A model for the diffuse attenuation coefficient of downwelling irradiance
NASA Astrophysics Data System (ADS)
Lee, Zhong-Ping; Du, Ke-Ping; Arnone, Robert
2005-02-01
The diffuse attenuation coefficient for downwelling irradiance (Kd) is an important parameter for ocean studies. For the vast ocean the only feasible means to get fine-scale measurements of Kd is by ocean color remote sensing. At present, values of Kd from remote sensing are estimated using empirical algorithms. Such an approach is insufficient to provide an understanding regarding the variation of Kd and contains large uncertainties in the derived values. In this study a semianalytical model for Kd is developed based on the radiative transfer equation, with values of the model parameters derived from Hydrolight simulations using the averaged particle phase function. The model is further tested with data simulated using significantly different particle phase functions, and the modeled Kd are found matching Hydrolight Kd very well (˜2% average error and ˜12% maximum error). Such a model provides an improved interpretation about the variation of Kd and a basis to more accurately determine Kd (especially using data from remote sensing).
Zheng, Xiaobing; Dickey, Tommy; Chang, Grace
2002-10-20
In situ time-series measurements of spectral diffuse downwelling irradiance from the Bermuda Testbed Mooring are presented. Averaged diffuse attenuation coefficients of downwelling irradiance, Kd,and their elastic and inelastic components are investigated at seven wavelengths. At shorter wavelengths (<510 nm), Kd is weakly dependent on the solar zenith angle owing to the prevailing scattering effect and therefore can be considered a quasi-inherent optical property. At longer wavelengths (>510 nm), Kd shows a strong dependence on the solar zenith angle. As depth increases, inelastic scattering plays a greater role for the underwater light field at red wavelengths. PMID:12396201
Results of a monte carlo investigation of the diffuse attenuation coefficient.
Concannon, B M; Davis, J P
1999-08-20
There has been a large effort to relate the apparent optical properties of ocean water to the inherent optical properties, which are the absorption coefficient a, the scattering coefficient b, and the scattering phase function rho(theta). The diffuse attenuation coefficient kdiff' has most often been considered an apparent optical property. However, kdiff' can be considered a quasi-inherent property kdiff' when defined as a steady-state light distribution attenuation coefficient. The Honey-Wilson research empirically relates kdiff' to a and b. The Honey-Wilson relation most likely applies to a limited range of water types because it does not include dependence on rho(theta). A series of Monte Carlo simulations were initiated to calculate kdiff' in an unstratified water column. The calculations, which reflected open ocean water types, used ranges of the single-scattering albedo omega(0) and the mean forward-scattering angle theta(m) for two analytic phase functions with different shapes. It was found that kdiff' is nearly independent of the shape of rho(theta) and can be easily parameterized in terms of a, b, and theta(m) for 0.11
Retrieval of diffuse attenuation coefficient in the China seas from surface reflectance.
Qiu, Zhongfeng; Wu, Tingting; Su, Yuanyuan
2013-07-01
Accurate estimation of the diffuse attenuation coefficient is important for our understanding the availability of light to underwater communities, which provide critical information for the China seas ecosystem. However, algorithm developments and validations of the diffuse attenuation coefficient in the China seas have been seldom performed before and therefore our knowledge on the quality of retrieval of the diffuse attenuate coefficient is poor. In this paper optical data at 306 sites collected in coastal waters of the China seas between July 2000 and February 2004 are used to evaluate three typical existing Kd(490) models. The in situ Kd(490) varied greatly among different sites from 0.029 m(-1) to 10.3 m(-1), with a mean of 0.92 ± 1.59 m(-1). Results show that the empirical model and the semi-analytical model significantly underestimate the Kd(490) value, with estimated mean values of 0.24 m(-1) and 0.5 m(-1), respectively. The combined model also shows significant differences when the in situ Kd(490) range from 0.2 m(-1) to 1 m(-1). Thus, the present study proposes that the three algorithms cannot be directly used to appropriately estimate Kd(490) in the turbid coastal waters of the China seas without a fine tuning for regional applications. In this paper, new Kd(490) algorithms are developed based on the semi-analytical retrieval of the absorption coefficient a(m(-1)) and the backscattering coefficient bb(m(-1)) from the reflectance at two wavelengths, 488 and 667 nm for the Moderate Resolution Imaging Spectroradiometer (MODIS) and 490 and 705 nm for the Medium Resolution Imaging Spectrometer (MERIS) applications, respectively. With the new approaches, the mean ratio and the relative percentage difference are 1.05 and 4.6%, respectively, based on an independent in situ data set. Furthermore, the estimates are reliable within a factor of 1.9 (95% confidence interval). Comparisons also show that the Kd(490) derived with the new algorithms are well correlated
Remote sensing of the diffuse attenuation coefficient of ocean water. [coastal zone color scanner
NASA Technical Reports Server (NTRS)
Austin, R. W.
1981-01-01
A technique was devised which uses remotely sensed spectral radiances from the sea to assess the optical diffuse attenuation coefficient, K (lambda) of near-surface ocean water. With spectral image data from a sensor such as the coastal zone color scanner (CZCS) carried on NIMBUS-7, it is possible to rapidly compute the K (lambda) fields for large ocean areas and obtain K "images" which show synoptic, spatial distribution of this attenuation coefficient. The technique utilizes a relationship that has been determined between the value of K and the ratio of the upwelling radiances leaving the sea surface at two wavelengths. The relationship was developed to provide an algorithm for inferring K from the radiance images obtained by the CZCS, thus the wavelengths were selected from those used by this sensor, viz., 443, 520, 550 and 670 nm. The majority of the radiance arriving at the spacecraft is the result of scattering in the atmospheric and is unrelated to the radiance signal generated by the water. A necessary step in the processing of the data received by the sensor is, therefore, the effective removal of these atmospheric path radiance signals before the K algorithm is applied. Examples of the efficacy of these removal techniques are given together with examples of the spatial distributions of K in several ocean areas.
Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods
NASA Astrophysics Data System (ADS)
Lee, Zhong-Ping; Darecki, Miroslaw; Carder, Kendall L.; Davis, Curtiss O.; Stramski, Dariusz; Rhea, W. Joseph
2005-02-01
The propagation of downwelling irradiance at wavelength λ from surface to a depth (z) in the ocean is governed by the diffuse attenuation coefficient, ?(λ). There are two standard methods for the derivation of ?(λ) in remote sensing, which both are based on empirical relationships involving the blue-to-green ratio of ocean color. Recently, a semianalytical method to derive ?(λ) from reflectance has also been developed. In this study, using ?(490) and ?(443) as examples, we compare the ?(λ) values derived from the three methods using data collected in three different regions that cover oceanic and coastal waters, with ?(490) ranging from ˜0.04 to 4.0 m-1. The derived values are compared with the data calculated from in situ measurements of the vertical profiles of downwelling irradiance. The comparisons show that the two standard methods produced satisfactory estimates of ?(λ) in oceanic waters where attenuation is relatively low but resulted in significant errors in coastal waters. The newly developed semianalytical method appears to have no such limitation as it performed well for both oceanic and coastal waters. For all data in this study the average of absolute percentage difference between the in situ measured and the semianalytically derived ? is ˜14% for λ = 490 nm and ˜11% for λ = 443 nm.
A method for estimating the diffuse attenuation coefficient (KdPAR)from paired temperature sensors
Read, Jordan S.; Rose, Kevin C.; Winslow, Luke A.; Read, Emily Kara
2015-01-01
A new method for estimating the diffuse attenuation coefficient for photosynthetically active radiation (KdPAR) from paired temperature sensors was derived. We show that during cases where the attenuation of penetrating shortwave solar radiation is the dominant source of temperature changes, time series measurements of water temperatures at multiple depths (z1 and z2) are related to one another by a linear scaling factor (a). KdPAR can then be estimated by the simple equation KdPAR ln(a)/(z2/z1). A suggested workflow is presented that outlines procedures for calculating KdPAR according to this paired temperature sensor (PTS) method. This method is best suited for conditions when radiative temperature gains are large relative to physical noise. These conditions occur frequently on water bodies with low wind and/or high KdPARs but can be used for other types of lakes during time periods of low wind and/or where spatially redundant measurements of temperatures are available. The optimal vertical placement of temperature sensors according to a priori knowledge of KdPAR is also described. This information can be used to inform the design of future sensor deployments using the PTS method or for campaigns where characterizing sub-daily changes in temperatures is important. The PTS method provides a novel method to characterize light attenuation in aquatic ecosystems without expensive radiometric equipment or the user subjectivity inherent in Secchi depth measurements. This method also can enable the estimation of KdPAR at higher frequencies than many manual monitoring programs allow.
Le, Cheng-Feng; Li, Yun-Mei; Zha, Yong; Sun, De-Yong; Wang, Li-Zhen
2009-02-01
The spectral and chemical analytical data of Taihu Lake water quality in Nov. 8-22, 2007 were used to analyze the spectral characteristics of diffuse attenuation coefficient (Kd) of the water body in autumn and related affecting factors. On the basis of this analysis, the Kd at band 490 nm, Kd (490), was used as a variable to build the relationship between Kd and remote sensing reflectance. The results indicated that within the scope of visible band, the Kd of the water body at most locations of Taihu Lake presented an exponent decreasing trend with the increase of wave length. Due to the higher concentration of phytoplankton in some locations, a peak value of Kd was presented at band 675 nm. Non-organic suspended particles, because of their higher content in suspended sediment, had larger effects on Kd than organic suspended ones. There was a good correlation between Kd and remote sensing reflectance. Taking Rrs (550), Rrs (675) and Rrs (731) as independent variables and doing regression analysis with Kd (490), a good linear relationship was found between Kd (490) and Rrs (731), and multi-variate linear regression analysis using variables Rrs (550), Rrs (675) and Rrs (731) could get better effect (R2 > 0.96) than the regression analysis using variable Rrs (731). PMID:19459373
Lee, Cheng-Kuang; Tsai, Meng-Tsan; Chang, Feng-Yu; Yang, Chih-Hsun; Shen, Su-Chin; Yuan, Ouyang; Yang, Chih-He
2013-01-01
In this study, time-resolved optical coherence tomography (OCT) scanning images of the process of water diffusion in the skin that illustrate the enhancement in the backscattered intensities due to the increased water concentration are presented. In our experiments, the water concentration in the skin was increased by soaking the hand in water, and the same region of the skin was scanned and measured with the OCT system and a commercial moisture monitor every three minutes. To quantitatively analyze the moisture-related optical properties and the velocity of water diffusion in human skin, the attenuation coefficients of the skin, including the epidermis and dermis layers, were evaluated. Furthermore, the evaluated attenuation coefficients were compared with the measurements made using the commercial moisture monitor. The results demonstrate that the attenuation coefficient increases as the water concentration increases. Furthermore, by evaluating the positions of center-of mass of the backscattered intensities from OCT images, the diffusion velocity can be estimated. In contrast to the commercial moisture monitor, OCT can provide three-dimensional structural images of the skin and characterize its optical property, which together can be used to observe morphological changes and quantitatively evaluate the moisture-related attenuation coefficients in different skin layers. PMID:23529149
NASA Technical Reports Server (NTRS)
Cao, Fang; Fichot, Cedric G.; Hooker, Stanford B.; Miller, William L.
2014-01-01
Photochemical processes driven by high-energy ultraviolet radiation (UVR) in inshore, estuarine, and coastal waters play an important role in global bio geochemical cycles and biological systems. A key to modeling photochemical processes in these optically complex waters is an accurate description of the vertical distribution of UVR in the water column which can be obtained using the diffuse attenuation coefficients of down welling irradiance (Kd()). The Sea UV Sea UVc algorithms (Fichot et al., 2008) can accurately retrieve Kd ( 320, 340, 380,412, 443 and 490 nm) in oceanic and coastal waters using multispectral remote sensing reflectances (Rrs(), Sea WiFS bands). However, SeaUVSeaUVc algorithms are currently not optimized for use in optically complex, inshore waters, where they tend to severely underestimate Kd(). Here, a new training data set of optical properties collected in optically complex, inshore waters was used to re-parameterize the published SeaUVSeaUVc algorithms, resulting in improved Kd() retrievals for turbid, estuarine waters. Although the updated SeaUVSeaUVc algorithms perform best in optically complex waters, the published SeaUVSeaUVc models still perform well in most coastal and oceanic waters. Therefore, we propose a composite set of SeaUVSeaUVc algorithms, optimized for Kd() retrieval in almost all marine systems, ranging from oceanic to inshore waters. The composite algorithm set can retrieve Kd from ocean color with good accuracy across this wide range of water types (e.g., within 13 mean relative error for Kd(340)). A validation step using three independent, in situ data sets indicates that the composite SeaUVSeaUVc can generate accurate Kd values from 320 490 nm using satellite imagery on a global scale. Taking advantage of the inherent benefits of our statistical methods, we pooled the validation data with the training set, obtaining an optimized composite model for estimating Kd() in UV wavelengths for almost all marine waters. This
Bardaji, Raul; Sánchez, Albert-Miquel; Simon, Carine; Wernand, Marcel R.; Piera, Jaume
2016-01-01
A critical parameter to assess the environmental status of water bodies is the transparency of the water, as it is strongly affected by different water quality related components (such as the presence of phytoplankton, organic matter and sediment concentrations). One parameter to assess the water transparency is the diffuse attenuation coefficient. However, the number of subsurface irradiance measurements obtained with conventional instrumentation is relatively low, due to instrument costs and the logistic requirements to provide regular and autonomous observations. In recent years, the citizen science concept has increased the number of environmental observations, both in time and space. The recent technological advances in embedded systems and sensors also enable volunteers (citizens) to create their own devices (known as Do-It-Yourself or DIY technologies). In this paper, a DIY instrument to measure irradiance at different depths and automatically calculate the diffuse attenuation Kd coefficient is presented. The instrument, named KdUINO, is based on an encapsulated low-cost photonic sensor and Arduino (an open-hardware platform for the data acquisition). The whole instrument has been successfully operated and the data validated comparing the KdUINO measurements with the commercial instruments. Workshops have been organized with high school students to validate its feasibility. PMID:26999132
Bardaji, Raul; Sánchez, Albert-Miquel; Simon, Carine; Wernand, Marcel R; Piera, Jaume
2016-01-01
A critical parameter to assess the environmental status of water bodies is the transparency of the water, as it is strongly affected by different water quality related components (such as the presence of phytoplankton, organic matter and sediment concentrations). One parameter to assess the water transparency is the diffuse attenuation coefficient. However, the number of subsurface irradiance measurements obtained with conventional instrumentation is relatively low, due to instrument costs and the logistic requirements to provide regular and autonomous observations. In recent years, the citizen science concept has increased the number of environmental observations, both in time and space. The recent technological advances in embedded systems and sensors also enable volunteers (citizens) to create their own devices (known as Do-It-Yourself or DIY technologies). In this paper, a DIY instrument to measure irradiance at different depths and automatically calculate the diffuse attenuation Kd coefficient is presented. The instrument, named KdUINO, is based on an encapsulated low-cost photonic sensor and Arduino (an open-hardware platform for the data acquisition). The whole instrument has been successfully operated and the data validated comparing the KdUINO measurements with the commercial instruments. Workshops have been organized with high school students to validate its feasibility. PMID:26999132
NASA Astrophysics Data System (ADS)
Saulquin, Bertand; Hamdi, Anouar; Populus, Jacques; Loutier, Romain; Demaria, Julien; Mangin, Antoine; D'Andon, Odile Fanton
2010-12-01
Accurate estimations of the diffuse attenuation coefficient is critical to understand physical processes such as the heat transfer in the upper layer of the ocean and also biological processes such as phytoplankton photosynthesis in the ocean euphotic zone. Light availability in the water column and the seabed determine the euphotic zone and constraints the type and distribution of the algae species. The EuSeaMap project's aim is to characterize at a resolution of 250m the European infralitoral benthic zone, according to biology, physic and geology criteriums and using observations and models. Satellite observations of the diffuse attenuation coefficient of the downwelling spectral irradiance at wavelength 490 nm (Kd490) or the diffuse attenuation coefficient for the downwelling photosynthetically available radiation (KdPAR) is an effective method to provide large scale maps of these parameters at high spatial and temporal resolution. Several empirical and semi-analytical models are commonly used to derive the Kd490 and KdPAR maps from ocean colour satellite sensors such as the Medium Resolution Imaging Spectrometer Instrument (MERIS), the Sea- viewing Wide Field-of-view Sensor (SeaWiFS), and the Moderate Resolution Imaging Spectroradiometer (MODIS). Most of these existing empirical or semi- analytical models have been calibrated on open ocean waters and provide good results in these areas, but tend to underestimate the attenuation of light in coastal waters, our area of interest. We propose here a new estimation of the euphotic depth and the KdPAR for coastal European waters using MERIS reflectances at the resolution of 1km and 250 m. First, a semi-analytical model is used to estimate the Kd490, and in a second step, two relationships have been developed between the KdPAR and the Kd490 for respectively clear and turbid waters. Satellite-derived fields of Kd490 and the deduced KdPAR are validated using matchups collected over the world. Distribution maps of seabed
NASA Astrophysics Data System (ADS)
Sokoletsky, Leonid; Yang, Xianping; Shen, Fang
2014-11-01
Radiative transfer modelling in atmosphere, water, and on the air-water surface was used to create an algorithm and computer code for satellite monitoring Chinese estuarine and coastal waters. The atmospheric part of the algorithm is based on the Reference Evaluation of Solar Transmittance (REST) model for calculation of optical properties of the atmosphere from the top of the atmosphere to the target; for modelling optical properties from target towards satellite's sensor, an optical reciprocity principle has been used. An algorithm uses estimates derived from three different sources: 1) the MODIS-based software; 2) radiative transfer equations, and 3) well-known empirical relationships between measured parameters and optical depths and transmittances for such atmospheric components as molecules, aerosols, ozone, nitrogen dioxide, precipitable water vapor and uniformly mixed gases. Using this model allowed us to derive a reliable relationship relating an important parameter, the diffuse-to-global solar incoming irradiance ratio, to the aerosol optical thickness, solar zenith angle and wavelength. The surface and underwater parts of the algorithm contained theoretical and semi-empirical relationships between inherent (such as absorption, scattering and backscattering coefficients) and apparent (remote-sensing reflectance and diffuse attenuation coefficient, Kd) optical properties, and suspended sediment concentration (SSC) measured in the Yangtze River Estuary and its adjacent coastal area. The first false colour maps of SSC and Kd demonstrated a well accordance with the multi-year field observations in the region, and suggest promise for use of this algorithm for the regular monitoring of Chinese and worldwide natural waters.
Simon, Arthi; Shanmugam, Palanisamy
2013-12-01
The vertical spectral diffuse attenuation coefficient of Kd is an important optical property related to the penetration and availability of light underwater, which is of fundamental interest in studies of ocean physics and biology. Models developed in the recent decades were mainly based on theoretical analyses and numerical (radiative transfer) simulations to estimate this property in optically deep waters, thus leaving inadequate knowledge of its variability at multiple depths and wavelengths, covering a wide range of solar incident geometry, in turbid coastal waters. In the present study, a new model is developed to quantify the vertical, spatial and temporal variability of K(d) at multiple wavelengths and to quantify its dependence with respect to solar incident geometry under differing sky conditions. Thus, the new model is derived as a function of inherent optical properties (IOPs - absorption a and backscattering b(b)), solar zenith angle and depth parameters. The model results are rigorously evaluated using time-series and discrete in situ data from clear and turbid coastal waters. The K(d) values derived from the new model are found to agree with measured data within the mean relative error 0.02~6.24% and R² 0.94~0.99. By contrast, the existing models have large errors when applied to the same data sets. Statistical results of the new model for the vertical spectral distribution of K(d) in clear oceanic waters (for different solar zenith and in-water conditions) are also good when compared to those of the existing models. These results suggest that the new model can provide an improved interpretation about the variation of the vertical spectral diffuse attenuation coefficient of downwelling irradiance, which will have important implications for ocean physics, biogeochemical cycles and underwater applications in both relatively clear and turbid coastal waters. PMID:24514558
NASA Astrophysics Data System (ADS)
Simon, Arthi; Shanmugam, Palanisamy
2016-07-01
A semi-analytical model is developed for estimating the spectral diffuse attenuation coefficient of downwelling irradiance (Kd(λ)) in inland and coastal waters. The model works as a function of the inherent optical properties (absorption and backscattering), depth, and solar zenith angle. Results of this model are validated using a large number of in-situ measurements of Kd(λ) in clear oceanic, turbid coastal and productive lagoon waters. To further evaluate its relative performance, Kd(λ) values obtained from this model are compared with results from three existing models. Validation results show that the present model is a better descriptor of Kd(λ) and shows an overall better performance compared to the existing models. The applicability of the present model is further tested on two Hyperspectral Imager for the Coastal Ocean (HICO) remote sensing images acquired simultaneously with our field measurements. The Kd(λ) spectra derived from HICO imageries have good agreement with measured data with the mean relative percent error of less than 12% which are well within the benchmark for a validated uncertainty of ±35% endorsed for the remote sensing products in oceanic waters. The model offers potential advantages for predicting changes in spectral and vertical Kd values in a wide variety of waters within inland and coastal environments.
Portable vapor diffusion coefficient meter
Ho, Clifford K.
2007-06-12
An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.
Attenuation coefficients for water quality trading.
Keller, Arturo A; Chen, Xiaoli; Fox, Jessica; Fulda, Matt; Dorsey, Rebecca; Seapy, Briana; Glenday, Julia; Bray, Erin
2014-06-17
Water quality trading has been proposed as a cost-effective approach for reducing nutrient loads through credit generation from agricultural or point source reductions sold to buyers facing costly options. We present a systematic approach to determine attenuation coefficients and their uncertainty. Using a process-based model, we determine attenuation with safety margins at many watersheds for total nitrogen (TN) and total phosphorus (TP) loads as they transport from point of load reduction to the credit buyer. TN and TP in-stream attenuation generally increases with decreasing mean river flow; smaller rivers in the modeled region of the Ohio River Basin had TN attenuation factors per km, including safety margins, of 0.19-1.6%, medium rivers of 0.14-1.2%, large rivers of 0.13-1.1%, and very large rivers of 0.04-0.42%. Attenuation in ditches transporting nutrients from farms to receiving rivers is 0.4%/km for TN, while for TP attenuation in ditches can be up to 2%/km. A 95 percentile safety margin of 30-40% for TN and 6-10% for TP, applied to the attenuation per km factors, was determined from the in-stream sensitivity of load reductions to watershed model parameters. For perspective, over 50 km a 1% per km factor would result in 50% attenuation = 2:1 trading ratio. PMID:24866482
Diffusion coefficients of several aqueous alkanolamine solutions
Snijder, E.D.; Riele, M.J.M. te; Versteeg, G.F.; Swaaij, W.P.M. van . Dept. of Chemical Engineering)
1993-07-01
In absorption processes of acid gases (H[sub 2]S, CO[sub 2], COS) in alkanolamine solutions, diffusion coefficients are used for the calculation of the mass transfer rate. The Taylor dispersion technique was applied for the determination of diffusion coefficients of various systems. Experiments with the system KCl in water showed that the experimental setup provides accurate data. For the alkanolamines monoethanolamine (MEA), diethanolamine (DEA), methyldiethanolamine (MDEA), and di-2-propanolamine (DIPA), correlations for the diffusion coefficient as a function of temperature at different concentrations are given. A single relation for every amine has been derived which correlates the diffusion coefficients as a function of temperature and concentration. The temperature was varied between 298 and 348 K, and the concentration between 0 and 4000-5000 mol/m[sup 3]. Furthermore, a modified Stokes-Einstein relation is presented for the prediction of the diffusion coefficients in the alkanolamines in relation to the viscosity of the solvent and the diffusion coefficient at infinite dilution. The diffusion coefficients at low concentrations are compared with some available relations for the estimation of diffusion coefficients at infinite dilution, and it appears that the agreement is fairly good.
Attenuation coefficient of usable solar radiation of the global oceans
NASA Astrophysics Data System (ADS)
Lin, Junfang; Lee, Zhongping; Ondrusek, Michael; Kahru, Mati
2016-05-01
Usable solar radiation (USR) represents spectrally integrated solar energy in the spectral range of 400-560 nm, a domain where photons penetrate the most in oceanic waters and thus contribute to photosynthesis and heating at deeper depths. Through purely numerical simulations, it was found that the diffuse attenuation coefficient of downwelling USR (Kd(USR), m-1) is nearly a constant vertically in the upper water column for clear waters and most turbid waters. Subsequently an empirical model was developed to estimate Kd(USR) based on the diffuse attenuation coefficient at 490 nm (Kd(490), m-1). We here evaluate this relationship using data collected from a wide range of oceanic and coastal environments and found that the relationship between Kd(490) and Kd(USR) developed via the numerical simulation is quite robust. We further refined this relationship to extend the applicability to "clearest" natural waters. This refined relationship was then used to produce sample distribution of Kd(USR) of global oceans. As expected, extremely low Kd(USR) (˜0.02 m-1) was observed in ocean gyres, while significantly higher Kd(USR) (˜5.2 m-1) was found in very turbid coastal regions. A useful application of Kd(USR) is to easily and accurately propagate surface USR to deeper depths, potentially to significantly improve the estimation of basin scale primary production and heat fluxes in the upper water column.
Molecular Diffusion Coefficients: Experimental Determination and Demonstration.
ERIC Educational Resources Information Center
Fate, Gwendolyn; Lynn, David G.
1990-01-01
Presented are laboratory methods which allow the demonstration and determination of the diffusion coefficients of compounds ranging in size from water to small proteins. Included are the procedures involving the use of a spectrometer, UV cell, triterated agar, and oxygen diffusion. Results including quantification are described. (CW)
Diffuse reflection coefficient of a stratified sea.
Haltrin, V I
1999-02-20
A differential equation of a Riccati type for the diffuse reflection coefficient of a stratified sea is proposed. For a homogeneous sea with arbitrary inherent optical properties this equation is solved analytically. For an inhomogeneous sea it is solved approximately for any arbitrary stratification. The resulting equation expresses the diffuse reflection coefficient of the sea through vertical profiles of absorption and backscattering coefficients, bottom albedo, and sea depth. The results of calculations with this equation are compared with Monte Carlo computations. It was found that the precision of this approach is in the range of 15%. PMID:18305694
Diffusion and transport coefficients in synthetic opals
Sofo, J. O.; Mahan, G. D.
2000-07-15
Opals are structures composed of close-packed spheres in the size range of nano to micrometers. They are sintered to create small necks at the points of contact. We have solved the diffusion problem in such structures. The relation between the diffusion coefficient and the thermal and electrical conductivity is used to estimate the transport coefficients of opal structures as a function of the neck size and the mean free path of the carriers. The theory presented is also applicable to the diffusion problem in other periodic structures. (c) 2000 The American Physical Society.
Improved Diffusion Coefficients for Stellar Plasmas
NASA Astrophysics Data System (ADS)
Brassard, P.; Fontaine, G.
2014-04-01
We are currently working on the fourth generation of our codes for building evolutionary and static models of hot subdwarf and white dwarf stars. One of the improvements of these codes consists in an update of all the microphysics involved in the computations. As part of our efforts, we have taken a look at possible improvements for the diffusion coefficients. Since the publication of the widely used diffusion coefficients of Paquette et al. (1986), the number-crunching power of computers has immensely increased, allowing more accurate computations of the triple collision integrals. We have thus produced new tables of diffusion coefficients with higher accuracy and higher resolution than before, of general use in stellar astrophysics.
Correlation and prediction of gaseous diffusion coefficients.
NASA Technical Reports Server (NTRS)
Marrero, T. R.; Mason, E. A.
1973-01-01
A new correlation method for binary gaseous diffusion coefficients from very low temperatures to 10,000 K is proposed based on an extended principle of corresponding states, and having greater range and accuracy than previous correlations. There are two correlation parameters that are related to other physical quantities and that are predictable in the absence of diffusion measurements. Quantum effects and composition dependence are included, but high-pressure effects are not. The results are directly applicable to multicomponent mixtures.
Gamma ray attenuation coefficient measurement for neutron-absorbent materials
NASA Astrophysics Data System (ADS)
Jalali, Majid; Mohammadi, Ali
2008-05-01
The compounds Na 2B 4O 7, H 3BO 3, CdCl 2 and NaCl and their solutions attenuate gamma rays in addition to neutron absorption. These compounds are widely used in the shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to the four compounds aforementioned, in energies 662, 778.9, 867.38, 964.1, 1085.9, 1173, 1212.9, 1299.1,1332 and 1408 keV, have been determined by the γ rays transmission method in a good geometry setup; also, these coefficients were calculated by MCNP code. A comparison between experiments, simulations and Xcom code has shown that the study has potential application for determining the attenuation coefficient of various compound materials. Experiment and computation show that H 3BO 3 with the lowest average Z has the highest gamma ray attenuation coefficient among the aforementioned compounds.
The electron diffusion coefficient in Jupiter's magnetosphere
NASA Technical Reports Server (NTRS)
Birmingham, T.; Northrop, T.; Baxter, R.; Hess, W.; Lojko, M.
1974-01-01
A steady-state model of Jupiter's electron radiation belt is developed. The model includes injection from the solar wind, radial diffusion, energy degradation by synchrotron radiation, and absorption at Jupiter's surface. A diffusion coefficient of the form D sub RR/R sub J squared = k times R to the m-th power is assumed, and then observed data on synchrotron radiation are used to fit the model. The free parameters determined from this fit are m = 1.95 plus or minus 0.5, k = 1.7 plus or minus 0.5 x 10 to the 9th power per sec, and the magnetic moment of injected particles equals 770 plus or minus 300 MeV/G. The value of m shows quite clearly that the diffusion is not caused by magnetic pumping by a variable solar wind or by a fluctuating convection electric field. The process might be field line exchange driven by atmospheric-ionospheric winds; our diffusion coefficient has roughly the same radial dependence but is considerably smaller in magnitude than the upper bound diffusion coefficients recently suggested for this process by Brice and McDonough (1973) and Jacques and Davis (1972).
Attenuation Coefficient Estimation of the Healthy Human Thyroid In Vivo
NASA Astrophysics Data System (ADS)
Rouyer, J.; Cueva, T.; Portal, A.; Yamamoto, T.; Lavarello, R.
Previous studies have demonstrated that attenuation coefficients can be useful towards characterizing thyroid tissues. In this work, ultrasonic attenuation coefficients were estimated from healthy human thyroids in vivo using a clinical scanner. The selected subjects were five young, healthy volunteers (age: 26 ± 6 years old, gender: three females, two males) with no reported history of thyroid diseases, no palpable thyroid nodules, no smoking habits, and body mass index less than 30 kg/m2. Echographic examinations were conducted by a trained sonographer using a SonixTouch system (Ultrasonix Medical Corporation, Richmond, BC) equipped with an L14-5 linear transducer array (nominal center frequency of 10 MHz, transducer footprint of 3.8 cm). Radiofrequency data corresponding to the collected echographic images in both transverse and longitudinal views were digitized at a sampling rate of 40 MHz and processed with Matlab codes (MathWorks, Natick, MA) to estimate attenuation coefficients using the spectral log difference method. The estimation was performed using an analysis bandwidth spanning from 4.0 to 9.0 MHz. The average value of the estimated ultrasonic attenuation coefficients was equal to 1.34 ± 0.15 dB/(cm.MHz). The standard deviation of the estimated average attenuation coefficient across different volunteers suggests a non-negligible inter-subject variability in the ultrasonic attenuation coefficient of the human thyroid.
Measurements of spectral attenuation coefficients in the lower Chesapeake Bay
NASA Technical Reports Server (NTRS)
Houghton, W. M.
1983-01-01
The spectral transmission was measured for water samples taken in the lower Chesapeake Bay to allow characterization of several optical properties. The coefficients of total attenuation, particle attenuation, and absorption by dissolved organic matter were determined over a wavelength range from 3500 A to 8000 A. The data were taken over a 3 year period and at a number of sites so that an indication of spatial and temporal variations could be obtained. The attenuations determined in this work are, on the average, 10 times greater than those obtained by Hulburt in 1944, which are commonly accepted in the literature for Chesapeake Bay attenuation.
Micro-Fluidic Diffusion Coefficient Measurement
Forster, F.K.; Galambos, P.
1998-10-06
A new method for diffusion coefficient measurement applicable to micro-fluidics is pre- sented. The method Iltilizes an analytical model describing laminar dispersion in rect- anglllar ~llicro_channe]s. The Illethod ~vas verified throllgh measllremen~ of fllloresceill diffusivity in water and aqueolls polymer solutions of differing concentration. The diffll- sivity of flllorescein was measlmed as 0.64 x 10-gm2/s in water, 0.49 x 10-gm2/s in the 4 gm/dl dextran solution and 0.38 x 10-9n12/s in the 8 gnl/dl dextran solution.
Optical attenuation coefficient in individual ZnO nanowires.
Little, Anree; Hoffman, Abigail; Haegel, Nancy M
2013-03-11
Attenuation coefficient measurements for the propagation of bandedge luminescence are made on individual ZnO nanowires by combining the localized excitation capability of a scanning electron microscope (SEM) with near-field scanning optical microscopy (NSOM) to record the distribution and intensity of wave-guided emission. Measurements were made for individual nanostructures with triangular cross-sections ranging in diameter from 680 to 2300 nm. The effective attenuation coefficient shows an inverse dependence on nanowire diameter (d(-1)), indicating scattering losses due to non-ideal waveguiding behavior. PMID:23482201
Fractional diffusions with time-varying coefficients
NASA Astrophysics Data System (ADS)
Garra, Roberto; Orsingher, Enzo; Polito, Federico
2015-09-01
This paper is concerned with the fractionalized diffusion equations governing the law of the fractional Brownian motion BH(t). We obtain solutions of these equations which are probability laws extending that of BH(t). Our analysis is based on McBride fractional operators generalizing the hyper-Bessel operators L and converting their fractional power Lα into Erdélyi-Kober fractional integrals. We study also probabilistic properties of the random variables whose distributions satisfy space-time fractional equations involving Caputo and Riesz fractional derivatives. Some results emerging from the analysis of fractional equations with time-varying coefficients have the form of distributions of time-changed random variables.
Calculation and application of combined diffusion coefficients in thermal plasmas.
Murphy, Anthony B
2014-01-01
The combined diffusion coefficient method is widely used to treat the mixing and demixing of different plasma gases and vapours in thermal plasmas, such as welding arcs and plasma jets. It greatly simplifies the treatment of diffusion for many gas mixtures without sacrificing accuracy. Here, three subjects that are important in the implementation of the combined diffusion coefficient method are considered. First, it is shown that different expressions for the combined diffusion coefficients, arising from different definitions for the stoichiometric coefficients that assign the electrons to the two gases, are equivalent. Second, an approach is presented for calculating certain partial differential terms in the combined temperature and pressure diffusion coefficients that can cause difficulties. Finally, a method for applying the combined diffusion coefficients in computational models, which typically require diffusion to be expressed in terms of mass fraction gradients, is given. PMID:24603457
Calculation and application of combined diffusion coefficients in thermal plasmas
Murphy, Anthony B.
