Science.gov

Sample records for diffraction based residual

  1. Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, Robert M.; Cohen, Isadore

    1990-01-01

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.

  2. Method for improving x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, R.M.; Cohen, I.

    1988-04-26

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys is discussed. Part of a predetermined area of the surface of a nickel-base alloy is covered with a dispersion. This exposes the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose, since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample. 2 figs.

  3. Diffraction-based optical correlator

    NASA Technical Reports Server (NTRS)

    Spremo, Stevan M. (Inventor); Fuhr, Peter L. (Inventor); Schipper, John F. (Inventor)

    2005-01-01

    Method and system for wavelength-based processing of a light beam. A light beam, produced at a chemical or physical reaction site and having at least first and second wavelengths, ?1 and ?2, is received and diffracted at a first diffraction grating to provide first and second diffracted beams, which are received and analyzed in terms of wavelength and/or time at two spaced apart light detectors. In a second embodiment, light from first and second sources is diffracted and compared in terms of wavelength and/or time to determine if the two beams arise from the same source. In a third embodiment, a light beam is split and diffracted and passed through first and second environments to study differential effects. In a fourth embodiment, diffracted light beam components, having first and second wavelengths, are received sequentially at a reaction site to determine whether a specified reaction is promoted, based on order of receipt of the beams. In a fifth embodiment, a cylindrically shaped diffraction grating (uniform or chirped) is rotated and translated to provide a sequence of diffracted beams with different wavelengths. In a sixth embodiment, incident light, representing one or more symbols, is successively diffracted from first and second diffraction gratings and is received at different light detectors, depending upon the wavelengths present in the incident light.

  4. Effects of oxygen partial pressure and annealing temperature on the residual stress of hafnium oxide thin-films on silicon using synchrotron-based grazing incidence X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Biswas, Debaleen; Sinha, Anil Kumar; Chakraborty, Supratic

    2016-10-01

    Synchrotron radiation-based grazing incidence X-ray diffraction (GI-XRD) technique is employed here to estimate the residual stress of < 10 nm thin hafnium oxide film deposited on Si (100) substrate at different argon/oxygen ratios using reactive rf sputtering. A decrease in residual stress, tensile in nature, is observed at higher annealing temperature for the samples deposited with increasing argon ratio in the Ar/O2 plasma. The residual stress of the films deposited at higher pAr (Ar:O2 = 4:1) is also found to be decreased with increasing annealing temperature. But the stress is more or less constant with annealing temperature for the films deposited at lower Ar/O2 (1:4) ratio. All the above phenomena can be explained on the basis of swelling of the interfacial layer and enhanced structural relaxation in the presence of excess Hf in hafnium oxide film during deposition.

  5. Neutron Diffraction Characterization of Residual Strain in Welded Inconel 718 for NASA Space Shuttle Flow Liners

    SciTech Connect

    Rathod, C.R.; Vaidyanathan, R.; Livescu, V.; Clausen, B.; Bourke, M. A. M.; Notardonato, W.U.; Femminineo, M.

    2004-06-28

    This work quantitatively assesses residual strains and stresses associated with the weld repair process used to repair cracks on NASA's space shuttle flow liners. The coupons used in this investigation were made of the same INCONEL 718 alloy used for the flow liners. They were subjected to identical welding and certification procedures that were carried out on the space shuttle. Neutron diffraction measurements at Los Alamos National Laboratory determined residual strains at selected locations in a welded coupon at 293 K and 135 K. The weld repair process introduced Mises effective residual stresses of up to 555 MPa. On comparing the measurements at 293 K and 135 K, no significant change to the residual strain profile was noted at the low temperature. This indicated minimal mismatch in the coefficients of thermal expansion between the base metal and the weld.

  6. X-ray diffraction analysis of residual stress in zirconia dental composites

    NASA Astrophysics Data System (ADS)

    Allahkarami, Masoud

    Dental restoration ceramic is a complex system to be characterized. Beside its essential biocompatibility, and pleasant appearance, it requires being mechanically strong in a catastrophic loading environment. Any design is restricted with geometry boundary and material property limits. Inspired by natural teeth, a multilayer ceramic is a smart way of achieving an enhanced restoration. Bi-layers of zirconia core covered by porcelain are known as one of the best multilayer restorations. Residual stresses may be introduced into a bi-layer dental ceramic restoration during its entire manufacturing process due to thermal expansion and elastic property mismatch. It is impossible to achieve a free of residual stresses bi-layer zirconia-porcelain restoration. The idea is to take the advantage of residual stress in design in such a way to prevent the crack initiation and progression. The hypothesis is a compressive residual stress at external contact surface would be enabling the restoration to endure a greater tensile stress. Optimizing the layers thickness, manufacturing process, and validating 3D simulations require development of new techniques of thickness, residual stresses and phase transformation measurement. In the present work, a combined mirco-tomography and finite element based method were adapted for thickness measurement. Two new 2D X-ray diffraction based techniques were adapted for phase transformation area mapping and combined phase transformation and residual stress measurement. Concerning the complex geometry of crown, an efficient method for X-ray diffraction data collection mapping on a given curved surface was developed. Finally a novel method for 3D dimensional x-ray diffraction data collection and visualization were introduced.

  7. Residual stress measurements in forced convective quenched steel bars by means of neutron diffraction

    SciTech Connect

    Hernandez-Morales, B.; Hawbolt, B.E.; Brimacombe, J.K.

    1996-12-31

    The residual stress distributions in 38.1 mm-dia., forced convective quenched bars of interstitial-free (IF), 1045 carbon, and alloyed steels were determined by neutron diffraction. The IF and 1045 carbon steel quenched bars exhibited compressive axial and circumferential (hoop) residual stresses near the surface and tensile values at the center. The radial residual stresses were tensile at all radial positions, decreasing towards zero near the surface. In contrast, the measured axial and circumferential components of the residual stress tensor in the alloyed eutectoid steel quenched bar were tensile near the surface and decreased to compressive values at the center. The radial component showed a maximum compressive value at the center and approached zero close to the surface. Metallographic analysis and hardness testing of the three steel specimens, revealed that the IF steel had transformed completely to ferrite, while the 1045 carbon steel bar transformed to martensite near the surface and a mixture of pearlite, ferrite and martensite at the center. On the other hand, the alloyed eutectoid steel specimen transformed entirely to martensite with small amounts of bainite near the center of the rod. The observed differences in the residual stress distributions in the three steels were explained based on the sequence of phase transformations that took place during quenching.

  8. Mapping of residual strains of a ceramic-to-metal joint using X-ray diffraction

    SciTech Connect

    Watkins, T.R.; Wang, X.L.; Spooner, S.; Hubbard, C.R.; Vance, S.J.; Rabin, B.H.; Williamson, R.L.

    1994-03-01

    In this study, the residual strains in the iron layer of a zirconia-iron joint, brazed with a metal alloy, were measured with X-ray diffraction as a function of distance from the joint. The residual strains were measured at various key locations indicated by a finite element model (FEM). The X-ray residual strain mapping results were compared to neutron diffraction mapping results. These data were combined to provide a complete residual strain profile of these samples and were compared with results of FEM.

  9. Neutron diffraction measurements of residual stresses in friction stir welding: a review

    SciTech Connect

    Woo, Wan Chuck; Feng, Zhili; Wang, Xun-Li; David, Stan A

    2011-01-01

    Significant amounts of residual stresses are often generated during welding and result in critical degradation of the structural integrity and performance of components. Neutron diffraction has become a well established technique for the determination of residual stresses in welds because of the unique deep penetration, three-dimensional mapping capability, and volume averaged bulk measurements characteristic of the scattering neutron beam. Friction stir welding has gained prominence in recent years. The authors reviewed a number of neutron diffraction measurements of residual stresses in friction stir welds and highlighted examples addressing how the microstructures and residual stresses are correlated with each other. An example of in situ neutron diffraction measurement result shows the evolution of the residual stresses during welding.

  10. Neutron diffraction residual stress studies for aero-engine component applications

    NASA Astrophysics Data System (ADS)

    Clay, K.; Small, C.

    1991-12-01

    Computer graphics for a presentation describing how Rolls-Royce is refining the method of residual stress measurement by neutron diffraction to suit the characteristic stress fields of components are presented. Results to date are given. An outline of how this residual stress data is to be used in developing stress models for critical rotating components is given.

  11. Volumetric measurement of residual stress using high energy x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Whitesell, R.; McKenna, A.; Wendt, S.; Gray, J.

    2016-02-01

    We present results and recent developments from our laboratory, bench-top high energy x-ray diffraction system (HEXRD), between diffraction energies 50 and 150 KeV, to measure internal strain of moderately sized objects. Traditional x-ray strain measurements are limited to a few microns depth due to the use of Cu Kα1 Mo Kα1 radiation. The use of high energy x-rays for volumetric measurements of strain is typically the domain of synchrotron sources. We discuss the use of industrial 320kVp tube sources to generate a brighter x-ray beam along with a method using the intrinsic 43 eV width of the Kα1 characteristic peak of tungsten to measure volumetric strains in a number of industrially relevant materials. We will present volumetric strain measurements from two examples, first, additive manufacturing (AM) parts with various build configurations and, secondly, residual strain depth profiles from shot peened surface treatments. The spatial resolution of these depth profiles is ˜75 microns. The development of a faster method as compared to energy dispersive or θ-2θ scans is based on the intensity variation measurement of the strain using the aforementioned 43 eV characteristic tungsten kα line. We will present recent results on the development of this new tool and on x-ray diffraction measurements at high energy.

  12. Residual stress characterization of welds and post-weld processes using x-ray diffraction techniques

    NASA Astrophysics Data System (ADS)

    Brauss, Michael E.; Pineault, James A.; Eckersley, John S.

    1998-03-01

    This paper illustrates the importance of residual stress characterization in welds and post weld processes. The failure to characterize residual stresses created during welding and/or post weld processes can lead to unexpected occurrences of stress corrosion cracking, distortion, fatigue cracking as well as instances of over design or over processing. The development of automated residual stress mapping and the availability of portable and fast equipment have now made the characterization of residual stresses using x-ray diffraction practical for process control and optimization. The paper presents examples where x-ray diffraction residual stress characterization techniques were applied on various kinds of welds including arc welds, TIG welds, resistance welds, laser welds and electron beam welds. The nondestructive nature of the x-ray diffraction technique has made the residual stress characterization of welds a useful tool for process optimization and failure analysis, particularly since components can be measured before and after welding and post welding processes. Some examples presented show the residual stresses before and after the application of post weld processes such as shot peening, grinding and heat treatment.

  13. X-ray diffraction measurement of residual stresses in thick, multi-pass steel weldments

    SciTech Connect

    Ruud, C.O.; Di Mascio, P.S.; Pangborn, R.N.; Snoha, D.J.

    1985-05-01

    A unique X-ray diffraction instrument for residual stress measurement has been developed that provides for speed, ease of measurement, accuracy, and economy of surface stress measurement. Application of this instrument with a material removal technique, e.g., electropolishing, has facilitated detailed, high resolution studies of three-dimensional stress fields. This paper describes the instrumentation and techniques applied to conduct the residual stress measurement and presents maps of the residual stress data obtained for the surfaces of a heavy 21/4 Cr 1 Mo steel plate weldment.

  14. Experimental determination of residual stress by neutron diffraction in a boiling water reactor core shroud

    SciTech Connect

    Payzant, A.; Spooner, S.; Zhu, Xiaojing; Hubbard, C.R.

    1996-06-01

    Residual strains in a 51 mm (2-inch) thick 304L stainless steel plate have been measured by neutron diffraction and interpreted in terms of residual stress. The plate, measuring (300 mm) in area, was removed from a 6m (20-ft.) diameter unirradiated boiling water reactor core shroud, and included a multiple-pass horizontal weld which joined two of the cylindrical shells which comprise the core shroud. Residual stress mapping was undertaken in the heat affected zone, concentrating on the outside half of the plate thickness. Variations in residual stresses with location appeared consistent with trends expected from finite element calculations, considering that a large fraction of the residual hoop stress was released upon removal of the plate from the core shroud cylinder.

  15. Determination of the residual stress tensor in textured zirconium alloy by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Sumin, V. V.; Papushkin, I. V.; Vasin, R. N.; Venter, А. M.; Balagurov, А. М.

    2012-02-01

    Results of neutron diffraction studies of crystallographic texture and residual stress tensor components in cold-worked and annealed cylindrical components made from E-110 zirconium alloy are presented. Those components are used as plugs in the fuel elements of the VVER-type reactors; the resident residual stresses influence the durability and safety of the fuel elements. The experiments were carried out on the neutron diffractometers at Dubna (the IBR-2 pulsed reactor) and Berlin Helmholtz-Zentrum (the BER II research reactor). It is shown that the samples have fiber texture that is changed considerably with annealing. The type I residual stress tensors for both samples were calculated by the BulkPathGEO model. The cold worked component has 136-166 MPa tensile residual stress in the radial direction and zero stress along the axial direction. Residual stress values in the annealed component are close to zero.

  16. Characterisation of Residual Stresses Generated by Laser Shock Peening by Neutron and Synchrotron Diffraction

    NASA Astrophysics Data System (ADS)

    Evans, Alexander Dominic; King, Andrew; Pirling, Thilo; Peyre, Patrice; Withers, Phillip John

    The fatigue behaviour of engineering alloys can be significantly improved through the application of mechanical surface treatments. These processes generate significant compressive residual stresses near surface by inhomogeneous plastic deformation. In the case of mechanical surface treatments such as laser shock peening, certain burnishing and rolling techniques and ultrasonic impact treatment (UIT), the compressive residual stress layer can extend to a depth of the order of millimeters, with balancing tensile stresses located deeper. Techniques to characterise the residual stresses generated by such mechanical surface treatments non-destructively are mainly limited to diffraction methods using penetrating neutron and synchrotron X-ray radiations. The application of these radiation sources is illustrated here by the characterisation of residual strain distributions in a two types of specimens treated with laser shock peening (LSP). Analyses of diffraction peak broadening provide qualitative information concerning the depth to which the plastic deformation of the treatments extends. Two case studies of laser shock peening of titanium and aluminium alloys is presented to demonstrate the capabilities of neutron and synchrotron diffraction techniques in the field of residual stress characterisation of surface engineered material non-destructively.

  17. Neutron diffraction analysis of residual strain/stress distribution in the vicinity of high strength welds

    NASA Astrophysics Data System (ADS)

    Mráz, L.; Karlsson, L.; Hamák, I.; Vrána, M.; Mikula, P.

    2010-06-01

    Residual stresses resulting from non homogeneous heat distribution during welding process belong to most significant factor influencing behavior of welded structures. These stresses are responsible for defect occurrence during welding and they are also responsible for crack initiation and propagation at the either static or dynamic load. The significant effect of weld metal chemical composition as well as the effect of fatigue load and local plastic deformation on residual stress distribution and fatigue life have been recognized for high strength steels welds. The changes in residual stress distribution have then positive effect on cold cracking behavior and also on fatigue properties of the welds [1-3]. Several experimental methods, both destructive and non-destructive, such as hole drilling method, X-ray diffraction, neutron diffraction and others, have been used to examine residual stress distribution in all three significant orientations in the vicinity of the welds. The present contribution summarizes the results of neutron diffraction measurements of residual stress distribution in the vicinity of single-pass high-strength-steel welds having different chemical composition as well as the influence of fatigue load and local plastic deformation. It has been observed that the chemical composition of the weld metal has a significant influence on the stress distribution around the weld. Similarly, by aplying both cyclic load or pre-stress load on the specimens, stress relaxation was observed even in the region of approximately 40 mm far from the weld toe.

  18. In Situ Tensile Deformation and Residual Stress Measurement by Neutron Diffraction in Modified 9Cr-1Mo Steel

    NASA Astrophysics Data System (ADS)

    Shrestha, Triratna; Charit, Indrajit; Potirniche, Gabriel

    2015-12-01

    The deformation behavior of monolithic modified 9Cr-1Mo (Grade 91) steel during uniaxial tensile loading was studied using the in situ neutron diffraction technique. The residual stress distribution across gas tungsten arc welds in the Grade 91 steel was measured by the time-of-flight neutron diffraction method using the SMARTS diffractometer at Lujan Neutron Scattering Center, Los Alamos National Laboratory. Grade 91 plates were welded using the gas tungsten arc welding (GTAW) technique. The load sharing by different grain orientations was observed during the tensile loading. The residual stresses along three orthogonal directions were determined at the mid-thickness, 4.35 and 2.35 mm below the surface of both the as-welded and post-weld heat-treated plates. The residual stresses of the as-welded plates were compared with those of the post-weld heat-treated plates. The post-weld heat treatment significantly reduced the residual stress level in the base metal, the heat-affected zone, and the weld zone. Vickers microhardness across the weld zone of the as-welded and post-weld heat-treated specimens was evaluated and correlated with the observed residual stress profile and microstructure.

  19. Neutron diffraction measurements and modeling of residual strains in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Saigal, A.; Leisk, G. G.; Hubbard, C. R.; Misture, S. T.; Wang, X. L.

    1996-01-01

    Neutron diffraction measurements at room temperature are used to characterize the residual strains in tungsten fiber-reinforced copper matrix, tungsten fiber-reinforced Kanthal matrix, and diamond particulate-reinforced copper matrix composites. Results of finite element modeling are compared with the neutron diffraction data. In tungsten/Kanthal composites, the fibers are in compression, the matrix is in tension, and the thermal residual strains are a strong function of the volume fraction of fibers. In copper matrix composites, the matrix is in tension and the stresses are independent of the volume fraction of tungsten fibers or diamond particles and the assumed stress free temperature because of the low yield strength of the matrix phase.

  20. Neutron diffraction measurements and modeling of residual strains in metal matrix composites

    SciTech Connect

    Saigal, A.; Leisk, G.G.; Hubbard, C.R.; Misture, S.T.; Wang, X.L.

    1996-04-01

    Neutron diffraction measurements at room temperature are used to characterize the residual strains in tungsten fiber-reinforced copper matrix, tungsten fiber-reinforced Kanthal matrix, and diamond particulate-reinforced copper matrix composites. Results of finite element modeling are compared with the neutron diffraction data. In tungsten/Kanthal composites, the fibers are in compression, the matrix is in tension, and the thermal residual strains are a strong function of the volume fraction of fibers. In copper matrix composites, the matrix is in tension and the stresses are independent of the volume fraction of tungsten fibers or diamond particles and the assumed stress free temperature because of the low yield strength of the matrix phase.

  1. Metagratings for Diffraction Based, Compact, Holographic Imaging

    NASA Astrophysics Data System (ADS)

    Inampudi, Sandeep; Podolskiy, Viktor; Multiscale Electromagnetics Group Team

    2013-03-01

    Recent developments in semiconductor technology brought to life a new generation of highly-compact visible-frequency cameras. Unfortunately, straight forward extension of this progress to low-frequency domains (such as mid-IR imaging) is impossible since the pixel size at these frequencies is limited by free-space diffraction limit. Here we present an approach to realize highly-compact imaging systems at lower frequencies. Our approach takes advantage of high refractive index of materials commonly utilized in semiconductor detectors of mid-IR radiation, accompanied by metagratings, structures with engineered diffraction properties, to achieve a 10-fold reduction in the pixel size. In contrast to conventional refraction-based imaging, the approach essentially produces a digital hologram - a 2D projection of the 3D optical field, enabling a post-imaging ``refocusing'' of the picture. The perspectives of numerical recovery of the optical field and the stability of such recovery are discussed.

  2. Verification of residual stresses in flash-butt-weld rails using neutron diffraction

    NASA Astrophysics Data System (ADS)

    Tawfik, David; Kirstein, Oliver; Mutton, Peter John; Chiu, Wing Kong

    2006-11-01

    Residual stresses developed during flash-butt welding may play a crucial role in prolonging the fatigue life of the welded tracks under service loading conditions. The finished welds typically exhibit high levels of tensile residual stresses in the web region of the weld. Moreover, the surface condition of the web may contain shear drag or other defects resulting from the shearing process which may lead to the initiation and propagation of fatigue cracks in a horizontal split web failure mode under high axle loads. However, a comprehensive understanding into the residual stress behaviour throughout the complex weld geometry remains unclear and is considered necessary to establish the correct localised post-weld heat treatment modifications intended to lower tensile residual stresses. This investigation used the neutron diffraction technique to analyse residual stresses in an AS60 flash-butt-welded rail cooled under normal operating conditions. The findings will ultimately contribute to developing modifications to the flash-butt-welding procedure to lower tensile residual stresses which may then improve rail performance under high axle load.

  3. Neutron diffraction determination of the residual stress redistribution in cracked autofrettaged tubing

    SciTech Connect

    Bourke, M.A. ); McGillivray, H.J.; Webster, G.A. . Dept. of Mechanical Engineering); Webster, P.J. . Dept. of Civil Engineering)

    1991-01-01

    Neutron diffraction has been used to measure the residual stress distributions in uncracked and fatigue cracked rings taken from a high strength, low alloy steel autofrettage tube with a bore diameter of 60mm and a wall thickness of 32mm. Stresses were determined to a precision of {plus minus} 10MPa. Three crack sixes were examines. No appreciable stress redistribution was observed until the crack was grown into a region which originally contained tensile residual hoop stress. When this occurred an increase in residual hoop tension was observed ahead of the crick tip. Qualitative agreement was achieved between the measured hoop stress distribution and values predicted using a boundary element method. 9 refs., 12 figs.

  4. INTERFACE RESIDUAL STRESSES IN DENTAL ZIRCONIA USING LAUE MICRO-DIFFRACTION

    SciTech Connect

    Bale, H. A.; Tamura, N.; Coelho, P.G.; Hanan, J. C.

    2009-01-01

    Due to their aesthetic value and high compressive strength, dentists have recently employed ceramics for restoration materials. Among the ceramic materials, zirconia provides high toughness and crack resistant characteristics. Residual stresses develop in processing due to factors including grain anisotropy and thermal coefficient mismatch. In the present study, polychromatic X-ray (Laue) micro-diffraction provided grain orientation and residual stresses on a clinically relevant zirconia model ceramic disk. A 0.5 mm x 0.024 mm region on zirconia was examined on a 500 nm scale for residual stresses using a focused poly-chromatic synchrotron X-ray beam. Large stresses ranging from - to + 1GPa were observed at some grains. On average, the method suggests a relatively small compressive stress at the surface between 47 and 75 MPa depending on direction.

  5. Measurement of residual stress fields in FHPP welding: a comparison between DSPI combined with hole-drilling and neutron diffraction

    NASA Astrophysics Data System (ADS)

    Viotti, Matias R.; Albertazzi, Armando; Staron, Peter; Pisa, Marcelo

    2013-04-01

    This paper shows a portable device to measure mainly residual stress fields outside the optical bench. This system combines the traditional hole drilling technique with Digital Speckle Pattern Interferometry. The novel feature of this device is the high degree of compaction since only one base supports simultaneously the measurement module and the hole-drilling device. The portable device allows the measurement of non-uniform residual stresses in accordance with the ASTM standard. In oil and gas offshore industries, alternative welding procedures among them, the friction hydro pillar processing (FHPP) is highlighted and nowadays is an important maintenance tool since it has the capability to produce structure repairs without risk of explosions. In this process a hole is drilled and filled with a consumable rod of the same material. The rod, which could be cylindrical or conical, is rotated and pressed against the hole, leading to frictional heating. In order to assess features about the residual stress distribution generated by the weld into the rod as well as into the base material around the rod, welded samples were evaluated by neutron diffraction and by the hole drilling technique having a comparison between them. For the hole drilling technique some layers were removed by using electrical discharge machining (EDM) after diffraction measurements in order to assess the bulk stress distribution. Results have shown a good agreement between techniques.

  6. Migration velocity analysis using residual diffraction moveout: a real-data example

    NASA Astrophysics Data System (ADS)

    Gonzalez, Jaime A. C.; de Figueiredo, José J. S.; Coimbra, Tiago A.; Schleicher, Jörg; Novais, Amélia

    2016-08-01

    Unfocused seismic diffraction events carry direct information about errors in the migration-velocity model. The residual-diffraction-moveout (RDM) migration-velocity-analysis (MVA) method is a recent technique that extracts this information by means of adjusting ellipses or hyperbolas to uncollapsed migrated diffractions. In this paper, we apply this method, which has been tested so far only on synthetic data, to a real data set from the Viking Graben. After application of a plane-wave-destruction (PWD) filter to attenuate the reflected energy, the diffractions in the real data become interpretable and can be used for the RDM method. Our analysis demonstrates that the reflections need not be completely removed for this purpose. Beyond the need to identify and select diffraction events in post-stack migrated sections in the depth domain, the method has a very low computational cost and processing time. To reach an acceptable velocity model of comparable quality as one obtained with common-midpoint (CMP) processing, only two iterations were necessary.

  7. Calculation of the diffraction efficiency on concave gratings based on Fresnel-Kirchhoff's diffraction formula.

    PubMed

    Huang, Yuanshen; Li, Ting; Xu, Banglian; Hong, Ruijin; Tao, Chunxian; Ling, Jinzhong; Li, Baicheng; Zhang, Dawei; Ni, Zhengji; Zhuang, Songlin

    2013-02-10

    Fraunhofer diffraction formula cannot be applied to calculate the diffraction wave energy distribution of concave gratings like plane gratings because their grooves are distributed on a concave spherical surface. In this paper, a method based on the Kirchhoff diffraction theory is proposed to calculate the diffraction efficiency on concave gratings by considering the curvature of the whole concave spherical surface. According to this approach, each groove surface is divided into several limited small planes, on which the Kirchhoff diffraction field distribution is calculated, and then the diffraction field of whole concave grating can be obtained by superimposition. Formulas to calculate the diffraction efficiency of Rowland-type and flat-field concave gratings are deduced from practical applications. Experimental results showed strong agreement with theoretical computations. With the proposed method, light energy can be optimized to the expected diffraction wave range while implementing aberration-corrected design of concave gratings, particularly for the concave blazed gratings. PMID:23400074

  8. REVIEW ARTICLE: Determination of residual stresses in materials and industrial components by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Albertini, Gianni; Bruno, Giovanni; Carradò, Adele; Fiori, Fabrizio; Rogante, Massimo; Rustichelli, Franco

    1999-03-01

    We present a review of the determination of residual stresses in materials and components of industrial interest by using the non-destructive technique of neutron diffraction. The fundamental aspects are discussed, together with a brief description of the experimental facilities. Several experimental results are then reported, particularly concerning applications to materials and components for power plants (CrMo steel, AISI304 stainless steel and 2.25Cr1Mo ferritic steel), aerospace and automotive technology (Al alloys, metal matrix composites, nickel superalloy gas-turbine components) and fusion-reactor technology (AISI316L for the first wall). A few thermomechanical treatments are considered, such as welding, cold-expanded holes, thermoelastic coupling and thermal and mechanical fatigue. Moreover, a few applications to general industrial problems are shown, namely brazed ceramic-steel components, coatings and fatigue-cracked samples. In some cases, experimental results are compared with numerical models or results from x-ray diffraction measurements.

  9. Residual Stress Analysis of Overspeeded Disk with Central Hole by X-ray Diffraction

    NASA Technical Reports Server (NTRS)

    Good, James N

    1948-01-01

    An X-ray - diffraction analysis of residual surface stresses after plastic strain was introduced in a parallel-sided 3S-O aluminum disk with a central hole by two types of centrifugal overspeed is reported. Both tangential and radial stresses were generally tensile with large local variations near the hole where surface stresses may have been partly superficial. These stresses were both tensile and compressive dependent on the distance from the disk center when mass compression was effected near the hole.

  10. Determination of the residual stress in a centrifuge bowl by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Albertini, G.; Giuliani, A.; Lin Peng, R.; Manescu, A.; Ponzetti, A.

    An experimental study of the stress field in centrifuges for food processing and for agricultural applications was undertaken. The model, the dimensions and the material of the sample are those of the most recent line of production of the Nuova M.A.I.P. company. The rotor is also one of the largest rotors produced by that firm. The residual strains and stresses were determined by using neutron-diffraction techniques before centrifugation and after centrifugation, to evaluate the evolution of stress induced by centrifuging. The upper part of the rotating bowl is investigated, where the highest stress field during centrifugation is theoretically forecast to occur. A data elaboration aiming at avoiding systematic errors leads to the conclusion that no appreciable residual stress is induced by centrifugation.

  11. Nondestructive evaluation of residual stress in short-fiber reinforced plastics by x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Tanaka, Keisuke; Tokoro, Syouhei; Akiniwa, Yoshiaki; Egami, Noboru

    2014-06-01

    The X-ray diffraction method is used to measure the residual stress in injection-molded plates of short-fiber reinforced plastics (SFRP) made of crystalline thermoplastics, polyphenylene sulphide (PPS), reinforced by carbon fibers with 30 mass%. Based on the orientation of carbon fibers, injection molded plates can be modeled as three-layered lamella where the core layer is sandwiched by skin layers. The stress in the matrix in the skin layer was measured using Cr-Kα radiation with the sin2Ψ method. Since the X-ray penetration depth is shallow, the state of stresses measured by X-rays in FRP can be assumed to be plane stress. The X-ray measurement of stress in carbon fibers was not possible because of high texture. A new method was proposed to evaluate the macrostress in SFRP from the measurement of the matrix stress. According to micromechanics analysis of SFRP, the matrix stresses in the fiber direction, σ1m, and perpendicular to the fiber direction, σ2m, and shear stress τ12m can be expressed as the functions of the applied (macro-) stresses, σ1A, σ2A , τ12A as follows: σ1m = α11σ1A +α12σ2A, σ2m = α21σ1A + α22σ2A, τ12m = α66τ12A, where α11 ,α12, α21, α22, α66 are stress-partitioning coefficients. Using skin-layer strips cut parallel, perpendicular and 45° to the molding direction, the stress in the matrix was measured under the uniaxial applied stress and the stress-partitioning coefficients of the above equations were determined. Once these relations are established, the macrostress in SFRP can be determined from the measurements of the matrix stresses by X-rays.

  12. NEUTRON DIFFRACTION MEASUREMENT OF RESIDUAL STRESSES IN FRICTION STIR PROCESSED NANOCOMPOSITE SURFACE LAYER

    SciTech Connect

    Xu, Hanbing; Hubbard, Camden R; An, Ke; Wang, Xun-Li; Feng, Zhili; Qu, Jun

    2009-01-01

    Friction stir processing (FSP) was successfully used to stir and mix nano-sized Al2O3 particles into a Al6061-T6 aluminum plate to form a nanocomposite layer up to 3 mm thick. This nanocomposite surface has demonstrated significantly improved surface hardness, yield strength, and wear-resistance without sacrificing the substrate ductility and conductivity. Neutron diffraction analysis was conducted to determine the residual stress distribution in the nanocomposite surface layer. For comparison, the residual stress of the aluminum surface that was processed similarly but had no particle involved was also measured. Results showed that the macro-level residual stresses in the FSP zone without particles are low due to the annealing effect induced by the long heating time and large heat input. The macro-level residual stresses in the FSP-processed Al-Al2O3 nanocomposite zone are tensile up to 100 MPa in all three directions. The details of the results will be further discussed in the paper.

  13. Residual Stresses in DC cast Aluminum Billet: Neutron Diffraction Measurements and Thermomechanical Modeling

    SciTech Connect

    Drezet, J.-M.; Evans, A.; Pirling, T.

    2011-05-04

    Thermally-induced residual stresses, generated during the industrial Direct Chill casting process of aluminum alloys, can cause both significant safety concerns as well as the formation of defects during down-stream processing. Although these thermally induced strains can be partially relieved by permanent deformation, cracks will be generated either during solidification (hot tears) or post-solidification cooling (cold cracks) when stresses exceed the deformation limit of the alloy. Furthermore, the thermally induced strains result in the presence of large internal stresses within the billet before further processing steps. Although numerical models have been previously developed to compute these residual stresses, most of the computations have been validated only against measured surface distortions. In the present work, the variation in residual elastic strains and stresses in the steady state regime of casting has been measured as a function of radial position using neutron diffraction in an AA6063 grain-refined cylindrical billet. These measurements have been carried out on the same billet section at Poldi at PSI-Villigen and at Salsa at ILL-Grenoble and compare favorably. The results are used to validate a thermo-mechanical finite element casting model and to assess the level of stored elastic energy within the billet.

  14. Residual Stresses in DC cast Aluminum Billet: Neutron Diffraction Measurements and Thermomechanical Modeling

    NASA Astrophysics Data System (ADS)

    Drezet, J.-M.; Evans, A.; Pirling, T.

    2011-05-01

    Thermally-induced residual stresses, generated during the industrial Direct Chill casting process of aluminum alloys, can cause both significant safety concerns as well as the formation of defects during down-stream processing. Although these thermally induced strains can be partially relieved by permanent deformation, cracks will be generated either during solidification (hot tears) or post-solidification cooling (cold cracks) when stresses exceed the deformation limit of the alloy. Furthermore, the thermally induced strains result in the presence of large internal stresses within the billet before further processing steps. Although numerical models have been previously developed to compute these residual stresses, most of the computations have been validated only against measured surface distortions. In the present work, the variation in residual elastic strains and stresses in the steady state regime of casting has been measured as a function of radial position using neutron diffraction in an AA6063 grain-refined cylindrical billet. These measurements have been carried out on the same billet section at Poldi at PSI-Villigen and at Salsa at ILL-Grenoble and compare favorably. The results are used to validate a thermo-mechanical finite element casting model and to assess the level of stored elastic energy within the billet.

  15. Residual stresses in a shape welded steel tube by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Taran, Yu V.; Balagurov, A. M.; Schreiber, J.; Stuhr, U.

    2008-03-01

    Measurements of the triaxial residual strains in a composite tube from an austenitic stainless steel as a parent material and a shape welded ferritic steel were carried out by the time-of-flight neutron diffraction method on the POLDI instrument at the PSI SINQ neutron pulsed facility. The shape weld is used to build compressive stresses and, as a result, to suppress stress corrosion. Investigations of the residual stresses in such composite tubes are important for developing optimal welding techniques. Calculation of the residual stresses was performed using measurement results with a comb-sample, machined from the tube by the electro-discharge method, as the stress free reference sample. The results of the POLDI measurements of the stress state in the composite tube are presented and compared to the results of the destructive turning out method and theoretical predictions of calculations by the finite element method. Semiquantitative agreement between all the used methods was only observed for the tangential component of the stress tensor. In this case, the ferrite cladding produced a tangential compressive stress of about 800 MPa on the austenitic tube.

  16. Structure-based identification of catalytic residues

    PubMed Central

    Yahalom, Ran; Reshef, Dan; Wiener, Ayana; Frankel, Sagiv; Kalisman, Nir; Lerner, Boaz; Keasar, Chen

    2011-01-01

    The identification of catalytic residues is an essential step in functional characterization of enzymes. We present a purely structural approach to this problem, which is motivated by the difficulty of evolution-based methods to annotate structural genomics targets that have few or no homologs in the databases. Our approach combines a state-of-the-art support vector machine (SVM) classifier with novel structural features that augment structural clues by spatial averaging and Z-scoring. Special attention is paid to the class imbalance problem that stems from the overwhelming number of non-catalytic residues in enzymes compared to catalytic residues. This problem is tackled by: 1) optimizing the classifier to maximize a performance criterion that considers both type I and type II errors in the classification of catalytic and non-catalytic residues; 2) under-sampling non-catalytic residues before SVM training; and 3) during SVM training, penalizing errors in learning catalytic residues more than errors in learning non-catalytic residues. Tested on four enzyme datasets – one specifically designed by us to mimic the structural genomics scenario and three previously-evaluated datasets – our structure-based classifier is never inferior to similar structure-based classifiers and comparable to classifiers that use both structural and evolutionary features. In addition to evaluation of the performance of catalytic residue identification, we also present detailed case studies on three proteins. This analysis suggests that many false positive predictions may correspond to binding sites and other functional residues. A web server that implements the method, our own-designed database, and the source code of the programs are publicly available at http://www.cs.bgu.ac.il/~meshi/functionPrediction. PMID:21491495

  17. Structure-based identification of catalytic residues.

    PubMed

    Yahalom, Ran; Reshef, Dan; Wiener, Ayana; Frankel, Sagiv; Kalisman, Nir; Lerner, Boaz; Keasar, Chen

    2011-06-01

    The identification of catalytic residues is an essential step in functional characterization of enzymes. We present a purely structural approach to this problem, which is motivated by the difficulty of evolution-based methods to annotate structural genomics targets that have few or no homologs in the databases. Our approach combines a state-of-the-art support vector machine (SVM) classifier with novel structural features that augment structural clues by spatial averaging and Z scoring. Special attention is paid to the class imbalance problem that stems from the overwhelming number of non-catalytic residues in enzymes compared to catalytic residues. This problem is tackled by: (1) optimizing the classifier to maximize a performance criterion that considers both Type I and Type II errors in the classification of catalytic and non-catalytic residues; (2) under-sampling non-catalytic residues before SVM training; and (3) during SVM training, penalizing errors in learning catalytic residues more than errors in learning non-catalytic residues. Tested on four enzyme datasets, one specifically designed by us to mimic the structural genomics scenario and three previously evaluated datasets, our structure-based classifier is never inferior to similar structure-based classifiers and comparable to classifiers that use both structural and evolutionary features. In addition to the evaluation of the performance of catalytic residue identification, we also present detailed case studies on three proteins. This analysis suggests that many false positive predictions may correspond to binding sites and other functional residues. A web server that implements the method, our own-designed database, and the source code of the programs are publicly available at http://www.cs.bgu.ac.il/∼meshi/functionPrediction. PMID:21491495

  18. Residual stress measurements on thick plate low-alloy steel narrow gap weldments by x-ray diffraction

    SciTech Connect

    Rund, C.O.; DiMascio, P.S.; Pangborn, R.N.; Snoha, D.J.

    1984-06-01

    A unique x-ray diffraction instrument for residual stress measurement has been developed that provides for speed, ease of measurement, accuracy, and economy of surface stress measurement. Application of this instrument with a material removal technique, e.g., electropolishing, has facilitated detailed, high resolution studies of three-dimensional stress fields. This paper describes the instrumentation and techniques applied to conduct the residual stress measurement and presents maps of the residual stress data obtained for the surfaces of a heavy 2 1/4 Cr 1 Mo steel plate weldment.

  19. Pulsed photothermal deflection and diffraction effects: numerical modeling based on Fresnel diffraction theory

    NASA Astrophysics Data System (ADS)

    Han, Yue; Wu, Z. L.; Rosenshein, Joseph S.; Thomsen, Marshall; Zhao, Qiang; Moncur, Kent

    1999-12-01

    We present a comprehensive theoretical model suitable for treating the effect of pulsed collinear photothermal deflection spectroscopy (PDS). The work is an extension of the theoretical model previously developed for the mirage effect, which can take into account both photothermal deflection and photothermal diffraction effects based on the Fresnel diffraction theory. With the diffraction model, both the collinear PDS and the photothermal lensing spectroscopy techniques can be treated in a unified manner. The model provides a detailed analysis of the laser-induced optical diffraction effect and can be used to optimize experimental parameters. The modeled results are presented in detail, with an emphasis on the advantages of using a near-field detection scheme for achieving the best sensitivity to local temperature change and better experimental stability against environmental noise.

  20. Quantitative measurement of phase variation amplitude of ultrasonic diffraction grating based on diffraction spectral analysis

    SciTech Connect

    Pan, Meiyan Zeng, Yingzhi; Huang, Zuohua

    2014-09-15

    A new method based on diffraction spectral analysis is proposed for the quantitative measurement of the phase variation amplitude of an ultrasonic diffraction grating. For a traveling wave, the phase variation amplitude of the grating depends on the intensity of the zeroth- and first-order diffraction waves. By contrast, for a standing wave, this amplitude depends on the intensity of the zeroth-, first-, and second-order diffraction waves. The proposed method is verified experimentally. The measured phase variation amplitude ranges from 0 to 2π, with a relative error of approximately 5%. A nearly linear relation exists between the phase variation amplitude and driving voltage. Our proposed method can also be applied to ordinary sinusoidal phase grating.

  1. Neutron diffraction measurement of residual stresses in Al-clad U-10Mo fuel plates

    NASA Astrophysics Data System (ADS)

    Brown, D. W.; Okuniewski, M. A.; Clausen, B.; Moore, G. A.; Sisneros, T. A.

    2016-06-01

    Neutron diffraction was used to determine residual stress in monolithic two Al-clad U 10 weight percent Mo mini-fuel plates and a full sized fuel plate. One mini-plate was cooled following hot isostatic pressing at a rate of 6.75 °C/min, the second at 0.675 °C/min. A non-traditional method of calibrating the neutron diffractometer at each measurement point was necessitated by the thin nature of the sample. The in-plane stresses in the U-10Mo foils are relatively large, -250 MPa in the U-10Mo foil of the fast cooled mini-plate,-150 MPa in the slow cooled mini-plate and -275 MPa in the full-sized plate. Likewise, the in-plane stresses in the Al-cladding of the fast-cooled mini-plate and full-sized plate were determined to reach ∼50 MPa, while in the slow-cooled sample the stresses in the Al cladding were on the level of the measurement uncertainty. The in-plane stresses in the Zr diffusion barrier were estimated to be as large as -300 MPa.

  2. Procedure for Computing Residual Stresses from Neutron Diffraction Data and its Application to Multi-Pass Dissimilar Weld

    SciTech Connect

    Zhang, Wei; Feng, Zhili; Crooker, Paul

    2011-01-01

    Neutron diffraction is a powerful tool for non-destructive measurement of internal residual stresses of welded structures. The conventional approach for determination of residual stresses requires the knowledge of stress-free lattice spacing a priori. For multiple-pass dissimilar metal welds common to nuclear reactor pipeline systems, the stress-free lattice parameter is a complex function of position due to the chemistry inhomogeneity in the weld region and can be challenging to determine experimentally. This paper presents a new approach to calculate the residual stress field in dissimilar welds without the use of stress-free lattice parameter. The theoretical basis takes advantage of the fact that the normal component of welding residual stresses is typically small for thin plate or pipe welds. The applicability of the new approach is examined and justified in a multi-pass dissimilar metal weld consisting of a stainless steel plate and a nickel alloy filler metal. The level of uncertainties associated with this new approach is assessed. Neutron diffraction experiment is carried out to measure the lattice spacing at various locations in the dissimilar weld. A comb-shaped specimen, electro-discharge machined from a companion weld, is used to determine the stress-free lattice spacing. The calculated results from the new approach are consistent with those from the conventional approach. The new approach is found to be a practical method for determining the two in-plane residual stress components in thin plate or pipe dissimilar metal welds.

  3. Magnetic Barkhausen Noise and Neutron Diffraction Techniques for the Study of Intergranular Residual Strains in Mild Steel

    SciTech Connect

    Hutanu, Roxana; Clapham, Lynann; Rogge, Ronald

    2004-02-26

    Intergranular residual stresses (IS) are microscopic residual stresses which have been found to accumulate along the <100> direction in steels. The <100> direction is also the magnetic easy axis direction in steel. This work involved Magnetic Barkhausen Noise (MBN) studies on steel samples, deformed uniaxially to increasing levels of strain. The MBN results indicated that a bulk magnetic easy axis was produced by the deformation process, and neutron diffraction experiments showed that this easy axis was correlated with the tensile strain in grains oriented in the <100> direction.

  4. Angle-resolved diffraction grating biosensor based on porous silicon

    NASA Astrophysics Data System (ADS)

    Lv, Changwu; Jia, Zhenhong; Liu, Yajun; Mo, Jiaqing; Li, Peng; Lv, Xiaoyi

    2016-03-01

    In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensor was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.

  5. Feasibility Study on Neutron Diffraction Method for Evaluation of Residual Strain Distribution of Regenerative Cooled Combustion Chamber

    NASA Astrophysics Data System (ADS)

    Masuoka, Tadashi; Moriya, Shin-Ichi; Sato, Masaki; Yoshida, Makoto; Tsuchiya, Yoshinori; Suzuki, Hiroshi

    The regenerative cooled combustion chamber of a cryogenic liquid rocket engine is exposed to a large temperature difference between the hot gas (about 3500K) and the liquid hydrogen (about 20K). This induces thermal stress, and strain is accumulated in the chamber wall throughout the cyclic firing tests. Evaluation of the stress and the strain distribution in a chamber wall is essential since chamber life is usually related to such stress and strain. In this study, the residual strain in a regenerative cooled combustion chamber wall was measured by applying the neutron diffraction method and the X-ray diffraction method. The measured data were compared with the numerical data by finite element analysis, and the feasibility of the neutron diffraction method for the regenerative cooled combustion chamber of a cryogenic liquid rocket engine was evaluated.

  6. Effect of Young's modulus evolution on residual stress measurement of thermal barrier coatings by X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Mao, W. G.; Zhou, Y. C.; Lu, C.

    2010-09-01

    Subjected to thermal cycling, the apparent Young's modulus of air plasma-sprayed (APS) 8 wt.% Y 2O 3-stabilized ZrO 2 (8YSZ) thermal barrier coatings (TBCs) was measured by nanoindentation. Owing to the effects of sintering and porous microstructure, the apparent Young's modulus follows a Weibull distribution and changes from 50 to 93 GPa with an increase of thermal cycling. The evolution of residual stresses in the top coating of an 8YSZ TBC system was determined by X-ray diffraction (XRD). The residual stresses derived from the XRD data are well consistent with that obtained by the Vickers indention. It is shown that the evolution of Young's modulus plays an important role in improving the measurement precision of residual stresses in TBCs by XRD.

  7. rf streak camera based ultrafast relativistic electron diffraction.

    PubMed

    Musumeci, P; Moody, J T; Scoby, C M; Gutierrez, M S; Tran, T

    2009-01-01

    We theoretically and experimentally investigate the possibility of using a rf streak camera to time resolve in a single shot structural changes at the sub-100 fs time scale via relativistic electron diffraction. We experimentally tested this novel concept at the UCLA Pegasus rf photoinjector. Time-resolved diffraction patterns from thin Al foil are recorded. Averaging over 50 shots is required in order to get statistics sufficient to uncover a variation in time of the diffraction patterns. In the absence of an external pump laser, this is explained as due to the energy chirp on the beam out of the electron gun. With further improvements to the electron source, rf streak camera based ultrafast electron diffraction has the potential to yield truly single shot measurements of ultrafast processes. PMID:19191429

  8. Six Classes of Diffraction-Based Optoelectronic Instruments

    NASA Technical Reports Server (NTRS)

    Spremo, Stevan; Fuhr, Peter; Schipper, John

    2003-01-01

    Six classes of diffraction-based optoelectronic instruments have been invented as means for wavelength-based processing of light. One family of anticipated applications lies in scientific instrumentation for studying chemical and physical reactions that affect and/or are affected differently by light of different wavelengths or different combinations of wavelengths. Another family of anticipated applications lies in optoelectronic communication systems.

  9. As-Cast Residual Stresses in an Aluminum Alloy AA6063 Billet: Neutron Diffraction Measurements and Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Drezet, J.-M.; Phillion, A. B.

    2010-12-01

    The presence of thermally induced residual stresses, created during the industrial direct chill (DC) casting process of aluminum alloys, can cause both significant safety concerns and the formation of defects during downstream processing. Although numerical models have been previously developed to compute these residual stresses, most of the computations have been validated only against measured surface distortions. Recently, the variation in residual elastic strains in the steady-state regime of casting has been measured as a function of radial position using neutron diffraction (ND) in an AA6063 grain-refined cylindrical billet. In the present study, these measurements are used to show that a well-designed thermomechanical finite element (FE) process model can reproduce relatively well the experimental results. A sensitivity analysis is then carried out to determine the relative effect of the various mechanical parameters when computing the as-cast residual stresses in a cylindrical billet. Two model parameters have been investigated: the temperature when the alloy starts to thermally contract and the plasticity behavior. It is shown that the mechanical properties at low temperatures have a much larger influence on the residual stresses than those at high temperatures.

  10. Neutron Diffraction Residual Strain Tensor Measurements Within The Phase IA Weld Mock-up Plate P-5

    SciTech Connect

    Hubbard, Camden R

    2011-09-01

    Oak Ridge National Laboratory (ORNL) has worked with NRC and EPRI to apply neutron and X-ray diffraction methods to characterize the residual stresses in a number of dissimilar metal weld mockups and samples. The design of the Phase IA specimens aimed to enable stress measurements by several methods and computational modeling of the weld residual stresses. The partial groove in the 304L stainless steel plate was filled with weld beads of Alloy 82. A summary of the weld conditions for each plate is provided in Table 1. The plates were constrained along the long edges during and after welding by bolts with spring-loaded washers attached to the 1-inch thick Al backing plate. The purpose was to avoid stress relief due to bending of the welded stainless steel plate. The neutron diffraction method was one of the methods selected by EPRI for non-destructive through thickness strain and stress measurement. Four different plates (P-3 to P-6) were studied by neutron diffraction strain mapping, representing four different welding conditions. Through thickness neutron diffraction strain mappings at NRSF2 for the four plates and associated strain-free d-zero specimens involved measurement along seven lines across the weld and at six to seven depths. The mountings of each plate for neutron diffraction measurements were such that the diffraction vector was parallel to each of the three primary orthogonal directions of the plate: two in-plane directions, longitudinal and transverse, and the direction normal to the plate (shown in left figure within Table 1). From the three orthogonal strains for each location, the residual stresses along the three plate directions were calculated. The principal axes of the strain and stress tensors, however, need not necessarily align with the plate coordinate system. To explore this, plate P-5 was selected for examination of the possibility that the principal axes of strain are not along the sample coordinate system axes. If adequate data could

  11. Residual stress measurements of welded components using synchrotron and neutron diffraction.

    SciTech Connect

    Paradowska, A. M.; Price, J. W .H; Finlayson, T. R.; Lienert, U.; Ibrahim, R.; Monash Univ.; Univ. of Melbourne

    2007-01-01

    Residual stress remains the single largest unknown in industrial damage situations. Residual stresses have a significant effect on corrosion, fracture resistance, creep and corrosion/fatigue performance and a reduction of these stresses is normally desirable. In this research high energy synchrotron (70 keV) radiation (at the Advanced Photon Source) and thermal neutrons (at the Lucas Heights Research Reactor) have been employed to investigate and compare the residual stress characteristics in fully restrained samples with different numbers of weld beads. The aim of the research was to characterize the residual stress distribution which arises in a welded component with increasing number of beads. The number and resolution of the measurements carried out in this work reveal significant features of the residual stress pattern in single bead in the as-welded condition and after post-weld heat treatment. The intention is to provide key data for the validation of design, fitness-for-purpose methodologies and finite-element tools. In this presentation the details of the synchrotron X-ray and neutron techniques will be compared and contrasted, utilizing results from a number of weldment samples.

  12. MEMS-based diffractive optical-beam-steering technology

    NASA Astrophysics Data System (ADS)

    Winick, David A.; Duewer, Bruce E.; Chaudhury, Som; Wilson, John M.; Tucker, John; Eksi, Umut; Franzon, Paul D.

    1998-03-01

    This paper presents some results from phase-1 research into developing a beam steerer based on micro-mechanical diffractive elements. The position of these elements is electrostatically controlled, to allow dynamic programming of a 2D phase function. Feasibility prototypes were constructed in the MUMPs polysilicon surface micromachine process.

  13. FEA predictions of residual stress in stainless steel compared to neutron and x-ray diffraction measurements. [Finite element analysis

    SciTech Connect

    Flower, E.C.; MacEwen, S.R.; Holden, T.M.

    1987-05-01

    Residual stresses in a body arise from nonuniform plastic deformation and continue to be an important consideration in the design and the fabrication of metal components. The finite element method offers a potentially powerful tool for predicting these stresses. However, it is important to first verify this method through careful analysis and experimentation. This paper describes experiments using neutron and x-ray diffraction to provide quantitative data to compare to finite element analysis predictions of deformation induced residual stress in a plane stress austenitic stainless steel ring. Good agreement was found between the experimental results and the numerical predictions. Effects of the formulation of the finite element model on the analysis, constitutive parameters and effects of machining damage in the experiments are addressed.

  14. X-Ray Diffraction Analysis of Residual Stress in Thin Polycrystalline Anatase Films and Elastic Anisotropy of Anatase

    NASA Astrophysics Data System (ADS)

    Matěj, Z.; Kužel, R.; Nichtová, L.

    2011-11-01

    The importance of residual stress in anatase thin films for their photo-induced hydrophilicity was proved recently. Detailed X-ray diffraction (XRD) studies of residual stresses in titanium dioxide films are presented here. Measurements including multiple hkl reflections on several series of these films revealed the presence of tensile stresses in the films that were obtained by crystallization from amorphous state. Significant anisotropy of the strain was also found and compared with that of anatase, resulting from its theoretically calculated single-crystal elastic constants. The XRD data support the experimental evidence of the hypothesis that the [00 l] axis is the elastically soft anatase direction, whereas the directions in the [ h00] × [ hk0] plane are elastically stiff. This is in agreement with the anisotropy predicted by single-crystal elastic constants that are obtained from ab-initio calculations. Residual stress analysis for materials with tetragonal symmetry is described and the theory is used to analyze the data. The anisotropy is very different from that for the rutile phase, and the experimental results agree well with the values calculated for anatase. A simplified method of XRD residual stress analysis in thin anatase films by total pattern fitting (TPF) is also presented. Tensile stresses are formed during the crystallization process and increase rapidly with reduced film thickness. They inhibit crystallization, which is then very slow in the thinnest films.

  15. High spatial resolution, high energy synchrotron x-ray diffraction characterization of residual strains and stresses in laser shock peened Inconel 718SPF alloy

    NASA Astrophysics Data System (ADS)

    Gill, Amrinder S.; Zhou, Zhong; Lienert, Ulrich; Almer, Jonathan; Lahrman, David F.; Mannava, S. R.; Qian, Dong; Vasudevan, Vijay K.

    2012-04-01

    Laser shock peening (LSP) is an advanced surface enhancement technique used to enhance the fatigue strength of metal parts by imparting deep compressive residual stresses. In the present study, LSP was performed on IN718 SPF alloy, a fine grained nickel-based superalloy, with three different power densities and depth resolved residual strain and stress characterization was conducted using high energy synchrotron x-ray diffraction in beam line 1-ID-C at the Advanced Photon Source at the Argonne National laboratory. A fine probe size and conical slits were used to non-destructively obtain data from specific gauge volumes in the samples, allowing for high-resolution strain measurements. The results show that LSP introduces deep compressive residual stresses and the magnitude and depth of these stresses depend on the energy density of the laser. The LSP induced residual stresses were also simulated using three-dimensional nonlinear finite element analysis, with employment of the Johnson-Cook model for describing the nonlinear materials constitutive behavior. Good agreement between the experimental and simulated data was obtained. These various results are presented and discussed.

  16. Relationship between dislocations and residual stresses in cold-drawn pearlitic steel analyzed by energy-dispersive X-ray diffraction

    SciTech Connect

    Sato, Shigeo; Wagatsuma, Kazuaki; Suzuki, Shigeru; Kumagai, Masayoshi; Imafuku, Muneyuki; Tashiro, Hitoshi; Kajiwara, Kentaro; Shobu, Takahiasa

    2013-09-15

    We analyzed the dislocation distribution of cold-drawn pearlitic-steel wire by using the line-profile analysis based on the energy dispersive X-ray diffraction (EDXD). Although this line-profile analysis requires a high resolution in reciprocal space, the resolution for EDXD is generally poor due to the energy resolution of the detector. Our analysis demonstrated that the resolution in the reciprocal space can be maximized at small scattering angles. Using the line-profile analysis based on the EDXD, the microstructural parameters such as the crystallite size and the dislocation density of the ferrite phase in the pearlitic steel were successfully analyzed. In addition, the distribution of the residual stress of the ferrite phase of a pearlitic steel wire was also analyzed using the EDXD measurement. - Highlights: • Energy dispersive X-ray diffraction is applied to the line-profile analysis. • Distribution of dislocations in ferrite in the pearlitic steel wire is analyzed. • Relationship between dislocations and residual stress is discussed.

  17. Tolerance analysis of multilayer diffractive optics based on polychromatic integral diffraction efficiency.

    PubMed

    Mao, Shan; Cui, Qingfeng; Piao, Mingxu

    2015-11-10

    Multilayer diffractive optical elements (MLDOEs) can achieve high diffraction efficiency for broadband wavelength. Polychromatic integral diffraction efficiency (PIDE) is the key concern for evaluating diffraction efficiency over the waveband. The modulation transfer function of a hybrid refractive-diffractive optical system is directly affected by the PIDE. The relationship between PIDE and continuous manufacturing errors for microstructure heights and periodic widths of MLDOEs is studied theoretically in this paper, and an example of MLDOEs is discussed in the visible waveband. The analysis results can be used for manufacturing error control in microstructure heights and periodic widths. PMID:26560782

  18. Residual stress measurements in a zircaloy-4 weld by neutron diffraction

    SciTech Connect

    Carr, D.G.; Ripley, M.I.; Holden, T.M.; Brown, D.W.; Vogel, S.C

    2004-08-16

    The macroscopic stress distribution across a Zircaloy-4 gas tungsten arc weld was measured by time-of-flight neutron diffraction at the SMARTS diffractometer at Los Alamos National Laboratory. The method enabled the measurement of strain for all the available reflections permitted by the rolling texture of the plate and the modified texture in the weld-metal and heat affected zone. A maximum longitudinal stress of 220 {+-} 40 MPa was observed in the weld compared with the 0.2% yield stress of 390 MPa of the plate. A maximum transverse stress of 60 {+-} 40 MPa was observed in the weld. Textures were measured at the HIPPO diffractometer.

  19. An EUV beamsplitter based on conical grazing incidence diffraction.

    PubMed

    Braig, C; Fritzsch, L; Käsebier, T; Kley, E-B; Laubis, C; Liu, Y; Scholze, F; Tünnermann, A

    2012-01-16

    We present an innovative grating design based on conical diffraction which acts as an almost perfect and low-loss beamsplitter for extreme ultraviolet radiation. The scheme is based on a binary profile operated in grazing incidence along the grating bars under total external reflection. It is shown that periods of a few 10(2) nm may permit an exclusive (±1)(st) order diffraction with efficiencies up to ~ 35% in each of them, whereas higher evanescent orders vanish. In contrast, destructive interference eliminates the 0(th) order. For a sample made of SiO(2) on silicon, measured data and simulated results from rigorous coupled wave analysis procedures are given. PMID:22274527

  20. Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals

    SciTech Connect

    Dao, E. Han; Sierra, Raymond G.; Laksmono, Hartawan; Lemke, Henrik T.; Alonso-Mori, Roberto; Coey, Aaron; Larsen, Kevin; Baxter, Elizabeth L.; Cohen, Aina E.; Soltis, S. Michael; DeMirci, Hasan

    2015-04-30

    In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS) using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecond X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 Å resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser.

  1. Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals.

    PubMed

    Dao, E Han; Sierra, Raymond G; Laksmono, Hartawan; Lemke, Henrik T; Alonso-Mori, Roberto; Coey, Aaron; Larsen, Kevin; Baxter, Elizabeth L; Cohen, Aina E; Soltis, S Michael; DeMirci, Hasan

    2015-07-01

    In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS) using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecond X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 Å resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser. PMID:26798805

  2. Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals

    DOE PAGESBeta

    Dao, E. Han; Sierra, Raymond G.; Laksmono, Hartawan; Lemke, Henrik T.; Alonso-Mori, Roberto; Coey, Aaron; Larsen, Kevin; Baxter, Elizabeth L.; Cohen, Aina E.; Soltis, S. Michael; et al

    2015-04-30

    In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS) using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecondmore » X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 Å resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser.« less

  3. Evaluation on double-wall-tube residual stress distribution of sodium-heated steam generator by neutron diffraction and numerical analysis

    SciTech Connect

    Kisohara, N.; Suzuki, H.; Akita, K.; Kasahara, N.

    2012-07-01

    A double-wall-tube is nominated for the steam generator heat transfer tube of future sodium fast reactors (SFRs) in Japan, to decrease the possibility of sodium/water reaction. The double-wall-tube consists of an inner tube and an outer tube, and they are mechanically contacted to keep the heat transfer of the interface between the inner and outer tubes by their residual stress. During long term SG operation, the contact stress at the interface gradually falls down due to stress relaxation. This phenomenon might increase the thermal resistance of the interface and degrade the tube heat transfer performance. The contact stress relaxation can be predicted by numerical analysis, and the analysis requires the data of the initial residual stress distributions in the tubes. However, unclear initial residual stress distributions prevent precious relaxation evaluation. In order to resolve this issue, a neutron diffraction method was employed to reveal the tri-axial (radius, hoop and longitudinal) initial residual stress distributions in the double-wall-tube. Strain gauges also were used to evaluate the contact stress. The measurement results were analyzed using a JAEA's structural computer code to determine the initial residual stress distributions. Based on the stress distributions, the structural computer code has predicted the transition of the relaxation and the decrease of the contact stress. The radial and longitudinal temperature distributions in the tubes were input to the structural analysis model. Since the radial thermal expansion difference between the inner (colder) and outer (hotter) tube reduces the contact stress and the tube inside steam pressure contributes to increasing it, the analytical model also took these effects into consideration. It has been conduced that the inner and outer tubes are contacted with sufficient stresses during the plant life time, and that effective heat transfer degradation dose not occur in the double-wall-tube SG. (authors)

  4. Diffraction based overlay metrology for α-carbon applications

    NASA Astrophysics Data System (ADS)

    Saravanan, Chandra Saru; Tan, Asher; Dasari, Prasad; Goelzer, Gary; Smith, Nigel; Woo, Seouk-Hoon; Shin, Jang Ho; Kang, Hyun Jae; Kim, Ho Chul

    2008-03-01

    Applications that require overlay measurement between layers separated by absorbing interlayer films (such as α- carbon) pose significant challenges for sub-50nm processes. In this paper scatterometry methods are investigated as an alternative to meet these stringent overlay metrology requirements. In this article, a spectroscopic Diffraction Based Overlay (DBO) measurement technique is used where registration errors are extracted from specially designed diffraction targets. DBO measurements are performed on detailed set of wafers with varying α-carbon (ACL) thicknesses. The correlation in overlay values between wafers with varying ACL thicknesses will be discussed. The total measurement uncertainty (TMU) requirements for these layers are discussed and the DBO TMU results from sub-50nm samples are reviewed.

  5. A vectorial ray-based diffraction integral for optical systems

    NASA Astrophysics Data System (ADS)

    Andreas, Birk

    2015-09-01

    The propagation of coherent laser light in optical systems is simulated by the vectorial ray-based diffraction integral (VRBDI) method which utilizes vectorial diffraction theory, ray aiming, differential ray tracing and matrix optics. On a global scale the method is not restricted to the paraxial approximation, whereas it is properly used for a local representation of the wavefront close to an aimed detection location. First, the field of a monochromatic continuous wave on an input plane is decomposed into spherical or plane wave components. Then, these components are represented by aimed ray tubes and traced through an optical system. Finally, the contributions are added coherently on an output plane whose position has to be chosen according to ray-aiming requirements. Provided that the apertures in the optical system are large with respect to the wavelength the results are fairly accurate.

  6. Tunable-microlens-based multipoint diffraction strain sensor

    NASA Astrophysics Data System (ADS)

    Zhu, Hui; Asundi, Anand

    2009-12-01

    Multipoint Diffraction Strain Sensor (MDSS) is a novel and promising strain sensing system to acquire whole field strain information with high accuracy without the need for numerical differentiation. Compared to traditional optical diffraction strain sensors, the main advantage of MDSS is the use of micro-lens array to get whole field information. Both tilt and in-plane strain can be acquired separately by using two symmetric incident laser beams. However, it is costly and troublesome to fabricate, adjust or replace lens arrays for different applications. A practical way to solve this problem is to use a liquid crystal lens as spatial light modulator which displays Diffractive Optical Element (DOE) based lens array. This liquid crystal lens is software controlled capable to display any user designed DOE pattern. The sensitivity and field of interrogation is thus tuneable by changing focal length of lens arrays. Moreover arbitrary size or shape of lens arrays can be designed to measure certain part of the specimen in most interest. Experimental results with different lens arrays are demonstrated for uniform rotations.

  7. Diffractive Optical Elements based in Diamond Like Carbon (DLC) films

    NASA Astrophysics Data System (ADS)

    Sparvoli, M. Marina; Mansano, Ronaldo D.

    2008-04-01

    In this work was developed a Diffractive Optical Elements (DOEs) based in amorphous hydrogenated carbon (Diamond Like Carbon) films. DOEs can be built in large scale with high reproducibility and eliminating almost stages used in optical elements tradicional fabrication, as abrasion and burnishing. These devices had been built by the etching of DLC deposited by sputtering process. The characterizations of these devices are realized by optical analyzes with a 633 nm HeNe laser. The DLC films roughness and etch rate after process were measured by high step meter.

  8. X-ray diffraction study of residual stresses in metal-matrix composite-jacketed steel cylinders subjected to internal pressure. Final report

    SciTech Connect

    Lee, S.L.; Doxbeck, M.; Capsimalis, G.

    1992-03-01

    The study of aluminum/silicon carbide metal matrix composite (MMC)-jacketed steel structural components was made because of their light weight and high stiffness. Steel 'liner' cylinders were wrapped with MMC 'jackets' with an all-hoop layup and put through various degrees of hydraulic autofrettage and thermal soak. In this report, the results from our x-ray diffraction residual stress measurements on cylinders using a position-sensitive scintillation detection system are discussed. Our experimental results are compared with theoretical predictions from a model based on the elastic-plastic analysis of a thick-walled cylinder subjected to internal pressure. Interpretation of the interference effect caused by the MMC jacket on the steel liner is also discussed.

  9. Diffraction measurements with a boron-based GEM neutron detector

    NASA Astrophysics Data System (ADS)

    Croci, Gabriele; Albani, Giorgia; Cazzaniga, Carlo; Perelli Cippo, Enrico; Schooneveld, Erik; Claps, Gerardo; Cremona, Anna; Grosso, Giovanni; Muraro, Andrea; Murtas, Fabrizio; Rebai, Marica; Scherillo, Antonella; Tardocchi, Marco; Gorini, Giuseppe

    2014-07-01

    The research of reliable substitutes of 3He detectors is an important task for the affordability of new neutron scattering instrumentation for future spallation sources like the European Spallation Source. GEM (Gas Electron Multiplier)-based detectors represent a valid alternative since they can combine high-rate capability, coverage of up to 1\\ \\text{m}^{2} area and good intrinsic spatial resolution (for this detector class it can be better than 0.5 mm). The first neutron diffraction measurements performed using a borated GEM detector are reported. The detector has an active area of 10 \\times 5\\ \\text{cm}^{2} and is equipped with a borated cathode. The GEM detector was read out using the standard ISIS Data Acquisition System. The comparison with measurements performed with standard 3He detectors shows that the broadening of the peaks measured on the diffractogram obtained with the GEM is 20-30% wider than the one obtained by 3He tubes but the active area of the GEM is twice that of 3He tubes. The GEM resolution is improved if half of its active area is considered. The signal-to-background ratio of the GEM is about 1.5 to 2 times lower than that of 3He. This measurement proves that GEM detectors can be used for neutron diffraction measurements and paves the way for their use at future neutron spallation sources.

