosis between any of the transfected cell lines before or after induction and the control cells. In addition, nontransfected PC12 cells treated with nerve growth factor, which elevates annexin II levels severalfold, failed to increase Ca(2+)-dependent exocytosis after digitonin permeabilization, compared with control cells. We conclude that annexin II is not an important regulator of Ca(2+)-dependent exocytosis in PC12 cells. Images PMID:9188096

  9. Low dose hydroxylated PCB induces c-Jun expression in PC12 cells.

    PubMed

    Shimokawa, Noriaki; Miyazaki, Wataru; Iwasaki, Toshiharu; Koibuchi, Noriyuki

    2006-03-01

    Polychlorinated biphenyls (PCBs) are known as environmental pollutants that may cause adverse health problems. Recently, accumulating evidence shows that PCBs express neurotoxicity through alteration of gene expression and signal transduction. On the other hand, c-Jun, a component of AP-1, is likely to coordinate transcription programs in response to various extracellular signals. However, little is known about the effects of PCBs on c-Jun expression. Here we investigated the expression of c-Jun in response to PCB. PC12 cells were incubated with hydroxylated PCB (4(OH)-2',3,3',4',5'-penta chlorobiphenyl, OH-PCB) at a final concentration from 10(-8) to 10(-5)M. The level of c-Jun expression was increased by OH-PCB at relatively low-dose; concentration of OH-PCB at 10(-8)M and 10(-7)M produced a 2.4- and 3.5-fold increase of c-Jun expression in respectively, compared with the values without OH-PCB treatment. Thyroid hormone (T3) did not induce such c-Jun expression, indicating that the effect of OH-PCB is not mediated through thyroid hormone signaling pathway. OH-PCB also enhanced phosphorylation of c-Jun NH2-terminal kinases. To determine whether the activation of Ca2+ channel is involved in the OH-PCB-induced c-Jun expression, we examined it using a L-type voltage-gated Ca2+ channel blocker nimodipine. Nimodipine partially inhibited OH-PCB-induced c-Jun expression by 50%. Moreover, Na+ channel antagonist tetrodotoxin inhibited OH-PCB-induced c-Jun expression completely. Taken together, our results indicate that exposure to OH-PCB induces c-Jun expression, and the response may be triggered by depolarization of a plasma membrane via Na+ influx, followed by Ca2+ influx partially through voltage-gated Ca2+ channels. PMID:16300829

  10. Neurotransmitter release from bradykinin-stimulated PC12 cells. Stimulation of cytosolic calcium and neurotransmitter release.

    PubMed Central

    Appell, K C; Barefoot, D S

    1989-01-01

    The effect of bradykinin on intracellular free Ca2+ and neurotransmitter secretion was investigated in the rat pheochromocytoma cell line PC12. Bradykinin was shown to induce a rapid, but transient, increase in intracellular free Ca2+ which could be separated into an intracellular Ca2+ release component and an extracellular Ca2+ influx component. The bradykinin-induced stimulation of intracellular free Ca2+ displayed a similar time course, concentration dependencies and extracellular Ca2+ dependence as that found for neurotransmitter release, indicating an association between intracellular free Ca2+ levels and neurotransmitter secretion. The selective BK1-receptor antagonist des-Arg9,[Leu8]BK (where BK is bradykinin) did not significantly affect the stimulation of intracellular free Ca2+ or neurotransmitter release. In contrast, these effects of bradykinin were effectively blocked by the selective BK2-receptor antagonist [Thi5,8,D-Phe7]BK, and mimicked by the BK2 partial agonist [D-Phe7]BK in a concentration-dependent manner. The stimulation of intracellular free Ca2+ and neurotransmitter release induced by bradykinin was shown not to involve voltage-sensitive Ca2+ channels, since calcium antagonists had no effect on either response at concentrations which effectively inhibit depolarization-induced responses. These results indicate that bradykinin, acting through the interaction with the BK2 receptor, stimulates an increase in intracellular free Ca2+ leading to neurotransmitter secretion. Furthermore, bradykinin-induced responses involve the release of intracellular Ca2+ and the influx of extracellular Ca2+ that is not associated with the activation of voltage-sensitive Ca2+ channels. PMID:2574973

  11. White tea (Camellia sinensis Kuntze) exerts neuroprotection against hydrogen peroxide-induced toxicity in PC12 cells.

    PubMed

    López, Víctor; Calvo, Maria Isabel

    2011-03-01

    Tea is a popular beverage whose consumption is associated with prevention of certain disorders. The objective of the study was to investigate the potential neuroprotective effect of white tea extract (WTE) on hydrogen peroxide induced toxicity in PC12 cells. Cells were treated with various doses of WTE (10-250 μg/ml) before exposition to 250 μM hydrogen peroxide and cell survival was determined through the MTT and LDH assays. Oxidative stress was quantified in the cells after treatments as intracellular reactive oxygen species (ROS) production and the antioxidant activity of the extract was assessed in a cell free system in terms of free radical scavenging capacity. Results showed that WTE has a significant protective effect in the PC12 cell line against hydrogen peroxide as cell survival was significantly superior in WTE-treated cells compared to hydrogen peroxide-treated cells. A reduction on intracellular oxidative stress as well as radical scavenging properties were produced by WTE. Results suggest that WTE protects PC12 cells against H(2)O(2)-induced toxicity, and that an antioxidant mechanism through ROS scavenging may be in part responsible for cells neuroprotection. PMID:21271291

  12. Chemically Bonding of Amantadine with Gardenamide A Enhances the Neuroprotective Effects against Corticosterone-Induced Insults in PC12 Cells

    PubMed Central

    Zhao, Jiaqiang; Peng, Lizhi; Zheng, Wenhua; Wang, Rikang; Zhang, Lei; Yang, Jian; Chen, Heru

    2015-01-01

    Two amantadine (ATD)-gardenamide A (GA) ligands have been designed and synthesized. The bonding of ATD with GA through a methylene carbonyl brigde (L1) enhances the neuroprotective effect against corticosterone (CORT)-induced impairments in PC12 cells; while the bonding through a succinyl brigde (L2) does not. L1 reduces the level of reactive oxygen species (ROS) and cell apoptosis generated by CORT. It restores CORT-changed cell morphology to a state that is closed to normal PC12 cells. One mechanism of L1 to attenuate CORT-induced cell apoptosis is through the adjustment of both caspase-3 and Bcl-2 proteins. Like GA, both nNOS and eNOS might be involved in the neuroprotective mechanism of L1. All the evidences suggest that L1 may be a potential agent to treat depression. PMID:26402670

  13. Interaction of myosin VI and its binding partner DOCK7 plays an important role in NGF-stimulated protrusion formation in PC12 cells.

    PubMed

    Sobczak, Magdalena; Chumak, Vira; Pomorski, Paweł; Wojtera, Emilia; Majewski, Łukasz; Nowak, Jolanta; Yamauchi, Junji; Rędowicz, Maria Jolanta

    2016-07-01

    DOCK7 (dedicator of cytokinesis 7) is a guanidine nucleotide exchange factor (GEF) for Rac1 GTPase that is involved in neuronal polarity and axon generation as well in Schwann cell differentiation and myelination. Recently, we identified DOCK7 as the binding partner of unconventional myosin VI (MVI) in neuronal-lineage PC12 cells and postulated that this interaction could be important in vivo [Majewski et al. (2012) Biochem Cell Biol., 90:565-574]. Herein, we found that MVI-DOCK7 interaction takes also place in other cell lines and demonstrated that MVI cargo domain via its RRL motif binds to DOCK7 C-terminal M2 and DHR2 domains. In MVI knockdown cells, lower Rac1 activity and a decrease of DOCK7 phosphorylation on Tyr1118 were observed, indicating that MVI could contribute to DOCK7 activity. MVI and DOCK7 co-localization was maintained during NGF-stimulated PC12 cell differentiation and observed also in the outgrowths. Also, during differentiation an increase in phosphorylation of DOCK7 as well as of its downstream effector JNK kinase was detected. Interestingly, overexpression of GFP-tagged MVI cargo domain (GFP-GT) impaired protrusion formation indicating that full length protein is important for this process. Moreover, a transient increase in Rac activity observed at 5min of NGF-stimulated differentiation of PC12 cells (overexpressing either GFP or GFP-MVI) was not detected in cells overexpressing the cargo domain. These data indicate that MVI-DOCK7 interaction could have functional implications in the protrusion outgrowth, and full length MVI seems to be important for delivery and maintenance of DOCK7 along the protrusions, and exerting its GEF activity. PMID:27018747

  14. Neuroprotective effects of 20(S)-protopanaxadiol against glutamate-induced mitochondrial dysfunction in PC12 cells.

    PubMed

    Bak, Dong-Ho; Kim, Hyung Don; Kim, Young Ock; Park, Chun Geun; Han, Seung-Yun; Kim, Jwa-Jin

    2016-02-01

    Ginseng (Panax ginseng C.A. Mey.) is commonly used in traditional oriental medicine for its wide spectrum of medicinal properties, including anti-inflammatory, antitumorigenic, adaptogenic and anti-aging properties. 20(S)-Protopanaxadiol (PPD), the main intestinal metabolite of ginsenosides, is one of the active ingredients in ginseng. In this study, we aimed to investigate the neuroprotective effects of PPD on PC12 cells; however, the underlying mechanisms remain elusive. We examined cell viability by MTT assay and the morphological changes of PC12 cells following glutamate‑induced cell damage and evaluated the anti‑apoptotic effects of PPD using Hoechst 33258 staining, western blot analysis and Muse™ Cell Analyzer and the antioxidant effects of PPD using FACS analysis and immunofluorescence. Furthermore, PPD exerted protective effects on PC12 cells via the inhibition of mitochondrial damage against glutamate-induced excitotoxicity using immunofluorescence, electron microscopy and FACS analysis. We demonstrate that treatment with PPD suppresses apoptosis, which contributes to the neuroprotective effects of PPD against glutamate‑induced excitotoxicity in PC12 cells. Treatment with PPD inhibited nuclear condensation and decreased the number of Annexin V-positive cells. In addition, PPD increased antioxidant activity and mitochondrial homeostasis in the glutamate-exposed cells. These antioxidant effects were responsible for the neuroprotection and enhanced mitochondrial function following treatment with PPD. Furthermore, PD inhibited the glutamate-induced morphological changes in the mitochondria and scavenged the mitochondrial and cytosolic reactive oxygen species (ROS) induced by glutamate. In addition, mitochondrial function was significantly improved in terms of mitochondrial membrane potential (MMP) and enhanced mitochondrial mass compared with the cells exposed to glutamate and not treated with PPD. Taken together, the findings of our study indicate

  15. Neuroprotective effects of 20(S)-protopanaxadiol against glutamate-induced mitochondrial dysfunction in PC12 cells

    PubMed Central

    BAK, DONG-HO; KIM, HYUNG DON; KIM, YOUNG OCK; PARK, CHUN GEUN; HAN, SEUNG-YUN; KIM, JWA-JIN

    2016-01-01

    Ginseng (Panax ginseng C.A. Mey.) is commonly used in traditional oriental medicine for its wide spectrum of medicinal properties, including anti-inflammatory, antitumorigenic, adaptogenic and anti-aging properties. 20(S)-Protopanaxadiol (PPD), the main intestinal metabolite of ginsenosides, is one of the active ingredients in ginseng. In this study, we aimed to investigate the neuroprotective effects of PPD on PC12 cells; however, the underlying mechanisms remain elusive. We examined cell viability by MTT assay and the morphological changes of PC12 cells following glutamate-induced cell damage and evaluated the anti-apoptotic effects of PPD using Hoechst 33258 staining, western blot analysis and Muse™ Cell Analyzer and the antioxidant effects of PPD using FACS analysis and immunofluorescence. Furthermore, PPD exerted protective effects on PC12 cells via the inhibition of mitochondrial damage against glutamate-induced excitotoxicity using immunofluorescence, electron microscopy and FACS analysis. We demonstrate that treatment with PPD suppresses apoptosis, which contributes to the neuroprotective effects of PPD against glutamate-induced excitotoxicity in PC12 cells. Treatment with PPD inhibited nuclear condensation and decreased the number of Annexin V-positive cells. In addition, PPD increased antioxidant activity and mitochondrial homeostasis in the glutamate-exposed cells. These antioxidant effects were responsible for the neuroprotection and enhanced mitochondrial function following treatment with PPD. Furthermore, PD inhibited the glutamate-induced morphological changes in the mitochondria and scavenged the mitochondrial and cytosolic reactive oxygen species (ROS) induced by glutamate. In addition, mitochondrial function was significantly improved in terms of mitochondrial membrane potential (MMP) and enhanced mitochondrial mass compared with the cells exposed to glutamate and not treated with PPD. Taken together, the findings of our study indicate that the