2014-01-01
The combined diffusion coefficient method is widely used to treat the mixing and demixing of different plasma gases and vapours in thermal plasmas, such as welding arcs and plasma jets. It greatly simplifies the treatment of diffusion for many gas mixtures without sacrificing accuracy. Here, three subjects that are important in the implementation of the combined diffusion coefficient method are considered. First, it is shown that different expressions for the combined diffusion coefficients, arising from different definitions for the stoichiometric coefficients that assign the electrons to the two gases, are equivalent. Second, an approach is presented for calculating certain partial differential terms in the combined temperature and pressure diffusion coefficients that can cause difficulties. Finally, a method for applying the combined diffusion coefficients in computational models, which typically require diffusion to be expressed in terms of mass fraction gradients, is given. PMID:24603457
ANALYTIC FORMS OF THE PERPENDICULAR DIFFUSION COEFFICIENT IN NRMHD TURBULENCE
Shalchi, A.
2015-02-01
In the past different analytic limits for the perpendicular diffusion coefficient of energetic particles interacting with magnetic turbulence were discussed. These different limits or cases correspond to different transport modes describing how the particles are diffusing across the large-scale magnetic field. In the current paper we describe a new transport regime by considering the model of noisy reduced magnetohydrodynamic turbulence. We derive different analytic forms of the perpendicular diffusion coefficient, and while we do this, we focus on the aforementioned new transport mode. We show that for this turbulence model a small perpendicular diffusion coefficient can be obtained so that the latter diffusion coefficient is more than hundred times smaller than the parallel diffusion coefficient. This result is relevant to explain observations in the solar system where such small perpendicular diffusion coefficients have been reported.
Diffusion coefficient of three-dimensional Yukawa liquids
NASA Astrophysics Data System (ADS)
Dzhumagulova, K. N.; Ramazanov, T. S.; Masheeva, R. U.
2013-11-01
The purpose of this work is an investigation of the diffusion coefficient of the dust component in complex plasma. The computer simulation of the Yukawa liquids was made on the basis of the Langevin equation, which takes into account the influence of buffer plasma on the dust particles dynamics. The Green-Kubo relation was used to calculate the diffusion coefficient. Calculations of the diffusion coefficient for a wide range of the system parameters were performed. Using obtained numerical data, we constructed the interpolation formula for the diffusion coefficient. We also show that the interpolation formula correctly describes experimental data obtained under microgravity conditions.
Diffusion coefficient of three-dimensional Yukawa liquids
Dzhumagulova, K. N.; Ramazanov, T. S.; Masheeva, R. U.
2013-11-15
The purpose of this work is an investigation of the diffusion coefficient of the dust component in complex plasma. The computer simulation of the Yukawa liquids was made on the basis of the Langevin equation, which takes into account the influence of buffer plasma on the dust particles dynamics. The Green–Kubo relation was used to calculate the diffusion coefficient. Calculations of the diffusion coefficient for a wide range of the system parameters were performed. Using obtained numerical data, we constructed the interpolation formula for the diffusion coefficient. We also show that the interpolation formula correctly describes experimental data obtained under microgravity conditions.
Combined diffusion coefficients for a mixture of three ionized gases
NASA Astrophysics Data System (ADS)
Zhang, X. N.; Murphy, A. B.; Li, H. P.; Xia, W. D.
2014-12-01
The combined diffusion coefficient method has been demonstrated to greatly simplify the treatment of diffusion in the modelling of thermal plasmas in gas mixtures without loss of accuracy. In this paper, an extension of this method to allow treatment of diffusion of a three-gas mixture has been achieved, provided that the gases are homonuclear and do not react with each other, and satisfy local chemical equilibrium. Formulas for the combined diffusion coefficients are presented, and combined diffusion coefficients for different mixtures of helium, argon and carbon at temperatures up to 30 000 K and at atmosphere pressure are calculated as an example.
Bounce resonance diffusion coefficients for spatially confined waves
NASA Astrophysics Data System (ADS)
Li, Xinxin; Tao, Xin; Lu, Quanmin; Dai, Lei
2015-11-01
Theoretical bounce resonance diffusion coefficients from interactions between electrons and spatially confined waves are derived and validated. Roberts and Schulz bounce resonance diffusion coefficients assume waves to be present on the whole bounce trajectory of particles; therefore, they are not directly applicable to waves that have a finite spatial extent. We theoretically derive and numerically validate a new set of bounce resonance diffusion coefficients for spatially confined waves. We apply our analysis to magnetosonic waves, which are confined to equatorial regions, using a previously published magnetosonic wave model. We find that the bounce resonance diffusion coefficients are comparable to the gyroresonance diffusion coefficients. We conclude that bounce resonance diffusion with magnetosonic waves might play an important role in relativistic electron dynamics.
Temperature dependence of the diffusion coefficient of nanoparticles
NASA Astrophysics Data System (ADS)
Rudyak, V. Ya.; Dubtsov, S. N.; Baklanov, A. M.
2008-06-01
The temperature dependence of the diffusion coefficient of nanoparticles in gases has been experimentally studied. It is established that this dependence significantly differs from that predicted by various correlations, in particular, by the Cunningham-Millikan-Davies correlation that is used as an instrumental basis for virtually all methods of measurement of the diffusion coefficient in aerosols.
Controlling frontal photopolymerization with optical attenuation and mass diffusion.
Hennessy, Matthew G; Vitale, Alessandra; Matar, Omar K; Cabral, João T
2015-06-01
Frontal photopolymerization (FPP) is a versatile directional solidification process that can be used to rapidly fabricate polymer network materials by selectively exposing a photosensitive monomer bath to light. A characteristic feature of FPP is that the monomer-to-polymer conversion profiles take on the form of traveling waves that propagate into the unpolymerized bulk from the illuminated surface. Practical implementations of FPP require detailed knowledge about the conversion profile and speed of these traveling waves. The purpose of this theoretical study is to (i) determine the conditions under which FPP occurs and (ii) explore how optical attenuation and mass transport can be used to finely tune the conversion profile and propagation kinetics. Our findings quantify the strong optical attenuation and slow mass transport relative to the rate of polymerization required for FPP. The shape of the traveling wave is primarily controlled by the magnitude of the optical attenuation coefficients of the neat and polymerized material. Unexpectedly, we find that mass diffusion can increase the net extent of polymerization and accelerate the growth of the solid network. The theoretical predictions are found to be in excellent agreement with experimental data acquired for representative systems. PMID:26172720
Controlling frontal photopolymerization with optical attenuation and mass diffusion
NASA Astrophysics Data System (ADS)
Hennessy, Matthew G.; Vitale, Alessandra; Matar, Omar K.; Cabral, João T.
2015-06-01
Frontal photopolymerization (FPP) is a versatile directional solidification process that can be used to rapidly fabricate polymer network materials by selectively exposing a photosensitive monomer bath to light. A characteristic feature of FPP is that the monomer-to-polymer conversion profiles take on the form of traveling waves that propagate into the unpolymerized bulk from the illuminated surface. Practical implementations of FPP require detailed knowledge about the conversion profile and speed of these traveling waves. The purpose of this theoretical study is to (i) determine the conditions under which FPP occurs and (ii) explore how optical attenuation and mass transport can be used to finely tune the conversion profile and propagation kinetics. Our findings quantify the strong optical attenuation and slow mass transport relative to the rate of polymerization required for FPP. The shape of the traveling wave is primarily controlled by the magnitude of the optical attenuation coefficients of the neat and polymerized material. Unexpectedly, we find that mass diffusion can increase the net extent of polymerization and accelerate the growth of the solid network. The theoretical predictions are found to be in excellent agreement with experimental data acquired for representative systems.
A study on photon attenuation coefficients of different wood materials with different densities
NASA Astrophysics Data System (ADS)
Saritha, B.; Nageswara Rao, A. S.
2015-12-01
A study on the variation of linear attenuation coefficients with the densities of the wood samples is under taken. The soft wood and hard wood samples were collected from the forest area of Pakal in Warangal district. The linear and mass attenuation coefficients are measured using gamma ray spectrometry based on NaI (Tl) scintillation detector with energies of 662 KeV and 59.5 KeV respectively. The mass attenuation coefficient values measured from experiment and are compared with theoretical methods using XCOM program. The plots of density versus linear attenuation coefficient for different wood materials correspond to higher order polynomial are presented. It is observed that variation of linear attenuation coefficient depends on densities of materials. The Chloroxylon swietenia with more density has more linear attenuation coefficient at 59.5 KeV and 662 KeV. The variation in attenuation coefficient attributed to chemical composition of wood used in the experiment.
Uranium soft x-ray total attenuation coefficients
Del Grande, N.K.; Oliver, A.J.
1981-01-01
Uranium total attenuation coefficients were measured continuously from 0.84 to 6.0 keV and at selected higher energies using a vacuum single crystal diffractometer and flow-proportional counter. Statistical fluctuations ranged from 0.5% to 2%. The overall accuracy was 3%. Prominent structure was measured within 20 eV of the M/sub 5/ (3.552 keV) and M/sub 4/ (3.728 keV) edges. Jump ratios were determined from log-log polynomial fits to data at energies apart from the near-edge regions. These data were compared with calculations based on a relativistic HFS central potential model and with previously tabulated data.
A consistent tissue attenuation coefficient estimator using bubble harmonic echoes.
Tsao, Sheng-Kai; Tsao, Jenho
2010-12-01
The ultrasonic property of soft tissue can be quantified by its attenuation coefficient α. Traditionally the backscattering signal of tissue is used to estimate α. To improve precision, a large number of spatially independent samples of tissue echoes are required for averaging. In this paper, we propose a new estimation method, which makes use of microbubbles to provide temporally independent samples for averaging. It is easier for temporal sampling to maintain ergodicity and provide a large number of independent samples for statistical averaging. A stochastic model for the harmonic signals of an ideal bubble attenuated by tissue is derived based on Kuc's and Miller's works. An estimator of α is then presented. This estimator is consistent and could be biased because of the unknown squarelaw relation between the second and fundamental harmonics for non-ideal bubble oscillation. In experimental works, we design a simplified phantom for demonstrating the performance of the proposed estimator. It is shown that both first and second harmonics can estimate α consistently. However, the interference of the tissue backscattering signal may cause additional estimation error using the first harmonic. PMID:21156361
Analytic expressions for ULF wave radiation belt radial diffusion coefficients
Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K
2014-01-01
We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440
Improved diffusion coefficients generated from Monte Carlo codes
Herman, B. R.; Forget, B.; Smith, K.; Aviles, B. N.
2013-07-01
Monte Carlo codes are becoming more widely used for reactor analysis. Some of these applications involve the generation of diffusion theory parameters including macroscopic cross sections and diffusion coefficients. Two approximations used to generate diffusion coefficients are assessed using the Monte Carlo code MC21. The first is the method of homogenization; whether to weight either fine-group transport cross sections or fine-group diffusion coefficients when collapsing to few-group diffusion coefficients. The second is a fundamental approximation made to the energy-dependent P1 equations to derive the energy-dependent diffusion equations. Standard Monte Carlo codes usually generate a flux-weighted transport cross section with no correction to the diffusion approximation. Results indicate that this causes noticeable tilting in reconstructed pin powers in simple test lattices with L2 norm error of 3.6%. This error is reduced significantly to 0.27% when weighting fine-group diffusion coefficients by the flux and applying a correction to the diffusion approximation. Noticeable tilting in reconstructed fluxes and pin powers was reduced when applying these corrections. (authors)
Derivation of anisotropic diffusion coefficients in a large annular cavity
Eiichi Suetomi; Hiroshi Sekimoto )
1993-06-01
A small reactor for a spacecraft or a small liquid-metal reactor for urban siting, decentralized electrical units, or seawater desalination is designed for a large leakage of neutrons from the reactor core. In these reactors, a movable annular reflector is used for reactivity control. Therefore, a large annular cavity exists between the core and the shielding materials. In this paper, anisotropic diffusion coefficients for a large annular cavity are derived by equating the neutron currents obtained by the diffusion equation and by the transport equation. These diffusion coefficients depend only on the geometrical configuration of the cavity. A numerical comparison of diffusion calculations using these diffusion coefficients and transport calculations shows good agreement.
The temperature variation of hydrogen diffusion coefficients in metal alloys
NASA Technical Reports Server (NTRS)
Danford, M. D.
1990-01-01
Hydrogen diffusion coefficients were measured as a function of temperature for a few metal alloys using an electrochemical evolution technique. Results from these measurements are compared to those obtained by the time-lag method. In all cases, diffusion coefficients obtained by the electrochemical method are larger than those by the time-lag method by an order of magnitude or more. These differences are attributed mainly to hydrogen trapping.
Experimental measurements of the diffusion coefficient of 212Pb.
Su, Y F; Newton, G J; Cheng, Y S; Yeh, H C
1989-03-01
Knowledge of the diffusion coefficient of Rn progeny is necessary for assessing the radiation exposure resulting from exposure to Rn and its progeny. The diffusion coefficient for 220Rn progeny was determined in ambient air by two independent methods, measuring deposition using a cylindrical tube or screens. A sampling train consisting of a diffusion tube and a screen-type diffusion battery was used for the experimental study. A range of flow rates and relative humidities was investigated. For 35% less than or equal to RH less than or equal to 85%, results from the two systems agree with each other. The diffusion coefficient of 212Pb was 0.036 +/- 0.002 cm2 s-1 and 0.037 +/- 0.004 cm2 s-1 for the tube and screen penetration methods, respectively. In low humidity air (RH less than 30%), a linear relationship between the diffusion coefficient of 212Pb and relative humidity was observed. The observed diffusion coefficient is strongly affected by the amount of material agglomerated onto the 212Pb atom. Further studies on the effects of trace gases and organics are required to fully understand the results. PMID:2537267
Experimental measurements of the diffusion coefficient of /sup 212/Pb
Su, Y.F.; Newton, G.J.; Cheng, Y.S.; Yeh, H.C.
1989-03-01
Knowledge of the diffusion coefficient of Rn progeny is necessary for assessing the radiation exposure resulting from exposure to Rn and its progeny. The diffusion coefficient for 220Rn progeny was determined in ambient air by two independent methods, measuring deposition using a cylindrical tube or screens. A sampling train consisting of a diffusion tube and a screen-type diffusion battery was used for the experimental study. A range of flow rates and relative humidities was investigated. For 35% less than or equal to RH less than or equal to 85%, results from the two systems agree with each other. The diffusion coefficient of 212Pb was 0.036 +/- 0.002 cm2 s-1 and 0.037 +/- 0.004 cm2 s-1 for the tube and screen penetration methods, respectively. In low humidity air (RH less than 30%), a linear relationship between the diffusion coefficient of 212Pb and relative humidity was observed. The observed diffusion coefficient is strongly affected by the amount of material agglomerated onto the 212Pb atom. Further studies on the effects of trace gases and organics are required to fully understand the results.
Calculation of Diffusion Coefficients from Bounce Resonance with Magnetosonic Waves
NASA Astrophysics Data System (ADS)
Tao, X.; Li, X.; Lu, Q.; Dai, L.
2015-12-01
Theoretical bounce resonance diffusion coefficients for interactions between electrons and magnetosonic waves are calculated and validated using guiding-center test particle simulations. First, we compare the theoretical diffusion coefficients of Roberts and Schulz with test particle simulations and find perfect agreement. However, the theoretical diffusion coefficients of Roberts and Schulz assume waves to be present on the whole trajectories of particles; therefore, they are not directly applicable to magnetosonic waves, which are found to be confined to equatorial regions from observations. Second, we derive a new set of bounce-resonance diffusion coefficients, taking into consideration the equatorial confinement of magnetosonic waves. These new diffusion coefficients are also validated by test particle simulations. Using a previously published magnetosonic wave model, our results demonstrate that bounce-resonance diffusion mainly results in strong pitch angle scattering of energetic electrons even with a moderate wave amplitude of 50 pT. We conclude that bounce-resonance diffusion plays an important role in relativistic electron dynamics and should be incorporated into global radiation belt modeling.
Empirical determination of diffusion coefficients and geospeedometry
NASA Astrophysics Data System (ADS)
Jaoul, Olivier; Béjina, Frédéric
2005-02-01
Geospeedometry allows to estimate the cooling rate (s init) of metamorphic rocks at the beginning of the cooling history using diffusion data. But the choice of a diffusion activation energy (E) and a preexponential factor (D 0) from experimental results can be difficult. We propose a method to obtain E directly from the rock itself by studying the variation of the average concentration of elements or isotopes (
Calculation of self-diffusion coefficients in iron
Zhang, Baohua
2014-01-15
On the basis of available P-V-T equation of state of iron, the temperature and pressure dependence of self-diffusion coefficients in iron polymorphs (α, δ, γ and ε phases) have been successfully reproduced in terms of the bulk elastic and expansivity data by means of a thermodynamical model that interconnects point defects parameters with bulk properties. The calculated diffusion parameters, such as self-diffusion coefficient, activation energy and activation volume over a broad temperature range (500-2500 K) and pressure range (0-100 GPa), compare favorably well with experimental or theoretical ones when the uncertainties are considered.
Diffusion coefficient and shear viscosity of rigid water models.
Tazi, Sami; Boţan, Alexandru; Salanne, Mathieu; Marry, Virginie; Turq, Pierre; Rotenberg, Benjamin
2012-07-18
We report the diffusion coefficient and viscosity of popular rigid water models: two non-polarizable ones (SPC/E with three sites, and TIP4P/2005 with four sites) and a polarizable one (Dang-Chang, four sites). We exploit the dependence of the diffusion coefficient on the system size (Yeh and Hummer 2004 J. Phys. Chem. B 108 15873) to obtain the size-independent value. This also provides an estimate of the viscosity of all water models, which we compare to the Green-Kubo result. In all cases, a good agreement is found. The TIP4P/2005 model is in better agreement with the experimental data for both diffusion and viscosity. The SPC/E and Dang-Chang models overestimate the diffusion coefficient and underestimate the viscosity. PMID:22739097
Ion diffusion coefficient measurements in nanochannels at various concentrations.
Wang, Junrong; Zhang, Li; Xue, Jianming; Hu, Guoqing
2014-03-01
Diffusion is one of the most fundamental properties of ionic transport in solutions. Here, we present experimental studies and theoretical analysis on the ion diffusion in nanochannels. Based on Fick's second law, we develop a current monitoring method to measure ion diffusion coefficient of high solution concentrations in nanochannels. This method is further extended to the cases at medium and low concentrations. Through monitoring ionic current during diffusion, we obtain diffusion coefficients of potassium chloride solution at different concentrations in nanochannels. These diffusion coefficients within the confined space are close to theirs bulk values. It is also found that the apparent ion diffusion equilibrium in the present experiments is very slow at low concentration, which we attribute to the slow equilibrium of the nanochannel surface charge. Finally, we get a primary acknowledge of the equilibrium rate between the nanochannel surface charge and electrolyte solution. The results in this work have improved the understanding of nanoscale diffusion and nanochannel surface charge and may be useful in nanofluidic applications such as ion-selective transport, energy conversion, and nanopore biosensors. PMID:24803967
Ion diffusion coefficient measurements in nanochannels at various concentrations
Wang, Junrong; Zhang, Li; Xue, Jianming; Hu, Guoqing
2014-01-01
Diffusion is one of the most fundamental properties of ionic transport in solutions. Here, we present experimental studies and theoretical analysis on the ion diffusion in nanochannels. Based on Fick's second law, we develop a current monitoring method to measure ion diffusion coefficient of high solution concentrations in nanochannels. This method is further extended to the cases at medium and low concentrations. Through monitoring ionic current during diffusion, we obtain diffusion coefficients of potassium chloride solution at different concentrations in nanochannels. These diffusion coefficients within the confined space are close to theirs bulk values. It is also found that the apparent ion diffusion equilibrium in the present experiments is very slow at low concentration, which we attribute to the slow equilibrium of the nanochannel surface charge. Finally, we get a primary acknowledge of the equilibrium rate between the nanochannel surface charge and electrolyte solution. The results in this work have improved the understanding of nanoscale diffusion and nanochannel surface charge and may be useful in nanofluidic applications such as ion-selective transport, energy conversion, and nanopore biosensors. PMID:24803967
Divergent Diffusion Coefficients in Simulations of Fluids and Lipid Membranes.
Vögele, Martin; Hummer, Gerhard
2016-08-25
We investigate the dependence of single-particle diffusion coefficients on the size and shape of the simulation box in molecular dynamics simulations of fluids and lipid membranes. We find that the diffusion coefficients of lipids and a carbon nanotube embedded in a lipid membrane diverge with the logarithm of the box width. For a neat Lennard-Jones fluid in flat rectangular boxes, diffusion becomes anisotropic, diverging logarithmically in all three directions with increasing box width. In elongated boxes, the diffusion coefficients normal to the long axis diverge linearly with the height-to-width ratio. For both lipid membranes and neat fluids, this behavior is predicted quantitatively by hydrodynamic theory. Mean-square displacements in the neat fluid exhibit intermediate regimes of anomalous diffusion, with t ln t and t(3/2) components in flat and elongated boxes, respectively. For membranes, the large finite-size effects, and the apparent inability to determine a well-defined lipid diffusion coefficient from simulation, rationalize difficulties in comparing simulation results to each other and to those from experiments. PMID:27385207
Mutual diffusion coefficients in systems containing the nickel ion
NASA Astrophysics Data System (ADS)
Ribeiro, Ana C. F.; Veríssimo, Luis V. M. M.; Gomes, Joselaine C. S.; Santos, Cecilia I. A. V.; Barros, Marisa C. F.; Lobo, Victor M. M.; Sobral, Abílio J. F. N.; Esteso, Miguel A.; Leaist, Derek G.
2013-04-01
Mutual diffusion coefficients of nickel chloride in water have been measured at 293.15 K and 303.15 K and at concentrations between 0.020 mol dm-3 and 0.100 mol dm-3, using a conductimetric cell. The experimental mutual diffusion coefficients are discussed on the basis of the Onsager-Fuoss model. The equivalent conductances at infinitesimal concentration of the nickel ion in these solutions at those temperatures have been estimated using these results. In addition, from these data, we have estimated some transport and structural parameters, such as limiting diffusion coefficient, ionic conductance at infinitesimal concentration, hydrodynamic radii and activation energy, contributing this way to a better understanding of the structure of these systems and of their thermodynamic behavior in aqueous solution at different concentrations.
NASA Astrophysics Data System (ADS)
Hohmann, Martin; Lengenfelder, B.; Kanawade, R.; Klämpfl, F.; Schmidt, Michael
2015-12-01
Coherent light propagating through turbid media is attenuated due to scattering and absorption. The decrease of the intensity of the coherent light is described by the attenuation coefficient. The measured decay of the coherent light through turbid media with optical coherence tomography (OCT) can be used to reconstruct the attenuation coefficient. Since most of the OCT systems work in the near-infrared region, they are the optical window from 800-1400 nm in tissue. Hence, the most part of the attenuation coefficient is caused due to the scattering. Therefore, deriving the attenuation coefficient is one way to get an approximation of the scattering coefficient which is difficult to access even up to day. Moreover, OCT measurements are one of the few possibilities to derive physical properties with micrometre resolution of the media under investigation.
Intrinsic Diffusion Coefficient of Interstitial Copper in Silicon
Istratov, A.A.; Flink, C.; Hieslmair, H.; Weber, E.R.; Heiser, T.
1998-08-01
Transient ion drift experiments designed to obtain reliable values for the intrinsic copper diffusivity in silicon are reported. From these measurements, the diffusion barrier of Cu in Si is determined to be 0.18{plus_minus}0.01 eV . It is shown that the commonly used expression of Hall and Racette [J.thinspthinspAppl.thinspthinspPhys.thinspthinsp{bold 35}, 379 (1964)] actually gives an effective diffusion coefficient for heavily boron-doped silicon and can neither be used for other doping levels nor extrapolated to lower temperatures. A model is developed which predicts the effective diffusion coefficient as a function of temperature, doping level, and the type of dopant. {copyright} {ital 1998} {ital The American Physical Society}
Exact curvilinear diffusion coefficients in the repton model
NASA Astrophysics Data System (ADS)
Buhot, A.
2005-10-01
The Rubinstein-Duke or repton model is one of the simplest lattice model of reptation for the diffusion of a polymer in a gel or a melt. Recently, a slightly modified model with hardcore interactions between the reptons has been introduced. The curvilinear diffusion coefficients of both models are exactly determined for all chain lengths. The case of periodic boundary conditions is also considered.
SHETTY, ANIL N.; CHIANG, SHARON; MALETIC-SAVATIC, MIRJANA; KASPRIAN, GREGOR; VANNUCCI, MARINA; LEE, WESLEY
2016-01-01
In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than in white matter, due to the preferential orientation of myelin fibers. The directional dependency is removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. Determination of the principal values of the diffusion tensor and various anisotropic indices provides structural information. We review the use of diffusion measurements using the modified Stejskal–Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion tensor based on symmetrical properties describing the geometry of diffusion tensor. We further describe diffusion tensor properties in visualizing fiber tract organization of the human brain.
The Attenuation of Correlation Coefficients: A Statistical Literacy Issue
ERIC Educational Resources Information Center
Trafimow, David
2016-01-01
Much of the science reported in the media depends on correlation coefficients. But the size of correlation coefficients depends, in part, on the reliability with which the correlated variables are measured. Understanding this is a statistical literacy issue.
Evaluation of the vertical turbulent diffusion coefficient of industrial emissions
NASA Astrophysics Data System (ADS)
Ryzhakova, N. K.; Pokrovskaya, E. A.; Babicheva, V. O.
2015-07-01
A method for determining the vertical turbulent diffusion coefficients of industrial emissions in complex terrain and with long exposure times has been considered. The method is based on the usage of the distribution of the polluting impurity measured along a certain direction from a point source. The measurements are carried out with moss-biomonitors for a CHP in Novosibirsk.
Correction for multiple scattering of unpolarized photons in attenuation coefficient measurements
Fernandez, J.E.; Sumini, M.; Satori, R.
1995-01-01
Calculations of the diffusion of unpolarized photons in thin thickness targets have been performed with recourse to a vector transport model taking rigorously into account the polarization introduced by the scattering interactions. An order-of-interactions solution of the Boltzmann transport equation for photons was used to describe the multiple scattering terms due to the prevailing effects in the X-ray regime. An analytical expression for the correction factor to the attenuation coefficient is given in term of the solid angle subtended by the detector and the energy interval characterizing the detection response. Although the main corrections are due to the influence of the pure Rayleigh effect, first- and second-order chains involving the Rayleigh and Compton effects have been considered as possible sources of overlapping contributions to the transmitted intensity. The extent of the corrections is estimated and some examples are given for pure element targets.
Measurement of attenuation coefficients of the fundamental and second harmonic waves in water
NASA Astrophysics Data System (ADS)
Zhang, Shuzeng; Jeong, Hyunjo; Cho, Sungjong; Li, Xiongbing
2016-02-01
Attenuation corrections in nonlinear acoustics play an important role in the study of nonlinear fluids, biomedical imaging, or solid material characterization. The measurement of attenuation coefficients in a nonlinear regime is not easy because they depend on the source pressure and requires accurate diffraction corrections. In this work, the attenuation coefficients of the fundamental and second harmonic waves which come from the absorption of water are measured in nonlinear ultrasonic experiments. Based on the quasilinear theory of the KZK equation, the nonlinear sound field equations are derived and the diffraction correction terms are extracted. The measured sound pressure amplitudes are adjusted first for diffraction corrections in order to reduce the impact on the measurement of attenuation coefficients from diffractions. The attenuation coefficients of the fundamental and second harmonics are calculated precisely from a nonlinear least squares curve-fitting process of the experiment data. The results show that attenuation coefficients in a nonlinear condition depend on both frequency and source pressure, which are much different from a linear regime. In a relatively lower drive pressure, the attenuation coefficients increase linearly with frequency. However, they present the characteristic of nonlinear growth in a high drive pressure. As the diffraction corrections are obtained based on the quasilinear theory, it is important to use an appropriate source pressure for accurate attenuation measurements.
Temperature Dependence of the Particle Diffusion Coefficient in Dust Grains
NASA Astrophysics Data System (ADS)
Pechal, Radim; Richterova, Ivana; Pavlu, Jiri; Safrankova, Jana; Nemecek, Zdenek
2014-05-01
During the interaction of ions/neutrals with dust grains, some of the particles are implanted into the grain and, as a consequence, the density gradient induces their diffusion toward the grain surface. Their release can cause a transport of these particles over large distances in space. In our laboratory experiment, measurements of the diffusion coefficient of the particles implanted into the dust grain are carried out in an electrodynamic quadrupole trap. Although experimental setup does not allow an assessment of the dust grain temperature, it can be modified (e.g., by changing thermal radiation from the surrounding walls, laser irradiation, etc.). We present an upgraded laboratory set-up and the resulting temperature dependence of diffusion coefficient estimations and discuss implications for the space dust.
NASA Astrophysics Data System (ADS)
Veneziani, G. R.; Corrêa, E. L.; Potiens, M. P. A.; Campos, L. L.
2016-07-01
IAEA code of practice TRS-457 states that standard phantoms should offer the same primary attenuation and scatter production as relevant body section of a representative patient. Material cost, availability and dimensional stability must also be considered. The goal of this study is to determine the attenuation coefficient of printed ABS and PLA samples in standard X-ray beams, verifying if phantoms printed with these materials could be an easier-handle substitute for PMMA, enabling the creation of different designs in an easier and cheaper way. Results show that PMMA presents higher attenuation coefficient, followed by PLA and ABS, which means that thinner PMMA layer creates higher radiation attenuation.
Optimal estimation of diffusion coefficients from single-particle trajectories
NASA Astrophysics Data System (ADS)
Vestergaard, Christian L.; Blainey, Paul C.; Flyvbjerg, Henrik
2014-02-01
How does one optimally determine the diffusion coefficient of a diffusing particle from a single-time-lapse recorded trajectory of the particle? We answer this question with an explicit, unbiased, and practically optimal covariance-based estimator (CVE). This estimator is regression-free and is far superior to commonly used methods based on measured mean squared displacements. In experimentally relevant parameter ranges, it also outperforms the analytically intractable and computationally more demanding maximum likelihood estimator (MLE). For the case of diffusion on a flexible and fluctuating substrate, the CVE is biased by substrate motion. However, given some long time series and a substrate under some tension, an extended MLE can separate particle diffusion on the substrate from substrate motion in the laboratory frame. This provides benchmarks that allow removal of bias caused by substrate fluctuations in CVE. The resulting unbiased CVE is optimal also for short time series on a fluctuating substrate. We have applied our estimators to human 8-oxoguanine DNA glycolase proteins diffusing on flow-stretched DNA, a fluctuating substrate, and found that diffusion coefficients are severely overestimated if substrate fluctuations are not accounted for.
The porous medium permeability and effective diffusion coefficient direct correlation
NASA Astrophysics Data System (ADS)
Markicevic, Bojan
2012-11-01
Dimensionless analysis of a momentum and mass transport in the homogeneous porous medium reveals that the permeability and effective to the molecular diffusion coefficient ratio can be expressed as a function of medium pore and throat sizes and two additional geometrical scales. These two scales, each one pertinent to the momentum and mass transport, respectively, are referred to as permeability and diffusivity characteristic scales. Based on these findings, it can be shown that the medium permeability and effective diffusivity can be correlated, and, at the same time, that one microscopic scale needs to be known in this correlation. The same is implied from the Katz-Thompson formula - which correlates the permeability, effective diffusivity, and breakthrough capillary pressure length scale. We recast the correlation developed into the Katz-Thompson formula form, showing how corresponding members are related. It turns out that the coefficient from the Katz-Thompson formula is equal to the ratio of the permeability to diffusivity characteristic length scales, and it is indeed constant for the homogeneous media. As porous media are heterogeneous materials, the analysis is extended onto such materials using heterogeneous capillary networks. The networks with the uniform, normal and log-normal pore size distribution functions are generated, where the networks are sufficiently large to obtain small variations in permeability and effective diffusivity for pore size distribution set. For such stochastically homogeneous media, the effective pore size averages are used in calculating the permeability and effective diffusivity showing the true nature of the coefficient in the Katz-Thompson formula.
Li, Min; Zhou, Tong; Song, Yanan
2016-07-01
A grain size characterization method based on energy attenuation coefficient spectrum and support vector regression (SVR) is proposed. First, the spectra of the first and second back-wall echoes are cut into several frequency bands to calculate the energy attenuation coefficient spectrum. Second, the frequency band that is sensitive to grain size variation is determined. Finally, a statistical model between the energy attenuation coefficient in the sensitive frequency band and average grain size is established through SVR. Experimental verification is conducted on austenitic stainless steel. The average relative error of the predicted grain size is 5.65%, which is better than that of conventional methods. PMID:26995732
Determination of thermal diffusion coefficient of nanofluid: Fullerene-toluene
NASA Astrophysics Data System (ADS)
Martin, Alain; Bou-Ali, M. Mounir
2011-05-01
Thermodiffusion coefficient at fullerene mass concentrations of 0.05%, 0.1%, 0.15%, and 0.2% was established for pure fullerene (C 60) diluted in toluene solutions. For this, the thermogravitational technique has been used in planar configuration with 4 extraction points. The determination of the concentration distribution along the column in steady state is determined by the method of analysis based on density measurements. In order to determine the thermal diffusion coefficient all thermophysical properties such as density, viscosity, thermal expansion coefficient and mass expansion coefficients were determined. All these studies coincide with the importance of the knowledge of the thermophysics and transport properties of the nanofluids to develop new applications and to optimize the existing ones.
Determination of diffusion coefficient in disordered organic semiconductors
NASA Astrophysics Data System (ADS)
Rani, Varsha; Sharma, Akanksha; Ghosh, Subhasis
2016-05-01
Charge carrier transport in organic semiconductors is dominated by positional and energetic disorder in Gaussian density of states (GDOS) and is characterized by hopping through localized states. Due to the immobilization of charge carriers in these localized states, significant non-uniform carrier distribution exists, resulting diffusive transport. A simple, nevertheless powerful technique to determine diffusion coefficient D in disordered organic semiconductors has been presented. Diffusion coefficients of charge carriers in two technologically important organic molecular semiconductors, Pentacene and copper phthalocyanine (CuPc) have been measured from current-voltage (J-V) characteristics of Al/Pentacene/Au and Al/CuPc/Au based Schottky diodes. Ideality factor g and carrier mobility μ have been calculated from the exponential and space charge limited region respectively of J-V characteristics. Classical Einstein relation is not valid in organic semiconductors due to energetic disorders in DOS. Using generalized Einstein relation, diffusion coefficients have been obtained to be 1.31×10-6 and 1.73×10-7 cm2/s for Pentacene and CuPc respectively.
Calcium diffusion coefficient in rod photoreceptor outer segments.