  10. Binaural Sound Localizer for Azimuthal Movement Detection Based on Diffraction

    PubMed Central

    Kim, Keonwook; Choi, Anthony

    2012-01-01

    Sound localization can be realized by utilizing the physics of acoustics in various methods. This paper investigates a novel detection architecture for the azimuthal movement of sound source based on the interaural level difference (ILD) between two receivers. One of the microphones in the system is surrounded by barriers of various heights in order to cast the direction dependent diffraction of the incoming signal. The gradient analysis of the ILD between the structured and unstructured microphone demonstrates the rotation directions as clockwise, counter clockwise, and no rotation of the sound source. Acoustic experiments with different types of sound source over a wide range of target movements show that the average true positive and false positive rates are 67% and 16%, respectively. Spectral analysis demonstrates that the low frequency delivers decreased true and false positive rates and the high frequency presents increases of both rates, overall. PMID:23112617

  11. Residual stress mapping by micro X-ray diffraction: Application to the study of thin film buckling

    SciTech Connect

    Goudeau, P.; Villain, P.; Tamura, N.; Celestre, R.S.; Padmore, H.A.

    2002-11-06

    Thin films deposited by Physical Vapour Deposition techniques on substrates generally exhibit large residual stresses which may be responsible of spontaneous detachment of the film from its substrate and in the case of compressive stresses, thin film buckling. Although these effects are undesirable for future applications, one may take benefit of it for thin film mechanical properties investigation. Since the 80's, a lot of theoretical works have been done to develop mechanical models with the aim to get a better understanding of driven mechanisms giving rise to this phenomenon and thus to propose solutions to avoid such problems. Nevertheless, only a few experimental works have been done on this subject to support these theoretical results and nothing concerning local stress/strain measurement mainly because of the small dimension of the buckling (few tenth mm). This paper deals with the application of micro beam x-ray diffraction available on synchrotron radiation sources for stress/ strain mapping analysis of gold thin film buckling.

  12. Large Diffractive Optics for GEo-Based Earth Surveillance

    SciTech Connect

    Hyde, R A

    2003-09-11

    in diameter, building ten-fold larger ones for GEO applications (let alone delivering and operating them there) presents major difficulties. However, since the challenges of fielding large platforms in GEO are matched by the benefits of continuous coverage, we propose a program to develop such optical platforms. In this section, we will examine a particular form of large aperture optic, using a flat diffractive lens instead of the more conventional curved reflectors considered elsewhere in this report. We will discuss both the development of this type of large aperture optics, as well as the steps necessary to use it for GEO-based Earth surveillance. In a later section of this report we will discuss another use for large diffractive optics, their application for global-reach laser weapons.

  13. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  14. Twenty Meter Space Telescope Based on Diffractive Fresnel Lens

    SciTech Connect

    Early, J; Hyde, R; Baron, R

    2003-06-26

    Diffractive lenses offer two potential advantages for very large aperture space telescopes; very loose surface-figure tolerances and physical implementation as thin, flat optical elements. In order to actually realize these advantages one must be able to build large diffractive lenses with adequate optical precision and also to compactly stow the lens for launch and then fully deploy it in space. We will discuss the recent fabrication and assembly demonstration of a 5m glass diffractive Fresnel lens at LLNL. Optical performance data from smaller full telescopes with diffractive lens and corrective optics show diffraction limited performance with broad bandwidths. A systems design for a 20m space telescope will be presented. The primary optic can be rolled to fit inside of the standard fairings of the Delta IV vehicle. This configuration has a simple deployment and requires no orbital assembly. A twenty meter visible telescope could have a significant impact in conventional astronomy with eight times the resolution of Hubble and over sixty times the light gathering capacity. If the light scattering is made acceptable, this telescope could also be used in the search for terrestrial planets.

  15. Silica Nanowire Arrays for Diffraction-Based Bioaffinity Sensing

    PubMed Central

    Loget, Gabriel; Corn, Robert M.

    2014-01-01

    Arrays of electrodeposited silica nanowires (SiO2 NWs) have been fabricated over large areas (cm2) on fluoropolymer thin films attached to glass substrates by a combination of photolithography and electrochemically triggered sol-gel nanoscale deposition. Optical and SEM measurements revealed that the SiO2 NW arrays had an average spacing of 10 micrometers and an average width of 700 nm with a significant grain structure that was a result of the sol-gel deposition process. The optical diffraction properties at 633 nm of the SiO2 NWs arrays were characterized when placed in contact with solutions using a prism-coupled total internal reflection geometry; quantification of changes in these diffraction properties was applied in various sensing applications. Bulk refractive index sensing using the SiO2 NWs grating was demonstrated with a refractive index resolution of 1.30 × 10−5 RIU. Toposelectively chemically-modified SiO2 NW arrays were used for diffraction biosensing measurements of surface binding events, such as the electrostatic adsorption of gold nanoparticles and the bioaffinity adsorption of streptavidin onto a biotin monolayer. Finally, the application of the SiO2 NWs arrays for practical medical diagnostic applications was demonstrated by monitoring the diffraction of SiO2 NWs arrays functionalized with a single-stranded DNA aptamer in order to detect human α-thrombin from solutions at sub-pathologic nanomolar concentrations. PMID:24590560

  16. Silica nanowire arrays for diffraction-based bioaffinity sensing.

    PubMed

    Loget, Gabriel; Corn, Robert M

    2014-08-18

    Arrays of electrodeposited silica nanowires (SiO2 NWs) have been fabricated over large areas (cm(2)) on fluoropolymer thin films attached to glass substrates by a combination of photolithography and electrochemically triggered sol-gel nanoscale deposition. Optical and scanning electron microscopy (SEM) measurements revealed that the SiO2 NW arrays had an average spacing of ten micrometers and an average width of 700 nm with a significant grain structure that was a result of the sol-gel deposition process. The optical diffraction properties at 633 nm of the SiO2 NW arrays were characterized when placed in contact with solutions by using a prism-coupled total internal reflection geometry; quantification of changes in these diffraction properties was applied in various sensing applications. Bulk refractive index sensing by using the SiO2 NW grating was demonstrated with a sensitivity of 1.30×10(-5) RIU. Toposelectively chemically modified SiO2 NW arrays were used for diffraction biosensing measurements of surface binding events, such as the electrostatic adsorption of gold nanoparticles and the bioaffinity adsorption of streptavidin onto a biotin monolayer. Finally, the application of the SiO2 NW arrays for practical medical-diagnostic applications was demonstrated by monitoring the diffraction of SiO2 NW arrays functionalized with a single-stranded (ss)DNA aptamer to detect human α-thrombin from solutions at sub-pathologic nanomolar concentrations. PMID:24590560

  17. Evaluation of local structure alphabets based on residue burial.

    PubMed

    Karchin, Rachel; Cline, Melissa; Karplus, Kevin

    2004-05-15

    Residue burial, which describes a protein residue's exposure to solvent and neighboring atoms, is key to protein structure prediction, modeling, and analysis. We assessed 21 alphabets representing residue burial, according to their predictability from amino acid sequence, conservation in structural alignments, and utility in one fold-recognition scenario. This follows upon our previous work in assessing nine representations of backbone geometry.1 The alphabet found to be most effective overall has seven states and is based on a count of C(beta) atoms within a 14 A-radius sphere centered at the C(beta) of a residue of interest. When incorporated into a hidden Markov model (HMM), this alphabet gave us a 38% performance boost in fold recognition and 23% in alignment quality. PMID:15103615

  18. Three-dimensional welding residual stresses evaluation based on the eigenstrain methodology via X-ray measurements at the surface

    NASA Astrophysics Data System (ADS)

    Ogawa, Masaru

    2014-12-01

    In order to assure structural integrity for operating welded structures, it is necessary to evaluate crack growth rate and crack propagation direction for each observed crack non-destructively. Here, three dimensional (3D) welding residual stresses must be evaluated to predict crack propagation. Today, X-ray diffraction is used and the ultrasonic method has been proposed as non-destructive method to measure residual stresses. However, it is impossible to determine residual stress distributions in the thickness direction. Although residual stresses through a depth of several tens of millimeters can be evaluated non-destructively by neutron diffraction, it cannot be used as an on-site measurement technique. This is because neutron diffraction is only available in special irradiation facilities. Author pays attention to the bead flush method based on the eigenstrain methodology. In this method, 3D welding residual stresses are calculated by an elastic Finite Element Method (FEM) analysis from eigenstrains which are evaluated by an inverse analysis from released strains by strain gauges in the removal of the reinforcement of the weld. Here, the removal of the excess metal can be regarded as non-destructive treatment because toe of weld which may become crack starters can be eliminated. The effectiveness of the method has been proven for welded plates and pipes even with relatively lower bead height. In actual measurements, stress evaluation accuracy becomes poorer because measured values of strain gauges are affected by processing strains on the machined surface. In the previous studies, the author has developed the bead flush method that is free from the influence of the affecting strains by using residual strains on surface by X-ray diffraction. However, stress evaluation accuracy is not good enough because of relatively poor measurement accuracy of X-ray diffraction. In this study, a method to improve the estimation accuracy of residual stresses in this method is

  19. Layered holographic stereogram based on inverse Fresnel diffraction.

    PubMed

    Zhang, Hao; Zhao, Yan; Cao, Liangcai; Jin, Guofan

    2016-01-20

    We propose an efficient algorithm using layered holographic stereogram for three-dimensional (3D) computer-generated holograms. The hologram is spatially partitioned into multiple holographic elements (hogels) to provide the occlusion effect and motion parallax by use of multiple viewpoint rendering. Each hogel is calculated with inverse Fresnel diffraction by slicing the viewing frustum according to the depth image. The sliced layers can provide accurate depth cues for reconstruction since the geometric information of the 3D scene is faithfully matched. The algorithm is compatible with computer graphics rendering techniques and robust for holograms with different parameters. When the hogel size equals 1 mm, the signal-to-noise ratio of the diffraction calculation is above 39 dB with a propagation distance longer than 10 mm. Numerical simulations and optical experiments have demonstrated that the proposed method can reconstruct quality 3D images with reduced computational load. PMID:26835948

  20. Dedicated spectrometers based on diffractive optics: design, modelling and evaluation

    NASA Astrophysics Data System (ADS)

    Løvhaugen, O.; Johansen, I.-R.; Bakke, K. A. H.; Fismen, B. G.; Nicolas, S.

    The described design of diffractive optical elements for low cost IR-spectrometers gives a built-in wavelength reference and allows 'spectral arithmetic' to be implemented in the optical performance of the DOE. The diffractive element combines the function of the lenses and the grating and eliminates the need for alignment of those components in the standard scanned grating spectrometer design. The element gives out a set of foci, each with one spectral component, which are scanned across a detector, thus relaxing the demands for scan angle control. It can thus be regarded as an alternative solution to a beam splitter and band pass filter instrument. Software tools have been designed to ease the adaptation of the design to different applications. To model the performance of the spectrometers we have implemented a scalar Rayleigh-Sommerfeldt diffraction model. The gold-coated elements are produced by injection moulding using a compact disc (CD) moulding technique and mould inlays mastered by e-beam lithography. The optimized selection of wavelength bands and the classification of the measured signal use a combination of principal component analysis and robust statistical methods. Typical applications will be material characterization of recycled plastics and gas monitoring. Spectrometers for two different applications have been built and tested. Comparisons between the design goals and the measured performance have been made and show good agreements.

  1. Model-checking techniques based on cumulative residuals.

    PubMed

    Lin, D Y; Wei, L J; Ying, Z

    2002-03-01

    Residuals have long been used for graphical and numerical examinations of the adequacy of regression models. Conventional residual analysis based on the plots of raw residuals or their smoothed curves is highly subjective, whereas most numerical goodness-of-fit tests provide little information about the nature of model misspecification. In this paper, we develop objective and informative model-checking techniques by taking the cumulative sums of residuals over certain coordinates (e.g., covariates or fitted values) or by considering some related aggregates of residuals, such as moving sums and moving averages. For a variety of statistical models and data structures, including generalized linear models with independent or dependent observations, the distributions of these stochastic processes tinder the assumed model can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations can be easily generated by computer simulation. Each observed process can then be compared, both graphically and numerically, with a number of realizations from the Gaussian process. Such comparisons enable one to assess objectively whether a trend seen in a residual plot reflects model misspecification or natural variation. The proposed techniques are particularly useful in checking the functional form of a covariate and the link function. Illustrations with several medical studies are provided. PMID:11890304

  2. High energy X-ray diffraction measurement of residual stresses in a monolithic aluminum clad uranium–10 wt% molybdenum fuel plate assembly

    SciTech Connect

    D. W. Brown; M. A. Okuniewski; J. D. Almer; L. Balogh; B. Clausen; J. S. Okasinski; B. H. Rabin

    2013-10-01

    Residual stresses are expected in monolithic, aluminum clad uranium 10 wt% molybdenum (U–10Mo) nuclear fuel plates because of the large mismatch in thermal expansion between the two bonded materials. The full residual stress tensor of the U–10Mo foil in a fuel plate assembly was mapped with 0.1 mm resolution using high-energy (86 keV) X-ray diffraction. The in-plane stresses in the U–10Mo foil are strongly compressive, roughly -250 MPa in the longitudinal direction and -140 MPa in the transverse direction near the center of the fuel foil. The normal component of the stress is weakly compressive near the center of the foil and tensile near the corner. The disparity in the residual stress between the two in-plane directions far from the edges and the tensile normal stress suggest that plastic deformation in the aluminum cladding during fabrication by hot isostatic pressing also contributes to the residual stress field. A tensile in-plane residual stress is presumed to be present in the aluminum cladding to balance the large in-plane compressive stresses in the U–10Mo fuel foil, but cannot be directly measured with the current technique due to large grain size.

  3. Selenium adsorption to aluminum-based water treatment residuals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum-based water treatment residuals (WTR) can adsorb water- and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 hours in selenate or selenite solutions at pH values o...

  4. Selenium Adsorption To Aluminum-Based Water Treatment Residuals

    EPA Science Inventory

    Aluminum-based water treatment residuals (WTR) can adsorb water-and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 hours in selenate or selenite solut...

  5. Folding simulations of alanine-based peptides with lysine residues.

    PubMed Central

    Sung, S S

    1995-01-01

    The folding of short alanine-based peptides with different numbers of lysine residues is simulated at constant temperature (274 K) using the rigid-element Monte Carlo method. The solvent-referenced potential has prevented the multiple-minima problem in helix folding. From various initial structures, the peptides with three lysine residues fold into helix-dominated conformations with the calculated average helicity in the range of 60-80%. The peptide with six lysine residues shows only 8-14% helicity. These results agree well with experimental observations. The intramolecular electrostatic interaction of the charged lysine side chains and their electrostatic hydration destabilize the helical conformations of the peptide with six lysine residues, whereas these effects on the peptides with three lysine residues are small. The simulations provide insight into the helix-folding mechanism, including the beta-bend intermediate in helix initiation, the (i, i + 3) hydrogen bonds, the asymmetrical helix propagation, and the asymmetrical helicities in the N- and C-terminal regions. These findings are consistent with previous studies. PMID:7756550

  6. Residual stress determination from a laser-based curvature measurement

    SciTech Connect

    W. D. Swank; R. A. Gavalya; J. K. Wright; R. N. Wright

    2000-05-08

    Thermally sprayed coating characteristics and mechanical properties are in part a result of the residual stress developed during the fabrication process. The total stress state in a coating/substrate is comprised of the quench stress and the coefficient of thermal expansion (CTE) mismatch stress. The quench stress is developed when molten particles impact the substrate and rapidly cool and solidify. The CTE mismatch stress results from a large difference in the thermal expansion coefficients of the coating and substrate material. It comes into effect when the substrate/coating combination cools from the equilibrated deposit temperature to room temperature. This paper describes a laser-based technique for measuring the curvature of a coated substrate and the analysis required to determine residual stress from curvature measurements. Quench stresses were determined by heating the specimen back to the deposit temperature thus removing the CTE mismatch stress. By subtracting the quench stress from the total residual stress at room temperature, the CTE mismatch stress was estimated. Residual stress measurements for thick (>1mm) spinel coatings with a Ni-Al bond coat on 304 stainless steel substrates were made. It was determined that a significant portion of the residual stress results from the quenching stress of the bond coat and that the spinel coating produces a larger CTE mismatch stress than quench stress.

  7. Residual Stress Determination from a Laser-Based Curvature Measurement

    SciTech Connect

    Swank, William David; Gavalya, Rick Allen; Wright, Julie Knibloe; Wright, Richard Neil

    2000-05-01

    Thermally sprayed coating characteristics and mechanical properties are in part a result of the residual stress developed during the fabrication process. The total stress state in a coating/substrate is comprised of the quench stress and the coefficient of thermal expansion (CTE) mismatch stress. The quench stress is developed when molten particles impact the substrate and rapidly cool and solidify. The CTE mismatch stress results from a large difference in the thermal expansion coefficients of the coating and substrate material. It comes into effect when the substrate/coating combination cools from the equilibrated deposit temperature to room temperature. This paper describes a laser-based technique for measuring the curvature of a coated substrate and the analysis required to determine residual stress from curvature measurements. Quench stresses were determined by heating the specimen back to the deposit temperature thus removing the CTE mismatch stress. By subtracting the quench stress from the total residual stress at room temperature, the CTE mismatch stress was estimated. Residual stress measurements for thick (>1mm) spinel coatings with a Ni-Al bond coat on 304 stainless steel substrates were made. It was determined that a significant portion of the residual stress results from the quenching stress of the bond coat and that the spinel coating produces a larger CTE mismatch stress than quench stress.

  8. Determination and mitigation of the uncertainty of neutron diffraction measurements of residual strain in large-grained polycrystalline material

    PubMed Central

    Holden, Tom M.; Traore, Yeli; James, Jon; Kelleher, Joe; Bouchard, P. John

    2015-01-01

    For large-grained samples it is advantageous to perform pairs of neutron diffraction measurements at the same spatial location but rotated 180° around the geometric centre of the gauge volume as a means of minimizing the scatter coming from the random positioning of grains within the gauge volume. PMID:25844082

  9. Non destructive neutron diffraction measurements of cavities, inhomogeneities, and residual strain in bronzes of Ghiberti's relief from the Gates of Paradise

    SciTech Connect

    Festa, G.; Senesi, R.; Alessandroni, M.; Andreani, C.; Vitali, G.; Porcinai, S.; Giusti, A. M.; Materna, T.; Paradowska, A. M.

    2011-03-15

    Quantitative neutron studies of cultural heritage objects provide access to microscopic, mesoscopic, and macroscopic structures in a nondestructive manner. In this paper we present a neutron diffraction investigation of a Ghiberti Renaissance gilded bronze relief devoted to the measurement of cavities and inhomogeneities in the bulk of the sample, along with the bulk phase composition and residual strain distribution. The quantitative measurements allowed the determination of the re-melting parts extension, as well as improving current knowledge about the manufacturing process. The study provides significant and unique information to conservators and restorators about the history of the relief.

  10. An OFDM-Based Speech Encryption System without Residual Intelligibility

    NASA Astrophysics Data System (ADS)

    Tseng, Der-Chang; Chiu, Jung-Hui

    Since an FFT-based speech encryption system retains a considerable residual intelligibility, such as talk spurts and the original intonation in the encrypted speech, this makes it easy for eavesdroppers to deduce the information contents from the encrypted speech. In this letter, we propose a new technique based on the combination of an orthogonal frequency division multiplexing (OFDM) scheme and an appropriate QAM mapping method to remove the residual intelligibility from the encrypted speech by permuting several frequency components. In addition, the proposed OFDM-based speech encryption system needs only two FFT operations instead of the four required by the FFT-based speech encryption system. Simulation results are presented to show the effectiveness of this proposed technique.

  11. Microcontroller based spectrophotometer using compact disc as diffraction grid

    NASA Astrophysics Data System (ADS)

    Bano, Saleha; Altaf, Talat; Akbar, Sunila

    2010-12-01

    This paper describes the design and implementation of a portable, inexpensive and cost effective spectrophotometer. The device combines the use of compact disc (CD) media as diffraction grid and 60 watt bulb as a light source. Moreover it employs a moving slit along with stepper motor for obtaining a monochromatic light, photocell with spectral sensitivity in visible region to determine the intensity of light and an amplifier with a very high gain as well as an advanced virtual RISC (AVR) microcontroller ATmega32 as a control unit. The device was successfully applied to determine the absorbance and transmittance of KMnO4 and the unknown concentration of KMnO4 with the help of calibration curve. For comparison purpose a commercial spectrophotometer was used. There are not significant differences between the absorbance and transmittance values estimated by the two instruments. Furthermore, good results are obtained at all visible wavelengths of light. Therefore, the designed instrument offers an economically feasible alternative for spectrophotometric sample analysis in small routine, research and teaching laboratories, because the components used in the designing of the device are cheap and of easy acquisition.

  12. Optical refractometry based on Fresnel diffraction from a phase wedge.

    PubMed

    Tavassoly, M Taghi; Saber, Ahad

    2010-11-01

    A method that utilizes the Fresnel diffraction of light from the phase step formed by a transparent wedge is introduced for measuring the refractive indices of transparent solids, liquids, and solutions. It is shown that, as a transparent wedge of small apex angle is illuminated perpendicular to its surface by a monochromatic parallel beam of light, the Fresnel fringes, caused by abrupt change in refractive index at the wedge lateral boundary, are formed on a screen held perpendicular to the beam propagation direction. The visibility of the fringes varies periodically between zero and 1 in the direction normal to the wedge apex. For a known or measured apex angle, the wedge refractive index is obtained by measuring the period length by a CCD. To measure the refractive index of a transparent liquid or solution, the wedge is installed in a transparent rectangle cell containing the sample. Then, the cell is illuminated perpendicularly and the visibility period is measured. By using modest optics, one can measure the refractive index at a relative uncertainty level of 10(-5). There is no limitation on the refractive index range. The method can be applied easily with no mechanical manipulation. The measuring apparatus can be very compact with low mechanical and optical noises. PMID:21042389

  13. Image cloning beyond diffraction based on coherent population trapping in a hot rubidium vapor.

    PubMed

    Ding, Dong-Sheng; Zhou, Zhi-Yuan; Shi, Bao-Sen

    2014-01-15

    Following recent theoretical predictions, we report on an experimental realization of image cloning beyond usual diffraction, through the coherent population trapping (CPT) effect in a hot rubidium vapor. In our experiment, an alphabet letter image was transferred from a coupling field to a probe field, based on the CPT effect. Furthermore, we demonstrate that the cloned probe field carrying the image is transmitted without the usual diffraction. To our best knowledge, this is the first experimental report about image cloning beyond diffraction. We believe this mechanism, based on CPT, has definite and important applications in image metrology, image processing, and biomedical imaging. PMID:24562116

  14. Residuals and the Residual-Based Statistic for Testing Goodness of Fit of Structural Equation Models

    ERIC Educational Resources Information Center

    Foldnes, Njal; Foss, Tron; Olsson, Ulf Henning

    2012-01-01

    The residuals obtained from fitting a structural equation model are crucial ingredients in obtaining chi-square goodness-of-fit statistics for the model. The authors present a didactic discussion of the residuals, obtaining a geometrical interpretation by recognizing the residuals as the result of oblique projections. This sheds light on the…

  15. Neutron Diffraction Measurement of Residual Stresses, Dislocation Density and Texture in Zr-bonded U-10Mo ''Mini'' Fuel Foils and Plates

    SciTech Connect

    Brown, Donald W.; Okuniewski, M. A.; Sisneros, Thomas A.; Clausen, Bjorn; Moore, G. A.; Balogh, L

    2014-08-07

    Aluminum clad monolithic uranium 10 weight percent molybdenum (U-10Mo) fuel plates are being considered for conversion of several research and test nuclear reactors from high-enriched to low-enriched uranium fuel due to the inherently high density of fissile material. Comprehensive neutron diffraction measurements of the evolution of the textures, residual phase stresses, and dislocation densities in the individual phases of the mini-foils throughout several processing steps and following hot-isostatic pressing to the Al cladding, have been completed. Recovery and recrystallization of the bare U-10Mo fuel foil, as indicated by the dislocation density and texture, are observed depending on the state of the material prior to annealing and the duration and temperature of the annealing process. In general, the HIP procedure significantly reduces the dislocation density, but the final state of the clad plate, both texture and dislocation density, depends strongly on the final processing step of the fuel foil. In contrast, the residual stresses in the clad fuel plate do not depend strongly on the final processing step of the bare foil prior to HIP bonding. Rather, the residual stresses are dominated by the thermal expansion mismatch of the constituent materials of the fuel plate.

  16. The Role of Cold Work in Eddy Current Residual Stress Measurements in Shot-Peened Nickel-Base Superalloys

    SciTech Connect

    Yu, F.; Nagy, P. B.

    2006-03-06

    Recently, it was shown that eddy current methods can be adapted to residual stress measurement in shot-peened nickel-base superalloys. However, experimental evidence indicates that the piezoresistivity effect is simply not high enough to account for the observed apparent eddy current conductivity (AECC) increase. At the same time, X-ray diffraction data indicates that 'cold work' lingers even when the residual stress is fully relaxed and the excess AECC is completely gone. It is impossible to account for both observations with a single coherent explanation unless we assume that instead of a single 'cold work' effect, there are two varieties of cold work; type-A and type-B. Type-A cold work (e.g., changes in the microscopic homogeneity of the material) is not detected by X-ray diffraction as it does not significantly affect the beam width, but causes substantial conductivity change and exhibits strong thermal relaxation. Type-B cold work (e.g., dislocations) is detected by X-ray, but causes little or no conductivity change and exhibits weak thermal relaxation. Based on the assumption of two separate cold-work variables and that X-ray diffraction results indicate the presence of type-B, but not type-A, all observed phenomena can be explained. If this working hypothesis is proven right, the separation of residual stress and type-A cold work is less critical because they both relax much earlier and much faster than type-B cold work.

  17. Diffractive optics based on modulated subwavelength-domain V-ridge gratings

    NASA Astrophysics Data System (ADS)

    Bose, Gaurav; Verhoeven, Antonie; Vartiainen, Ismo; Roussey, Matthieu; Kuittinen, Markku; Tervo, Jani; Turunen, Jari

    2016-08-01

    We study the properties of reflection-type V-ridge gratings in the subwavelength domain and describe a method to realize diffractive optical elements by using such gratings as signal carriers. In particular, we utilize a coding scheme based on position modulation of a high-frequency V-ridge carrier grating. We design and demonstrate beam splitting elements using this coding scheme, electron-beam lithography, anisotropic wet etching of silicon, hot embossing of polymer, and metal deposition. These elements have the outstanding property of operating over a large spectral range from 406 to 520 nm. The measured diffraction patterns show excellent agreement with theoretical results given by rigorous diffraction theory.

  18. Leaching characteristics of calcium-based compounds in MSWI Residues: From the viewpoint of clogging risk.

    PubMed

    Xia, Yi; Zhang, Hua; Phoungthong, Khamphe; Shi, Dong-Xiao; Shen, Wen-Hui; Shao, Li-Ming; He, Pin-Jing

    2015-08-01

    Leachate collection system (LCS) clogging caused by calcium precipitation would be disadvantageous to landfill stability and operation. Meanwhile, calcium-based compounds are the main constituents in both municipal solid waste incineration bottom ash (MSWIBA) and stabilized air pollution control residues (SAPCR), which would increase the risk of LCS clogging once these calcium-rich residues were disposed in landfills. The leaching behaviors of calcium from the four compounds and municipal solid waste incineration (MSWI) residues were studied, and the influencing factors on leaching were discussed. The results showed that pH was the crucial factor in the calcium leaching process. CaCO3 and CaSiO3 began leaching when the leachate pH decreased to less than 7 and 10, respectively, while Ca3(PO4)2 leached at pH<12. CaSO4 could hardly dissolve in the experimental conditions. Moreover, the sequence of the leaching rate for the different calcium-based compounds is as follows: CaSiO3>Ca3(PO4)2>CaCO3. The calcium leaching from the MSWIBA and SAPCR separately started from pH<7 and pH<12, resulting from CaCO3 and Ca3(PO4)2 leaching respectively, which was proven by the X-ray diffraction results. Based on the leaching characteristics of the different calcium compounds and the mineral phase of calcium in the incineration residues, simulated computation of their clogging potential was conducted, providing the theoretical basis for the risk assessment pertaining to LCS clogging in landfills. PMID:25934218

  19. Leaching characteristics of calcium-based compounds in MSWI Residues: From the viewpoint of clogging risk

    SciTech Connect

    Xia, Yi; Zhang, Hua; Phoungthong, Khamphe; Shi, Dong-Xiao; Shen, Wen-Hui; Shao, Li-Ming; He, Pin-Jing

    2015-08-15

    Highlights: • The leaching behavior of Ca-based compounds commonly in MSWI residues was studied. • pH is the crucial factor for calcium leaching process. • CaCO{sub 3} was the most sensitive to leaching temperature and Ca{sub 3}(PO{sub 4}){sub 2} was the least. • Ca leaching of MSWIBA and SAPCR attributed to CaCO{sub 3} and Ca{sub 3}(PO{sub 4}){sub 2} respectively. • Potential clogging ability of MSWI residues leachate in open air was calculated. - Abstract: Leachate collection system (LCS) clogging caused by calcium precipitation would be disadvantageous to landfill stability and operation. Meanwhile, calcium-based compounds are the main constituents in both municipal solid waste incineration bottom ash (MSWIBA) and stabilized air pollution control residues (SAPCR), which would increase the risk of LCS clogging once these calcium-rich residues were disposed in landfills. The leaching behaviors of calcium from the four compounds and municipal solid waste incineration (MSWI) residues were studied, and the influencing factors on leaching were discussed. The results showed that pH was the crucial factor in the calcium leaching process. CaCO{sub 3} and CaSiO{sub 3} began leaching when the leachate pH decreased to less than 7 and 10, respectively, while Ca{sub 3}(PO{sub 4}){sub 2} leached at pH < 12. CaSO{sub 4} could hardly dissolve in the experimental conditions. Moreover, the sequence of the leaching rate for the different calcium-based compounds is as follows: CaSiO{sub 3} > Ca{sub 3}(PO{sub 4}){sub 2} > CaCO{sub 3}. The calcium leaching from the MSWIBA and SAPCR separately started from pH < 7 and pH < 12, resulting from CaCO{sub 3} and Ca{sub 3}(PO{sub 4}){sub 2} leaching respectively, which was proven by the X-ray diffraction results. Based on the leaching characteristics of the different calcium compounds and the mineral phase of calcium in the incineration residues, simulated computation of their clogging potential was conducted, providing the

  20. High sensitivity refractive index sensor based on simple diffraction from phase grating.

    PubMed

    Sahoo, Pankaj K; Joseph, Joby; Yukino, Ryoji; Sandhu, Adarsh

    2016-05-01

    We present a technique for refractive index sensing using a phase grating structure. A grating under normal incidence can be designed such that the first-order diffracted light travels at a diffraction angle of 90° with respect to the zeroth order. The diffracted light, which is along the direction of periodicity, can further be diffracted from the grating and interfere with the zeroth-order light. Under this condition, the π phase difference that arises between the two interfering beams results in a transmission dip. We can tune this dip wavelength for senor applications, based on the grating equation. This Letter presents both simulation and experimental data that show good agreement with each other. PMID:27128084

  1. Neutron diffraction studies towards deciphering the protonation state of catalytic residues in the bacterial KDN9P phosphatase

    PubMed Central

    Bryan, Tyrel; González, Javier M.; Bacik, John P.; DeNunzio, Nicholas J.; Unkefer, Clifford J.; Schrader, Tobias E.; Ostermann, Andreas; Dunaway-Mariano, Debra; Allen, Karen N.; Fisher, S. Zoë

    2013-01-01

    The enzyme 2-keto-3-deoxy-9-O-phosphonononic acid phosphatase (KDN9P phosphatase) functions in the pathway for the production of 2-keto-3-deoxy-d-­glycero-d-galacto-nononic acid, a sialic acid that is important for the survival of commensal bacteria in the human intestine. The enzyme is a member of the haloalkanoate dehalogenase superfamily and represents a good model for the active-site protonation state of family members. Crystals of approximate dimensions 1.5 × 1.0 × 1.0 mm were obtained in space group P21212, with unit-cell parameters a = 83.1, b = 108.9, c = 75.7 Å. A complete neutron data set was collected from a medium-sized H/D-exchanged crystal at BIODIFF at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany in 18 d. Initial refinement to 2.3 Å resolution using only neutron data showed significant density for catalytically important residues. PMID:23989152

  2. Study of Mechanical Properties of AZ91 Magnesium Alloy Welded by Laser Process Taking into Account the Anisotropy Microhardness and Residual Stresses by X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Kouadri, A.; Barrallier, L.

    2011-07-01

    The objective of this investigation was to study the mechanical properties of a magnesium alloy welded by a CO2 laser. Residual stresses were measured by X-ray diffraction. They were calculated by the classic sin2 ψ method in the isotropic zones by using the orientation distribution function (ODF) in the textured zones. The results demonstrated that laser welding results in the formation of several different zones with different microstructural and mechanical properties. Welding principally leads to a reduction in grain size and a new distribution of phases. The most remarkable observation was that of a superficial layer on the surface of the welded zone. This layer has a marked crystallographic texture, a reduction in the level of aluminum, and an elevated microhardness. These characteristics disappear at a depth of 200 μm under the welded zone. These modifications can be explained by the nature of the solidification, which occurs under nonequilibrium conditions resulting in an equiaxial columnar transition. This transition is evident also within the profile of residual tensile stresses, which are at their maximum at the interface between the superficial layer and the rest of the welded zone. These results are explained by the anisotropic properties of the textured layer in relation to the plasticity.

  3. The nature of light: a description of photon diffraction based upon virtual particle exchange

    NASA Astrophysics Data System (ADS)

    Mobley, Michael J.

    2005-08-01

    Any discussion of the nature of light must include a reminder that whenever we make the observation of light (photons), we only observe particle-like properties. This paper provides a reiteration that we don"t need wave-like properties to scattered photons to describe phenomena such as diffraction or refraction of light. This paper updates the original ideas of Duane, later revived by Lande, which provided a description of light diffraction without making reference to a wave nature. These are updated using terminology more common to quantum electrodynamics which describes the interaction of particles in terms of the exchange of virtual photons. Diffraction is described in terms of an ensemble of distinct, probability weighted paths for the scattered photons. The scattering associated with each path results from the quantized momentum exchange with the scattering lattice attributed to the exchange or reflection of virtual photons. The probability for virtual particle exchange/reflection is dependent upon the allowed momentum states of the lattice determined by a Fourier analysis of the lattice geometry. Any scattered photon will exhibit an apparent wavelength inversely proportional to its momentum. Simplified, particle-like descriptions are developed for Young"s double slit diffraction, Fraunhofer diffraction and Fresnel diffraction. This description directly accounts for the quantization of momentum transferred to the scattering lattice and the specific eigenvalues of the lattice based upon the constraints to virtual photon exchange set by the Uncertainty Principle, Δπi = h/ζi.

  4. Physically-based constitutive modelling of residual stress development in welding of aluminium alloy 2024

    SciTech Connect

    Preston, R.V.; Shercliff, H.R. . E-mail: hrs@eng.cam.ac.uk; Withers, P.J.; Smith, S.

    2004-10-04

    A finite element model has been developed to predict the evolution of residual stress and distortion which takes into account the history-dependence of the yield stress-temperature response of heat-treatable aluminium alloys during welding. The model was applied to TIG welding of 2024-T3 aluminium alloy, and the residual strain predictions validated using high resolution X-ray synchrotron diffraction. The goal was to capture the influence of the permanent evolution of the microstructure during the thermal cycle with a straightforward numerical procedure, while retaining a sound physical basis. Hardness and resistivity measurements after isothermal hold-and-quench experiments were used to identify salient temperatures for zero, partial and full dissolution of the initial hardening precipitates, and the extent of softening - both immediately after welding, and after natural ageing. Based on these data, a numerical procedure for weld modelling was proposed for tracking the different yield responses during heating and cooling based on the peak temperature reached locally. This history-dependent model was superior to a conventional model in predicting the peak tensile strains, but otherwise the effect of temperature history was weak for 2024-T3. Predictions of the hardness profile immediately after welding compared with the post-weld naturally aged hardness provided insight into the competition between dissolution and coarsening of the precipitates in the heat-affected zone.

  5. Fatigue investigations of autofrettaged steel cylinders based on neutron-diffraction measurements

    NASA Astrophysics Data System (ADS)

    de Swardt, R. R.; Venter, A. M.; van der Watt, M. W.

    A series of cyclic internal pressurization fatigue experiments was conducted on partially autofrettaged cylinders with multiple internal radial elliptic shaped cracks covering a wide range of possible configurations. A theoretical model was developed to predict the theoretical fatigue life using as input data the actual measured position of the plastic boundary from neutron-diffraction measurements on the failed specimens, as well as a position calculated analytically from the autofrettage pressure. The theoretical fatigue-life predictions based on the neutron-diffraction results were found to give the best correlation with experimental fatigue results.

  6. Imaging regenerating bone tissue based on neural networks applied to micro-diffraction measurements

    SciTech Connect

    Campi, G.; Pezzotti, G.; Fratini, M.; Ricci, A.; Burghammer, M.; Cancedda, R.; Mastrogiacomo, M.; Bukreeva, I.; Cedola, A.

    2013-12-16

    We monitored bone regeneration in a tissue engineering approach. To visualize and understand the structural evolution, the samples have been measured by X-ray micro-diffraction. We find that bone tissue regeneration proceeds through a multi-step mechanism, each step providing a specific diffraction signal. The large amount of data have been classified according to their structure and associated to the process they came from combining Neural Networks algorithms with least square pattern analysis. In this way, we obtain spatial maps of the different components of the tissues visualizing the complex kinetic at the base of the bone regeneration.

  7. Optical double-image cryptography based on diffractive imaging with a laterally-translated phase grating.

    PubMed

    Chen, Wen; Chen, Xudong; Sheppard, Colin J R

    2011-10-10

    In this paper, we propose a method using structured-illumination-based diffractive imaging with a laterally-translated phase grating for optical double-image cryptography. An optical cryptosystem is designed, and multiple random phase-only masks are placed in the optical path. When a phase grating is laterally translated just before the plaintexts, several diffraction intensity patterns (i.e., ciphertexts) can be correspondingly obtained. During image decryption, an iterative retrieval algorithm is developed to extract plaintexts from the ciphertexts. In addition, security and advantages of the proposed method are analyzed. Feasibility and effectiveness of the proposed method are demonstrated by numerical simulation results. PMID:22015370

  8. A system model for ultrasonic NDT based on the Physical Theory of Diffraction (PTD).

    PubMed

    Darmon, M; Dorval, V; Kamta Djakou, A; Fradkin, L; Chatillon, S

    2016-01-01

    Simulation of ultrasonic Non Destructive Testing (NDT) is helpful for evaluating performances of inspection techniques and requires the modelling of waves scattered by defects. Two classical flaw scattering models have been previously usually employed and evaluated to deal with inspection of planar defects, the Kirchhoff approximation (KA) for simulating reflection and the Geometrical Theory of Diffraction (GTD) for simulating diffraction. Combining them so as to retain advantages of both, the Physical Theory of Diffraction (PTD) initially developed in electromagnetism has been recently extended to elastodynamics. In this paper a PTD-based system model is proposed for simulating the ultrasonic response of crack-like defects. It is also extended to provide good description of regions surrounding critical rays where the shear diffracted waves and head waves interfere. Both numerical and experimental validation of the PTD model is carried out in various practical NDT configurations, such as pulse echo and Time of Flight Diffraction (TOFD), involving both crack tip and corner echoes. Numerical validation involves comparison of this model with KA and GTD as well as the Finite-Element Method (FEM). PMID:26323548

  9. Single-order transmission diffraction gratings based on dispersion engineered all-dielectric metasurfaces

    NASA Astrophysics Data System (ADS)

    Gupta, Shulabh

    2016-08-01

    A single-order transmission diffraction grating based on dispersion engineered all-dielectric metasurfaces is proposed and its wavelength discriminating properties have been theoretically described and confirmed using numerical simulations. The metasurface is designed using a 2D array of all-dielectric resonators, which emulates a Huygens source configuration to achieve a perfect match to free-space in broad bandwidth. Using a holey dielectric nanodisk structure as the unit cell, the resonant wavelength is tapered across the metasurface to engineer the wavelength dependent spatial phase gradient, to emulate a dispersive prism. Consequently, different wavelengths are steered towards different directions and thus are discriminated on the output image plane. Due to subwavelength periodicities involved, the wavelength discrimination is achieved directly in the zeroth diffraction order of the device, unlike conventional diffraction gratings, thereby providing a high efficiency wavelength discriminating device.

  10. Micromachined diffraction based optical microphones and intensity probes with electrostatic force feedback

    NASA Astrophysics Data System (ADS)

    Bicen, Baris

    Measuring acoustic pressure gradients is critical in many applications such as directional microphones for hearing aids and sound intensity probes. This measurement is especially challenging with decreasing microphone size, which reduces the sensitivity due to small spacing between the pressure ports. Novel, micromachined biomimetic microphone diaphragms are shown to provide high sensitivity to pressure gradients on one side of the diaphragm with low thermal mechanical noise. These structures have a dominant mode shape with see-saw like motion in the audio band, responding to pressure gradients as well as spurious higher order modes sensitive to pressure. In this dissertation, integration of a diffraction based optical detection method with these novel diaphragm structures to implement a low noise optical pressure gradient microphone is described and experimental characterization results are presented, showing 36 dBA noise level with 1mm port spacing, nearly an order of magnitude better than the current gradient microphones. The optical detection scheme also provides electrostatic actuation capability from both sides of the diaphragm separately which can be used for active force feedback. A 4-port electromechanical equivalent circuit model of this microphone with optical readout is developed to predict the overall response of the device to different acoustic and electrostatic excitations. The model includes the damping due to complex motion of air around the microphone diaphragm, and it calculates the detected optical signal on each side of the diaphragm as a combination of two separate dominant vibration modes. This equivalent circuit model is verified by experiments and used to predict the microphone response with different force feedback schemes. Single sided force feedback is used for active damping to improve the linearity and the frequency response of the microphone. Furthermore, it is shown that using two sided force feedback one can significantly suppress

  11. Structural Assembly of Molecular Complexes Based on Residual Dipolar Couplings

    PubMed Central

    Berlin, Konstantin; O’Leary, Dianne P.; Fushman, David

    2010-01-01

    We present and evaluate a rigid-body molecular docking method, called PATIDOCK, that relies solely on the three-dimensional structure of the individual components and the experimentally derived residual dipolar couplings (RDC) for the complex. We show that, given an accurate ab initio predictor of the alignment tensor from a protein structure, it is possible to accurately assemble a protein-protein complex by utilizing the RDC’s sensitivity to molecular shape to guide the docking. The proposed docking method is robust against experimental errors in the RDCs and computationally efficient. We analyze the accuracy and efficiency of this method using experimental or synthetic RDC data for several proteins, as well as synthetic data for a large variety of protein-protein complexes. We also test our method on two protein systems for which the structure of the complex and steric-alignment data are available (Lys48-linked diubiquitin and a complex of ubiquitin and a ubiquitin-associated domain) and analyze the effect of flexible unstructured tails on the outcome of docking. The results demonstrate that it is fundamentally possible to assemble a protein-protein complex based solely on experimental RDC data and the prediction of the alignment tensor from three-dimensional structures. Thus, despite the purely angular nature of residual dipolar couplings, they can be converted into intermolecular distance/translational constraints. Additionally we show a method for combining RDCs with other experimental data, such as ambiguous constraints from interface mapping, to further improve structure characterization of the protein complexes. PMID:20550109

  12. Determination of pesticide residues in fruit-based soft drinks.

    PubMed

    García-Reyes, Juan F; Gilbert-López, Bienvenida; Molina-Díaz, Antonio; Fernández-Alba, Amadeo R

    2008-12-01

    Here we report the first worldwide reconnaissance study of the presence and occurrence of pesticides in fruit-based soft drinks. While there are strict regulations and exhaustive controls for pesticides in fruits, vegetables, and drinking water, scarce attention has been paid to highly consumed derivate products, which may contain these commodities as ingredients. In the case of the fruit-based soft drinks industry, there are no clear regulations, relating to pesticides, which address them, even when there is significant consumption in vulnerable groups such as children. In this work, we have developed a screening method to search automatically for up to 100 pesticides in fruit-based soft drinks extracts based on the application of liquid chromatography-electrospray time-of-flight mass spectrometry (LC-TOF MS). The sample extracts injected were obtained by a preliminary sample treatment step based on solid-phase extraction using hydrophilic-lipophilic balanced polymer-based reverse phase cartridges and methanol as eluting solvent. Subsequent identification, confirmation, and quantitation were carried out by LC-TOF MS analysis: the confirmation of the target species was based on retention time matching and accurate mass measurements of protonated molecules ([M + H]+) and fragment ions (obtaining accuracy errors typically lower than 2 ppm). With the proposed method, we measured over 100 fruit-based soft drink samples, purchased from 15 different countries from companies with brands distributed worldwide and found relatively large concentration levels of pesticides in most of the samples analyzed. The concentration levels detected were of the micrograms per liter level, low when considering the European maximum residue levels (MRLs) set for fruits but very high (i.e., 300 times) when considering the MRLs for drinking or bottled water. The detected pesticides (carbendazim, thiabendazole, imazalil and its main degradate, prochloraz and its main degradate, malathion, and

  13. Enumerating Pathways of Proton Abstraction Based on a Spatial and Electrostatic Analysis of Residues in the Catalytic Site

    PubMed Central

    Chakraborty, Sandeep

    2012-01-01

    The pathways of proton abstraction (PA), a key aspect of most catalytic reactions, is often controversial and highly debated. Ultrahigh-resolution diffraction studies, molecular dynamics, quantum mechanics and molecular mechanic simulations are often adopted to gain insights in the PA mechanisms in enzymes. These methods require expertise and effort to setup and can be computationally intensive. We present a push button methodology – Proton abstraction Simulation (PRISM) – to enumerate the possible pathways of PA in a protein with known 3D structure based on the spatial and electrostatic properties of residues in the proximity of a given nucleophilic residue. Proton movements are evaluated in the vicinity of this nucleophilic residue based on distances, potential differences, spatial channels and characteristics of the individual residues (polarity, acidic, basic, etc). Modulating these parameters eliminates their empirical nature and also might reveal pathways that originate from conformational changes. We have validated our method using serine proteases and concurred with the dichotomy in PA in Class A β-lactamases, both of which are hydrolases. The PA mechanism in a transferase has also been corroborated. The source code is made available at www.sanchak.com/prism. PMID:22745790

  14. Change Of Calibration Of Diffraction-Based Particle Suers In Dense Sprays

    NASA Astrophysics Data System (ADS)

    Dodge, Lee G.

    1984-10-01

    A calibration procedure for diffraction-based particle-sizing instru-ments using multielement detectors is briefly reviewed. The effects of multiple scattering due to dense sprays on the calibration of these instruments are then examined over a range of sprays with Sauter mean diameters from 20 to 55 um. An empirical scheme to correct for changes in calibration due to dense sprays or other scattering media is presented.

  15. A functional technique based on the Euclidean algorithm with applications to 2-D acoustic diffractal diffusers

    NASA Astrophysics Data System (ADS)

    Cortés-Vega, Luis

    2015-09-01

    We built, based on the Euclidean algorithm, a functional technique, which allows to discover a direct proof of Chinese Remainder Theorem. Afterwards, by using this functional approach, we present some applications to 2-D acoustic diffractal diffusers. The novelty of the method is their functional algorithmic character, which improves ideas, as well as, other results of the author and his collaborators in a previous work.

  16. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction

    SciTech Connect

    Emamzadah, Soheila; Petty, Tom J.; De Almeida, Victor; Nishimura, Taisuke; Joly, Jacques; Ferrer, Jean-Luc; Halazonetis, Thanos D.

    2009-09-01

    A cyclic olefin homopolymer-based microfluidics system has been established for protein crystallization and in situ X-ray diffraction. Microfluidics is a promising technology for the rapid identification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus’ molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 Å resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts.

  17. Modelling of diffraction grating based optical filters for fluorescence detection of biomolecules.

    PubMed

    Kovačič, M; Krč, J; Lipovšek, B; Topič, M

    2014-07-01

    The detection of biomolecules based on fluorescence measurements is a powerful diagnostic tool for the acquisition of genetic, proteomic and cellular information. One key performance limiting factor remains the integrated optical filter, which is designed to reject strong excitation light while transmitting weak emission (fluorescent) light to the photodetector. Conventional filters have several disadvantages. For instance absorbing filters, like those made from amorphous silicon carbide, exhibit low rejection ratios, especially in the case of small Stokes' shift fluorophores (e.g. green fluorescent protein GFP with λ exc = 480 nm and λ em = 510 nm), whereas interference filters comprising many layers require complex fabrication. This paper describes an alternative solution based on dielectric diffraction gratings. These filters are not only highly efficient but require a smaller number of manufacturing steps. Using FEM-based optical modelling as a design optimization tool, three filtering concepts are explored: (i) a diffraction grating fabricated on the surface of an absorbing filter, (ii) a diffraction grating embedded in a host material with a low refractive index, and (iii) a combination of an embedded grating and an absorbing filter. Both concepts involving an embedded grating show high rejection ratios (over 100,000) for the case of GFP, but also high sensitivity to manufacturing errors and variations in the incident angle of the excitation light. Despite this, simulations show that a 60 times improvement in the rejection ratio relative to a conventional flat absorbing filter can be obtained using an optimized embedded diffraction grating fabricated on top of an absorbing filter. PMID:25071964

  18. A fast multispectral light synthesiser based on LEDs and a diffraction grating

    PubMed Central

    Belušič, Gregor; Ilić, Marko; Meglič, Andrej; Pirih, Primož

    2016-01-01

    Optical experiments often require fast-switching light sources with adjustable bandwidths and intensities. We constructed a wavelength combiner based on a reflective planar diffraction grating and light emitting diodes with emission peaks from 350 to 630 nm that were positioned at the angles corresponding to the first diffraction order of the reversed beam. The combined output beam was launched into a fibre. The spacing between 22 equally wide spectral bands was about 15 nm. The time resolution of the pulse-width modulation drivers was 1 ms. The source was validated with a fast intracellular measurement of the spectral sensitivity of blowfly photoreceptors. In hyperspectral imaging of Xenopus skin circulation, the wavelength resolution was adequate to resolve haemoglobin absorption spectra. The device contains no moving parts, has low stray light and is intrinsically capable of multi-band output. Possible applications include visual physiology, biomedical optics, microscopy and spectroscopy. PMID:27558155

  19. A fast multispectral light synthesiser based on LEDs and a diffraction grating.

    PubMed

    Belušič, Gregor; Ilić, Marko; Meglič, Andrej; Pirih, Primož

    2016-01-01

    Optical experiments often require fast-switching light sources with adjustable bandwidths and intensities. We constructed a wavelength combiner based on a reflective planar diffraction grating and light emitting diodes with emission peaks from 350 to 630 nm that were positioned at the angles corresponding to the first diffraction order of the reversed beam. The combined output beam was launched into a fibre. The spacing between 22 equally wide spectral bands was about 15 nm. The time resolution of the pulse-width modulation drivers was 1 ms. The source was validated with a fast intracellular measurement of the spectral sensitivity of blowfly photoreceptors. In hyperspectral imaging of Xenopus skin circulation, the wavelength resolution was adequate to resolve haemoglobin absorption spectra. The device contains no moving parts, has low stray light and is intrinsically capable of multi-band output. Possible applications include visual physiology, biomedical optics, microscopy and spectroscopy. PMID:27558155

  20. Spectrometer for hard X-ray free-electron laser based on diffraction focusing.

    PubMed

    Kohn, V G; Gorobtsov, O Y; Vartanyants, I A

    2013-03-01

    X-ray free-electron lasers (XFELs) generate sequences of ultra-short spatially coherent pulses of X-ray radiation. A diffraction focusing spectrometer (DFS), which is able to measure the whole energy spectrum of the radiation of a single XFEL pulse with an energy resolution of ΔE/E 2 × 10(-6), is proposed. This is much better than for most modern X-ray spectrometers. Such resolution allows one to resolve the fine spectral structure of the XFEL pulse. The effect of diffraction focusing occurs in a single-crystal plate due to dynamical scattering, and is similar to focusing in a Pendry lens made from a metamaterial with a negative refraction index. Such a spectrometer is easier to operate than those based on bent crystals. It is shown that the DFS can be used in a wide energy range from 5 keV to 20 keV. PMID:23412482

  1. Field emitter based extractor gauges and residual gas analyzers

    SciTech Connect

    Changkun Dong; G. Rao Myneni

    1999-04-01

    Attempts at using the Spindt-type molybdenum field emitter arrays in the extractor gauges and a residual gas analyzer are presented in this article. The sensitivity of the fuel emitter gauge is as high as 11 Torr{sup -1}. The departure from linearity of the pressure versus ion current measurements did not exceed 10% over the pressure range of 10{sup -10} - 10{sup -6} Torr. Stable sensitivities for nitrogen, helium, and hydrogen were achieved below 10{sup -7} Torr with the field emitter residual gas analyzer. The slightly reduced emission current and sensitivity, after long-term operation, are of concern and need to be addressed. Residual gas spectra indicate that when using field emitters, the electron stimulated desorption ions (O{sup +}, F{sup +}, and Cl{sup +}) are reduced as compared to those made using a hot filament source.

  2. Use of synchrotron based diffraction enhanced imaging for visualization of soft tissues in invertebrates

    SciTech Connect

    Rao, D.; Zhong, Z.; Swapna, M.; Cesareo, R.; Brunetti, A.; Akatsuka, T.; Yuasa, T.; Takeda, T.; Gigante, G.

    2010-04-04

    Images of terrestrial and marine invertebrates (snails and bivalves) have been obtained by using an X-ray phase-contrast imaging technique, namely, synchrotron-based diffraction-enhanced imaging. Synchrotron X-rays of 20, 30 and 40 keV were used, which penetrate deep enough into animal soft tissues. The phase of X-ray photons shifts slightly as they traverse an object, such as animal soft tissue, and interact with its atoms. Biological features, such as shell morphology and animal physiology, have been visualized. The contrast of the images obtained at 40 keV is the best. This optimum energy provided a clear view of the internal structural organization of the soft tissue with better contrast. The contrast is higher at edges of internal soft-tissue structures. The image improvements achieved with the diffraction-enhanced imaging technique are due to extinction, i.e., elimination of ultra-small-angle scattering. They enabled us to identify a few embedded internal shell features, such as the origin of the apex, which is the firmly attached region of the soft tissue connecting the umbilicus to the external morphology. Diffraction-enhanced imaging can provide high-quality images of soft tissues valuable for biology.

  3. New long trace profiler based on phase plate diffraction for optical metrology of SSRF

    SciTech Connect

    Zeng Danhua; Xiao Tiqiao; Du Guohao; Wen Li; Luo Hongxin; Xia Shaojian; Xu Hongjie

    2006-09-15

    A long trace profiler LTP-1200, with a novel f-{theta} system based on phase plate diffraction and a scanning range up to 1200 mm, has been developed at Shanghai Synchrotron Radiation Facility. The central dark line in the diffraction pattern generated by a {pi} phase plate is taken as the positioning benchmark. A magnet levitated linear rail with very high accuracy is used. A granite bench is employed to reduce deformation due to self-gravity of the rail. The focused diffraction pattern is recorded with an area charge-coupled device. The generalized regression neural network algorithm is adopted to improve the beam positioning precision. The static stability of LTP-1200 in 5 h is 0.14 {mu}rad, and the repeatability reaches 0.05 {mu}rad in a common laboratory without any special control of temperature, air turbulence, etc. Calibration tests were carried out with a high precision autocollimator and a standard spherical mirror, respectively. Results show the high performance and reliability of the LTP-1200.

  4. A Comparison of Residual Stress Development in Inertia Friction Welded Fine Grain and Coarse Grain Nickel-Base Superalloy

    NASA Astrophysics Data System (ADS)

    Iqbal, N.; Rolph, J.; Moat, R.; Hughes, D.; Hofmann, M.; Kelleher, J.; Baxter, G.; Withers, P. J.; Preuss, M.

    2011-12-01

    The effect of the base material microstructure on the development of residual stresses across the weld line in inertia friction welds (IFWs) of high-strength nickel-base superalloy RR1000 was studied using neutron diffraction. A comparison was carried out between tubular IFW specimens generated from RR1000 heat treated below (fine grain (FG) structure) and above (coarse grain (CG) structure) the γ'-solvus. Residual stresses were mapped in the as-welded (AW) condition and, after a postweld heat treatment (PWHT), optimized for maximum alloy strength. The highest tensile stresses were generally found in the hoop direction at the weld line near the inner diameter of the tubular-shaped specimens. A comparison between the residual stresses generated in FG and CG RR1000 suggests that the starting microstructure has little influence on the maximum residual stresses generated in the weld even though different levels of energy must be input to achieve a successful weld in each case. The residual stresses in the postweld heat treated samples were about 35 pct less than for the AW condition. Despite the fact that the high-temperature properties of the two parent microstructures are different, no significant differences in terms of stress relief were found between the FG and CG RR1000 IFWs. Since the actual weld microstructures of FG and CG RR1000 inertia welds are very similar, the results suggest that it is the weld microstructure and its associated high-temperature properties rather than the parent material that affects the overall weld stress distribution and its subsequent stress relief.

  5. Calibration diagnostic and updating strategy based on quantitative modeling of near-infrared spectral residuals.

    PubMed

    Yu, Hua; Small, Gary W

    2015-02-01

    A diagnostic and updating strategy is explored for multivariate calibrations based on near-infrared spectroscopy. For use with calibration models derived from spectral fitting or decomposition techniques, the proposed method constructs models that relate the residual concentrations remaining after a prediction to the residual spectra remaining after the information associated with the calibration model has been extracted. This residual modeling approach is evaluated for use with partial least-squares (PLS) models for predicting physiological levels of glucose in a simulated biological matrix. Residual models are constructed with both PLS and a hybrid technique based on the use of PLS scores as inputs to support vector regression. Calibration and residual models are built with both absorbance and single-beam data collected over 416 days. Effective models for the spectral residuals are built with both types of data and demonstrate the ability to diagnose and correct deviations in performance of the calibration model with time. PMID:25473807

  6. Diffraction-based overlay measurement on dedicated mark using rigorous modeling method

    NASA Astrophysics Data System (ADS)

    Lu, Hailiang; Wang, Fan; Zhang, Qingyun; Chen, Yonghui; Zhou, Chang

    2012-03-01

    Diffraction Based Overlay (DBO) is widely evaluated by numerous authors, results show DBO can provide better performance than Imaging Based Overlay (IBO). However, DBO has its own problems. As well known, Modeling based DBO (mDBO) faces challenges of low measurement sensitivity and crosstalk between various structure parameters, which may result in poor accuracy and precision. Meanwhile, main obstacle encountered by empirical DBO (eDBO) is that a few pads must be employed to gain sufficient information on overlay-induced diffraction signature variations, which consumes more wafer space and costs more measuring time. Also, eDBO may suffer from mark profile asymmetry caused by processes. In this paper, we propose an alternative DBO technology that employs a dedicated overlay mark and takes a rigorous modeling approach. This technology needs only two or three pads for each direction, which is economic and time saving. While overlay measurement error induced by mark profile asymmetry being reduced, this technology is expected to be as accurate and precise as scatterometry technologies.

  7. A Protein Solvation Model Based on Residue Burial.

    PubMed

    Ceres, Nicoletta; Pasi, Marco; Lavery, Richard

    2012-06-12

    The influence of solvent on the individual amino acids of a protein depends not simply on their surface exposure but rather on the degree of their burial within the structure. This property can be related to a simple geometrical measure termed circular variance. Circular variance depends on the spatial distribution of neighboring residues and varies from zero to one as a residue becomes buried. Its only adjustable parameter is a cutoff distance for selecting neighbors. Here, we show that circular variance can be used to build a fast and effective model of protein solvation energies. For this, we combine a coarse-grain protein representation with statistical potentials derived by Boltzmann inversion of circular variance probability distributions for different classes of pseudoatom within a large protein structure database. The method is shown to work well for distinguishing native protein structures from decoy structures generated in a variety of ways. It can also be used to detect specific residues in unfavorable solvent environments. Compared to surface accessibility, circular variance calculations are faster, less sensitive to small conformational changes, and able to account for the longer-range interactions that characterize the electrostatic component of solvent effects. The resulting solvation energies can be used alone or as part of a more general coarse-grain protein model. PMID:26593844

  8. Nondestructive characterization of residual stress within CMOS-based composite microcantilevers

    NASA Astrophysics Data System (ADS)

    Rendon-Hernandez, Adrian A.; Camacho-Leon, Sergio; Martinez-Chapa, Sergio O.

    2013-04-01

    Residual stress can affect the performance of thin-film micromachined structures and lead to curling in cantilevers as well as distortion in the frequency of resonant devices. As the origin of residual stress is dependent on the fabrication processes, a nondestructive method for characterization of residual stress independent of processes conditions is desirable for supporting the design of microcantilever-based microsystems. In this paper we present a nondestructive characterization of the residual stress within composite microcantilever beams providing valuable insights toward predicting their deflection profile after mechanical releasing from the substrate. The approach relies on the assumption of a linear gradient stress and a quadratic deflection profile across a composite microcantilever.

  9. Performance enhancement of thin film silicon solar cells based on distributed Bragg reflector and diffraction grating

    SciTech Connect

    Dubey, R. S.; Saravanan, S.; Kalainathan, S.

    2014-12-15

    The influence of various designing parameters were investigated and explored for high performance solar cells. Single layer grating based solar cell of 50 μm thickness gives maximum efficiency up to 24 % whereas same efficiency is achieved with the use of three bilayers grating based solar cell of 30 μm thickness. Remarkably, bilayer grating based solar cell design not only gives broadband absorption but also enhancement in efficiency with reduced cell thickness requirement. This absorption enhancement is attributed to the high reflection and diffraction from DBR and grating respectively. The obtained short-circuit current were 29.6, 32.9, 34.6 and 36.05 mA/cm{sup 2} of 5, 10, 20 and 30 μm cell thicknesses respectively. These presented designing efforts would be helpful to design and realize new generation of solar cells.

  10. Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy

    NASA Astrophysics Data System (ADS)

    Liu, Fencheng; Lin, Xin; Yang, Gaolin; Song, Menghua; Chen, Jing; Huang, Weidong

    2011-02-01

    The microstructure and residual stress of laser rapid formed (LRFed) nickel-base superalloy Inconel 718 was investigated. The as-deposited microstructure of an LRFed Inconel 718 alloy is composed of columnar dendrites growing epitaxially along the deposition direction, and the columnar dendrites transformed to unevenly distributed equiaxed grains after annealing treatment at high temperature. Residual stress evaluation in microstructure scale by Vickers micro-indentation method indicates that the residual thermal stress is unevenly distributed in the LRFed sample, and it has a significant effect on the recrystallization during solution annealing treatment. The residual stress is introduced by rapid heating and cooling during laser rapid forming. There is an alternative distribution between high residual stress regions and low residual stress regions, within a single deposited layer, resulting in a similar distribution of recrystallized grain size.

  11. Radius of curvature measurement based on wavefront difference method by the point diffraction interferometer

    NASA Astrophysics Data System (ADS)

    Yang, Zhongming; Gao, Zhishan; Yuan, Qun; Ye, Jingfei; Li, Minjue

    2014-05-01

    A method for measuring the radius of curvature with a pinhole point diffraction interferometer (PDI) is proposed. Using the wavefront difference method and the Gaussian imaging equation, the longitudinal displacement of the converging rays passing through a standard plane-parallel-plate sample in PDI interference cavity is determined. Based on this longitudinal displacement, a precise formula for radius of curvature calculation is deduced. An experimental system for radius of curvature measurements is set up to verify the principle. With this testing system, the radius of curvature of spherical mirrors and the surface figure can be measured in a higher precision simultaneously. Some sources of uncertainty in measurement are discussed based on detailed error analysis. The experimental results indicate that the measurement accuracy ΔR/R0 is in the order of 10-4.

  12. Novel copyright information hiding method based on random phase matrix of Fresnel diffraction transforms

    NASA Astrophysics Data System (ADS)

    Cao, Chao; Chen, Ru-jun

    2009-10-01

    In this paper, we present a new copyright information hide method for digital images in Moiré fringe formats. The copyright information is embedded into the protected image and the detecting image based on Fresnel phase matrix. Firstly, using Fresnel diffraction transform, the random phase matrix of copyright information is generated. Then, according to Moiré fringe principle, the protected image and the detecting image are modulated respectively based on the random phase matrix, and the copyright information is embedded into them. When the protected image and the detecting image are overlapped, the copyright information can reappear. Experiment results show that our method has good concealment performance, and is a new way for copyright protection.

  13. Optical cryptosystem based on phase-truncated Fresnel diffraction and transport of intensity equation.

    PubMed

    Zhang, Chenggong; He, Wenqi; Wu, Jiachen; Peng, Xiang

    2015-04-01

    A novel optical cryptosystem based on phase-truncated Fresnel diffraction (PTFD) and transport of intensity equation (TIE) is proposed. By using the phase truncation technique, a phase-encoded plaintext could be encrypted into a real-valued noise-like intensity distribution by employing a random amplitude mask (RAM) and a random phase mask (RPM), which are regarded as two secret keys. For decryption, a generalized amplitude-phase retrieval (GAPR) algorithm combined with the TIE method are proposed to recover the plaintext with the help of two keys. Different from the current phase-truncated-based optical cryptosystems which need record the truncated phase as decryption keys, our scheme do not need the truncated phase because of the introducing of the TIE method. Moreover, the proposed scheme is expected to against existing attacks. A set of numerical simulation results show the feasibility and security of the proposed method. PMID:25968722

  14. Mechanical characterization of nanowires based on optical diffraction images of the bent shape.

    PubMed

    Muraoka, Mikio; Tobe, Ryohei

    2009-08-01

    A mechanical characterization technique for nanowires (NWs) longer than approximately 10 microm is proposed, based on optical microscopic observations under bending test. Low flexural rigidity of NWs often results in large deflection, which rules out the use of linear beam theory; however, the largely bent shape is optically visible as a diffraction image under transmitted illumination. The NW standing on a rod-like substrate was deflected by means of a micro-cantilever, where interactive forces, such as van der Waals forces, provide sufficient adhesion for fixing the free end of the NW. The reactive force was measured from the cantilever deflection and detected by a laser interferometer. The luminance profile of the diffraction image provided a good measure of the NW diameter. Inverse analysis using geometrically nonlinear mechanics for the bent shape enabled successful evaluation of the Young's modulus. In addition, a fracture test was conducted by manipulating the cantilever for intense deformation of the NW, such as buckling. The maximum curvature was observed at the freely suspended part of the bent NW where fracture was assured. The bending strength was determined from observation of the curvature at the fracture. Examples for CuO NWs of 40 nm to 190 nm in diameter indicated dependence of the Young's modulus and strength on the NW diameter. PMID:19928119

  15. Automatic decomposition of a complex hologram based on the virtual diffraction plane framework

    NASA Astrophysics Data System (ADS)

    Jiao, A. S. M.; Tsang, P. W. M.; Poon, T.-C.; Liu, J.-P.; Lee, C.-C.; Lam, Y. K.