  16. A genome-wide signature of glucocorticoid receptor binding in neuronal PC12 cells

    PubMed Central

    2012-01-01

    Background Glucocorticoids, secreted by the adrenals in response to stress, profoundly affect structure and plasticity of neurons. Glucocorticoid action in neurons is mediated by glucocorticoid receptors (GR) that operate as transcription factors in the regulation of gene expression and either bind directly to genomic glucocorticoid response elements (GREs) or indirectly to the genome via interactions with bound transcription factors. These two modes of action, respectively called transactivation and transrepression, result in the regulation of a wide variety of genes important for neuronal function. The objective of the present study was to identify genome-wide glucocorticoid receptor binding sites in neuronal PC12 cells using Chromatin ImmunoPrecipitation combined with next generation sequencing (ChIP-Seq). Results In total we identified 1183 genomic binding sites of GR, the majority of which were novel and not identified in other ChIP-Seq studies on GR binding. More than half (58%) of the binding sites contained a GRE. The remaining 42% of the GBS did not harbour a GRE and therefore likely bind GR via an intermediate transcription factor tethering GR to the DNA. While the GRE-containing binding sites were more often located nearby genes involved in general cell functions and processes such as apoptosis, cell motion, protein dimerization activity and vasculature development, the binding sites without a GRE were located nearby genes with a clear role in neuronal processes such as neuron projection morphogenesis, neuron projection regeneration, synaptic transmission and catecholamine biosynthetic process. A closer look at the sequence of the GR binding sites revealed the presence of several motifs for transcription factors that are highly divergent from those previously linked to GR-signaling, including Gabpa, Prrx2, Zfp281, Gata1 and Zbtb3. These transcription factors may represent novel crosstalk partners of GR in a neuronal context. Conclusions Here we present

  17. Fructus Corni extract-induced neuritogenesis in PC12 cells is associated with the suppression of stromal interaction molecule 1 expression and inhibition of Ca2+ influx

    PubMed Central

    WANG, XUSHI; LIU, JIAQI; JIN, NA; XU, DAN; WANG, JUNYU; HAN, YONGMING; YIN, NINA

    2015-01-01

    Fructus Corni (Cornus officinalis Sieb. et Zucc.) is commonly prescribed as a traditional Chinese herbal medicine that possesses pharmacological actions against inflammation, diabetic nephropathy, tumors, oxidation and aging. However, its function and mode of action within the nervous system remain largely unclear. In this study, the effects of Fructus Corni extract (FCE) on neuronal differentiation were investigated. It was found that FCE significantly increased the percentage of PC12 cells bearing neurites (P<0.001). Following the generation of neurite outgrowth, FCE treatment decreased the mRNA expression of stromal interaction molecule 1 (STIM1; P<0.05) and suppressed the expression of STIM1 protein (P<0.001). In addition, extracellular calcium (Ca2+) influx was inhibited resulting in a reduction in the intracellular Ca2+ level, suggesting that the inhibition of Ca2+ influx may be involved in the FCE-promoted neurite outgrowth of PC12 cells. These results demonstrate that FCE induces neurite outgrowth in PC12 cells and that this is associated with the suppression of STIM1 expression and the inhibition of Ca2+ influx, which may partially explain the FCE-induced neuritogenesis. PMID:26136892

  18. Effect of Tinospora cordifolia on the reduction of ultraviolet radiation-induced cytotoxicity and DNA damage in PC12 cells.

    PubMed

    Masuma, Runa; Okuno, Tsutomu; Kabir Choudhuri, Mohammad Shahabuddin; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    The safety of Tinospora cordifolia and its potential to protect against ultraviolet radiation-induced cytotoxicity and DNA damage in PC12 cells were investigated. To evaluate the safety of T. cordifolia, cell viability and agarose gel electrophoresis were carried out using PC12 cells treated with 0 to 100 μg mL(-1) of methanol extract of T. cordifolia. T. cordifolia extracts did not show cytotoxicity ranging 0 to 100 μg mL(-1). In addition, T. cordifolia extracts significantly increased cell viability at 1 ng, 10 ng and 1 μg mL(-1) concentrations in serum-deprived medium compared to control. To confirm the protective role against UV-induced damage, PC12 cells alone or in the presence of 10 ng, 100 ng, or 1 μg mL(-1) of T. cordifolia extract were exposed to 250, 270 and 290 nm of UV radiation, which corresponded to doses of 120, 150 and 300 mJ cm(-2), respectively. Treatment with T. cordifolia extracts significantly increased the cell survival rate irradiated at 290 nm. In addition, T. cordifolia extracts significantly reduced cyclobutane pyrimidine dimer formation induced by UV irradiation at all wavelengths. In conclusion, T. cordifolia is not toxic and safe for cells. Our findings can support its application as phototherapy in the medical sector. PMID:24762179

  19. Myosin Va facilitates the distribution of secretory granules in the F-actin rich cortex of PC12 cells.

    PubMed

    Rudolf, Rüdiger; Kögel, Tanja; Kuznetsov, Sergei A; Salm, Thorsten; Schlicker, Oliver; Hellwig, Andrea; Hammer, John A; Gerdes, Hans-Hermann

    2003-04-01

    Neuroendocrine secretory granules, the storage organelles for neuropeptides and hormones, are formed at the trans-Golgi network, stored inside the cell and exocytosed upon stimulation. Previously, we have reported that newly formed secretory granules of PC12 cells are transported in a microtubule-dependent manner from the trans-Golgi network to the F-actin-rich cell cortex, where they undergo short directed movements and exhibit a homogeneous distribution. Here we provide morphological and biochemical evidence that myosin Va is associated with secretory granules. Expression of a dominant-negative tail domain of myosin Va in PC12 cells led to an extensive clustering of secretory granules close to the cell periphery, a loss of their cortical restriction and a strong reduction in their motility in the actin cortex. Based on this data we propose a model that implies a dual transport system for secretory granules: after microtubule-dependent delivery to the cell periphery, secretory granules exhibit a myosin Va-dependent transport leading to their restriction and even dispersal in the F-actin-rich cortex of PC12 cells. PMID:12615975

  20. Selective inhibition of a slow-inactivating voltage-dependent K+ channel in rat PC12 cells by hypoxia.

    PubMed

    Conforti, L; Millhorn, D E

    1997-07-15

    1. Electrophysiological (single-channel patch clamp) and molecular biological experiments (reverse transcriptase-polymerase chain reaction) were performed to attempt to identify the O2-sensitive K+ channel in rat phaeochromocytoma (PC12) cells. 2. Four types of K+ channels were recorded in PC12 cells: a small-conductance K+ channel (14 pS), a calcium-activated K+ channel (KCa; 102 pS) and two K+ channels with similar conductance (20 pS). These last two channels differed in their time-dependent inactivation: one was a slow-inactivating channel, while the other belonged to the family of fast transient K+ channels. 3. The slow-inactivating 20 pS K+ channel was inhibited by hypoxia. Exposure to hypoxia produced a 50% reduction in channel activity (number of active channels in the patch x open probability). Hypoxia had no effect on the 20 pS transient K+ channels, whereas reduced O2 stimulated the KCa channels. 4. The genes encoding the alpha-subunits of slow-inactivating K+ channels for two members of the Shaker subfamily of K+ channels (Kv1.2 and Kv1.3) together with the Kv2.1, Kv3.1 and Kv3.2 channel genes were identified in PC12 cells. 5. The expression of the Shaker Kv1.2, but none of the other K+ channel genes, increased in cells exposed to prolonged hypoxia (18 h). The same cells were more responsive to a subsequent exposure to hypoxia (35% inhibition of K+ current measured in whole-cell voltage clamp) compared with the cells maintained in normoxia (19% inhibition). 6. These results indicate that the O2-sensitive K+ channel in PC12 cells is a 20 pS slow-inactivating K+ channel that is upregulated by hypoxia. This channel appears to belong to the Shaker subfamily of voltage-gated K+ channels. PMID:9263911

  1. High Glucose-Induced PC12 Cell Death by Increasing Glutamate Production and Decreasing Methyl Group Metabolism.

    PubMed

    Chen, Minjiang; Zheng, Hong; Wei, Tingting; Wang, Dan; Xia, Huanhuan; Zhao, Liangcai; Ji, Jiansong; Gao, Hongchang

    2016-01-01

    Objective. High glucose- (HG-) induced neuronal cell death is responsible for the development of diabetic neuropathy. However, the effect of HG on metabolism in neuronal cells is still unclear. Materials and Methods. The neural-crest derived PC12 cells were cultured for 72 h in the HG (75 mM) or control (25 mM) groups. We used NMR-based metabolomics to examine both intracellular and extracellular metabolic changes in HG-treated PC12 cells. Results. We found that the reduction in intracellular lactate may be due to excreting more lactate into the extracellular medium under HG condition. HG also induced the changes of other energy-related metabolites, such as an increased succinate and creatine phosphate. Our results also reveal that the synthesis of glutamate from the branched-chain amino acids (isoleucine and valine) may be enhanced under HG. Increased levels of intracellular alanine, phenylalanine, myoinositol, and choline were observed in HG-treated PC12 cells. In addition, HG-induced decreases in intracellular dimethylamine, dimethylglycine, and 3-methylhistidine may indicate a downregulation of methyl group metabolism. Conclusions. Our metabolomic results suggest that HG-induced neuronal cell death may be attributed to a series of metabolic changes, involving energy metabolism, amino acids metabolism, osmoregulation and membrane metabolism, and methyl group metabolism. PMID:27413747

  2. Overexpression of Annexin A1 Suppresses Pro-Inflammatory Factors in PC12 Cells Induced by 1-Methyl-4-Phenylpyridinium

    PubMed Central

    Kiani-Esfahani, Abbas; Kazemi Sheykhshabani, Sedigheh; Peymani, Maryam; Hashemi, Motahare-Sadat; Ghaedi, Kamran; Nasr-Esfahani, Mohammad Hossein

    2016-01-01

    Objective Annexin A1 (ANXA1) is suggested to have anti-inflammatory function. However, the precise function of ANXA1 has remained unclear. In this study, we therefore examined the potency of ANXA1 in regulating reactive oxygen species (ROS) production and suppressing pro-inflammatory responses in PC12 cells induced by 1-methyl-4-phenylpyridinium (MPP+). Materials and Methods In this experimental study, cDNA of ANXA1 was cloned and inserted to the PGL268 pEpi-FGM18F vector to produce a recombinant PGL/ANXA1 vector for transfection into the PC12 cells. ANXA1 transfected cells were then treated with MPP+. Apoptosis and the content of pro-inflammatory factors including ROS, Interlukin-6 (IL-6), inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-κB) were assessed by flow-cytometry, real-time quantitative polymerase chain reaction (RT-qPCR) and western blot in ANXA1-transfected cells and the data were compared with those obtained from mock and control cells. Results Data revealed that overexpression of ANXA1 is associated with decreased levels of ROS and expression level of IL-6 and iNOS transcripts, and NF-κB protein in MPP+ treated PC12 cells. Conclusion ANXA1 may be considered as an agent for prevention of neurodegenerative or inflammatory conditions. PMID:27540524

  3. High Glucose-Induced PC12 Cell Death by Increasing Glutamate Production and Decreasing Methyl Group Metabolism

    PubMed Central

    Chen, Minjiang; Zheng, Hong; Wei, Tingting; Wang, Dan; Xia, Huanhuan; Zhao, Liangcai; Ji, Jiansong

    2016-01-01

    Objective. High glucose- (HG-) induced neuronal cell death is responsible for the development of diabetic neuropathy. However, the effect of HG on metabolism in neuronal cells is still unclear. Materials and Methods. The neural-crest derived PC12 cells were cultured for 72 h in the HG (75 mM) or control (25 mM) groups. We used NMR-based metabolomics to examine both intracellular and extracellular metabolic changes in HG-treated PC12 cells. Results. We found that the reduction in intracellular lactate may be due to excreting more lactate into the extracellular medium under HG condition. HG also induced the changes of other energy-related metabolites, such as an increased succinate and creatine phosphate. Our results also reveal that the synthesis of glutamate from the branched-chain amino acids (isoleucine and valine) may be enhanced under HG. Increased levels of intracellular alanine, phenylalanine, myoinositol, and choline were observed in HG-treated PC12 cells. In addition, HG-induced decreases in intracellular dimethylamine, dimethylglycine, and 3-methylhistidine may indicate a downregulation of methyl group metabolism. Conclusions. Our metabolomic results suggest that HG-induced neuronal cell death may be attributed to a series of metabolic changes, involving energy metabolism, amino acids metabolism, osmoregulation and membrane metabolism, and methyl group metabolism. PMID:27413747

  4. Role of the D2 dopamine receptor in molecular adaptation to chronic hypoxia in PC12 cells

    PubMed Central

    Kobayashi, Shuichi; Conforti, Laura; Zhu Dana Beitner-Johnson, Wylie H.; Millhorn, David E.