Nakatani, Kei; Chen, Chunhe; Koutalos, Yiannis
2002-01-01
Calcium (Ca(2+)) modulates several of the enzymatic pathways that mediate phototransduction in the outer segments of vertebrate rod photoreceptors. Ca(2+) enters the rod outer segment through cationic channels kept open by cyclic GMP (cGMP) and is pumped out by a Na(+)/Ca(2+),K(+) exchanger. Light initiates a biochemical cascade, which leads to closure of the cGMP-gated channels, and a concomitant decline in the concentration of Ca(2+). This decline mediates the recovery from stimulation by light and underlies the adaptation of the cell to background light. The speed with which the decline in the Ca(2+) concentration propagates through the rod outer segment depends on the Ca(2+) diffusion coefficient. We have used the fluorescent Ca(2+) indicator fluo-3 and confocal microscopy to measure the profile of the Ca(2+) concentration after stimulation of the rod photoreceptor by light. From these measurements, we have obtained a value of 15 +/- 1 microm(2)s(-1) for the radial Ca(2+) diffusion coefficient. This value is consistent with the effect of a low-affinity, immobile buffer reported to be present in the rod outer segment (L.Lagnado, L. Cervetto, and P.A. McNaughton, 1992, J. Physiol. 455:111-142) and with a buffering capacity of approximately 20 for rods in darkness(S. Nikonov, N. Engheta, and E.N. Pugh, Jr., 1998, J. Gen. Physiol. 111:7-37). This value suggests that diffusion provides a significant delay for the radial propagation of the decline in the concentration of Ca(2+). Also, because of baffling by the disks, the longitudinal Ca(2+) diffusion coefficient will be in the order of 2 microm(2)s(-1), which is much smaller than the longitudinal cGMP diffusion coefficient (30-60 microm(2)s(-1); ). Therefore, the longitudinal decline of Ca(2+) lags behind the longitudinal spread of excitation by cGMP. PMID:11806915
Hahne, Susanne; Maass, Philipp
2014-03-27
Analysis of signal fluctuations of a locally fixed probe, caused by molecules diffusing under the probe, can be used to determine diffusion coefficients. Theoretical treatments so far have been limited to point-like particles or to molecules with circle-like shapes. Here we extend these treatments to molecules with rectangle-like shapes, for which also rotational diffusion needs to be taken into account. Focusing on the distribution of peak widths in the signal, we show how translational as well as rotational diffusion coefficients can be determined. We address also the question, how the distribution of interpeak time intervals and autocorrelation function can be employed for determining diffusion coefficients. Our approach is validated against kinetic Monte Carlo simulations. PMID:24640969
Vertical eddy diffusion coefficient from the LANDSAT imagery
NASA Technical Reports Server (NTRS)
Viswanadham, Y. (Principal Investigator); Torsani, J. A.
1982-01-01
Analysis of five stable cases of the smoke plumes that originated in eastern Cabo Frio (22 deg 59'S; 42 deg 02'W), Brazil using LANDSAT imagery is presented for different months and years. From these images the lateral standard deviation (sigma sub y) and the lateral eddy diffusion coefficient (K sub y) are obtained from the formula based on Taylor's theory of diffusion by continuous moment. The rate of kinetic energy dissipation (e) is evaluated from the diffusion parameters sigma sub y and K sub y. Then, the vertical diffusion coefficient (K sub z) is estimated using Weinstock's formulation. These results agree well with the previous experimental values obtained over water surfaces by various workers. Values of e and K sub z show the weaker mixing processes in the marine stable boundary layer. The data sample is apparently to small to include representative active turbulent regions because such regions are so intermittent in time and in space. These results form a data base for use in the development and validation of mesoscale atmospheric diffusion models.
Meryem Seferinolu; Yuda Yurum
2006-05-15
The aim of this study is to measure the diffusion coefficients of pyridine in Turkish Cayirhan lignite (C: 57.1 wt%, dmmf) at temperatures about 20-27{sup o}C and determine the type of transport mechanism of diffusion. The raw coal sample was demineralized with HCl and HF by standard methods, and the raw and demineralized coal samples were extracted with pyridine. To investigate the diffusion of pyridine vapor in coal samples, the mass of pyridine uptake per mass of coal sample (M{sub t}/M{sub {infinity}}) was calculated as a function of time. The diffusion coefficients were measured from the slope of graphs of M{sub t}/M{sub {infinity}} versus t{sup 1/2}. The diffusion coefficient of pyridine in the raw coal increased from 10.0 x 10{sup -15} to 11.9 x 10{sup -15} m{sup 2}/s when the temperature was elevated from 21.1 to 26.9{sup o}C, respectively. The diffusion coefficients of pyridine raw coal and of those treated with HCl and HF were 11.9 x 10{sup -15}, 4.3 x 10{sup -15}, and 4.8 x 10{sup -15} m{sup 2}/s at 26.9{sup o}C, respectively. The studies in the present work on pyridine vapor diffusion in raw coals have generally indicated that the diffusion obeyed the Fickian diffusion mechanism the temperatures 20.0-27.0{sup o}C. Generally, the diffusion exponent values increased when the temperature elevated from 20.0 to 27.0{sup o}C, but this rise placed the diffusion of pyridine between the Fickian diffusion and Case II diffusion mechanisms. 29 refs., 6 figs., 4 tabs.
Apparent diffusion coefficient map of a case of extramedullary plasmacytoma
Ramachandran, Amrutha; Inyang, Alero F; Subhawong, Ty K
2016-01-01
Plasmacytomas are rare tumors, which arise from the monoclonal proliferation of malignant plasma cells. They may affect either the bony skeleton or rarely the soft tissues, the latter being referred to as extramedullary or extraosseous. We report a case of an extramedullary plasmacytoma that presented as a soft tissue mass involving the muscles of the left leg, in a patient who was previously treated for multiple myeloma. We describe the MR Imaging characteristics of the tumor and highlight the usefulness of diffusion-weighted imaging with apparent diffusion coefficient mapping. PMID:27200157
NASA Astrophysics Data System (ADS)
Huang, Yimei; Yang, Hongqin; Wang, Yuhua; Zheng, Liqin; Xie, Shusen
2010-11-01
The physical properties of acupuncture point were important to discover the mechanism of acupuncture meridian. In this paper, we used an optical coherence tomography to monitor in vivo the changes of optical attenuation coefficients of Hegu acupuncture point and non-acupuncture point during laser irradiation on Yangxi acupuncture point. The optical attenuation coefficients of Hegu acupuncture point and non-acupuncture point were obtained by fitting the raw data according to the Beer-Lambert's law. The experimental results showed that the optical attenuation coefficient of Hegu acupuncture point decreased during the laser acupuncture, in contrast to a barely changed result in that of non-acupuncture point. The significant change of optical attenuation coefficient of Hegu acupuncture point indicated that there was a correlation between Hegu and Yangxi acupuncture points to some extent.
Takeda, M.; Hiratsuka, T.; Ito, K.; Finsterle, S.
2011-02-01
Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an
Takeda, M; Hiratsuka, T; Ito, K; Finsterle, S
2011-04-25
Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an
Comparison of RNFL thickness and RPE-normalized RNFL attenuation coefficient for glaucoma diagnosis
NASA Astrophysics Data System (ADS)
Vermeer, K. A.; van der Schoot, J.; Lemij, H. G.; de Boer, J. F.
2013-03-01
Recently, a method to determine the retinal nerve fiber layer (RNFL) attenuation coefficient, based on normalization on the retinal pigment epithelium, was introduced. In contrast to conventional RNFL thickness measures, this novel measure represents a scattering property of the RNFL tissue. In this paper, we compare the RNFL thickness and the RNFL attenuation coefficient on 10 normal and 8 glaucomatous eyes by analyzing the correlation coefficient and the receiver operator curves (ROCs). The thickness and attenuation coefficient showed moderate correlation (r=0.82). Smaller correlation coefficients were found within normal (r=0.55) and glaucomatous (r=0.48) eyes. The full separation between normal and glaucomatous eyes based on the RNFL attenuation coefficient yielded an area under the ROC (AROC) of 1.0. The AROC for the RNFL thickness was 0.9875. No statistically significant difference between the two measures was found by comparing the AROC. RNFL attenuation coefficients may thus replace current RNFL thickness measurements or be combined with it to improve glaucoma diagnosis.
Response of radiation belt simulations to different radial diffusion coefficients
NASA Astrophysics Data System (ADS)
Drozdov, A.; Shprits, Y.; Subbotin, D.; Kellerman, A. C.
2013-12-01
Resonant interactions between Ultra Low Frequency (ULF) waves and relativistic electrons may violate the third adiabatic invariant of motion, which produces radial diffusion in the electron radiation belts. This process plays an important role in the formation and structure of the outer electron radiation belt and is important for electron acceleration and losses in that region. Two parameterizations of the resonant wave-particle interaction of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate their relative effect on the radiation belt simulation. The period of investigation includes quiet time and storm time geomagnetic activity and is compared to data based on satellite observations. Our calculations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. We show that the results of the 3D diffusion simulations depend on the assumed parametrization of waves. The differences between the simulations and potential missing physical mechanisms are discussed. References Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.
ERIC Educational Resources Information Center
Wilson, Celia M.
2010-01-01
Research pertaining to the distortion of the squared canonical correlation coefficient has traditionally been limited to the effects of sampling error and associated correction formulas. The purpose of this study was to compare the degree of attenuation of the squared canonical correlation coefficient under varying conditions of score reliability.…
NASA Astrophysics Data System (ADS)
Medhat, M. E.; Singh, V. P.
2014-09-01
The main goal of this present study is focused on testing the applicability of Geant4 electromagnetic models for studying mass attenuations coefficients for different types of composite materials at 59.5, 80, 356, 661.6, 1173.2 and 1332.5 keV photon energies. The simulated results of mass attenuation coefficients were compared with the experimental and theoretical XCOM data for the same samples and a good agreement has been observed. The results indicate that this process can be followed to determine the data on the attenuation of gamma rays with the several energies in different materials. The modeling for photon interaction parameters was standard for any type of composite samples. The Geant4 code can be utilized for gamma ray attenuation coefficients for the sample at different energies, which may sometimes be impractical by experiment investigation.
Brain tumor CT attenuation coefficients: semiquantitative analysis of histograms.
Ratzka, M; Haubitz, I
1983-01-01
This paper reports on work in progress on semiquantitative curve analyses of histograms of brain tumors. Separation of statistical groups of attenuation values obtained by computer calculation is done separately from scanning, using histogram printouts as the data input for a programmable calculator. This method is discussed together with its results in 50 cases of malignant gliomas. The detection of hidden tissue portions and the more accurate evaluation of partial enhancement effects have been the investigators' main concerns to the present time; however, this method may allow more specific diagnosis of malignancy and changes in tumor characteristics than visual assessment alone. This has not been proven by studies that have evaluated large numbers of cases, but seems to be worth pursuing as a new approach. PMID:6410783
NASA Astrophysics Data System (ADS)
Ebru Ermis, Elif; Celiktas, Cuneyt
2015-07-01
Calculations of gamma-ray mass attenuation coefficients of various detector materials (crystals) were carried out by means of FLUKA Monte Carlo (MC) method at different gamma-ray energies. NaI, PVT, GSO, GaAs and CdWO4 detector materials were chosen in the calculations. Calculated coefficients were also compared with the National Institute of Standards and Technology (NIST) values. Obtained results through this method were highly in accordance with those of the NIST values. It was concluded from the study that FLUKA MC method can be an alternative way to calculate the gamma-ray mass attenuation coefficients of the detector materials.
Characterizations of the mirror attenuator mosaic - Solar diffuser plate
NASA Technical Reports Server (NTRS)
Lee, Robert B., III; Avis, Lee M.; Gibson, M. A.; Kopia, Leonard P.
1992-01-01
The mirror attenuator mosaic (MAM), a solar diffuser plate, was used for the flight calibration of the broadband shortwave (0.2-5-microns) and total (0.2 to greater than 200-microns) Earth Radiation Budget Experiment scanning thermistor bolometer radiometers. The MAM solar-reflecting surface consisted of a tightly packed array of vacuum-deposited aluminum, concave spherical mirrors, while its solar-absorbing surface consisted of black chrome. The effective reflectance of the MAM was constant to within +/- 2 percent after almost 2 years in orbit, a marked improvement over earlier solar diffusers.
The role of the reflection coefficient in precision measurement of ultrasonic attenuation
NASA Technical Reports Server (NTRS)
Generazio, E. R.
1984-01-01
Ultrasonic attenuation measurements using contact, pulse-echo techniques are sensitive to surface roughness and couplant thickness variations. This can reduce considerable inaccuracies in the measurement of the attenuation coefficient for broadband pulses. Inaccuracies arise from variations in the reflection coefficient at the buffer-couplant-sample interface. The reflection coefficient is examined as a function of the surface roughness and corresponding couplant thickness variations. Interrelations with ultrasonic frequency are illustrated. Reliable attenuation measurements are obtained only when the frequency dependence of the reflection coefficient is incorporated in signal analysis. Data are given for nickel 200 samples and a silicon nitride ceramic bar having surface roughness variations in the 0.3 to 3.0 microns range for signal bandwidths in the 50 to 100 MHz range.
The role of the reflection coefficient in precision measurement of ultrasonic attenuation
NASA Technical Reports Server (NTRS)
Generazio, E. R.
1985-01-01
Ultrasonic attenuation measurements using contact, pulse-echo techniques are sensitive to surface roughness and couplant thickness variations. This can reduce considerable inaccuracies in the measurement of the attenuation coefficient for broadband pulses. Inaccuracies arise from variations in the reflection coefficient at the buffer-couplant-sample interface. The reflection coefficient is examined as a function of the surface roughness and corresponding couplant thickness variations. Interrelations with ultrasonic frequency are illustrated. Reliable attenuation measurements are obtained only when the frequency dependence of the reflection coefficient is incorporated in signal analysis. Data are given for nickel 200 samples and a silicon nitride ceramic bar having surface roughness variations in the 0.3 to 3.0 microns range for signal bandwidths in the 50 to 100 MHz range.
FXG mass attenuation coefficient evaluation for radiotherapy routine
NASA Astrophysics Data System (ADS)
Moreira, M. V.; de Almeida, A.; Costa, R. T.; Perles, L. A.
2004-01-01
The knowledge of a radioactive beam energy or quality is important in radiotherapy once it is correlated with the type, size, and localization of the tumor. One indicative of the radiation quality is the half-value-layer (HVL), the material thickness which reduces the beam intensity to half. The analysis of a treatment beam spectrum can be inferred through its homogeneity coefficient (HC, ratio between the first and the second HVL) that for values >= 0.7 has the indication to be adequate for treatments. Another important indicator of radiation quality is the mass absorption coefficient (cm2/g), related to the photons energies absorbed in a particular exposed material. Once that several materials can be used as radiation detectors for X and γ dosimetry, this work has the purpose to verify the ferrous Xylenol gelatin (FXG) material performance, through its μ/ρ behavior and compare it with the μ/ρ behavior for soft tissue. The X and γ energies where selected, in the energies normally used in radiotherapy and their spectra were evaluated using the HC coefficient. The μ/ρ, for the FXG material, were obtained experimentally and from simulation with X-COM and a developed routine using the GEANT4 Library. From the results from all μ/ρ values obtained for the FXG material, when compared to those from water, one can see similar behaviors, when one considers measurements for energies greater than 78.0 keV. These results indicate that, once the human body is composed with +/-80 % of water, the FXG for the energies used, could also be used as soft tissue simulator.
NASA Technical Reports Server (NTRS)
Tenney, D. R.; Unnam, J.
1978-01-01
Diffusion calculations were performed to establish the conditions under which concentration dependence of the diffusion coefficient was important in single, two, and three phase binary alloy systems. Finite-difference solutions were obtained for each type of system using diffusion coefficient variations typical of those observed in real alloy systems. Solutions were also obtained using average diffusion coefficients determined by taking a logarithmic average of each diffusion coefficient variation considered. The constant diffusion coefficient solutions were used as reference in assessing diffusion coefficient variation effects. Calculations were performed for planar, cylindrical, and spherical geometries in order to compare the effect of diffusion coefficient variations with the effect of interface geometries. In most of the cases considered, the diffusion coefficient of the major-alloy phase was the key parameter that controlled the kinetics of interdiffusion.
Kalwarf, D.R.; Nielson, K.K.; Rich, D.C.; Rogers, V.C.
1982-11-01
A method was developed and used to determine radon diffusion coefficients in compacted soils by transient-diffusion measurements. A relative standard deviation of 12% was observed in repeated measurements with a dry soil by the transient-diffusion method, and a 40% uncertainty was determined for moistures exceeding 50% of saturation. Excellent agreement was also obtained between values of the diffusion coefficient for radon in air, as measured by the transient-diffusion method, and those in the published literature. Good agreement was also obtained with diffusion coefficients measured by a steady-state method on the same soils. The agreement was best at low moistures, averaging less than ten percent difference, but differences of up to a factor of two were observed at high moistures. The comparison of the transient-diffusion and steady-state methods at low moistures provides an excellent verification of the theoretical validity and technical accuracy of these approaches, which are based on completely independent experimental conditions, measurement methods and mathematical interpretations.
Radon diffusion coefficients in soils of varying moisture content
NASA Astrophysics Data System (ADS)
Papachristodoulou, C.; Ioannides, K.; Pavlides, S.
2009-04-01
Radon is a naturally occurring radioactive gas that is generated in the Earth's crust and is free to migrate through soil and be released to the atmosphere. Due to its unique properties, soil gas radon has been established as a powerful tracer used for a variety of purposes, such as exploring uranium ores, locating geothermal resources and hydrocarbon deposits, mapping geological faults, predicting seismic activity or volcanic eruptions and testing atmospheric transport models. Much attention has also been given to the radiological health hazard posed by increased radon concentrations in the living and working environment. In order to exploit radon profiles for geophysical purposes and also to predict its entry indoors, it is necessary to study its transport through soils. Among other factors, the importance of soil moisture in such studies has been largely highlighted and it is widely accepted that any measurement of radon transport parameters should be accompanied by a measurement of the soil moisture content. In principle, validation of transport models in the field is encountered by a large number of uncontrollable and varying parameters; laboratory methods are therefore preferred, allowing for experiments to be conducted under well-specified and uniform conditions. In this work, a laboratory technique has been applied for studying the effect of soil moisture content on radon diffusion. A vertical diffusion chamber was employed, in which radon was produced from a 226Ra source, was allowed to diffuse through a soil column and was finally monitored using a silicon surface barrier detector. By solving the steady-state radon diffusion equation, diffusion coefficients (D) were determined for soil samples of varying moisture content (m), from null (m=0) to saturation (m=1). For dry soil, a D value of 4.1×10-7 m2s-1 was determined, which increased moderately by a factor of ~3 for soil with low moisture content, i.e. up to m ~0.2. At higher water fractions, a decrease
Estimation of glucose diffusion coefficient in scleral tissue
NASA Astrophysics Data System (ADS)
Bashkatov, Alexey N.; Genina, Elina A.; Sinichkin, Yurii P.; Lakodina, Nina A.; Kochubey, Vyacheslav I.; Tuchin, Valery V.
2000-04-01
Results of experimental and theoretical study of the optical properties of the eye sclera controlled by administration of osmotically active chemical, such as glucose, are presented. Glucose administration induces the diffusion of matter and as a result the equalization of the refractive indices of collagen fibrils and base material, and corresponding changes of transmittance spectra of scleral tissue. Transmittance spectra of the human scleral samples impregnated by glucose were measured. The significant increase of transmittance under action of osmotic liquid was observed. The diffusion coefficient of glucose within scleral tissue was estimated; the average value is 3.45 X 10-6 +/- 4.59 X 10-7 cm2/sec. The results are general and can be used to describe many other fibrous tissues impregnated by osmotically active chemical agents.
Optimal diffusion coefficient estimation in single-particle tracking
Michalet, Xavier; Berglund, Andrew J.
2016-01-01
Single-particle tracking is increasingly used to extract quantitative parameters on single molecules and their environment, while advances in spatial and temporal resolution of tracking techniques inspire new questions and avenues of investigation. Correspondingly, sophisticated analytical methods are constantly developed to obtain more refined information from measured trajectories. Here we point out some fundamental limitations of these approaches due to the finite length of trajectories, the presence of localization error, and motion blur, focusing on the simplest motion regime of free diffusion in an isotropic medium (Brownian motion). We show that two recently proposed algorithms approach the theoretical limit of diffusion coefficient uncertainty. We discuss the practical performance of the algorithms as well as some important implications of these results for single-particle tracking. PMID:23005136
Diffusion Coefficient in an Electrophoretic Asymmetrically Tilting Ratchet
NASA Astrophysics Data System (ADS)
Pasciak, P.; Kulakowski, K.; Gudowska-Nowak, E.
2005-05-01
We use the cellular-automaton Duke--Rubinstein model to simulate gel electrophoresis of DNA in periodically changing electric field. The field is dichotomic and its time average is zero. We observe non-vanishing current of molecules, what is known as the ratchet effect. We calculate the drift velocity and the diffusion coefficient for large field amplitude, where nonlinear effects can be observed. The results indicate that tuning the amplitude and frequency of the applied field for a given range of the molecule length can improve the resolving power of the separation of DNA.
Tracer diffusion coefficients in a sheared inelastic Maxwell gas
NASA Astrophysics Data System (ADS)
Garzó, Vicente; Trizac, Emmanuel
2016-07-01
We study the transport properties of an impurity in a sheared granular gas, in the framework of the Boltzmann equation for inelastic Maxwell models. We investigate here the impact of a nonequilibrium phase transition found in such systems, where the tracer species carries a finite fraction of the total kinetic energy (ordered phase). To this end, the diffusion coefficients are first obtained for a granular binary mixture in spatially inhomogeneous states close to the simple shear flow. In this situation, the set of coupled Boltzmann equations are solved by means of a Chapman–Enskog-like expansion around the (local) shear flow distributions for each species, thereby retaining all the hydrodynamic orders in the shear rate a. Due to the anisotropy induced by the shear flow, three tensorial quantities D ij , D p,ij , and D T,ij are required to describe the mass transport process instead of the conventional scalar coefficients. These tensors are given in terms of the solutions of a set of coupled algebraic equations, which can be exactly solved as functions of the shear rate a, the coefficients of restitution {αsr} and the parameters of the mixture (masses and composition). Once the forms of D ij , D p,ij , and D T,ij are obtained for arbitrary mole fraction {{x}1}={{n}1}/≤ft({{n}1}+{{n}2}\\right) (where n r is the number density of species r), the tracer limit ({{x}1}\\to 0 ) is carefully considered for the above three diffusion tensors. Explicit forms for these coefficients are derived showing that their shear rate dependence is significantly affected by the order-disorder transition.
NASA Astrophysics Data System (ADS)
Araruna, F. D.; Braz e Silva, P.; Carvalho, R. R.; Rojas-Medar, M. A.
2015-06-01
We consider the motion of a viscous incompressible fluid consisting of two components with a diffusion effect obeying Fick's law in ℝ3. We prove that there exists a small time interval where the fluid variables converge uniformly as the viscosity and the diffusion coefficient tend to zero. In the limit, we find a non-homogeneous, non-viscous, incompressible fluid governed by an Euler-like system.
NASA Technical Reports Server (NTRS)
Ukanwa, A. O.
1974-01-01
This experiment was performed in Skylab 3 with two objectives in mind. First, the experimental self-diffusion coefficients for liquid zinc were to be determined in a convection-free environment. Secondly the reduction in convective mixing in earth gravity by going into the zero-gravity environment of space was to be estimated. The experiment was designed to utilize high temperatures and linear thermal gradients provided by the M518 Multipurpose Electric Furnace, and the radioactivity of zinc-65 of 245-day half-life to investigate self-diffusion in liquid zinc. The distribution of zinc-65 tracer, after melting, maintaining at soak temperature for 1 hour of soak time and then resolidifying, was obtained by sample sectioning. The concentration of activity of each section (microcurie-gram) was plotted against positions along the sample axial and radial position. Experimental data and theoretical results from solution of Fick's law of diffusion in one dimensional were compared. Samples tested on earth showed very rapid diffusion. Diffusion coefficient in unit gravity was 50 times the zero-gravity diffusion coefficient of Skylab.
Diffusion in multilayer media: Transient behavior of the lateral diffusion coefficient
NASA Astrophysics Data System (ADS)
Berezhkovskii, Alexander M.; Weiss, George H.
2006-04-01
A general formalism for treating lateral diffusion in a multilayer medium is developed. The formalism is based on the relation between the lateral diffusion and the distribution of the cumulative residence time, which the diffusing particle spends in different layers. We exploit this fact to derive general expressions which give the global and local time-dependent diffusion coefficients in terms of the average cumulative times spent by the particle in different layers and the probabilities of finding the particle in different layers, respectively. These expressions are used to generalize two recently obtained results: (a) A solution for the short-time behavior of the lateral diffusion coefficient in two layers separated by a permeable membrane obtained by a perturbation theory is extended to the entire range of time. (b) A solution for the time-dependent diffusion coefficient of a ligand, which repeatedly dissociates and rebinds to sites on a planar surface, obtained under the assumption that the medium above the surface is infinite, is generalized to allow for the medium layer of finite thickness. For the latter problem we derive an expression for the Fourier-Laplace transform of the propagator in terms of the double Laplace transform of the probability density of the cumulative residence time spent by the ligand in the medium layer.
NASA Astrophysics Data System (ADS)
Garzó, Vicente; Murray, J. Aaron; Vega Reyes, Francisco
2013-04-01
The mass flux of a low-density granular binary mixture obtained previously by solving the Boltzmann equation by means of the Chapman-Enskog method is considered further. As in the elastic case, the associated transport coefficients D, Dp, and D' are given in terms of the solutions of a set of coupled linear integral equations which are approximately solved by considering the first and second Sonine approximations. The diffusion coefficients are explicitly obtained as functions of the coefficients of restitution and the parameters of the mixture (masses, diameters, and concentration) and their expressions hold for an arbitrary number of dimensions. In order to check the accuracy of the second Sonine correction for highly inelastic collisions, the Boltzmann equation is also numerically solved by means of the direct simulation Monte Carlo (DSMC) method to determine the mutual diffusion coefficient D in some special situations (self-diffusion problem and tracer limit). The comparison with DSMC results reveals that the second Sonine approximation to D improves the predictions made from the first Sonine approximation. We also study the granular segregation driven by a uni-directional thermal gradient. The segregation criterion is obtained from the so-called thermal diffusion factor Λ, which measures the amount of segregation parallel to the temperature gradient. The factor Λ is determined here by considering the second-order Sonine forms of the diffusion coefficients and its dependence on the coefficients of restitution is widely analyzed across the parameter space of the system. The results obtained in this paper extend previous works carried out in the tracer limit (vanishing mole fraction of one of the species) by some of the authors of the present paper.
Comparison Actin- and Glass-Supported Phospholipid Bilayer Diffusion Coefficients
Sterling, Sarah M.; Dawes, Ryan; Allgeyer, Edward S.; Ashworth, Sharon L.; Neivandt, David J.
2015-01-01
The formation of biomimetic lipid membranes has the potential to provide insights into cellular lipid membrane dynamics. The construction of such membranes necessitates not only the utilization of appropriate lipids, but also physiologically relevant substrate/support materials. The substrate materials employed have been shown to have demonstrable effects on the behavior of the overlying lipid membrane, and thus must be studied before use as a model cushion support. To our knowledge, we report the formation and investigation of a novel actin protein-supported lipid membrane. Specifically, inner leaflet lateral mobility of globular actin-supported DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayers, deposited via the Langmuir-Blodgett/Langmuir Schaefer methodology, was investigated by z-scan fluorescence correlation spectroscopy across a temperature range of 20–44°C. The actin substrate was found to decrease the diffusion coefficient when compared to an identical membrane supported on glass. The depression of the diffusion coefficient occurred across all measured temperatures. These results indicated that the actin substrate exerted a direct effect on the fluidity of the lipid membrane and highlighted the fact that the choice of substrate/support is critical in studies of model lipid membranes. PMID:25902434
Han, I; Demir, L
2010-01-01
The total mass attenuation coefficients (mu/rho) for pure Au and Au99Be1, Au88Ge12, Au95Zn5 alloys were measured at 59.5 and 88.0 keV photon energies. The samples were irradiated with 241Am and 109Cd radioactive point source using transmission arrangement. The gamma- rays were counted by a Si(Li) detector with resolution of 160 eV at 5.9 keV. Total atomic and electronic cross-sections (sigmat and sigmae), effective atomic and electron densities (Zeff and Nel) were determined using the obtained mass attenuation coefficients for investigated Au alloys. The theoretical mass attenuation coefficients of each alloy were estimated using mixture rule. PMID:20421703
Measurement of atomic number and mass attenuation coefficient in magnesium ferrite
NASA Astrophysics Data System (ADS)
Kadam, R. H.; Alone, S. T.; Bichile, G. K.; Jadhav, K. M.
2007-05-01
Pure magnesium ferrite sample was prepared by standard ceramic technique and characterized by X-ray diffraction method. XRD pattern revealed that the sample possess single-phase cubic spinel structure. The linear attenuation coefficient (μ), mass attenuation coefficient (μ/ρ), total atomic cross-section (σ_{tot}), total electronic cross-section (σ_{ele}) and the effective atomic number (Z_{eff}) were calculated for pure magnesium ferrite (MgFe_{2}O_{4}). The values of γ-ray mass attenuation coefficient were obtained using a NaI energy selective scintillation counter with radioactive γ-ray sources having energy 0.36, 0.511, 0.662, 1.17 and 1.28 MeV. The experimentally obtained values of μ/ρ and Z_{eff} agreed fairly well with those obtained theoretically.
Determination of mass attenuation coefficient of low-Z dosimetric materials
NASA Astrophysics Data System (ADS)
El-Khayatt, A. M.; Ali, A. M.; Singh, Vishwanath P.; Badiger, N. M.
2014-12-01
The mass attenuation coefficients of some low-Z dosimetric materials with potential applications in dosimetry, medical and radiation protection have been investigated using the Monte Carlo simulation code Monte Carlo N-Particle (MCNP). Appreciable variations are noted for the mass attenuation coefficient by changing the photon energy. The MCNP-simulated parameters are compared with the experimental data wherever possible and theoretical values through the WinXcom program. The simulated results obtained by MCNP generally agree well with the experiment and WinXcom predictions for various low-Z dosimetric and tissue substitute materials. In addition, the mass attenuation coefficients around the k-edges for low-Z dosimetric materials estimated from the MCNP code agree very well with WinXcom prediction. Finally, the results indicate that this simulation process can be followed to determine the interaction parameters of gamma rays in such low-Z materials for which there are no satisfactory experimental values available.
Investigation of photon attenuation coefficient of some building materials used in Turkey
Dogan, B.; Altinsoy, N.
2015-03-30
In this study, some building materials regularly used in Turkey, such as concrete, gas concrete, pumice and brick have been investigated in terms of mass attenuation coefficient at different gamma-ray energies. Measurements were carried out by gamma spectrometry containing NaI(Tl) detector. Narrow beam gamma-ray transmission geometry was used for the attenuation measurements. The results are in good agreement with the theoretical calculation of XCOM code.
Study of photon attenuation coefficients of some multielement materials. [123-1250 keV
Bhandal, G.S. ); Singh, K. . Dept. of Physics)
1994-03-01
Total photon mass attenuation of six multielement shielding materials (concrete, plaster of paris, quick lime, black cement, white cement, and silica) is measured in the 123- to 1,250-keV energy range. The experimental results are analyzed in terms of cross sections, effective atomic numbers, and electron densities. Considerable sensitivity of the total mass attenuation coefficients and effective atomic numbers to variations in oxygen content are found in these multielement materials.
Investigation of photon attenuation coefficient of some building materials used in Turkey
NASA Astrophysics Data System (ADS)
Dogan, B.; Altinsoy, N.
2015-03-01
In this study, some building materials regularly used in Turkey, such as concrete, gas concrete, pumice and brick have been investigated in terms of mass attenuation coefficient at different gamma-ray energies. Measurements were carried out by gamma spectrometry containing NaI(Tl) detector. Narrow beam gamma-ray transmission geometry was used for the attenuation measurements. The results are in good agreement with the theoretical calculation of XCOM code.
A New Relationship Among Self- and Impurity Diffusion Coefficients in Binary Solution Phases
NASA Astrophysics Data System (ADS)
Xin, Jinghua; Du, Yong; Shang, Shunli; Cui, Senlin; Wang, Jianchuan; Huang, Baiyun; Liu, Zikui
2016-07-01
A new relationship among self- and impurity diffusion coefficients has been proposed for binary solution phases and verified via 30 solid solutions. In terms of this model, one impurity diffusion coefficient in a binary phase can be predicted once the other three diffusion coefficients are available. The application of the present model is exemplified in the Al-Mg system.
A New Relationship Among Self- and Impurity Diffusion Coefficients in Binary Solution Phases
NASA Astrophysics Data System (ADS)
Xin, Jinghua; Du, Yong; Shang, Shunli; Cui, Senlin; Wang, Jianchuan; Huang, Baiyun; Liu, Zikui
2016-05-01
A new relationship among self- and impurity diffusion coefficients has been proposed for binary solution phases and verified via 30 solid solutions. In terms of this model, one impurity diffusion coefficient in a binary phase can be predicted once the other three diffusion coefficients are available. The application of the present model is exemplified in the Al-Mg system.
Calculation of combined diffusion coefficients in SF{sub 6}-Cu mixtures
Zhong, Linlin; Wang, Xiaohua Rong, Mingzhe Wu, Yi; Murphy, Anthony B.
2014-10-15
Diffusion coefficients play an important role in the description of the transport of metal vapours in gas mixtures. This paper is devoted to the calculation of four combined diffusion coefficients, namely, the combined ordinary diffusion coefficient, combined electric field diffusion coefficient, combined temperature diffusion coefficient, and combined pressure diffusion coefficient in SF{sub 6}-Cu mixtures at temperatures up to 30 000 K. These four coefficients describe diffusion due to composition gradients, applied electric fields, temperature gradients, and pressure gradients, respectively. The influence of copper fluoride and sulfide species on the diffusion coefficients is shown to be negligible. The effect of copper proportion and gas pressures on these diffusion coefficients is investigated. It is shown that increasing the proportion of copper generally increases the magnitude of the four diffusion coefficients, except for copper mole fractions of 90% or more. It is further found that increasing the pressure reduces the magnitude of the coefficients, except for the combined temperature diffusion coefficient, and shifts the maximum of all four coefficients towards higher temperatures. The results presented in this paper can be applied to the simulation of high-voltage circuit breaker arcs.
Nonperturbative estimate of the heavy quark momentum diffusion coefficient
NASA Astrophysics Data System (ADS)
Francis, A.; Kaczmarek, O.; Laine, M.; Neuhaus, T.; Ohno, H.
2015-12-01
We estimate the momentum diffusion coefficient of a heavy quark within a pure SU(3) plasma at a temperature of about 1.5 Tc . Large-scale Monte Carlo simulations on a series of lattices extending up to 1923×48 permit us to carry out a continuum extrapolation of the so-called color-electric imaginary-time correlator. The extrapolated correlator is analyzed with the help of theoretically motivated models for the corresponding spectral function. Evidence for a nonzero transport coefficient is found and, incorporating systematic uncertainties reflecting model assumptions, we obtain κ =(1.8 - 3.4 )T3 . This implies that the "drag coefficient," characterizing the time scale at which heavy quarks adjust to hydrodynamic flow, is ηD-1=(1.8 - 3.4 )(Tc/T )2(M /1.5 GeV ) fm /c , where M is the heavy quark kinetic mass. The results apply to bottom and, with somewhat larger systematic uncertainties, to charm quarks.
Byun, Jong-In; Yun, Ju-Yong
2015-08-01
It is shown that the gamma-ray linear attenuation coefficient of a sample with unknown chemical composition can be determined through a systematic calibration of the correlation between the linear attenuation coefficient, gamma-ray energy and the relative degree of attenuation. For calibration, H2O, MnO2, NaCl, Na2CO3 and (NH4)2SO4 were used as reference materials. Point-like gamma-ray sources with modest activity of approximately 37kBq, along with an HPGe detector, were used in the measurements. A semi-empirical formula was derived to calculate the linear attenuation coefficients as a function of the relative count rate and the gamma-ray energy. The method was applied to the determination of the linear attenuation coefficients for K2CrO4 and SiO2 test samples in the same setup used in calibration. The experimental result agreed well with the ones calculated by elementary data. PMID:25997111
NASA Astrophysics Data System (ADS)
Chen, R. C.; Longo, R.; Rigon, L.; Zanconati, F.; De Pellegrin, A.; Arfelli, F.; Dreossi, D.; Menk, R.-H.; Vallazza, E.; Xiao, T. Q.; Castelli, E.