    2014-07-01

    Holography is a technique for capturing the hologram of a three-dimensional scene. In many applications, it is often pertinent to retain specific items of interest in the hologram, rather than retaining the full information, which may cause distraction in the analytical process that follows. For a real optical image that is captured with a camera or scanner, this process can be realized by applying image segmentation algorithms to decompose an image into its constituent entities. However, because it is different from an optical image, classic image segmentation methods cannot be applied directly to a hologram, as each pixel in the hologram carries holistic, rather than local, information of the object scene. In this paper, we propose a method to perform automatic decomposition of a complex hologram based on a recently proposed technique called the virtual diffraction plane (VDP) framework. Briefly, a complex hologram is back-propagated to a hypothetical plane known as the VDP. Next, the image on the VDP is automatically decomposed, through the use of the segmentation on the magnitude of the VDP image, into multiple sub-VDP images, each representing the diffracted waves of an isolated entity in the scene. Finally, each sub-VDP image is reverted back to a hologram. As such, a complex hologram can be decomposed into a plurality of subholograms, each representing a discrete object in the scene. We have demonstrated the successful performance of our proposed method by decomposing a complex hologram that is captured through the optical scanning holography (OSH) technique.

  16. 100-watt fiber-based green laser with near diffraction-limited beam quality

    NASA Astrophysics Data System (ADS)

    Hu, Dan; Eisenberg, Eric; Brar, Khush; Yilmaz, Tolga; Honea, Eric

    2010-02-01

    An air-cooled, light-weight, fiber-based, high power green laser has been prototyped. The system consists of an all-fibercoupled IR pump laser at 1064 nm and a frequency-conversion module in a compact and flexible configuration. The IR laser operates in QCW mode, with 10 MHz pulse repetition frequency and 3-5 ns pulse width, to generate sufficient peak power for frequency doubling in the converter module. The IR laser can produce more than 200 W in a linearlypolarized diffraction-limited output beam with high spectral brightness for frequency conversion. The converter module has an input telescope and an oven with a nonlinear crystal to efficiently convert the 1064-nm IR fiber laser output to 532-nm green output. The IR laser and conversion module are connected via a stainless-steel protected delivery fiber for optical beam delivery and an electrical cable harness for electrical power delivery and system control. The beam quality of the 532 nm output remains near diffraction-limited, with M2<1.4. Up to 101 W of 532 nm output was demonstrated and multi-hour runs were characterized at 75 W output. The weights of the IR laser package and doubler are 69 lbs and 14 lbs respectively. An overview of the system and full characterization results will be presented. Such compact, highbrightness green laser sources are expected to enable various scientific, defense and industrial applications.

  17. FISH TISSUE RESIDUE-BASED WILDLIFE VALUES FOR PISCIVOUOUS WILDLIFE: CHLORDANE, DDT, DIELDRIN, HEXACHLOROBENZENE

    EPA Science Inventory

    Fish tissue residue-based wildlife values were derived for chlordane, DDT, dieldrin, endrin, hexachlorobenzene, mercury and PCBs. Piscivorous wildlife for which these benchmarks were derived include belted kingfisher, river otter and mink. Toxic endpoint selection, criteria for t...

  18. Quantification of Pharmaceutical Compounds Based on Powder X-Ray Diffraction with Chemometrics.

    PubMed

    Otsuka, Yuta; Ito, Akira; Matsumura, Saki; Takeuchi, Masaki; Pal, Suvra; Tanaka, Hideji

    2016-01-01

    We propose an approach for the simultaneous determination of multiple components in pharmaceutical mixed powder based on powder X-ray diffraction (PXRD) method coupled with chemometrics. Caffeine anhydrate, acetaminophen and lactose monohydrate were mixed at various ratios. The samples were analyzed by PXRD method in the ranges of 2θ=5.00-30.0 and 35.0-45.0 degrees. Obtained diffractograms were analyzed by conventional peak intensity method, multi curve resolution (MCR)-alternating least squares (ALS) method and partial least squares (PLS) method. Constructed PLS models can most accurately predict the concentrations among different methods used. Each regression vector of PLS correlates not only to the compound of interest but also to the coexisting compounds. The combination of PXRD and PLS methods is concluded to be powerful approach for analyzing multi components in pharmaceutical formulations. PMID:27477651

  19. Digital focusing of OCT images based on scalar diffraction theory and information entropy

    PubMed Central

    Liu, Guozhong; Zhi, Zhongwei; Wang, Ruikang K.

    2012-01-01

    This paper describes a digital method that is capable of automatically focusing optical coherence tomography (OCT) en face images without prior knowledge of the point spread function of the imaging system. The method utilizes a scalar diffraction model to simulate wave propagation from out-of-focus scatter to the focal plane, from which the propagation distance between the out-of-focus plane and the focal plane is determined automatically via an image-definition-evaluation criterion based on information entropy theory. By use of the proposed approach, we demonstrate that the lateral resolution close to that at the focal plane can be recovered from the imaging planes outside the depth of field region with minimal loss of resolution. Fresh onion tissues and mouse fat tissues are used in the experiments to show the performance of the proposed method. PMID:23162717

  20. High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays

    NASA Astrophysics Data System (ADS)

    Zhang, Shuyan; Kim, Myoung-Hwan; Aieta, Francesco; She, Alan; Mansuripur, Tobias; Gabay, Ilan; Khorasaninejad, Mohammadreza; Rousso, David; Wang, Xiaojun; Troccoli, Mariano; Yu, Nanfang; Capasso, Federico

    2016-08-01

    A limiting factor in the development of mid-infrared optics is the lack of abundant materials that are transparent, low cost, lightweight, and easy to machine. In this paper, we demonstrate a metasurface device that circumvents these limitations. A flat lens based on antenna reflectarrays was designed to achieve near diffraction-limited focusing with a high efficiency (experiment: 80%, simulation: 83%) at 45(o) incidence angle at {\\lambda} = 4.6 {\\mu}m. This geometry considerably simplifies the experimental arrangement compared to the common geometry of normal incidence which requires beam splitters. Simulations show that the effect of comatic aberrations is small compared to parabolic mirrors. The use of single-step photolithography allows large scale fabrication.

  1. High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings

    NASA Astrophysics Data System (ADS)

    Gloor, S.; Bachmann, A. H.; Epitaux, M.; von Niederhäusern, T.; Vorreau, P.; Matuschek, N.; Hsu, K.; Duelk, M.; Vélez, C.

    2013-03-01

    We show a broad range of swept source performances based on a highly-flexible external cavity laser architecture. Specifically, we demonstrate a 40-kHz 1300-nm swept source with 10 mm coherence length realized in a compact butterfly package. Fast wavelength sweeping is achieved through a 1D 20-kHz MEMS mirror in combination with an advanced diffraction grating. The MEMS mirror is a resonant electrostatic mirror that performs harmonic oscillation only within a narrow frequency range, resulting in low-jitter and long-term phase-stable sinusoidal bidirectional sweep operation with an A-scan rate of 40 kHz. The source achieves a coherence length of 10 mm for both the up- and downsweep and an OCT sensitivity of 105 dB.

  2. Measurement of four-degree-of-freedom error motions based on non-diffracting beam

    NASA Astrophysics Data System (ADS)

    Zhai, Zhongsheng; Lv, Qinghua; Wang, Xuanze; Shang, Yiyuan; Yang, Liangen; Kuang, Zheng; Bennett, Peter

    2016-05-01

    A measuring method for the determination of error motions of linear stages based on non-diffracting beams (NDB) is presented. A right-angle prism and a beam splitter are adopted as the measuring head, which is fixed on the moving stage in order to sense the straightness and angular errors. Two CCDs are used to capture the NDB patterns that are carrying the errors. Four different types error s, the vertical straightness error and three rotational errors (the pitch, roll and yaw errors), can be separated and distinguished through theoretical analysis of the shift in the centre positions in the two cameras. Simulation results show that the proposed method using NDB can measure four-degrees-of-freedom errors for the linear stage.

  3. Temporal contrast improvement based on the self-diffraction process with a cylinder mirror

    NASA Astrophysics Data System (ADS)

    Li, Fangjia; Shen, Xiong; Wang, Peng; Li, Yanyan; Liu, Jun; Wang, Zhanshan; Li, Ruxin

    2016-05-01

    A cylinder reflective mirror was used to increase incident pulse energy to multi-millijoules in the research of temporal contrast enhancement based on a self-diffraction (SD) process. A 170 μJ first-order SD pulse with temporal contrast improved by 4 orders of magnitude was obtained when incident pulse energy was 5.1 mJ. In order to improve energy-conversion efficiency, a 67/33 beam splitter was used to replace the original 50/50 one. A 265 μJ first-order SD signal was achieved without damage of the glass plate at 3.7 mJ input pulse energy with an energy-conversion efficiency of about 7.1%. The generated SD pulse is expected to be used as the seed of high-contrast and high-power laser systems.

  4. Two-degree-of-freedom displacement measurement system based on double diffraction gratings

    NASA Astrophysics Data System (ADS)

    Lu, Zhengang; Wei, Peipei; Wang, Chaoqun; Jing, Jialei; Tan, Jiubin; Zhao, Xiping

    2016-07-01

    A two-degree-of-freedom (2-DOF) displacement measurement system based on double diffraction gratings is proposed in this paper, which consists of a reflective-type scale grating and a grating read head with a scanning transmission grating. Combining the traditional three-grating interference principle with the Michelson interference principle, the system can measure the displacements of a precision stage along the horizontal direction (X-axis, in the scanning grating plane and vertical to the scanning grating lines) and vertical direction (Z-axis, vertical to the scanning grating plane) simultaneously. The system has the merits of compact structure and uncoupled interference signals in the two axes. By simulating the output signals of the system and comparing them with the experimental results, the validity and feasibility of the system have been verified. The 2-DOF system will be favorable in the displacement measurement of multi-dimensional stages and multi-DOF machines.

  5. Melting of iron at Earth's inner core boundary based on fast X-ray diffraction.

    PubMed

    Anzellini, S; Dewaele, A; Mezouar, M; Loubeyre, P; Morard, G

    2013-04-26

    Earth's core is structured in a solid inner core, mainly composed of iron, and a liquid outer core. The temperature at the inner core boundary is expected to be close to the melting point of iron at 330 gigapascal (GPa). Despite intensive experimental and theoretical efforts, there is little consensus on the melting behavior of iron at these extreme pressures and temperatures. We present static laser-heated diamond anvil cell experiments up to 200 GPa using synchrotron-based fast x-ray diffraction as a primary melting diagnostic. When extrapolating to higher pressures, we conclude that the melting temperature of iron at the inner core boundary is 6230 ± 500 kelvin. This estimation favors a high heat flux at the core-mantle boundary with a possible partial melting of the mantle. PMID:23620049

  6. High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays.

    PubMed

    Zhang, Shuyan; Kim, Myoung-Hwan; Aieta, Francesco; She, Alan; Mansuripur, Tobias; Gabay, Ilan; Khorasaninejad, Mohammadreza; Rousso, David; Wang, Xiaojun; Troccoli, Mariano; Yu, Nanfang; Capasso, Federico

    2016-08-01

    We report the first demonstration of a mid-IR reflection-based flat lens with high efficiency and near diffraction-limited focusing. Focusing efficiency as high as 80%, in good agreement with simulations (83%), has been achieved at 45° incidence angle at λ = 4.6 μm. The off-axis geometry considerably simplifies the optical arrangement compared to the common geometry of normal incidence in reflection mode which requires beam splitters. Simulations show that the effects of incidence angle are small compared to parabolic mirrors with the same NA. The use of single-step photolithography allows large scale fabrication. Such a device is important in the development of compact telescopes, microscopes, and spectroscopic designs. PMID:27505769

  7. A study of swing-curve physics in diffraction-based overlay

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kaustuve; den Boef, Arie; Storms, Greet; van Heijst, Joost; Noot, Marc; An, Kevin; Park, Noh-Kyoung; Jeon, Se-Ra; Oh, Nang-Lyeom; McNamara, Elliott; van de Mast, Frank; Oh, SeungHwa; Lee, Seung Yoon; Hwang, Chan; Lee, Kuntack

    2016-03-01

    With the increase of process complexity in advanced nodes, the requirements of process robustness in overlay metrology continues to tighten. Especially with the introduction of newer materials in the film-stack along with typical stack variations (thickness, optical properties, profile asymmetry etc.), the signal formation physics in diffraction-based overlay (DBO) becomes an important aspect to apply in overlay metrology target and recipe selection. In order to address the signal formation physics, an effort is made towards studying the swing-curve phenomena through wavelength and polarizations on production stacks using simulations as well as experimental technique using DBO. The results provide a wealth of information on target and recipe selection for robustness. Details from simulation and measurements will be reported in this technical publication.

  8. A projection-based approach to diffraction tomography on curved boundaries

    PubMed Central

    Clement, Gregory T.

    2014-01-01

    An approach to diffraction tomography is investigated for two-dimensional image reconstruction of objects surrounded by an arbitrarily-shaped curve of sources and receivers. Based on the integral theorem of Helmholtz and Kirchhoff, the approach relies upon a valid choice of the Green’s functions for selected conditions along the (possibly-irregular) boundary. This allows field projections from the receivers to an arbitrary external location. When performed over all source locations, it will be shown that the field caused by a hypothetical source at this external location is also known along the boundary. This field can then be projected to new external points that may serve as a virtual receiver. Under such a reformation, data may be put in a form suitable for image construction by synthetic aperture methods. Foundations of the approach are shown, followed by a mapping technique optimized for the approach. Examples formed from synthetic data are provided. PMID:25598570

  9. Harmonic Components Based Post-Filter Design for Residual Echo Suppression

    NASA Astrophysics Data System (ADS)

    Lee, Minwoo; Lee, Yoonjae; Kim, Kihyeon; Ko, Hanseok

    In this Letter, a residual acoustic echo suppression method is proposed to enhance the speech quality of hands-free communication in an automobile environment. The echo signal is normally a human voice with harmonic characteristics in a hands-free communication environment. The proposed algorithm estimates the residual echo signal by emphasizing its harmonic components. The estimated residual echo is used to obtain the signal-to-interference ratio (SIR) information at the acoustic echo canceller output. Then, the SIR based Wiener post-filter is constructed to reduce both the residual echo and noise. The experimental results confirm that the proposed algorithm is superior to the conventional residual echo suppression algorithm in terms of the echo return loss enhancement (ERLE) and the segmental signal-to-noise ratio (SEGSNR).

  10. Diffraction-Based Techniques For High Contrast X-ray Imaging

    NASA Astrophysics Data System (ADS)

    Peerzada, Lubna Naseem

    Two X-ray diffraction based techniques for high contrast were explored to improve contrast in radiology: diffraction enhanced imaging (DEI) and coherent scatter imaging. DEI produces contrast in images based upon the difference in the X-ray refractive indices of materials or tissues. Two DEI systems were devised. Both were comprised of a conventional polychromatic copper X-ray source, polycapillary collimating optics and two silicon crystals.Lucite step phantoms and nylon tubing were imaged. No fringe effects were observed. The lack of observable edge enhancement may have been due to the optic structure which obscured refraction effects. Better results might have been achieved if a higher resolution detector or phantom of larger step size or larger diameter thin walled tubing had been used. The second technique was coherent scatter X-ray imaging. The purpose of this work was to differentiate between healthy and diseased human breast tissues. For instance, breast carcinoma is known to have a peak coherent scattering angle at 12.2° for Mo Ka radiation at 17.5 keV, whereas fatty tissue peaks around 9°. A system which would be compatible with screening mammography was developed. The system was expanded to include sample scanning to allow for a larger image area. The modulation transfer function was computed for static and scanned images of a resolution phantom. These showed good agreement, indicating that the scanning was properly aligned and timed. Static and scanned images of phantoms were taken and the contrast was calculated for a series of experimental parameters including, grid tilt angle. A complex phantom was also then imaged. It was possible to distinguish tissue-equivalent phantom types. Good contrast resolution scanned images were obtained which is promising for a diagnostic system.

  11. Performance improvements of MOEMS-based diffractive arrays: address isolation and optical switching

    NASA Astrophysics Data System (ADS)

    Panaman, Ganesh; Madison, Seth; Sano, Michael; Castracane, James

    2005-01-01

    Micro-Opto-Electro-Mechanical Systems (MOEMS) have found a variety of applications in fields such as telecommunications, spectroscopy and display technology. MOEMS-based optical switching is currently under investigation for the increased flexibility that such devices provide for reconfiguration of the I/O network for inter-chip communication applications. This potential not only adds an additional degree of freedom for adjustment of transmitter/receiver links but also allows for fine alignment of individual channels in the network link. Further, this use of diffractive arrays for specific applications combines beam steering/adjustment capabilities with the inherent wavelength dependence of the diffractive approach for channel separation and de-multiplexing. Research and development has been concentrated on the progression from single MOEMS components to parallel arrays integrated with optical source arrays for a successful feasibility demonstration. Successful development of such an approach will have a major impact of the next generation communication protocols. This paper will focus on the current status of the MOEMS research program for Free Space Optical inter-chip communication at the College of NanoScale Science and Engineering, University at Albany-SUNY (CNSE). New versions of diffractive arrays stemming from the basic MEMS Compound Grating (MCG; patent #5,999,319) have been produced through various fabrication methods including the MUMPs process1. Most MEMS components relying on electrostatic actuation tend to require high actuation voltages (>20V) compared to the typical 5V levels prevalent in conventional integrated circuits. The specific goal is to yield improved performance while minimizing the power consumption of the components. Structural modifications through the variation in the ruling/electrode spacing distance and array wiring layout through individually addressable gratings have been studied to understand effects on the actuation voltage and

  12. A diffraction based study of the deformation mechanisms in anomalously ductile B2 intermetallics

    NASA Astrophysics Data System (ADS)

    Mulay, Rupalee Prashant

    For many decades, the brittle nature of most intermetallic compounds (e.g. NiAl) has been the limiting factor in their practical application. Many B2 (CsCl prototypical structure) intermetallics are known to exhibit slip on the <001>{110} slip mode, which provides only 3 independent slip systems and, hence, is unable to satisfy the von Mises (a.k.a. Taylor) criterion for polycrystalline ductility. As a result, inherent polycrystalline ductility is unexpected. Recent discovery of a number of ductile B2 intermetallics has raised questions about possible violation of the von Mises criterion by these alloys. These ductile intermetallic compounds are MR (metal (M) combined with a rare earth metal or group IV refractory metal (R)) alloys and are stoichiometric, ordered compounds. Single crystal slip trace analyses have only identified the presence of <100>{011} or <100>{010} slip systems. More than 100 other B2 MR compounds are known to exist and many of them have already been shown to be ductile (e.g., CuY, AgY, CuDy, CoZr, CoTi, etc.). Furthermore, these alloys exhibit a large Bauschinger effect. The present work uses several diffraction based techniques including electron back scattered diffraction (EBSD), X-ray diffraction (XRD) and in-situ neutron diffraction; in conjunction with scanning electron microscopy (SEM), transmission electron microscopy (TEM), mechanical testing, and crystal plasticity modeling, to elucidate the reason for ductility in select B2 alloys, explore the spread of this ductility over the B2 family, and understand the Bauschinger effect in these alloys. Several possible explanations (e.g., slip of <111> dislocations, strong texture, phase transformations and twinning) for the anomalous ductility were explored. An X-ray diffraction based analysis ruled out texture, phase purity and departure from order as explanations for the anomalous ductility in MR alloys. In-situ neutron diffraction and post deformation SEM, EBSD, and TEM were unable to

  13. Focal construct geometry for high intensity energy dispersive x-ray diffraction based on x-ray capillary optics.

    PubMed

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi; Jiang, Bowen; Zhu, Yu

    2016-03-14

    We presented a focal construct geometry (FCG) method for high intensity energy dispersive X-ray diffraction by utilizing a home-made ellipsoidal single-bounce capillary (ESBC) and a polycapillary parallel X-ray lens (PPXRL). The ESBC was employed to focus the X-rays from a conventional laboratory source into a small focal spot and to produce an annular X-ray beam in the far-field. Additionally, diffracted polychromatic X-rays were confocally collected by the PPXRL attached to a stationary energy-resolved detector. Our FCG method based on ESBC and PPXRL had achieved relatively high intensity diffraction peaks and effectively narrowed the diffraction peak width which was helpful in improving the potential d-spacing resolution for material phase analysis. PMID:26979685

  14. Focal construct geometry for high intensity energy dispersive x-ray diffraction based on x-ray capillary optics

    NASA Astrophysics Data System (ADS)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi; Jiang, Bowen; Zhu, Yu

    2016-03-01

    We presented a focal construct geometry (FCG) method for high intensity energy dispersive X-ray diffraction by utilizing a home-made ellipsoidal single-bounce capillary (ESBC) and a polycapillary parallel X-ray lens (PPXRL). The ESBC was employed to focus the X-rays from a conventional laboratory source into a small focal spot and to produce an annular X-ray beam in the far-field. Additionally, diffracted polychromatic X-rays were confocally collected by the PPXRL attached to a stationary energy-resolved detector. Our FCG method based on ESBC and PPXRL had achieved relatively high intensity diffraction peaks and effectively narrowed the diffraction peak width which was helpful in improving the potential d-spacing resolution for material phase analysis.

  15. [Relationship among coagulation effect of Al-based coagulant, content and speciation of residual aluminum].

    PubMed

    Yang, Zhong-Lian; Gao, Bao-Yu; Yue, Qin-Yan; Jiang, Yi-Shuai

    2010-06-01

    The application of AlCl3, Al2 (SO4)3 and poly-aluminum chloride (PAC) in humic acid-kaolin simulated water was studied in this article. It is intended to discuss the relationship among coagulation effect of Al-based coagulants in humic acid-kaolin simulated water and content and speciation of residual aluminum. It was found that, the turbidity removal efficiency and UV254 removal efficiency could reach about 90% at the tested dosage. At higher dosage, PAC gave better coagulation effect. The residual total aluminum content and residual aluminum ratio of PAC, which was 0.9 mg/L and - 3.0% or so respectively, were greatly lower than those of AlCl3 and Al2 (SO4)3. The residual total dissolved aluminum was the predominant content in the effluent after coagulation and sedimentation by the three Al-based coagulants. For the total dissolved aluminum, the proportion of dissolved organic aluminum was significantly higher than that of other aluminum speciation. With respect to humic acid-kaolin simulated water, the content of residual total aluminum in the effluent after coagulation and sedimentation by PAC decreased obviously compared to AlCl3 and Al2 (SO4)3. PAC could effectively decrease the content of residual dissolved aluminum speciation which has higher toxicity. The content of residual total dissolved aluminum in the effluent after coagulation and sedimentation by PAC was about 0.6 mg/L. PMID:20698270

  16. Model-based calibration of an interferometric setup with a diffractive zoom-lens

    NASA Astrophysics Data System (ADS)

    Bielke, Alexander; Baer, Goran; Pruss, Christof; Osten, Wolfgang

    2015-08-01

    The fabrication of aspheres and freeform surfaces requires a high-precision shape measurement of these elements. In terms of accuracy, interferometric systems provide the best performance for specular surfaces. To test aspherical lenses, it is necessary to adapt or partially adapt the test wavefront to the surface under test. Recently, we have proposed an interferometric setup with a diffractive zoom-lens that includes two computer generated holograms for this purpose.1 Their surface phases are a combination of a cubic function for the adaption of aberrations and correction terms necessary to compensate substrate-induced errors. With this system based on Alvarez design a variable defocus and astigmatism controlled by a lateral shift of the second element is achieved. One of the main challenges is the calibration of the system. We use a black-box model2 recently introduced for a non-null test interferometer, the so called tilted wave interferometer3 (TWI). With it, the calibration data are calculated by solving an inverse problem. The system is divided in the two parts of illumination and imaging optics. By the solution of an inverse problem, we get a set of data, which describes separately the wavefronts of the illumination and imaging optics. The main difference to the TWI is the flexible diffractive element, which can be used in continuous positions. To combine the calibration data of a couple of positions with the exact placement, we designed alignment structures on the hologram. We will show the general functionality of this calibration and first simulation results.

  17. Relation between the Rayleigh equation in diffraction theory and the equation based on Green's formula

    NASA Astrophysics Data System (ADS)

    Tatarskii, V. I.

    1995-06-01

    The steps necessary to produce the Rayleigh equation that is based on the Rayleigh hypothesis from the equation that is based on the Green's formula are shown. First a definition is given for the scattering amplitude that is true not only in the far zone of diffraction but also near the scattering surface. With this definition the Rayleigh equation coincides with the rigorous equation for the surface secondary sources that is based on Green's formula. The Rayleigh hypothesis is equivalent to substituting the far-zone expression of the scattering amplitude into this rigorous equation. In this case it turns out to be the equation not for the sources but directly for the scattering amplitude, which is the main advantage of this method. For comparing the Rayleigh equation with the initial rigorous equation, the Rayleigh equation is represented in terms of secondary sources. The kernel of this equation contains an integral that converges for positive and diverges for negative values of some parameter. It is shown that if we regularize this integral, defining it for the negative values of this parameter as an analytical continuation from the domain of positive values, this kernel becomes equal to the kernel of the initial rigorous equation. It follows that the formal perturbation series for the scattering amplitude obtained from the Rayleigh equation and from Green's equation always coincide. This means that convergence of the perturbation series is a sufficient condition

  18. Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects

    NASA Astrophysics Data System (ADS)

    Sidorenko, Pavel; Kfir, Ofer; Shechtman, Yoav; Fleischer, Avner; Eldar, Yonina C.; Segev, Mordechai; Cohen, Oren

    2015-09-01

    Phase-retrieval problems of one-dimensional (1D) signals are known to suffer from ambiguity that hampers their recovery from measurements of their Fourier magnitude, even when their support (a region that confines the signal) is known. Here we demonstrate sparsity-based coherent diffraction imaging of 1D objects using extreme-ultraviolet radiation produced from high harmonic generation. Using sparsity as prior information removes the ambiguity in many cases and enhances the resolution beyond the physical limit of the microscope. Our approach may be used in a variety of problems, such as diagnostics of defects in microelectronic chips. Importantly, this is the first demonstration of sparsity-based 1D phase retrieval from actual experiments, hence it paves the way for greatly improving the performance of Fourier-based measurement systems where 1D signals are inherent, such as diagnostics of ultrashort laser pulses, deciphering the complex time-dependent response functions (for example, time-dependent permittivity and permeability) from spectral measurements and vice versa.

  19. Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects

    PubMed Central

    Sidorenko, Pavel; Kfir, Ofer; Shechtman, Yoav; Fleischer, Avner; Eldar, Yonina C.; Segev, Mordechai; Cohen, Oren

    2015-01-01

    Phase-retrieval problems of one-dimensional (1D) signals are known to suffer from ambiguity that hampers their recovery from measurements of their Fourier magnitude, even when their support (a region that confines the signal) is known. Here we demonstrate sparsity-based coherent diffraction imaging of 1D objects using extreme-ultraviolet radiation produced from high harmonic generation. Using sparsity as prior information removes the ambiguity in many cases and enhances the resolution beyond the physical limit of the microscope. Our approach may be used in a variety of problems, such as diagnostics of defects in microelectronic chips. Importantly, this is the first demonstration of sparsity-based 1D phase retrieval from actual experiments, hence it paves the way for greatly improving the performance of Fourier-based measurement systems where 1D signals are inherent, such as diagnostics of ultrashort laser pulses, deciphering the complex time-dependent response functions (for example, time-dependent permittivity and permeability) from spectral measurements and vice versa. PMID:26345495

  20. A phase retrieval algorithm based on three-dimensionally translated diffraction patterns

    NASA Astrophysics Data System (ADS)

    Loetgering, L.; Hammoud, R.; Juschkin, L.; Wilhein, T.

    2015-09-01

    An iterative phase retrieval method is proposed that combines alternating projections and registration of three-dimensionally translated near-field diffraction patterns. This method allows to enhance resolution limited by a finite detector size and automatically stitches the assembled data while avoiding the need for a priori knowledge or scanning of the object as encountered in coherent diffraction imaging or ptychography.

  1. Pharyngeal Residue Severity Rating Scales Based on Fiberoptic Endoscopic Evaluation of Swallowing: A Systematic Review.

    PubMed

    Neubauer, Paul D; Hersey, Denise P; Leder, Steven B

    2016-06-01

    Identification of pharyngeal residue severity located in the valleculae and pyriform sinuses has always been a primary goal during fiberoptic endoscopic evaluation of swallowing (FEES). Pharyngeal residue is a clinical sign of potential prandial aspiration making an accurate description of its severity an important but difficult challenge. A reliable, validated, and generalizable pharyngeal residue severity rating scale for FEES would be beneficial. A systematic review of the published English language literature since 1995 was conducted to determine the quality of existing pharyngeal residue severity rating scales based on FEES. Databases were searched using controlled vocabulary words and synonymous free text words for topics of interest (deglutition disorders, pharyngeal residue, endoscopy, videofluoroscopy, fiberoptic technology, aspiration, etc.) and outcomes of interest (scores, scales, grades, tests, FEES, etc.). Search strategies were adjusted for syntax appropriate for each database/platform. Data sources included MEDLINE (OvidSP 1946-April Week 3 2015), Embase (OvidSP 1974-2015 April 20), Scopus (Elsevier), and the unindexed material in PubMed (NLM/NIH) were searched for relevant articles. Supplementary efforts to identify studies included checking reference lists of articles retrieved. Scales were compared using qualitative properties (sample size, severity definitions, number of raters, and raters' experience and training) and psychometric analyses (randomization, intra- and inter-rater reliability, and construct validity). Seven articles describing pharyngeal residue severity rating scales met inclusion criteria. Six of seven scales had insufficient data to support their use as evidenced by methodological weaknesses with both qualitative properties and psychometric analyses. There is a need for qualitative and psychometrically reliable, validated, and generalizable pharyngeal residue severity rating scales that are anatomically specific, image-based

  2. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr

    NASA Astrophysics Data System (ADS)

    Lee, Changmin; Park, Hyungkwon; Yoo, Jaehong; Lee, Changhee; Woo, WanChuck; Park, Sunhong

    2015-08-01

    Although laser cladding process has been widely used to improve the wear and corrosion resistance, there are unwanted cracking issues during and/or after laser cladding. This study investigates the tendency of Co-based WC + NiCr composite layers to cracking during the laser cladding process. Residual stress distributions of the specimen are measured using neutron diffraction and elucidate the correlation between the residual stress and the cracking in three types of cylindrical specimens; (i) no cladding substrate only, (ii) cladding with 100% stellite#6, and (iii) cladding with 55% stellite#6 and 45% technolase40s. The microstructure of the clad layer was composed of Co-based dendrite and brittle eutectic phases at the dendritic boundaries. And WC particles were distributed on the matrix forming intermediate composition region by partial melting of the surface of particles. The overlaid specimen exhibited tensile residual stress, which was accumulated through the beads due to contraction of the coating layer generated by rapid solidification, while the non-clad specimen showed compressive. Also, the specimen overlaid with 55 wt% stellite#6 and 45 wt% technolase40s showed a tensile stress higher than the specimen overlaid with 100% stellite#6 possibly, due to the difference between thermal expansion coefficients of the matrix and WC particles. Such tensile stresses can be potential driving force to provide an easy crack path ways for large brittle fractures combined with the crack initiation sites such as the fractured WC particles, pores and solidification cracks. WC particles directly caused clad cracks by particle fracture under the tensile stress. The pores and solidification cracks also affected as initiation sites and provided an easy crack path ways for large brittle fractures.

  3. Limited-angle hybrid optical diffraction tomography system with total-variation-minimization-based reconstruction

    NASA Astrophysics Data System (ADS)

    Krauze, Wojciech; Kuś, Arkadiusz; Kujawinska, Malgorzata

    2015-05-01

    The case of diffraction tomography with limited angle of projections is discussed from the algorithmic and experimental points of view. To reconstruct a three-dimensional distribution of refractive index of a micro-object under study, we use a hybrid approach based on the simultaneous algebraic reconstruction technique (SART) enhanced by a compressed sensing reconstruction technique. It enables us to apply the standard computed tomography algorithms (which assume that the rays are traveling in straight lines through the object) for phase data obtained by means of digital holography. We present the results of analysis of a phantom and real objects obtained by applying SART with anisotropic total variation (ATV) minimization. The real data are acquired from an experimental setup based on a Mach-Zehnder interferometer configuration. Also, it is proven that in the case of simulated data, the limited number of projections captured in a limited angular range can be compensated by a higher number of iterations of the algorithm. We also show that the SART + ATV method applied for experimental data gives better results than the data replenishment algorithm.

  4. Tunable Diffractive Optical Elements Based on Shape-Memory Polymers Fabricated via Hot Embossing.

    PubMed

    Schauer, Senta; Meier, Tobias; Reinhard, Maximilian; Röhrig, Michael; Schneider, Marc; Heilig, Markus; Kolew, Alexander; Worgull, Matthias; Hölscher, Hendrik

    2016-04-13

    We introduce actively tunable diffractive optical elements fabricated from shape-memory polymers (SMPs). By utilizing the shape-memory effect of the polymer, at least one crucial attribute of the diffractive optical element (DOE) is tunable and adjustable subsequent to the completed fabrication process. A thermoplastic, transparent, thermoresponsive polyurethane SMP was structured with diverse diffractive microstructures via hot embossing. The tunability was enabled by programming a second, temporary shape into the diffractive optical element by mechanical deformation, either by stretching or a second embossing cycle at low temperatures. Upon exposure to the stimulus heat, the structures change continuously and controllable in a predefined way. We establish the novel concept of shape-memory diffractive optical elements by illustrating their capabilities, with regard to tunability, by displaying the morphing diffractive pattern of a height tunable and a period tunable structure, respectively. A sample where an arbitrary structure is transformed to a second, disparate one is illustrated as well. To prove the applicability of our tunable shape-memory diffractive optical elements, we verified their long-term stability and demonstrated the precise adjustability with a detailed analysis of the recovery dynamics, in terms of temperature dependence and spatially resolved, time-dependent recovery. PMID:26998646

  5. Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings.

    PubMed

    Tervo, J; Turunen, J

    2000-06-01

    The concept of polarization freedom is employed to design diffraction gratings that are capable of transforming an electromagnetic plane wave into two or three diffraction orders with an arbitrary efficiency distribution among them, such that the combined efficiency of the signal orders is always equal to 100%. As a special case we consider paraxial-domain duplicators and triplicators with 100% efficiency, which is not possible for illumination by scalar waves: Diffractive elements that are capable of performing the required wave transformation must modulate the state of polarization of the incident field. PMID:18064183

  6. In-line metrology setup for periodic nanostructures based on sub-wavelength diffraction

    NASA Astrophysics Data System (ADS)

    Kreuzer, Martin; Gomis Bresco, Jordi; Sledzinska, Marianna; Sotomayor Torres, Clivia M.

    2015-09-01

    The analysis of diffracted light from periodic structures is shown to be a versatile metrology technique applicable to inline metrology for periodic nanostructures. We show that 10 nm changes in periodic structures can be traced optically by means of sub-wavelength diffraction. Polymer gratings were fabricated by electron beam lithography. The gratings have a common periodicity of 6 μm, but different line width, ranging from 370 to 550 nm in 10 nm steps. A comparison between the resulting diffraction patterns shows marked differences in intensity which are used to sense nanometre scale deviations in periodic structures.

  7. Holographic diffraction gratings with enhanced sensitivity based on epoxy-resin photopolymers.

    PubMed

    Jeong, Yong-Cheol; Lee, Seungwoo; Park, Jung-Ki

    2007-02-19

    Photopolymers are interesting materials to obtain high-quality performance for the volume holographic data storage with a low noise and high diffraction efficiency. In this paper, the recording of holographic diffraction gratings with a spatial frequency of 1285lines/mm in photopolymerizable epoxy resin materials is experimentally demonstrated. Diffraction efficiency near 92% and an energetic sensitivity of 11.7 x 10-3cm2/J are achieved by designing the proper structure of matrix and also optimizing photopolymer compositions. The effect of photopolymer compositions on the fundamental optical properties is also discussed. PMID:19532382

  8. Production of apple-based baby food: changes in pesticide residues.

    PubMed

    Kovacova, Jana; Kocourek, Vladimir; Kohoutkova, Jana; Lansky, Miroslav; Hajslova, Jana

    2014-01-01

    Apples represent the main component of most fruit-based baby food products. Since not only fruit from organic farming, but also conventionally grown fruit is used for baby food production, the occurrence of pesticide residues in the final product is of high concern. To learn more about the fate of these hazardous compounds during processing of contaminated raw material, apples containing altogether 21 pesticide residues were used for preparation of a baby food purée both in the household and at industrial scale (in the baby food production facility). Within both studies, pesticide residues were determined in raw apples as well as in final products. Intermediate product and by-product were also analysed during the industrial process. Determination of residues was performed by a sensitive multi-detection analytical method based on liquid or gas chromatography coupled with mass spectrometry. The household procedure involved mainly the cooking of unpeeled apples, and the decrease of residues was not extensive enough for most of the studied pesticides; only residues of captan, dithianon and thiram dropped significantly (processing factors less than 0.04). On the other hand, changes in pesticide levels were substantial for all tested pesticides during apple processing in the industrial baby food production facility. The most important operation affecting the reduction of residues was removal of the by-products after pulping (rest of the peel, stem, pips etc.), while subsequent sterilisation has an insignificant effect. Also in this case, captan, dithianon and thiram were identified as pesticides with the most evident decrease of residues. PMID:24720736

  9. Diffraction-based optical sensor detection system for capture-restricted environments

    NASA Astrophysics Data System (ADS)

    Khandekar, Rahul M.; Nikulin, Vladimir V.

    2008-04-01

    The use of digital cameras and camcorders in prohibited areas presents a growing problem. Piracy in the movie theaters results in huge revenue loss to the motion picture industry every year, but still image and video capture may present even a bigger threat if performed in high-security locations. While several attempts are being made to address this issue, an effective solution is yet to be found. We propose to approach this problem using a very commonly observed optical phenomenon. Cameras and camcorders use CCD and CMOS sensors, which include a number of photosensitive elements/pixels arranged in a certain fashion. Those are photosites in CCD sensors and semiconductor elements in CMOS sensors. They are known to reflect a small fraction of incident light, but could also act as a diffraction grating, resulting in the optical response that could be utilized to identify the presence of such a sensor. A laser-based detection system is proposed that accounts for the elements in the optical train of the camera, as well as the eye-safety of the people who could be exposed to optical beam radiation. This paper presents preliminary experimental data, as well as the proof-of-concept simulation results.

  10. Reflective off-axis point-diffraction interferometer based on Michelson architecture

    NASA Astrophysics Data System (ADS)

    Bai, Hongyi; Guo, Lili; Zhong, Zhi; Shan, Mingguang; Zhang, Yabin

    2015-02-01

    A reflective off-axis point-diffraction interferometer based on Michelson architecture is built to measure static and dynamic quantitative phase in a single shot. The interferometer is constructed by a beam-splitter, a pinhole mirror, a reflective mirror and two lenses to build a 4f optical system. The pinhole mirror is used as a low-pass spatial filter to generate reference wave. By tilting the reflective mirror, a small angle is created between the object beam and the reference beam to enable an off-axis interferogram. To reconstruct an interferogram with a few fringes, Kreis Fourier method is used to recovery the specimen phase. Using a plano-convex cylinder lens and an evaporative alcohol drop as the specimens, experiments are run to verify the effectiveness and robustness with this interferometer. Experimental results show that this interferometer has not only simple setup and good anti-interference performance, but also good real-time ability, which makes it suitable for dynamic phase measurement.

  11. Nondestructive evaluation of near-surface residual stress in shot-peened nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Yu, Feng

    Surface enhancement methods, which produce beneficial compressive residual stresses and increased hardness in a shallow near-surface region, are widely used in a number of industrial applications, including gas-turbine engines. Nondestructive evaluation of residual stress gradients in surface-enhanced materials has great significance for turbine engine component life extension and their reliability in service. It has been recently found that, in sharp contrast with most other materials, shot-peened nickel-base superalloys exhibit an apparent increase in electrical conductivity at increasing inspection frequencies, which can be exploited for nondestructive residual stress assessment. The primary goal of this research is to develop a quantitative eddy current method for nondestructive residual stress profiles in surface-treated nickel-base superalloys. Our work have been focused on five different aspects of this issue, namely, (i) validating the noncontacting eddy current technique for electroelastic coefficients calibration, (ii) developing inversion procedures for determining the subsurface residual stress profiles from the measured apparent eddy current conductivity (AECC), (iii) predicting the adverse effect of surface roughness on the eddy current characterization of shot-peened metals, (iv) separating excess AECC caused by the primary residual stress effect from intrinsic conductivity variations caused by material inhomogeneity, and (v) investigating different mechanisms through which cold work could influence the AECC in surface-treated nickel-base superalloys. The results of this dissertation have led to a better understanding of the underlying physical phenomenon of the measured excess AECC on nickel-base engine alloys, and solved a few critical applied issues in eddy current nondestructive residual stress assessment in surface-treated engine components and, ultimately, contributed to the better utilization and safer operation of the Air Force's aging

  12. Free-Suspension Residual Flexibility Testing of Space Station Pathfinder: Comparison to Fixed-Base Results

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.

    1998-01-01

    Application of the free-suspension residual flexibility modal test method to the International Space Station Pathfinder structure is described. The Pathfinder, a large structure of the general size and weight of Space Station module elements, was also tested in a large fixed-base fixture to simulate Shuttle Orbiter payload constraints. After correlation of the Pathfinder finite element model to residual flexibility test data, the model was coupled to a fixture model, and constrained modes and frequencies were compared to fixed-base test. modes. The residual flexibility model compared very favorably to results of the fixed-base test. This is the first known direct comparison of free-suspension residual flexibility and fixed-base test results for a large structure. The model correlation approach used by the author for residual flexibility data is presented. Frequency response functions (FRF) for the regions of the structure that interface with the environment (a test fixture or another structure) are shown to be the primary tools for model correlation that distinguish or characterize the residual flexibility approach. A number of critical issues related to use of the structure interface FRF for correlating the model are then identified and discussed, including (1) the requirement of prominent stiffness lines, (2) overcoming problems with measurement noise which makes the antiresonances or minima in the functions difficult to identify, and (3) the use of interface stiffness and lumped mass perturbations to bring the analytical responses into agreement with test data. It is shown that good comparison of analytical-to-experimental FRF is the key to obtaining good agreement of the residual flexibility values.

  13. MICROCARD: a micro-camera based on a circular diffraction grating for MWIR and LWIR imagery

    NASA Astrophysics Data System (ADS)

    Druart, Guillaume; Guérineau, Nicolas; Tauvy, Michel; Rommeluère, Sylvain; Primot, Jérôme; Deschamps, Joël; Fendler, Manuel; Cigna, Jean-Charles; Taboury, Jean

    2008-09-01

    Circular diffraction gratings (also called diffractive axicons) are optical components producing achromatic non-diffracting beams. They thus produce a focal line rather than a focal point for classical lenses. We have recently shown in the visible spectral range that this property can be used to design a simple imaging system with a long depth of focus and a linear variable zoom by using and translating a diffractive axicon as the only component. We have then adapted this principle for the mid-wavelength infrared (MWIR) spectral range and the long-wavelength infrared (LWIR) spectral range. A LWIR low-cost micro-camera, called MICROCARD, has been designed and realized. First images from this camera will be shown. Moreover a way to design a compact MWIR micro-camera with moveable parts integrated directly into the cryostat will be presented.

  14. Prediction of protein secondary structure based on residue pair types and conformational states using dynamic programming algorithm.

    PubMed

    Sadeghi, Mehdi; Parto, Sahar; Arab, Shahriar; Ranjbar, Bijan

    2005-06-20

    We have used a statistical approach for protein secondary structure prediction based on information theory and simultaneously taking into consideration pairwise residue types and conformational states. Since the prediction of residue secondary structure by one residue window sliding make ambiguity in state prediction, we used a dynamic programming algorithm to find the path with maximum score. A score system for residue pairs in particular conformations is derived for adjacent neighbors up to ten residue apart in sequence. The three state overall per-residue accuracy, Q3, of this method in a jackknife test with dataset created from PDBSELECT is more than 70%. PMID:15936021

  15. Mindful Mood Balance: A Case Report of Web-Based Treatment of Residual Depressive Symptoms

    PubMed Central

    Felder, Jennifer; Dimidjian, Sona; Beck, Arne; Boggs, Jennifer M; Segal, Zindel

    2014-01-01

    Residual depressive symptoms are associated with increased risk for relapse and impaired functioning. Although there is no definitive treatment for residual depressive symptoms, Mindfulness-Based Cognitive Therapy has been shown to be effective, but access is limited. Mindful Mood Balance (MMB), a Web-based adaptation of Mindfulness-Based Cognitive Therapy, was designed to address this care gap. In this case study, we describe a composite case that is representative of the course of intervention with MMB and its implementation in a large integrated delivery system. Specifically, we describe the content of each of eight weekly sessions, and the self-management skills developed by participating in this program. MMB may be a cost-effective and scalable option in primary care for increasing access to treatments for patients with residual depressive symptoms. PMID:25141988

  16. Mindful mood balance: a case report of Web-based treatment of residual depressive symptoms.

    PubMed

    Felder, Jennifer; Dimidjian, Sona; Beck, Arne; Boggs, Jennifer M; Segal, Zindel

    2014-01-01

    Residual depressive symptoms are associated with increased risk for relapse and impaired functioning. Although there is no definitive treatment for residual depressive symptoms, Mindfulness-Based Cognitive Therapy has been shown to be effective, but access is limited. Mindful Mood Balance (MMB), a Web-based adaptation of Mindfulness-Based Cognitive Therapy, was designed to address this care gap. In this case study, we describe a composite case that is representative of the course of intervention with MMB and its implementation in a large integrated delivery system. Specifically, we describe the content of each of eight weekly sessions, and the self-management skills developed by participating in this program. MMB may be a cost-effective and scalable option in primary care for increasing access to treatments for patients with residual depressive symptoms. PMID:25141988

  17. Fast GPU-based absolute intensity determination for energy-dispersive X-ray Laue diffraction

    NASA Astrophysics Data System (ADS)

    Alghabi, F.; Send, S.; Schipper, U.; Abboud, A.; Pietsch, U.; Kolb, A.

    2016-01-01

    This paper presents a novel method for fast determination of absolute intensities in the sites of Laue spots generated by a tetragonal hen egg-white lysozyme crystal after exposure to white synchrotron radiation during an energy-dispersive X-ray Laue diffraction experiment. The Laue spots are taken by means of an energy-dispersive X-ray 2D pnCCD detector. Current pnCCD detectors have a spatial resolution of 384 × 384 pixels of size 75 × 75 μm2 each and operate at a maximum of 400 Hz. Future devices are going to have higher spatial resolution and frame rates. The proposed method runs on a computer equipped with multiple Graphics Processing Units (GPUs) which provide fast and parallel processing capabilities. Accordingly, our GPU-based algorithm exploits these capabilities to further analyse the Laue spots of the sample. The main contribution of the paper is therefore an alternative algorithm for determining absolute intensities of Laue spots which are themselves computed from a sequence of pnCCD frames. Moreover, a new method for integrating spectral peak intensities and improved background correction, a different way of calculating mean count rate of the background signal and also a new method for n-dimensional Poisson fitting are presented.We present a comparison of the quality of results from the GPU-based algorithm with the quality of results from a prior (base) algorithm running on CPU. This comparison shows that our algorithm is able to produce results with at least the same quality as the base algorithm. Furthermore, the GPU-based algorithm is able to speed up one of the most time-consuming parts of the base algorithm, which is n-dimensional Poisson fitting, by a factor of more than 3. Also, the entire procedure of extracting Laue spots' positions, energies and absolute intensities from a raw dataset of pnCCD frames is accelerated by a factor of more than 3.

  18. Multiple Bragg diffraction in opal-based photonic crystals: Spectral and spatial dispersion

    NASA Astrophysics Data System (ADS)

    Shishkin, I. I.; Rybin, M. V.; Samusev, K. B.; Golubev, V. G.; Limonov, M. F.

    2014-01-01

    We present an experimental and theoretical study of multiple Bragg diffraction from synthetic opals. An original setup permits us to overcome the problem of the total internal light reflection in an opal film and to investigate the diffraction from both the (111) and (1¯11) systems of planes responsible for the effect. As a result, angle- and frequency-resolved diffraction and transmission measurements create a picture of multiple Bragg diffraction that includes general agreement between dips in the transmission spectra and diffraction peaks for each incident white light angle and a twin-peak structure at frequencies of the photonic stop band edges. Two opposite cases of the interference are discussed: an interference of two narrow Bragg bands that leads to multiple Bragg diffraction with anticrossing regime for dispersion photonic branches and an interference of a narrow Bragg band and broad disorder-induced Mie background that results in a Fano resonance. A good quantitative agreement between the experimental data and calculated photonic band structure has been obtained.

  19. Applications of on-product diffraction-based focus metrology in logic high volume manufacturing

    NASA Astrophysics Data System (ADS)

    Noyes, Ben F.; Mokaberi, Babak; Bolton, David; Li, Chen; Palande, Ashwin; Park, Kevin; Noot, Marc; Kea, Marc

    2016-03-01

    The integration of on-product diffraction-based focus (DBF) capability into the majority of immersion lithography layers in leading edge logic manufacturing has enabled new applications targeted towards improving cycle time and yield. A CD-based detection method is the process of record (POR) for excursion detection. The drawback of this method is increased cycle time and limited sampling due to CD-SEM metrology capacity constraints. The DBFbased method allows the addition of focus metrology samples to the existing overlay measurements on the integrated metrology (IM) system. The result enables the addition of measured focus to the SPC system, allowing a faster excursion detection method. For focus targeting, the current method involves using a dedicated focus-exposure matrix (FEM) on all scanners, resulting in lengthy analysis times and uncertainty in the best focus. The DBF method allows the measurement to occur on the IM system, on a regular production wafer, and at the same time as the exposure. This results in a cycle time gain as well as a less subjective determination of best focus. A third application aims to use the novel onproduct focus metrology data in order to apply per-exposure focus corrections to the scanner. These corrections are particularly effective at the edge of the wafer, where systematic layer-dependent effects can be removed using DBFbased scanner feedback. This paper will discuss the development of a methodology to accomplish each of these applications in a high-volume production environment. The new focus metrology method, sampling schemes, feedback mechanisms and analysis methods lead to improved focus control, as well as earlier detection of failures.

  20. An Inquiry-Based Project Focused on the X-Ray Powder Diffraction Analysis of Common Household Solids

    ERIC Educational Resources Information Center

    Hulien, Molly L.; Lekse, Jonathan W.; Rosmus, Kimberly A.; Devlin, Kasey P.; Glenn, Jennifer R.; Wisneski, Stephen D.; Wildfong, Peter; Lake, Charles H.; MacNeil, Joseph H.; Aitken, Jennifer A.

    2015-01-01

    While X-ray powder diffraction (XRPD) is a fundamental analytical technique used by solid-state laboratories across a breadth of disciplines, it is still underrepresented in most undergraduate curricula. In this work, we incorporate XRPD analysis into an inquiry-based project that requires students to identify the crystalline component(s) of…

  1. Sound Velocity and Diffraction Intensity Measurements Based on Raman-Nath Theory of the Interaction of Light and Ultrasound

    ERIC Educational Resources Information Center

    Neeson, John F.; Austin, Stephen

    1975-01-01

    Describes a method for the measurement of the velocity of sound in various liquids based on the Raman-Nath theory of light-sound interaction. Utilizes an analog computer program to calculate the intensity of light scattered into various diffraction orders. (CP)

  2. Visualization of soft tissues by highly sensitive X-ray crystal analyzer-based multi diffraction enhanced imaging

    NASA Astrophysics Data System (ADS)

    Wu, Yanlin; Sunaguchi, Naoki; Lin, Xiaojie; Wang, Yongting; Yuasa, Tetsuya; Hirano, Keiichi; Hyodo, Kazuyuki

    2015-09-01

    In this paper, we propose a novel multi diffraction enhanced imaging (MDEI) technique to improve contrast resolution owning to the sharp rise of the reflectivity curve and high contrast-to-noise ratio (CNR). MDEI is derived from the diffraction enhanced imaging (DEI) technique. Here, DEI and MDEI phase contrast tomograms are compared. The results show that MDEI offers higher contrast resolution, while DEI has higher spatial resolution. This study provided indications for developments and applications of X-ray crystal analyzer-based imaging to obtain a higher contrast resolution.

  3. Residual Motion and Duty Time in Respiratory Gating Radiotherapy Using Individualized or Population-Based Windows

    SciTech Connect

    Fuji, Hiroshi Asada, Yoshihiro; Numano, Masumi; Yamashita, Haruo; Nishimura, Tetsuo; Hashimoto, Takayuki; Harada, Hideyuki; Asakura, Hirofumi; Murayama, Shigeyuki

    2009-10-01

    Purpose: The efficiency and precision of respiratory gated radiation therapy for tumors is affected by variations in respiration-induced tumor motion. We evaluated the use of individualized and population-based parameters for such treatment. Methods and Materials: External respiratory signal records and images of respiration-induced tumor motion were obtained from 42 patients undergoing respiratory gated radiation therapy for liver tumors. Gating window widths were calculated for each patient, with 2, 4, and 10 mm of residual motion, and the mean was defined as the population-based window width. Residual motions based on population-based and predefined window widths were compared. Duty times based on whole treatment sessions, at various window levels, were calculated. The window level giving the longest duty time was defined as the individualized most efficient level (MEL). MELs were also calculated based on the first 10 breathing cycles. The duty times for population-based MELs (defined as mean MELs) and individualized MELs were compared. Results: Tracks of respiration-induced tumor motion ranged from 3 to 50 mm. Half of the patients had larger actual residual motions than the assigned residual motions. Duty times were greater when based on individualized, rather than population-based, window widths. The MELs established during whole treatment sessions for 2 mm and 4 mm of residual motion gave significantly increased duty times, whereas those calculated using the first 10 breathing cycles showed only marginal increases. Conclusions: Using individualized window widths and levels provided more precise and efficient respiratory gated radiation therapy. However, methods for predicting individualized window levels before treatment remain to be explored.

  4. Synchrotron-based crystal structure, associated morphology of snail and bivalve shells by X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Rao, D. V.; Gigante, G. E.; Kumar, Y. Manoj; Cesareo, R.; Brunetti, A.; Schiavon, N.; Akatsuka, T.; Yuasa, T.; Takeda, T.

    2016-10-01

    Synchrotron-based high-resolution X-ray powder diffraction spectra from the body parts of a snail and bivalve (CaCO3), have been recorded with Pilatus area detector. Experiments were performed at Desy, Hamburg, Germany, utilizing the Resonant and Diffraction beamline (P9), with 15 keV X-rays (λ=0.82666 Å). The external shell of these living organisms, is composed of calcium carbonate, which carries strong biological signal. It consists of some light elements, such as, Ca, C and O, which constitute part of the soft tissue and other trace elements. The knowledge of these diffraction patterns and hence the understanding of structures at molecular level are enormous. The application of synchrotron radiation to powder diffraction is well suited for samples of biological nature via changes in their patterns and also to investigate crystallographic phase composition. With the use of Rietveld refinement procedure, to the high-resolution diffraction spectra, we were able to extract the lattice parameters of orthorhombic polymorph of CaCO3, the most abundant mineral produced by these living organisms. The small size of the crystallite is a very important factor related to the biological structure. The natural model presents a combination of organic and inorganic phases with nanometer size. For the present study, we also used the scanning electron microscopy (SEM) to explore the associated morphology of the snail and bivalve.

  5. Near-Surface Residual Stress Assessment in Inhomogeneous Nickel-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Yu, F.; Nagy, P. B.

    2006-03-01

    Recently, it has been shown that shot-peened nickel-base superalloys exhibit an approximately 1% increase in apparent eddy current conductivity at high inspection frequencies, which can be exploited for nondestructive subsurface residual stress assessment. Unfortunately, microstructural inhomogeneity in certain as-forged and precipitation hardened nickel-base superalloys, like Waspaloy, can lead to significantly larger electrical conductivity variations of as much as 4-6%. This intrinsic conductivity variation adversely affects the accuracy of residual stress evaluation in shot-peened and subsequently thermal-relaxed specimens, but does not completely prevent it. Experimental results are presented to demonstrate that the conductivity variation resulting from volumetric inhomogeneities in as-forged engine alloys do not display significant frequency dependence. This characteristic independence of frequency can be exploited to distinguish these inhomogeneities from near-surface residual stress and cold work effects caused by surface treatment, which, in contrast, are strongly frequency-dependent.

  6. Near-Surface Residual Stress Assessment in Inhomogeneous Nickel-Base Superalloys

    SciTech Connect

    Yu, F.; Nagy, P. B.

    2006-03-06

    Recently, it has been shown that shot-peened nickel-base superalloys exhibit an approximately 1% increase in apparent eddy current conductivity at high inspection frequencies, which can be exploited for nondestructive subsurface residual stress assessment. Unfortunately, microstructural inhomogeneity in certain as-forged and precipitation hardened nickel-base superalloys, like Waspaloy, can lead to significantly larger electrical conductivity variations of as much as 4-6%. This intrinsic conductivity variation adversely affects the accuracy of residual stress evaluation in shot-peened and subsequently thermal-relaxed specimens, but does not completely prevent it. Experimental results are presented to demonstrate that the conductivity variation resulting from volumetric inhomogeneities in as-forged engine alloys do not display significant frequency dependence. This characteristic independence of frequency can be exploited to distinguish these inhomogeneities from near-surface residual stress and cold work effects caused by surface treatment, which, in contrast, are strongly frequency-dependent.

  7. Numerical Analysis of Residual Stress for Copper Base Brazed Stainless Steel Plate-Fin Structure

    NASA Astrophysics Data System (ADS)

    Xie, Qiaoyun; Ling, Xiang

    2010-07-01

    Copper base stainless steel plate-fin structure has been widely used as a heat exchanger in many fields. The nonlinear thermal reaction on the residual stress in brazing process of the plate-fin structure was studied in this paper. A finite element model (FEM) was proposed to simulate the heat transfer and the sequential residual stress generated in the plate-fin and filler metals based on thermal elastic-plastic theory. By the stress distribution in four paths marked in the structure obtained from FEM results, it is found that the maximum residual tensile stress occurs in the brazed joint next to the plate side and a crack would initiate in this region. Also, the first principle stresses of reference nodes were calculated and the conclusion is consistent with the simulation results. These results would provide some constructive instructions in the practical brazing procedure.

  8. A new approach to calculating powder diffraction patterns based on the Debye scattering equation.

    PubMed

    Thomas, Noel William

    2010-01-01

    A new method is defined for the calculation of X-ray and neutron powder diffraction patterns from the Debye scattering equation (DSE). Pairwise atomic interactions are split into two contributions, the first from lattice-pair vectors and the second from cell-pair vectors. Since the frequencies of lattice-pair vectors can be directly related to crystallite size, application of the DSE is thereby extended to crystallites of lengths up to approximately 200 nm. The input data correspond to unit-cell parameters, atomic coordinates and displacement factors. The calculated diffraction patterns are characterized by full backgrounds as well as complete reflection profiles. Four illustrative systems are considered: sodium chloride (NaCl), alpha-quartz, monoclinic lead zirconate titanate (PZT) and kaolinite. The effects of varying crystallite size on diffraction patterns are calculated for NaCl, quartz and kaolinite, and a method of modelling static structural disorder is defined for kaolinite. The idea of partial diffraction patterns is introduced and a treatment of atomic displacement parameters is included. Although the method uses pair distribution functions as an intermediate stage, it is anticipated that further progress in reducing computational times will be made by proceeding directly from crystal structure to diffraction pattern. PMID:20029134

  9. Computer-based classification of bacteria species by analysis of their colonies Fresnel diffraction patterns

    NASA Astrophysics Data System (ADS)

    Suchwalko, Agnieszka; Buzalewicz, Igor; Podbielska, Halina

    2012-01-01

    In the presented paper the optical system with converging spherical wave illumination for classification of bacteria species, is proposed. It allows for compression of the observation space, observation of Fresnel patterns, diffraction pattern scaling and low level of optical aberrations, which are not possessed by other optical configurations. Obtained experimental results have shown that colonies of specific bacteria species generate unique diffraction signatures. Analysis of Fresnel diffraction patterns of bacteria colonies can be fast and reliable method for classification and recognition of bacteria species. To determine the unique features of bacteria colonies diffraction patterns the image processing analysis was proposed. Classification can be performed by analyzing the spatial structure of diffraction patterns, which can be characterized by set of concentric rings. The characteristics of such rings depends on the bacteria species. In the paper, the influence of basic features and ring partitioning number on the bacteria classification, is analyzed. It is demonstrated that Fresnel patterns can be used for classification of following species: Salmonella enteritidis, Staplyococcus aureus, Proteus mirabilis and Citrobacter freundii. Image processing is performed by free ImageJ software, for which a special macro with human interaction, was written. LDA classification, CV method, ANOVA and PCA visualizations preceded by image data extraction were conducted using the free software R.

  10. Diffractive optics in large sizes: computer-generated holograms (CGH) based on Bayfol HX photopolymer

    NASA Astrophysics Data System (ADS)

    Bruder, Friedrich-Karl; Fäcke, Thomas; Hagen, Rainer; Hönel, Dennis; Kleinschmidt, Tim Patrick; Orselli, Enrico; Rewitz, Christian; Rölle, Thomas; Walze, Günther

    2015-03-01

    Volume Holographic Optical Elements (vHOE) offer angular and spectral Bragg selectivity that can be tuned by film thickness and holographic recording conditions. With the option to integrate complex optical function in a very thin plastic layer formerly heavy refractive optics can be made thin and lightweight especially for large area applications like liquid crystal displays, projection screens or photovoltaic. Additionally their Bragg selectivity enables the integration of several completely separated optical functions in the same film. The new instant developing photopolymer film (Bayfol® HX) paves the way towards new cost effective diffractive large optics, due to its easy holographic recording and environmental stability. A major bottleneck for large area applications has been the master hologram recording which traditionally needs expensive, large high precision optical equipment and high power laser with long coherence length. Further the recording setup needs to be rearranged for a change in optical design. In this paper we describe an alternative method for large area holographic master recording, using standard optics and low power lasers in combination with an x, y-translation stage. In this setup small sub-holograms generated by a phase only spatial light modulator (SLM) are recorded next to each other to generate a large size vHOE. The setup is flexible to generate various types of HOEs without the need of a change in the mechanical and optical construction by convenient SLM programming. One Application example and parameter studies for printed vHOEs based on Bayfol® HX Photopolymer will be given.

  11. Optical pendulum effect in one-dimensional diffraction-thick porous silicon based photonic crystals

    SciTech Connect

    Novikov, V. B. Svyakhovskiy, S. E.; Maydykovskiy, A. I.; Murzina, T. V.; Mantsyzov, B. I.

    2015-11-21

    We present the realization of the multiperiodic optical pendulum effect in 1D porous silicon photonic crystals (PhCs) under dynamical Bragg diffraction in the Laue scheme. The diffraction-thick PhC contained 360 spatial periods with a large variation of the refractive index of adjacent layers of 0.4. The experiments reveal switching of the light leaving the PhC between the two spatial directions, which correspond to Laue diffraction maxima, as the fundamental wavelength or polarization of the incident light is varied. A similar effect can be achieved when the temperature of the sample or the intensity of the additional laser beam illuminating the crystal are changed. We show that in our PhC structures, the spectral period of the pendulum effect is down to 5 nm, while the thermal period is about 10 °C.

  12. Optical cryptography topology based on a three-dimensional particle-like distribution and diffractive imaging.

    PubMed

    Chen, Wen; Chen, Xudong

    2011-05-01

    In recent years, coherent diffractive imaging has been considered as a promising alternative for information retrieval instead of conventional interference methods. Coherent diffractive imaging using the X-ray light source has opened up a new research perspective for the measurement of non-crystalline and biological specimens, and can achieve unprecedentedly high resolutions. In this paper, we show how a three-dimensional (3D) particle-like distribution and coherent diffractive imaging can be applied for a study of optical cryptography. An optical multiple-random-phase-mask encoding approach is used, and the plaintext is considered as a series of particles distributed in a 3D space. A topology concept is also introduced into the proposed optical cryptosystem. During image decryption, a retrieval algorithm is developed to extract the plaintext from the ciphertexts. In addition, security and advantages of the proposed optical cryptography topology are also analyzed. PMID:21643154

  13. Optical pendulum effect in one-dimensional diffraction-thick porous silicon based photonic crystals

    NASA Astrophysics Data System (ADS)

    Novikov, V. B.; Svyakhovskiy, S. E.; Maydykovskiy, A. I.; Murzina, T. V.; Mantsyzov, B. I.

    2015-11-01

    We present the realization of the multiperiodic optical pendulum effect in 1D porous silicon photonic crystals (PhCs) under dynamical Bragg diffraction in the Laue scheme. The diffraction-thick PhC contained 360 spatial periods with a large variation of the refractive index of adjacent layers of 0.4. The experiments reveal switching of the light leaving the PhC between the two spatial directions, which correspond to Laue diffraction maxima, as the fundamental wavelength or polarization of the incident light is varied. A similar effect can be achieved when the temperature of the sample or the intensity of the additional laser beam illuminating the crystal are changed. We show that in our PhC structures, the spectral period of the pendulum effect is down to 5 nm, while the thermal period is about 10 °C.

  14. Multiwavelength anomalous diffraction analyses of protein structures based on xenon and selenium resonances

    NASA Astrophysics Data System (ADS)

    Slama, Betty Nicole

    The 'phase problem' is central to X-ray crystallography, and multiwavelength anomalous diffraction (MAD) provides an elegant and broadly accessible solution. In the first part, the use of MAD at the xenon L3 edge is explored, as an alternative to the well established selenium K-edge phasing. In the second part, the structure of the bacterial protein Vibrio cholerae LuxQ, part of a two component signaling system involved in quorum sensing, is solved and analyzed. Keywords: anomalous scattering, x-ray diffraction, phasing, protein structure.

  15. Isoelectric Point, Electric Charge, and Nomenclature of the Acid-Base Residues of Proteins

    ERIC Educational Resources Information Center

    Maldonado, Andres A.; Ribeiro, Joao M.; Sillero, Antonio

    2010-01-01

    The main object of this work is to present the pedagogical usefulness of the theoretical methods, developed in this laboratory, for the determination of the isoelectric point (pI) and the net electric charge of proteins together with some comments on the naming of the acid-base residues of proteins. (Contains 8 figures and 4 tables.)

