Science.gov

Sample records for diffraction lens telescope

  1. Twenty Meter Space Telescope Based on Diffractive Fresnel Lens

    SciTech Connect

    Early, J; Hyde, R; Baron, R

    2003-06-26

    Diffractive lenses offer two potential advantages for very large aperture space telescopes; very loose surface-figure tolerances and physical implementation as thin, flat optical elements. In order to actually realize these advantages one must be able to build large diffractive lenses with adequate optical precision and also to compactly stow the lens for launch and then fully deploy it in space. We will discuss the recent fabrication and assembly demonstration of a 5m glass diffractive Fresnel lens at LLNL. Optical performance data from smaller full telescopes with diffractive lens and corrective optics show diffraction limited performance with broad bandwidths. A systems design for a 20m space telescope will be presented. The primary optic can be rolled to fit inside of the standard fairings of the Delta IV vehicle. This configuration has a simple deployment and requires no orbital assembly. A twenty meter visible telescope could have a significant impact in conventional astronomy with eight times the resolution of Hubble and over sixty times the light gathering capacity. If the light scattering is made acceptable, this telescope could also be used in the search for terrestrial planets.

  2. Telescopic vision contact lens

    NASA Astrophysics Data System (ADS)

    Tremblay, Eric J.; Beer, R. Dirk; Arianpour, Ashkan; Ford, Joseph E.

    2011-03-01

    We present the concept, optical design, and first proof of principle experimental results for a telescopic contact lens intended to become a visual aid for age-related macular degeneration (AMD), providing magnification to the user without surgery or external head-mounted optics. Our contact lens optical system can provide a combination of telescopic and non-magnified vision through two independent optical paths through the contact lens. The magnified optical path incorporates a telescopic arrangement of positive and negative annular concentric reflectors to achieve 2.8x - 3x magnification on the eye, while light passing through a central clear aperture provides unmagnified vision.

  3. Wearable telescopic contact lens.

    PubMed

    Arianpour, Ashkan; Schuster, Glenn M; Tremblay, Eric J; Stamenov, Igor; Groisman, Alex; Legerton, Jerry; Meyers, William; Amigo, Goretty Alonso; Ford, Joseph E

    2015-08-20

    We describe the design, fabrication, and testing of a 1.6 mm thick scleral contact lens providing both 1× and 2.8× magnified vision paths, intended for use as a switchable eye-borne telescopic low-vision aid. The F/9.7 telescopic vision path uses an 8.2 mm diameter annular entrance pupil and 4 internal reflections in a polymethyl methacrylate precision optic. This gas-impermeable insert is contained inside a smooth outer casing of rigid gas-permeable polymer, which also provides achromatic correction for refraction at the curved lens face. The unmagnified F/4.1 vision path is through the central aperture of the lens, with additional transmission between the annular telescope rings to enable peripheral vision. We discuss potential solutions for providing oxygenation for an extended wear version of the lens. The prototype lenses were characterized using a scale-model human eye, and telescope functionality was confirmed in a small-scale clinical (nondispensed) demonstration. PMID:26368753

  4. Large aperture diffractive space telescope

    DOEpatents

    Hyde, Roderick A.

    2001-01-01

    A large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary objective lens functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass "aiming" at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The objective lens includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the objective lens, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets which may be either earth bound or celestial.

  5. Eyeglass. 1. Very large aperture diffractive telescopes.

    PubMed

    Hyde, R A

    1999-07-01

    The Eyeglass is a very large aperture (25-100-m) space telescope consisting of two distinct spacecraft, separated in space by several kilometers. A diffractive lens provides the telescope s large aperture, and a separate, much smaller, space telescope serves as its mobile eyepiece. Use of a transmissive diffractive lens solves two basic problems associated with very large aperture space telescopes; it is inherently launchable (lightweight, packagable, and deployable) it and virtually eliminates the traditional, very tight surface shape tolerances faced by reflecting apertures. The potential drawback to use of a diffractive primary (very narrow spectral bandwidth) is eliminated by corrective optics in the telescope s eyepiece; the Eyeglass can provide diffraction-limited imaging with either single-band (Deltalambda/lambda approximately 0.1), multiband, or continuous spectral coverage. PMID:18323902

  6. The Optimal Gravitational Lens Telescope

    NASA Astrophysics Data System (ADS)

    Surdej, J.; Delacroix, C.; Coleman, P.; Dominik, M.; Habraken, S.; Hanot, C.; Le Coroller, H.; Mawet, D.; Quintana, H.; Sadibekova, T.; Sluse, D.

    2010-05-01

    Given an observed gravitational lens mirage produced by a foreground deflector (cf. galaxy, quasar, cluster, ...), it is possible via numerical lens inversion to retrieve the real source image, taking full advantage of the magnifying power of the cosmic lens. This has been achieved in the past for several remarkable gravitational lens systems. Instead, we propose here to invert an observed multiply imaged source directly at the telescope using an ad hoc optical instrument which is described in the present paper. Compared to the previous method, this should allow one to detect fainter source features as well as to use such an optimal gravitational lens telescope to explore even fainter objects located behind and near the lens. Laboratory and numerical experiments illustrate this new approach.

  7. THE OPTIMAL GRAVITATIONAL LENS TELESCOPE

    SciTech Connect

    Surdej, J.; Hanot, C.; Sadibekova, T.; Delacroix, C.; Habraken, S.; Coleman, P.; Dominik, M.; Le Coroller, H.; Mawet, D.; Quintana, H.; Sluse, D.

    2010-05-15

    Given an observed gravitational lens mirage produced by a foreground deflector (cf. galaxy, quasar, cluster, ...), it is possible via numerical lens inversion to retrieve the real source image, taking full advantage of the magnifying power of the cosmic lens. This has been achieved in the past for several remarkable gravitational lens systems. Instead, we propose here to invert an observed multiply imaged source directly at the telescope using an ad hoc optical instrument which is described in the present paper. Compared to the previous method, this should allow one to detect fainter source features as well as to use such an optimal gravitational lens telescope to explore even fainter objects located behind and near the lens. Laboratory and numerical experiments illustrate this new approach.

  8. Eyeglass: A Very Large Aperture Diffractive Space Telescope

    SciTech Connect

    Hyde, R; Dixit, S; Weisberg, A; Rushford, M

    2002-07-29

    Eyeglass is a very large aperture (25-100 meter) space telescope consisting of two distinct spacecraft, separated in space by several kilometers. A diffractive lens provides the telescope's large aperture, and a separate, much smaller, space telescope serves as its mobile eyepiece. Use of a transmissive diffractive lens solves two basic problems associated with very large aperture space telescopes; it is inherently fieldable (lightweight and flat, hence packagable and deployable) and virtually eliminates the traditional, very tight, surface shape tolerances faced by reflecting apertures. The potential drawback to use of a diffractive primary (very narrow spectral bandwidth) is eliminated by corrective optics in the telescope's eyepiece. The Eyeglass can provide diffraction-limited imaging with either single-band, multiband, or continuous spectral coverage. Broadband diffractive telescopes have been built at LLNL and have demonstrated diffraction-limited performance over a 40% spectral bandwidth (0.48-0.72 {micro}m). As one approach to package a large aperture for launch, a foldable lens has been built and demonstrated. A 75 cm aperture diffractive lens was constructed from 6 panels of 1 m thick silica; it achieved diffraction-limited performance both before and after folding. This multiple panel, folding lens, approach is currently being scaled-up at LLNL. We are building a 5 meter aperture foldable lens, involving 72 panels of 700 {micro}m thick glass sheets, diffractively patterned to operate as coherent f/50 lens.

  9. Very Large Aperture Diffractive Space Telescope

    SciTech Connect

    Hyde, Roderick Allen

    1998-04-20

    A very large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass ''aiming'' at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The magnifying glass includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the magnifying glass, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets.

  10. Finite Element Analysis of the LOLA Receiver Telescope Lens

    NASA Technical Reports Server (NTRS)

    Matzinger, Elizabeth

    2007-01-01

    This paper presents the finite element stress and distortion analysis completed on the Receiver Telescope lens of the Lunar Orbiter Laser Altimeter (LOLA). LOLA is one of six instruments on the Lunar Reconnaissance Orbiter (LRO), scheduled to launch in 2008. LOLA's main objective is to produce a high-resolution global lunar topographic model to aid in safe landings and enhance surface mobility in future exploration missions. The Receiver Telescope captures the laser pulses transmitted through a diffractive optical element (DOE) and reflected off the lunar surface. The largest lens of the Receiver Telescope, Lens 1, is a 150 mm diameter aspheric lens originally designed to be made of BK7 glass. The finite element model of the Receiver Telescope Lens 1 is comprised of solid elements and constrained in a manner consistent with the behavior of the mounting configuration of the Receiver Telescope tube. Twenty-one temperature load cases were mapped to the nodes based on thermal analysis completed by LOLA's lead thermal analyst, and loads were applied to simulate the preload applied from the ring flexure. The thermal environment of the baseline design (uncoated BK7 lens with no baffle) produces large radial and axial gradients in the lens. These large gradients create internal stresses that may lead to part failure, as well as significant bending that degrades optical performance. The high stresses and large distortions shown in the analysis precipitated a design change from BK7 glass to sapphire.

  11. Variable focus crystal diffraction lens

    SciTech Connect

    Smither, R.K.

    1988-11-01

    A new method has been developed to control the shape of the surface of a diffracting crystal that will allow it to function as a variable focus crystal diffraction lens, for focusing photon beams from a synchrotron source. The new method uses thermal gradients in the crystal to control the shape of the surface of the crystal in two dimensions and allows one to generate both spherical and ellipsoidal surface shapes. In this work the thermal gradient was generated by core drilling two sets of cooling channels in a silicon crystal so that cooling or heating fluids could be circulated through the crystal at two different levels. The first set of channels is close to the surface of the crystal where the photon beam strikes it. The second set of channels is equal distant from the back surface. If a concave surface is desired, the fluid in the channels just below the surface exposed to the beam is cooler than the fluid circulating through the channels near the back surface. If a convex surface is desired, then the cooling fluid in the upper channels near the surface exposed to the incident photon beam, is warmer than the fluid in the lower channels. The focal length of the crystal lens is varied by varying the thermal gradient in the crystal. This approach can also be applied to the first crystal in a high power synchrotron beam line to eliminate the bowing and other thermal distortions of the crystal caused by the high heat load. 6 refs., 8 figs., 3 tabs.

  12. Design of infrared diffractive telescope imaging optical systems

    NASA Astrophysics Data System (ADS)

    Zhang, ZhouFeng; Hu, BingLiang; Yin, QinYe; Xie, YongJun; Kang, FuZeng; Wang, YanJun

    2015-10-01

    Diffractive telescope is an updated imaging technology, it differs from conventional refractive and reflective imaging system, which is based on the principle of diffraction image. It has great potential for developing the larger aperture and lightweight telescope. However, one of the great challenges of design this optical system is that the diffractive optical element focuses on different wavelengths of light at different point in space, thereby distorting the color characteristics of image. In this paper, we designs a long-wavelength infrared diffractive telescope imaging system with flat surface Fresnel lens and cancels the infrared optical system chromatic aberration by another flat surface Fresnel lens, achieving broadband light(from 8μm-12μm) to a common focus with 4.6° field of view. At last, the diffuse spot size and MTF function provide diffractive-limited performance.

  13. In-the-spectacle-lens telescopic device.

    PubMed

    Peli, Eli; Vargas-Martín, Fernando

    2008-01-01

    Spectacle-mounted telescopic systems are prescribed for individuals with visual impairments. Bioptic telescopes are typically mounted toward the top of the spectacle lens (or above the frame) with the telescope eyepiece positioned above the wearer's pupil. This allows the wearer to use up and down head tilt movements to quickly alternate between the unmagnified wide view (through the carrier lens) and the magnified narrow field of view (available through the eyepiece). Rejection of this visual aid has been attributed mainly to its appearance and to the limited field of view through the smaller Galilean designs. We designed a wide-field Keplerian telescope that is built completely within the spectacle lens. The design uses embedded mirrors inside the carrier lens for optical pathway folding, and conventional lenses or curved mirrors for magnification power. The short height of the ocular, its position, and a small tilt of the ocular mirror enable the wearer to simultaneously view the magnified field above the unmagnified view of the uninterrupted horizontal field. These features improve the cosmetics and utility of the device. The in-the-lens design allows the telescope to be mass produced as a commodity ophthalmic lens blank that can be surfaced to include the wearer's spectacle prescription. PMID:18601572

  14. A tunable crystal diffraction telescope for the International Space Station

    NASA Technical Reports Server (NTRS)

    VonBallmoos, P.; Kohnle, A.; Olive, J. F.; Vedrenne, G.; Smither, R. K.; Fernandez, P. B.; Graber, T.

    1996-01-01

    A focusing gamma ray telescope is proposed for use onboard the International Space Station. It consists of a tunable crystal diffraction lens which focuses gamma rays onto a small array of germanium detectors located on an extendable boom. While the weight of such an instrument is less than 500 kg, it features an angular resolution of 15 arcsec, an energy resolution of 2 keV and a 3 sigma sensitivity of the order of 10(exp -7) photons/sq cm sec for any individual narrow line at energies of between 200 and 1300 keV. The scientific potential of such a telescope is discussed. The principles of a diffraction lens and a tunable diffraction lens are described.

  15. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, N.M.; Hawryluk, A.M.; London, R.A.; Seppala, L.G.

    1993-10-26

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described. 21 figures.

  16. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, Natale M.; Hawryluk, Andrew M.; London, Richard A.; Seppala, Lynn G.

    1993-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described.

  17. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, Natale M.; Hawryluk, Andrew M.; London, Richard A.; Seppala, Lynn G.

    1991-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed.

  18. Diffractive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  19. Finite element analysis of the LOLA receiver telescope lens

    NASA Astrophysics Data System (ADS)

    Matzinger, Elizabeth A.

    2007-09-01

    This paper presents the finite element stress and distortion analysis completed on the receiver telescope lens of the Lunar Orbiter Laser Altimeter (LOLA). LOLA is one of six instruments on the Lunar Reconnaissance Orbiter (LRO), scheduled to launch in 2008. LOLA's main objective is to produce a high-resolution global lunar topographic model to aid in safe landings and enhance surface mobility in future exploration missions. A receiver telescope captures the laser pulses transmitted through a diffractive optical element (DOE) and reflected off the lunar surface. The largest lens of the receiver telescope was modeled with solid elements and constrained in a manner consistent with the behavior of the mounting configuration. Twenty-one temperature load cases were mapped to the nodes based on thermal analysis completed by LOLA's lead thermal analyst, and loads were applied to simulate the preload applied from the ring flexure. The thermal environment of the baseline design produces large radial and axial gradients in the lens. These large gradients create internal stresses that may lead to part failure, as well as significant bending that degrades optical performance. The high stresses and large distortions shown in the analysis precipitated a design change from BK7 glass to sapphire.

  20. Using multiple diffractive optical elements in infrared lens design

    NASA Astrophysics Data System (ADS)

    Sinclair, R. Lawrence; High, Martin; Strnad, Vladimir

    1999-07-01

    Many IR lenses include Diffractive Optical Elements (DOEs) which have been incorporated to reduce the lens complexity and/or the tolerance sensitivity. In many cases the diffractive surface includes an asphere to achieve further aberration correction. For complex lens systems such as IR multi-FOV and IR zoom lenses there is a strong motivation to use multiple diffractive optical elements. This paper reviews the performance impact and productivity advantages of using multiple diffractive optical elements in an IR lens.

  1. Super-resolution optical telescopes with local light diffraction shrinkage

    NASA Astrophysics Data System (ADS)

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-12-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems.

  2. Super-resolution optical telescopes with local light diffraction shrinkage.

    PubMed

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems. PMID:26677820

  3. Super-resolution optical telescopes with local light diffraction shrinkage

    PubMed Central

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems. PMID:26677820

  4. Lightweight Inexpensive Ozone Lidar Telescope Using a Plastic Fresnel Lens

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Notari, Anthony; Carrion, William; Pliutau, Denis

    2014-01-01

    An inexpensive lightweight ozone lidar telescope was designed, constructed and operated during an ozone lidar field campaign. This report summarizes the design parameters and performance of the plastic Fresnel lens telescope and shows the ozone lidar performance compared to Zemax calculations.

  5. In-the-spectacle-lens telescopic device for low vision

    NASA Astrophysics Data System (ADS)

    Peli, Eli; Vargas-Martin, Fernando

    2002-06-01

    Spectacle mounted telescopic systems have been prescribed for visual impairment, providing magnified images of objects at farther distances. Typically, bioptic telescopes are mounted toward the top of spectacle lenses or above the frame with the telescope eyepiece positioned above the eye's pupil. This allows the wearer to alternate between the magnified narrow field of view available through the eyepiece and the unmagnified wide view through the carrier lens using head motion. The main obstacles to acceptance are the obvious appearance, limited field of the smaller Galilean telescopes, and weight of the larger Keplerian telescopes. We designed a spectacle-mounted wide-field Keplerian telescope built completely inside the spectacle lens. The design uses embedded mirrors inside the carrier lens for optical pathway folding and conventional lenses or curved mirrors. The small size of the ocular and its position with additional mirror tilt enable the user to view the magnified field simultaneously and above the unmagnified view of the uninterrupted horizontal field that is important for user's safety. This design enables the construction of cosmetic telescopes that can be produced as a commodity lens blank and surfaced to include the patient prescription. These devices may be also of utility in military and civilian use.

  6. Design and Diffractive Modeling on a Single Lens Shaper

    SciTech Connect

    C. Liu, S. Zhang

    2009-05-01

    This paper introduces a single lens laser beam shaper which is capable of redistributing a beam with a Gaussian profile to a super-Gaussian profile. Both geometrical and diffractive optical modelings are performed on a typical single lens shaper that shows significant reduction of destructive effects on the beam uniformity over those with sharp-edges.

  7. A tunable crystal diffraction telescope for the International Space Station

    SciTech Connect

    Ballmoos, P. von; Kohnle, A.; Olive, J.F.; Vedrenne, G.; Smither, R.K.; Fernandez, P.B.; Graber, T.

    1997-02-01

    Even though technically innovative, a tunable crystal diffraction telescope for use in nuclear astrophysics has become feasible today. The focusing gamma-ray telescope the authors intended to propose for the space station consists of a tunable crystal diffraction lens, focusing gamma-rays onto a small array of Germanium detectors perched on an extendible boom. While the weight of such an instrument is less than 500 kg, it features an angular resolution of 15 inches, an energy resolution of 2 keV and a 3 {sigma} sensitivity of a few times 10{sup {minus}7} photons{center_dot}s{sup {minus}1}{center_dot}cm{sup {minus}2} (10{sup 6} sec observation) for any individual narrow line at energies between 200--1,300 keV. This experience would greatly profit from the continuous presence of man on the station. Besides of the infrastructure for maintenance and servicing of the various innovative techniques used for the first time in space, the available extra-vehicular robotics will facilitate deployment of the required boom structure.

  8. Additive manufacturing of a trifocal diffractive-refractive lens

    NASA Astrophysics Data System (ADS)

    Hinze, Ulf; El-Tamer, Ayman; Doskolovich, Leonid L.; Bezus, Evgeni A.; Reiß, Stefan; Stolz, Heinrich; Guthoff, Rudolf F.; Stachs, Oliver; Chichkov, Boris

    2016-08-01

    The application of two-photon polymerization and molding for the fabrication of a multifocal diffractive-refractive lens operating in water is studied. The fabricated lens is of aspheric shape and combines diffractive and refractive parts in a single element to generate three foci. The lens performance is characterized by visualization of the beam propagation in a transparent basin filled with water containing fluorescein. The experimental measurements are in good agreement with the theoretical description. The obtained results are promising for the realization of trifocal intraocular lenses with predetermined light intensity distribution between the foci.

  9. Programmable diffractive lens for ophthalmic application

    NASA Astrophysics Data System (ADS)

    Millán, María S.; Pérez-Cabré, Elisabet; Romero, Lenny A.; Ramírez, Natalia

    2014-06-01

    Pixelated liquid crystal displays have been widely used as spatial light modulators to implement programmable diffractive optical elements, particularly diffractive lenses. Many different applications of such components have been developed in information optics and optical processors that take advantage of their properties of great flexibility, easy and fast refreshment, and multiplexing capability in comparison with equivalent conventional refractive lenses. We explore the application of programmable diffractive lenses displayed on the pixelated screen of a liquid crystal on silicon spatial light modulator to ophthalmic optics. In particular, we consider the use of programmable diffractive lenses for the visual compensation of refractive errors (myopia, hypermetropia, astigmatism) and presbyopia. The principles of compensation are described and sketched using geometrical optics and paraxial ray tracing. For the proof of concept, a series of experiments with artificial eye in optical bench are conducted. We analyze the compensation precision in terms of optical power and compare the results with those obtained by means of conventional ophthalmic lenses. Practical considerations oriented to feasible applications are provided.

  10. Intraocular camera for retinal prostheses: Refractive and diffractive lens systems

    NASA Astrophysics Data System (ADS)

    Hauer, Michelle Christine

    The focus of this thesis is on the design and analysis of refractive, diffractive, and hybrid refractive/diffractive lens systems for a miniaturized camera that can be surgically implanted in the crystalline lens sac and is designed to work in conjunction with current and future generation retinal prostheses. The development of such an intraocular camera (IOC) would eliminate the need for an external head-mounted or eyeglass-mounted camera. Placing the camera inside the eye would allow subjects to use their natural eye movements for foveation (attention) instead of more cumbersome head tracking, would notably aid in personal navigation and mobility, and would also be significantly more psychologically appealing from the standpoint of personal appearances. The capability for accommodation with no moving parts or feedback control is incorporated by employing camera designs that exhibit nearly infinite depth of field. Such an ultracompact optical imaging system requires a unique combination of refractive and diffractive optical elements and relaxed system constraints derived from human psychophysics. This configuration necessitates an extremely compact, short focal-length lens system with an f-number close to unity. Initially, these constraints appear highly aggressive from an optical design perspective. However, after careful analysis of the unique imaging requirements of a camera intended to work in conjunction with the relatively low pixellation levels of a retinal microstimulator array, it becomes clear that such a design is not only feasible, but could possibly be implemented with a single lens system.

  11. Diffraction enhanced X-ray imaging of mammals crystalline lens

    NASA Astrophysics Data System (ADS)

    Antunes, A.; Hönnicke, M. G.; Safatle, A. M. V.; Cusatis, C.; Moraes Barros, P. S.; Morelhão, S. L.

    2005-08-01

    Crystalline lenses are transparent biological materials where the organization of the lens fibers can also be affected by changes at molecular level, and therefore the structure and morphology of the tissue can be correlated to the loss of transparency of the lens. In this work, internal structure of mammal lenses regarding the long-range ordering of the fibers are investigated by diffraction enhanced X-ray imaging (DEI) radiography. Moreover, DEI and absorption X-ray synchrotron radiographs for healthy and cataractous crystalline lenses are compared. Significant differences in healthy and cataractous crystalline lenses are observed.

  12. Comparison of visual outcomes after implantation of diffractive trifocal toric intraocular lens and a diffractive apodized bifocal toric intraocular lens

    PubMed Central

    Gundersen, Kjell Gunnar; Potvin, Rick

    2016-01-01

    Purpose The aim of this study was to compare a new diffractive trifocal toric lens with an apodized diffractive bifocal toric lens in terms of refractive and visual acuity (VA) outcomes, including low-contrast VA (LCVA), as well as the patient’s visual function 3 months after implantation. Patients and methods This is a randomized prospective study involving bilateral implantation of a trifocal toric or a bifocal toric lens. At 3 months postoperatively, the subject’s vision was tested both uncorrected and with his/her best distance correction at: distance (4 m), intermediate (63 cm), and near (40 cm). Binocular defocus curves were measured with no correction and with the subject’s best distance correction in place. Quality of vision was measured using the National Eye Institute Visual Function Questionnaire. Results A total of 22 patients were enrolled (eleven in each group). There was no statistically significant difference in the absolute change in measured rotation between 1 month and 3 months postoperatively between the two intraocular lens (IOL) groups (P=0.98). At 3 months, the postoperative refraction and distance VA by eye were similar between groups. There was no statistically significant difference in the measured LCVA between groups (P=0.39). The defocus curve showed that at 67 cm, the trifocal toric lens had statistically significantly better VA when compared to the bifocal toric lens. There were no statistically significant differences by group for any of the National Eye Institute Visual Function Questionnaire scores (P>0.26 in all cases). Conclusion The trifocal toric IOL improved the intermediate vision without negatively impacting visual function and distance, near, or low-contrast VA when compared to a bifocal toric IOL. The toric component of the trifocal lens effectively reduced astigmatism and provided good rotational stability. PMID:27051269

  13. A refracting radio telescope. [using ionosphere as lens

    NASA Technical Reports Server (NTRS)

    Bernhardt, P.; Da Rosa, A. V.

    1977-01-01

    Observations of extraterrestrial radio sources at the lower end of the radio frequency spectrum are limited by reflection of waves from the topside ionosphere and by the large size of antenna apertures necessary for the realization of narrow beamwidths. The use of the ionosphere as a lens is considered. The lens is formed by the release of chemicals such as H2 and H2O at the F2-layer peak. These chemicals promote dissociative recombination of O(+) in the ionosphere resulting in a local reduction in plasma density. Gradients in electron density in the vicinity of the gas release tend to focus rays propagating through the depleted region. Preliminary calculations indicate that a lens capable of focusing cosmic radio waves in the 1 to 10 MHz frequency range may be produced by the release of 100 kg of H2 at the peak of the nighttime F layer. The beamwidth of a refracting radio telescope using this lens may be less than 1/5 degree.

  14. Hybrid refractive-diffractive lens for manufacture by diamond turning

    NASA Astrophysics Data System (ADS)

    Wood, Andrew P.

    1992-04-01

    The potential advantages of hybrid refractive-diffractive elements in infrared systems are reviewed. It is shown that these advantages can be realized in practice by single point diamond turning. Indeed, their manufacture by this process is no more complex in principle than making conventional aspherics which is a well-established technology. The design and manufacture of a zinc sulphide hybrid lens for the 3 - 5 micron waveband is described.

  15. Precision lens molding of asphero diffractive surfaces in chalcogenide materials

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Scordato, M.; Schwertz, K.; Bagwell, J.

    2015-10-01

    Finished lens molding, and the similar process of precision lens molding, have long been practiced for high volume, accurate replication of optical surfaces on oxide glass. The physics surrounding these processes are well understood, and the processes are capable of producing high quality optics with great fidelity. However, several limitations exist due to properties inherent with oxide glasses. Tooling materials that can withstand the severe environmental conditions of oxide glass molding cannot easily be machined to produce complex geometries such as diffractive surfaces, lens arrays, and off axis features. Current machining technologies coupled with a limited selection of tool materials greatly limits the type of structures that can be molded into the finished optic. Tooling for chalcogenide glasses are not bound by these restrictions since the molding temperatures required are much lower than for oxide glasses. Innovations in tooling materials and manufacturing techniques have enabled the production of complex geometries to optical quality specifications and have demonstrated the viability of creating tools for molding diffractive surfaces, off axis features, datums, and arrays. Applications for optics having these features are found in automotive, defense, security, medical, and industrial domains. This paper will discuss results achieved in the study of various molding techniques for the formation of positive diffractive features on a concave spherical surface molded from As2Se3 chalcogenide glass. Examples and results of molding with tools having CTE match with the glass and non CTE match will be reviewed. The formation of stress within the glass during molding will be discussed, and methods of stress management will also be demonstrated and discussed. Results of process development methods and production of good diffractive surfaces will be shown.

  16. Array of reconfigurable diffractive lens on flexible substrate (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Moghimi, Mohammad J.; Jiang, Hongrui

    2016-03-01

    We designed and fabricated microscale lens arrays on a flexible substrate. The flexibility of the substrate allows for wide field of view imaging as well as optical focus scanning. Fresnel zone plates (FZPs), which are compact and lightweight, are used as microlenses for focusing. The arrangement of FZPs on flexible substrate can be reconfigured to maximize FOV. Tunable focus can also be achieved by stretching the FZPs laterally. In addition, the lightweight microlenses can be actuated to scan the focus axially. The lenses have a wide range of applications including displays, contact lenses, microscopy, surveillance and optical communications. The diameter of the microlenses ranges from 100 to 500 µm. The thickness of the lenses is 100 µm. Unlike refractive and reflective lenses, the focusing capability of FZPs is achieved via diffraction. FZPs consist of alternating black and white zones to modulate the phase of the incident light. The light diffracted from edge of the regions to achieve multiple focus. Most of the energy is diffracted into the first focus. The dark regions are made of silicon nanowires which are highly absorbent for visible spectrum. Standard processes, including wet and dry etching, are used to etch silicon substrate and form nanowires. The white zones are designed for both reflective and transmissive lenses. The lenses are implemented on PDMS as flexible substrate. The silicon nanowires are embedded into PDMS so that the shape of individual lens as well as the arrangement of the array can be reconfigured. In this article, we report our design, fabrication process and experiments.

  17. Micron-scale lens array having diffracting structures

    DOEpatents

    Goldberg, Kenneth A

    2013-10-29

    A novel micron-scale lens, a microlens, is engineered to concentrate light efficiently onto an area of interest, such as a small, light-sensitive detector element in an integrated electronic device. Existing microlens designs imitate the form of large-scale lenses and are less effective at small sizes. The microlenses described herein have been designed to accommodate diffraction effects, which dominate the behavior of light at small length scales. Thus a new class of light-concentrating optical elements with much higher relative performance has been created. Furthermore, the new designs are much easier to fabricate than previous designs.

  18. Diffraction-limited step-zoom telescope by image restoration.

    PubMed

    Araiza-Durán, José A; Luna, Esteban; Cornejo-Rodríguez, Alejandro; Sohn, Erika

    2015-11-10

    The design of a step-zoom telescope and its ability to achieve a diffraction-limited performance is explored. The basic idea is to include digital postprocessing to compensate for changes in the modulation transfer function of the system, assuming the knowledge of the range to the object. The instrument is conformed of a two-mirror telescope, two lenses, and a detector. High-quality images and a zoom telescope that ranges from 22 to 61 f-number is achieved by moving the primary mirror and two lenses. The preliminary calculations for the design process and a simulation that shows the performance of the step-zoom telescope are described. PMID:26560774

  19. Analytical study of diffraction effects in extremely large segmented telescopes.

    PubMed

    Yaitskova, Natalia; Dohlen, Kjetil; Dierickx, Philippe

    2003-08-01

    We present an analysis of the diffraction effects from a segmented aperture with a very large number of segments-prototype of the next generation of extremely large telescopes. This analysis is based on the point-spread-function analytical calculation for Keck-type hexagonal segmentation geometry. We concentrate on the effects that lead to the appearance of speckles and/or a regular pattern of diffraction peaks. These effects are related to random piston and tip-tilt errors on each segment, gaps between segments, and segment edge distortion. We deliver formulas and the typical numerical values for the Strehl ratio, the relative intensity of higher-order diffraction peaks, and the averaged intensity of speckles associated with each particular case of segmentation error. PMID:12938912

  20. MOIRE: ground demonstration of a large aperture diffractive transmissive telescope

    NASA Astrophysics Data System (ADS)

    Atcheson, Paul; Domber, Jeanette; Whiteaker, Kevin; Britten, Jerald A.; Dixit, Shamasundar N.; Farmer, Brandon

    2014-08-01

    The desire to field space-based telescopes with apertures in excess of 10 meter diameter is forcing the development of extreme lightweighted large optomechanical structures. Sparse apertures, shell optics, and membrane optics are a few of the approaches that have been investigated and demonstrated. Membrane optics in particular have been investigated for many years. The MOIRE approach in which the membrane is used as a transmissive diffractive optical element (DOE) offers a significant relaxation in the control requirements on the membrane surface figure, supports extreme lightweighting of the primary collecting optic, and provides a path for rapid low cost production of the primary optical elements. Successful development of a powered meter-scale transmissive membrane DOE was reported in 2012. This paper presents initial imaging results from integrating meter-scale transmissive DOEs into the primary element of a 5- meter diameter telescope architecture. The brassboard telescope successfully demonstrates the ability to collect polychromatic high resolution imagery over a representative object using the transmissive DOE technology. The telescope includes multiple segments of a 5-meter diameter telescope primary with an overall length of 27 meters. The object scene used for the demonstration represents a 1.5 km square complex ground scene. Imaging is accomplished in a standard laboratory environment using a 40 nm spectral bandwidth centered on 650 nm. Theoretical imaging quality for the tested configuration is NIIRS 2.8, with the demonstration achieving NIIRS 2.3 under laboratory seeing conditions. Design characteristics, hardware implementation, laboratory environmental impacts on imagery, image quality metrics, and ongoing developments will be presented.

  1. The correct lens mount lightweighting design and thermal stress OPD analysis in Cassegrain telescope

    NASA Astrophysics Data System (ADS)

    Hsu, Ming-Ying; Chan, Chia-Yen; Lin, Wei-Cheng; Chang, Shenq-Tsong; Huang, Ting-Ming

    2013-09-01

    This study is trying to evaluate different lens barrel material, caused lens stress OPD (Optical Path Different) in different temperature condition. The Cassegrain telescope's correct lens assembly are including as correct lens, lens mount, spacer, mount barrel and retainer. The lens barrel initial design is made by invar, but system mass limit is need to lightweighting to meet requirement. Therefore, the lens barrel material is tried to replace to lower density material, such as aluminum and titanium alloy. Meanwhile, the aluminum or titanium alloy material properties CTE (Coefficient of Thermal Expansion) are larger then invar. Thus, the high CTE material will introduce larger thermal stress into the optical system in different temperature condition. This article is analysis the correct lens assembly thermal stress and optical performance in different lens mount material. From above conditions, using FEM (Finite Element Method) and optical software, simulation and optimization the lens mount to achieve system mass requirement.

  2. Design of Hybrid Lens for Compact Camera Module Considering Diffraction Effect

    NASA Astrophysics Data System (ADS)

    Choi, Hyun; Yoon, Yong-Joong; Kim, Byungwook; Lee, Sang-Hyuck; Kim, Wan-Chin; Park, No-Cheol; Park, Young-Pil; Kang, Shinill

    2008-08-01

    We introduce the design method of a hybrid lens composed a refractive lens and a diffractive optical element (DOE) considering the diffraction effect for a compact camera module. When imaging optical system is designed using the DOE, diffraction efficiency of the DOE and stray light due to the unintended diffraction light should be considered. Therefore, to analyze the effect of diffraction efficiency of the DOE on image characteristics, we evaluate the performances of two designed compact camera lenses, which have different construction wavelengths, using the modulation transfer function (MTF) considering diffraction efficiency. The stray light that is induced by the diffraction effect of the DOE is analyzed by calculating the focal position according to each diffraction order, and a method for the reduction of the stray light is proposed.

  3. Smart multifunction diffractive lens experimental validation for future PV cell applications.

    PubMed

    Albarazanchi, Abbas; Gérard, Philippe; Ambs, Pierre; Meyrueis, Patrick; Nguyen, Giang-Nam; Heggarty, Kevin

    2016-01-25

    Recently, diffractive optical elements (DOE's) have attracted more attention for applications to third generation PV cells. Some DOE types can provide multiple functions such as spectrum splitting and beam concentration (SSBC) simultaneously. An off-axis diffractive lens has been designed and its ability to achieve the SSBC proved experimentally. This lens can be used to separate the solar spectrum in the Vis-NIR range into two bands with a low concentration factor, and about 70% optical efficiency. It is expected that this kind of lens can be integrated with the lateral multijunction PV cells to build an effective compact solar system. PMID:26832567

  4. Diffraction-limited 10 microns imaging with 3 meter telescopes

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Townes, C. H.; Vanderwyck, A. H. B.

    1986-01-01

    An IR imaging system that achieves diffraction-limited spatial resolution (about 0.8 arcsec) at 10 microns on 3-meter ground-based telescopes. The system uses a linear array of sensitive HgCdTe photodiodes, scanned in the direction perpendicular to the array axis, to form two-dimensional images. Scans are completed rapidly enough to freeze atmospheric fluctuations. Individual detectors are small compared to the diameter of the Airy disk, and images are oversampled heavily in the scan direction. This method has a number of advantages for studying small fields with very high spatial resolution, and has been applied successfully to the problem of directly imaging faint circumstellar dust shells.

  5. Diffraction-limited lucky imaging with a 12" commercial telescope

    NASA Astrophysics Data System (ADS)

    Baptista, Brian J.

    2014-08-01

    Here we demonstrate a novel lucky imaging camera which is designed to produce diffraction-limited imaging using small telescopes similar to ones used by many academic institutions for outreach and/or student training. We present a design that uses a Meade 12" SCT paired with an Andor iXon fast readout EMCCD. The PSF of the telescope is matched to the pixel size of the EMCCD by adding a simple, custom-fabricated, intervening optical system. We demonstrate performance of the system by observing both astronomical and terrestrial targets. The astronomical application requires simpler data reconstruction techniques as compared to the terrestrial case. We compare different lucky imaging registration and reconstruction algorithms for use with this imager for both astronomical and terrestrial targets. We also demonstrate how this type of instrument would be useful for both undergraduate and graduate student training. As an instructional aide, the instrument can provide a hands-on approach for teaching instrument design, standard data reduction techniques, lucky imaging data processing, and high resolution imaging concepts.

  6. Coherent x-ray zoom condenser lens for diffractive and scanning microscopy.

    PubMed

    Kimura, Takashi; Matsuyama, Satoshi; Yamauchi, Kazuto; Nishino, Yoshinori

    2013-04-22

    We propose a coherent x-ray zoom condenser lens composed of two-stage deformable Kirkpatrick-Baez mirrors. The lens delivers coherent x-rays with a controllable beam size, from one micrometer to a few tens of nanometers, at a fixed focal position. The lens is suitable for diffractive and scanning microscopy. We also propose non-scanning coherent diffraction microscopy for extended objects by using an apodized focused beam produced by the lens with a spatial filter. The proposed apodized-illumination method will be useful in highly efficient imaging with ultimate storage ring sources, and will also open the way to single-shot coherent diffraction microscopy of extended objects with x-ray free-electron lasers. PMID:23609637

  7. Optical analysis of spherical mirrors of telescopes: The lens-less Schmidt case

    NASA Astrophysics Data System (ADS)

    Cattaneo, Paolo Walter

    2009-09-01

    The light distribution on the focal surface of spheric mirrors designed for telescopes in the lens-less Schmidt configuration is calculated analytically using geometrical optics. This analysis was motivated by considerations of the design of the AUGER fluorescence detector [J. Abraham, et al., Nucl. Instr. and Meth. A 533 (2004) 50]. Its geometrical parameters are used in the examples.

  8. A space bourne crystal diffraction telescope for the energy range of nuclear transitions

    SciTech Connect

    von Ballmoos, P.; Naya, J.E.; Albernhe, F.; Vedrenne, G.; Smither, R.K.; Faiz, M.; Fernandez, P.; Graber, T.

    1995-10-01

    Recent experimental work of the Toulouse-Argonne collaboration has opened for perspective of a focusing gamma-ray telescope operating in the energy range of nuclear transitions, featuring unprecedented sensitivity, angular and energy resolution. The instrument consists of a tunable crystal diffraction lens situated on a stabilized spacecraft, focusing gamma-rays onto a small array of Germanium detectors perched on an extendible boom. While the weight of such an instrument is less than 500 kg, it features an angular resolution of 15 in., an energy resolution of 2 keV and a 3 {sigma} narrow line sensitivity of a few times 10{sup {minus}7} photons s{sup {minus}1} cm{sup {minus}2} (10{sup 6} sec observation). This instrumental concept permits observation of any identified source at any selected line-energy in a range of typically 200 keV to 1300 keV. The resulting ``sequential`` operation mode makes sites of explosive nucleosynthesis natural scientific objectives for such a telescope: the nuclear lines of extragalactic supernovae ({sup 56}Ni, {sup 44}Ti, {sup 60}Fe) and galactic novae (p{sup {minus}}p{sup +} line, {sup 7}Be) are accessible to observation, one at a time, due to the erratic appearance and the sequence of half-lifes of these events. Other scientific objectives, include the narrow 511 keV line from galactic broad class annihilators (such as 1E1740-29, nova musca) and possible redshifted annihilation lines from AGN`s.

  9. Diffractive telescope for protoplanetary disks study in UV

    NASA Astrophysics Data System (ADS)

    Roux, W.; Koechlin, L.

    2015-12-01

    The direct observation of exoplanetary systems and their environment remains a technological challenge: on the one hand, because of the weak luminosity of objects surrounding the central star, and on the other hand, because of their small size compared to the distance from Earth. The fresnel imager is a concept of space telescope based on focusing by diffraction, developed by our team in Institut de Recherche en Astrophysique et Planétologie (IRAP). Its high photometric dynamics and its low angular resolution make it a competitive candidate. Currently we propose a space mission on board the International Space Station (ISS), observing in the ultraviolet band, in order to validate its capabilities in space and so increase the Technological Readiness Level (TRL), anticipating a larger mission in the future. To reach this goal, we have to provide some evolutions, like improving the design of Fresnel arrays or conceive a new chromatism corrector. This paper presents the evolutions for the ISS prototype and its possible applications like protoplanetary disks imaging.

  10. Chromatic dispersion of a high-efficiency resonance domain diffractive lens.

    PubMed

    Barlev, Omri; Golub, Michael A

    2015-07-01

    Inherent strong lateral and longitudinal chromatic dispersion of a transmission resonance domain off-axis diffractive lens were studied theoretically and experimentally. It is shown that a 4 mm diameter and 0.14 NA diffractive lens provides both focusing and dispersion with a spectral resolution of up to 0.09 nm, which is suitable for laser line spectral measurements. Experimental results for measured spectra of a mercury-argon source, a helium-neon laser, and RGB laser diodes pave a technological path to compact spectral sensors and microspectrometers. PMID:26193158

  11. Diffraction-limited imaging on the 200-inch telescope

    NASA Astrophysics Data System (ADS)

    Nakajima, Tadashi

    The technique of non-redundant masking at the Palomar 200-inch telescope and radio VLBI imaging software was used to make optical aperture synthesis maps of two binary stars, Beta Corona Borealis and Sigma Herculis. The dynamic range of the map of Beta CrB, a binary star with a separation of 230 milliarcseconds is 50:1. For Sigma Her, a separation of 70 milliarcseconds was found and the dynamic range of the image is 30:1. These demonstrate the potential of the non-redundant masking technique for diffraction limited imaging of astronomical objects with high dynamic range. It was found that the optimal integration time for measuring the closure phase is longer than that for measuring the fringe amplitude. There is not a close relationship between amplitude errors and phase errors, as is found in radio interferometry. Amplitude self calibration is less effective at optical wavelengths than at radio wavelengths. Primary beam sensitivity correction made in radio aperture is not necessary in optical aperture synthesis. Effects of atmospheric disturbances on optical aperture synthesis were studied by Monte Carlo simulations based on the Kolmogorov theory of refractive-index fluctuations. For the non-redundant masking technique with rc-sized apertures, the simulated fringe amplitude gives an upper bound of the observed fringe amplitude. Monte Carlo simulations are also made to study the sensitivity and resolution of the bispectral analysis of speckle interferometry. The bispectral modulation transfer function and its signal-to-noise ratio at high light levels is presented. The signal-to-noise ratio of the bispectrum at arbitrary light levels is derived in the mid-spatial-frequency range.

  12. Diffractive/refractive hybrid f-theta lens for laser drilling of multilayer printed circuit boards

    NASA Astrophysics Data System (ADS)

    Fuse, Keiji; Okada, Takeshi; Ebata, Keiji

    2003-02-01

    A new type of f-theta lens has recently been developed for microvia laser drilling of multilayer printed circuit boards. It employs a diffractive/refractive hybrid lens which has a blazed surface-relief microstructure on an aspheric surface. By introducing that hybrid lens for CO2 laser system, and by stopping the use of germanium that is optically much sensitive to temperature, the f-theta lens that consists of all zinc selenide lenses is obtained with its optical performance stable on temperature. Achromatic properties against the wavelength fluctuations of actual lasers are also achieved. A prototype is fabricated through the development of single point diamond turning of hybrid surfaces. The performance of the lens is first examined by measuring wavefront error with a tunable infrared interferometer. The results show diffraction-limited performance at all conditions, including different temperatures (up to 50°C) and wavelengths. The temperature dependence of the focal length of the lens is also measured and found to be 5 times as insensitive to temperature as that of a conventional one. Laser drilling experiments are performed for a polymide film on copper foil. The result shows good uniformity of hole size and circularity all over the 50×50 mm2 scan field.

  13. Twelve-month success rates with a hydrogel diffractive bifocal contact lens.

    PubMed

    Back, A; Grant, T; Hine, N; Holden, B A

    1992-12-01

    In this study we assessed success rates over 12 months with a hydrogel diffractive bifocal contact lens. A total of 108 presbyopes were fitted with lenses, and after 12 months 46% were still wearing the lenses. Subjects with previous presbyopic lens-wearing experience achieved greater success (58% of those fitted) than neophyte lens wearers (33% of those fitted, and 17% of all neophyte presbyopes initially expressing an interest in contact lenses before screening). More neophytes failed for nonvision-related reasons than experienced subjects (31% vs. 12% of those fitted). Consequently, when nonvision-related failures were excluded from the calculation of success rates, 59% of those fitted with lenses (49% of neophytes and 66% of experienced subjects) were still wearing the lenses at 12 months. Most discontinuations from lens wear occurred in the first month of the study, the major reason for discontinuation being poor near vision (blur and/or ghosting; 47% of discontinuations). PMID:1300517

  14. Near-diffraction-limited tunable liquid crystal lens with simplified design

    NASA Astrophysics Data System (ADS)

    Li, Liwei; Bryant, Doug; Van Heugten, Tony; Duston, Dwight; Bos, Philip J.

    2013-03-01

    A high-efficiency tunable refractive lens based on liquid crystals with concentric electrode rings and a simple unique design of a resistor network is reported, and used to assess the performance of an optimized electrically tunable lens. It has a large number of phase control points to be able to accurately control the phase profile and produce high efficiency. The lens design uses resistors between neighboring electrodes to minimize external connections. The lens optical path difference is measured as a near perfect parabolic shape and the Strehl ratio of about 80% is obtained (comparing to a high-quality glass lens). Image evaluations show a good image quality with diffraction limited resolution, but the contrast is lowered by a large-area haze. The lens design also shows a good switching speed, and adjustable power, allowing it to be used in many applications. An example lens with a diameter of 2.4 mm and a 5 diopter tunable range is used in the evaluations.

  15. Objective and subjective assessment of a new diffractive trifocal contact lens

    NASA Astrophysics Data System (ADS)

    Fulga, Valentine; Schroeder, Shlomo; Avraham, Gaby; Belkin, Michael

    1997-05-01

    We tested the objective and subjective performance of the Holo-Or rigid gas permeable multifocal contact lens, a new trifocal diffractive contact lens. Eleven experienced and two non-experienced rigid gas permeable contact lens wearers participated in the study. Eleven patients were presbyopic (age 40 - 57) and two aphakic (age 12 and 14). All patients were tested both with their best spectacle correction for distance and near and the trifocal diffractive contact lenses. The follow up period was 3 - 8 months. Subjective opinion was also assessed. Statistical analysis was performed using Student's T-test. We did not find any significant difference in visual acuity measured at 6 m, 80 cm and 40 cm, between best spectacle correction and Holo-Or diffractive contact lenses. Depth of focus improved to a statistically significant extent when using trifocal contact lenses. A small reduction in contrast sensitivity was observed when the patients used the multifocal contact lenses. Overall satisfaction and comfort was good to excellent in ten of the thirteen patients. Two other patients who used a bifocal model of the same contact lens design showed similar results. Holo-Or trifocal diffractive contact lenses are a satisfactory means of optical correction for patients with presbyopia or accommodative problems.

  16. Design and Development of Binary Diffractive Germanium Lens by Thin Film Deposition

    NASA Astrophysics Data System (ADS)

    Alshami, M.; Wabby, A.; Mousselly, M. F.

    2015-11-01

    The design and development of infrared (λ: [8]-[12] μm) binary diffractive germanium lens (BDGL) by two - steps thin film deposition (Physical vapor deposition (PVD) technique) is presented. The optical design of the required elements using the optical design code Zemax, the design of the 4 steps binary surface and its required metallic masks using the programming language Delphi, the procedures of fabrication, and the measurement of the resulting profile, were presented. The comparison between the refractive/diffractive lenses by measuring the minimum resolvable temperature difference (MRTD) shows the advantages of binary diffractive surface.

  17. Image contrast of diffraction-limited telescopes for circular incoherent sources of uniform radiance

    NASA Technical Reports Server (NTRS)

    Shackleford, W. L.

    1980-01-01

    A simple approximate formula is derived for the background intensity beyond the edge of the image of uniform incoherent circular light source relative to the irradiance near the center of the image. The analysis applies to diffraction-limited telescopes with or without central beam obscuration due to a secondary mirror. Scattering off optical surfaces is neglected. The analysis is expected to be most applicable to spaceborne IR telescopes, for which diffraction can be the major source of off-axis response.

  18. Visual Outcomes and Patient Satisfaction after Refractive Lens Exchange with a Single-Piece Diffractive Multifocal Intraocular Lens

    PubMed Central

    2014-01-01

    Purpose. To report visual outcomes and patient satisfaction after unilateral or bilateral refractive lens exchange (RLE) with a single-piece bifocal diffractive multifocal intraocular lens (MIOL). Methods. All patients underwent RLE with the ZMB00 MIOL (Abbott Medical Optics). Patient charts were reviewed to evaluate the distance, intermediate, and near visual acuity (VA), contrast sensitivity, extent of visual symptoms (0–5), satisfaction (1–5), and rate of spectacle independence between unilateral and bilateral RLE group. Results. Forty-seven eyes of 28 patients were included. No intraoperative complications developed. Mean monocular uncorrected VA at distance, intermediate (67 cm), and near (30 cm) were 0.01 ± 0.12 (standard deviation), 0.27 ± 0.18, and 0.15 ± 0.11, respectively. No eyes lost >1 line of corrected distance VA. Monocular contrast sensitivity remained at normal level. Median scores of halos, night glare, and starbursts for 27 patients were 2.0, 3.0, and 0.0, respectively. Median score of satisfaction was 4.0. There were no differences in visual symptom scores or satisfaction between unilateral and bilateral group (P > 0.05). Eighty percent of 25 patients reported total spectacle freedom, with similar rate between bilateral (82%) and unilateral group (75%) (P = 1.000). Conclusions. RLE with the bifocal diffractive MIOL was safe in presbyopic patients and resulted in a high rate of spectacle independence. PMID:25505974

  19. Solar Sail - Fresnel Zone Plate Lens for a Large Space Based Telescope

    SciTech Connect

    Early, J T

    2002-02-13

    A Fresnel zone plate lens made with solar sail material could be used as the primary optic for a very large aperture telescope on deep space probes propelled by solar sails. The large aperture telescope capability could enable significant science on fly-by missions to the asteroids, Pluto, Kuiper belt or the tort cloud and could also enable meaningful interstellar fly-by missions for laser propelled sails. This type of lens may also have some potential for laser communications and as a solar concentrator. The techniques for fabrication of meter size and larger Fresnel phase plate optics are under development at LLNL, and we are extending this technology to amplitude zone plates made from sail materials. Corrector optics to greatly extend the bandwidth of these Fresnel optics will be demonstrated in the future. This novel telescope concept will require new understanding of the fabrication, deployment and control of gossamer space structures. It will also require new materials technology for fabricating these optics and understanding their long term stability in a space environment.

  20. Comparison of the efficiency, MTF and chromatic properties of four diffractive bifocal intraocular lens designs.

    PubMed

    Castignoles, Fannie; Flury, Manuel; Lepine, Thierry

    2010-03-01

    The aim of this paper is to compare the properties of four different profiles which can be used as multifocal intraocular lens. The Hankel transform based on the theory of scalar diffraction is applied to a binary profile, a parabolic one, a parabolic profile with holes, and finally a sinusoidal one. This enables to study the various distributions of the diffractive efficiencies and the axial chromatism. The image quality is evaluated by means of simulations of the MTFs with Zemax. Finally we propose a new way to graphically synthesize all the properties of these lenses, using a radar graph. PMID:20389537

  1. Antenna Gain Enhancement and Beamshaping using a Diffractive Optical Element (DOE) Lens

    NASA Astrophysics Data System (ADS)

    Torbitt, Christopher

    Dielectric and metamaterial lenses have been designed for gain enhancement and beam shaping. The motivation for this work came from a commercially available slotted waveguide antenna with a dielectric lens that shapes the beam and enhances the gain only in the azimuth plane. When two of these antennas, each with a dielectric lens, are stacked as an array to form the sum and difference patterns the elevation plane gain is low and the beam width too wide to be acceptable for radar applications. The objective of the present work is to design a diffractive optical element (DOE) lens for gain enhancement gain and beam shaping. As compared to other available lenses it is much thinner, lighter and easily machined. The DOE lens is made from rexolite which has a dielectric constant of 2.53. The DOE lens is composed of a series of zones which focus the light at a certain focal length. The phase is the same everywhere on each zone at the focal point. The phase difference between neighboring zones is 2pi, resulting in a constructive interference at the focus. These zones are able to focus the radiation from an antenna in order to enhance the gain and shape the beam. The design parameters include the lens diameter, number of zones, the center zone thickness for a particular frequency and refractive index of the dielectric material. A comprehensive study has been performed in CST Microwave Studio to illustrate the properties of the DOE lens. The focusing property for image formation is verified by a plane wave excitation. Lenses have been designed and tested at different frequencies and with varying design parameters. Gain enhancement and beam shaping are illustrated by modeling the DOE lens in CST and placing it in front of different antennas. This work presents lenses for 10GHz and 40GHz horn antennas, a 3GHz slotted waveguide antenna array, and a 10GHz microstrip patch arrays. Beam shaping and focusing is clearly illustrated for each type of antenna. It is seen that the size

  2. Research on the filter system of making diffractive micro-lens

    NASA Astrophysics Data System (ADS)

    Sun, Chunhua; Gao, Yiqing

    2008-03-01

    With the development of optical micro-machining technology, micro optical elements, especially diffractive micro lens are widely applied more and more in the fields of fiber communication, airborne, optical storage, optic information processing, micro optical sensor and so on. In the ways of fabricating micro optical elements, gray-scale mask method is much studied and promising. On the basis of digital gray-scale mask technique, a new method, namely digital rotating mask method used to fabricate diffractive optical elements, is presented in this paper. Applying reduction projecting system based on digital micro-mirror device (DMD), digital gray-scale mask technique and filter system, using the output image of DMD to be equivalent to the gray-scale mask, and through the system the equivalent gray-scale will be projected and imaged on the substrate coated with photo-resist. Finally, the DOEs such as Fresnel zone plate and large-numerical-aperture diffractive micro lens can be obtained after reduction exposure, development, fixation, and etc. In the paper, the design theory and method of Fresnel diffractive micro is simply introduced. The main party is the construction and the function of low-pass filter in the projecting system. Through comparing the relevant micro optical elements, the importance of the filter is tested.