2010-09-01
The measurement of the linear attenuation coefficients of breast tissues is of fundamental importance in the field of breast x-ray diagnostic imaging. Different groups have evaluated the linear attenuation coefficients of breast tissues by carrying out direct attenuation measurements in which the specimens were thin and selected as homogeneous as possible. Here, we use monochromatic and high-intensity synchrotron radiation computed tomography (SR CT) to evaluate the linear attenuation coefficients of surgical breast tissues in the energy range from 15 to 26.5 keV. X-ray detection is performed by a custom digital silicon micro-strip device, developed in the framework of the PICASSO INFN experiment. Twenty-three human surgical breast samples were selected for SR CT and histological study. Six of them underwent CT, both as fresh tissue and after formalin fixation, while the remaining 17 were imaged only as formalin-fixed tissues. Our results for fat and fibrous tissues are in good agreement with the published values. However, in contrast to the published data, our measurements show no significant differences between fibrous and tumor tissues. Moreover, our results for fresh and formalin-fixed tissues demonstrate a reduction of the linear attenuation coefficient for fibrous and tumor tissues after fixation.
Effective density and mass attenuation coefficient for building material in Brazil.
Salinas, I C P; Conti, C C; Lopes, R T
2006-01-01
This paper presents values for density and mass attenuation coefficient of building materials commonly used in Brazil. Transmission measurements were performed to provide input information for simulations with MCNP4B code. The structure for the clay bricks was simulated as a mix of all material layers and an effective density determined. The mass attenuation coefficients were determined for the 50-3,000 keV gamma-ray energy range. A comparison with results for similar materials found in the literature showed good agreement. PMID:16257357
NASA Astrophysics Data System (ADS)
Kurudirek, M.; Medhat, M. E.
2014-07-01
An alternative approach is used to measure normalized mass attenuation coefficients (µ/ρ) of materials with unknown thickness and density. The adopted procedure is based on the use of simultaneous emission of Kα and Kβ X-ray lines as well as gamma peaks from radioactive sources in transmission geometry. 109Cd and 60Co radioactive sources were used for the purpose of the investigation. It has been observed that using the simultaneous X- and/or gamma rays of different energy allows accurate determination of relative mass attenuation coefficients by eliminating the dependence of µ/ρ on thickness and density of the material.
NASA Astrophysics Data System (ADS)
Silva, Matthew D.; Helmer, Karl G.; Lee, Jing-Huei; Han, Sam S.; Springer, Charles S.; Sotak, Christopher H.
2002-05-01
An NMR method is presented for measuring compartment-specific water diffusion coefficient (D) values. It uses relaxography, employing an extracellular contrast reagent (CR) to distinguish intracellular (IC) and extracellular (EC) 1H2O signals by differences in their respective longitudinal (T1) relaxation times. A diffusion-weighted inversion-recovery spin-echo (DW-IRSE) pulse sequence was used to acquire IR data sets with systematically and independently varying inversion time (TI) and diffusion-attenuation gradient amplitude (g) values. Implementation of the DW-IRSE technique was demonstrated and validated using yeast cells suspended in 3 mM Gd-DTPA2- with a wet/dry mass ratio of 3.25:1.0. Two-dimensional (2D) NMR data were acquired at 2.0 T and analyzed using numerical inverse Laplace transformation (2D- and sequential 1D-ILT) and sequential exponential fitting to yield T1 and water D values. All three methods gave substantial agreement. Exponential fitting, deemed the most accurate and time efficient, yielded T1:D (relative contribution) values of 304 ms:0.023×10-5 cm2/s (47%) and 65 ms:1.24×10-5 cm2/s (53%) for the IC and EC components, respectively. The compartment-specific D values derived from direct biexponential fitting of diffusion-attenuation data were also in good agreement. Extension of the DW-IRSE method to in vivo models should provide valuable insights into compartment-specific water D changes in response to injury or disease.
Measuring diffusion coefficients via two-photon fluorescence recovery after photobleaching.
Sullivan, Kelley D; Brown, Edward B
2010-01-01
Multi-fluorescence recovery after photobleaching is a microscopy technique used to measure the diffusion coefficient (or analogous transport parameters) of macromolecules, and can be applied to both in vitro and in vivo biological systems. Multi-fluorescence recovery after photobleaching is performed by photobleaching a region of interest within a fluorescent sample using an intense laser flash, then attenuating the beam and monitoring the fluorescence as still-fluorescent molecules from outside the region of interest diffuse in to replace the photobleached molecules. We will begin our demonstration by aligning the laser beam through the Pockels Cell (laser modulator) and along the optical path through the laser scan box and objective lens to the sample. For simplicity, we will use a sample of aqueous fluorescent dye. We will then determine the proper experimental parameters for our sample including, monitor and bleaching powers, bleach duration, bin widths (for photon counting), and fluorescence recovery time. Next, we will describe the procedure for taking recovery curves, a process that can be largely automated via LabVIEW (National Instruments, Austin, TX) for enhanced throughput. Finally, the diffusion coefficient is determined by fitting the recovery data to the appropriate mathematical model using a least-squares fitting algorithm, readily programmable using software such as MATLAB (The Mathworks, Natick, MA). PMID:20190730
Measurement of diffusion coefficient of propylene glycol in skin tissue
NASA Astrophysics Data System (ADS)
Genin, Vadim D.; Bashkatov, Alexey N.; Genina, Elina A.; Tuchin, Valery V.
2015-03-01
Optical clearing of the rat skin under the action of propylene glycol was studied ex vivo. It was found that collimated transmittance of skin samples increased, whereas weight and thickness of the samples decreased during propylene glycol penetration in skin tissue. A mechanism of the optical clearing under the action of propylene glycol is discussed. Diffusion coefficient of propylene glycol in skin tissue ex vivo has been estimated as (1.35±0.95)×10-7 cm2/s with the taking into account of kinetics of both weight and thickness of skin samples. The presented results can be useful for enhancement of many methods of laser therapy and optical diagnostics of skin diseases and localization of subcutaneous neoplasms.
Diffusion coefficient of hydrogen in a cast gamma titanium aluminide
Sundaram, P.A.; Wessel, E.; Ennis, P.J.; Quadakkers, W.J.; Singheiser, L.
1999-06-04
Gamma titanium aluminides have the potential for high temperature applications because of their high specific strength and specific modulus. Their oxidation resistance is good, especially at intermediate temperatures and with suitable alloying additions, good oxidation resistance can be obtained up to 800 C. One critical area of application is in combustion engines in aero-space vehicles such as hypersonic airplanes and high speed civil transport airplanes. This entails the use of hydrogen as a fuel component and hence the effect of hydrogen on the mechanical properties of gamma titanium aluminides is of significant scientific and technological utility. The purpose of this short investigation is to use an electrochemical method under galvanostatic conditions to determine the diffusion coefficient of hydrogen in a cast gamma titanium aluminide, a typical technical alloy with potential application in gas turbines under creep conditions. This result will be then compared with that obtained by microhardness profiling of electrolytically hydrogen precharged material.
Damla, N; Baltas, H; Celik, A; Kiris, E; Cevik, U
2012-07-01
Some building materials, regularly used in Turkey, such as sand, cement, gas concrete (lightweight, aerated concrete), tile and brick, have been investigated in terms of mass attenuation coefficient (μ/ρ), effective atomic, numbers (Z(eff)), effective electron densities (N(e)) and photon interaction cross section (σ(a)) at 14 different energies from 81- to 1332-keV gamma-ray energies. The gamma rays were detected by using gamma-ray spectroscopy, a High Purity Germanium (HPGe) detector. The elemental compositions of samples were analysed using an energy dispersive X-ray fluorescence spectrometer. Mass attenuation coefficients of these samples have been compared with tabulations based upon the results of WinXcom. The theoretical mass attenuation coefficients were estimated using the mixture rule and the experimental values of investigated parameters were compared with the calculated values. The agreement of measured values of mass attenuation coefficient, effective atomic numbers, effective electron densities and photon interaction cross section with the theory has been found to be quite satisfactory. PMID:22128356
Comparison of attenuation coefficients for VVER-440 and VVER-1000 pressure vessels
Marek, M.; Rataj, J.; Vandlik, S.
2011-07-01
The paper summarizes the attenuation coefficient of the neutron fluence with E > 0.5 MeV through a reactor pressure vessel for vodo-vodyanoi energetichesky reactor (VVER) reactor types measured and/or calculated for mock-up experiments, as well as for operated nuclear power plant (NPP) units. The attenuation coefficient is possible to evaluate directly only by using the retro-dosimetry, based on a combination of the measured activities from the weld sample and concurrent ex-vessel measurement. The available neutron fluence attenuation coefficients (E > 0.5 MeV), calculated and measured at a mock-up experiment simulating the VVER-440-unit conditions, vary from 3.5 to 6.15. A similar situation is used for the calculations and mock-up experiment measurements for the VVER-1000 RPV, where the attenuation coefficient of the neutron fluence varies from 5.99 to 8.85. Because of the difference in calculations for the real units and the mock-up experiments, the necessity to design and perform calculation benchmarks both for VVER-440 and VVER-1000 would be meaningful if the calculation model is designed adequately to a given unit. (authors)
Measurement of the diffusion coefficient of sulfur hexafluoride in water
King. D.B.; Saltzman, E.S.
1995-04-15
Sulfur hexafluoride has been widely used in field studies and laboratory experiments to develop a relationship between gas transfer and wind speed. The interpretation of the data from such studies requires the diffusion coefficient of SF{sub 6} (D{sub SF6}), which has not previously been measured. In this study, D{sub SF6} has been determined in pure water and in 35%NaCl over a temperature range of 5-25{degrees}C. The measurements were made using a continuous-flow diffusion cell where SF{sub 6} flows beneath an agar gel membrane while helium flows above the gel. The experimental data for pure water yielded the following equation: D{sub SF6}=0.029 exp ({minus}19.3/RT, where R is the gas constant and T is temperature in kelvins). Measurements of D{sub SF6} in 35% NaCl were not significantly different from the pure water values. On the basis of this data, the authors estimate the Schmidt numbers for seawater over the temperature range 5-25{degrees}C to be Sc=3016.1{minus}172.00t+4.4996t{sup 2}{minus}0.047965t{sup 3}, where t is temperature in degrees Celsius. 31 refs., 3 figs., 2 tabs.
Universal function for the diffusion coefficient of DNA fragment
NASA Astrophysics Data System (ADS)
Mercier, Jean-Francois
2005-03-01
The separation of DNA fragments by (gel or capillary) electrophoresis has been studied extensively. To characterize the separation achieved by such systems, one needs to understand the impact (and their dependency upon the experimental quantities) of two physical parameters: the electrophoresis mobility μ and the diffusion coefficient D. Three different regimes have been shown to exist for both μ and D: the Ogston regime, the reptation regime and the reptation-with orientation regime (note that separation is only possible for the first two regimes). Both μ and D are well described by theory for all three regimes. Unfortunatly this results in disjointed scaling regimes and no theory-based general equations can apply to all regimes. Recently, an empirical formula has been proposed that adequately fit the mobility μ of dsDNA fragments across all three regimes and is compatible with accepted theories. In this work we propose a similar formula for the diffusion coefficent D. With those two formulas, one could optimize any separation system quite easily for a wide range of DNA molecular sizes.
Effect of ilmenite on the attenuation coefficient of gamma ray shielding cementious matrix
NASA Astrophysics Data System (ADS)
El-Faramawy, Nabil; Ramadan, Wageeh; El-Zakla, Tarek; Sayed, Magda; El-Dessouky, Mohamed; Sakr, Khaled
2015-11-01
The current work investigated the effect of the Portland cement mixed with different percentages of water and ilmenite ore on the attenuation of gamma radiation as shielding blocks. Different concentrations of ilmenite from 5% up to 20% with different grain size were mixed with cement. The properties of the investigated blocks, as compressive strength, wet and dry density, absorption and porosity percentages, were studied. The thermal stability of the studied samples and their X-ray diffraction (XRD) patterns were examined through thermogravimetric analysis and XRD respectively. In addition, the attenuation coefficients of the considered samples for gamma radiation were performed using gamma ray spectrometer. The results revealed that, the maximum linear attenuation coefficient (µ) and minimum transmission fraction were performed for cement mixed with 10% of ilmenite and with the size range 106-250 µm.
NASA Astrophysics Data System (ADS)
Peinado, Liliana M.; Bloemen, Paul R.; Almasian, Mitra; van Leeuwen, Ton G.; Faber, Dirk J.
2016-03-01
Despite the improvements in early cancer diagnosis, adequate diagnostic tools for early staging of bladder cancer tumors are lacking [1]. MEMS-probes based on optical coherence tomography (OCT) provide cross-sectional imaging with a high-spatial resolution at a high-imaging speed, improving visualization of cancerous tissue [2-3]. Additionally, studies show that the measurement of localized attenuation coefficient allows discrimination between healthy and cancerous tissue [4]. We have designed a new miniaturized MEMS-probe based on OCT that will optimize early diagnosis by improving functional visualization of suspicious lesions in bladder. During the optical design phase of the probe, we have studied the effect of the numerical aperture (NA) on the OCT signal attenuation. For this study, we have employed an InnerVision Santec OCT system with several numerical apertures (25mm, 40mm, 60mm, 100mm, 150mm and 200mm using achromatic lenses). The change in attenuation coefficient was studied using 15 dilutions of intralipid ranging between 6*10-5 volume% and 20 volume%. We obtained the attenuation coefficient from the OCT images at several fixed positions of the focuses using established OCT models (e.g. single scattering with known confocal point spread function (PSF) [5] and multiple scattering using the Extended Huygens Fresnel model [6]). As a result, a non-linear increase of the scattering coefficient as a function of intralipid concentration (due to dependent scattering) was obtained for all numerical apertures. For all intralipid samples, the measured attenuation coefficient decreased with a decrease in NA. Our results suggest a non-negligible influence of the NA on the measured attenuation coefficient. [1] Khochikar MV. Rationale for an early detection program for bladder cancer. Indian J Urol 2011 Apr-Jun; 27(2): 218-225. [2] Sun J and Xie H. Review Article MEMS-Based Endoscopic Optical Coherence Tomography. IJO 2011, Article ID 825629, 12 pages. doi:10
Reduction of TGS image reconstruction times using separable attenuation coefficient models
Estep, R.J.; Prettyman, T.H.; Sheppard, G.A.
1995-12-31
The tomographic gamma scanner (TGS) method for assaying transuranic and low-level waste produces low-resolution {open_quotes}density{close_quotes} images of 208-l waste drums at two or more transmission gamma-ray energies and uses these to make detailed attenuation corrections at neighboring emission gamma-ray energies. For example, we have used the 136-, 285-, and 401-keV lines from a {sup 75}Se transmission source to correct for attenuation of the 129-, 203-, 345-, and 414-keV lines in {sup 239}Pu assays. The list can expand to 20 or more emission energies when performing multiple-isotope assays. Methods for projecting attenuation images from transmission to emission energies were recently discussed with emphasis on the problems encountered when the opacity of a sample leads to poor counting statistics. This report focuses on increases in computational speed that can be attained by using separable attenuation coefficient models.
Mehranian, Abolfazl; Zaidi, Habib
2015-06-21
In standard segmentation-based MRI-guided attenuation correction (MRAC) of PET data on hybrid PET/MRI systems, the inter/intra-patient variability of linear attenuation coefficients (LACs) is ignored owing to the assignment of a constant LAC to each tissue class. This can lead to PET quantification errors, especially in the lung regions. In this work, we aim to derive continuous and patient-specific lung LACs from time-of-flight (TOF) PET emission data using the maximum likelihood reconstruction of activity and attenuation (MLAA) algorithm. The MLAA algorithm was constrained for estimation of lung LACs only in the standard 4-class MR attenuation map using Gaussian lung tissue preference and Markov random field smoothness priors. MRAC maps were derived from segmentation of CT images of 19 TOF-PET/CT clinical studies into background air, lung, soft tissue and fat tissue classes, followed by assignment of predefined LACs of 0, 0.0224, 0.0864 and 0.0975 cm(-1), respectively. The lung LACs of the resulting attenuation maps were then estimated from emission data using the proposed MLAA algorithm. PET quantification accuracy of MRAC and MLAA methods was evaluated against the reference CT-based AC method in the lungs, lesions located in/near the lungs and neighbouring tissues. The results show that the proposed MLAA algorithm is capable of retrieving lung density gradients and compensate fairly for respiratory-phase mismatch between PET and corresponding attenuation maps. It was found that the mean of the estimated lung LACs generally follow the trend of the reference CT-based attenuation correction (CTAC) method. Quantitative analysis revealed that the MRAC method resulted in average relative errors of -5.2 ± 7.1% and -6.1 ± 6.7% in the lungs and lesions, respectively. These were reduced by the MLAA algorithm to -0.8 ± 6.3% and -3.3 ± 4.7%, respectively. In conclusion, we demonstrated the potential and capability of emission-based methods in deriving patient
NASA Astrophysics Data System (ADS)
Lee, Woo-Jin; Kang, Se-Ryong; Choi, Soon-Chul; Lee, Sam-Sun; Heo, Min-Suk; Huh, Kyung-Hoe; Yi, Won-Jin
2016-07-01
The objective of this study was to develop a spectral CT system using a photon counting detector and to decompose materials by applying a multiple discriminant analysis (MDA) to the energy-dependent attenuation coefficient ratios. We imaged cylindrical phantoms of Polymethyl methacrylate (PMMA) with four holes filled with calcium chloride, iodine, and gold nanoparticle contrast agents. The attenuation coefficients were measured via reconstructed multi-energy images, and the linear attenuation ratio was used for material identification. The MDA projection matrix, determined from training phantoms, was used to identify the four materials in the testing phantoms. For quantification purposes, the relationships between the attenuation coefficients at multiple energy bins and the concentrations were characterized by using the least-squares method for each material. The mean identification accuracy for each of the three materials were 0.94 ± 0.09 for iodine, 0.96 ± 0.07 for gold nanoparticles, and 0.92 ± 0.05 for calcium chloride. The mean quantification errors were 1.90 ± 1.58% for iodine, 3.85 ± 3.13% for gold nanoparticle, and 3.40 ± 2.62% for calcium chloride. The developed multi-energy CT system based on the photon-counting detector with MDA can precisely decompose the four materials.
Instantaneous signal attenuation method for analysis of PFG fractional diffusions.
Lin, Guoxing
2016-08-01
An instantaneous signal attenuation (ISA) method for analyzing pulsed field gradient (PFG) fractional diffusion (FD) has been developed, which is modified from the propagator approach developed in 2001 by Lin et al. for analyzing PFG normal diffusion. Both, the current ISA method and the propagator method have the same fundamental basis that the total signal attenuation (SA) is the accumulation of all the ISA, and the ISA is the average SA of the whole diffusion system at each moment. However, the manner of calculating ISA is different. Unlike the use of the instantaneous propagator in the propagator method, the current method directly calculates ISA as A(K(t'),t'+dt')/A(K(t'),t'), where A(K(t'),t'+dt') and A(K(t'),t') are the SA. This modification makes the current method applicable to PFG FD as the instantaneous propagator may not be obtainable in FD. The ISA method was applied to study PFG SA including the effect of finite gradient pulse widths (FGPW) for free FD, restricted FD and the FD affected by a non-homogeneous gradient field. The SA expressions were successfully obtained for all three types of free FDs while other current methods still have difficulty in obtaining all of them. The results from this method agree with reported results such as that obtained by the effective phase shift diffusion equation (EPSDE) method. The M-Wright phase distribution approximation was also used to derive an SA expression for time FD as a comparison, which agrees with ISA method. Additionally, the continuous-time random walk (CTRW) simulation was performed to simulate the SA of PFG FD, and the simulation results agree with the analytical results. Particularly, the CTRW simulation results give good support to the analytical results including FGPW effect for free FD and restricted time FD based on a fractional derivative model where there have been no corresponding theoretical reports to date. The theoretical SA expressions including FGPW obtained here such as [Formula: see
Instantaneous signal attenuation method for analysis of PFG fractional diffusions
NASA Astrophysics Data System (ADS)
Lin, Guoxing
2016-08-01
An instantaneous signal attenuation (ISA) method for analyzing pulsed field gradient (PFG) fractional diffusion (FD) has been developed, which is modified from the propagator approach developed in 2001 by Lin et al. for analyzing PFG normal diffusion. Both, the current ISA method and the propagator method have the same fundamental basis that the total signal attenuation (SA) is the accumulation of all the ISA, and the ISA is the average SA of the whole diffusion system at each moment. However, the manner of calculating ISA is different. Unlike the use of the instantaneous propagator in the propagator method, the current method directly calculates ISA as A(K(t‧), t‧ + dt‧)/A(K(t‧), t‧), where A(K(t‧), t‧ + dt‧) and A(K(t‧), t‧) are the SA. This modification makes the current method applicable to PFG FD as the instantaneous propagator may not be obtainable in FD. The ISA method was applied to study PFG SA including the effect of finite gradient pulse widths (FGPW) for free FD, restricted FD and the FD affected by a non-homogeneous gradient field. The SA expressions were successfully obtained for all three types of free FDs while other current methods still have difficulty in obtaining all of them. The results from this method agree with reported results such as that obtained by the effective phase shift diffusion equation (EPSDE) method. The M-Wright phase distribution approximation was also used to derive an SA expression for time FD as a comparison, which agrees with ISA method. Additionally, the continuous-time random walk (CTRW) simulation was performed to simulate the SA of PFG FD, and the simulation results agree with the analytical results. Particularly, the CTRW simulation results give good support to the analytical results including FGPW effect for free FD and restricted time FD based on a fractional derivative model where there have been no corresponding theoretical reports to date. The theoretical SA expressions including FGPW obtained
Divine, Craig E; McCray, John E
2004-03-15
Passive diffusion (PD) samplers offer several potential technical and cost-related advantages, particularly for measuring dissolved gases and volatile organic compounds (VOCs) in groundwater at contaminated sites. Sampler equilibration is a diffusion-type process; therefore, equilibration time is dependent on sampler dimensions, membrane thickness, and the temperature-dependent membrane diffusion coefficient (Dm) for the analyte of interest. Diffusion coefficients for low-density polyethylene membranes were measured for He, Ne, H2, O2, and N2 in laboratory experiments and ranged from 1.1 to 1.9 x 10(-7) cm2 sec(-1) (21 degrees C). Additionally, Dm values for several commonly occurring VOCs were estimated from empirical experimental data previously presented by others (Vroblesky, D. A.; Campbell, T. R. Adv. Environ. Res. 2001, 5(1), 1.), and estimated values ranged from 1.7 to 4.4 x 10(-7) cm2 sec(-1) (21 degrees C). On the basis of these Dm ranges, PD sampler equilibration time is predicted for various sampler dimensions, including dimensions consistent with simple constructed samplers used in this study and commercially available samplers. Additionally, a numerical model is presented that can be used to evaluate PD sampler concentration "lag time" for conditions in which in situ concentrations are temporally variable. The model adequately predicted lag time for laboratory experiments and is used to show that data obtained from appropriately designed PD samplers represent near-instantaneous measurement of in situ concentrations for most field conditions. PMID:15074699
Gamma convolution models for self-diffusion coefficient distributions in PGSE NMR
NASA Astrophysics Data System (ADS)
Röding, Magnus; Williamson, Nathan H.; Nydén, Magnus
2015-12-01
We introduce a closed-form signal attenuation model for pulsed-field gradient spin echo (PGSE) NMR based on self-diffusion coefficient distributions that are convolutions of n gamma distributions, n ⩾ 1 . Gamma convolutions provide a general class of uni-modal distributions that includes the gamma distribution as a special case for n = 1 and the lognormal distribution among others as limit cases when n approaches infinity. We demonstrate the usefulness of the gamma convolution model by simulations and experimental data from samples of poly(vinyl alcohol) and polystyrene, showing that this model provides goodness of fit superior to both the gamma and lognormal distributions and comparable to the common inverse Laplace transform.
The solid-phase diffusion coefficient (Dm) and material-air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to es...
Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo Cho, Sungjong
2015-07-15
A novel method to determine acoustic parameters involved in measuring the nonlinearity parameter of fluids or solids is proposed. The approach is based on the measurement of fundamental and second harmonic pressures with a calibrated receiver, and on a nonlinear least squares data-fitting to multi-Gaussian beam (MGB) equations which explicitly define the attenuation and diffraction effects in the quasilinear regime. Results obtained in water validate the proposed method. The choice of suitable source pressure is discussed with regard to the quasilinear approximation involved. The attenuation coefficients are also acquired in nonlinear regime and their relations are discussed.
Inner zone electron radial diffusion coefficients - An update with Van Allen Probes MagEIS data
NASA Astrophysics Data System (ADS)
O'Brien, Paul; Fennell, Joseph; Guild, Timothy; Mazur, Joseph; Claudepierre, Seth; Clemmons, James; Turner, Drew; Blake, Bernard; Roeder, James
2016-07-01
Using MagEIS data from NASA's recent Van Allen Probes mission, we estimate the quiet-time radial diffusion coefficients for electrons in the inner radiation belt and slot, for energies up to ~700 keV. We provide observational evidence that energy diffusion is negligible. The main dynamic processes, then, are radial diffusion and elastic pitch angle scattering. We use a coordinate system in which these two modes of diffusion are separable. Then we integrate over pitch angle to obtain a field line content whose dynamics consist of radial diffusion and loss to the atmosphere. We estimate the loss timescale from periods of exponential decay in the time series. We then estimate the radial diffusion coefficient from the temporal and radial variation of the field line content. We show that our diffusion coefficients agree well with previously determined values. Our coefficients are consistent with diffusion by electrostatic impulses, whereas outer zone radial diffusion is thought to be dominated by electromagnetic fluctuations.
Quantitative RNFL attenuation coefficient measurements by RPE-normalized OCT data
NASA Astrophysics Data System (ADS)
Vermeer, K. A.; van der Schoot, J.; Lemij, H. G.; de Boer, J. F.
2012-03-01
We demonstrate significantly different scattering coefficients of the retinal nerve fiber layer (RNFL) between normal and glaucoma subjects. In clinical care, SD-OCT is routinely used to assess the RNFL thickness for glaucoma management. In this way, the full OCT data set is conveniently reduced to an easy to interpret output, matching results from older (non- OCT) instruments. However, OCT provides more data, such as the signal strength itself, which is due to backscattering in the retinal layers. For quantitative analysis, this signal should be normalized to adjust for local differences in the intensity of the beam that reaches the retina. In this paper, we introduce a model that relates the OCT signal to the attenuation coefficient of the tissue. The average RNFL signal (within an A-line) was then normalized based on the observed RPE signal, resulting in normalized RNFL attenuation coefficient maps. These maps showed local defects matching those found in thickness data. The average (normalized) RNFL attenuation coefficient of a fixed band around the optic nerve head was significantly lower in glaucomatous eyes than in normal eyes (3.0mm-1 vs. 4.9mm-1, P<0.01, Mann-Whitney test).
The diagnostic value of biexponential apparent diffusion coefficients in myopathy.
Ran, Jun; Liu, Yao; Sun, Dong; Morelli, John; Zhang, Ping; Wu, Gang; Sheng, Yuda; Xie, Ruyi; Zhang, Xiaoli; Li, Xiaoming
2016-07-01
To investigate the performance of a biexponential signal decay model using DWI in myopathies and to differentiate Polymyositis (PM)/Dermatomyositis (DM), Glycogen Storage Diseases (GSDs) and Muscular Dystrophies (MDs) utilizing diffusion-weighted imaging. 11 healthy volunteers (control group) and 46 patients with myopathy were enrolled in the retrospective study. 27 of 46 patients had PM/DM, 7 patients GSDs and 12 patients MDs. After conventional MR sequences, diffusion weighted imaging with a b-factor ranging from 0 to 1200 s/mm(2) was performed on both thighs. The intra-muscular signal-to-noise ratios (SNRs) on multiple-b DWI images were measured for 7 different muscles and compared among the different groups. The median T2 signal intensity and biexponential apparent diffusion coefficients (ADC), including standard ADC, fast ADC, and slow ADC values, were compared among the different groups. The intra-muscular SNRs were statistically significantly different depending on the b value, and also found among the 4 groups (p < 0.05). The median T2 signal intensity of the normal muscles in control group was statistically significantly lower than that of edematous muscles in the PM/DM, GSDs and MDs groups (p = 0.000), while there were no statistically significant differences among the PM/DM, GSDs, and MDs groups (p > 0.05). The median standard ADC value of the edematous muscles in GSDs was statistically significantly lower than that of normal muscles in the control group (p = 0.000) and the median ADC value of the edematous muscles in PM/DM patients was statistically significantly greater than that of the GSDs (p = 0.000) and MDs groups (p = 0.005). The median slow ADC value of the edematous muscles in MDs patients and PM/DM patients was statistically significantly greater than that of GSDs patients (p < 0.05). Intra-muscular SNR decay curves and biexponential ADC parameters are useful in distinguishing among PM/DM, GSDs, and MDs. PMID:27142711
High silicon self-diffusion coefficient in dry forsterite
NASA Astrophysics Data System (ADS)
Katsura, T.; Fei, H.; Hegoda, C.; Yamazaki, D.; Wiedenbeck, M.; Yurimoto, H.; Shcheka, S.
2012-12-01
Plastic deformation of mantle minerals is believed to be controlled by self-diffusion of the slowest species, which is silicon in silicate minerals. Olivine is the main constituent of upper mantle. Therefore, silicon self-diffusion coefficient (DSi) in olivine provides the basic information of upper mantle rheology. Dohmen et al. [1] and Jaoul et al. [2] measured the DSi at ambient pressure under dry conditions in natural olivine and iron-free forsterite, respectively. However, their results were ~2-3 orders of magnitude lower than that estimated from deformation experiments [3]. In this study, we revisited DSi in forsterite and resolved this discrepancy [4]. Forsterite single crystals were polished in colloidal silica solution, deposited with 300-500 nm of 29Si enriched Mg2SiO4 films, covered by 100 nm of ZrO2 films, and annealed at 1600-1800 K from ambient pressure up to 13 GPa using an ambient pressure furnace and multi-anvil apparatus. The surface roughness after diffusion were reduced to <50 nm by polishing again in colloidal silica solution. Diffusion profiles were obtained by SIMS. Water contents in the samples were <1 μg/g by FT-IR [4]. logDSi were determined to be -19.7±0.4 and -18.1±0.3 log[m2/s] under ambient pressure at 1600 and 1800 K, respectively. These values were 2.4 orders of magnitude higher than that determined by Jaoul et al. [2] in forsterite, as well as that reprted by Dohmen et al. [1] in natural olivine. Their low DSi could be obtained due to the bad contact of the coated films with the substrate. Our results well explain the high dislocation climb rates in deformation experiments [4]. We also determined a small negative pressure dependence of DSi with an activation volume of 1.7±0.4 cm3/mol, and an activation energy of ~410 kJ/mol. Calibratied to the same temperature, the nearly linear relationship of DSi against pressure in dry forsterite in this study, iron and water bearing wadsleyite and ringwoodite by Shimojuku et al. [5
On the Origin of Quantum Diffusion Coefficient and Quantum Potential
NASA Astrophysics Data System (ADS)
Gupta, Aseem
2016-03-01
Synchronizability of space and time experiences between different inhabitants of a spacetime is abstracted as a fundamental premise of Classical physics. Absence thereof i.e. desynchronization between space and time experiences of a system under study and the observer is then studied for a single dimension single particle system. Desynchronization fundamentally makes probability concepts enter physics ab-initio and not as secondary tools to deal with situations wherein incomplete information in situation following perfectly deterministic dynamics demands its introduction. Desynchronization model based on Poisson distribution of events vis-à-vis an observer, leads to expectation of particle's motion as a Brownian motion deriving Nelson's quantum diffusion coefficient naturally, without needing to postulate it. This model also incorporates physical effects akin to those of Bohm's Quantum Potential, again without needing any sub-quantum medium. Schrodinger's equation is shown to be derivable incorporating desynchronization only of space while Quantum Field Theory is shown to model desynchronization of time as well. Fundamental suggestion of the study is that it is desynchronization that is at the root of quantum phenomena rather than sub-micro scales of spacetime. Absence of possibility of synchronization between system's space and time and those of observer is studied. Mathematical modeling of desynchronized evolution explains some intriguing aspects of Quantum Mechanical theory.
Coordinate-dependent diffusion coefficients: Decay rate in open quantum systems
Sargsyan, V. V.; Palchikov, Yu. V.; Antonenko, N. V.; Kanokov, Z.; Adamian, G. G.
2007-06-15
Based on a master equation for the reduced density matrix of an open quantum collective system, the influence of coordinate-dependent microscopical diffusion coefficients on the decay rate from a metastable state is treated. For various frictions and temperatures larger than a crossover temperature, the quasistationary decay rates obtained with the coordinate-dependent microscopical set of diffusion coefficients are compared with those obtained with the coordinate-independent microscopical set of diffusion coefficients and coordinate-independent and -dependent phenomenological sets of diffusion coefficients. Neglecting the coordinate dependence of diffusion coefficients, one can strongly overestimate or underestimate the decay rate at low temperature. The coordinate-dependent phenomenological diffusion coefficient in momentum are shown to be suitable for applications.
NASA Astrophysics Data System (ADS)
Wang, Lu; Wu, Li-Wei; Wei, Le; Gao, Juan; Sun, Cui-Li; Chai, Pei; Li, Dao-Wu
2014-02-01
The accuracy of attenuation correction in positron emission tomography scanners depends mainly on deriving the reliable 511-keV linear attenuation coefficient distribution in the scanned objects. In the PET/CT system, the linear attenuation distribution is usually obtained from the intensities of the CT image. However, the intensities of the CT image relate to the attenuation of photons in an energy range of 40 keV-140 keV. Before implementing PET attenuation correction, the intensities of CT images must be transformed into the PET 511-keV linear attenuation coefficients. However, the CT scan parameters can affect the effective energy of CT X-ray photons and thus affect the intensities of the CT image. Therefore, for PET/CT attenuation correction, it is crucial to determine the conversion curve with a given set of CT scan parameters and convert the CT image into a PET linear attenuation coefficient distribution. A generalized method is proposed for converting a CT image into a PET linear attenuation coefficient distribution. Instead of some parameter-dependent phantom calibration experiments, the conversion curve is calculated directly by employing the consistency conditions to yield the most consistent attenuation map with the measured PET data. The method is evaluated with phantom experiments and small animal experiments. In phantom studies, the estimated conversion curve fits the true attenuation coefficients accurately, and accurate PET attenuation maps are obtained by the estimated conversion curves and provide nearly the same correction results as the true attenuation map. In small animal studies, a more complicated attenuation distribution of the mouse is obtained successfully to remove the attenuation artifact and improve the PET image contrast efficiently.
Acoustic speed and attenuation coefficient in sheep aorta measured at 5-9 MHz.
Fraser, Katharine H; Poepping, Tamie L; McNeilly, Alan; Megson, Ian L; Hoskins, Peter R
2006-06-01
B-mode ultrasound (US) images from blood vessels in vivo differ significantly from vascular flow phantom images. Phantoms with acoustic properties more closely matched to those of in vivo arteries may give better images. A method was developed for measuring the speed and attenuation coefficient of US over the range 5 to 9 MHz in samples of sheep aorta using a pulse-echo technique. The times-of-flight method was used with envelope functions to identify the reference points. The method was tested with samples of tissue-mimicking material of known acoustic properties. The tissue samples were stored in Krebs physiologic buffer solution and measured over a range of temperatures. At 37 degrees C, the acoustic speed and attenuation coefficient as a function of frequency in MHz were 1600 +/- 50 ms(-1) and 1.5 +/- 4f(0.94 +/- 1.3) dB cm(-1), respectively. PMID:16785018
Miller, D.G.; Vitagliano, V.; Sartorio, R.