  16. Analysis of oxytetracycline residue in salmon muscle using a portable analyzer based on Eu III luminescence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxytetracycline (OTC), one of tetracycline (TC) antibiotics, is the most prominent therapeutant in aquaculture worldwide. In this work, OTC residue in salmon muscle is determined by europium-sensitized luminescence (ESL) using an LED-based portable analyzer. OTC is extracted in EDTA-McIlvaine buff...

  17. Post-extraction algal residue in steam-flaked corn-based diets for beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of post-extraction algal residue (PEAR) as N source 23 in steam-flaked corn-based (SFC) beef cattle finishing diets on intake, duodenal flow, digestion, ruminal microbial efficiency, ruminal parameters, and blood constituents were evaluated. Ruminally and duodenally cannulated steers (BW...

  18. Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light.

    PubMed

    Chen, Gang; Zhang, Kun; Yu, Anping; Wang, Xianyou; Zhang, Zhihai; Li, Yuyan; Wen, Zhongquan; Li, Chen; Dai, Luru; Jiang, Senling; Lin, Feng

    2016-05-16

    Planar lenses are attractive photonic devices due to its minimized size and easy to integrate. However, planar lenses designed in traditional ways are restricted by the diffraction limit. They have difficulties in further reducing the focal spot size beyond the diffraction limit. Super-oscillation provides a possible way to solve the problem. However, lenses based on super-oscillation have always been affected by huge sidelobes, which resulted in limited field of view and difficulties in real applications. To address the problem, in the paper, a far-field sub-diffraction lens based on binary amplitude-phase mask was demonstrated under illumination of linearly polarized plane wave at wavelength 632.8 nm. The lens realized a long focal length of 148λ (94 µm), and the full width at half maximum of the focal line was 0.406λ, which was super-oscillatory. More important is that such a flat lens has small sidelobes and wide field of view. Within the measured range of [-132λ, + 120λ], the maximum sidelobe observed on the focal plane was less than 22% of the central peak. Such binary amplitude-phase planar lens can also be extended to long focal length far-field sub-diffraction focusing lens for other spectrum ranges. PMID:27409922

  19. Generalization of the residual cutting method based on the Krylov subspace

    NASA Astrophysics Data System (ADS)

    Abe, Toshihiko; Sekine, Yoshihito; Kikuchi, Kazuo

    2016-06-01

    The residual cutting (RC) method has been reported to have superior converging characteristics in numerically solving elliptic partial differential equations. However, its application is limited to linear problems with diagonal-dominant matrices in general, for which convergence of a relaxation method such as SOR is guaranteed. In this study, we propose the generalized residual cutting (GRC) method, which is based on the Krylov subspace and applicable to general unsymmetric linear problems. Also, we perform numerical experiments with various coefficient matrices, and show that the GRC method has some desirable properties such as convergence characteristics and memory usage, in comparison to the conventional RC, BiCGSTAB and GMRES methods.

  20. Plane-wave Fresnel diffraction by elliptic apertures: a Fourier-based approach.

    PubMed

    Borghi, Riccardo

    2014-10-01

    A simple theoretical approach to evaluate the scalar wavefield, produced, within paraxial approximation, by the diffraction of monochromatic plane waves impinging on elliptic apertures or obstacles is presented. We find that the diffracted field can be mathematically described in terms of a Fourier series with respect to an angular variable suitably related to the elliptic parametrization of the observation plane. The convergence features of such Fourier series are analyzed, and a priori truncation criterion is also proposed. Two-dimensional maps of the optical intensity diffraction patterns are then numerically generated and compared, at a visual level, with several experimental pictures produced in the past. The last part of this work is devoted to carrying out an analytical investigation of the diffracted field along the ellipse axis. A uniform approximation is derived on applying a method originally developed by Schwarzschild, and an asymptotic estimate, valid in the limit of small eccentricities, is also obtained via the Maggi-Rubinowicz boundary wave theory. PMID:25401234

  1. Ophthalmic compensation of visual ametropia based on a programmable diffractive lens

    NASA Astrophysics Data System (ADS)

    Millán, Maria S.; Pérez-Cabré, Elisabet; Romero, Lenny A.; Ramírez, Natalia

    2013-11-01

    Pixelated liquid crystal displays have been widely used as spatial light modulators to implement programmable diffractive optical elements (DOEs), particularly diffractive lenses. Many different applications of such components have been developed in information optics and optical processors that take advantage of their properties of great flexibility, easy and fast refreshment, and multiplexing capability in comparison with equivalent conventional refractive lenses. In this paper, we explore the application of programmable diffractive lenses displayed on the pixelated screen of a liquid crystal on silicon spatial light modulator (LCoS-SLM) to ophthalmic optics. In particular, we consider the use of programmable diffractive lenses for the visual compensation of some refractive errors (myopia, hyperopia). The theoretical principles of compensation are described and sketched using geometrical optics and paraxial ray tracing. A series of experiments with artificial eye in optical bench are conducted to analyze the compensation accuracy in terms of optical power and to compare the results with those obtained by means of conventional ophthalmic lenses. Practical considerations oriented to feasible applications are provided.

  2. Generation of High-Density Electrons Based on Plasma Grating Induced Bragg Diffraction in Air

    SciTech Connect

    Shi Liping; Li Wenxue; Wang Yongdong; Lu Xin; Ding Liang'en; Zeng Heping

    2011-08-26

    Efficient nonlinear Bragg diffraction was observed as an intense infrared femtosecond pulse was focused on a plasma grating induced by interference between two ultraviolet femtosecond laser pulses in air. The preformed electrons inside the plasma grating were accelerated by subsequent intense infrared laser pulses, inducing further collisional ionization and significantly enhancing the local electron density.

  3. Diffraction-based study of fatigue crack initiation and propagation in aerospace aluminum alloys

    NASA Astrophysics Data System (ADS)

    Gupta, Vipul K.

    The crack initiation sites and microstructure-sensitive growth of small fatigue cracks are experimentally characterized in two precipitation-hardened aluminum alloys, 7075-T651 and 7050-T7451, stressed in ambient temperature moist-air (warm-humid) and -50°C dry N2 (cold-dry) environmental conditions. Backscattered electron imaging (BSE) and energy dispersive spectroscopy (EDS) of the fracture surfaces showed that Fe-Cu rich constituent particle clusters are the most common initiation sites within both alloys stressed in either environment. The crack growth within each alloy, on average, was observed to be slowed in the cold-dry environment than in the warm-humid environment, but only at longer crack lengths. Although no overwhelming effects of grain boundaries and grain orientations on small-crack growth were observed, crack growth data showed local fluctuations within individual grains. These observations are understood as crack propagation through the underlying substructure at the crack surface and frequent interaction with low/high-angle grain and subgrain boundaries, during cyclic loading, and, are further attributed to periodic changes in crack propagation path and multiple occurrences of crack-branching observed in the current study. SEM-based stereology in combination with electron backscattered diffraction (EBSD) established fatigue crack surface crystallography within the region from ˜1 to 50 mum of crack initiating particle clusters. Fatigue crack facets were parallel to a wide variety of crystallographic planes, with pole orientations distributed broadly across the irreducible stereographic triangle between the {001} and {101}-poles within both warm-humid and cold-dry environments. The results indicate environmentally affected fatigue cracking in both cases, given the similarity between the observed morphology and crystallography with that of a variety of aerospace aluminum alloys cracked in the presence of moist-air. There was no evidence of

  4. Eddy Current Nondestructive Residual Stress Assessment in Shot-Peened Nickel-Base Superalloys

    SciTech Connect

    Blodgett, M.P.; Yu, F.; Nagy, P.B.

    2005-04-09

    Shot peening and other mechanical surface enhancement methods improve the fatigue resistance and foreign-object damage tolerance of metallic components by introducing beneficial near-surface compressive residual stresses and hardening the surface. However, the fatigue life improvement gained via surface enhancement is not explicitly accounted for in current engine component life prediction models because of the lack of accurate and reliable nondestructive methods that could verify the presence of compressive near-surface residual stresses in shot-peened hardware. In light of its frequency-dependent penetration depth, the measurement of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation of subsurface residual stresses in surface-treated components. This technique is based on the so-called piezoresistivity effect, i.e., the stress-dependence of electrical resistivity. We found that, in contrast with most other materials, surface-treated nickel-base superalloys exhibit an apparent increase in electrical conductivity at increasing inspection frequencies, i.e., at decreasing penetration depths. Experimental results are presented to illustrate that the excess frequency-dependent apparent eddy current conductivity of shot-peened nickel-base superalloys can be used to estimate the absolute level and penetration depth of the compressive residual stress layer both before and after partial thermal relaxation.

  5. A CMOS active pixel sensor system for laboratory- based x-ray diffraction studies of biological tissue.

    PubMed

    Bohndiek, Sarah E; Cook, Emily J; Arvanitis, Costas D; Olivo, Alessandro; Royle, Gary J; Clark, Andy T; Prydderch, Mark L; Turchetta, Renato; Speller, Robert D

    2008-02-01

    X-ray diffraction studies give material-specific information about biological tissue. Ideally, a large area, low noise, wide dynamic range digital x-ray detector is required for laboratory-based x-ray diffraction studies. The goal of this work is to introduce a novel imaging technology, the CMOS active pixel sensor (APS) that has the potential to fulfil all these requirements, and demonstrate its feasibility for coherent scatter imaging. A prototype CMOS APS has been included in an x-ray diffraction demonstration system. An industrial x-ray source with appropriate beam filtration is used to perform angle dispersive x-ray diffraction (ADXRD). Optimization of the experimental set-up is detailed including collimator options and detector operating parameters. Scatter signatures are measured for 11 different materials, covering three medical applications: breast cancer diagnosis, kidney stone identification and bone mineral density calculations. Scatter signatures are also recorded for three mixed samples of known composition. Results are verified using two independent models for predicting the APS scatter signature: (1) a linear systems model of the APS and (2) a linear superposition integral combining known monochromatic scatter signatures with the input polychromatic spectrum used in this case. Cross validation of experimental, modelled and literature results proves that APS are able to record biologically relevant scatter signatures. Coherent scatter signatures are sensitive to multiple materials present in a sample and provide a means to quantify composition. In the future, production of a bespoke APS imager for x-ray diffraction studies could enable simultaneous collection of the transmitted beam and scattered radiation in a laboratory-based coherent scatter system, making clinical transfer of the technique attainable. PMID:18199908

  6. High-resolution diffraction for residual stress determination in the NiCrMoV wheel of an axial compressor for a heavy-duty gas turbine

    NASA Astrophysics Data System (ADS)

    Rogante, M.; Török, G.; Ceschini, G. F.; Tognarelli, L.; Füzesy, I.; Rosta, L.

    2004-07-01

    The wheel of an axial compressor for a heavy-duty gas turbine has been investigated for residual stresses (RS) evaluation of the teeth-section where SANS measurements have previously been performed. Such a component can contain internal RS, either due to the manufacturing process, or to the operating cycles fatigue. The constitutive material is a NiCrMoV steel to ASTM A 471 (type 2) norms (equivalent to B50A420B10); this material is usually adopted in the manufacturing of forged components for gas turbines. Internal radial and hoop RS have been determined, whose values are under the limit of 200kPa. Hoop RS, in general, resulted in higher value than the radial ones. The present experiment represents a particularly important step in the RS determination for gas turbine components, since the measurements reveal that the fatigue of the wheel is also a lifetime limiting factor although, in the same technological field, the available data in the actual neutron techniques literature mainly concern turbine buckets.

  7. Approach to improve beam quality of inter-satellite optical communication system based on diffractive optical elements.

    PubMed

    Tan, Liying; Yu, Jianjie; Ma, Jing; Yang, Yuqiang; Li, Mi; Jiang, Yijun; Liu, Jianfeng; Han, Qiqi

    2009-04-13

    For inter-satellite optical communication transmitter with reflective telescope of two-mirrors on axis, a large mount of the transmitted energy will be blocked by central obscuration of the secondary mirror. In this paper, a novel scheme based on diffractive optical element (DOE) is introduced to avoid it. This scheme includes one diffractive beam shaper and another diffractive phase corrector, which can diffract the obscured part of transmitted beam into the domain unobscured by the secondary mirror. The proposed approach is firstly researched with a fixed obscuration ratio of 1/4. Numerical simulation shows that the emission efficiency of new figuration is 99.99%; the beam divergence from the novel inter-satellite optical communication transmitter is unchanged; and the peak intensity of receiver plane is increased about 31% compared with the typical configuration. Then the intensy patterns of receiver plane are analyzed with various obscuration ratio, the corresponding numerical modelling reveals that the intensity patterns with various obscuration ratio are nearly identical, but the amplify of relative peak intensity is getting down with the growth of obscuration ratio. This work can improve the beam quality of inter-satellite optical communication system without affecting any other functionality. PMID:19365457

  8. SeO II addition on PVA-based photopolymer for improving photostorage stabilities and diffraction efficiencies

    NASA Astrophysics Data System (ADS)

    Kim, Daeheum; Nam, Seungwoong; Yeo, Seungbyung; Lim, Jiyun

    2006-08-01

    Polyvinyl alcohol/Acrylamide(PVA/AA)based photopolymer systems modified with SeO II crystals were prepared and photostorage characteristics mainly including diffraction efficiencies were examined and compared with pure PVA/AA films using green laser light (532nm). The photosensitive films were composed of polymeric film-forming binder (PVA), monomer (acrylamide, AA), photoinitiator (triethanol amine, TEA), photosensitizer (Eosin YR), and SeO II crystals. The best optical recording characteristics were observed at the composition of: polymer binder (PVA) : AA : TEA : SeO II : Eosin Y = 1.0 : 0.3 : 0.225 : 0.1 : 0.0015. Diffraction efficiencies as high as 85% with energetic sensitivity of 0.5 mW/cm2 have been obtained in the photopolymer film, and the photopolymer film with SeO II showed higher diffraction efficiencies and lower initial sensitivity than the photopolymer film without SeO II. The morphology of SeO II was expected to be nano crystals since they didn't scatter optical lights and didn't show any peaks in X-ray diffraction spectra.

  9. Diffraction techniques in engineering applications

    SciTech Connect

    Kozarczek, K.J.; Hubbard, C.R.; Watkins, T.R.; Wang, X.L.; Spooner, S.

    1995-12-31

    Diffraction techniques applied to crystalline materials provide quantitative information about the crystallographic structure and mechanical condition of the material. Those two characteristics influence the chemical, physical, and mechanical properties of a Component. A concerted application of x-ray and neutron diffraction allows one to comprehensively study the bulk and subsurface variations of such material characteristics as crystallographic texture, residual stress, and cold work. The Residual Stress User Center at the Oak Ridge National Laboratory offers academic and industrial researchers both neutron and x-ray diffraction capabilities. Recent examples of the application of work related to thin film, metal, ceramic and composite material technologies are presented.

  10. Sub-millimeter Bunch Length Non-invasive Diagnostic Based on the Diffraction and Cherenkov Radiation

    NASA Astrophysics Data System (ADS)

    Shevelev, M.; Deng, H.; Potylitsyn, A.; Naumenko, G.; Zhang, J.; Lu, Sh; Gogolev, S.; Shkitov, D.

    2012-05-01

    A layout for the investigation the coherent Cherenkov radiation from a dielectric target with a large spectral dispersion and the coherent diffraction radiation from a conducting screen as a tool for non-invasive longitudinal electron beam profile diagnostics are proposed for the 20~30MeV Linac at Shanghai Institute of Applied Physics (SINAP). In this paper the status of the joint experiment and future plans are presented.

  11. X-ray diffraction and EXAFS analysis of materials for lithium-based rechargeable batteries

    SciTech Connect

    Sharkov, M. D. Boiko, M. E.; Bobyl, A. V.; Ershenko, E. M.; Terukov, E. I.; Zubavichus, Y. V.

    2013-12-15

    Lithium iron phosphate LiFePO{sub 4} (triphylite) and lithium titanate Li{sub 4}Ti{sub 5}O{sub 12} are used as components of a number of active materials in modern rechargeable batteries. Samples of these materials are studied by X-ray diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy. Hypotheses about the phase composition of the analyzed samples are formulated.

  12. Leaching of nitrogen and base cations from calcareous soil amended with organic residues.

    PubMed

    Zarabi, Mahboubeh; Jalali, Mohsen

    2012-01-01

    The potential for groundwater and surface water pollution by nutrients in organic residues, primarily nitrogen (N) and base cations (K+, Na+, Ca2+, Mg2+), is a consideration when applying such residues to land. In this study, we used a laboratory column leaching procedure to examine the leaching of N, K+, Na+, Ca2+ and Mg2+ in soils treated with two types of raw organic residues (poultry manure and potato residues) and one municipal waste compost, which are currently recycled on agricultural land in Iran. Each organic residue was thoroughly mixed with two different soils (sandy loam and clay) at the rate of 3%. Soil columns were leached at 4-d intervals for 92 d with distilled water, and effluents were analysed for pH, EC, nitrate (NO3(-)-N), ammonium (NH4(+)-N) K+, Na+, Ca2+ and Mg2+. The results indicated that the amounts of NO3(-)-N and NH4(+)-N leached from the poultry manure and potato residues could represent very important economic losses of N and pose an environmental threat under field conditions. The sandy loam soil amended with poultry manure lost the highest amount of NO3(-)-N (206.4 kg ha(-1)), and clay soil amended with poultry manure lost the highest amounts of NH4(+)-N (454.3 kg ha(-1)). The results showed that a treatment incorporating 3% of municipal waste compost could be used without negative effects to groundwater N concentration in clay soil. Significant amounts of K+, Na+, Ca2+, and Mg2+ were leached owing to the application of poultry manure, potato and municipal waste compost to soils. There was a positive relationship between K+, Na+, Ca2+, and Mg2+ with NO3(-)-N and NH4(+)-N leached in soils. Analysis of variance detected significant effects of amendment, soil type and time on the leaching NO3(-)-N, NH4(+)-N, K+, Na+, Ca2+ and Mg2+. PMID:22988618

  13. A laboratory based system for Laue micro x-ray diffraction

    SciTech Connect

    Advanced Light Source; Tamura, Nobumichi; Lynch, P.A.; Stevenson, A.W.; Liang, D.; Parry, D.; Wilkins, S.; Tamura, N.

    2007-02-28

    A laboratory diffraction system capable of illuminating individual grains in a polycrystalline matrix is described. Using a microfocus x-ray source equipped with a tungsten anode and prefigured monocapillary optic, a micro-x-ray diffraction system with a 10 mum beam was developed. The beam profile generated by the ellipsoidal capillary was determined using the"knife edge" approach. Measurement of the capillary performance, indicated a beam divergence of 14 mrad and a useable energy bandpass from 5.5 to 19 keV. Utilizing the polychromatic nature of the incident x-ray beam and application of the Laue indexing software package X-Ray Micro-Diffraction Analysis Software, the orientation and deviatoric strain of single grains in a polycrystalline material can be studied. To highlight the system potential the grain orientation and strain distribution of individual grains in a polycrystalline magnesium alloy (Mg 0.2 wt percent Nd) was mapped before and after tensile loading. A basal (0002) orientation was identified in the as-rolled annealed alloy; after tensile loading some grains were observed to undergo an orientation change of 30 degrees with respect to (0002). The applied uniaxial load was measured as an increase in the deviatoric tensile strain parallel to the load axis (37 References).

  14. Diffraction anomalies in hybrid structures based on chalcogenide Ge2Sb2Te5-coated opal photonic crystals

    NASA Astrophysics Data System (ADS)

    Voronov, M. M.; Pevtsov, A. B.; Yakovlev, S. A.; Kurdyukov, D. A.; Golubev, V. G.

    2014-01-01

    The results of spectroscopic studies of the diffraction anomalies (the so-called resonant Wood anomalies) in spatially periodic hybrid structures based on chalcogenide Ge2Sb2Te5-coated opal films of various thickness are presented. A theoretical analysis of spectral-angular dependencies of the Wood anomalies has been made by means of a phenomenological approach using the concept of the effective refractive index of the waveguiding surface layer.

  15. Polylactide-based renewable green composites from agricultural residues and their hybrids.

    PubMed

    Nyambo, Calistor; Mohanty, Amar K; Misra, Manjusri

    2010-06-14

    Agricultural natural fibers like jute, kenaf, sisal, flax, and industrial hemp have been extensively studied in green composites. The continuous supply of biofibers in high volumes to automotive part makers has raised concerns. Because extrusion followed by injection molding drastically reduces the aspect ratio of biofibers, the mechanical performance of injection molded agricultural residue and agricultural fiber-based composites are comparable. Here, the use of inexpensive agricultural residues and their hybrids that are 8-10 times cheaper than agricultural fibers is demonstrated to be a better way of getting sustainable materials with better performance. Green renewable composites from polylactide (PLA), agricultural residues (wheat straw, corn stover, soy stalks, and their hybrids) were successfully prepared through twin-screw extrusion, followed by injection molding. The effect on mechanical properties of varying the wheat straw amount from 10 to 40 wt % in PLA-wheat straw composites was studied. Tensile moduli were compared with theoretical calculations from the rule of mixture (ROM). Combination of agricultural residues as hybrids is proved to reduce the supply chain concerns for injection molded green composites. Densities of the green composites were found to be lower than those of conventional glass fiber composites. PMID:20499931

  16. Preliminary design of a zone plate based hard X-ray monochromatic diffraction nanoprobe for materials studies at APS

    NASA Astrophysics Data System (ADS)

    Cai, Zhonghou; Liu, Wenjun; Tischler, Jonathan Z.; Shu, Deming; Xu, Ruqing; Schmidt, Oliver

    2013-09-01

    Aiming at studies of the micro/nano-structures of a broad range materials and electronic devices, Advance Photon Source (APS) is developing a dedicated diffraction nanoprobe (DNP) beamline for the needs arising from a multidiscipline research community. As a part of the APS Upgrade Project, the planed facility, named Sub-micron 3-D Diffraction (S3DD) beamline1, integrates the K-B mirror based polychromatic Laue diffraction and the Fresnel zone-plate based monochromatic diffraction techniques that currently support 3D/2D microdiffraction programs at the 34-ID-E and 2-ID-D of the APS, respectively. Both diffraction nanoprobes are designed to have a 50-nm or better special resolution. The zone-plate based monochromatic DNP has been preliminarily designed and will be constructed at the sector 34-ID. It uses an APS-3.0-cm period or APS-3.3-cm period undulator, a liquid-nitrogen cooled mirror as its first optics, and a water cooled small gap silicon double-crystal monochromator with an energy range of 5-30 keV. A set of zone plates have been designed to optimize for focusing efficiency and the working distance based on the attainable beamline length and the beam coherence. To ensure the nanoprobe performance, high stiffness and high precision flexure stage systems have been designed or demonstrated for optics mounting and sample scanning, and high precision temperature control of the experimental station will be implemented to reduce thermal instability. Designed nanoprobe beamline has a good management on thermal power loading on optical components and allows high degree of the preservation of beam brilliance for high focal flux and coherence. Integrated with variety of X-ray techniques, planed facility provides nano-XRD capability with the maximum reciprocal space accessibility and allows micro/nano-spectroscopy studies with K-edge electron binding energies of most elements down to Vanadium in the periodic table. We will discuss the preliminary design of the zone

  17. Two States Mapping Based Time Series Neural Network Model for Compensation Prediction Residual Error

    NASA Astrophysics Data System (ADS)

    Jung, Insung; Koo, Lockjo; Wang, Gi-Nam

    2008-11-01

    The objective of this paper was to design a model of human bio signal data prediction system for decreasing of prediction error using two states mapping based time series neural network BP (back-propagation) model. Normally, a lot of the industry has been applied neural network model by training them in a supervised manner with the error back-propagation algorithm for time series prediction systems. However, it still has got a residual error between real value and prediction result. Therefore, we designed two states of neural network model for compensation residual error which is possible to use in the prevention of sudden death and metabolic syndrome disease such as hypertension disease and obesity. We determined that most of the simulation cases were satisfied by the two states mapping based time series prediction model. In particular, small sample size of times series were more accurate than the standard MLP model.

  18. Theory for Gaussian beam diffraction in 2D inhomogeneous medium, based on the eikonal form of complex geometrical optics

    NASA Astrophysics Data System (ADS)

    Berczynski, P.; Kravtsov, Yu. A.

    2004-10-01

    A simple and effective method to describe Gaussian beams propagation and diffraction in arbitrary smoothly inhomogeneous 2D medium has been developed based on the eikonal form of complex geometrical optics. The method assumes the eikonal equation can be solved in paraxial approximation in curvilinear frame of references, connected with the central ray. The Riccati-type ordinary differential equation is derived for complex parameter characterizing the Gaussian beam width and phase front curvature. The same parameter was proved to define both the modulus and the argument of the complex amplitude. As a result, the problem of the Gaussian beam diffraction in inhomogeneous media has been reduced to the solution of the ordinary differential equation of the first order, which can be readily calculated numerically for arbitrary profile of dielectric permittivity.

  19. Optical study of a spectrum splitting solar concentrator based on a combination of a diffraction grating and a Fresnel lens

    SciTech Connect

    Michel, Céline Habraken, Serge; Loicq, Jérôme; Thibert, Tanguy

    2015-09-28

    This paper presents recent improvements of our new solar concentrator design for space application. The concentrator is based on a combination of a diffraction grating (blazed or lamellar) coupled with a Fresnel lens. Thanks to this diffractive/refractive combination, this optical element splits spatially and spectrally the light and focus approximately respectively visible light and IR light onto electrically independent specific cells. It avoid the use of MJs cells and then also their limitations like current matching and lattice matching conditions, leading theoretically to a more tolerant system. The concept is reminded, with recent optimizations, ideal and more realistic results, and the description of an experimental realization highlighting the feasibility of the concept and the closeness of theoretical and experimental results.

  20. A quantitative method for measurement of HL-60 cell apoptosis based on diffraction imaging flow cytometry technique

    PubMed Central

    Yang, Xu; Feng, Yuanming; Liu, Yahui; Zhang, Ning; Lin, Wang; Sa, Yu; Hu, Xin-Hua

    2014-01-01

    A quantitative method for measurement of apoptosis in HL-60 cells based on polarization diffraction imaging flow cytometry technique is presented in this paper. Through comparative study with existing methods and the analysis of diffraction images by a gray level co-occurrence matrix algorithm (GLCM), we found 4 GLCM parameters of contrast (CON), cluster shade (CLS), correlation (COR) and dissimilarity (DIS) exhibit high sensitivities as the apoptotic rates. It was further demonstrated that the CLS parameter correlates significantly (R2 = 0.899) with the degree of nuclear fragmentation and other three parameters showed a very good correlations (R2 ranges from 0.69 to 0.90). These results demonstrated that the new method has the capability for rapid and accurate extraction of morphological features to quantify cellular apoptosis without the need for cell staining. PMID:25071957

  1. Covariance of lucky images for increasing objects contrast: diffraction-limited images in ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Cagigal, Manuel P.; Valle, Pedro J.; Colodro-Conde, Carlos; Villó-Pérez, Isidro; Pérez-Garrido, Antonio

    2016-01-01

    Images of stars adopt shapes far from the ideal Airy pattern due to atmospheric density fluctuations. Hence, diffraction-limited images can only be achieved by telescopes without atmospheric influence, e.g. spatial telescopes, or by using techniques like adaptive optics or lucky imaging. In this paper, we propose a new computational technique based on the evaluation of the COvariancE of Lucky Images (COELI). This technique allows us to discover companions to main stars by taking advantage of the atmospheric fluctuations. We describe the algorithm and we carry out a theoretical analysis of the improvement in contrast. We have used images taken with 2.2-m Calar Alto telescope as a test bed for the technique resulting that, under certain conditions, telescope diffraction limit is clearly reached.

  2. Polarization-independent light-dispersing device based on diffractive optics

    NASA Astrophysics Data System (ADS)

    Amako, J.; Fujii, E.

    2015-03-01

    We report a light-dispersing device comprised of two transmission gratings and a wave plate. The gratings split the light incident at the Bragg angle into two orthogonally polarized components. The wave plate, which is placed between the gratings, functions as a polarization converter for oblique illumination. Appropriate assembly of these optical parts results in efficient diffraction of the unpolarized light with high spectral resolution. Using coupled-wave theories and Mueller matrix analysis, we constructed a device with a grating period of 400 nm for the spectral range of 680 ± 50 nm. We verified the proposed polarization-independent light-dispersing concept from the evaluation of this device.

  3. Study of an ultrafast analog-to-digital conversion scheme based on diffractive optics.

    PubMed

    Johansson, M; Löfving, B; Hård, S; Thylén, L; Mokhtari, M; Westergren, U; Pala, C

    2000-06-10

    A potentially ultrafast optical analog-to-digital (A/D) converter scheme is proposed and was partly studied experimentally. In the A/D converter scheme the input signal controls the wavelength of a diode laser, whose output beam is incident on a grating. The beam from the grating hits a diffractive optical element in an array. The wavelength determines which element is illuminated. Each element fans out a unique spot-pattern bit code to be read out in parallel by individual detectors. In the experiment all patterns but one from 64 array elements were read out correctly. PMID:18345212

  4. Super-Resolved Digital Holography Based on the Coherent Diffraction Imaging Scheme

    NASA Astrophysics Data System (ADS)

    Wang, Bao-Sheng; Pan, Xing-Chen; Wang, Hai-Yan; Cheng, Jun; Gao, Shu-Mei; Liu, Cheng; Zhu, Jian-Qiang

    2013-05-01

    An algorithm is proposed to enhance the resolution of digital holography by retrieving the frequency components lost in common holograms. A pinhole is placed directly behind the specimen to record the hologram, and an iterative scheme commonly used in coherent diffraction imaging is adopted for the reconstruction. Since some of the frequency components lost in common digital holography can be properly retrieved, the resolution of the reconstructed image is remarkably improved. Theoretical analysis and computer simulations are presented to demonstrate the feasibility of this proposed technique.

  5. Microelectromechanical mirrors and electrically-programmable diffraction gratings based on two-stage actuation

    DOEpatents

    Allen, James J.; Sinclair, Michael B.; Dohner, Jeffrey L.

    2005-11-22

    A microelectromechanical (MEM) device for redirecting incident light is disclosed. The MEM device utilizes a pair of electrostatic actuators formed one above the other from different stacked and interconnected layers of polysilicon to move or tilt an overlying light-reflective plate (i.e. a mirror) to provide a reflected component of the incident light which can be shifted in phase or propagation angle. The MEM device, which utilizes leveraged bending to provide a relatively-large vertical displacement up to several microns for the light-reflective plate, has applications for forming an electrically-programmable diffraction grating (i.e. a polychromator) or a micromirror array.

  6. Iodide Residues in Milk Vary between Iodine-Based Teat Disinfectants.

    PubMed

    French, Elizabeth A; Mukai, Motoko; Zurakowski, Michael; Rauch, Bradley; Gioia, Gloria; Hillebrandt, Joseph R; Henderson, Mark; Schukken, Ynte H; Hemling, Thomas C

    2016-07-01

    Majority of iodine found in dairy milk comes from the diet and teat disinfection products used during milking process. The objective of this study was to evaluate the effects of 4 iodine-based teat dips on milk iodide concentrations varying in iodine level (0.25% vs. 0.5%, w/w), normal low viscosity dip versus barrier dip, and application method (dip vs. spray) to ensure safe iodine levels in dairy milk when these products are used. The iodine exposure study was performed during a 2-wk period. The trial farm was purged of all iodine-based disinfection products for 21 d during a prestudy "washout period," which resulted in baseline milk iodide range of 145 to 182 ppb. During the experiment, iodine-based teat dips were used as post-milking teat disinfectants and compared to a non-iodine control disinfectant. Milk iodide residue levels for each treatment was evaluated from composited group samples. Introduction of different iodine-based teat disinfectants increased iodide residue content in milk relative to the control by between 8 and 29 μg/L when averaged across the full trial period. However, residues levels for any treatment remained well below the consumable limit of 500 μg/L. The 0.5% iodine disinfectant increased milk iodide levels by 20 μg/L more compared to the 0.25% iodine. Compared to dip-cup application, spray application significantly increased milk iodide residue by 21 μg/L and utilized approximately 23% more teat dip. This carefully controlled study demonstrated an increase in milk iodide concentrations from iodine disinfectants, but increases were small and within acceptable limits. PMID:27259164

  7. Visual Analysis of Residuals from Data-Based Models in Complex Industrial Processes

    NASA Astrophysics Data System (ADS)

    Ordoñez, Daniel G.; Cuadrado, Abel A.; Díaz, Ignacio; García, Francisco J.; Díez, Alberto B.; Fuertes, Juan J.

    2012-10-01

    The use of data-based models for visualization purposes in an industrial background is discussed. Results using Self-Organizing Maps (SOM) show how through a good design of the model and a proper visualization of the residuals generated by the model itself, the behavior of essential parameters of the process can be easily tracked in a visual way. Real data from a cold rolling facility have been used to prove the advantages of these techniques.

  8. Capacitive micromachined ultrasonic transducers with diffraction-based integrated optical displacement detection.

    PubMed

    Hall, Neal A; Lee, Wook; Degertekin, F Levent

    2003-11-01

    Capacitive detection limits the performance of capacitive micromachined ultrasonic transducers (CMUTs) by providing poor sensitivity below megahertz frequencies and limiting acoustic power output by imposing constraints on the membrane-substrate gap height. In this paper, an integrated optical interferometric detection method for CMUTs, which provides high displacement sensitivity independent of operation frequency and device capacitance, is reported. The method also enables optoelectronics integration in a small volume and provides optoelectronic isolation between transmit and receive electronics. Implementation of the method involves fabricating CMUTs on transparent substrates and shaping the electrode under each individual CMUT membrane in the form of an optical diffraction grating. Each CMUT membrane thus forms a phase-sensitive optical diffraction grating structure that is used to measure membrane displacements down to 2 x 10(-4) A/square root(Hz) level in the dc to 2-MHz range. Test devices are fabricated on quartz substrates, and ultrasonic array imaging in air is performed using a single 4-mm square CMUT consisting of 19 x 19 array of membranes operating at 750 kHz. PMID:14682641

  9. Colorful holographic display of 3D object based on scaled diffraction by using non-uniform fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Chang, Chenliang; Xia, Jun; Lei, Wei

    2015-03-01

    We proposed a new method to calculate the color computer generated hologram of three-dimensional object in holographic display. The three-dimensional object is composed of several tilted planes which are tilted from the hologram. The diffraction from each tilted plane to the hologram plane is calculated based on the coordinate rotation in Fourier spectrum domains. We used the nonuniform fast Fourier transformation (NUFFT) to calculate the nonuniform sampled Fourier spectrum on the tilted plane after coordinate rotation. By using the NUFFT, the diffraction calculation from tilted plane to the hologram plane with variable sampling rates can be achieved, which overcomes the sampling restriction of FFT in the conventional angular spectrum based method. The holograms of red, green and blue component of the polygon-based object are calculated separately by using our NUFFT based method. Then the color hologram is synthesized by placing the red, green and blue component hologram in sequence. The chromatic aberration caused by the wavelength difference can be solved effectively by restricting the sampling rate of the object in the calculation of each wavelength component. The computer simulation shows the feasibility of our method in calculating the color hologram of polygon-based object. The 3D object can be displayed in color with adjustable size and no chromatic aberration in holographic display system, which can be considered as an important application in the colorful holographic three-dimensional display.

  10. Microstructure-Based Modeling of Residual Stresses in WC-12Co-Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Klusemann, B.; Denzer, R.; Svendsen, B.

    2012-01-01

    In this study, the residual stresses in a thermal-sprayed tungsten carbide-cobalt coating are numerically investigated after a plasma-spraying process and after a subsequent roller-burnishing process. The results from the simulations are compared to the first experimental results obtained by a classical hole-drilling method. First, effective material parameters are identified by a detailed microstructure FE model based on scanning electron microscope (SEM) images of the coating. Then, two types of simulations are performed with regard to thermally induced residual stresses as well as the rolling process. In the first model, the microstructural details like pores, interface, and surface roughness are modeled in detail based on light microscope (LM) images. In the second model, the coating and substrate are assumed to be ideal homogeneous, and the interface and surface to be as planar. Furthermore, two types of boundary conditions are investigated: (1), the periodic boundary conditions for the left and right faces, and, (2) when these faces are free. It is shown that, for large sample sizes, the results nearly coincide. The simulation results show increasing compressive residual stresses in thickness direction after the rolling process, which is in qualitative agreement with the experiment. A layer of tensile stresses is obtained at the surface in the simulation which could not be captured by the hole-drilling method. Furthermore, an investigation with homogeneous material behavior is performed in 3D.

  11. Highly sensitive homogeneous electrochemical aptasensor for antibiotic residues detection based on dual recycling amplification strategy.

    PubMed

    Wang, Xiuzhong; Dong, Shanshan; Gai, Panpan; Duan, Rui; Li, Feng

    2016-08-15

    The ubiquitous presence of antibiotic residues in foodstuff have serious health consequences for consumers from allergic reactions to the evolution of antibiotic-resistant bacteria. To address this problem, a novel homogeneous electrochemical aptasensor with high sensitivity and specificity is designed for antibiotic residues detection based on target-induced and T7 exonuclease-assisted dual recycling signal amplification strategy. It was realized by the remarkable diffusivity difference between hairpin probe and the mononucleotides towards the negatively charged indium tin oxide electrode. For the proof-of-concept experiment, ampicillin, was employed as a model analyte to examine the desirable properties of this assay. A low detection limit of 4.0pM toward ampicillin with an excellent selectivity could be achieved, which has been successfully applied to assay antibiotic in milk. What's more, compared with the immobilization-based electrochemical means, the proposed sensing system avoids the tedious and time-consuming steps of electrode modification, making the experimental processes much simpler and more convenient. With the advantages of high sensitivity, excellent selectivity and simple operation, it is believed that this strategy possesses great potential for the simple, easy and convenient detection of antibiotic residues in food safety field. PMID:27040941

  12. Schematic representation of residue-based protein context-dependent data: an application to transmembrane proteins.

    PubMed

    Campagne, F; Weinstein, H

    1999-01-01

    An algorithmic method for drawing residue-based schematic diagrams of proteins on a 2D page is presented and illustrated. The method allows the creation of rendering engines dedicated to a given family of sequences, or fold. The initial implementation provides an engine that can produce a 2D diagram representing secondary structure for any transmembrane protein sequence. We present the details of the strategy for automating the drawing of these diagrams. The most important part of this strategy is the development of an algorithm for laying out residues of a loop that connects to arbitrary points of a 2D plane. As implemented, this algorithm is suitable for real-time modification of the loop layout. This work is of interest for the representation and analysis of data from (1) protein databases, (2) mutagenesis results, or (3) various kinds of protein context-dependent annotations or data. PMID:10736778

  13. Generalization of the residual cutting method based on the Krylov subspace

    NASA Astrophysics Data System (ADS)

    Abe, Toshihiko; Sekine, Yoshihito; Kikuchi, Kazuo

    2016-06-01

    The residual cutting (RC) method has been reported to have superior converging characteristics in numerically solving elliptic partial differential equations. However, its application is limited to linear problems with diagonal-dominant matrices in general, for which convergence of a relaxation method such as SOR is guaranteed. In this study, we propose the generalized residual cutting (GRC) method, which is based on the Krylov subspace and applicable to general unsymmetric linear problems. Also, we perform numerical experiments with various coefficient matrices, and show that the GRC method has some desirable properties such as convergence characteristics and memory usage, in comparison to the conventional RC, BiCGSTAB and GMRES methods. At the request of the author of this paper, a corrigendum was issued on 22 June 2016 to correct an error in Eq. (2) and Eq. (3).

  14. Rapid detection of pesticide residue in apple based on Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Yongyu; Sun, Yunyun; Peng, Yankun; Dhakal, Sagar; Chao, Kuanglin; Liu, Qiaoqiao

    2012-05-01

    The potential of Raman spectroscopy in the analysis of low concentration organic contaminants on apples' surface was evidenced in this study. Chlorpyrifos, an organophosphorus pesticide, was used as a probe for this purpose. The characteristic peaks of fingerprints of pesticide on an aluminum substrate and apple fruit cuticle without pesticide residue were acquired first. Then a concentration range of chlorpyrifos (commercial products at 40%) solutions were made using deionised and distilled water. Single 100 μL droplets of the chlorpyrifos solutions were placed gently on apple fruit cuticles and left to dry before analysis. Through comparative analysis of the Raman spectra data collected, 341, 632 and 1237cm-1 were identified to detect the chlorpyrifos pesticide residue on apple surface. Based on the relationship between the Raman intensity of the most prominent peak at around 632cm-1 and the pesticide concentrations, the limit of detection of ordinary Raman spectrum for chlorpyrifos was estimated to be 48ppm.

  15. Fluorescence volume imaging with an axicon: simulation study based on scalar diffraction method.

    PubMed

    Zheng, Juanjuan; Yang, Yanlong; Lei, Ming; Yao, Baoli; Gao, Peng; Ye, Tong

    2012-10-20

    In a two-photon excitation fluorescence volume imaging (TPFVI) system, an axicon is used to generate a Bessel beam and at the same time to collect the generated fluorescence to achieve large depth of field. A slice-by-slice diffraction propagation model in the frame of the angular spectrum method is proposed to simulate the whole imaging process of TPFVI. The simulation reveals that the Bessel beam can penetrate deep in scattering media due to its self-reconstruction ability. The simulation also demonstrates that TPFVI can image a volume of interest in a single raster scan. Two-photon excitation is crucial to eliminate the signals that are generated by the side lobes of Bessel beams; the unwanted signals may be further suppressed by placing a spatial filter in the front of the detector. The simulation method will guide the system design in improving the performance of a TPFVI system. PMID:23089777

  16. Multiple Plane Phase Retrieval Based On Inverse Regularized Imaging and Discrete Diffraction Transform

    NASA Astrophysics Data System (ADS)

    Migukin, Artem; Katkovnik, Vladimir; Astola, Jaakko

    2010-04-01

    The phase retrieval is formulated as an inverse problem, where the forward propagation is defined by Discrete Diffraction Transform (DDT) [1], [2]. This propagation model is precise and aliasing free for pixelwise invariant (pixelated) wave field distributions in the sensor and object planes. Because of finite size of sensors DDT can be ill-conditioned and the regularization is an important component of the inverse. The proposed algorithm is designed for multiple plane observations and can be treated as a generalization of the Gerchberg-Saxton iterative algorithm. The proposed algorithm is studied by numerical experiments produced for phase and amplitude modulated object distributions. Comparison versus the conventional forward propagation models such as the angular spectrum decomposition and the convolutional model used in the algorithm of the same structure shows a clear advantage of DDT enabling better accuracy and better imaging.

  17. Fatigue reliability based on residual strength model with hybrid uncertain parameters

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Qiu, Zhi-Ping

    2012-02-01

    The aim of this paper is to evaluate the fatigue reliability with hybrid uncertain parameters based on a residual strength model. By solving the non-probabilistic set-based reliability problem and analyzing the reliability with randomness, the fatigue reliability with hybrid parameters can be obtained. The presented hybrid model can adequately consider all uncertainties affecting the fatigue reliability with hybrid uncertain parameters. A comparison among the presented hybrid model, non-probabilistic set-theoretic model and the conventional random model is made through two typical numerical examples. The results show that the presented hybrid model, which can ensure structural security, is effective and practical.

  18. Formulation and characterization of functional foods based on fruit and vegetable residue flour.

    PubMed

    Ferreira, Mariana S L; Santos, Mônica C P; Moro, Thaísa M A; Basto, Gabriela J; Andrade, Roberta M S; Gonçalves, Édira C B A

    2015-02-01

    Fruits and vegetables are extensively processed and the residues are often discarded. However, due to their rich composition, they could be used to minimize food waste. This study aimed to develop food products based on the solid residue generated from the manufacture of an isotonic beverage. This beverage was produced based on integral exploitation of several fruits and vegetables: orange, passion fruit, watermelon, lettuce, courgette, carrot, spinach, mint, taro, cucumber and rocket. The remaining residue was processed into flour and its functional properties were evaluated. The fruit and vegetable residue (FVR) flour was incorporated with different levels (20 to 35 %) into biscuits and cereal bars. The proximate composition, microbiological stability until 90 days and consumer acceptance were analyzed. The FVR flour presented a higher water holding capacity than oil holding capacity, respectively 7.43 and 1.91 g g(-1) of flour, probably associated with its high levels of carbohydrates (53 %) and fibres (21.5 %). Biscuits enriched with 35 % of FVR flour presented significantly higher fibre, ranging from 57 % to 118 % and mineral contents, from 25 % to 37 % than when only 20 % was added. Cereal bars presented about 75 % of fibres and variable mineral contents between 14 % and 37 %. The incorporation of FVR did not change the fat content. The microbiological examinations are within acceptable limits according to international regulation. The incorporation of FVR flour did not impair consumer acceptance, the sensory attributes averaged around 6. The chemical, microbiological and sensorial results of the designed products attested for an alternative towards applying and reducing agro-industrial wastes. PMID:25694690

  19. Release time of residual oxygen after dental bleaching with 35% hydrogen peroxide: effect of a catalase-based neutralizing agent.

    PubMed

    Guasso, Bárbara; Salomone, Paloma; Nascimento, Paulo Cícero; Pozzobon, Roselaine Terezinha

    2016-01-01

    This article assessed the effect of a catalase-based agent on residual oxygen (O2) release from teeth exposed to 35% hydrogen peroxide (H2O2). The use of the catalase-based neutralizer agent for 2-3 minutes was able to release residual O2 5 days after exposure to a 35% H2O2-based bleaching gel. PMID:27148658

  20. Optical pressure sensor based on the combined system of a variable liquid lens and a point diffraction interferometer

    NASA Astrophysics Data System (ADS)

    García-Arellano, Anmi; Gómez-García, Manuel; Acosta, Eva

    2011-09-01

    In this work we present an experimental proposal for an efficient optical pressure sensor based on a Variable Liquid Lens (VLL) and a modified Point Diffraction Interferometer (PDI). The working principle of the proposed sensor relies on the fact that a pressure variation induces a change in the lens curvature and hence in its focal length which can be tracked and measured with the interferometer. The pressure is then measured by recording and processing the interferometric images. The calibration of the sensor in this proposal demonstrated a working range of 0-26 kPa with an accuracy of less than 0.1 kPa in the whole range.

  1. Exploring hardness enhancement in superhard tungsten tetraboride-based solid solutions using radial X-ray diffraction

    SciTech Connect

    Xie, Miao; Turner, Christopher L.; Mohammadi, Reza; Kaner, Richard B. E-mail: akavner@ucla.edu Tolbert, Sarah H. E-mail: akavner@ucla.edu; Kavner, Abby E-mail: akavner@ucla.edu

    2015-07-27

    In this work, we explore the hardening mechanisms in WB{sub 4}-based solid solutions upon addition of Ta, Mn, and Cr using in situ radial X-ray diffraction techniques under non-hydrostatic pressure. By examining the lattice-supported differential strain, we provide insights into the mechanism for hardness increase in binary solid solutions at low dopant concentrations. Speculations on the combined effects of electronic structure and atomic size in ternary WB{sub 4} solid solutions containing Ta with Mn or Cr are also included to understand the extremely high hardness of these materials.

  2. Determination of liquid's molecular interference function based on X-ray diffraction and dual-energy CT in security screening.

    PubMed

    Zhang, Li; YangDai, Tianyi

    2016-08-01

    A method for deriving the molecular interference function (MIF) of an unknown liquid for security screening is presented. Based on the effective atomic number reconstructed from dual-energy computed tomography (CT), equivalent molecular formula of the liquid is estimated. After a series of optimizations, the MIF and a new effective atomic number are finally obtained from the X-ray diffraction (XRD) profile. The proposed method generates more accurate results with less sensitivity to the noise and data deficiency of the XRD profile. PMID:27239986

  3. A C. elegans-based foam for rapid on-site detection of residual live virus.

    SciTech Connect

    Negrete, Oscar A.; Branda, Catherine; Hardesty, Jasper O. E.; Tucker, Mark David; Kaiser, Julia N.; Kozina, Carol L.; Chirica, Gabriela S.

    2012-02-01

    In the response to and recovery from a critical homeland security event involving deliberate or accidental release of biological agents, initial decontamination efforts are necessarily followed by tests for the presence of residual live virus or bacteria. Such 'clearance sampling' should be rapid and accurate, to inform decision makers as they take appropriate action to ensure the safety of the public and of operational personnel. However, the current protocol for clearance sampling is extremely time-intensive and costly, and requires significant amounts of laboratory space and capacity. Detection of residual live virus is particularly problematic and time-consuming, as it requires evaluation of replication potential within a eukaryotic host such as chicken embryos. The intention of this project was to develop a new method for clearance sampling, by leveraging Sandia's expertise in the biological and material sciences in order to create a C. elegans-based foam that could be applied directly to the entire contaminated area for quick and accurate detection of any and all residual live virus by means of a fluorescent signal. Such a novel technology for rapid, on-site detection of live virus would greatly interest the DHS, DoD, and EPA, and hold broad commercial potential, especially with regard to the transportation industry.

  4. Preparation of Compact Agarose Cell Blocks from the Residues of Liquid-Based Cytology Samples

    PubMed Central

    Choi, Suk Jin; Choi, Yeon Il; Kim, Lucia; Park, In Suh; Han, Jee Young; Kim, Joon Mee; Chu, Young Chae

    2014-01-01

    Background Inevitable loss of diagnostic material should be minimized during cell block preparation. We introduce a modified agarose cell block technique that enables the synthesis of compact cell blocks by using the entirety of a cell pellet without the loss of diagnostic material during cell block preparations. The feasibility of this technique is illustrated by high-throughput immunocytochemistry using high-density cell block microarray (CMA). Methods The cell pellets of Sure- Path residues were pre-embedded in ultra-low gelling temperature agarose gel and re-embedded in standard agarose gel. They were fixed, processed, and embedded in paraffin using the same method as tissue sample processing. The resulting agarose cell blocks were trimmed and represented on a CMA for high-throughput analysis using immunocytochemical staining. Results The SurePath residues were effectively and entirely incorporated into compact agarose cell buttons and embedded in paraffin. Sections of the agarose cell blocks revealed cellularities that correlated well with corresponding SurePath smears and had immunocytochemical features that were sufficient for diagnosis of difficult cases. Conclusions This agarose-based compact cell block technique enables preparation of high-quality cell blocks by using up the residual SurePath samples without loss of diagnostic material during cell block preparation. PMID:25366070

  5. Measurement of yarn twist based on backward light scattering and small-angle far-field diffraction

    NASA Astrophysics Data System (ADS)

    Pei, Z. G.; Tao, X. M.

    2015-12-01

    This paper presents a non-destructive, non-contact method for measuring the twist of a yarn based on light scattering and diffraction. The surface twist angle is measured by determining the direction of the line with the highest intensity on the backward light scattering pattern which is perpendicular to the surface fibers, which is verified by both theoretical analysis based on Beckmann’s scattering model and experiments. The yarn diameter is measured with good accuracy by using the small-angle far-field diffraction pattern of the yarn body. Yarn twist is then derived from the measured surface twist angle and yarn diameter. Further studies reveal that the measured yarn twists by the proposed method are comparable to those measured based on microscopic images of the yarn. This method requires no high-magnification optics and is able to pick up short-term variations of twist with less labor intensity, indicating its potential application in the on-line measuring of yarn twist and its distribution.

  6. DDT-based indoor residual spraying suboptimal for visceral leishmaniasis elimination in India

    PubMed Central

    Coleman, Michael; Foster, Geraldine M.; Deb, Rinki; Pratap Singh, Rudra; Ismail, Hanafy M.; Shivam, Pushkar; Ghosh, Ayan Kumar; Dunkley, Sophie; Kumar, Vijay; Coleman, Marlize; Hemingway, Janet; Paine, Mark J. I.; Das, Pradeep

    2015-01-01

    Indoor residual spraying (IRS) is used to control visceral leishmaniasis (VL) in India, but it is poorly quality assured. Quality assurance was performed in eight VL endemic districts in Bihar State, India, in 2014. Residual dichlorodiphenyltrichloroethane (DDT) was sampled from walls using Bostik tape discs, and DDT concentrations [grams of active ingredient per square meter (g ai/m2)] were determined using HPLC. Pre-IRS surveys were performed in three districts, and post-IRS surveys were performed in eight districts. A 20% threshold above and below the target spray of 1.0 g ai/m2 was defined as “in range.” The entomological assessments were made in four districts in IRS and non-IRS villages. Vector densities were measured: pre-IRS and 1 and 3 mo post-IRS. Insecticide susceptibility to 4% DDT and 0.05% deltamethrin WHO-impregnated papers was determined with wild-caught sand flies. The majority (329 of 360, 91.3%) of pre-IRS samples had residual DDT concentrations of <0.1 g ai/m2. The mean residual concentration of DDT post-IRS was 0.37 g ai/m2; 84.9% of walls were undersprayed, 7.4% were sprayed in range, and 7.6% were oversprayed. The abundance of sand flies in IRS and non-IRS villages was significantly different at 1 mo post-IRS only. Sand flies were highly resistant to DDT but susceptible to deltamethrin. The Stockholm Convention, ratified by India in 2006, calls for the complete phasing out of DDT as soon as practical, with limited use in the interim where no viable IRS alternatives exist. Given the poor quality of the DDT-based IRS, ready availability of pyrethroids, and susceptibility profile of Indian sand flies, the continued use of DDT in this IRS program is questionable. PMID:26124110

  7. Development and application of recombinant antibody-based immunoassays to tetraconazole residue analysis in fruit juices.

    PubMed

    Plana, Emma; Moreno, Maria-José; Montoya, Ángel; Manclús, Juan J

    2014-01-15

    Tetraconazole is currently used as a fungicide in fruit and vegetables. The aim of this work was the development of immunochemical techniques based on recombinant antibodies for the screening of tetraconazole residues in fruit juices. Recombinant antibodies were produced from a hybridoma cell line secreting a monoclonal antibody specific for tetraconazole and from lymphocytes of mice hyperimmunised with tetraconazole haptens conjugated to bovine serum albumin. From these antibodies, enzyme-linked immunosorbent assays in the conjugate-coated format were developed, which were able to detect tetraconazole standards down to 1ng/mL. From recovery studies with spiked samples, these immunoassays determined tetraconazole in orange and apple juices with acceptable reproducibility (coefficients of variation below 25%) and recoveries (ranging from 78% to 145%) for a screening technique. The analytical performance of RAb-based immunoassays was fairly similar to that of the MAb-based immunoassays. Due to their simplicity and high sample throughput, the developed recombinant-based immunoassays can be valuable analytical tools for the screening of tetraconazole residues in fruit juices at regulatory levels. PMID:24054232

  8. Determining the Structure of Biomaterials Interfaces using Synchrotron-based X-ray Diffraction

    SciTech Connect

    McBride, M

    2002-01-24

    The purpose of this project is to explore the feasibility of using surface X-ray diffraction (SXRD) to determine the structure of biomineral surfaces in electrolyte solutions and of the adsorbed layer of acidic amino acids that are believed to play a central role in the control of biomineral formation and function. The work is a critical component in the development of an integrated picture of the physical and chemical basis for deposition and dissolution at solid-liquid interfaces in biological systems, and brings a new and very powerful surface-sensitive capability to LLNL. We have chosen as our model systems calcium carbonate and calcium phosphate in aspartic and glutamic acid-bearing solutions. The calcium compounds are ubiquitous among biomineral structures, both those that are beneficial such as bones and teeth, and those that are pathological such as kidney stones, while the two acidic amino acids--both as simple and poly-amino acids--are the dominant constituents of protein mixtures implicated in the control of biomineralization. The goals of the work are: (1) to determine the surface structure of pure calcium phosphate and calcium carbonate surfaces in aqueous solution using SXRD; (2) to determine how those surfaces are modified by the presence of aspartic and glutamic acid, both as the simple amino acids and as poly-aspartate and poly-glutamate and (3) to model the interactions of acidic amino acids with calcite.

  9. Diffraction-based sensitivity analysis for an external occulter laboratory demonstration.

    PubMed

    Sirbu, Dan; Kim, Yunjong; Jeremy Kasdin, N; Vanderbei, Robert J

    2016-08-01

    An external flower-shaped occulter flying in formation with a space telescope can theoretically provide sufficient starlight suppression to enable direct imaging of an Earth-like planet. Occulter shapes are scaled to enable experimental validation of their performance at laboratory dimensions. Previous experimental results have shown promising performance but have not realized the full theoretical potential of occulter designs. Here, we develop a two-dimensional diffraction model for optical propagations for occulters incorporating experimental errors. We perform a sensitivity analysis, and comparison with experimental results from a scaled-occulter testbed validates the optical model to the 10-10 contrast level. The manufacturing accuracy along the edge of the occulter shape is identified as the limiting factor to achieving the theoretical potential of the occulter design. This hypothesis is experimentally validated using a second occulter mask manufactured with increased edge feature accuracy and resulting in a measured contrast level approaching the 10-12 level-a better than one order of magnitude improvement in performance. PMID:27505392

  10. Gunshot residue particles formed by using ammunitions that have mercury fulminate based primers.

    PubMed

    Zeichner, A; Levin, N; Dvorachek, M

    1992-11-01

    Ammunition having mercury fulminate-based primers are commonly manufactured by Eastern Bloc countries and used extensively in the Middle East. Gunshot residue (GSR) particles formed by firing these types of ammunition were examined. It was observed that much lower percentage of mercury-containing GSR particles were found in samples taken from a shooter as compared to the percentage of such particles in samples from cartridge cases. This fact must therefore be taken into account when interpreting case results. A plausible explanation for the results described is proposed. PMID:1453170

  11. Local x-ray diffraction analysis of the structure of dendrites in single-crystal nickel-base superalloys

    SciTech Connect

    Brueckner, U.; Epishin, A.; Link, T.

    1997-12-01

    The structure of the dendrites in the single-crystal nickel-base superalloys SC16, SRR99 and CMSX4 with different refractory element levels (Mo + Ta + W + Re) has been investigated by local X-ray diffraction. A special technique was used to improve the spatial resolution of the X-ray diffraction and to enable the precise control of the X-ray spot position within the dendritic structure. A significant change of the {gamma}/{gamma}{prime}-lattice misfit was found within the dendrite in the superalloys with higher refractory element levels SRR99 and CMSX4. The observed misfit change is based on the change of the {gamma}-lattice parameter due to segregation of W and Re. The intensity of the X-ray beam reflected from the dendrite periphery was found to be weaker than that from the dendrite centre because of the mosaicity. Therefore misfit measurements without knowledge of the X-ray spot position in the dendritic structure lead to values that correspond more to the dendrite core.

  12. A palette of fine-scale eddy viscosity and residual-based models for variational multiscale formulations of turbulence

    NASA Astrophysics Data System (ADS)

    Oberai, Assad A.; Hughes, Thomas J. R.

    2016-04-01

    We explore a general family of eddy viscosity models for the large-eddy simulation of turbulence within the framework of the Variational Multiscale Method. Our investigation encompasses various fine-scale eddy viscosities and coarse-scale residual-based constructs. We delineate the domain of parameter space in which physically and mathematically suitable models exist, and identify several sub-families of potentially useful models that are either entirely new or extend previously proposed ones. We also combine classical modeling ideas, that lead to turbulent kinetic energy evolution equations, with the residual-based approach to derive a new residual-driven, one-equation dynamic model.

  13. UV-laser-based longitudinal illuminated diffuser (LID) incorporating diffractive and Lambertian reflectance for the disinfection of beverages

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd

    2010-08-01

    A novel laser beam shaping system was designed to demonstrate the potential of using high power UV laser sources for large scale disinfection of liquids used in the production of food products, such as juices, beer, milk and other beverage types. The design incorporates a patented assembly of optical components including a diffractive beam splitting/shaping element and a faceted pyramidal or conically shaped Lambertian diffuser made from a compression molded PTFE compounds. When properly sintered to an appropriate density, as an example between 1.10 and 1.40 grams per cubic centimeter, the compressed PTFE compounds show a ~99% reflectance at wavelengths ranging from 300 nm to 1500 nm, and a ~98.5% refection of wavelengths from 250 nm to 2000 nm [1]. The unique diffuser configuration also benefits from the fact that the PTFE compounds do not degrade when exposed to ultraviolet radiation as do barium sulfate materials and silver or aluminized mirror coatings [2]. These components are contained within a hermetically sealed quartz tube. Once assembled a laser beam is directed through one end of the tube. This window takes the form of a computer generated diffractive splitter or other diffractive shaper element to split the laser beam into a series of spot beamlets, circular rings or other geometric shapes. As each of the split beamlets or rings cascade downward, they illuminate various points along the tapered PTFE cone or faceted pyramidal form. As they strike the surface they each diffuse in a Lambertian reflectance pattern creating a pseudo-uniform circumferential illuminator along the length of the quartz tube enclosing the assembly. The compact tubular structure termed Longitudinal Illuminated Diffuser (LID) provides a unique UV disinfection source that can be placed within a centrifugal reactor or a pipe based reactor chamber. This paper will review the overall design principle, key component design parameters, preliminary analytic and bench operational testing

  14. Spectral residual method of saliency detection based on the two-dimensional fractional Fourier transform domain

    NASA Astrophysics Data System (ADS)

    Tian, Jiangxue; Qi, Lin; Wang, Yaxing

    2015-12-01

    As one of classic methods of frequency domain based saliency detection, Spectral residual (SR) method has shown several advantages. However, it usually produces higher saliency values at object edges instead of generating maps that uniformly cover the whole object, which results from failing to exploit all the spatial frequency content of the original image. The Two-Dimensional Fractional Fourier transform (2D-FRFT) is a generalized form of the traditional Fourier Transform (FT) which can abstract more meaningful information of the image under certain conditions. Based on this property, we propose a new method which detects the salient region based on 2D-FRFT domain. Moreover, we also use Hough transform detection and a band-pass filter to refine the saliency map. We conduct experiments on a common used dataset: MSRA. The proposed method is compared with several other saliency detection methods and shown to achieve superior result.

  15. Spore germination based assay for monitoring antibiotic residues in milk at dairy farm.

    PubMed

    Kumar, Naresh; Raghu, Hirikyathanahalli Vishweswaraiah; Kumar, Abhishek; Haldar, Lopamudra; Khan, Alia; Rane, Sharmila; Malik, Ravinder Kumar

    2012-07-01

    Spore germination based assay involves the transformation of dormant spores of Bacillus stearothermophilus 953 into active vegetative cells. The inhibition of germination process specifically in presence of antibiotic residues was used as a novel approach for monitoring target contaminants in milk. The indicator organism i.e., B. stearothermophilus 953 was initially allowed to sporulate by seeding in sporulation medium and incubating at 55 °C for 18 ± 2 h. The spores exhibited a typical chain behavior as revealed through phase contrast microscopy. The minimal medium inoculated with activated spores was incubated at 64 °C for 2-3 h for germination and outgrowth in presence of specific germinant mixture containing dextrose, whey powder and skimmed milk powder added in specific ratio along with reconstituted milk as negative control and test milk samples. The change in color of the medium from purple to yellow was used as criteria for detection of antibiotic residues in milk. The efficiency of the developed assay was evaluated through a surveillance study on 228 samples of raw, pasteurized and dried milks and results were compared with AOAC approved microbial receptor assay. The presence of antibiotic level was 10.08 % at Codex maximum residual limit having false positive result only in 0.43 % of the samples. The results of the present investigation suggest that developed spore based assay can be a practical solution to dairy industry for its application at farm level, milk processing units, independent testing and R & D centres in order to comply with the legal requirements set by Codex. PMID:22806162

  16. The role of continuity in residual-based variational multiscale modeling of turbulence

    NASA Astrophysics Data System (ADS)

    Akkerman, I.; Bazilevs, Y.; Calo, V. M.; Hughes, T. J. R.; Hulshoff, S.

    2008-02-01

    This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135 4195, 2005). We make use of quadratic discretizations that are C 0-continuous across element boundaries in standard finite elements, and C 1-continuous in the case of NURBS. The variational multiscale residual-based method (Bazilevs in Isogeometric analysis of turbulence and fluid-structure interaction, PhD thesis, ICES, UT Austin, 2006; Bazilevs et al. in Comput Methods Appl Mech Eng, submitted, 2007; Calo in Residual-based multiscale turbulence modeling: finite volume simulation of bypass transition. PhD thesis, Department of Civil and Environmental Engineering, Stanford University, 2004; Hughes et al. in proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM), Kluwer, 2004; Scovazzi in Multiscale methods in science and engineering, PhD thesis, Department of Mechanical Engineering, Stanford Universty, 2004) is employed as a turbulence modeling technique. We find that C 1-continuous discretizations outperform their C 0-continuous counterparts on a per-degree-of-freedom basis. We also find that the effect of continuity is greater for higher Reynolds number flows.

  17. Moment closures based on minimizing the residual of the PN angular expansion in radiation transport

    NASA Astrophysics Data System (ADS)

    Zheng, Weixiong; McClarren, Ryan G.

    2016-06-01

    In this work we present two new closures for the spherical harmonics (PN) method in slab geometry transport problems. Our approach begins with an analysis of the squared-residual of the transport equation where we show that the standard truncation and diffusive closures do not minimize the residual of the PN expansion. Based on this analysis we derive two models, a moment-limited diffusive (ML DN) closure and a transient PN (TPN) closure that attempt to address shortcomings of common closures. The form of these closures is similar to flux-limiters for diffusion with the addition of a time-derivative in the definition of the closure. Numerical results on a pulsed plane source problem, the Gordian knot of slab-geometry transport problems, indicate that our new closure outperforms existing linear closures. Additionally, on a deep penetration problem we demonstrate that the TPN closure does not suffer from the artificial shocks that can arise in the MN entropy-based closure. Finally, results for Reed's problem demonstrate that the TPN solution is as accurate as the PN+3 solution. We further extend the TPN closure to 2D Cartesian geometry. The line source test problem demonstrates the model effectively damps oscillations and negative densities.

  18. A grating-based single-shot x-ray phase contrast and diffraction method for in vivo imaging

    SciTech Connect

    Bennett, Eric E.; Kopace, Rael; Stein, Ashley F.; Wen Han

    2010-11-15

    Purpose: The purpose of this study is to develop a single-shot version of the grating-based phase contrast x-ray imaging method and demonstrate its capability of in vivo animal imaging. Here, the authors describe the principle and experimental results. They show the source of artifacts in the phase contrast signal and optimal designs that minimize them. They also discuss its current limitations and ways to overcome them. Methods: A single lead grid was inserted midway between an x-ray tube and an x-ray camera in the planar radiography setting. The grid acted as a transmission grating and cast periodic dark fringes on the camera. The camera had sufficient spatial resolution to resolve the fringes. Refraction and diffraction in the imaged object manifested as position shifts and amplitude attenuation of the fringes, respectively. In order to quantify these changes precisely without imposing a fixed geometric relationship between the camera pixel array and the fringes, a spatial harmonic method in the Fourier domain was developed. The level of the differential phase (refraction) contrast as a function of hardware specifications and device geometry was derived and used to guide the optimal placement of the grid and object. Both ex vivo and in vivo images of rodent extremities were collected to demonstrate the capability of the method. The exposure time using a 50 W tube was 28 s. Results: Differential phase contrast images of glass beads acquired at various grid and object positions confirmed theoretical predictions of how phase contrast and extraneous artifacts vary with the device geometry. In anesthetized rats, a single exposure yielded artifact-free images of absorption, differential phase contrast, and diffraction. Differential phase contrast was strongest at bone-soft tissue interfaces, while diffraction was strongest in bone. Conclusions: The spatial harmonic method allowed us to obtain absorption, differential phase contrast, and diffraction images, all from a

  19. Recent diffractive results from HERA

    NASA Astrophysics Data System (ADS)

    Valkárová, Alice

    2016-07-01

    The diffractive dijet cross sections for photoproduction and deep inelastic scattering were studied and compared with theoretical NLO QCD predictions. The results of exclusive dijet production were compared to predictions from models which are based on different assumptions about the nature of diffractive exchange. Isolated prompt photons in diffractive photoproduction produced inclusively or together with a jet were studied for the first time.