  3. The Top 10 List of Gravitational Lens Candidates from the HUBBLE SPACE TELESCOPE Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Ratnatunga, Kavan U.; Griffiths, Richard E.; Ostrander, Eric J.

    1999-05-01

    A total of 10 good candidates for gravitational lensing have been discovered in the WFPC2 images from the Hubble Space Telescope (HST) Medium Deep Survey (MDS) and archival primary observations. These candidate lenses are unique HST discoveries, i.e., they are faint systems with subarcsecond separations between the lensing objects and the lensed source images. Most of them are difficult objects for ground-based spectroscopic confirmation or for measurement of the lens and source redshifts. Seven are ``strong lens'' candidates that appear to have multiple images of the source. Three are cases in which the single image of the source galaxy has been significantly distorted into an arc. The first two quadruply lensed candidates were reported by Ratnatunga et al. We report on the subsequent eight candidates and describe them with simple models based on the assumption of singular isothermal potentials. Residuals from the simple models for some of the candidates indicate that a more complex model for the potential will probably be required to explain the full structural detail of the observations once they are confirmed to be lenses. We also discuss the effective survey area that was searched for these candidate lens objects.

  4. An off-axis, wide-field, diffraction-limited, reflective Schmidt Telescope

    NASA Astrophysics Data System (ADS)

    Saunders, Will

    2010-07-01

    Off-axis telescopes with unobstructed pupils offer great advantages in terms of emissivity, throughput, and diffractionlimited energy concentration. For most telescope designs, implementation of an off-axis configuration imposes enormous penalties in terms of cost, optical difficulty and performance, and for this reason off-axis telescopes are rarely constructed. However, for the reflective Schmidt design, implementation of an off-axis configuration is very straightforward, and involves only a modest optical penalty. Moreover, the reflective Schmidt gets particular benefits, avoiding the obstruction of its large focal plane and support column, and gaining a highly accessible, gravity-invariant prime focus, capable of accommodating very large instrumentation. We present an off-axis f/8 reflective Schmidt design for the proposed 'KDUST' Chinese infrared telescope at Dome A on the Antarctic plateau, which offers simultaneous diffraction-limited NIR imaging over 1°, and close to diffraction-limited imaging out to 2° for fibre-fed NIR spectroscopy.

  5. The relation between the spherical aberration of a lens and the spun cusp diffraction catastrophe

    NASA Astrophysics Data System (ADS)

    Nye, J. F.

    2005-01-01

    A lens with spherical aberration, illuminated with an axial plane wave, produces a rotationally-symmetric cusped caustic together with an axial caustic line. Both caustics are truncated by the finite aperture of the lens, and they are decorated by diffraction. One may pass continuously from the limit of small aperture, where the diffraction pattern consists simply of Airy rings around the focus, to the limit of infinite aperture, where the diffraction pattern is that of the three-dimensional spun cusp. This contains ring zeros both inside and outside the cusped caustic. The rings are structurally stable phase singularities (wave dislocations), whose progress out of the focal plane can be traced as the aperture is enlarged. In any axial plane the dislocations are points. Before reaching their final destinations these dislocation points invariably trace out spirals, whose detailed form may be deduced by a perturbation theory. Apart from this, their trajectories, births and deaths are different from those encountered in the analogous case of the two-dimensional Pearcey pattern.

  6. Near-diffraction-limited laser focusing with a near-critical density plasma lens.

    PubMed

    Shou, Yinren; Lu, Haiyang; Hu, Ronghao; Lin, Chen; Wang, Hongyong; Zhou, Meilin; He, Xiantu; Chen, Jia Erh; Yan, Xueqing

    2016-01-01

    In this Letter, we investigate the feasibility of focusing relativistic laser pulses toward diffraction limit by near-critical density plasma lenses. A theoretical model is developed to estimate the focal length of the plasma lens. Particle-in-cell simulations with various pulse parameters, such as pulse duration, beam waist, and intensity, are performed to show the robustness of plasma lenses. The results prove that the near-critical density plasma lenses can be deployed to obtain higher laser peak intensities with sub-wavelength focal spots in experiments. PMID:26696178

  7. Telescopic zoom lens attachment for magnified views in underwater radiation environments

    SciTech Connect

    Appel, D.K.

    1991-01-01

    This document consists of the notes that accompany a slide presentation (15 slides). The discussion begins with the need for the Telescopic Zoom Lens or TZL; why is was designed and fabricated as well as the design restraints that dictated its final form and function. Next is the use and modification of existing equipment; equipment that was used to remotely scan a nuclear reactor tank using eddy current and ultrasound. The uniqueness of the TZL mechanism itself is discussed; how it meets the design requirements imposed by the reactor environment in which it is used as well as the optical requirements imposed by the customer. Some good and bad findings while using the TZL are described.

  8. Telescopic zoom lens attachment for magnified views in underwater radiation environments

    SciTech Connect

    Appel, D.K.

    1991-12-31

    This document consists of the notes that accompany a slide presentation (15 slides). The discussion begins with the need for the Telescopic Zoom Lens or TZL; why is was designed and fabricated as well as the design restraints that dictated its final form and function. Next is the use and modification of existing equipment; equipment that was used to remotely scan a nuclear reactor tank using eddy current and ultrasound. The uniqueness of the TZL mechanism itself is discussed; how it meets the design requirements imposed by the reactor environment in which it is used as well as the optical requirements imposed by the customer. Some good and bad findings while using the TZL are described.

  9. Terahertz 3D printed diffractive lens matrices for field-effect transistor detector focal plane arrays.

    PubMed

    Szkudlarek, Krzesimir; Sypek, Maciej; Cywiński, Grzegorz; Suszek, Jarosław; Zagrajek, Przemysław; Feduniewicz-Żmuda, Anna; Yahniuk, Ivan; Yatsunenko, Sergey; Nowakowska-Siwińska, Anna; Coquillat, Dominique; But, Dmytro B; Rachoń, Martyna; Węgrzyńska, Karolina; Skierbiszewski, Czesław; Knap, Wojciech

    2016-09-01

    We present the concept, the fabrication processes and the experimental results for materials and optics that can be used for terahertz field-effect transistor detector focal plane arrays. More specifically, we propose 3D printed arrays of a new type - diffractive multi-zone lenses of which the performance is superior to that of previously used mono-zone diffractive or refractive elements and evaluate them with GaN/AlGaN field-effect transistor terahertz detectors. Experiments performed in the 300-GHz atmospheric window show that the lens arrays offer both a good efficiency and good uniformity, and may improve the signal-to-noise ratio of the terahertz field-effect transistor detectors by more than one order of magnitude. In practice, we tested 3 × 12 lens linear arrays with printed circuit board THz detector arrays used in postal security scanners and observed significant signal-to-noise improvements. Our results clearly show that the proposed technology provides a way to produce cost-effective, reproducible, flat optics for large-size field-effect transistor THz-detector focal plane arrays. PMID:27607620

  10. Hard X-ray Polarimetry With Wide Band Laue Lens Telescopes

    NASA Astrophysics Data System (ADS)

    Caroli, E.

    2011-09-01

    Polarimetry is today considered a key observational parameter which can be used to help solve important scientific issues that are still open in the hard X-ray domain (above 10 keV). Therefore the ability to perform high sensitivity polarisation measurements has become a mandatory requirement for the next generation of space telescopes operating in this energy range. In particular the development of new high energy focusing optics, such as wide band Laue lenses operating from ~60 keV up to several hundred keV, with their 50-100 times better sensitivity with respect to current instrumentation, opens a real possibility to make hard X-ray polarimetry an almost standard measurement. Hard X-ray polarimetry can be performed using highly segmented focal plane detectors operated as scattering polarimeters. In this work we summarize results obtained by our group in a series of experiments with CZT/CdTe pixel detector prototypes operating as scattering polarimeters in the range between ~100-700 keV as well as Montecarlo evaluations of the achievable performance in polarisation measurements for Laue lens telescopes using focal planes based on CdTe/CZT pixel detectors.

  11. Experimental Verification of Overcoming the Diffraction Limit with a Volumetric Veselago-Pendry Transmission-Line Lens

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang; Eleftheriades, George V.

    2008-07-01

    A fully printed Veselago-Pendry lens (isotropic n=-1, ɛr=-1, μr=-1) is presented which is based on transmission-line metamaterials. The lens is constructed in a parallel-plate environment at 1.569 GHz and without any embedded sources and achieves a resolution better than the diffraction limit (full width half power of 0.235λ). Because the lens is low loss (<0.3dB per unit cell), the focused fields are dominated by the evanescent components which dictates that subwavelength tightening of the beam is achieved only in the transverse and not the longitudinal direction. The demonstrated lens is quarter-wavelength thick thus allowing ample “working distance” between the subject/image and the lens.

  12. Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light.

    PubMed

    Chen, Gang; Zhang, Kun; Yu, Anping; Wang, Xianyou; Zhang, Zhihai; Li, Yuyan; Wen, Zhongquan; Li, Chen; Dai, Luru; Jiang, Senling; Lin, Feng

    2016-05-16

    Planar lenses are attractive photonic devices due to its minimized size and easy to integrate. However, planar lenses designed in traditional ways are restricted by the diffraction limit. They have difficulties in further reducing the focal spot size beyond the diffraction limit. Super-oscillation provides a possible way to solve the problem. However, lenses based on super-oscillation have always been affected by huge sidelobes, which resulted in limited field of view and difficulties in real applications. To address the problem, in the paper, a far-field sub-diffraction lens based on binary amplitude-phase mask was demonstrated under illumination of linearly polarized plane wave at wavelength 632.8 nm. The lens realized a long focal length of 148λ (94 µm), and the full width at half maximum of the focal line was 0.406λ, which was super-oscillatory. More important is that such a flat lens has small sidelobes and wide field of view. Within the measured range of [-132λ, + 120λ], the maximum sidelobe observed on the focal plane was less than 22% of the central peak. Such binary amplitude-phase planar lens can also be extended to long focal length far-field sub-diffraction focusing lens for other spectrum ranges. PMID:27409922

  13. Searching for Extra-solar Planets with a Diffraction-Limited Balloon Borne Telescope

    NASA Astrophysics Data System (ADS)

    Ford, H. C.; Petro, L. D.; Allen, R.; Bely, P.; Burrows, C. J.; Krist, J.; Rafal, M.; White, R. L.; Jaffe, W.; Le Poole, R.; Crocker, J.; Dopita, M. A.; Grindlay, J. E.

    1998-12-01

    Our goal is to fly a diffraction limited 2.5-m optical telescope and coronagraph on long duration balloon flights at an altitudes of 35 km above 99.99% of the Earth's atmosphere to search for Jupiter-like planets around nearby stars. Analysis of radiosonde data from Mauna Kea and the South Pole suggests that at optical wavelengths and altitudes above 20 km r0 will be much greater than 6 meters anywhere in the world. A telescope equipped with an ultra smooth mirror and/or adaptive optics and coronagraph would provide three orders of magnitude improvement over the coronagraph in the Advanced Camera for Surveys (to be installed in Hubble in May 2000), four orders of magnitude improvement over the HST WFPC-2 camera, and five orders of magnitude improvement over ground based telescopes. A 2.5-m telescope could detect Jupiters and Saturns around the brightest stars within 10 parsecs of the Earth. No present or planned HST instruments will have this capability. Before we can design, build, and fly high resolution telescopes, we must first understand the high altitude balloon environment in detail. We need to know the spatial and temporal spectrum of wavefront errors, and the differential wind forces that will act on the telescope. We must understand the balloon environment sufficiently well to be able to discharge waste heat without spoiling the local thermal environment. We will discuss the major issues for high altitude "site testing" and subsequent high-resolution observations.

  14. Clinical Outcomes after Binocular Implantation of a New Trifocal Diffractive Intraocular Lens

    PubMed Central

    Kretz, Florian T. A.; Breyer, Detlev; Diakonis, Vasilios F.; Klabe, Karsten; Henke, Franziska; Auffarth, Gerd U.; Kaymak, Hakan

    2015-01-01

    Purpose. To evaluate visual, refractive, and contrast sensitivity outcomes, as well as the incidence of pseudophakic photic phenomena and patient satisfaction after bilateral diffractive trifocal intraocular lens (IOL) implantation. Methods. This prospective nonrandomized study included consecutive patients undergoing cataract surgery with bilateral implantation of a diffractive trifocal IOL (AT LISA tri 839MP, Carl Zeiss Meditec). Distance, intermediate, and near visual outcomes were evaluated as well as the defocus curve and the refractive outcomes 3 months after surgery. Photopic and mesopic contrast sensitivity, patient satisfaction, and halo perception were also evaluated. Results. Seventy-six eyes of 38 patients were included; 90% of eyes showed a spherical equivalent within ±0.50 diopters 3 months after surgery. All patients had a binocular uncorrected distance visual acuity of 0.00 LogMAR or better and a binocular uncorrected intermediate visual acuity of 0.10 LogMAR or better, 3 months after surgery. Furthermore, 85% of patients achieved a binocular uncorrected near visual acuity of 0.10 LogMAR or better. Conclusions. Trifocal diffractive IOL implantation seems to provide an effective restoration of visual function for far, intermediate, and near distances, providing high levels of visual quality and patient satisfaction. PMID:26301104

  15. A life course approach to injury prevention: a "lens and telescope" conceptual model

    PubMed Central

    2011-01-01

    Background Although life course epidemiology is increasingly employed to conceptualize the determinants of health, the implications of this approach for strategies to reduce the burden of injuries have received little recognition to date. Methods The authors reviewed core injury concepts and the principles of the life course approach. Based on this understanding, a conceptual model was developed, to provide a holistic view of the mechanisms that underlie the accumulation of injury risk and their consequences over the life course. Results A "lens and telescope" model is proposed that particularly draws on (a) the extended temporal dimension inherent in the life course approach, with links between exposures and outcomes that span many years, or even generations, and (b) an ecological perspective, according to which the contexts in which individuals live are critical, as are changes in those contexts over time. Conclusions By explicitly examining longer-term, intergenerational and ecological perspectives, life course concepts can inform and strengthen traditional approaches to injury prevention and control that have a strong focus on proximal factors. The model proposed also serves as a tool to identify intervention strategies that have co-benefits for other areas of health. PMID:21899775

  16. Development of a 3D CZT detector prototype for Laue Lens telescope

    NASA Astrophysics Data System (ADS)

    Caroli, Ezio; Auricchio, Natalia; Del Sordo, Stefano; Abbene, Leonardo; Budtz-Jørgensen, Carl; Casini, Fabio; Curado da Silva, Rui M.; Kuvvetlli, Irfan; Milano, Luciano; Natalucci, Lorenzo; Quadrini, Egidio M.; Stephen, John B.; Ubertini, Pietro; Zanichelli, Massimiliano; Zappettini, Andrea

    2010-07-01

    We report on the development of a 3D position sensitive prototype suitable as focal plane detector for Laue lens telescope. The basic sensitive unit is a drift strip detector based on a CZT crystal, (~19×8 mm2 area, 2.4 mm thick), irradiated transversally to the electric field direction. The anode side is segmented in 64 strips, that divide the crystal in 8 independent sensor (pixel), each composed by one collecting strip and 7 (one in common) adjacent drift strips. The drift strips are biased by a voltage divider, whereas the anode strips are held at ground. Furthermore, the cathode is divided in 4 horizontal strips for the reconstruction of the third interaction position coordinate. The 3D prototype will be made by packing 8 linear modules, each composed by one basic sensitive unit, bonded on a ceramic layer. The linear modules readout is provided by a custom front end electronics implementing a set of three RENA-3 for a total of 128 channels. The front-end electronics and the operating logics (in particular coincidence logics for polarisation measurements) are handled by a versatile and modular multi-parametric back end electronics developed using FPGA technology.

  17. Reaching the Diffraction Limit - Differential Speckle and Wide-Field Imaging for the WIYN Telescope

    NASA Technical Reports Server (NTRS)

    Scott, Nic J.; Howell, Steve; Horch, Elliott

    2016-01-01

    Speckle imaging allows telescopes to achieve diffraction limited imaging performance. The technique requires cameras capable of reading out frames at a very fast rate, effectively 'freezing out' atmospheric seeing. The resulting speckles can be correlated and images reconstructed that are at the diffraction limit of the telescope. These new instruments are based on the successful performance and design of the Differential Speckle Survey Instrument (DSSI).The instruments are being built for the Gemini-N and WIYN telescopes and will be made available to the community via the peer review proposal process. We envision their primary use to be validation and characterization of exoplanet targets from the NASA, K2 and TESS missions and RV discovered exoplanets. Such targets will provide excellent follow-up candidates for both the WIYN and Gemini telescopes. We expect similar data quality in speckle imaging mode with the new instruments. Additionally, both cameras will have a wide-field mode and standard SDSS filters. They will be highly versatile instruments and it is that likely many other science programs will request time on the cameras. The limiting magnitude for speckle observations will remain around 13-14th at WIYN and 16-17th at Gemini, while wide-field, normal CCD imaging operation should be able to go to much fainter, providing usual CCD imaging and photometric capabilities. The instruments will also have high utility as scoring cameras for telescope engineering purposes, or other applications where high time resolution is needed. Instrument support will be provided, including a software pipeline that takes raw speckle data to fully reconstructed images.

  18. Computer Lens Design Program

    NASA Astrophysics Data System (ADS)

    Shiue, S. G.; Chang, M. W.

    1986-02-01

    An interactive computer lens design program has been developed. It has capabilities for editing lens data, optimizing zoom lens, evaluating image qualities, etc.. A Tessar lens and an IR zoom telescope designed by using this program are discussed.

  19. Inexpensive Demonstration of Diffraction-Limited Telescope from NASA Stratospheric Balloons

    NASA Astrophysics Data System (ADS)

    Young, Elliot

    NASA s Balloon Program often flies payloads to altitudes of 120,000 ft or higher, above 99.5% of the atmosphere. At those altitudes, the imaging degradation due to atmospheric- induced wavefront errors is virtually zero. In 2009, the SUNRISE balloon mission quantified the wavefront errors with a Shack-Hartmann array and found no evidence of wavefront errors. This means that a large telescope on a balloon should be able to achieve diffraction-limited performance, provided it can be stabilized at a level that is finer than the diffraction limit. At visible wavelengths, the diffraction limit of a 1 or 2 m telescope is 0.1 arcsec or 0.05 arcsec, respectively. NASA recently demonstrated WASP (the Wallops Arc-Second Pointing system) on a balloon flight in October 2011, a coarse pointing system that kept a dummy telescope (24 ft long, 1500 lbs) stabilized at the 0.25 arcsec level. We propose to use an orthogonal transfer CCD (OTCCD) from MIT Lincoln Laboratory to improve the pointing to 0.05 arcsec, an order of magnitude better than the coarse pointing alone and sufficient to provide long integrations at the diffraction limit of a 2-m telescope. Imaging in visible wavelengths is an important new capability. Ground-based adaptive optics (AO) systems on 8-m and 10-m class telescope cannot effectively correct for atmospheric turbulence at wavelengths shorter than 1 μm; the atmospheric wavefront errors are larger at these wavelengths than in the infrared J-H-K bands. At present, only the Hubble Space Telescope can achieve 0.05 arcsec resolution images in visible wavelengths, a capability that is dramatically oversubscribed. With a camera based on an MIT/LL OTCCD, a 2-m balloon-borne telescope could match the spatial resolution of HST. Under this project (and in conjunction with a SWRI Internal Research proposal), we will perform ground tests of a motion-compensation camera based on an MIT/LL Orthogonal Transfer CCD (OTCCD). This device can shift charge in four directions

  20. The First Diffraction-Limited Images from the W. M. Keck Telescope

    NASA Technical Reports Server (NTRS)

    Matthews, K.; Ghez, A. M.; Weinberger, A. J.; Neugebauer, G.

    1996-01-01

    The first diffraction limited, 0.05s resolution, images on the W. M. Keck Telescope have been obtained at a wavelength of 2.2 micrometers. These images were part of an experiment to test the suitability of the Keck Telescope for speckle imaging. In order to conduct this test, it was necessary to modify the pixel scale of the Keck facility Near Infrared Camera (NIRC) to optimally sample the spatial frequencies made available by the Keck telescope. The design and implementation of the external reimaging optics, which convert the standard fl25 beam from the secondary mirror to fl182, are described here. Techniques for reducing speckle data with field rotation on an alt-az telescope are also described. Three binary stars were observed in this experiment with separations as small as 0.05s. With only 100 frames of data on each, a dynamic range of at least 3.5 mag was achieved in all cases. These observations imply that a companion as faint as 14.5 mag at 2.2 micrometers could be detected around an 11th magnitude point source.

  1. Optical pressure sensor based on the combined system of a variable liquid lens and a point diffraction interferometer

    NASA Astrophysics Data System (ADS)

    García-Arellano, Anmi; Gómez-García, Manuel; Acosta, Eva

    2011-09-01

    In this work we present an experimental proposal for an efficient optical pressure sensor based on a Variable Liquid Lens (VLL) and a modified Point Diffraction Interferometer (PDI). The working principle of the proposed sensor relies on the fact that a pressure variation induces a change in the lens curvature and hence in its focal length which can be tracked and measured with the interferometer. The pressure is then measured by recording and processing the interferometric images. The calibration of the sensor in this proposal demonstrated a working range of 0-26 kPa with an accuracy of less than 0.1 kPa in the whole range.

  2. Model-based calibration of an interferometric setup with a diffractive zoom-lens

    NASA Astrophysics Data System (ADS)

    Bielke, Alexander; Baer, Goran; Pruss, Christof; Osten, Wolfgang

    2015-08-01

    The fabrication of aspheres and freeform surfaces requires a high-precision shape measurement of these elements. In terms of accuracy, interferometric systems provide the best performance for specular surfaces. To test aspherical lenses, it is necessary to adapt or partially adapt the test wavefront to the surface under test. Recently, we have proposed an interferometric setup with a diffractive zoom-lens that includes two computer generated holograms for this purpose.1 Their surface phases are a combination of a cubic function for the adaption of aberrations and correction terms necessary to compensate substrate-induced errors. With this system based on Alvarez design a variable defocus and astigmatism controlled by a lateral shift of the second element is achieved. One of the main challenges is the calibration of the system. We use a black-box model2 recently introduced for a non-null test interferometer, the so called tilted wave interferometer3 (TWI). With it, the calibration data are calculated by solving an inverse problem. The system is divided in the two parts of illumination and imaging optics. By the solution of an inverse problem, we get a set of data, which describes separately the wavefronts of the illumination and imaging optics. The main difference to the TWI is the flexible diffractive element, which can be used in continuous positions. To combine the calibration data of a couple of positions with the exact placement, we designed alignment structures on the hologram. We will show the general functionality of this calibration and first simulation results.

  3. Dimensional stability. [of glass and glass-ceramic materials in diffraction telescopes

    NASA Technical Reports Server (NTRS)

    Hochen, R.; Justie, B.

    1976-01-01

    The temporal stability of glass and glass-ceramic materials is important to the success of a large diffraction-limited telescope. The results are presented of an experimental study of the dimensional stability of glasses and glass ceramics being considered for substrates of massive diffraction-limited mirrors designed for several years of service in earth orbit. The purpose of the study was to measure the relative change in length of the candidate substrate materials, to the order of 5 parts in 10 to the 8th power, as a function of several years time. The development of monolithic test etalons, the development and improvement of two types of ultra-high precision interferometers, and certain aspects of tests data presently achieved are discussed.

  4. Response characteristics of laser diffraction particle size analyzers - Optical sample volume extent and lens effects

    NASA Technical Reports Server (NTRS)

    Hirleman, E. D.; Oechsle, V.; Chigier, N. A.

    1984-01-01

    The response characteristics of laser diffraction particle sizing instruments were studied theoretically and experimentally. In particular, the extent of optical sample volume and the effects of receiving lens properties were investigated in detail. The experimental work was performed with a particle size analyzer using a calibration reticle containing a two-dimensional array of opaque circular disks on a glass substrate. The calibration slide simulated the forward-scattering characteristics of a Rosin-Rammler droplet size distribution. The reticle was analyzed with collection lenses of 63 mm, 100 mm, and 300 mm focal lengths using scattering inversion software that determined best-fit Rosin-Rammler size distribution parameters. The data differed from the predicted response for the reticle by about 10 percent. A set of calibration factor for the detector elements was determined that corrected for the nonideal response of the instrument. The response of the instrument was also measured as a function of reticle position, and the results confirmed a theoretical optical sample volume model presented here.

  5. Near-infrared images of MG 1131+0456 with the W. M. Keck telescope: Another dusty gravitational lens?

    NASA Technical Reports Server (NTRS)

    Larkin, J. E.; Matthews, K.; Lawrence, C. R.; Graham, J. R.; Harrison, W.; Jernigan, G.; Lin, S.; Nelson, J.; Neugebauer, G.; Smith, G.

    1994-01-01

    Images of the gravitational lens system MG 1131+0456 taken with the near-infrared camera on the W. M. Keck telescope in the J and K(sub s) bands show that the infrared counterparts of the compact radio structure are exceedingly red, with J - K greater than 4.2 mag. The J image reveals only the lensing galaxy, while the K(sub s) image shows both the lens and the infrared counterparts of the compact radio components. After subtracting the lensing galaxy from the K(sub s) image, the position and orientation of the compact components agree with their radio counterparts. The broad-band spectrum and observed brightness of the lens suggest a giant galaxy at a redshift of approximately 0.75, while the color of the quasar images suggests significant extinction by dust in the lens. There is a significant excess of faint objects within 20 sec of MG 1131+0456. Depending on their mass and redshifts, these objects could complicate the lensing potential considerably.

  6. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Diffraction of terahertz waves after passing through a Fresnel lens

    NASA Astrophysics Data System (ADS)

    Shi, Yu-Lei; Zhou, Qing-Li; Zhang, Cun-Lin

    2009-12-01

    The spatiotemporal and spectral characteristics of ultrawide-band terahertz pulses after passing through a Fresnel lens are studied by using the scalar diffraction theory. The simulation shows that the transmitted terahertz waveforms compress with increasing propagation distance, and the multi-frequency focusing phenomenon at different focal points is observed. Additionally, the distribution of terahertz fields in a plane perpendicular to the axis is also discussed, and it is found that the diffraction not only induces focusing on-axis but also inhibits focusing at off-axis positions. Therefore, the Fresnel lens may be a useful alternative approach to being a terahertz filter. Moreover, the terahertz pulses travelling as a basic mode of a Gaussian beam are discussed in detail.

  7. Imaging of the gravitational lens system PG 1115+080 with the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Kristian, Jerome; Groth, Edward J.; Shaya, Edward J.; Schneider, Donald P.; Holtzman, Jon A.; Baum, William A.; Campbell, Bel; Code, Arthur; Currie, Douglas G.; Danielson, G. E.

    1993-01-01

    This paper is the first of a series presenting observations of gravitational lenses and lens candidates, taken with the Wide Field/Planetary Camera of the HST. We have resolved the gravitational lens system PG 1115+080 into four point sources and a red, extended object that is presumably the lens galaxy; we present accurate relative intensities, colors, and positions of the four images, and lower accuracy intensity and position of the lens galaxy, all at the epoch 1991.2. Comparison with earlier data shows no compelling evidence for relative intensity variations between the QSO components having so far been observed. The new data agree with earlier conclusions that the system is rather simple, and can be produced by the single observed galaxy. The absence of asymmetry in the HST images implies that the emitting region of the quasar itself has an angular radius smaller than about 10 milliarcsec (100 pc for H0 = 50, q0 = 0.5).

  8. Covariance of lucky images for increasing objects contrast: diffraction-limited images in ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Cagigal, Manuel P.; Valle, Pedro J.; Colodro-Conde, Carlos; Villó-Pérez, Isidro; Pérez-Garrido, Antonio

    2016-01-01

    Images of stars adopt shapes far from the ideal Airy pattern due to atmospheric density fluctuations. Hence, diffraction-limited images can only be achieved by telescopes without atmospheric influence, e.g. spatial telescopes, or by using techniques like adaptive optics or lucky imaging. In this paper, we propose a new computational technique based on the evaluation of the COvariancE of Lucky Images (COELI). This technique allows us to discover companions to main stars by taking advantage of the atmospheric fluctuations. We describe the algorithm and we carry out a theoretical analysis of the improvement in contrast. We have used images taken with 2.2-m Calar Alto telescope as a test bed for the technique resulting that, under certain conditions, telescope diffraction limit is clearly reached.

  9. Visual Outcomes, Patient Satisfaction and Spectacle Independence with a Trifocal Diffractive Intraocular Lens

    PubMed Central

    Kretz, Florian Tobias Alwin; Choi, Chul Young; Müller, Matthias; Gerl, Matthias; Gerl, Ralf Helmar

    2016-01-01

    Purpose To evaluate visual outcomes following implantation of a trifocal diffractive intraocular lens (IOL) and to analyze their correlation with patient satisfaction and ease of performing daily tasks. Methods This was a prospective study enrolling 100 eyes of 50 patients undergoing cataract surgery with implantation of trifocal IOL AT LISA tri 839MP. Visual and refractive outcomes were evaluated during a 3-month follow-up. Postoperatively, a questionnaire was used to evaluate patient satisfaction with regard to surgical outcome, spectacle independence, perception of photic phenomena, and ease of performing some vision-related activities. Results A total of 91%, 87%, and 79% of eyes achieved a monocular uncorrected distance, near, and intermediate visual acuity of 0.1 logarithm of the minimum angle of resolution or better, respectively. After the surgery, 96% of the patients could perform their daily activities without problems. The mean spectacle independence scores for reading, doing computer work, and for distance were 10.33 ± 12.47, 5.71 ± 11.90, and 3.92 ± 9.77, respectively (scale: 0 = no spectacles needed; 40 = spectacles always needed). No correlation was found between spectacle independence and visual outcome (-0.101 ≤ r ≤ 0.244, p ≥ 0.087). Mean scores (0 = no symptoms; 40 = strong symptoms) for glare at night, ghost images, and halos were 15.15 ± 12.02, 4.49 ± 7.92, and 13.34 ± 10.82, respectively. No correlation was found between photic phenomena and visual outcome (-0.199 ≤ r ≤ 0.209, p ≥ 0.150). A total of 80% of patients reported satisfaction with the surgery outcome, and 86% would recommend the surgery to friends and family. Conclusions Implantation of the AT LISA tri 839MP IOL after cataract surgery provides effective visual restoration associated with a minimal level of photic phenomena, a positive impact on the performance of vision-related daily activities, and a high level of postoperative patient satisfaction. PMID:27247517

  10. Compact high-resolution spectrographs for large and extremely large telescopes: using the diffraction limit

    NASA Astrophysics Data System (ADS)

    Robertson, J. Gordon; Bland-Hawthorn, Joss

    2012-09-01

    As telescopes get larger, the size of a seeing-limited spectrograph for a given resolving power becomes larger also, and for ELTs the size will be so great that high resolution instruments of simple design will be infeasible. Solutions include adaptive optics (but not providing full correction for short wavelengths) or image slicers (which give feasible but still large instruments). Here we develop the solution proposed by Bland-Hawthorn and Horton: the use of diffraction-limited spectrographs which are compact even for high resolving power. Their use is made possible by the photonic lantern, which splits a multi-mode optical fiber into a number of single-mode fibers. We describe preliminary designs for such spectrographs, at a resolving power of R ~ 50,000. While they are small and use relatively simple optics, the challenges are to accommodate the longest possible fiber slit (hence maximum number of single-mode fibers in one spectrograph) and to accept the beam from each fiber at a focal ratio considerably faster than for most spectrograph collimators, while maintaining diffraction-limited imaging quality. It is possible to obtain excellent performance despite these challenges. We also briefly consider the number of such spectrographs required, which can be reduced by full or partial adaptive optics correction, and/or moving towards longer wavelengths.

  11. Effects of diffraction and static wavefront errors on high-contrast imaging from the Thirty Meter Telescope

    NASA Technical Reports Server (NTRS)

    Troya, Mitchell; Chananb, Gary; Crossfielda, Ian; Dumonta, Philip; Green, Joseph J.; Macintosh, Bruce

    2006-01-01

    High-contrast imaging, particularly direct detection of extrasolar planets, is a major science driver for the next generation of extremely large telescopes such as the segmented Thirty Meter Telescope. This goal requires more than merely diffraction-limited imaging, but also attention to residual scattered light from wavefront errors and diffraction effects at the contrast level of 10-8-10-9. Using a wave-optics simulation of adaptive optics and a diffraction suppression system we investigate diffraction from the segmentation geometry, intersegment gaps, obscuration by the secondary mirror and its supports. We find that the large obscurations pose a greater challenge than the much smaller segment gaps. In addition the impact of wavefront errors from the primary mirror, including segment alignment and figure errors, are analyzed. Segment-to-segment reflectivity variations and residual segment figure error will be the dominant error contributors from the primary mirror. Strategies to mitigate these errors are discussed.

  12. Visual and refractive outcomes after implantation of a fully diffractive trifocal lens

    PubMed Central

    Cochener, Béatrice; Vryghem, Jérome; Rozot, Pascal; Lesieur, Gilles; Heireman, Steven; Blanckaert, Johan A; Van Acker, Emmanuel; Ghekiere, Sofie

    2012-01-01

    Background The purpose of this study was to record the visual outcomes of patients treated by six surgeons after implantation of a trifocal lens. Methods The setting for this study comprised six ophthalmology units and eye clinics in Belgium and France, with a coordinating center in France, and data management and statistical analysis in France and Belgium. Ninety-four eyes from 47 patients were implanted with a trifocal FineVision® intraocular lens by six surgeons. Monocular and binocular, uncorrected and best distance-corrected, and photopic and mesopic visual acuity was measured, as well as the defocus curve between +4 D and −4 D with best distance correction. Results Near and far monocular visual acuities were similar to the data published after bifocal intraocular lens implantation. Intermediate vision was improved, and was demonstrated by scores of near visual acuity as well as far visual acuity with defocus −1.5 D-add lens. Far vision is maintained in mesopic conditions. Conclusion The trifocal intraocular lens provides good far, intermediate, and near visual acuity. PMID:22969289

  13. Progress on the prevention of stray light and diffraction effects on the Thai National Telescope

    NASA Astrophysics Data System (ADS)

    Buisset, Christophe; Prasit, Apirat; Leckngam, Apichat; Lépine, Thierry; Poshyajinda, Saran; Soonthornthum, Boonrucksar; Irawati, Puji; Richichi, Andrea; Sawangwit, Utane; Dhillon, Vik; Hardy, Liam K.

    2015-09-01

    The 2.4-m Thai National Telescope (TNT) is the main facility of the Thai National Observatory located on the Doi Inthanon, Thailand's highest mountain. The first astronomical images obtained at the TNT suffered from diffraction and stray light problems: bright spikes spread from bright stellar images over few arcminutes in the focal plane, and the images taken during observations in bright moon conditions were contaminated by high levels of stray light. We performed targeted investigations to identify the origin of these problems. In a first time, these investigations consisted of analyzing the irradiance distribution of defocused stellar images and of identifying the contributors. We concluded that these bright spikes around the bright stellar images were due to the chamfer and the wavefront error at the mirror edge. We thus installed an annular mask along the edge of the primary mirror that fully suppressed these spikes and we quantified the improvement by observing the double star Sirius. In a second time, we identified the contributors to the stray light by placing a pinhole camera at the TNT focal plane. Then, we designed a new baffle to improve the stray light rejection. The final design of the baffle comprises 21 diaphragms, is painted with an ordinary black paint and was designed, developed and installed on the TNT in less than 8 months. We assessed the improvement on the performance by measuring the variation of the stray light signal before and after installing the baffle in the telescope structure. These steps significantly improved the image quality and enhanced the rejection of the stray light at the focal plane level. In this paper, we present our investigations, we describe the method used to design the TNT baffle, and we present the improvement in quantitative terms.

  14. Optical study of a spectrum splitting solar concentrator based on a combination of a diffraction grating and a Fresnel lens

    SciTech Connect

    Michel, Céline Habraken, Serge; Loicq, Jérôme; Thibert, Tanguy

    2015-09-28

    This paper presents recent improvements of our new solar concentrator design for space application. The concentrator is based on a combination of a diffraction grating (blazed or lamellar) coupled with a Fresnel lens. Thanks to this diffractive/refractive combination, this optical element splits spatially and spectrally the light and focus approximately respectively visible light and IR light onto electrically independent specific cells. It avoid the use of MJs cells and then also their limitations like current matching and lattice matching conditions, leading theoretically to a more tolerant system. The concept is reminded, with recent optimizations, ideal and more realistic results, and the description of an experimental realization highlighting the feasibility of the concept and the closeness of theoretical and experimental results.

  15. Large Space Telescopes Using Fresnel Lens for Power Beaming, Astronomy and Sail Missions

    SciTech Connect

    Early, J T

    2002-10-15

    The concept of using Fresnel optics as part of power beaming, astronomy or sail systems has been suggested by several authors. The primary issues for large Fresnel optics are the difficulties in fabricating these structures and deploying them in space and for astronomy missions the extremely narrow frequency range of these optics. In proposals where the telescope is used to transmit narrow frequency laser power, the narrow bandwidth has not been an issue. In applications where the optic is to be used as part of a telescope, only around 10{sup -5} to limited frequency response of a Fresnel optic is addressed by the use of a corrective optic that will broaden the frequency response of the telescope by three or four orders of magnitude. This broadening will dramatically increase the optical power capabilities of the system and will allow some spectroscopy studies over a limited range. Both the fabrication of Fresnel optics as large as five meters and the use of corrector optics for telescopes have been demonstrated at LLNL. For solar and laser sail missions the use of Fresnel amplitude zone plates made of very thin sail material is also discussed.

  16. Hubble Space Telescope Wide Field Camera imaging of the gravitational lens 2237 + 0305

    NASA Technical Reports Server (NTRS)

    Rix, Hans-Walter; Schneider, Donald P.; Bahcall, John N.

    1992-01-01

    Images of the gravitational lens system 2237 + 0305, taken with the HST Wide Field Camera, are analyzed. Positions for the four quasar images, accurate to +/-0.015 arcsec, and relative magnitudes in U and R, accurate to +/-0.06 and 0.04 mag, respectively, are determined. The upper limits on the observed brightness of the fifth image are found to be less than or approximately equal to 7 percent of the brightest quasar image. The mass of the lens inside 0.9 arcsec is found to be 1.08 +/-0.02 x 10 exp 10 solar masses/h100 corresponding to a mass-to-light ratio in B of 12.3h100. This solar mass/solar luminosity estimate agrees with values obtained from stellar dynamics for other elliptical galaxies. A comparison of predictions from this mass model with the measured central velocity dispersion yields a distance-independent agreement to within 10 percent, assuming isotropic velocity dispersions.

  17. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths

    PubMed Central

    Yuan, Guanghui; Rogers, Edward T. F.; Roy, Tapashree; Adamo, Giorgio; Shen, Zexiang; Zheludev, Nikolay I.

    2014-01-01

    Planar optical lenses are fundamental elements of miniaturized photonic devices. However, conventional planar optical lenses are constrained by the diffraction limit in the optical far-field due to the band-limited wavevectors supported by free-space and loss of high-spatial-frequency evanescent components. As inspired by Einstein's radiation ‘needle stick', electromagnetic energy can be delivered into an arbitrarily small solid angle. Such sub-diffraction optical needles have been numerically investigated using diffractive optical elements (DOEs) together with specially polarized optical beams, but experimental demonstration is extremely difficult due to the bulky size of DOEs and the required alignment precision. Planar super-oscillatory lenses (SOLs) were proposed to overcome these constraints and demonstrated that sub-diffraction focal spots can actually be formed without any evanescent waves, making far-field, label-free super-resolution imaging possible. Here we extend the super-oscillation concept into the vectorial-field regime to work with circularly polarized light, and experimentally demonstrate, for the first time, a circularly polarized optical needle with sub-diffraction transverse spot size (0.45λ) and axial long depth of focus (DOF) of 15λ using a planar SOL at a violet wavelength of 405 nm. This sub-diffraction circularly polarized optical needle has potential applications in circular dichroism spectroscopy, super-resolution imaging, high-density optical storage, heat-assisted magnetic recording, nano-manufacturing and nano-metrology. PMID:25208611

  18. Visual Performance after Bilateral Implantation of a Four-Haptic Diffractive Toric Multifocal Intraocular Lens in High Myopes

    PubMed Central

    Chan, Vincent K. C.

    2016-01-01

    Background. The vision with diffractive toric multifocal intraocular lenses after cataract surgery in long eyes has not been studied previously. Objectives. To report visual performance after bilateral implantation of a diffractive toric multifocal intraocular lens in high myopes. Methods. Prospective, observational case series to include patients with axial length of ≥26 mm and corneal astigmatism of >1 dioptre who underwent bilateral AT LISA 909M implantation. Postoperative examinations included photopic and mesopic distance, intermediate, and near visual acuity; photopic contrast sensitivity; visual symptoms (0–5); satisfaction (1–5); and spectacle independence rate. Results. Twenty-eight eyes (14 patients) were included. Postoperatively, mean photopic monocular uncorrected distance, intermediate, and near visual acuities (logMAR) were 0.12 ± 0.20 (standard deviation), 0.24 ± 0.16, and 0.29 ± 0.21, respectively. Corresponding binocular values were −0.01 ± 0.14, 0.13 ± 0.12, and 0.20 ± 0.19, respectively. One eye (4%) had one-line loss in vision. Under mesopic condition, intermediate vision and near vision decreased significantly (all P ≤ 0.001). Contrast sensitivity at all spatial frequencies did not improve significantly under binocular condition (all P > 0.05). Median scores for halos, night glare, starbursts, and satisfaction were 0.50, 0.00, 0.00, and 4.25, respectively. Ten patients (71%) reported complete spectacle independence. Conclusions. Bilateral implantation of the intraocular lens in high myopes appeared to be safe and achieved good visual performance and high satisfaction. PMID:27563460

  19. Visual Performance after Bilateral Implantation of a Four-Haptic Diffractive Toric Multifocal Intraocular Lens in High Myopes.

    PubMed

    Chang, John S M; Chan, Vincent K C; Ng, Jack C M; Law, Antony K P

    2016-01-01

    Background. The vision with diffractive toric multifocal intraocular lenses after cataract surgery in long eyes has not been studied previously. Objectives. To report visual performance after bilateral implantation of a diffractive toric multifocal intraocular lens in high myopes. Methods. Prospective, observational case series to include patients with axial length of ≥26 mm and corneal astigmatism of >1 dioptre who underwent bilateral AT LISA 909M implantation. Postoperative examinations included photopic and mesopic distance, intermediate, and near visual acuity; photopic contrast sensitivity; visual symptoms (0-5); satisfaction (1-5); and spectacle independence rate. Results. Twenty-eight eyes (14 patients) were included. Postoperatively, mean photopic monocular uncorrected distance, intermediate, and near visual acuities (logMAR) were 0.12 ± 0.20 (standard deviation), 0.24 ± 0.16, and 0.29 ± 0.21, respectively. Corresponding binocular values were -0.01 ± 0.14, 0.13 ± 0.12, and 0.20 ± 0.19, respectively. One eye (4%) had one-line loss in vision. Under mesopic condition, intermediate vision and near vision decreased significantly (all P ≤ 0.001). Contrast sensitivity at all spatial frequencies did not improve significantly under binocular condition (all P > 0.05). Median scores for halos, night glare, starbursts, and satisfaction were 0.50, 0.00, 0.00, and 4.25, respectively. Ten patients (71%) reported complete spectacle independence. Conclusions. Bilateral implantation of the intraocular lens in high myopes appeared to be safe and achieved good visual performance and high satisfaction. PMID:27563460

  20. Ophthalmic compensation of visual ametropia based on a programmable diffractive lens

    NASA Astrophysics Data System (ADS)

    Millán, Maria S.; Pérez-Cabré, Elisabet; Romero, Lenny A.; Ramírez, Natalia

    2013-11-01

    Pixelated liquid crystal displays have been widely used as spatial light modulators to implement programmable diffractive optical elements (DOEs), particularly diffractive lenses. Many different applications of such components have been developed in information optics and optical processors that take advantage of their properties of great flexibility, easy and fast refreshment, and multiplexing capability in comparison with equivalent conventional refractive lenses. In this paper, we explore the application of programmable diffractive lenses displayed on the pixelated screen of a liquid crystal on silicon spatial light modulator (LCoS-SLM) to ophthalmic optics. In particular, we consider the use of programmable diffractive lenses for the visual compensation of some refractive errors (myopia, hyperopia). The theoretical principles of compensation are described and sketched using geometrical optics and paraxial ray tracing. A series of experiments with artificial eye in optical bench are conducted to analyze the compensation accuracy in terms of optical power and to compare the results with those obtained by means of conventional ophthalmic lenses. Practical considerations oriented to feasible applications are provided.

  1. A multipoint diffraction strain sensor using a micro-lens array: from theory to application

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Asundi, Anand

    2008-04-01

    The single point Optical Diffraction Strain Sensor has been extended to a patent-pending Multipoint Diffraction Strain Sensor (MDSS) using a microlens array. The system was further extended for strain measurement with variable sensitivity and measurement range. In this paper, the MDSS is shown to measure both tilt and non-uniform strain with a sensitivity of 0.41 mɛ/pixel and 4.7 mrad/pixel respectively. As validation the strain measured by the MDSS is compared with that by a micro-moiré interferometer with a Gabor filtering method for fringe pattern analysis, while the tilt is compared with derivatives of the surface profile measured by a confocal microscope.

  2. First high dynamic range and high resolution images of the sky obtained with a diffractive Fresnel array telescope

    NASA Astrophysics Data System (ADS)

    Koechlin, Laurent; Rivet, Jean-Pierre; Deba, Paul; Serre, Denis; Raksasataya, Truswin; Gili, René; David, Jules

    2012-03-01

    This paper presents high contrast images of sky sources, obtained from the ground with a novel optical concept: Fresnel arrays. We demonstrate the efficiency of a small 20 cm prototype Fresnel array for making images with high brightness ratios, achieving contrasts up to 4 × 105 on sky sources such as Mars and its satellites, and the Sirius A-B couple. These validation results are promising for future applications in space, for example the 4 m array we have proposed to ESA in the frame of the "Call for a Medium-size mission opportunity for a launch in 2022". Fresnel imagers are the subject of a topical issue of Experimental Astronomy published in 2011, but only preliminary results were presented at the time. Making images of astronomical bodies requires an optical component to focus light. This component is usually a mirror or a lens, the quality of which is critical for sharp and high contrast images. However, reflection on a mirror and refraction through a lens are not the only ways to focus light: an alternative is provided by diffraction through binary masks (opaque foils with multiple precisely etched sub-apertures). Our Fresnel arrays are such diffractive focusers, they offer weight, price and size advantages over traditional optics in space-based astronomical instruments. This novel approach requires only void apertures of special shapes in an opaque material to form sharp images, thus avoiding the wavefront distortion, diffusion and spectral absorption associated with traditional optical media. In our setup, lenses and/or mirrors are involved only downstream (at small sizes) for focal instrumentation and chromatic correction. Fresnel arrays produce high contrast images, the resolution of which reaches the theoretical limit of diffraction. Unlike mirrors, they do not require high precision polishing or positioning, and can be used in a large domain of wavelengths from far IR to far UV, enabling the study of many science cases in astrophysics from exoplanet

  3. The Adaptive Optics Lucky Imager: Diffraction limited imaging at visible wavelengths with large ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Crass, Jonathan; Mackay, Craig; King, David; Rebolo-López, Rafael; Labadie, Lucas; Puga, Marta; Oscoz, Alejandro; González Escalera, Victor; Pérez Garrido, Antonio; López, Roberto; Pérez-Prieto, Jorge; Rodríguez-Ramos, Luis; Velasco, Sergio; Villó, Isidro

    2015-01-01

    One of the continuing challenges facing astronomers today is the need to obtain ever higher resolution images of the sky. Whether studying nearby crowded fields or distant objects, with increased resolution comes the ability to probe systems in more detail and advance our understanding of the Universe. Obtaining these high-resolution images at visible wavelengths however has previously been limited to the Hubble Space Telescope (HST) due to atmospheric effects limiting the spatial resolution of ground-based telescopes to a fraction of their potential. With HST now having a finite lifespan, it is prudent to investigate other techniques capable of providing these kind of observations from the ground. Maintaining this capability is one of the goals of the Adaptive Optics Lucky Imager (AOLI).Achieving the highest resolutions requires the largest telescope apertures, however, this comes at the cost of increased atmospheric distortion. To overcome these atmospheric effects, there are two main techniques employed today: adaptive optics (AO) and lucky imaging. These techniques individually are unable to provide diffraction limited imaging in the visible on large ground-based telescopes; AO currently only works at infrared wavelengths while lucky imaging reduces in effectiveness on telescopes greater than 2.5 metres in diameter. The limitations of both techniques can be overcome by combing them together to provide diffraction limited imaging at visible wavelengths on the ground.The Adaptive Optics Lucky Imager is being developed as a European collaboration and combines AO and lucky imaging in a dedicated instrument for the first time. Initially for use on the 4.2 metre William Herschel Telescope, AOLI uses a low-order adaptive optics system to reduce the effects of atmospheric turbulence before imaging with a lucky imaging based science detector. The AO system employs a novel type of wavefront sensor, the non-linear Curvature Wavefront Sensor (nlCWFS) which provides

  4. Visual outcomes and optical quality after implantation of a diffractive multifocal toric intraocular lens

    PubMed Central

    Chen, Xiangfei; Zhao, Ming; Shi, Yuhua; Yang, Liping; Lu, Yan; Huang, Zhenping

    2016-01-01

    Background: This study evaluated the visual function after implantation of a multifocal toric intraocular lenses (IOLs). Materials and Methods: This study involved 10 eyes from eight cataract patients with corneal astigmatism of 1.0 diopter (D) or higher who had received phacoemulsification with implantation of an AcrySof IQ ReSTOR Toric IOL. Six-month evaluations included visual acuity, spherical equivalent (SE), defocus curve, residual astigmatism, IOL rotation, contrast sensitivity (CS), wavefront aberrations, modulation transfer function (MTF), and patient satisfaction assessments. Results: At 6 months postoperatively, uncorrected distance visual acuity (logarithm of the minimum angle of resolution) was 0.09 ± 0.04, corrected distance visual acuity was 0.02 ± 0.11, and uncorrected near visual acuity was 0.12 ± 0.07. The mean SE was −0.095 ± 0.394 D (±0.50 D in 90%). Refractive astigmatism at the 6-month follow-up visit was significantly reduced to 0.35 ± 0.32 D from 1.50 ± 0.41 D presurgery (P < 0.05). The mean IOL axis rotation was 3.20 ± 1.55°. Postoperative CS levels were high. Postoperative total order aberrations (TOAs), lower-order aberrations (LOAs), higher-order aberrations (HOAs), and spherical aberrations were decreased compared with preoperative values (P < 0.05). At 3 months postoperatively, TOAs, LOAs, and HOAs with a 3 mm pupil diameter as well as TOAs, LOAs, and astigmatism aberrations with a 5 mm pupil diameter were statistically lower than those at 1-month post surgery, but without subsequent significant changes (P > 0.05). There was an increase in MTF results between preoperative and postoperative evaluations at all spatial frequencies. Conclusions: The diffractive multifocal toric IOL is able to provide a predictable astigmatic correction with apparently outstanding levels of optical quality after implantation. PMID:27221680

  5. Telescopic system design using hybrid elements (refractive-diffractive) for people with visual weakness

    NASA Astrophysics Data System (ADS)

    Garcia Lievanos, O.; Vazquez-Montiel, Sergio

    2004-10-01

    People with visual weakness, besides the typical refraction problems as myopia (shortsightedness), lose much of the light that enters to their eyes because their retina has many useless cones. For this reason the traditional ophthalmic lenses cannot solve the problem of these people, therefore, we are required of optical systems that collect a big quantity of light, we also need these systems to be of small dimensions and lightweight so they can be used for a long time. In this work we propose the optical design of telescopes using hybrid components, using this new optical components we have obtained compact and lightweight optical systems without decreasing the optical quality of the images. We present the optical design of telescopes for three different magnifications, as well as the analysis of the quality of their images.

  6. Diffractive optical elements for generating arbitrary line foci

    NASA Technical Reports Server (NTRS)

    Mait, Joseph N.; Prather, Dennis W.; Vandergracht, Joseph; Tayag, Tristan J.

    1993-01-01

    The key optical component in the architecture of the linearly variable magnification telescope presented here is a conical lens. This architecture has application to Doppler radar processing and to wavelet processing. Unfortunately, the unique surface profile of a conical lens does not allow traditional grinding techniques to be used for fabrication; therefore, its fabrication is considered custom. In addition to the requirement of custom fabrication, a refractive conical lens introduces phase aberrations that are intrinsic to its conic shape. Further, due to the large prismatic component of the lens, the variable magnification telescope architecture is off-axis. To overcome the fabrication and application difficulties of a refractive lens, we consider the construction of a hybrid diffractive-refractive lens.

  7. Nanoscale strain distributions in embedded SiGe semiconductor devices revealed by precession electron diffraction and dual lens dark field electron holography

    SciTech Connect

    Wang, Y. Y.; Cooper, D.; Bernier, N.; Rouviere, J.; Murray, C. E.; Bruley, J.

    2015-01-26

    The detailed strain distributions produced by embedded SiGe stressor structures are measured at high spatial resolution with high precision, with dual lens dark field electron holography and precession electron diffraction. Shear strain and lattice rotation within the crystalline lattice are observed at the boundaries between the SiGe and Si regions. The experimental results are compared to micromechanical modeling simulations to understand the mechanisms of elastic relaxation on all the modes of deformation at a sub-micron length scale.

  8. Space infrared telescope facility wide field and diffraction limited array camera (IRAC)

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.