1986-04-10
Some interesting aspects of multicomponent diffusion in liquids are discussed. These include the existence of a negative main term diffusion coefficient; the utility of taking different components as the solvent; the change-of-solvent transformation for Fick's law coefficients and Onsager coefficients; the validity of the Onsager reciprocal relations on changing solvents; and the calculation of partial molar volumes from diffusion data. Previous work is surveyed on the irreversible thermodynamic basis for macroscopic diffusion; the importance of reference frames and transformations among them; and second law conditions on the volume-fixed diffusion coefficient matrix. Certain diffusion descriptions in other reference frames do not preserve these second law conditions. 78 references, 5 tables.
Measurement of photon mass attenuation coefficients of plutonium from 60 to 2615 keV
NASA Astrophysics Data System (ADS)
Rettschlag, M.; Berndt, R.; Mortreau, P.
2007-11-01
Measurements have been made to determine plutonium photon mass attenuation coefficients by using a collimated-beam transmission method in the energy range from 60 to 2615 keV. These experimental results were compared with previous experimental and theoretical data. Good agreements are observed in the 240-800 keV energy range, whereas differences up to maximum 10% are observed out of these limits.
Spin Diffusion Coefficient of A1-PHASE of Superfluid 3He at Low Temperatures
NASA Astrophysics Data System (ADS)
Afzali, R.; Pashaee, F.
The spin diffusion coefficient tensor of the A1-phase of superfluid 3He at low temperatures and melting pressure is calculated using the Boltzmann equation approach and Pfitzner procedure. Then considering Bogoliubov-normal interaction, we show that the total spin diffusion is proportional to 1/T2, the spin diffusion coefficient of superfluid component D\\uparrowxzxz is proportional to T-2, and the spin diffusion coefficient of super-fluid component D\\uparrowxxxx (=D\\uarrowxyxy) is independent of temperature. Furthermore, it is seen that superfluid components play an important role in spin diffusion of the A1-phase.
Shalchi, A.
2013-09-01
We explore perpendicular diffusion based on the unified nonlinear transport theory. We derive simple analytical forms for the perpendicular mean free path and investigate the influence of different model spectra. We show that for cases where the field line random walk is normal diffusive, the perpendicular diffusion coefficient consists of only two transport regimes. Details of the spectral shape are less important, especially those of the inertial range. Only the macroscopic properties of the turbulence spectrum control the perpendicular diffusion coefficient. Simple formulae for the perpendicular diffusion coefficient are derived which can easily be implemented in solar modulation or shock acceleration codes.
Measurement of the dimensionless extinction coefficient of soot within laminar diffusion flames.
Suo-Anttila, Jill Marie; Williams, Timothy C.; Shaddix, Christopher R.; Jensen, Kirk A.
2005-01-01
The dimensionless extinction coefficient (K{sub e}) of soot must be known to quantify laser extinction measurements of soot concentration and to predict optical attenuation through smoke clouds. Previous investigations have measured K{sub e} for post-flame soot emitted from laminar and turbulent diffusion flames and smoking laminar premixed flames. This paper presents the first measurements of soot K{sub e} from within laminar diffusion flames, using a small extractive probe to withdraw the soot from the flame. To measure K{sub e}, two laser sources (635 nm and 1310 nm) were coupled to a transmission cell, followed by gravimetric sampling. Coannular diffusion flames of methane, ethylene and nitrogen-diluted kerosene burning in air were studied, together with slot flames of methane and ethylene. K{sub e} was measured at the radial location of maximum soot volume fraction at several heights for each flame. Results for K{sub e} at both 635 nm and 1310 nm for ethylene and kerosene coannular flames were in the range of 9-10, consistent with the results from previous studies of post-flame soot. The ethylene slot flame and the methane flames have lower K{sub e} values, in some cases as low as 2.0. These lower values of K{sub e} are found to result from the contributions of (a) the condensation of PAH species during the sampling of soot, (b) the wavelength-dependent absorptivity of soot precursor particles, and, in the case of methane, (c) the negligible contribution of soot scattering to the extinction coefficient. RDG calculations of soot scattering, in combination with the measured K{sub e} values, imply that the soot refractive index is in the vicinity of 1.75-1.03i at 635 nm.
Technology Transfer Automated Retrieval System (TEKTRAN)
Knowledge of the diffusion coefficient is necessary for modeling gas transport in soils and other porous media. This study was conducted to determine the relationship between the diffusion coefficient and pore structure parameters, such as the fractal dimension of pores (Dmp), the shortest path leng...
Data set for diffusion coefficients of alloying elements in dilute Mg alloys from first-principles
Zhou, Bi-Cheng; Shang, Shun-Li; Wang, Yi; Liu, Zi-Kui
2015-01-01
Diffusion coefficients of alloying elements in Mg are critical for the development of new Mg alloys for lightweight applications. Here we present the data set of the temperature-dependent dilute tracer diffusion coefficients for 47 substitutional alloying elements in hexagonal closed packed (hcp) Mg calculated from first-principles calculations based on density functional theory (DFT) by combining transition state theory and an 8-frequency model. Benchmark for the DFT calculations and systematic comparison with experimental diffusion data are also presented. The data set refers to “Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study” by Zhou et al. [1]. PMID:26702419
NASA Astrophysics Data System (ADS)
Ilia Anisa, Nor; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio
2014-04-01
6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10-11 m2/s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10-11 m2/s.
Single-image diffusion coefficient measurements of proteins in free solution.
Zareh, Shannon Kian; DeSantis, Michael C; Kessler, Jonathan M; Li, Je-Luen; Wang, Y M
2012-04-01
Diffusion coefficient measurements are important for many biological and material investigations, such as studies of particle dynamics and kinetics, and size determinations. Among current measurement methods, single particle tracking (SPT) offers the unique ability to simultaneously obtain location and diffusion information about a molecule while using only femtomoles of sample. However, the temporal resolution of SPT is limited to seconds for single-color-labeled samples. By directly imaging three-dimensional diffusing fluorescent proteins and studying the widths of their intensity profiles, we were able to determine the proteins' diffusion coefficients using single protein images of submillisecond exposure times. This simple method improves the temporal resolution of diffusion coefficient measurements to submilliseconds, and can be readily applied to a range of particle sizes in SPT investigations and applications in which diffusion coefficient measurements are needed, such as reaction kinetics and particle size determinations. PMID:22500769
NASA Astrophysics Data System (ADS)
Panin, V. Y.; Aykac, M.; Casey, M. E.
2013-06-01
The simultaneous PET data reconstruction of emission activity and attenuation coefficient distribution is presented, where the attenuation image is constrained by exploiting an external transmission source. Data are acquired in time-of-flight (TOF) mode, allowing in principle for separation of emission and transmission data. Nevertheless, here all data are reconstructed at once, eliminating the need to trace the position of the transmission source in sinogram space. Contamination of emission data by the transmission source and vice versa is naturally modeled. Attenuated emission activity data also provide additional information about object attenuation coefficient values. The algorithm alternates between attenuation and emission activity image updates. We also proposed a method of estimation of spatial scatter distribution from the transmission source by incorporating knowledge about the expected range of attenuation map values. The reconstruction of experimental data from the Siemens mCT scanner suggests that simultaneous reconstruction improves attenuation map image quality, as compared to when data are separated. In the presented example, the attenuation map image noise was reduced and non-uniformity artifacts that occurred due to scatter estimation were suppressed. On the other hand, the use of transmission data stabilizes attenuation coefficient distribution reconstruction from TOF emission data alone. The example of improving emission images by refining a CT-based patient attenuation map is presented, revealing potential benefits of simultaneous CT and PET data reconstruction.
Panin, V Y; Aykac, M; Casey, M E
2013-06-01
The simultaneous PET data reconstruction of emission activity and attenuation coefficient distribution is presented, where the attenuation image is constrained by exploiting an external transmission source. Data are acquired in time-of-flight (TOF) mode, allowing in principle for separation of emission and transmission data. Nevertheless, here all data are reconstructed at once, eliminating the need to trace the position of the transmission source in sinogram space. Contamination of emission data by the transmission source and vice versa is naturally modeled. Attenuated emission activity data also provide additional information about object attenuation coefficient values. The algorithm alternates between attenuation and emission activity image updates. We also proposed a method of estimation of spatial scatter distribution from the transmission source by incorporating knowledge about the expected range of attenuation map values. The reconstruction of experimental data from the Siemens mCT scanner suggests that simultaneous reconstruction improves attenuation map image quality, as compared to when data are separated. In the presented example, the attenuation map image noise was reduced and non-uniformity artifacts that occurred due to scatter estimation were suppressed. On the other hand, the use of transmission data stabilizes attenuation coefficient distribution reconstruction from TOF emission data alone. The example of improving emission images by refining a CT-based patient attenuation map is presented, revealing potential benefits of simultaneous CT and PET data reconstruction. PMID:23648397
NMR measurements of solvent self-diffusion coefficients in polymer solutions
NASA Astrophysics Data System (ADS)
Blum, Frank D.; Pickup, Stephen; Waggoner, R. Allen
1989-11-01
The transport of solvents and other small molecules in polymer solutions is important in many areas such as reaction rates, drying of coatings, plasticizer loss, curing of resins, elimination of residual monomer, and controlled drug release. Some of the work done in our laboratory on the diffusion of small molecules in polymer solutions and dispersions is reviewed. The diffusion data was used to test the Vrentas and Duda's free-volume theory for self-diffusion coefficients; test the independence of the normalized solvent self-diffusion for several polymer-solvent systems; and predict the solvent loss curves for drying of coatings based on solvent self-diffusion coefficients.
Technology Transfer Automated Retrieval System (TEKTRAN)
The diffusion coefficient of water in biobased hydrogels were measured utilizing a simple NMR method. This method tracks the migration of deuterium oxide through imaging data that is fit to a diffusion equation. The results show that a 5 wt% soybean oil based hydrogel gives aqueous diffusion of 1.37...
Alam, M N; Miah, M M; Chowdhury, M I; Kamal, M; Ghose, S; Rahman, R
2001-06-01
The linear and mass attenuation coefficients of different types of soil, sand, building materials and heavy beach mineral samples from the Chittagong and Cox's Bazar area of Bangladesh were measured using a high-resolution HPGe detector and the gamma-ray energies 276.1, 302.8, 356.0, 383.8, 661.6 and 1173.2 and 1332.5 keV emitted from point sources of 133Ba, 137Cs and 60Co, respectively. The linear attenuation coefficients show a linear relationship with the corresponding densities of the samples studied. The variations of the mass attenuation coefficient with gamma-ray energy were exponential in nature. The measured mass attenuation coefficient values were compared with measurements made in other countries for similar kinds of materials. The values are in good agreement with each other in most cases. PMID:11300413
Labyed, Yassin; Bigelow, Timothy A; McFarlin, Barbara L
2011-01-01
Premature delivery is the leading cause of infant mortality in the United States. Currently, premature delivery cannot be prevented and new treatments are difficult to develop due to the inability to diagnose symptoms prior to uterine contractions. Cervical ripening is a long period that precedes the active phase of uterine contractions and cervical dilation. The changes in the microstructure of the cervix during cervical ripening suggest that the ultrasonic attenuation should decrease. The objective of this study is to use the reference phantom algorithm to estimate the ultrasonic attenuation in the cervix of pregnant human patients. Prior to applying the algorithm to in vivo human data, two homogeneous phantoms with known attenuation coefficients were used to validate the algorithm and to find the length and the width of the region of interest (ROI) that achieves the smallest error in the attenuation coefficient estimates. In the phantom data, we found that the errors in the attenuation coefficients estimates are less than 12% for ROIs that contain 40 wavelengths or more axially and 30 echo lines or more laterally. The reference phantom algorithm was then used to obtain attenuation maps of the echoes from two human pregnant cervices at different gestational ages. It was observed that the mean of the attenuation coefficient estimates in the cervix of the patient at a more advanced gestational age is smaller than the mean of the attenuation coefficient estimates in the cervix of the patient at an earlier gestational age which suggests that ultrasonic attenuation decreases with increasing gestational age. We also observed a large variance between the attenuation coefficient estimates in the different regions of the cervix due to the natural variation in tissue micro-structures across the cervix. The preliminary results indicate that the algorithm could potentially provide an important diagnostic tool for diagnosing the risk of premature delivery. PMID:20570308
Lober, Robert M; Cho, Yoon-Jae; Tang, Yujie; Barnes, Patrick D; Edwards, Michael S; Vogel, Hannes; Fisher, Paul G; Monje, Michelle; Yeom, Kristen W
2014-03-01
While pediatric diffuse intrinsic pontine gliomas (DIPG) remain fatal, recent data have shown subgroups with distinct molecular biology and clinical behavior. We hypothesized that diffusion-weighted MRI can be used as a prognostic marker to stratify DIPG subsets with distinct clinical behavior. Apparent diffusion coefficient (ADC) values derived from diffusion-weighted MRI were computed in 20 consecutive children with treatment-naïve DIPG tumors. The median ADC for the cohort was used to stratify the tumors into low and high ADC groups. Survival, gender, therapy, and potential steroid effects were compared between the ADC groups. Median age at diagnosis was 6.6 (range 2.3-13.2) years, with median follow-up seven (range 1-36) months. There were 14 boys and six girls. Seventeen patients received radiotherapy, five received chemotherapy, and six underwent cerebrospinal fluid diversion. The median ADC of 1,295 × 10(-6) mm(2)/s for the cohort partitioned tumors into low or high diffusion groups, which had distinct median survivals of 3 and 13 months, respectively (log-rank p < 0.001). Low ADC tumors were found only in boys, whereas high ADC tumors were found in both boys and girls. Available tissue specimens in three low ADC tumors demonstrated high-grade histology, whereas one high ADC tumor demonstrated low-grade histology with a histone H3.1 K27M mutation and high-grade metastatic lesion at autopsy. ADC derived from diffusion-weighted MRI may identify prognostically distinct subgroups of pediatric DIPG. PMID:24522717
Impurity Diffusion Coefficients of Al and Zn in Mg Determined from Solid-to-Solid Diffusion Couples
Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Perry, Kelly A; Belova, Irina; Murch, Prof. Graeme; Sohn, Yong Ho
2013-08-01
Increasing use and development of lightweight Mgalloys have led to the desire for more fundamental research in and understanding of Mg-based systems. As property enhancing components, Al and Zn are two of the most important and common alloying elements for Mg-alloys. We have investigated the concentration dependent interdiffusion of Al and Zn in Mg using diffusion couples of pure polycrystalline Mg mated to Mg solid solutions containing either <9 at.% Al or <3 at.% Zn. Concentration profiles were determined by electron micro-probe microanalysis of the diffusion zone. The interdiffusion coefficients were determined by the classical Boltzmann-Matano method within the Mg solid solution. As the concentration of Al or Zn approaches the dilute ends, we employ an analytical approach based on the Hall method to estimate the impurity diffusion coefficients. Results of Al and Zn impurity diffusion in Mg are reported and compared to published impurity diffusion coefficients typically determined by thin film techniques.
Comparative study of methods used to estimate ionic diffusion coefficients using migration tests
Narsilio, G.A. Li, R. Pivonka, P. Smith, D.W.
2007-08-15
Ionic diffusion coefficients are estimated rapidly using electromigration tests. In this paper, electromigration tests are accurately simulated by numerically solving the Nernst-Planck (NP) equation (coupled with the electroneutrality condition (EN)) using the finite element method. Numerical simulations are validated against experimental data obtained elsewhere [E. Samson, J. Marchand, K.A. Snyder, Calculation of ionic diffusion coefficients on the basis of migration test results, Materials and Structures/Materiaux et Constructions 36 (257) (2003) 156-165., H. Friedmann, O. Amiri, A. Ait-Mokhtar, A direct method for determining chloride diffusion coefficient by using migration test, Cement and Concrete Research 34 (11) (2004) 1967-1973.]. It is shown that migration due to the non-linear electric potential completely overwhelms diffusion due to concentration gradients. The effects of different applied voltage differences and chloride source concentrations on estimations of chloride diffusion coefficients are explored. We show that the pore fluid within concrete and mortar specimens generally differs from the curing solution, lowering the apparent diffusion coefficient, primarily due to interactions of chloride ions with other ions in the pore fluid. We show that the variation of source chloride concentration strongly affects the estimation of diffusion coefficients in non-steady-state tests; however this effect vanishes under steady-state conditions. Most importantly, a comparison of diffusion coefficients obtained from sophisticated analyses (i.e., NP-EN) and a variety of commonly used simplifying methods to estimate chloride diffusion coefficients allows us to identify those methods and experimental conditions where both approaches deliver good estimates for chloride diffusion coefficients. Finally, we demonstrate why simultaneous use and monitoring of current density and fluxes are recommended for both the non-steady and steady-state migration tests.
NASA Astrophysics Data System (ADS)
Lin, Guoxing
2015-10-01
Inter-molecular multiple quantum coherence (iMQC) has important applications in NMR and MRI. However, the current theoretical methods still have some difficulties in analyzing the behavior of iMQC signal attenuation of pulsed field gradient diffusion experiments. In this paper, the iMQC diffusion experiments were analyzed by an effective phase shift diffusion equation (EPSDE) method, which is based on the idea that the accumulating phase shift (APS) can be viewed as the result of a diffusion process in virtual phase space (VPS) with effective diffusion coefficient K2(t) D (rad2/s) where K ( t ) = ∫0 t γ g ( t ' ) d t ' is a wavenumber and D is the physical diffusion coefficient of the spin carrier in the real space. The term K(ttot) z1 needs to be added to the APS when K(ttot) is not zero. Most of the time, K(ttot) equals zero. However, in iMQC experiments, the condition K(ttot) equaling zero or being non-zero for each spin depends on the gradient pulse setting. The signal attenuations of these two types of iMQC, zero or non-zero K(ttot), were analyzed in detail for free and restricted diffusions, which shows that there are significant differences between these two types of iMQC. Particularly, if an apparent diffusion coefficient Dapp is used to analyze the signal attenuation, it equals nD for zero K(ttot) which agrees with current theoretical and experimental reports, while for non-zero K(ttot), it equals (2n - 1) D which agrees with experimental results from the literature; there are no similar theoretical results reported for comparison. The result that Dapp equals (2n - 1) D is important because the higher value of Dapp means that non-zero K(ttot) iMQC can potentially provide more contrast and measure slower diffusion rates than zero K(ttot) iMQC. The EPSDE method provides a new way to analyze iMQC diffusion experiments.
Jacobs, Michael A; Ouwerkerk, Ronald; Petrowski, Kyle; Macura, Katarzyna J
2008-12-01
Prostate cancer is a major health problem, and the exploration of noninvasive imaging methods that have the potential to improve specificity while maintaining high sensitivity is still critically needed. Tissue changes induced by tumor growth can be visualized by magnetic resonance imaging (MRI) methods. Current MRI methods include conventional T2-weighted imaging, diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping and magnetic resonance spectroscopy (MRS). Techniques such as DWI/ADC provide functional information about the behavior of water molecules in tissue; MRS can provide biochemical information about the presence or absence of certain metabolites, such as choline, creatine, and citrate. Finally, vascular parameters can be investigated using dynamic contrast-enhanced MRI. Moreover, with whole-body MRI and DWI, metastatic disease can be evaluated in 1 session and may provide a way to monitor treatment. Therefore, when combining these various methods, a multiparametric data set can be built to assist in the detection, localization, assessment of prostate cancer aggressiveness, and tumor staging. Such a comprehensive approach offers more power to evaluate prostate disease than any single measure alone. In this article, we focus on the role of DWI/ADC and MRS in the detection and characterization using both in vivo and ex vivo imaging of prostate pathology. PMID:19512848
Velocity-Space Diffusion Coefficients Due to Full-Wave ICRF Fields in Toroidal Geometry
Harvey, R.W.; Jaeger, F.; Berry, L.A.; Batchelor, D.B.; D'Azevedo, E.; Carter, M.D.; Ershov, N.M.; Smirnov, A.P.; Bonoli, P.; Wright, J.C.; Smithe, D.N.
2005-09-26
Jaeger et al. have calculated bounce-averaged QL diffusion coefficients from AORSA full-wave fields, based on non-Maxwellian distributions from CQL3D Fokker-Planck code. A zero banana-width approximation is employed. Complementing this calculation, a fully numerical calculation of ion velocity diffusion coefficients using the full-wave fields in numerical tokamak equilibria has been implemented to determine the finite orbit width effects. The un-approximated Lorentz equation of motion is integrated to obtain the change in velocity after one complete poloidal transit of the tokamak. Averaging velocity changes over initial starting gyro-phase and toroidal angle gives bounce-averaged diffusion coefficients. The coefficients from the full-wave and Lorentz orbit methods are compared for an ITER DT second harmonic tritium ICRF heating case: the diffusion coefficients are similar in magnitude but reveal substantial finite orbit effects.
Nonlinearity Effects of Lateral Density Diffusion Coefficient on Gain-Guided VCSEL Performance
NASA Technical Reports Server (NTRS)
Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.; Biegel, Bryan (Technical Monitor)
2001-01-01
Electron and hole diffusions in the plane of semiconductor quantum wells play an important part in the static and dynamic operations of semiconductor lasers. In this paper, we apply a hydrodynamic model developed from the semiconductor Bloch equations to numerically study the effects of nonlinearity in the diffusion coefficient on single mode operation and direct modulation of a gain-guided InGaAs/GaAs multiple quantum well laser, operating not too far from threshold. We found that a small diffusion coefficient is advantageous for lowering the threshold current and increasing the modulation bandwidth. Most importantly, the effects of nonlinearity in the coefficient can be approximately reproduced by replacing the coefficient with an effective constant diffusion coefficient, which corresponds roughly to the half height density of the density distribution.
Miller, D.G.
1998-11-02
A procedure is developed for analyzing combined concentration profiles from multicomponent solid-state diffusion data obtained with free-diffusion boundary conditions. This procedure is exactly analogous to the analysis of liquid-state diffusion data obtained from free-diffusion refractive-index profiles (e.g. from Rayleigh interferometry). All data from all couples are least-squared together to characterize the diffusion coefficient matrix. Different profile weightings provide interesting alternatives, as well as diagnostics. Symmetric averagings are shown to eliminate or reduce effects of concentration dependence.
Zhang, Siyuan; Wan, Mingxi; Zhong, Hui; Xu, Cheng; Liao, Zhenzhong; Liu, Huanqing; Wang, Supin
2009-11-01
This paper simultaneously investigated the transient characteristics of integrated backscatter (IBS), attenuation coefficient and bubble activities as time traces before, during and after HIFU treatment, with different HIFU parameters (acoustic power and duty cycle) in both transparent tissue-mimicking phantoms and freshly excised bovine livers. These dynamic changes of acoustic parameters and bubble activities were correlated with the visualization of lesion development selected from photos, conventional B-mode ultrasound images and differential IBS images over the whole procedure of HIFU treatment. Two-dimensional radiofrequency (RF) data were acquired by a modified diagnostic ultrasound scanner to estimate the changes of mean IBS and attenuation coefficient averaged in the lesion region, and to construct the differential IBS images and B-mode ultrasound images simultaneously. Bubble activities over the whole procedure of HIFU treatment were investigated by the passive cavitation detection (PCD) method and the changes in subharmonic and broadband noise were correlated with the transient characteristics of IBS and attenuation coefficient. When HIFU was switched on, IBS and attenuation coefficient increased with the appearance of bubble clouds in the B-mode and differential IBS image. At the same time, the level of subharmonic and broadband noise rose abruptly. Then, there was an initial decrease in the attenuation coefficient, followed by an increase when at lower HIFU power. As the lesion appeared, IBS and attenuation coefficient both increased rapidly to a value twice that of normal. Then the changes in IBS and attenuation coefficient showed more complex patterns, but still showed a slower trend of increases with lesion development. Violent bubble activities were visible in the gel and were evident as strongly echogenic regions in the differential IBS images and B-mode images simultaneously. This was detected by a dramatic high level of subharmonic and broadband
The water column diffuse attenuation coefficient (Kd) of the Louisiana Continental Shelf (LCS) was examined during ten years to characterize the spatial and temporal variations on monthly scales from 1998 to 2007. This region is well-known for summer hypoxia (dissolved oxygen < 2...
Measurement of effective air diffusion coefficients for trichloroethene in undisturbed soil cores
NASA Astrophysics Data System (ADS)
Bartelt-Hunt, Shannon L.; Smith, James A.
2002-06-01
In this study, we measure effective diffusion coefficients for trichloroethene in undisturbed soil samples taken from Picatinny Arsenal, New Jersey. The measured effective diffusion coefficients ranged from 0.0053 to 0.0609 cm 2/s over a range of air-filled porosity of 0.23-0.49. The experimental data were compared to several previously published relations that predict diffusion coefficients as a function of air-filled porosity and porosity. A multiple linear regression analysis was developed to determine if a modification of the exponents in Millington's [Science 130 (1959) 100] relation would better fit the experimental data. The literature relations appeared to generally underpredict the effective diffusion coefficient for the soil cores studied in this work. Inclusion of a particle-size distribution parameter, d10, did not significantly improve the fit of the linear regression equation. The effective diffusion coefficient and porosity data were used to recalculate estimates of diffusive flux through the subsurface made in a previous study performed at the field site. It was determined that the method of calculation used in the previous study resulted in an underprediction of diffusive flux from the subsurface. We conclude that although Millington's [Science 130 (1959) 100] relation works well to predict effective diffusion coefficients in homogeneous soils with relatively uniform particle-size distributions, it may be inaccurate for many natural soils with heterogeneous structure and/or non-uniform particle-size distributions.
NASA Astrophysics Data System (ADS)
Kore, Prashant S.; Pawar, Pravina P.
2014-05-01
The mass attenuation coefficients of some amino acids, such as DL-aspartic acid-LR(C4H7NO4), L-glutamine (C4H10N2O3), creatine monohydrate LR(C4H9N3O2H2O), creatinine hydrochloride (C4H7N3O·HCl) L-asparagine monohydrate(C4H9N3O2H2O), L-methionine LR(C5H11NO2S), were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies using a well-collimated narrow beam good geometry set-up. The gamma-rays were detected using NaI (Tl) scintillation detection system with a resolution of 0.101785 at 662 keV. The attenuation coefficient data were then used to obtain the effective atomic numbers (Zeff), and effective electron densities (Neff) of amino acids. It was observed that the effective atomic number (Zeff) and effective electron densities (Neff) initially decrease and tend to be almost constant as a function of gamma-ray energy. Zeff and Neff experimental values showed good agreement with the theoretical values with less than 1% error for amino acids.
Crescenti, Remo A; Bamber, Jeffrey C; Partridge, Mike; Bush, Nigel L; Webb, Steve
2007-11-21
Research on polymer-gel dosimetry has been driven by the need for three-dimensional dosimetry, and because alternative dosimeters are unsatisfactory or too slow for that task. Magnetic resonance tomography is currently the most well-developed technique for determining radiation-induced changes in polymer structure, but quick low-cost alternatives remain of significant interest. In previous work, ultrasound attenuation and speed of sound were found to change as a function of absorbed radiation dose in polymer-gel dosimeters, although the investigations were restricted to one ultrasound frequency. Here, the ultrasound attenuation coefficient mu in one polymer gel (MAGIC) was investigated as a function of radiation dose D and as a function of ultrasonic frequency f in a frequency range relevant for imaging dose distributions. The nonlinearity of the frequency dependence was characterized, fitting a power-law model mu = af(b); the fitting parameters were examined for potential use as additional dose readout parameters. In the observed relationship between the attenuation coefficient and dose, the slopes in a quasi-linear dose range from 0 to 30 Gy were found to vary with the gel batch but lie between 0.0222 and 0.0348 dB cm(-1) Gy(-1) at 2.3 MHz, between 0.0447 and 0.0608 dB cm(-1) Gy(-1) at 4.1 MHz and between 0.0663 and 0.0880 dB cm(-1) Gy(-1) at 6.0 MHz. The mean standard deviation of the slope for all samples and frequencies was 15.8%. The slope was greater at higher frequencies, but so were the intra-batch fluctuations and intra-sample standard deviations. Further investigations are required to overcome the observed variability, which was largely associated with the sample preparation technique, before it can be determined whether any frequency is superior to others in terms of accuracy and precision in dose determination. Nevertheless, lower frequencies will allow measurements through larger samples. The fit parameter a of the frequency dependence, describing the
Scale Dependence of Effective Matrix Diffusion Coefficient Evidence and Preliminary Interpertation
H.H. Liu; Y. Zhang
2006-06-20
The exchange of solute mass (through molecular diffusion) between fluid in fractures and fluid in the rock matrix is called matrix diffusion. Owing to the orders-of-magnitude slower flow velocity in the matrix compared to fractures, matrix diffusion can significantly retard solute transport in fractured rock, and therefore is an important process for a variety of problems, including remediation of subsurface contamination and geological disposal of nuclear waste. The effective matrix diffusion coefficient (molecular diffusion coefficient in free water multiplied by matrix tortuosity) is an important parameter for describing matrix diffusion, and in many cases largely determines overall solute transport behavior. While matrix diffusion coefficient values measured from small rock samples in the laboratory are generally used for modeling field-scale solute transport in fractured rock (Boving and Grathwohl, 2001), several research groups recently have independently found that effective matrix diffusion coefficients much larger than laboratory measurements are needed to match field-scale tracer-test data (Neretnieks, 2002; Becker and Shapiro, 2000; Shapiro, 2001; Liu et al., 2003,2004a). In addition to the observed enhancement, Liu et al. (2004b), based on a relatively small number of field-test results, reported that the effective matrix diffusion coefficient might be scale dependent, and, like permeability and dispersivity, it seems to increases with test scale. This scale-dependence has important implications for large-scale solute transport in fractured rock. Although a number of mechanisms have been proposed to explain the enhancement of the effective matrix diffusion coefficient, the potential scale dependence and its mechanisms are not fully investigated at this stage. The major objective of this study is to again demonstrate (based on more data published in the literature than those used in Liu et al. [2004b]) the potential scale dependence of the effective
Liu, Hui-Hai; Zhang, Yingqi; Molz, Fred J.
2006-04-30
The exchange of solute mass (through molecular diffusion) between fluid in fractures and fluid in the rock matrix is called matrix diffusion. Owing to the orders-of-magnitude slower flow velocity in the matrix compared to fractures, matrix diffusion can significantly retard solute transport in fractured rock, and therefore is an important process for a variety of problems, including remediation of subsurface contamination and geological disposal of nuclear waste. The effective matrix diffusion coefficient (molecular diffusion coefficient in free water multiplied by matrix tortuosity) is an important parameter for describing matrix diffusion, and in many cases largely determines overall solute transport behavior. While matrix diffusion coefficient values measured from small rock samples in the laboratory are generally used for modeling field-scale solute transport in fractured rock (Boving and Grathwohl, 2001), several research groups recently have independently found that effective matrix diffusion coefficients much larger than laboratory measurements are needed to match field-scale tracer-test data (Neretnieks, 2002; Becker and Shapiro, 2000; Shapiro, 2001; Liu et al., 2003, 2004a). In addition to the observed enhancement, Liu et al. (2004b), based on a relatively small number of field-test results, reported that the effective matrix diffusion coefficient might be scale dependent, and, like permeability and dispersivity, it seems to increases with test scale. This scale-dependence has important implications for large-scale solute transport in fractured rock. Although a number of mechanisms have been proposed to explain the enhancement of the effective matrix diffusion coefficient, the potential scale dependence and its mechanisms are not fully investigated at this stage. The major objective of this study is to again demonstrate (based on more data published in the literature than those used in Liu et al. [2004b]) the potential scale dependence of the effective
NASA Astrophysics Data System (ADS)
Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.
2016-04-01
Electron pitch angle (Dαα) and momentum (Dpp) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies ≤10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = ±1, ±2, … ±5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (α) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in Dαα and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than Dαα coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than Dαα coefficients for the case n ≠ 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of Dαα coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89° and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10° and Landau
NASA Astrophysics Data System (ADS)
Ray, E.; Bunton, P.; Pojman, J. A.
2007-10-01
A simple technique for determining the diffusion coefficient between two miscible liquids is presented based on observing concentration-dependent ultraviolet-excited fluorescence using a digital camera. The ultraviolet-excited visible fluorescence of corn syrup is proportional to the concentration of the syrup. The variation of fluorescence with distance from the transition zone between the fluids is fit by the Fick's law solution to the diffusion equation. By monitoring the concentration at successive times, the diffusion coefficient can be determined in otherwise transparent materials. The technique is quantitative and makes measurement of diffusion accessible in the advanced undergraduate physics laboratory.
Effective diffusion coefficient of a Brownian particle in a periodically expanded conical tube
Antipov, Anatoly E.; Barzykin, Alexander V.; Berezhkovskii, Alexander M.; Makhnovskii, Yurii A.; Zitserman, Vladimir Yu.; Aldoshin, Sergei M.
2016-01-01
Diffusion in a tube of periodically varying diameter occurs slower than that in a cylindrical tube because diffusing particles get trapped in wells of the periodic entropy potential which is due to variation of the tube cross-section area. To quantify the slowdown one has to establish a relation between the effective diffusion coefficient of the particle and the tube geometry, which is a very complicated problem. Here we show how to overcome the difficulties in the case of a periodically expanded conical tube, where we find an approximate solution for the effective diffusion coefficient as a function of the parameters determining the tube geometry. PMID:24329385
Al-Masri, M S; Hasan, M; Al-Hamwi, A; Amin, Y; Doubal, A W
2013-02-01
Mass attenuation coefficients of various soil and sediment samples (density range between 1.0 and 1.7 g cm(-3)) collected from 60 sites distributed in Syrian land have been determined for gamma lines of 46.5, 59.5, 88, 122, 165, 392, 661, 1173, and 1332 keV using gamma spectrometry and simulation software program X-com. The average mass attenuation coefficients for the studied samples were found to be 0.513, 0.316, 0.195, 0.155, 0.134, 0.096, 0.077, 0.058, and 0.055 cm(2) g(-1) at previous energies, respectively. The results have shown that Ca and Fe contents of the samples have strong effect on the mass attenuation coefficient at lower energies. In addition, self-attenuation correction factors determined using mass attenuation coefficient was in good agreement with addition spiked reference material method provided that the sample thickness is 2.7 cm. However, mass attenuation coefficients determined in this study can be used for determination of gamma emitters at energy ranges from 46.5 to 1332 keV in any soil and sediment samples having density of 1.0-1.7 g cm(-3). PMID:23103572
Garcia-Ratés, Miquel; de Hemptinne, Jean-Charles; Bonet Avalos, Josep; Nieto-Draghi, Carlos
2012-03-01
Mass diffusion coefficients of CO(2)/brine mixtures under thermodynamic conditions of deep saline aquifers have been investigated by molecular simulation. The objective of this work is to provide estimates of the diffusion coefficient of CO(2) in salty water to compensate the lack of experimental data on this property. We analyzed the influence of temperature, CO(2) concentration,and salinity on the diffusion coefficient, the rotational diffusion, as well as the electrical conductivity. We observe an increase of the mass diffusion coefficient with the temperature, but no clear dependence is identified with the salinity or with the CO(2) mole fraction, if the system is overall dilute. In this case, we notice an important dispersion on the values of the diffusion coefficient which impairs any conclusive statement about the effect of the gas concentration on the mobility of CO(2) molecules. Rotational relaxation times for water and CO(2) increase by decreasing temperature or increasing the salt concentration. We propose a correlation for the self-diffusion coefficient of CO(2) in terms of the rotational relaxation time which can ultimately be used to estimate the mutual diffusion coefficient of CO(2) in brine. The electrical conductivity of the CO(2)-brine mixtures was also calculated under different thermodynamic conditions. Electrical conductivity tends to increase with the temperature and salt concentration. However, we do not observe any influence of this property with the CO(2) concentration at the studied regimes. Our results give a first evaluation of the variation of the CO(2)-brine mass diffusion coefficient, rotational relaxation times, and electrical conductivity under the thermodynamic conditions typically encountered in deep saline aquifers. PMID:22292779
Quantitative mapping of the per‐axon diffusion coefficients in brain white matter
Kruggel, Frithjof; Alexander, Daniel C.