  20. Estimating emissions from crop residue open burning in China based on statistics and MODIS fire products.

    PubMed

    Li, Jing; Bo, Yu; Xie, Shaodong

    2016-06-01

    With the objective of reducing the large uncertainties in the estimations of emissions from crop residue open burning, an improved method for establishing emission inventories of crop residue open burning at a high spatial resolution of 0.25°×0.25° and a temporal resolution of 1month was established based on the moderate resolution imaging spectroradiometer (MODIS) Thermal Anomalies/Fire Daily Level3 Global Product (MOD/MYD14A1). Agriculture mechanization ratios and regional crop-specific grain-to-straw ratios were introduced to improve the accuracy of related activity data. Locally observed emission factors were used to calculate the primary pollutant emissions. MODIS satellite data were modified by combining them with county-level agricultural statistical data, which reduced the influence of missing fire counts caused by their small size and cloud cover. The annual emissions of CO2, CO, CH4, nonmethane volatile organic compounds (NMVOCs), N2O, NOx, NH3, SO2, fine particles (PM2.5), organic carbon (OC), and black carbon (BC) were 150.40, 6.70, 0.51, 0.88, 0.01, 0.13, 0.07, 0.43, 1.09, 0.34, and 0.06Tg, respectively, in 2012. Crop residue open burning emissions displayed typical seasonal and spatial variation. The highest emission regions were the Yellow-Huai River and Yangtse-Huai River areas, and the monthly emissions were highest in June (37%). Uncertainties in the emission estimates, measured as 95% confidence intervals, range from a low of within ±126% for N2O to a high of within ±169% for NH3. PMID:27266312

  1. QuEChERS-based method for the determination of carbamate residues in aromatic herbs by UHPLC-MS/MS.

    PubMed

    Nantia, Edouard Akono; Moreno-González, David; Manfo, Faustin P T; Gámiz-Gracia, Laura; García-Campaña, Ana M

    2017-02-01

    A new reliable, fast and highly sensitive method based on ultra-high performance liquid chromatography tandem mass spectrometry has been developed and validated for the determination of 28 carbamates in aromatic herbs. A modified QuEChERS-based method was optimized for the extraction of carbamate residues from a wide variety of fresh herbal products. The proposed method allowed recoveries higher than 72%, achieving quantification limits of 2μgkg(-1), therefore below maximum residue limits established for this type of samples. The combination of QuEChERS with UHPLC-MS/MS introduces a high-throughput methodology for the monitoring of these residues in this type of matrices scarcely explored. The analysis of the real samples revealed that several samples sold in the European Union and in the North West region of Cameroon contain pesticides in concentrations below the maximum residue limits. PMID:27596428

  2. Multi-residue detection of pesticides using a sensitive immunochip assay based on nanogold enhancement.

    PubMed

    Lan, Meijing; Guo, Yirong; Zhao, Ying; Liu, Yihua; Gui, Wenjun; Zhu, Guonian

    2016-09-28

    This paper describes the development of a new multiplex immunoassay for simultaneous detection of seven pesticides (triazophos, methyl-parathion, fenpropathrin, carbofuran, thiacloprid, chlorothalonil, and carbendazim). Sixteen pairs of pesticide antibodies and antigens were screened for reactivity and cross-reaction. A microarray chip consisting of seven antigens immobilized on a nitrocellulose membrane was then constructed. Nanogold was employed for labeling and signal amplification to obtain a sensitive colorimetric immunoassay. The direct and indirect detection formats were further compared using primary antibody-gold and secondary antibody-gold conjugates as tracers. An integrated 7-plex immunochip assay based on the indirect model was established and optimized. The detection limits for the pesticides were 0.02-6.45 ng mL(-1), which meets detection requirements for pesticide residues. Naked-eye assessment showed the visual detection limits of the assay ranged from 1 to 100 ng mL(-1). Spiked recovery results demonstrated that the immunochip assay had potential for multi-analysis of pesticide residues in vegetables and fruits. The proposed microarray methodology is a flexible and versatile tool, which can be applied to other competitive multiplex immunoassays for small molecular compounds. PMID:27619097

  3. Effect of additives on the tensile performance and protein solubility of industrial oilseed residual based plastics.

    PubMed

    Newson, William R; Kuktaite, Ramune; Hedenqvist, Mikael S; Gällstedt, Mikael; Johansson, Eva

    2014-07-16

    Ten chemical additives were selected from the literature for their proposed modifying activity in protein-protein interactions. These consisted of acids, bases, reducing agents, and denaturants and were added to residual deoiled meals of Crambe abyssinica (crambe) and Brassica carinata (carinata) to modify the properties of plastics produced through hot compression molding at 130 °C. The films produced were examined for tensile properties, protein solubility, molecular weight distribution, and water absorption. Of the additives tested, NaOH had the greatest positive effect on tensile properties, with increases of 105% in maximum stress and 200% in strain at maximum stress for crambe and a 70% increase in strain at maximum stress for carinata. Stiffness was not increased by any of the applied additives. Changes in tensile strength and elongation for crambe and elongation for carinata were related to changes in protein solubility. Increased pH was the most successful in improving the protein aggregation and mechanical properties within the complex chemistry of residual oilseed meals. PMID:24971658

  4. Development and Characterization of Edible Films Based on Fruit and Vegetable Residues.

    PubMed

    Andrade, Roberta M S; Ferreira, Mariana S L; Gonçalves, Édira C B A

    2016-02-01

    Edible films were developed from the solid residue of the processing of whole fruits and vegetables. The solid residue, processed into flour (FVR flour) was chemically and structurally characterized by microstructure, elemental composition, structural links, and moisture sorption isotherm. Films were prepared by casting using aqueous extracts of 8% and 10% of flour (w/w) and characterized in terms of thickness, water solubility, mechanical properties, water vapor permeability, and Fourier transform infrared (FTIR). The analysis of microstructure and elemental composition, performed on flour (mean particle size 350 μm), showed an essentially granular aspect, with the presence of fibrous particles having potassium as one of the most abundant elements. FTIR results showed similarity between the characteristic bands of other raw materials used in edible films. The sorption isotherm of FVR flour showed a typical profile of foods rich in soluble components, such as sugars. Dried films presented an average thickness of 0.263 ± 0.003 mm, a homogenous aspect, bright yellow color, pronounced fruit flavor, and high water solubility. The FTIR spectra of the edible films revealed that addition of potato skin flour did not change the molecular conformation. Moreover, the films presented low tensile strength at break when compared with fruit starch-based films. PMID:26766297

  5. Knowledge-based Potential for Positioning Membrane-Associated Structures and Assessing Residue Specific Energetic Contributions

    PubMed Central

    Schramm, Chaim A.; Hannigan, Brett T.; Donald, Jason E.; Keasar, Chen; Saven, Jeffrey G.; DeGrado, William F.; Samish, Ilan

    2012-01-01

    The complex hydrophobic and hydrophilic milieus of membrane-associated proteins pose experimental and theoretical challenges to their understanding. Here we produce a non-redundant database to compute knowledge-based asymmetric cross-membrane potentials from the per-residue distributions of Cβ, Cγ and functional group atoms. We predict transmembrane and peripherally associated regions from genomic sequence and position peptides and protein structures relative to the bilayer (available at http://www.degradolab.org/ez). The pseudo-energy topological landscapes underscore positional stability and functional mechanisms demonstrated here for antimicrobial peptides, transmembrane proteins, and viral fusion proteins. Moreover, experimental effects of point mutations on the relative ratio changes of dual-topology proteins are quantitatively reproduced. The functional group potential and the membrane-exposed residues display the largest energetic changes enabling to detect native-like structures from decoys. Hence, focusing on the uniqueness of membrane-associated proteins and peptides, we quantitatively parameterize their cross-membrane propensity thus facilitating structural refinement, characterization, prediction and design. PMID:22579257

  6. Insights into the mechanisms of mercury sorption onto aluminum based drinking water treatment residuals.

    PubMed

    Deliz Quiñones, Katherine; Hovsepyan, Anna; Oppong-Anane, Akua; Bonzongo, Jean-Claude J

    2016-04-15

    Several studies have demonstrated the ability of drinking water treatment residuals (WTRs) to efficiently sorb metal cations from aqueous solutions. Reported results have stimulated interest on the potential use of WTRs as sorbent for metal removal from contaminated aqueous effluents as well as in metal immobilization in contaminated soils. However, knowledge on mechanisms of metal sorption by WTRs remains very limited and data on the long-term stability of formed metal-WTR complexes as a function of changing key environmental parameters are lacking. In this study, chemical selective sequential extraction (SSE), scanning electron microscopy combined with X-ray energy dispersive spectrometer (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) were used to gain insight into the different mechanisms of mercury (Hg) binding to aluminum based WTR (Al-WTRs). Results from sorption studies show that a significant portion of Hg becomes incorporated in the operationally defined residual fraction of Al-WTRs, and therefore, not prone to dissolution and mobility. The results of solid phase analyses suggested that Hg immobilization by Al-WTR occurs largely through its binding to oxygen donor atoms of mineral ligands driven by a combination of electrostatic forces and covalent bonding. PMID:26780705

  7. A residue-based toxicokinetic model for pulse-exposure toxicity in aquatic systems

    SciTech Connect

    Hickie, B.E.; McCarty, L.S.; Dixon, D.G.

    1995-12-01

    This pulse-exposure model (PULSETOX) is based on the simple one-compartment first-order kinetics (1CFOK) equation. It tracks the accumulation of waterborne organic chemicals by fish and predicts acute toxicity by means of previously established relationships between whole-body residues and lethality. The predictive capabilities of the model were tested with a data set of 27 acute pulse-exposure lethality tests with larval fathead minnows (Pimephales promelas) exposed to pentachlorophenol (PCP). Tests included eight single exposures (2 to 96 h) and 19 multiple exposures, which varied in the number (2 to 15) and duration (2 to 24 h) of pulses, and time interval between pulses (6 to 24 h). Experimental work included determination of 1CFOK kinetics parameters from [{sup 14}C]PCP uptake and clearance, and from time-toxicity curves. Lethality was expected in any exposure regime where the fish reaches or exceeds the critical body residue (CBR) of 0.30 mmol PCP/kg fish (SD, {+-} 0.02; n = 11). Using the CBR endpoint, the model accounted for between 90 and 93% of variability in the observed lethality data, depending on the toxicokinetic parameters employed. Predictive power of the model was optimized by using kinetics parameters derived from the toxicity curve for pulse-toxicity tests as shown by the regression: predicted LC50 = 1.04 {center_dot} (observed LC50) + 0.01 (p < 0.001, r{sup 2} = 0.94, n = 27).

  8. A second order residual based predictor-corrector approach for time dependent pollutant transport

    NASA Astrophysics Data System (ADS)

    Pavan, S.; Hervouet, J.-M.; Ricchiuto, M.; Ata, R.

    2016-08-01

    We present a second order residual distribution scheme for scalar transport problems in shallow water flows. The scheme, suitable for the unsteady cases, is obtained adapting to the shallow water context the explicit Runge-Kutta schemes for scalar equations [1]. The resulting scheme is decoupled from the hydrodynamics yet the continuity equation has to be considered in order to respect some important numerical properties at discrete level. Beyond the classical characteristics of the residual formulation presented in [1,2], we introduce the possibility to iterate the corrector step in order to improve the accuracy of the scheme. Another novelty is that the scheme is based on a precise monotonicity condition which guarantees the respect of the maximum principle. We thus end up with a scheme which is mass conservative, second order accurate and monotone. These properties are checked in the numerical tests, where the proposed approach is also compared to some finite volume schemes on unstructured grids. The results obtained show the interest in adopting the predictor-corrector scheme for pollutant transport applications, where conservation of the mass, monotonicity and accuracy are the most relevant concerns.

  9. Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollow-core fiber compression.

    PubMed

    Ma, Xiaonan; Dostál, Jakub; Brixner, Tobias

    2016-09-01

    We demonstrate noncollinear coherent two-dimensional (2D) electronic spectroscopy for which broadband pulses are generated in an argon-filled hollow-core fiber pumped by a 1-kHz Ti:Sapphire laser. Compression is achieved to 7 fs duration (TG-FROG) using dispersive mirrors. The hollow fiber provides a clean spatial profile and smooth spectral shape in the 500-700 nm region. The diffractive-optic-based design of the 2D spectrometer avoids directional filtering distortions and temporal broadening from time smearing. For demonstration we record data of cresyl-violet perchlorate in ethanol and use phasing to obtain broadband absorptive 2D spectra. The resulting quantum beating as a function of population time is consistent with literature data. PMID:27607681

  10. Experiment evaluation of speckle suppression efficiency of 2D quasi-spiral M-sequence-based diffractive optical element.

    PubMed

    Lapchuk, A; Pashkevich, G A; Prygun, O V; Yurlov, V; Borodin, Y; Kryuchyn, A; Korchovyi, A A; Shylo, S

    2015-10-01

    The quasi-spiral 2D diffractive optical element (DOE) based on M-sequence of length N=15 is designed and manufactured. The speckle suppression efficiency by the DOE rotation is measured. The speckle suppression coefficients of 10.5, 6, and 4 are obtained for green, violet, and red laser beams, respectively. The results of numerical simulation and experimental data show that the quasi-spiral binary DOE structure can be as effective in speckle reduction as a periodic 2D DOE structure. The numerical simulation and experimental results show that the speckle suppression efficiency of the 2D DOE structure decreases approximately twice at the boundaries of the visible range. It is shown that a replacement of this structure with the bilateral 1D DOE allows obtaining the maximum speckle suppression efficiency in the entire visible range of light. PMID:26479664

  11. Mirrors for X-ray telescopes: Fresnel diffraction-based computation of point spread functions from metrology

    NASA Astrophysics Data System (ADS)

    Raimondi, L.; Spiga, D.

    2015-01-01

    Context. The imaging sharpness of an X-ray telescope is chiefly determined by the optical quality of its focusing optics, which in turn mostly depends on the shape accuracy and the surface finishing of the grazing-incidence X-ray mirrors that compose the optical modules. To ensure the imaging performance during the mirror manufacturing, a fundamental step is predicting the mirror point spread function (PSF) from the metrology of its surface. Traditionally, the PSF computation in X-rays is assumed to be different depending on whether the surface defects are classified as figure errors or roughness. This classical approach, however, requires setting a boundary between these two asymptotic regimes, which is not known a priori. Aims: The aim of this work is to overcome this limit by providing analytical formulae that are valid at any light wavelength, for computing the PSF of an X-ray mirror shell from the measured longitudinal profiles and the roughness power spectral density, without distinguishing spectral ranges with different treatments. Methods: The method we adopted is based on the Huygens-Fresnel principle for computing the diffracted intensity from measured or modeled profiles. In particular, we have simplified the computation of the surface integral to only one dimension, owing to the grazing incidence that reduces the influence of the azimuthal errors by orders of magnitude. The method can be extended to optical systems with an arbitrary number of reflections - in particular the Wolter-I, which is frequently used in X-ray astronomy - and can be used in both near- and far-field approximation. Finally, it accounts simultaneously for profile, roughness, and aperture diffraction. Results: We describe the formalism with which one can self-consistently compute the PSF of grazing-incidence mirrors, and we show some PSF simulations including the UV band, where the aperture diffraction dominates the PSF, and hard X-rays where the X-ray scattering has a major impact

  12. Hard diffraction at CDF

    SciTech Connect

    Melese, P.L.; CDF Collaboration

    1996-07-01

    We present new evidence for events with a rapidity gap between jets in {bar p}-p collisions at {radical}s = 1.8 TeV based on data collected by triggering the Collider Detector at Fermilab on two high transverse momentum forward jets and results of a search for diffractive W{+-} and dijet production where diffraction is tagged by the rapidity gap technique. We also present the results of a search for diffractive dijets using data collected by triggering on a very forward particle in the recently installed roman-pot detectors. The dijet events exhibit additional diffractive characteristics such as rapidity gaps and boosted center of mass system, however the recoil antiproton measured in the roman-pots is in a regime in which the non- pomeron contribution is significant.

  13. Optical dipole mirror for cold atoms based on a metallic diffraction grating.

    PubMed

    Kawalec, Tomasz; Bartoszek-Bober, Dobrosława; Panaś, Roman; Fiutowski, Jacek; Pławecka, Aleksandra; Rubahn, Horst-Günter

    2014-05-15

    We report on the realization of a plasmonic dipole mirror for cold atoms based on a metallic grating coupler. A cloud of atoms is reflected by the repulsive potential generated by surface plasmon polaritons (SPPs) excited on a reflection gold grating by a 780 nm laser beam. Experimentally and numerically determined mirror efficiencies are close to 100%. The intensity of SPPs above a real grating coupler and the atomic trajectories, as well as the momentum dispersion of the atom cloud being reflected, are computed. A suggestion is given as to how the plasmonic mirror might serve as an optical atom chip. PMID:24978240

  14. Performance evaluation of thin film silicon solar cell based on dual diffraction grating.

    PubMed

    Dubey, Raghvendra Sarvjeet; Saravanan, Sigamani; Kalainathan, Sivaperuman

    2014-12-01

    Light-trapping structures are more demanding for optimal light absorption in thin film silicon solar cells. Accordingly, new design engineering of solar cells has been emphasized and found to be effective to achieve improved performance. This paper deals with a design of thin film silicon solar cells and explores the influence of bottom grating and combination of top and bottom (dual) grating as a part of back reflector with a distributed Bragg reflector (DBR). Use of metal layer as a part of back reflector has found to be promising for minimum requirement of DBR pairs. The effect of grating and anti-reflection coating thicknesses are also investigated for absorption enhancement. With optimization, high performance has been achieved from dual grating-based solar cell with a relative enhancement in short-circuit current approximately 68% while it was approximately 55% in case of bottom grating-based solar cell. Our designing efforts show enhanced absorption of light in UV and infrared part of solar spectrum. PMID:26088994

  15. A novel approach to tunable diffractive transmission gratings based on dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Kollosche, Matthias; Döring, Sebastian; Kofod, Guggi; Stumpe, Joachim

    2010-04-01

    Dielectric elastomer actuators (DEA) of poly-styrene-ethylene-butadiene-styrene (SEBS) and commonly used VHB4910 tape were studied for voltage tunable optical transmission gratings. A new geometry is proposed, in which the grating is placed in an area without electrodes, permitting for light transmission through the device. Experiments were performed to implement surface relief gratings on DEA films from pattern masters made from holographic recorded gratings. Since the actuation strain of the DEA depends strongly on the boundary conditions, the desired voltage-controllable deformation of the grating can be achieved by choosing suitable manufacturing parameters. Conditions were found permitting a shift of up to 9 % in a 1 μm grating. A model based on independently measured material parameters is shown to describe the optical behavior.

  16. Detection of explosives and latent fingerprint residues utilizing laser pointer-based Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Malka, Itamar; Petrushansky, Alona; Rosenwaks, Salman; Bar, Ilana

    2013-12-01

    A modular, compact Raman spectrometer, based on a green laser pointer, an air cooled intensified charged coupled device and a x, y motorized translation stage was developed and applied for point detection. Its performance was tested for measurements of Raman spectra of liquids, trace amounts of explosives and individual particles, as well as for locating individual particles of interest and for chemical imaging of residues of latent human fingerprints. This system was found to be highly sensitive, identifying masses as low as ~1 ng in short times. The point and real-time detection capabilities of the spectrometer, together with the portability that it offers, make it a potential candidate for replacing existing Raman microscopes and for field applications.

  17. Method for identification of rigid domains and hinge residues in proteins based on exhaustive enumeration.

    PubMed

    Sim, Jaehyun; Sim, Jun; Park, Eunsung; Lee, Julian

    2015-06-01

    Many proteins undergo large-scale motions where relatively rigid domains move against each other. The identification of rigid domains, as well as the hinge residues important for their relative movements, is important for various applications including flexible docking simulations. In this work, we develop a method for protein rigid domain identification based on an exhaustive enumeration of maximal rigid domains, the rigid domains not fully contained within other domains. The computation is performed by mapping the problem to that of finding maximal cliques in a graph. A minimal set of rigid domains are then selected, which cover most of the protein with minimal overlap. In contrast to the results of existing methods that partition a protein into non-overlapping domains using approximate algorithms, the rigid domains obtained from exact enumeration naturally contain overlapping regions, which correspond to the hinges of the inter-domain bending motion. The performance of the algorithm is demonstrated on several proteins. PMID:25820699

  18. Empirical likelihood based detection procedure for change point in mean residual life functions under random censorship.

    PubMed

    Chen, Ying-Ju; Ning, Wei; Gupta, Arjun K

    2016-05-01

    The mean residual life (MRL) function is one of the basic parameters of interest in survival analysis that describes the expected remaining time of an individual after a certain age. The study of changes in the MRL function is practical and interesting because it may help us to identify some factors such as age and gender that may influence the remaining lifetimes of patients after receiving a certain surgery. In this paper, we propose a detection procedure based on the empirical likelihood for the changes in MRL functions with right censored data. Two real examples are also given: Veterans' administration lung cancer study and Stanford heart transplant to illustrate the detecting procedure. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26936529

  19. Finite element implementation of a dynamic residual-based LES model

    NASA Astrophysics Data System (ADS)

    Madonna, Nicholas

    We are introduced to a new dynamic model for k, the filtered fine-scale kinetic energy, in the context of the Residual-Based Variational Multiscale method (RBVMS) for Large Eddy Simulation (LES). We transform the strong form of the equation for k into its stabilized finite element form. With this result, we take strides toward implementing this model into PHASTA, an open source code for solving compressible and incompressible flows. Three test cases are conducted to verify the proper implementation of various components of the model. The results of these tests provide evidence to suggest that the current implementation of this new model into PHASTA is correct thus far. We conclude with a number of steps to take in the future to fully implement the model.

  20. Miniaturization of self-assembled solid phase extraction based on graphene oxide/chitosan coupled with liquid chromatography for the determination of sulfonamide residues in egg and honey.

    PubMed

    Li, Yazhen; Li, Zhaoqian; Wang, Weiping; Zhong, Shuxian; Chen, Jianrong; Wang, Ai-Jun

    2016-05-20

    The miniaturization of self-assembled solid phase extraction (m-SASPE) based on graphene oxide/chitosan (GO/CS) coupled with liquid chromatography-ultraviolet detection was developed for rapid screening of five sulfonamide residues in egg and honey. GO/CS was synthesized by solution blending method and characterized by FT-IR, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Parameters that affected extraction efficiency including sample pH, amount of the GO/CS, elution solvent and rotation speed were optimized in detail. Under the optimal conditions, good linear relationships between the peak area and the concentrations of the analytes were obtained. The linear ranges were 0.01-10.00μgg(-1) with correlation coefficients (r)≧0.9989. The method detection limits (MDLs) were in the range of 0.71-0.98ngg(-1). The relative standard deviations (RSDs) of intra- and inter-day analysis were less than 3.5 and 7.1%, respectively. The proposed method was successfully applied for the analysis of sulfonamide residues in egg and honey. The average recoveries for two samples spiked at levels from 0.02 to 2.0μgg(-1) were in the range of 75.3-105.2% with RSDs less than 13.5%. PMID:27106398

  1. Dark-field imaging based on post-processed electron backscatter diffraction patterns of bulk crystalline materials in a scanning electron microscope.

    PubMed

    Brodusch, Nicolas; Demers, Hendrix; Gauvin, Raynald

    2015-01-01

    Dark-field (DF) images were acquired in the scanning electron microscope with an offline procedure based on electron backscatter diffraction (EBSD) patterns (EBSPs). These EBSD-DF images were generated by selecting a particular reflection on the electron backscatter diffraction pattern and by reporting the intensity of one or several pixels around this point at each pixel of the EBSD-DF image. Unlike previous studies, the diffraction information of the sample is the basis of the final image contrast with a pixel scale resolution at the EBSP providing DF imaging in the scanning electron microscope. The offline facility of this technique permits the selection of any diffraction condition available in the diffraction pattern and displaying the corresponding image. The high number of diffraction-based images available allows a better monitoring of deformation structures compared to electron channeling contrast imaging (ECCI) which is generally limited to a few images of the same area. This technique was applied to steel and iron specimens and showed its high capability in describing more rigorously the deformation structures around micro-hardness indents. Due to the offline relation between the reference EBSP and the EBSD-DF images, this new technique will undoubtedly greatly improve our knowledge of deformation mechanism and help to improve our understanding of the ECCI contrast mechanisms. PMID:25461589

  2. Diffraction based overlay metrology: accuracy and performance on front end stack

    NASA Astrophysics Data System (ADS)

    Leray, Philippe; Cheng, Shaunee; Kandel, Daniel; Adel, Michael; Marchelli, Anat; Vakshtein, Irina; Vasconi, Mauro; Salski, Bartlomiej

    2008-03-01

    The overlay metrology budget is typically 1/10 of the overlay control budget resulting in overlay metrology total measurement uncertainty requirements of 0.57 nm for the most challenging use cases of the 32nm technology generation. Theoretical considerations show that overlay technology based on differential signal scatterometry (SCOL TM) has inherent advantages, which will allow it to achieve the 32nm technology generation requirements and go beyond it. In this work we present results of an experimental and theoretical study of SCOL. We present experimental results, comparing this technology with the standard imaging overlay metrology. In particular, we present performance results, such as precision and tool induced shift, for different target designs. The response to a large range of induced misalignment is also shown. SCOL performance on these targets for a real stack is reported. We also show results of simulations of the expected accuracy and performance associated with a variety of scatterometry overlay target designs. The simulations were carried out on several stacks including FEOL and BEOL materials. The inherent limitations and possible improvements of the SCOL technology are discussed. We show that with the appropriate target design and algorithms, scatterometry overlay achieves the accuracy required for future technology generations.

  3. Residual stresses in material processing

    SciTech Connect

    Kozaczek, K.J.; Watkins, T.R.; Hubbard, C.R.; Wang, Xun-Li; Spooner, S.

    1994-09-01

    Material manufacturing processes often introduce residual stresses into the product. The residual stresses affect the properties of the material and often are detrimental. Therefore, the distribution and magnitude of residual stresses in the final product are usually an important factor in manufacturing process optimization or component life prediction. The present paper briefly discusses the causes of residual stresses. It then adresses the direct, nondestructive methods of residual stress measurement by X-ray and neutron diffraction. Examples are presented to demonstrate the importance of residual stress measurement in machining and joining operations.

  4. Novel Monoclonal Antibody-Based Immunodiagnostic Assay for Rapid Detection of Deamidated Gluten Residues.

    PubMed

    Masiri, Jongkit; Benoit, Lora; Katepalli, Madhu; Meshgi, Mahzad; Cox, David; Nadala, Cesar; Sung, Shao-Lei; Samadpour, Mansour

    2016-05-11

    Gluten derived from wheat and related Triticeae can induce gluten sensitivity as well as celiac disease. Consequently, gluten content in foods labeled "gluten-free" is regulated. Determination of potential contamination in such foods is achieved using immunoassays based on monoclonal antibodies (mAbs) that recognize specific epitopes present in gluten. However, food-processing measures can affect epitope recognition. In particular, preparation of wheat protein isolate through deamidation of glutamine residues significantly limits the ability of commercial gluten testing kits in their ability to recognize gluten. Adding to this concern, evidence suggests that deamidated gluten imparts more pathogenic potential in celiac disease than native gluten. To address the heightened need for antibody-based tools that can recognize deamidated gluten, we have generated a novel mAb, 2B9, and subsequently developed it as a rapid lateral flow immunoassay. Herein, we report the ability of the 2B9-based lateral flow device (LFD) to detect gluten from wheat, barley, and rye and deamidated gluten down to 2 ppm in food as well as its performance in food testing. PMID:27087556

  5. Rainfall-induced removal of copper-based spray residues from vines.

    PubMed

    Pérez-Rodríguez, P; Soto-Gómez, D; De La Calle, I; López-Periago, J E; Paradelo, M

    2016-10-01

    The continuous use of copper against fungal diseases and off-target effects causes major environmental and agronomic problems. However, the rain-induced removal of Cu-based residues is known only for a limited number of crops. We present the results of rain-induced removal of fungicides from two monitored vineyard plots which were sprayed with two widely used Cu-based formulations: copper-oxychloride (CO) and Bordeaux mixture (BM), respectively. Cu removal per growing season was 0.60±0.12kgha(-1) (30% of the applied fungicide) for CO and 0.80±0.10kgha(-1) for BM (70% of the applied fungicide). Fractioning the Cu in soluble (CuS) and particulate fractions (CuP) showed that most of the Cu was removed as CuP, but CuS concentrations found in throughfall collectors exceeded the regulatory threshold for toxicity in surface waters. The first few millimeters of rain caused most of the Cu removal. Our findings agreed with the data reported in the scientific literature, in which a significant fraction of the Cu-based formulation is loosely attached to the plant surfaces. In addition, we found that rainfall energy had a minor influence on the removal. PMID:27344398

  6. A direct competitive assay-based aptasensor for sensitive determination of tetracycline residue in honey.

    PubMed

    Wang, Sai; Liu, Jiahui; Yong, Wei; Chen, Qilong; Zhang, Liya; Dong, Yiyang; Su, Haijia; Tan, Tianwei

    2015-01-01

    Tetracycline (TC) is a common antibacterial agent used for prevention and control of animal diseases. The increasing concern about TC residue in food demands high-performing analytical techniques for food quality assessment. Biosensors represent a promising tool for food safety analysis as they can fulfill some demand that the conventional methods do not attain. In this study, a novel colorimetric aptasensor was developed for sensitive detection of TC in honey. The aptasensor was based on a modified direct competitive enzyme-linked aptamer assay (dc-ELAA) scheme utilizing a 76 mer single-stranded DNA (ssDNA) aptamer selected by Systematic Evolution of Ligands by Exponential Enrichment (SELEX). The optimized aptasensor showed a good limit of detection (LOD of 0.0978 ng/mL), a wide linear range (0.1-1000 ng/mL) toward TC in honey, with good recoveries (92.09-109.7%) in TC-spiked honey, and was compared with an indirect competitive assay-based aptasensor and validated with a standard ELISA. The biosensor based on dc-ELAA with good limit of detection and simplicity can be applied for high-throughput detection of TC in food. PMID:25281141

  7. The Adaptive Optics Lucky Imager: Diffraction limited imaging at visible wavelengths with large ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Crass, Jonathan; Mackay, Craig; King, David; Rebolo-López, Rafael; Labadie, Lucas; Puga, Marta; Oscoz, Alejandro; González Escalera, Victor; Pérez Garrido, Antonio; López, Roberto; Pérez-Prieto, Jorge; Rodríguez-Ramos, Luis; Velasco, Sergio; Villó, Isidro

    2015-01-01

    One of the continuing challenges facing astronomers today is the need to obtain ever higher resolution images of the sky. Whether studying nearby crowded fields or distant objects, with increased resolution comes the ability to probe systems in more detail and advance our understanding of the Universe. Obtaining these high-resolution images at visible wavelengths however has previously been limited to the Hubble Space Telescope (HST) due to atmospheric effects limiting the spatial resolution of ground-based telescopes to a fraction of their potential. With HST now having a finite lifespan, it is prudent to investigate other techniques capable of providing these kind of observations from the ground. Maintaining this capability is one of the goals of the Adaptive Optics Lucky Imager (AOLI).Achieving the highest resolutions requires the largest telescope apertures, however, this comes at the cost of increased atmospheric distortion. To overcome these atmospheric effects, there are two main techniques employed today: adaptive optics (AO) and lucky imaging. These techniques individually are unable to provide diffraction limited imaging in the visible on large ground-based telescopes; AO currently only works at infrared wavelengths while lucky imaging reduces in effectiveness on telescopes greater than 2.5 metres in diameter. The limitations of both techniques can be overcome by combing them together to provide diffraction limited imaging at visible wavelengths on the ground.The Adaptive Optics Lucky Imager is being developed as a European collaboration and combines AO and lucky imaging in a dedicated instrument for the first time. Initially for use on the 4.2 metre William Herschel Telescope, AOLI uses a low-order adaptive optics system to reduce the effects of atmospheric turbulence before imaging with a lucky imaging based science detector. The AO system employs a novel type of wavefront sensor, the non-linear Curvature Wavefront Sensor (nlCWFS) which provides

  8. Investigation of metal dusting mechanism in Fe-base alloys using Raman spectroscopy, x-ray diffraction, and electron microscopy.

    SciTech Connect

    Zeng, Z.; Natesan, K.; Maroni, V. A.

    2002-08-01

    The metal-dusting phenomenon, which is a metal loss process that occurs in hot reactive gases, was investigated in iron and certain iron-base alloys by Raman scattering, X-ray diffraction (XRD), and scanning-electron microscopy (SEM). Coke from metal dusting exhibits six Raman bands at 1330(D band), 1580(G band), 1617, 2685, 3920, and 3235 cm-1. The bandwidths and the relative intensities of the 1330 and 1580 cm-1 bands are related to the crystallinity and defect structure of the coke. Both Raman and XRD analyses suggest that the metal-dusting process influences the catalytic crystallization of carbon. A new mechanism of metal dusting is, therefore, proposed, based on the premise that coke cannot crystallize well by deposition from carburizing gases at low temperature without catalytic activation because of its strong C-C bonds and high melting temperature. Cementite or iron participates in the coke-crystallizing process in a manner that tends to improve the crystallinity of the coke. At the same time, fine iron or cementite particles are liberated from the pure metal or alloys.

  9. Identification of an Ideal-like Fingerprint for a Protein Fold using Overlapped Conserved Residues based Approach

    PubMed Central

    Goyal, Amit; Sokalingam, Sriram; Hwang, Kyu-Suk; Lee, Sun-Gu

    2014-01-01

    Design of an efficient fingerprint that detects homologous proteins at distant sequence identity has been a great challenge. This paper proposes a strategy to extract an ideal-like fingerprint with high specificity and sensitivity from a group of sequences related to a fold. The approach is devised based on the assumptions that the critical residues for a protein fold may be conserved in three aspects, i.e. sequence, structure, and intramolecular interaction, and embedded in secondary structures. We hypothesized that the residues satisfying such conditions simultaneously may work as an efficient fingerprint. This idea was tested on protein folds of various classes, such as beta-strand rich, alpha + beta proteins and alpha/beta proteins with discrete sequence similarities. The fingerprint for each fold was generated by selecting the overlapped conserved residues (OCR) from the conserved residues obtained using independent three alignment methods, i.e. multiple sequence alignment, structure-based alignment, and alignment based on the interstrand hydrogen-bonds. The OCR fingerprints showed more than 90% detection efficiency for all the folds tested and were identified to be almost the minimal fingerprints composed of only critical residues. This study is expected to provide an important conceptual improvement in the identification or design of ideal fingerprints for a protein fold. PMID:25008052

  10. Remediation of residues on stored product surfaces using ozone-based fumgiations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ozone fumigation, alone and in combination with other gases, was explored as a means for degrading “undesirable” organic residues on stored products. Organic residues sorbed onto model abiotic glass surfaces or onto stored products were fumigated separately in a flow-through chamber at 150 - 900 ± 1...

  11. Failure of Anisotropic Unstructured Mesh Adaption Based on Multidimensional Residual Minimization

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.

    2003-01-01

    An automated anisotropic unstructured mesh adaptation strategy is proposed, implemented, and assessed for the discretization of viscous flows. The adaption criteria is based upon the minimization of the residual fluctuations of a multidimensional upwind viscous flow solver. For scalar advection, this adaption strategy has been shown to use fewer grid points than gradient based adaption, naturally aligning mesh edges with discontinuities and characteristic lines. The adaption utilizes a compact stencil and is local in scope, with four fundamental operations: point insertion, point deletion, edge swapping, and nodal displacement. Evaluation of the solution-adaptive strategy is performed for a two-dimensional blunt body laminar wind tunnel case at Mach 10. The results demonstrate that the strategy suffers from a lack of robustness, particularly with regard to alignment of the bow shock in the vicinity of the stagnation streamline. In general, constraining the adaption to such a degree as to maintain robustness results in negligible improvement to the solution. Because the present method fails to consistently or significantly improve the flow solution, it is rejected in favor of simple uniform mesh refinement.

  12. Comparison of metals extractability from Al/Fe-based drinking water treatment residuals.

    PubMed

    Wang, Changhui; Bai, Leilei; Pei, Yuansheng; Wendling, Laura A

    2014-12-01

    Recycling of drinking water treatment residuals (WTRs) as environment amendments has attracted substantial interest due to their productive reuse concomitant with waste minimization. In the present study, the extractability of metals within six Al/Fe-hydroxide-comprised WTRs collected throughout China was investigated using fractionation, in vitro digestion and the toxicity characteristic leaching procedure (TCLP). The results suggested that the major components and structure of the WTRs investigated were similar. The WTRs were enriched in Al, Fe, Ca, and Mg, also contained varying quantities of As, Ba, Be, Cd, Co, Cr, Cu, K, Mn, Mo, Na, Ni, Pb, Sr, V, and Zn, but Ag, Hg, Sb, and Se were not detected. Most of the metals within the WTRs were largely non-extractable using the European Community Bureau of Reference (BCR) procedure, but many metals exhibited high bioaccessibility based on in vitro digestion. However, the WTRs could be classified as non-hazardous according to the TCLP assessment method used by the US Environmental Protection Agency (USEPA). Further analysis showed the communication factor, which is calculated as the ratio of total extractable metal by BCR procedure to the total metal, for most metals in the six WTRs, was similar, whereas the factor for Ba, Mn, Sr, and Zn varied substantially. Moreover, metals in the WTRs investigated had different risk assessment code. In summary, recycling of WTRs is subject to regulation based on assessment of risk due to metals prior to practical application. PMID:25023656

  13. [Quantification of crop residue burned areas based on burning indices using Landsat 8 image].

    PubMed

    Ma, Jian-hang; Song, Kai-shar; Wen, Zhi-dan; Shao, Tian-tian; Li, Bo-nan; Qi, Cai

    2015-11-01

    Crop residue burning leads to atmospheric pollution and is an enormous waste of crop residue resource. Crop residue burning can be monitored timely in large regions as the fire points can be recognized through remotely sensed image via thermal infrared bands. However, the area, the detailed distribution pattern and especially the severity of the burning areas cannot be derived only by the thermal remote sensing approach. The burning index, which was calculated with two or more spectral bands at where the burned and unburned areas have distinct spectral characteristics, is widely used in the forest fire investigation. However its potential application for crop residue burning evaluation has not been explored. With two Landsat 8 images that cover a part of the Songnen Plain, three burning indices, i.e., the normalized burned ratio (NBR), the normalized burned ratio incorporating the thermal band (NBRT), and the burned area index (BAI), were used to classify the crop residue burned and unburned areas. The overall classification accuracies were 91.9%, 92.3%, and 87.8%, respectively. The correlation analysis between the indices and the crop residue coverage indicated that the NBR and NBRT were positively correlated with the crop residue coverage (R2 = 0.73 and 0.64, respectively) with linear regression models, while the BAI was exponentially correlated with the crop residue coverage (R2 = 0.68). The results indicated that the use of burning indices in crop residue burning monitoring could quantify crop residue burning severity and provide valuable data for evaluating atmospheric pollution. PMID:26915202

  14. Estimation of the residual life of steam-turbine condensers based on statistical models

    NASA Astrophysics Data System (ADS)

    Murmansky, B. E.; Aronson, K. E.; Brodov, Yu. M.

    2015-11-01

    The article presents the results of a study aimed at estimation of the state and prediction of the residual life of steam-turbine condensers on the basis of statistical analysis. The possibility of such evaluation during the operation of steam-turbine plants with accuracy sufficient for practical purposes is demonstrated. It is shown that identification of the operating period, viz., the initial period, the normal operation period, or the period of the lifetime exhaustion, as well as determination of the condenser's operating time at the moment when the failure of an individual tube occurs, is very important for statistical evaluation of the condenser state. Two statistical models are proposed and comparative analysis of the results calculated by these models for the residual life of the condensers at the Reftinskaya SDPP has been performed. The first model can be used when comprehensive information about the condenser's operating time before the tubes have failed is available as well as a priori information—or information based on analysis of the condenser tube metal—that the condenser is in its normal operation period. In this case, the fact of exhaustion of the condenser's lifetime is established by reaching the limit of the failed condenser tubes, which is determined by technical and economic analysis of losses caused by operating the turbine with a reduced heat-exchange surface of the condenser. The distribution function for the operating time of the failed tubes is approximated by a normal distribution. In the cases when no precise information on the condenser tubes' operating time is available at the thermoelectric power plant (TEPP), the second statistical model based on censored samples is proposed for estimation of the condenser state. An expression to assess the confidence interval that determines the significant difference between the distribution functions for complete and censored operating time values has been derived. It is shown that this model

  15. Improving focus performance at litho using diffraction-based focus metrology, novel calibration methods, interface, and control loop

    NASA Astrophysics Data System (ADS)

    Hu, Jiarui; Chen, Y. L.; Chen, K. H.; Lee, Brian; Tsai, Frankie; Ke, C. M.; Liao, C. H.; Ngo, Desmond; Gosali, Benny; Tijssen, Robin; Huang, Vincent; Tu, Ward; Noot, Marc; Escalante Marun, Maryana; Leewis, Christian; Luijten, Carlo; Staals, Frank; Van Veen, Martijn; Furthner, Francois; Young, Stuart; Bhattacharyya, Kaustuve

    2016-03-01

    In advanced optical lithography the requirements of focus control continues to tighten. Usable depth of focus (DoF) is already quite low due to typical sources of focus errors, such as topography, wafer warpage and the thickness of photoresist. And now the usable DoF is further decreased by hotspots (design and imaging hotspots). All these have put extra challenges to improve focus metrology, scanner focus stability calibrations and on-product correction mechanisms. Asymmetric focus targets are developed to address robustness in focus measurements using diffraction-based focus (DBF and μDBF) metrology. A new layout specific calibration methodology is introduced for baseline focus setup and control in order to improve scanner focus uniformity and stability using the measurements of the above mentioned asymmetric targets. A similar metrology is also used for on product focus measurements. Moreover, a few novel alternative methods are also investigated for on-product focus measurements. Data shows good correlation between DBF and process on record (POR) method using traditional FEM. The new focus calibration demonstrated robustness, stability and speed. This technical publication will report the data from all the above activities including results from various product layers.

  16. Enhancement of low-quality reconstructed digital hologram images based on frequency extrapolation of large objects under the diffraction limit

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Li, Weiliang; Zhao, Dongxue

    2016-03-01

    During the reconstruction of a digital hologram, the reconstructed image is usually degraded by speckle noise, which makes it hard to observe the original object pattern. In this paper, a new reconstructed image enhancement method is proposed, which first reduces the speckle noise using an adaptive Gaussian filter, then calculates the high frequencies that belong to the object pattern based on a frequency extrapolation strategy. The proposed frequency extrapolation first calculates the frequency spectrum of the Fourier-filtered image, which is originally reconstructed from the +1 order of the hologram, and then gives the initial parameters for an iterative solution. The analytic iteration is implemented by continuous gradient threshold convergence to estimate the image level and vertical gradient information. The predicted spectrum is acquired through the analytical iteration of the original spectrum and gradient spectrum analysis. Finally, the reconstructed spectrum of the restoration image is acquired from the synthetic correction of the original spectrum using the predicted gradient spectrum. We conducted our experiment very close to the diffraction limit and used low-quality equipment to prove the feasibility of our method. Detailed analysis and figure demonstrations are presented in the paper.

  17. Enhancement of low-quality reconstructed digital hologram images based on frequency extrapolation of large objects under the diffraction limit

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Li, Weiliang; Zhao, Dongxue

    2016-06-01

    During the reconstruction of a digital hologram, the reconstructed image is usually degraded by speckle noise, which makes it hard to observe the original object pattern. In this paper, a new reconstructed image enhancement method is proposed, which first reduces the speckle noise using an adaptive Gaussian filter, then calculates the high frequencies that belong to the object pattern based on a frequency extrapolation strategy. The proposed frequency extrapolation first calculates the frequency spectrum of the Fourier-filtered image, which is originally reconstructed from the +1 order of the hologram, and then gives the initial parameters for an iterative solution. The analytic iteration is implemented by continuous gradient threshold convergence to estimate the image level and vertical gradient information. The predicted spectrum is acquired through the analytical iteration of the original spectrum and gradient spectrum analysis. Finally, the reconstructed spectrum of the restoration image is acquired from the synthetic correction of the original spectrum using the predicted gradient spectrum. We conducted our experiment very close to the diffraction limit and used low-quality equipment to prove the feasibility of our method. Detailed analysis and figure demonstrations are presented in the paper.

  18. Effects of calcium and ferric ions on struvite precipitation: A new assessment based on quantitative X-ray diffraction analysis.

    PubMed

    Yan, Hanlu; Shih, Kaimin

    2016-05-15

    The precipitation of struvite (MgNH4PO4·6H2O) from waste streams has attracted considerable attention due to its potential for recovering phosphorus for fertilization. As struvite is primarily acquired by means of precipitation and crystallization from aqueous solutions, it is important to evaluate the roles of common metal ions, particularly those that are commonly found in wastewater, in the struvite crystallization process. This study was performed to quantitatively evaluate the effects of calcium and ferric ions on struvite crystallization using the Rietveld refinement method, which is based on the analysis of X-ray diffraction data. The results indicate that both calcium and ferric ions significantly inhibit the formation of struvite crystals, and the effects vary under different pH conditions. There was a negative linear correlation between the struvite weight content in the precipitates and the Ca/Mg molar ratio in the initial solution. However, ferric ions were confirmed to be a more efficient inhibitor of struvite crystallization. Ca(2+) and Fe(3+) further modified the needle-like struvite into irregular shapes. An unambiguous and quantitative understanding of the effects of foreign ions on struvite crystallization will help to reliably improve the quality of struvite products recovered from wastewater and the control of struvite deposits in water and sludge piping systems. PMID:27016641

  19. Bayesian-based aberration correction and numerical diffraction for improved lensfree on-chip microscopy of biological specimens.

    PubMed

    Wong, Alexander; Kazemzadeh, Farnoud; Jin, Chao; Wang, Xiao Yu

    2015-05-15

    Lensfree on-chip microscopy is an emerging imaging technique that can be used to visualize and study biological specimens without the need for imaging lens systems. Important issues that can limit the performance of lensfree on-chip microscopy include interferometric aberrations, acquisition noise, and image reconstruction artifacts. In this study, we introduce a Bayesian-based method for performing aberration correction and numerical diffraction that accounts for all three of these issues to improve the effective numerical aperture (NA) and signal-to-noise ratio (SNR) of the reconstructed microscopic image. The proposed method was experimentally validated using the USAF resolution target as well as real waterborne Anabaena flos-aquae samples, demonstrating improvements in NA by ∼25% over the standard method, and improvements in SNR of 2.8 and 8.2 dB in the reconstructed image when compared to the reconstructed images produced using the standard method and a maximum likelihood estimation method, respectively. PMID:26393707

  20. Advanced Techniques for In-Situ Monitoring of Phase Transformations During Welding Using Synchrotron-Based X-Ray Diffraction

    SciTech Connect

    Elmer, J W; Palmer, T A; Zhang, W; DebRoy, T

    2005-06-05

    Understanding the evolution of microstructure in welds is an important goal of welding research because of the strong correlation between weld microstructure and weld properties. To achieve this goal it is important to develop a quantitative measure of phase transformations encountered during welding in order to ultimately develop methods for predicting weld microstructures from the characteristics of the welding process. To aid in this effort, synchrotron radiation methods have been developed at Lawrence Livermore National Laboratory (LLNL) for direct observation of microstructure evolution during welding. Using intense, highly collimated synchrotron radiation, the atomic structure of the weld heat affected and fusion zones can be probed in real time. Two synchrotron-based techniques, known as spatially resolved (SRXRD) and time resolved (TRXRD) x-ray diffraction, have been developed for these investigations. These techniques have now been used to investigate welding induced phase transformations in titanium alloys, low alloy steels, and stainless steel alloys. This paper will provide a brief overview of these methods and will discuss microstructural evolution during the welding of low carbon (AISI 1005) and medium carbon (AISI 1045) steels where the different levels of carbon influence the evolution of microstructures during welding.

  1. Prediction of Residual Stress Distributions in Welded Sections of P92 Pipes with Small Diameter and Thick Wall based on 3D Finite Element Simulation

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowei; Gong, Jianming; Zhao, Yanping; Wang, Yanfei

    2015-05-01

    This study used ABAQUS finite element (FE) software to investigate the residual stress distributions of P92 welded pipes in both the as-weld and post weld heat treated (PWHT) condition. Sequential coupling quasi-static thermo-mechanical in conjunction with moving double ellipsoidal heat source and an element add/remove technique to simulate deposition of new weld material, are combined in the 3D FE analysis. To validate the simulation results, the residual stresses in axial direction at the surface of pipe were measured by X-ray diffraction technique and compared with the results of FE analysis. Detailed characteristic distributions of the residual stresses are discussed. Results show that the FE model can predict the residual stress distributions satisfactorily. Highest residual stresses on the outer surface are found in the last weld bead to be deposited. And the highest tensile residual stress for the full welded section take place in heat affected zone (HAZ) near the middle thickness. Larger residual sstress can be found around the welding start point along the pipe circumference. Comparison of heat treated specimen and untreated specimen illustrates that PWHT has a strong effect on the residual stress field.

  2. Masking Property Based Residual Acoustic Echo Cancellation for Hands-Free Communication in Automobile Environment

    NASA Astrophysics Data System (ADS)

    Lee, Yoonjae; Jeong, Seokyeong; Ko, Hanseok

    A residual acoustic echo cancellation method that employs the masking property is proposed to enhance the speech quality of hands-free communication devices in an automobile environment. The conventional masking property is employed for speech enhancement using the masking threshold of the desired clean speech signal. In this Letter, either the near-end speech or residual noise is selected as the desired signal according to the double-talk detector. Then, the residual echo signal is masked by the desired signal (masker). Experiments confirm the effectiveness of the proposed method by deriving the echo return loss enhancement and by examining speech waveforms and spectrograms.

  3. Active cancellation of residual amplitude modulation in a frequency-modulation based Fabry-Perot interferometer.

    PubMed

    Yu, Yinan; Wang, Yicheng; Pratt, Jon R

    2016-03-01

    Residual amplitude modulation (RAM) is one of the most common noise sources known to degrade the sensitivity of frequency modulation spectroscopy. RAM can arise as a result of the temperature dependent birefringence of the modulator crystal, which causes the orientation of the crystal's optical axis to shift with respect to the polarization of the incident light with temperature. In the fiber-based optical interferometer used on the National Institute of Standards and Technology calculable capacitor, RAM degrades the measured laser frequency stability and correlates with the environmental temperature fluctuations. We have demonstrated a simple approach that cancels out excessive RAM due to polarization mismatch between the light and the optical axis of the crystal. The approach allows us to measure the frequency noise of a heterodyne beat between two lasers individually locked to different resonant modes of a cavity with an accuracy better than 0.5 ppm, which meets the requirement to further determine the longitudinal mode number of the cavity length. Also, this approach has substantially mitigated the temperature dependency of the measurements of the cavity length and consequently the capacitance. PMID:27036752

  4. Fast digestion procedure for determination of catalyst residues in La- and Ni-based carbon nanotubes.

    PubMed

    Mortari, Sergio Roberto; Cocco, Carmem Regina; Bartz, Fabiane Regina; Dresssler, Valderi L; Flores, Erico Marlon de Moraes

    2010-05-15

    A procedure based on microwave-induced combustion (MIC) was applied for carbon nanotube (CNT) digestion and further determination of La and Ni by inductively coupled plasma optical emission spectrometry (ICP OES). Samples (up to 400 mg) were completely combusted at 20 bar of oxygen, and a reflux step was applied to improve the analyte absorption. Combustion was finished in less than 50 s, and analytes were absorbed in diluted acid solution. Absorbing solutions ranging from 1 to 12 mol L(-1) for HCl and from 1 to 14 mol L(-1) HNO(3) were tested. Accuracy for both analytes was evaluated using certified reference materials and analyte spikes. Neutron activation analysis was also used to check accuracy for La. Agreement was better than 96% for La and Ni using a 4 mol L(-1) absorbing solution of HNO(3) or HCl and 15 min of reflux. The residual carbon content was lower than 0.5%. Up to eight samples could be digested simultaneously in 36 min, that makes the throughput using MIC more suitable when it is compared to the digestion by dry ashing as recommended by other procedures. The obtained limits of detection using MIC were lower than those using dry ashing, and a single absorbing solution, e.g., diluted HNO(3), can be used for simultaneous determination of La and Ni by ICP OES. PMID:20405950

  5. Slaking characteristics of unsaturated granite residual soils based on a modified slaking test method

    NASA Astrophysics Data System (ADS)

    Zhang, S.

    2012-12-01

    Slaking is one of the distinct process involved in the structural breakdown that occurs when soils are suddenly immersed in, or placed in contact with, water. The process occurs because the tensile stress of soil skeleton cannot withstand the stresses caused by rapid water uptake. Some instability problems caused by slaking process were found on subway tunnels and engineered slopes excavated in granite residual soils (GRS) in Guangzhou, south China. A serious of experimental laboratory studies were carried out in order to get better understanding about the slaking characteristics of GRS. Unsaturated GRS samples with different initial moisture content and different degree of compaction were made for test using homemade apparatus. We proposed a modified slaking test mothod to obtain slaking curves so as to reflect the actual slaking process on the basis of experimental observation and mechanism analysis as much as possible. The method considerred air escape process during water uptaking which combined the two extremes involved in water uptaking with free escape of displaced air and with no air escape. Subsequently, a modified slaking velocity index based on the the slaking curve was calculated and utilized for further data processing and analysis. We discussed the relationship between two main control factors (fillable porosity of soil and initial matric suction of soil) and slaking velocity as well. The results reveal that it has exponential function relationship for fillable porosity of soil and logarithm function relationship for initial matric suction of soil.

  6. Pharmacological characterization of endomorphin-2-based cyclic pentapeptides with methylated phenylalanine residues.

    PubMed

    Perlikowska, Renata; Malfacini, Davide; Cerlesi, Maria Camilla; Calo', Girolamo; Piekielna, Justyna; Floriot, Léonore; Henry, Tiphaine; do-Rego, Jean Claude; Tömböly, Csaba; Kluczyk, Alicja; Janecka, Anna

    2014-05-01

    As part of our continuing studies on the structure-activity relationships of cyclic pentapeptides based on the structure of endomorphin-2, we report here the synthesis and biological activities of a new series of analogs incorporating 2', 3' or 4'-methylphenylalanine (MePhe) residues into positions 3 or 4 of the parent cyclopeptide, Dmt-c[d-Lys-Phe-Phe-Asp]NH2 (Dmt=2',6'-dimethyltyrosine). Analogs with MePhe in position 4 showed a row of magnitude increased μ-opioid receptor (MOP receptor) affinity as compared with a parent compound. The in vitro potencies of the new analogs were determined in calcium mobilization assay performed in Chinese Hamster Ovary (CHO) cells expressing human recombinant opioid receptors and chimeric G proteins. All analogs were strong μ/κ (MOP/KOP) receptor agonists and weak δ (DOP) receptor agonists. In the in vivo hot-plate test in mice, the MePhe(4)-modified peptides showed remarkable antinociceptive activity after intracerebroventricular (i.c.v.) administration which was most likely due to the concomitant activation of more than one opioid receptor type. PMID:24632335

  7. Active cancellation of residual amplitude modulation in a frequency-modulation based Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Yu, Yinan; Wang, Yicheng; Pratt, Jon R.

    2016-03-01

    Residual amplitude modulation (RAM) is one of the most common noise sources known to degrade the sensitivity of frequency modulation spectroscopy. RAM can arise as a result of the temperature dependent birefringence of the modulator crystal, which causes the orientation of the crystal's optical axis to shift with respect to the polarization of the incident light with temperature. In the fiber-based optical interferometer used on the National Institute of Standards and Technology calculable capacitor, RAM degrades the measured laser frequency stability and correlates with the environmental temperature fluctuations. We have demonstrated a simple approach that cancels out excessive RAM due to polarization mismatch between the light and the optical axis of the crystal. The approach allows us to measure the frequency noise of a heterodyne beat between two lasers individually locked to different resonant modes of a cavity with an accuracy better than 0.5 ppm, which meets the requirement to further determine the longitudinal mode number of the cavity length. Also, this approach has substantially mitigated the temperature dependency of the measurements of the cavity length and consequently the capacitance.

  8. Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics.

    PubMed

    Wang, Xun; Hu, Mian; Hu, Wanyong; Chen, Zhihua; Liu, Shiming; Hu, Zhiquan; Xiao, Bo

    2016-11-01

    Pyrolytic kinetic of an agricultural residue (AR) feedstock, a mixture of plants (cotton, wheat, rich, corn) stems, was investigated based on combined kinetics. The most suitable mechanism for AR one-step pyrolysis was f(α)=(1-α)(1.1816)α(-1.8428) with kinetic parameters of: apparent activation energy 221.7kJ/mol, pre-exponential factor 4.17E16s(-1). Pyrolysis of AR feedstock could not be described by one-step reaction attributes to heterogeneous features of pyrolysis processes. Combined kinetics three-parallel-reaction (CK-TPR) model fitted the pyrolysis experimental data very well. Reaction mechanisms for pseudo hemicelluloses, cellulose, lignin in CK-TPR model was f(α)=(1-α)(1.6244)α(-0.3371)[-ln(1-α)](-0.0515), f(α)=(1-α)(1.0597)α(-0.6909)[-ln(1-α)](0.9026) and f(α)=(1-α)(2.9577)α(-4.7719), respectively. Apparent activation energy of three pseudo components followed the order of Elignin(197.3kJ/mol)>Ecellulose(176.3kJ/mol)>Ehemicelluloses (151.1kJ/mol). Mechanism of hemicelluloses pyrolysis could be further expressed as f(α)=(1-α)(1.4). The pyrolytic mechanism of cellulose met the Nucleation well. However, mechanism of lignin pyrolysis was complex, which possibly was the combined effects of Nucleation, Diffusion, Geometrical contraction, and Power law. PMID:27521788

  9. Evaluation of improved materials for stationary diesel engines operating on residual and coal based fuels. Final report

    SciTech Connect

    Not Available

    1980-01-01

    Experimental results to date from an on-going research program on improved materials for stationary diesel engines using residual or coal-based fuels are presented with little discussion of conclusions about these results. Information is included on ring and liner wear, fuel oil qualities, ceramic materials, coatings, test procedures and equipment, and tribology test results. (LCL)

  10. A sensitive monoclonal antibody-based enzyme-linked immunosorbent assay for chlorpyrifos residue determination in Chinese agricultural smaples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A monoclonal antibody-based competitive antibody-coated enzyme-linked immunosorbent assay (ELISA) was developed and optimized for determining chlorpyrifos residue in agricultural products. The IC50 and IC10 of this ELISA were 3.3 ng/mL and 0.1 ng/mL respectively. The average recoveries recovery rate...

  11. 40 CFR Appendix Vii to Part 266 - Health-Based Limits for Exclusion of Waste-Derived Residues*

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Health-Based Limits for Exclusion of Waste-Derived Residues* VII Appendix VII to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS...

  12. X-ray Diffraction, Dielectric, and Raman Spectroscopy Studies of SrTiO3-Based Microwave Ceramics

    NASA Astrophysics Data System (ADS)

    Qu, Jingjing; Liu, Fei; Wei, Xing; Yuan, Changlai; Liu, Xinyu; Chen, Guohua; Feng, Qin

    2016-01-01

    xSrTiO3-(1 - x)Ca0.61Nd0.26TiO3 (SCNT x) and xSrTiO3-(1 - x)Na1/2La1/2TiO3 (SNLT x) ceramics were studied by x-ray diffraction and Raman spectroscopy in the composition range of 0.1 ≤ x ≤ 0.4. The x-ray patterns illustrated that the SCNT x (0.1 ≤ x ≤ 0.4) solid solutions had a single orthorhombic perovskite phase, while a single phase with pseudoorthorhombic structure was identified for the SNLT x (0.1 ≤ x ≤ 0.4) ceramics. In addition, the Lorentz fitting method was applied to separate the Raman spectra into several individual peaks. Meanwhile, the line shift and width of the main phonons are also discussed based on the Lorentz fitting method. Among these, some new peaks at about 470 cm-1/483 cm-1 and 442.31 cm-1/429.20 cm-1 appeared for the SCNT x and SNLT x samples with 0.3 ≤ x ≤ 0.4 due to A-site occupation by two or more types of cation with different electrovalence. Based on the resulting Q × f value and full-width at half-maximum of the A 1g(O) stretch mode, it was found that propagation of microwave energy in the SCNT x samples showed stronger damping behavior; a smaller Q × f value was therefore expected with an increase in Sr content. Moreover, the τ f value and tolerance factor ( t) exhibited a proportional correlation because of increasing symmetry of the perovskite phase for the SNLT x (0.1 ≤ x ≤ 0.4) ceramics.

  13. Radiologist Evaluation of an X-ray Tube Based Diffraction Enhanced Imaging Prototype Using Full Thickness Breast Specimens.

    SciTech Connect

    Faulconer, L.; Zhong, Z.; Parham, C.; Connor, D. M.; , Kim, E.; Zeng, D.; Livasy, C.; Cole, E.; Kuzmiak, C.; Koomen, M.; Pavic, D.; Pisano, E.

    2009-05-21

    Conventional mammographic image contrast is derived from x-ray absorption, resulting in breast structure visualization due to density gradients that attenuate radiation without distinction between transmitted, scattered, or refracted x-rays. Diffraction-enhanced imaging (DEI) allows for increased contrast with decreased radiation dose compared to conventional mammographic imaging because of monochromatic x-rays, its unique refraction-based contrast mechanism, and excellent scatter rejection. However, a lingering drawback to the clinical translation of DEI has been the requirement for synchrotron radiation. The authors laboratory developed a DEI prototype (DEI-PR) using a readily available tungsten x-ray tube source and traditional DEI crystal optics, providing soft tissue images at 60 keV. Images of full-thickness human breast tissue specimens were acquired on synchrotron-based DEI (DEI-SR), DEI-PR, and digital mammographic systems. A panel of expert radiologists evaluated lesion feature visibility and correlation with pathology after receiving training on the interpretation of refraction contrast mammographic images. For mammographic features (mass, calcification), no significant differences were detected between the DEI-SR and DEI-PR systems. Benign lesions were perceived as better seen by radiologists using the DEI-SR system than the DEI-PR system at the [111] reflectivity, with generalizations limited by small sample size. No significant differences between DEI-SR and DEI-PR were detected for any other lesion type (atypical, cancer) at either crystal reflectivity. Thus, except for benign lesion characterizations, the DEI-PR system's performance was roughly equivalent to that of the traditional DEI system, demonstrating a significant step toward clinical translation of this modality for breast cancer applications.

  14. Annotation of protein residues based on a literature analysis: cross-validation against UniProtKb

    PubMed Central

    Nagel, Kevin; Jimeno-Yepes, Antonio; Rebholz-Schuhmann, Dietrich

    2009-01-01

    Background A protein annotation database, such as the Universal Protein Resource knowledge base (UniProtKb), is a valuable resource for the validation and interpretation of predicted 3D structure patterns in proteins. Existing studies have focussed on point mutation extraction methods from biomedical literature which can be used to support the time consuming work of manual database curation. However, these methods were limited to point mutation extraction and do not extract features for the annotation of proteins at the residue level. Results This work introduces a system that identifies protein residues in MEDLINE abstracts and annotates them with features extracted from the context written in the surrounding text. MEDLINE abstract texts have been processed to identify protein mentions in combination with taxonomic species and protein residues (F1-measure 0.52). The identified protein-species-residue triplets have been validated and benchmarked against reference data resources (UniProtKb, average F1-measure of 0.54). Then, contextual features were extracted through shallow and deep parsing and the features have been classified into predefined categories (F1-measure ranges from 0.15 to 0.67). Furthermore, the feature sets have been aligned with annotation types in UniProtKb to assess the relevance of the annotations for ongoing curation projects. Altogether, the annotations have been assessed automatically and manually against reference data resources. Conclusion This work proposes a solution for the automatic extraction of functional annotation for protein residues from biomedical articles. The presented approach is an extension to other existing systems in that a wider range of residue entities are considered and that features of residues are extracted as annotations. PMID:19758468

  15. Numerical modelling of a fibre reflection filter based on a metal-dielectric diffraction structure with an increased optical damage threshold

    NASA Astrophysics Data System (ADS)

    Terentyev, V. S.; Simonov, V. A.

    2016-02-01

    Numerical modelling demonstrates the possibility of fabricating an all-fibre multibeam two-mirror reflection interferometer based on a metal-dielectric diffraction structure in its front mirror. The calculations were performed using eigenmodes of a double-clad single-mode fibre. The calculation results indicate that, using a metallic layer in the structure of the front mirror of such an interferometer and a diffraction effect, one can reduce the Ohmic loss by a factor of several tens in comparison with a continuous thin metallic film.