    1988-01-01

    The wide-field and diffraction limited array camera (IRAC) is capable of two-dimensional photometry in either a wide-field or diffraction-limited mode over the wavelength range from 2 to 30 microns with a possible extension to 120 microns. A low-doped indium antimonide detector was developed for 1.8 to 5.0 microns, detectors were tested and optimized for the entire 1.8 to 30 micron range, beamsplitters were developed and tested for the 1.8 to 30 micron range, and tradeoff studies of the camera's optical system performed. Data are presented on the performance of InSb, Si:In, Si:Ga, and Si:Sb array detectors bumpbonded to a multiplexed CMOS readout chip of the source-follower type at SIRTF operating backgrounds (equal to or less than 1 x 10 to the 8th ph/sq cm/sec) and temperature (4 to 12 K). Some results at higher temperatures are also presented for comparison to SIRTF temperature results. Data are also presented on the performance of IRAC beamsplitters at room temperature at both 0 and 45 deg angle of incidence and on the performance of the all-reflecting optical system baselined for the camera.

  9. Harmonic diffractive lenses

    SciTech Connect

    Sweeney, D.W.; Sommargren, G.E.

    1995-05-10

    The harmonic diffractive lens is a diffractive imaging lens for which the optical path-length transition between adjacent facets is an integer multiple {ital m} of the design wavelength {lambda}{sub 0}. The total lens thickness in air is {ital m}{lambda}{sub 0}/({ital n} {minus} 1), which is {ital m} times thicker than the so-called modulo 2{pi} diffractive lens. Lenses constructed in this way have hybrid properties of both refractive and diffractive lenses. Such a lens will have a diffraction-limited, common focus for a number of discrete wavelengths across the visible spectrum. A 34.75-diopter, 6-mm-diameter lens is diamond turned in aluminum and replicated in optical materials. The sag of the lens is 23 {mu}m. Modulation transfer function measurements in both monochromatic and white light verify the performance of the lens. The lens approaches the diffraction limit for 10 discrete wavelengths across the visible spectrum.

  10. A collimated focused ultrasound beam of high acoustic transmission and minimum diffraction achieved by using a lens with subwavelength structures

    SciTech Connect

    Lin, Zhou; Tu, Juan; Cheng, Jianchun; Guo, Xiasheng E-mail: dzhang@nju.edu.cn; Wu, Junru; Huang, Pingtong; Zhang, Dong E-mail: dzhang@nju.edu.cn

    2015-09-14

    An acoustic focusing lens incorporated with periodically aligned subwavelength grooves corrugated on its spherical surface has been developed. It is demonstrated theoretically and experimentally that acoustic focusing achieved by using the lens can suppress the relative side-lobe amplitudes, enhance the focal gain, and minimize the shifting of the focus. Use of the lens coupled with a planar ultrasound transducer can generate an ultrasound beam with enhanced acoustic transmission and collimation effect, which offers the capability of improving the safety, efficiency, and accuracy of targeted surgery implemented by high intensity focused ultrasound.

  11. Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination.

    PubMed

    Zhao, Zeyu; Luo, Yunfei; Zhang, Wei; Wang, Changtao; Gao, Ping; Wang, Yanqin; Pu, Mingbo; Yao, Na; Zhao, Chengwei; Luo, Xiangang

    2015-01-01

    For near-field imaging optics, minimum resolvable feature size is highly constrained by the near-field diffraction limit associated with the illumination light wavelength and the air distance between the imaging devices and objects. In this study, a plasmonic cavity lens composed of Ag-photoresist-Ag form incorporating high spatial frequency spectrum off-axis illumination (OAI) is proposed to realize deep subwavelength imaging far beyond the near-field diffraction limit. This approach benefits from the resonance effect of the plasmonic cavity lens and the wavevector shifting behavior via OAI, which remarkably enhances the object's subwavelength information and damps negative imaging contribution from the longitudinal electric field component in imaging region. Experimental images of well resolved 60-nm half-pitch patterns under 365-nm ultra-violet light are demonstrated at air distance of 80 nm between the mask patterns and plasmonic cavity lens, approximately four-fold longer than that in the conventional near-field lithography and superlens scheme. The ultimate air distance for the 60-nm half-pitch object could be theoretically extended to 120 nm. Moreover, two-dimensional L-shape patterns and deep subwavelength patterns are illustrated via simulations and experiments. This study promises the significant potential to make plasmonic lithography as a practical, cost-effective, simple and parallel nano-fabrication approach. PMID:26477856

  12. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. III. MEASURES BELOW THE DIFFRACTION LIMIT OF THE WIYN TELESCOPE

    SciTech Connect

    Horch, Elliott P.; Van Altena, William F.; Howell, Steve B.; Sherry, William H.; Ciardi, David R. E-mail: william.vanaltena@yale.edu E-mail: wsherry@noao.edu

    2011-06-15

    In this paper, we study the ability of CCD- and electron-multiplying-CCD-based speckle imaging to obtain reliable astrometry and photometry of binary stars below the diffraction limit of the WIYN 3.5 m Telescope. We present a total of 120 measures of binary stars, 75 of which are below the diffraction limit. The measures are divided into two groups that have different measurement accuracy and precision. The first group is composed of standard speckle observations, that is, a sequence of speckle images taken in a single filter, while the second group consists of paired observations where the two observations are taken on the same observing run and in different filters. The more recent paired observations were taken simultaneously with the Differential Speckle Survey Instrument, which is a two-channel speckle imaging system. In comparing our results to the ephemeris positions of binaries with known orbits, we find that paired observations provide the opportunity to identify cases of systematic error in separation below the diffraction limit and after removing these from consideration, we obtain a linear measurement uncertainty of 3-4 mas. However, if observations are unpaired or if two observations taken in the same filter are paired, it becomes harder to identify cases of systematic error, presumably because the largest source of this error is residual atmospheric dispersion, which is color dependent. When observations are unpaired, we find that it is unwise to report separations below approximately 20 mas, as these are most susceptible to this effect. Using the final results obtained, we are able to update two older orbits in the literature and present preliminary orbits for three systems that were discovered by Hipparcos.

  13. Fresnel Lens

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Scott, Steve; Lamb, David; Zimmerman, Joe E. (Technical Monitor)

    2001-01-01

    Fresnel lenses span the full range of sizes from lens a few micrometers in diameter to lens several meters in diameter. These lenses are utilized in various fields including optical communication, theatrical lighting, office equipment, video entertainment systems, solar concentrators, and scientific research instruments. These lenses function either as diffractive or refractive optical elements depending on the geometrical feature size of the lens. The basic functions of these lenses is described followed by an overview of fabrication methods. A summary of applications is then provided illustrating the rich variety of applications for which fresnel lenses may be designed to fulfill.

  14. Mirrors for X-ray telescopes: Fresnel diffraction-based computation of point spread functions from metrology

    NASA Astrophysics Data System (ADS)

    Raimondi, L.; Spiga, D.

    2015-01-01

    Context. The imaging sharpness of an X-ray telescope is chiefly determined by the optical quality of its focusing optics, which in turn mostly depends on the shape accuracy and the surface finishing of the grazing-incidence X-ray mirrors that compose the optical modules. To ensure the imaging performance during the mirror manufacturing, a fundamental step is predicting the mirror point spread function (PSF) from the metrology of its surface. Traditionally, the PSF computation in X-rays is assumed to be different depending on whether the surface defects are classified as figure errors or roughness. This classical approach, however, requires setting a boundary between these two asymptotic regimes, which is not known a priori. Aims: The aim of this work is to overcome this limit by providing analytical formulae that are valid at any light wavelength, for computing the PSF of an X-ray mirror shell from the measured longitudinal profiles and the roughness power spectral density, without distinguishing spectral ranges with different treatments. Methods: The method we adopted is based on the Huygens-Fresnel principle for computing the diffracted intensity from measured or modeled profiles. In particular, we have simplified the computation of the surface integral to only one dimension, owing to the grazing incidence that reduces the influence of the azimuthal errors by orders of magnitude. The method can be extended to optical systems with an arbitrary number of reflections - in particular the Wolter-I, which is frequently used in X-ray astronomy - and can be used in both near- and far-field approximation. Finally, it accounts simultaneously for profile, roughness, and aperture diffraction. Results: We describe the formalism with which one can self-consistently compute the PSF of grazing-incidence mirrors, and we show some PSF simulations including the UV band, where the aperture diffraction dominates the PSF, and hard X-rays where the X-ray scattering has a major impact

  15. International Lens Design Conference, Monterey, CA, June 11-14, 1990, Proceedings

    NASA Astrophysics Data System (ADS)

    Lawrence, George N.

    The present conference on lens design encompasses physical and geometrical optics, diffractive optics, the optimization of optical design, software packages, ray tracing, the use of artificial intelligence, the achromatization of materials, zoom optics, microoptics and GRIN lenses, and IR lens design. Specific issues addressed include diffraction-performance calculations in lens design, the optimization of the optical transfer function, a rank-down method for automatic lens design, applications of quadric surfaces, the correction of aberrations by using HOEs in UV and visible imaging systems, and an all-refractive telescope for intersatellite communications. Also addressed are automation techniques for optics manufacturing, all-reflective phased-array imaging telescopes, the thermal aberration analysis of a Nd:YAG laser, the analysis of illumination systems, athermalized FLIR optics, and the design of array systems using shared symmetry.

  16. International Lens Design Conference, Monterey, CA, June 11-14, 1990, Proceedings

    SciTech Connect

    Lawrence, G.N. )

    1990-01-01

    The present conference on lens design encompasses physical and geometrical optics, diffractive optics, the optimization of optical design, software packages, ray tracing, the use of artificial intelligence, the achromatization of materials, zoom optics, microoptics and GRIN lenses, and IR lens design. Specific issues addressed include diffraction-performance calculations in lens design, the optimization of the optical transfer function, a rank-down method for automatic lens design, applications of quadric surfaces, the correction of aberrations by using HOEs in UV and visible imaging systems, and an all-refractive telescope for intersatellite communications. Also addressed are automation techniques for optics manufacturing, all-reflective phased-array imaging telescopes, the thermal aberration analysis of a Nd:YAG laser, the analysis of illumination systems, athermalized FLIR optics, and the design of array systems using shared symmetry.

  17. Comparison of visual outcomes and subjective visual quality after bilateral implantation of a diffractive trifocal intraocular lens and blended implantation of apodized diffractive bifocal intraocular lenses

    PubMed Central

    Gundersen, Kjell Gunnar; Potvin, Rick

    2016-01-01

    Purpose To compare the visual acuity (VA) and quality of vision between bilateral implantation of a trifocal intraocular lens (IOL) and blended bifocal IOLs with an intermediate add in the dominant eye and a near add in the nondominant eye. Patients and methods Patients with either trifocal or blended bifocal IOLs implanted were recruited after surgery. Subjects returned for a single diagnostic visit between 3 and 24 months after surgery. VA was tested at various distances, including low-contrast acuity and acuity at their preferred reading distance. A binocular defocus curve was obtained, and subjective visual function and quality of vision were evaluated. Results Twenty-five trifocal subjects and 30 blended bifocal subjects were enrolled. There were no significant differences in low-contrast acuity, preferred reading distance, or acuity at that reading distance. Binocular vision at 4 m, 60 cm, and 40 cm was not statistically significantly different. The trifocal provided statistically significantly better visual acuity (P<0.05) at vergences from −0.5 to −1.5 D (from 2 m to 67 cm viewing distance, P<0.05). There was no statistically significant difference in the near vision subscale scores of the 39-question National Eye Institute Visual Function Questionnaire or the overall scores of the Quality of Vision questionnaire, though significantly more trifocal subjects reported that the observed visual disturbances were “bothersome” (P<0.05). Conclusion Both lens modalities provided subjects with excellent binocular near and distance vision, with similar low rates of visual disturbances and good reported functional vision. The trifocal IOL provided significantly better intermediate VA in the viewing distance range of 2 m to 67 cm, corresponding to viewing things such as a car dashboard or grocery shelf. VA was similar between groups at viewing distances from 60 to 40 cm, corresponding to computer or reading distance. PMID:27274184

  18. Getting lucky with adaptive optics: diffraction-limited resolution in the visible with current AO systems on large and small telescopes

    NASA Astrophysics Data System (ADS)

    Law, N. M.; Dekany, R. G.; Mackay, C. D.; Moore, A. M.; Britton, M. C.; Velur, V.

    2008-07-01

    We have recently demonstrated diffraction-limited resolution imaging in the visible on the 5m Palomar Hale telescope. The new LAMP instrument is a Lucky Imaging backend camera for the Palomar AO system. Typical resolutions of 35-40 mas with Strehls of 10-20% were achieved at 700nm, and at 500nm the FWHM resolution was as small as 42 milliarcseconds. In this paper we discuss the capabilities and design challenges of such a system used with current and near future AO systems on a variety of telescopes. In particular, we describe the designs of two planned Lucky Imaging + AO instruments: a facility instrument for the Palomar 200" AO system and its PALM3K upgrade, and a visible-light imager for the CAMERA low-cost LGS AO system planned for the Palomar 60" telescope. We introduce a Monte Carlo simulation setup that reproduces the observed PSF variability behind an adaptive optics system, and apply it to predict the performance of 888Cam and CAMERA. CAMERA is predicted to achieve diffraction-limited resolution at wavelengths as short as 350 nm. In addition to on-axis resolution improvements we discuss the results of frame selection with the aim of improving other image parameters such as isoplanatic patch sizes, showing that useful improvements in image quality can be made by Lucky+AO even with very temporally and spatially undersampled data.

  19. FERMI LARGE AREA TELESCOPE DETECTION OF GRAVITATIONAL LENS DELAYED γ-RAY FLARES FROM BLAZAR B0218+357

    SciTech Connect

    Cheung, C. C.; Grove, J. E.; Larsson, S.; Scargle, J. D.; Amin, M. A.; Blandford, R. D.; Chiang, J.; Marshall, P. J.; Bulmash, D.; Ciprini, S.; Corbet, R. H. D.; Falco, E. E.; Wood, D. L.; Ajello, M.; Bastieri, D.; Chekhtman, A.; D'Ammando, F.; Giroletti, M.; Lott, B.; and others

    2014-02-20

    Using data from the Fermi Large Area Telescope (LAT), we report the first clear γ-ray measurement of a delay between flares from the gravitationally lensed images of a blazar. The delay was detected in B0218+357, a known double-image lensed system, during a period of enhanced γ-ray activity with peak fluxes consistently observed to reach >20-50 × its previous average flux. An auto-correlation function analysis identified a delay in the γ-ray data of 11.46 ± 0.16 days (1σ) that is ∼1 day greater than previous radio measurements. Considering that it is beyond the capabilities of the LAT to spatially resolve the two images, we nevertheless decomposed individual sequences of superposing γ-ray flares/delayed emissions. In three such ∼8-10 day-long sequences within a ∼4 month span, considering confusion due to overlapping flaring emission and flux measurement uncertainties, we found flux ratios consistent with ∼1, thus systematically smaller than those from radio observations. During the first, best-defined flare, the delayed emission was detailed with a Fermi pointing, and we observed flux doubling timescales of ∼3-6 hr implying as well extremely compact γ-ray emitting regions.

  20. Reaching the Diffraction Limit - Differential Speckle and Wide-Field Imaging for the Gemini-N Telescope

    NASA Technical Reports Server (NTRS)

    Scott, Nic J.; Howell, Steve; Horch, Elliott

    2016-01-01

    Speckle imaging allows telescopes to achieve di raction limited imaging performance. The technique requires cameras capable of reading out frames at a very fast rate, e ectively `freezing out' atmospheric seeing. The resulting speckles can be correlated and images reconstructed that are at the di raction limit of the telescope. These new instruments are based on the successful performance and design of the Di erential Speckle Survey Instrument (DSSI) [2, 1]. The instruments are being built for the Gemini-N and WIYN telescopes and will be made available to the community via the peer review proposal process. We envision their primary use to be validation and characterization of exoplanet targets from the NASA K2 and TESS missions and RV discovered exoplanets. Such targets will provide excellent follow-up candidates for both the WIYN and Gemini telescopes [3]. Examples of DSSI data are shown in the gures below. We expect similar data quality in speckle imaging mode with the new instruments. Additionally, both cameras will have a wide- eld mode and standard SDSS lters. They will be highly versatile instruments and it is that likely many other science programs will request time on the cameras. The limiting magnitude for speckle observations, will remain around 13-14th at WIYN and 16-17th at Gemini, while wide- eld, normal CCD imaging operation should be able to go to much fainter, providing usual CCD imaging and photometric capabilities. The instruments will also have high utility as scoring cameras for telescope engineering purposes, or other applications where high time resolution is needed. Instrument support will be provided, including a software pipeline that takes raw speckle data to fully reconstructed images.

  1. SNAP telescope

    SciTech Connect

    Lampton, Michael L.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro, R.; Ealet, A.; Ellis,R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar,A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland,S.E.; Huterer, D.; Karcher, A.; Kim, A.G.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder, E.V.; Loken,S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi,H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto,E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.; Wang, G.

    2002-07-29

    The SuperNova/Acceleration Probe (SNAP) mission will require a two-meter class telescope delivering diffraction limited images spanning a one degree field in the visible and near infrared wavelength regime. This requirement, equivalent to nearly one billion pixel resolution, places stringent demands on its optical system in terms of field flatness, image quality, and freedom from chromatic aberration. We discuss the advantages of annular-field three-mirror anastigmat (TMA) telescopes for applications such as SNAP, and describe the features of the specific optical configuration that we have baselined for the SNAP mission. We discuss the mechanical design and choice of materials for the telescope. Then we present detailed ray traces and diffraction calculations for our baseline optical design. We briefly discuss stray light and tolerance issues, and present a preliminary wavefront error budget for the SNAP Telescope. We conclude by describing some of tasks to be carried out during the upcoming SNAP research and development phase.

  2. Visual acuity and patient satisfaction at varied distances and lighting conditions after implantation of an aspheric diffractive multifocal one-piece intraocular lens

    PubMed Central

    Chang, Daniel H

    2016-01-01

    Purpose The aim of the study is to evaluate the visual acuity and patient satisfaction at varied distances under photopic and mesopic lighting conditions in patients bilaterally implanted with aspheric diffractive multifocal one-piece intraocular lenses. Methods In this retrospective–prospective study, 16 patients with a mean age of 66.2±9.2 years (range: 50–81 years) who had undergone bilateral phacoemulsification surgery with implantation of a Tecnis multifocal one-piece intraocular lens (ZMB00) were evaluated. Monocular and binocular uncorrected and distance-corrected visual acuities were measured at distance (20 ft), intermediate (70–80 cm), and near (35–40 cm) under photopic (85 cd/m2) and mesopic (3 cd/m2) lighting conditions and were compared using the paired t-test. All patients also completed a subjective questionnaire. Results At a mean follow-up of 9.5±3.9 months, distance, near, and intermediate visual acuity improved significantly from preoperative acuity. Under photopic and mesopic conditions, 93.8% and 62.5% of patients, respectively, had binocular uncorrected intermediate visual acuity of 20/40 or better, and 62.5% and 31.3% of patients had binocular uncorrected near visual acuity of 20/20 or better. All patients were satisfied with their overall vision without using glasses and/or contact lenses when compared with before surgery. A total of 87.5% of patients reported no glare and 68.8% of patients reported no halos around lights at night. Conclusion Tecnis multifocal one-piece intraocular lenses provide good distance, intermediate, and near visual acuity under photopic as well as mesopic lighting conditions. High levels of spectacle independence with low levels of photic phenomenon were achieved, resulting in excellent patient satisfaction. PMID:27536061

  3. Ultrathin zoom telescopic objective.

    PubMed

    Li, Lei; Wang, Di; Liu, Chao; Wang, Qiong-Hua

    2016-08-01

    We report an ultrathin zoom telescopic objective that can achieve continuous zoom change and has reduced compact volume. The objective consists of an annular folded lens and three electrowetting liquid lenses. The annular folded lens undertakes the main part of the focal power of the lens system. Due to a multiple-fold design, the optical path is folded in a lens with the thickness of ~1.98mm. The electrowetting liquid lenses constitute a zoom part. Based on the proposed objective, an ultrathin zoom telescopic camera is demonstrated. We analyze the properties of the proposed objective. The aperture of the proposed objective is ~15mm. The total length of the system is ~18mm with a tunable focal length ~48mm to ~65mm. Compared with the conventional zoom telescopic objective, the total length has been largely reduced. PMID:27505830

  4. Miniature hybrid optical imaging lens

    DOEpatents

    Sitter, D.N. Jr.; Simpson, M.L.

    1997-10-21

    A miniature lens system that corrects for imaging and chromatic aberrations is disclosed, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components. 2 figs.

  5. Miniature hybrid optical imaging lens

    DOEpatents

    Sitter, Jr., David N.; Simpson, Marc L.

    1997-01-01

    A miniature lens system that corrects for imaging and chromatic aberrations, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components.

  6. Laser diffraction particle sizing: Instrument probe volume relocation and elongation

    NASA Technical Reports Server (NTRS)

    Anderson, Robert C.; Buchele, Donald R.; Hovenac, Edward A.; Lock, James A.

    1990-01-01

    The effective probe volume of laser diffraction particle sizing instruments depends on many instrument parameters. In particular the probe volume axial boundaries and its location along laser beam are essentially defined by the onset of a vignetting effect where light scattered at large angles from small particles misses the transform lens. This vignetting effect results in a probe volume that must be inconveniently close to the lens in order to detect smaller diameter particles (less than 100 micrometers). With the addition of an appropriately designed Keplerian telescope, the probe volume may be relocated and elongated. The theory of operation of this supplemental optical system is described. Design considerations for these supplemental optical systems are described, including recommendations for lens specifications, assembly and use. An image transfer system is described which has been designed for use on a Malvern 2600HSD instrument. Experimental validation of this image transfer system is described.

  7. Lens surface roughening for tears invariant contact lens performance

    NASA Astrophysics Data System (ADS)

    Zalevsky, Zeev; Azogui, Jonathan; Limon, Ofer; Rudnitsky, Arkady

    2014-03-01

    In many extended depth of focus diffractive or interferometry based ophthalmic contact lenses the time varied tears layers affect the ophthalmic functionality of the lens. In this paper we present a new approach involving nano pillars realized inside the grooves of a contact lens aiming to implement any type of extended depth of focus or diffractive optical element for ophthalmic applications in order to solve the micro fluidics layer uncertainty within the micro sag features.

  8. Design of a single-star optical emulator for a fast telescope

    NASA Astrophysics Data System (ADS)

    Haupt, J.; O'Connor, P.

    2015-07-01

    The design of a simple lens system is described capable of projecting a diffraction limited f1/.2 point of light through a variety of plane parallel vacuum windows. The system was built for the purpose of testing prototype CCDs for the Large Synpotic Survey Telescope in which lab testing drove the desire to create a beam that matches the telescope's f-ratio and obstruction, and which would have sufficient back-focal distance to allow imaging onto a sensor at least 50 mm away in various dewars with various window thicknesses. Also used as the final optic in an atmospheric turbulence simulator, the lens can simulate the real-world star PSF as it will appear on the Large Synoptic Survey Telescope (LSST) focal plane.

  9. Dispersion-compensated fresnel lens

    DOEpatents

    Johnson, Kenneth C.

    1992-01-01

    A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4.multidot.10.sup.-5 inch and a profile width of at least 10.sup.-3 inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight.

  10. Dispersion-compensated Fresnel lens

    DOEpatents

    Johnson, K.C.

    1992-11-03

    A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4[times]10[sup [minus]5] inch and a profile width of at least 10[sup [minus]3] inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight. 10 figs.

  11. Developing a Laue Lens for Nuclear Astrophysics: The Challenge of Focusing Soft Gamma-rays

    NASA Astrophysics Data System (ADS)

    Barriere, Nicolas

    Soft gamma rays provide a unique window on the high-energy Universe, especially for studying nuclear astrophysics through nuclear line emission. However, the sensitivity of state-of-the-art gamma-ray telescopes is severely limited by the intense instrumental background when flown in space. A solution is to decouple the photon collection area from the photon detection area. Focusing source photons from a large collection area onto a small detector volume would dramatically improve the signal-to-noise ratio, and hence provide the long awaited sensitivity leap in this challenging energy band. Laue crystal diffraction can be utilized to focus soft gamma rays when configured in a Laue lens. While this technology has been demonstrated on balloon flights, the type of crystals used and the process of assembling many crystals into a lens have not been optimized yet. We propose to address all the technical aspects of the construction of a scientifically exploitable Laue lens in order to bring this technology to TRL-6. To this end, two small prototypes representative of the diversity of Laue lenses will be built and tested in relevant environments, leveraging the work accomplished under a previous APRA grant. This project will establish the real performances, the cost, and the construction duration of a full-scale lens, allowing us to propose a Laue lens telescope for suborbital or satellite missions.

  12. Telescopes, Mounts and Control Systems

    NASA Astrophysics Data System (ADS)

    Mobberley, M.; Murdin, P.

    2003-04-01

    The amateur astronomer used to have a relatively basic choice of equipment: a refractor (see REFRACTING TELESCOPES), or a Newtonian reflector (see REFLECTING TELESCOPES); there were few other options. The refractor has always been the stereotype astronomer's instrument: a spy glass, with a lens at one end and an eyepiece at the other. However, in practice, the reflector has always been better aper...

  13. Modeling of the angular tolerancing of an effective medium diffractive lens using combined finite difference time domain and radiation spectrum method algorithms.

    PubMed

    Raulot, Victorien; Gérard, Philippe; Serio, Bruno; Flury, Manuel; Kress, Bernard; Meyrueis, Patrick

    2010-08-16

    A new rigorous vector-based design and analysis approach of diffractive lenses is presented. It combines the use of two methods: the Finite-Difference Time-Domain for the study in the near field, and the Radiation Spectrum Method for the propagation in the far field. This approach is proposed to design and optimize effective medium cylindrical diffractive lenses for high efficiency structured light illumination systems. These lenses are realised with binary subwavelength features that cannot be designed using the standard scalar theory. Furthermore, because of their finite and high frequencies characteristics, such devices prevent the use of coupled wave theory. The proposed approach is presented to determine the angular tolerance in the cases of binary subwavelength cylindrical lenses by calculating the diffraction efficiency as a function of the incidence angle. PMID:20721184

  14. Design of catadioptric middle infrared continuous zoom lens for uncooled infrared detector

    NASA Astrophysics Data System (ADS)

    Jiang, Kai; Zhou, Si-zhong; Duan, Jing; Wang, Yan-bin; Zhang, Heng-jin

    2011-08-01

    For uncooled 320×240 infrared detector, a catadioptric middle infrared continuous zoom lens is presented. The optical system is divided into three segments. First of all, a reflective system is designed as the front system. Then the continuous zoom lens which matches with the reflective system as the back system is designed. The conversed back system is assembled at the first imaging of the optical system with the reflective system. A continuous variable magnification catadiootric telescope is obtained. Projection objective is designed based on the telescope lastly. To ensure the imaging quality of the system, the whole system is optimized with the CODE V software. The system can realize 200mm~800mm continuous zoom. The designed result shows the system has the advantages of simple structure, short zoom path and smooth zoom locus, high image quality and approached or reached to the diffraction limit.

  15. Diffraction-limited imaging with very large telescopes; Proceedings of the NATO Advanced Study Institute, Cargese, France, Sept. 13-23, 1988

    NASA Astrophysics Data System (ADS)

    Alloin, D. M.; Mariotti, J.-M.

    Recent advances in optics and observation techniques for very large astronomical telescopes are discussed in reviews and reports. Topics addressed include Fourier optics and coherence, optical propagation and image formation through a turbulent atmosphere, radio telescopes, continuously deformable telescopes for optical interferometry (I), amplitude estimation from speckle I, noise calibration of speckle imagery, and amplitude estimation from diluted-array I. Consideration is given to first-order imaging methods, speckle imaging with the PAPA detector and the Knox-Thompson algorithm, phase-closure imaging, real-time wavefront sensing and adaptive optics, differential I, astrophysical programs for high-angular-resolution optical I, cophasing telescope arrays, aperture synthesis for space observatories, and lunar occultations for marcsec resolution.

  16. Flat dielectric grating focusing lens with TE-polarized incident light

    NASA Astrophysics Data System (ADS)

    Ma, Ting; Yuan, Xiao-dong; Ye, Wei-min; Xu, Wei

    2013-08-01

    We introduce a planar, high focusing ability, low loss lens using subwavelength high contrast grating (HCG). After a plane wave passes through the 21.7μm wide HCG lens, it is focused 9.51μm below the lens, resulting an NA of 75%. At the focal plane, it presents a full-width-half-maximum (FWHM) of 0.95μm, which is extremely close to diffraction limit. The transmittance is 88%, which means that the loss due to reflection and absorption is only 12%. HCG focusing optics is defined by one-step photolithography and thus can be readily integrated with many devices including VCSELs, telescopes, CCDs and solar cells.

  17. Gravitational Lens B0218+357

    NASA Video Gallery

    This movie illustrates the components of a gravitational lens system (a kind of natural telescope formed when a rare cosmic alignment allows the gravity of a massive object to bend and amplify ligh...

  18. World atlas of large optical telescopes

    NASA Technical Reports Server (NTRS)

    Meszaros, S. P.

    1979-01-01

    By 1980 there will be approximately 100 large optical telescopes in the world with mirror or lens diameters of one meter (39 inches) and larger. This atlas gives information on these telescopes and shows their locations on continent-sized maps. Observatory locations considered suitable for the construction of future large telescopes are also shown.

  19. High resolution telescope

    DOEpatents

    Massie, Norbert A.; Oster, Yale

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  20. High resolution telescope

    SciTech Connect

    Massie, N.A.; Oster, Y.

    1990-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1m in a circle-of-nine configuration. The telescope array has an effective aperture of 12m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activities. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes. 9 figs., 1 tab.

  1. High resolution telescope

    SciTech Connect

    Massie, N.A.; Oster, Y.

    1990-12-31

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1m in a circle-of-nine configuration. The telescope array has an effective aperture of 12m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activities. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes. 9 figs., 1 tab.

  2. Objective lens

    NASA Technical Reports Server (NTRS)

    Olczak, Eugene G. (Inventor)

    2011-01-01

    An objective lens and a method for using same. The objective lens has a first end, a second end, and a plurality of optical elements. The optical elements are positioned between the first end and the second end and are at least substantially symmetric about a plane centered between the first end and the second end.

  3. Broadband Achromatic Telecentric Lens

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2007-01-01

    A new type of lens design features broadband achromatic performance as well as telecentricity, using a minimum number of spherical elements. With appropriate modifications, the lens design form can be tailored to cover the range of response of the focal-plane array, from Si (400-1,000 nm) to InGaAs (400-1,700 or 2,100 nm) or InSb/HgCdTe reaching to 2,500 nm. For reference, lenses typically are achromatized over the visible wavelength range of 480-650 nm. In remote sensing applications, there is a need for broadband achromatic telescopes, normally satisfied with mirror-based systems. However, mirror systems are not always feasible due to size or geometry restrictions. They also require expensive aspheric surfaces. Non-obscured mirror systems can be difficult to align and have a limited (essentially one-dimensional) field of view. Centrally obscured types have a two-dimensional but very limited field in addition to the obscuration. Telecentricity is a highly desirable property for matching typical spectrometer types, as well as for reducing the variation of the angle of incidence and cross-talk on the detector for simple camera types. This rotationally symmetric telescope with no obscuration and using spherical surfaces and selected glass types fills a need in the range of short focal lengths. It can be used as a compact front unit for a matched spectrometer, as an ultra-broadband camera objective lens, or as the optics of an integrated camera/spectrometer in which the wavelength information is obtained by the use of strip or linear variable filters on the focal plane array. This kind of camera and spectrometer system can find applications in remote sensing, as well as in-situ applications for geological mapping and characterization of minerals, ecological studies, and target detection and identification through spectral signatures. Commercially, the lens can be used in quality-control applications via spectral analysis. The lens design is based on the rear landscape

  4. Compound lens

    DOEpatents

    Brixner, B.B.; Klein, M.M.; Winkler, M.A.

    1980-05-21

    The disclosure relates to at least one calcium fluoride optical element used in combination with at least two ordinary crown glass lens elements to greatly reduce secondary spectrum in optical systems.

  5. Compound lens

    DOEpatents

    Brixner, Berlyn B.; Klein, Morris M.; Winkler, Max A.

    1982-01-01

    The disclosure relates to at least one calcium fluoride optical element used in combination with at least two ordinary crown glass lens elements to greatly reduce secondary spectrum in optical systems.

  6. Micron-Accurate Laser Fresnel-Diffraction Ranging System

    NASA Technical Reports Server (NTRS)

    Lehner, David; Campbell, Jonathan; Smith, Kelly; Sanders, Alvin; Allison, Stephen; Smaley, Larry

    2008-01-01

    Two versions of an optoelectronic system undergoing development are depicted. The system is expected to be capable of measuring a distance between 2 and 10 m with an error of no more than 1 micrometer. The system would be designed to exploit Fresnel diffraction of a laser beam. In particular, it would be designed to take advantage of the fact that a Fresnel diffraction pattern is ultrasensitive to distance. The two versions would differ in the following respects: In version 1, the focus of the telescope would be in the Fresnel region, and the telescope would have a small depth of focus. As a consequence, the Fresnel pattern would be imaged directly onto the photodetector array; in version 2, a multielement lens module would displace the Fresnel region from the vicinity of the pinhole to the vicinity of the optical receiver. As the distance to be measured varied, the location of the receiver relative to the displaced Fresnel-diffraction region would vary, thereby causing the Fresnel diffraction pattern on the focal plane to vary. The multielement lens module would also correct for aberrations. The processing of the digitized Fresnel diffraction pattern in the computer might be accelerated by using only parts of the pattern or even only one small part - the central pixel. As the distance from the pinhole increased, the central pixel would rapidly cycle between maximum and minimum light intensity. This in itself would not be sufficient to uniquely determine the distance. However, by varying the size of the pinhole or the wavelength of the laser, one could obtain a second cycle of variation of intensity that, in conjunction with the first cycle, could enable a unique determination of distance. Alternatively, for a single wavelength and a single pinhole size, it should suffice to consider the data from only two different key pixels in the Fresnel pattern.

  7. Sunglass Lens

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Foster Grant's Space Technology Lens, manufactured under license from NASA, combines NASA technology with Foster Grant's own technology. The NASA contribution was a highly abrasion-resistant coating developed at Ames Research Center as a means of protecting plastic surfaces of aerospace equipment from the sometimes harsh environments to which they are subjected. The Space Tech Lens, now manufactured by Fosta-Tek, surpasses glass in abrasion resistant properties and has five times better scratch resistance than the most popular corrective lenses.

  8. QUASAR PG1115+080 AND GRAVITATIONAL LENS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Left: The light from the single quasar PG 1115+080 is split and distorted in this infrared image. PG 1115+080 is at a distance of about 8 billion light years in the constellation Leo, and it is viewed through an elliptical galaxy lens at a distance of 3 billion light years. The NICMOS frame is taken at a wavelength of 1.6 microns and it shows the four images of the quasar (the two on the left are nearly merging) surrounding the galaxy that causes the light to be lensed. The quasar is a variable light source and the light in each image travels a different path to reach the Earth. The time delay of the variations allows the distance scale to be measured directly. The linear streaks on the image are diffraction artifacts in the NICMOS instrument (NASA/Space Telescope Science Institute). Right: In this NICMOS image, the four quasar images and the lens galaxy have been subtracted, revealing a nearly complete ring of infrared light. This ring is the stretched and amplified starlight of the galaxy that contains the quasar, some 8 billion light years away. (NASA/Space Telescope Science Institute). Credit: Christopher D. Impey (University of Arizona)

  9. A wide-field telescope with spherical optics

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1976-01-01

    Utilizing a doublet lens to correct the aberrations of a spherical mirror, a small f/8 telescope for visual use was designed and constructed. The lens has considerable negative power, so that it serves as a Barlow lens as well as a corrector.

  10. Ultra-compact hourglass lens for integrated cameras

    NASA Astrophysics Data System (ADS)

    Rezaei, Mohsen; Hasani Nia, Iman; Bonakdar, Alireza; Mohseni, Hooman

    2015-09-01

    An ultra-small telecentric lens with sub-millimeter thickness is proposed. This lens with 0.2 numerical aperture and high field of view is a good candidate to be used in multi-aperture super resolution imagers. Point spread function and the telecentricity of the lens is extracted numerically and measured experimentally. The ray-optics simulation results show nearly diffraction limited performance for the lens.

  11. Space Telescope.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This pamphlet describes the Space Telescope, an unmanned multi-purpose telescope observatory planned for launch into orbit by the Space Shuttle in the 1980s. The unique capabilities of this telescope are detailed, the major elements of the telescope are described, and its proposed mission operations are outlined. (CS)

  12. Lens Biodiversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Lens genus includes the cultivated L. culinaris, and wild subspecies orientalis - the progenitor, tomentosus, and odemensis, are in the primary genepool, while L. ervoides, L. nigricans and L. lamottei are in the secondary – tertiary gene pool. The Middle East is the primary centre of diversity ...

  13. Overview Of Diffractive Optics At Honeywell

    NASA Astrophysics Data System (ADS)

    Cox, J. Allen

    1988-05-01

    Interest in holographic, or diffractive, optics has been rekindled in the last few years with demonstrated advances in three areas: computer-aided design (CAD) tools, VLSI lithographic and dry etching processes, and mathematical modeling of diffractive elements.1 The availability of CAD tools and electron-beam lithography led first to the emergence of computer-generated holography (CGH). CGH work at Honeywell was started and brought to maturity by Arnold2 in 1980-1983. However, because of the inherently low diffraction efficiency (-10%), lithographic CGHs have found a place in only a relatively few practical applications, such as testing diamond turned aspherics, and thus CGHs have not been widely accepted within industry. The first step in changing this situation came in the 1970s with numerical approaches to rigorously solve the vector field equations for diffraction from blazed gratings.3 The extensive numerical results from these models not only showed that high diffraction efficiencies are possible with etched surface profiles, but also indicated the sensitivity to various profile configurations and design parameters. Veldkamp et al.1,4'-'61 at MIT Lincoln Laboratories have taken the final step necessary to establish the practical feasibility of diffractive optics by using reactive ion etching techniques to produce the surface profiles prescribed by the numerical models and delineated by CGH lithographic masks. With this combined approach, they have demonstrated the feasibility of high-efficiency diffractive elements for a variety of diverse applications, such as the CO2 laser radar telescope,4 coherent beam addition of laser diode arrays,5 and on-axis, broadband, aspheric lens elements for infrared imagers.6 These elements are fabricated using well-established VLSI lithographic and dry etching techniques. Moreover, the ability to replicate each diffractive element provides the potential for high-volume, low-cost producibility. With this precedent, Honeywell

  14. Development of a new photon diffraction imaging system for diagnostic nuclear medicine

    NASA Astrophysics Data System (ADS)

    Roa, D. E.; Smither, R. K.; Zhang, X.; Nie, K.; Shieh, Y. Y.; Ramsinghani, N. S.; Milne, N.; Kuo, J. V.; Redpath, J. L.; Al-Ghazi, M. S. A. L.; Caligiuri, P.

    2005-12-01

    The objective of this project is to develop and construct an innovative imaging system for nuclear medicine and molecular imaging that uses photon diffraction and is capable of generating 1 2 mm spatial resolution images in two or three dimensions. The proposed imaging system would be capable of detecting radiopharmaceuticals that emit 100 200 keV gamma rays which are typically used in diagnostic nuclear medicine and in molecular imaging. The system is expected to be optimized for the 140.6 keV gamma ray from a Tc-99m source, which is frequently used in nuclear medicine. This new system will focus the incoming gamma rays in a manner analogous to a magnifying glass focusing sunlight into a small focal point on a detector's sensitive area. Focusing gamma rays through photon diffraction has already been demonstrated with the construction of a diffraction lens telescope for astrophysics and a scaled-down lens for medical imaging, both developed at Argonne National Laboratory (ANL). In addition, spatial resolutions of 3 mm have been achieved with a prototype medical lens. The proposed imaging system would be comprised of an array of photon diffraction lenses tuned to diffract a specific gamma ray energy (within 100 200 keV) emitted by a common source. The properties of photon diffraction make it possible to diffract only one specific gamma ray energy at a time, which significantly reduces scattering background. The system should be sufficiently sensitive to the detection of small concentrations of radioactivity that can reveal potential tumor sites at their initial stages of development. Moreover, the system's sensitivity would eliminate the need for re-injecting a patient with more radiopharmaceutical if this patient underwent a prior nuclear imaging scan. Detection of a tumor site at its inception could allow for an earlier initiation of treatment and wider treatment options, which can potentially improve the chances for cure.

  15. Opposed port alignment system (OPAS): a commercial astronomical telescope modified for viewing the interior of the NIF target chamber

    NASA Astrophysics Data System (ADS)

    Manuel, Anastacia M.; McCarville, Tom J.; Seppala, Lynn G.; Klingmann, Jeff L.; Kalantar, Daniel H.

    2012-10-01

    The National Ignition Facility (NIF) requires high resolution live images of regions inside the target chamber in order to align diagnostic instruments to fusion targets and to monitor target stability. To view the interior of the target chamber, we modified a commercial 11-inch Schmidt-Cassegrain telescope to develop the Opposed Port Alignment System (OPAS). There are two OPAS systems installed on the target chamber ports directly opposite the diagnostics. This paper describes the optical design, highlighting the two key modifications of the telescope. The first key modification was to reposition the Schmidt corrector plate and to uniquely mount the secondary mirror to a precision translation stage to adjust focus from 5.5 m to infinity. The stage is carefully aligned to ensure that the telescope's optical axis lies on a straight line during focus adjustments. The second key modification was a custom three element lens that flattens the field, corrects residual aberrations of the Schmidt-Cassegrain and, with a commercial 1:1 relay lens, projects the final image plane onto a large format 50 mega-pixel camera. The OPAS modifications greatly extend the Schmidt-Cassegrain telescope's field of view, producing nearly diffraction-limited images over a flat field covering +/-0.4 degrees. Also discussed in the paper are the alignment procedure and the hardware layout of the telescope.

  16. Fabrication techniques for very fast diffractive lenses

    NASA Technical Reports Server (NTRS)

    Tai, Anthony M.; Marron, Joseph C.

    1993-01-01

    Aspheric lenses with arbitrary phase functions can be fabricated on thin light weight substrates via the binary optics fabrication technique. However, it is difficult and costly to fabricate a fast lens (f/number less than 1) for use as the shorter wavelengths. The pitch of the masks and the alignment accuracy must be very fine. For a large lens, the space-bandwidth product of the element can also become impractically large. In this paper, two alternate approaches for the fabrication of fast aspheric diffractive lenses are described. The first approach fabricates the diffractive lens interferometrically, utilizing a spherical wavefront to provide the optical power of the lens and a computer generated hologram to create the aspheric components. The second approach fabricates the aspheric diffractive lens in the form if a higher order kinoform which trades groove profile fidelity for coarser feature size. The design and implementation issues for these two fabrication techniques are discussed.

  17. The large binocular telescope.

    PubMed

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010. PMID:20517352

  18. The GREGOR Solar Telescope

    NASA Astrophysics Data System (ADS)

    Denker, C.; Lagg, A.; Puschmann, K. G.; Schmidt, D.; Schmidt, W.; Sobotka, M.; Soltau, D.; Strassmeier, K. G.; Volkmer, R.; von der Luehe, O.; Solanki, S. K.; Balthasar, H.; Bello Gonzalez, N.; Berkefeld, T.; Collados Vera, M.; Hofmann, A.; Kneer, F.

    2012-12-01

    The 1.5-meter GREGOR solar telescope is a new facility for high-resolution observations of the Sun. The telescope is located at the Spanish Observatorio del Teide on Tenerife. The telescope incorporates advanced designs for a foldable-tent dome, an open steel-truss telescope structure, and active and passive means to minimize telescope and mirror seeing. Solar fine structure can be observed with a dedicated suite of instruments: a broad-band imaging system, the "GREGOR Fabry-Perot Interferometer", and the "Grating Infrared Spectrograph". All post-focus instruments benefit from a high-order (multi-conjugate) adaptive optics system, which enables observations close to the diffraction limit of the telescope. The inclusion of a spectrograph for stellar activity studies and the search for solar twins expands the scientific usage of the GREGOR to the nighttime domain. We report on the successful commissioning of the telescope until the end of 2011 and the first steps towards science verification in 2012.

  19. Space Telescopes

    NASA Technical Reports Server (NTRS)

    Clampin, Mark; Flanagan, Kathryn A.

    2012-01-01

    Space telescopes have been a dominant force in astrophysics and astronomy over the last two decades. As Lyman Spitzer predicted in 1946, space telescopes have opened up much of the electromagnetic spectrum to astronomers, and provided the opportunity to exploit the optical performance of telescopes uncompromised by the turbulent atmosphere. This special section of Optical Engineering is devoted to space telescopes. It focuses on the design and implementation of major space observatories from the gamma-ray to far-infrared, and highlights the scientific and technical breakthroughs enabled by these telescopes. The papers accepted for publication include reviews of major space telescopes spanning the last two decades, in-depth discussions of the design considerations for visible and x-ray telescopes, and papers discussing concepts and technical challenges for future space telescopes.

  20. The Bionic Telescope

    NASA Astrophysics Data System (ADS)

    Woolf, Neville

    2009-05-01

    Four hundred years after children in a spectacle makers workshop accidentally discovered the telescope, the development of this device has been a continuous replacement of the ``natural'' by the deliberate. The human eye is gone. The lens is gone. The tube is gone. The dome is on the verge of going. The size of the optics are ceasing to be set by transportation limits. Adaptive optics are preferred to stable optics. We deliberately break the Lagrange invariant. We focus on lasers instead of stars, and natural observing environments are being replaced by adaptive environments. The goals for the new ground based telescope encompass the oldest and newest ideas, to find signs of life elsewhere, and to find how all the universe developed.

  1. Collection Mode Lens System

    DOEpatents

    Fletcher, Daniel A.; Kino, Gordon S.

    2002-11-05

    A lens system including a collection lens and a microlens spaced from the collection lens adjacent the region to be observed. The diameter of the observablel region depends substantially on the radius of the microlens.

  2. Dual focus diffractive optical element with extended depth of focus

    NASA Astrophysics Data System (ADS)

    Uno, Katsuhiro; Shimizu, Isao

    2014-09-01

    A dual focus property and an extended depth of focus were verified by a new type of diffractive lens displaying on liquid crystal on silicon (LCoS) devices. This type of lens is useful to read information on multilayer optical discs and tilted discs. The radial undulation of the phase groove on the diffractive lens gave the dual focus nature. The focal extension was performed by combining the dual focus lens with the axilens that was invented for expanding the depth of focus. The number of undulations did not affect the intensity along the optical axis but the central spot of the diffraction pattern.

  3. Development of adaptive optics elements for solar telescope

    NASA Astrophysics Data System (ADS)

    Lukin, V. P.; Grigor'ev, V. M.; Antoshkin, L. V.; Botugina, N. N.; Kovadlo, P. G.; Konyaev, P. A.; Kopulov, E. A.; Skomorovsky, V. I.; Trifonov, V. D.; Chuprakov, S. A.

    2012-07-01

    The devices and components of adaptive optical system ANGARA, which is developed for image correction in the Big solar vacuum telescope (BSVT) at Baykal astrophysical observatory are described. It is shown that the use of modernized adaptive system on BSVT not only reduces the turbulent atmospheric distortions of image, but also gives a possibility to improve the telescope developing new methods of solar observations. A high precision Shack-Hartmann wavefront (WF) sensor has been developed on the basis of a low-aperture off-axis diffraction lens array. The device is capable of measuring WF slopes at array sub-apertures of size 640X640 μm with an error not exceeding 4.80 arc.sec. Also the modification of this sensor for adaptive system of solar telescope using extended scenes as tracking objects, such as sunspot, pores, solar granulation and limb, is presented. The software package developed for the proposed WF sensors includes three algorithms of local WF slopes estimation (modified centroids, normalized cross-correlation and fast Fourier-demodulation), as well as three methods of WF reconstruction (modal Zernike polynomials expansion, deformable mirror response functions expansion and phase unwrapping), that can be selected during operation with accordance to the application.

  4. Shack-Hartmann Phasing of Segmented Telescopes: Systematic Effects from Lenslet Arrays

    NASA Technical Reports Server (NTRS)

    Troy, Mitchell; Chanan, Gary; Roberts, Jennifer

    2010-01-01

    The segments in the Keck telescopes are routinely phased using a Shack-Hartmann wavefront sensor with sub-apertures that span adjacent segments. However, one potential limitation to the absolute accuracy of this technique is that it relies on a lenslet array (or a single lens plus a prism array) to form the subimages. These optics have the potential to introduce wavefront errors and stray reflections at the subaperture level that will bias the phasing measurement. We present laboratory data to quantify this effect, using measured errors from Keck and two other lenslet arrays. In addition, as part of the design of the Thirty Meter Telescope Alignment and Phasing System we present a preliminary investigation of a lenslet-free approach that relies on Fresnel diffraction to form the subimages at the CCD. Such a technique has several advantages, including the elimination of lenslet aberrations.

  5. A Reconfigurable Plasmofluidic Lens

    PubMed Central

    Zhao, Chenglong; Liu, Yongmin; Zhao, Yanhui; Fang, Nicholas; Huang, Tony Jun

    2014-01-01

    Plasmonics provides an unparalleled method for manipulating light beyond the diffraction limit, making it a promising technology for the development of ultra-small, ultra-fast, power-efficient optical devices. To date, the majority of plasmonic devices are in the solid state and have limited tunability or configurability. Moreover, individual solid-state plasmonic devices lack the ability to deliver multiple functionalities. Here we utilize laser-induced surface bubbles on a metal film to demonstrate, for the first time, a plasmonic lens in a microfluidic environment. Our “plasmofluidic lens” device is dynamically tunable and reconfigurable. We record divergence, collimation, and focusing of surface plasmon polaritons using this device. The plasmofluidic lens requires no sophisticated nanofabrication and utilizes only a single low-cost diode laser. Our results show that the integration of plasmonics and microfluidics allows for new opportunities in developing complex plasmonic elements with multiple functionalities, high-sensitivity and high-throughput biomedical detection systems, as well as on-chip, all-optical information processing techniques. PMID:23929463

  6. Phase Sensor for Aligning a Segmented Telescope Mirror

    NASA Technical Reports Server (NTRS)

    Stahl, Philip; Walker, Chanda Barlett

    2006-01-01

    A phase sensor has been developed for use in aligning a segmented telescope mirror to within a fraction of a wavelength in piston. (As used here, piston signifies displacement of a mirror segment along the optical axis of the telescope.) Such precise alignment is necessary in order to realize the full benefit of the large aperture achievable through segmentation. This phase sensor is achromatic. It is based on two-wavelength shearing interferometry, and can be modified to utilize an extended or broad-band (e.g., white) light source. The sensor optics include a ruled diffraction grating and an imaging lens. The sensor can measure the piston shift between segments as well as aberrations of the segments. It can measure the surface error of an individual segment, making it possible to compensate for the error with optimal amount(s) of piston and/or tilt. The precise capture range of the sensor depends partly on the telescope design; the largest relative piston shifts measurable by use of this sensor are of the order of 100 m. The accuracy of the sensor also depends partly on the telescope design; in general, the accuracy is sufficient to enable alignment to within approximately half a wavelength. The interferometric image is digitized and processed by a simple algorithm in real time, and the output of the algorithm can be used to maintain alignment in real time, even in the presence of atmospheric turbulence. The sensor is robust. Through calibration, it can be made insensitive to (and, hence, tolerant of) misalignments and aberrations of its own optics, most aberrations of the telescope as a whole (in contradistinction to aberrations of individual segments), and most aberrations introduced by atmospheric turbulence

  7. Converging or Diverging Lens?

    ERIC Educational Resources Information Center

    Branca, Mario

    2013-01-01

    Why does a lens magnify? Why does it shrink objects? Why does this happen? The activities that we propose here are useful in helping us to understand how lenses work, and they show that the same lens can have different magnification capabilities. A converging lens can also act as a diverging lens. (Contains 4 figures.)

  8. Contact lens in keratoconus

    PubMed Central

    Rathi, Varsha M; Mandathara, Preeji S; Dumpati, Srikanth

    2013-01-01

    Contact lenses are required for the visual improvement in patients with keratoconus. Various contact lens options, such as rigid gas permeable (RGP) lenses, soft and soft toric lenses, piggy back contact lenses (PBCL), hybrid lenses and scleral lenses are availble. This article discusses about selection of a lens depending on the type of keratoconus and the fitting philosophies of various contact lenses including the starting trial lens. A Medline search was carried out for articles in the English language with the keywords keratoconus and various contact lenses such as Rose k lens, RGP lens, hybrid lens, scleral lens and PBCL. PMID:23925325

  9. The design and fabrication of common optical components lithography lens

    NASA Astrophysics Data System (ADS)

    Huang, Jiun-Woei

    2015-07-01

    The design and fabrication of common optical components lithography Lens has been carried out for a 1 to 1 stepper. The specification of lens is fulfilled the 3-D lithography system as 2 micron in resolution for 1 inch x 2.8 inches system. The lens has been sophistically designed by dual path in a triplet to reduce the number of components. A single aspherical surface has been applied to reduce the aberration to diffraction limit in lens. The well-made shapes of lens have been suggested. Then, the fabrication of lens has been in the process. Finally, the optical axis of tolerance optical mechanical mountings for lens system in assembly has been analyzed, and valuable for assembly and fabrication.

  10. DISCOVERY OF A QUADRUPLE LENS IN CANDELS WITH A RECORD LENS REDSHIFT z = 1.53

    SciTech Connect

    Van der Wel, A.; Van de Ven, G.; Maseda, M.; Rix, H. W.; Rudnick, G. H.; Grazian, A.; Finkelstein, S. L.; Koo, D. C.; Faber, S. M.; Kocevski, D. D.

    2013-11-01

    Using spectroscopy from the Large Binocular Telescope and imaging from the Hubble Space Telescope we discovered the first strong galaxy lens at z {sub lens} > 1. The lens has a secure photometric redshift of z = 1.53 ± 0.09 and the source is spectroscopically confirmed at z = 3.417. The Einstein radius (0.''35; 3.0 kpc) encloses 7.6 × 10{sup 10} M {sub ☉}, with an upper limit on the dark matter fraction of 60%. The highly magnified (40×) source galaxy has a very small stellar mass (∼10{sup 8} M {sub ☉}) and shows an extremely strong [O III]{sub 5007Å} emission line (EW{sub 0} ∼ 1000 Å) bolstering the evidence that intense starbursts among very low-mass galaxies are common at high redshift.