    2006-01-01

    We have previously shown that pheochromocytoma (PC12) cells rapidly depolarize and undergo Ca2+ influx through voltage-dependent Ca2+ channels in response to moderate hypoxia and that intracellular free Ca2+ is modulated by activation of dopamine D2 receptors in this cell type. The present study shows that D2 (quinpirole-mediated) inhibition of a voltage-dependent Ca2+ current (ICa) in PC12 cells is dramatically attenuated after chronic exposure to moderate hypoxia (24 h at 10% O2). Pretreatment of cells with pertussis toxin abolished D2-mediated inhibition of ICa. The D2-induced inhibition of ICa did not depend on protein kinase A (PKA), as it persisted both in the presence of a specific PKA inhibitor (PKI) and in PKA-deficient PC12 cells. Prolonged exposure to hypoxia (24 h) significantly reduced the level of Gi/oα immunoreactivity, but did not alter Gβ levels. Furthermore, dialysis of recombinant Goα protein through the patch pipette restored the inhibitory effect of quinpirole in cells chronically exposed to hypoxia. We conclude that the attenuation of the D2-mediated inhibition of ICa by chronic hypoxia is caused by impaired receptor–G protein coupling, due to reduced levels of Goα protein. This attenuated feedback modulation of ICa by dopamine may allow for a more sustained Ca2+ influx and enhanced cellular excitation during prolonged hypoxia. PMID:10591061

  5. Role of the D2 dopamine receptor in molecular adaptation to chronic hypoxia in PC12 cells.

    PubMed

    Kobayashi, S; Conforti, L; Zhu, W H; Beitner-Johnson, D; Millhorn, D E

    1999-11-01

    We have previously shown that pheochromocytoma (PC12) cells rapidly depolarize and undergo Ca2+ influx through voltage-dependent Ca2+ channels in response to moderate hypoxia and that intracellular free Ca2+ is modulated by activation of dopamine D2 receptors in this cell type. The present study shows that D2 (quinpirole-mediated) inhibition of a voltage-dependent Ca2+ current (ICa) in PC12 cells is dramatically attenuated after chronic exposure to moderate hypoxia (24 h at 10% O2). Pretreatment of cells with pertussis toxin abolished D2-mediated inhibition of ICa. The D2-induced inhibition of ICa did not depend on protein kinase A (PKA), as it persisted both in the presence of a specific PKA inhibitor (PKI) and in PKA-deficient PC12 cells. Prolonged exposure to hypoxia (24 h) significantly reduced the level of Gi/o alpha immunoreactivity, but did not alter G beta levels. Furthermore, dialysis of recombinant G(o) alpha protein through the patch pipette restored the inhibitory effect of quinpirole in cells chronically exposed to hypoxia. We conclude that the attenuation of the D2-mediated inhibition of ICa by chronic hypoxia is caused by impaired receptor-G protein coupling, due to reduced levels of G(o) alpha protein. This attenuated feedback modulation of ICa by dopamine may allow for a more sustained Ca2+ influx and enhanced cellular excitation during prolonged hypoxia. PMID:10591061

  6. Regulation of Shaker-type potassium channels by hypoxia. Oxygen-sensitive K+ channels in PC12 cells.

    PubMed

    Conforti, L; Millhorn, D E

    2000-01-01

    Little is known about the molecular composition of the O2-sensitive K+ (Ko2) channels. The possibility that these channels belong to the Shaker subfamily (Kv1) of voltage-dependent K+ (Kv) channels has been raised in pulmonary artery (PA) smooth muscle cells. Numerous findings suggest that the Ko2 channel in PC12 cells is a Kv1 channel, formed by the Kv1.2 alpha subunit. The Ko2 channel in PC12 cells is a slow-inactivating voltage-dependent K+ channel of 20 pS conductance. Other Kv channels, also expressed in PC12 cells, are not inhibited by hypoxia. Selective up-regulation by chronic hypoxia of the Kv1.2 alpha subunit expression correlates with an increase O2-sensitivity of the K+ current. Other Kv1 alpha subunit genes encoding slow-inactivating Kv channels, such as Kv1.3, Kv2.1, Kv3.1 and Kv3.2 are not modulated by chronic hypoxia. The Ko2 current in PC12 cells is blocked by 5 mM externally applied tetraethylammonium chloride (TEA) and by charydbotoxin (CTX). The responses of the Kv1.2 K+ channel to hypoxia have been studied in the Xenopus oocytes and compared to those of Kv2.1, also proposed as Ko2 channel in PA smooth muscle cells. Two-electrode voltage clamp experiments show that hypoxia induces inhibition of K+ current amplitude only in oocytes injected with Kv1.2 cRNA. These data indicate that Kv1.2 K+ channels are inhibited by hypoxia. PMID:10849667

  7. Adenosine-dependent activation of tyrosine hydroxylase is defective in adenosine kinase-deficient PC12 cells.

    PubMed Central

    Erny, R; Wagner, J A

    1984-01-01

    (R)-N6-Phenylisopropyladenosine (PIA) stimulates dopa production 3- to 5-fold in PC12 cells, with a half-maximal effective concentration (EC50) of 50 nM. This increase can be explained by a stable activation of tyrosine hydroxylase [TyrOHase; L-tyrosine, tetrahydropteridine:oxygen oxidoreductase (3-hydroxylating), EC 1.14.16.2] when it is phosphorylated by a cAMP-dependent protein kinase. The activation of TyrOHase is mediated by the adenosine-dependent activation of adenylate cyclase (EC50 = 600 nM). PIA (10 microM) is as effective as cholera toxin or dibutyryl cAMP in activating TyrOHase in wild-type cells. Adenosine kinase-deficient mutants of PC12 were found to be resistant to PIA-dependent activation of TyrOHase (EC50 = 100-1000 nM). This phenomenon was explored in detail in one adenosine kinase-deficient mutant and was shown to occur because the mutant was resistant to the adenosine-dependent activation of adenylate cyclase. In this mutant, TyrOHase was activated 14-fold by cholera toxin, suggesting that activated TyrOHase is about 14 times as active as unactivated TyrOHase. These studies with kinase-deficient PC12 cells provide genetic evidence that adenosine-dependent activation of TyrOHase is mediated by acute increases in cAMP. When the adenosine receptor found on PC12 cells is expressed in vivo, it might function as either a presynaptic (i.e., localized on the nerve terminal) or a postsynaptic (i.e., localized on the cell body or dendrite) receptor that regulates rates of transmitter synthesis in response to cell activity. PMID:6146982

  8. Cocaine induces cell death and activates the transcription nuclear factor kappa-B in PC12 cells.

    PubMed

    Lepsch, Lucilia B; Munhoz, Carolina D; Kawamoto, Elisa M; Yshii, Lidia M; Lima, Larissa S; Curi-Boaventura, Maria F; Salgado, Thais M L; Curi, Rui; Planeta, Cleopatra S; Scavone, Cristoforo

    2009-01-01

    Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-kappaB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-kappaB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM) for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment) activated the p50/p65 subunit of NF-kappaB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-kappaB activation. Inhibition of NF-kappaB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis) and activates NF-kappaB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells. PMID:19183502

  9. Echinacoside Protects against 6-Hydroxydopamine-Induced Mitochondrial Dysfunction and Inflammatory Responses in PC12 Cells via Reducing ROS Production

    PubMed Central

    Wang, Yue-Hua; Xuan, Zhao-Hong; Tian, Shuo; Du, Guan-Hua

    2015-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DA) neurons at the substantia nigra. Mitochondrial dysfunction and inflammatory responses are involved in the mechanism of cell damage in PD. 6-Hydroxydopamine (6-OHDA), a dopamine analog, specifically damages dopaminergic neurons. Echinacoside (ECH) is a phenylethanoid glycoside isolated from the stems of Cistanche salsa, showing a variety of neuroprotective effects in previous studies. The present study was to investigate its effect against 6-OHDA-induced neurotoxicity and possible mechanisms in PC12 cells. The results showed that 6-OHDA reduced cell viability, decreased oxidation-reduction activity, decreased mitochondrial membrane potential, and induced mitochondria-mediated apoptosis compared with untreated PC12 cells. However, echinacoside treatment significantly attenuated these changes induced by 6-OHDA. In addition, echinacoside also could significantly alleviate the inflammatory responses induced by 6-OHDA. Further research showed that echinacoside could reduce 6-OHDA-induced ROS production in PC12 cells. These results suggest that the underlying mechanism of echinacoside against 6-OHDA-induced neurotoxicity may be involve in attenuating mitochondrial dysfunction and inflammatory responses by reducing ROS production. PMID:25788961

  10. Di-Leucine Signals Mediate Targeting of Tyrosinase and Synaptotagmin to Synaptic-like Microvesicles within PC12 Cells

    PubMed Central

    Blagoveshchenskaya, Anastasiya D.; Hewitt, Eric W.; Cutler, Daniel F.

    1999-01-01

    One pathway in forming synaptic-like microvesicles (SLMV) involves direct budding from the plasma membrane, requires adaptor protein 2 (AP2) and is brefeldin A (BFA) resistant. A second route leads from the plasma membrane to an endosomal intermediate from which SLMV bud in a BFA-sensitive, AP3-dependent manner. Because AP3 has been shown to bind to a di-leucine targeting signal in vitro, we have investigated whether this major class of targeting signals is capable of directing protein traffic to SLMV in vivo. We have found that a di-leucine signal within the cytoplasmic tail of human tyrosinase is responsible for the majority of the targeting of HRP-tyrosinase chimeras to SLMV in PC12 cells. Furthermore, we have discovered that a Met-Leu di-hydrophobic motif within the extreme C terminus of synaptotagmin I supports 20% of the SLMV targeting of a CD4-synaptotagmin chimera. All of the traffic to the SLMV mediated by either di-Leu or Met-Leu is BFA sensitive, strongly suggesting a role for AP3 and possibly for an endosomal intermediate in this process. The differential reduction in SLMV targeting for HRP-tyrosinase and CD4-synaptotagmin chimeras by di-alanine substitutions or BFA treatment implies that different proteins use the two routes to the SLMV to differing extents. PMID:10564285

  11. Tacrine and donepezil attenuate the neurotoxic effect of A beta(25-35) in rat PC12 cells.

    PubMed

    Svensson, A L; Nordberg, A

    1998-05-11

    The effect of the cholinesterase inhibitors tacrine and donepezil on A beta(25-35)-induced toxicity was investigated in rat pheochromocytoma PC12 cells by measuring the mitochondrial activity. Tacrine and donepezil was found in clinical relevant concentrations (10(-7)-10(-6) M) to attenuate A beta(25-35)-induced toxicity in PC12 cells. The neuroprotective effect of tacrine was blocked in the presence of the nicotinic antagonists mecamylamine (10(-5) M) and tubocurarine (10(-5) M), suggesting an interaction via nicotinic receptors. This study demonstrates that tacrine and donepezil can exert neuroprotective properties which might be of importance and contribute to the clinical efficacy of cholinesterase inhibitors in the treatment of Alzheimer's disease. PMID:9631459

  12. Induction of serpinb1a by PACAP or NGF is required for PC12 cells survival after serum withdrawal.

    PubMed

    Seaborn, Tommy; Ravni, Aurélia; Au, Ruby; Chow, Bill K C; Fournier, Alain; Wurtz, Olivier; Vaudry, Hubert; Eiden, Lee E; Vaudry, David