  16. An image segmentation based on a genetic algorithm for determining soil coverage by crop residues.

    PubMed

    Ribeiro, Angela; Ranz, Juan; Burgos-Artizzu, Xavier P; Pajares, Gonzalo; del Arco, Maria J Sanchez; Navarrete, Luis

    2011-01-01

    Determination of the soil coverage by crop residues after ploughing is a fundamental element of Conservation Agriculture. This paper presents the application of genetic algorithms employed during the fine tuning of the segmentation process of a digital image with the aim of automatically quantifying the residue coverage. In other words, the objective is to achieve a segmentation that would permit the discrimination of the texture of the residue so that the output of the segmentation process is a binary image in which residue zones are isolated from the rest. The RGB images used come from a sample of images in which sections of terrain were photographed with a conventional camera positioned in zenith orientation atop a tripod. The images were taken outdoors under uncontrolled lighting conditions. Up to 92% similarity was achieved between the images obtained by the segmentation process proposed in this paper and the templates made by an elaborate manual tracing process. In addition to the proposed segmentation procedure and the fine tuning procedure that was developed, a global quantification of the soil coverage by residues for the sampled area was achieved that differed by only 0.85% from the quantification obtained using template images. Moreover, the proposed method does not depend on the type of residue present in the image. The study was conducted at the experimental farm "El Encín" in Alcalá de Henares (Madrid, Spain). PMID:22163966

  17. An Image Segmentation Based on a Genetic Algorithm for Determining Soil Coverage by Crop Residues

    PubMed Central

    Ribeiro, Angela; Ranz, Juan; Burgos-Artizzu, Xavier P.; Pajares, Gonzalo; Sanchez del Arco, Maria J.; Navarrete, Luis

    2011-01-01

    Determination of the soil coverage by crop residues after ploughing is a fundamental element of Conservation Agriculture. This paper presents the application of genetic algorithms employed during the fine tuning of the segmentation process of a digital image with the aim of automatically quantifying the residue coverage. In other words, the objective is to achieve a segmentation that would permit the discrimination of the texture of the residue so that the output of the segmentation process is a binary image in which residue zones are isolated from the rest. The RGB images used come from a sample of images in which sections of terrain were photographed with a conventional camera positioned in zenith orientation atop a tripod. The images were taken outdoors under uncontrolled lighting conditions. Up to 92% similarity was achieved between the images obtained by the segmentation process proposed in this paper and the templates made by an elaborate manual tracing process. In addition to the proposed segmentation procedure and the fine tuning procedure that was developed, a global quantification of the soil coverage by residues for the sampled area was achieved that differed by only 0.85% from the quantification obtained using template images. Moreover, the proposed method does not depend on the type of residue present in the image. The study was conducted at the experimental farm “El Encín” in Alcalá de Henares (Madrid, Spain). PMID:22163966

  18. Modeling functional changes to Escherichia coli thymidylate synthase upon single residue replacements: a structure-based approach

    PubMed Central

    2015-01-01

    Escherichia coli thymidylate synthase (TS) is an enzyme that is indispensable to DNA synthesis and cell division, as it provides the only de novo source of dTMP by catalyzing the reductive methylation of dUMP, thus making it a key target for chemotherapeutic agents. High resolution X-ray crystallographic structures are available for TS and, owing to its relatively small size, successful experimental mutagenesis studies have been conducted on the enzyme. In this study, an in silico mutagenesis technique is used to investigate the effects of single amino acid substitutions in TS on enzymatic activity, one that employs the TS protein structure as well as a knowledge-based, four-body statistical potential. For every single residue TS variant, this approach yields both a global structural perturbation score and a set of local environmental perturbation scores that characterize the mutated position as well as all structurally neighboring residues. Global scores for the TS variants are capable of uniquely characterizing groups of residue positions in the enzyme according to their physicochemical, functional, or structural properties. Additionally, these global scores elucidate a statistically significant structure–function relationship among a collection of 372 single residue TS variants whose activity levels have been experimentally determined. Predictive models of TS variant activity are subsequently trained on this dataset of experimental mutants, whose respective feature vectors encode information regarding the mutated position as well as its six nearest residue neighbors in the TS structure, including their environmental perturbation scores. PMID:25648456

  19. Experimental modules covering imaging, diffraction, Fourier optics and polarization based on a liquid-crystal cell SLM

    NASA Astrophysics Data System (ADS)

    Hermerschmidt, Andreas

    2009-06-01

    In close collaboration with four German universities, we have developed tutorials for experiments based on a transmissive liquid-crystal spatial light modulator (SLM). The experimental tutorials are grouped in six project modules, which cover a wide range of phenomena and have different levels of difficulty. At a basic level, students can investigate the SLM in its probably most well-known application as an image-generating element in a simple optical projector setup. At more advanced levels, the application as an adaptive optical element can be investigated in three different projects covering wave-optical phenomena. The fields covered include Fourier Optics using the SLM as a dynamic fan-out beam-splitter or kinoform, Computer-Generated Holography and basic Interferometry. For the support of these projects, software was developed which permits the generation of adaptive optical structures by the student with a user-friendly interface, while the underlying algorithms are explained in the theoretical tutorial. The modulation of the light by the twisted-neumatic liquid crystal cells of the SLM can be investigated in the two most advanced projects. In the first one, the parameters of the cell and the components of its Jones matrix can be derived from transmission measurements with rotatable polarizers at a number of different wavelengths. This project gives insight to the Jones matrix calculus at the level required for the analysis. In the second one, the complex-valued transmission of the SLM is determined by measuring the diffraction efficiency of dynamically addressed Ronchi gratings.

  20. Residual motion of lung tumors in end-of-inhale respiratory gated radiotherapy based on external surrogates

    SciTech Connect

    Berbeco, Ross I.; Nishioka, Seiko; Shirato, Hiroki; Jiang, Steve B.

    2006-11-15

    It has been noted that some lung tumors exhibit large periodic motion due to respiration. To limit the amount of dose to healthy lung tissues, many clinics have begun gating radiotherapy treatment using externally placed surrogates. It has been observed by several institutions that the end-of-exhale (EOE) tumor position is more reproducible than other phases of the breathing cycle, so the gating window is often set there. From a treatment planning perspective, end-of-inhale (EOI) phase might be preferred for gating because the expanded lungs will further decrease the healthy tissue within the treatment field. We simulate gated treatment at the EOI phase, using a set of recently measured internal/external anatomy patient data. This paper attempts to answer three questions: (1) How much is the tumor residual motion when we use an external surrogate gating window at EOI? (2) How could we reduce the residual motion in the EOI gating window? (3) Is there a preference for amplitude- versus phase-based gating at EOI? We found that under free breathing conditions the residual motion of the tumors is much larger for EOI phase than for EOE phase. The mean values of residual motion at EOI were found to be 2.2 and 2.7 mm for amplitude- and phase-based gating, respectively, and, at EOE, 1.0 and 1.2 mm for amplitude- and phase-based gating, respectively. However, we note that the residual motion in the EOI gating window is correlated well with the reproducibility of the external surface position in the EOI phase. Using the results of a published breath-coaching study, we deduce that the residual motion of a lung tumor at EOI would approach that at EOE, with the same duty cycle (30%), under breath-coaching conditions. Additionally, we found that under these same conditions, phase-based gating approaches the same residual motion as amplitude-based gating, going from a 28% difference to 11%, for the patient with the largest difference between the two gating modalities. We conclude

  1. Effect of residual strain in Fe-based amorphous alloys on field induced magnetic anisotropy and domain structure

    NASA Astrophysics Data System (ADS)

    Azuma, Daichi; Hasegawa, Ryusuke; Saito, Shin; Takahashi, Migaku

    2013-05-01

    Field induced magnetic anisotropy in two Fe-based amorphous alloys with different saturation induction levels (1.56 T and 1.64 T) was investigated by varying magnetic field strength and annealing temperature and domain images were taken on these samples. Residual strain was evaluated by measuring coercivities of the materials after stress-relief annealing. These results are discussed, clarifying the difference between the two Fe-based amorphous alloys.

  2. 40 CFR Appendix Vii to Part 266 - Health-Based Limits for Exclusion of Waste-Derived Residues*

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Health-Based Limits for Exclusion of...-Based Limits for Exclusion of Waste-Derived Residues* Metals—TCLP Extract Concentration Limits...-chloroethyl) ether 111-44-4 3xE−04 Bis(chloromethyl) ether 542-88-1 2xE−06 Bis(2-ethylhexyl) phthalate...

  3. 40 CFR Appendix Vii to Part 266 - Health-Based Limits for Exclusion of Waste-Derived Residues*

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Health-Based Limits for Exclusion of...-Based Limits for Exclusion of Waste-Derived Residues* Metals—TCLP Extract Concentration Limits...-chloroethyl) ether 111-44-4 3xE−04 Bis(chloromethyl) ether 542-88-1 2xE−06 Bis(2-ethylhexyl) phthalate...

  4. 40 CFR Appendix Vii to Part 266 - Health-Based Limits for Exclusion of Waste-Derived Residues*

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Health-Based Limits for Exclusion of...-Based Limits for Exclusion of Waste-Derived Residues* Metals—TCLP Extract Concentration Limits...-chloroethyl) ether 111-44-4 3xE−04 Bis(chloromethyl) ether 542-88-1 2xE−06 Bis(2-ethylhexyl) phthalate...

  5. 40 CFR Appendix Vii to Part 266 - Health-Based Limits for Exclusion of Waste-Derived Residues*

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Health-Based Limits for Exclusion of...-Based Limits for Exclusion of Waste-Derived Residues* Metals—TCLP Extract Concentration Limits...-chloroethyl) ether 111-44-4 3xE−04 Bis(chloromethyl) ether 542-88-1 2xE−06 Bis(2-ethylhexyl) phthalate...

  6. Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk.

    PubMed

    Song, Erqun; Yu, Mengqun; Wang, Yunyun; Hu, Weihua; Cheng, Dan; Swihart, Mark T; Song, Yang

    2015-10-15

    Antibiotic residues, which are among the most common contaminants in animal-based food products such as milk, have become a significant public health concern. Here, we combine a multicolor quantum dot (QD)-based immunofluorescence assay and an array analysis method to achieve simultaneous, sensitive and visual detection of streptomycin (SM), tetracycline (TC), and penicillin G (PC-G) in milk. Antibodies (Abs) for SM, TC and PC-G were conjugated to QDs with different emission wavelengths (QD 520 nm, QD 565 nm and QD 610 nm) to serve as detection probes (QD-Ab). Then a direct competitive fluorescent immunoassay was performed in antigen-coated microtiter plate wells for simultaneous qualitative and quantitative detection of SM, TC, and PC-G residues, based on fluorescence of the QD-Ab probes. The linear ranges for SM, TC and PC-G were 0.01-25 ng/mL, 0.01-25 ng/mL and 0.01-10 ng/mL, respectively, with detection limit of 5 pg/mL for each of them. Based on fluorescence of the QD-Ab probes, residues of the three antibiotics were determined visually and simultaneously. Compared with a commercial enzyme-linked immunosorbent assay kit, our method could achieve simultaneous analysis of multiple target antibiotics in multiple samples in a single run (high-throughput analysis) and improved accuracy and sensitivity for analysis of residues of the three antibiotics in authentic milk samples. This new analytical tool can play an important role in ameliorating the negative impact of the residual antibiotics on human health and the ecosystem. PMID:26002016

  7. Observation of optical second-harmonic generation in porous-silicon-based photonic crystals in the Laue diffraction scheme

    NASA Astrophysics Data System (ADS)

    Kopylov, D. A.; Svyakhovskiy, S. E.; Dergacheva, L. V.; Bushuev, V. A.; Mantsyzov, B. I.; Murzina, T. V.

    2016-05-01

    Second-harmonic generation (SHG) in the Laue scheme of the dynamical Bragg diffraction in one-dimensional photonic crystal (PhC) is studied. The experiments are performed for partially annealed porous-silicon PhC containing 250 periods of the structure. Our measurements confirm that the phase-matched optical SHG is observed under the Bragg conditions, which is evidenced by a narrow angular and spectral distribution of the diffracted SHG outgoing the PhC. This is confirmed by both the analytical description of the SHG process performed in the two-wave approximation, and by direct calculations of the PhC dispersion curves for the fundamental and SHG wavelengths by the revised plane wave method. Possible types of phase- and quasi-phase-matching realized in the studied PhC under the Laue diffraction scheme are discussed.

  8. Individual speckle diffraction based 1D and 2D Random Grating Fabrication for detector and solar energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2016-02-01

    Laser speckles and speckle patterns, which are formed by the random interference of scattered waves from optically rough surfaces, have found tremendous applications in a wide range of metrological and biomedical fields. Here, we demonstrate a novel edge diffraction phenomenon of individual speckle for the fabrication of 1D and 2D micron and sub-micron size random gratings. These random gratings exhibit broadband response with interesting diffusive diffraction patterns. As an immediate application for solar energy harvesting, significant reduction in transmission and enhanced absorption in thin “Si-random grating-Si” sandwich structure is demonstrated. This work has multifaceted significance where we exploited the individual speckle diffraction properties for the first time. Besides the solar harvesting applications, random gratings are suitable structures for fabrication of theoretically proposed random quantum well IR detectors and hence expected that this work will augur well for such studies in the near future.

  9. Individual speckle diffraction based 1D and 2D Random Grating Fabrication for detector and solar energy harvesting applications

    PubMed Central

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2016-01-01

    Laser speckles and speckle patterns, which are formed by the random interference of scattered waves from optically rough surfaces, have found tremendous applications in a wide range of metrological and biomedical fields. Here, we demonstrate a novel edge diffraction phenomenon of individual speckle for the fabrication of 1D and 2D micron and sub-micron size random gratings. These random gratings exhibit broadband response with interesting diffusive diffraction patterns. As an immediate application for solar energy harvesting, significant reduction in transmission and enhanced absorption in thin “Si-random grating-Si” sandwich structure is demonstrated. This work has multifaceted significance where we exploited the individual speckle diffraction properties for the first time. Besides the solar harvesting applications, random gratings are suitable structures for fabrication of theoretically proposed random quantum well IR detectors and hence expected that this work will augur well for such studies in the near future. PMID:26842242

  10. Individual speckle diffraction based 1D and 2D Random Grating Fabrication for detector and solar energy harvesting applications.

    PubMed

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2016-01-01

    Laser speckles and speckle patterns, which are formed by the random interference of scattered waves from optically rough surfaces, have found tremendous applications in a wide range of metrological and biomedical fields. Here, we demonstrate a novel edge diffraction phenomenon of individual speckle for the fabrication of 1D and 2D micron and sub-micron size random gratings. These random gratings exhibit broadband response with interesting diffusive diffraction patterns. As an immediate application for solar energy harvesting, significant reduction in transmission and enhanced absorption in thin "Si-random grating-Si" sandwich structure is demonstrated. This work has multifaceted significance where we exploited the individual speckle diffraction properties for the first time. Besides the solar harvesting applications, random gratings are suitable structures for fabrication of theoretically proposed random quantum well IR detectors and hence expected that this work will augur well for such studies in the near future. PMID:26842242

  11. Nitrogen availability from residues-based biochar at two pyrolisis temperatures

    NASA Astrophysics Data System (ADS)

    Coscione, Aline Renee; Silveira Bibar, Maria Paula; de Andrade, Cristiano Alberto

    2014-05-01

    , only SS4 and CM4 presented a positive nitrogen balance, reaching 8 and 9 % of the nitrogen added by biochar samples release to the soil, respectively. A first order kinetic model was adjusted for SS4 nitrogen release, enabling the calculation of half life (10 days), potential available nitrogen (76.5 mg/kg) and the speed of the process. However, compared to SS4 the standard nitrogen availability of sewage sludge is up to 30% of its Kjeldahl nitrogen. For organic residues with C/N ratios lower than 20 applied to the soil a fast degradation, with the corresponding increase in inorganic nitrogen availability is expect. Although all the biochar samples tested had C/N ratios below that cutting point, just 2 of 8 presented inorganic nitrogen available in the soil+biochar mixtures. These results show that soil incubation tests are ultimate for the evaluation of the nitrogen potential release to the soil. Low temperature SS based biochar may offer additional nitrogen release to soil besides other soil conditioning properties.

  12. Description and evaluation of nuclear masses based on residual proton-neutron interactions

    SciTech Connect

    Fu, G. J.; Lei, Y.; Jiang, H.; Zhao, Y. M.; Sun, B.; Arima, A.

    2011-09-15

    In this paper we study the residual proton-neutron interactions and make use of the systematics of these interactions to describe experimental data of nuclear masses and to predict some of the unknown masses. The odd-even effect staggering of the residual proton-neutron interaction between the last proton and the last neutron is found and argued in terms of pairing interactions. Two local mass relations, which work very accurately for masses of four neighboring nuclei, are discovered. The accuracy of our predicted masses for medium and heavy nuclei is competitive with that of the AME2003 extrapolations, with the virtue of simplicity.

  13. W-Disjoint Orthogonality Based Residual Acoustic Echo Cancellation for Hands-Free Communication

    NASA Astrophysics Data System (ADS)

    Lee, Yoonjae; Kim, Kihyeon; Yoon, Jongsung; Ko, Hanseok

    A simple and novel residual acoustic echo cancellation method that employs binary masking is proposed to enhance the speech quality of hands-free communication in an automobile environment. In general, the W-disjoint orthogonality assumption is used for blind source separation using multi-microphones. However, in this Letter, it is utilized to mask the residual echo component in the time-frequency domain using a single microphone. The experimental results confirm the effectiveness of the proposed method in terms of the echo return loss enhancement and speech enhancement.

  14. Apparatus and fast method for cancer cell classification based on high harmonic coherent diffraction imaging in reflection geometry

    NASA Astrophysics Data System (ADS)

    Zürch, Michael; Foertsch, Stefan; Matzas, Mark; Pachmann, Katharina; Kuth, Rainer; Spielmann, Christian

    2014-03-01

    In cancer treatment it is highly desirable to identify and /or classify individual cancer cells in real time. Nowadays, the standard method is PCR which is costly and time-consuming. Here we present a different approach to rapidly classify cell types: we measure the pattern of coherently diffracted extreme ultraviolet radiation (XUV radiation at 38nm wavelength), allowing to distinguish different single breast cancer cell types. The output of our laser driven XUV light source is focused onto a single unstained and unlabeled cancer cell, and the resulting diffraction pattern is measured in reflection geometry. As we will further show, the outer shape of the object can be retrieved from the diffraction pattern with sub-micron resolution. For classification it is often not necessary to retrieve the image, it is only necessary to compare the diffraction patterns which can be regarded as a spatial fingerprint of the specimen. For a proof-of-principle experiment MCF7 and SKBR3 breast cancer cells were pipetted on gold-coated silica slides. From illuminating each single cell and measuring a diffraction pattern we could distinguish between them. Owing to the short bursts of coherent soft x-ray light, one could also image temporal changes of the specimen, i.e. studying changes upon drug application once the desired specimen is found by the classification method. Using a more powerful laser, even classifying circulating tumor cells (CTC) at a high throughput seems possible. This lab-sized equipment will allow fast classification of any kind of cells, bacteria or even viruses in the near future.

  15. Determination of white phosphorus residues in ducks: An atomic emission detection/compound-independent calibration-based method of generating residue data for risk assessment and environmental monitoring

    SciTech Connect

    Johnston, J.J.; Goldade, D.A.; Kohler, D.J.; Cummings, J.L.

    2000-05-01

    Analysis of phosphorus concentrations in the gizzards of ducks harvested from munitions sites is necessary to ascertain if acute phosphorus toxicity was the cause of death and to estimate potential secondary hazards to predators and scavengers, such as eagles that readily consume the dead ducks. Gas chromatography-atomic emission detection analysis permitted compound-independent quantification of white phosphorus standards following analysis of the stable phosphorus-containing compound triethyl phosphate. The white phosphorus standards were then used to quantify white phosphorus residues in duck gizzard extracts by gas chromatography-flame photometric detection analysis. For gizzards containing less than 0.01 {micro}g of phosphorus, quantification was based on a three-point calibration curve. For gizzards containing 0.01 {micro}g or more of white phosphorus, single-point calibration was used. Mean recoveries for phosphorus-fortified gizzards ranged from 73 to 91%. The method limit of detection was 0.013 {micro}g of phosphorus. This method was successfully applied to the quantification of white phosphorus in ducks collected from Eagle River Flats, AK. Potential applications to risk assessment and environmental monitoring are also discussed.

  16. Conformation analysis of aspartame-based sweeteners by NMR spectroscopy, molecular dynamics simulations, and X-ray diffraction studies.

    PubMed

    De Capua, Antonia; Goodman, Murray; Amino, Yusuke; Saviano, Michele; Benedetti, Ettore

    2006-02-01

    We report here the synthesis and the conformation analysis by 1H NMR spectroscopy and computer simulations of six potent sweet molecules, N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-S-tert-butyl-L-cysteine 1-methylester (1; 70 000 times more potent than sucrose), N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-beta-cyclohexyl-L-alanine 1-methylester (2; 50 000 times more potent than sucrose), N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-4-cyan-L-phenylalanine 1-methylester (3; 2 000 times more potent than sucrose), N-[3,3-dimethylbutyl]-alpha-L-aspartyl-(1R,2S,4S)-1-methyl-2-hydroxy-4-phenylhexylamide (4; 5500 times more potent than sucrose), N-[3-(3-hydroxy-4-methoxyphenyl)propyl]-alpha-L-aspartyl-(1R,2S,4S)-1-methyl-2-hydroxy-4-phenylhexylamide (5; 15 000 times more potent than sucrose), and N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-(1R,2S,4S)-1-methyl-2-hydroxy-4-phenylhexylamide (6; 15 000 times more potent than sucrose). The "L-shaped" structure, which we believe to be responsible for sweet taste, is accessible to all six molecules in solution. This structure is characterized by a zwitterionic ring formed by the AH- and B-containing moieties located along the +y axis and by the hydrophobic group X pointing into the +x axis. Extended conformations with the AH- and B-containing moieties along the +y axis and the hydrophobic group X pointing into the -y axis were observed for all six sweeteners. For compound 5, the crystal-state conformation was also determined by an X-ray diffraction study. The result indicates that compound 5 adopts an L-shaped structure even in the crystalline state. The extraordinary potency of the N-arylalkylated or N-alkylated compounds 1-6, as compared with that of the unsubstituted aspartame-based sweet taste ligands, can be explained by the effect of a second hydrophobic binding domain in addition to interactions arising from the L-shaped structure. In our

  17. Development of a Neutron Diffraction Based Experiemental Capability for Investigating Hydraulic Fracturing for EGS-like Conditions

    SciTech Connect

    Polsky, Yarom; Anovitz, Lawrence {Larry} M; An, Ke; Carmichael, Justin R; Bingham, Philip R; Dessieux Jr, Luc Lucius

    2013-01-01

    Hydraulic fracturing to enhance formation permeability is an established practice in the Oil & Gas (O&G) industry and is expected to be an enabler for EGS. However, it is rarely employed in conventional geothermal systems and there are significant questions regarding the translation of practice from O&G to both conventional geothermal and EGS applications. Lithological differences(sedimentary versus crystalline rocks, significantly greater formation temperatures and different desired fracture characteristics are among a number of factors that are likely to result in a gap of understanding of how to manage hydraulic fracturing practice for geothermal. Whereas the O&G community has had both the capital and the opportunity to develop its understanding of hydraulic fracturing operations empirically in the field as well through extensive R&D efforts, field testing opportunities for EGS are likely to be minimal due to the high expense of hydraulic fracturing field trials. A significant portion of the knowledge needed to guide the management of geothermal/EGS hydraulic fracturing operations will therefore likely have to come from experimental efforts and simulation. This paper describes ongoing efforts at Oak Ridge National Laboratory (ORNL) to develop an experimental capability to map the internal stresses/strains in core samples subjected to triaxial stress states and temperatures representative of EGS-like conditions using neutron diffraction based strain mapping techniques. This capability is being developed at ORNL\\'s Spallation Neutron Source, the world\\'s most powerful pulsed neutron source and is still in a proof of concept phase. A specialized pressure cell has been developed that permits independent radial and axial fluid pressurization of core samples, with axial flow through capability and a temperature rating up to 300 degrees C. This cell will ultimately be used to hydraulically pressurize EGS-representative core samples to conditions of imminent fracture

  18. Harvest time residues of pendimethalin and oxyfluorfen in vegetables and soil in sugarcane-based intercropping systems.

    PubMed

    Kaur, Navneet; Bhullar, Makhan S

    2015-05-01

    Terminal residues of pendimethalin and oxyfluorfen applied in autumn sugarcane- and vegetables-based intercropping systems were analyzed in peas (Pisum sativum), cabbage (Brassica oleracea), garlic (Allium sativum), gobhi sarson (Brassica napus), and raya (Brassica juncea). The study was conducted in winter season in 2010-2011 and in 2011-2012 at Ludhiana, India. Pendimethalin at 0.56 kg and 0.75 kg ha(-1) was applied immediately after sowing of gobhi sarson, raya, peas, garlic, and 2 days before transplanting of cabbage seedlings. Oxyfluorfen at 0.17 kg and 0.23 kg ha(-1) was applied immediately after sowing of peas and garlic and 2 days before transplanting of cabbage seedlings intercropped in autumn sugarcane. Representative samples of these vegetables were collected at 75, 90, 100, and 165 days after application of herbicides and analyzed by high-performance liquid chromatograph (HPLC) with diode array detector for residues. The residue level of pendimethalin and oxyfluorfen in mature vegetables was found to be below the limit of quantification which is 0.05 mg kg(-1) for both the herbicides. The soil samples were collected at 0, 7, 15, 30, 45, and 60 days after the application of their herbicides. The residues of herbicides in soil samples were found to be below the detectability limit of 0.05 mg kg(-1) after 60 days in case of pendimethalin and after 45 days in case of oxyfluorfen. PMID:25832010

  19. Aluminum-based water treatment residual use in a constructed wetland for capturing urban runoff phosphorus: Column study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum-based water treatment residuals (Al-WTR) have a strong affinity to sorb phosphorus. In a proof-of-concept greenhouse column study, Al-WTR was surface-applied at 0, 62, 124, and 248 Mg/ha to 15 cm of soil on top of 46 cm of sand; Al-WTR rates were estimated to capture 0, 10, 20, and 40 year...

  20. Aging of aluminum/iron-based drinking water treatment residuals in lake water and their association with phosphorus immobilization capability.

    PubMed

    Wang, Changhui; Yuan, Nannan; Pei, Yuansheng; Jiang, He-Long

    2015-08-15

    Aluminum and Fe-based drinking water treatment residuals (DWTRs) have shown a high potential for use by geoengineers in internal P loading control in lakes. In this study, aging of Al/Fe-based DWTRs in lake water under different pH and redox conditions associated with their P immobilization capability was investigated based on a 180-day incubation test. The results showed that the DWTRs before and after incubation under different conditions have similar structures, but their specific surface area and pore volume, especially mesopores with radius at 2.1-5.0 nm drastically decreased. The oxalate extractable Al contents changed little although a small amount of Al transformed from oxidizable to residual forms. The oxalate extractable Fe contents also decreased by a small amount, but the transformation from oxidizable to residual forms were remarkable, approximately by 14.6%. However, the DWTRs before and after incubation had similar P immobilization capabilities in solutions and lake sediments. Even the maximum P adsorption capacity estimated by the Langmuir model increased after incubation. Therefore, it was not necessary to give special attention to the impact of Al and Fe aging on the effectiveness of DWTRs for geoengineering in lakes. PMID:26071931

  1. Development and Application of a Gel-Based Immunoassay for the Rapid Screening of Salbutamol and Ractopamine Residues in Pork.

    PubMed

    Li, Chenglong; Li, Jingya; Jiang, Wenxiao; Zhang, Suxia; Shen, Jianzhong; Wen, Kai; Wang, Zhanhui

    2015-12-01

    Salbutamol (SAL) and ractopamine (RAC) have been illegally used to promote protein synthesis and to increase the feed conversion rate in livestock. However, the residues of SAL and RAC could cause potential hazards for human health. The Ministry of Agriculture of China banned the use of SAL and RAC as growth promoters. In this paper, we provide detailed information on developing a rapid and sensitive gel-based immunoassay for on-site screening of SAL and RAC residues in pork. The detection time was shortened to 20 min. The limits of detection were 0.5 μg/kg for both SAL and RAC by visual detection, whereas the quantitative gel-based immunoassay enabled the detection of SAL (0.051 μg/kg) and RAC (0.020 μg/kg) in spiked pork samples. The gel-based immunoassay showed promise as a multiplexed immunoassay for on-site surveilling of SAL and RAC residues in pork. PMID:26595169

  2. Holistic approach using accuracy of diffraction-based integrated metrology to improve on-product performance, reduce cycle time, and cost at litho

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kaustuve; den Boef, Arie; Jak, Martin; Zhang, Gary; Maassen, Martijn; Tijssen, Robin; Adam, Omer; Fuchs, Andreas; Zhang, Youping; Huang, Jacky; Couraudon, Vincent; Tzeng, Wilson; Su, Eason; Wang, Cathy; Kavanagh, Jim; Fouquet, Christophe

    2015-03-01

    High-end semiconductor lithography requirements for CD, focus and overlay control drive the need for diffraction-based metrology1,2,3,4 and integrated metrology5. In the advanced nodes, more complex lithography techniques (such as multiple patterning), use of multi-layer overlay measurements in process control, advanced device designs (such as advanced FinFET), as well as advanced materials (like hardmasks) are introduced. These pose new challenges for lithometro cycle time, cost, process control and metrology accuracy. In this publication a holistic approach is taken to face these challenges via a novel target design, a brand new implementation of multi-layer overlay measurement capability in diffraction-based mode and integrated metrology.

  3. Formation of a periodic diffractive structure based on poly(methyl methacrylate) with ion-implanted silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Galyautdinov, M. F.; Nuzhdin, V. I.; Fattakhov, Ya. V.; Farrakhov, B. F.; Valeev, V. F.; Osin, Yu. N.; Stepanov, A. L.

    2016-02-01

    We propose to form optical diffractive elements on the surface of poly(methyl methacrylate) (PMMA) by implanting the polymer with silver ions ( E = 30 keV; D = 5.0 × 1014 to 1.5 × 1017 ion/cm2; I = 2 μA/cm2) through a nickel grid (mask). Ion implantation leads to the nucleation and growth of silver nanoparticles in unmasked regions of the polymer. The formation of periodic surface microstructures during local sputtering of the polymer by incident ions was monitored using an optical microscope. The diffraction efficiency of obtained gratings is demonstrated under conditions of their probing with semiconductor laser radiation in the visible spectral range.

  4. 3D laser inspection of fuel assembly grid spacers for nuclear reactors based on diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Finogenov, L. V.; Lemeshko, Yu A.; Zav'yalov, P. S.; Chugui, Yu V.

    2007-06-01

    Ensuring the safety and high operation reliability of nuclear reactors takes 100% inspection of geometrical parameters of fuel assemblies, which include the grid spacers performed as a cellular structure with fuel elements. The required grid spacer geometry of assembly in the transverse and longitudinal cross sections is extremely important for maintaining the necessary heat regime. A universal method for 3D grid spacer inspection using a diffractive optical element (DOE), which generates as the structural illumination a multiple-ring pattern on the inner surface of a grid spacer cell, is investigated. Using some DOEs one can inspect the nomenclature of all produced grids. A special objective has been developed for forming the inner surface cell image. The problems of diffractive elements synthesis, projecting optics calculation, adjusting methods as well as calibration of the experimental measuring system are considered. The algorithms for image processing for different constructive elements of grids (cell, channel hole, outer grid spacer rim) and the experimental results are presented.

  5. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application.

    PubMed

    Ho, Adrian; Reim, Andreas; Kim, Sang Yoon; Meima-Franke, Marion; Termorshuizen, Aad; de Boer, Wietse; van der Putten, Wim H; Bodelier, Paul L E

    2015-10-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over 2 months. Unexpectedly, after amendments with specific residues, we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotroph population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus may facilitate methane oxidation in the agricultural soils. While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that methane oxidation rate can be stimulated, leading to higher soil methane uptake. Hence, even if agriculture exerts an adverse impact on soil methane uptake, implementing carefully designed management strategies (e.g. repeated application of specific residues) may

  6. Remote sensing-based estimates of annual and seasonal emissions from crop residue burning in the contiguous United States.

    PubMed

    McCarty, Jessica L

    2011-01-01

    Crop residue burning is an extensive agricultural practice in the contiguous United States (CONUS). This analysis presents the results of a remote sensing-based study of crop residue burning emissions in the CONUS for the time period 2003-2007 for the atmospheric species of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), nitrogen dioxide (NO2, sulfur dioxide (SO2), PM2.5 (particulate matter [PM] < or = 2.5 microm in aerodynamic diameter), and PM10 (PM < or = 10 microm in aerodynamic diameter). Cropland burned area and associated crop types were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) products. Emission factors, fuel load, and combustion completeness estimates were derived from the scientific literature, governmental reports, and expert knowledge. Emissions were calculated using the bottom-up approach in which emissions are the product of burned area, fuel load, and combustion completeness for each specific crop type. On average, annual crop residue burning in the CONUS emitted 6.1 Tg of CO2, 8.9 Gg of CH4, 232.4 Gg of CO, 10.6 Gg of NO2, 4.4 Gg of SO2, 20.9 Gg of PM2.5, and 28.5 Gg of PM10. These emissions remained fairly consistent, with an average interannual variability of crop residue burning emissions of +/- 10%. The states with the highest emissions were Arkansas, California, Florida, Idaho, Texas, and Washington. Most emissions were clustered in the southeastern United States, the Great Plains, and the Pacific Northwest. Air quality and carbon emissions were concentrated in the spring, summer, and fall, with an exception because of winter harvesting of sugarcane in Florida, Louisiana, and Texas. Sugarcane, wheat, and rice residues accounted for approximately 70% of all crop residue burning and associated emissions. Estimates of CO and CH4 from agricultural waste burning by the U.S. Environmental Protection Agency were 73 and 78% higher than the CO and CH4 emission estimates from this analysis, respectively. This analysis

  7. Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score.

    PubMed

    Miao, Zhichao; Westhof, Eric

    2015-06-23

    We describe a general binding score for predicting the nucleic acid binding probability in proteins. The score is directly derived from physicochemical and evolutionary features and integrates a residue neighboring network approach. Our process achieves stable and high accuracies on both DNA- and RNA-binding proteins and illustrates how the main driving forces for nucleic acid binding are common. Because of the effective integration of the synergetic effects of the network of neighboring residues and the fact that the prediction yields a hierarchical scoring on the protein surface, energy funnels for nucleic acid binding appear on protein surfaces, pointing to the dynamic process occurring in the binding of nucleic acids to proteins. PMID:25940624

  8. Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score

    PubMed Central

    Miao, Zhichao; Westhof, Eric

    2015-01-01

    We describe a general binding score for predicting the nucleic acid binding probability in proteins. The score is directly derived from physicochemical and evolutionary features and integrates a residue neighboring network approach. Our process achieves stable and high accuracies on both DNA- and RNA-binding proteins and illustrates how the main driving forces for nucleic acid binding are common. Because of the effective integration of the synergetic effects of the network of neighboring residues and the fact that the prediction yields a hierarchical scoring on the protein surface, energy funnels for nucleic acid binding appear on protein surfaces, pointing to the dynamic process occurring in the binding of nucleic acids to proteins. PMID:25940624

  9. On the Feasibility of Eddy Current Characterization of the Near-Surface Residual Stress Distribution in Nickel-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Blodgett, Mark P.; Nagy, Peter B.

    2004-02-01

    In light of its frequency-dependent penetration depth, the measurement of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation of subsurface residual stresses in shot-peened specimens. This technique is based on the so-called electroelastic effect, i.e., the stress-dependence of the electrical conductivity. Unfortunately, the relatively small (˜1%) change in electrical conductivity caused by the presence of compressive residual stresses is often distorted, or even completely overshadowed, by the accompanying conductivity loss caused by cold work and surface roughness effects. Recently, it was observed that, in contrast with most other materials, shot-peened Waspaloy and IN100 specimens exhibit an apparent increase in electrical conductivity at increasing inspection frequencies. This observation by itself indicates that in these materials the measured conductivity change is probably dominated by residual stress effects, since both surface roughness and increased dislocation density are known to decrease rather than increase the conductivity and the presence of crystallographic texture does not affect the electrical conductivity of these materials, which crystallize in cubic symmetry. Our preliminary experiments indicate that probably there exists a unique "window of opportunity" for eddy current NDE in nickel-base superalloys. We identified five major effects that contribute to this fortunate constellation of material properties, which will be reviewed in this presentation.

  10. On the Feasibility of Eddy Current Characterization of the Near-Surface Residual Stress Distribution in Nickel-Base Superalloys

    SciTech Connect

    Blodgett, Mark P.; Nagy, Peter B.

    2004-02-26

    In light of its frequency-dependent penetration depth, the measurement of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation of subsurface residual stresses in shot-peened specimens. This technique is based on the so-called electroelastic effect, i.e., the stress-dependence of the electrical conductivity. Unfortunately, the relatively small ({approx}1%) change in electrical conductivity caused by the presence of compressive residual stresses is often distorted, or even completely overshadowed, by the accompanying conductivity loss caused by cold work and surface roughness effects. Recently, it was observed that, in contrast with most other materials, shot-peened Waspaloy and IN100 specimens exhibit an apparent increase in electrical conductivity at increasing inspection frequencies. This observation by itself indicates that in these materials the measured conductivity change is probably dominated by residual stress effects, since both surface roughness and increased dislocation density are known to decrease rather than increase the conductivity and the presence of crystallographic texture does not affect the electrical conductivity of these materials, which crystallize in cubic symmetry. Our preliminary experiments indicate that probably there exists a unique 'window of opportunity' for eddy current NDE in nickel-base superalloys. We identified five major effects that contribute to this fortunate constellation of material properties, which will be reviewed in this presentation.

  11. Research on the optimal dynamical systems of three-dimensional Navier-Stokes equations based on weighted residual

    NASA Astrophysics Data System (ADS)

    Peng, NaiFu; Guan, Hui; Wu, ChuiJie

    2016-04-01

    In this paper, the theory of constructing optimal dynamical systems based on weighted residual presented by Wu & Sha is applied to three-dimensional Navier-Stokes equations, and the optimal dynamical system modeling equations are derived. Then the multiscale global optimization method based on coarse graining analysis is presented, by which a set of approximate global optimal bases is directly obtained from Navier-Stokes equations and the construction of optimal dynamical systems is realized. The optimal bases show good properties, such as showing the physical properties of complex flows and the turbulent vortex structures, being intrinsic to real physical problem and dynamical systems, and having scaling symmetry in mathematics, etc.. In conclusion, using fewer terms of optimal bases will approach the exact solutions of Navier-Stokes equations, and the dynamical systems based on them show the most optimal behavior.

  12. A Quantitative Tool to Distinguish Isobaric Leucine and Isoleucine Residues for Mass Spectrometry-Based De Novo Monoclonal Antibody Sequencing

    NASA Astrophysics Data System (ADS)

    Poston, Chloe N.; Higgs, Richard E.; You, Jinsam; Gelfanova, Valentina; Hale, John E.; Knierman, Michael D.; Siegel, Robert; Gutierrez, Jesus A.

    2014-07-01

    De novo sequencing by mass spectrometry (MS) allows for the determination of the complete amino acid (AA) sequence of a given protein based on the mass difference of detected ions from MS/MS fragmentation spectra. The technique relies on obtaining specific masses that can be attributed to characteristic theoretical masses of AAs. A major limitation of de novo sequencing by MS is the inability to distinguish between the isobaric residues leucine (Leu) and isoleucine (Ile). Incorrect identification of Ile as Leu or vice versa often results in loss of activity in recombinant antibodies. This functional ambiguity is commonly resolved with costly and time-consuming AA mutation and peptide sequencing experiments. Here, we describe a set of orthogonal biochemical protocols, which experimentally determine the identity of Ile or Leu residues in monoclonal antibodies (mAb) based on the selectivity that leucine aminopeptidase shows for n-terminal Leu residues and the cleavage preference for Leu by chymotrypsin. The resulting observations are combined with germline frequencies and incorporated into a logistic regression model, called Predictor for Xle Sites (PXleS) to provide a statistical likelihood for the identity of Leu at an ambiguous site. We demonstrate that PXleS can generate a probability for an Xle site in mAbs with 96% accuracy. The implementation of PXleS precludes the expression of several possible sequences and, therefore, reduces the overall time and resources required to go from spectra generation to a biologically active sequence for a mAb when an Ile or Leu residue is in question.

  13. Neutron Diffraction Study on Plastic behavior of a Nickel-Based Alloy Under the Monotonic-Tension and the Low-Cyclic-Fatigue Experiments

    SciTech Connect

    Huang, E.-W.; Barabash, R.; Clausen, B.; Wang, Y.; Yang, R.; Li, L.; Choo, H.; Liaw, P.K.

    2007-11-02

    The plastic behavior of an annealed HASTELLOY C-22HS alloy, a face-centered cubic (FCC), nickel-based superalloy, was examined by in-situ neutron-diffraction measurements at room temperature. Both monotonic-tension and low-cycle-fatigue experiments were conducted. Monotonic-tension straining and cyclic-loading deformation were studied as a function of stress. The plastic behavior during deformation is discussed in light of the relationship between the stress and dislocation-density evolution. The calculated dislocation-density evolution within the alloy reflects the strain hardening and cyclic hardening/softening. Experimentally determined lattice strains are compared to verify the hardening mechanism at selected stress levels for tension and cyclic loadings. Combined with calculations of the dislocation densities, the neutron-diffraction experiments provide direct information about the strain and cyclic hardening of the alloy.

  14. A method for the monitoring of metal recrystallization based on the in-situ measurement of the elastic energy release using neutron diffraction

    SciTech Connect

    Christien, F. Le Gall, R.; Telling, M. T. F.; Knight, K. S.

    2015-05-15

    A method is proposed for the monitoring of metal recrystallization using neutron diffraction that is based on the measurement of stored energy. Experiments were performed using deformed metal specimens heated in-situ while mounted at the sample position of the High Resolution Powder Diffractometer, HRPD (ISIS Facility), UK. Monitoring the breadth of the resulting Bragg lines during heating not only allows the time-dependence (or temperature-dependence) of the stored energy to be determined but also the recrystallized fraction. The analysis method presented here was developed using pure nickel (Ni270) specimens with different deformation levels from 0.29 to 0.94. In situ temperature ramping as well as isothermal annealing was undertaken. The method developed in this work allows accurate and quantitative monitoring of the recrystallization process. The results from neutron diffraction are satisfactorily compared to data obtained from calorimetry and hardness measurements.

  15. Understanding the deformation mechanism of individual phases of a ZrTi-based bulk metallic glass matrix composite using in situ diffraction and imaging methods

    SciTech Connect

    Huang, Yongjiang E-mail: yjhuang@hit.edu.cn; Khong, J. C.; Mi, J. E-mail: yjhuang@hit.edu.cn; Connolley, Thomas

    2014-01-20

    The plasticity of a ZrTi-based bulk metallic glass composite consisting of glassy matrix and crystalline dendritic phase was studied in-situ under identical tensile loading conditions using scanning electron microscopy and synchrotron X-ray diffraction. A generic procedure was developed to separate the diffraction information of the crystalline phases away from that of the matrix and to precisely calculate the microscopic strains of the two phases at different macroscopic load steps. In this way, the time-evolved quantitative links between shear bands nucleation/propagation and the corresponding microscopic stress fields around them are established, providing more quantitative understanding on (1) how the shear bands are driven by the local stress field, and (2) the critical stresses required for the shear bands to nucleate in the crystalline phase, propagate through the crystalline/matrix interface, and finally into the matrix.

  16. A method for the monitoring of metal recrystallization based on the in-situ measurement of the elastic energy release using neutron diffraction

    NASA Astrophysics Data System (ADS)

    Christien, F.; Telling, M. T. F.; Knight, K. S.; Le Gall, R.

    2015-05-01

    A method is proposed for the monitoring of metal recrystallization using neutron diffraction that is based on the measurement of stored energy. Experiments were performed using deformed metal specimens heated in-situ while mounted at the sample position of the High Resolution Powder Diffractometer, HRPD (ISIS Facility), UK. Monitoring the breadth of the resulting Bragg lines during heating not only allows the time-dependence (or temperature-dependence) of the stored energy to be determined but also the recrystallized fraction. The analysis method presented here was developed using pure nickel (Ni270) specimens with different deformation levels from 0.29 to 0.94. In situ temperature ramping as well as isothermal annealing was undertaken. The method developed in this work allows accurate and quantitative monitoring of the recrystallization process. The results from neutron diffraction are satisfactorily compared to data obtained from calorimetry and hardness measurements.

  17. Neutron-Diffraction Evidence for the Ferrimagnetic Ground State of a Molecule-Based Magnet with Weakly Coupled Sublattices

    SciTech Connect

    Fishman, Randy Scott; Campo, Javier; Vos, Thomas E.; Miller, Joel S.

    2012-01-01

    The diruthenium compound [Ru2(O2CMe)4]3[Cr(CN)6] contains two weakly coupled, ferrimag- netically ordered sublattices occupying the same volume. The magnetic field Hc 800 Oe required to align the two sublattice moments is proportional to the antiferromagnetic dipolar interaction Kc B Hc 5 10 3 meV between sublattices. Powder neutron-diffraction measurements on a deuterated sample reveal that the sublattice moments are restricted by the anisotropy of the diruthenium paddle-wheel complexes to the cubic diagonals. Those measurements also suggest that the quantum corrections to the ground state are significant.

  18. 64nm pitch metal1 double patterning metrology: CD and OVL control by SEMCD, image based overlay and diffraction based overlay

    NASA Astrophysics Data System (ADS)

    Ducoté, Julien; Dettoni, Florent; Bouyssou, Régis; Le-Gratiet, Bertrand; Carau, Damien; Dezauzier, Christophe

    2015-03-01

    Patterning process control of advanced nodes has required major changes over the last few years. Process control needs of critical patterning levels since 28nm technology node is extremely aggressive showing that metrology accuracy/sensitivity must be finely tuned. The introduction of pitch splitting (Litho-Etch-Litho-Etch) at 14FDSOInm node requires the development of specific metrologies to adopt advanced process control (for CD, overlay and focus corrections). The pitch splitting process leads to final line CD uniformities that are a combination of the CD uniformities of the two exposures, while the space CD uniformities are depending on both CD and OVL variability. In this paper, investigations of CD and OVL process control of 64nm minimum pitch at Metal1 level of 14FDSOI technology, within the double patterning process flow (Litho, hard mask etch, line etch) are presented. Various measurements with SEMCD tools (Hitachi), and overlay tools (KT for Image Based Overlay - IBO, and ASML for Diffraction Based Overlay - DBO) are compared. Metrology targets are embedded within a block instanced several times within the field to perform intra-field process variations characterizations. Specific SEMCD targets were designed for independent measurement of both line CD (A and B) and space CD (A to B and B to A) for each exposure within a single measurement during the DP flow. Based on those measurements correlation between overlay determined with SEMCD and with standard overlay tools can be evaluated. Such correlation at different steps through the DP flow is investigated regarding the metrology type. Process correction models are evaluated with respect to the measurement type and the intra-field sampling.

  19. Field performance of littercrete (incinerator residue) in a bituminous base course. Final report June 1974-October 1980

    SciTech Connect

    Erdely, J.; Ledbetter, W.B.

    1981-09-01

    The use of incinerated residue as an aggregate in a bituminous base was studied. A bituminous base utilizing incinerated residue for its aggregate will be termed littercrete in this report. Test sections of an experimental hot mixed littercrete base and a conventional asphalt concrete base (termed control) were placed on a city street in Houston, Texas, and topped with a conventional wearing surface. This report presents the results from field observations and laboratory tests on field core samples during the fourth, fifth, and sixth years of in-service performance of the pavements. This report also evaluates the performance of the pavements during the entire six-year span of the study. Evaluation of the laboratory tests and field observations show that the littercrete is performing essentially the same as the conventional control section. The only distress that has occurred in the littercrete section is minor surface cracking. This cracking is confined to the conventional wearing surface and has not progressed through the littercrete base.

  20. The force field for imidazolium-based ionic liquids: Novel anions with polar residues

    NASA Astrophysics Data System (ADS)

    Fileti, Eudes Eterno; Chaban, Vitaly V.

    2015-07-01

    Many molecules can be converted into ions via relatively simple procedures. These ions can be combined into ionic liquids (ILs). We develop a new force field (FF) for the seven selected AAILs comprising 1-ethyl-3-methylimidazolium cation and amino acid anions with polar residues. All anions were obtained via deprotonation of carboxyl group in analogy with acetate anion. We account for peculiar interactions between the anion and the cation by fitting electrostatic potential for an ion pair, in contrast to isolated ions. Furthermore, we account for hydrogen bonds obtained via electronic structure consideration. The developed model fosters computational investigation of ionic liquids.

  1. Thermal input control and enhancement for laser based residual stress measurements using liquid temperature indicating coatings

    DOEpatents

    Pechersky, M.J.

    1999-07-06

    An improved method for measuring residual stress in a material is disclosed comprising the steps of applying a spot of temperature indicating coating to the surface to be studied, establishing a speckle pattern surrounds the spot of coating with a first laser then heating the spot of coating with a far infrared laser until the surface plastically deforms. Comparing the speckle patterns before and after deformation by subtracting one pattern from the other will produce a fringe pattern that serves as a visual and quantitative indication of the degree to which the plasticized surface responded to the stress during heating and enables calculation of the stress. 3 figs.

  2. Thermal input control and enhancement for laser based residual stress measurements using liquid temperature indicating coatings

    DOEpatents

    Pechersky, Martin J.

    1999-01-01

    An improved method for measuring residual stress in a material comprising the steps of applying a spot of temperature indicating coating to the surface to be studied, establishing a speckle pattern surrounds the spot of coating with a first laser then heating the spot of coating with a far infrared laser until the surface plastically deforms. Comparing the speckle patterns before and after deformation by subtracting one pattern from the other will produce a fringe pattern that serves as a visual and quantitative indication of the degree to which the plasticized surface responded to the stress during heating and enables calculation of the stress.

  3. Optimisation of recovery protocols for double-base smokeless powder residues analysed by total vaporisation (TV) SPME/GC-MS.

    PubMed

    Sauzier, Georgina; Bors, Dana; Ash, Jordan; Goodpaster, John V; Lewis, Simon W

    2016-09-01

    The investigation of explosive events requires appropriate evidential protocols to recover and preserve residues from the scene. In this study, a central composite design was used to determine statistically validated optimum recovery parameters for double-base smokeless powder residues on steel, analysed using total vaporisation (TV) SPME/GC-MS. It was found that maximum recovery was obtained using isopropanol-wetted swabs stored under refrigerated conditions, then extracted for 15min into acetone on the same day as sample collection. These parameters were applied to the recovery of post-blast residues deposited on steel witness surfaces following a PVC pipe bomb detonation, resulting in detection of all target components across the majority of samples. Higher overall recoveries were obtained from plates facing the sides of the device, consistent with the point of first failure occurring in the pipe body as observed in previous studies. The methodology employed here may be readily applied to a variety of other explosive compounds, and thus assist in establishing 'best practice' procedures for explosive investigations. PMID:27343617

  4. Diffraction dissociation at the LHC

    NASA Astrophysics Data System (ADS)

    Jenkovszky, László; Orava, Risto; Salii, Andrii

    2013-04-01

    We report on recent calculations of low missing mass single (SD) and double (DD) diffractive dissociation at LHC energies. The calculations are based on a dual-Regge model, dominated by a single Pomeron exchange. The diffractively excited states lie on the nucleon trajectory N*, appended by the isolated Roper resonance. Detailed predictions for the squared momentum transfer and missing mass dependence of the differential and integrated single-and double diffraction dissociation in the kinematical range of present and future LHC measurements are given.

  5. Diffraction dissociation at the LHC

    SciTech Connect

    Jenkovszky, Laszlo; Orava, Risto; Salii, Andrii

    2013-04-15

    We report on recent calculations of low missing mass single (SD) and double (DD) diffractive dissociation at LHC energies. The calculations are based on a dual-Regge model, dominated by a single Pomeron exchange. The diffractively excited states lie on the nucleon trajectory N*, appended by the isolated Roper resonance. Detailed predictions for the squared momentum transfer and missing mass dependence of the differential and integrated single-and double diffraction dissociation in the kinematical range of present and future LHC measurements are given.

  6. Rapid, in situ detection of cocaine residues based on paper spray ionization coupled with ion mobility spectrometry.

    PubMed

    Li, Ming; Zhang, Jingjing; Jiang, Jie; Zhang, Jing; Gao, Jing; Qiao, Xiaolin

    2014-04-01

    In this paper, a novel approach based on paper spray ionization coupled with ion mobility spectrometry (PSI-IMS) was developed for rapid, in situ detection of cocaine residues in liquid samples and on various surfaces (e.g. glass, marble, skin, wood, fingernails), without tedious sample pretreatment. The obvious advantages of PSI are its low cost, easy operation and simple configuration without using nebulizing gas or discharge gas. Compared with mass spectrometry, ion mobility spectrometry (IMS) takes advantage of its low cost, easy operation, and simple configuration without requiring a vacuum system. Therefore, IMS is a more congruous detection method for PSI in the case of rapid, in situ analysis. For the analysis of cocaine residues in liquid samples, dynamic responses from 5 μg mL(-1) to 200 μg mL(-1) with a linear coefficient (R(2)) of 0.992 were obtained. In this case, the limit of detection (LOD) was calculated to be 2 μg mL(-1) as signal to noise (S/N) was 3 with a relative standard deviation (RSD) of 6.5% for 11 measurements (n = 11). Cocaine residues on various surfaces such as metal, glass, marble, wood, skin, and fingernails were also directly analyzed before wiping the surfaces with a piece of paper. The LOD was calculated to be as low as 5 ng (S/N = 3, RSD = 6.3%, n = 11). This demonstrates the capability of the PSI-IMS method for direct detection of cocaine residues at scenes of cocaine administration. Our results show that PSI-IMS is a simple, sensitive, rapid and economical method for in situ detection of this illicit drug, which could help governments to combat drug abuse. PMID:24563903

  7. Undergraduate Experiment with Fractal Diffraction Gratings

    ERIC Educational Resources Information Center

    Monsoriu, Juan A.; Furlan, Walter D.; Pons, Amparo; Barreiro, Juan C.; Gimenez, Marcos H.

    2011-01-01

    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics…

  8. Robust Bessel-function-based method for determination of the (n,m) indices of single-walled carbon nanotubes by electron diffraction

    SciTech Connect

    Jiang Hua; Brown, David P.; Nasibulin, Albert G.; Kauppinen, Esko I.

    2006-07-15

    We report a calibration-free method for the determination of chiral indices (n,m) of single-walled carbon nanotubes from their electron diffraction patterns based on Bessel function analysis of the diffracted layer lines. An approach has been developed for confident identification of the orders of the Bessel functions from the intensity modulations of the diffraction layer lines, to which (n,m) are correlated. In particular, we critically evaluate the effect of nanotube inclination on the validity of the method and show that the layer lines governed by high-order Bessel functions tolerate higher tilt angles than those of low-order Bessel functions and thus are favored for (n,m) evaluation. The method is of particular significance in that it considerably enhances the precision of chiral indexing and makes possible the analysis of high-order Bessel functions, especially when EDPs are of relatively low pixel resolution. The technique can be extended to structural analysis of double-walled carbon nanotubes.

  9. Two glycosylase families diffusively scan DNA using a wedge residue to probe for and identify oxidatively damaged bases

    PubMed Central

    Nelson, Shane R.; Dunn, Andrew R.; Kathe, Scott D.; Warshaw, David M.; Wallace, Susan S.

    2014-01-01

    DNA glycosylases are enzymes that perform the initial steps of base excision repair, the principal repair mechanism that identifies and removes endogenous damages that occur in an organism’s DNA. We characterized the motion of single molecules of three bacterial glycosylases that recognize oxidized bases, Fpg, Nei, and Nth, as they scan for damages on tightropes of λ DNA. We find that all three enzymes use a key “wedge residue” to scan for damage because mutation of this residue to an alanine results in faster diffusion. Moreover, all three enzymes bind longer and diffuse more slowly on DNA that contains the damages they recognize and remove. Using a sliding window approach to measure diffusion constants and a simple chemomechanical simulation, we demonstrate that these enzymes diffuse along DNA, pausing momentarily to interrogate random bases, and when a damaged base is recognized, they stop to evert and excise it. PMID:24799677

  10. Life cycle assessment of energy self-sufficiency systems based on agricultural residues for organic arable farms.

    PubMed

    Kimming, M; Sundberg, C; Nordberg, A; Baky, A; Bernesson, S; Norén, O; Hansson, P-A

    2011-01-01

    The agricultural industry today consumes large amounts of fossil fuels. This study used consequential life cycle assessment (LCA) to analyse two potential energy self-sufficient systems for organic arable farms, based on agricultural residues. The analysis focused on energy balance, resource use and greenhouse gas (GHG) emissions. A scenario based on straw was found to require straw harvest from 25% of the farm area; 45% of the total energy produced from the straw was required for energy carrier production and GHG emissions were reduced by 9% compared with a fossil fuel-based reference scenario. In a scenario based on anaerobic digestion of ley, the corresponding figures were 13%, 24% and 35%. The final result was sensitive to assumptions regarding, e.g., soil carbon content and handling of by-products. PMID:20970998

  11. A HAUSDORFF-BASED NOE ASSIGNMENT ALGORITHM USING PROTEIN BACKBONE DETERMINED FROM RESIDUAL DIPOLAR COUPLINGS AND ROTAMER PATTERNS

    PubMed Central

    Zeng, Jianyang (Michael); Tripathy, Chittaranjan; Zhou, Pei; Donald, Bruce R.

    2008-01-01

    High-throughput structure determination based on solution Nuclear Magnetic Resonance (NMR) spectroscopy plays an important role in structural genomics. One of the main bottlenecks in NMR structure determination is the interpretation of NMR data to obtain a sufficient number of accurate distance restraints by assigning nuclear Overhauser effect (NOE) spectral peaks to pairs of protons. The difficulty in automated NOE assignment mainly lies in the ambiguities arising both from the resonance degeneracy of chemical shifts and from the uncertainty due to experimental errors in NOE peak positions. In this paper we present a novel NOE assignment algorithm, called HAusdorff-based NOE Assignment (HANA), that starts with a high-resolution protein backbone computed using only two residual dipolar couplings (RDCs) per residue37, 39, employs a Hausdorff-based pattern matching technique to deduce similarity between experimental and back-computed NOE spectra for each rotamer from a statistically diverse library, and drives the selection of optimal position-specific rotamers for filtering ambiguous NOE assignments. Our algorithm runs in time O(tn3 +tn log t), where t is the maximum number of rotamers per residue and n is the size of the protein. Application of our algorithm on biological NMR data for three proteins, namely, human ubiquitin, the zinc finger domain of the human DNA Y-polymerase Eta (pol η) and the human Set2-Rpb1 interacting domain (hSRI) demonstrates that our algorithm overcomes spectral noise to achieve more than 90% assignment accuracy. Additionally, the final structures calculated using our automated NOE assignments have backbone RMSD < 1.7 Å and all-heavy-atom RMSD < 2.5 Å from reference structures that were determined either by X-ray crystallography or traditional NMR approaches. These results show that our NOE assignment algorithm can be successfully applied to protein NMR spectra to obtain high-quality structures. PMID:19122773

  12. Synthesis and single crystal x-ray diffraction study of a Schiff base derived from 4-acylpyrazolone and 2-aminophenol

    SciTech Connect

    Sharma, Naresh; Kant, Rajni Gupta, Vivek K.; Jadeja, R. N.

    2014-04-24

    The title compound, (Z)-1-(3-chlorophenyl)-4[1((2hydroxyphenyl)amino)propylidene] -3-methyl-1H-pyrazol-5(4H)-one was synthesized by refluxing compound 1-(m-chlorophenyl)-3-methyl-4-propionyl-5-pyrazolone, with 2-aminophenol in ethanol. The compound crystallizes in the orthorhombic crystal system with space group Pca2{sub 1} having unit cell parameters: a = 26.2993(8), b = 7.0724(2) and c = 18.7170(5)Å. The structure contains two crystallographically independent molecules, A, and, B, in the asymmetric unit cell. The crystal structure was solved by direct method using single crystal X-ray diffraction data collected at room temperature and refined by full-matrix least-squares procedures to a final R- value of 0.049 for 5207 observed reflections.

  13. Dimorphism of RF3 ( R = La-Nd) crystals based on the data of X-ray diffraction studies

    NASA Astrophysics Data System (ADS)

    Bolotina, N. B.; Chernaya, T. S.; Verin, I. A.; Khrykina, O. N.; Sobolev, B. P.

    2016-01-01

    The ratio of two forms of tysonite in nominally pure single crystals of RF3 ( R = La-Nd) obtained from melts under identical conditions (the as-grown state) is studied for the first time by X-ray diffraction. Crystals of RF3 with R = La-Nd belong to the β-LaF3 structural type (space group Pbar 3c1, Z = 6) and form twins. Samples 0.2-0.4 in diameter contain inclusions of the high-temperature a form (space group P63/ mmc, Z = 2). It is shown that twinning and dimorphism of the RF3 crystals ( R = La-Nd) have a common structural basis.

  14. Synthesis and single crystal x-ray diffraction study of a Schiff base derived from 4-acylpyrazolone and 2-aminophenol

    NASA Astrophysics Data System (ADS)

    Sharma, Naresh; Jadeja, R. N.; Kant, Rajni; Gupta, Vivek K.

    2014-04-01

    The title compound, (Z)-1-(3-chlorophenyl)-4[1{(2hydroxyphenyl)amino}propylidene]-3-methyl-1H-pyrazol-5(4H)-one was synthesized by refluxing compound 1-(m-chlorophenyl)-3-methyl-4-propionyl-5-pyrazolone, with 2-aminophenol in ethanol. The compound crystallizes in the orthorhombic crystal system with space group Pca21 having unit cell parameters: a = 26.2993(8), b = 7.0724(2) and c = 18.7170(5)Å. The structure contains two crystallographically independent molecules, A, and, B, in the asymmetric unit cell. The crystal structure was solved by direct method using single crystal X-ray diffraction data collected at room temperature and refined by full-matrix least-squares procedures to a final R- value of 0.049 for 5207 observed reflections.

  15. Sand sources and transport pathways for the San Francisco Bay coastal system, based on X-ray diffraction mineralogy

    USGS Publications Warehouse

    Hein, James R.; Mizell, Kira; Barnard, Patrick L.

    2013-01-01

    The mineralogical compositions of 119 samples collected from throughout the San Francisco Bay coastal system, including bayfloor and seafloor, area beaches, cliff outcrops, and major drainages, were determined using X-ray diffraction (XRD). Comparison of the mineral concentrations and application of statistical cluster analysis of XRD spectra allowed for the determination of provenances and transport pathways. The use of XRD mineral identifications provides semi-quantitative compositions needed for comparisons of beach and offshore sands with potential cliff and river sources, but the innovative cluster analysis of XRD diffraction spectra provides a unique visualization of how groups of samples within the San Francisco Bay coastal system are related so that sand-sized sediment transport pathways can be inferred. The main vector for sediment transport as defined by the XRD analysis is from San Francisco Bay to the outer coast, where the sand then accumulates on the ebb tidal delta and also moves alongshore. This mineralogical link defines a critical pathway because large volumes of sediment have been removed from the Bay over the last century via channel dredging, aggregate mining, and borrow pit mining, with comparable volumes of erosion from the ebb tidal delta over the same period, in addition to high rates of shoreline retreat along the adjacent, open-coast beaches. Therefore, while previously only a temporal relationship was established, the transport pathway defined by mineralogical and geochemical tracers support the link between anthropogenic activities in the Bay and widespread erosion outside the Bay. The XRD results also establish the regional and local importance of sediment derived from cliff erosion, as well as both proximal and distal fluvial sources. This research is an important contribution to a broader provenance study aimed at identifying the driving forces for widespread geomorphic change in a heavily urbanized coastal-estuarine system.

  16. Monoclonal antibody-based immunoassays for cyprodinil residue analysis in QuEChERS-based fruit extracts.

    PubMed

    Esteve-Turrillas, Francesc A; Abad-Somovilla, Antonio; Quiñones-Reyes, Guillermo; Agulló, Consuelo; Mercader, Josep V; Abad-Fuentes, Antonio

    2015-11-15

    Cyprodinil is among the most common agrochemical residues found in highly perishable fruits, such as strawberries. In the present study, high-affinity monoclonal antibodies to this anilinopyrimidine fungicide were raised for the first time with the aim to produce valuable immunochemical analytical assays. Cyprodinil bioconjugates and the generated novel monoclonal antibodies were employed for sensitive competitive immunoassay development in two different formats. The limits of detection of the optimized assays were 20 and 30 ng L(-1) for the indirect and direct assay, respectively. Influence over assay parameters of different physicochemical factors was studied. Strawberry samples were extracted following the recommended QuEChERS procedure for pesticide residues in food, and analyzed by the optimized immunoassays. Recoveries and coefficients of variation from fortified samples were within standard values. In addition, the obtained immunochemical results with naturally contaminated samples were statistically comparable, according to Deming regression analysis, to those of a reference chromatographic method. PMID:25977060

  17. Water based microwave assisted extraction of thiamethoxam residues from vegetables and soil for determination by HPLC.

    PubMed

    Karmakar, Rajib; Singh, Shashi Bala; Kulshrestha, Gita

    2012-02-01

    A microwave assisted extraction (MAE) method for determination of thiamethoxam residues in vegetable and soil samples was standardized. Insecticide spiked vegetable and soil samples were extracted by MAE using water as an extraction solvent, cleaned up by solid phase extraction and analysed by high performance liquid chromatography on photodiode array detector. The recoveries of the insecticide from various vegetable (tomato, radish, brinjal, okra, French been, sugarbeet) and soil (sandy loam, silty clay loam, sandy clay loam, loamy sand) samples at 0.1 and 0.5 μg g(-1) spiking levels ranged from 79.8% to 86.2% and from 82.1% to 87.0%, respectively. The recoveries by MAE were comparable to those obtained by the conventional blender and shake-flask extraction techniques. The precision of the MAE method was demonstrated by relative standard deviations of <3% for the insecticide. PMID:22065124

  18. Cl app: android-based application program for monitoring the residue chlorine in water

    NASA Astrophysics Data System (ADS)

    Intaravanne, Yuttana; Sumriddetchkajorn, Sarun; Porntheeraphat, Supanit; Chaitavon, Kosom; Vuttivong, Sirajit

    2015-07-01

    A farmer usually uses a cheap chemical material called chlorine to destroy the cell structure of unwanted organisms and remove some plant effluents in a baby shrimp farm. A color changing of the reaction between chlorine and chemical indicator is used to monitor the residue chlorine in water before releasing a baby shrimp into a pond. To get rid of the error in color reading, our previous works showed how a smartphone can be functioned as a color reader for estimating the chlorine concentration in water. In this paper, we show the improvement of interior configuration of our prototype and the distribution to several baby shrimp farms. In the future, we plan to make it available worldwide through the online market as well as to develop more application programs for monitoring other chemical substances.

  19. Immunology-Based Techniques for the Detection of Veterinary Drug Residues in Foods

    NASA Astrophysics Data System (ADS)

    Reig, Milagro; Toldrá, Fidel

    Veterinary drugs are used in farm animals, via the feed or the drinking water, to prevent the outbreak of diseases or even for the treatment of diseases. However, the growth of animals may be promoted through the use of hormones and antibiotics. Depending on the type of residue and the application and washing conditions, these substances or its metabolites may remain in meat and other foods of animal origin and may cause adverse effects on consumers’ health. This is the main reason why its use is strictly regulated or even banned (case of the European Union) in different countries. Antibiotics typically used for growth promotion include chloramphenicol, nitrofurans, and enrofloxacin but others like sulphonamides, macrolides etc. may also be used (Reig & Toldrá, 2007).

  20. Electromagnetic diffraction efficiencies for plane reflection diffraction gratings

    NASA Technical Reports Server (NTRS)

    Marathay, A. S.; Shrode, T. E.