2015-01-01
Purpose This article presents a simple method for estimating the effective diffusion coefficients parallel and perpendicular to the axons unconfounded by the intravoxel fiber orientation distribution. We also call these parameters the per‐axon or microscopic diffusion coefficients. Theory and Methods Diffusion MR imaging is used to probe the underlying tissue material. The key observation is that for a fixed b‐value the spherical mean of the diffusion signal over the gradient directions does not depend on the axon orientation distribution. By exploiting this invariance property, we propose a simple, fast, and robust estimator of the per‐axon diffusion coefficients, which we refer to as the spherical mean technique. Results We demonstrate quantitative maps of the axon‐scale diffusion process, which has factored out the effects due to fiber dispersion and crossing, in human brain white matter. These microscopic diffusion coefficients are estimated in vivo using a widely available off‐the‐shelf pulse sequence featuring multiple b‐shells and high‐angular gradient resolution. Conclusion The estimation of the per‐axon diffusion coefficients is essential for the accurate recovery of the fiber orientation distribution. In addition, the spherical mean technique enables us to discriminate microscopic tissue features from fiber dispersion, which potentially improves the sensitivity and/or specificity to various neurological conditions. Magn Reson Med, 2015. Magn Reson Med 75:1752–1763, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. PMID:25974332
Parthasarathy, Ranganathan; Misra, Anil; Park, Jonggu; Ye, Qiang; Spencer, Paulette
2012-01-01
The diffusion of water into dentin adhesive polymers and leaching of unpolymerized monomer from the adhesive are linked to their mechanical softening and hydrolytic degradation. Therefore, diffusion coefficient data are critical for the mechanical design of these polymeric adhesives. In this study, diffusion coefficients of water and leachables were obtained for sixteen methacrylate-based crosslinked polymers using absorption experiments. The experimental mass change data was interpreted using numerical solution of the two-dimensional diffusion equations. The calculated diffusion coefficients varied from 1.05 × 10−8 cm2/sec (co-monomer TMTMA) to 3.15 × 10−8 cm2/sec (co-monomer T4EGDMA). Correlation of the diffusion coefficients with crosslink density and hydrophilicity showed an inverse trend (R2 = 0.41). The correlation of diffusion coefficient with crosslink density and hydrophilicity are closer for molecules differing by simple repeat units (R2 = 0.95). These differences in the trends reveal mechanisms of interaction of the diffusing water with the polymer structure. PMID:22430592
On the determinatino of high-pressure mass-diffusion coefficients for binary mixtures
NASA Technical Reports Server (NTRS)
Bellan, J.; Harstad, K.
2003-01-01
A model for high-pressure binary diffusion coefficient calculation is proposed based on considerations originating from recasting both the low pressure kinetic theory and the Stokes-Einstein infinite dilution expressions into forms consistent with corresponding states theory.
Manzini, Gianmarco; Cangiani, Andrea; Sutton, Oliver
2014-10-02
This document presents the results of a set of preliminary numerical experiments using several possible conforming virtual element approximations of the convection-reaction-diffusion equation with variable coefficients.
Lai, C.C.; Tan, C.S. . Dept. of Chemical Engineering)
1995-02-01
Molecular diffusion coefficients of ethyl acetate, toluene, phenol, and caffeine in supercritical carbon dioxide were measured by a chromatographic peak broadening technique in a coated capillary column at temperatures of 308, 318, and 328 K and pressures up to 145 bar. A linear adsorption in the polymer layer coated on the inner wall of the capillary column was observed. The experimentally determined diffusion coefficients showed substantial agreement with those reported in the literature. The diffusion coefficients were in the order of 10[sup [minus]4] cm[sup 2]/s and decreased with increasing carbon dioxide density. Based on the molecular diffusion coefficient data reported here and those published elsewhere, an empirically modified Wilke-Chang equation was proposed which was found to be more quantitative than some existing equations such as the Stokes-Einstein and Wilke-Chang equations.
Leahy-Dios, Alana; Zhuo, Lin; Firoozabadi, Abbas
2008-05-22
New thermal diffusion coefficients of binary mixtures are measured for n-decane-n-alkanes and 1-methylnaphthalene-n-alkanes with 25 and 75 wt % at 25 degrees C and 1 atm using the thermogravitational column technique. The alkanes range from n-pentane to n-eicosane. The new results confirm the recently observed nonmonotonic behavior of thermal diffusion coefficients with molecular weight for binary mixtures of n-decane- n-alkanes at the compositions studied. In this work, the mobility and disparity effects on thermal diffusion coefficients are quantified for binary mixtures. We also show for the binary mixtures studied that the thermal diffusion coefficients and mixture viscosity, both nonequilibrium properties, are closely related. PMID:18438988
Diffusion coefficients of articular cartilage for different CT and MRI contrast agents.
Kulmala, K A M; Korhonen, R K; Julkunen, P; Jurvelin, J S; Quinn, T M; Kröger, H; Töyräs, J
2010-10-01
In contrast enhanced magnetic resonance imaging (MRI) and computed tomography (CT), the equilibrium distribution of anionic contrast agent is expected to reflect the fixed charged density (FCD) of articular cartilage. Diffusion is mainly responsible for the transport of contrast agents into cartilage. In osteoarthritis, cartilage composition changes at early stages of disease, and solute diffusion is most likely affected. Thus, investigation of contrast agent diffusion could enable new methods for imaging of cartilage composition. The aim of this study was to determine the diffusion coefficient of four contrast agents (ioxaglate, gadopentetate, iodide, gadodiamide) in bovine articular cartilage. The contrast agents were different in molecular size and charge. In peripheral quantitative CT experiments, penetration of contrast agent into the tissue was allowed either through the articular surface or through deep cartilage. To determine diffusion coefficients, a finite element model based on Fick's law was fitted to experimental data. Diffusion through articular surface was faster than through deep cartilage with every contrast agent. Iodide, being of atomic size, diffused into the cartilage significantly faster (q<0.05) than the other three contrast agents, for either transport direction. The diffusion coefficients of all clinical contrast agents (ioxaglate, gadopentetate and gadodiamide) were relatively low (142.8-253.7 μm(2)/s). In clinical diagnostics, such slow diffusion may not reach equilibrium and this jeopardizes the determination of FCD by standard methods. However, differences between diffusion through articular surface and deep cartilage, that are characterized by different tissue composition, suggest that diffusion coefficients may correlate with cartilage composition. Present method could therefore enable image-based assessment of cartilage composition by determination of diffusion coefficients within cartilage tissue. PMID:20594900
Štefl, Martin; Kułakowska, Anna; Hof, Martin
2009-01-01
Abstract A new (to our knowledge) robust approach for the determination of lateral diffusion coefficients of weakly bound proteins is applied for the phosphatidylserine specific membrane interaction of bovine prothrombin. It is shown that z-scan fluorescence correlation spectroscopy in combination with pulsed interleaved dual excitation allows simultaneous monitoring of the lateral diffusion of labeled protein and phospholipids. Moreover, from the dependencies of the particle numbers on the axial sample positions at different protein concentrations phosphatidylserine-dependent equilibrium dissociation constants are derived confirming literature values. Increasing the amount of membrane-bound prothrombin retards the lateral protein and lipid diffusion, indicating coupling of both processes. The lateral diffusion coefficients of labeled lipids are considerably larger than the simultaneously determined lateral diffusion coefficients of prothrombin, which contradicts findings reported for the isolated N-terminus of prothrombin. PMID:19651025
Determination of the zincate diffusion coefficient and its application to alkaline battery problems
NASA Technical Reports Server (NTRS)
May, C. E.; Kautz, Harold E.
1978-01-01
The diffusion coefficient for the zincate ion at 24 C was found to be 9.9 X 10 to the minus 7th power squared cm per sec + or - 30 percent in 45 percent potassium hydroxide and 1.4 x 10 to the minus 7 squared cm per sec + or - 25 percent in 40 percent sodium hydroxide. Comparison of these values with literature values at different potassium hydroxide concentrations show that the Stokes-Einstein equation is obeyed. The diffusion coefficient is characteristic of the zincate ion (not the cation) and independent of its concentration. Calculations with the measured value of the diffusion coefficient show that the zinc concentration in an alkaline zincate half cell becomes uniform throughout in tens of hours by diffusion alone. Diffusion equations are derived which are applicable to finite size chambers. Details and discussion of the experimental method are also given.
Determination of the zincate diffusion coefficient and its application to alkaline battery problems
NASA Technical Reports Server (NTRS)
May, C. E.; Kautz, H. E.
1978-01-01
The diffusion coefficient for the zincate ion at 24 C was found to be 9.9 x 10 to the -7th power sq cm/sec + or - 30% in 45% potassium hydroxide and 1.4 x 10 to the -7th power sq cm/sec + or - 25% in 40% sodium hydroxide. Comparison of these values with literature values at different potassium hydroxide concentrations show that the Stokes-Einstein equation is obeyed. The diffusion coefficient is characteristic of the zincate ion (not the cation) and independent of its concentration. Calculations with the measured value of the diffusion coefficient show that the zinc concentration in an alkaline zincate half-cell becomes uniform throughout in tens of hours by diffusion alone. Diffusion equations are derived which are applicable to finite-size chambers. Details and discussion of the experimental method are also given.
NASA Astrophysics Data System (ADS)
Dietrich, Olaf; Hubert, Alexander; Heiland, Sabine
2014-06-01
The purpose of this study was to analyze and evaluate a model of restricted water diffusion between equidistant permeable membranes for cell-size and permeability measurements in biological tissue. Based on the known probability distribution of diffusion distances after the diffusion time τ in a system of permeable membranes characterized by three parameters (membrane permeability P, membrane distance L, and free diffusivity D0), an equivalent dimensionless model was derived with a probability distribution characterized by only a single (dimensionless) tissue parameter \\tilde{P}. Evaluating this proposed model function, the dimensionless diffusion coefficient \\tilde{D}_{eff}(\\tilde{\\tau };\\,\\tilde{P}) was numerically calculated for 60 values of the dimensionless diffusion time \\tilde{\\tau } and 35 values of \\tilde{P}. Diffusion coefficients were measured in a carrot by diffusion-weighted magnetic resonance imaging (MRI) at 18 diffusion times between 9.9 and 1022.7 ms and fitted to the simulation results \\tilde{D}_{eff}(\\tilde{\\tau };\\,\\tilde{P}) to determine L, P, and D0. The measured diffusivities followed the simulated dependence of \\tilde{D}_{eff}(\\tilde{\\tau };\\tilde{P}). Determined cell sizes varied from 21 to 76 μm, permeabilities from 0.007 to 0.039 μm-1, and the free diffusivities from 1354 to 1713 μm2 s-1. In conclusion, the proposed dimensionless tissue model can be used to determine tissue parameters (D0, L, P) based on diffusion MRI with multiple diffusion times. Measurements in a carrot showed a good agreement of the cell diameter, L, determined by diffusion MRI and by light microscopy.
FITTING OF THE DATA FOR DIFFUSION COEFFICIENTS IN UNSATURATED POROUS MEDIA
B. Bullard
1999-05-01
The purpose of this calculation is to evaluate diffusion coefficients in unsaturated porous media for use in the TSPA-VA analyses. Using experimental data, regression techniques were used to curve fit the diffusion coefficient in unsaturated porous media as a function of volumetric water content. This calculation substantiates the model fit used in Total System Performance Assessment-1995 An Evaluation of the Potential Yucca Mountain Repository (TSPA-1995), Section 6.5.4.
Note on coefficient matrices from stochastic Galerkin methods for random diffusion equations
Zhou Tao; Tang Tao
2010-11-01
In a recent work by Xiu and Shen [D. Xiu, J. Shen, Efficient stochastic Galerkin methods for random diffusion equations, J. Comput. Phys. 228 (2009) 266-281], the Galerkin methods are used to solve stochastic diffusion equations in random media, where some properties for the coefficient matrix of the resulting system are provided. They also posed an open question on the properties of the coefficient matrix. In this work, we will provide some results related to the open question.
Comparison of ICRF-Induced Ion Diffusion Coefficients Calculated with the DC and AORSA Codes
Harvey, R. W.; Petrov, Yu.; Jaeger, E. F.; Berry, L. A.; Batchelor, D. B.; Bonoli, P. T.; Wright, J. C.
2009-11-26
The DC (Diffusion Coefficient) code obtains RF diffusion coefficients by direct numerical integration of the Lorentz force equation for ion motion in the combined equilibrium fields and the RF full wave EM fields from the AORSA full-wave code. Suitable averaging over initial gyro- and toroidal-angle of coordinate 'kicks' after a bounce-period, gives noise-free bounce-averaged diffusion coefficients. For direct comparison with zero-banana-width coefficients from AORSA, perpendicular-drift terms in the Lorentz equation are subtracted off the integration. The DC code has been coupled to the CQL3D Fokker-Planck code. For a C-Mod minority ion ICRF heating test case, the total power absorption using the diffusion coefficients agree well, and the profiles are similarly close. This supports the DC calculation and the Kennel-Engelmann-based, no-correlations, coefficient calculation in AORSA. However, resonance correlations cause large differences in the pitch angle variations of the diffusion coefficients, and in the resulting evolution of the ion distribution functions.
Response of radiation belt simulations to different radial diffusion coefficients models
NASA Astrophysics Data System (ADS)
Drozdov, Alexander; Baker, Daniel N.; Shprits, Yuri; Kellerman, Adam
2016-07-01
Two parameterizations of the resonant wave-particle interactions of electrons with ultra-low frequency waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2014] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate the effect of changing a diffusion coefficient on the radiation belt simulation. The period of investigation includes geomagnetically quiet and active time. The simulations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion.
NASA Astrophysics Data System (ADS)
Han, I.; Demir, L.; Şahin, M.
2009-09-01
The total mass attenuation coefficients ( μ m) for SiO 2 {Quartz (1 1 0 1), Quartz (1 1 0 0) and Quartz (0 0 0 1)}, KAlSi 3O 8 {Orthoclase (0 1 0), Orthoclase (1 0 0)}, CaSO 4·2H 2O (gypsum), FeS 2 (pyrite) and Mg 2Si 2O 6 (pyroxene) natural minerals were measured at 22.1, 25.0, 59.5 and 88.0 keV photon energies. The γ- and X-rays were counted by a Si(Li) detector with a resolution of 160 eV at 5.9 keV. Atomic and electronic cross sections ( σ t and σ e), the effective atomic and electron numbers or electron densities ( Z eff and N eff) were determined using the obtained μ m values for investigated samples.
NASA Astrophysics Data System (ADS)
Çevik, Ugˇur; Baltaş, Hasan; Çelik, Ahmet; Bacaksız, Emin
2006-06-01
The X-rays attenuation coefficients for Cu, In and Se in elemental state and the semiconductor CuInSe2 were measured at 15 different energies from 11.9 to 37.3 keV by using the secondary excitation method. Monochromatic photons were obtained using the following secondary targets: Br, Sr, Mo, Cd, Te and Ba. 59.5 keV gamma rays emitted from an annular 241Am radioactive source were used to excite secondary target and X-rays emitted from secondary target were counted by a Si(Li) detector with a resolution of 0.16 keV at 5.9 keV. A method to determine the thickness of thin film with XRF is described. Additionally, the effect of absorption edges on effective atomic numbers and their variation with photon energy in composite semiconductor sample was discussed. Obtained values were compared with calculated values.
NASA Astrophysics Data System (ADS)
Cuccaro, R.; Magnetto, C.; Albo, P. A. Giuliano; Troia, A.; Lago, S.
Although high intensity focused ultrasound beams (HIFU) have found rapid agreement in clinical environment as a tool for non invasive surgical ablation and controlled destruction of cancer cells, some aspects related to the interaction of ultrasonic waves with tissues, such as the conversion of acoustic energy into heat, are not thoroughly understood. In this work, innovative tissue-mimicking materials (TMMs), based on Agar and zinc acetate, have been used to conduct investigations in order to determine a relation between the sample attenuation coefficient and its temperature increase measured in the focus region when exposed to an HIFU beam. An empirical relation has been deduced establishing useful basis for further processes of validations of numerical models to be adopted for customizing therapeutic treatments.
NASA Astrophysics Data System (ADS)
Wu, Qiong; Li, Shu-Suo; Ma, Yue; Gong, Sheng-Kai
2012-10-01
The diffusion coefficients of several alloying elements (Al, Mo, Co, Ta, Ru, W, Cr, Re) in Ni are directly calculated using the five-frequency model and the first principles density functional theory. The correlation factors provided by the five-frequency model are explicitly calculated. The calculated diffusion coefficients show their excellent agreement with the available experimental data. Both the diffusion pre-factor (D0) and the activation energy (Q) of impurity diffusion are obtained. The diffusion coefficients above 700 K are sorted in the following order: DAl > DCr > DCo > DTa > DMo > DRu > DW > DRe. It is found that there is a positive correlation between the atomic radius of the solute and the jump energy of Ni that results in the rotation of the solute-vacancy pair (E1). The value of E2-E1 (E2 is the solute diffusion energy) and the correlation factor each also show a positive correlation. The larger atoms in the same series have lower diffusion activation energies and faster diffusion coefficients.
An alternative model for estimating liquid diffusion coefficients requiring no viscosity data
NASA Technical Reports Server (NTRS)
Morales, Wilfredo
1993-01-01
An equation, based on the free volume of a liquid solvent, was derived via dimensional analysis, to predict binary diffusion coefficients. The equation assumed that interaction between the solute and liquid solvent molecules followed a Lennard-Jones potential. The equation was compared to other diffusivity equations and was found to give good results over the temperature range examined.
NASA Astrophysics Data System (ADS)
Imel, Adam; Miller, Brad; Holley, Wade; Baskaran, Durairaj; Mays, Jimmy; Dadmun, Mark
2015-03-01
The diffusion properties of nanoparticles in polymer nanocomposites are largely unknown and depend intimately on the dispersion of the nanoparticles. We examine the diffusion of soft, organic nanoparticles, which disperse in a polymer matrix due to the interpenetration of polymer chains and particles and the reduction in the depletion of entropy in the system. The impact of the presence of soft nanoparticles on the diffusion coefficient of polystyrene chains has recently been determined with neutron reflectivity. This was completed by monitoring the interdiffusion of deuterated and protonated polystyrene nanocomposite bilayers with and without the soft nanoparticles dispersed throughout both layers and extracting the diffusion coefficient from the one-dimensional solution to Fick's second law of diffusion. In this work, we extend this method to bilayer systems with only the soft nanoparticles as one of the layers and a linear deuterated polystyrene as an adjacent layer. The development of this method allows us to determine the tracer diffusion coefficient of the soft polystyrene nanoparticles for the first time by analyzing the mutual diffusion coefficient from Fick's second law and the fast and slow modes theories for diffusion.
Imaging the attenuation coefficients of magnetically constrained positron beams in matter
NASA Astrophysics Data System (ADS)
Watson, Charles C.
2016-09-01
This paper describes a method for tomographically imaging the linear attenuation coefficients (LACs) of positron beams in heterogeneous materials. A β+ ray emitter such as 68Ga, placed in a uniform 3T static magnetic field, generates a well-defined positron beam that maintains its spatial coherence over an attenuation of more than 10-3 while signaling its intensity via the annihilation radiation it generates. A positron emission tomography (PET) system embedded in the magnetic field measures the positron-electron annihilation distribution within objects illuminated by the beam. It's shown that this image can be decomposed into maps of the positron beam's flux and its material-dependent LACs without need for auxiliary measurements or transmission of the beam completely through the object. The initial implementation employs a hybrid PET/magnetic resonance imaging (MRI) scanner developed for medical applications. Mass thicknesses up to 0.55 g/cm2 at a spatial resolution of a few millimeters have been imaged.
Temperature-Dependent Diffusion Coefficients from ab initio Computations: Hydrogen in Nickel
E Wimmer; W Wolf; J Sticht; P Saxe; C Geller; R Najafabadi; G Young
2006-03-16
The temperature-dependent mass diffusion coefficient is computed using transition state theory. Ab initio supercell phonon calculations of the entire system provide the attempt frequency, the activation enthalpy, and the activation entropy as a function of temperature. Effects due to thermal lattice expansion are included and found to be significant. Numerical results for the case of hydrogen in nickel demonstrate a strong temperature dependence of the migration enthalpy and entropy. Trapping in local minima along the diffusion path has a pronounced effect especially at low temperatures. The computed diffusion coefficients with and without trapping bracket the available experimental values over the entire temperature range between 0 and 1400 K.
Calculation of the coefficient and dynamics of water diffusion in graphite joints
NASA Astrophysics Data System (ADS)
Wang, Jun; Liu, Wen-Bin
2006-06-01
The coefficient and dynamics of water diffusion in adhesive-graphite joints were calculated insitu with energy dispersive X-ray (EDX) analysis, a method that is significantly simpler than elemental analysis. Water diffusion coefficient and dynamics of adhesive-graphite joints treated by different surface treatment menthods were also investigated. Calculation results indicated that the water diffusion rate in adhesive-graphite joints treated by sandpaper was higher than that treated by chemical oxidation or by silane couple agent. Also the durability of graphite joints treated by coupling agent is superior to that treated by chemical oxidation or sandpaper burnishing.
Franco, Luís F M; Castier, Marcelo; Economou, Ioannis G
2016-08-28
Applying classical molecular dynamics simulations, we calculate the parallel self-diffusion coefficients of different fluids (methane, nitrogen, and carbon dioxide) confined between two {101̄4} calcite crystal planes. We have observed that the molecules close to the calcite surface diffuse differently in distinct directions. This anisotropic behavior of the self-diffusion coefficient is investigated for different temperatures and pore sizes. The ion arrangement in the calcite crystal and the strong interactions between the fluid particles and the calcite surface may explain the anisotropy in this transport property. PMID:27586936
Narváez Valderrama, Jhon F; Baek, Kine; Molina, Francisco J; Allan, Ian J
2016-01-01
A film-stacking technique was used to estimate diffusion coefficients of polybrominated diphenyl ethers (PBDEs) in low density polyethylene (LDPE) and silicone rubber. Substantially higher PBDE diffusion coefficients were observed for silicone rubber (AlteSil™) than for LDPE. A much steeper decrease in LDPE diffusion coefficients was found with increasing PBDE molecular weight than that for silicone rubber. From a passive sampling point-of-view, this means that for equivalent polymer-water partition coefficients for these two materials, the mass transfer resistance for these substances in the LDPE will be significantly higher than that for silicone rubber. Boundary layer control of the uptake process for silicone rubber can be expected for PBDEs. With a microplastic perspective, the low diffusion coefficients of PBDEs and in particular of decabromo diphenyl ether (BDE 209) in LDPE imply that the polymer diffusion coefficients for these plastic additives used as flame retardants need to be taken into account when considering the risk posed by microplastic particle ingestion by marine organisms. PMID:26678428
Styszko, Katarzyna; Kupiec, Krzysztof
2016-10-01
In this study the diffusion coefficients of isoproturon, diuron and cybutryn in acrylate and silicone resin-based renders were determined. The diffusion coefficients were determined using measuring concentrations of biocides in the liquid phase after being in contact with renders for specific time intervals. The mathematical solution of the transient diffusion equation for an infinite plate contacted on one side with a limited volume of water was used to calculate the diffusion coefficient. The diffusion coefficients through the acrylate render were 8.10·10(-9) m(2) s(-1) for isoproturon, 1.96·10(-9) m(2) s(-1) for diuron and 1.53·10(-9) m(2) s(-1) for cybutryn. The results for the silicone render were lower by one order of magnitude. The compounds with a high diffusion coefficient for one polymer had likewise high values for the other polymer. PMID:27391050
Entropy-scaling laws for diffusion coefficients in liquid metals under high pressures
Cao, Qi-Long Shao, Ju-Xiang; Wang, Fan-Hou; Wang, Pan-Pan
2015-04-07
Molecular dynamic simulations on the liquid copper and tungsten are used to investigate the empirical entropy-scaling laws D{sup *}=A exp(BS{sub ex}), proposed independently by Rosenfeld and Dzugutov for diffusion coefficient, under high pressure conditions. We show that the scaling laws hold rather well for them under high pressure conditions. Furthermore, both the original diffusion coefficients and the reduced diffusion coefficients exhibit an Arrhenius relationship D{sub M}=D{sub M}{sup 0} exp(−E{sub M}/K{sub B}T), (M=un,R,D) and the activation energy E{sub M} increases with increasing pressure, the diffusion pre-exponential factors (D{sub R}{sup 0} and D{sub D}{sup 0}) are nearly independent of the pressure and element. The pair correlation entropy, S{sub 2}, depends linearly on the reciprocal temperature S{sub 2}=−E{sub S}/T, and the activation energy, E{sub S}, increases with increasing pressure. In particular, the ratios of the activation energies (E{sub un}, E{sub R}, and E{sub D}) obtained from diffusion coefficients to the activation energy, E{sub S}, obtained from the entropy keep constants in the whole pressure range. Therefore, the entropy-scaling laws for the diffusion coefficients and the Arrhenius law are linked via the temperature dependence of entropy.
Evaluation of Hamaker coefficients using Diffusion Monte Carlo method
NASA Astrophysics Data System (ADS)
Maezono, Ryo; Hongo, Kenta
We evaluated the Hamaker's constant for Cyclohexasilane to investigate its wettability, which is used as an ink of 'liquid silicon' in 'printed electronics'. Taking three representative geometries of the dimer coalescence (parallel, lined, and T-shaped), we evaluated these binding curves using diffusion Monte Carlo method. The parallel geometry gave the most long-ranged exponent, ~ 1 /r6 , in its asymptotic behavior. Evaluated binding lengths are fairly consistent with the experimental density of the molecule. The fitting of the asymptotic curve gave an estimation of Hamaker's constant being around 100 [zJ]. We also performed a CCSD(T) evaluation and got almost similar result. To check its justification, we applied the same scheme to Benzene and compared the estimation with those by other established methods, Lifshitz theory and SAPT (Symmetry-adopted perturbation theory). The result by the fitting scheme turned to be twice larger than those by Lifshitz and SAPT, both of which coincide with each other. It is hence implied that the present evaluation for Cyclohexasilane would be overestimated.
Bounce averaged diffusion coefficients in a physics based magnetic field geometry from RAM-SCB
NASA Astrophysics Data System (ADS)
Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania K.
2014-10-01
In this work we explore wave-particle interaction in the radiation belt. By applying quasilinear theory, we obtain the particle diffusion coefficients in both pitch angle and energy for different configurations of the Earth's magnetic field. We consider the Earth's magnetic dipole field as a reference, and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with RAM-SCB, a code that models the Earth's ring current and provide a realistic modeling of the Earth's magnetic field. The bounce averaged electron pitch angle diffusion coefficients are calculated for each magnetic field configuration. The equatorial pitch angle, wave frequency and spectral distribution of whistler waves are shown to affect the bounce averaged diffusion coefficients. In addition, wave-particle resonance is significantly influenced by the magnetic field configuration: in storm conditions, diffusion is strongly reduced for some equatorial pitch angles.
NASA Astrophysics Data System (ADS)
Goulart, Viviane P.; dos Santos, Moisés O.; Latrive, Anne; Freitas, Anderson Z.; Correa, Luciana; Zezell, Denise M.
2015-05-01
Photodynamic therapy (PDT) has become a promising alternative for treatment of skin lesions such as squamous cell carcinoma. We propose a method to monitor the effects of PDT in a noninvasive way by using the optical attenuation coefficient (OAC) calculated from optical coherence tomography (OCT) images. We conducted a study on mice with chemically induced neoplastic lesions and performed PDT on these lesions using homemade photosensitizers. The response of neoplastic lesions to therapy was monitored using, at the same time, macroscopic clinical visualization, histopathological analysis, OCT imaging, and OCT-based attenuation coefficient measurement. Results with all four modalities demonstrated a positive response to treatment. The attenuation coefficient was found to be 1.4 higher in skin lesions than in healthy tissue and it decreased after therapy. This study shows that the OAC is a potential tool to noninvasively assess the evolution of skin neoplastic lesions with time after treatment.
NASA Astrophysics Data System (ADS)
Liu, Xiaoyu; Guo, Zhishi; Roache, Nancy F.
2014-06-01
The solid-phase diffusion coefficient (Dm) and material/air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to estimate parameters Dm and Kma. The SVOCs chosen for study were polychlorinated biphenyl (PCB) congeners, including PCB-52, PCB-66, PCB-101, PCB-110, and PCB-118. The test materials included polypropylene, high density polyethylene, low density polyethylene, polytetrafluoroethylene, polyether ether ketone, glass, stainless steel and concrete. Two 53-L environmental chambers were connected in series, with the relatively stable SVOCs source in the source chamber and the test materials, made as small “buttons”, in the test chamber. Prior to loading the test chamber with the test materials, the test chamber had been dosed with SVOCs for 12 days to “coat” the chamber walls. During the tests, the material buttons were removed from the test chamber at different exposure times to determine the amount of SVOC absorbed by the buttons. SVOC concentrations at the inlet and outlet of the test chamber were also monitored. The data were used to estimate the partition and diffusion coefficients by fitting a sink model to the experimental data. The parameters obtained were employed to predict the accumulation of SVOCs in the sink materials using an existing mass transfer model. The model prediction agreed reasonably well with the experimental data.
Balch, J; Guéguen, C
2015-01-01
In situ measurements of labile metal species using diffusive gradients in thin films (DGT) passive samplers are based on the diffusion rates of individual species. Although most studies have dealt with chemically isolated humic substances, the diffusion of dissolved organic matter (DOM) across the hydrogel is not well understood. In this study, the diffusion coefficient (D) and molecular weight (MW) of 11 aquatic DOM and 4 humic substances (HS) were determined. Natural, unaltered aquatic DOM was capable of diffusing across the diffusive gel membrane with D values ranging from 2.48×10(-6) to 5.31×10(-6) cm(2) s(-1). Humic substances had diffusion coefficient values ranging from 3.48×10(-6) to 6.05×10(-6) cm(2) s(-1), congruent with previous studies. Molecular weight of aquatic DOM and HS samples (∼500-1750 Da) measured using asymmetrical flow field-flow fractionation (AF4) strongly influenced D, with larger molecular weight DOM having lower D values. No noticeable changes in DOM size properties were observed during the diffusion process, suggesting that DOM remains intact following diffusion across the diffusive gel. The influence of molecular weight on DOM mobility will assist in further understanding and development of the DGT technique and the uptake and mobility of contaminants associated with DOM in aquatic environments. PMID:25112575
Annunziata, Onofrio; Vergara, Alessandro; Paduano, Luigi; Sartorio, Roberto; Miller, Donald G; Albright, John G
2009-10-01
We have experimentally investigated multicomponent diffusion in a protein-polymer-salt-water quaternary system. Specifically, we have measured the nine multicomponent diffusion coefficients, D(ij), for the lysozyme-poly(ethylene glycol)-NaCl-water system at pH 4.5 and 25 degrees C using precision Rayleigh interferometry. Lysozyme is a model protein for protein-crystallization and enzymology studies. We find that the protein diffusion coefficient, D(11), decreases as polymer concentration increases at a given salt concentration. This behavior can be quantitatively related to the corresponding increase in fluid viscosity only at low polymer concentration. However, at high polymer concentration (250 g/L), protein diffusion is enhanced compared to the corresponding viscosity prediction. We also find that a protein concentration gradient induces salt diffusion from high to low protein concentration. This effect increases in the presence of poly(ethylene glycol). Finally, we have evaluated systematic errors associated with measurements of protein diffusion coefficients by dynamic light scattering. This work overall helps characterize protein diffusion in crowded environments and may provide guidance for further theoretical developments in the field of protein crystallization and protein diffusion in such crowded systems, such as the cytoplasm of living cells. PMID:19746957
Sidhu, Baltej Singh; Dhaliwal, A S; Mann, K S; Kahlon, K S
2011-10-01
Linear attenuation coefficients of regular as well as irregular shaped archaeological samples of FaLG (flyash-lime-gypsum) of unknown thickness have been measured employing 'simplified two media' method. Seven different liquid materials plus air have been used as media to measure attenuation coefficient of these samples. Obtained results have been compared with those for regular shaped samples. Experimental values have also been compared with theoretical values calculated from FFAST and XCOM. A good agreement has been observed between experimental and theoretical values. Present measurements employing 'simplified two media' method have been reported for the first time for checking its validation and reliability. PMID:21727010
2014-01-01
Background Support vector regression (SVR) and Gaussian process regression (GPR) were used for the analysis of electroanalytical experimental data to estimate diffusion coefficients. Results For simulated cyclic voltammograms based on the EC, Eqr, and EqrC mechanisms these regression algorithms in combination with nonlinear kernel/covariance functions yielded diffusion coefficients with higher accuracy as compared to the standard approach of calculating diffusion coefficients relying on the Nicholson-Shain equation. The level of accuracy achieved by SVR and GPR is virtually independent of the rate constants governing the respective reaction steps. Further, the reduction of high-dimensional voltammetric signals by manual selection of typical voltammetric peak features decreased the performance of both regression algorithms compared to a reduction by downsampling or principal component analysis. After training on simulated data sets, diffusion coefficients were estimated by the regression algorithms for experimental data comprising voltammetric signals for three organometallic complexes. Conclusions Estimated diffusion coefficients closely matched the values determined by the parameter fitting method, but reduced the required computational time considerably for one of the reaction mechanisms. The automated processing of voltammograms according to the regression algorithms yields better results than the conventional analysis of peak-related data. PMID:24987463
Sublimation kinetics and diffusion coefficients of TNT, PETN, and RDX in air by thermogravimetry.