    2014-10-01

    PC12 cells are used to study the signaling mechanisms underlying the neurotrophic and neuroprotective activities of pituitary adenylate cyclase-activating polypeptide (PACAP) and nerve growth factor (NGF). Previous microarray experiments indicated that serpinb1a was the most induced gene after 6 h of treatment with PACAP or NGF. This study confirmed that serpinb1a is strongly activated by PACAP and NGF in a time-dependent manner with a maximum induction (~ 50-fold over control) observed after 6 h of treatment. Co-incubation with PACAP and NGF resulted in a synergistic up-regulation of serpinb1a expression (200-fold over control), suggesting that PACAP and NGF act through complementary mechanisms. Consistently, PACAP-induced serpinb1a expression was not blocked by TrkA receptor inhibition. Nevertheless, the stimulation of serpinb1a expression by PACAP and NGF was significantly reduced in the presence of extracellular signal-regulated kinase, calcineurin, protein kinase A, p38, and PI3K inhibitors, indicating that the two trophic factors share some common pathways in the regulation of serpinb1a. Finally, functional investigations conducted with siRNA revealed that serpinb1a is not involved in the effects of PACAP and NGF on PC12 cell neuritogenesis, proliferation or body cell volume but mediates their ability to block caspases 3/7 activity and to promote PC12 cell survival. PMID:24899316

  13. Taurine attenuates methamphetamine-induced autophagy and apoptosis in PC12 cells through mTOR signaling pathway.

    PubMed

    Li, Yan; Hu, Zhengtao; Chen, Bo; Bu, Qian; Lu, Wenjie; Deng, Yi; Zhu, Ruiming; Shao, Xue; Hou, Jing; Zhao, Jinxuan; Li, Hongyu; Zhang, Baolai; Huang, Yina; Lv, Lei; Zhao, Yinglan; Cen, Xiaobo

    2012-11-23

    Methamphetamine (METH), a commonly abused psychostimulant, has been shown to induce neuronal damage by causing reactive oxygen species (ROS) formation, apoptosis and autophagy. Taurine (2-aminoethanesulfonic acid) is involved in several physiological actions in the brain, including neuroprotection, osmoregulation and neurotransmission. In this study, we investigate the protective effect of taurine against METH-induced neurotoxicity in PC12 cells and the underlying mechanism. The results showed that taurine significantly increased the cell viability inhibited by METH. LC3-II expression was elevated by METH treatment, whereas such increase was obviously attenuated by taurine. Co-treatment of taurine strongly reversed the decline of antioxidase activities induced by METH. Moreover, phosphorylated mammalian target of rapamycin (p-mTOR) was significantly inhibited by METH, whereas complementation of taurine markedly increased the expression of p-mTOR in PC12 cells, rather than phosphorylated Erk. Interestingly, taurine-induced decreasing expression of LC3-II was partially blocked by pretreatment of RAD001, an mTOR inhibitor. These results indicated that taurine inhibits METH-induced autophagic process through activating mTOR rather than Erk signaling. Collectively, our study shows that taurine protects METH-induced PC12 cells damage by attenuating ROS production, apoptosis and autophagy, at least in part, via mTOR signaling pathway. PMID:23041169

  14. Nerve growth factor enhances the CRE-dependent transcriptional activity activated by nobiletin in PC12 cells.

    PubMed

    Takito, Jiro; Kimura, Junko; Kajima, Koji; Uozumi, Nobuyuki; Watanabe, Makoto; Yokosuka, Akihito; Mimaki, Yoshihiro; Nakamura, Masanori; Ohizumi, Yasushi

    2016-07-01

    Prevention and treatment of Alzheimer disease are urgent problems for elderly people in developed countries. We previously reported that nobiletin, a poly-methoxylated flavone from the citrus peel, improved the symptoms in various types of animal models of memory loss and activated the cAMP responsive element (CRE)-dependent transcription in PC12 cells. Nobiletin activated the cAMP/PKA/MEK/Erk/MAPK signaling pathway without using the TrkA signaling activated by nerve growth factor (NGF). Here, we examined the effect of combination of nobiletin and NGF on the CRE-dependent transcription in PC12 cells. Although NGF alone had little effect on the CRE-dependent transcription, NGF markedly enhanced the CRE-dependent transcription induced by nobiletin. The NGF-induced enhancement was neutralized by a TrkA antagonist, K252a. This effect of NGF was effective on the early signaling event elicited by nobiletin. These results suggested that there was crosstalk between NGF and nobiletin signaling in activating the CRE-dependent transcription in PC12 cells. PMID:27128150

  15. Expression of dopamine D2 receptor in PC-12 cells and regulation of membrane conductances by dopamine.

    PubMed

    Zhu, W H; Conforti, L; Millhorn, D E

    1997-10-01

    PC-12 cells depolarize during hypoxia and release dopamine. The hypoxia-induced depolarization is due to inhibition of an O2-sensitive K+ current. The role of dopamine released during hypoxia is uncertain, but it could act as an autocrine to modulate membrane conductance during hypoxia. The current study was undertaken to investigate this possibility. Reverse transcription-polymerase chain reaction and sequence analysis revealed that the D2 isoform of the dopamine receptor is expressed in rat PC-12 cells. Exogenously applied dopamine and the D2 agonist quinpirole elicited inhibition of a voltage-dependent K+ current (I(K)) that was prevented by sulpiride, a D2 receptor antagonist. Dopamine and quinpirole applied during hypoxia potentiated the inhibitory effect of hypoxia on I(K). We also found that quinpirole caused reversible inhibition of a voltage-dependent Ca2+ current (I(Ca)) and attenuation of the increase in intracellular free Ca2+ during hypoxia. Our results indicate that dopamine released from PC-12 cells during hypoxia acts via a D2 receptor to "autoregulate" I(K) and I(Ca). PMID:9357757

  16. Induction of Serpinb1a by PACAP or NGF is required for PC12 cells survival after serum withdrawal

    PubMed Central

    Seaborn, Tommy; Ravni, Aurélia; Au, Ruby; Chow, Bill K.C.; Fournier, Alain; Wurtz, Olivier; Vaudry, Hubert; Eiden, Lee E.; Vaudry, David

    2014-01-01

    PC12 cells are used to study the signaling mechanisms underlying the neurotrophic and neuroprotective activities of pituitary adenylate cyclase-activating polypeptide (PACAP) and nerve growth factor (NGF). Previous microarray experiments indicated that serpinb1a was the most induced gene after 6 h of treatment with PACAP or NGF. The present study confirmed that serpinb1a is strongly activated by PACAP and NGF in a time-dependent manner with a maximum induction (~50-fold over control) observed after 6 h of treatment. Co-incubation with PACAP and NGF resulted in a synergistic up-regulation of serpinb1a expression (200-fold over control), suggesting that PACAP and NGF act through complementary mechanisms. Consistently, PACAP-induced serpinb1a expression was not blocked by TrkA receptor inhibition. Nevertheless, the stimulation of serpinb1a expression by PACAP and NGF was significantly reduced in the presence of ERK, calcineurin, PKA, p38 and PI3K inhibitors, indicating that the two trophic factors share some common pathways in the regulation of serpinb1a. Finally, functional investigations conducted with siRNA revealed that serpinb1a is not involved in the effects of PACAP and NGF on PC12 cell neuritogenesis, proliferation or body volume but mediates their ability to block caspase-3/7 activity and to promote PC12 cell survival. PMID:24899316

  17. Adenosine modulates hypoxia-induced responses in rat PC12 cells via the A2A receptor.

    PubMed

    Kobayashi, S; Conforti, L; Pun, R Y; Millhorn, D E

    1998-04-01

    1. The present study was undertaken to determine the role of adenosine in mediating the cellular responses to hypoxia in rat phaeochromocytoma (PC12) cells, an oxygen-sensitive clonal cell line. 2. Reverse transcriptase polymerase chain reaction studies revealed that PC12 cells express adenosine deaminase (the first catalysing enzyme of adenosine degradation) and the A2A and A2B adenosine receptors, but not the A1 or A3 adenosine receptors. 3. Whole-cell current- and voltage-clamp experiments showed that adenosine attenuated the hypoxia-induced membrane depolarization. The hypoxia-induced suppression of the voltage-sensitive potassium current (IK(V)) was markedly reduced by adenosine. Furthermore, extracellularly applied adenosine increased the peak amplitudes of IK(V) in a concentration-dependent manner. This increase was blocked by pretreatment not only with a non-specific adenosine receptor antagonist, 8-phenyltheophylline (8-PT), but also with a selective A2A receptor antagonist, ZM241385. 4. Ca2+ imaging studies using fura-2 acetoxymethyl ester (fura-2 AM) revealed that the increase in intracellular free Ca2+ during hypoxic exposure was attenuated significantly by adenosine. Voltage-clamp studies showed that adenosine inhibited the voltage-dependent Ca2+ currents (ICa) in a concentration-dependent fashion. This inhibition was also abolished by both 8-PT and ZM241385. 5. The modulation of both IK(V) and ICa by adenosine was prevented by intracellular application of an inhibitor of protein kinase A (PKA), PKA inhibitor fragment (6-22) amide. In addition, the effect of adenosine on either IK(V) or ICa was absent in PKA-deficient PC12 cells. 6. These results indicate that the modulatory effects of adenosine on the hypoxia-induced membrane responses of PC12 cells are likely to be mediated via activation of the A2A receptor, and that the PKA pathway is required for these modulatory actions. We propose that this modulation serves to regulate membrane excitability in

  18. Adenosine modulates hypoxia-induced responses in rat PC12 cells via the A2A receptor

    PubMed Central

    Kobayashi, Shuichi; Conforti, Laura; Pun, Raymund Y K; Millhorn, David E

    1998-01-01

    The present study was undertaken to determine the role of adenosine in mediating the cellular responses to hypoxia in rat phaeochromocytoma (PC12) cells, an oxygen-sensitive clonal cell line. Reverse transcriptase polymerase chain reaction studies revealed that PC12 cells express adenosine deaminase (the first catalysing enzyme of adenosine degradation) and the A2A and A2B adenosine receptors, but not the A1 or A3 adenosine receptors. Whole-cell current- and voltage-clamp experiments showed that adenosine attenuated the hypoxia-induced membrane depolarization. The hypoxia-induced suppression of the voltage-sensitive potassium current (IK(V)) was markedly reduced by adenosine. Furthermore, extracellularly applied adenosine increased the peak amplitudes of IK(V) in a concentration-dependent manner. This increase was blocked by pretreatment not only with a non-specific adenosine receptor antagonist, 8-phenyltheophylline (8-PT), but also with a selective A2A receptor antagonist, ZM241385. Ca2+ imaging studies using fura-2 acetoxymethyl ester (fura-2 AM) revealed that the increase in intracellular free Ca2+ during hypoxic exposure was attenuated significantly by adenosine. Voltage-clamp studies showed that adenosine inhibited the voltage-dependent Ca2+ currents (ICa) in a concentration-dependent fashion. This inhibition was also abolished by both 8-PT and ZM241385. The modulation of both IK(V) and ICa by adenosine was prevented by intracellular application of an inhibitor of protein kinase A (PKA), PKA inhibitor fragment (6–22) amide. In addition, the effect of adenosine on either IK(V) or ICa was absent in PKA-deficient PC12 cells. These results indicate that the modulatory effects of adenosine on the hypoxia-induced membrane responses of PC12 cells are likely to be mediated via activation of the A2A receptor, and that the PKA pathway is required for these modulatory actions. We propose that this modulation serves to regulate membrane excitability in PC12 cells and

  19. BDNF-TrkB Pathway Mediates Neuroprotection of Hydrogen Sulfide against Formaldehyde-Induced Toxicity to PC12 Cells

    PubMed Central

    Gao, Sheng-Lan; Tian, Ying; Wang, Chun-Yan; Wang, Li; Gu, Hong-Feng; Tang, Xiao-Qing

    2015-01-01

    Formaldehyde (FA) is a common environmental contaminant that has toxic effects on the central nervous system (CNS). Our previous data demonstrated that hydrogen sulfide (H2S), the third endogenous gaseous mediator, has protective effects against FA-induced neurotoxicity. As is known to all, Brain-derived neurotropic factor (BDNF), a member of the neurotrophin gene family, mediates its neuroprotective properties via various intracellular signaling pathways triggered by activating the tyrosine kinase receptor B (TrkB). Intriguingly, our previous data have illustrated the upregulatory role of H2S on BDNF protein expression in the hippocampus of rats. Therefore, in this study, we hypothesized that H2S provides neuroprotection against FA toxicity by regulating BDNF-TrkB pathway. In the present study, we found that NaHS, a donor of H2S, upregulated the level of BDNF protein in PC12 cells, and significantly rescued FA-induced downregulation of BDNF levels. Furthermore, we found that pretreatment of PC12 cells with K252a, an inhibitor of the BDNF receptor TrkB, markedly reversed the inhibition of NaHS on FA-induced cytotoxicity and ablated the protective effects of NaHS on FA-induced oxidative stress, including the accumulation of intracellular reactive oxygen species (ROS), 4-hydroxy-2-trans-nonenal (4-HNE), and malondialdehyde (MDA). We also showed that K252a abolished the inhibition of NaHS on FA-induced apoptosis, as well as the activation of caspase-3 in PC12 cells. In addition, K252a reversed the protection of H2S against FA-induced downregulation of Bcl-2 protein expression and upregulation of Bax protein expression in PC12 cells. These data indicate that the BDNF-TrkB pathway mediates the neuroprotection of H2S against FA-induced cytotoxicity, oxidative stress and apoptosis in PC12 cells. These findings provide a novel mechanism underlying the protection of H2S against FA-induced neurotoxicity. PMID:25749582