    1973-01-01

    Results are presented of research activities on holographic grating research. A large portion of this work was performed using rigorous vector diffraction theory, therefore, the necessary theory has been included in this report. The diffraction efficiency studies were continued using programs based on a rigorous theory. The simultaneous occurrence of high diffraction efficiencies and the phenomenon of double Wood's anomalies is demonstrated along with a graphic method for determining the necessary grating parameters. Also, an analytical solution for a grating profile that is perfectly blazed is obtained. The performance of the perfectly blazed grating profile is shown to be significantly better than grating profiles previously studied. Finally, a proposed method is described for the analysis of coarse echelle gratings using rigorous vector diffraction that is currently being developed.

  1. Modeling of residual stresses by HY-100 weldments

    SciTech Connect

    Zacharia, T.; Taljat, B.; Radhakrishnan, B.

    1997-02-01

    Residual stress distribution in a HY-100 steel disk, induced by GTA spot welding, was analyzed by finite element (FE) formulations and measured by neutron diffraction (ND). Computations used temperature- dependent thermophysical and mechanical properties. FE model predictions are in good agreement with ND data in far heat affected zone (HAZ) and in base metal. Predicted residual stresses in fusion zone and near HAZ were higher than those measured by ND. This discrepancy was attributed to microstructural changes and associated material properties in the HAZ and fusion zone due to phase transformations during the weld thermal cycle.

  2. Residual Stresses in LENS-Deposited AISI 410 Stainless Steel Plates

    SciTech Connect

    Wang, L; Felicellli, S D; Pratt, Phillip R

    2008-01-01

    The residual stress in thin plate components deposited by the laser engineered net shaping (LENS{reg_sign}) process was investigated experimentally and numerically. Neutron diffraction mapping was used to characterize the residual stress in LENS-deposited AISI 410 stainless steel thin wall plates. Using the commercial welding software SYSWELD, a thermo-mechanical three-dimensional finite element model was developed, which considers also the effect of metallurgical phase transformations. The model was employed to predict the temperature history and the residual stress field during the LENS process. Several simulations were performed with the geometry and process parameters that were used to build the experimental samples. The origin of the residual stress distribution is discussed based on the thermal histories of the samples, and the modeling results are compared with measurements obtained by neutron diffraction mapping.

  3. High power, diffraction limited picosecond oscillator based on Nd:GdVO4 bulk crystal with σ polarized in-band pumping.

    PubMed

    Lin, Hua; Guo, Jie; Gao, Peng; Yu, Hai; Liang, Xiaoyan

    2016-06-27

    We report on a high power passively mode-locked picosecond oscillator based on Nd:GdVO4 crystal with σ polarized in-band pumping. Thermal gradient and thermal aberration was greatly decreased with proposed configuration. Maximum output power of 37 W at 81 MHz repetition rate with 19.3 ps pulse duration was achieved directly from Nd:GdVO4 oscillator, corresponding to 51% optical efficiency. The oscillator maintained diffraction limited beam quality of M2 < 1.05 at different output coupling with pulse duration between 11.2 ps to 19.3 ps. PMID:27410558

  4. A single-spatial-mode semiconductor laser based on InAs/InGaAs quantum dots with a diffraction filter of optical modes

    SciTech Connect

    Gordeev, N. Yu. Novikov, I. I.; Kuznetsov, A. M.; Shernyakov, Yu. M.; Maximov, M. V.; Zhukov, A. E.; Chunareva, A. V.; Payusov, A. S.; Livshits, D. A.; Kovsh, A. R.

    2010-10-15

    The concept of a diffraction optical filter is used for prevention of high-order mode oscillation in a design of stripe laser diodes with an active region based on InAs/InGaAs quantum dots emitting in the 1.3-{mu}m wavelength range grown on GaAs substrates. Incorporation of such a filter made it possible to increase the width of the stripe and obtain an output power as high as 700 mW with retention of a single-spatial-mode character of lasing.

  5. High-power ({gt}0.9 W cw) diffraction-limited semiconductor laser based on a fiber Bragg grating external cavity

    SciTech Connect

    Cornwell, D.M. , Jr.; Thomas, H.J.

    1997-02-01

    We have developed a high-power ({gt}0.9 W cw) diffraction-limited semiconductor laser based on a tapered semiconductor optical amplifier using a fiber Bragg grating in an external cavity configuration. Frequency-selective feedback from the fiber grating is injected into the amplifier via direct butt coupling through a single mode fiber, resulting in a spectrally stable and narrow ({lt}0.3 nm) high-power laser for solid-state laser pumping, laser remote sensing, and optical communications. {copyright} {ital 1997 American Institute of Physics.}

  6. Pesticide residue analysis in cereal-based baby foods using multi-walled carbon nanotubes dispersive solid-phase extraction.

    PubMed

    González-Curbelo, Miguel Angel; Asensio-Ramos, María; Herrera-Herrera, Antonio V; Hernández-Borges, Javier

    2012-07-01

    In the present study, a new analytical method has been developed for the simultaneous quantification of 15 organophosphorus pesticides, including some of their metabolites, (disulfoton-sulfoxide, ethoprophos, cadusafos, dimethoate, terbufos, disulfoton, chlorpyrifos-methyl, malaoxon, fenitrothion, pirimiphos-methyl, malathion, chlorpyrifos, terbufos-sulfone, disulfoton-sulfone and fensulfothion) in three different types of commercial cereal-based baby foods. Dispersive solid-phase extraction (dSPE) with multi-walled carbon nanotubes (MWCNTs) was used together with gas chromatography with nitrogen phosphorus detection. Most favorable conditions involved a previous ultrasound-assisted extraction of the sample with acetonitrile containing formic acid. After evaporation of the extract and redissolution in water, a dSPE procedure was carried out with MWCNTs. The whole method was validated in terms of repeatability, linearity, precision and accuracy and matrix effect was also evaluated. Absolute recoveries were in the range 64-105 % with relative standard deviation values below 7.6 %. Limits of quantification achieved ranged from 0.31 to 5.50 μg/kg, which were lower than the European Union maximum residue limits for pesticide residues in cereal-based baby foods. PMID:22623047

  7. A MOTIF-BASED METHOD FOR PREDICTING INTERFACIAL RESIDUES IN BOTH THE RNA AND PROTEIN COMPONENTS OF PROTEIN-RNA COMPLEXES

    PubMed Central

    MANN, CARLA M.; DOBBS, DRENA

    2015-01-01

    Efforts to predict interfacial residues in protein-RNA complexes have largely focused on predicting RNA-binding residues in proteins. Computational methods for predicting protein-binding residues in RNA sequences, however, are a problem that has received relatively little attention to date. Although the value of sequence motifs for classifying and annotating protein sequences is well established, sequence motifs have not been widely applied to predicting interfacial residues in macromolecular complexes. Here, we propose a novel sequence motif-based method for “partner-specific” interfacial residue prediction. Given a specific protein-RNA pair, the goal is to simultaneously predict RNA binding residues in the protein sequence and protein-binding residues in the RNA sequence. In 5-fold cross validation experiments, our method, PS-PRIP, achieved 92% Specificity and 61% Sensitivity, with a Matthews correlation coefficient (MCC) of 0.58 in predicting RNA-binding sites in proteins. The method achieved 69% Specificity and 75% Sensitivity, but with a low MCC of 0.13 in predicting protein binding sites in RNAs. Similar performance results were obtained when PS-PRIP was tested on two independent “blind” datasets of experimentally validated protein-RNA interactions, suggesting the method should be widely applicable and valuable for identifying potential interfacial residues in protein-RNA complexes for which structural information is not available. The PS-PRIP webserver and datasets are available at: http://pridb.gdcb.iastate.edu/PSPRIP/. PMID:26776208

  8. EMCCD-Based Detector for Time-Resolved X-Ray Diffraction and Scattering Studies of Biological Specimens

    SciTech Connect

    Nagarkar, Vivek V.; Singh, Bipin; Guo, Liang; Gore, David; Irving, Thomas C.

    2007-11-26

    Third generation synchrotron sources such as the Advanced Photon Source (APS), Argonne, IL, are outstanding tools for X-ray diffraction and scattering studies of non-crystalline biological materials. However, these studies are hindered by the lack of detectors that provide multiple frames of detailed structural information on the millisecond time scale at the required high spatial resolution, and large active areas. Here we report the development of a cost effective detector for time-resolved small angle X-ray scattering (SAXS) using a cooled, fiberoptically coupled electron multiplying CCD (EMCCD), whose internal gain is selectable in real-time. The performance of the detector was evaluated using a Gd{sub 2}O{sub 2}S:Tb scintillator and was compared to a current state-of-the-art SAXS detector developed at Brandeis University. We also report our first results on the fabrication of a novel, microcolumnar, ZnSe(Te) scintillator that has a promise to provide very high emission efficiency of over 100,000 photons/MeV, high spatial resolution in excess of 10 lp/mm, and a fast decay time with virtually absent afterglow. Development of this scintillator will complement the EMCCD design, permitting the advances of a high spatial and temporal resolution, large area detector for time resolved applications.

  9. In situ synchrotron X-ray diffraction analysis of deformation behaviour in Ti-Ni-based thin films.

    PubMed

    Wang, Hong; Sun, Guangai; Wang, Xiaolin; Chen, Bo; Zu, Xiaotao; Liu, Yanping; Li, Liangbin; Pan, Guoqiang; Sheng, Liusi; Liu, Yaoguang; Fu, Yong Qing

    2015-01-01

    Deformation mechanisms of as-deposited and post-annealed Ti50.2Ni49.6, Ti50.3Ni46.2Cu3.5 and Ti48.5Ni40.8Cu7.5 thin films were investigated using the in situ synchrotron X-ray diffraction technique. Results showed that initial crystalline phases determined the deformation mechanisms of all the films during tensile loading. For the films dominated by monoclinic martensites (B19'), tensile stress induced the detwinning of 〈011〉 type-II twins and resulted in the preferred orientations of (002)B19' parallel to the loading direction (∥ LD) and (020)B19' perpendicular to the LD (⊥ LD). For the films dominated by austenite (B2), the austenite directly transformed into martensitic variants (B19') with preferred orientations of (002)B19' ∥ LD and (020)B19' ⊥ LD. For the Ti50.3Ni46.2Cu3.5 and Ti48.1Ni40.8Cu7.5 films, martensitic transformation temperatures decreased apparently after post-annealing because of the large thermal stress generated in the films due to the large differences in thermal expansion coefficients between the film and substrate. PMID:25537586

  10. Polylactide-based renewable composites from natural products residues by encapsulated film bag: characterization and biodegradability.

    PubMed

    Wu, Chin-San

    2012-09-01

    In the present study, the biodegradability, morphology, and mechanical properties of composite materials consisting of acrylic acid-grafted polylactide (PLA-g-AA) and natural products residues (corn starch, CS) were evaluated. Composites containing acrylic acid-grafted PLA (PLA-g-AA/CS) exhibited noticeably superior mechanical properties due to their greater compatibility with CS compared with PLA/CS. The feasibility of using PLA-g-AA/CS as a film bag material to facilitate the controlled release of an encapsulated phosphate-solubilizing bacterium (PSB) Burkholderia cepacia as a fertilizer use promoter was then evaluated. For purposes of comparison and accurate characterization, a PLA film bag was also assessed. The results showed that the bacterium completely degraded both the PLA and the PLA-g-AA/CS composite film bags, resulting in cell release. The PLA-g-AA/CS (20 wt%) film bags were more biodegradable than those made of PLA, and displayed a higher loss of molecular weight and intrinsic viscosity, indicating a strong connection between these characteristics and biodegradability. PMID:24751080

  11. Pesticide residues in food-based proficiency test materials, spiking values versus consensus assigned values.

    PubMed

    Sykes, Mark; Thompson, Michael; Reynolds, Stewart

    2013-05-01

    We examine the differences among the three estimates of the true value of the measurand derived from routine proficiency testing of laboratories analyzing foodstuffs for pesticide residues. The three values are (i) the spike level (Sp), (ii) the mean result found by the laboratory conducting the test for sufficient homogeneity (Ho), and (iii) the consensus of the participants' results used as the assigned value (AV) in converting results into z scores. Data amounting to 205 examples were collected from successive rounds of three series of proficiency tests from the Food Analysis Performance Assessment Scheme (FAPAS): namely, series 05 (fats, oils, and animal products), series 09 (cereals and their products), and series 19 (fruits, vegetables, and their products). Irrespective of the class of test material, we found that the means of AV and Ho were almost identical, while the value of Sp was systematically higher than AV by a factor of 1.22. The dispersion of the individual values of both ratios, Ho/AV and Sp/AV, was examined by analysis of variance. A small part of the variance was attributed to the series, but a greater part, about 40%, was attributed to individual rounds within series. We discovered no connection between the ratios and the chemistry of the analyte. PMID:23631620

  12. X-Ray Diffraction.

    ERIC Educational Resources Information Center

    Smith, D. K.; Smith, K. L.

    1980-01-01

    Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

  13. Validation of a QuEChERS-based gas chromatographic method for analysis of pesticide residues in Cassia angustifolia (senna).

    PubMed

    Tripathy, Vandana; Saha, Ajoy; Patel, Dilipkumar J; Basak, B B; Shah, Paresh G; Kumar, Jitendra

    2016-08-01

    A simple multi-residue method based on modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) approach was established for the determination of 17 organochlorine (OC), 15 organophosphorous (OP) and 7 synthetic pyrethroid (SP) pesticides in an economically important medicinal plant of India, Senna (Cassia angustifolia), by gas chromatography coupled to electron capture and flame thermionic detectors (GC/ECD/FTD) and confirmation of residues was done on gas chromatograph coupled with mass spectrometry (GC-MS). The developed method was validated by testing the following parameters: linearity, limit of detection (LOD), limit of quantification (LOQ), matrix effect, accuracy-precision and measurement uncertainty; the validation study clearly demonstrated the suitability of the method for its intended application. All pesticides showed good linearity in the range 0.01-1.0 μg mL(-1) for OCs and OPs and 0.05-2.5 μg mL(-1) for SPs with correlation coefficients higher than 0.98. The method gave good recoveries for most of the pesticides (70-120%) with intra-day and inter-day precision < 20% in most of the cases. The limits of detection varied from 0.003 to 0.03 mg kg(-1), and the LOQs were determined as 0.01-0.049 mg kg(-1). The expanded uncertainties were <30%, which was distinctively less than a maximum default value of ±50%. The proposed method was successfully applied to determine pesticide residues in 12 commercial market samples obtained from different locations in India. PMID:27153296

  14. Numerical Parametric Analysis of Bond Coat Thickness Effect on Residual Stresses in Zirconia-Based Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Abbas, Musharaf; Hasham, Hasan Junaid; Baig, Yasir

    2016-02-01

    Numerical-based finite element investigation has been conducted to explain the effect of bond coat thickness on stress distribution in traditional and nanostructured yttria-stabilized zirconia (YSZ)-based thermal barrier coatings (TBC). Stress components have been determined to quantitatively analyze the mechanical response of both kinds of coatings under the thermal shock effect. It has been found that maximum radial tensile and compressive stresses that exist at thermally grown oxide (TGO)/bond coat interface and within TGO respectively decrease with an increase in bond coat thickness. Effect of bond coat thickness on axial tensile stresses is not significant. However, axial compressive stresses that exist at the edge of the specimen near bond coat/substrate interface decrease appreciably with the increase in bond coat thickness. Residual stress profile as a function of bond coat thickness is further explained for comparative analysis of both coatings to draw some useful conclusions helpful in failure studies of TBCs.

  15. Comparison of risk-based versus random sampling in the monitoring of antimicrobial residues in Danish finishing pigs.

    PubMed

    Alban, Lis; Rugbjerg, Helene; Petersen, Jesper Valentin; Nielsen, Liza Rosenbaum

    2016-06-01

    In Denmark, a monitoring program for residues of antimicrobials in pork is in place involving annual testing of around 20,000 samples from finishing pigs corresponding to 0.1% of the animals slaughtered. Annually, zero to two samples are found above the maximum residue limit. Both authorities and industry have expressed interest in adjusting the monitoring to a risk-based system. The objective of this study was to assess the opportunities and consequences of the monitoring considering: 1) replacing the current bioassay with high-performance liquid chromatography-mass spectrometry (HPLC LC-MS/MS), 2) replacing kidney with muscles as sample matrix, and 3) using indicators to identify high-risk (HR) herds and increase sampling intensity in these herds, lowering sampling in the low-risk (LR) herds, while aiming at continued detection of similar numbers of test-positives at the lowest possible costs. A state-of-the-art stochastic scenario tree modelling approach including economic evaluation of different model outcomes was used. A total of six scenarios were run for penicillin and tetracycline, respectively. Relevant information was obtained through the literature, statistical analysis of existing data as well as consultations with laboratory and slaughterhouse experts. Abattoir recordings of chronic pleuritis were used as an indicator for finishing pig herds (HR=within-herd prevalence>40%). Such risk-based monitoring would have to use muscles and not kidneys, because of logistic challenges in identifying and storing of plucks until testing. However, the bioassay cannot be used on muscle tissue due to low sensitivity for tetracyclines. Different plausible combinations of sample sizes were also modelled. The HPLC LC-MS/MS method detected the same number of cases compared to the bioassay when kidney was used as matrix. HPLC LC-MS/MS has a higher sensitivity when used on muscle but it is almost twice as costly as the bioassay. Risk-based sampling resulted in detection of

  16. Multiple-trait genome-wide association study based on principal component analysis for residual covariance matrix

    PubMed Central

    Gao, H; Zhang, T; Wu, Y; Wu, Y; Jiang, L; Zhan, J; Li, J; Yang, R

    2014-01-01

    Given the drawbacks of implementing multivariate analysis for mapping multiple traits in genome-wide association study (GWAS), principal component analysis (PCA) has been widely used to generate independent ‘super traits' from the original multivariate phenotypic traits for the univariate analysis. However, parameter estimates in this framework may not be the same as those from the joint analysis of all traits, leading to spurious linkage results. In this paper, we propose to perform the PCA for residual covariance matrix instead of the phenotypical covariance matrix, based on which multiple traits are transformed to a group of pseudo principal components. The PCA for residual covariance matrix allows analyzing each pseudo principal component separately. In addition, all parameter estimates are equivalent to those obtained from the joint multivariate analysis under a linear transformation. However, a fast least absolute shrinkage and selection operator (LASSO) for estimating the sparse oversaturated genetic model greatly reduces the computational costs of this procedure. Extensive simulations show statistical and computational efficiencies of the proposed method. We illustrate this method in a GWAS for 20 slaughtering traits and meat quality traits in beef cattle. PMID:24984606

  17. Adaptive scene-based correction algorithm for removal of residual fixed pattern noise in microgrid image data

    NASA Astrophysics Data System (ADS)

    Ratliff, Bradley M.; LeMaster, Daniel A.

    2012-06-01

    Pixel-to-pixel response nonuniformity is a common problem that affects nearly all focal plane array sensors. This results in a frame-to-frame fixed pattern noise (FPN) that causes an overall degradation in collected data. FPN is often compensated for through the use of blackbody calibration procedures; however, FPN is a particularly challenging problem because the detector responsivities drift relative to one another in time, requiring that the sensor be recalibrated periodically. The calibration process is obstructive to sensor operation and is therefore only performed at discrete intervals in time. Thus, any drift that occurs between calibrations (along with error in the calibration sources themselves) causes varying levels of residual calibration error to be present in the data at all times. Polarimetric microgrid sensors are particularly sensitive to FPN due to the spatial differencing involved in estimating the Stokes vector images. While many techniques exist in the literature to estimate FPN for conventional video sensors, few have been proposed to address the problem in microgrid imaging sensors. Here we present a scene-based nonuniformity correction technique for microgrid sensors that is able to reduce residual fixed pattern noise while preserving radiometry under a wide range of conditions. The algorithm requires a low number of temporal data samples to estimate the spatial nonuniformity and is computationally efficient. We demonstrate the algorithm's performance using real data from the AFRL PIRATE and University of Arizona LWIR microgrid sensors.

  18. Analysis of Residual Performance of UD-CMC in Oxidation Atmosphere Based on a Notch-like Oxidation Model

    NASA Astrophysics Data System (ADS)

    Sun, Zhigang; Shao, Hongyan; Chen, Xihui; Song, Yingdong

    2016-06-01

    Experimental observation indicates unidirectional ceramic matrix composites (UD-CMC) will react with oxygen under high-temperature atmosphere inhomogeneous. As a result of the oxidation on fiber surface, fiber shows a notch-like morphology. Stress concentration near by the fiber notch causes a decline of the mechanic performance of UD-CMC. In this paper, the change rule of fiber notch depth is fitted by circular function. Based on this formula the residual strength and modulus of UD-CMC under 400-900 °C atmosphere are derived. The mechanical performance of unidirectional C/SiC composite is simulated by finite element method. The stress distribution of fiber, matrix and interface are obtained. The residual properties of unidirectional C/SiC composite are predicted by theoretical method and finite element method. And the predicting results are compared with the experiment data. The predicting results show a good accordance with experiment data, which means the notch-like oxidation model can analyze the mechanic performance of UD-CMC efficiently.

  19. Insights Into Ice Nucleation From Real-Time, Single-Particle Aircraft-Based Measurements of Ice Crystal Residues

    NASA Astrophysics Data System (ADS)

    Pratt, K. A.; Demott, P. J.; Twohy, C. H.; Prather, K. A.

    2008-12-01

    The overall impacts of aerosol particles on cloud formation and properties represent the largest single source of uncertainty in predicting future climate change. In particular, the ability of aerosols to act as ice nuclei (IN) has large consequences on the hydrological cycle since much precipitation derives from the ice phase. During the flight-based 2007 Ice in Clouds Experiment - Layer Clouds (ICE-L) on the NSF/NCAR C- 130, individual cloud droplets and ice crystals were directly sampled and characterized in real-time using a counterflow virtual impactor (CVI) in series with the aircraft aerosol time-of-flight mass spectrometer (A- ATOFMS) and continuous-flow diffusion chamber (CFDC). Parallel measurements by the A-ATOFMS and CFDC allowed the size-resolved chemistry of cloud residues, including both refractory and non-refractory species, to be examined and correlated with the ice nucleation properties of the clouds. Through comparison with cloud probes, the mixing state of liquid, mixed, and ice phase residues were examined separately. During the study, orographic wave clouds were sampled over Wyoming; mineral dust, biological material, biomass burning particles, soot, and organic carbon were all found within the studied clouds. A comparison of the aerosol chemistry associated with periods of differing quantities of ice nuclei present are being examined to further increase our understanding of ice nucleation relation to aerosol composition.

  20. Characterization of flue gas cleaning residues from European solid waste incinerators: assessment of various Ca-based sorbent processes.

    PubMed

    Bodénan, F; Deniard, Ph

    2003-05-01

    For the first time, a set of samples of European flue gas cleaning residues, mainly from the incineration of municipal solid waste (MSW), has undergone a mineralogical study. The residues are the result of the neutralization of acid flue gases by lime, the predominant method adopted in Europe, using dry and semi-dry washing processes. The study protocol combines physico-chemical analytical techniques (XRD, FTIR, DSC/TGA) and global chemical analysis enabling identification of the chemical composition of the main constituents, particularly chlorinated Ca-based phases, as well as establishment of modal distributions of the represented phases, both crystalline and amorphous. The samples are slightly hydrated and values vary for trapped Cl, S and even CO(2). The main crystalline phases are NaCl, KCl, CaSO(4), CaCO(3), Ca(OH)(2) and calcium hydroxychloride CaOHCl. CaOHCl is the main chlorine phase, regardless of the treatment process, filtration mode, and specific surface of the Ca-based sorbent. This phase develops during neutralization of HCl by excess lime present according to the reaction Ca(OH)(2)+HCl-->CaOHCl+H(2)O, to the detriment of a complete yield involving the two lime OH groups with formation of CaCl(2).2H(2)O. In addition, it seems that gas temperatures above 150 degrees C increase competition between lime-based neutralization of HCl, SO(2) acid flue gases and CO(2) trapping, thus reducing washing efficiency. PMID:12597999

  1. Chemometric classification of gunshot residues based on energy dispersive X-ray microanalysis and inductively coupled plasma analysis with mass-spectrometric detection

    NASA Astrophysics Data System (ADS)

    Steffen, S.; Otto, M.; Niewoehner, L.; Barth, M.; Bro¿żek-Mucha, Z.; Biegstraaten, J.; Horváth, R.

    2007-09-01

    A gunshot residue sample that was collected from an object or a suspected person is automatically searched for gunshot residue relevant particles. Particle data (such as size, morphology, position on the sample for manual relocation, etc.) as well as the corresponding X-ray spectra and images are stored. According to these data, particles are classified by the analysis-software into different groups: 'gunshot residue characteristic', 'consistent with gunshot residue' and environmental particles, respectively. Potential gunshot residue particles are manually checked and - if necessary - confirmed by the operating forensic scientist. As there are continuing developments on the ammunition market worldwide, it becomes more and more difficult to assign a detected particle to a particular ammunition brand. As well, the differentiation towards environmental particles similar to gunshot residue is getting more complex. To keep external conditions unchanged, gunshot residue particles were collected using a specially designed shooting device for the test shots revealing defined shooting distances between the weapon's muzzle and the target. The data obtained as X-ray spectra of a number of particles (3000 per ammunition brand) were reduced by Fast Fourier Transformation and subjected to a chemometric evaluation by means of regularized discriminant analysis. In addition to the scanning electron microscopy in combination with energy dispersive X-ray microanalysis results, isotope ratio measurements based on inductively coupled plasma analysis with mass-spectrometric detection were carried out to provide a supplementary feature for an even lower risk of misclassification.

  2. DR_bind: a web server for predicting DNA-binding residues from the protein structure based on electrostatics, evolution and geometry

    PubMed Central

    Chen, Yao Chi; Wright, Jon D.; Lim, Carmay

    2012-01-01

    DR_bind is a web server that automatically predicts DNA-binding residues, given the respective protein structure based on (i) electrostatics, (ii) evolution and (iii) geometry. In contrast to machine-learning methods, DR_bind does not require a training data set or any parameters. It predicts DNA-binding residues by detecting a cluster of conserved, solvent-accessible residues that are electrostatically stabilized upon mutation to Asp−/Glu−. The server requires as input the DNA-binding protein structure in PDB format and outputs a downloadable text file of the predicted DNA-binding residues, a 3D visualization of the predicted residues highlighted in the given protein structure, and a downloadable PyMol script for visualization of the results. Calibration on 83 and 55 non-redundant DNA-bound and DNA-free protein structures yielded a DNA-binding residue prediction accuracy/precision of 90/47% and 88/42%, respectively. Since DR_bind does not require any training using protein–DNA complex structures, it may predict DNA-binding residues in novel structures of DNA-binding proteins resulting from structural genomics projects with no conservation data. The DR_bind server is freely available with no login requirement at http://dnasite.limlab.ibms.sinica.edu.tw. PMID:22661576

  3. Allergic effects of the residual monomer used in denture base acrylic resins

    PubMed Central

    Rashid, Haroon; Sheikh, Zeeshan; Vohra, Fahim

    2015-01-01

    Denture base resins are extensively used in dentistry for a variety of purposes. These materials can be classified as chemical, heat, light, and microwave polymerization materials depending upon the factor which starts the polymerization reaction. Their applications include use during denture base construction, relining existing dentures, and for fabrication of orthodontic removable appliances. There have been increased concerns regarding the safe clinical application of these materials as their biodegradation in the oral environment leads to harmful effects. Along with local side effects, the materials have certain occupational hazards, and numerous studies can be found in the literature mentioning those. The purpose of this article is to outline the cytotoxic consequences of denture base acrylic resins and clinical recommendations for their use. PMID:26929705

  4. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming.

    PubMed

    Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A

    2016-03-01

    In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/. PMID:26756402

  5. Pharmacokinetic, residue and irritation aspects of chloramphenicol sodium succinate and a chloramphenicol base formulation following intramuscular administration to ruminants.

    PubMed

    Nouws, J F; Vree, T B; Holtkamp, J; Baakman, M; Driessens, F; Guelen, P J

    1986-07-01

    The disposition of chloramphenicol (CAP) and of its glucuronide metabolite in plasma and milk was studied following a single intramuscular injection of a chloramphenicol base formulation (Amicol Forte; product A) and of chloramphenicol sodium succinate (product B) to dairy cows. The dose applied of both formulations was equivalent to 50 mg CAP base/kg body weight. The HPLC determined CAP concentrations were microbiologically active. Product A revealed 30% higher plasma CAP peak concentrations (13.0 vs 9.0 micrograms/ml) and 36% larger areas under the plasma concentration-time curves than product B, whereas their absorption and elimination half-lives were of the same order of magnitude. In the onset phase (during 4 h p.i.) unhydrolysed CAP sodium succinate could be detected in plasma and the glucuronide fraction was 26% of the parent drug. After 25 h p.i. the glucuronide fraction equalled that of the parent drug. The maximum CAP concentration in milk was for product B equal to, and for product A 80% of, the CAP plasma concentration. In milk no chloramphenicol glucuronide metabolites could be detected. HPLC methods for detecting ultra-trace CAP concentrations in edible tissues were developed by the employment of extraction with or without a clean-up procedure. Seven days after i.m. administration of product A and B to calves, the CAP residue concentrations in the kidney, liver, and muscle were less than 2 nanogram/g tissue. Traces of CAP residues could be still found at the injection site and in the urine. Chloramphenicol sodium succinate (product B) caused extensive tissue irritation at the injection site, while in the case of product A the irritation was limited.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3750804

  6. Multilayer diffraction grating

    DOEpatents

    Barbee, Jr., Troy W.

    1990-01-01

    This invention is for a reflection diffraction grating that functions at X-ray to VUV wavelengths and at normal angles of incidence. The novel grating is comprised of a laminar grating of period D with flat-topped grating bars. A multiplicity of layered synthetic microstructures, of period d and comprised of alternating flat layers of two different materials, are disposed on the tops of the grating bars of the laminar grating. In another embodiment of the grating, a second multiplicity of layered synthetic microstructures are also disposed on the flat faces, of the base of the grating, between the bars. D is in the approximate range from 3,000 to 50,000 Angstroms, but d is in the approximate range from 10 to 400 Angstroms. The laminar grating and the layered microstructures cooperatively interact to provide many novel and beneficial instrumentational advantages.

  7. Multilayer diffraction grating

    DOEpatents

    Barbee, T.W. Jr.

    1990-04-10

    This invention is for a reflection diffraction grating that functions at X-ray to VUV wavelengths and at normal angles of incidence. The novel grating is comprised of a laminar grating of period D with flat-topped grating bars. A multiplicity of layered synthetic microstructures, of period d and comprised of alternating flat layers of two different materials, are disposed on the tops of the grating bars of the laminar grating. In another embodiment of the grating, a second multiplicity of layered synthetic microstructures are also disposed on the flat faces, of the base of the grating, between the bars. D is in the approximate range from 3,000 to 50,000 Angstroms, but d is in the approximate range from 10 to 400 Angstroms. The laminar grating and the layered microstructures cooperatively interact to provide many novel and beneficial instrumentational advantages. 2 figs.

  8. Elemental and mineralogical study of earth-based pigments using particle induced X-ray emission and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Nel, P.; Lynch, P. A.; Laird, J. S.; Casey, H. M.; Goodall, L. J.; Ryan, C. G.; Sloggett, R. J.

    2010-07-01

    Artwork and precious artefacts demand non-destructive analytical methodologies for art authentication, attribution and provenance assessment. However, structural and chemical characterisation represents a challenging problem with existing analytical techniques. A recent authentication case based on an Australian Aboriginal artwork, indicate there is substantial benefit in the ability of particle induced X-ray emission (PIXE), coupled with dynamic analysis (DA) to characterise pigments through trace element analysis. However, this information alone is insufficient for characterising the mineralogical residence of trace elements. For this reason a combined methodology based on PIXE and X-ray diffraction (XRD) has been performed to explore the benefits of a more comprehensive data set. Many Aboriginal paintings and artefacts are predominantly earth pigment based. This makes these cultural heritage materials an ideal case study for testing the above combined methodological approach on earth-based pigments. Samples of synthetic and naturally occurring earth-based pigments were obtained from a range of sources, which include Indigenous communities within Australia's Kimberley region. PIXE analyses using a 3 MeV focussed proton beam at the CSIRO nuclear microprobe, as well as laboratory-based XRD was carried out on the above samples. Elemental signature spectra as well as mineralogical data were used to assess issues regarding synthetic and naturally occurring earth pigments with the ultimate aim of establishing provenance.

  9. Egg shell and yolk quality characteristics of layers fed with sugarcane press residue in soya and fish based diets

    PubMed Central

    Suma, N.; Reddy, B. S. Venkatarami; Gloridoss, R. G.; Prabhu, T. M.; Kumar, C. Basavanta; Suresh, B. N.; Shilpa, V. T.

    2015-01-01

    Aim: Sugarcane press residue (SPR), a by-product of sugarcane industry, which is rich in inorganic salts was assessed at different levels in both soya based and fish based diets of layers for egg shell and yolk quality characteristics. Materials and Methods: SPR was incorporated in 32-week-old white leghorn layer diets at 0%, 5%, 10% and 15% either in the soya based or fish based diets to form T1 to T8 diets, respectively. Each diet was offered to five replicates of four laying hens each constituting a total of one sixty birds kept for 84 days under colony cages. Results: Mean egg shell thickness obtained from eggs of experimental hens measured was 0.342, 0.329, 0.320, 0.322, 0.319, 0.332, 0.328 and 0.336 mm in T1 through T8 groups, respectively. About the main factor effects, both showed non-significant results. Similarly, influence of different treatment diets, in imparting colour to the yolks, was found to be non-significant (p>0.05) at different 28-day time intervals. Further, the average yolk index values ranged non-significantly from 0.360 (T6) to 0.383 (T4). Conclusion: The SPR can be incorporated into layer diet as a source of inorganic as well as organic nutrients without affecting its egg quality characteristics. PMID:27047079

  10. Electromagnetic diffraction efficiencies for plane reflection diffraction gratings

    NASA Technical Reports Server (NTRS)

    Marathay, A. S.; Shrode, T. E.

    1974-01-01

    The theory and computer programs, based on electromagnetic theory, for the analysis and design of echelle gratings were developed. The gratings are designed for instruments that operate in the ultraviolet portion of the spectrum. The theory was developed so that the resulting computer programs will be able to analyze deep (up to 30 wavelengths) gratings by including as many as 100 real or homogeneous diffraction orders. The program calculates the complex amplitude coefficient for each of the diffracted orders. A check on the numerical method used to solve the integral equations is provided by a conservation of energy calculation.

  11. Risk assessment of the cumulative acute exposure of Hungarian population to organophosphorus pesticide residues with regard to consumers of plant based foods.

    PubMed

    Zentai, Andrea; Szabó, István J; Kerekes, Kata; Ambrus, Árpád

    2016-03-01

    Based on the Hungarian pesticide residues monitoring data of the last five years and the consumption data collected within a 3-day dietary record survey in 2009 (more than 2 million pesticide residue results and almost 5000, 0-101-year-old consumers 3 non-consecutive-day personal fruit and vegetable consumption data), the cumulative acute exposure of organophosphorus pesticide residues was evaluated. The relative potency factor approach was applied, with acephate chosen as index compound. According to our conservative calculation method, applying the measured residues only, the 99.95% of the 99th percentiles of calculated daily intakes was at or below 87 μg/kgbwday, indicating that the cumulative acute exposure of the whole Hungarian population (including all age classes) to organophosphorus compounds was not a health concern. PMID:26807885

  12. Diffraction efficiency analysis for multi-level diffractive optical elements

    SciTech Connect

    Erteza, I.A.

    1995-11-01

    Passive optical components can be broken down into two main groups: Refractive elements and diffractive elements. With recent advances in manufacturing technologies, diffractive optical elements are becoming increasingly more prevalent in optical systems. It is therefore important to be able to understand and model the behavior of these elements. In this report, we present a thorough analysis of a completely general diffractive optical element (DOE). The main goal of the analysis is to understand the diffraction efficiency and power distribution of the various modes affected by the DOE. This is critical to understanding cross talk and power issues when these elements are used in actual systems. As mentioned, the model is based on a completely general scenario for a DOE. This allows the user to specify the details to model a wide variety of diffractive elements. The analysis is implemented straightforwardly in Mathematica. This report includes the development of the analysis, the Mathematica implementation of the model and several examples using the Mathematical analysis tool. It is intended that this tool be a building block for more specialized analyses.

  13. Web-Based Intervention in Mindfulness Meditation for Reducing Residual Depressive Symptoms and Relapse Prophylaxis: A Qualitative Study

    PubMed Central

    2014-01-01

    Background Mindful Mood Balance (MMB) is a Web-based intervention designed to treat residual depressive symptoms and prevent relapse. MMB was designed to deliver the core concepts of mindfulness-based cognitive therapy (MBCT), a group treatment, which, despite its strong evidence base, faces a number of dissemination challenges. Objective The present study is a qualitative investigation of participants’ experiences with MMB. Methods Qualitative content analysis was conducted via 38 exit interviews with MMB participants. Study inclusion required a current PHQ-9 (Patient Health Questionnaire) score ≤12 and lifetime history ≥1 major depressive episode. Feedback was obtained on specific website components, program content, and administration as well as skills learned. Results Codes were assigned to interview responses and organized into four main themes: MBCT Web content, MBCT Web-based group process, home practice, and evidence of concept comprehension. Within these four areas, participants highlighted the advantages and obstacles of translating and delivering MBCT in a Web-based format. Adding increased support was suggested for troubleshooting session content as well as managing time challenges for completing home mindfulness practice. Participants endorsed developing affect regulation skills and identified several advantages to Web-based delivery including flexibility, reduced cost, and time commitment. Conclusions These findings support the viability of providing MBCT online and are consistent with prior qualitative accounts derived from in-person MBCT groups. While there is certainly room for innovation in the domains of program support and engagement, the high levels of participant satisfaction indicated that MMB can significantly increase access to evidence-based psychological treatments for sub-threshold symptoms of unipolar affective disorder. PMID:24662625

  14. Harmonic diffractive lenses

    SciTech Connect

    Sweeney, D.W.; Sommargren, G.E.

    1995-05-10

    The harmonic diffractive lens is a diffractive imaging lens for which the optical path-length transition between adjacent facets is an integer multiple {ital m} of the design wavelength {lambda}{sub 0}. The total lens thickness in air is {ital m}{lambda}{sub 0}/({ital n} {minus} 1), which is {ital m} times thicker than the so-called modulo 2{pi} diffractive lens. Lenses constructed in this way have hybrid properties of both refractive and diffractive lenses. Such a lens will have a diffraction-limited, common focus for a number of discrete wavelengths across the visible spectrum. A 34.75-diopter, 6-mm-diameter lens is diamond turned in aluminum and replicated in optical materials. The sag of the lens is 23 {mu}m. Modulation transfer function measurements in both monochromatic and white light verify the performance of the lens. The lens approaches the diffraction limit for 10 discrete wavelengths across the visible spectrum.

  15. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors

    PubMed Central

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P.; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-01-01

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick–Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions. PMID:27097853

  16. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors

    NASA Astrophysics Data System (ADS)

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P.; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-04-01

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick–Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions.

  17. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors.

    PubMed

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-01-01

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick-Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions. PMID:27097853

  18. Wetland-based passive treatment systems for gold ore processing effluents containing residual cyanide, metals and nitrogen species.

    PubMed

    Alvarez, R; Ordóñez, A; Loredo, J; Younger, P L

    2013-10-01

    Gold extraction operations generate a variety of wastes requiring responsible disposal in compliance with current environmental regulations. During recent decades, increased emphasis has been placed on effluent control and treatment, in order to avoid the threat to the environment posed by toxic constituents. In many modern gold mining and ore processing operations, cyanide species are of most immediate concern. Given that natural degradation processes are known to reduce the toxicity of cyanide over time, trials have been made at laboratory and field scales into the feasibility of using wetland-based passive systems as low-cost and environmentally friendly methods for long-term treatment of leachates from closed gold mine tailing disposal facilities. Laboratory experiments on discrete aerobic and anaerobic treatment units supported the development of design parameters for the construction of a field-scale passive system at a gold mine site in northern Spain. An in situ pilot-scale wetland treatment system was designed, constructed and monitored over a nine-month period. Overall, the results suggest that compost-based constructed wetlands are capable of detoxifying cyanidation effluents, removing about 21.6% of dissolved cyanide and 98% of Cu, as well as nitrite and nitrate. Wetland-based passive systems can therefore be considered as a viable technology for removal of residual concentrations of cyanide from leachates emanating from closed gold mine tailing disposal facilities. PMID:24089077

  19. A Synchrotron-Based Hydroxyl Radical Footprinting Analysis of Amyloid Fibrils and Prefibrillar Intermediates with Residue-Specific Resolution

    SciTech Connect

    Klinger, Alexandra L.; Kiselar, Janna; Ilchenko, Serguei; Komatsu, Hiroaki; Chance, Mark R.; Axelsen, Paul H.

    2014-11-09

    The structural models of the fibrils formed by the 40-residue amyloid-β (Aβ40) peptide in Alzheimer’s disease typically consist of linear polypeptide segments, oriented approximately perpendicular to the long axis of the fibril, and joined together as parallel in-register β-sheets to form filaments. However, various models differ in the number of filaments that run the length of a fibril, and in the topological arrangement of these filaments. In addition to questions about the structure of Aβ40 monomers in fibrils, there are important unanswered questions about their structure in prefibrillar intermediates, which are of interest because they may represent the most neurotoxic form of Aβ40. To assess different models of fibril structure and to gain insight into the structure of prefibrillar intermediates, the relative solvent accessibility of amino acid residue side chains in fibrillar and prefibrillar Aβ40 preparations was characterized in solution by hydroxyl radical footprinting and structural mass spectrometry. A key to the application of this technology was the development of hydroxyl radical reactivity measures for individual side chains of Aβ40. When we combined mass-per-length measurements performed by dark-field electron microscopy, we determined that the results of our study were consistent with the core filament structure represented by two- and three-filament solid state nuclear magnetic resonance-based models of the Aβ40 fibril (such as 2LMN, 2LMO, 2LMP, and 2LMQ), with minor refinements, but they are inconsistent with the more recently proposed 2M4J model. Our results also demonstrate that individual Aβ40 fibrils exhibit structural heterogeneity or polymorphism, where regions of two-filament structure alternate with regions of three-filament structure. The footprinting approach utilized in this study will be valuable for characterizing various fibrillar and nonfibrillar forms of the Aβ peptide.

  20. A Synchrotron-Based Hydroxyl Radical Footprinting Analysis of Amyloid Fibrils and Prefibrillar Intermediates with Residue-Specific Resolution

    PubMed Central

    2015-01-01

    Structural models of the fibrils formed by the 40-residue amyloid-β (Aβ40) peptide in Alzheimer’s disease typically consist of linear polypeptide segments, oriented approximately perpendicular to the long axis of the fibril, and joined together as parallel in-register β-sheets to form filaments. However, various models differ in the number of filaments that run the length of a fibril, and in the topological arrangement of these filaments. In addition to questions about the structure of Aβ40 monomers in fibrils, there are important unanswered questions about their structure in prefibrillar intermediates, which are of interest because they may represent the most neurotoxic form of Aβ40. To assess different models of fibril structure and to gain insight into the structure of prefibrillar intermediates, the relative solvent accessibility of amino acid residue side chains in fibrillar and prefibrillar Aβ40 preparations was characterized in solution by hydroxyl radical footprinting and structural mass spectrometry. A key to the application of this technology was the development of hydroxyl radical reactivity measures for individual side chains of Aβ40. Combined with mass-per-length measurements performed by dark-field electron microscopy, the results of this study are consistent with the core filament structure represented by two- and three-filament solid state nuclear magnetic resonance-based models of the Aβ40 fibril (such as 2LMN, 2LMO, 2LMP, and 2LMQ), with minor refinements, but they are inconsistent with the more recently proposed 2M4J model. The results also demonstrate that individual Aβ40 fibrils exhibit structural heterogeneity or polymorphism, where regions of two-filament structure alternate with regions of three-filament structure. The footprinting approach utilized in this study will be valuable for characterizing various fibrillar and nonfibrillar forms of the Aβ peptide. PMID:25382225

  1. Modification and re-validation of the ethyl acetate-based multi-residue method for pesticides in produce

    PubMed Central

    Rooseboom, Astrid; van Dam, Ruud; Roding, Marleen; Arondeus, Karin; Sunarto, Suryati

    2007-01-01

    The ethyl acetate-based multi-residue method for determination of pesticide residues in produce has been modified for gas chromatographic (GC) analysis by implementation of dispersive solid-phase extraction (using primary–secondary amine and graphitized carbon black) and large-volume (20 μL) injection. The same extract, before clean-up and after a change of solvent, was also analyzed by liquid chromatography with tandem mass spectrometry (LC–MS–MS). All aspects related to sample preparation were re-assessed with regard to ease and speed of the analysis. The principle of the extraction procedure (solvent, salt) was not changed, to avoid the possibility invalidating data acquired over past decades. The modifications were made with techniques currently commonly applied in routine laboratories, GC–MS and LC–MS–MS, in mind. The modified method enables processing (from homogenization until final extracts for both GC and LC) of 30 samples per eight hours per person. Limits of quantification (LOQs) of 0.01 mg kg−1 were achieved with both GC–MS (full-scan acquisition, 10 mg matrix equivalent injected) and LC–MS–MS (2 mg injected) for most of the pesticides. Validation data for 341 pesticides and degradation products are presented. A compilation of analytical quality-control data for pesticides routinely analyzed by GC–MS (135 compounds) and LC–MS–MS (136 compounds) in over 100 different matrices, obtained over a period of 15 months, are also presented and discussed. At the 0.05 mg kg−1 level acceptable recoveries were obtained for 93% (GC–MS) and 92% (LC–MS–MS) of pesticide–matrix combinations. PMID:17563885

  2. Aircraft noise propagation. [sound diffraction by wings

    NASA Technical Reports Server (NTRS)

    Hadden, W. J.; Pierce, A. D.

    1978-01-01

    Sound diffraction experiments conducted at NASA Langley Research Center to study the acoustical implications of the engine over wing configuration (noise-shielding by wing) and to provide a data base for assessing various theoretical approaches to the problem of aircraft noise reduction are described. Topics explored include the theory of sound diffraction around screens and wedges; the scattering of spherical waves by rectangular patches; plane wave diffraction by a wedge with finite impedence; and the effects of ambient flow and distribution sources.

  3. Composites based on PET and red mud residues as catalyst for organic removal from water.

    PubMed

    Bento, Natálya I; Santos, Patrícia S C; de Souza, Talita E; Oliveira, Luiz C A; Castro, Cínthia S

    2016-08-15

    In this study, we obtained a composite based on carbon/iron oxide from red mud and PET (poly(ethylene terephthalate)) wastes by mechanical mixture (10, 15 and 20wt.% of PET powder/red mud) followed by a controlled thermal treatment at 400°C under air. XRD analyses revealed that the α-Fe2O3 is the main phase formed from red mud. TPR analyses showed that the iron oxide present in the composites undergoes reduction at lower temperature to form Fe(2+) species present in Fe3O4, indicating that the iron oxide in the composite can exhibit greater reactivity in the catalytic processes compared to the original red mud. In fact, catalytic tests showed that the composites presented higher capacity to remove methylene blue dye (MB), presenting about 90% of removal after 24h of reaction. The MB removal was also monitored by mass spectrometer with ionization via electrospray (ESI-MS), which demonstrated the occurrence of the oxidation process, showing the formation of MB oxidation products. The stability of the composites was confirmed after four reuse cycles. The results seem to indicate that PET carbon deposited over the iron oxide from red mud promotes adsorption of the contaminant allowing its contact with the iron atoms and their consequent reaction. PMID:27149399

  4. The adsorption of chromium (VI) from industrial wastewater by acid and base-activated lignocellulosic residues.

    PubMed

    Alvarez, Patricia; Blanco, Clara; Granda, Marcos

    2007-06-01

    This study deals with the adsorption of Cr(VI) from synthetic and industrial wastewater, produced by a sewage plant. The activated carbons were prepared from a lignocellulosic raw material by thermal treatment at 450 and 650 degrees C in the presence of acid (AlCl(3), HCl, H(3)PO(4) and H(2)SO(4)) and base (NaOH) agents. To optimize the adsorption of Cr(VI), the chemical modifications caused by each activating agent (related to the capability of Cr(VI) removal), and the optimal experimental conditions of the pH, Cr(VI) concentration, adsorbent dose and residence time, were studied. Thus, treatment with H(3)PO(4) gives rise to carbons with a high surface area and high efficiency for Cr(VI) removal at short equilibrium times. In contrast, the generation of active surface sites by means of NaOH requires longer equilibrium times, the adsorption being less effective than in the former case. The adsorption isotherms obey the Langmuir equation only in the first stages of the reaction but fit the Freundlich equations over the whole range studied, so the heat of adsorption can be easily calculated. The results also show that the activated carbons obtained can be recovered by filtration with an efficiency of 30% in the third cycle. PMID:17126488

  5. Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers.

    PubMed

    Luna Galiano, Y; Fernández Pereira, C; Vale, J

    2011-01-15

    The stabilization/solidification (S/S) of a municipal solid waste incineration (MSWI) fly ash containing hazardous metals such as Pb, Cd, Cr, Zn or Ba by means of geopolymerization technology is described in this paper. Different reagents such as sodium hydroxide, potassium hydroxide, sodium silicate, potassium silicate, kaolin, metakaolin and ground blast furnace slag have been used. Mixtures of MSWI waste with these kinds of geopolymeric materials and class F coal fly ash used as silica and alumina source have been processed to study the potential of geopolymers as waste immobilizing agents. To this end, the effects of curing conditions and composition have been tested. S/S solids are submitted to compressive strength and leaching tests to assess the results obtained and to evaluate the efficiency of the treatment. Compressive strength values in the range 1-9 MPa were easily obtained at 7 and 28 days. Concentrations of the metals leached from S/S products were strongly pH dependent, showing that the leachate pH was the most important variable for the immobilization of metals. Comparison of fly ash-based geopolymer systems with classical Portland cement stabilization methods has also been accomplished. PMID:20943314

  6. Monitoring of the volcanic plume based on the post-fit phase residual of PPP analysis and SNR data

    NASA Astrophysics Data System (ADS)

    Ohta, Yusaku; Iguchi, Masato

    2016-04-01

    A volcanic explosion is one of the largest energy-release phenomena on earth. For example, vulcanian eruptions usually eject large amounts of rock mass, tephra, and volcanic ash. Ash fall from such events can seriously affect the structural integrity of buildings, in addition to disrupting land and air traffic. Therefore, the monitoring and prediction of ash fall is very important. In this study, using data from a dense GNSS network, we investigated the spatiotemporal development of the volcanic plume ejected by the vulcanian eruption in Sakurajima, southwestern Japan on July 24, 2012. We extracted the post-fit phase residuals (PPR) of ionosphere-free linear combinations for each satellite based on the precise point positioning approach. Temporal and spatial PPR anomalies clearly detected the movement of the volcanic plume. The maximum height of the crossing points of anomalous PPR paths was determined to be approximately 4000 m. We then compared the PPR with the signal-to-noise ratio (SNR) anomalies. Only the path passing just above the crater showed significant change in the SNR value, suggesting that the volcanic ash and the water vapor within the volcanic plume became separated after reaching a high altitude because of ash fall during the plume's lateral movement. In the presentation, we will introduce the eruption in Shin-dake (Kuchinoerabu island, southwestern Japan) on May 29, 2015 based on the SNR data.

  7. Innovative market-based policy instruments for waste management: A case study on shredder residues in Belgium.

    PubMed

    Dubois, Maarten; Hoogmartens, Rob; Van Passel, Steven; Van Acker, Karel; Vanderreydt, Ive

    2015-10-01

    In an increasingly complex waste market, market-based policy instruments, such as disposal taxes, can give incentives for sustainable progress while leaving flexibility for innovation. However, implementation of disposal taxes is often criticised by domestic waste handlers that fear to be outcompeted by competitors in other countries. The article discusses three innovative market-based instruments that limit the impact on international competitiveness: Tradable recycling credits, refunded disposal taxes and differentiated disposal taxes. All three instruments have already been implemented for distinct environmental policies in Europe. In order to illustrate how these instruments can be used for waste policy, the literature review is complemented with a case study on shredder residues from metal-containing waste streams in Belgium. The analysis shows that a conventional disposal tax remains the most efficient, simple and transparent instrument. However, if international competition is a significant issue or if political support is weak, refunded and differentiated disposal taxes can have an added value as second-best instruments. Tradable recycling credits are not an appropriate instrument for use in small waste markets with market power. In addition, refunded taxes create similar incentives, but induce lower transactions costs. PMID:26395844

  8. Diffraction by cold atoms

    NASA Astrophysics Data System (ADS)

    Strauch, F.; Gomer, V.; Schadwinkel, H.; Ueberholz, B.; Haubrich, D.; Meschede, D.

    1998-01-01

    We have observed diffraction of a laser probe beam by a trapped sample of cold atoms. The effect is only visible in the vicinity of a resonance line. The observed diffraction pattern arises from interference of the incident and scattered light wave, allowing reconstruction of geometric properties of the trapped sample from the holographic record.

  9. Diffraction Results from CDF

    SciTech Connect

    Goulianos, Konstantin

    2012-04-01

    We present final results by the CDF II collaboration on diffractive W and Z production, report on the status of ongoing analyses on diffractive dijet production and on rapidity gaps between jets, and briefly summarize results obtained on exclusive production pointing to their relevance to calibrating theoretical models used to predict exclusive Higgs-boson production at the LHC.

  10. Phononic crystal diffraction gratings

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent

    2012-02-01

    When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.

  11. Residual stress and plastic anisotropy in indented 2024-T351 aluminum disks

    SciTech Connect

    Clausen, Bjorn; Prime, Michael B; Saurabh, Kabra; Brown, Donald W; Pagliaro, Pierluigi; Backlund, Peter; Shaw, Sanjiv; Criss, Everett

    2009-01-01

    Recent studies have proven that generating a well defined residual stress state using the indented disk approach is an excellent way to validate experimental and modeling techniques for measuring and predicting residual stresses. The previous studies dealt with indented stainless steel disks, and included experimental determination of residual stresses using the Contour Method and neutron diffraction measurements. The measured residual stress states showed good agreement between the techniques, and a Finite Element Model predicted residual stress state based upon material properties determined form standard tension and compression/tension tests was also in good agreement with the measurements. In the present work, disks of 2024-T351 Aluminum were investigated. As before, the residual stress profile was measured using neutron diffraction and the Contour Method and Finite Element Modeling was employed to predict the residual stress profile. Analysis and comparison of the three techniques were complicated by the fact that the experimental data shows evidence of plastic anisotropy and strong Bauschinger effect within the indented disks.

  12. H2rs: Deducing evolutionary and functionally important residue positions by means of an entropy and similarity based analysis of multiple sequence alignments

    PubMed Central

    2014-01-01

    Background The identification of functionally important residue positions is an important task of computational biology. Methods of correlation analysis allow for the identification of pairs of residue positions, whose occupancy is mutually dependent due to constraints imposed by protein structure or function. A common measure assessing these dependencies is the mutual information, which is based on Shannon’s information theory that utilizes probabilities only. Consequently, such approaches do not consider the similarity of residue pairs, which may degrade the algorithm’s performance. One typical algorithm is H2r, which characterizes each individual residue position k by the conn(k)-value, which is the number of significantly correlated pairs it belongs to. Results To improve specificity of H2r, we developed a revised algorithm, named H2rs, which is based on the von Neumann entropy (vNE). To compute the corresponding mutual information, a matrix A is required, which assesses the similarity of residue pairs. We determined A by deducing substitution frequencies from contacting residue pairs observed in the homologs of 35 809 proteins, whose structure is known. In analogy to H2r, the enhanced algorithm computes a normalized conn(k)-value. Within the framework of H2rs, only statistically significant vNE values were considered. To decide on significance, the algorithm calculates a p-value by performing a randomization test for each individual pair of residue positions. The analysis of a large in silico testbed demonstrated that specificity and precision were higher for H2rs than for H2r and two other methods of correlation analysis. The gain in prediction quality is further confirmed by a detailed assessment of five well-studied enzymes. The outcome of H2rs and of a method that predicts contacting residue positions (PSICOV) overlapped only marginally. H2rs can be downloaded from http://www-bioinf.uni-regensburg.de. Conclusions Considering substitution frequencies

  13. Modeling the Residual Stresses in Reactive Resins-Based Materials: a Case Study of Photo-Sensitive Composites for Dental Applications

    NASA Astrophysics Data System (ADS)

    Grassia, Luigi; D'Amore, Alberto

    2010-06-01

    Residual stresses in reactive resins-based composites are associated to the net volumetric contraction (shrinkage) arising during the cross-linking reactions. Depending on the restoration geometry (the ratio of the free surface area to the volume of the cavity) the frozen-in stresses can be as high as the strength of the dental composites. This is the main reason why the effectiveness and then the durability of restorations with composites remains quite lower than those realized with metal alloys based materials. In this paper we first explore the possibility to circumvent the mathematical complexity arising from the determination of residual stresses in reactive systems three-dimensionally constrained. Then, the results of our modeling approach are applied to a series of commercially available composites showing that almost all samples develop residual stresses such that the restoration undergoes failure as soon as it is realized.

  14. Modeling the Residual Stresses in Reactive Resins-Based Materials: a Case Study of Photo-Sensitive Composites for Dental Applications

    SciTech Connect

    Grassia, Luigi; D'Amore, Alberto

    2010-06-02

    Residual stresses in reactive resins-based composites are associated to the net volumetric contraction (shrinkage) arising during the cross-linking reactions. Depending on the restoration geometry (the ratio of the free surface area to the volume of the cavity) the frozen-in stresses can be as high as the strength of the dental composites. This is the main reason why the effectiveness and then the durability of restorations with composites remains quite lower than those realized with metal alloys based materials. In this paper we first explore the possibility to circumvent the mathematical complexity arising from the determination of residual stresses in reactive systems three-dimensionally constrained. Then, the results of our modeling approach are applied to a series of commercially available composites showing that almost all samples develop residual stresses such that the restoration undergoes failure as soon as it is realized.

  15. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies.

    PubMed

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Fernández, Carlos; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    Large quantities of crop residue and animal manure from agricultural and livestock activities are annually produced worldwide. With proper management, these residues are potentially valuable sources of plant nutrients, mainly N. Recycling such subproducts in sustainably-based agricultural systems can minimise the use of mineral fertilisers, and hence reduce the potential risk of surface and groundwater pollution. Therefore, the purpose of this study was to obtain (small scale) two liquid labelled-organic fertilisers, an animal- and a vegetal-based organic (AO and VO, respectively) fertiliser, to be used as organic N sources in subsequent fertigation studies. Forage maize (Zea mays L.) grown under 15N-labelled fertiliser supply was used as raw material for VO fertiliser production, and also as 15N-labelled sheep feed to obtain 15N-labelled manure. The labelled faeces fraction was used as raw material for the AO fertiliser. The VO fertiliser was obtained after an acidic and an enzyme-driven hydrolysis. The AO fertiliser was obtained after acidic hydrolysis. The VO liquid fertiliser presented an N concentration of 330 mg·L-1, 85% of total N was organic, while ammonium and nitrate N accounted for 55% and 45% of the mineral nitrogen fraction, respectively. This fertiliser also exhibited high K, Ca and S concentrations and notable values for the remaining macro- and micronutrients. The AO liquid fertiliser had a similar total N concentration (496 mg·L-1, 82% of total N in an organic form) to that of VO, but its mineral N fraction significantly differed, which came in a predominantly (95%) ammonia form. It also had a high content of N, P, K and other macronutrients, and sufficient Fe, Zn, Mn, Cu and B levels, which suggests its suitability as a potential fertiliser. The percentage of 15N enrichment in both VO and AO liquid fertilisers exceeded 2% 15N atom excess, which enabled their use in subsequent assays run to assess nitrogen uptake efficiency. PMID:26982183

  16. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies

    PubMed Central

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Fernández, Carlos; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    Large quantities of crop residue and animal manure from agricultural and livestock activities are annually produced worldwide. With proper management, these residues are potentially valuable sources of plant nutrients, mainly N. Recycling such subproducts in sustainably-based agricultural systems can minimise the use of mineral fertilisers, and hence reduce the potential risk of surface and groundwater pollution. Therefore, the purpose of this study was to obtain (small scale) two liquid labelled-organic fertilisers, an animal- and a vegetal-based organic (AO and VO, respectively) fertiliser, to be used as organic N sources in subsequent fertigation studies. Forage maize (Zea mays L.) grown under 15N-labelled fertiliser supply was used as raw material for VO fertiliser production, and also as 15N-labelled sheep feed to obtain 15N-labelled manure. The labelled faeces fraction was used as raw material for the AO fertiliser. The VO fertiliser was obtained after an acidic and an enzyme-driven hydrolysis. The AO fertiliser was obtained after acidic hydrolysis. The VO liquid fertiliser presented an N concentration of 330 mg·L-1, 85% of total N was organic, while ammonium and nitrate N accounted for 55% and 45% of the mineral nitrogen fraction, respectively. This fertiliser also exhibited high K, Ca and S concentrations and notable values for the remaining macro- and micronutrients. The AO liquid fertiliser had a similar total N concentration (496 mg·L-1, 82% of total N in an organic form) to that of VO, but its mineral N fraction significantly differed, which came in a predominantly (95%) ammonia form. It also had a high content of N, P, K and other macronutrients, and sufficient Fe, Zn, Mn, Cu and B levels, which suggests its suitability as a potential fertiliser. The percentage of 15N enrichment in both VO and AO liquid fertilisers exceeded 2% 15N atom excess, which enabled their use in subsequent assays run to assess nitrogen uptake efficiency. PMID:26982183

  17. Lightweight combustion residues-based structural materials for use in mines. Technical report, September 1--November 30, 1994

    SciTech Connect

    Chugh, Y.P.; Zhang, Y.; Ghosh, A.K.; Palmer, S.R.

    1994-12-31

    The overall goal of the project is to develop a 70--80 pcf, 2,500--3,000 psi-compressive-strength cellular concrete-type product from PCC fly ash, PCC bottom ash, and/or FBC spent bed ash alone or in suitable combination thereof. The developed combustion residue-based lightweight structural material will be used to replace wooden posts and crib members in underground mines. This report outlines the work completed in the first quarter of the project. The density gradient centrifuge (DGC) has been used to separate a power plant fly ash sample into fractions of different density. Each of the fly ash fractions obtained by DGC, an aliquot of the unseparated fly ash and an aliquot of a magnetic component of the fly ash, were digested in strong acids following the procedures outlined in ASTM 3050. Preliminary experiments have also been carried out to study the effect of mix proportions and curing regimes on the strength and density on the developed material. The DGC separation test reveals that most of the fly ash sample (approx. 90%) has a density above 1.9 g/cm{sup 3}. Indeed, nearly half of the sample has a density greater than 2.4 g/cm{sup 3}. Since only a very small amount of this fly ash has a reasonably low specific gravity, it appears unlikely at this time that enough low density material would be isolated to significantly enhance lightweight concrete production using fractionated material. A series of mixes have been made using fly ash, sodium silicate, cement, sand and water. Preliminary tests show that both cement and sodium silicate can be used as the binders to develop residues-based lightweight concrete. To date, compressive strength as high as 1,290 psi have been achieved with a density of 133 pcf, with 50 g of cement, 50 g of fly ash and 300 g of sand. Most of the work during the first quarter was done to understand the characteristics of the component materials.

  18. A Benchmark Study on Casting Residual Stress

    SciTech Connect

    Johnson, Eric M.; Watkins, Thomas R; Schmidlin, Joshua E; Dutler, S. A.

    2012-01-01

    Stringent regulatory requirements, such as Tier IV norms, have pushed the cast iron for automotive applications to its limit. The castings need to be designed with closer tolerances by incorporating hitherto unknowns, such as residual stresses arising due to thermal gradients, phase and microstructural changes during solidification phenomenon. Residual stresses were earlier neglected in the casting designs by incorporating large factors of safety. Experimental measurement of residual stress in a casting through neutron or X-ray diffraction, sectioning or hole drilling, magnetic, electric or photoelastic measurements is very difficult and time consuming exercise. A detailed multi-physics model, incorporating thermo-mechanical and phase transformation phenomenon, provides an attractive alternative to assess the residual stresses generated during casting. However, before relying on the simulation methodology, it is important to rigorously validate the prediction capability by comparing it to experimental measurements. In the present work, a benchmark study was undertaken for casting residual stress measurements through neutron diffraction, which was subsequently used to validate the accuracy of simulation prediction. The stress lattice specimen geometry was designed such that subsequent castings would generate adequate residual stresses during solidification and cooling, without any cracks. The residual stresses in the cast specimen were measured using neutron diffraction. Considering the difficulty in accessing the neutron diffraction facility, these measurements can be considered as benchmark for casting simulation validations. Simulations were performed using the identical specimen geometry and casting conditions for predictions of residual stresses. The simulation predictions were found to agree well with the experimentally measured residual stresses. The experimentally validated model can be subsequently used to predict residual stresses in different cast

  19. Investigation on Deformation Behavior of Nickel Aluminum Bronze by Neutron Diffraction and Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyan; Wang, Hong; Lv, Yuting; Lu, Weijie; Sun, Guangai

    2016-05-01

    The deformation behavior, deformation microstructures, and generated inter-phase stresses of nickel aluminum bronze were investigated by in situ neutron diffraction instrument and transmission electron microscopy in this paper. Lattice strains calculated by both peak shifting and broadening by Gaussian fitting of α and κ phase neutron diffraction peak profiles at both holding stress conditions and unloaded stress conditions were compared. Twining and stacking faults in α matrix were observed after deformed by different tensile stresses. Compressive internal/residual stress in α matrix and tensile internal stress in κ phase in elasto-plastic region were calculated based on neutron diffraction analysis. The piled-up dislocations around hard κ phases increase with increasing the deformation degree, which raise the stress concentration near α/ κ interface and increase the internal stresses.

  20. Residue Geometry Networks: A Rigidity-Based Approach to the Amino Acid Network and Evolutionary Rate Analysis.

    PubMed

    Fokas, Alexander S; Cole, Daniel J; Ahnert, Sebastian E; Chin, Alex W

    2016-01-01

    Amino acid networks (AANs) abstract the protein structure by recording the amino acid contacts and can provide insight into protein function. Herein, we describe a novel AAN construction technique that employs the rigidity analysis tool, FIRST, to build the AAN, which we refer to as the residue geometry network (RGN). We show that this new construction can be combined with network theory methods to include the effects of allowed conformal motions and local chemical environments. Importantly, this is done without costly molecular dynamics simulations required by other AAN-related methods, which allows us to analyse large proteins and/or data sets. We have calculated the centrality of the residues belonging to 795 proteins. The results display a strong, negative correlation between residue centrality and the evolutionary rate. Furthermore, among residues with high closeness, those with low degree were particularly strongly conserved. Random walk simulations using the RGN were also successful in identifying allosteric residues in proteins involved in GPCR signalling. The dynamic function of these residues largely remain hidden in the traditional distance-cutoff construction technique. Despite being constructed from only the crystal structure, the results in this paper suggests that the RGN can identify residues that fulfil a dynamical function. PMID:27623708

  1. Introduction to Diffraction in Materials Science and Engineering

    NASA Astrophysics Data System (ADS)

    Krawitz, Aaron D.