  11. Space Telescopes

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2011-01-01

    The science of astronomy depends on modern-day temples called telescopes. Astronomers make pilgrimages to remote mountaintops where these large, intricate, precise machines gather light that rains down from the Universe. Bit, since Earth is a bright, turbulent planet, our finest telescopes are those that have been launched into the dark stillness of space. These space telescopes, named after heroes of astronomy (Hubble, Chandra, Spitzer, Herschel), are some of the best ideas our species has ever had. They show us, over 13 billion years of cosmic history, how galaxies and quasars evolve. They study planets orbiting other stars. They've helped us determine that 95% of the Universe is of unknown composition. In short, they tell us about our place in the Universe. The next step in this journey is the James Webb Space Telescope, being built by NASA, Europe, and Canada for a 2018 launch; Webb will reveal the first galaxies that ever formed.

  12. Teaching Telescopes

    ERIC Educational Resources Information Center

    Reid, John S.

    1974-01-01

    Discusses experience of teaching optical experiments with emphasis upon the student's design and construction of refracting and reflecting telescopes. Concludes that the student's interest and acquired knowledge are greatly enhanced through the use of realistic experiments. (CC)

  13. Low scatter lens design/development

    NASA Technical Reports Server (NTRS)

    Gallipeau, R. B.; Quesada, A.

    1974-01-01

    The criteria for the optimum design of optical systems are discussed along with the selection of appropriate materials. The construction details of low scatter lens systems are tabulated. Scattering analysis; total energy diffracted; and computation of delta for a scratch, bubble, and microscopic irregularities are also discussed.

  14. United States Atlas of Optical Telescopes. [2nd Edition

    NASA Technical Reports Server (NTRS)

    Meszaros, Stephen Paul

    1987-01-01

    This atlas shows the locations of and gives information about optical telescopes used for astronomical research in the United States as of late 1986. Those instruments with mirror or lens diameters of 3/4 m (approx. 30 inches) and larger are included. These telescopes are concentrated in the Southwest, on the West Coast and on the island of Hawaii.

  15. An Investigation of the Eighteenth-Century Achromatic Telescope

    ERIC Educational Resources Information Center

    Jaecks, Duane H.

    2010-01-01

    The optical quality and properties of over 200 telescopes residing in museums and private collections have been measured and tested with the goal of obtaining new information about the early development of the achromatic lens (1757-1770). Quantitative measurements of the chromatic and spherical aberration of telescope objective lenses were made…

  16. Lens transmission measurement for an absolute radiation thermometer

    SciTech Connect

    Hao, X.; Yuan, Z.; Lu, X.

    2013-09-11

    The lens transmission for the National Institute of Metrology of China absolute radiation thermometer is measured by a hybrid method. The results of the lens transmission measurements are 99.002% and 86.792% for filter radiometers with center wavelengths 633 nm and 900 nm, respectively. These results, after correcting for diffraction factors and the size-of-source effect when the lens is incorporated within the radiometer, can be used for measurement of thermodynamic temperature. The expanded uncertainty of the lens transmission measurement system has been evaluated. It is 1.3×10{sup −3} at 633 nm and 900 nm, respectively.

  17. Improved Optical Design for the Large Synoptic Survey Telescope (LSST)

    SciTech Connect

    Seppala, L

    2002-09-24

    This paper presents an improved optical design for the LSST, an fll.25 three-mirror telescope covering 3.0 degrees full field angle, with 6.9 m effective aperture diameter. The telescope operates at five wavelength bands spanning 386.5 nm to 1040 nm (B, V, R, I and Z). For all bands, 80% of the polychromatic diffracted energy is collected within 0.20 arc-seconds diameter. The reflective telescope uses an 8.4 m f/1.06 concave primary, a 3.4 m convex secondary and a 5.2 m concave tertiary in a Paul geometry. The system length is 9.2 m. A refractive corrector near the detector uses three fused silica lenses, rather than the two lenses of previous designs. Earlier designs required that one element be a vacuum barrier, but now the detector sits in an inert gas at ambient pressure. The last lens is the gas barrier. Small adjustments lead to optimal correction at each band. The filters have different axial thicknesses. The primary and tertiary mirrors are repositioned for each wavelength band. The new optical design incorporates features to simplify manufacturing. They include a flat detector, a far less aspheric convex secondary (10 {micro}m from best fit sphere) and reduced aspheric departures on the lenses and tertiary mirror. Five aspheric surfaces, on all three mirrors and on two lenses, are used. The primary is nearly parabolic. The telescope is fully baffled so that no specularly reflected light from any field angle, inside or outside of the full field angle of 3.0 degrees, can reach the detector.

  18. Apochromatic telescope without anomalous dispersion glasses

    NASA Astrophysics Data System (ADS)

    Duplov, Roman

    2006-07-01

    In order to correct secondary longitudinal chromatic aberration in conventional refracting optical systems, it is necessary to use at least one optical material having anomalous partial dispersion. A novel lens system with correction of the secondary spectrum by using only normal glasses is presented. The lens system comprises three widely separated lens components; both second and third components are subaperture. The presented example of an apochromatic telescope demonstrates secondary spectrum correction with the use of only crown BK7 and flint F2, which are among the most inexpensive optical glasses available at the market. Two more similar designs are presented, both with the use of low-cost slightly anomalous dispersion glasses. These telescopes have a higher relative aperture and a smaller tertiary spectrum.

  19. Apochromatic telescope without anomalous dispersion glasses.

    PubMed

    Duplov, Roman

    2006-07-20

    In order to correct secondary longitudinal chromatic aberration in conventional refracting optical systems, it is necessary to use at least one optical material having anomalous partial dispersion. A novel lens system with correction of the secondary spectrum by using only normal glasses is presented. The lens system comprises three widely separated lens components; both second and third components are subaperture. The presented example of an apochromatic telescope demonstrates secondary spectrum correction with the use of only crown BK7 and flint F2, which are among the most inexpensive optical glasses available at the market. Two more similar designs are presented, both with the use of low-cost slightly anomalous dispersion glasses. These telescopes have a higher relative aperture and a smaller tertiary spectrum. PMID:16826255

  20. Contact Lens Care

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Contact Lens Care Share Tweet Linkedin Pin it More ... 1088, www.fda.gov/medwatch Learn More about Contact Lens Care Other Tips on Contact Lenses Decorative ...

  1. Contact Lens Solution Toxicity

    MedlinePlus

    ... rash and rashes clinical tools newsletter | contact Share | Contact Lens Solution Toxicity Information for adults A A A This image shows a reaction to contact lens solution. The prominent blood vessels and redness ...

  2. Lens coloboma treated with lens surgery.

    PubMed

    Wang, Jia-Kang; Ma, Sheng-Hsiang

    2015-01-01

    A 5-year-old boy was referred to our clinic due to an abnormal visual acuity test at school. His corrected visual acuity was counting fingers in the left eye. A nasal side deficiency of the lens substituted by a membrane was found. Lens coloboma was diagnosed. After making a 3 mm limbal incision, the colobomatous lens was removed by anterior continuous curvilinear capsulorhexis and lens aspiration. Posterior capsulorhexis and anterior vitrectomy on the side of the lens was performed to prevent posterior capsular or anterior hyaloid opacity. As the defect in the lens was very large, intracapsular placement of an intraocular lens was not feasible. A three-piece acrylic soft intraocular lens was placed in the ciliary sulcus. Since amblyopia was diagnosed by poor corrected visual acuity as 20/800 1 month after the operation, occlusion therapy with correcting eyeglasses was started at 6 h a day on the contralateral eye. The patient's corrected visual acuity improved to 20/125 7 months after the operation. PMID:26420693

  3. Corrective Optics For Camera On Telescope

    NASA Technical Reports Server (NTRS)

    Macenka, Steven A.; Meinel, Aden B.

    1994-01-01

    Assembly of tilted, aspherical circularly symmetric mirrors used as corrective optical subsystem for camera mounted on telescope exhibiting both large spherical wave-front error and inherent off-axis astigmatism. Subsystem provides unobscured camera aperture and diffraction-limited camera performance, despite large telescope aberrations. Generic configuration applied in other optical systems in which aberations deliberately introduced into telescopes and corrected in associated cameras. Concept of corrective optical subsystem provides designer with additional degrees of freedom used to optimize optical system.

  4. Conically Scanned Holographic LIDAR Telescope

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary

    1993-01-01

    Holographic LIDAR telescope includes holographic disk, rotation of which sweeps collimated, monochromatic beam of light from laser through conical scan. Holographic disk diffracts light scattered back from target volume or area to focal point located at stationary photomultiplier detector. Two conical baffles prevent stray light from reaching detector.

  5. Candidate gravitational microlensing events for future direct lens imaging

    SciTech Connect

    Henderson, C. B.; Gould, A.; Gaudi, B. S.; Park, H.; Han, C.; Sumi, T.; Koshimoto, N.; Udalski, A.; Tsapras, Y.; Bozza, V.; Abe, F.; Fukunaga, D.; Itow, Y.; Masuda, K.; Bennett, D. P.; Bond, I. A.; Ling, C. H.; Botzler, C. S.; Freeman, M.; Fukui, A.; Collaboration: MOA Collaboration; OGLE Collaboration; μFUN Collaboration; RoboNet Collaboration; and others

    2014-10-10

    The mass of the lenses giving rise to Galactic microlensing events can be constrained by measuring the relative lens-source proper motion and lens flux. The flux of the lens can be separated from that of the source, companions to the source, and unrelated nearby stars with high-resolution images taken when the lens and source are spatially resolved. For typical ground-based adaptive optics (AO) or space-based observations, this requires either inordinately long time baselines or high relative proper motions. We provide a list of microlensing events toward the Galactic bulge with high relative lens-source proper motion that are therefore good candidates for constraining the lens mass with future high-resolution imaging. We investigate all events from 2004 to 2013 that display detectable finite-source effects, a feature that allows us to measure the proper motion. In total, we present 20 events with μ ≳ 8 mas yr{sup –1}. Of these, 14 were culled from previous analyses while 6 are new, including OGLE-2004-BLG-368, MOA-2005-BLG-36, OGLE-2012-BLG-0211, OGLE-2012-BLG-0456, MOA-2012-BLG-532, and MOA-2013-BLG-029. In ≲12 yr from the time of each event the lens and source of each event will be sufficiently separated for ground-based telescopes with AO systems or space telescopes to resolve each component and further characterize the lens system. Furthermore, for the most recent events, comparison of the lens flux estimates from images taken immediately to those estimated from images taken when the lens and source are resolved can be used to empirically check the robustness of the single-epoch method currently being used to estimate lens masses for many events.

  6. Candidate Gravitational Microlensing Events for Future Direct Lens Imaging

    NASA Astrophysics Data System (ADS)

    Henderson, C. B.; Park, H.; Sumi, T.; Udalski, A.; Gould, A.; Tsapras, Y.; Han, C.; Gaudi, B. S.; Bozza, V.; Abe, F.; Bennett, D. P.; Bond, I. A.; Botzler, C. S.; Freeman, M.; Fukui, A.; Fukunaga, D.; Itow, Y.; Koshimoto, N.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Namba, S.; Ohnishi, K.; Rattenbury, N. J.; Saito, To; Sullivan, D. J.; Suzuki, D.; Sweatman, W. L.; Tristram, P. J.; Tsurumi, N.; Wada, K.; Yamai, N.; Yock, P. C. M.; Yonehara, A.; MOA Collaboration; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Skowron, J.; Kozłowski, S.; Poleski, R.; Ulaczyk, K.; Wyrzykowski, Ł.; Pietrukowicz, P.; OGLE Collaboration; Almeida, L. A.; Bos, M.; Choi, J.-Y.; Christie, G. W.; Depoy, D. L.; Dong, S.; Friedmann, M.; Hwang, K.-H.; Jablonski, F.; Jung, Y. K.; Kaspi, S.; Lee, C.-U.; Maoz, D.; McCormick, J.; Moorhouse, D.; Natusch, T.; Ngan, H.; Pogge, R. W.; Shin, I.-G.; Shvartzvald, Y.; Tan, T.-G.; Thornley, G.; Yee, J. C.; μFUN Collaboration; Allan, A.; Bramich, D. M.; Browne, P.; Dominik, M.; Horne, K.; Hundertmark, M.; Figuera Jaimes, R.; Kains, N.; Snodgrass, C.; Steele, I. A.; Street, R. A.; RoboNet Collaboration

    2014-10-01

    The mass of the lenses giving rise to Galactic microlensing events can be constrained by measuring the relative lens-source proper motion and lens flux. The flux of the lens can be separated from that of the source, companions to the source, and unrelated nearby stars with high-resolution images taken when the lens and source are spatially resolved. For typical ground-based adaptive optics (AO) or space-based observations, this requires either inordinately long time baselines or high relative proper motions. We provide a list of microlensing events toward the Galactic bulge with high relative lens-source proper motion that are therefore good candidates for constraining the lens mass with future high-resolution imaging. We investigate all events from 2004 to 2013 that display detectable finite-source effects, a feature that allows us to measure the proper motion. In total, we present 20 events with μ >~ 8 mas yr-1. Of these, 14 were culled from previous analyses while 6 are new, including OGLE-2004-BLG-368, MOA-2005-BLG-36, OGLE-2012-BLG-0211, OGLE-2012-BLG-0456, MOA-2012-BLG-532, and MOA-2013-BLG-029. In lsim12 yr from the time of each event the lens and source of each event will be sufficiently separated for ground-based telescopes with AO systems or space telescopes to resolve each component and further characterize the lens system. Furthermore, for the most recent events, comparison of the lens flux estimates from images taken immediately to those estimated from images taken when the lens and source are resolved can be used to empirically check the robustness of the single-epoch method currently being used to estimate lens masses for many events.

  7. Fraunhofer Diffraction Effects on Total Power for a Planckian Source

    PubMed Central

    Shirley, Eric L.

    2001-01-01

    An algorithm for computing diffraction effects on total power in the case of Fraunhofer diffraction by a circular lens or aperture is derived. The result for Fraunhofer diffraction of monochromatic radiation is well known, and this work reports the result for radiation from a Planckian source. The result obtained is valid at all temperatures.

  8. A Diffraction-limited Survey for Direct Detection of Halpha Emitting/Accreting ExtraSolar Planets with the 6.5m Magellan Telescope and the MagAO Visible AO system

    NASA Astrophysics Data System (ADS)

    Close, Laird

    TECHNICAL BACKGROUND: An advanced adaptive secondary mirror (ASM) with 585 actuators was commissioned at the 6.5-m Magellan Telescope at one of the world’s best sites (Las Campanas Observatory; LCO) in Chile. By the end of the commissioning run (April 2013) the MagAO system was regularly producing the highest spatial resolution deep images to date (0.023” deep images at Halpha (0.656 microns); Close et al. 2013). This is due to its 378 corrective modes at 1kHz on a 6.5-m telescope. Strehl ratis>20% at Halpha were obtained in 75% of the seeing statistics at the site. We propose here to utilize MagAO’s absolutely unique ability to take Halpha, continuum (0.643 microns), and L’ (3.8 microns) thermal images (all simultaneously) to carry out a novel survey to: Discover a population of the lowest mass young accreting extrasolar planets imaged to date. to characterize the spatial distribution, and estimate accretion rates, of young extrasolar planets >5AU, to understand the influence of planets on transitional disk gaps. THEORY BACKGROUND: Extrasolar planets are very difficult to image directly since planets become very faint below ~8 Mjup (Jupiter masses) for ages >1 Myr and such massive planets are rare. There is a class of young stars that are still accreting yet have SED (and often imaging) evidence of a lack of dust and gas inside a r=5-140 AU “gap”. These “transitional disks” are believed to be transitioning into “disk free” stars. These gaps are believed to be maintained by planets that continuously clear (though scattering or accretion) the optically thin gaps. Indeed large >10 AU gaps (>few Hill spheres) must be maintained by multiple ~1 Mjup planets (Dodson-Robinson & Salyk 2011). Since gas must pass through each of these gaps to continuously supply the accreting star, simulations suggest that these “gap planets” are also crossing points for these gas streamers on their way to the star. These streamers “force-feed” these planets a

  9. LENS: Prototyping Program

    NASA Astrophysics Data System (ADS)

    Rountree, S. Derek

    2013-04-01

    The Low-Energy Neutrino Spectrometer (LENS) prototyping program is broken into two phases. The first of these is μLENS, a small prototype to study the light transmission in the as built LENS scintillation lattice--- a novel detector method of high segmentation in a large liquid scintillation detector. The μLENS prototype is currently deployed and taking data at the Kimballton Underground Research Facility (KURF) near Virginia Tech. I will discuss the Scintillation Lattice construction methods and schemes of the μLENS program for running with minimal channels instrumented to date ˜41 compared to full coverage 216). The second phase of prototyping is the miniLENS detector for which construction is under way. I will discuss the overall design from the miniLENS Scintillation Lattice to the shielding.

  10. Infrared telescope

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Hendricks, J. B.

    1985-01-01

    The development of the Infrared Telescope for Spacelab 2 is discussed. The design, development, and testing required to interface a stationary superfluid helium dewar with a scanning cryostate capable of operating in the zero-g environment in the space shuttle bay is described.

  11. Varifocal optics for a novel accommodative intraocular lens

    NASA Astrophysics Data System (ADS)

    Simonov, A. N.; Rombach, M.; Vdovin, G.; Loktev, M.

    2006-01-01

    The development of adaptive optics for the human eye to correct aberrations, to restore accommodation after lens extraction due to cataract and to correct age-related presbyopia have interest of academia and industry. We report on optics for a new accommodative intraocular lens which uses a two-element varifocal Alvarez lens. This lens has two refractive elements with cubic surfaces which, in combination, form a varifocal lens when the elements are shifted relatively to each other perpendicular to the optical path. The accommodative function of the lens will be driven by the ocular ciliary muscle. The refractive elements of the dual-optic intraocular lens are designed to provide a near emmetropic on-axis vision with a >4 dioptre accommodation range. The anterior element has a spherical lens to correct for the overall refraction of the eye, aspheric terms to correct the corneal asphericity and a cubic term as accommodative component; the posterior element has a cubic shaped surface only. The modular transfer function shows that the image on the retina reaches a diffraction limited performance for the on-axis vision in combination with the aspheric correction for aberrations of the cornea. We conclude that the varifocal lens is uniquely suitable for application as an intraocular accommodative lens because of its optical quality and ample accommodative power.

  12. Selecting Your First Telescope.

    ERIC Educational Resources Information Center

    Harrington, Sherwood

    1982-01-01

    Designed for first-time telescope purchasers, provides information on how a telescope works; major telescope types (refractors, reflectors, compound telescopes); tripod, pier, altazimuth, and equatorial mounts; selecting a telescope; visiting an astronomy club; applications/limitations of telescope use; and tips on buying a telescope. Includes a…

  13. Scanning holographic lidar telescope

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Wilkerson, Thomas D.

    1993-01-01

    We have developed a unique telescope for lidar using a holographic optical element (HOE) as the primary optic. The HOE diffracts 532 nm laser backscatter making a 43 deg angle with a normal to its surface to a focus located 130 cm along the normal. The field of view scans a circle as the HOE rotates about the normal. The detector assembly and baffling remain stationary, compared to conventional scanning lidars in which the entire telescope and detector assembly require steering, or which use a large flat steerable mirror in front of the telescope to do the pointing. The spectral bandpass of our HOE is 50 nm (FWHM). Light within that bandpass is spectrally dispersed at 0.6 nm/mm in the focal plane. An aperture stop reduces the bandpass of light reaching the detector from one direction to 1 nm while simultaneously reducing the field of view to 1 mrad. Wavelengths outside the 50 nm spectral bandpass pass undiffracted through HOE to be absorbed by a black backing. Thus, the HOE combines three functions into one optic: the scanning mirror, the focusing mirror, and a narrowband filter.

  14. HUBBLE SPACE TELESCOPE DISCOVERY OF A z = 3.9 MULTIPLY IMAGED GALAXY BEHIND THE COMPLEX CLUSTER LENS WARPS J1415.1+36 AT z = 1.026

    SciTech Connect

    Huang, X.; Fakhouri, H. K.; Barbary, K.; Goldhaber, G.; Hennawi, J. F.; Morokuma, T.; Aldering, G.; Faccioli, L.; Amanullah, R.; Brodwin, M.; Connolly, N. V.; Dawson, K. S.; Doi, M.; Ihara, Y.; Fadeyev, V.; Fruchter, A. S.; Gladders, M. D.; Jee, M. J.; Kowalski, M.; Konishi, K.

    2009-12-10

    We report the discovery of a multiply lensed Lyalpha emitter at z = 3.90 behind the massive cluster WARPS J1415.1+3612 at z = 1.026. Images taken by the Hubble Space Telescope using the Advanced Camera for Surveys reveal a complex lensing system that produces a prominent, highly magnified arc and a triplet of smaller arcs grouped tightly around a spectroscopically confirmed cluster member. Spectroscopic observations using the Faint Object Camera and Spectrograph on Subaru confirm strong Lyalpha emission in the source galaxy and provide the redshifts for more than 21 cluster members with a velocity dispersion of 807 +- 185 km s{sup -1}. Assuming a singular isothermal sphere profile, the mass within the Einstein ring (7.13 +- 0.''38) corresponds to a central velocity dispersion of 686{sup +15} {sub -19} km s{sup -1} for the cluster, consistent with the value estimated from cluster member redshifts. Our mass profile estimate from combining strong lensing and dynamical analyses is in good agreement with both X-ray and weak lensing results.

  15. Catadioptric Afocal Telescopes For Scanning Infrared Systems

    NASA Astrophysics Data System (ADS)

    Norrie, David G.

    1986-02-01

    Reflecting and catadioptric lenses have been used in astronomical telescopes for many years. More recently, among other applications, they have been widely used in large-aperture and man-portable image-intensified night vision equipment. The afocal telescope used with a scanning infrared system operating in the 8 to 12µm wave-band is required to match the large field of view and small aperture of the scanner with the small field of view and large entrance aperture required for long-range observation. The telescope construction used is usually a refracting telephoto. This can be configured either as a single field of view lens, as part of a dual or multiple field of view switchable system, or as the basis for a mechanically or optically compensated zoom system. However, for large, high magnification telescopes, catadioptric systems can offer advantages over refractors. Two types of catadioptric lens are described. The first has a "low" magnification (7.5 x ) and utilizes a full aperture germanium lens to correct spherical aberration. The second has a "high" magnification (30 x ) and uses a subaperture germanium element to correct the same aberration.

  16. Tuneable bioinspired lens.

    PubMed

    Charmet, Jérôme; Barton, Rupert; Oyen, Michelle

    2015-08-01

    Bioinspired lenses that rely on changes of curvature to achieve focus are interesting candidates for miniaturized tuneable lenses as they require fewer mechanical moving parts compared to their conventional counter-parts. The lens described in this manuscript closely mimics the design and actuation principle of the vertebrate lens. It consists of a liquid lens encapsulated in a transparent polymer membrane. Application of a radial strain changes the curvature of the lens thereby changing its focal length. The unstrained lens has a focal length of 50 mm, which rises to a value of 100 mm at a maximum radial strain of 0.67%. This range compares favourably to both biological lenses and other published examples of biomimetic lenses. Finally we point out a few routes to improve the quality of the lens and expand its focal length range. PMID:26119537

  17. Fabrication of a multilevel THz Fresnel lens by femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Komlenok, M. S.; Volodkin, B. O.; Knyazev, B. A.; Kononenko, T. V.; Kononenko, V. V.; Konov, V. I.; Soifer, V. A.; Pavel'ev, V. S.; Tukmakov, K. N.; Choporova, Yu Yu

    2015-10-01

    The possibility of fabricating a silicon diffractive fourlevel THz Fresnel lens by laser ablation is studied. For a microrelief to be formed on the sample surface, use is made of a femtosecond Yb : YAG laser with a high pulse repetition rate (f = 200 kHz). Characteristics of the diffractive optical element are investigated in the beam of a 141-mm free-electron laser. The measured diffraction efficiency of the lens is in good agreement with the theoretical estimate.

  18. Overview of the Lens.

    PubMed

    Hejtmancik, J Fielding; Shiels, Alan

    2015-01-01

    In order to accomplish its function of transmitting and focusing light, the crystalline lens of the vertebrate eye has evolved a unique cellular structure and protein complement. These distinct adaptations have provided a rich source of scientific discovery ranging from biochemistry and genetics to optics and physics. In addition, because of these adaptations, lens cells persist for the lifetime of an organism, providing an excellent model of the aging process. The chapters dealing with the lens will demonstrate how the different aspects of lens biology and biochemistry combine in this singular refractive organ to accomplish its critical role in the visual system. PMID:26310153

  19. Star testing: a novel evaluation of intraocular lens optical quality

    PubMed Central

    Mitchell, L; Molteno, A C B; Bevin, T H; Sanderson, G

    2006-01-01

    Background Despite the importance of optical quality of an intraocular lens (IOL) on visual outcomes following cataract surgery, objective data on their optical quality are not readily available, and manufacturing standards are industry regulated. The star test is a classic test of optical quality based on examination of the Airy disc and expanded diffraction rings of a point source of light, used mainly for telescope and microscope objectives. Methods A physical model eye cell allowed star testing of IOLs under conditions similar to the optical environment in which they operate. 18 IOLs were tested and results compared to actual images produced by these lenses in the model eye cell. Quantitative measures of star testing performance were developed. Results The optical performance of the IOLs varied, some performing very poorly. Most lenses (13/17) performed better in reverse orientation, while aberrations induced by the haptics of foldable IOLs were also detected. There was excellent correlation between actual images formed and star testing parameters. Conclusion Star testing IOLs was a novel biomedical application of a centuries old, inexpensive method. A concerning variation of optical quality was found, suggesting IOL optical performance data should be more readily available. Independent, authority mandated IOL optical quality standards should be developed, and results readily available to ophthalmologists. PMID:16622088

  20. Keyhole electron diffractive imaging (KEDI).

    PubMed

    De Caro, Liberato; Carlino, Elvio; Vittoria, Fabio Alessio; Siliqi, Dritan; Giannini, Cinzia

    2012-11-01

    Electron diffractive imaging (EDI) relies on combining information from the high-resolution transmission electron microscopy image of an isolated kinematically diffracting nano-particle with the corresponding nano-electron diffraction pattern. Phase-retrieval algorithms allow one to derive the phase, lost in the acquisition of the diffraction pattern, to visualize the actual atomic projected potential within the specimen at sub-ångström resolution, overcoming limitations due to the electron lens aberrations. Here the approach is generalized to study extended crystalline specimens. The new technique has been called keyhole electron diffractive imaging (KEDI) because it aims to investigate nano-regions of extended specimens at sub-ångström resolution by properly confining the illuminated area. Some basic issues of retrieving phase information from the EDI/KEDI measured diffracted amplitudes are discussed. By using the generalized Shannon sampling theorem it is shown that whenever suitable oversampling conditions are satisfied, EDI/KEDI diffraction patterns can contain enough information to lead to reliable phase retrieval of the unknown specimen electrostatic potential. Hence, the KEDI method has been demonstrated by simulations and experiments performed on an Si crystal cross section in the [112] zone-axis orientation, achieving a resolution of 71 pm. PMID:23075611

  1. Close-Packed Silicon Lens Antennas for Millimeter-Wave MKID Camera

    NASA Astrophysics Data System (ADS)

    Nitta, Tom; Karatsu, Kenichi; Sekimoto, Yutaro; Naruse, Masato; Sekine, Masakazu; Sekiguchi, Shigeyuki; Matsuo, Hiroshi; Noguchi, Takashi; Mitsui, Kenji; Okada, Norio; Seta, Masumichi; Nakai, Naomasa

    2014-09-01

    We have been developing a large-format millimeter-wave camera based on lens-antenna-coupled microwave kinetic inductance detectors (MKIDs) for a planned telescope at Dome Fuji (3810 m a.s.l.), Antarctica. Optical coupling to the MKID incorporates double-slot antennas and a silicon lens array. To realize a large-format camera (10,000 pixels), a highly integrated small-diameter lens array and fast optics are required. Lens diameters of 1.2, 2, and 3 times the target wavelength are investigated for the main beam symmetry, side-lobe level, cross-polarization level, and bandwidth, considering the effects of the surrounding lenses. In this study, we present the simulated beam pattern profiles of close-packed lens antenna and the effect of misalignment between the silicon lens and double-slot antenna. We also show the evaluations of the developed 721-pixel close-packed silicon lens array.

  2. The lens equation revisited

    NASA Astrophysics Data System (ADS)

    Molesini, Giuseppe

    2005-02-01

    Problems in the general validity of the lens equations are reported, requiring an assessment of the conditions for correct use. A discussion is given on critical behaviour of the lens equation, and a sign and meaning scheme is provided so that apparent inconsistencies are avoided.

  3. Improved optical lens system

    NASA Technical Reports Server (NTRS)

    Schmidt, L. F.

    1970-01-01

    Objective lens produces a backwardly curving image of a star field that matches the similarly curved surface of the photocathode of an image dissector tube. Lens eliminates the need for a fiber-optics translation between the flat plane image and curved photocathode.

  4. Robotic Telescopes

    NASA Astrophysics Data System (ADS)

    Akerlof, C. W.

    2001-05-01

    Since the discovery of gamma-ray bursts, a number of groups have attempted to detect correlated optical transients from these elusive objects. Following the flight of the BATSE instrument on the Compton Gamma-Ray Observatory in 1991, a prompt burst coordinate alert service, BACODINE (now GCN) became available to ground-based telescopes. Several instruments were built to take advantage of this facility, culminating in the discovery of a bright optical flash associated with GRB990123. To date, that single observation remains unique - no other prompt flashes have been seen for a dozen or so other bursts observed with comparably short response times. Thus, GRB prompt optical luminosities may be considerably dimmer than observed for the GRB990123 event or even absent altogether. A new generation of instruments is prepared to explore these possibilties using burst coordinates provided by HETE-2, Swift, Ballerina, Agile and other satellite missions. These telescopes have response times as short as a few seconds and reach limiting magnitudes, m_v 20, guaranteeing a sensitivity sufficient to detect the afterglow many hours later. Results from these experiments should provide important new data about the dynamics and locale of GRBs.

  5. Tunable-microlens-based multipoint diffraction strain sensor

    NASA Astrophysics Data System (ADS)

    Zhu, Hui; Asundi, Anand

    2009-12-01

    Multipoint Diffraction Strain Sensor (MDSS) is a novel and promising strain sensing system to acquire whole field strain information with high accuracy without the need for numerical differentiation. Compared to traditional optical diffraction strain sensors, the main advantage of MDSS is the use of micro-lens array to get whole field information. Both tilt and in-plane strain can be acquired separately by using two symmetric incident laser beams. However, it is costly and troublesome to fabricate, adjust or replace lens arrays for different applications. A practical way to solve this problem is to use a liquid crystal lens as spatial light modulator which displays Diffractive Optical Element (DOE) based lens array. This liquid crystal lens is software controlled capable to display any user designed DOE pattern. The sensitivity and field of interrogation is thus tuneable by changing focal length of lens arrays. Moreover arbitrary size or shape of lens arrays can be designed to measure certain part of the specimen in most interest. Experimental results with different lens arrays are demonstrated for uniform rotations.

  6. The oblique electron lens.

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Hallam, K. L.

    1973-01-01

    An oblique electron lens is described that is especially applicable to image converters and camera tubes employing flat opaque photocathodes. The use of optical lenses, corrector plates, and/or mirrors (often employed in other electron lenses designed for use with opaque photocathodes) are eliminated. The oblique electron lens is well suited to ultraviolet and vacuum ultraviolet image converters, and to image converters employing opaque negative electron affinity photocathodes. It is also possible to use this oblique electron lens for electronography. Measurements on an experimental tube show that a limiting resolution of 50 line pairs/mm is possible, but the intrinsic lens quality is believed to approach that of a conventional electromagnetic lens having uniform and colinear electric and magnetic fields.

  7. Processing of data from innovative parabolic strip telescope.

    NASA Astrophysics Data System (ADS)

    Kosejk, Vladislav; Novy, J.; Chadzitaskos, Goce

    2015-12-01

    This paper presents an innovative telescope design based on the usage of a parabolic strip fulfilling the function of an objective. Isaac Newton was the first to solve the problem of chromatic aberration, which is caused by a difference in the refractive index of lenses. This problem was solved by a new kind of telescope with a mirror used as an objective. There are many different kinds of telescopes. The most basic one is the lens telescope. This type of a telescope uses a set of lenses. Another type is the mirror telescope, which employs the concave mirror, spherical parabolic mirror or hyperbolically shaped mirror as its objective. The lens speed depends directly on the surface of a mirror. Both types can be combined to form a telescope composed of at least two mirrors and a set of lenses. The light is reflected from the primary mirror to the secondary one and then to the lens system. This type is smaller-sized, with a respectively reduced lens speed. The telescope design presented in this paper uses a parabolic strip fulfilling the function of an objective. Observed objects are projected as lines in a picture plane. Each of the lines of a size equal to the size of the strip corresponds to the sum of intensities of the light coming perpendicular to the objective from an observed object. A series of pictures taken with a different rotation and processed by a special reconstruction algorithm is needed to get 2D pictures. The telescope can also be used for fast detection of objects. In this mode, the rotation and multiple pictures are not needed, just one picture in the focus of a mirror is required to be taken.

  8. High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays.

    PubMed

    Zhang, Shuyan; Kim, Myoung-Hwan; Aieta, Francesco; She, Alan; Mansuripur, Tobias; Gabay, Ilan; Khorasaninejad, Mohammadreza; Rousso, David; Wang, Xiaojun; Troccoli, Mariano; Yu, Nanfang; Capasso, Federico

    2016-08-01

    We report the first demonstration of a mid-IR reflection-based flat lens with high efficiency and near diffraction-limited focusing. Focusing efficiency as high as 80%, in good agreement with simulations (83%), has been achieved at 45° incidence angle at λ = 4.6 μm. The off-axis geometry considerably simplifies the optical arrangement compared to the common geometry of normal incidence in reflection mode which requires beam splitters. Simulations show that the effects of incidence angle are small compared to parabolic mirrors with the same NA. The use of single-step photolithography allows large scale fabrication. Such a device is important in the development of compact telescopes, microscopes, and spectroscopic designs. PMID:27505769

  9. Scientific management of Space Telescope

    NASA Technical Reports Server (NTRS)

    Odell, C. R.

    1981-01-01

    A historical summay is given on the science management of the Space Telescope, the inception of which began in 1962, when scientists and engineers first recommended the development of a nearly diffraction limited substantial-size optical telescope. Phase A, the feasibility requirements generation phase, began in 1971 and consisted largely of NASA scientists and a NASA design. Phase B, the preliminary design phase, established a tiered structure of scientists, led by the Large Space Telescope operations and Management Work Group. A Mission Operations Working Group headed six instrument definition teams to develop the essential instrument definitions. Many changes took place during Phase B, before design and development, which began in 1978 and still continues today.

  10. Quantum telescope: feasibility and constraints.

    PubMed

    Kurek, A R; Pięta, T; Stebel, T; Pollo, A; Popowicz, A

    2016-03-15

    The quantum telescope is a recent idea aimed at beating the diffraction limit of spaceborne telescopes and possibly other distant target imaging systems. There is no agreement yet on the best setup of such devices, but some configurations have already been proposed. In this Letter we characterize the predicted performance of quantum telescopes and their possible limitations. Our extensive simulations confirm that the presented model of such instruments is feasible and the device can provide considerable gains in the angular resolution of imaging in the UV, optical, and infrared bands. We argue that it is generally possible to construct and manufacture such instruments using the latest or soon to be available technology. We refer to the latest literature to discuss the feasibility of the proposed QT system design. PMID:26977642

  11. Design of compact IR zoom telescope

    NASA Astrophysics Data System (ADS)

    Chen, Ruiyi; Zhou, Xiuli; Zhang, Xingde

    1991-12-01

    A compact IR zoom telescope with diameter/length = 94/159 mm and magnification from 2 to 6 times at 8-12 microns is designed. Mechanically compensated zoom is adopted. Zooming lens and compensating lens groups possessing three roller followers for each are controlled by the stationary control cylinder on which there are three pairs of cam slots to which six followers are attached. When the outer cylinder having six linear slots is rotated, it will force the followers (i.e., the two lens mountings) to turn, resulting in smoothly turning and moving the two. The effect of air gap between the follower and the slot on backlash in the cam track is eliminated by special design of elastic construction of the roller follower. The image quality examed by MTF testing is satisfactory.

  12. Galaxy mergers and gravitational lens statistics

    NASA Technical Reports Server (NTRS)

    Rix, Hans-Walter; Maoz, Dan; Turner, Edwin L.; Fukugita, Masataka

    1994-01-01

    We investigate the impact of hierarchical galaxy merging on the statistics of gravitational lensing of distant sources. Since no definite theoretical predictions for the merging history of luminous galaxies exist, we adopt a parameterized prescription, which allows us to adjust the expected number of pieces comprising a typical present galaxy at z approximately 0.65. The existence of global parameter relations for elliptical galaxies and constraints on the evolution of the phase space density in dissipationless mergers, allow us to limit the possible evolution of galaxy lens properties under merging. We draw two lessons from implementing this lens evolution into statistical lens calculations: (1) The total optical depth to multiple imaging (e.g., of quasars) is quite insensitive to merging. (2) Merging leads to a smaller mean separation of observed multiple images. Because merging does not reduce drastically the expected lensing frequency, it cannot make lambda-dominated cosmologies compatible with the existing lensing observations. A comparison with the data from the Hubble Space Telescope (HST) Snapshot Survey shows that models with little or no evolution of the lens population are statistically favored over strong merging scenarios. A specific merging scenario proposed to Toomre can be rejected (95% level) by such a comparison. Some versions of the scenario proposed by Broadhurst, Ellis, & Glazebrook are statistically acceptable.

  13. Gravitational Lens Modeling with Basis Sets

    NASA Astrophysics Data System (ADS)

    Birrer, Simon; Amara, Adam; Refregier, Alexandre

    2015-11-01

    We present a strong lensing modeling technique based on versatile basis sets for the lens and source planes. Our method uses high performance Monte Carlo algorithms, allows for an adaptive build up of complexity, and bridges the gap between parametric and pixel based reconstruction methods. We apply our method to a Hubble Space Telescope image of the strong lens system RX J1131-1231 and show that our method finds a reliable solution and is able to detect substructure in the lens and source planes simultaneously. Using mock data, we show that our method is sensitive to sub-clumps with masses four orders of magnitude smaller than the main lens, which corresponds to about {10}8{M}⊙ , without prior knowledge of the position and mass of the sub-clump. The modeling approach is flexible and maximizes automation to facilitate the analysis of the large number of strong lensing systems expected in upcoming wide field surveys. The resulting search for dark sub-clumps in these systems, without mass-to-light priors, offers promise for probing physics beyond the standard model in the dark matter sector.

  14. Neutrino telescopes

    SciTech Connect

    Costantini, H.

    2012-09-15

    Neutrino astrophysics offers a new possibility to observe our Universe: high-energy neutrinos, produced by the most energetic phenomena in our Galaxy and in the Universe, carry complementary (if not exclusive) information about the cosmos: this young discipline extends in fact the conventional astronomy beyond the usual electromagnetic probe. The weak interaction of neutrinos with matter allows them to escape from the core of astrophysical objects and in this sense they represent a complementary messenger with respect to photons. However, their detection on Earth due to the small interaction cross section requires a large target mass. The aim of this article is to review the scientific motivations of the high-energy neutrino astrophysics, the detection principles together with the description of a running apparatus, the experiment ANTARES, the performance of this detector with some results, and the presentation of other neutrino telescope projects.

  15. LENS: Light Transport

    NASA Astrophysics Data System (ADS)

    Yokley, Zachary

    2013-04-01

    The LENS detector uses an optically segmented 3D lattice, a scintillation lattice (SL), that channels light via total internal reflection from a scintillation event down channels parallel to the 3 primary Cartesian axes to the edge of the detector. This unique design provides spatial and temporal resolution required to distinguish the internal background of ^115In from the neutrino signal. Optical segmentation is achieved with Teflon films. Currently a 400 liter prototype, miniLENS, is being developed to demonstrate the internal background rejection techniques needed for LENS. This requires that miniLENS be shielded from external backgrounds from the surrounding materials and the photomultiplier tubes (PMTs). This shielding is provided by a water tank that surrounds miniLENS. In order to retain the channel information and separate the PMTs from the detector the LENS collaboration has developed light guides (LGs) made from multilayer films. These LGs transport light both by total internal and specular reflection providing an efficient means of coupling the SL through the water shield to the PMTs outside the water tank. This talk will discuss light transport in the SL as well as the design and construction of the LGs in the context of miniLENS.

  16. The PMAS Telescope Module: Opto-mechanical Design and Manufacture

    NASA Astrophysics Data System (ADS)

    Roth, Martin M.; Laux, Uwe; Kelz, Andreas; Dionies, Frank

    2003-02-01

    PMAS, the Potsdam Multi-Aperture Spectrophotometer, has a modular layout which was intended to provide for flexible operation as a travelling instrument and to accomodate different telescopes. The Telescope Module is the part of the instrument which serves the purpose of mechanical and optical interfacing to the telescope. It contains optical systems to re-image the telescope focal plane onto the lens array, to illuminate the lens array from an internal calibration light source, and to observe an area around the 3D spectroscopy field-of-view with a cryogenic CCD system for acquisition, guiding, and for the simultaneous determination of point-spread-function templates for 3D deconvolution. We discuss the opto-mechanical design and manufacture of these subsystems.

  17. Contact lens hygiene compliance and lens case contamination: A review.

    PubMed

    Wu, Yvonne Tzu-Ying; Willcox, Mark; Zhu, Hua; Stapleton, Fiona

    2015-10-01

    A contaminated contact lens case can act as a reservoir for microorganisms that could potentially compromise contact lens wear and lead to sight threatening adverse events. The rate, level and profile of microbial contamination in lens cases, compliance and other risk factors associated with lens case contamination, and the challenges currently faced in this field are discussed. The rate of lens case contamination is commonly over 50%. Coagulase-negative Staphylococcus, Bacillus spp., Pseudomonas aeruginosa and Serratia marcescens are frequently recovered from lens cases. In addition, we provide suggestions regarding how to clean contact lens cases and improve lens wearers' compliance as well as future lens case design for reducing lens case contamination. This review highlights the challenges in reducing the level of microbial contamination which require an industry wide approach. PMID:25980811

  18. Intraocular lens fabrication

    DOEpatents

    Salazar, M.A.; Foreman, L.R.

    1997-07-08

    This invention describes a method for fabricating an intraocular lens made from clear Teflon{trademark}, Mylar{trademark}, or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube. 13 figs.

  19. Intraocular lens fabrication

    DOEpatents

    Salazar, Mike A.; Foreman, Larry R.

    1997-01-01

    This invention describes a method for fabricating an intraocular lens made rom clear Teflon.TM., Mylar.TM., or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube.

  20. Unitary lens semiconductor device

    DOEpatents

    Lear, K.L.

    1997-05-27

    A unitary lens semiconductor device and method are disclosed. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors. 9 figs.

  1. Unitary lens semiconductor device

    DOEpatents

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  2. Gravitational lens observations

    NASA Astrophysics Data System (ADS)

    Burke, B. F.; Roberts, D. H.; Hewitt, J. N.; Greenfield, P. E.; Dupree, A. K.

    1983-06-01

    The structure of the gravitational lens 0957 + 561 provides strong constraints on allowable lens models. Here, the modeling constraints for the lens are summarized, and it is shown that, for the foreground cluster, mass-to-luminosity ratio with a well-defined locus can be given. Constraints on other images in the radio map are then discussed, and it is concluded that a third quasar image has not yet been identified convincingly, but perturbations of the B quasar image are consistent with the partial jet image predicted by Greenfield (1981). Finally, polarization studies of the A and B images are reported.

  3. Adaptive Optics for the German Solar Telescopes

    NASA Astrophysics Data System (ADS)

    Soltau, D.; Brunner, R.; von der Lühe, O.

    Adaptive Optics is a precondition to get high resolution observations near the diffraction limit when the integration times become larger than a few milliseconds At the KIS there is a project to upgrade the Vacuum Tower Telescope at Tenerife with an adaptive optics system (KAOS = Kiepenheuer-Institut adaptives Optiksystem). The optical concept is discussed and first measurements with the KAOS wavefront sensor and their implications are presented. Considerations with respect to AO for the future GREGOR telescope are also discussed.

  4. Reflections From a Fresnel Lens

    ERIC Educational Resources Information Center

    Keeports, David

    2005-01-01

    Reflection of light by a convex Fresnel lens gives rise to two distinct images. A highly convex inverted real reflective image forms on the object side of the lens, while an upright virtual reflective image forms on the opposite side of the lens. I describe here a set of laser experiments performed upon a Fresnel lens. These experiments provide…

  5. Spider diffraction: a comparison of curved and straight legs

    SciTech Connect

    Richter, J.L.

    1984-06-15

    It has been known for some time that, if curved legs rather than the usual straight ones are used in the spider that supports the secondary optics in certain telescopes, the visible diffraction effect is reduced. Fraunhofer theory is used to calculate the diffraction effects due to the curved leg spider. Calculated and photographic diffraction patterns are compared for straight and curved leg spiders.

  6. LISA Telescope Spacer Design Issues

    NASA Technical Reports Server (NTRS)

    Livas, Jeff; Arsenovic, P.; Catelluci, K.; Generie, J.; Howard, J.; Stebbins, Howard R.; Preston, A.; Sanjuan, J.; Williams, L.; Mueller, G.

    2010-01-01

    The LISA mission observes gravitational waves by measuring the separations between freely floating proof masses located 5 million kilometers apart with an accuracy of - 10 picometers. The separations are measured interferometrically. The telescope is an afocal Cassegrain style design with a magnification of 80x. The entrance pupil has a 40 cm diameter and will either be centered on-axis or de-centered off-axis to avoid obscurations. Its two main purposes are to transform the small diameter beam used on the optical bench to a diffraction limited collimated beam to efficiently transfer the metrology laser between spacecraft, and to receive the incoming light from the far spacecraft. It transmits and receives simultaneously. The basic optical design and requirements are well understood for a conventional telescope design for imaging applications, but the LISA design is complicated by the additional requirement that the total optical path through the telescope must remain stable at the picometer level over the measurement band during the mission to meet the measurement accuracy. We describe the mechanical requirements for the telescope and the preliminary work that has been done to understand the materials and mechanical issues associated with the design of a passive metering structure to support the telescope and to maintain the spacing between the primary and secondary mirrors in the LISA on-orbit environment. This includes the requirements flowdown from the science goals, thermal modeling of the spacecraft and telescope to determine the expected temperature distribution, layout options for the telescope including an on- and off-axis design. Plans for fabrication and testing will be outlined.

  7. Preliminary LISA Telescope Spacer Design

    NASA Technical Reports Server (NTRS)

    Livas, J.; Arsenovic, P.; Catellucci, K.; Generie, J.; Howard, J.; Stebbins, R. T.

    2010-01-01

    The Laser Interferometric Space Antenna (LISA) mission observes gravitational waves by measuring the separations between freely floating proof masses located 5 million kilometers apart with an accuracy of approximately 10 picometers. The separations are measured interferometrically. The telescope is an afocal Cassegrain style design with a magnification of 80x. The entrance pupil has a 40 cm diameter and will either be centered on-axis or de-centered off-axis to avoid obscurations. Its two main purposes are to transform the small diameter beam used on the optical bench to a diffraction limited collimated beam to efficiently transfer the metrology laser between spacecraft, and to receive the incoming light from the far spacecraft. It transmits and receives simultaneously. The basic optical design and requirements are well understood for a conventional telescope design for imaging applications, but the LISA design is complicated by the additional requirement that the total optical path through the telescope must remain stable at the picometer level over the measurement band during the mission to meet the measurement accuracy. This poster describes the requirements for the telescope and the preliminary work that has been done to understand the materials and mechanical issues associated with the design of a passive metering structure to support the telescope and to maintain the spacing between the primary and secondary mirrors in the LISA on-orbit environment. This includes the requirements flowdown from the science goals, thermal modeling of the spacecraft and telescope to determine the expected temperature distribution,layout options for the telescope including an on- and off-axis design, and plans for fabrication and testing.

  8. Objective Lens Optimized for Wavefront Delivery, Pupil Imaging, and Pupil Ghosting

    NASA Technical Reports Server (NTRS)

    Olzcak, Gene

    2009-01-01

    An interferometer objective lens (or diverger) may be used to transform a collimated beam into a diverging or converging beam. This innovation provides an objective lens that has diffraction-limited optical performance that is optimized at two sets of conjugates: imaging to the objective focus and imaging to the pupil. The lens thus provides for simultaneous delivery of a high-quality beam and excellent pupil resolution properties.

  9. Contact Lens Risks

    MedlinePlus

    ... Health and Consumer Devices Consumer Products Contact Lenses Contact Lens Risks Share Tweet Linkedin Pin it More ... redness blurred vision swelling pain Serious Hazards of Contact Lenses Symptoms of eye irritation can indicate a ...

  10. Global Astrophysical Telescope System - telescope No. 2

    NASA Astrophysics Data System (ADS)

    Kamiński, Krzysztof; Baranowski, Roman; Fagas, Monika; Borczyk, Wojciech; Dimitrov, Wojciech; Polińska, Magdalena

    2014-02-01

    We present the new, second spectroscopic telescope of Poznań Astronomical Observatory. The telescope allows automatic simultaneous spectroscopic and photometric observations and is scheduled to begin operation from Arizona in autumn 2013. Together with the telescope located in Borowiec, Poland, it will constitute a perfect instrument for nearly continuous spectroscopic observations of variable stars. With both instruments operational, the Global Astrophysical Telescope System will be established.

  11. Lens auto-centering

    NASA Astrophysics Data System (ADS)

    Lamontagne, Frédéric; Desnoyers, Nichola; Doucet, Michel; Côté, Patrice; Gauvin, Jonny; Anctil, Geneviève; Tremblay, Mathieu

    2015-09-01

    In a typical optical system, optical elements usually need to be precisely positioned and aligned to perform the correct optical function. This positioning and alignment involves securing the optical element in a holder or mount. Proper centering of an optical element with respect to the holder is a delicate operation that generally requires tight manufacturing tolerances or active alignment, resulting in costly optical assemblies. To optimize optical performance and minimize manufacturing cost, there is a need for a lens mounting method that could relax manufacturing tolerance, reduce assembly time and provide high centering accuracy. This paper presents a patent pending lens mounting method developed at INO that can be compared to the drop-in technique for its simplicity while providing the level of accuracy close to that achievable with techniques using a centering machine (usually < 5 μm). This innovative auto-centering method is based on the use of geometrical relationship between the lens diameter, the lens radius of curvature and the thread angle of the retaining ring. The autocentering principle and centering test results performed on real optical assemblies are presented. In addition to the low assembly time, high centering accuracy, and environmental robustness, the INO auto-centering method has the advantage of relaxing lens and barrel bore diameter tolerances as well as lens wedge tolerances. The use of this novel lens mounting method significantly reduces manufacturing and assembly costs for high performance optical systems. Large volume productions would especially benefit from this advancement in precision lens mounting, potentially providing a drastic cost reduction.

  12. Ground-Based Telescope Parametric Cost Model

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  13. Integrated multidisciplinary analysis of segmented reflector telescopes

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.; Needels, Laura

    1992-01-01

    The present multidisciplinary telescope-analysis approach, which encompasses thermal, structural, control and optical considerations, is illustrated for the case of an IR telescope in LEO; attention is given to end-to-end evaluations of the effects of mechanical disturbances and thermal gradients in measures of optical performance. Both geometric ray-tracing and surface-to-surface diffraction approximations are used in the telescope's optical model. Also noted is the role played by NASA-JPL's Integrated Modeling of Advanced Optical Systems computation tool, in view of numerical samples.

  14. Terahertz Artificial Dielectric Lens

    NASA Astrophysics Data System (ADS)

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-03-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  15. Terahertz Artificial Dielectric Lens

    PubMed Central

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  16. Terahertz Artificial Dielectric Lens.

    PubMed

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  17. Beyond the diffraction limit via optical amplification.

    PubMed

    Kellerer, Aglaé N; Ribak, Erez N

    2016-07-15

    In a previous article [Astron. Astrophys.561, A118 (2014)], we suggested a method to overcome the diffraction limit behind a telescope. We discuss and extend recent numerical simulations and test whether it is indeed possible to use photon amplification to enhance the angular resolution of a telescope or a microscope beyond the diffraction limit. An essential addition is the proposal to select events with an above-average ratio of stimulated to spontaneous photons. The analysis shows that the diffraction limit of a telescope is surpassed by a factor of 10 for an amplifier gain of 200, if the analysis is restricted to a tenth of the incoming astronomical photons. A gain of 70 is sufficient with a hundredth of the photons. More simulations must be performed to account for the bunching of spontaneous photons. PMID:27420490

  18. Analysis of intermediary scan-lens and tube-lens mechanisms for optical coherence tomography.

    PubMed

    Atry, Farid; Pashaie, Ramin

    2016-02-01

    Combining an optical coherence tomography (OCT) scanner with other techniques such as optogenetic neurostimulation or fluorescence imaging requires integrating auxiliary components into the optical path of the setup. Due to the short scanning distance of most OCT objectives, adding scan and tube lenses in the device is essential to open space between the back-focal-plane of the objective and center of mass of the mirrors in the galvanometer. The effect of the scan and tube lenses on the focal spot size of the scanner using off-the-shelf components are theoretically explored for three different designs in this paper. Two lens mechanisms were implemented and tested in a custom-built OCT scanner to experimentally measure point-spread functions. Based on our analysis, proper form of a four-element semi-Plössl lens provides a superior performance compared with an achromatic doublet when used as a scan/tube lens. The former lens design provides close to diffraction-limited resolution for scan angles up to 6.4°; however, due to aberrations in an achromatic doublet, the later design offers diffraction-limited resolution confined to 2° scan angles. PMID:26836064

  19. Chromatic confocal microscopy using staircase diffractive surface.

    PubMed

    Rayer, Mathieu; Mansfield, Daniel

    2014-08-10

    A chromatic confocal microscope (CCM) is a high-dynamic-range noncontact distance measurement sensor; it is based on a hyperchromatic lens. The vast majority of commercial CCMs use refractive-based chromatic dispersion to chromatically code the optical axis. This approach significantly limits the range of applications and performance of the CCM. In order to be a suitable alternative to a laser triangulation gauge and laser encoder, the performance of the CCM must be improved. In this paper, it is shown how hybrid aspheric diffractive (HAD) lenses can bring the CCM to its full potential by increasing the dynamic range by a factor of 2 and the resolution by a factor of 5 while passively athermizing and increasing the light throughput efficiency of the optical head [M. Rayer, U.S. patent 1122052.2 (2011)]. The only commercially suitable manufacturing process is single-point diamond turning. However, the optical power carried by the diffractive side of a hybrid aspheric diffractive lens is limited by the manufacturing process. A theoretical study of manufacturing losses has revealed that the HAD configuration with the highest diffraction efficiency is for a staircase diffractive surface (SDS). SDS lenses have the potential to reduce light losses associated with manufacturing limits by a factor of 5 without increasing surface roughness, allowing scalar diffraction-limited optical design with a diffractive element. PMID:25320920

  20. Laue lens for astrophysics: Extensive comparison between mosaic, curved, and quasi-mosaic crystals

    NASA Astrophysics Data System (ADS)

    Camattari, Riccardo

    2016-03-01

    With the aim of concentrating hard X- and γ-rays coming from celestial sources in the 100-1000 keV energy range, the concept of Laue lens was introduced more than 50 years ago. Crystals are the core of a Laue lens, since they focus the incoming X-rays through Bragg diffraction. For concrete applications, crystals characterized by high diffraction reflectivity are needed along with high-resolution focusing of diffracted photons. Here, an extensive comparison of the types of crystals proposed so far is presented. In order to quantify the focusing capability of a Laue lens based on these crystals, a simulation of a single-ring Laue lens based on the considered optical elements is presented. Finally, the breakthrough in the panorama of diffracting crystals is discussed.