  20. Hypoxia increases rate of transcription and stability of tyrosine hydroxylase mRNA in pheochromocytoma (PC12) cells.

    PubMed

    Czyzyk-Krzeska, M F; Furnari, B A; Lawson, E E; Millhorn, D E

    1994-01-01

    Reduced arterial oxygen tension (i.e. hypoxia) is a powerful physiological stimulus that induces synthesis and release of dopamine from O2-sensitive (type I) cells in the mammalian carotid bodies. We reported recently that hypoxia stimulates gene expression for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis in type I cells of the carotid body. Efforts to identify the mechanisms regulating TH gene expression in O2-sensitive cells during hypoxia have been hampered by the lack of an appropriate model cell culture system. Here we report that TH gene expression in the rat pheochromocytoma cell line (PC12) is regulated during hypoxia in a manner similar to that measured in carotid body type I cells. PC12 cells might therefore be useful as an experimental model for identifying the molecular mechanisms that regulate TH gene expression during hypoxia. Nuclear runoff assays revealed that transcription of the wild type TH gene was enhanced during exposures to hypoxia lasting 12 h. Chloramphenicol acetyltransferase assays with constructs that contained different fragments of TH promoter revealed that the regulatory sequences that mediate the hypoxia-induced increase in transcription are located between bases -272 and +27 of the TH gene. Findings from experiments in which transcription was inhibited either with actinomycin D or 5,6-dichloro-1-D-ribofuranosylbenzimidazole, as well as pulse-chase experiments using 4-thiouridine showed that the half-life of TH mRNA was substantially increased during hypoxia. Thus, in the present paper we show that TH gene expression in PC12 cells during hypoxia is regulated by increases in both the rate of TH gene transcription and TH mRNA stability. PMID:7903970

  1. Apelin-13 Protects PC12 Cells from Corticosterone-Induced Apoptosis Through PI3K and ERKs Activation.

    PubMed

    Zou, Yunjun; Wang, Bo; Fu, Wan; Zhou, Shouhong; Nie, Yaxiong; Tian, Shaowen

    2016-07-01

    It is widely accepted that environmental stress is a risk factor for mental disorders. Glucocorticoid hormones play a vital role in the regulation of physiological response to stress. High concentrations of corticosterone can induce cellular damage in PC12 cells, which possess typical neuronal features. Apelin and its receptor APJ are widely distributed in the central nervous system including limbic structures involved in stress responses. Previous studies have suggested that apelin has a neuroprotective function. However, the effect of apelin on corticosterone-induced neuronal damage remains to be elucidated. In the present study, we explored the potential protective activity of apelin-13 in PC12 cells treated with corticosterone and its underling mechanisms. The viability of the cells, the apoptosis of the cells, the level of phosphorylation of Akt (p-Akt) and extracellular signal-regulated kinases (p-ERKs) and cleaved caspase-3 expression were detected by MTT, Hoechst staining and flow cytometer assays and Western blotting. Results showed that corticosterone induced cells viability loss, cell apoptosis, down-regulation of p-Akt and p-ERKs and up-regulation of cleaved caspase-3. The effects induced by corticosterone were attenuated by apelin-13 pretreatment. Furthermore, apelin-13-mediated anti-viability loss, antiapoptosis and caspase-3 suppression activities were blocked by specific inhibitors of phosphatidylinositol 3-kinase (PI3K) (LY294002) and ERKs (PD98059). The data suggest that apelin-13 protects PC12 cells from corticosterone-induced apoptosis through activating PI3K/Akt and ERKs signaling pathways. PMID:26961889

  2. Regulation of heme oxygenase-1 expression and MAPK pathways in response to kaempferol and rhamnocitrin in PC12 cells

    SciTech Connect

    Hong, J.-T.; Yen, J.-H.; Wang Lisu; Lo, Y.-H.; Chen, Z.-T.; Wu, M.-J.

    2009-05-15

    Oxidative stress has been considered as a major cause of cellular injuries in a variety of clinical abnormalities, especially neural diseases. Our aim of research is to investigate the protective effects and mechanisms of kaempferol and rhamnocitrin (kaempferol-7-methyl ether) on oxidative damage in rat pheochromocytoma PC12 cells induced by a limited supply of serum and hydrogen peroxide (H{sub 2}O{sub 2}). The current result demonstrated that kaempferol protected PC12 cells from serum deprivation-induced apoptosis. Pretreatment of cells with kaempferol also diminished intracellular generation of reactive oxygen species (ROS) in response to H{sub 2}O{sub 2} and strongly elevated cell viability. RT-Q-PCR and Western blotting revealed that kaempferol and rhamnocitrin significantly induced heme oxygenase (HO)-1 gene expression. Addition of zinc protoporphyrin (Znpp), a HO-1 competitive inhibitor, significantly attenuated their protective effects in H{sub 2}O{sub 2}-treated cells, indicating the vital role of HO-1 in cell resistance to oxidative injury. While investigating the signaling pathways responsible for HO-1 induction, we observed that kaempferol induced sustained extracellular signal-regulated protein kinase 1/2 (ERK1/2) in PC12 cells grown in low serum medium; while rhamnocitrin only stimulated transient ERK cascade. Addition of U0126, a highly selective inhibitor of MEK1/2, which is upstream of ERK1/2, had no effect on kaempferol- or rhamnocitrin-induced HO-1 mRNA expression, indicating no direct cross-talk between these two pathways. Furthermore, both kaempferol and rhamnocitrin were able to persistently attenuate p38 phosphorylation. Taking together, the above findings suggest that kaempferol and rhamnocitrin can augment cellular antioxidant defense capacity, at least in part, through regulation of HO-1 expression and MAPK signal transduction.

  3. Docosahexaenoic acid enhances iron uptake by modulating iron transporters and accelerates apoptotic death in PC12 cells.

    PubMed

    Schonfeld, Eldi; Yasharel, Ilanit; Yavin, Ephraim; Brand, Annette

    2007-10-01

    The effect of docosahexaenoic acid (DHA; 22:6 n-3) on Fe(2+)-mediated and/or H(2)O(2)-mediated oxidative stress (OS) was investigated in a PC12 pheochromocytoma cell line in the presence or absence of 50 ng/ml nerve growth factor (NGF). DHA-supplemented cells showed enhanced Fe(2+)-induced cell damage as evident by increased lipid peroxides formation (10-fold) and reduced neutral red (NR) dye uptake in a NGF-independent fashion. DHA caused a nearly 10-fold increase in free iron uptake in NGF-treated cells and doubled iron uptake in nondifferentiated cells. DHA-enrichment induced an elevation in the transferrin receptor protein in the nondifferentiated cells whereas NGF-treatment led to a substantial increase in the ubiquitous divalent metal ion transporter 1 (DMT-1) as detected by mRNA levels using qRT-PCR. The mechanism of action of DHA to accelerate cell death may be associated with the externalization of amino-phosphoglycerides (PG) species of which, increased ethanolamine plasmalogen levels, may be essential for cell rescue as noted in NGF-treated PC12 cells. PMID:17551831

  4. Selective inhibition of a slow-inactivating voltage-dependent K+ channel in rat PC12 cells by hypoxia.

    PubMed Central

    Conforti, L; Millhorn, D E

    1997-01-01

    1. Electrophysiological (single-channel patch clamp) and molecular biological experiments (reverse transcriptase-polymerase chain reaction) were performed to attempt to identify the O2-sensitive K+ channel in rat phaeochromocytoma (PC12) cells. 2. Four types of K+ channels were recorded in PC12 cells: a small-conductance K+ channel (14 pS), a calcium-activated K+ channel (KCa; 102 pS) and two K+ channels with similar conductance (20 pS). These last two channels differed in their time-dependent inactivation: one was a slow-inactivating channel, while the other belonged to the family of fast transient K+ channels. 3. The slow-inactivating 20 pS K+ channel was inhibited by hypoxia. Exposure to hypoxia produced a 50% reduction in channel activity (number of active channels in the patch x open probability). Hypoxia had no effect on the 20 pS transient K+ channels, whereas reduced O2 stimulated the KCa channels. 4. The genes encoding the alpha-subunits of slow-inactivating K+ channels for two members of the Shaker subfamily of K+ channels (Kv1.2 and Kv1.3) together with the Kv2.1, Kv3.1 and Kv3.2 channel genes were identified in PC12 cells. 5. The expression of the Shaker Kv1.2, but none of the other K+ channel genes, increased in cells exposed to prolonged hypoxia (18 h). The same cells were more responsive to a subsequent exposure to hypoxia (35% inhibition of K+ current measured in whole-cell voltage clamp) compared with the cells maintained in normoxia (19% inhibition). 6. These results indicate that the O2-sensitive K+ channel in PC12 cells is a 20 pS slow-inactivating K+ channel that is upregulated by hypoxia. This channel appears to belong to the Shaker subfamily of voltage-gated K+ channels. Images Figure 4 Figure 7 PMID:9263911

  5. Interaction of single and multi wall carbon nanotubes with the biological systems: tau protein and PC12 cells as targets.

    PubMed

    Zeinabad, Hojjat Alizadeh; Zarrabian, Alireza; Saboury, Ali Akbar; Alizadeh, Ali Mohammad; Falahati, Mojtaba

    2016-01-01

    Subtle changes in the structure of nanoparticles influence their surface tension and corresponding interaction with cells and proteins. Here, the interaction of the single wall carbon nanotube (SWCNT) and multiwall carbon nanotube (MWCNT) with different surface tension with tau protein was evaluated using a variety of techniques including far and near circular dichroism, fluorescence spectroscopy, dynamic light scattering, Zeta potential, and TEM evaluation. Also the cytotoxicity of SWCNT and MWCNT on the PC12 cell line as a model of nervous system cell line was investigated by the MTT, LDH, acridine orange/ethidium bromide staining, flow cytometry, caspase 3 activity, cell and membrane potential assays. It was observed that SWCNT induced more structural changes of tau protein relative to MWCNT/tau protein interaction. It was also revealed that SWCNT and MWCNT impaired the viability and complexity of PC12 cells in different modes of cytotoxicity. Analysis of cellular outcomes indicated that MWCNT in comparison with SWCNT resulted in induction of necrotic modes of cell death, whereas apoptotic modes of cell death were activated in SWCNT-incubated cells. Together these findings suggest that surface tension may be used to determine how nanoparticle structure affects neurotoxicity and protein conformational changes. PMID:27216374

  6. Interaction of single and multi wall carbon nanotubes with the biological systems: tau protein and PC12 cells as targets

    PubMed Central

    Zeinabad, Hojjat Alizadeh; Zarrabian, Alireza; Saboury, Ali Akbar; Alizadeh, Ali Mohammad; Falahati, Mojtaba

    2016-01-01

    Subtle changes in the structure of nanoparticles influence their surface tension and corresponding interaction with cells and proteins. Here, the interaction of the single wall carbon nanotube (SWCNT) and multiwall carbon nanotube (MWCNT) with different surface tension with tau protein was evaluated using a variety of techniques including far and near circular dichroism, fluorescence spectroscopy, dynamic light scattering, Zeta potential, and TEM evaluation. Also the cytotoxicity of SWCNT and MWCNT on the PC12 cell line as a model of nervous system cell line was investigated by the MTT, LDH, acridine orange/ethidium bromide staining, flow cytometry, caspase 3 activity, cell and membrane potential assays. It was observed that SWCNT induced more structural changes of tau protein relative to MWCNT/tau protein interaction. It was also revealed that SWCNT and MWCNT impaired the viability and complexity of PC12 cells in different modes of cytotoxicity. Analysis of cellular outcomes indicated that MWCNT in comparison with SWCNT resulted in induction of necrotic modes of cell death, whereas apoptotic modes of cell death were activated in SWCNT-incubated cells. Together these findings suggest that surface tension may be used to determine how nanoparticle structure affects neurotoxicity and protein conformational changes. PMID:27216374