    2001-04-01

    Fundamentals and practical applications of diffraction for researchers, engineers, and students Materials science relies heavily on diffraction for the analysis of materials. Introduction to Diffraction in Materials Science and Engineering is a survey of the practical aspects of this valuable tool. Though it contains basic discussion of the theory and physics of diffraction, this book emphasizes understanding and the practical application of diffraction in materials science-making it a valuable text and resource for students, professionals, and researchers. Designed as a teaching and self-study text, this resource begins with a treatment of the fundamentals of crystallography and crystal structure and its importance in diffraction before moving on to cover important aspects of diffraction applications. Numerous examples and problems at the end of each chapter, including critical thinking questions, make this an excellent tool for learning and understanding. The book includes treatments of: * Basics of crystallography * Geometrical representation of crystals and reciprocal space * X-rays and neutrons * Structure factors and intensity * Powder diffraction * Qualitative (Powder Diffraction File) and quantitative phase analysis * Use of the International Tables for more complex structures and the Reitveld method * Residual stress * Introductions to texture, small diffracting units, and long-range order Aaron Krawitz provides both a practical introduction to diffraction that suits the needs of students and a resource for professionals already at work in materials science or engineering who want to utilize the power of diffraction in the study of materials.

  2. Calculating incoherent diffraction MTF

    NASA Astrophysics Data System (ADS)

    Friedman, Melvin; Vizgaitis, Jay

    2008-04-01

    The incoherent diffraction MTF plays an increasingly important role in the range performance of imaging systems as the wavelength increases and the optical aperture decreases. Accordingly, all NVESD imager models have equations that describe the incoherent diffraction MTF of a circular entrance pupil. NVThermIP, a program which models thermal imager range performance, has built in equations which analytically model the incoherent diffraction MTF of a circular entrance pupil and has a capability to input a table that describes the MTF of other apertures. These can be calculated using CODE V, which can numerically calculate the incoherent diffraction MTF in the vertical or horizontal direction for an arbitrary aperture. However, we are not aware of any program that takes as input a description of the entrance pupil and analytically outputs equations that describe the incoherent diffraction MTF. This work explores the effectiveness of Mathematica to analytically and numerically calculate the incoherent diffraction MTF for an arbitrary aperture. In this work, Mathematica is used to analytically and numerically calculate the incoherent diffraction MTF for a variety of apertures and the results are compared with CODE V calculations.

  3. Boundary diffraction wave integrals for diffraction modeling of external occulters.

    PubMed

    Cady, Eric

    2012-07-01

    An occulter is a large diffracting screen which may be flown in conjunction with a telescope to image extrasolar planets. The edge is shaped to minimize the diffracted light in a region beyond the occulter, and a telescope may be placed in this dark shadow to view an extrasolar system with the starlight removed. Errors in position, orientation, and shape of the occulter will diffract additional light into this region, and a challenge of modeling an occulter system is to accurately and quickly model these effects. We present a fast method for the calculation of electric fields following an occulter, based on the concept of the boundary diffraction wave: the 2D structure of the occulter is reduced to a 1D edge integral which directly incorporates the occulter shape, and which can be easily adjusted to include changes in occulter position and shape, as well as the effects of sources-such as exoplanets-which arrive off-axis to the occulter. The structure of a typical implementation of the algorithm is included. PMID:22772218

  4. Crop residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues [e.g., corn (Zea mays) stover and small grain straw] are sometimes excluded when discussing cellulosic energy crops per se, but because of the vast area upon which they are grown and their current role in the development of cellulosic energy systems. This chapter focuses on current cor...

  5. Status of the Neutron Imaging and Diffraction Instrument IMAT

    NASA Astrophysics Data System (ADS)

    Kockelmann, Winfried; Burca, Genoveva; Kelleher, Joe F.; Kabra, Saurabh; Zhang, Shu-Yan; Rhodes, Nigel J.; Schooneveld, Erik M.; Sykora, Jeff; Pooley, Daniel E.; Nightingale, Jim B.; Aliotta, Francesco; Ponterio, Rosa C.; Salvato, Gabriele; Tresoldi, Dario; Vasi, Cirino; McPhate, Jason B.; Tremsin, Anton S.

    A cold neutron imaging and diffraction instrument, IMAT, is currently being constructed at the ISIS second target station. IMAT will capitalize on time-of-flight transmission and diffraction techniques available at a pulsed neutron source. Analytical techniques will include neutron radiography, neutron tomography, energy-selective neutron imaging, and spatially resolved diffraction scans for residual strain and texture determination. Commissioning of the instrument will start in 2015, with time-resolving imaging detectors and two diffraction detector prototype modules. IMAT will be operated as a user facility for material science applications and will be open for developments of time-of-flight imaging methods.

  6. Miniaturized graphene-based pipette tip extraction coupled with liquid chromatography for the determination of sulfonamide residues in bovine milk.

    PubMed

    Yan, Hongyuan; Sun, Ning; Liu, Shijia; Row, Kyung Ho; Song, Yanxue

    2014-09-01

    A miniaturized graphene-based pipette tip extraction (M-G-PTE) method coupled with liquid chromatography-ultraviolet detection was developed for rapid screening of sulfadimidine, sulfachloropyridazine, sulfamonomethoxine, and sulfachloropyrazine residues in bovine milk. Because of the large surface area and unique chemical structure of graphene, an M-G-PTE device packed with 3.0mg graphene could handle 2.0mL of milk samples at one time. This M-G-PTE device showed better adsorption performance for sulfonamides (SAs) than those packed with other adsorbents such as C18, HLB, SCX, PCX, and multiwalled carbon nanotubes. Under the optimized conditions, good linearity was obtained in the range of 0.05-6.0 μg g(-1), with a correlation coefficient (r(2)) of ⩾0.9991. The recoveries at three spiking levels ranged from 90.1% to 113.5% with relative standard deviations (RSDs) of ⩽3.9%. The proposed M-G-PTE method was simple, economical, sensitive, and produced less organic pollution. Thus, it could be applied to the rapid screening of SAs in complicated bovine milk samples. PMID:24731337

  7. Immobilization of tetracyclines in manure and manure-amended soils using aluminum-based drinking water treatment residuals.

    PubMed

    Punamiya, Pravin; Sarkar, Dibyendu; Rakshit, Sudipta; Elzinga, Evert J; Datta, Rupali

    2016-02-01

    Veterinary antibiotics (VAs) are emerging contaminants of concern in the environment, mainly due to the potential for development of antibiotic-resistant bacteria and effect on microbiota that could interfere with crucial ecosystem functions such as nutrient cycling and decomposition. High levels of VAs such as tetracyclines (TCs) have been reported in agricultural soils amended with manure, which also has the potential to cause surface and groundwater contamination. Several recent studies have focused on developing methods to immobilize VAs such as composting with straw, hardwood chips, commercial biochar, aeration, mixing, heat treatment, etc. The major shortcomings of these methods include high cost and limited effectiveness. In the current study, we assessed the effectiveness of aluminum-based drinking water treatment residuals (Al-WTR) as a "green" sorbent to immobilize TCs in manure and manure-applied soils with varying physicochemical properties by laboratory incubation study. Results show that Al-WTR is very effective in immobilizing tetracycline (TTC) and oxytetracycline (OTC). The presence of phosphate resulted in significant (p < 0.01) decrease in TTC/OTC sorption by Al-WTR, but the presence of sulfate did not. attenuated total reflection (ATR)-FTIR spectroscopy indicate that TTC and OTC likely forming surface complexes via inner-sphere-type bonds in soils, manure, and manure-applied soils amended with Al-WTR. PMID:26490907

  8. Development of an indirect competitive assay-based aptasensor for highly sensitive detection of tetracycline residue in honey.

    PubMed

    Wang, Sai; Yong, Wei; Liu, Jiahui; Zhang, Liya; Chen, Qilong; Dong, Yiyang

    2014-07-15

    Tetracycline (TC) is widely used for prevention and control of animal diseases for its broad spectrum antimicrobial activity and low cost, but its abuse can seriously affect human health and may result in trade loss. Thus there is an imperative need to develop high-performing analytical technique for TC detection. In this study, we developed a biosensor based on an indirect competitive enzyme-linked aptamer assay (ic-ELAA). A 76mer single-stranded DNA (ssDNA) aptamer, selected by Systematic Evolution of Ligands by Exponential Enrichment (SELEX), was applied for the recognition and detection of TC in honey. The limit of detection was 9.6×10(-3) ng/mL with a linear working range from 0.01 to 100 ng/mL toward TC in honey, and a mean recovery rate of 93.23% in TC-spiked honey was obtained. This aptasensor can be applied to detect TC residue in food with high sensitivity and simplicity, and it is prospective to develop useful ELAA Kits for TC determination in food. PMID:24583691

  9. Crystallization and preliminary X-ray diffraction analysis of the Bacillus subtilis replication termination protein in complex with the 37-base-pair TerI-binding site

    SciTech Connect

    Vivian, J. P.; Porter, C.; Wilce, J. A.; Wilce, M. C. J.

    2006-11-01

    A preparation of replication terminator protein (RTP) of B. subtilis and a 37-base-pair TerI sequence (comprising two binding sites for RTP) has been purified and crystallized. The replication terminator protein (RTP) of Bacillus subtilis binds to specific DNA sequences that halt the progression of the replisome in a polar manner. These terminator complexes flank a defined region of the chromosome into which they allow replication forks to enter but not exit. Forcing the fusion of replication forks in a specific zone is thought to allow the coordination of post-replicative processes. The functional terminator complex comprises two homodimers each of 29 kDa bound to overlapping binding sites. A preparation of RTP and a 37-base-pair TerI sequence (comprising two binding sites for RTP) has been purified and crystallized. A data set to 3.9 Å resolution with 97.0% completeness and an R{sub sym} of 12% was collected from a single flash-cooled crystal using synchrotron radiation. The diffraction data are consistent with space group P622, with unit-cell parameters a = b = 118.8, c = 142.6 Å.

  10. Identification in residue analysis based on liquid chromatography with tandem mass spectrometry: Experimental evidence to update performance criteria.

    PubMed

    Mol, Hans G J; Zomer, Paul; García López, Mónica; Fussell, Richard J; Scholten, Jos; de Kok, Andre; Wolheim, Anne; Anastassiades, Michelangelo; Lozano, Ana; Fernandez Alba, Amadeo

    2015-05-11

    Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is one of the most widely used techniques for identification (and quantification) of residues and contaminants across a number of different chemical domains. Although the same analytical technique is used, the parameters and criteria for identification vary depending on where in the world the analysis is performed and for what purpose (e.g. determination of pesticides, veterinary drugs, forensic toxicology, sports doping). The rationale for these differences is not clear and in most cases the criteria are essentially based on expert opinions rather than underpinned by experimental data. In the current study, the variability of the two key identification parameters, retention time and ion ratio, was assessed and compared against requirements set out in different legal and guidance documents. The study involved the analysis of 120 pesticides, representing various chemical classes, polarities, molecular weights, and detector response factors, in 21 different fruit and vegetable matrices of varying degrees of complexity. The samples were analysed non-fortified, and fortified at 10, 50 and 200 μg kg(-1), in five laboratories using different LC-MS/MS instruments and conditions. In total, over 135,000 extracted-ion chromatograms were manually verified to provide an extensive data set for the assessment. The experimental data do not support relative tolerances for retention time, or different tolerances for ion ratios depending on relative abundance of the two product ions measured. Retention times in today's chromatographic systems are sufficiently stable to justify an absolute tolerance of ±0.1 min. Ion ratios are stable as long as sufficient response is obtained for both product ions. Ion ratio deviations are typically within ±20% (relative), and within ±45% (relative) in case the response of product ions are close to the limit of detection. Ion ratio tolerances up to 50% did not result in false positives and

  11. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  12. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  13. An accurate method for determining residual stresses with magnetic non-destructive techniques in welded ferromagnetic steels

    NASA Astrophysics Data System (ADS)

    Vourna, P.

    2016-03-01

    The scope of the present research work was to investigate the proper selection criteria for developing a suitable methodology for the accurate determination of residual stresses existing in welded parts. Magnetic non-destructive testing took place by the use of two magnetic non-destructive techniques: by the measurement of the magnetic Barkhausen noise and by the evaluation of the magnetic hysteresis loop parameters. The spatial distribution of residual stresses in welded metal parts by both non-destructive magnetic methods and two diffraction methods was determined. The conduction of magnetic measurements required an initial calibration of ferromagnetic steels. Based on the examined volume of the sample, all methods used were divided into two large categories: the first one was related to the determination of surface residual stress, whereas the second one was related to bulk residual stress determination. The first category included the magnetic Barkhausen noise and the X-ray diffraction measurements, while the second one included the magnetic permeability and the neutron diffraction data. The residual stresses determined by the magnetic techniques were in a good agreement with the diffraction ones.

  14. ASCORBIC ACID TREATMENT TO REDUCE RESIDUAL HALOGEN-BASED OXIDANTS PRIOR TO THE DETERMINATION OF HALOGENATED DISINFECTION BYPRODUCTS IN POTABLE WATER

    EPA Science Inventory

    Treatment of potable water samples with ascorbic acid has been investigated as a means for reducing residual halogen-based oxidants (disinfectants)i.e., HOCl, Cl2, Brw and BrCl, prior to determination of EPA Method 551.1A and 551.1B analytes. These disinfection byproducts include...

  15. Web-based Mindfulness-based Cognitive Therapy for reducing residual depressive symptoms: An open trial and quasi-experimental comparison to propensity score matched controls.

    PubMed

    Dimidjian, Sona; Beck, Arne; Felder, Jennifer N; Boggs, Jennifer M; Gallop, Robert; Segal, Zindel V

    2014-09-18

    Mindfulness-based Cognitive Therapy (MBCT) has been shown to effectively prevent relapse and reduce residual depressive symptoms (RDS), yet it faces barriers to dissemination. The present study examined Mindful Mood Balance (MMB), the first web-based approach to deliver the core content of MBCT. Of the 107 recurrently depressed individuals screened, 100 elected to enroll in the study and received MMB in an 8-session open trial with 6-month follow-up. Outcomes included depressive symptom severity, rumination and mindful awareness, and program engagement. A quasi-experimental comparison between MMB participants and propensity matched case-controls receiving usual depression care (UDC) (N = 100) also was conducted. The full sample and the subgroup with residual depressive symptoms (N = 42) showed significantly reduced depressive severity, which was sustained over six months, and improvement on rumination and mindfulness. Examination of acceptability of MMB indicated that 42% of participants within the full sample and 36% of the RDS subgroup completed all 8 sessions and 53% within the full sample and 50% within the RDS subgroup completed at least 4 sessions, and that participants engaged with daily mindfulness practice. MMB also was associated with significant reduction in RDS severity as compared to quasi-experimental propensity matched controls. Although the use of a non-randomized design, with potential unmeasured differences between groups, and short interval of clinical follow-up were limitations, findings from this study support the web-based delivery of MBCT and suggest clinical benefits for participants with histories of depression and with RDS, relative to those receiving usual care alone. PMID:25461782

  16. Highly uniform residual layers for arrays of 3D nanoimprinted cavities in Fabry-Pérot-filter-array-based nanospectrometers

    NASA Astrophysics Data System (ADS)

    Memon, Imran; Shen, Yannan; Khan, Abdullah; Woidt, Carsten; Hillmer, Hartmut

    2016-04-01

    Miniaturized optical spectrometers can be implemented by an array of Fabry-Pérot (FP) filters. FP filters are composed of two highly reflecting parallel mirrors and a resonance cavity. Each filter transmits a small spectral band (filter line) depending on its individual cavity height. The optical nanospectrometer, a miniaturized FP-based spectrometer, implements 3D NanoImprint technology for the fabrication of multiple FP filter cavities in a single process step. However, it is challenging to avoid the dependency of residual layer (RL) thickness on the shape of the printed patterns in NanoImprint. Since in a nanospectrometer the filter cavities vary in height between neighboring FP filters and, thus, the volume of each cavity varies causing that the RL varies slightly or noticeably between different filters. This is one of the few disadvantages of NanoImprint using soft templates such as substrate conformal imprint lithography which is used in this paper. The advantages of large area soft templates can be revealed substantially if the problem of laterally inhomogeneous RLs can be avoided or reduced considerably. In the case of the nanospectrometer, non-uniform RLs lead to random variations in the designed cavity heights resulting in the shift of desired filter lines. To achieve highly uniform RLs, we report a volume-equalized template design with the lateral distribution of 64 different cavity heights into several units with each unit comprising four cavity heights. The average volume of each unit is kept constant to obtain uniform filling of imprint material per unit area. The imprint results, based on the volume-equalized template, demonstrate highly uniform RLs of 110 nm thickness.

  17. In vitro ability of beer fermentation residue and yeast-based products to bind aflatoxin B1.

    PubMed

    Bovo, Fernanda; Franco, Larissa Tuanny; Rosim, Roice Eliana; Barbalho, Ricardo; de Oliveira, Carlos Augusto Fernandes

    2015-06-01

    This study aimed to verify the in vitro ability of beer fermentation residue (BFR) containing Saccharomyces cerevisiae cells and five commercial products that differed in the viability and integrity of S. cerevisiae cells to remove aflatoxin B1 (AFB1) from a citrate-phosphate buffer solution (CPBS). BFR was collected at a microbrewery and prepared by drying and milling. The commercial yeast-based products were as follows: inactive intact yeast cells from beer alcoholic fermentation, inactive intact yeast cells from sugarcane alcoholic fermentation, hydrolyzed yeast cells, yeast cell walls and active yeast cells. Adsorption assays were performed in CPBS spiked with 1.0 μg AFB1/mL at pH 3.0 and 6.0 for a contact time of 60 min at room temperature. Analysis of AFB1 in the samples was performed by high performance liquid chromatography. AFB1 adsorption by the products ranged from 45.5% to 69.4% at pH 3.0 and from 24.0% to 63.8% at pH 6.0. The higher percentages (p < 0.05) of AFB1 binding at both pH values were achieved with products containing hydrolyzed yeast cells or yeast cell walls rather than intact cells. The AFB1 binding percentages of BFR were 55.0 ± 5.0% at pH 3.0 and 49.2 ± 4.5% at pH 6.0, which was not significantly different (p > 0.05) from commercial products containing inactive intact yeast cells. The results of this trial indicate that the yeast-based products tested, especially the BFR, have potential applications in animal feeds as a suitable biological method for reducing the adverse effects of aflatoxins. PMID:26273277

  18. Dual-layer solid-phase extraction based on molecular imprinting technology: Seeking a route to enhance selectivity for trace analysis of pesticide residues in olive oil.

    PubMed

    Garcia, Raquel; Carreiro, Elisabete P; Nunes, José; da Silva, Marco Gomes; Freitas, Ana Maria Costa; Burke, Anthony J; Cabrita, Maria João

    2016-07-01

    Aiming to introduce a multiresidue analysis for the trace detection of pesticide residues belonging to organophosphorus and triazine classes from olive oil samples, a new sample preparation methodology comprising the use of a dual layer of "tailor-made" molecularly imprinted polymers (MIPs) SPE for the simultaneous extraction of both pesticides in a single procedure has been attempted. This work has focused on the implementation of a dual MIP-layer SPE procedure (DL-MISPE) encompassing the use of two MIP layers as specific sorbents. In order to achieve higher recovery rates, the amount of MIP layers has been optimized as well as the influence of MIP packaging order. The optimized DL-MISPE approach has been used in the preconcentration of spiked organic olive oil samples with concentrations of dimethoate and terbuthylazine similar to the maximum residue limits and further quantification by HPLC. High recovery rates for dimethoate (95%) and terbuthylazine (94%) have been achieved with good accuracy and precision. Overall, this work constitutes the first attempt on the development of a dual pesticide residue methodology for the trace analysis of pesticide residues based on molecular imprinting technology. Thus, DL-MISPE constitutes a reliable, robust, and sensitive sample preparation methodology that enables preconcentration of the target pesticides in complex olive oil samples, even at levels similar to the maximum residue limits enforced by the legislation. PMID:27062483

  19. Reflective diffraction grating

    DOEpatents

    Lamartine, Bruce C.

    2003-06-24

    Reflective diffraction grating. A focused ion beam (FIB) micromilling apparatus is used to store color images in a durable medium by milling away portions of the surface of the medium to produce a reflective diffraction grating with blazed pits. The images are retrieved by exposing the surface of the grating to polychromatic light from a particular incident bearing and observing the light reflected by the surface from specified reception bearing.

  20. Powder Diffraction: By Decades

    NASA Astrophysics Data System (ADS)

    David, William I. F.

    This introductory chapter reviews the first 100 years of powder diffraction, decade by decade, from the earliest X-ray powder diffraction measurements of the crystal structure of graphite through to the diversity and complexity of twenty-first century powder diffraction. Carbon features as an illustrative example throughout the discussion of these ten decades from graphite and the disorder of carbon black through to lonsdaleite, the elusive hexagonal polymorph of diamond, and C60, the most symmetrical of molecules. Electronics and computing have played a leading role in the development of powder diffraction, particularly over the past 60 years, and the Moore's Law decade-by-decade rise in computing power is clear in the increasing complexity of powder diffraction experiments and material systems that can be studied. The chapter concludes with a final discussion of decades - the four decades of length-scale from the ångstrom to the micron that not only represent the domain of powder diffraction but are also the distances that will dominate twenty-first century science and technology.

  1. A non-contact measurement technique to measure micro-surface stress and obtain deformation profiles of the order of 1nm in microcantilever-based structures by single image optical diffraction method

    NASA Astrophysics Data System (ADS)

    Phani, Arindam

    2010-06-01

    A new method based on analysis of a single diffraction pattern is proposed to measure deflections in micro-cantilever (MC) based sensor probes, achieving typical deflection resolutions of 1nm and surface stress changes of 50μN/m. The proposed method employs a double MC structure where the deflection of one of the micro-cantilevers relative to the other due to surface stress changes results in a linear shift of intensity maxima of the Fraunhofer diffraction pattern of the transilluminated MC. Measurement of such shifts in the intensity maxima of a particular order along the length of the structure can be done to an accuracy of 0.01mm leading to the proposed sensitivity of deflection measurement in a typical microcantilever. This method can overcome the fundamental measurement sensitivity limit set by diffraction and pointing stability of laser beam in the widely used Optical Beam Deflection method (OBDM).

  2. Broadband and high sensitive time-of-flight diffraction ultrasonic transducers based on PMNT/epoxy 1-3 piezoelectric composite.

    PubMed

    Liu, Dongxu; Yue, Qingwen; Deng, Ji; Lin, Di; Li, Xiaobing; Di, Wenning; Wang, Xi'an; Zhao, Xiangyong; Luo, Haosu

    2015-01-01

    5-6 MHz PMNT/epoxy 1-3 composites were prepared by a modified dice-and-fill method. They exhibit excellent properties for ultrasonic transducer applications, such as ultrahigh thickness electromechanical coupling coefficient k(t) (85.7%), large piezoelectric coefficient d33 (1209 pC/N), and relatively low acoustic impedance Z (1.82 × 107 kg/(m2·s)). Besides, two types of Time-of-Flight Diffraction (TOFD) ultrasonic transducers have been designed, fabricated, and characterized, which have different matching layer schemes with the acoustic impedance of 4.8 and 5.7 × 106 kg/(m2·s), respectively. In the detection on a backwall of 12.7 mm polystyrene, the former exhibits higher detectivity, the relative pulse-echo sensitivity and -6 dB relative bandwidth are -21.93 dB and 102.7%, respectively, while the later exhibits broader bandwidth, the relative pulse-echo sensitivity and -6 dB relative bandwidth are -24.08 dB and 117.3%, respectively. These TOFD ultrasonic transducers based on PMNT/epoxy 1-3 composite exhibit considerably improved performance over the commercial PZT/epoxy 1-3 composite TOFD ultrasonic transducer. PMID:25808776

  3. Revealing the powdering methods of black makeup in Ancient Egypt by fitting microstructure based Fourier coefficients to the whole x-ray diffraction profiles of galena

    NASA Astrophysics Data System (ADS)

    Ungár, T.; Martinetto, P.; Ribárik, G.; Dooryhée, E.; Walter, Ph.; Anne, M.

    2002-02-01

    Galena (PbS) is a major ingredient in ancient Egyptian eye makeup. The microstructure of PbS in Egyptian cosmetic powders is used as a fingerprint and is matched with the microstructures produced artificially in geological galena minerals. The microstructure of PbS is determined by x-ray diffraction peak profile analysis in terms of dislocation density, crystallite size, and size distribution. High-resolution powder diffractograms were measured at the ESRF Grenoble synchrotron source with high resolution and high peak-to-background ratios. The Fourier coefficients of the first nine measured reflections of galena are fitted using physically based Fourier coefficients of strain and size functions. Strain anisotropy is accounted for by the dislocation model of the mean square strain. The x-ray data are supplemented by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) micrographs, and are compared with archæological documents. It enables us to describe the procedures of eye makeup manufacturing in the Middle and New Kingdoms of Egypt some 2000 years before Christ.

  4. Broadband and High Sensitive Time-of-Flight Diffraction Ultrasonic Transducers Based on PMNT/Epoxy 1–3 Piezoelectric Composite

    PubMed Central

    Liu, Dongxu; Yue, Qingwen; Deng, Ji; Lin, Di; Li, Xiaobing; Di, Wenning; Wang, Xi’an; Zhao, Xiangyong; Luo, Haosu

    2015-01-01

    5–6 MHz PMNT/epoxy 1–3 composites were prepared by a modified dice-and-fill method. They exhibit excellent properties for ultrasonic transducer applications, such as ultrahigh thickness electromechanical coupling coefficient kt (85.7%), large piezoelectric coefficient d33 (1209 pC/N), and relatively low acoustic impedance Z (1.82 × 107 kg/(m2·s)). Besides, two types of Time-of-Flight Diffraction (TOFD) ultrasonic transducers have been designed, fabricated, and characterized, which have different matching layer schemes with the acoustic impedance of 4.8 and 5.7 × 106 kg/(m2·s), respectively. In the detection on a backwall of 12.7 mm polystyrene, the former exhibits higher detectivity, the relative pulse-echo sensitivity and −6 dB relative bandwidth are −21.93 dB and 102.7%, respectively, while the later exhibits broader bandwidth, the relative pulse-echo sensitivity and −6 dB relative bandwidth are −24.08 dB and 117.3%, respectively. These TOFD ultrasonic transducers based on PMNT/epoxy 1–3 composite exhibit considerably improved performance over the commercial PZT/epoxy 1–3 composite TOFD ultrasonic transducer. PMID:25808776

  5. In-situ x-ray diffraction studies of host-guest properties in nanoporous zinc-triazolate-based framework materials.

    SciTech Connect

    Halder, G. J.; Park, H.; Funk, R. J.; Chapman, K. W.; Engerer, L. K.; Geiser, U.; Schlueter, J. A.

    2009-08-01

    Two nanoporous metal-organic framework materials incorporating the exotridentate bridging ligand 3-amino-1,2,4-triazolate (AmTAZ) have been synthesized through variation of secondary bridging anions: [Zn{sub 3}(AmTAZ){sub 3}S](NO{sub 3}) {center_dot} (H{sub 2}O) (1 {center_dot} (H{sub 2}O)) and Zn{sub 7}(AmTAZ){sub 8}(CO{sub 3}){sub 2}(OH){sub 2} {center_dot} 2(EtOH) (2 {center_dot} 2(EtOH); EtOH = ethanol). 1 {center_dot} (H{sub 2}O) crystallizes in the cubic space group I23 and is constructed from triangular Zn{sub 3}S units that are bridged through AmTAZ ligands into a cationic three-dimensional (3D) network with nitrate and water molecules residing in the cavities. 2 {center_dot} 2(EtOH) crystallizes in the monoclinic space group C2/c and shows a complex 3D network constructed from seven crystallographically unique zinc centers bridged by AmTAZ, carbonate, and hydroxide anions. The porous nature of both materials has been explored by thermogravimetric analysis, nitrogen sorption, and in situ synchrotron-based powder X-ray diffraction.

  6. Specially-Made Lipid-Based Assemblies for Improving Transmembrane Gene Delivery: Comparison of Basic Amino Acid Residue Rich Periphery.

    PubMed

    Jiang, Qian; Yue, Dong; Nie, Yu; Xu, Xianghui; He, Yiyan; Zhang, Shiyong; Wagner, Ernst; Gu, Zhongwei

    2016-06-01

    Cationic lipid based assemblies provide a promising platform for effective gene condensation into nanosized particles, and the peripheral properties of the assemblies are vital for complexation and interaction with physical barriers. Here, we report three cationic twin head lipids, and each of them contains a dioleoyl-glutamate hydrophobic tail and a twin polar head of lysine, arginine, or histidine. Such lipids were proven to self-assemble in aqueous solution with well-defined nanostructures and residual amino-, guanidine-, or imidazole-rich periphery, showing strong buffering capacity and good liquidity. The assemblies with arginine (RL) or lysine (KL) periphery exhibited positive charges (∼+35 mV) and complete condensation of pDNA into nanosized complexes (∼120 nm). In contrast, assemblies composed of histidine-rich lipids (HL) showed relatively low cationic electric potential (∼+10 mV) and poor DNA binding ability. As expected, the designed RL assemblies with guanidine-rich periphery enhanced the in vitro gene transfection up to 190-fold as compared with the golden standard PEI25k and Lipofectamine 2000, especially in the presence of serum. Meanwhile, interaction with cell and endo/lysosome membrane also revealed the superiority of RL complexes, that the guanidine-rich surface efficiently promoted transmembrane process in cellular internalization and endosomal disruption. More importantly, RL complexes also succeeded beyond others in vivo with significantly (∼7-fold) enhanced expression in HepG2 tumor xenografts in mice, as well as stronger green fluorescence protein imaging in isolated tumors and tumor frozen sections. PMID:27097286

  7. Characterization of Plastic Flow Pertinent to the Evolution of Bulk Residual Stress in Powder-Metallurgy, Nickel-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Semiatin, S. L.; Fagin, P. N.; Goetz, R. L.; Furrer, D. U.; Dutton, R. E.

    2015-09-01

    The plastic-flow behavior which controls the formation of bulk residual stresses during final heat treatment of powder-metallurgy (PM), nickel-base superalloys was quantified using conventional (isothermal) stress-relaxation (SR) tests and a novel approach which simulates concurrent temperature and strain transients during cooling following solution treatment. The concurrent cooling/straining test involves characterization of the thermal compliance of the test sample. In turn, this information is used to program the ram-displacement- vs-time profile to impose a constant plastic strain rate during cooling. To demonstrate the efficacy of the new approach, SR tests (in both tension and compression) and concurrent cooling/tension-straining experiments were performed on two PM superalloys, LSHR and IN-100. The isothermal SR experiments were conducted at a series of temperatures between 1144 K and 1436 K (871 °C and 1163 °C) on samples that had been supersolvus solution treated and cooled slowly or rapidly to produce starting microstructures comprising coarse gamma grains and coarse or fine secondary gamma-prime precipitates, respectively. The concurrent cooling/straining tests comprised supersolvus solution treatment and various combinations of subsequent cooling rate and plastic strain rate. Comparison of flow-stress data from the SR and concurrent cooling/straining tests showed some similarities and some differences which were explained in the context of the size of the gamma-prime precipitates and the evolution of dislocation substructure. The magnitude of the effect of concurrent deformation during cooling on gamma-prime precipitation was also quantified experimentally and theoretically.

  8. Removal of reactive blue 19 from aqueous solution by pomegranate residual-based activated carbon: optimization by response surface methodology

    PubMed Central

    2014-01-01

    Background In this research, response surface methodology (RSM) was applied to optimize Reactive Blue 19 removal by activated carbon from pomegranate residual. A 24 full factorial central composite design (CCD) was applied to evaluate the effects of initial pH, adsorbent dose, initial dye concentration, and contact time on the dye removal efficiency. Methodology The activated carbon prepared by 50 wt.% phosphoric acid activation under air condition at 500°C. The range of pH and initial dye concentration were selected in a way that considered a wide range of those variables. Furthermore, the range of contact time and adsorbent dose were determined based on initial tests. Levels of selected variables and 31 experiments were determined. MiniTab (version 16.1) was used for the regression and graphical analyses of the data obtained. Results It was found that the decrease of initial dye concentration and the increase of initial pH, adsorbent dose, and contact time are beneficial for improving the dye removal efficiency. Analysis of variance (ANOVA) results presented high R2 value of 99.17% for Reactive Blue 19 dye removal, which indicates the accuracy of the polynomial model is acceptable. Conclusions Initial pH of 11, adsorbent dose of 1.025 g/L, initial dye concentration of 100 mg/L, and contact time of 6.8 minutes found to be the optimum conditions. Dye removal efficiency of 98.7% was observed experimentally at optimum point which confirmed close to model predicted (98.1%) result. PMID:24678702

  9. Dispersed and piled woody residues volumes in coastal Douglas-fir cutblocks determined using high-resolution imagery from a UAV and from ground-based surveys.

    NASA Astrophysics Data System (ADS)

    Trofymow, J. A.; Gougeon, F.

    2015-12-01

    After forest harvest significant amounts of woody residues are left dispersed on site and some subsequently piled and burned. Quantification of residues is required for estimating C budgets, billable waste, harvest efficiency, bioenergy potential and smoke emissions. Trofymow (et al 2014 CJFR) compared remote sensing methods to ground-based waste and residue survey (WRS) methods for residue piles in 4 cutblocks in the Oyster River (OR) area in coastal BC. Compared to geospatial methods using 15cm orthophotos and LiDAR acquired in 2011 by helicopter, the WRS method underestimated pile wood by 30% to 50% while a USFS volume method overestimated pile wood by 50% if site specific packing ratios were not used. A geospatial method was developed in PCI Geomatica to analyze 2-bit images of logs >15cm diameters to determine dispersed wood residues in OR and compare to WRS methods. Across blocks, geospatial and WRS method wood volumes were correlated (R2=0.69), however volumes were 2.5 times larger for the geospatial vs WRS method. Methods for dispersed residues could not be properly compared as individual WRS plots were not georeferenced, only 12 plots were sampled in total, and low-resolution images poorly resolved logs. Thus, a new study in 2 cutblocks in the Northwest Bay (NWB) area acquired 2cm resolution RGB air-photography in 2014-15 using an Aeryon Sky Ranger UAV prior to and after burn pile construction. A total of 57 dispersed WRS plots and 24 WRS pile or accumulation plots were georeferenced and measured. Stero-pairs were used to generate point-clouds for pile bulk volumes. Images processed to 8-bit grey scale are being analyzed with a revised PCI method that better accounts for log overlaps. WRS methods depend on a good sample of plots and accurate determination of stratum (dispersed, roadside, piles, accumulations) areas. Analysis of NWB blocks shows WRS field methods for stratum area differ by 5-20% from that determined using orthophotos. Plot-level wood

  10. Estimation of polycyclic aromatic hydrocarbon concentrations in the water column based on tissue residues in mussels and salmon: An equilibrium partitioning approach

    SciTech Connect

    Neff, J.M.; Burns, W.A.

    1996-12-01

    Equilibrium partitioning was used to estimate concentrations of dissolved polycyclic aromatic hydrocarbons (PAHs) in the water column from PAH residues in tissues of mussels and juvenile pink salmon collected from coastal marine waters affected by the Exxon Valdez oil spill. Estimated concentrations were within factors of 2 to 5 for fish and 5 to 10 for mussels of average total dissolved and particulate PAHs measured in concurrent water samples. Temporal trends of estimated and measured water-column PAH concentrations were comparable. Water-column PAH concentrations estimated from residues in tissues of mussels (Mytilus trossulus) were higher than estimates based on residues in tissues of juvenile pink salmon (Oncorhynchus gorbuscha). Possible reasons for this difference include seasonal variations in mussel lipid content, differences in PAH uptake and depuration rates between fish and mussels, differences in how fish and mussels interact with particulate oil, and possible short exposure times for juvenile pink salmon. All of these factors may play a role. In any event, estimates of dissolved PAHs in the water column, based on PAH residues in either fish or mussel tissue, confirm that PAH concentrations generally did not exceed water quality standards for protection of marine life.

  11. kPROT: a knowledge-based scale for the propensity of residue orientation in transmembrane segments. Application to membrane protein structure prediction.

    PubMed

    Pilpel, Y; Ben-Tal, N; Lancet, D

    1999-12-10

    Modeling of integral membrane proteins and the prediction of their functional sites requires the identification of transmembrane (TM) segments and the determination of their angular orientations. Hydrophobicity scales predict accurately the location of TM helices, but are less accurate in computing angular disposition. Estimating lipid-exposure propensities of the residues from statistics of solved membrane protein structures has the disadvantage of relying on relatively few proteins. As an alternative, we propose here a scale of knowledge-based Propensities for Residue Orientation in Transmembrane segments (kPROT), derived from the analysis of more than 5000 non-redundant protein sequences. We assume that residues that tend to be exposed to the membrane are more frequent in TM segments of single-span proteins, while residues that prefer to be buried in the transmembrane bundle interior are present mainly in multi-span TMs. The kPROT value for each residue is thus defined as the logarithm of the ratio of its proportions in single and multiple TM spans. The scale is refined further by defining it for three discrete sections of the TM segment; namely, extracellular, central, and intracellular. The capacity of the kPROT scale to predict angular helical orientation was compared to that of alternative methods in a benchmark test, using a diversity of multi-span alpha-helical transmembrane proteins with a solved 3D structure. kPROT yielded an average angular error of 41 degrees, significantly lower than that of alternative scales (62 degrees -68 degrees ). The new scale thus provides a useful general tool for modeling and prediction of functional residues in membrane proteins. A WWW server (http://bioinfo.weizmann.ac.il/kPROT) is available for automatic helix orientation prediction with kPROT. PMID:10588897

  12. Strain Determination Using Electron Backscatter Diffraction

    SciTech Connect

    Krause, M.; Graff, A.; Altmann, F.

    2010-11-24

    In the present paper we demonstrate the use of electron backscatter diffraction (EBSD) for high resolution elastic strain determination. Here, we focus on analysis methods based on determination of small shifts in EBSD pattern with respect to a reference pattern using cross-correlation algorithms. Additionally we highlight the excellent spatial and depth resolution of EBSD and introduce the use of simulated diffraction patterns based on dynamical diffraction theory for sensitivity estimation. Moreover the potential of EBSD for strain analysis of strained thin films with particular emphasis on appropriate target preparation which respect to occurring lattice defects is demonstrated.

  13. Multipath analysis diffraction calculations

    NASA Technical Reports Server (NTRS)

    Statham, Richard B.

    1996-01-01

    This report describes extensions of the Kirchhoff diffraction equation to higher edge terms and discusses their suitability to model diffraction multipath effects of a small satellite structure. When receiving signals, at a satellite, from the Global Positioning System (GPS), reflected signals from the satellite structure result in multipath errors in the determination of the satellite position. Multipath error can be caused by diffraction of the reflected signals and a method of calculating this diffraction is required when using a facet model of the satellite. Several aspects of the Kirchhoff equation are discussed and numerical examples, in the near and far fields, are shown. The vector form of the extended Kirchhoff equation, by adding the Larmor-Tedone and Kottler edge terms, is given as a mathematical model in an appendix. The Kirchhoff equation was investigated as being easily implemented and of good accuracy in the basic form, especially in phase determination. The basic Kirchhoff can be extended for higher accuracy if desired. A brief discussion of the method of moments and the geometric theory of diffraction is included, but seems to offer no clear advantage in implementation over the Kirchhoff for facet models.

  14. Diffraction Analysis of Solar Coronagraphs

    NASA Astrophysics Data System (ADS)

    Rabin, Douglas M.; gong, qian

    2016-05-01

    The design of a solar coronagraph is predicated on controlling diffracted and scattered light using principles dating back to Bernard Lyot in the 1930’s. The existence of many successful ground- and space-based coronagraphs testifies to our ability to apply these principles in specific cases, but it is difficult to explore a significant range of design parameters because the calculations are tricky and time-consuming. Indeed, scattered light is so design-specific that ad hoc analysis is unavoidable once guidelines from experience are used to create a first-guess system of baffles and low-scatter surfaces. Here we describe a combination of analytic and computational approaches that has the potential to explore coronagraph design space somewhat more systematically with respect to diffracted light.

  15. Mineralogy of chondritic interplanetary dust particle impact residues from LDEF

    NASA Technical Reports Server (NTRS)

    Barrett, R. A.; Zolensky, M. E.; Bernhard, R.

    1993-01-01

    A detailed structural and compositional analysis of several impactor residues was performed utilizing transmission electron microscopy, energy dispersive spectroscopy, and electron diffraction. Residues from the interior of several craters in gold surfaces were removed with a tungsten needle, mounted in EMBED-812 epoxy, and ultramicrotomed. The presence in these residues of equilibrated ferromagnesian minerals, recrystallization textures, glass, and melted metal and sulfide bodies decorating grain boundaries is indicative of varying degrees of shock metamorphism in all impact residues we have characterized.

  16. Diffraction radiation generators

    NASA Astrophysics Data System (ADS)

    Shestopalov, Viktor P.; Vertii, Aleksei A.; Ermak, Gennadii P.; Skrynnik, Boris K.; Khlopov, Grigorii I.; Tsvyk, Aleksei I.

    Research in the field of diffraction radiation generators (DRG) conducted at the Radio Physics and electronics Institute of the Ukranian Academy of Sciences over the past 25 years is reviewed. The effect of diffraction radiation is analyzed in detail, and various operating regimes of DRGs are discussed. The discussion then focuses on the principal requirements for the design of packaged DRGs and their principal parameters. Finally, applications of DRGs in various fields of science and technology are reviewed, including such applications as DRG spectroscopy, diagnostics of plasma, biological specimens, and vibration, and DRG radar systems.

  17. Residual and ovicidal efficacy of essential oil-based formulations in vitro against the donkey chewing louse Bovicola ocellatus.

    PubMed

    Sands, B; Ellse, L; Wall, R

    2016-03-01

    Essential oils have shown good experimental potential as novel veterinary ectoparasiticides. However, if they are to be used as veterinary products, they must be available in formulations that are suitable for practical application against specific ectoparasites. Here, the efficacies of formulations containing 5% (v/v) lavender or tea tree oil, in combination with two emulsifiers [a surfactant, 5% (w/v) N-lauroylsarcosine sodium salt (SLS), and a soluble polymer, 5% (w/v) polyvinylpyrrolidone (PVP)], with or without 10% coconut oil, were tested in contact bioassays against the donkey chewing louse Bovicola ocellatus (Piaget) (Phthiraptera: Trichodectidae). Residual activity was quantified in open and closed containers; ovicidal efficacy was also examined. Exposure to either of 5% (v/v) lavender or tea tree oils with SLS or PVP resulted in louse mortality of 100%, but when coconut oil was included as an excipient, significantly lower efficacy was recorded. However, the formulations became significantly less effective after 2 h in open containers and 40 h in closed containers. The results confirm that the residual activity of essential oils is relatively transitory and the addition of 10% coconut oil does not prolong the period of insecticidal activity by slowing essential oil evaporation. Too short a period of residual activity is likely to be a significant impediment to the effective practical use of essential oils. However, unlike many synthetic pediculicides, the essential oils tested here were highly ovicidal, which suggests that prolonged residual activity may not be essential to kill newly hatched nymphs after treatment. PMID:26522385

  18. On the Accuracy of Sequence-Based Computational Inference of Protein Residues Involved in Interactions with DNA

    PubMed Central

    Gou, Zhenkun; Kuznetsov, Igor B.

    2009-01-01

    Methods for computational inference of DNA-binding residues in DNA-binding proteins are usually developed using classification techniques trained to distinguish between binding and non-binding residues on the basis of known examples observed in experimentally determined high-resolution structures of protein-DNA complexes. What degree of accuracy can be expected when a computational methods is applied to a particular novel protein remains largely unknown. We test the utility of classification methods on the example of Kernel Logistic Regression (KLR) predictors of DNA-binding residues. We show that predictors that utilize sequence properties of proteins can successfully predict DNA-binding residues in proteins from a novel structural class. We use Multiple Linear Regression (MLR) to establish a quantitative relationship between protein properties and the expected accuracy of KLR predictors. Present results indicate that in the case of novel proteins the expected accuracy provided by an MLR model is close to the actual accuracy and can be used to assess the overall confidence of the prediction. PMID:20209034

  19. AFNOR validation of Premi Test, a microbiological-based screening tube-test for the detection of antimicrobial residues in animal muscle tissue.

    PubMed

    Gaudin, Valerie; Juhel-Gaugain, Murielle; Morétain, Jean-Pierre; Sanders, Pascal

    2008-12-01

    Premi Test contains viable spores of a strain of Bacillus stearothermophilus which is sensitive to antimicrobial residues, such as beta-lactams, tetracyclines, macrolides and sulphonamides. The growth of the strain is inhibited by the presence of antimicrobial residues in muscle tissue samples. Premi Test was validated according to AFNOR rules (French Association for Normalisation). The AFNOR validation was based on the comparison of reference methods (French Official method, i.e. four plate test (FPT) and the STAR protocol (five plate test)) with the alternative method (Premi Test). A preliminary study was conducted in an expert laboratory (Community Reference Laboratory, CRL) on both spiked and incurred samples (field samples). Several method performance criteria (sensitivity, specificity, relative accuracy) were estimated and are discussed, in addition to detection capabilities. Adequate agreement was found between the alternative method and the reference methods. However, Premi Test was more sensitive to beta-lactams and sulphonamides than the FPT. Subsequently, a collaborative study with 11 laboratories was organised by the CRL. Blank and spiked meat juice samples were sent to participants. The expert laboratory (CRL) statistically analysed the results. It was concluded that Premi Test could be used for the routine determination of antimicrobial residues in muscle of different animal origin with acceptable analytical performance. The detection capabilities of Premi Test for beta-lactams (amoxicillin, ceftiofur), one macrolide (tylosin) and tetracycline were at the level of the respective maximum residue limits (MRL) in muscle samples or even lower. PMID:19680855

  20. Digital diffractive optics: Have diffractive optics entered mainstream industry yet?

    NASA Astrophysics Data System (ADS)

    Kress, Bernard; Hejmadi, Vic

    2010-05-01

    When a new technology is integrated into industry commodity products and consumer electronic devices, and sold worldwide in retail stores, it is usually understood that this technology has then entered the realm of mainstream technology and therefore mainstream industry. Such a leap however does not come cheap, as it has a double edge sword effect: first it becomes democratized and thus massively developed by numerous companies for various applications, but also it becomes a commodity, and thus gets under tremendous pressure to cut down its production and integration costs while not sacrificing to performance. We will show, based on numerous examples extracted from recent industry history, that the field of Diffractive Optics is about to undergo such a major transformation. Such a move has many impacts on all facets of digital diffractive optics technology, from the optical design houses to the micro-optics foundries (for both mastering and volume replication), to the final product integrators or contract manufacturers. The main causes of such a transformation are, as they have been for many other technologies in industry, successive technological bubbles which have carried and lifted up diffractive optics technology within the last decades. These various technological bubbles have been triggered either by real industry needs or by virtual investment hype. Both of these causes will be discussed in the paper. The adjective ""digital"" in "digital diffractive optics" does not refer only, as it is done in digital electronics, to the digital functionality of the element (digital signal processing), but rather to the digital way they are designed (by a digital computer) and fabricated (as wafer level optics using digital masking techniques). However, we can still trace a very strong similarity between the emergence of micro-electronics from analog electronics half a century ago, and the emergence of digital optics from conventional optics today.

  1. Aging effects on reactivity of an aluminum-based drinking-water treatment residual as a soil amendment.

    PubMed

    Agyin-Birikorang, S; O'Connor, G A

    2009-01-01

    Several studies have shown that drinking-water treatment residuals (WTR) could be used to control mobility of excess phosphorus (P) and other oxyanions in poorly sorbing soils. Presently, only "aged" WTRs (those left, or manipulated, to dewater) are land applied. However, if demand for WTRs increase in the near future, freshly-generated WTRs could be considered for land application. To our knowledge, few studies have examined the reactivity and equilibration time of freshly-generated alum-based WTR (Al-WTR). A laboratory thermal incubation study was, therefore, conducted to determine various extractable Al forms in Al-WTR as a function of WTR "age", and the time required for freshly generated Al-WTR to stabilize. Freshly-generated Al-WTR samples were collected directly from the discharge pumps of a drinking-water treatment plant, and thermally incubated at 52 degrees C, either with or without moisture control, for < or = 24 wk. Additional dewatered Al-WTR samples of various ages (2 wk- to 2 y old) were also included in the study. Various methods of extracting Al [total-, oxalate (200 and 5 mM), and Mehlich 1 extractants] were utilized to assess Al extractability over time. Freshly-generated Al-WTR samples were potentially more reactive (as reflected in greater 5 mM oxalate extractable Al concentration) than dewatered Al-WTR samples stockpiled for > or = 6 mo. Aluminum reactivity of the freshly-generated Al-WTR decreased with time. At least 6 wk of thermal incubation (corresponding to > or = 6 mo of field drying) was required to stabilize the most reactive Al form (5mM oxalate extractable Al concentration) of the Al-WTR. Although no adverse Al-WTR effects have been reported on plants and grazing animals (apparently because of low availability of free Al(3+) in Al-WTR), land application of freshly-generated Al-WTRs (at least, those with similar physicochemical characteristics as the one utilized for the study) should be avoided. PMID:18976798

  2. Diffraction of a Gaussian beam in a three-dimensional smoothly inhomogeneous medium: an eikonal-based complex geometrical-optics approach

    NASA Astrophysics Data System (ADS)

    Berczynski, Pawel; Bliokh, Konstantin Yu.; Kravtsov, Yuri A.; Stateczny, Andrzej

    2006-06-01

    We present an ab initio account of the paraxial complex geometrical optics (CGO) in application to scalar Gaussian beam propagation and diffraction in a 3D smoothly inhomogeneous medium. The paraxial CGO deals with quadratic expansion of the complex eikonal and reduces the wave problem to the solution of ordinary differential equations of the Riccati type. This substantially simplifies the description of Gaussian beam diffraction as compared with full-wave or parabolic (quasi-optics) equations. For a Gaussian beam propagating in a homogeneous medium or along the symmetry axis in a lenslike medium, the CGO equations possess analytical solutions; otherwise, they can be readily solved numerically. As a nontrivial example we consider Gaussian beam propagation and diffraction along a helical ray in an axially symmetric waveguide medium. It is shown that the major axis of the beam's elliptical cross section grows unboundedly; it is oriented predominantly in the azimuthal (binormal) direction and does not obey the parallel-transport law.

  3. Surface roughness characterization of dental fillings: a diffractive analysis

    NASA Astrophysics Data System (ADS)

    April, Gilbert V.; Bouchard, Michel; Doucet, Michel

    1993-02-01

    The large number of new materials such as amalgams and the variety of techniques for finishing and polishing in operative dentistry has stimulated interest in simple, nondestructive methods of surface roughness evaluation. We studied an optical method based on the scattering of reflected coherent light on prepared samples of composite resins submitted to different surface treatments. The method should be able to measure the degree of flatness of the samples, thus enabling a classification procedure according to a figure of merit to be defined. The diffraction properties of such moderately rough surfaces has been correlated with mechanical profilometer measurements of the residual granular structure after polishing. Different surface treatments of composite resins result in distinctive levels of surface flatness, and it is shown that a relation between the intensity of the normalized specular reflection of a beam of coherent light and the rms surface roughness can be established for characterization purposes.

  4. Structured illumination diffraction phase microscopy for broadband, sub-diffraction resolution, quantitative phase imaging

    PubMed Central

    Chowdhury, Shwetadwip; Izatt, Joseph A.

    2015-01-01

    Structured illumination microscopy (SIM) is an established technique that allows sub-diffraction resolution imaging by heterodyning high sample frequencies into the system’s passband via structured illumination. However, until now, SIM has been typically used to achieve sub-diffraction resolution for intensity-based imaging. Here, we present a novel optical setup that uses structured illumination with a broadband-light source to obtain noise-reduced, sub-diffraction resolution, quantitative-phase (QPM) imaging of cells. We compare this with a previous work for sub-diffraction QPM imaging via SIM that used a laser source, and was thus still corrupted by coherent noise. PMID:24562266

  5. Carbon Emissions from Residue Burn Piles Estimated Using LiDAR or Ground Based Measurements of Pile Volumes in a Coastal Douglas-Fir Forest

    NASA Astrophysics Data System (ADS)

    Trofymow, J. A.; Coops, N.; Hayhurst, D.

    2012-12-01

    Following forest harvest, residues left on site and roadsides are often disposed of to reduce fire risk and free planting space. In coastal British Columbia burn piles are the main method of disposal, particularly for accumulations from log processing. Quantification of residue wood in piles is required for: smoke emission estimates, C budget calculations, billable waste assessment, harvest efficiency monitoring, and determination of bioenergy potentials. A second-growth Douglas-fir dominated (DF1949) site on eastern Vancouver Island and subject of C flux and budget studies since 1998, was clearcut in winter 2011, residues piled in spring and burned in fall. Prior to harvest, the site was divided into 4 blocks to account for harvest plans and ecosite conditions. Total harvested wood volume was scaled for each block. Residue pile wood volume was determined by a standard Waste and Residue Survey (WRS) using field estimates of pile base area and plot density (wood volume / 0.005 ha plot) on 2 piles per block, by a smoke emissions geometric method with pile volumes estimated as ellipsoidal paraboloids and packing ratios (wood volume / pile volume) for 2 piles per block, as well as by five other GIS methods using pile volumes and areas from LiDAR and orthophotography flown August 2011, a LiDAR derived digital elevation model (DEM) from 2008, and total scaled wood volumes of 8 sample piles disassembled November 2011. A weak but significant negative relationship was found between pile packing ratio and pile volume. Block level avoidable+unavoidable residue pile wood volumes from the WRS method (20.0 m3 ha-1 SE 2.8) were 30%-50% of the geometric (69.0 m3 ha-1 SE 18.0) or five GIS/LiDAR (48.0 to 65.7 m3 ha-1 ) methods. Block volumes using the 2008 LiDAR DEM (unshifted 48.0 m3 ha-1 SE 3.9, shifted 53.6 m3 ha-1 SE 4.2) to account for pre-existing humps or hollows beneath piles were not different from those using the 2011 LiDAR DEM (50.3 m3 ha-1 SE 4.0). The block volume ratio

  6. DIFFRACTION FROM MODEL CRYSTALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although calculating X-ray diffraction patterns from atomic coordinates of a crystal structure is a widely available capability, calculation from non-periodic arrays of atoms has not been widely applied to cellulose. Non-periodic arrays result from modeling studies that, even though started with at...

  7. Calculating cellulose diffraction patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although powder diffraction of cellulose is a common experiment, the patterns are not widely understood. The theory is mathematical, there are numerous different crystal forms, and the conventions are not standardized. Experience with IR spectroscopy is not directly transferable. An awful error, tha...

  8. Diffractive hard scattering

    SciTech Connect

    Berger, E.L.; Collins, J.C.; Soper, D.E.; Sterman, G.

    1986-03-01

    I discuss events in high energy hadron collisions that contain a hard scattering, in the sense that very heavy quarks or high P/sub T/ jets are produced, yet are diffractive, in the sense that one of the incident hadrons is scattered with only a small energy loss. 8 refs.

  9. Long distance fiber Bragg grating strain sensor interrogation using a high speed Raman-based Fourier domain mode-locked fiber laser with recycled residual Raman pump.

    PubMed

    Kim, Sunduck; Kwon, Oh-Jang; Lee, Hyeong-Seok; Kim, Chang-Seok; Han, Young-Geun

    2013-06-01

    We propose a novel fiber Bragg grating (FBG) sensor interrogation using a Raman-based Fourier-domain mode locking (FDML) fiber laser for a high speed and long distance measurement. A residual Raman pump after the generation of the Raman-based FDML fiber laser is recycled for secondary signal amplification in a 2-m erbium-doped fiber (EDF) to further enhance the output power. The chromatic dispersion is precisely controlled to suppress the phase noise in the FDML laser cavity, resulting in the improvement of an R-number of 1.43 mm/dB. After recycling residual pump, we achieve the 40-km round trip transmission of the sensing probe signal with a high scan rate of 30.8 kHz. With 205-mW residual pump power, the bandwidth and the maximum gain are measured to be more than 50 nm, 10.3 dB at 1550 nm, respectively. The sensitivity of the proposed Raman-based FDML fiber laser to strain is also measured, which are 0.81 pm/μstrain in the spectral domain and 0.19 ns/μstrain in the time domain, respectively. PMID:23736592

  10. Chromatic confocal microscopy using staircase diffractive surface.

    PubMed

    Rayer, Mathieu; Mansfield, Daniel

    2014-08-10

    A chromatic confocal microscope (CCM) is a high-dynamic-range noncontact distance measurement sensor; it is based on a hyperchromatic lens. The vast majority of commercial CCMs use refractive-based chromatic dispersion to chromatically code the optical axis. This approach significantly limits the range of applications and performance of the CCM. In order to be a suitable alternative to a laser triangulation gauge and laser encoder, the performance of the CCM must be improved. In this paper, it is shown how hybrid aspheric diffractive (HAD) lenses can bring the CCM to its full potential by increasing the dynamic range by a factor of 2 and the resolution by a factor of 5 while passively athermizing and increasing the light throughput efficiency of the optical head [M. Rayer, U.S. patent 1122052.2 (2011)]. The only commercially suitable manufacturing process is single-point diamond turning. However, the optical power carried by the diffractive side of a hybrid aspheric diffractive lens is limited by the manufacturing process. A theoretical study of manufacturing losses has revealed that the HAD configuration with the highest diffraction efficiency is for a staircase diffractive surface (SDS). SDS lenses have the potential to reduce light losses associated with manufacturing limits by a factor of 5 without increasing surface roughness, allowing scalar diffraction-limited optical design with a diffractive element. PMID:25320920

  11. Diffraction techniques in structural biology.

    PubMed

    Egli, Martin

    2010-06-01

    A detailed understanding of chemical and biological function and the mechanisms underlying the molecular activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy, and neutron diffraction are well established and they have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last 20 years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches, and high-speed computing and visualization, now provide specialists and nonspecialists alike with a steady flow of molecular images of unprecedented detail. The present unit combines a general overview of diffraction methods with a detailed description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis, and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. PMID:20517991

  12. Diffraction Techniques in Structural Biology.

    PubMed

    Egli, Martin

    2016-01-01

    A detailed understanding of chemical and biological function and the mechanisms underlying the molecular activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy, and neutron diffraction are well established and they have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last twenty years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches, and high-speed computing and visualization, now provide specialists and nonspecialists alike with a steady flow of molecular images of unprecedented detail. The present unit combines a general overview of diffraction methods with a detailed description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis, and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. © 2016 by John Wiley & Sons, Inc. PMID:27248784

  13. Liquid crystal filled diffraction gratings

    NASA Astrophysics Data System (ADS)

    Jepsen, Mary Lou

    1997-12-01

    Liquid crystal technology is becoming increasingly important for flat displays in electronics, computers and TV. Most liquid crystal displays currently made have as their basic unit, two flat surfaces each coated with a transparent, conductive layer, between which a thin layer of liquid crystals is sandwiched. The work detailed in this dissertation is based on a modification of the basic liquid crystal unit and studies the properties of structures which consist of certain anisotropic liquid crystals confined between a flat substrate and a corrugated one, each substrate being transparent and having a thin trans-parent conductive coating. Without an applied electric field, the refractive indices of the liquid crystal and corrugated substrate do not match, and thus strong diffraction occurs. When an electric field is applied to the device, the liquid crystals are re-oriented so that the refractive indices now match, and the device behaves as a uniform slab of homogeneous material producing no diffraction. Rigorous coupled wave analysis was developed to design the ideal devices and analyze the performance of our experimental ones. 99% diffraction efficiencies in single wavelength polarized illumination are shown to be possible with this class of devices. The best device we fabricated showed a 62% distraction efficiency, as our fabrication process roughened the top surface of the device so that (≃30%) of the incident light was lost to scatter. Several new fabrication processes are proposed to eliminate this scatter problem, and that details of fabrication processes thus far attempted are outlined.

  14. Stretchable diffraction gratings for spectrometry

    NASA Astrophysics Data System (ADS)

    Simonov, Aleksey N.; Grabarnik, Semen; Vdovin, Gleb

    2007-07-01

    We have investigated the possibility of using transparent stretchable diffraction gratings for spectrometric applications. The gratings were fabricated by replication of a triangular-groove master into a transparent viscoelastic. The sample length, and hence the spatial period, can be reversibly changed by mechanical stretching. When used in a monochromator with two slits, the stretchable grating permits scanning the spectral components over the output slit, converting the monochromator into a scanning spectrometer. The spectral resolution of such a spectrometer was found to be limited mainly by the wave-front aberrations due to the grating deformation. A model relating the deformation-induced aberrations in different diffraction orders is presented. In the experiments, a 12-mm long viscoelastic grating with a spatial frequency of 600 line pairs/mm provided a full-width at half-maximum resolution of up to ~1.2 nm in the 580-680 nm spectral range when slowly stretched by a micrometer screw and ~3 nm when repeatedly stretched by a voice coil at 15 Hz. Comparison of aberrations in transmitted and diffracted beams measured by a Shack- Hartmann wave-front sensor showed that astigmatisms caused by stretch-dependent wedge deformation are the main factors limiting the resolution of the viscoelastic-grating-based spectrometer.

  15. Diffraction Techniques in Structural Biology

    PubMed Central

    Egli, Martin

    2010-01-01

    A detailed understanding of chemical and biological function and the mechanisms underlying the activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy and neutron diffraction are well established and have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last 20 years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches and high-speed computing and visualization, now provide specialists and non-specialists alike with a steady flow of molecular images of unprecedented detail. The present chapter combines a general overview of diffraction methods with a step-by-step description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. PMID:20517991

  16. Residual Cap

    NASA Technical Reports Server (NTRS)

    2006-01-01

    10 May 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a summertime view of the south polar residual cap of Mars. In this image, mesas composed largely of solid carbon dioxide are separated from one another by irregularly-shaped depressions. The variation in brightness across this scene is a function of several factors including, but not limited to, varying proportions of dust and solid carbon dioxide, undulating topography, and differences in the roughness of the slopes versus the flat surfaces.

    Location near: 86.7oS, 343.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  17. Small area analysis using micro-diffraction techniques

    SciTech Connect

    GOEHNER,RAYMOND P.; TISSOT JR.,RALPH G.; MICHAEL,JOSEPH R.

    2000-02-11

    An overall trend toward smaller electronic packages and devices makes it increasingly important and difficult to obtain meaningful diffraction information from small areas. X-ray micro-diffraction, electron back-scattered diffraction (EBSD) and Kossel are micro-diffraction techniques used for crystallographic analysis including texture, phase identification and strain measurements. X-ray micro-diffraction primarily is used for phase analysis and residual strain measurements. X-ray micro-diffraction primarily is used for phase analysis and residual strain measurements of areas between 10 {micro}m to 100 {micro}m. For areas this small glass capillary optics are used for producing a usable collimated x-ray beam. These optics are designed to reflect x-rays below the critical angle therefore allowing for larger solid acceptance angle at the x-ray source resulting in brighter smaller x-ray beams. The determination of residual strain using micro-diffraction techniques is very important to the semiconductor industry. Residual stresses have caused voiding of the interconnect metal which then destroys electrical continuity. Being able to determine the residual stress helps industry to predict failures from the aging effects of interconnects due to this stress voiding. Stress measurements would be impossible using a conventional x-ray diffractometer; however, utilizing a 30{micro}m glass capillary these small areas are readily assessable for analysis. Kossel produces a wide angle diffraction pattern from fluorescent x-rays generated in the sample by an e-beam in a SEM. This technique can yield very precise lattice parameters for determining strain. Fig. 2 shows a Kossel pattern from a Ni specimen. Phase analysis on small areas is also possible using an energy dispersive spectrometer (EBSD) and x-ray micro-diffraction techniques. EBSD has the advantage of allowing the user to observe the area of interest using the excellent imaging capabilities of the SEM. An EDS detector has

  18. Diffraction enhanced x-ray imaging

    SciTech Connect

    Thomlinson, W.; Zhong, Z.; Chapman, D.; Johnston, R.E.; Sayers, D.

    1997-09-01

    Diffraction enhanced imaging (DEI) is a new x-ray radiographic imaging modality using synchrotron x-rays which produces images of thick absorbing objects that are almost completely free of scatter. They show dramatically improved contrast over standard imaging applied to the same phantoms. The contrast is based not only on attenuation but also the refraction and diffraction properties of the sample. The diffraction component and the apparent absorption component (absorption plus extinction contrast) can each be determined independently. This imaging method may improve the image quality for medical applications such as mammography.

  19. Reduction of Thermal Residual Stresses in Advanced Metallic Composites Based upon a Compensating/Compliant Layer Concept

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Arya, V. K.; Melis, M. E.

    1992-01-01

    A detailed parametric study is carried out to investigate the viability of the recently proposed compensating/compliant layer concept (i.e., the insertion of an interface material between SiC fiber and metal matrix to reduce or eliminate the residual stress buildup during cooling of the composite). The study uses a finite-element concentric cylinder model with generalized plane strain end conditions and free boundary conditions, assuming the SiC fiber to be isotropic and linear elastic and the compliant layer cylinder and matrix (Ti3Al + Nb) cylinder to be isotropic and bilinear elastic-plastic. Results show that a compensating/compliant layer acts to reduce in-plane residual stresses within the fiber and the matrix and, therefore, reduces radial cracking. However, this decrease in in-plane stresses is accompanied by an increase of longitudinal stress, which may initiate longitudinal cracking.

  20. Azaindole-Based Inhibitors of Cdc7 Kinase: Impact of the Pre-DFG Residue, Val 195

    PubMed Central

    2013-01-01

    To investigate the role played by the unique pre-DFG residue Val 195 of Cdc7 kinase on the potency of azaindole-chloropyridines (1), a series of novel analogues with various chloro replacements were synthesized and evaluated for their inhibitory activity against Cdc7. X-ray cocrystallization using a surrogate protein, GSK3β, and modeling studies confirmed the azaindole motif as the hinge binder. Weaker hydrophobic interactions with Met 134 and Val 195 by certain chloro replacements (e.g., H, methyl) led to reduced Cdc7 inhibition. Meanwhile, data from other replacements (e.g., F, O) indicated that loss of such hydrophobic interaction could be compensated by enhanced hydrogen bonding to Lys 90. Our findings not only provide an in-depth understanding of the pre-DFG residue as another viable position impacting kinase inhibition, they also expand the existing knowledge of ligand-Cdc7 binding. PMID:24900653