  1. Boundary diffraction wave integrals for diffraction modeling of external occulters.

    PubMed

    Cady, Eric

    2012-07-01

    An occulter is a large diffracting screen which may be flown in conjunction with a telescope to image extrasolar planets. The edge is shaped to minimize the diffracted light in a region beyond the occulter, and a telescope may be placed in this dark shadow to view an extrasolar system with the starlight removed. Errors in position, orientation, and shape of the occulter will diffract additional light into this region, and a challenge of modeling an occulter system is to accurately and quickly model these effects. We present a fast method for the calculation of electric fields following an occulter, based on the concept of the boundary diffraction wave: the 2D structure of the occulter is reduced to a 1D edge integral which directly incorporates the occulter shape, and which can be easily adjusted to include changes in occulter position and shape, as well as the effects of sources-such as exoplanets-which arrive off-axis to the occulter. The structure of a typical implementation of the algorithm is included. PMID:22772218

  2. Super-resolving metallo-dielectric flat lens

    NASA Astrophysics Data System (ADS)

    Kotyński, Rafal; Stefaniuk, Tomasz; Wróbel, Piotr; Antosiewicz, Tomasz J.; Szoplik, Tomasz

    2009-10-01

    We characterise two geometries of silver-dielectric layered or single layer patterned lenses for subwavelength imaging in the visible spectral range. The first consists of a periodic multilayer operating for the TM polarisation in a planar geometry, and the other is a grooved structure with rotational symmetry operating for the radial polarisation. For the multilayer superlens, diffraction-free propagation is conditioned on the phase flatness of the transfer function. Low-loss, diffraction-free transmission is demonstrated at micrometer distances and compared to diffractive propagation involving evanescent waves. The silver single layer lens, in turn, has double-sided grooves and no on-axis aperture. In another version the single layer lens has slits and no on-axis aperture, all rings and a stop are integrated with a fiber. Both lenses focus a far-field source into a far-field spot. They perform like a high numerical aperture optical objective and obey the diffraction limit.

  3. Wide field corrector for the KMTNet telescope

    NASA Astrophysics Data System (ADS)

    Lee, Yongseok; Cha, Sang-Mok; Poteet, Wade; Lam, Philip; Lee, Chung-Uk; Kim, Seung-Lee; Park, Byeong-Gon; Buchroeder, Richard A.; Jin, Ho

    2014-07-01

    We present the design, assembly, alignment, and verification process of the wide field corrector for the Korea Microlensing Telescope Network (KMTNet) 1.6 meter optical telescope. The optical configuration of the KMTNet telescope is prime focus, having a wide field corrector and the CCD camera on the topside of Optical Tube Assembly (OTA). The corrector is made of four lenses designed to have all spherical surfaces, being the largest one of 552 mm physical diameter. Combining with a purely parabolic primary mirror, this optical design makes easier to fabricate, to align, and to test the wide field optics. The centering process of the optics in the lens cell was performed on a precision rotary table using an indicator. After the centering, we mounted three large and heavy lenses on each cell by injecting the continuous Room Temperature Vulcanizing (RTV) silicon rubber bonding via a syringe.

  4. Combination of mechanical athermalization with manual in IR zoom telescope

    NASA Astrophysics Data System (ADS)

    Chen, Ruiyi; Zheng, Dayue; Zhou, Xiuli; Zhang, Xingde

    1991-12-01

    An infrared zoom telescope possessing the lenses made of germanium and working at -10 degree(s) to 40 degree(s)C and at 8 - 12 micrometers has been designed. The main problem to be solved is that the refraction index of Ge changes with the temperature, resulting in decollimation. For the purpose of lower production cost and reduced size and weight, a combination of mechanical passive athermalization by the collimating lens group with manual athermalization by the front lens which is chiefly utilized to focus the object is adopted. The lens mount is made of aluminum alloy. A pair of elements of mechanical passive athermalization, nylon/indium steel, is used to partially compensate the effect of variation of refraction index of Ge and expansion or contraction of aluminum alloy on the distance between the fixed and the collimating lens groups. The manually additional adjustment of the focusing lens, i.e., the front lens, is to partially compensate the distance between the front lens and the second lens group.

  5. Metrology of achromatic diffractive features on chalcogenide lenses

    NASA Astrophysics Data System (ADS)

    Scordato, M.; Nelson, J.; Schwertz, K.; Mckenna, P.; Bagwell, J.

    2015-10-01

    Achromatic diffractive features on lenses are widely used in industry for color correction, however there is not a welldefined standard to quantify the performance of the lenses. One metric used to qualify a lens is the sag deviation from the nominal lens profile. Imperfections in the manufacturing of the diffractive feature may cause scattering and performance loss. This is not reflected in sag deviation measurements, therefore performance measurements are required. There are different quantitative approaches to measuring the performance of an achromatic diffractive lens. Diffraction efficiency, a measure of optical power throughput, is a common design metric used to define the percent drop from the modulation transfer function (MTF) metric. The line spread function (LSF) shows a layout of the intensity with linear distance and an ensquared energy specification can be implemented. The MTF is a common analysis tool for assemblies and can be applied to a single element. These functional tests will be performed and compared with diffractive lenses manufactured by different tool designs. This paper displays the results found with various instruments. Contact profilometry was used to inspect the profile of the diffractive elements, and a MTF bench was used to characterize lens performance. Included will be a discussion comparing the results of profile traces and beam profiles to expected diffraction efficiency values and the effects of manufacturing imperfections.

  6. Diffractive Elements in the Optical System: Successes, Challenges, and Solutions

    NASA Astrophysics Data System (ADS)

    Greisukh, G. I.; Ezhov, E. G.; Levin, I. A.; Kazin, S. V.; Stepanov, S. A.

    2015-01-01

    Correction of aberrations is regarded as one of the most successful applications of diffractive optical elements in the optical system. The ways of overcoming these negative properties of the diffractive elements as spherochromatism and power spectral selectivity are presented. Using the technique given in this paper, a compact plastic-lens refractive-diffractive objective, which can operate in a wide spectral range including the visible and near-infrared radiation, has been designed.

  7. Solar Rejection Filter for Large Telescopes

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Lesh, James

    2009-01-01

    To reject solar radiation photons at the front aperture for large telescopes, a mosaic of large transmission mode filters is placed in front of the telescope or at the aperture of the dome. Filtering options for effective rejection of sunlight include a smaller filter down-path near the focus of the telescope, and a large-diameter filter located in the front of the main aperture. Two types of large filters are viable: reflectance mode and transmittance mode. In the case of reflectance mode, a dielectric coating on a suitable substrate (e.g. a low-thermal-expansion glass) is arranged to reflect only a single, narrow wavelength and to efficiently transmit all other wavelengths. These coatings are commonly referred to as notch filter. In this case, the large mirror located in front of the telescope aperture reflects the received (signal and background) light into the telescope. In the case of transmittance mode, a dielectric coating on a suitable substrate (glass, sapphire, clear plastic, membrane, and the like) is arranged to transmit only a single wavelength and to reject all other wavelengths (visible and near IR) of light. The substrate of the large filter will determine its mass. At first glance, a large optical filter with a diameter of up to 10 m, located in front of the main aperture, would require a significant thickness to avoid sagging. However, a segmented filter supported by a structurally rugged grid can support smaller filters. The obscuration introduced by the grid is minimal because the total area can be made insignificant. This configuration can be detrimental to a diffraction- limited telescope due to diffraction effects at the edges of each sub-panel. However, no discernable degradation would result for a 20 diffraction-limit telescope (a photon bucket). Even the small amount of sagging in each subpanel should have minimal effect in the performance of a non-diffraction limited telescope because the part has no appreciable optical power. If the

  8. Optimal resolution of a time-dependent aberrationless magnetic lens.

    PubMed

    Calvo, M

    2004-05-01

    We analyse the optimal conditions for operation of a time-dependent magnetic field lens recently proposed. The lens consists of an axially symmetric ellipsoidal coil producing a spatially homogeneous but time-pulsating magnetic field. This system is capable of focusing a beam of charged particles drifting parallel to the coil axis as well as forming images of an object emitting electrons. This lens has no spherical aberration and, consequently, opens the possibility of surpassing the resolving power of conventional round static field lenses. The cardinal elements of this lens are functions of time and thereby the image position, its magnification factor and orientation change in time. We show how by a suitable choice of the magnetic field pulse parameters and the introduction of screens with circular apertures, it is possible to render all the image characteristics stationary. The effect of diffraction is also discussed in the context of transfer function theory. PMID:15093944

  9. 30-Lens interferometer for high-energy X-rays.

    PubMed

    Lyubomirskiy, Mikhail; Snigireva, Irina; Kohn, Victor; Kuznetsov, Sergey; Yunkin, Vyacheslav; Vaughan, Gavin; Snigirev, Anatoly

    2016-09-01

    A novel high-energy multi-lens interferometer consisting of 30 arrays of planar compound refractive lenses is reported. Under coherent illumination each lens array creates a diffraction-limited secondary source. Overlapping such coherent beams produces an interference pattern demonstrating strong longitudinal functional dependence. The proposed multi-lens interferometer was tested experimentally at the 100 m-long ID11 ESRF beamline in the X-ray energy range from 30 to 65 keV. The interference pattern generated by the interferometer was recorded at fundamental and fractional Talbot distances. An effective source size (FWHM) of the order of 15 µm was determined from the first Talbot image, proving the concept that the multi-lens interferometer can be used as a high-resolution tool for beam diagnostics. PMID:27577763

  10. Effect of lens aberration on oblique-illumination stepper system

    NASA Astrophysics Data System (ADS)

    Yan, Pei-yang; Qian, Qi-De; Langston, Joseph C.

    1993-08-01

    In this paper, detailed simulation and some experimental studies on stepper lens aberration effect in the case of oblique illumination source are presented. The results are compared to that of conventional illumination source. Due to the unique feature of oblique illumination source imaging, i.e., imaging by using only zero and first diffraction order light, both stepper resolution limit and depth of focus (DOF) are extended. As a result, the effect of lens aberration in resist printing are also different from that of conventional illumination source. Unlike the conventional illumination source, the net effect of stepper lens aberration in resist printing depends not only on both the amount and type of the lens aberration, but also on the mask feature pattern. In the case of lens distortion, unlike the other types of lens aberration, the oblique illumination source does not show any improvement as compared to that of conventional illumination source. It does not show pattern dependent distortion either. In the experiment, an effect of a stepper lens aberration in resist printing for both conventional illumination and quadrapole illumination sources (mostly astigmatism) were measured. The results were in agreement with our simulation results.

  11. Laser diode assembly including a cylindrical lens

    DOEpatents

    Snyder, J.J.; Reichert, P.

    1992-01-14

    The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing. 11 figs.

  12. Laser diode assembly including a cylindrical lens

    DOEpatents

    Snyder, James J.; Reichert, Patrick

    1992-01-01

    The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing.

  13. Tunable optofluidic birefringent lens.

    PubMed

    Wee, D; Hwang, S H; Song, Y S; Youn, J R

    2016-05-01

    An optofluidic birefringent lens is demonstrated using hydrodynamic liquid-liquid (L(2)) interfaces in a microchannel. The L(2) lens comprises a nematic liquid crystal (NLC) phase and an optically isotropic phase for the main stream and the surrounding sub-stream, respectively. When the optofluidic device is subjected to a sufficiently strong electric field perpendicular to the flow direction, NLCs are allowed to orient along the external field rather than the flow direction overcoming fluidic viscous stress. The characteristics of the optofluidic birefringence lens are investigated by experimental and numerical analyses. The difference between the refractive indices of the main stream and the sub-stream changes according to the polarization direction of incident light, which determines the optical behaviour of the lens. The incidence of s-polarized light leads to a short focal point, while p-polarized light has a relatively long focal distance from the same L(2) interface. The curvatures and focal lengths of the lens are successfully evaluated by a hydrodynamic theory of NLCs and a simple ray-tracing model. PMID:27035877

  14. Coherent large telescopes

    NASA Astrophysics Data System (ADS)

    Nelson, J. E.

    Present ground-based telescopes are compared with those of the future. The inherent limitations of ground-based telescopes are reviewed, and existing telescopes and their evolution are briefly surveyed in order to see the trends that led to the present period of innovative telescope design. The major telescope types and the critical design factors that must be considered in designing large telescopes for the future are reviewed, emphasizing economicality. As an example, the Ten Meter Telescope project at the University of California is discussed in detail, including the telescope buildings, domes, and apertures, the telescope moving weights, the image quality, and the equipment. Finally, a brief review of current work in progress on large telescopes is given.

  15. 50. (no plate) Lens, lens pedestal, mercury float, drawing # ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. (no plate) Lens, lens pedestal, mercury float, drawing # 3101, sheet 1 of 2. Approved April 6, 1928. - Block Island Southeast Light, Spring Street & Mohegan Trail at Mohegan Bluffs, New Shoreham, Washington County, RI

  16. 51. (no plate) Lens, lens pedestal, mercury float, shade holder ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. (no plate) Lens, lens pedestal, mercury float, shade holder installation, drawing # 3101, sheet 2 of 2. Approved April 6, 1928. - Block Island Southeast Light, Spring Street & Mohegan Trail at Mohegan Bluffs, New Shoreham, Washington County, RI

  17. LSST telescope integration and tests

    NASA Astrophysics Data System (ADS)

    Sebag, Jacques; Gressler, William; Neill, Doug; Barr, Jeff; Claver, Chuck; Andrew, John

    2014-07-01

    The Large Synoptic Survey Telescope (LSST) Telescope integration and test plan is phased to ensure that subsystems and services are available to support the integration flow. It begins with the summit facility construction and shows how the major subsystems feed into the activities through final testing. In order to minimize the amount of hardware mated for the first time during that period, the approach is to favor all hardware mated and pre-tested at vendors' facilities with associated hardware and software prior to delivery onsite. The integration and test plan exploits the diffraction limited on-axis image quality of the three-mirror design. In addition, fiducials will be used during optical acceptance testing at vendors' facilities to capture the optical axis geometry of each optical element. These fiducials will be used during the integration and tests sequence to facilitate the telescope optical alignment. In this paper, we describe the major steps of the LSST telescope integration and test sequence prior to the start of commissioning with the science camera.

  18. GISOT: a giant solar telescope

    NASA Astrophysics Data System (ADS)

    Hammerschlag, Robert H.; von der Lühe, Oskar F.; Bettonvil, Felix C.; Jägers, Aswin P.; Snik, Frans

    2004-10-01

    A concept is presented for an extremely large high-resolution solar telescope with an aperture of 11 m and diffraction limited for visual wavelengths. The structure of GISOT will be transparent to wind and placed on a transparent stiff tower. For efficient wind flushing, all optics, including the primary mirror, will be located above the elevation axis. The aperture will be of the order of 11 m, not rotatively symmetrical, but of an elongated shape with dimensions 11 x 4 m. It consists of a central on-axis 4 m mirror with on both sides 3 pieces of 2 m mirrors. The optical layout will be kept simple to guarantee quality and minimize stray light. A Coudé room for instruments is planned below the telescope. The telescope will not be housed in a dome-like construction, which interferes with the open principle. Instead the telescope will be protected by a foldable tent construction with a diameter of the order of 30 m, which doesn"t form any obstruction during observations, but can withstand the severe weather circumstances on mountain sites. Because of the nature of the solar scene, extremely high resolution in only one dimension is sufficient to solve many exciting problems in solar physics and in this respect the concept of GISOT is very promising.

  19. Future giant telescopes: astronomy's Holy Grail or Pandora's Box?

    NASA Astrophysics Data System (ADS)

    Beckers, Jacques M.

    2003-01-01

    In this paper I review and reflect on the contributions given at this conference and place them in a broader context. Emboldened by the recent successes of 8 to 10-meter class telescopes and by the success of adaptive optics in making these telescopes diffraction limited, astronomers and engineers are now embarking on the quest for giant telescopes. Are these plans realistic? Are we overreaching ourselves?

  20. Ring lens focusing and push-pull tracking scheme for optical disk systems

    NASA Technical Reports Server (NTRS)

    Gerber, R.; Zambuto, J.; Erwin, J. K.; Mansuripur, M.

    1993-01-01

    An experimental comparison of the ring lens and the astigmatic techniques of generating focus-error-signal (FES) in optical disk systems reveals that the ring lens generates a FES over two times steeper than that produced by the astigmat. Partly due to this large slope and, in part, because of its diffraction-limited behavior, the ring lens scheme exhibits superior performance characteristics. In particular the undesirable signal known as 'feedthrough' (induced on the FES by track-crossings during the seek operation) is lower by a factor of six compared to that observed with the astigmatic method. The ring lens is easy to align and has reasonable tolerance for positioning errors.

  1. Diffraction optics for terahertz waves

    NASA Astrophysics Data System (ADS)

    Wiltse, James C.

    2004-09-01

    Conventional lenses are important components for many terahertz applications, but ordinary lenses are very difficult to fabricate for short-focal lengths. Multi-level phase-corrected zoned lens antennas have been investigated with particular application at terahertz wavelengths. These zoned lenses (or diffractive optics) give better performance than ordinary lenses, and because of their planar construction are easier and cheaper to fabricate. The depths of cut needed for a grooved zone plate are quite small, even when materials with low dielectric constants are used. Zoned lenses have been built and tested at various frequencies from 100 GHz to 1.5 THz, with phase correction levels of half-wave, quarter-wave, or eighth-wavelength. The inherent losses in transparent materials increase monotonically over this frequency range. Typical low-loss materials include polystyrene, polyethylene, Teflon, polycarbonate, polystyrene foam, foamed polyethylene, low density polytetrafluoroethylene (PTFE), TPX, quartz, sapphire, and silicon. Low dielectric-constant materials are normally preferred to reduce reflection and attenuation losses. Techniques for cutting or milling the materials to small dimensions are important, because at 1.0 THz an eighth-wavelength correction for silicon is only 15 μm. Another characteristic of zoned diffraction optics is their frequency behavior. Previous investigations have considered their bandwidth dependence and quasi-periodic extended frequency response for a specified focal length. As frequency changes, the focal point moves along the axis of the zoned lens. An analysis is given to explain this effect.

  2. Perception for a large deployable reflector telescope

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. M.; Swanson, P. N.; Meinel, A. B.; Meinel, M. P.

    1984-01-01

    Optical science and technology concepts for a large deployable reflector for far-infrared and submillimeter astronomy from above the earth's atmosphere are discussed. Requirements given at the Asilomar Conference are reviewed. The technical challenges of this large-aperture (about 20-meter) telescope, which will be diffraction limited in the infrared, are highlighted in a brief discussion of one particular configuration.

  3. Optical aperture synthesis with electronically connected telescopes.

    PubMed

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D

    2015-01-01

    Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths. PMID:25880705

  4. Optical aperture synthesis with electronically connected telescopes

    PubMed Central

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.

    2015-01-01

    Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths. PMID:25880705

  5. Microoptical compound lens

    DOEpatents

    Sweatt, William C.; Gill, David D.

    2007-10-23

    An apposition microoptical compound lens comprises a plurality of lenslets arrayed around a segment of a hollow, three-dimensional optical shell. The lenslets collect light from an object and focus the light rays onto the concentric, curved front surface of a coherent fiber bundle. The fiber bundle transports the light rays to a planar detector, forming a plurality of sub-images that can be reconstructed as a full image. The microoptical compound lens can have a small size (millimeters), wide field of view (up to 180.degree.), and adequate resolution for object recognition and tracking.

  6. Metamaterial lens design

    NASA Astrophysics Data System (ADS)

    Shepard, Ralph Hamilton, III

    Developments in nanotechnology and material science have produced optical materials with astonishing properties. Theory and experimentation have demonstrated that, among other properties, the law of refraction is reversed at an interface between a naturally occurring material and these so-called metamaterials. As the technology advances metamaterials have the potential to vastly impact the field of optical science. In this study we provide a foundation for future work in the area of geometric optics and lens design with metamaterials. The concept of negative refraction is extended to derive a comprehensive set of first-order imaging principles as well as an exhaustive aberration theory to 4th order. Results demonstrate congruence with the classical theory; however, negative refraction introduces a host of novel properties. In terms of aberration theory, metamaterials present the lens designer with increased flexibility. A singlet can be bent to produce either positive or negative spherical aberration (regardless of its focal length), its contribution to coma can become independent of its conjugate factor, and its field curvature takes on the opposite sign of its focal power. This is shown to be advantageous in some designs such as a finite conjugate relay lens; however, in a wider field of view landscape lens we demonstrate a metamaterial's aberration properties may be detrimental. This study presents the first comprehensive investigation of metamaterial lenses using industry standard lens design software. A formal design study evaluates the performance of doublet and triplet lenses operating at F/5 with a 100 mm focal length, a 20° half field of view, and specific geometric constraints. Computer aided optimization and performance evaluation provide experimental controls to remove designer-induced bias from the results. Positive-index lenses provide benchmarks for comparison to metamaterial systems subjected to identical design constraints. We find that

  7. Lens window simplifies TDL housing

    NASA Technical Reports Server (NTRS)

    Robinson, D. M.; Rowland, C. W.

    1979-01-01

    Lens window seal in tunable-diode-laser housing replaces plan parallel window. Lens seals housing and acts as optical-output coupler, thus eliminating need for additional reimaging or collimating optics.

  8. Active optics and modified-Rumsey wide-field telescopes: MINITRUST demonstrators with vase- and tulip-form mirrors

    NASA Astrophysics Data System (ADS)

    Lemaître, Gérard R.; Montiel, Pierre; Joulié, Patrice; Dohlen, Kjetil; Lanzoni, Patrick

    2005-12-01

    Wide-field astronomy requires the development of larger aperture telescopes. The optical properties of a three-mirror modified-Rumsey design provide significant advantages when compared to other telescope designs: (i) at any wavelength, the design has a flat field and is anastigmatic; (ii) the system is extremely compact, i.e., it is almost four times shorter than a Schmidt. Compared to the equally compact flat-field Ritchey-Chrétien with a doublet-lens corrector, as developed for the Sloan digital sky survey - and which requires the polishing of six optical surfaces - the proposed modified-Rumsey design requires only a two-surface polishing and provides a better imaging quality. All the mirrors are spheroids of the hyperboloid type. Starting from the classical Rumsey design, it is shown that the use of all eight available free parameters allows the simultaneous aspherization of the primary and tertiary mirrors by active optics methods from a single deformable substrate. The continuity conditions between the primary and the tertiary hyperbolizations are achieved by an intermediate narrow ring of constant thickness that is not optically used. After the polishing of a double vase form in a spherical shape, the primary-tertiary hyperbolizations are achieved by in situ stressing. The tulip-form secondary is hyperbolized by stress polishing. Other active optics alternatives are possible for a space telescope. The modified-Rumsey design is of interest for developing large space- and ground-based survey telescopes in UV, visible, or IR ranges, such as currently demonstrated with the construction of identical telescopes MINITRUST-1 and -2, f/5 - 2° field of view. Double-pass optical tests show diffraction-limited images.

  9. Active optics and modified-Rumsey wide-field telescopes: MINITRUST demonstrators with vase- and tulip-form mirrors.

    PubMed

    Lemaître, Gérard R; Montiel, Pierre; Joulié, Patrice; Dohlen, Kjetil; Lanzoni, Patrick

    2005-12-01

    Wide-field astronomy requires the development of larger aperture telescopes. The optical properties of a three-mirror modified-Rumsey design provide significant advantages when compared to other telescope designs: (i) at any wavelength, the design has a flat field and is anastigmatic; (ii) the system is extremely compact, i.e., it is almost four times shorter than a Schmidt. Compared to the equally compact flat-field Ritchey-Chrétien with a doublet-lens corrector, as developed for the Sloan digital sky survey-and which requires the polishing of six optical surfaces-the proposed modified-Rumsey design requires only a two-surface polishing and provides a better imaging quality. All the mirrors are spheroids of the hyperboloid type. Starting from the classical Rumsey design, it is shown that the use of all eight available free parameters allows the simultaneous aspherization of the primary and tertiary mirrors by active optics methods from a single deformable substrate. The continuity conditions between the primary and the tertiary hyperbolizations are achieved by an intermediate narrow ring of constant thickness that is not optically used. After the polishing of a double vase form in a spherical shape, the primary-tertiary hyperbolizations are achieved by in situ stressing. The tulip-form secondary is hyperbolized by stress polishing. Other active optics alternatives are possible for a space telescope. The modified-Rumsey design is of interest for developing large space- and ground-based survey telescopes in UV, visible, or IR ranges, such as currently demonstrated with the construction of identical telescopes MINITRUST-1 and -2, f/5-2 degrees field of view. Double-pass optical tests show diffraction-limited images. PMID:16353802

  10. Mid-infrared camera without lens (MIRACLE) for SPICA

    NASA Astrophysics Data System (ADS)

    Wada, Takehiko; Kataza, Hirokazu

    2010-07-01

    Mid-InfRAred Camera w/o LEns (MIRACLE) is a focal plane instrument for the future JAXA/ESA infrared astronomical mission, SPICA. MIRACLE is designed for wide field imaging (5' × 5') and low-resolution spectroscopic observations (R~100) over a wide spectral range in the mid-infrared wavelengths (5-38μm). Thanks to the SPICA's large aperture (3-m class) and cold (<6K) telescope, MIRACLE has a better sensitivity than JWST/MIRI at the wavelength over 20μm (3.5 μJy at 20μm, R=5, S/N=5, 3600 seconds) and its wider field of view (FOV) provides a faster mapping speed in its full spectral range for point sources. Confocal off-axis reflective imaging system provides a wide FOV with diffraction limited image quality over wide spectral range. MIRACLE consists of two channels: MIRACLE-S and MIRACLE-L, which are optimized for 5-26μm and 20- 38μm, respectively. Each of them consists of a fore-optics and a rear-optics, each of which has a pupil position equipped with a filter wheel and a grating wheel, respectively. A field stop wheel, which provides optimal slits in the spectroscopic mode and a wide FOV in the imaging mode, is installed at the focal plane of the fore-optics. A large format array detector (Si:As 2K×2K for MIRACLE-S and Si:Sb 1K×1K for MIRACLE-L) is installed at the focal plane of the rear-optics in order to achieve Nyquist sampling of the point spread function. Contiguous wavelength coverage is considered in choice of the filter bands from the experiences in the Spitzer and AKARI observations. We will present the results of conceptual design study including sensitivity analysis.

  11. World Atlas of large optical telescopes (second edition)

    NASA Technical Reports Server (NTRS)

    Meszaros, S. P.

    1986-01-01

    By early 1986 there will be over 120 large optical telescopes in the world engaged in astronomical research with mirror or lens diameters of one meter (39-inches) and larger. This atlas gives information on these telescopes and shows their observatory sites on continent sized maps. Also shown are observatory locations considered suitable for the construction of future large telescopes. Of the 126 major telescopes listed in this atlas, 101 are situated in the Northern Hemisphere and 25 are located in the Southern Hemisphere. The totals by regions are as follows: Europe (excluding the USSR), 30; Soviet Union, 9; Asia (excluding the USSR), 5; Africa, 9; Australia, 6; The Pacific, 4 (all on Hawaii); South America, 17; North America, 46 (the continental US has 38 of these). In all, the United States has 42 of the world's major telescopes on its territory (continental US plus Hawaii) making it by far the leading nation in astronomical instrumentation.

  12. A Tribute to Len Barton

    ERIC Educational Resources Information Center

    Tomlinson, Sally

    2010-01-01

    This article constitutes a short personal tribute to Len Barton in honour of his work and our collegial relationship going back over 30 years. It covers how Len saw his intellectual project of providing critical sociological and political perspectives on special education, disability and inclusion, and his own radical political perspectives. Len's…

  13. The Spacewatch 1.8-meter Telescope

    NASA Astrophysics Data System (ADS)

    Perry, M. L.; McMillan, R. S.; Barr, L. D.; Bressi, T. H.; Gehrels, T.

    1996-09-01

    The largest telescope in the world dedicated to the search for Earth-approaching asteroids and other previously unknown members of the solar system will soon be operational. Its 1.8-m aperture, large and sensitive CCD, and dedication to surveying will make it possible to find as many as 80,000 new asteroids per year. The mechanical design by Barr is optimized by finite-element analysis to provide high resonant frequencies. The mount is an altitude-azimuth type for compatibility with the mirror support cell contributed by the Multi-Mirror Telescope Observatory. Both axes are driven by DC servo motors directly coupled to friction rollers. The CCD instrument stage will also be rotated under computer control. The telescope was fabricated in the University Research Instrumentation Center (URIC). Construction of the building began on Kitt Peak on July 1, 1996. The optical configuration is f/2.7 folded prime focus with a flat secondary that locates the focal plane in the center of the optical truss near the altitude axis. This shortened the telescope enough to make the dome building affordable, and the flat secondary preserves the fast f/number of the primary mirror. The coma corrector designed by R. A. Buchroeder is a modified Klee design of 5 spherical lens elements plus a filter transmitting longward of the B bandpass. The filter greatly simplifies lens design and reduces sky background while not significantly reducing the brightness of asteroids. The distortion-free, flat, unvignetted field of view is 0.8 deg in diameter and the image scale is 1.0 arcsec/24 micron pixel. Construction of the Spacewatch Telescope has been funded by grants from the DoD Clementine Program, NASA, the University of Arizona Foundation, and other private and corporate donors.

  14. Thin Lens Ray Tracing.

    ERIC Educational Resources Information Center

    Gatland, Ian R.

    2002-01-01

    Proposes a ray tracing approach to thin lens analysis based on a vector form of Snell's law for paraxial rays as an alternative to the usual approach in introductory physics courses. The ray tracing approach accommodates skew rays and thus provides a complete analysis. (Author/KHR)

  15. Thermal Lens Microscope

    NASA Astrophysics Data System (ADS)

    Uchiyama, Kenji; Hibara, Akihide; Kimura, Hiroko; Sawada, Tsuguo; Kitamori, Takehiko

    2000-09-01

    We developed a novel laser microscope based on the thermal lens effect induced by a coaxial beam comprised of excitation and probe beams. The signal generation mechanism was confirmed to be an authentic thermal lens effect from the measurement of signal and phase dependences on optical configurations between the sample and the probe beam focus, and therefore, the thermal lens effect theory could be applied. Two-point spatial resolution was determined by the spot size of the excitation beam, not by the thermal diffusion length. Sensitivity was quite high, and the detection ability, evaluated using a submicron microparticle containing dye molecules, was 0.8 zmol/μm2, hence a distribution image of trace chemical species could be obtained quantitatively. In addition, analytes are not restricted to fluorescent species, therefore, the thermal lens microscope is a promising analytical microscope. A two-dimensional image of a histamine molecule distribution, which was produced in mast cells at the femtomole level in a human nasal mucous polyp, was obtained.

  16. Imperfect perfect lens.

    PubMed

    Larkin, Ivan A; Stockman, Mark I

    2005-02-01

    We have quantitatively established a fundamental limitation on the ultimate spatial resolution of the perfect lens (thin metal slab) in the near field. This limitation stems from the spatial dispersion of the dielectric response of the Fermi liquid of electrons with Coulomb interaction in the metal. We discuss possible applications in nanoimaging, nanophotolithography, and nanospectroscopy. PMID:15794622

  17. The Lens of Chemistry

    ERIC Educational Resources Information Center

    Thalos, Mariam

    2013-01-01

    Chemistry possesses a distinctive theoretical lens--a distinctive set of theoretical concerns regarding the dynamics and transformations of a perplexing variety of organic and nonorganic substances--to which it must be faithful. Even if it is true that chemical facts bear a special (reductive) relationship to physical facts, nonetheless it will…

  18. Baseline design of the SUNRISE Telescope

    NASA Astrophysics Data System (ADS)

    Bittner, Hermann; Erdmann, Matthias; Haberler, Peter; Härtel, Klaus-Ruediger; Barthol, Peter; Curdt, Werner

    2004-10-01

    The SUNRISE telescope is part of a balloon-borne instrument for spectro-polarimetric high-resolution observations of the solar atmosphere, to be flown 2007/2008 in the Antarctic summer stratosphere. It is a 1-m UV-VIS Gregory type telescope, operating close to the VIS diffraction limit. The telescope has a steel central frame and a lightweight CFRP trusswork structure with Serrurier properties, providing proper alignment of the optical elements over the varying eleva-tion angle. Mechanisms allow a fine adjustment of the optics. Aberrations caused by residual deformations of the stiff silicon carbide (Cesic) primary mirror are lowered by a dedicated offset in the secondary mirror polish (imprint). The telescope is subjected to the changing heat loads caused by the sun and earth radiation, necessitating measures to provide thermal conditions suitable for high-performance observations. Adequate preliminary solutions for an effective baffling are outlined.

  19. Astronomers Discover Six-Image Gravitational Lens

    NASA Astrophysics Data System (ADS)

    2001-08-01

    An international team of astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope and NASA's Hubble Space Telescope (HST) to discover the first gravitational lens in which the single image of a very distant galaxy has been split into six different images. The unique configuration is produced by the gravitational effect of three galaxies along the line of sight between the more-distant galaxy and Earth. Optical and Radio Images of Gravitational Lens "This is the first gravitational lens with more than four images of the background object that is produced by a small group of galaxies rather than a large cluster of galaxies," said David Rusin, who just received his Ph.D. from the University of Pennsylvania. "Such systems are expected to be extremely rare, so this discovery is an important stepping stone. Because this is an intermediate case between gravitational lenses produced by single galaxies and lenses produced by large clusters of galaxies, it will give us insights we can't get from other types of lenses," Rusin added. The gravitational lens, called CLASS B1359+154, consists of a galaxy more than 11 billion light-years away in the constellation Bootes, with a trio of galaxies more than 7 billion light-years away along the same line of sight. The more-distant galaxy shows signs that it contains a massive black hole at its core and also has regions in which new stars are forming. The gravitational effect of the intervening galaxies has caused the light and radio waves from the single, more-distant galaxy to be "bent" to form six images as seen from Earth. Four of these images appear outside the triangle formed by the three intermediate galaxies and two appear inside that triangle. "This lens system is a very interesting case to study because it is more complicated than lenses produced by single galaxies, and yet simpler than lenses produced by clusters of numerous galaxies," said Chris Kochanek of the Harvard

  20. Optimal lens design and use in laser-scanning microscopy

    PubMed Central

    Negrean, Adrian; Mansvelder, Huibert D.

    2014-01-01

    In laser-scanning microscopy often an off-the-shelf achromatic doublet is used as a scan lens which can reduce the available diffraction-limited field-of-view (FOV) by a factor of 3 and introduce chromatic aberrations that are scan angle dependent. Here we present several simple lens designs of superior quality that fully make use of high-NA low-magnification objectives, offering diffraction-limited imaging over a large FOV and wavelength range. We constructed a two-photon laser-scanning microscope with optimized custom lenses which had a near diffraction limit point-spread-function (PSF) with less than 3.6% variation over a 400 µm FOV and less than 0.5 µm lateral color between 750 and 1050 nm. PMID:24877017

  1. Design of plastic diffractive-refractive compact zoom lenses for visible-near-IR spectrum.

    PubMed

    Greisukh, Grigoriy I; Ezhov, Evgeniy G; Sidyakina, Zoya A; Stepanov, Sergei A

    2013-08-10

    The requirements for selecting the initial scheme for a compact plastic zoom lens are formulated. The main stages of the initial scheme of the transformation, incorporating the diffractive lens and replacement of the lenses' glasses by optical plastics, are presented. The efficiency of the suggested techniques of the optical layout process are demonstrated by using the example of the design and analysis of a zoom lens intended for use in security cameras for day or night vision. PMID:23938440

  2. Astronomers Discover Six-Image Gravitational Lens

    NASA Astrophysics Data System (ADS)

    2001-08-01

    An international team of astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope and NASA's Hubble Space Telescope (HST) to discover the first gravitational lens in which the single image of a very distant galaxy has been split into six different images. The unique configuration is produced by the gravitational effect of three galaxies along the line of sight between the more-distant galaxy and Earth. Optical and Radio Images of Gravitational Lens "This is the first gravitational lens with more than four images of the background object that is produced by a small group of galaxies rather than a large cluster of galaxies," said David Rusin, who just received his Ph.D. from the University of Pennsylvania. "Such systems are expected to be extremely rare, so this discovery is an important stepping stone. Because this is an intermediate case between gravitational lenses produced by single galaxies and lenses produced by large clusters of galaxies, it will give us insights we can't get from other types of lenses," Rusin added. The gravitational lens, called CLASS B1359+154, consists of a galaxy more than 11 billion light-years away in the constellation Bootes, with a trio of galaxies more than 7 billion light-years away along the same line of sight. The more-distant galaxy shows signs that it contains a massive black hole at its core and also has regions in which new stars are forming. The gravitational effect of the intervening galaxies has caused the light and radio waves from the single, more-distant galaxy to be "bent" to form six images as seen from Earth. Four of these images appear outside the triangle formed by the three intermediate galaxies and two appear inside that triangle. "This lens system is a very interesting case to study because it is more complicated than lenses produced by single galaxies, and yet simpler than lenses produced by clusters of numerous galaxies," said Chris Kochanek of the Harvard

  3. Salvaging an Abused Lens or How a 4½ inch Brashear lens came unglued before I did!

    NASA Astrophysics Data System (ADS)

    Koester, Jack

    The author's newly-acquired Brashear telescope has a "fogged lens" that was stuck in its cell. After getting advice from several ATS members, the author visits Richard A. Buchroeder, the professional optical designer, who heats the mirror and cell in order to soften the binding substance by floating the cell in a pot filled with heated cooking oil. The process worked, and the two lenses were removed.

  4. Actuated Hybrid Mirror Telescope

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Redding, David; Lowman, Andrew; Cohen, David; Ohara, Catherine

    2005-01-01

    The figure depicts the planned Actuated Hybrid Mirror Telescope (AHMT), which is intended to demonstrate a new approach to the design and construction of wide-aperture spaceborne telescopes for astronomy and Earth science. This technology is also appropriate for Earth-based telescopes. The new approach can be broadly summarized as using advanced lightweight mirrors that can be manufactured rapidly at relatively low cost. More specifically, it is planned to use precise replicated metallic nanolaminate mirrors to obtain the required high-quality optical finishes. Lightweight, dimensionally stable silicon carbide (SiC) structures will support the nanolaminate mirrors in the required surface figures. To enable diffraction- limited telescope performance, errors in surface figures will be corrected by use of mirror-shape-control actuators that will be energized, as needed, by a wave-front-sensing and control system. The concepts of nanolaminate materials and mirrors made from nanolaminate materials were discussed in several previous NASA Tech Briefs articles. Nanolaminates constitute a relatively new class of materials that can approach theoretical limits of stiffness and strength. Nanolaminate mirrors are synthesized by magnetron sputter deposition of metallic alloys and/or compounds on optically precise master surfaces to obtain optical-quality reflector surfaces backed by thin shell structures. As an integral part of the deposition process, a layer of gold that will constitute the reflective surface layer is deposited first, eliminating the need for a subsequent and separate reflective-coating process. The crystallographic textures of the nanolaminate will be controlled to optimize the performance of the mirror. The entire deposition process for making a nanolaminate mirror takes less than 100 hours, regardless of the mirror diameter. Each nanolaminate mirror will be bonded to its lightweight SiC supporting structure. The lightweight nanolaminate mirrors and Si

  5. HST image of Gravitational Lens G2237 + 305 or 'Einstein Cross'

    NASA Technical Reports Server (NTRS)

    1990-01-01

    European Space Agency (ESA) Faint Object Camera (FOC) science image was taken from the Hubble Space Telescope (HST) of Gravitational Lens G2237 + 305 or 'Einstein Cross'. The gravitational lens G2237 + 305 or 'Einstein Cross' shows four images of a very distant quasar which has been multiple-imaged by a relatively nearby galaxy acting as a gravitational lens. The angular separation between the upper and lower images is 1.6 arc seconds. Photo was released from Goddard Space Flight Center (GSFC) 09-12-90.

  6. Animal model experimentation using the expansile hydrogel intraocular lens.

    PubMed

    Siepser, S B; Wieland, M

    1991-07-01

    To determine the biocompatibility of the expansile hydrogel intraocular lens, a two-year animal study was undertaken. After phacoemulsification, hydrogel expansile intraocular lenses were implanted in four Dutch-belted rabbit eyes. Slitlamp examinations revealed minimal anterior chamber reaction and lens synechias. Gross pathology and histology demonstrated hyperplastic residual cortex, but confirmed our clinical impression that the lenses were well tolerated. Electron diffraction energy dispersive X-ray microanalysis revealed deposition of aluminum, silicon, magnesium, and calcium, but there was no evidence of matrix penetration. PMID:1895227

  7. Effect of multiphoton ionization on performance of crystalline lens.

    PubMed

    Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D; Campbell, M C W; Sharma, R P

    2014-12-15

    This Letter presents a model for propagation of a laser pulse in a human crystalline lens. The model contains a transverse beam diffraction effect, laser-induced optical breakdown for the creation of plasma via a multiphoton ionization process, and the gradient index (GRIN) structure. Plasma introduces the nonlinearity in the crystalline lens which affects the propagation of the beam. The multiphoton ionization process generates plasma that changes the refractive index and hence leads to the defocusing of the laser beam. The Letter also points out the relevance of the present investigation to cavitation bubble formation for restoring the elasticity of the eyes. PMID:25502994

  8. Telescopes and space exploration

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Maran, S. P.

    1976-01-01

    The necessity for different types of telescopes for astronomical investigations is discussed. Major findings in modern astronomy by ground-based and spaceborne telescopes are presented. Observations of the Crab Nebula, solar flares, interstellar gas, and the Black Hole are described. The theory of the oscillating universe is explored. Operating and planned telescopes are described.

  9. The Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Prestage, R. M.; Constantikes, K. T.; Hunter, T. R.; King, L. J.; Lacasse, R. J.; Lockman, F. J.; Norrod, R. D.

    2009-08-01

    The Robert C. Byrd Green Bank Telescope of the National Radio Astronomy Observatory is the world's premiere single-dish radio telescope operating at centimeter to long millimeter wavelengths. This paper describes the history, construction, and main technical features of the telescope.

  10. Coma-compensation telescope

    NASA Technical Reports Server (NTRS)

    MacFarlane, Malcolm J. (Inventor)

    1986-01-01

    A telescope for eliminating on axis coma due to tilt of the secondary mirror in infrared astronomy. The secondary mirror of a reflecting telescope is formed to cause field coma to always be equal and opposite at the optical axis of the telescope to tilt coma regardless of the angle through the secondary mirror is tilted with respect to the optical axis.

  11. The space telescope

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Papers concerning the development of the Space Telescope which were presented at the Twenty-first Annual Meeting of the American Astronautical Society in August, 1975 are included. Mission planning, telescope performance, optical detectors, mirror construction, pointing and control systems, data management, and maintenance of the telescope are discussed.

  12. Backreflection measurements on the SILEX telescope

    NASA Astrophysics Data System (ADS)

    Birkl, R.; Manhart, S.

    1991-05-01

    The SILEX telescope breadboard model is used to conduct back-reflection measurements which could be analyzed to determine the characteristics of a simultaneous transmitting and receiving of laser signals, such as would be encountered in an optical intersatellite communication link terminal. Back-reflection is found to come primarily from the collimator lenses and the secondary mirror surface; at the edge of the useful wavelength band, the back-reflection ratio is 40 percent above the permissible value, due to the wavelength dependence of the lens antireflection coating.

  13. Control of optical performance on the Space Telescope

    NASA Technical Reports Server (NTRS)

    Jones, C. O.

    1977-01-01

    A large astronomical telescope, termed the Space Telescope, is expected to be placed in orbit in the early 1980's. It will be operated as an international observatory that will enable astronomers to detect electromagnetic radiation over a much broader spectrum than is possible from ground observatories. The image quality (not degraded by atmospheric effects) will be limited only by the quality of the optics and by aperture diffraction. This opportunity to approach diffraction-limited imagery on an astronomical telescope of this size (2.4-m aperture) sets unusually stringent tolerances on the optical quality. The budgeting and control of these qualities throughout the design, fabrication, assembly, and operation of the Space Telescope is described. A feedback control system which will maintain the telescope at peak performance in the orbital environment is examined.

  14. Eclipsing negative-parity image of gravitational microlensing by a giant-lens star

    NASA Astrophysics Data System (ADS)

    Rahvar, Sohrab

    2016-07-01

    Gravitational microlensing has been used as a powerful tool for astrophysical studies and exoplanet detections. In the gravitational microlensing, we have two images with negative and positive parities. The negative-parity image is a fainter image and is produced at a closer angular separation with respect to the lens star. In the case of a red-giant lens star and large impact parameter of lensing, this image can be eclipsed by the lens star. The result would be dimming the flux receiving from the combination of the source and the lens stars and the light curve resembles to an eclipsing binary system. In this work, we introduce this phenomenon and propose an observational procedure for detecting this eclipse. The follow-up microlensing telescopes with lucky imaging camera or space-based telescopes can produce high-resolution images from the events with reddish sources and confirm the possibility of blending due to the lens star. After conforming a red-giant lens star and source star, we can use the advance photometric methods and detect the relative flux change during the eclipse in the order of 10-4-10-3. Observation of the eclipse provides the angular size of source star in the unit of Einstein angle and combination of this observation with the parallax observation enable us to calculate the mass of lens star. Finally, we analysed seven microlensing event and show the feasibility of observation of this effect in future observations.

  15. Chromatic confocal microscope using hybrid aspheric diffractive lenses

    NASA Astrophysics Data System (ADS)

    Rayer, Mathieu; Mansfield, Daniel

    2014-05-01

    A chromatic confocal microscope is a single point non-contact distance measurement sensor. For three decades the vast majority of the chromatic confocal microscope use refractive-based lenses to code the measurement axis chromatically. However, such an approach is limiting the range of applications. In this paper the performance of refractive, diffractive and Hybrid aspheric diffractive are compared. Hybrid aspheric diffractive lenses combine the low geometric aberration of a diffractive lens with the high optical power of an aspheric lens. Hybrid aspheric diffractive lenses can reduce the number of elements in an imaging system significantly or create large hyper- chromatic lenses for sensing applications. In addition, diffractive lenses can improve the resolution and the dynamic range of a chromatic confocal microscope. However, to be suitable for commercial applications, the diffractive optical power must be significant. Therefore, manufacturing such lenses is a challenge. We show in this paper how a theoretical manufacturing model can demonstrate that the hybrid aspheric diffractive configuration with the best performances is achieved by step diffractive surface. The high optical quality of step diffractive surface is then demonstrated experimentally. Publisher's Note: This paper, originally published on 5/10/14, was replaced with a corrected/revised version on 5/19/14. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.

  16. Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film.

    PubMed

    Jeng, Shie-Chang; Hwang, Shug-June; Horng, Jing-Shyang; Lin, Kuo-Ren

    2010-12-01

    A simple method to make a switchable liquid crystal (LC) Fresnel lens with high diffraction efficiency and a low driving voltage was proposed based on the photo-induced surface modification of the vertical alignment layer. UV illumination alters the pretilt angle of alignment layers, a Fresnel zone-distribution hybrid alignment in the homeotropic LC cell can be straightforwardly achieved through UV exposure, yielding a concentric structure of the Fresnel phase LC lens. A remarkable diffraction efficiency of ~31.4%, close to the measured diffraction efficiency of the used Fresnel-zone-plate mask of 32%, was detected using a linearly polarized incident beam. PMID:21164982

  17. ATST telescope mount: telescope of machine tool

    NASA Astrophysics Data System (ADS)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  18. Foveated endoscopic lens

    PubMed Central

    Hagen, Nathan

    2012-01-01

    Abstract. We present a foveated miniature endoscopic lens implemented by amplifying the optical distortion of the lens. The resulting system provides a high-resolution region in the central field of view and low resolution in the outer fields, such that a standard imaging fiber bundle can provide both the high resolution needed to determine tissue health and the wide field of view needed to determine the location within the inspected organ. Our proof of concept device achieves 7∼8  μm resolution in the fovea and an overall field of view of 4.6 mm. Example images and videos show the foveated lens’ capabilities. PMID:22463022

  19. Wavefront Analysis of Adaptive Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Hillman, Lloyd

    1997-01-01

    The motivation for this work came from a NASA Headquarters interest in investigating design concepts for a large space telescope employing active optics technology. Current and foreseeable launch vehicles will be limited to carrying around 4-5 meter diameter objects. Thus, if a large, filled-aperture telescope (6-20 meters in diameter) is to be placed in space, it will be required to have a deployable primary mirror. Such a mirror may be an inflatable membrane or a segmented mirror consisting of many smaller pieces. In any case, it is expected that the deployed primary will not be of sufficient quality to achieve diffraction-limited performance for its aperture size. Thus, an active optics system will be needed to correct for initial as well as environmentally-produced primary figure errors. Marshall Space Flight Center has developed considerable expertise in the area of active optics with the PAMELA test-bed. The combination of this experience along with the Marshall optical shop's work in mirror fabrication made MSFC the logical choice to lead NASA's effort to develop active optics technology for large, space-based, astronomical telescopes. Furthermore, UAH's support of MSFC in the areas of optical design, fabrication, and testing of space-based optical systems placed us in a key position to play a major role in the development of this future-generation telescope. A careful study of the active optics components had to be carried out in order to determine control segment size, segment quality, and segment controllability required to achieve diffraction-limited resolution with a given primary mirror. With this in mind, UAH undertook the following effort to provide NASA/MSFC with optical design and analysis support for the large telescope study. All of the work performed under this contract has already been reported, as a team member with MSFC, to NASA Headquarters in a series of presentations given between May and December of 1995. As specified on the delivery

  20. Functional modular contact lens

    NASA Astrophysics Data System (ADS)

    Shum, Angela J.; Cowan, Melissa; Lähdesmäki, Ilkka; Lingley, Andrew; Otis, Brian; Parviz, Babak A.

    2009-08-01

    Tear fluid offers a potential route for non-invasive sensing of physiological parameters. Utilization of this potential depends on the ability to manufacture sensors that can be placed on the surface of the eye. A contact lens makes a natural platform for such sensors, but contact lens polymers present a challenge for sensor fabrication. This paper describes a microfabrication process for constructing sensors that can be integrated into the structure of a functional contact lens in the future. To demonstrate the capabilities of the process, an amperometric glucose sensor was fabricated on a polymer substrate. The sensor consists of platinum working and counter electrodes, as well as a region of indium-tin oxide (ITO) for glucose oxidase immobilization. An external silver-silver chloride electrode was used as the reference electrode during the characterization experiments. Sensor operation was validated by hydrogen peroxide measurements in the 10- 20 μM range and glucose measurements in the 0.125-20 mM range.

  1. Chitah: Strong-gravitational-lens Hunter in Imaging Surveys

    NASA Astrophysics Data System (ADS)

    Chan, James H. H.; Suyu, Sherry H.; Chiueh, Tzihong; More, Anupreeta; Marshall, Philip J.; Coupon, Jean; Oguri, Masamune; Price, Paul

    2015-07-01

    Strong gravitationally lensed quasars provide powerful means to study galaxy evolution and cosmology. Current and upcoming imaging surveys will contain thousands of new lensed quasars, augmenting the existing sample by at least two orders of magnitude. To find such lens systems, we built a robot, Chitah, that hunts for lensed quasars by modeling the configuration of the multiple quasar images. Specifically, given an image of an object that might be a lensed quasar, Chitah first disentangles the light from the supposed lens galaxy and the light from the multiple quasar images based on color information. A simple rule is designed to categorize the given object as a potential four-image (quad) or two-image (double) lensed quasar system. The configuration of the identified quasar images is subsequently modeled to classify whether the object is a lensed quasar system. We test the performance of Chitah using simulated lens systems based on the Canada-France-Hawaii Telescope Legacy Survey. For bright quads with large image separations (with Einstein radius {r}{ein}\\gt 1\\buildrel{\\prime\\prime}\\over{.} 1) simulated using Gaussian point-spread functions, a high true-positive rate (TPR) of ˜ 90% and a low false-positive rate of ˜ 3% show that this is a promising approach to search for new lens systems. We obtain high TPR for lens systems with {r}{ein}≳ 0\\buildrel{\\prime\\prime}\\over{.} 5, so the performance of Chitah is set by the seeing. We further feed a known gravitational lens system, COSMOS 5921+0638, to Chitah, and demonstrate that Chitah is able to classify this real gravitational lens system successfully. Our newly built Chitah is omnivorous and can hunt in any ground-based imaging surveys.

  2. Phasing piston error in segmented telescopes.

    PubMed

    Jiang, Junlun; Zhao, Weirui

    2016-08-22

    To achieve a diffraction-limited imaging, the piston errors between the segments of the segmented primary mirror telescope should be reduced to λ/40 RMS. We propose a method to detect the piston error by analyzing the intensity distribution on the image plane according to the Fourier optics principle, which can capture segments with the piston errors as large as the coherence length of the input light and reduce these to 0.026λ RMS (λ = 633nm). This method is adaptable to any segmented and deployable primary mirror telescope. Experiments have been carried out to validate the feasibility of the method. PMID:27557192

  3. Actuated Hybrid Mirrors for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Ealey, Mark; Redding, David

    2010-01-01

    This paper describes new, large, ultra-lightweight, replicated, actively controlled mirrors, for use in space telescopes. These mirrors utilize SiC substrates, with embedded solid-state actuators, bonded to Nanolaminate metal foil reflective surfaces. Called Actuated Hybrid Mirrors (AHMs), they use replication techniques for high optical quality as well as rapid, low cost manufacturing. They enable an Active Optics space telescope architecture that uses periodic image-based wavefront sensing and control to assure diffraction-limited performance, while relaxing optical system fabrication, integration and test requirements. The proposed International Space Station Observatory seeks to demonstrate this architecture in space.