  7. Eriocaulon buergerianum extract protects PC12 cells and neurons in zebrafish against 6-hydroxydopamine-induced damage

    PubMed Central

    2011-01-01

    Background Ericaulon buergerianum (Gujingcao) is an ophthalmic, anti-inflammatory and antimicrobial Chinese medicinal herb. This study aims to investigate the neuroprotective effects of Ericaulon buergerianum ethanol extract (EBE) and to elucidate its underlying action mechanism. Methods The viability of dopaminergic (DA) neuron in zebrafish was examined by anti-tyrosine hydroxylase (TH) immunostaining. The locomotor activity of zebrafish was assessed with a digital video tracking system. The viability and cellular damage of the PC12 cells were determined by MTT and LDH assays respectively. The nuclear morphological changes in apoptotic cells were evaluated with DNA staining by Hoechst 33342 dye. Intracellular nitric oxide (NO) was quantified by DAF-FM diacetate staining. The expression of inducible nitric oxide synthase (iNOS) was determined by Western blot. Results EBE inhibited the 6-OHDA-induced decrease in total distance of movement in zebrafish. Pretreatments of EBE (25, 50, 100 and 200 μg/ml) increased the viability of 6-OHDA-damaged PC12 cells in a dose dependent manner. Protection against 6-OHDA-induced nuclear fragmentation and accumulation of apoptotic bodies was also observed in EBE pretreated cells. Anti-oxidative (inhibition of NO production and iNOS expression in PC12 cells in vitro) activities of EBE are related to its neuroprotective effects in 6-OHDA-induced DA neuron damage. Conclusion EBE exhibited significant neuroprotective activities in zebrafish, including recovery of dopaminergic neuron loss caused by 6-OHDA in a dose-dependent manner in vivo, inhibition of 6-OHDA-induced decrease of total distance in movement in zebrafish. The iNOS-NO pathway may be involved. PMID:21527031

  8. Bryonolic Acid, a Triterpenoid, Protect Against N-methyl-d-Aspartate-Induced Neurotoxicity in PC12 Cells.

    PubMed

    Que, Jinhua; Ye, Miao; Zhang, Yuqin; Xu, Wen; Li, Huang; Xu, Wei; Chu, Kedan

    2016-01-01

    Calcium overload is considered to be one of the mechanisms of cerebral ischemia. Ca(2+) influx and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and cAMP response element-binding protein (CREB) phosphorylation are considered to be involved in N-Methyl-d-aspartate (NMDA)-induced apoptosis process. This study investigated the neuroprotective effects of bryonolic acid (BA) in an NMDA-induced rat adrenal pheochromocytoma cell line (PC12) cells and the potential mechanism. PC12 was treated by NMDA to establish an excitotoxicity model. BA (110,100 and 1000 μM final concentration) was added to the medium 24 h prior to the addition of NMDA. Subsequently, a methyl thiazolyl tetrazolium (MTT) assay and a lactate dehydrogenase (LDH) release were performed. Ca(2+) concentration was demonstrated using a scanning-dual wavelength fluorimetric method. In addition, protein and mRNA levels were determined via Western blot and real-time PCR. In the presence of BA, MTT assay and LDH assay showed that more cells were viable in comparison with the NMDA group. Moreover, the concentration of Ca(2+) decreased with the addition of BA in culture. Furthermore, BA could upregulate protein expressions of Bcl-2, p-CREB, and p-CaMKII and downregulate protein expression of Bax. The mRNA results showed that the pattern of mRNA expression were similar to their respective protein levels. All these results indicate that BA protected PC12 cells against NMDA-induced apoptosis by inhibiting Ca(2+) influx and regulating gene expression in the Ca(2+)-CaMKII-CREB signal pathway. Therefore, the present study supports the notion that BA may be a promising neuroprotective agent for the treatment of cerebral ischemia disease. PMID:27043504

  9. Membrane depolarization in PC-12 cells during hypoxia is regulated by an O2-sensitive K+ current.

    PubMed

    Zhu, W H; Conforti, L; Czyzyk-Krzeska, M F; Millhorn, D E

    1996-08-01

    The effects of hypoxia on K+ current (IK), resting membrane potential, and cytosolic free Ca2+ in rat pheochromocytoma (PC-12) cells were studied. Whole cell voltage- and current-clamp experiments were performed to measure IK and membrane potential, respectively. Cytosolic free Ca2+ level was measured using the Ca(2+)-sensitive fluorescent dye fura 2. Depolarizing voltage steps to +50 mV from a holding potential of -90 mV elicited a slowly inactivating, tetraethylammonium chloride-sensitive, and Ca(2+)-insensitive IK that was reversibly inhibited by reduced O2 tension. Graded reduction in PO2 (from 150 to 0 mmHg) induced a graded inhibition of O2-sensitive IK [IK(O2)] up to 46% at 0 mmHg. Moreover, hypoxia induced a 19-mV membrane depolarization and a twofold increase in cytosolic free Ca2+. In Ca(2+)-free condition, inhibition of IK(O2) induced an 8-mV depolarization, suggesting that inhibition of IK(O2) was responsible for initiating depolarization. The effect of reduced PO2 on the current-voltage relationship showed a reduction of outward current and a 14-mV shift in the reversal potential comparable with the amount of depolarization measured in current clamp experiments. Neither Ca(2+)-activated IK nor inwardly rectifying IK are responsible for the hypoxia-induced depolarization. In conclusion, PC-12 cells express an IK(O2), inhibition of which leads to membrane depolarization and increased intracellular Ca2+, making the PC-12 clonal cell line a useful model for studying the molecular and biophysical mechanisms that mediate O2 chemosensitivity. PMID:8770007

  10. Improved restriction landmark cDNA scanning and its application to global analysis of genes regulated by nerve growth factor in PC12 cells.

    PubMed

    Mayumi, K; Yaoi, T; Kawai, J; Kojima, S; Watanabe, S; Suzuki, H

    1998-07-30

    Restriction landmark cDNA scanning (RLCS) is a novel method by which more than 1000 genes can be simultaneously and quantitatively displayed as two-dimensional gel spots. Here we present an adaptation that allows an individual spot to correspond to a unique gene species without redundancy in more than two gel patterns. Using this improved RLCS, we examined global changes on the gene expression of PC12 cells before and after treatment with nerve growth factor. Among a total of 3000 spots, 21 (0.70%) and 91 (3.03%) spots newly appeared and became more intense with treatment. On the other hand, 15 (0.50%) and 44 (1.47%) spots disappeared, becoming less intense with treatment. These observations suggest that approx. 6% of the detected PC12 genes are up-(3.73%) or down-(1.97%) regulated when the cells differentiate to neuronal cells. In comparison with the results obtained using the expressed-sequence-tag approach, previously reported by Lee et al. (Proc. Natl. Acad. Sci. USA 92 (1995) 8303-8307), RLCS should be useful for quantitatively examining the global change of differentially expressed genes of various expression levels. PMID:9714711

  11. Lycium chinensis Mill attenuates glutamate induced oxidative toxicity in PC12 cells by increasing antioxidant defense enzymes and down regulating ROS and Ca(2+) generation.

    PubMed

    Olatunji, Opeyemi J; Chen, Hongxia; Zhou, Yifeng

    2016-03-11

    Lycium chinensis Mill is a famous traditional Chinese medicine which displays several medicinal activities including antioxidant and neuroprotective activities. However, the mechanism of action towards the neuroprotective action has not been fully elucidated. This work was aimed at investigating the neuroprotective effects of L. chinensis Mill against glutamate-induced oxidative neurotoxicity in PC12 cells. Oxidative cell death was induced with 5mM glutamate in PC12 cells. Cell viability, LDH release, intracellular Ca(2+) concentration, reactive oxygen species (ROS) accumulation, GSH-Px, CAT and SOD antioxidant enzyme levels were measured. Our results indicated that pretreatment of PC12 cells with L. chinensis Mill extracts markedly attenuated the loss of cell viability, the release of lactate dehydrogenase (LDH), Ca(2+) overload, ROS generation, and cell apoptosis induced by glutamate toxicity. Furthermore, L. chinensis Mill extracts also significantly increased the levels of innate antioxidant enzymes GSH-Px, SOD and CAT in glutamate-induced PC12 cells. Conclusively, our results provided substantial evidence that L. chinensis Mill protected PC12 cells against glutamate-induced cell death by attenuating ROS generation, Ca(2+) influx, and increased the antioxidant defense capacity of PC12 cells against oxidative stress damages, suggesting the possible potential of extracts from the plant as sources of bioactive molecules in the treatment of neurodegenerative disorders. PMID:26536075

  12. Acetylated Chitosan Oligosaccharides Act as Antagonists against Glutamate-Induced PC12 Cell Death via Bcl-2/Bax Signal Pathway

    PubMed Central

    Hao, Cui; Gao, Lixia; Zhang, Yiran; Wang, Wei; Yu, Guangli; Guan, Huashi; Zhang, Lijuan; Li, Chunxia

    2015-01-01

    Chitosan oligosaccharides (COSs), depolymerized products of chitosan composed of β-(1→4) d-glucosamine units, have broad range of biological activities such as antitumour, antifungal, and antioxidant activities. In this study, peracetylated chitosan oligosaccharides (PACOs) and N-acetylated chitosan oligosaccharides (NACOs) were prepared from the COSs by chemcal modification. The structures of these monomers were identified using NMR and ESI-MS spectra. Their antagonist effects against glutamate-induced PC12 cell death were investigated. The results showed that pretreatment of PC12 cells with the PACOs markedly inhibited glutamate-induced cell death in a concentration-dependent manner. The PACOs were better glutamate antagonists compared to the COSs and the NACOs, suggesting the peracetylation is essential for the neuroprotective effects of chitosan oligosaccharides. In addition, the PACOs pretreatment significantly reduced lactate dehydrogenase release and reactive oxygen species production. It also attenuated the loss of mitochondrial membrane potential. Further studies indicated that the PACOs inhibited glutamate-induced cell death by preventing apoptosis through depressing the elevation of Bax/Bcl-2 ratio and caspase-3 activation. These results suggest that PACOs might be promising antagonists against glutamate-induced neural cell death. PMID:25775423

  13. A polysaccharide isolated from Cynomorium songaricum Rupr. protects PC12 cells against H2O2-induced injury.

    PubMed

    Wang, Fengxia; Liu, Qin; Wang, Wei; Li, Xibo; Zhang, Ji

    2016-06-01

    As a great deal of interest is developed to study novel bioactive components with health benefit effects from natural resources, in this paper, a rat pheochromocytoma line 12 (PC12) cell is built to observe the protective effect of a Cynomorium songaricum Rupr. polysaccharide (CSP) against H2O2-induced oxidative stress. Fluorescence microscope, flow cytometry and micro-plate reader are used to assess cell viability and apoptosis. And the levels of reactive oxygen species (ROS), 8-hydroxy-2'-deoxyguanosine (8-OH-dG), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and lactate dehydrogenase (LDH) are evaluated. The results show that, the CSP can significantly protect PC12 cells against H2O2-induced oxidative stress, increase the intracellular antioxidase system load and inhibit H2O2-induced apoptosis by scavenging of ROS, regulating cell cycle, preventing DNA damage and protecting the cell membrane. This research would be benefit for preventing and curing the oxidation-related diseases in polysaccharide study. PMID:26853824

  14. Iridoids and sesquiterpenoids of Valeriana stenoptera and their effects on NGF-induced neurite outgrowth in PC12 cells.