Hikal, Walid M; Weeks, Brandon L
2014-07-01
The diffusion coefficients of explosives are crucial in their trace detection and lifetime estimation. We report on the experimental values of diffusion coefficients of three of the most important explosives in both military and industry: TNT, PETN, and RDX. Thermogravimetric analysis (TGA) was used to determine the sublimation rates of TNT, PETN, and RDX powders in the form of cylindrical billets. The TGA was calibrated using ferrocene as a standard material of well-characterized sublimation rates and vapor pressures to determine the vapor pressures of TNT, PETN, and RDX. The determined sublimation rates and vapor pressures were used to indirectly determine the diffusion coefficients of TNT, PETN, and RDX for the first time. A linear log-log dependence of the diffusion coefficients on temperature is observed for the three materials. The diffusion coefficients of TNT, PETN, and RDX at 273 K were determined to be 5.76×10(-6)m(2)/sec, 4.94×10(-6)m(2)/s, and 5.89×10(-6)m(2)/s, respectively. Values are in excellent agreement with the theoretical values in literature. PMID:24840410
A first-principles methodology for diffusion coefficients in metals and dilute alloys
NASA Astrophysics Data System (ADS)
Mantina, Manjeera
This work is a study exploring the extent of suitability of static first-principles calculations for studying diffusion in metallic systems. Specifically, vacancy-mediated volume diffusion in pure elements and alloys with dilute concentration of impurities is studied. A novel procedure is discovered for predicting diffusion coefficients that overcomes the shortcomings of the well-known transition state theory, by Vineyard. The procedure that evolves from Eyring's reaction rate theory yields accurate diffusivity results that include anharmonic effects within the quasi-harmonic approximation. Alongside, the procedure is straightforward in its application within the conventional harmonic approximation, from the results of static first-principles calculations. To prove the extensibility of the procedure, diffusivities have been computed for a variety of systems. Over a wide temperature range, the calculated self-diffusion and impurity diffusion coefficients using local density approximation (LDA) of density functional theory (DFT) are seen to be in excellent match with experimental data. Self-diffusion coefficients have been calculated for: (i) fcc Al, Cu, Ni and Ag (ii) bcc W and Mo (v) hcp Mg, Ti and Zn. Impurity diffusion coefficients have been computed for: (i) Mg, Si, Cu, Li, Ag, Mo and 3d transition elements in fcc Al (ii) Mo, Ta in bcc W and Nb, Ta and W in bcc Mo (iii) Sn and Cd in hcp Mg and Al in hcp Ti. It is also an observation from this work, that LDA does not require surface correction for yielding energetics of vacancy-containing system in good comparison with experiments, unlike generalized gradient approximation (GGA). It is known that first-principles' energy minimization procedures based on electronic interactions are suited for metallic systems wherein the valence electrons are freely moving. In this thesis, research has been extended to study suitability of first-principles calculations within LDA/GGA including the localization parameter U, for Al
Yang, J; Köhler, K; Davis, D M; Burroughs, N J
2010-06-01
Fluorescence recovery after photobleaching is a widely established method for the estimation of diffusion coefficients, strip bleaching with an associated recovery curve analysis being one of the simplest techniques. However, its implementation requires near 100% bleaching in the region of interest with negligible fluorescence loss outside, both constraints being hard to achieve concomitantly for fast diffusing molecules. We demonstrate that when these requirements are not met there is an error in the estimation of the diffusion coefficient D, either an under- or overestimation depending on which assumption is violated the most. We propose a simple modification to the recovery curve analysis incorporating the concept of the relative bleached mass m giving a revised recovery time parametrization tau=m(2)w(2)/4piD for a strip of width w. This modified model removes the requirement of 100% bleaching in the region of interest and allows for limited diffusion of the fluorophore during bleaching. We validate our method by estimating the (volume) diffusion coefficient of FITC-labelled IgG in 60% glycerol solution, D= 4.09 +/- 0.21 microm(2) s(-1), and the (surface) diffusion coefficient of a green-fluorescent protein-tagged class I MHC protein expressed at the surface of a human B cell line, D= 0.32 +/- 0.03 microm(2) s(-1) for a population of cells. PMID:20579262
Liu, Fei; Kolesov, Grigory; Parkinson, Bruce A.
2014-09-26
A simple and straightforward method for measuring diffusion coefficients using interdigitated array (IDA) electrodes is reported. The method does not require that the exact electrode area be known but depends only the size of the gap between the IDA electrode pairs. Electroactive molecules produced at the generator electrode of the IDA by a voltage step or scan can diffuse to the collector electrode and the time delay before the current for the reverse electrochemical reaction is detected at the collector is used to calculate the diffusion coefficient. The measurement of the diffusion rate of Ru(NH3)6+2 in aqueous solution has been used as an example measuring diffusion coefficients using this method. Additionally, a digital simulation of the electrochemical response of the IDA electrodes was used to simulate the entire current/voltage/time behavior of the system and verify the experimentally measured diffusion coefficients. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the Department of Energy, Office of Science, Office of Basic Energy Sciences.
Buffie, K.; Shalchi, A.; Heesen, V. E-mail: v.heesen@soton.ac.uk
2013-02-10
Diffusion coefficients are usually used to describe the propagation of cosmic rays through the universe. Whereas such transport parameters can be obtained from experiments in the solar system, it is difficult to determine diffusion coefficients in the Milky Way or in external galaxies. Recently, a value for the perpendicular diffusion coefficient in the nearby starburst galaxy NGC 253 has been proposed. In the present paper, we reproduce this value theoretically by using an advanced analytical theory for perpendicular diffusion.
Lee, Yugyung; Khemka, Alok; Yoo, Jin-Wook; Lee, Chi H
2008-03-01
This study is aimed to elucidate the physicodynamic phenomena governing diffusion coefficient (D) of the loaded drugs in a female controlled drug delivery system (FcDDS) and to find the most influencing variable on the diffusivity using artificial neural networks (ANN). The release profiles of sodium dodecyl sulphate (SDS), a topical microbicide used as a model drug, from FcDDS were obtained using in vitro apparatus, the Simulant Vaginal System (SVS), under various conditions. The effects of formulation and intrinsic/extrinsic variables on the diffusivity of SDS were assessed using artificial neural networks (ANN). The release profiles of SDS from FcDDS revealed a non-linear relationship between the diffusivity and formulation/physiological variables. Intrinsic variables (vaginal fluid pH, vaginal fluid secretion rate) have a more prominent role in defining the diffusion coefficient of SDS from FcDDS than formulation variables (formulation loading weight and loaded doses in the formulation) or extrinsic variables (inserting position). Among 5 variables, pH of vagina fluids is the most influencing factor in defining the diffusion coefficient (maximum value of 0.95+/-0.04) of SDS from FcDDS. The external exposure conditions clearly outweighed the effects of the formulation variables on the diffusion coefficient of SDS. A model-based approach can be used to assess the diffusion coefficient of loaded drugs in FcDDS under the given conditions, leading to a parameter-specific prevention strategy against sexually transmitted diseases (STD) with a high degree of confidence. PMID:17981411
Liang, Sisi; Panagiotaki, Eleftheria; Bongers, Andre; Shi, Peng; Sved, Paul; Watson, Geoffrey; Bourne, Roger
2016-05-01
This study compares the theoretical information content of single- and multi-compartment models of diffusion-weighted signal attenuation in prostate tissue. Diffusion-weighted imaging (DWI) was performed at 9.4 T with multiple diffusion times and an extended range of b values in four whole formalin-fixed prostates. Ten models, including different combinations of isotropic, anisotropic and restricted components, were tested. Models were ranked using the Akaike information criterion. In all four prostates, two-component models, comprising an anisotropic Gaussian component and an isotropic restricted component, ranked highest in the majority of voxels. Single-component models, whether isotropic (apparent diffusion coefficient, ADC) or anisotropic (diffusion tensor imaging, DTI), consistently ranked lower than multi-component models. Model ranking trends were independent of voxel size and maximum b value in the range tested (1.6-16 mm(3) and 3000-10 000 s/mm(2) ). This study characterizes the two major water components previously identified by biexponential models and shows that models incorporating both anisotropic and restricted components provide more information-rich descriptions of DWI signals in prostate tissue than single- or multi-component anisotropic models and models that do not account for restricted diffusion. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26999065
Crack diffusion coefficient - A candidate fracture toughness parameter for short fiber composites
NASA Technical Reports Server (NTRS)
Mull, M. A.; Chudnovsky, A.; Moet, A.
1987-01-01
In brittle matrix composites, crack propagation occurs along random trajectories reflecting the heterogeneous nature of the strength field. Considering the crack trajectory as a diffusive process, the 'crack diffusion coefficient' is introduced. From fatigue crack propagation experiments on a set of identical SEN polyester composite specimens, the variance of the crack tip position along the loading axis is found to be a linear function of the effective 'time'. The latter is taken as the effective crack length. The coefficient of proportionality between variance of the crack trajectory and the effective crack length defines the crack diffusion coefficient D which is found in the present study to be 0.165 mm. This parameter reflects the ability of the composite to deviate the crack from the energetically most efficient path and thus links fracture toughness to the microstructure.
Excess entropy scaling for the diffusion coefficient in expanded liquid metals.
Bretonnet, J L
2004-06-15
Molecular-dynamics simulation is used to compute the pair correlation function and the velocity autocorrelation function of Cs and Rb along the liquid-vapor coexistence curve, from which the excess entropy S(ex) and the diffusion coefficient D are deduced. The numerical results of both physical properties are correlated and a scaling law between the excess entropy and the reduced diffusion coefficient D(*)(=D/D(0)) is investigated for different expressions of the reduction parameter D(0). The choice of thermodynamic states along the liquid--vapor coexistence curve gives us the possibility to extend the investigation of the relation between the reduced diffusion coefficient and the excess entropy over a wide area and to test the adequacy of the scaling law confidently. PMID:15268140
NASA Astrophysics Data System (ADS)
Ohsaka, K.; Rednikov, A.; Sadhal, S. S.
2003-02-01
We present a technique that can be used to determine the thermal diffusivity coefficient of undercooled liquids, which exist at temperatures below their freezing points. The technique involves levitation of a small amount of liquid in a flattened drop shape using an acoustic levitator and heating it with a laser beam. The heated drop is then subjected to natural cooling by heat loss from the surface. Due to acoustic streaming, the heat loss mainly occurs through the equator section of the drop. The measured cooling rate in combination with a radial heat conduction model allows us to calculate the thermal diffusivity coefficient of the drop. We demonstrate the feasibility of the technique using glycerin drops as a model liquid. The technique is well suited if the thermal diffusivity coefficient of the liquid in the normal state (i.e., above the freezing point) is known or can be measured by conventional techniques.
Studies on molten glass sealing in diffusion coefficient measurements using shear cell technique
NASA Astrophysics Data System (ADS)
Yu, Jianding; Natsuisaka, Makoto; Kato, Hirokazu; Matsumoto, Satoshi; Kinoshita, Kyoichi; Itami, Toshio; Yoda, Shinichi
2000-05-01
To develop a shear cell technique for measuring the diffusion coefficient of molten materials with high vapor pressure, molten silica glass was used to seal the vapor leak from the clearance between the cell and the rotating rod. An apparatus was designed to investigate the sealing ability of several molten silica glasses. Using Corning 0211, 7059, and 7740 silica glasses, Ar could be sealed under 150 kPa in the 1100-1500 K temperature range. The corresponding viscosities of the molten silica glasses in the sealing temperature range were 105.3-103.8 Pa s. Based on the results of Ar sealing experiments, the configuration of molten glass sealing was used to seal the As vapor leak in InxGa1-xAs diffusion coefficient measurement experiments. The As vapor leak was successfully sealed and excellent diffusion coefficient measurement data were obtained using the shear cell technique during microgravity experiments carried out on sounding rocket.
NASA Astrophysics Data System (ADS)
Zhao, Qingliang; Zhou, Chuanqing; Wei, Huajiang; He, Yonghong; Chai, Xinyu; Ren, Qiushi
2012-10-01
Recent reports have suggested that spectral domain optical coherence tomography (SD-OCT) is a useful tool for quantifying the permeability of hyperosmotic agents in various tissues. We report our preliminary results on quantification of glucose diffusion and assessment of the optical attenuation change due to the diffusion of glucose in normal and adenomatous human colon tissues in vitro by using a SD-OCT and then calculated the permeability coefficients (PC) and optical attenuation coefficients (AC). The PC of a 30% aqueous solution of glucose was 3.37±0.23×10-6 cm/s in normal tissue and 5.65±0.16×10-6 cm/s in cancerous colon tissue. Optical AC in a normal colon ranged from 3.48±0.37 to 2.68±0.82 mm-1 and was significantly lower than those seen in the cancerous tissue (8.48±0.95 to 3.16±0.69 mm-1, p<0.05). The results suggest that quantitative measurements of using PC and AC from OCT images could be a potentially powerful method for colon cancer detection.
NASA Astrophysics Data System (ADS)
Shen, Jun; Zhou, Jianqin; Astrath, Nelson G. C.; Navessin, Titichai; Liu, Zhong-Sheng (Simon); Lei, Chao; Rohling, Jurandir H.; Bessarabov, Dmitri; Knights, Shanna; Ye, Siyu
In this work, using an in-house made Loschmidt diffusion cell, we measure the effective coefficient of dry gas (O 2-N 2) diffusion in cathode catalyst layers of PEM fuel cells at 25 °C and 1 atmosphere. The thicknesses of the catalyst layers under investigation are from 6 to 29 μm. Each catalyst layer is deposited on an Al 2O 3 membrane substrate by an automated spray coater. Diffusion signal processing procedure is developed to deduce the effective diffusion coefficient, which is found to be (1.47 ± 0.05) × 10 -7 m 2 s -1 for the catalyst layers. Porosity and pore size distribution of the catalyst layers are also measured using Hg porosimetry. The diffusion resistance of the interface between the catalyst layer and the substrate is found to be negligible. The experimental results show that the O 2-N 2 diffusion in the catalyst layers is dominated by the Knudsen effect.
Out-of-field activity in the estimation of mean lung attenuation coefficient in PET/MR
NASA Astrophysics Data System (ADS)
Berker, Yannick; Salomon, André; Kiessling, Fabian; Schulz, Volkmar
2014-01-01
In clinical PET/MR, photon attenuation is a source of potentially severe image artifacts. Correction approaches include those based on MR image segmentation, in which image voxels are classified and assigned predefined attenuation coefficients to obtain an attenuation map. In whole-body imaging, however, mean lung attenuation coefficients (LAC) can vary by a factor of 2, and the choice of inappropriate mean LAC can have significant impact on PET quantification. Previously, we proposed a method combining MR image segmentation, tissue classification and Maximum Likelihood reconstruction of Attenuation and Activity (MLAA) to estimate mean LAC values. In this work, we quantify the influence of out-of-field (OOF) accidental coincidences when acquiring data in a single bed position. We therefore carried out GATE simulations of realistic, whole-body activity and attenuation distributions derived from data of three patients. A bias of 15% was found and significantly reduced by removing OOF accidentals from our data, suggesting that OOF accidentals are the major contributor to the bias. We found approximately equal contributions from OOF scatter and OOF randoms, and present results after correction of the bias by rescaling of results. Results using temporal subsets suggest that 30-second acquisitions may be sufficient for estimation mean LAC with less than 5% uncertainty if mean bias can be corrected for.
Field-Scale Effective Matrix Diffusion Coefficient for FracturedRock: Results From Literature Survey
Zhou, Quanlin; Liu, Hui Hai; Molz, Fred J.; Zhang, Yingqi; Bodvarsson, Gudmundur S.
2005-03-28
Matrix diffusion is an important mechanism for solutetransport in fractured rock. We recently conducted a literature survey onthe effective matrix diffusion coefficient, Dem, a key parameter fordescribing matrix diffusion processes at the field scale. Forty fieldtracer tests at 15 fractured geologic sites were surveyed and selectedfor study, based on data availability and quality. Field-scale Dem valueswere calculated, either directly using data reported in the literature orby reanalyzing the corresponding field tracer tests. Surveyed dataindicate that the effective-matrix-diffusion-coefficient factor FD(defined as the ratio of Dem to the lab-scale matrix diffusioncoefficient [Dem]of the same tracer) is generally larger than one,indicating that the effective matrix diffusion coefficient in the fieldis comparatively larger than the matrix diffusion coefficient at therock-core scale. This larger value could be attributed to the manymass-transfer processes at different scales in naturally heterogeneous,fractured rock systems. Furthermore, we observed a moderate trend towardsystematic increase in the emDFmDDF value with observation scale,indicating that the effective matrix diffusion coefficient is likely tobe statistically scale dependent. The FD value ranges from 1 to 10,000for observation scales from 5 to 2,000 m. At a given scale, the FD valuevaries by two orders of magnitude, reflecting the influence of differingdegrees of fractured rock heterogeneity at different sites. In addition,the surveyed data indicate that field-scale longitudinal dispersivitygenerally increases with observation scale, which is consistent withprevious studies. The scale-dependent field-scale matrix diffusioncoefficient (and dispersivity) may have significant implications forassessing long-term, large-scale radionuclide and contaminant transportevents in fractured rock, both for nuclear waste disposal and contaminantremediation.
Attenuation coefficient of the light in skin of BALB/c and C57BL/6 mice
NASA Astrophysics Data System (ADS)
Silva, C. R.; Camargo, C. F. M.; Aureliano, D. P.; De Pretto, L. R.; Freitas, A. Z.; Ribeiro, M. S.
2015-06-01
Optical properties of the biological tissue play an important role to a correct use of optical techniques for therapy and diagnosis. The mice skin presents morphological differences due to characteristics such as gender, body mass and age. Murine models are frequently used in pre-clinical trials in optical therapy and diagnosis. Therefore, the assessment of the skin tissue in animal models is needed for a proper understanding of how light interacts with skin. Noninvasive techniques such as optical coherence tomography (OCT) have been used to obtain optical information of the tissue, as the attenuation coefficient, with the advantage of obtaining sectional images in real time. In this study, eight female BALB/c albino mice (twenty-four weeks old) and eight male C57BL/6 black mice (eight weeks old) were used to measure the attenuation coefficient of the light in the skin, utilizing the OCT technique, aiming to check for influence of the aging process. Two moments were assessed twenty-two weeks apart from each other. Our data show that the aging process significantly affects the light attenuation coefficient in mice skin. Twenty-two weeks after, statistical significant differences were observed between groups within a same strain. We conclude that light attenuation coefficient of mice skin may be influenced by factors such as disorganization of the dermis. Morphological aspects of skin should be taken into account in studies that involve optical strategies in murine models.
Measurement of the local particle diffusion coefficient in a magnetized plasma
Meyerhofer, D.D.; Levinton, F.M.
1987-02-01
Local impurity particle diffusion coefficients have been measured in a low temperature plasma by the injection of test particles at the center of the plasma. The injection is accomplished by a high voltage discharge between two small graphite electrodes on a probe. The probe can be located anywhere in the plasma. The diffusion is observed spectroscopically. An analysis of the spatial and temporal evolution of the CII radiation from the carbon discharge can determine the parallel and perpendicular diffusion of the impurity ions. Results with the diagnostic have been obtained in the Proto S-1/C spheromak. The measured value of the diffusion coefficient in the afterglow plasma is in good agreement with classical predictions.
NASA Astrophysics Data System (ADS)
Salazar, Agustín; Fuente, Raquel; Apiñaniz, Estibaliz; Mendioroz, Arantza; Celorrio, R.
2011-08-01
The aim of this work is to analyze the ability of modulated photothermal radiometry to retrieve the thermal diffusivity and the optical absorption coefficient of layered materials simultaneously. First, we extend the thermal quadrupole method to calculate the surface temperature of semitransparent multilayered materials. Then, this matrix method is used to evaluate the influence of heat losses by convection and radiation, the influence of the use of thin paint layers on the accuracy of thermal diffusivity measurements, and the effect of lateral heat diffusion due to the use of Gaussian laser beams. Finally, we apply the quadrupole method to retrieve (a) the thermal contact resistance in glass stacks and (b) the thermal diffusivity and optical absorption coefficient depth profiles in heterogeneous materials with continuously varying physical properties, as is the case of functionally graded materials and partially cured dental resins.
Radiation dose estimation and mass attenuation coefficients of cement samples used in Turkey.
Damla, N; Cevik, U; Kobya, A I; Celik, A; Celik, N; Van Grieken, R
2010-04-15
Different cement samples commonly used in building construction in Turkey have been analyzed for natural radioactivity using gamma-ray spectrometry. The mean activity concentrations observed in the cement samples were 52, 40 and 324 Bq kg(-1) for (226)Ra, (232)Th and (40)K, respectively. The measured activity concentrations for these radionuclides were compared with the reported data of other countries and world average limits. The radiological hazard parameters such as radium equivalent activities (Ra(eq)), gamma index (I(gamma)) and alpha index (I(alpha)) indices as well as terrestrial absorbed dose and annual effective dose rate were calculated and compared with the international data. The Ra(eq) values of cement are lower than the limit of 370 Bq kg(-1), equivalent to a gamma dose of 1.5 mSv y(-1). Moreover, the mass attenuation coefficients were determined experimentally and calculated theoretically using XCOM in some cement samples. Also, chemical compositions analyses of the cement samples were investigated. PMID:20018450
Measurement of mass attenuation coefficients for YBaCuO superconductor at different energies
NASA Astrophysics Data System (ADS)
Çevik, U.; Baltas, H.; Çelik, S.; Karaca, I.; Kopya, I.
2005-01-01
The mass attenuation coefficients for Y2O3, BaCO3, CuO compounds, and solid-state forms of YBa2Cu3O7 superconductor were determined at energies of 57.5, 59.5, 65.2, 74.8, 77.1, 87.3, 94.6, 98.4, 122, and 136 keV. The samples were irradiated using a 241Am point source emitting 59.5 keV photon energies and a 57Co point source emitting 122 and 136 keV photon energies. The other energies were obtained using secondary targets such as Ta, Bi2O3, and (CH3COO)2UO22H2O. The gamma- and x-rays were counted by a Si(Li) detector with a resolution of 160 eV at 5.9 keV. Samples were selected on the basis of known composition and mass densities were measured using a densitometer. The experimental results obtained in this study are compared with theoretical values.
Kucuk, Nil; Cakir, Merve; Isitman, Nihat Ali
2013-01-01
In this study, the total mass attenuation coefficients (μ(m)) for some homo- and hetero-chain polymers, namely polyamide-6 (PA-6), poly-methyl methacrylate (PMMA), low-density polyethylene (LDPE), polypropylene (PP) and polystyrene (PS) were measured at 59.5, 511, 661.6, 1173.2, 1274.5 and 1332.5 keV photon energies. The samples were separately irradiated with (241)Am, (22)Na, (137)Cs and (60)Co (638 kBq) radioactive gamma sources. The measurements were made by performing transmission experiments with a 2″×2″ NaI(Tl) scintillation detector having an energy resolution of 7 % at 662 keV gamma ray from the decay of (137)Cs. The effective atomic numbers (Z(eff)) and the effective electron densities (N(eff)) were determined experimentally and theoretically using the obtained μ(m) values for the investigated samples. Furthermore, Z(eff) and N(eff) of each polymer were computed for total photon interaction cross-sections using theoretical data over a wide energy region from 1 keV to 10 MeV. The experimental values of the selected polymers were found to be in good agreement with the theoretical values. PMID:22645382
ICP-MS measurement of diffusion coefficients of Cs in NBG-18 graphite
NASA Astrophysics Data System (ADS)
Carter, L. M.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.
2015-11-01
Graphite is used in the HGTR/VHTR as moderator and it also functions as a barrier to fission product release. Therefore, an elucidation of transport of fission products in reactor-grade graphite is required. We have measured diffusion coefficients of Cs in graphite NBG-18 using the release method, wherein we infused spheres of NBG-18 with Cs and measured the release rates in the temperature range of 1090-1395 K. We have obtained: These seem to be the first reported values of Cs diffusion coefficients in NBG-18. The values are lower than those reported for other graphites in the literature.
NASA Astrophysics Data System (ADS)
Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H.
2016-06-01
Nowadays, many electronic systems are exposed to harsh conditions of relative humidity and temperature. Mass transport properties of electronic packaging materials are needed in order to investigate the influence of moisture and temperature on reliability of electronic devices. Polycarbonate (PC) is widely used in the electronics industry. Thus, in this work the water diffusion coefficient into PC is investigated. Furthermore, numerical methods used for estimation of the diffusion coefficient and their assumptions are discussed. 1D and 3D numerical solutions are compared and based on this, it is shown how the estimated value can be different depending on the choice of dimensionality in the model.
NASA Astrophysics Data System (ADS)
Hahne, Susanne; Ikonomov, Julian; Sokolowski, Moritz; Maass, Philipp
2013-02-01
Methods of determining surface diffusion coefficients of molecules from signal fluctuations of a locally fixed probe are revisited and refined. Particular emphasis is put on the influence of the molecule's extent. In addition to the formerly introduced autocorrelation method and residence time method, we develop a further method based on the distribution of intervals between successive peaks in the signal. The theoretical findings are applied to scanning tunneling microscopy measurements of copper phthalocyanine (CuPc) molecules on the Ag(100) surface. We discuss advantages and disadvantages of each method and suggest a combination to obtain accurate results for diffusion coefficients.
A New Method for the Calculation of Diffusion Coefficients with Monte Carlo
NASA Astrophysics Data System (ADS)
Dorval, Eric
2014-06-01
This paper presents a new Monte Carlo-based method for the calculation of diffusion coefficients. One distinctive feature of this method is that it does not resort to the computation of transport cross sections directly, although their functional form is retained. Instead, a special type of tally derived from a deterministic estimate of Fick's Law is used for tallying the total cross section, which is then combined with a set of other standard Monte Carlo tallies. Some properties of this method are presented by means of numerical examples for a multi-group 1-D implementation. Calculated diffusion coefficients are in general good agreement with values obtained by other methods.
NASA Technical Reports Server (NTRS)
Penner, Reginald M.; Vandyke, Leon S.; Martin, Charles R.
1987-01-01
The current pulse E sub oc relaxation method and its application to the determination of diffusion coefficients in electrochemically synthesized polypyrrole thin films is described. Diffusion coefficients for such films in Et4NBF4 and MeCN are determined for a series of submicron film thicknesses. Measurement of the double-layer capacitance, C sub dl, and the resistance, R sub u, of polypyrrole thin films as a function of potential obtained with the galvanostatic pulse method is reported. Measurements of the electrolyte concentration in reduced polypyrrole films are also presented to aid in the interpretation of the data.
Saripalli, Kanaka P.; Serne, R. Jeffrey; Meyer, Philip D.; McGrail, B. Peter
2002-08-01
Determination of aqueous phase diffusion coefficients of solutes through porous media is essential for understanding and modeling contaminant transport. Prediction of diffusion coefficients in both saturated and unsaturated zones requires knowledge of tortuosity and constrictivity factors. No methods are available for the direct measurement of these factors, which are empirical in their definition. In this paper, a new definition for the tortuosity factor is proposed, as the real to ideal interfacial area ratio. We define the tortuosity factor for saturated porous media (ts) as the ratio S/So (specific surface of real porous medium to that of an idealized capillary bundle). For unsaturated media, tortuosity factor (ta) is defined as aaw/aaw,o (ratio of the specific air-water interfacial area of real and the corresponding idealized porous medium). This tortuosity factor is suitably measured using sorptive tracers (e.g., nitrogen adsorption method) for saturated media and interfacial tracers for unsaturated media. A model based on this new definition of tortuosity factors, termed the Interfacial Area Ratio (IAR) model, is presented for the prediction of diffusion coefficients as a function of the degree of water saturation. Diffusion coefficients and diffusive resistances measured in a number of saturated and unsaturated granular porous media, for solutes in dilute aqueous solutions, agree well with the predictions of the IAR model. A comparison of permeability of saturated sands estimated based on ts and the same based on the Kozeny-Carman equation confirm the usefulness of the ts parameter as a measure of tortuosity.
Kruk, D; Meier, R; Rachocki, A; Korpała, A; Singh, R K; Rössler, E A
2014-06-28
Field Cycling Nuclear Magnetic Resonance (FC NMR) relaxation studies are reported for three ionic liquids: 1-ethyl-3- methylimidazolium thiocyanate (EMIM-SCN, 220-258 K), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4, 243-318 K), and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6, 258-323 K). The dispersion of (1)H spin-lattice relaxation rate R1(ω) is measured in the frequency range of 10 kHz-20 MHz, and the studies are complemented by (19)F spin-lattice relaxation measurements on BMIM-PF6 in the corresponding frequency range. From the (1)H relaxation results self-diffusion coefficients for the cation in EMIM-SCN, BMIM-BF4, and BMIM-PF6 are determined. This is done by performing an analysis considering all relevant intra- and intermolecular relaxation contributions to the (1)H spin-lattice relaxation as well as by benefiting from the universal low-frequency dispersion law characteristic of Fickian diffusion which yields, at low frequencies, a linear dependence of R1 on square root of frequency. From the (19)F relaxation both anion and cation diffusion coefficients are determined for BMIM-PF6. The diffusion coefficients obtained from FC NMR relaxometry are in good agreement with results reported from pulsed- field-gradient NMR. This shows that NMR relaxometry can be considered as an alternative route of determining diffusion coefficients of both cations and anions in ionic liquids. PMID:24985656
NASA Astrophysics Data System (ADS)
Kruk, D.; Meier, R.; Rachocki, A.; Korpała, A.; Singh, R. K.; Rössler, E. A.
2014-06-01
Field Cycling Nuclear Magnetic Resonance (FC NMR) relaxation studies are reported for three ionic liquids: 1-ethyl-3- methylimidazolium thiocyanate (EMIM-SCN, 220-258 K), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4, 243-318 K), and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6, 258-323 K). The dispersion of 1H spin-lattice relaxation rate R1(ω) is measured in the frequency range of 10 kHz-20 MHz, and the studies are complemented by 19F spin-lattice relaxation measurements on BMIM-PF6 in the corresponding frequency range. From the 1H relaxation results self-diffusion coefficients for the cation in EMIM-SCN, BMIM-BF4, and BMIM-PF6 are determined. This is done by performing an analysis considering all relevant intra- and intermolecular relaxation contributions to the 1H spin-lattice relaxation as well as by benefiting from the universal low-frequency dispersion law characteristic of Fickian diffusion which yields, at low frequencies, a linear dependence of R1 on square root of frequency. From the 19F relaxation both anion and cation diffusion coefficients are determined for BMIM-PF6. The diffusion coefficients obtained from FC NMR relaxometry are in good agreement with results reported from pulsed- field-gradient NMR. This shows that NMR relaxometry can be considered as an alternative route of determining diffusion coefficients of both cations and anions in ionic liquids.
FIELD-SCALE EFFECTIVE MATRIX DIFFUSION COEFFICIENT FOR FRACTURED ROCK:RESULTS FROM LITERATURE SURVEY
Q. Zhou; Hui-Hai Liu; F.J. Molz; Y. Zhang; G.S. Bodvarsson
2005-04-08
Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D{sub m}{sup e}, a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D{sub m}{sup e} values were calculated, either directly using data reported in the literature or by reanalyzing the corresponding field tracer tests. Surveyed data indicate that the effective-matrix-diffusion-coefficient factor F{sub D} (defined as the ratio of D{sub m}{sup e} to the lab-scale matrix diffusion coefficient [D{sub m}] of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate trend toward systematic increase in the F{sub D} value with observation scale, indicating that the effective matrix diffusion coefficient is likely to be statistically scale dependent. The F{sub D} value ranges from 1 to 10,000 for observation scales from 5 to 2,000 m. At a given scale, the F{sub D} value varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal
Non-Fermi liquid behavior of the drag and diffusion coefficients in QED plasma
Sarkar, Sreemoyee; Dutt-Mazumder, Abhee K.
2011-11-01
We calculate the drag and diffusion coefficients in low temperature QED plasma and go beyond the leading order approximation. The non-Fermi-liquid behavior of these coefficients are clearly revealed. We observe that the subleading contributions due to the exchange of soft transverse photon in both cases are larger than the leading order terms coming from the longitudinal sector. The results are presented in closed form at zero and low temperature.
Correlation between the self-diffusion coefficient of lithium and the equation of state
NASA Astrophysics Data System (ADS)
Eftaxias, K.; Grammatikakis, J.; Varotsos, P.
1985-10-01
Anderson and Swenson [Phys. Rev. B 31, 668 (1985)] have recently presented new isothermal elastic data for lithium for temperatures up to 350 K. It is shown that these data are closely connected to the temperature variation of the self-diffusion coefficient D. Although the latter varies by six orders of magnitude (in the temperature region 195-350 K), however, the elastic data can successfully reproduce the self-diffusion curve without the use of any adjustable parameter.
Pc 5 Spectral Density at ULTIMA stataions and its Radial Diffusion Coefficients for REE
NASA Astrophysics Data System (ADS)
Fujimoto, A.; Tokunaga, T.; Abe, S.; Uozumi, T.; Yoshikawa, A.; Mann, I. R.; Chi, P. J.; Engebretson, M. J.; Yumoto, K.
2009-12-01
Pc 5 magnetic pulsations with frequencies between 1.67 and 6.67 mHz, are believed to contribute to the Relativistic Electron Enhancement (REE) in the outer radiation belt during magnetic storms. Ground-based observations suggested that high-speed solar wind and large-amplitude Pc 5 waves with a long duration during the storm recovery phase are closely associated with the production of relativistic electrons [Baker et al., 1998; Rostoker et al., 1998; Mathie and Mann, 2000; O’Brien et al., 2001, 2003]. On the other hand, many relativistic electron acceleration mechanisms have been proposed theoretically. They are separated roughly into two themes: in situ acceleration at L lower than 6.6 by wave particle interactions (as internal source acceleration mechanisms) [Liu et al., 1999; Summers et al., 1999; Summers and Ma, 2000] and acceleration by radial diffusion to transport and accelerate a source population of electrons from the outer to the inner magnetosphere (as external source acceleration mechanisms) [Elkington et al., 1999, 2003; Hudson et al., 2000; Kim et al., 2001]. One possible external source acceleration mechanism is the resonant interaction with ULF toroidal and poloidal waves. In order to verify which of the two mechanisms is more effective for the REE, we have to examine the time variation of electron phase space density. Electron phase space density is not directly measured, but we can estimate radial diffusion coefficients using observational electric and magnetic data. The goal of this paper is to get more reliable radial diffusion coefficient from ground-based observational magnetic field and to show reasonability of it for radial diffusion model. We use the global magnetometer data obtained from ULTIMA (Ultra Large Terrestrial International Magnetic Array, see http://www.serc.kyushu-u.ac.jp/ultima/ultima.html) stations, to precisely define the radial diffusion timescales. The ULTIMA includes McMAC, CARISAM, 210MM and MAGDAS/CPMN magnetometer
Mukhopadhyay, B; Bhattacharyya, R
2006-02-01
The paper is concerned with the effect of variable dispersal rates on Turing instability of a non-Lotka-Volterra reaction-diffusion system. In ecological applications, the dispersal rates of different species tends to oscillate in time. This oscillation is modeled by temporal variation in the diffusion coefficient with large as well as small periodicity. The case of large periodicity is analyzed using the theory of Floquet multipliers and that of the small periodicity by using Hill's equation. The effect of such variation on the resulting Turing space is studied. A comparative analysis of the Turing spaces with constant diffusivity and variable diffusivities is performed. Numerical simulations are carried out to support analytical findings. PMID:16794932
Téllez, Helena; Druce, John; Hong, Jong-Eun; Ishihara, Tatsumi; Kilner, John A
2015-03-01
The accuracy and precision of isotopic analysis in Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) relies on the appropriate reduction of the dead-time and detector saturation effects, especially when analyzing species with high ion yields or present in high concentrations. Conventional approaches to avoid these problems are based on Poisson dead-time correction and/or an overall decrease of the total secondary ion intensity by reducing the target current. This ultimately leads to poor detection limits for the minor isotopes and high uncertainties of the measured isotopic ratios. An alternative strategy consists of the attenuation of those specific secondary ions that saturate the detector, providing an effective extension of the linear dynamic range. In this work, the selective attenuation of secondary ion signals (SASI) approach is applied to the study of oxygen transport properties in electroceramic materials by isotopic labeling with stable (18)O tracer and ToF-SIMS depth profiling. The better analytical performance in terms of accuracy and precision allowed a more reliable determination of the oxygen surface exchange and diffusion coefficients while maintaining good mass resolution and limits of detection for other minor secondary ion species. This improvement is especially relevant to understand the ionic transport mechanisms and properties of solid materials, such as the parallel diffusion pathways (e.g., oxygen diffusion through bulk, grain boundary, or dislocations) in electroceramic materials with relevant applications in energy storage and conversion devices. PMID:25647357
NASA Astrophysics Data System (ADS)
Medhat, M. E.; Demir, Nilgun; Akar Tarim, Urkiye; Gurler, Orhan
2014-08-01
Monte Carlo simulations, FLUKA and Geant4, were performed to study mass attenuation for various types of soil at 59.5, 356.5, 661.6, 1173.2 and 1332.5 keV photon energies. Appreciable variations are noted for all parameters by changing the photon energy and the chemical composition of the sample. The simulations parameters were compared with experimental data and the XCOM program. The simulations show that the calculated mass attenuation coefficient values were closer to experimental values better than those obtained theoretically using the XCOM database for the same soil samples. The results indicate that Geant4 and FLUKA can be applied to estimate mass attenuation for various biological materials at different energies. The Monte Carlo method may be employed to make additional calculations on the photon attenuation characteristics of different soil samples collected from other places.