  4. India's National Large Solar Telescope

    NASA Astrophysics Data System (ADS)

    Hasan, S. S.

    2012-12-01

    India's 2-m National Large Solar Telescope (NLST) is aimed primarily at carrying out observations of the solar atmosphere with high spatial and spectral resolution. A comprehensive site characterization program, that commenced in 2007, has identified two superb sites in the Himalayan region at altitudes greater than 4000-m that have extremely low water vapor content and are unaffected by monsoons. With an innovative optical design, the NLST is an on-axis Gregorian telescope with a low number of optical elements to reduce the number of reflections and yield a high throughput with low polarization. In addition, it is equipped with a high-order adaptive optics to produce close to diffraction limited performance. To control atmospheric and thermal perturbations of the observations, the telescope will function with a fully open dome, to achieve its full potential atop a 25 m tower. Given its design, NLST can also operate at night, without compromising its solar performance. The post-focus instruments include broad-band and tunable Fabry-Pérot narrow-band imaging instruments; a high resolution spectropolarimeter and an Echelle spectrograph for night time astronomy. This project is led by the Indian Institute of Astrophysics and has national and international partners. Its geographical location will fill the longitudinal gap between Japan and Europe and is expected to be the largest solar telescope with an aperture larger than 1.5 m till the ATST and EST come into operation. An international consortium has been identified to build the NLST. The facility is expected to be commissioned by 2016.

  5. Some aspects of lunar photography with an 8-inch (0.2m) Schmidt-Cassegrain telescope

    NASA Astrophysics Data System (ADS)

    Marsh, J. C. D.

    1992-04-01

    A brief review of telescope properties and basic data on the Moon leads to some pragmatic conclusions on how to take a high resolution photograph of the lunar surface through an 8-inch (0.2m) Schmidt-Cassegrain telescope using a single lens reflex camera body as the film holder.

  6. Wide-field Fizeau imaging telescope: experimental results.

    PubMed

    Kendrick, R L; Aubrun, Jean-Noel; Bell, Ray; Benson, Robert; Benson, Larry; Brace, David; Breakwell, John; Burriesci, Larry; Byler, Eric; Camp, John; Cross, Gene; Cuneo, Peter; Dean, Peter; Digumerthi, Ramji; Duncan, Alan; Farley, John; Green, Andy; Hamilton, Howard H; Herman, Bruce; Lauraitis, Kris; de Leon, Erich; Lorell, Kenneth; Martin, Rob; Matosian, Ken; Muench, Tom; Ni, Mel; Palmer, Alice; Roseman, Dennis; Russell, Sheldon; Schweiger, Paul; Sigler, Rob; Smith, John; Stone, Richard; Stubbs, David; Swietek, Gregg; Thatcher, John; Tischhauser, C; Wong, Harvey; Zarifis, Vassilis; Gleichman, Kurt; Paxman, Rick

    2006-06-20

    A nine-aperture, wide-field Fizeau imaging telescope has been built at the Lockheed-Martin Advanced Technology Center. The telescope consists of nine, 125 mm diameter collector telescopes coherently phased and combined to form a diffraction-limited image with a resolution that is consistent with the 610 mm diameter of the telescope. The phased field of view of the array is 1 murad. The measured rms wavefront error is 0.08 waves rms at 635 nm. The telescope is actively controlled to correct for tilt and phasing errors. The control sensing technique is the method known as phase diversity, which extracts wavefront information from a pair of focused and defocused images. The optical design of the telescope and typical performance results are described. PMID:16778931

  7. NIRCam pupil imaging lens actuator assembly

    NASA Astrophysics Data System (ADS)

    Clark, Charles S.

    2009-08-01

    The near infrared camera (NIRCam) is one of four science instruments installed on the integrated science instrument module (ISIM) of NASA's James Webb Space Telescope (JWST) which is intended to conduct scientific observations over a five-year mission lifetime. NIRCam's requirements include operation at 37 Kelvin to produce high-resolution images in two-wave bands encompassing the range from 0.6 to 5 microns. The NIRCam instrument is also required to provide a means of imaging the primary mirror for ground testing, instrument commissioning, and diagnostics which have resulted in the development of the pupil imaging lens actuator assembly. This paper discusses the development of the pupil imaging lens (PIL) assembly, including the driving requirements for the PIL assembly, and how the design supports these conditions. Some of the design features included in the PIL assembly are the titanium isothermal optical flexure mounts with multi-axis alignment flexures, a counterbalanced direct drive rotary actuator, and a fail-safe retraction system with magnetic stowage stop. The paper also discusses how the PIL assembly was successfully tested to the demanding requirements typical for cryogenic instruments.

  8. COSMOLOGICAL CONSTRAINTS FROM GRAVITATIONAL LENS TIME DELAYS

    SciTech Connect

    Coe, Dan; Moustakas, Leonidas A.

    2009-11-20

    Future large ensembles of time delay (TD) lenses have the potential to provide interesting cosmological constraints complementary to those of other methods. In a flat universe with constant w including a Planck prior, The Large Synoptic Survey Telescope TD measurements for approx4000 lenses should constrain the local Hubble constant h to approx0.007 (approx1%), OMEGA{sub de} to approx0.005, and w to approx0.026 (all 1sigma precisions). Similar constraints could be obtained by a dedicated gravitational lens observatory (OMEGA) which would obtain precise TD and mass model measurements for approx100 well-studied lenses. We compare these constraints (as well as those for a more general cosmology) to the 'optimistic Stage IV' constraints expected from weak lensing, supernovae, baryon acoustic oscillations, and cluster counts, as calculated by the Dark Energy Task Force. TDs yield a modest constraint on a time-varying w(z), with the best constraint on w(z) at the 'pivot redshift' of z approx 0.31. Our Fisher matrix calculation is provided to allow TD constraints to be easily compared to and combined with constraints from other experiments. We also show how cosmological constraining power varies as a function of numbers of lenses, lens model uncertainty, TD precision, redshift precision, and the ratio of four-image to two-image lenses.

  9. Zoned near-zero refractive index fishnet lens antenna: Steering millimeter waves

    SciTech Connect

    Pacheco-Peña, V. Orazbayev, B. Beaskoetxea, U. Beruete, M.; Navarro-Cía, M.

    2014-03-28

    A zoned fishnet metamaterial lens is designed, fabricated, and experimentally demonstrated at millimeter wavelengths to work as a negative near-zero refractive index lens suitable for compact lens antenna configurations. At the design frequency f = 56.7 GHz (λ{sub 0} = 5.29 mm), the zoned fishnet metamaterial lens, designed to have a focal length FL = 9λ{sub 0}, exhibits a refractive index n = −0.25. The focusing performance of the diffractive optical element is briefly compared with that of a non-zoned fishnet metamaterial lens and an isotropic homogeneous zoned lens made of a material with the same refractive index. Experimental and numerically-computed radiation diagrams of the fabricated zoned lens are presented and compared in detail with that of a simulated non-zoned lens. Simulation and experimental results are in good agreement, demonstrating an enhancement generated by the zoned lens of 10.7 dB, corresponding to a gain of 12.26 dB. Moreover, beam steering capability of the structure by shifting the feeder on the xz-plane is demonstrated.

  10. Development of lens sutures.

    PubMed

    Kuszak, Jer R; Zoltoski, Rebecca K; Tiedemann, Clifford E

    2004-01-01

    Cylindrical map projections (CMPs) have been used for centuries as an effective means of plotting the features of a 3D spheroidal surfaces (e.g. the earth) on a 2D rectangular map. We have used CMPs to plot primate fiber cell organization from selected growth shells as a function of growth, development and aging. Lens structural parameters and features were derived from slit-lamp, light and transmission and scanning electron micrographs. This information was then used to create CMPs of lenses that were then correlated with azimuthal map projections (AMPs; projections that are radially symmetric around a central point [the poles]) to reveal different suture patterns during distinct time periods. In this manner, both lens fiber and suture branch locations are defined by degrees of longitude and latitude. CMPs and AMPs confirm that throughout defined periods of development, growth and ageing, increasingly complex suture patterns are formed by the precise ordering of straight and opposite end curvature fibers. However, the manner in which additional suture branches are formed anteriorly and posteriorly is not identical. Anteriorly, new branches are added between extant branches. Posteriorly, pairs of new branches are formed that progressively overlay extant branches. The advantage of using CMPs is that the shape and organization of every fiber in a growth shell can be observed in a single image. Thus, the use of CMPs to plot primate fiber cell organization has revealed more complex aspects of fiber formation that may explain, at least in part, changes in lens optical quality as a function of age and pathology. In addition, more accurate measurements of fiber length will be possible by incorporating the latitudinal and longitudinal locations of fibers. PMID:15558480

  11. Linearization of an annular image by using a diffractive optic

    NASA Technical Reports Server (NTRS)

    Matthys, Donald R.

    1996-01-01

    The goal for this project is to develop the algorithms for fracturing the zones defined by the mapping transformation, and to actually produce the binary optic in an appropriate setup. In 1984 a side-viewing panoramic viewing system was patented, consisting of a single piece of glass with spherical surfaces which produces a 360 degree view of the region surrounding the lens which extends about 25 degrees in front of and 20 degrees behind the lens. The system not only produces images of good quality, it is also afocal, i.e., images stay in focus for objects located right next to the lens as well as those located far from the lens. The lens produced a panoramic view in an annular shaped image, and so the lens was called a PAL (panoramic annular lens). When applying traditional measurements to PAL images, it is found advantageous to linearize the annular image. This can easily be done with a computer and such a linearized image can be produced within about 40 seconds on current microcomputers. However, this process requires a frame-grabber and a computer, and is not real-time. Therefore, it was decided to try to perform this linearization optically by using a diffractive optic.

  12. Lens of Eye Dosimetry

    SciTech Connect

    Mallett, Michael Wesley

    2015-03-23

    An analysis of LANL occupational dose measurements was made with respect to lens of eye dose (LOE), in particular, for plutonium workers. Table 1 shows the reported LOE as a ratio of the “deep” (photon only) and “deep+neutron” dose for routine monitored workers at LANL for the past ten years. The data compares the mean and range of these values for plutonium workers* and non-routine plutonium workers. All doses were reported based on measurements with the LANL Model 8823 TLD.

  13. JWST Pathfinder Telescope Integration

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Kennard, Scott H.; Broccolo, Ronald T.; Ellis, James M.; Daly, Elizabeth A.; Hahn, Walter G.; Amon, John N.; Mt. Pleasant, Stephen M.; Texter, Scott; Atkinson, Charles B.; McKay, Andrew; Levi, Joshua; Keski-Kuha, Ritva; Feinberg, Lee

    2015-01-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI&T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015.

  14. JWST pathfinder telescope integration

    NASA Astrophysics Data System (ADS)

    Matthews, Gary W.; Kennard, Scott H.; Broccolo, Ronald T.; Ellis, James M.; Daly, Elizabeth A.; Hahn, Walter G.; Amon, John N.; Mt. Pleasant, Stephen M.; Texter, Scott; Atkinson, Charles B.; McKay, Andrew; Levi, Joshua; Keski-Kuha, Ritva; Feinberg, Lee

    2015-08-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI and T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015.

  15. Automated telescope scheduling

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1988-01-01

    With the ever increasing level of automation of astronomical telescopes the benefits and feasibility of automated planning and scheduling are becoming more apparent. Improved efficiency and increased overall telescope utilization are the most obvious goals. Automated scheduling at some level has been done for several satellite observatories, but the requirements on these systems were much less stringent than on modern ground or satellite observatories. The scheduling problem is particularly acute for Hubble Space Telescope: virtually all observations must be planned in excruciating detail weeks to months in advance. Space Telescope Science Institute has recently made significant progress on the scheduling problem by exploiting state-of-the-art artificial intelligence software technology. What is especially interesting is that this effort has already yielded software that is well suited to scheduling groundbased telescopes, including the problem of optimizing the coordinated scheduling of more than one telescope.

  16. Automated telescope scheduling

    NASA Astrophysics Data System (ADS)

    Johnston, Mark D.

    1988-08-01

    With the ever increasing level of automation of astronomical telescopes the benefits and feasibility of automated planning and scheduling are becoming more apparent. Improved efficiency and increased overall telescope utilization are the most obvious goals. Automated scheduling at some level has been done for several satellite observatories, but the requirements on these systems were much less stringent than on modern ground or satellite observatories. The scheduling problem is particularly acute for Hubble Space Telescope: virtually all observations must be planned in excruciating detail weeks to months in advance. Space Telescope Science Institute has recently made significant progress on the scheduling problem by exploiting state-of-the-art artificial intelligence software technology. What is especially interesting is that this effort has already yielded software that is well suited to scheduling groundbased telescopes, including the problem of optimizing the coordinated scheduling of more than one telescope.

  17. The 2014 IODC lens design problem: the Cinderella lens

    NASA Astrophysics Data System (ADS)

    Juergens, Richard C.

    2014-12-01

    The lens design problem for the 2014 IODC is to design a 100 mm focal length lens in which all the components of the lens can be manufactured from ten Schott N-BK7 lens blanks 100 mm in diameter x 30 mm thick. The lens is used monochromatically at 587.56 nm. The goal of the problem is to maximize the product of the entrance pupil diameter and the semi-field of view while holding the RMS wavefront error to <= 0.070 wave within the field of view. There were 45 entries from 13 different countries. Four different commercial lens design programs were used, along with six custom, in-house programs. The number of lens elements in the entries ranged from 10 to 52. The winning entry from Jon Ehrmann had 25 lens elements, and had an entrance pupil diameter of 33.9 mm and a semi-field of view of 62.5° for a merit function product of 2,119.

  18. PROSPECTS FOR CHARACTERIZING HOST STARS OF THE PLANETARY SYSTEM DETECTIONS PREDICTED FOR THE KOREAN MICROLENSING TELESCOPE NETWORK

    SciTech Connect

    Henderson, Calen B.

    2015-02-10

    I investigate the possibility of constraining the flux of the lens (i.e., host star) for the types of planetary systems the Korean Microlensing Telescope Network is predicted to find. I examine the potential to obtain lens flux measurements by (1) imaging the lens once it is spatially resolved from the source, (2) measuring the elongation of the point-spread function of the microlensing target (lens+source) when the lens and source are still unresolved, and (3) taking prompt follow-up photometry. In each case I simulate the observing programs for a representative example of current ground-based adaptive optics (AO) facilities (specifically NACO on the Very Large Telescope), future ground-based AO facilities (GMTIFS on the Giant Magellan Telescope, GMT), and future space telescopes (NIRCAM on the James Webb Space Telescope, JWST). Given the predicted distribution of relative lens-source proper motions, I find that the lens flux could be measured to a precision of σ{sub H{sub ℓ}}≤0.1 for ≳60% of planet detections ≥5 yr after each microlensing event for a simulated observing program using GMT, which images resolved lenses. NIRCAM on JWST would be able to carry out equivalently high-precision measurements for ∼28% of events Δt = 10 yr after each event by imaging resolved lenses. I also explore the effects various blend components would have on the mass derived from prompt follow-up photometry, including companions to the lens, companions to the source, and unassociated interloping stars. I find that undetected blend stars would cause catastrophic failures (i.e., >50% fractional uncertainty in the inferred lens mass) for ≲ (16 · f {sub bin})% of planet detections, where f {sub bin} is the binary fraction, with the majority of these failures occurring for host stars with mass ≲0.3 M {sub ☉}.

  19. Phase function encoding of diffractive structures.

    PubMed

    Schilling, A; Herzig, H P

    2000-10-10

    We analyzed the direct sampling (DS) method for diffractive lens encoding, using exact electromagnetic diffraction theory. In addition to previously published research [Pure Appl. Opt. 7, 565 (1998)] we present what we believe to be new results for TM polarization. We found that the validity of the scalar-based DS method is even more extended for TM than for TE polarization. Additionally, we fabricated and characterized DS-encoded blazed gratings and found good agreement between the experimental and theoretical diffraction efficiencies. We analyzed quantitatively the influence of the encoding schemes DS and analytic quantization (AQ) on the quality of the focal spot. We also investigated the focal spot sizes (FWHM) and the Strehl ratios of the DS- and the AQ-encoded cylindrical lenses. PMID:18354523

  20. 15 meter multiple mirror telescope design study

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.; Woolf, N. J.

    1986-01-01

    Taking as a starting point the existing Multiple Mirror Telescope (MMT), a concept for a larger and more advanced instrument has been developed. It makes use of four 7.5-m diameter paraboloidal glass primaries of the honeycomb sandwich type being developed by the University of Arizona. These are mounted quite close together in a square configuration, with their axes coaligned. Separate optical configurations are provided, for optical and infrared applications. To minimze telescope emissivity in the thermal infrared at the combined focus, all the beam combining and streering optics that follow the tertiary mirrors are enclosed in a large central dewar and cooled with liquid nitrogen. The diffraction-limited resolution at the combined focus of 0.11 arcsec at 10 micrometers wavelength is equivalent to that of a 20.5 meter filled aperture. Diffraction-limited resolution should be routinely achievable at 10 and 20 micrometers, if active correction of large-scale wavefront errors is implemented.

  1. Next Generation Space Telescope

    NASA Astrophysics Data System (ADS)

    Smith, E.; Murdin, P.

    2002-01-01

    The Next Generation Space Telescope (NGST) will be an 8 m class deployable, radiatively cooled telescope, optimized for the 1-5 μm band, with zodiacal background limited sensitivity from 0.6 to 10 μm or longer, operating for 10 yr near the Earth-Sun second LAGRANGIAN POINT (L2). It will be a general-purpose observatory, operated by the SPACE TELESCOPE SCIENCE INSTITUTE (STScI) for competitively s...

  2. South Pole Telescope optics.

    PubMed

    Padin, S; Staniszewski, Z; Keisler, R; Joy, M; Stark, A A; Ade, P A R; Aird, K A; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; Dobbs, M A; Halverson, N W; Heimsath, S; Hills, R E; Holzapfel, W L; Lawrie, C; Lee, A T; Leitch, E M; Leong, J; Lu, W; Lueker, M; McMahon, J J; Meyer, S S; Mohr, J J; Montroy, T E; Plagge, T; Pryke, C; Ruhl, J E; Schaffer, K K; Shirokoff, E; Spieler, H G; Vieira, J D

    2008-08-20

    The South Pole Telescope is a 10 m diameter, wide-field, offset Gregorian telescope with a 966-pixel, millimeter-wave, bolometer array receiver. The telescope has an unusual optical system with a cold stop around the secondary. The design emphasizes low scattering and low background loading. All the optical components except the primary are cold, and the entire beam from prime focus to the detectors is surrounded by cold absorber. PMID:18716649

  3. The Antarctic Submillimetre Telescope

    NASA Astrophysics Data System (ADS)

    Minier, V.; Olmi, L.; Durand, G.; Daddi, E.; Israel, F.; Kramer, C.; Lagage, P.-O.; de Petris, M.; Sabbatini, L.; Spinoglio, L.; Schneider, N.; Tothill, N.; Tremblin, P.; Valenziano, L.; Veyssière, C.

    This report aims to provide a summary of the status of our Antarctic Submillimetre Telescope (AST) project up to date. It is a very new project for Antarctic astronomy. Necessary prerequisites for a future deployment of a large size telescope infrastructure have been tested in years 2007 and 2008. The knowledge of the transmission, frost formation and temperature gradient were fundamental parameters before starting a feasibility study. The telescope specifications and requirements are currently discussed with the industrial partnership.

  4. LISA Telescope Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The results of a LISA telescope sensitivity analysis will be presented, The emphasis will be on the outgoing beam of the Dall-Kirkham' telescope and its far field phase patterns. The computed sensitivity analysis will include motions of the secondary with respect to the primary, changes in shape of the primary and secondary, effect of aberrations of the input laser beam and the effect the telescope thin film coatings on polarization. An end-to-end optical model will also be discussed.

  5. Perceptual image quality and telescope performance ranking

    NASA Astrophysics Data System (ADS)

    Lentz, Joshua K.; Harvey, James E.; Marshall, Kenneth H.; Salg, Joseph; Houston, Joseph B.

    2010-08-01

    Launch Vehicle Imaging Telescopes (LVIT) are expensive, high quality devices intended for improving the safety of vehicle personnel, ground support, civilians, and physical assets during launch activities. If allowed to degrade from the combination of wear, environmental factors, and ineffective or inadequate maintenance, these devices lose their ability to provide adequate quality imagery to analysts to prevent catastrophic events such as the NASA Space Shuttle, Challenger, accident in 1986 and the Columbia disaster of 2003. A software tool incorporating aberrations and diffraction that was developed for maintenance evaluation and modeling of telescope imagery is presented. This tool provides MTF-based image quality metric outputs which are correlated to ascent imagery analysts' perception of image quality, allowing a prediction of usefulness of imagery which would be produced by a telescope under different simulated conditions.

  6. Cooled baffle system for spaceborne infrared telescopes.

    PubMed

    Bock, J J; Lange, A E; Matsuhara, H; Matsumoto, T; Onaka, T; Sato, S

    1995-05-01

    We report the design and testing of a compact system of baffles for cooled infrared telescopes. The baffle system consists of a reflecting forebaffle and a black aftbaffle and provides a high level of rejection of emission from off-axis sources. The forebaffle reflects radiation incident at angles greater than 40° off axis out of the telescope, thereby reducing the aperture heat load. The black aftbaffle absorbs radiation scattered or diffracted by the forebaffle, as well as radiation from sources within 40° off axis. We describe ground-based measurements at λ = 0.9 µm of the baffle system at ambient temperature and rocketborne measurements at far-infrared wavelengths of the baffle system at ~3 K. The effective emissivity of the cooled forebaffle was measured to be 7 × 10(-3). The system has been successfully used in rocketborne measurements of the diffuse infrared background and will be used in the Infrared Telescope in Space. PMID:21037777

  7. LENS: μLENS Simulations, Analysis, and Results

    NASA Astrophysics Data System (ADS)

    Rasco, Charles

    2013-04-01

    Simulations of the Low-Energy Neutrino Spectrometer prototype, μLENS, have been performed in order to benchmark the first measurements of the μLENS detector at the Kimballton Underground Research Facility (KURF). μLENS is a 6x6x6 celled scintillation lattice filled with Linear Alkylbenzene based scintillator. We have performed simulations of μLENS using the GEANT4 toolkit. We have measured various radioactive sources, LEDs, and environmental background radiation measurements at KURF using up to 96 PMTs with a simplified data acquisition system of QDCs and TDCs. In this talk we will demonstrate our understanding of the light propagation and we will compare simulation results with measurements of the μLENS detector of various radioactive sources, LEDs, and the environmental background radiation.

  8. Step-zoom dual-field-of-view infrared telescope

    NASA Astrophysics Data System (ADS)

    Nadeem Akram, Muhammad; Hammad Asghar, Muhammad

    2003-05-01

    The design of a dual-field-of-view telescope for an 8 -12- μm imaging waveband is described. Preliminary calculations are made to determine the first-order parameters of the narrow- and the wide-field modes. To achieve a switchable dual-field-of-view system, one uses an optical configuration based on the axial motion of a single lens group along the optical axis. The same lens is also used for focusing at near objects and for athermalization by small axial movement. A total of six lenses with one conic surface are used in the design, making the telescope cost effective and lightweight. The final optical design is presented, along with the aberrations curves and modulation transfer function plots, showing excellent performance in both fields of view.

  9. Step-zoom dual-field-of-view infrared telescope

    NASA Astrophysics Data System (ADS)

    Akram, Muhammad Nadeem; Asghar, Muhammad Hammad

    2003-05-01

    The design of a dual-field-of-view telescope for an 8-12-μm imaging waveband is described. Preliminary calculations are made to determine the first-order parameters of the narrow- and the wide-field modes. To achieve a switchable dual-field-of-view system, one uses an optical configuration based on the axial motion of a single lens group along the optical axis. The same lens is also used for focusing at near objects and for athermalization by small axial movement. A total of six lenses with one conic surface are used in the design, making the telescope cost effective and lightweight. The final optical design is presented, along with the aberrations curves and modulation transfer function plots, showing excellent performance in both fields of view.

  10. Step-zoom dual-field-of-view infrared telescope.

    PubMed

    Akram, Muhammad Nadeem; Asghar, Muhammad Hammad

    2003-05-01

    The design of a dual-field-of-view telescope for an 8-12-microm imaging waveband is described. Preliminary calculations are made to determine the first-order parameters of the narrow- and the wide-field modes. To achieve a switchable dual-field-of-view system, one use an optical configuration based on the axial motion of a single lens group along the optical axis. The same lens is also used for focusing at near objects and for athermalization by small axial movement. A total of six lenses with one conic surface are used in the design, making the telescope cost effective and lightweight. The final optical design is presented, along with the aberrations curves and modulation transfer function plots, showing excellent performance in both fields of view. PMID:12737462

  11. The Multiple Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Beckers, J. M.; Ulich, B. L.; Shannon, R. R.; Carleton, N. P.; Geary, J. C.; Latham, D. W.; Angel, J. R. P.; Hoffmann, W. F.; Low, F. J.; Weymann, R. J.

    The Multiple Mirror Telescope (MMT), located on top of Mount Hopkins (2600 m) in Arizona, consists of six main telescope systems, each of which is a classical Cassegrain with a 1.8 m diameter parabolic primary with focal ratio f/2.7, and a hyperbolic secondary producing a final f/31.6 for each of the individual telescopes. The most significant departures of the MMT from conventional optical telescope technology are (1) the use of light-weight 'egg-crate' mirrors, which reduced the telescope weight, (2) the use of an alt-azimuth mount, which simplifies the gravitational effects on the structure, (3) the use of a ball-bearing support rather than hydrostatic bearings, resulting in cost savings and less maintenance, (4) the use of spur gear drives rather than worm gears, and (5) the use of multiple coaligned light collectors rather than a single monolithic mirror. Early multiple objective telescopes are discussed, and the early history of the MMT project is given. The design and performance of the telescope are explained, and MMT instrumentation (spectrograph, optical design, detector, infrared photometer, SAO CCD camera) is given. Astronomical research with the telescope is discussed, along with plans for future multiple objective telescopes.

  12. The first VERITAS telescope

    NASA Astrophysics Data System (ADS)

    Holder, J.; Atkins, R. W.; Badran, H. M.; Blaylock, G.; Bradbury, S. M.; Buckley, J. H.; Byrum, K. L.; Carter-Lewis, D. A.; Celik, O.; Chow, Y. C. K.; Cogan, P.; Cui, W.; Daniel, M. K.; de la Calle Perez, I.; Dowdall, C.; Dowkontt, P.; Duke, C.; Falcone, A. D.; Fegan, S. J.; Finley, J. P.; Fortin, P.; Fortson, L. F.; Gibbs, K.; Gillanders, G.; Glidewell, O. J.; Grube, J.; Gutierrez, K. J.; Gyuk, G.; Hall, J.; Hanna, D.; Hays, E.; Horan, D.; Hughes, S. B.; Humensky, T. B.; Imran, A.; Jung, I.; Kaaret, P.; Kenny, G. E.; Kieda, D.; Kildea, J.; Knapp, J.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; LeBohec, S.; Linton, E.; Little, E. K.; Maier, G.; Manseri, H.; Milovanovic, A.; Moriarty, P.; Mukherjee, R.; Ogden, P. A.; Ong, R. A.; Petry, D.; Perkins, J. S.; Pizlo, F.; Pohl, M.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Roache, E. T.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Sleege, G.; Steele, D.; Swordy, S. P.; Syson, A.; Toner, J. A.; Valcarcel, L.; Vassiliev, V. V.; Wakely, S. P.; Weekes, T. C.; White, R. J.; Williams, D. A.; Wagner, R.

    2006-07-01

    The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic Radiation Imaging Telescope Array System) has been in operation since February 2005. We present here a technical description of the instrument and a summary of its performance. The calibration methods are described, along with the results of Monte Carlo simulations of the telescope and comparisons between real and simulated data. The analysis of TeV γ-ray observations of the Crab Nebula, including the reconstructed energy spectrum, is shown to give results consistent with earlier measurements. The telescope is operating as expected and has met or exceeded all design specifications.

  13. ATST telescope pier

    NASA Astrophysics Data System (ADS)

    Jeffers, Paul; Manuel, Eric; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world with a 4m aperture primary mirror. The off axis nature of the telescope optical layout, has the proportions of an 8 metre class telescope. Accordingly the instrumentation for solar observations a 16m diameter co-rotating laboratory (Coude Rotator) is also located within the telescope pier. The pier has a lower cylindrical profile with an upper conical section to support both the telescope mount with a 9m bearing diameter and contain the 16m diameter Coudé rotator. The performance of this pier cannot be considered in isolation but must account for ancillary equipment, access and initial installation. The Coude rotator structure and bearing system are of similar size to the telescope base structure and therefore this is the proverbial 'ship in a bottle' problem. This paper documents the competing requirements on the pier design and the balancing of these as the design progresses. Also summarized is the evolution of the design from a conceptual traditional reinforced concrete pier to a composite concrete and steel framed design. The stiffness requirements of the steel frame was a unique challenge for both the theoretical performance and overall design strategy considering constructability. The development of design acceptance criteria for the pier is discussed along with interfacing of the AandE firm responsible for the pier design and the telescope designer responsible for the telescope performance.

  14. Telescope performance verification

    NASA Astrophysics Data System (ADS)

    Swart, Gerhard P.; Buckley, David A. H.

    2004-09-01

    While Systems Engineering appears to be widely applied on the very large telescopes, it is lacking in the development of many of the medium and small telescopes currently in progress. The latter projects rely heavily on the experience of the project team, verbal requirements and conjecture based on the successes and failures of other telescopes. Furthermore, it is considered an unaffordable luxury to "close-the-loop" by carefully analysing and documenting the requirements and then verifying the telescope's compliance with them. In this paper the authors contend that a Systems Engineering approach is a keystone in the development of any telescope and that verification of the telescope's performance is not only an important management tool but also forms the basis upon which successful telescope operation can be built. The development of the Southern African Large Telescope (SALT) has followed such an approach and is now in the verification phase of its development. Parts of the SALT verification process will be discussed in some detail to illustrate the suitability of this approach, including oversight by the telescope shareholders, recording of requirements and results, design verification and performance testing. Initial test results will be presented where appropriate.

  15. Impact of Heparan Sulfate Chains and Sulfur-Mediated Bonds on the Mechanical Properties of Bovine Lens Capsule

    PubMed Central

    Dyksterhuis, L.D.; White, J.F.; Hickey, M.; Kirby, N.; Mudie, S.; Hawley, A.; Vashi, A.; Nigro, J.; Werkmeister, J.A.; Ramshaw, J.A.M.

    2011-01-01

    We assessed the importance of glycosaminoglycans and sulfur-mediated bonds for the mechanical properties of lens capsules by comparing the stress-strain responses from control and treated pairs of bovine source. No significant change in mechanical properties was observed upon reduction of disulfide bonds. However, removal of glycosaminoglycan chains resulted in a significantly stiffer lens capsule, whereas high concentrations of reducing agent, which is expected to reduce the recently reported sulfilimine bond of collagen IV, resulted in a significantly less stiff lens capsule. A comparison of the diffraction patterns of the control and strongly reduced lens capsules indicated structural rearrangements on a nanometer scale. PMID:21539774

  16. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications

    NASA Astrophysics Data System (ADS)

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I.; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.69), which enables efficient light focusing even inside other media such as water or adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping and fiber probes.

  17. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications.

    PubMed

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter, we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.68), which enables efficient light focusing even inside other media, such as water or an adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping, and fiber probes. PMID:27472584

  18. Metamaterial lens made of fully printed resonant-type negative-refractive-index transmission lines

    NASA Astrophysics Data System (ADS)

    Xu, He-Xiu; Wang, Guang-Ming; Qing Qi, Mei; Lv, Yuan-Yuan; Gao, Xi

    2013-05-01

    We studied a well-resolved lens based on planar fully printed resonant-type negative-refractive-index transmission lines made of complementary split ring resonators. The lens goes beyond previous lens in terms of moderate loss and compactness. The focusing has been demonstrated by the circuit theory simulation and full-wave simulation and finally confirmed by the experiments, showing that that the lens is able to overcome the diffraction limit of 0.5 effective wavelengths and exhibits a super resolution as small as 0.348 effective wavelengths inside the lens. The superlens free of any lumped elements opens an easy and inexpensive avenue toward imaging devices with super performances.

  19. Point spread function of the optical needle super-oscillatory lens

    SciTech Connect

    Roy, Tapashree; Rogers, Edward T. F.; Yuan, Guanghui; Zheludev, Nikolay I.

    2014-06-09

    Super-oscillatory optical lenses are known to achieve sub-wavelength focusing. In this paper, we analyse the imaging capabilities of a super-oscillatory lens by studying its point spread function. We experimentally demonstrate that a super-oscillatory lens can generate a point spread function 24% smaller than that dictated by the diffraction limit and has an effective numerical aperture of 1.31 in air. The object-image linear displacement property of these lenses is also investigated.

  20. Electrically controllable Fresnel lens in 90° twisted nematic liquid crystals.

    PubMed

    Kuo, Chie-Tong; Li, Chien-Yu; Lin, Shih-Hung; Yeh, Hui-Chen

    2015-10-01

    This study presents a theoretical analysis and experimental demonstration of an electrically controllable Fresnel lens in a 90° twisted nematic liquid crystal cell. The cell gap was chosen to satisfy the Gooch-Tarry conditions, and therefore, the polarization rotation effect was valid regardless of the incident polarization direction. The polarization sensitivity of the diffraction efficiency of the 90° twisted nematic Fresnel lens was dependent on the applied voltage regime. Theoretical calculations effectively explain the experimental results. PMID:26480119

  1. The feasibility of large refracting telescopes for solar coronal research

    NASA Astrophysics Data System (ADS)

    Nelson, Peter G.; Tomczyk, Steven; Elmore, David F.; Kolinski, Donald J.

    2008-07-01

    Measuring magnetic fields in the solar corona requires a large aperture telescope with exceptionally low levels of scattered light. For internally-occulted coronagraphs the main source is scattering from dust or microroughness on the primary lens or mirror. We show refracting primaries offer significantly lower levels for both sources. To observe magnetic fields in the solar corona with scientifically interesting spatial and temporal resolutions, a 1 meter aperture or larger is required. For a long time such large-scale refractors have been deemed impractical or impossible to construct due to gravitational deformation of the lens. We present the results of finite-element and optical analyses of the gravitational deformation, stress-induced birefringence, and absorptive heating of a (see manuscript)1.5 meter f/5 fused silica lens. These studies demonstrate the traditional objections to large refractors are unfounded and large refracting primaries have unique capabilities.

  2. Panoramic lens applications revisited

    NASA Astrophysics Data System (ADS)

    Thibault, Simon

    2008-04-01

    During the last few years, innovative optical design strategies to generate and control image mapping have been successful in producing high-resolution digital imagers and projectors. This new generation of panoramic lenses includes catadioptric panoramic lenses, panoramic annular lenses, visible/IR fisheye lenses, anamorphic wide-angle attachments, and visible/IR panomorph lenses. Given that a wide-angle lens images a large field of view on a limited number of pixels, a systematic pixel-to-angle mapping will help the efficient use of each pixel in the field of view. In this paper, we present several modern applications of these modern types of hemispheric lenses. Recently, surveillance and security applications have been proposed and published in Security and Defence symposium. However, modern hemispheric lens can be used in many other fields. A panoramic imaging sensor contributes most to the perception of the world. Panoramic lenses are now ready to be deployed in many optical solutions. Covered applications include, but are not limited to medical imaging (endoscope, rigiscope, fiberscope...), remote sensing (pipe inspection, crime scene investigation, archeology...), multimedia (hemispheric projector, panoramic image...). Modern panoramic technologies allow simple and efficient digital image processing and the use of standard image analysis features (motion estimation, segmentation, object tracking, pattern recognition) in the complete 360° hemispheric area.

  3. Development of a Prototype for the Fluorescence Detector Array of Single-Pixel Telescopes

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Malacari, M.; Bertaina, M.; Casolino, M.; Dawson, B.; Jiang, J.; Matalon, A.; Matthews, J. N.; Motloch, P.; Privitera, P.; Takizawa, Y.; Yamazaki, K.

    We present a concept for large-area, low-cost detection of ultra-high energy cosmic rays (UHECR) with a Fluorescence detector Array of Single-pixel Telescopes (FAST), addressing the requirements for the next generation of UHECR experiments. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. We report preliminary results of a FAST prototype installed at the Telescope Array site, consisting of a single 200 mm photo-multiplier tube at the focal plane of a 1 m2 Fresnel lens system taken from the prototype of the JEM-EUSO experiment.

  4. Holographic Optical Elements as Scanning Lidar Telescopes

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2005-01-01

    We have developed and investigated the use of holographic optical elements (HOEs) and holographic transmission gratings for scanning lidar telescopes. For example, rotating a flat HOE in its own plane with the focal spot on the rotation axis makes a very simple and compact conical scanning telescope. We developed and tested transmission and reflection HOEs for use at the first three harmonic wavelengths of Nd:YAG lasers. The diffraction efficiency, diffraction angle, focal length, focal spot size and optical losses were measured for several HOEs and holographic gratings, and found to be suitable for use as lidar receiver telescopes, and in many cases could also serve as the final collimating and beam steering optic for the laser transmitter. Two lidar systems based on this technology have been designed, built, and successfully tested in atmospheric science applications. This technology will enable future spaceborne lidar missions by significantly lowering the size, weight, power requirement and cost of a large aperture, narrow field of view scanning telescope.

  5. LENs: The Learning Exchange Networks.

    ERIC Educational Resources Information Center

    Hedley, Pat

    LENs (Learning Exchange Networks) modules and seminars are a series of self-directed learning resources that are written by and for faculty. The intent of the modules and seminars is to enhance faculty learning in the fundamentals of curriculum design and adult learning. The original LENs program was developed at Humber College, Toronto, Ontario,…

  6. Glancing incidence telescopes for space astronomy

    NASA Technical Reports Server (NTRS)

    Alonso, J., Jr.

    1973-01-01

    A technique for determining the state of polarization of a light source by evaluating its image at the focus of a glancing telescope is reported. An analysis of the central disc of the diffraction image reveals if the light source is polarized, the plane of polarization, and the degree of polarization. When polarized light is incident at the aperture of a diffraction limited glancing telescope, the central disc of the diffraction pattern takes on an elliptical configuration. This ellipticity is caused by the tendency of the electric vector component in the plane of incidence to be absorbed by the reflecting material. As the state of polarization goes from plane polarized to decreasing degrees of elliptically polarized light, the ellipticity of the central disc goes from a maximum at plane polarization to zero at circular polarization. These curves give a direct relationship between the degree of polarization of a light source and the ellipticity of the central disc for this particular telescope, independent of the light source wavelength.

  7. LUTE telescope structural design

    NASA Technical Reports Server (NTRS)

    Ruthven, Gregory

    1993-01-01

    The major objective of the Lunar Ultraviolet Transit Experiment (LUTE) Telescope Structural Design Study was to investigate the feasibility of designing an ultralightweight 1-m aperture system within optical performance requirements and mass budget constraints. This study uses the results from our previous studies on LUTE as a basis for further developing the LUTE structural architecture. After summarizing our results in Section 2, Section 3 begins with the overall logic we used to determine which telescope 'structural form' should be adopted for further analysis and weight estimates. Specific telescope component analysis showing calculated fundamental frequencies and how they compare with our derived requirements are included. 'First-order' component stress analyses to ensure telescope optical and structural component (i.e. mirrors & main bulkhead) weights are realistic are presented. Layouts of both the primary and tertiary mirrors showing dimensions that are consistent with both our weight and frequency calculations also form part of Section 3. Section 4 presents our calculated values for the predicted thermally induced primary-to-secondary mirror despace motion due to the large temperature range over which LUTE must operate. Two different telescope design approaches (one which utilizes fused quartz metering rods and one which assumes the entire telescope is fabricated from beryllium) are considered in this analysis. We bound the secondary mirror focus mechanism range (in despace) based on these two telescope configurations. In Section 5 we show our overall design of the UVTA (Ultraviolet Telescope Assembly) via an 'exploded view' of the sub-system. The 'exploded view' is annotated to help aid in the understanding of each sub-assembly. We also include a two view layout of the UVTA from which telescope and telescope component dimensions can be measured. We conclude our study with a set of recommendations not only with respect to the LUTE structural architecture

  8. Adaptation of the schupmann medial telescope to a large scale astronomical optical system.

    PubMed

    Villa, J J

    1972-08-01

    The classical Schupmann medial telescope is free of the secondary-spectrum residual associated with large refractors. The difficulties in obtaining large glass disks of the necessary optical quality and the problem associated with their mounting preclude the use of this unconventional lens in large scale astronomical systems. However, to circumvent these limitations, the Schupmann lens was modified by replacing the refractive objective with a spherical mirror producing a new catadioptric lens configuration adaptable to large-scale astronomy. The design parameters and performance data are given for an f/5.4, 5.5-m focal length design covering a 2 degrees full field. PMID:20119238

  9. Engineering near-field focusing of a microsphere lens with pupil masks

    NASA Astrophysics Data System (ADS)

    Yan, Bing; Yue, Liyang; Wang, Zengbo

    2016-07-01

    Recent researches have shown small dielectric microspheres can perform as super-resolution lens to break optical diffraction limit for super-resolution applications. In this paper, we show for the first time that by combining a microsphere lens with a pupil mask, it is possible to precisely control the focusing properties of the lens, including the focusing spot size and focal length. Generally, the pupil mask can significantly reduce the spot size which means an improved resolution. The work is important for advancing microsphere-based super-resolution technologies, including fabrication and imaging.

  10. High-resolution phase imaging of phase singularities in the focal region of a lens

    NASA Astrophysics Data System (ADS)

    Walford, J. N.; Nugent, K. A.; Roberts, A.; Scholten, R. E.

    2002-03-01

    Subwavelength-resolution phase images of phase dislocations at the focal region of a 20×, 0.4-N.A. lens have been obtained by use of an optical fiber interferometer with a tapered probe in one arm. A phase-stepping algorithm is used to determine a quantitative value of the phase at each point in the scan, clearly showing the presence of edge dislocations between the Airy rings of the diffraction pattern near the lens focus, as well as four isolated screw-type singularties caused by astigmatism in the lens.

  11. Diffractive optics for compact flat panel displays. Final report

    SciTech Connect

    Sweeney, D.; DeLong, K.

    1997-04-29

    Three years ago LLNL developed a practical method to dramatically reduce the chromatic aberration in single element diffractive imaging lenses. High efficiency, achromatic imaging lenses have been fabricated for human vision correction. This LDRD supported research in applying our new methods to develop a unique, diffraction-based optical interface with solid state, microelectronic imaging devices. Advances in microelectronics have led to smaller, more efficient components for optical systems. There have, however, been no equivalent advances in the imaging optics associated with these devices. The goal of this project was to replace the bulky, refractive optics in typical head-mounted displays with micro-thin diffractive optics to directly image flat-panel displays into the eye. To visualize the system think of the lenses of someone`s eyeglasses becoming flat-panel displays. To realize this embodiment, we needed to solve the problems of large chromatic aberrations and low efficiency that are associated with diffraction. We have developed a graceful tradeoff between chromatic aberrations and the diffractive optic thickness. It turns out that by doubling the thickness of a micro-thin diffractive lens we obtain nearly a two-times improvement in chromatic performance. Since the human eye will tolerate one diopter of chromatic aberration, we are able to achieve an achromatic image with a diffractive lens that is only 20 microns thick, versus 3 mm thickness for the comparable refractive lens. Molds for the diffractive lenses are diamond turned with sub-micron accuracy; the final lenses are cast from these molds using various polymers. We thus retain both the micro- thin nature of the diffractive optics and the achromatic image quality of refractive optics. During the first year of funding we successfully extended our earlier technology from 1 cm diameter optics required for vision applications up to the 5 cm diameter optics required for this application. 3 refs., 6 figs.

  12. Video Telescope Operating Microscopy.

    PubMed

    Divers, Stephen J

    2015-09-01

    Exotic pet veterinarians frequently have to operate on small animals, and magnification is commonly used. Existing endoscopy equipment can be used with a mechanical arm and telescope to enable video telescope operating microscopy. The additional equipment items and their specifics are described, and several case examples are provided. PMID:26117519

  13. Inherent small telescope projects

    NASA Astrophysics Data System (ADS)

    Charles, P. A.

    2001-01-01

    As we stand on the verge of substantial access to the new generation of giant telescopes (Gemini, VLT and others) it is timely to consider the range of science that can be undertaken with the substantial number of smaller telescopes that are spread around the globe. While providing survey science input to the giant telescopes, or simultaneous monitoring capability for space missions, is a clearly important role (see previous contributions), it should not be forgotten that there are still many outstanding scientific programmes that can be undertaken on smaller telescopes in their own right. There is a danger of these opportunities being overlooked in the stampede to abandon the smaller telescope 'baggage' in the hope of acquiring access to more giant telescope time. I will try to demonstrate that the most effective and efficient use of all our telescope time requires access to a broad range of complementary facilities. I will therefore describe here some of the projects currently being undertaken with smaller telescopes as well as some of those planned for future facilities such as ROBONET.

  14. Telescope With Reflecting Baffle

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.

    1985-01-01

    Telescope baffle made from combination of reflecting surfaces. In contrast with previous ellipsoidal reflecting baffles, new baffle reflects skew rays more effectively and easier to construct. For infrared telescopes, reflecting baffles better than absorbing baffles because heat load reduced, and not necessary to contend with insufficiency of infrared absorption exhibited by black coatings.

  15. Goddard Robotic Telescope

    SciTech Connect

    Sakamoto, Takanori; Donato, Davide; Gehrels, Neil; Okajima, Takashi; Ukwatta, Tilan N.

    2009-05-25

    We are constructing the 14'' fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are 1) to follow-up the Swift/Fermi Gamma-Ray Bursts (GRBs) and 2) to perform the coordinated optical observations of the Fermi/Large Area Telescope (LAT) Active Galactic Nuclei (AGN). Our telescope system consists of the 14'' Celestron Optical Telescope Assembly (OTA), the Astro-Physics 1200GTO mount, the Apogee U47 CCD camera, the JMI's electronic focuser, and the Finger Lake Instrumentation's color filter wheel with U, B, V, R and I filters. With the focal reducer, 20'x20' field of view has been achieved. The observatory dome is the Astro Haven's 7 ft clam-shell dome. We started the scientific observations on mid-November 2008. While not observing our primary targets (GRBs and AGNs), we are planning to open our telescope time to the public for having a wider use of our telescope in both a different research field and an educational purpose.

  16. High-performance, wide-magnification-range IR zoom telescope with automatic compensation for temperature effects

    NASA Astrophysics Data System (ADS)

    Shechterman, Mark S.

    1991-04-01

    A high performance IR zoom telescope with a 15:1 magnification ratio arid fully automatic compensation for changes in optical properties caused by changes in temperature has been developed. This novel IR zoom telescope is characterized by using of three moveable optical element groups, instead of two usually used. Magnification change in it is performed by moving these three optical groups in a predetermined manner with respect to two stationary lens elements. The positioning of the three movable lens groups is controlled by means of a computerized program. The required magnification and the measured system temperature comprise the inputs to the program. The main advantages of this new telescope design relative to existing IR zoom telescopes are: better MTF performance, reduced sensitivity of optical performance to temperature changes, small number of lenses, wider magnification range and high optical transmission.

  17. An Infrared Einstein Ring in the Gravitational Lens PG 1115+080

    NASA Astrophysics Data System (ADS)

    Impey, C. D.; Falco, E. E.; Kochanek, C. S.; Lehár, J.; McLeod, B. A.; Rix, H.-W.; Peng, C. Y.; Keeton, C. R.

    1998-12-01

    Hubble Space Telescope observations of the gravitational lens PG 1115+080 in the infrared show the known zl = 0.310 lens galaxy and reveal the zs = 1.722 quasar host galaxy. The main lens galaxy G is a nearly circular (ellipticity ε < 0.07) elliptical galaxy with a de Vaucouleurs profile and an effective radius of Re = 0.59" +/- 0.06" (1.7 +/- 0.2 h-1 kpc for Ω0 = 1 and h = H0/100 km s-1 Mpc-1). G is part of a group of galaxies that is a required component of all successful lens models. The new quasar and lens positions (3 mas uncertainty) yield constraints for these models that are statistically degenerate, but several conclusions are firmly established. (1) The principal lens galaxy is an elliptical galaxy with normal structural properties, lying close to the fundamental plane for its redshift. (2) The potential of the main lens galaxy is nearly round, even when not constrained by the small ellipticity of the light of this galaxy. (3) All models involving two mass distributions place the group component near the luminosity-weighted centroid of the brightest nearby group members. (4) All models predict a time delay ratio rABC ~= 1.3. (5) Our lens models predict H0 = 44 +/- 4 km s-1 Mpc-1 if the lens galaxy contains dark matter and has a flat rotation curve and H0 = 65 +/- 5 km s-1 Mpc-1 if it has a constant mass-to-light ratio. (6) Any dark halo of the main lens galaxy must be truncated near 1.5" (4 h-1 kpc) before the inferred H0 rises above ~60 km s-1 Mpc-1. (7) The quasar host galaxy is lensed into an Einstein ring connecting the four quasar images, whose shape is reproduced by the models. Improved near-infrared camera multiobject spectrograph (NICMOS) imaging of the ring could be used to break the degeneracy of the lens models. Based on Observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  18. The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies

    NASA Technical Reports Server (NTRS)

    Bolton, Adam S.; Burles, Scott; Koopmans, Leon V. E.; Treu, Tommaso; Moustakas, Leonidas A.

    2006-01-01

    The Sloan Lens ACS (SLACS) Survey is an efficient Hubble Space Telescope (HST) Snapshot imaging survey for new galaxy-scale strong gravitational lenses. The targeted lens candidates are selected spectroscopically from the Sloan Digital Sky Survey (SDSS) database of galaxy spectra for having multiple nebular emission lines at a redshift significantly higher than that of the SDSS target galaxy. The SLACS survey is optimized to detect bright early-type lens galaxies with faint lensed sources in order to increase the sample of known gravitational lenses suitable for detailed lensing, photometric, and dynamical modeling. In this paper, the first in a series on the current results of our HST Cycle 13 imaging survey, we present a catalog of 19 newly discovered gravitational lenses, along with nine other observed candidate systems that are either possible lenses, nonlenses, or nondetections. The survey efficiency is thus >=68%. We also present Gemini 8 m and Magellan 6.5 m integral-field spectroscopic data for nine of the SLACS targets, which further support the lensing interpretation. A new method for the effective subtraction of foreground galaxy images to reveal faint background features is presented. We show that the SLACS lens galaxies have colors and ellipticities typical of the spectroscopic parent sample from which they are drawn (SDSS luminous red galaxies and quiescent MAIN sample galaxies), but are somewhat brighter and more centrally concentrated. Several explanations for the latter bias are suggested. The SLACS survey provides the first statistically significant and homogeneously selected sample of bright early-type lens galaxies, furnishing a powerful probe of the structure of early-type galaxies within the half-light radius. The high confirmation rate of lenses in the SLACS survey suggests consideration of spectroscopic lens discovery as an explicit science goal of future spectroscopic galaxy surveys.

  19. Hubble Space Telescope overview

    NASA Technical Reports Server (NTRS)

    Polidan, Ronald S.

    1991-01-01

    A general overview of the performance and current status of the Hubble Space Telescope is presented. Most key spacecraft subsystems are operating well, equaling or exceeding specifications. Spacecraft thermal properties, power, and communications, are superb. The only spacecraft subsystem to have failed, a gyro, is briefly discussed. All science instruments are functioning extremely well and are returning valuable scientific data. The two significant problems effecting the Hubble Space Telescope science return, the pointing jitter produced by thermally induced bending of the solar array wings and the optical telescope assembly spherical aberration, are discussed and plans to repair both problems are mentioned. The possible restoration of full optical performance of the axial scientific instruments through the use of the Corrective Optics Space Telescope Axial Replacement, currently under study for the 1993 servicing mission, is discussed. In addition, an overview of the scientific performance of the Hubble Space Telescope is presented.

  20. Telescope Adaptive Optics Code

    SciTech Connect

    Phillion, D.

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The default parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST

  1. The solar optical telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Objectives of the Solar Optical Telescope are to study the physics of the Sun on the scale at which many of the important physical processes occur and to attain a resolution of 73km on the Sun or 0.1 arc seconds of angular resolution. Topics discussed in this overview of the Solar Optical Telescope include: why is the Solar Optical Telescope needed; current picture of the Sun's atmosphere and convection zone; scientific problems for the Solar Optical Telescope; a description of the telescope; the facility - science management, contamination control, and accessibility to the instruments; the scientific instruments - a coordinated instrument package for unlocking the Sun's secrets; parameters of the coordinated instrument package; science operations from the Space Shuttle; and the dynamic solar atmosphere.

  2. Large Binocular Telescope Project

    NASA Astrophysics Data System (ADS)

    Hill, John M.; Salinari, Piero

    1998-08-01

    The Large Binocular Telescope (LBT) Project is a collaboration between institutions in Arizona, Germany, Italy, and Ohio. With the addition of the partners from Ohio State and Germany in February 1997, the Large Binocular Telescope Corporation has the funding required to build the full telescope populated with both 8.4 meter optical trans. The first of two 8.4 meter borosilicate honeycomb primary mirrors for LBT was cast at the Steward Observatory Mirror Lab in 1997. The baseline optical configuration of LBT includes adaptive infrared secondaries of a Gregorian design. The F/15 secondaries are undersized to provide a low thermal background focal plane. The interferometric focus combining the light from the two 8.4 meter primaries will reimage the two folded Gregorian focal planes to three central locations. The telescope elevation structure accommodates swing arms which allow rapid interchange of the various secondary and tertiary mirrors. Maximum stiffness and minimal thermal disturbance were important drivers for the design of the telescope in order to provide the best possible images for interferometric observations. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The detailed design of the telescope structure was completed in 1997 by ADS Italia (Lecco) and European Industrial Engineering (Mestre). A series of contracts for the fabrication and machining of the telescope structure had been placed at the end of 1997. The final enclosure design was completed at M3 Engineering & Technology (Tucson), EIE and ADS Italia. During 1997, the telescope pier and the concrete ring wall for the rotating enclosure were completed along with the steel structure of the fixed portion of the enclosure. The erection of the steel structure for the rotating portion of the enclosure will begin in the Spring of 1998.