    PubMed

    Dong, Fa-Wu; Wu, Zhi-Kun; Yang, Liu; Zi, Chen-Ting; Yang, Dan; Ma, Rui-Jing; Liu, Zhen-Hua; Luo, Huai-Rong; Zhou, Jun; Hu, Jiang-Miao

    2015-10-01

    Twenty-one compounds (nine iridoids and twelve sesquiterpenoids), including ten previously unknown (five iridoids and five sesquiterpenoids) were isolated from whole dried material of Valeriana stenoptera. Structures were established on the basis of extensive spectroscopic analysis and the relative stereochemistry of 13-hydroxypatchoulol A was further confirmed by X-ray crystallographic data. All isolates were evaluated for their effects on nerve growth factor (NGF)-mediated neurite outgrowth in pheochromocytoma (PC12) cells and seven compounds showed potent promoting effects. PMID:26343415

  15. Synthetic Chalcones with Potent Antioxidant Ability on H2O2-Induced Apoptosis in PC12 Cells

    PubMed Central

    Wu, Jian-Zhang; Cheng, Chan-Chan; Shen, Lai-Lai; Wang, Zhan-Kun; Wu, Shou-Biao; Li, Wu-Lan; Chen, Su-Hua; Zhou, Rong-Ping; Qiu, Pei-Hong

    2014-01-01

    Chalcone derivatives (E)-3-(4-hydroxy-3-methoxyphenyl)-1-(4-methoxyphenyl) prop-2-en-1-one and (E)-3-(4-hydroxyphenyl)-1-(4-methoxyphenyl) prop-2-en-1-one (Compounds 1 and 2) have been demonstrated to be potent anti-inflammatory agents in our previous study. In light of the relationship of intracellular mechanisms between anti-inflammatories and antioxidants, we further designed and synthesized a series of chalcone derivatives based on 1 and 2, to explore their antioxidant efficacy. The majority of the derivatives exhibited strong protective effects on PC12 (PC12 rat pheochromocytoma) cells exposed to H2O2, and all compounds were nontoxic. A preliminary structure-activity relationship was proposed. Compounds 1 and 1d ((E)-2-methoxy-4-(3-(4-methoxyphenyl)-3-oxoprop-1-en-1-yl) phenyl acrylate) exerted the action in a good dose-dependent manner. Quantitative RT-PCR (qRT-PCR) and western blot analysis showed that 1 and 1d significantly improve the expression of nuclear factor erythroid 2 p45-related factor 2 (Nrf2)-dependent antioxidant genes g-Glutamylcysteine Ligase Catalytic Subunit (GCLC) and heme oxygenase-1 (HO-1) and their corresponding proteins (γ-glutamyl cysteine synthase (γ-GCS) and HO-1) in PC12 cells. Inhibition of GCLC and HO-1 by specific inhibitors, l-buthionine-S-sulfoximine (BSO) and zinc protoporphyrin (ZnPP), respectively, partially reduce the protective effect of 1 and 1d. These data present a series of novel chalcone analogs, especially compounds 1 and 1d, as candidates for treating oxidative stress-related disease by activating the Nrf2-antioxidant responsive element (ARE) pathway. PMID:25318055

  16. Electrochemical Imaging of Dopamine Release from Three-Dimensional-Cultured PC12 Cells Using Large-Scale Integration-Based Amperometric Sensors.

    PubMed

    Abe, Hiroya; Ino, Kosuke; Li, Chen-Zhong; Kanno, Yusuke; Inoue, Kumi Y; Suda, Atsushi; Kunikata, Ryota; Matsudaira, Masahki; Takahashi, Yasufumi; Shiku, Hitoshi; Matsue, Tomokazu

    2015-06-16

    In the present study, we used a large-scale integration (LSI)-based amperometric sensor array system, designated Bio-LSI, to image dopamine release from three-dimensional (3D)-cultured PC12 cells (PC12 spheroids). The Bio-LSI device consists of 400 sensor electrodes with a pitch of 250 μm for rapid electrochemical imaging of large areas. PC12 spheroids were stimulated with K(+) to release dopamine. Poststimulation dopamine release from the PC12 spheroids was electrochemically imaged using the Bio-LSI device. Bio-LSI clearly showed the effects of the dopaminergic drugs l-3,4-dihydroxyphenylalanine (L-DOPA) and reserpine on K(+)-stimulated dopamine release from PC12 spheroids. Our results demonstrate that dopamine release from PC12 spheroids can be monitored using the device, suggesting that the Bio-LSI is a promising tool for use in evaluating 3D-cultured dopaminergic cells and the effects of dopaminergic drugs. To the best of our knowledge, this report is the first to describe electrochemical imaging of dopamine release by PC12 spheroids using LSI-based amperometric sensors. PMID:25971414

  17. Protective Effect of Diospyros kaki against Glucose-Oxygen-Serum Deprivation-Induced PC12 Cells Injury

    PubMed Central

    Forouzanfar, Fatemeh; Torabi, Shaghayegh; Askari, Vahid R.; Asadpour, Elham; Sadeghnia, Hamid R.

    2016-01-01

    Ischemic cerebrovascular disease is one of the most common causes of death in the world. Recent interests have been focused on natural antioxidants and anti-inflammatory agents as potentially useful neuroprotective agents. Diospyros kaki (persimmon) has been shown to exert anti-inflammatory, antioxidant, and antineoplastic effects. However, its effects on ischemic damage have not been evaluated. Here, we used an in vitro model of cerebral ischemia and studied the effects of hydroalcoholic extract of peel (PeHE) and fruit pulp (PuHE) of persimmon on cell viability and markers of oxidative damage mainly intracellular reactive oxygen species (ROS) induced by glucose-oxygen-serum deprivation (GOSD) in PC12 cells. GOSD for 6 h produced significant cell death which was accompanied by increased levels of ROS. Pretreatment with different concentrations of PeHE and PuHE (0–500 μg/mL) for 2 and 24 h markedly restored these changes only at high concentrations. However, no significant differences were seen in the protection against ischemic insult between different extracts and the time of exposure. The experimental results suggest that persimmon protects the PC12 cells from GOSD-induced injury via antioxidant mechanisms. Our findings might raise the possibility of potential therapeutic application of persimmon for managing cerebral ischemic and other neurodegenerative disorders. PMID:26941791

  18. Protective Effect of Diospyros kaki against Glucose-Oxygen-Serum Deprivation-Induced PC12 Cells Injury.

    PubMed

    Forouzanfar, Fatemeh; Torabi, Shaghayegh; Askari, Vahid R; Asadpour, Elham; Sadeghnia, Hamid R

    2016-01-01

    Ischemic cerebrovascular disease is one of the most common causes of death in the world. Recent interests have been focused on natural antioxidants and anti-inflammatory agents as potentially useful neuroprotective agents. Diospyros kaki (persimmon) has been shown to exert anti-inflammatory, antioxidant, and antineoplastic effects. However, its effects on ischemic damage have not been evaluated. Here, we used an in vitro model of cerebral ischemia and studied the effects of hydroalcoholic extract of peel (PeHE) and fruit pulp (PuHE) of persimmon on cell viability and markers of oxidative damage mainly intracellular reactive oxygen species (ROS) induced by glucose-oxygen-serum deprivation (GOSD) in PC12 cells. GOSD for 6 h produced significant cell death which was accompanied by increased levels of ROS. Pretreatment with different concentrations of PeHE and PuHE (0-500 μg/mL) for 2 and 24 h markedly restored these changes only at high concentrations. However, no significant differences were seen in the protection against ischemic insult between different extracts and the time of exposure. The experimental results suggest that persimmon protects the PC12 cells from GOSD-induced injury via antioxidant mechanisms. Our findings might raise the possibility of potential therapeutic application of persimmon for managing cerebral ischemic and other neurodegenerative disorders. PMID:26941791

  19. Chitosan attenuates dibutyltin-induced apoptosis in PC12 cells through inhibition of the mitochondria-dependent pathway.

    PubMed

    Wang, Xiaorui; Miao, Junqiu; Yan, Chaoqun; Ge, Rui; Liang, Taigang; Liu, Enli; Li, Qingshan

    2016-10-20

    Dibutyltin (DBT) which was widely used as biocide and plastic stabilizer has been described as a potent neurotoxicant. Chitosan (CS), a natural nontoxic biopolymer, possesses a variety of biological activities including antibacterial, antifungal, free radical scavenging and neuroprotective activities. The present study was undertaken to investigate the protective effects of CS against DBT-induced apoptosis in rat pheochromocytoma (PC12) cells and the underlying mechanisms in vitro. Our results demonstrated that pretreatment with CS significantly increased the cell viability and decreased lactate dehydrogenase (LDH) release induced by DBT in a dose-dependent manner. Meanwhile, DBT-induced cell apoptosis, mitochondrial membrane potential (MMP) disruption, and generation of intracellular reactive oxygen species (ROS) were attenuated by CS. Real-time PCR assay showed that DBT markedly enhanced the mRNA levels of Bax, Bad, cytochrome-c and Apaf-1, reduced the Bcl-2 and Bcl-xL mRNA levels, while these genes expression alteration could be partially reversed by CS treatment. Furthermore, CS also inhibited the DBT-inducted activation of caspase-9, and -3 at mRNA and protein expression levels. Taken together, these results suggested that CS could protect the PC12 cells from apoptosis induced by DBT through inhibition of the mitochondria-dependent pathway. PMID:27474647

  20. The Aqueous Extract of Rhizome of Gastrodia elata Protected Drosophila and PC12 Cells against Beta-Amyloid-Induced Neurotoxicity

    PubMed Central

    Ng, Chun-Fai; Ko, Chun-Hay; Koon, Chi-Man; Xian, Jia-Wen; Leung, Ping-Chung; Fung, Kwok-Pui; Chan, Ho Yin Edwin; Lau, Clara Bik-San

    2013-01-01

    This study aims to investigate the neuroprotective effect of the rhizome of Gastrodia elata (GE) aqueous extract on beta-amyloid(Aβ)-induced toxicity in vivo and in vitro. Transgenic Drosophila mutants with Aβ-induced neurodegeneration in pan-neuron and ommatidia were used to determine the efficacy of GE. The antiapoptotic and antioxidative mechanisms of GE were also studied in Aβ-treated pheochromocytoma (PC12) cells. In vivo studies demonstrated that GE (5 mg/g Drosophila media)-treated Drosophila possessed a longer lifespan, better locomotor function, and less-degenerated ommatidia when compared with the Aβ-expressing control (all P < 0.05). In vitro studies illustrated that GE increased the cell viability of Aβ-treated PC12 cells in dose-dependent manner, probably through attenuation of Aβ-induced oxidative and apoptotic stress. GE also significantly upregulated the enzymatic activities of catalase, superoxide dismutase, and glutathione peroxidase, leading to the decrease of reactive oxidation species production and apoptotic marker caspase-3 activity. In conclusion, our current data presented the first evidence that the aqueous extract of GE was capable of reducing the Aβ-induced neurodegeneration in Drosophila, possibly through inhibition of apoptosis and reduction of oxidative stress. GE aqueous extract could be developed as a promising herbal agent for neuroprotection and novel adjuvant therapies for Alzheimer's disease. PMID:24174977

  1. Heat shock protein 70 protects PC12 cells against ischemia-hypoxia/reoxygenation by maintaining intracellular Ca2+ homeostasis

    PubMed Central

    Liu, Yuan; Wang, Xue-chun; Hu, Dan; Huang, Shu-ran; Li, Qing-shu; Li, Zhi; Qu, Yan

    2016-01-01

    Heat shock protein 70 (HSP70) maintains Ca2+ homeostasis in PC12 cells, which may protect against apoptosis; however, the mechanisms of neuroprotection are unclear. Therefore, in this study, we examined Ca2+ levels in PC12 cells transfected with an exogenous lentiviral HSP70 gene expression construct, and we subsequently subjected the cells to ischemia-hypoxia/reoxygenation injury. HSP70 overexpression increased neuronal viability and ATPase activity, and it decreased cellular reactive oxygen species levels and intracellular Ca2+ concentration after hypoxia/reoxygenation. HSP70 overexpression enhanced the protein and mRNA expression levels of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA), but it decreased the protein and mRNA levels of inositol 1,4,5-trisphosphate receptor (IP3R), thereby leading to decreased intracellular Ca2+ concentration after ischemia-hypoxia/reoxygenation. These results suggest that exogenous HSP70 protects against ischemia-hypoxia/reoxygenation injury, at least in part, by maintaining cellular Ca2+ homeostasis, by upregulating SERCA expression and by downregulating IP3R expression.

  2. METHYLMERCURY BUT NOT MERCURIC CHLORIDE INDUCES APOPTOTIC CELL DEATH IN PC12 CELLS.

    EPA Science Inventory

    Normal development of the nervous system requires the process of apoptosis, a form of programmed cell death, to remove superfluous neurons. Abnormal patterns of apoptosis may be a consequence of exposure to environmental neurotoxicants leading to a disruption in the tightly regul...

  3. Protective effects of components of the Chinese herb grassleaf sweetflag rhizome on PC12 cells incubated with amyloid-beta42

    PubMed Central

    Liang, Zi-hao; Cheng, Xiao-hui; Ruan, Zhi-gang; Wang, Han; Li, Shan-shan; Liu, Jing; Li, Guo-ying; Tian, Su-min

    2015-01-01

    The major ingredients of grassleaf sweetflag rhizome are β-asarone and eugenol, which can cross the blood-brain barrier and protect neurons. This study aimed to observe the neuroprotective effects and mechanisms of β-asarone and eugenol, components of the Chinese herb grassleaf sweetflag rhizome, on PC12 cells. First, PC12 cells were cultured with different concentrations (between 1 × 10-10 M and 1 × 10-5 M) of β-asarone and eugenol. Survival rates of PC12 cells were not significantly affected. Second, PC12 cells incubated with amyloid-beta42, which reduced cell survival, were cultured under the same conditions (1 × 10-6 M β-asarone and eugenol). The survival rates of PC12 cells significantly increased, while expression levels of the mRNAs for the pro-apoptotic protein Bax decreased, and those for the anti-apoptotic protein Bcl mRNA increased. In addition, the combination of β-asarone with eugenol achieved better results than either component alone. Our experimental findings indicate that both β-asarone and eugenol protect PC12 cells through inhibiting apoptosis, and that the combination of the two is better than either alone. PMID:26487858

  4. rAAV/ABAD-DP-6His attenuates oxidative stress-induced injury of PC12 cells

    PubMed Central

    Jia, Mingyue; Wang, Mingyu; Yang, Yi; Chen, Yixin; Liu, Dujuan; Wang, Xu; Song, Lei; Wu, Jiang; Yang, Yu

    2014-01-01

    Our previous studies have revealed that amyloid β (Aβ)-binding alcohol dehydrogenase (ABAD) decoy peptide antagonizes Aβ42-induced neurotoxicity. However, whether it improves oxidative stress injury remains unclear. In this study, a recombinant adenovirus constitutively secreting and expressing Aβ-ABAD decoy peptide (rAAV/ABAD-DP-6His) was successfully constructed. Our results showed that rAAV/ABAD-DP-6His increased superoxide dismutase activity in hydrogen peroxide-induced oxidative stress-mediated injury of PC12 cells. Moreover, rAAV/ABAD-DP-6His decreased malondialdehyde content, intracellular Ca2+ concentration, and the level of reactive oxygen species. rAAV/ABAD-DP-6His maintained the stability of the mitochondrial membrane potential. In addition, the ATP level remained constant, and apoptosis was reduced. Overall, the results indicate that rAAV/ABAD-DP-6His generates the fusion peptide, Aβ-ABAD decoy peptide, which effectively protects PC12 cells from oxidative stress injury induced by hydrogen peroxide, thus exerting neuroprotective effects. PMID:25206842

  5. Angiopoietin-1 induces neurite outgrowth of PC12 cells in a Tie2-independent, β1-integrin dependent manner

    PubMed Central

    Chen, Xinyu; Fu, Wen; Tung, Christie E.; Ward, Nicole L.

    2009-01-01

    Overexpression of Angiopoietin (Ang) 1 in the brain results in increased vascularization and altered neuronal dendrite configuration. We hypothesized that Ang1 acts directly on neurons inducing neurite outgrowth. We stimulated PC12 cells with Ang1 and observed outgrowth levels comparable to nerve growth factor (NGF). Western blotting and RT-PCR demonstrated the absence of the Ang1 receptor, Tie2 and the presence of β1-integrin. Downstream of β1-integrin, Ang1 stimulation led to a ~2.6 fold increase in focal adhesion kinase (FAK) phosphorylation and no change in activation of mitogen-activated protein kinase (MAPK) nor c-Jun N-terminal kinase (JNK). Conversely, NGF stimulation had no effect on FAK phosphorylation but lead to a ~3.1 and ~2 fold increase in phosphorylation of MAPK and JNK. Ang1, but not NGF-mediated outgrowth was attenuated following functional inhibition of β1-integrin and FAK, and Wortmannin inhibited neurite outgrowth mediated by both. Our results suggest that Ang1 induces neurite outgrowth in PC12 cells in a Tie2-independent, β1-integrin-FAK-PI3K-Akt dependent manner and that NGF and Ang1 mediate neurite outgrowth via two independent signaling mechanisms. PMID:19379779

  6. A convenient, high-throughput method for enzyme-luminescence detection of dopamine released from PC12 cells.

    PubMed

    Shinohara, Hiroaki; Wang, Feifei; Hossain, S M Zakir

    2008-01-01

    This protocol represents a novel enzyme-luminescence method to detect dopamine sensitively and rapidly with high temporal resolution. In principle, dopamine is first oxidized with tyramine oxidase to produce H(2)O(2), and then the produced H(2)O(2) reacts with luminol to generate chemiluminescence in the presence of horseradish peroxidase (POD). We applied this method successfully to perform real-time monitoring of dopamine release from PC12 cells using a luminescence plate reader upon stimulation with several drugs (e.g., acetylcholine, bradykinin). The results indicated that the dopamine release from PC12 cells was modulated by these drugs in a way similar to that found by using several conventional analytical techniques, such as HPLC-electrochemical detector (ECD). Unlike other assays, this assay technique is simple, rapid, highly sensitive and thus useful for assessment of effects of drugs on the nervous system. The dopamine release assay takes only < or =1 h once reagent setup and culture plates' preparation are finished. PMID:18833200

  7. Cocktail of Four Active Components Derived from Sheng Mai San Inhibits Hydrogen Peroxide-Induced PC12 Cell Apoptosis Linked with the Caspase-3/ROCK1/MLC Pathway.

    PubMed

    Shen, Kai; Wang, Yan; Zhang, Yuanyuan; Zhou, Huana; Song, Yunfei; Cao, Zhengyu; Kou, Junping; Yu, Boyang

    2015-12-01

    SMXZF, a combination of four active components including ginsenoside Rb1, ginsenoside Rg1, schizandrin, and DT-13 (6:9:5:4) that is derived from Sheng Mai San, has previously been shown to exhibit a neuroprotective effect against focal ischemia/reperfusion injury. Due to the key role of oxidative stress-induced neuronal apoptosis in the pathogenesis of stroke, we examined the effect of SMXZF in oxidative stress responses and related signaling pathways in differentiated pheochromocytoma (PC12) cells. Our results showed that incubation with 100 μM hydrogen peroxide (H2O2) for 12 hr could reduce cell viability and superoxide dismutase (SOD) activity with an increase of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA). In contrast, SMXZF alleviated oxidative stress by reducing the over-production of ROS and MDA in parallel to concentration dependently increasing SOD activity. In addition, SMXZF significantly attenuated H2O2-induced caspase-3 cleavage, Rho-associated coiled-coil-containing protein kinase-1 (ROCK1) activation, and myosin light-chain (MLC) phosphorylation. Inhibiting either caspase-3 or ROCK1 mimicked the effect. Consequently, our results suggest that SMXZF inhibits H2O2-induced neuronal apoptosis linked with the caspase-3/ROCK1/MLC pathway, which has also been confirmed to be a positive feedback loop in oxidative stress-injured PC12 cells. These findings support the pharmacological potential of SMXZF for neurodegenerative diseases and stroke. PMID:26058543

  8. Protective Effect of Punica granatum L. against Serum/Glucose Deprivation-Induced PC12 Cells Injury

    PubMed Central

    Forouzanfar, Fatemeh; Afkhami Goli, Amir; Asadpour, Elham; Ghorbani, Ahmad; Sadeghnia, Hamid Reza

    2013-01-01

    The discovery and development of natural products with potent antioxidant, anti-inflammatory, and antiapoptotic properties have been one of the most interesting and promising approaches in the search for the treatment of many neurodegenerative diseases including ischemic stroke. Serum/glucose deprivation (SGD) has served as an excellent in vitro model for the understanding of the molecular mechanisms of neuronal damage during ischemia and for the development of neuroprotective drugs against ischemia-induced brain injury. Recent studies suggested that pomegranate (Punica granatum L.) or its active constituents exert pharmacological actions such as antioxidant, anti-inflammatory, and neuroprotective properties. Therefore, in this study we investigated the possible protective effects of different extracts of pomegranate against SGD-induced PC12 cells injury. Initially, the cells were pretreated with different concentrations of pulp hydroalcoholic extract (PHE), pulp aqueous extract (PAE) and pomegranate juice (PJ) for 2 h and then deprived of serum/glucose (SGD) for 6 and 12 h. SGD caused a significant reduction in cell viability (measured by the MTT assay) after 6 and 12 h, as compared with control cells (P < 0.001). Pretreatment with PHE, PAE, and PJ significantly and concentration-dependently increased cell viability following SGD insult for 6 and 12 h. A significant increase in DNA damage (measured by the comet assay) was seen in nuclei of cells following SGD for 12 h (P < 0.001). In control groups, no significant difference was seen in DNA damage between PHE, PAE, and PJ-pretreated and vehicle-pretreated PC12 cells (P > 0.05). PHE, PAE, and PJ pretreatment resulted in a significant decrease in DNA damage following ischemic insult (P < 0.001). This suppression of DNA damage by PHE, PAE and PJ was found to be concentration dependent. These data indicate that there is a cytoprotective property in PHE, PAE, and PJ under SGD condition in PC12 cells

  9. Protective, antioxidative and antiapoptotic effects of 2-methoxy-6-acetyl-7-methyljuglone from Polygonum cuspidatum in PC12 cells.

    PubMed

    Li, Ying Bo; Lin, Zhu Qing; Zhang, Zai Jun; Wang, Mei Wei; Zhang, Huan; Zhang, Qing Wen; Lee, Simon Ming Yuen; Wang, Yi Tao; Hoi, Pui Man

    2011-03-01

    Much correlative evidence indicates that the oxidative modification of protein by reactive oxygen species (ROS) is involved in normal aging as well as the pathogenesis of neurodegenerative diseases such as Alzheimer's disease. In this study, we explored the antioxidative and neuroprotective effects of a naphthoquinone, 2-methoxy-6-acetyl-7-methyljuglone (MAM), purified from the dried rhizome of POLYGONUM CUSPIDATUM (Chinese name Hu-Zhang). Pretreatments with MAM (24 h) were investigated for their protective effects against apoptosis induced by the oxidizing agent TERT-butyl hydroperoxide ( T-BHP) in PC12 cells. The results indicated that MAM pretreatments could effectively protect PC12 cells against cytotoxicity induced by T-BHP in a dose-dependent manner. Cell viability was determined by both MTT and LDH assays. Increasing concentrations of MAM enhanced cell viability significantly and completely prevented cell death induced by T-BHP at 2.5 µM. The corresponding extracellular lactate dehydrogenase (LDH) levels were also attenuated significantly by various concentrations of MAM. In addition, it was found that the antioxidative effect of MAM was stronger than those of resveratrol and lipoic acid. The antiapoptotic property of MAM was further investigated with Hoechst 33342 nuclear staining and TUNEL assay. Pretreatments of MAM were able to prevent the T-BHP-induced nucleus fragmentation and accumulation of apoptotic bodies (commonly accepted as markers of apoptosis) inside the cells in a dose-dependent manner. T-BHP induced the phosphorylation of ERK 1/2, JNK and p38 MAPK, which were all impeded by pretreatments with MAM, indicating that MAM may act as a potent antioxidant which significantly interferes with the MAPK apoptotic cascades, probably rescuing cells by inhibiting the death pathways. PMID:20922651

  10. Mulberry Extracts Alleviate Aβ25–35-Induced Injury and Change the Gene Expression Profile in PC12 Cells

    PubMed Central

    Song, Nan; Yang, Hongpeng; Pang, Wei; Qie, Zhiwei; Lu, Hao; Tan, Long; Li, Haiqiang; Sun, Shoudan; Lian, Fuzhi; Qin, Chuan; Jiang, Yugang

    2014-01-01

    Mulberry, which contained high amounts of anthocyanins, has been used in traditional Chinese medicine. Mulberry fruit extracts (ME) have demonstrated the antioxidant activity and neuroprotection. The study was to investigate the neuroprotective efficacy of ME against β-amyloid 25–35- (Aβ25–35-) induced PC12 cells injury. Cells preincubated with or without ME (200 μg/mL) for 24 h were treated with Aβ25–35 (20 μmol/L) for another 24 h. Cell viability was assessed by MTT, gene expression profiles were examined by cDNA microarrays, and RT-PCR were used to confirm the results of microarray assays. ME pretreatment was found to neutralize the cytotoxicity and prevent Aβ25–35-induced cells injury. Analyses of gene expression profile revealed that genes involving cell adhesion, peptidase activity, cytokine activity, ion binding activity, and angiogenesis regulation were significantly modulated by ME pretreatment. Among those genes, Apaf1, Bace2, and Plcb4 were enriched in the “Alzheimer's disease-reference pathway” and downregulated after ME intervention. RT-PCR results showed that ME preincubation could significantly inhibit Aβ25–35 increased mRNA levels of these three genes. Overall, ME pretreatment could substantially alleviate PC12 cells injury and downregulate expression of AD-related genes, such as Apaf1, Bace2, and Plcb4. This study has a great nutrigenomics interest and brings new and important light in the field of AD intervention. PMID:25580148