  3. Optical loss due to diffraction by concentrator Fresnel lenses

    SciTech Connect

    Hornung, Thorsten Nitz, Peter

    2014-09-26

    Fresnel lenses are widely used in concentrating photovoltaic (CPV) systems as a primary optical element. They focus sunlight on small solar cells or on the entrance apertures of secondary optical elements. A Fresnel lens consists of several prism rings and diffraction by these prism rings is unavoidable. Some of the light that would reach a designated target area according to geometric optics will miss it due to diffraction. This diffraction loss may be of relevant magnitude for CPV applications. The results of published analytical calculations are evaluated, discussed, and compared to computer simulations and measurements.

  4. Mode control of semiconductor laser with diffraction and dispersion feedback

    SciTech Connect

    Xu, G.; Tsuji, R.; Fujii, K.; Nakayama, S.; Amano, M.; Kiyono, H.; Uchiyama, Y.; Tokita, Y.; Hanasawa, Y.; Mirov, S.B.; McCutcheon, M.J.; Whinnery, J.R.

    1996-05-01

    We have constructed two kinds of external cavity semiconductor laser. The first one is a diffraction feedback system consisting of a collimating lens, a diffraction grating and a mirror controlled by a PZT element. The second one is a dispersion feedback system in which the diffraction grating is replaced with a prism. Changing the angle of the external mirror by controlling the voltage to be supplied to the PZT, we have succeeded to tune the longitudinal mode of semiconductor laser continuously in the range of about 1 GHz. {copyright} {ital 1996 American Institute of Physics.}

  5. Two Easily Made Astronomical Telescopes.

    ERIC Educational Resources Information Center

    Hill, M.; Jacobs, D. J.

    1991-01-01

    The directions and diagrams for making a reflecting telescope and a refracting telescope are presented. These telescopes can be made by students out of plumbing parts and easily obtainable, inexpensive, optical components. (KR)

  6. High Speed Telescopic Imaging of Sprites

    NASA Astrophysics Data System (ADS)

    McHarg, M. G.; Stenbaek-Nielsen, H. C.; Kanmae, T.; Haaland, R. K.

    2010-12-01

    A total of 21 sprite events were recorded at Langmuir Laboratory, New Mexico, during the nights of 14 and 15 July 2010 with a 500 mm focal length Takahashi Sky 90 telescope. The camera used was a Phantom 7.3 with a VideoScope image intensifier. The images were 512x256 pixels for a field of view of 1.3x0.6 degrees. The data were recorded at 16,000 frames per second (62 μs between images) and an integration time of 20 μs per image. Co-aligned with the telescope was a second similar high-speed camera, but with an 85 mm Nikon lens; this camera recorded at 10,000 frames per second with 100 μs exposure. The image format was also 512x256 pixels for a field of view of 7.3x3.7 degrees. The 21 events recorded include all basic sprite elements: Elve, sprite halos, C-sprites, carrot sprites, and large jellyfish sprites. We compare and contrast the spatial details seen in the different types of sprites, including streamer head size and the number of streamers subsequent to streamer head splitting. Telescopic high speed image of streamer tip splitting in sprites recorded at 07:06:09 UT on 15 July 2010.

  7. Design of a catadioptric lens for long-range oblique aerial reconnaissance

    NASA Astrophysics Data System (ADS)

    Ulmes, James J.

    1989-10-01

    The design of a lens for long-range oblique aerial reconnaissance demonstrates how lightweight reflective optics are effective in producing an optical system which can detect, recognize, and identify distant ground objects from an airborne platform. The lens herein described transforms an object space filled with low-contrast targets of small angular subtense to an image space having the spatial and optical characteristics best suited to an electro-optical detector designed for this application. The lens incorporates two key reflective elements: a lightweight primary mirror which provides all the optical power of the lens, and a scan mirror of cellular construction which directs light into the lens. Although the nominal design is diffraction limited, the scan mirror deflections caused by gravity induce notable wavefront errors. Finite element techniques were used to predict the deflections. The deflections were then used to predict lens performance. The lens has been built and tested, and test results agree with predictions. The lens/detector-system combination allows intelligence gathering from an airborne platform at standoff ranges up to 150 nmi.

  8. Pediatric genetic disorders of lens

    PubMed Central

    Nihalani, Bharti R.

    2014-01-01

    Pediatric genetic disorders of lens include various cataractous and non-cataractous anomalies. The purpose of this review is to help determine the genetic cause based on the lens appearance, ocular and systemic associations. Children with bilateral cataracts require a comprehensive history, ophthalmic and systemic examination to guide further genetic evaluation. With advancements in genetics, it is possible to determine the genetic mutations and assess phenotype genotype correlation in different lens disorders. The genetic diagnosis helps the families to better understand the disorder and develop realistic expectations as to the course of their child's disorder.

  9. A liquid crystal adaptive lens

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Cleverly, D.

    1981-01-01

    Creation of an electronically controlled liquid crystal lens for use as a focusing mechanism in a multi-element lens system or as an adaptive optical element is analyzed. Varying the index of refraction is shown to be equivalent to the shaping of a solid refracting material. Basic characteristics of liquid crystals, essential for the creation of a lens, are reviewed. The required variation of index of refraction is provided by choosing appropriate electrode voltages. The configuration required for any incoming polarization is given and its theoretical performance in terms of modulation transfer function derived.

  10. Integrated Lens Antennas for Multi-Pixel Receivers

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Chattopadhyay, Goutam

    2011-01-01

    Future astrophysics and planetary experiments are expected to require large focal plane arrays with thousands of detectors. Feedhorns have excellent performance, but their mass, size, fabrication challenges, and expense become prohibitive for very large focal plane arrays. Most planar antenna designs produce broad beam patterns, and therefore require additional elements for efficient coupling to the telescope optics, such as substrate lenses or micromachined horns. An antenna array with integrated silicon microlenses that can be fabricated photolithographically effectively addresses these issues. This approach eliminates manual assembly of arrays of lenses and reduces assembly errors and tolerances. Moreover, an antenna array without metallic horns will reduce mass of any planetary instrument significantly. The design has a monolithic array of lens-coupled, leaky-wave antennas operating in the millimeter- and submillimeter-wave frequencies. Electromagnetic simulations show that the electromagnetic fields in such lens-coupled antennas are mostly confined in approximately 12 15 . This means that one needs to design a small-angle sector lens that is much easier to fabricate using standard lithographic techniques, instead of a full hyper-hemispherical lens. Moreover, this small-angle sector lens can be easily integrated with the antennas in an array for multi-pixel imager and receiver implementation. The leaky antenna is designed using double-slot irises and fed with TE10 waveguide mode. The lens implementation starts with a silicon substrate. Photoresist with appropriate thickness (optimized for the lens size) is spun on the substrate and then reflowed to get the desired lens structure. An antenna array integrated with individual lenses for higher directivity and excellent beam profile will go a long way in realizing multi-pixel arrays and imagers. This technology will enable a new generation of compact, low-mass, and highly efficient antenna arrays for use in multi

  11. Lear jet telescope system

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.; Goorvitch, D.; Dix, M. G.; Hitchman, M. J.

    1974-01-01

    The telescope system was designed as a multi-user facility for observations of celestial objects at infrared wavelengths, where ground-based observations are difficult or impossible due to the effects of telluric atmospheric absorption. The telescope is mounted in a Lear jet model 24B which typically permits 70 min. of observing per flight at altitudes in excess of 45,000 ft (13 km). Telescope system installation is discussed, along with appropriate setup and adjustment procedures. Operation of the guidance system is also explained, and checklists are provided which pertain to the recommended safe operating and in-flight trouble-shooting procedures for the equipment.

  12. Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    1990-02-01

    An overview of the mission of the Hubble Space Telescope, a joint project between NASA and the European Space Agency which will be used to study deep space, as well as our solar system is presented. The video contains animations depicting the Hubble Space Telescope in orbit, as well as footage of scientists at the Space Telescope Science Institute making real time observations. The images Hubble acquires will be downloaded into a database that contains images of over 19,000,0000 celestial objects called the Star Catalog.

  13. Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    An overview of the mission of the Hubble Space Telescope, a joint project between NASA and the European Space Agency which will be used to study deep space, as well as our solar system is presented. The video contains animations depicting the Hubble Space Telescope in orbit, as well as footage of scientists at the Space Telescope Science Institute making real time observations. The images Hubble acquires will be downloaded into a database that contains images of over 19,000,000 celestial objects called the Star Catalog.

  14. Ritchey-Chretien Telescope

    NASA Technical Reports Server (NTRS)

    Rosin, S.; Amon, M. (Inventor)

    1973-01-01

    A Ritchey-Chretien telescope is described which was designed to respond to images located off the optical axis by using two transparent flat plates positioned in the ray path of the image. The flat plates have a tilt angle relative to the ray path to compensate for astigmatism introduced by the telescope. The tilt angle of the plates is directly proportional to the off axis angle of the image. The plates have opposite inclination angles relative to the ray paths. A detector which is responsive to the optical image as transmitted through the plates is positioned approximately on the sagittal focus of the telescope.

  15. Lens system for a photo ion spectrometer

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1990-11-27

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component is disclosed. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system. 8 figs.

  16. Lens system for a photo ion spectrometer

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1990-01-01

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system.

  17. 21 CFR 886.1375 - Bagolini lens.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bagolini lens. 886.1375 Section 886.1375 Food and... OPHTHALMIC DEVICES Diagnostic Devices § 886.1375 Bagolini lens. (a) Identification. A Bagolini lens is a device that consists of a plane lens containing almost imperceptible striations that do not...

  18. 21 CFR 886.1375 - Bagolini lens.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bagolini lens. 886.1375 Section 886.1375 Food and... OPHTHALMIC DEVICES Diagnostic Devices § 886.1375 Bagolini lens. (a) Identification. A Bagolini lens is a device that consists of a plane lens containing almost imperceptible striations that do not...

  19. 21 CFR 886.1375 - Bagolini lens.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bagolini lens. 886.1375 Section 886.1375 Food and... OPHTHALMIC DEVICES Diagnostic Devices § 886.1375 Bagolini lens. (a) Identification. A Bagolini lens is a device that consists of a plane lens containing almost imperceptible striations that do not...

  20. 21 CFR 886.1375 - Bagolini lens.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Bagolini lens. 886.1375 Section 886.1375 Food and... OPHTHALMIC DEVICES Diagnostic Devices § 886.1375 Bagolini lens. (a) Identification. A Bagolini lens is a device that consists of a plane lens containing almost imperceptible striations that do not...

  1. 21 CFR 886.1375 - Bagolini lens.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bagolini lens. 886.1375 Section 886.1375 Food and... OPHTHALMIC DEVICES Diagnostic Devices § 886.1375 Bagolini lens. (a) Identification. A Bagolini lens is a device that consists of a plane lens containing almost imperceptible striations that do not...

  2. Multi-use lunar telescopes

    NASA Technical Reports Server (NTRS)

    Genet, Russell M.; Genet, David R.; Talent, David L.; Drummond, Mark; Hine, Butler P.; Boyd, Louis J.; Trueblood, Mark

    1992-01-01

    The objective of multi-use telescopes is to reduce the initial and operational costs of space telescopes to the point where a fair number of telescopes, a dozen or so, would be affordable. The basic approach is to develop a common telescope, control system, and power and communications subsystem that can be used with a wide variety of instrument payloads, i.e., imaging CCD cameras, photometers, spectrographs, etc. By having such a multi-use and multi-user telescope, a common practice for earth-based telescopes, development cost can be shared across many telescopes, and the telescopes can be produced in economical batches.

  3. Multi-use lunar telescopes

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Hine, Butler; Genet, Russell; Genet, David; Talent, David; Boyd, Louis; Trueblood, Mark; Filippenko, Alexei V. (Editor)

    1991-01-01

    The objective of multi-use telescopes is to reduce the initial and operational costs of space telescopes to the point where a fair number of telescopes, a dozen or so, would be affordable. The basic approach is to develop a common telescope, control system, and power and communications subsystem that can be used with a wide variety of instrument payloads, i.e., imaging CCD cameras, photometers, spectrographs, etc. By having such a multi-use and multi-user telescope, a common practice for earth-based telescopes, development cost can be shared across many telescopes, and the telescopes can be produced in economical batches.

  4. Fast-response variable focusing micromirror array lens

    NASA Astrophysics Data System (ADS)

    Boyd, James G., IV; Cho, Gyoungil

    2003-07-01

    A reflective type Fresnel lens using an array of micromirrors is designed and fabricated using the MUMPs® surface micromachining process. The focal length of the lens can be rapidly changed by controlling both the rotation and translation of electrostatically actuated micromirrors. The rotation converges rays and the translation adjusts the optical path length difference of the rays to be integer multiples of the wavelength. The suspension spring, pedestal and electrodes are located under the mirror to maximize the optical efficiency. Relations are provided for the fill-factor and the numerical aperture as functions of the lens diameter, the mirror size, and the tolerances specified by the MUMPs® design rules. The fabricated lens is 1.8mm in diameter, and each micromirror is approximately 100mm x 100mm. The lens fill-factor is 83.7%, the numerical aperture is 0.018 for a wavelength of 632.8nm, and the resolution is approximately 22mm, whereas the resolution of a perfect aberration-free lens is 21.4μm for a NA of 0.018. The focal length ranges from 11.3mm to infinity. The simulated Strehl ratio, which is the ratio of the point spread function maximum intensity to the theoretical diffraction-limited PSF maximum intensity, is 31.2%. A mechanical analysis was performed using the finite element code IDEAS. The combined maximum rotation and translation produces a maximum stress of 301MPa, below the yield strength of polysilicon, 1.21 to 1.65GPa. Potential applications include adaptive microscope lenses for scanning particle imaging velocimetry and a visually aided micro-assembly.

  5. Two-lens designs for modern uncooled and cooled IR imaging devices

    NASA Astrophysics Data System (ADS)

    Schuster, Norbert; Franks, John

    2013-10-01

    In recent years, thermal detectors with a 17 μm pixel pitch have become well-established for use in various applications, such as thermal imaging in cars. This has allowed the civilian infrared market to steadily mature. The main cost for these lens designs comes from the number of lenses used. The development of thermal detectors, which are less sensitive than quantum detectors, has compelled camera manufacturers to demand very fast F-numbers such as f/1.2 or faster. This also minimizes the impact of diffraction in the 8-12 μmm waveband. The freedom afforded by the choice of the stop position in these designs has been used to create high-resolution lenses that operate near the diffraction limit. Based on GASIR®1, a chalcogenide glass, two-lens designs have been developed for all pixel counts and fields of view. Additionally, all these designs have been passively athermalized, either optically or mechanically. Lenses for cooled quantum detectors have a defined stop position called the cold stop (CS) near the FPA-plane. The solid angle defined by the CS fixes not only the F-number (which is less fast than for thermal detectors), but determines also the required resolution. The main cost driver of these designs is the lens diameter. Lenses must be sufficiently large to avoid any vignetting of ray bundles intended to reach the cooled detector. This paper studies the transfer of approved lens design principles for thermal detectors to lenses for cooled quantum detectors with CS for same pixel count at three horizontal fields of view: a 28° medium field lens, an 8° narrow field lens, and a 90° wide field lens. The lens arrangements found for each category have similar lens costs.

  6. Adjustable Focus Optical Correction Lens (AFOCL)

    NASA Technical Reports Server (NTRS)

    Peters, Bruce R.

    2001-01-01

    This report describes the activities and accomplishments along with the status of the characterization of a PLZT-based Adjustable Focus Optical Correction Lens (AFOCL) test device. The activities described in this report were undertaken by members of the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) under NASA Contract NAS8-00188. The effort was led by Dr. Bruce Peters as the Principal Investigator and supported by Dr. Patrick Reardon, Ms. Deborah Bailey, and graduate student Mr. Jeremy Wong. The activities outlined for the first year of the contract were to identify vendors and procure a test device along with performing the initial optical characterization of the test device. This activity has been successfully executed and test results are available and preliminary information was published at the SPIE Photonics West Conference in San Jose, January 2001. The paper, "Preliminary investigation of an active PLZT lens," was well received and generated response with several questions from the audience. A PLZT test device has been commercially procured from an outside vendor: The University of California in San Diego (UCSD) in partnership with New Interconnect Packaging Technologies (NIPT) Inc. The device has been subjected to several tests to characterize the optical performance of the device at wavelengths of interest. The goal was to evaluate the AFOCL similar to a conventional lens and measure any optical aberrations present due to the PLZT material as a deviation in the size of the diffraction limited spot (blur), the presence of diffracted energy into higher orders surrounding the focused spot (a variation in Strehl), and/or a variation or spread in the location of the focused energy away from the optical axis (a bias towards optical wedge, spherical, comma, or other higher order aberrations). While data has been collected indicative of the imaging quality of the AFOCL test device, it was not possible to fully characterize the

  7. X-Ray Diffraction.

    ERIC Educational Resources Information Center

    Smith, D. K.; Smith, K. L.

    1980-01-01

    Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

  8. Advances in lens implant technology

    PubMed Central

    Kampik, Anselm; Dexl, Alois K.; Zimmermann, Nicole; Glasser, Adrian; Baumeister, Martin; Kohnen, Thomas

    2013-01-01

    Cataract surgery is one of the oldest and the most frequent outpatient clinic operations in medicine performed worldwide. The clouded human crystalline lens is replaced by an artificial intraocular lens implanted into the capsular bag. During the last six decades, cataract surgery has undergone rapid development from a traumatic, manual surgical procedure with implantation of a simple lens to a minimally invasive intervention increasingly assisted by high technology and a broad variety of implants customized for each patient’s individual requirements. This review discusses the major advances in this field and focuses on the main challenge remaining – the treatment of presbyopia. The demand for correction of presbyopia is increasing, reflecting the global growth of the ageing population. Pearls and pitfalls of currently applied methods to correct presbyopia and different approaches under investigation, both in lens implant technology and in surgical technology, are discussed. PMID:23413369

  9. Design and fabrication of a microstructured bifocal intraocular lens

    NASA Astrophysics Data System (ADS)

    Stork, Wilhelm; Wagner, Armin; Kreiner, Christine F.; Mueller-Glaser, Klaus-Dieter

    1999-06-01

    Intraocular lenses IOLs allow the vision restoration of cataract patients. However the ability of accommodation is lost after cataract surgery. Multifocal lenses show two or more foci with different refractive powers. Far and near objects can be at focus simultaneously. No additional spectacles are necessary. Bifocal lenses can be fabricated as multizone or as diffractive lenses. Diffractive multifocal lenses show in contrast to multi zone multifocal lenses no change of the brightness ratio for the far and near focus with change of the pupil diameter. Diffractive lenses show a saw tooth like microscopic shape with a geometrical height of the teeth in the order of microns. The lens was fabricated with a mold technique in a flexible silicone material. The molds have been lathed in metal with a ultra precision diamond lathe machine. For the test of the optical performance a MTF-measurement machine was constructed for multifocal lenses. With this machine the imaging quality and the intensity ratio of the two foci were measured. The optical quality of the lens turned out to be diffraction limited. At the University Hospital of Giessen, Germany a first clinical evaluation with 23 patients has been performed and proved for the high quality of the manufactured IOLs.

  10. Composite Space Telescope Truss

    NASA Video Gallery

    NASA engineers are recycling an idea for a lightweight, compact space telescope structure from the early 1990s. The 315 struts and 84 nodes were originally designed to enable spacewalking astronaut...

  11. Hubble Space Telescope Image

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph is a Hubble Space Telescope (HST) image of a sky full of glittering jewels. The HST peered into the Sagittarius star cloud, a narrow dust free region, providing this spectacular glimpse of a treasure chest full of stars.

  12. Webb Telescope: Planetary Evolution

    NASA Video Gallery

    Stars and planets form in the dark, inside vast, cold clouds of gas and dust. The James Webb Space Telescope's large mirror and infrared sensitivity will let astronomers peer inside dusty knots whe...

  13. Building a Telescope.

    ERIC Educational Resources Information Center

    Linas, Chris F.

    1988-01-01

    Provides information on the parts, materials, prices, dimensions, and tools needed for the construction of a telescope that can be used in high school science laboratories. Includes step-by-step directions and a diagram for assembly. (RT)

  14. Telescopes and space exploration

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Maran, S. P.

    1982-01-01

    Progress in contemporary astronomy and astrophysics is shown to depend on complementary investigations with sensitive telescopes operating in several wavelength regions, some of which can be on the Earth's surface and others of which must be in space.

  15. Single lens laser beam shaper

    DOEpatents

    Liu, Chuyu; Zhang, Shukui

    2011-10-04

    A single lens bullet-shaped laser beam shaper capable of redistributing an arbitrary beam profile into any desired output profile comprising a unitary lens comprising: a convex front input surface defining a focal point and a flat output portion at the focal point; and b) a cylindrical core portion having a flat input surface coincident with the flat output portion of the first input portion at the focal point and a convex rear output surface remote from the convex front input surface.

  16. Large Binocular Telescope Project

    NASA Astrophysics Data System (ADS)

    Hill, John M.

    1997-03-01

    The large binocular telescope (LBT) project have evolved from concepts first proposed in 1985. The present partners involved in the design and construction of this 2 by 8.4 meter binocular telescope are the University of Arizona, Italy represented by the Osservatorio Astrofisico di Arcetri and the Research Corporation based in Tucson, Arizona. These three partners have committed sufficient funds to build the enclosure and the telescope populated with a single 8.4 meter optical train -- approximately 40 million dollars (1989). Based on this commitment, design and construction activities are now moving forward. Additional partners are being sought. The next mirror to be cast at the Steward Observatory Mirror Lab in the fall of 1996 will be the first borosilicate honeycomb primary for LBT. The baseline optical configuration of LBT includes wide field Cassegrain secondaries with optical foci above the primaries to provide a corrected one degree field at F/4. The infrared F/15 secondaries are a Gregorian design to allow maximum flexibility for adaptive optics. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of-view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage two folded Gregorian focal planes to a central location. The telescope elevation structure accommodates swing arms which allow rapid interchange of the various secondary and tertiary mirrors. Maximum stiffness and minimal thermal disturbance continue to be important drivers for the detailed design of the telescope. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The detailed design of the telescope structure will be completed in 1996 by ADS Italia (Lecco) and European Industrial Engineering (Mestre). The final enclosure design is now in progress at M3 Engineering (Tucson), EIE and ADS Italia

  17. Hubble Space Telescope Configuration

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This image illustrates the overall Hubble Space Telescope (HST) configuration. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  18. Optical tracking telescope compensation

    NASA Technical Reports Server (NTRS)

    Gilbart, J. W.

    1973-01-01

    In order to minimize the effects of parameter variations in the dynamics of an optical tracking telescope, a model referenced parameter adaptive control system is described that - in conjunction with more traditional forms of compensation - achieves a reduction of rms pointing error by more than a factor of six. The adaptive compensation system utilizes open loop compensation, closed loop compensation, and model reference compensation to provide the precise input to force telescope axis velocity to follow the ideal velocity.

  19. LISA Telescope Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Krebs, Carolyn (Technical Monitor)

    2002-01-01

    The Laser Interferometer Space Antenna (LISA) for the detection of Gravitational Waves is a very long baseline interferometer which will measure the changes in the distance of a five million kilometer arm to picometer accuracies. As with any optical system, even one with such very large separations between the transmitting and receiving, telescopes, a sensitivity analysis should be performed to see how, in this case, the far field phase varies when the telescope parameters change as a result of small temperature changes.

  20. An early lunar-based telescope - The Lunar Transit Telescope (LTT)

    NASA Technical Reports Server (NTRS)

    Mcgraw, John T.

    1990-01-01

    The first telescope accompanying return to the moon, a simple but elegant two meter class instrument capable of producing an extraordinary survey of the universe is proposed. This telescope produces a deep image of the sky obtained simultaneously in several broad bandpasses in the wavelength range from about 0.1 to 2 microns, with diffraction limited imaging in the infrared and approximately 0.1 arcsec resolution at shorter wavelengths. In an 18.6 year mission, the survey would include approximately 2 percent of the sky with multiple observations of all the surveyed area. This survey is accomplished with a telescope which has no moving parts and requires no continuing support beyond initial deployment.

  1. Bringing Perfect Vision to the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Matijevich, Russ; Johansson, Erik; Johnson, Luke; Cavaco, Jeff; National Solar Observatory

    2016-01-01

    The world's largest ground-based solar telescope is one step closer to operation with the acceptance of the deformable mirror engineered by AOA Xinetics, a Northrop Grumman Corporation company. The Daniel K. Inouye Solar Telescope (DKIST), currently under construction in Haleakala, Hawaii, will offer unprecedented high-resolution images of the sun using the latest adaptive optics technology to provide its distortion-free imaging.Led by the National Solar Observatory (NSO) and the Association of Universities for Research in Astronomy (AURA), the Inouye Solar Telescope will help scientists better understand how magnetic fields affect the physical properties of the Sun, what roles they play in our solar system and how they affect Earth.Ground-based telescopes, whether observing the sun or the night sky must contend with atmospheric turbulence that acts as a flexible lens, constantly reshaping observed images. This turbulence makes research on solar activity difficult and drives the need for the latest adaptive optics technology.To provide DKIST with the distortion-free imaging it requires, AOA Xinetics designed a deformable mirror with 1,600 actuators, four times the normal actuator density. This deformable mirror (DM) is instrumental in removing all of the atmospheric blurriness that would otherwise limit the telescope's performance. The mirror also has an internal thermal management system to handle the intense solar energy coming from DKIST's telescope. This poster provides the history behind this incredible success story.

  2. COSMOLOGY FROM GRAVITATIONAL LENS TIME DELAYS AND PLANCK DATA

    SciTech Connect

    Suyu, S. H.; Treu, T.; Sonnenfeld, A.; Hilbert, S.; Spiniello, C.; Auger, M. W.; Collett, T.; Blandford, R. D.; Marshall, P. J.; Courbin, F.; Meylan, G.; Tewes, M.; Fassnacht, C. D.; Koopmans, L. V. E.

    2014-06-20

    Under the assumption of a flat ΛCDM cosmology, recent data from the Planck satellite point toward a Hubble constant that is in tension with that measured by gravitational lens time delays and by the local distance ladder. Prosaically, this difference could arise from unknown systematic uncertainties in some of the measurements. More interestingly—if systematics were ruled out—resolving the tension would require a departure from the flat ΛCDM cosmology, introducing, for example, a modest amount of spatial curvature, or a non-trivial dark energy equation of state. To begin to address these issues, we present an analysis of the gravitational lens RXJ1131–1231 that is improved in one particular regard: we examine the issue of systematic error introduced by an assumed lens model density profile. We use more flexible gravitational lens models with baryonic and dark matter components, and find that the exquisite Hubble Space Telescope image with thousands of intensity pixels in the Einstein ring and the stellar velocity dispersion of the lens contain sufficient information to constrain these more flexible models. The total uncertainty on the time-delay distance is 6.6% for a single system. We proceed to combine our improved time-delay distance measurement with the WMAP9 and Planck posteriors. In an open ΛCDM model, the data for RXJ1131–1231 in combination with Planck favor a flat universe with Ω{sub k}=0.00{sub −0.02}{sup +0.01} (68% credible interval (CI)). In a flat wCDM model, the combination of RXJ1131–1231 and Planck yields w=−1.52{sub −0.20}{sup +0.19} (68% CI)

  3. FESDIF -- Finite Element Scalar Diffraction theory code

    SciTech Connect

    Kraus, H.G.

    1992-09-01

    This document describes the theory and use of a powerful scalar diffraction theory based computer code for calculation of intensity fields due to diffraction of optical waves by two-dimensional planar apertures and lenses. This code is called FESDIF (Finite Element Scalar Diffraction). It is based upon both Fraunhofer and Kirchhoff scalar diffraction theories. Simplified routines for circular apertures are included. However, the real power of the code comes from its basis in finite element methods. These methods allow the diffracting aperture to be virtually any geometric shape, including the various secondary aperture obstructions present in telescope systems. Aperture functions, with virtually any phase and amplitude variations, are allowed in the aperture openings. Step change aperture functions are accommodated. The incident waves are considered to be monochromatic. Plane waves, spherical waves, or Gaussian laser beams may be incident upon the apertures. Both area and line integral transformations were developed for the finite element based diffraction transformations. There is some loss of aperture function generality in the line integral transformations which are typically many times more computationally efficient than the area integral transformations when applicable to a particular problem.

  4. Diffraction Effects in a Grating Spectrometer

    NASA Technical Reports Server (NTRS)

    Haas, Michael R.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    This paper describes a numerical study of diffraction effects in the AIRES optical system using GLAD by Applied Optics Research. AIRES (or Airborne Infrared Echelle Spectrometer) employs two gratings in series. The small, first-order (i.e., predisperser) grating sorts orders for the large, high-order echelle grating, thus providing moderately high spectral resolution over 3.6 octaves in wavelength. The AIRES' optical design includes three field stops (i.e., a circular aperture and two long, narrow slits) and four pupil stops. A detailed diffraction analysis is required to evaluate critical trade-offs between spectral resolution, optical throughput, detector background, scattered light, and system size and weight. Such an analysis must consider diffraction effects at the pupil stops (edge diffraction), at the field stops (spatial filtering), and at intermediate positions where other optical elements are located. The effects of slit width, slit length, oversizing of the second slit relative to the first, baffling at the Lyot stop and subsequent pupil stops, and the necessity for oversizing other optical elements are presented and discussed. It is found that for narrow slits, the downstream energy distribution is significantly broadened relative to that for large slits, where telescope diffraction dominates, leading to significantly more light loss than anticipated, unless other key optical elements are oversized. The importance of performing a proper diffraction analysis is emphasized and the suitability of GLAD for this task is discussed.

  5. Energy Efficiency of a New Trifocal Intraocular Lens

    NASA Astrophysics Data System (ADS)

    Vega, F.; Alba-Bueno, F.; Millán, M. S.

    2014-01-01

    The light distribution among the far, intermediate and near foci of a new trifocal intraocular lens (IOL) is experimentally determined, as a function of the pupil size, from image analysis. The concept of focus energy efficiency is introduced because, in addition to the theoretical diffraction efficiency of the focus, it accounts for other factors that are naturally presented in the human eye such as the level of spherical aberration (SA) upon the IOL, light scattering at the diffractive steps or the depth of focus. The trifocal IOL is tested in-vitro in two eye models: the aberration-free ISO model, and a so called modified-ISO one that uses an artificial cornea with positive spherical SA in instead. The SA upon the IOL is measured with a Hartmann-Shack sensor and compared to the values of theoretical eye models. The results show, for large pupils, a notorious reduction of the energy efficiency of the far and near foci of the trifocal IOL due to two facts: the level of SA upon the IOL is larger than the value the lens is able to compensate for and there is significant light scattering at the diffractive steps. On the other hand, the energy efficiency of the intermediate focus for small pupils is enhanced by the contribution of the extended depth of focus of the near and far foci. Thus, while IOLs manufacturers tend to provide just the theoretical diffraction efficiency of the foci to show which would be the performance of the lens in terms of light distribution among the foci, our results put into evidence that this is better described by using the energy efficiency of the foci.

  6. Optical design of zero-power Hubble Space Telescope wave-front correctors for null testing.

    PubMed

    Hannan, P G; Davila, P; Wood, H J

    1993-04-01

    The optical design of the second-generation wide-field/planetary-camera instrument for the Hubble Space Telescope has been modified to compensate for the spherical aberration of the optical telescope assembly (OTA) by introduction of undercorrected spherical aberration into the wave front. This instrument can be tested in a simple manner to ensure that its aberration contribution has the proper sign and magnitude. We present designs for a near-zero power doublet lens that can be used to generate a spherically aberrated wave front that is similar to the OTA wave front. When this lens is used in combination with the instrument, a near-perfect or nulled wave front should be produced, resulting in a high-quality point image on axis. We also present lens designs for a similar test that can be performed on the OTA simulators now being built to verify the other second-generation instruments. PMID:20820311

  7. The Multiple-Mirror Telescope

    ERIC Educational Resources Information Center

    Carleton, Nathaniel P.; Hoffmann, William F.

    1978-01-01

    Describes the basic design and principle of operating an optical-infrared telescope, the MMT. This third largest telescope in the world represents a new stage in telescope design; it uses a cluster of six reflecting telescopes, and relies on an automatic sensing and control system. (GA)

  8. Cosmic Lens Reveals Distant Galactic Violence

    NASA Astrophysics Data System (ADS)

    2008-10-01

    By cleverly unraveling the workings of a natural cosmic lens, astronomers have gained a rare glimpse of the violent assembly of a young galaxy in the early Universe. Their new picture suggests that the galaxy has collided with another, feeding a supermassive black hole and triggering a tremendous burst of star formation. Gravitational Lens Diagram Imaging a Distant Galaxy Using a Gravitational Lens CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for details and more graphics. The astronomers used the National Science Foundation's Very Large Array (VLA) radio telescope to look at a galaxy more than 12 billion light-years from Earth, seen as it was when the Universe was only about 15 percent of its current age. Between this galaxy and Earth lies another distant galaxy, so perfectly aligned along the line of sight that its gravity bends the light and radio waves from the farther object into a circle, or "Einstein Ring." This gravitational lens made it possible for the scientists to learn details of the young, distant galaxy that would have been unobtainable otherwise. "Nature provided us with a magnifying glass to peer into the workings of a nascent galaxy, providing an exciting look at the violent, messy process of building galaxies in the early history of the Universe," said Dominik Riechers, who led this project at the Max Planck Institute for Astronomy in Germany and now is a Hubble Fellow at the California Institute of Technology (Caltech). The new picture of the distant galaxy, dubbed PSS J2322+1944, shows a massive reservoir of gas, 16,000 light-years in diameter, that contains the raw material for building new stars. A supermassive black hole is voraciously eating material, and new stars are being born at the rate of nearly 700 Suns per year. By comparison, our Milky Way Galaxy produces the equivalent of about 3-4 Suns per year. The black hole appears to be near the edge, rather than at the center, of the giant gas reservoir, indicating, the astronomers say

  9. The 4-meter lunar engineering telescope

    NASA Technical Reports Server (NTRS)

    Peacock, Keith; Giannini, Judith A.; Kilgus, Charles C.; Bely, Pierre Y.; May, B. Scott; Cooper, Shannon A.; Schlimm, Gerard H.; Sounder, Charles; Ormond, Karen; Cheek, Eric

    1991-01-01

    The 16-meter diffraction limited lunar telescope incorporates a primary mirror with 312 one-meter segments; 3 nanometer active optics surface control with laser metrology and hexapod positioners; a space frame structure with one-millimeter stability; and a hexapod mount for pointing. The design data needed to limit risk in this development can be obtained by building a smaller engineering telescope on the moon with all of the features of the 16-meter design. This paper presents a 4.33-meter engineering telescope concept developed by the Summer 1990 Student Program of the NASA/JHU Space Grant Consortium Lunar Telescope Project. The primary mirror, made up of 18 one-meter hexagonal segments, is sized to provide interesting science as well as engineering data. The optics are configured as a Ritchey-Chretien with a coude relay to the focal plane beneath the surface. The optical path is continuously monitored with 3-nanometer precision interferometrically. An active optics processor and piezoelectric actuators operate to maintain the end-to-end optical configuration established by wave front sensing using a guide star. The mirror segments, consisting of a one-centimeter thick faceplate on 30-cm deep ribs, maintain the surface figure to a few nanometers under lunar gravity and thermal environment.

  10. Scattering of an electromagnetic plane wave by a Luneburg lens. II. Wave theory.

    PubMed

    Lock, James A

    2008-12-01

    The partial wave scattering and interior amplitudes for the interaction of an electromagnetic plane wave with a modified Luneburg lens are derived in terms of the exterior and interior radial functions of the scalar radiation potentials evaluated at the lens surface. A Debye series decomposition of these amplitudes is also performed and discussed. The effective potential inside the lens for the transverse electric polarization is qualitatively examined, and the approximate lens size parameters of morphology-dependent resonances are determined. Finally, the physical optics model is used to calculate wave scattering in the vicinity of the ray theory orbiting condition in order to demonstrate the smoothing of ray theory discontinuities by the diffraction of scattered waves. PMID:19037389

  11. Research progress of wavefront aberration metrology equipment of lithography projection lens

    NASA Astrophysics Data System (ADS)

    Yu, Changsong; Xiang, Yang

    2012-10-01

    The wavefront aberration of lithography projection lens is very important performance parameter. High-accuracy interferometer is a cornerstone requirement for the success of projection lithography lens. Recent development of the international high-accuracy wavefront aberration metrology technology of projection lens is described. Several high-accuracy measurement methods based on phase measurement interferometry (PMI) principle of lens wavefront aberrations are analyzed and compared and the merits and demerits of these measurement methods are also discussed. The dominating test technology types of mainstream companies and research organizations as well as their performance parameters are reviewed. Moreover, the performance and key technologies of point diffraction interferometer (PDI) and lateral shearing interferometer (LSI) are emphatically analyzed. Finally, the trend of high-precision system wavefront aberration test technique is described.

  12. The South Pole Telescope

    SciTech Connect

    Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.; Cho, H.M.; Crawford,T.; Dobbs, M.; Greer, C.H.; Halverson, N.W.; Holzapfel, W.L.; Lanting,T.M.; Lee, A.T.; Leitch, E.M.; Leong, J.; Lu, W.; Lueker, M.; Mehl, J.; Meyer, S.S.; Mohr, J.J.; Padin, S.; Plagge, T.; Pryke, C.; Runyan, M.C.; Schwan, D.; Sharp, M.K.; Spieler, H.; Staniszewski, Z.; Stark, A.A.

    2004-11-04

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.

  13. Monolithic afocal telescope

    NASA Technical Reports Server (NTRS)

    Roberts, William T. (Inventor)

    2010-01-01

    An afocal monolithic optical element formed of a shallow cylinder of optical material (glass, polymer, etc.) with fast aspheric surfaces, nominally confocal paraboloids, configured on the front and back surfaces. The front surface is substantially planar, and this lends itself to deposition of multi-layer stacks of thin dielectric and metal films to create a filter for rejecting out-of-band light. However, an aspheric section (for example, a paraboloid) can either be ground into a small area of this surface (for a Cassegrain-type telescope) or attached to the planar surface (for a Gregorian-type telescope). This aspheric section of the surface is then silvered to create the telescope's secondary mirror. The rear surface of the cylinder is figured into a steep, convex asphere (again, a paraboloid in the examples), and also made reflective to form the telescope's primary mirror. A small section of the rear surface (approximately the size of the secondary obscuration, depending on the required field of the telescope) is ground flat to provide an unpowered surface through which the collimated light beam can exit the optical element. This portion of the rear surface is made to transmit the light concentrated by the reflective surfaces, and can support the deposition of a spectral filter.

  14. The Travelling Telescope

    NASA Astrophysics Data System (ADS)

    Murabona Oduori, Susan

    2015-08-01

    The telescope has been around for more than 400 years, and through good use of it scientists have made many astonishing discoveries and begun to understand our place in the universe. Most people, however, have never looked through one. Yet it is a great tool for cool science and observation especially in a continent and country with beautifully dark skies. The Travelling Telescope project aims to invite people outside under the stars to learn about those curious lights in the sky.The Travelling Telescope aims to promote science learning to a wide range of Kenyan schools in various locations exchanging knowledge about the sky through direct observations of celestial bodies using state of the art telescopes. In addition to direct observing we also teach science using various hands-on activities and astronomy software, ideal for explaining concepts which are hard to understand, and for a better grasp of the sights visible through the telescope. We are dedicated to promoting science using astronomy especially in schools, targeting children from as young as 3 years to the youth, teachers, their parents and members of the public. Our presentation focuses on the OAD funded project in rural coastal Kenya.

  15. Spectroradiometry with space telescopes

    NASA Astrophysics Data System (ADS)

    Pauluhn, Anuschka; Huber, Martin C. E.; Smith, Peter L.; Colina, Luis

    2015-12-01

    Radiometry, i.e. measuring the power of electromagnetic radiation—hitherto often referred to as "photometry"—is of fundamental importance in astronomy. We provide an overview of how to achieve a valid laboratory calibration of space telescopes and discuss ways to reliably extend this calibration to the spectroscopic telescope's performance in space. A lot of effort has been, and still is going into radiometric "calibration" of telescopes once they are in space; these methods use celestial primary and transfer standards and are based in part on stellar models. The history of the calibration of the Hubble Space Telescope serves as a platform to review these methods. However, we insist that a true calibration of spectroscopic space telescopes must directly be based on and traceable to laboratory standards, and thus be independent of the observations. This has recently become a well-supported aim, following the discovery of the acceleration of the cosmic expansion by use of type-Ia supernovae, and has led to plans for launching calibration rockets for the visible and infrared spectral range. This is timely, too, because an adequate exploitation of data from present space missions, such as Gaia, and from many current astronomical projects like Euclid and WFIRST demands higher radiometric accuracy than is generally available today. A survey of the calibration of instruments observing from the X-ray to the infrared spectral domains that include instrument- or mission-specific estimates of radiometric accuracies rounds off this review.

  16. Telescope Adaptive Optics Code

    Energy Science and Technology Software Center (ESTSC)

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The defaultmore » parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST« less

  17. Compact infrared zoom lens for the 3- to 5-μm spectral band

    NASA Astrophysics Data System (ADS)

    Johnson, R. Barry; Mann, Allen; Reardon, Patrick J.; Peters, Bruce R.

    1996-06-01

    The results of a comprehensive design study for the development of a compact infrared zoom lens suitable for use in guided munitions are discussed. The continuously variable zoom of the lens offers significant operational performance benefits to weapon systems using fixed or switchable FOV optics. Two practical zoom lens systems were designed that showed potential to meet typical guided munitions system requirements by utilizing in the first system conventional surfaces and a combination of conventional and diffractive surfaces in the second system. Significant weight savings, enhanced optical performance, and excellent athermalization over conventional lenses were realized. The optical performance over the entire 4:1 zoom range and 5-20 degrees field-of-view is near-diffraction limit while maintaining a constant F-number.

  18. Residual Stresses in LENS-Deposited AISI 410 Stainless Steel Plates

    SciTech Connect

    Wang, L; Felicellli, S D; Pratt, Phillip R

    2008-01-01

    The residual stress in thin plate components deposited by the laser engineered net shaping (LENS{reg_sign}) process was investigated experimentally and numerically. Neutron diffraction mapping was used to characterize the residual stress in LENS-deposited AISI 410 stainless steel thin wall plates. Using the commercial welding software SYSWELD, a thermo-mechanical three-dimensional finite element model was developed, which considers also the effect of metallurgical phase transformations. The model was employed to predict the temperature history and the residual stress field during the LENS process. Several simulations were performed with the geometry and process parameters that were used to build the experimental samples. The origin of the residual stress distribution is discussed based on the thermal histories of the samples, and the modeling results are compared with measurements obtained by neutron diffraction mapping.

  19. Optical design of an astrometric space telescope

    NASA Astrophysics Data System (ADS)

    Richardson, E. H.; Morbey, C. L.

    1986-01-01

    A three-mirror telescope derived from the Paul corrector is described. It differs from the original Paul design in several respects. (1) The third mirror is located behind the primary mirror instead of in front of it. (2) The telescope is made off-axis so that there is no central obstruction, thus avoiding the extension and asymmetry of the diffraction pattern caused by the spiders holding an on-axis secondary mirror. (3) Baffling is not a problem as it is with the usual Paul design. The focal surface is flat where a moving ronchi grating is located. This is the first element in the astrometric analyzer. A real image of the pupil is produced behind the focus. This is helpful in the design of relay optics (not described) which reimage the grating onto a CCD.

  20. High resolution telescope including an array of elemental telescopes aligned along a common axis and supported on a space frame with a pivot at its geometric center

    DOEpatents

    Norbert, Massie A.; Yale, Oster

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employes speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by a electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activities. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  1. High resolution telescope including an array of elemental telescopes aligned along a common axis and supported on a space frame with a pivot at its geometric center

    DOEpatents

    Norbert, M.A.; Yale, O.

    1992-04-28

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employes speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by a electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activities. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes. 15 figs.

  2. Design of compact apochromatic lens with very-broad spectrum and high resolution

    NASA Astrophysics Data System (ADS)

    Yan, Aqi; Cao, Jianzhong; Zhang, Jian; Zhang, Zhi; Wang, Hao; Wu, Dengshan; Zhou, Zuofeng; Zhang, Kaisheng; Lei, Yangjie

    2013-09-01

    This paper designs a compact apochromatic lens with long focal length, which operates over very-broad spectrum from 400nm to 900nm for high resolution image application. The focal length is 290mm, and F-number is 4.5.In order to match CCD sensor, lens resolution must be higher than 100lp/mm. It is a significant challenge to correct secondary spectrum over very-broad spectrum for this application. The paper firstly pays much attention on dispersion characteristic of optical materials over this very-broad spectrum, and dispersion characteristic of glasses is analyzed. After properly glasses combinations and optimal lens structure selected, this compact apochromatic lens is designed. The lens described in this paper comprises fewer lenses, most of them are ordinary optical materials, and only one special flint type TF3 with anomalous dispersion properties is used for secondary spectrum correction. Finally, the paper shows MTF and aberration curve for performance evaluation. It can be seen that MTF of the designed lens nearly reach diffraction limit at Nyquist frequency 100lp/mm, and residual secondary spectrum is greatly reduced to less than 0.03mm (in the lines 550nm and 787.5nm). The overall length of this compact apochromatic lens is just 0.76 times its focal length, and because of fewer lenses and ordinary optical materials widely used, production cost is also greatly reduced.

  3. Design of double-group IR zoom lens

    NASA Astrophysics Data System (ADS)

    Wang, Nanxi; Zhang, Bo; Jiang, Xiaobai; Li, Yuan; Kang, Wenli; He, Yulan; Qiang, Hua

    2015-10-01

    A 15× double-group linkage zoom lens was presented based on the 640×512 cooled FPA. Having two alternate components linked and moved together, double-group zoom structure has smoother cam curve, so the displacement of all components are smaller and the total length is shorter. The focal length rang is 30~450mm and wavelength is 3.7~4.8μm, F number is 4. This lens was placed at cold shield and 100% cold shield efficiency had reached. Moreover, detailed design and image quality were given by CODE V® optical software. After analysis, MTF approaches diffraction limit. The results show that this optical system has large zoom ratio, and excellent image quality.

  4. A broadband terahertz ultrathin multi-focus lens

    PubMed Central

    He, Jingwen; Ye, Jiasheng; Wang, Xinke; Kan, Qiang; Zhang, Yan

    2016-01-01

    Ultrathin transmission metasurface devices are designed on the basis of the Yang-Gu amplitude-phase retrieval algorithm for focusing the terahertz (THz) radiation into four or nine spots with focal spacing of 2 or 3 mm at a frequency of 0.8 THz. The focal properties are experimentally investigated in detail, and the results agree well with the theoretical expectations. The designed THz multi-focus lens (TMFL) demonstrates a good focusing function over a broad frequency range from 0.3 to 1.1 THz. As a transmission-type device based on metasurface, the diffraction efficiency of the TMFL can be as high as 33.92% at the designed frequency. The imaging function of the TMFL is also demonstrated experimentally and clear images are obtained. The proposed method produces an ultrathin, low-cost, and broadband multi-focus lens for THz-band application PMID:27346430

  5. A broadband terahertz ultrathin multi-focus lens.

    PubMed

    He, Jingwen; Ye, Jiasheng; Wang, Xinke; Kan, Qiang; Zhang, Yan

    2016-01-01

    Ultrathin transmission metasurface devices are designed on the basis of the Yang-Gu amplitude-phase retrieval algorithm for focusing the terahertz (THz) radiation into four or nine spots with focal spacing of 2 or 3 mm at a frequency of 0.8 THz. The focal properties are experimentally investigated in detail, and the results agree well with the theoretical expectations. The designed THz multi-focus lens (TMFL) demonstrates a good focusing function over a broad frequency range from 0.3 to 1.1 THz. As a transmission-type device based on metasurface, the diffraction efficiency of the TMFL can be as high as 33.92% at the designed frequency. The imaging function of the TMFL is also demonstrated experimentally and clear images are obtained. The proposed method produces an ultrathin, low-cost, and broadband multi-focus lens for THz-band application. PMID:27346430

  6. Subdiffraction-limited focusing lens.

    PubMed

    Davis, J A; Cottrell, D M; Maley, C A; Crivello, M R

    1994-07-01

    We describe techniques for making a diffractive optical element that produces a subdiffraction-limited spot size. We provide experimental verification, using a diffraction optical element that is constructed on a magneto-optic spatial light modulator. PMID:20935762

  7. Automated Micro-Object Detection for Mobile Diagnostics Using Lens-Free Imaging Technology.

    PubMed

    Roy, Mohendra; Seo, Dongmin; Oh, Sangwoo; Chae, Yeonghun; Nam, Myung-Hyun; Seo, Sungkyu

    2016-01-01

    Lens-free imaging technology has been extensively used recently for microparticle and biological cell analysis because of its high throughput, low cost, and simple and compact arrangement. However, this technology still lacks a dedicated and automated detection system. In this paper, we describe a custom-developed automated micro-object detection method for a lens-free imaging system. In our previous work (Roy et al.), we developed a lens-free imaging system using low-cost components. This system was used to generate and capture the diffraction patterns of micro-objects and a global threshold was used to locate the diffraction patterns. In this work we used the same setup to develop an improved automated detection and analysis algorithm based on adaptive threshold and clustering of signals. For this purpose images from the lens-free system were then used to understand the features and characteristics of the diffraction patterns of several types of samples. On the basis of this information, we custom-developed an automated algorithm for the lens-free imaging system. Next, all the lens-free images were processed using this custom-developed automated algorithm. The performance of this approach was evaluated by comparing the counting results with standard optical microscope results. We evaluated the counting results for polystyrene microbeads, red blood cells, and HepG2, HeLa, and MCF7 cells. The comparison shows good agreement between the systems, with a correlation coefficient of 0.91 and linearity slope of 0.877. We also evaluated the automated size profiles of the microparticle samples. This Wi-Fi-enabled lens-free imaging system, along with the dedicated software, possesses great potential for telemedicine applications in resource-limited settings. PMID:27164146

  8. Automated Micro-Object Detection for Mobile Diagnostics Using Lens-Free Imaging Technology

    PubMed Central

    Roy, Mohendra; Seo, Dongmin; Oh, Sangwoo; Chae, Yeonghun; Nam, Myung-Hyun; Seo, Sungkyu

    2016-01-01

    Lens-free imaging technology has been extensively used recently for microparticle and biological cell analysis because of its high throughput, low cost, and simple and compact arrangement. However, this technology still lacks a dedicated and automated detection system. In this paper, we describe a custom-developed automated micro-object detection method for a lens-free imaging system. In our previous work (Roy et al.), we developed a lens-free imaging system using low-cost components. This system was used to generate and capture the diffraction patterns of micro-objects and a global threshold was used to locate the diffraction patterns. In this work we used the same setup to develop an improved automated detection and analysis algorithm based on adaptive threshold and clustering of signals. For this purpose images from the lens-free system were then used to understand the features and characteristics of the diffraction patterns of several types of samples. On the basis of this information, we custom-developed an automated algorithm for the lens-free imaging system. Next, all the lens-free images were processed using this custom-developed automated algorithm. The performance of this approach was evaluated by comparing the counting results with standard optical microscope results. We evaluated the counting results for polystyrene microbeads, red blood cells, HepG2, HeLa, and MCF7 cells lines. The comparison shows good agreement between the systems, with a correlation coefficient of 0.91 and linearity slope of 0.877. We also evaluated the automated size profiles of the microparticle samples. This Wi-Fi-enabled lens-free imaging system, along with the dedicated software, possesses great potential for telemedicine applications in resource-limited settings. PMID:27164146

  9. Far Sidelobes Measurement of the Atacama Cosmology Telescope

    NASA Technical Reports Server (NTRS)

    Duenner, Rolando; Gallardo, Patricio; Wollack, Ed; Henriquez, Fernando; Jerez-Hanckes, Carlos

    2012-01-01

    The Atacama Cosmology Telescope (ACT) is a 6m telescope designed to map the Cosmic Microwave Background (CMB) simultaneously at 145GHz, 220 GHz and 280 GHz. Its off-axis Gregorian design is intended to minimize and control the off-axis sidelobe response, which is critical for scientific purposes. The expected sidelobe level for this kind of design is less than -50 dB and can be challenging to measure. Here we present a measurement of the 145 GHz far sidelobes of ACT done on the near-field of the telescope. We used a 1 mW microwave source placed 13 meters away from the telescope and a chopper wheel to produce a varying signal that could be detected by the camera for different orientations of the telescope. The source feed was designed to produce a wide beam profile. Given that the coupling is expected to be dominated by diffraction over the telescope shielding structure, when combined with a measurements of the main beam far field response, these measurement can be used to validate elements of optical design and constrain the level of spurious coupling at large angles. Our results show that the diffractive coupling beyond the ground screen is consistently below -75 dB, satisfying the design expectations.

  10. Infrared Observations from the New Solar Telescope at Big Bear

    NASA Astrophysics Data System (ADS)

    Goode, Philip R.; Cao, Wenda

    2013-10-01

    The 1.6 m clear aperture solar telescope in Big Bear is operational and with its adaptive optics (AO) system it provides diffraction limited solar imaging and polarimetry in the near-infrared (NIR). While the AO system is being upgraded to provide diffraction limited imaging at bluer wavelengths, the instrumentation and observations are concentrated in the NIR. The New Solar Telescope (NST) operates in campaigns, making it the ideal ground-based telescope to provide complementary/supplementary data to SDO and Hinode. The NST makes photometric observations in Hα (656.3 nm) and TiO (705.6 nm) among other lines. As well, the NST collects vector magnetograms in the 1565 nm lines and is beginning such observations in 1083.0 nm. Here we discuss the relevant NST instruments, including AO, and present some results that are germane to NASA solar missions.

  11. Scanning afocal laser velocimeter projection lens system

    NASA Technical Reports Server (NTRS)

    Rhodes, D. B. (Inventor)

    1982-01-01

    A method and apparatus for projecting and focusing parallel laser light beams from a laser doppler velocimeter on a target area are described. The system includes three lenses. Two lenses work together as a fixed afocal lens combination. The third lens is a movable scanning lens. Parallel laser beams travel from the velocimeter through the scanning lens and through the afocal lens combination and converge, i.e., are focused, somewhere beyond. Moving the scanning lens relative to the fixed afocal combination results in a scanning of the focus area along the afocal combination's optical axis.

  12. Lens Aging: Effects of Crystallins

    PubMed Central

    Sharma, K. Krishna; Santhoshkumar, Puttur

    2009-01-01

    The primary function of the eye lens is to focus light on the retina. The major proteins in the lens—a, b, and g-crystallins—are constantly subjected to age-related changes such as oxidation, deamidation, truncation, glycation, and methylation. Such age-related modifications are cumulative and affect crystallin structure and function. With time, the modified crystallins aggregate, causing the lens to increasingly scatter light on the retina instead of focusing light on it and causing the lens to lose its transparency gradually and become opaque. Age-related lens opacity, or cataract, is the major cause of blindness worldwide. We review deamidation, and glycation that occur in the lenses during aging keeping in mind the structural and functional changes that these modifications bring about in the proteins. In addition, we review proteolysis and discuss recent observations on how crystallin fragments generated in vivo, through their anti-chaperone activity may cause crystallin aggregation in aging lenses. We also review hyperbaric oxygen treatment induced guinea pig and ‘humanized’ ascorbate transporting mouse models as suitable options for studies on age-related changes in lens proteins. PMID:19463898

  13. Delayed accumulation of lens material behind the foldable intraocular lens.

    PubMed

    Bhattacharjee, Harsha; Bhattacharjee, Kasturi; Bhattacharjee, Pankaj

    2007-01-01

    Foldable acrylic intraocular lenses (IOLs) are known to reduce posterior capsule opacification by preventing migration of lens epithelial cells with its square edge design and its property of tackiness. Studies have reported a mean adhesiveness to posterior capsule more than three times higher for certain acrylic foldable IOLs than polymethyl methacrylate IOLs. The authors would like to report two cases where the force of tackiness was compensated, thereby presenting with delayed accumulation of lens material in the capsular bags behind the IOL with temporary loss of vision. PMID:17951912

  14. Delayed accumulation of lens material behind the foldable intraocular lens

    PubMed Central

    Bhattacharjee, Kasturi; Bhattacharjee, Pankaj

    2007-01-01

    Foldable acrylic intraocular lenses (IOLs) are known to reduce posterior capsule opacification by preventing migration of lens epithelial cells with its square edge design and its property of tackiness. Studies have reported a mean adhesiveness to posterior capsule more than three times higher for certain acrylic foldable IOLs than polymethyl methacrylate IOLs. The authors would like to report two cases where the force of tackiness was compensated, thereby presenting with delayed accumulation of lens material in the capsular bags behind the IOL with temporary loss of vision. PMID:17951912

  15. Configurable Aperture Space Telescope

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Bendek, Eduardo

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide straw man mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible and/or UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST

  16. Progress in the Fabrication and Testing of Telescope Mirrors for The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Bowers, Charles W.; Clampin, M.; Feinberg, L.; Keski-Kuha, R.; McKay, A.; Chaney, D.; Gallagher, B.; Ha, K.

    2012-01-01

    The telescope of the James Webb Space Telescope (JWST) is an f/20, three mirror anastigmat design, passively cooled (40K) in an L2 orbit. The design provides diffraction limited performance (Strehl ≥ 0.8) at λ=2μm. To fit within the launch vehicle envelope (Arianne V), the 6.6 meter primary mirror and the secondary mirror support structure are folded for launch, then deployed and aligned in space. The primary mirror is composed of 18 individual, 1.3 meter (flat:flat) hexagonal segments, each adjustable in seven degrees of freedom (six rigid body + radius of curvature) provided by a set of high precision actuators. The actuated secondary mirror ( 0.74m) is similarly positioned in six degrees of rigid body motion. The .70x.51m, fixed tertiary and 0.17m, flat fine steering mirror complete the telescope mirror complement. The telescope is supported by a composite structure optimized for performance at cryogenic temperatures. All telescope mirrors are made of Be with substantial lightweighting (21kg for each 1.3M primary segment). Additional Be mounting and supporting structure for the high precision ( 10nm steps) actuators are attached to the primary segments and secondary mirror. All mirrors undergo a process of thermal stabilization to reduce stress. An extensive series of interferometric measurements guide each step of the polishing process. Final polishing must account for any deformation between the ambient temperature of polishing and the cryogenic, operational temperature. This is accomplished by producing highly precise, cryo deformation target maps of each surface which are incorporated into the final polishing cycle. All flight mirrors have now completed polishing, coating with protected Au and final cryo testing, and the telescope is on track to meet all system requirements. We here review the measured performance of the component mirrors and the predicted performance of the flight telescope.

  17. The Discovery Channel Telescope

    NASA Astrophysics Data System (ADS)

    Millis, R. L.; Dunham, E. W.; Sebring, T. A.; Smith, B. W.; de Kock, M.; Wiecha, O.

    2004-11-01

    The Discovery Channel Telescope (DCT) is a 4.2-m telescope to be built at a new site near Happy Jack, Arizona. The DCT features a large prime focus mosaic CCD camera with a 2-degree-diameter field of view especially designed for surveys of KBOs, Centaurs, NEAs and other moving or time-variable targets. The telescope can be switched quickly to a Ritchey-Chretien configuration for optical/IR spectroscopy or near-IR imaging. This flexibility allows timely follow-up physical studies of high priority objects discovered in survey mode. The ULE (ultra-low-expansion) meniscus primary and secondary mirror blanks for the telescope are currently in fabrication by Corning Glass. Goodrich Aerospace, Vertex RSI, M3 Engineering and Technology Corp., and e2v Technologies have recently completed in-depth conceptual design studies of the optics, mount, enclosure, and mosaic focal plane, respectively. The results of these studies were subjected to a formal design review in July, 2004. Site testing at the 7760-ft altitude Happy Jack site began in 2001. Differential image motion observations from 117 nights since January 1, 2003 gave median seeing of 0.84 arcsec FWHM, and the average of the first quartile was 0.62 arcsec. The National Environmental Policy Act (NEPA) process for securing long-term access to this site on the Coconino National Forest is nearing completion and ground breaking is expected in the spring of 2005. The Discovery Channel Telescope is a project of the Lowell Observatory with major financial support from Discovery Communications, Inc. (DCI). DCI plans ongoing television programming featuring the construction of the telescope and the research ultimately undertaken with the DCT. An additional partner can be accommodated in the project. Interested parties should contact the lead author.

  18. Telescoping tube assembly

    NASA Technical Reports Server (NTRS)

    Sturm, Albert J. (Inventor); Marrinan, Thomas E. (Inventor)

    1995-01-01

    An extensible and retractable telescoping tube positions test devices that inspect large stationary objects. The tube has three dimensional adjustment capabilities and is vertically suspended from a frame. The tube sections are independently supported with each section comprising U-shaped housing secured to a thicker support plate. Guide mechanisms preferably mounted only to the thicker plates guide each tube section parallel to a reference axis with improved accuracy so that the position of the remote end of the telescoping tube is precisely known.

  19. Virtual Telescopes in Education

    NASA Astrophysics Data System (ADS)

    Hoban, S.; Des Jardins, M.; Farrell, N.; Rathod, P.; Sachs, J.; Sansare, S.; Yesha, Y.; Keating, J.; Busschots, B.; Means, J.; Clark, G.; Mayo, L.; Smith, W.

    Virtual Telescopes in Education is providing the services required to operate a virtual observatory comprising distributed telescopes, including an interactive, constraint-based scheduling service, data and resource archive, proposal preparation and review environment, and a VTIE Journal. A major goal of VTIE is to elicit from learners questions about the nature of celestial objects and the physical processes that give rise to the spectacular imagery that catches their imaginations. Generation of constrained science questions will assist learners in the science process. To achieve interoperability with other NSDL resources, our approach follows the Open Archives Initiative and the W3C Semantic Web activity.

  20. SPACE WARPS- II. New gravitational lens candidates from the CFHTLS discovered through citizen science

    NASA Astrophysics Data System (ADS)

    More, Anupreeta; Verma, Aprajita; Marshall, Philip J.; More, Surhud; Baeten, Elisabeth; Wilcox, Julianne; Macmillan, Christine; Cornen, Claude; Kapadia, Amit; Parrish, Michael; Snyder, Chris; Davis, Christopher P.; Gavazzi, Raphael; Lintott, Chris J.; Simpson, Robert; Miller, David; Smith, Arfon M.; Paget, Edward; Saha, Prasenjit; Küng, Rafael; Collett, Thomas E.

    2016-01-01

    We report the discovery of 29 promising (and 59 total) new lens candidates from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) based on about 11 million classifications performed by citizen scientists as part of the first SPACE WARPS lens search. The goal of the blind lens search was to identify lens candidates missed by robots (the RINGFINDER on galaxy scales and ARCFINDER on group/cluster scales) which had been previously used to mine the CFHTLS for lenses. We compare some properties of the samples detected by these algorithms to the SPACE WARPS sample and find them to be broadly similar. The image separation distribution calculated from the SPACE WARPS sample shows that previous constraints on the average density profile of lens galaxies are robust. SPACE WARPS recovers about 65 per cent of known lenses, while the new candidates show a richer variety compared to those found by the two robots. This detection rate could be increased to 80 per cent by only using classifications performed by expert volunteers (albeit at the cost of a lower purity), indicating that the training and performance calibration of the citizen scientists is very important for the success of SPACE WARPS. In this work we present the SIMCT pipeline, used for generating in situ a sample of realistic simulated lensed images. This training sample, along with the false positives identified during the search, has a legacy value for testing future lens-finding algorithms. We make the pipeline and the training set publicly available.

  1. Planar immersion lens with metasurfaces

    NASA Astrophysics Data System (ADS)

    Ho, John S.; Qiu, Brynan; Tanabe, Yuji; Yeh, Alexander J.; Fan, Shanhui; Poon, Ada S. Y.

    2015-03-01

    The solid immersion lens is a powerful optical tool that allows light entering material from air or a vacuum to focus to a spot much smaller than the free-space wavelength. Conventionally, however, the lenses rely on semispherical topographies and are nonplanar and bulky, which limits their integration in many applications. Recently, there has been considerable interest in using planar structures, referred to as metasurfaces, to construct flat optical components for manipulating light in unusual ways. Here, we propose and demonstrate the concept of a planar immersion lens based on metasurfaces. The resulting planar device, when placed near an interface between air and dielectric material, can focus electromagnetic radiation incident from air to a spot in the material smaller than the free-space wavelength. As an experimental demonstration, we fabricate an ultrathin and flexible microwave lens and further show that it achieves wireless energy transfer in material mimicking biological tissue.

  2. Automated Fresnel lens tester system

    SciTech Connect

    Phipps, G.S.

    1981-07-01

    An automated data collection system controlled by a desktop computer has been developed for testing Fresnel concentrators (lenses) intended for solar energy applications. The system maps the two-dimensional irradiance pattern (image) formed in a plane parallel to the lens, whereas the lens and detector assembly track the sun. A point detector silicon diode (0.5-mm-dia active area) measures the irradiance at each point of an operator-defined rectilinear grid of data positions. Comparison with a second detector measuring solar insolation levels results in solar concentration ratios over the image plane. Summation of image plane energies allows calculation of lens efficiencies for various solar cell sizes. Various graphical plots of concentration ratio data help to visualize energy distribution patterns.

  3. A Prototype Antifungal Contact Lens

    PubMed Central

    Ciolino, Joseph B.; Hudson, Sarah P.; Mobbs, Ashley N.; Hoare, Todd R.; Iwata, Naomi G.; Fink, Gerald R.

    2011-01-01

    Purpose. To design a contact lens to treat and prevent fungal ocular infections. Methods. Curved contact lenses were created by encapsulating econazole-impregnated poly(lactic-co-glycolic) acid (PLGA) films in poly(hydroxyethyl methacrylate) (pHEMA) by ultraviolet photopolymerization. Release studies were conducted in phosphate-buffered saline at 37°C with continuous shaking. The contact lenses and their release media were tested in an antifungal assay against Candida albicans. Cross sections of the pre- and postrelease contact lenses were characterized by scanning electron microscopy and by Raman spectroscopy. Results. Econazole-eluting contact lenses provided extended antifungal activity against Candida albicans fungi. Fungicidal activity varied in duration and effectiveness depending on the mass of the econazole-PLGA film encapsulated in the contact lens. Conclusions. An econazole-eluting contact lens could be used as a treatment for fungal ocular infections. PMID:21527380

  4. The SNAP Strong Lens Survey

    SciTech Connect

    Marshall, P.

    2005-01-03

    Basic considerations of lens detection and identification indicate that a wide field survey of the types planned for weak lensing and Type Ia SNe with SNAP are close to optimal for the optical detection of strong lenses. Such a ''piggy-back'' survey might be expected even pessimistically to provide a catalogue of a few thousand new strong lenses, with the numbers dominated by systems of faint blue galaxies lensed by foreground ellipticals. After sketching out our strategy for detecting and measuring these galaxy lenses using the SNAP images, we discuss some of the scientific applications of such a large sample of gravitational lenses: in particular we comment on the partition of information between lens structure, the source population properties and cosmology. Understanding this partitioning is key to assessing strong lens cosmography's value as a cosmological probe.

  5. Solar rejection for an orbiting telescope

    NASA Technical Reports Server (NTRS)

    Rehnberg, J. D.

    1975-01-01

    The present work discusses some of the constraints that the optical designer must deal with in optimizing spaceborne sensors that must look at or near the sun. Analytical techniques are described for predicting the effects of stray radiation from sources such as mirror scatter, baffle scatter, diffraction, and ghost images. In addition, the paper describes a sensor design that has been flown on the Apollo Telescope Mount (Skylab) to aid astronauts in locating solar flares. In addition to keeping stray radiation to a minimum, the design had to be nondegradable by the direct solar heat load.

  6. Computer-aided lens assembly

    NASA Astrophysics Data System (ADS)

    Tomlinson, Richard; Alcock, Rob; Petzing, Jon; Coupland, Jeremy

    2004-01-01

    We propose a computer-aided method of lens manufacture that allows assembly, adjustment, and test phases to be run concurrently until an acceptable level of optical performance is reached. Misalignment of elements within a compound lens is determined by a comparison of the results of physical ray tracing by use of an array of Gaussian laser beams with numerically obtained geometric ray traces. An estimate of misalignment errors is made, and individual elements are adjusted in an iterative manner until performance criteria are achieved. The method is illustrated for the alignment of an air-spaced doublet.

  7. No effect of diffraction on Pluto-Charon mutual events

    NASA Technical Reports Server (NTRS)

    Tholen, D. J.; Hubbard, W. B.

    1988-01-01

    Mulholland and Gustafson (1987) made the interesting suggestion that observations of Pluto-Charon mutual events might show significant dependence on both wavelength and telescope aperture because of diffraction effects. In this letter, observations are presented that show the predicted effects to be absent and demonstrate that the parameters of the system are such that the events can be accurately analyzed with geometrical optics.

  8. The New Solar Telescope at Big Bear Solar Observatory

    NASA Astrophysics Data System (ADS)

    Denker, C.; Marquette, W. H.; Varsik, J.; Wang, H.; Goode, P. R.; Moretto, G.; Kuhn, J.; Coulter, R.

    2004-05-01

    The New Solar Telescope (NST) at Big Bear Solar Observatory is the replacement of the current 65 cm vacuum telescope. We present the optical design of this novel off-axis telescope with a 1.6 m clear aperture. The NST has been designed to exploit the excellent seeing conditions at a lake-site observatory and provide data with a spatial resolution close the telescope's diffraction limit from the visible to the near-infrared (NIR) wavelength region. The post-focus instrumentation is located in the Coudé-room, a new optical laboratory below the observing floor, which also hosts a high-order adaptive optics system. The main instruments are two imaging spectro-polarimeters for visible and NIR observations and a real-time image reconstruction system for visible-light multi-color photometry. This unique combination of instruments will realize its full potential in the studies of active region evolution and space weather forecasts.

  9. The Focal Surface of EUSO Telescope

    NASA Technical Reports Server (NTRS)

    Shimizu, H. M.; Kawasaki, Y.; Takizawa, Y.; Sakaki, N.; Teshima, M.; Ebisuzaki, T.; Takahashi, Y.; Adams, J.; Catalano, O.; Scarisi, L.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Extreme Universe Space Observatory (EUSO) is a science mission under conceptual design for the detection of extremely high energy cosmic rays and neutrinos by the observation of time-resolved images of atmospheric fluorescence photons generated along the extensive air shower, in the near ultraviolet wavelength region. A refractive telescope with double-sided double Fresnel lens will be employed to achieve a large field of view of 60 degrees. The energy and arrival direction of the primary particles will be determined by observing the time evolution of the airshower. The focal surface of the EUSO telescope will be segmented to a few hundred thousand pixels to resolve the entire field of view with the angular resolution of the order of 0.1 degree. The time evolution will be observed with the time resolution of 0.8 microsecond. A large scale array of multianode photomultiplier (MAPMT) is being studied as the EUSO focal surface. The MAPMT array is capable of detecting near ultraviolet photons at single photoelectron level. In this contribution, we will report the present status of the focal surface design including the optimization of anode segmentation and the minimization of the dead area and discuss overall experimental performance in detecting extensive airshowers.

  10. TELESCOPES: Astronomers Overcome 'Aperture Envy'.

    PubMed

    Irion, R

    2000-07-01

    Many users of small telescopes are disturbed by the trend of shutting down smaller instruments in order to help fund bigger and bolder ground-based telescopes. Small telescopes can thrive in the shadow of giant new observatories, they say--but only if they are adapted to specialized projects. Telescopes with apertures of 2 meters or less have unique abilities to monitor broad swaths of the sky and stare at the same objects night after night, sometimes for years; various teams are turning small telescopes into robots, creating networks that span the globe and devoting them to survey projects that big telescopes don't have a prayer of tackling. PMID:17832960

  11. Chromospheric telescope of Baikal Astrophysical Observatory. New light

    NASA Astrophysics Data System (ADS)

    Skomorovsky, Valeriy; Kushtal, Galina; Lopteva, Lyubov; Proshin, Vladimir; Trifonov, Viktor; Chuprakov, Sergey; Khimich, Valeriy

    2016-06-01

    A chromospheric telescope is an important instrument for synoptic observations and solar research. After several decades of observations with the chromospheric telescope at Baikal Astrophysical Observatory, a need arose to improve the characteristics of this telescope and filter. A new reimaging lens to produce full-disk solar images 18 mm in diameter at the CCD camera Hamamatsu C-124 with a detector 36×24 mm (4000×2672 pixels) was designed and manufactured to replace the out-of-operation 50×50 mm Princeton Instruments camera. A contrast interference blocking filter and a new Iceland spar and quartz crystal plates instead of damaged ones were made and installed in the Hα birefringent filter (BF), manufactured by Bernhard Halle Nachfl. The optical immersion in the filter was changed. All telescope optics was cleaned and adjusted. We describe for the first time the design features and their related BF passband tuning. The wavefront interferograms of optical elements and telescope as a whole show that the wavefront distortion of the optical path is within 0.25 λ. The BF and pre-filter spectral parameters provide high-contrast monochromatic images. Besides, we give examples of solar chromospheric images in the Hα line core and wing.

  12. Chromospheric telescope of Baikal Astrophysical Observatory. New light

    NASA Astrophysics Data System (ADS)

    Skomorovsky, Valeriy; Kushtal, Galina; Lopteva, Lyubov; Proshin, Vladimir; Trifonov, Viktor; Chuprakov, Sergey; Khimich, Valeriy

    2016-06-01

    A chromospheric telescope is an important instrument for synoptic observations and solar research. After several decades of observations with the chromospheric telescope at Baikal Astrophysical Observatory, a need arose to improve the characteristics of this telescope and filter. A new reimaging lens to produce full-disk solar images 18 mm in diameter at the CCD camera Hamamatsu C-124 with a detector 36×24 mm (4000×2672 pixels) was designed and manufactured to replace the out-of-operation 50×50 mm Princeton Instruments camera. A contrast interference blocking filter and a new Iceland spar and quartz crystal plates instead of damaged ones were made and installed in the Hα birefringent filter (BF), manufactured by Bernhard Halle Nachfl. The optical immersion in the filter was changed. All telescope optics was cleaned and adjusted. We describe for the first time the design features and their related BF passband tuning. The wavefront interferograms of optical elements and telescope as a whole show that the wavefront distortion of the optical path is within 0.25 λ. The BF and pre-filter spectral parameters provide high-contrast monochromatic images. Besides, we give examples of solar chromospheric images in the H&apha; line core and wing.

  13. Ensuring Safe Use of Contact Lens Solution

    MedlinePlus

    ... For Consumers Consumer Updates Ensuring Safe Use of Contact Lens Solution Share Tweet Linkedin Pin it More ... back to top Dos and Don'ts for Contact Lens Wearers DO: Always wash your hands before ...

  14. National Large Solar Telescope of Russia

    NASA Astrophysics Data System (ADS)

    Demidov, Mikhail

    One of the most important task of the modern solar physics is multi-wavelength observations of the small-scale structure of solar atmosphere on different heights, including chromosphere and corona. To do this the large-aperture telescopes are necessary. At present time there several challenging projects of the large (and even giant) solar telescopes in the world are in the process of construction or designing , the most known ones among them are 4-meter class telescopes ATST in USA and EST in Europe. Since 2013 the development of the new Large Solar Telescope (LST) with 3 meter diameter of the main mirror is started in Russia as a part (sub-project) of National Heliogeophysical Complex (NHGC) of the Russian Academy of Sciences. It should be located at the Sayan solar observatory on the altitude more then 2000 m. To avoid numerous problems of the off-axis optical telescopes (despite of the obvious some advantages of the off-axis configuration) and to meet to available financial budget, the classical on-axis Gregorian scheme on the alt-azimuth mount has been chosen. The scientific equipment of the LST-3 will include several narrow-band tunable filter devices and spectrographs for different wavelength bands, including infrared. The units are installed either at the Nasmyth focus or/and on the rotating coude platform. To minimize the instrumental polarization the polarization analyzer is located near diagonal mirror after M2 mirror. High order adaptive optics is used to achieve the diffraction limited performances. It is expected that after some modification of the optical configuration the LST-3 will operate as an approximately 1-m mirror coronograph in the near infrared spectral lines. Possibilities for stellar observations during night time are provided as well.

  15. Exploring Galileo's Telescope

    ERIC Educational Resources Information Center

    Straulino, Samuele; Terzuoli, Alessandra

    2010-01-01

    In the first months of 2009, the International Year of Astronomy, the authors developed an educational project for middle-level students connected with the first astronomical discoveries that Galileo Galilei (1564-1642) made 400 years ago. The project included the construction of a basic telescope and the observation of the Moon. The project, if…

  16. The Falcon Telescope Network

    NASA Astrophysics Data System (ADS)

    Chun, F.; Tippets, R.; Dearborn, M.; Gresham, K.; Freckleton, R.; Douglas, M.

    2014-09-01

    The Falcon Telescope Network (FTN) is a global network of small aperture telescopes developed by the Center for Space Situational Awareness Research in the Department of Physics at the United States Air Force Academy (USAFA). Consisting of commercially available equipment, the FTN is a collaborative effort between USAFA and other educational institutions ranging from two- and four-year colleges to major research universities. USAFA provides the equipment (e.g. telescope, mount, camera, filter wheel, dome, weather station, computers and storage devices) while the educational partners provide the building and infrastructure to support an observatory. The user base includes USAFA along with K-12 and higher education faculty and students. Since the FTN has a general use purpose, objects of interest include satellites, astronomical research, and STEM support images. The raw imagery, all in the public domain, will be accessible to FTN partners and will be archived at USAFA in the Cadet Space Operations Center. FTN users will be able to submit observational requests via a web interface. The requests will then be prioritized based on the type of user, the object of interest, and a user-defined priority. A network wide schedule will be developed every 24 hours and each FTN site will autonomously execute its portion of the schedule. After an observational request is completed, the FTN user will receive notification of collection and a link to the data. The Falcon Telescope Network is an ambitious endeavor, but demonstrates the cooperation that can be achieved by multiple educational institutions.

  17. The Liverpool Telescope

    NASA Astrophysics Data System (ADS)

    Smith, Robert J.; Bates, S. D.; Clay, Neil R.; Fraser, Stephen N.; Marchant, J. M.; Mottram, C. J.; Steele, I. A.; Tomlinson, M. D.

    2011-03-01

    The Liverpool Telescope (LT) is a fully robotic 2m optical telescope at a world-class observatory site. It runs autonomously without direct human control either on site or remotely. It is not operated primarily for a single science project, but rather is a common-user facility, time allocated by an open, peer-review process and conducting a variety of optical and IR imaging, spectroscopic and polarimetric programs. This paper describes some of aspects of the site infrastructure and instrument suite designed specifically to support robust and reliable unsupervised operations. Aside from the telescope hardware, the other aspect of robotic operations is the mechanisms whereby users interact with the telescope and its automated scheduler. We describe how these have been implemented for the LT. Observing routinely since 2004, the LT has demonstrated it is possible to operate a large, common-user robotic observatory. Making the most of the flexibility afforded by fully robotic operations, development continues in collaboration with both observers and other observatories to develop observing modes to enable new science across the broad discipline of time-domain astrophysics.

  18. The Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Hughes, D. H.; Schloerb, F. P.; LMT Project Team

    2009-05-01

    This paper, presented on behalf of the Large Millimeter Telescope (LMT) project team, describes the status and near-term plans for the telescope and its initial instrumentation. The LMT is a bi-national collaboration between México and the USA, led by the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) and the University of Massachusetts at Amherst, to construct, commission and operate a 50 m diameter millimeter-wave radio telescope. Construction activities are nearly complete at the LMT site, at an altitude of ˜ 4600 m on the summit of Sierra Negra, an extinct volcano in the Mexican state of Puebla. Full movement of the telescope, under computer control in both azimuth and elevation, has been achieved. First-light at centimeter wavelengths on astronomical sources was obtained in November 2006. Installation of precision surface segments for millimeter-wave operation is underway, with the inner 32 m diameter of the surface now complete and ready to be used to obtain first-light at millimeter wavelengths in 2008. Installation of the remainder of the reflector will continue during the next year and be completed in 2009 for final commissioning of the antenna. The full LMT antenna, outfitted with its initial complement of scientific instruments, will be a world-leading scientific research facility for millimeter-wave astronomy.

  19. The Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Schloerb, F. Peter

    2008-07-01

    This paper, presented on behalf of the Large Millimeter Telescope (LMT) project team, describes the status and near-term plans for the telescope and its initial instrumentation. The LMT is a bi-national collaboration between Mexico and the USA, led by the Instituto Nacional de Astrofísica, Optica y Electronica (INAOE) and the University of Massachusetts at Amherst, to construct, commission and operate a 50m-diameter millimeter-wave radio telescope. Construction activities are nearly complete at the 4600m LMT site on the summit of Sierra Negra, an extinct volcano in the Mexican state of Puebla. Full movement of the telescope, under computer control in both azimuth and elevation, has been achieved. First-light at centimeter wavelengths on astronomical sources was obtained in November 2006. Installation of precision surface segments for millimeter-wave operation is underway, with the inner 32m-diameter of the surface now complete and ready to be used to obtain first light at millimeter wavelengths in 2008. Installation of the remainder of the reflector will continue during the next year and be completed in 2009 for final commissioning of the antenna. The full LMT antenna, outfitted with its initial complement of scientific instruments, will be a world-leading scientific research facility for millimeter-wave astronomy.

  20. A Simple "Tubeless" Telescope

    ERIC Educational Resources Information Center

    Straulino, S.; Bonechi, L.

    2010-01-01

    Two lenses make it possible to create a simple telescope with quite large magnification. The set-up is very simple and can be reproduced in schools, provided the laboratory has a range of lenses with different focal lengths. In this article, the authors adopt the Keplerian configuration, which is composed of two converging lenses. This instrument,…

  1. Nordic optical telescope

    NASA Astrophysics Data System (ADS)

    Ardeberg, Arne

    The Nordic Optical Telescope for the Roque de los Muchachos Observatory at La Palma is presented. It has been designed with highest emphasis on good resulting image quality. Within a tight budget frame a compact altazimuth mounted telescope has emerged. We have aimed at high-quality blind pointing and tracking. Optomechanically the telescope should be able to take advantage also of the observing periods with best seeing. The building has been designed with main emphasis on image quality. Partly guided by wind-tunnel tests, we have chosen a small dome with favourable air-flow performance. Data on micro-thermal activity has made us opt for a height above ground of the primary mirror being about eight metres. A relatively complete site-testing programme has confirmed the excellent quality of the observatory. The telescope will be operated with a Cassegrain focus only. Provisions are foreseen for rapid exchange of ancillary instrumentation. A set of standard ancillary instruments will be available at all times under the responsibility of on-site staff. It will include modern imaging devices, photometers, polarimeters and spectrographs for various tasks.

  2. Grating-over-lens concentrating photovoltaic spectrum splitting systems with volume holographic optical elements

    NASA Astrophysics Data System (ADS)

    Russo, Juan M.; Zhang, Deming; Gordon, Michael; Vorndran, Shelby D.; Wu, Youchen; Kostuk, Raymond K.

    2013-09-01

    In grating-over-lens spectrum splitting designs, a planar transmission grating is placed at the entrance of a plano-convex lens. Part of the incident solar spectrum is diffracted at 15-30° from normal incidence to the lens. The diffracted spectral range comes to a focus at an off-axis point and the undiffracted spectrum comes to a focus on the optical axis of the lens. Since the diffracted wave is planar and off-axis, the off-axis focal points suffer from aberrations that increase system loss. Field curvature, chromatic and spherical aberrations are compensated using defocusing and a curved focal plane (approximated with each photovoltaic receiver). Coma is corrected by modifying the off-axis wavefront used in constructing the hologram. In this paper, we analyze the use of non-planar transmission gratings recorded using a conjugate object beam to modify the off-axis wavefront. Diverging sources are used as conjugate object and reference beams. The spherical waves are incident at the lens and the grating is recorded at the entrance aperture of the solar concentrator. The on-axis source is adjusted to produce an on-axis planar wavefront at the hologram plane. The off-axis source is approximated to a diffraction limited spot producing a non-planar off-axis wavefront on the hologram plane. Illumination with a planar AM1.5 spectrum reproduces an off-axis diffraction-limited spot on the focal plane. This paper presents ray trace and coupled wave theory simulations used to quantify the reduction in losses achieved with aberration correction.

  3. A compact electron gun for time-resolved electron diffraction

    SciTech Connect

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.

    2015-01-15

    A novel compact time-resolved electron diffractometer has been built with the primary goal of studying the ultrafast molecular dynamics of photoexcited gas-phase molecules. Here, we discuss the design of the electron gun, which is triggered by a Ti:Sapphire laser, before detailing a series of calibration experiments relating to the electron-beam properties. As a further test of the apparatus, initial diffraction patterns have been collected for thin, polycrystalline platinum samples, which have been shown to match theoretical patterns. The data collected demonstrate the focusing effects of the magnetic lens on the electron beam, and how this relates to the spatial resolution of the diffraction pattern.

  4. A compact electron gun for time-resolved electron diffraction

    NASA Astrophysics Data System (ADS)

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.

    2015-01-01

    A novel compact time-resolved electron diffractometer has been built with the primary goal of studying the ultrafast molecular dynamics of photoexcited gas-phase molecules. Here, we discuss the design of the electron gun, which is triggered by a Ti:Sapphire laser, before detailing a series of calibration experiments relating to the electron-beam properties. As a further test of the apparatus, initial diffraction patterns have been collected for thin, polycrystalline platinum samples, which have been shown to match theoretical patterns. The data collected demonstrate the focusing effects of the magnetic lens on the electron beam, and how this relates to the spatial resolution of the diffraction pattern.

  5. On-axis spectral shifts and spectral switches of Gaussian Schell-model beams focused by an astigmatic aperture lens

    NASA Astrophysics Data System (ADS)

    Yuan, Xiao; Pan, Liuzhan; Ding, Chaoliang; Lü, Baida

    2008-10-01

    Starting from the propagation law of partially coherent light, the on-axis spectral shifts and spectral switches of Gaussian Schell-model (GSM) beams focused by an astigmatic aperture lens are studied. It is shown that, as compared with an aberration-free case whose spectral shifts and spectral switches are induced by spatial correlation and aperture diffraction, the spectral shifts and spectral switches of GSM beams also depend upon the astigmatism of the lens for an astigmatism case. Detailed numerical calculations are made to illustrate the behavior of spectral shifts and spectral switches of GSM beams focused by an astigmatic aperture lens.

  6. A Forgotten Small Telescope that Inspired the Discovery of Galaxies

    NASA Astrophysics Data System (ADS)

    Briggs, J. W.

    2013-04-01

    A 6-inch Clark refractor was built in 1884 for the University of the Pacific. A young instructor came with no prior training in astronomy, but left inspired to return to graduate school in astronomy at the University of Virginia. This was Heber D. Curtis, who became one of the great astronomers of the 20th century and famous for his early recognition of the true nature of galaxies. Donald E. Osterbrock was aware of the telescope and hoped to examine it, but it remained in obscure storage for decades with a missing objective lens. The original lens to this unusually beautiful and historic instrument recently has been discovered in Texas and now has potential to be re-united with the surviving tube and mounting.

  7. SimpLens: Interactive gravitational lensing simulator

    NASA Astrophysics Data System (ADS)

    Saha, Prasenjit; Williams, Liliya L. R.

    2016-06-01

    SimpLens illustrates some of the theoretical ideas important in gravitational lensing in an interactive way. After setting parameters for elliptical mass distribution and external mass, SimpLens displays the mass profile and source position, the lens potential and image locations, and indicate the image magnifications and contours of virtual light-travel time. A lens profile can be made shallower or steeper with little change in the image positions and with only total magnification affected.

  8. The Greenland Telescope

    NASA Astrophysics Data System (ADS)

    Grimes, Paul; Blundell, Raymond

    2012-09-01

    In the spring of 2010, the Academia Sinica Institute of Astronomy and Astrophysics, and the Smithsonian Astrophysical Observatory, acquired the ALMA North America prototype antenna - a state-of-the-art 12-m diameter dish designed for submillimeter astronomy. Together with the MIT-Haystack Observatory and the National Radio Astronomy Observatory, the plan is to retrofit this antenna for cold-weather operation and equip it with a suite of instruments designed for a variety of scientific experiments and observations. The primary scientific goal is to image the shadow of the Super-Massive Black Hole in M87 in order to test Einstein’s theory of relativity under extreme gravity. This requires the highest angular resolution, which can only be achieved by linking this antenna with others already in place to form a telescope almost the size of the Earth. We are therefore developing plans to install this antenna at the peak of the Greenland ice-sheet. This location will produce an equivalent North-South separation of almost 9,000 km when linked to the ALMA telescope in Northern Chile, and an East-West separation of about 6,000 km when linked to SAO and ASIAA’s Submillimeter Array on Mauna Kea, Hawaii, and will provide an angular resolution almost 1000 times higher than that of the most powerful optical telescopes. Given the quality of the atmosphere at the proposed telescope location, we also plan to make observations in the atmospheric windows at 1.3 and 1.5 THz. We will present plans to retrofit the telescope for cold-weather operation, and discuss potential instrumentation and projected time-line.

  9. Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey

    2007-05-01

    The Allen Telescope Array (ATA) is a pioneering centimeter-wavelength radio telescope that will produce science that cannot be done with any other instrument. The ATA is the first radio telescope designed for commensal observing; it will undertake the most comprehensive and sensitive SETI surveys ever done as well as the deepest and largest area continuum and spectroscopic surveys. Science operations will commence this year with a 42-element array. The ATA will ultimately comprise 350 6-meter dishes at Hat Creek in California, and will make possible large, deep radio surveys that were not previously feasible. The telescope incorporates many new design features including hydroformed antenna surfaces, a log-periodic feed covering the entire range of frequencies from 500 MHz to 11.2 GHz, low noise, wide-band amplifiers with a flat response over the entire band. The full array has the sensitivity of the Very Large Array but with a survey capability that is greater by an order of magnitude due to the wide field of view of the 6-meter dishes. Even with 42 elements, the ATA will be one of the most powerful radio survey telescopes. Science goals include the Five GHz sky survey (FiGSS) to match the 1.4-GHz NRAO VLA Sky Survey (NVSS) and the Sloan Digital Sky Survey within the first year of operation with the 42 element array, and a deep all-sky survey of extragalactic hydrogen to investigate galaxy evolution and intergalactic gas accretion. Transient and variable source surveys, pulsar science, spectroscopy of new molecular species in the galaxy, large-scale mapping of galactic magnetic filaments, and wide-field imaging of comets and other solar system objects are among the other key science objectives of the ATA. SETI surveys will reach sufficient sensitivity to detect an Arecibo planetary radar from 1,000,000 stars to distances of 300 pc.

  10. Diffraction by cold atoms

    NASA Astrophysics Data System (ADS)

    Strauch, F.; Gomer, V.; Schadwinkel, H.; Ueberholz, B.; Haubrich, D.; Meschede, D.

    1998-01-01

    We have observed diffraction of a laser probe beam by a trapped sample of cold atoms. The effect is only visible in the vicinity of a resonance line. The observed diffraction pattern arises from interference of the incident and scattered light wave, allowing reconstruction of geometric properties of the trapped sample from the holographic record.

  11. Diffraction Results from CDF

    SciTech Connect

    Goulianos, Konstantin

    2012-04-01

    We present final results by the CDF II collaboration on diffractive W and Z production, report on the status of ongoing analyses on diffractive dijet production and on rapidity gaps between jets, and briefly summarize results obtained on exclusive production pointing to their relevance to calibrating theoretical models used to predict exclusive Higgs-boson production at the LHC.

  12. Phononic crystal diffraction gratings

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent

    2012-02-01

    When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.

  13. The application of diffractive optical elements in the optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Egorov, D. I.; Tsyganok, E. A.

    2016-04-01

    The article investigates the possibility of using diffractive optical elements on an example of the kinoform in the optical coherence tomography (OCT). The article gives a brief overview of modern methods of research in the OCT, the expediency of development hyperchromatic lenses for spectral OCT systems. The authors made the aberration analysis of diffractive optical element (DOE), conducted a review of its application, and the DOE proposed to use in the example of a kinoform as the main force component of the hyperchromatic lens. In conclusion, the article provides examples of developed hybrid lenses for two spectral ranges, lens transmittance analysis and the assessment of their adaptability.

  14. Contact Lens-Related Eye Infections

    MedlinePlus

    ... Stories Español Eye Health / Eye Health A-Z Contact Lens-Related Eye Infections Sections Contact Lens-Related ... About Contact Lenses Proper Care of Contact Lenses Contact Lens-Related Eye Infections Written by: Kierstan Boyd ...

  15. 21 CFR 886.1400 - Maddox lens.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Maddox lens. 886.1400 Section 886.1400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1400 Maddox lens. (a) Identification. A Maddox lens is a...

  16. 21 CFR 886.1400 - Maddox lens.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Maddox lens. 886.1400 Section 886.1400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1400 Maddox lens. (a) Identification. A Maddox lens is a...

  17. 21 CFR 886.3600 - Intraocular lens.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intraocular lens. 886.3600 Section 886.3600 Food... DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3600 Intraocular lens. (a) Identification. An intraocular lens is a device made of materials such as glass or plastic intended to be implanted to...

  18. 21 CFR 886.1400 - Maddox lens.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Maddox lens. 886.1400 Section 886.1400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1400 Maddox lens. (a) Identification. A Maddox lens is a...

  19. 21 CFR 886.1400 - Maddox lens.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Maddox lens. 886.1400 Section 886.1400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1400 Maddox lens. (a) Identification. A Maddox lens is a...

  20. 21 CFR 886.3600 - Intraocular lens.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intraocular lens. 886.3600 Section 886.3600 Food... DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3600 Intraocular lens. (a) Identification. An intraocular lens is a device made of materials such as glass or plastic intended to be implanted to...

  1. 21 CFR 886.3600 - Intraocular lens.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intraocular lens. 886.3600 Section 886.3600 Food... DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3600 Intraocular lens. (a) Identification. An intraocular lens is a device made of materials such as glass or plastic intended to be implanted to...

  2. 21 CFR 886.3600 - Intraocular lens.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intraocular lens. 886.3600 Section 886.3600 Food... DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3600 Intraocular lens. (a) Identification. An intraocular lens is a device made of materials such as glass or plastic intended to be implanted to...

  3. 21 CFR 886.1400 - Maddox lens.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Maddox lens. 886.1400 Section 886.1400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1400 Maddox lens. (a) Identification. A Maddox lens is a...

  4. 21 CFR 886.3600 - Intraocular lens.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraocular lens. 886.3600 Section 886.3600 Food... DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3600 Intraocular lens. (a) Identification. An intraocular lens is a device made of materials such as glass or plastic intended to be implanted to...

  5. A broadband transformation-optics metasurface lens

    SciTech Connect

    Wan, Xiang; Xiang Jiang, Wei; Feng Ma, Hui; Jun Cui, Tie

    2014-04-14

    We present a transformational metasurface Luneburg lens based on the quasi-conformal mapping method, which has weakly anisotropic constitutive parameters. We design the metasurface lens using inhomogeneous artificial structures to realize the required surface refractive indexes. The transformational metasurface Luneburg lens is fabricated and the measurement results demonstrate very good performance in controlling the radiated surface waves.

  6. The Master Lens Database and The Orphan Lenses Project

    NASA Astrophysics Data System (ADS)

    Moustakas, Leonidas

    2012-10-01

    Strong gravitational lenses are uniquely suited for the study of dark matter structure and substructure within massive halos of many scales, act as gravitational telescopes for distant faint objects, and can give powerful and competitive cosmological constraints. While hundreds of strong lenses are known to date, spanning five orders of magnitude in mass scale, thousands will be identified this decade. To fully exploit the power of these objects presently, and in the near future, we are creating the Master Lens Database. This is a clearinghouse of all known strong lens systems, with a sophisticated and modern database of uniformly measured and derived observational and lens-model derived quantities, using archival Hubble data across several instruments. This Database enables new science that can be done with a comprehensive sample of strong lenses. The operational goal of this proposal is to develop the process and the code to semi-automatically stage Hubble data of each system, create appropriate masks of the lensing objects and lensing features, and derive gravitational lens models, to provide a uniform and fairly comprehensive information set that is ingested into the Database. The scientific goal for this team is to use the properties of the ensemble of lenses to make a new study of the internal structure of lensing galaxies, and to identify new objects that show evidence of strong substructure lensing, for follow-up study. All data, scripts, masks, model setup files, and derived parameters, will be public, and free. The Database will be accessible online and through a sophisticated smartphone application, which will also be free.

  7. Anamorphic lens for tracking system

    NASA Technical Reports Server (NTRS)

    Burns, R. H.; Schmidt, L. F.

    1976-01-01

    Lens has 2:1 focal-length ratio, consists of three spherical and two cylindrical elements, and is 7.6 cm in length. When used in conjunction with image dissector tube, expected root-mean-square noise equivalent angle is approximately 8 arc seconds.

  8. The Fyodorov Sputnik intraocular lens.

    PubMed

    Kwitko, M L

    1979-04-01

    The author has implanted 197 Fyodorov intraocular lenses. With careful selection of patients, good surgical judgment, and meticulous surgery, a degree of success can be obtained with this lens, which will equal that of conventional cataract surgery. The surgical technique of implantation will be described. PMID:537770

  9. Camera lens adapter magnifies image

    NASA Technical Reports Server (NTRS)

    Moffitt, F. L.

    1967-01-01

    Polaroid Land camera with an illuminated 7-power magnifier adapted to the lens, photographs weld flaws. The flaws are located by inspection with a 10-power magnifying glass and then photographed with this device, thus providing immediate pictorial data for use in remedial procedures.

  10. Diabetes and contact lens wear.

    PubMed

    O'Donnell, Clare; Efron, Nathan

    2012-05-01

    The literature suggests that diabetic patients may have altered tear chemistry and tear secretion as well as structural and functional changes to the corneal epithelium, endothelium and nerves. These factors, together with a reported increased incidence of corneal infection, suggest that diabetic patients may be particularly susceptible to developing ocular complications during contact lens wear. Reports of contact lens-induced complications in diabetic patients do exist, although a number of these reports concern patients with advanced diabetic eye disease using lenses on an extended wear basis. Over the past decade or so, there have been published studies documenting the response of the diabetic eye to more modern contact lens modalities. The results of these studies suggest that contact lenses can be a viable mode of refractive correction for diabetic patients. Furthermore, new research suggests that the measurement of tear glucose concentration could, in future, be used to monitor metabolic control non-invasively in diabetic patients. This could be carried out using contact lenses manufactured from hydrogel polymers embedded with glucose-sensing agents or nanoscale digital electronic technology. The purpose of this paper is to review the literature on the anterior ocular manifestations of diabetes, particularly that pertaining to contact lens wear. PMID:22537249

  11. Holographic lens for optical correlator

    NASA Astrophysics Data System (ADS)

    Semenov, G. B.; Koreshev, S. N.; Pavlov, A. V.; Shubnikov, Y. I.

    1984-08-01

    Aberrations in holographic optics place limitations on the information capacity of the data that can be processed by holographic optical correlators. Nonetheless, the aberrations can be reduced sufficiently for an extensive class of devices such as those for real time data input using space-time light modulators and a TV channel. This paper analyzes the aberrations of holographic lenses, demonstrating the feasibility of an off-axis lens for correlation image analysis with aberrations similar to an axial lens. A requirement that the wave aberrations not exceed a quarter-wavelength was placed on the lens. Equations are solved for coma and astigmatism, and used to plot the maximum wave aberrations as a function of the spatial frequency of the proposed signal for three cases: (1) normal propagation of a diverging beam and oblique propagation of a plane beam; (2) oblique propagation of diverging and parallel beams, symmetrical with respect to the normal to the photographic plate; (3) oblique propagation of the diverging beam and normal propagation of the parallel beam. The angle between the beam axes was 45 deg in all cases, with a lens focal length of 350 mm and an operture of 32 mm.

  12. Wavefront Analysis of Adaptive Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Hillman, Lloyd

    1997-01-01

    The motivation for this work came from a NASA Headquarters interest in investigating design concepts for a large space telescope employing active optics technology. The development of telescope optical requirements and potential optical design configurations is reported.

  13. Tube entrance lens focus control

    NASA Astrophysics Data System (ADS)

    Weisser, D. C.; Fifield, L. K.; Kitchen, T. F. G.; Tunningley, T. B.; Lobanov, N. R.; Muirhead, A. G.

    2013-02-01

    The entrance of the accelerator tube in a large electrostatic accelerator imposes a strong lens that dominates the beam optics. The magnification of the lens is large because of the low injection energy, the high voltage gradient of the acceleration tube and the long distance to the terminal. In the absence of the acceleration, the magnification would produce an unacceptably large beam spot at the terminal. The tyranny of the lens is especially irksome when the accelerator is required to operate at a lower terminal voltage than the one corresponding to the nominal gradient at high voltage. One way around the difficulty, used in NEC Pelletron accelerators, is to insert a series of nylon and steel rods that short together units of the acceleration structure at the terminal leaving the ones near the entrance close to the nominal gradient for optimum transmission. This operation takes time and risks the loss of insulating gas. Another alternative used in the 25URC at Oak Ridge National Laboratory, is to focus the beam at the tube entrance, substantially diluting the effect of the entrance lens. The beam then diverges and so requires an additional lens part way to the terminal. This solution is only partially effective and still necessitates use of shorting rods for low voltage operation. The fact that these elaborate strategies are used is evidence that the alternative of lowering the injection energy as the terminal voltage is lowered imposes enough problems that it is not used in practice. We have modeled a solution that controls the voltage gradient at the tube entrance using an external power supply. This not only maintains the focusing effect of the lens but provides the opportunity to tune the beam by adjusting the entrance lens. A 150 kV power supply outside the pressure vessel feeds a controllable voltage through a high voltage feed-through to the fifth electrode of the accelerator tube. Thus 150 kV on this electrode creates the nominal gradient of 30 kV per

  14. Aplanatic and quasi-aplanatic diffraction gratings

    DOEpatents

    Hettrick, Michael C.

    1989-01-01

    A reflection diffraction grating having a series of transverse minute grooves of progressively varying spacing along a concave surface enables use of such gratings for X-ray or longer wavelength imaging of objects. The variable groove spacing establishes aplanatism or substantially uniform magnification across the optical aperture. The grating may be used, for example, in X-ray microscopes or telescopes of the imaging type and in X-ray microprobes. Increased spatial resolution and field of view may be realized in X-ray imaging.

  15. Aplanatic and quasi-aplanatic diffraction gratings

    DOEpatents

    Hettrick, M.C.

    1987-09-14

    A reflection diffraction grating having a series of transverse minute grooves of progressively varying spacing along a concave surface enables use of such gratings for x-ray or longer wavelength imaging of objects. The variable groove spacing establishes aplanatism or substantially uniform magnetification across the optical aperture. The grating may be sued, for example, in x-ray microscopes or telescopes of the imaging type and in x-ray microprobed. Increased spatial resolution and field of view may be realized in x-ray imaging. 5 figs.

  16. A simple device for measuring the spectral transmittance of lens used in InGaAs image intensifier apparatus

    NASA Astrophysics Data System (ADS)

    Bai, Xiaofeng; Guo, Hui; Yin, Lei; He, Yingping; Hou, Zhipeng; Miao, Zhuang; Yan, Lei

    2014-09-01

    In this article, in order to accurately measure the spectral transmittance of imaging lens used in InGaAs imaging apparatus, a simple device, which spectrum ranges from 400 nanometers to 2000 nanometers, based on double grating monochromator and self-collimating has been founded by using stable shortwave infrared radiant source, accurate double grating monochromator and telescope, stable silicon detector and cooled HgCdTe infrared detector. An imaging lens whose spectral transmittance has been known is measured on it. Comparing the test results to known data provided by manufacture, it is shown that the testing device founded in this article is competent to measure spectral transmittance of shortwave infrared imaging lens and which max relative deviation is no more than +/-2.5%. It is worthwhile for selecting InGaAs image intensifier assembly and evaluating the quality of shortwave infrared imaging lens.

  17. Image formation by the crystalline lens and eye of the rainbow trout.

    PubMed

    Jagger, W S

    1996-09-01

    The image of a distant unresolved point (point image or PI) and modulation transfer function (MTF) of the eye and lens of the trout were recorded with high spatial (0.3 micron) and dynamic (4096 grey levels) resolution for various entrance aperture sizes and focal positions in monochromatic light, and in broadband light simulating sunlight absorbed by a retinal cone pigment. The PI is irregular, with streaks, wisps and speckle, as a result of lens structural irregularity and diffraction of light scattered within the lens and cornea. Maximum diameter of a diffraction-limited aperture area of the eye is about 0.3 mm. Axially spaced multiple foci are caused by irregular and discontinuous zonal spherical aberration. Lens substance dispersion causes strong longitudinal chromatic aberration, resulting in a broadband PI with concentric coloured haloes. Incident linearly polarized light is slightly depolarized in the PI. The nature of the image is discussed relative to lens and cornea structure, optical modelling and vision. Human subjective entoptic phenomena analogous to those observed objectively in the trout are described. PMID:8917751

  18. The BOSS Emission-Line Lens Survey (BELLS). I. A Large Spectroscopically Selected Sample of Lens Galaxies at Redshift ~0.5

    NASA Astrophysics Data System (ADS)

    Brownstein, Joel R.; Bolton, Adam S.; Schlegel, David J.; Eisenstein, Daniel J.; Kochanek, Christopher S.; Connolly, Natalia; Maraston, Claudia; Pandey, Parul; Seitz, Stella; Wake, David A.; Wood-Vasey, W. Michael; Brinkmann, Jon; Schneider, Donald P.; Weaver, Benjamin A.

    2012-01-01

    We present a catalog of 25 definite and 11 probable strong galaxy-galaxy gravitational lens systems with lens redshifts 0.4 <~ z <~ 0.7, discovered spectroscopically by the presence of higher-redshift emission lines within the Baryon Oscillation Spectroscopic Survey (BOSS) of luminous galaxies, and confirmed with high-resolution Hubble Space Telescope (HST) images of 44 candidates. Our survey extends the methodology of the Sloan Lens Advanced Camera for Surveys survey (SLACS) to higher redshift. We describe the details of the BOSS spectroscopic candidate detections, our HST ACS image processing and analysis methods, and our strong gravitational lens modeling procedure. We report BOSS spectroscopic parameters and ACS photometric parameters for all candidates, and mass-distribution parameters for the best-fit singular isothermal ellipsoid models of definite lenses. Our sample to date was selected using only the first six months of BOSS survey-quality spectroscopic data. The full five-year BOSS database should produce a sample of several hundred strong galaxy-galaxy lenses and in combination with SLACS lenses at lower redshift, strongly constrain the redshift evolution of the structure of elliptical, bulge-dominated galaxies as a function of luminosity, stellar mass, and rest-frame color, thereby providing a powerful test for competing theories of galaxy formation and evolution. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 12209. Based on spectroscopic data from the Baryon Oscillation Spectroscopic Survey of the Sloan Digital Sky Survey III.

  19. Ultra-high-precision alignment technology for lens manufacturing used for high-end optics

    NASA Astrophysics Data System (ADS)

    Schiffner, Sebastian; Sure, Thomas

    2013-09-01

    This article describes the progress in the area of modern centration technology by using digital image processing. This work is motivated by the continuously increasing demand for high-end optics. During the last years the surface lens quality has been continuously improved. Today the image quality is more determined by the manufacturing tolerances for the mechanical interface which is responsible for decenter and tilt of the lenses respectively the subgroups. Some of the aberrations are directly linked to the decenter of the lenses, Coma for example. Hence it is necessary to realize the subgroups with tolerances below lpm. To determine the decenter of a lens an auto collimation telescope is used to image the reflex of the lens surfaces onto a detector, commonly a half covert photodiode. Rotating the lens generates a sinusoidal signal, which is evaluated by a lock-in amplifier to drive two actuators to adjust the alignment chuck. Typical internal reflections caused by stray light for example disturb the current procedure in such a way that it is impossible to get a stable alignment process. Digital image processing allows us to fix these problems with image recognition. We will demonstrate how a modified auto collimation telescope in combination with the developed software algorithms made the manufacturing process more accurate, faster and useable for a broad spectrum of lenses. It has been proofed by some thousand diverse lenses that with these new technique subgroups can be centered within 0.25μm.

  20. Science operations with Space Telescope

    NASA Technical Reports Server (NTRS)

    Giacconi, R.

    1982-01-01

    The operation, instrumentation, and expected contributions of the Space Telescope are discussed. Space Telescope capabilities are described. The organization and nature of the Space Telescope Science Institute are outlined, including the allocation of observing time and the data rights and data access policies of the institute.