NASA Astrophysics Data System (ADS)
Jebaraj Johnley Muthuraj, Josiah
Cathodic protection is widely used for corrosion prevention. However, this process generates hydrogen at the protected metal surface, and diffusion of hydrogen through the metal may cause hydrogen embrittlement or hydrogen induced stress corrosion cracking. Thus the choice of a metal for use as fasteners depends upon its hydrogen uptake, permeation, diffusivity and trapping. The diffusivity of hydrogen through four high strength alloys (AISI 4340, alloy 718, alloy 686, and alloy 59) was analyzed by an electrochemical method developed by Devanathan and Stachurski. The effect of plasma nitriding and microstructure on hydrogen permeation through AISI 4340 was studied on six different specimens: as-received (AR) AISI 4340, nitrided samples with and without compound layer, samples quenched and tempered (Q&T) at 320° and 520°C, and nitrided samples Q&T 520°C. Studies on various nitrided specimens demonstrate that both the gamma'-Fe 4N rich compound surface layer and the deeper N diffusion layer that forms during plasma nitriding reduce the effective hydrogen diffusion coefficient, although the gamma'-Fe4N rich compound layer has a larger effect. Multiple permeation transients yield evidence for the presence of only reversible trap sites in as-received, Q&T 320 and 520 AISI 4340 specimens, and the presence of both reversible and irreversible trap sites in nitrided specimens. Moreover, the changes in microstructure during the quenching and tempering process result in a significant decrease in the diffusion coefficient of hydrogen compared to as-received specimens. In addition, density functional theory-based molecular dynamics simulations yield hydrogen diffusion coefficients through gamma'- Fe4N one order of magnitude lower than through α-Fe, which supports the experimental measurements of hydrogen permeation. The effect of microstructure and trapping was also studied in cold rolled, solutionized, and precipitation hardened Inconel 718 foils. The effective hydrogen
NASA Astrophysics Data System (ADS)
Apaydın, G.; Cengiz, E.; Tıraşoğlu, E.; Aylıkcı, V.; Bakkaloğlu, Ö. F.
2009-05-01
The mass attenuation coefficients for the elements Co, Cu and Ag and a thin film of CoCuAg alloy were measured in the energy range 4.029-38.729 keV. Effective atomic numbers and electron densities were calculated by using these coefficients. The energies were obtained by using secondary targets that were irradiated with gamma-ray photons of 241Am. The x-rays were counted by using a Canberra Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. The results were compared with theoretical calculated values and fairly good agreement was found between them within an average experimental error. The mass attenuation coefficients, effective atomic numbers and electron densities were plotted versus photon energy.
Spin Echo Attenuation of Restricted Diffusion as a Discord of Spin Phase Structure
Stepisnik
1998-04-01
By using the particle probability density we analyze the spin echo attenuation of particles, diffusing in a bounded region. It provides a means to expand a nonuniform spin phase distribution into a series of waves that characterize the geometry and boundary conditions of confinement. Random motion disrupts the initial phase structure created by applied gradients and consequently discords its structure waves. By assuming the spin phase fluctuation and/or the randomness of spin phase distribution in the subensemble as a Gaussian stochastic process, we derive a new analytical expression for the echo attenuation related to the particle velocity correlation. For a diffusion in porous structure we get the expression featuring the same "diffusive diffraction" patterns as those being found and explained by P. T. Callaghan and A. Coy ("Principles of Nuclear Magnetic Resonance Microscopy," Oxford Univ. Press, Oxford (1991); J. Chem. Phys. 101, 4599-4609 (1994)) with the use of propagator theory. With the new approach we cast a new light on the phenomena and derive analitically how the diffusive diffractions appear when the sequence of finite or even modulated gradients are applied. The method takes into account the non-Markovian character of restricted diffusion, and therefore the echo dependence on the diffusion lengths and on the strength of applied gradient differs from the results of authors assuming the Markovian diffusion either by dealing with the diffusion propagators or by the computer simulation of Fick's diffusion. Copyright 1998 Academic Press. PMID:9571110
Wong, F S; Elliott, J C
1997-11-01
X-ray absorption and backscattered electron (BSE) microscopies are two commonly used techniques for estimating mineral contents in calcified tissues. The resolution in BSE images is usually higher than in x-ray images, but due to the previous lack of good standards to quantify the grey levels in BSE images of bones and teeth, x-ray microtomography (XMT) images of the same specimens have been used for calibration. However, the physics of these two techniques is different: for a specimen with a given composition, the x-ray linear attenuation coefficient is proportional to density, but there is no such relation with the BSE coefficient. To understand the reason that this calibration appears to be valid, the behaviour of simulated bone samples was investigated. In this, the bone samples were modelled as having three phases: hydroxyapatite (Ca10(PO4)6(OH)2), protein, and void (either empty or completely filled with polymethylmethacrylate (PMMA), a resin which is usually used for embedding bones and teeth in microscopic studies). The x-ray linear attenuation coefficients (calculated using published data) and the BSE coefficients (calculated using Monte Carlo simulation) were compared for samples of various phase proportions. It was found that the BSE coefficient correlated only with the x-ray attenuation coefficient for samples with PMMA infiltration. This was attributed to the properties of PMMA (density and mean atomic number) being very similar to those of the protein; therefore, the sample behaves like a two-phase system which allows the establishment of a monotonic relation between density and BSE coefficient. With the newly developed standards (brominated and iodinated dimethacrylate esters) for BSE microscopy of bone, grey levels can be converted to absolute BSE coefficients by linear interpolation, from which equivalent densities can be determined. PMID:9418207
Kowsari, M H; Alavi, Saman; Ashrafizaadeh, Mahmud; Najafi, Bijan
2008-12-14
Molecular dynamics simulations are used to study the dynamics and transport properties of 12 room-temperature ionic liquids of the 1-alkyl-3-methylimidazolium [amim](+) (alkyl = methyl, ethyl, propyl, and butyl) family with PF(6)(-), NO(3)(-), and Cl(-) counterions. The explicit atom transferable force field of Canongia Lopes et al. [J. Phys. Chem. B 108, 2038 (2004)] is used in the simulations. In this first part, the dynamics of the ionic liquids are characterized by studying the mean-square displacement (MSD) and the velocity autocorrelation function (VACF) for the centers of mass of the ions at 400 K. Trajectory averaging was employed to evaluate the diffusion coefficients at two temperatures from the linear slope of MSD(t) functions in the range of 150-300 ps and from the integration of the VACF(t) functions at 400 K. Detailed comparisons are made between the diffusion results from the MSD and VACF methods. The diffusion coefficients from the integration of the VACFs are closer to experimental values than the diffusion coefficients calculated from the slope of MSDs. Both methods can show good agreement with experiment in predicting relative trends in the diffusion coefficients and determining the role of the cation and anion structures on the dynamical behavior of this family of ionic liquids. The MSD and self-diffusion of relatively heavier imidazolium cations are larger than those of the lighter anions from the Einstein results, except for the case of [bmim][Cl]. The cationic transference number generally decreases with temperature, in good agreement with experiments. For the same anion, the cationic transference numbers decrease with increasing length of the alkyl chain, and for the same cation, the trends in the cationic transference numbers are [NO(3)](-) < [Cl](-) < [PF(6)](-). The trends in the diffusion coefficient in the series of cations with identical anions are [emim](+) > [pmim](+) > [bmim](+) and those for anions with identical cations are [NO(3
NASA Astrophysics Data System (ADS)
Kaji, Sayumi; Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Nakanishi, Kenshi; Kondo, Sohei; Yasui, Chikako; Kawakita, Hideyo
2014-07-01
Immersion grating is a next-generation diffraction grating which has the immersed the diffraction surface in an optical material with high refractive index of n > 2, and can provide higher spectral resolution than a classical reflective grating. Our group is developing various immersion gratings from the near- to mid-infrared region (Ikeda et al.1, 2, 3, 4, Sarugaku et al.5, and Sukegawa et al.6). The internal attenuation αatt of the candidate materials is especially very important to achieve the high efficiency immersion gratings used for astronomical applications. Nevertheless, because there are few available data as αatt < 0.01cm-1 in the infrared region, except for measurements of CVD-ZnSe, CVD-ZnS, and single-crystal Si in the short near-infrared region reported by Ikeda et al.7, we cannot select suitable materials as an immersion grating in an aimed wavelength range. Therefore, we measure the attenuation coefficients of CdTe, CdZnTe, Ge, Si, ZnSe, and ZnS that could be applicable to immersion gratings. We used an originally developed optical unit attached to a commercial FTIR which covers the wide wavelength range from 1.3μm to 28μm. This measurement system achieves the high accuracy of (triangle)αatt ~ 0.01cm-1. As a result, high-resistivity single-crystal CdZnTe, single-crystal Ge, single-crystal Si, CVD-ZnSe, and CVD-ZnS show αatt < 0.01cm-1 at the wavelength range of 5.5 - 19.0μm, 2.0 - 10.5μm, 1.3 - 5.4μm, 1.7 - 13.2μm, and 1.9 - 9.2μm, respectively. This indicates that these materials are good candidates for high efficiency immersion grating covering those wavelength ranges. We plan to make similar measurement under the cryogenic condition as T <= 10K for the infrared, especially mid-infrared applications.
Measurement and modeling of CO2 diffusion coefficient in Saline Aquifer at reservoir conditions
NASA Astrophysics Data System (ADS)
Azin, Reza; Mahmoudy, Mohamad; Raad, Seyed; Osfouri, Shahriar
2013-12-01
Storage of CO2 in deep saline aquifers is a promising techniques to mitigate global warming and reduce greenhouse gases (GHG). Correct measurement of diffusivity is essential for predicting rate of transfer and cumulative amount of trapped gas. Little information is available on diffusion of GHG in saline aquifers. In this study, diffusivity of CO2 into a saline aquifer taken from oil field was measured and modeled. Equilibrium concentration of CO2 at gas-liquid interface was determined using Henry's law. Experimental measurements were reported at temperature and pressure ranges of 32-50°C and 5900-6900 kPa, respectively. Results show that diffusivity of CO2 varies between 3.52-5.98×10-9 m2/s for 5900 kPa and 5.33-6.16×10-9 m2/s for 6900 kPa initial pressure. Also, it was found that both pressure and temperature have a positive impact on the measures of diffusion coefficient. Liquid swelling due to gas dissolution and variations in gas compressibility factor as a result of pressure decay was found negligible. Measured diffusivities were used model the physical model and develop concentration profile of dissolved gas in the liquid phase. Results of this study provide unique measures of CO2 diffusion coefficient in saline aquifer at high pressure and temperature conditions, which can be applied in full-field studies of carbon capture and sequestration projects.
Diffusion Coefficients from Molecular Dynamics Simulations in Binary and Ternary Mixtures
NASA Astrophysics Data System (ADS)
Liu, Xin; Schnell, Sondre K.; Simon, Jean-Marc; Krüger, Peter; Bedeaux, Dick; Kjelstrup, Signe; Bardow, André; Vlugt, Thijs J. H.
2013-07-01
Multicomponent diffusion in liquids is ubiquitous in (bio)chemical processes. It has gained considerable and increasing interest as it is often the rate limiting step in a process. In this paper, we review methods for calculating diffusion coefficients from molecular simulation and predictive engineering models. The main achievements of our research during the past years can be summarized as follows: (1) we introduced a consistent method for computing Fick diffusion coefficients using equilibrium molecular dynamics simulations; (2) we developed a multicomponent Darken equation for the description of the concentration dependence of Maxwell-Stefan diffusivities. In the case of infinite dilution, the multicomponent Darken equation provides an expression for [InlineEquation not available: see fulltext.] which can be used to parametrize the generalized Vignes equation; and (3) a predictive model for self-diffusivities was proposed for the parametrization of the multicomponent Darken equation. This equation accurately describes the concentration dependence of self-diffusivities in weakly associating systems. With these methods, a sound framework for the prediction of mutual diffusion in liquids is achieved.
Bounce averaged diffusion coefficients in a physics based magnetic field geometry from RAM-SCB
NASA Astrophysics Data System (ADS)
Zhao, L.; Yu, Y.; Delzanno, G. L.; Jordanova, V.
2014-12-01
Local acceleration via whistler wave and particle interaction plays an important role in particle dynamics in the radiation belt. In this work we explore wave-particle interaction in different magnetic field configurations related to the 17 March, 2013 storm. We consider the Earth's magnetic dipole field as a reference, and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field. By applying quasi-linear theory, the bounce-averaged electron pitch angle, energy and mixed term diffusion coefficients are calculated for each magnetic field configuration. It is shown that the magnetic field can have a significant influence on the diffusion coefficients via the wave-particle resonance condition. In addition, the equatorial pitch angle, wave frequency and spectral distribution of whistler waves also affect the bounce-averaged diffusion coefficients in particle energy range from KeV to MeV. Part of the ongoing work will focus on the phase space density evolution based on the Fokker-Planck equation with the bounce-averaged diffusion coefficients previously calculated.
NASA Astrophysics Data System (ADS)
Chenyakin, Y.; Kamal, S.; Bertram, A. K.
2014-12-01
Secondary organic aerosol (SOA) particles are formed in the atmosphere via gas-to-particle conversion of low and semi volatile organic compounds. They are abundant in the atmosphere and can directly contribute to climate change by scattering solar radiation or indirectly by acting as cloud condensation nuclei or ice nuclei. There is also a health concern associated with SOA particles because they can make up a large fraction of suspended submicron particulate mass. In addition, a reduction in visibility in both polluted and rural areas can be due to SOA particles. Knowledge of diffusion coefficients of organic species within SOA particles is needed to predict the atmospheric behaviour and environmental impacts of these particles. Here we introduce a new method to determine diffusion coefficients of organic probes in particles made up of organic species as a function of relative humidity (RH). Our method involves using fluorescence recovery after photobleaching (FRAP) to measure the diffusion coefficients of organic fluorescent dyes in organic particles with dimensions of approximately 25 μm. We validated this method by measuring diffusion coefficients of organic dyes of varied size in sucrose-water solutions as a function of RH and comparing these results with data from the literature. In the future this method will be applied to SOA particles.
Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...
De Mezquia, D Alonso; Bou-Ali, M Mounir; Larrañaga, M; Madariaga, J A; Santamaría, C
2012-03-01
In this work we have measured the molecular diffusion coefficient of the n-alkane binary series nC(i)-nC(6), nC(i)-nC(10), and nC(i)-nC(12) at 298 K and 1 atm and a mass fraction of 0.5 by using the so-called sliding symmetric tubes technique. The results show that the diffusion coefficient at this concentration is proportional to the inverse viscosity of the mixture. In addition, we have also measured the diffusion coefficient of the systems nC(12)-nC(6), nC(12)-nC(7), and nC(12)-nC(8) as a function of concentration. From the data obtained, it is shown that the diffusion coefficient of the n-alkane binary mixtures at any concentration can be calculated from the molecular weight of the components and the dynamic viscosity of the corresponding mixture at 50% mass fraction. PMID:22263833
Bauer, Katharina Christin; Göbel, Mathias; Schwab, Marie-Luise; Schermeyer, Marie-Therese; Hubbuch, Jürgen
2016-09-10
The colloidal stability of a protein solution during downstream processing, formulation, and storage is a key issue for the biopharmaceutical production process. Thus, knowledge about colloidal solution characteristics, such as the tendency to form aggregates or high viscosity, at various processing conditions is of interest. This work correlates changes in the apparent diffusion coefficient as a parameter of protein interactions with observed protein aggregation and dynamic viscosity of the respective protein samples. For this purpose, the diffusion coefficient, the protein phase behavior, and the dynamic viscosity in various systems containing the model proteins α-lactalbumin, lysozyme, and glucose oxidase were studied. Each of these experiments revealed a wide range of variations in protein interactions depending on protein type, protein concentration, pH, and the NaCl concentration. All these variations showed to be mirrored by changes in the apparent diffusion coefficient in the respective samples. Whereas stable samples with relatively low viscosity showed an almost linear dependence, the deviation from the concentration-dependent linearity indicated both an increase in the sample viscosity and probability of protein aggregation. This deviation of the apparent diffusion coefficient from concentration-dependent linearity was independent of protein type and solution properties for this study. Thus, this single parameter shows the potential to act as a prognostic tool for colloidal stability of protein solutions. PMID:27421911
Gong, Peijun; McLaughlin, Robert A; Liew, Yih Miin; Munro, Peter R T; Wood, Fiona M; Sampson, David D
2014-02-01
The formation of burn-scar tissue in human skin profoundly alters, among other things, the structure of the dermis. We present a method to characterize dermal scar tissue by the measurement of the near-infrared attenuation coefficient using optical coherence tomography (OCT). To generate accurate en face parametric images of attenuation, we found it critical to first identify (using speckle decorrelation) and mask the tissue vasculature from the three-dimensional OCT data. The resulting attenuation coefficients in the vasculature-masked regions of the dermis of human burn-scar patients are lower in hypertrophic (3.8±0.4 mm(-1)) and normotrophic (4.2±0.9 mm(-1)) scars than in contralateral or adjacent normal skin (6.3±0.5 mm(-1)). Our results suggest that the attenuation coefficient of vasculature-masked tissue could be used as an objective means to assess human burn scars. PMID:24192908
NASA Astrophysics Data System (ADS)
Poirier, David R.
2014-08-01
This article is a review of empirical and calculated data on density, viscosity, and diffusion coefficients in hypereutectic Al-Si liquid alloys. Many regressions of the data were effected in order to consolidate the data as functions, which can be used to calculate each property as a function of temperature and concentration of Si. The chemical diffusion coefficient in the alloys was derived based on the Sutherland model, which relates the diffusion coefficient to viscosity.
Diffusion coefficient of krypton atoms in helium gas at low and moderate temperatures
NASA Astrophysics Data System (ADS)
Bouazza, M. T.; Bouledroua, M.
In the present work, using the Chapman-Enskog method for dilute gases, the diffusion coefficients of ground krypton atoms in a very weakly ionized helium buffer gas are revisited. The calculations are carried out quantum mechanically in the range of low and moderate temperatures. The 1 Σ+ potential-energy curve via which Kr approaches He is constructed from the most recent ab initio energy points. The reliable data points used in the construction are smoothly connected to adequate long- and short-range forms. The calculations of the classical second virial coefficients and the Boyle temperature of the helium-krypton mixture are also discussed. These coefficients and their variations in terms of temperature are analysed by adopting the constructed HeKr potential and the Lennard-Jones form that fits it. The diffusion and elastic cross sections are also explored and the resonance features they exhibit are closely examined. The variation law of the diffusion coefficients with temperature is determined for typical values of density and pressure. The coefficients show excellent agreement with the available experimental data; the discrepancies do not exceed 5%.
Zarabadi, Atefeh S; Pawliszyn, Janusz
2015-02-17
Analysis in the frequency domain is considered a powerful tool to elicit precise information from spectroscopic signals. In this study, the Fourier transformation technique is employed to determine the diffusion coefficient (D) of a number of proteins in the frequency domain. Analytical approaches are investigated for determination of D from both experimental and data treatment viewpoints. The diffusion process is modeled to calculate diffusion coefficients based on the Fourier transformation solution to Fick's law equation, and its results are compared to time domain results. The simulations characterize optimum spatial and temporal conditions and demonstrate the noise tolerance of the method. The proposed model is validated by its application for the electropherograms from the diffusion path of a set of proteins. Real-time dynamic scanning is conducted to monitor dispersion by employing whole column imaging detection technology in combination with capillary isoelectric focusing (CIEF) and the imaging plug flow (iPF) experiment. These experimental techniques provide different peak shapes, which are utilized to demonstrate the Fourier transformation ability in extracting diffusion coefficients out of irregular shape signals. Experimental results confirmed that the Fourier transformation procedure substantially enhanced the accuracy of the determined values compared to those obtained in the time domain. PMID:25607375
Belova, Irina; Kulkarni, Nagraj S; Sohn, Yong Ho; Murch, Prof. Graeme
2013-01-01
In this paper, a new development of the classic Onsager phenomenological formalism is derived using relations based on linear response theory. The development concerns the correct description of the fluxes of the atomic isotopes. The resulting expressions in the laboratory frame are surprisingly simple and consist of terms coming from the standard interdiffusion expressions and from Fick s first law where the tracer diffusion coefficient is involved thus providing a better understanding of the relationship between the two approaches - Fick s first law and the Onsager phenomenological formalism. From an experimental application perspective, the new development is applied to the binary alloy case. The formalism provides the means to obtain the interdiffusion coefficient and tracer diffusion coefficients simultaneously from analysis of the interdiffusion concentration profiles in a single experiment.
Diffuse attenuation of solar light (Kd, m−1) determines the percentage of light penetrating the water column and available for benthic organisms. Therefore, Kd can be used as an index of water quality for coastal ecosystems that are dependent on photosynthesis, such as the coral ...
NASA Astrophysics Data System (ADS)
Ün, M.; Han, E. Narmanli; Ün, A.
2016-04-01
Mass attenuation coefficients for 24 Martian meteorites have been determined in the energy range from 1 keV to 100 GeV. The values of mass attenuation coefficients (µ/ρ) of the samples were calculated the WINXCOM program. The obtained results for Martian meteorites have been compared with the results for Earth composition and similarities or differences also evaluated.
Hermes, Helen E; Sitta, Christoph E; Schillinger, Burkhard; Löwen, Hartmut; Egelhaaf, Stefan U
2015-06-28
The dissolution of polyethylene oxide (PEO) tablets in water has been followed in situ by neutron radiography. When in contact with water, the crystalline phase of semi-crystalline PEO melts once a certain water content is attained. Polymer concentration profiles obtained from the neutron transmission images exhibited a pronounced kink which corresponds to a sharp front in the images and which is related to the melting transition. Sharp diffusion fronts and phase transitions are often linked to non-Fickian behaviour. However, by considering the time evolution of the complete concentration profiles in detail it is shown that the dissolution process can be explained using Fickian diffusion equations with a concentration-dependent diffusion coefficient. PMID:26018995
Estimating diffusion coefficients in low-permeability porous media using a macropore column
Young, D.F.; Ball, W.P.
1998-09-01
Diffusion coefficients in an aquitard material were measured by conducting miscible solute transport experiments through a specially constructed macropore column. Stainless steel HPLC columns were prepared in a manner that created an annular region of repacked aquitard material and a central core of medium-grained quartz sand. The column transport approach minimizes volatilization and sorption losses that can be problematic when measuring hydrophobic organic chemical diffusion with diffusion-cell methods or column-sectioning techniques. In the transport experiments, solutes (triated water, 1,2,4-trichlorobenzene, and tetrachloroethene) were transported through the central core by convection and hydrodynamic dispersion and through the low-permeability annulus by radial diffusion. All transport parameters were independently measured except for the effective diffusion coefficient in the aquitard material, which was obtained by model fitting. Batch-determined retardation factors agreed very closely with moment-derived retardation factors determined from the column experiments, and no evidence of pore exclusion was found. A model with retarded diffusion was found to apply, and the effective tortuosity factor of the aquitard material was estimated at an average value of 5.1.
Kuss, Joachim; Holzmann, Jörg; Ludwig, Ralf
2009-05-01
Mercury is a priority pollutant as its mobility between the hydrosphere and the atmosphere threatens the biosphere globally. The air-water gas transfer of elemental mercury (Hg0) is controlled by its diffusion through the water-side boundary layer and thus by its diffusion coefficient, D(Hg), the value of which, however, has not been established. Here, the diffusion of Hg0 in water was modeled by molecular dynamics (MD) simulation and the diffusion coefficient subsequently determined. Therefore the movement of either Hg(0) or xenon and 1000 model water molecules (TIP4P-Ew) were traced for time spans of 50 ns. The modeled D(Xe) of the monatomic noble gas agreed well with measured data; thus, MD simulation was assumed to be a reliable approach to determine D(Hg) for monatomic Hg(0) as well. Accordingly, Hg(0) diffusion was then simulated for freshwater and seawater, and the data were well-described by the equation of Eyring. The activation energies for the diffusion of Hg0 in freshwater was 17.0 kJ mol(-1) and in seawater 17.8 kJ mol(-1). The newly determined D(Hg) is clearly lower than the one previously used for an oceanic mercury budget. Thus, its incorporation into the model should lead to lower estimates of global ocean mercury emissions. PMID:19534132
Worth, H; Nüsse, W; Piiper, J
1978-01-01
In order to provide data required for quantitative analysis of gas diffusion in lung airways, diffusion of He, CO, O2, CO2 and SF6 in various gases used in respiratory physiology was studied in vitro at 37 degrees C and 25 degrees C. The gases were allowed to mix by diffusion in a closed cylindrical tube (length 2 m, internal diameter 1 cm), one half of which was initially filled with 1% test gas in a second gas and the other half of which was filled with the second gas only. Kinetics of diffusional equilibration was determined by withdrawal of spot samples analyzed by gas chromatography. The binary (mutual) diffusion coefficients (D) computed there from were in most cases in good agreement with values calculated on the basis of the Chapman-Enskog theory. PMID:625611
NASA Astrophysics Data System (ADS)
Kugler, T.; Rausch, M. H.; Fröba, A. P.
2015-11-01
The paper reports on binary diffusion coefficient data for the gaseous systems argon-neon, krypton-helium, ammonia-helium, nitrous oxide-nitrogen, and propane-helium measured using a Loschmidt cell combined with holographic interferometry between (293.15 and 353.15) K as well as between (1 and 10) bar. The investigations on the noble gas systems aimed to validate the measurement apparatus by comparing the binary diffusion coefficients measured as a function of temperature and pressure with theoretical data. In previous studies, it was already shown that the raw concentration-dependent data measured with the applied setup are affected by systematic effects if pure gases are used prior to the diffusion process. Hence, the concentration-dependent measurement data were processed to obtain averaged binary diffusion coefficients at a mean mole fraction of 0.5. The data for the molecular gas systems complete literature data on little investigated systems of technical interest and point out the capabilities of the applied measurement apparatus. Further experimental data are reported for the systems argon-helium, krypton-argon, krypton-neon, xenon-helium, xenon-krypton, nitrous oxide-carbon dioxide, and propane-carbon dioxide at 293.15 K, 2 bar, and a mean mole fraction of 0.5.
Method for the measurement of the diffusion coefficient of benzalkonium chloride.
Smith, M J; Flowers, T H; Cowling, M J; Duncan, H J
2002-03-01
Biofilm formation on the optical ports of cameras and underwater sensors is the primary cause of their reduced useful deployment time. The use of a transparent hydrogel coating containing the cationic surfactant benzalkonium chloride has been shown to extend the deployment times for up to 12 weeks for these instruments. In order to predict the effective lifetime of these coatings it was necessary to obtain the diffusion coefficient of the benzalkonium chloride used in the coatings. Benzalkonium chloride can have different alkyl chain lengths ranging from C8H17 to C18H37 with chain length greatly affecting its chemical properties. The benzalkonium chloride materials investigated here were mixtures of C12H25 and C14H29 as well as C14H29 on its own. These materials were selected for their proven biofilm resistant qualities. The diaphragm diffusion cell technique was investigated for its applicability to the measurement of diffusion coefficients of molecules with surfactant properties and the ability to form micelles. The method was found to be satisfactory for the cationic surfactant benzalkonium chloride. The average value of the membrane cell integral diffusion coefficient D was 7.78 x 10(-6) cm2 s(-1) at 25 degrees C and there was no significant effect of alkyl chain length on the measured value of D. PMID:11996332
NASA Astrophysics Data System (ADS)
Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barun, V. V.
2016-03-01
We have designed an experimental setup, based on two integrating spheres, that lets us measure the optical diffuse reflectance spectra (diffuse reflection coefficient vs. wavelength) of human skin quickly under clinical conditions in vivo. For the wavelength interval 520-1100 nm, we give the values of the diffuse reflection coefficient for healthy tissue, skin with a benign nevus, and skin with a malignant melanoma for a large group of test subjects. We experimentally established a number of wavelengths in the red-near IR region of the spectrum which can be used for early differential diagnosis of nevi and melanoma in patient cancer screening. According to the Kramer-Welch test, the probability of the diffuse reflection coefficient for skin with melanoma and a nevus having different distributions is >0.94, and at many wavelengths it is >0.999. By solving the inverse problem, we estimated the changes in a number of structural and biophysical parameters of the tissue on going from healthy skin to nevus and melanoma. The results obtained can provide a basis for developing a clinical approach to identifying the risk of malignant transformation of the skin before surgery and histological analysis of the tissue.
Sundaram, P.A.; Wessel, E.; Clemens, H.; Kestler, H.; Ennis, P.J.; Quadakkers, W.J.; Singheiser, L.
2000-03-14
The diffusion coefficient of hydrogen in some gamma based titanium aluminide alloys was determined at room temperature using an electrochemical techniques. A cast Ti-48Al-2Cr alloy as well as Ti-46.5Al-4(Cr,Nb,Ta,B) sheet material with primary annealed and designed fully lamellar microstructures were subjected to cathodic hydrogen charging at room temperature in the galvanostatic mode. The potential variation with time was monitored form which data the values of the diffusion coefficient of hydrogen, D were calculated form well known error function/infinite series solutions to Fick's second law. Very good correlation was obtained with respect to theoretical calculations. The diffusion coefficients appear to be in close agreement with those for the cast alloy calculated from microhardness measurements. The value of D can be overestimated for thick specimens. Results show that neither the microstructure in terms of grain/lamellar colony size, nor the charging current density, appear to have a significant effect on the value of D. Lattice diffusion appears to be rate controlling.
Yao, Shenggen; Babon, Jeffrey J; Norton, Raymond S
2008-08-01
Molecular rotational correlation times are of interest for many studies carried out in solution, including characterization of biomolecular structure and interactions. Here we have evaluated the estimates of protein effective rotational correlation times from their translational self-diffusion coefficients measured by pulsed-field gradient NMR against correlation times determined from both collective and residue-specific (15)N relaxation analyses and those derived from 3D structure-based hydrodynamic calculations. The results show that, provided the protein diffusive behavior is coherent with the Debye-Stokes-Einstein model, translational diffusion coefficients provide rapid estimates with reasonable accuracy of their effective rotational correlation times. Effective rotational correlation times estimated from translational diffusion coefficients may be particularly beneficial in cases where i) isotopically labelled material is not available, ii) collective backbone (15)N relaxation rates are difficult to interpret because of the presence of flexible termini or loops, or iii) a full relaxation analysis is practically difficult because of limited sensitivity owing to low protein concentration, high molecular mass or low temperatures. PMID:18583018
An interpretation of potential scale dependence of the effectivematrix diffusion coefficient
Liu, H.H.; Zhang, Y.Q.; Zhou, Q.; Molz, F.J.
2005-11-30
Matrix diffusion is an important process for solutetransport in fractured rock, and the matrix diffusion coefficient is akey parameter for describing this process. Previous studies indicatedthat the effective matrix diffusion coefficient values, obtained from alarge number of field tracer tests, are enhanced in comparison with localvalues and may increase with test scale. In this study, we have performednumerical experiments to investigate potential mechanisms behind possiblescale-dependent behavior. The focus of the experiments is on solutetransport in flow paths having geometries consistent with percolationtheories and characterized by local flow loops formed mainly bysmall-scale fractures. The water velocity distribution through a flowpath was determined using discrete fracture network flow simulations, andsolute transport was calculated using a previously derivedimpulse-response function and a particle-tracking scheme. Values foreffective (or up-scaled) transport parameters were obtained by matchingbreakthrough curves from numerical experiments with an analyticalsolution for solute transport along a single fracture. Results indicatethat a combination of local flow loops and the associated matrixdiffusion process, together with scaling properties in flow pathgeometry, seems to be the dominant mechanism causing the observed scaledependence of theeffective matrix diffusion coefficient (at a range ofscales).
NASA Technical Reports Server (NTRS)
Usry, J. W.; Whitlock, C. H.
1981-01-01
Management of water resources such as a reservoir requires using analytical models which describe such parameters as the suspended sediment field. To select or develop an appropriate model requires making many measurements to describe the distribution of this parameter in the water column. One potential method for making those measurements expeditiously is to measure light transmission or turbidity and relate that parameter to total suspended solids concentrations. An instrument which may be used for this purpose was calibrated by generating curves of transmission measurements plotted against measured values of total suspended solids concentrations and beam attenuation coefficients. Results of these experiments indicate that field measurements made with this instrument using curves generated in this study should correlate with total suspended solids concentrations and beam attenuation coefficients in the water column within 20 percent.
Determination of Mass Attenuation Coefficients for CuInSe2 and CuGaSe2 Semiconductors
NASA Astrophysics Data System (ADS)
Çelik, Ahmet; Çevik, Uǧur; Baltaş, Hasan; Bacaksiz, Emin
2007-04-01
This work presents mass attenuation coefficients values of CuInSe2 and CuGaSe2 semiconductor thin films commonly used in photovoltaic devices. The mass attenuation coefficients were measured at different energies from 11.9 to 37.3 keV by using the secondary excitation method. Monochromatic photons were obtained using the Br, Sr, Mo, Cd, Te, Ba and Nd secondary targets. 59.5 keV gamma rays emitted from an annular Am-241 radioactive source were used to excite secondary targets. Characteristic X-rays emitted from secondary target were counted by a Si(Li) detector with a resolution of 0.16 keV at 5.9 keV. The measured values were compared with theoretical values calculated using WinXCOM program.
Determination of Mass Attenuation Coefficients for CuInSe2 and CuGaSe2 Semiconductors
Celik, Ahmet; Cevik, Ugur; Baltas, Hasan; Bacaksiz, Emin
2007-04-23
This work presents mass attenuation coefficients values of CuInSe2 and CuGaSe2 semiconductor thin films commonly used in photovoltaic devices. The mass attenuation coefficients were measured at different energies from 11.9 to 37.3 keV by using the secondary excitation method. Monochromatic photons were obtained using the Br, Sr, Mo, Cd, Te, Ba and Nd secondary targets. 59.5 keV gamma rays emitted from an annular Am-241 radioactive source were used to excite secondary targets. Characteristic X-rays emitted from secondary target were counted by a Si(Li) detector with a resolution of 0.16 keV at 5.9 keV. The measured values were compared with theoretical values calculated using WinXCOM program.
Kruk, D.; Meier, R.; Rössler, E. A.; Rachocki, A.; Korpała, A.; Singh, R. K.
2014-06-28
Field Cycling Nuclear Magnetic Resonance (FC NMR) relaxation studies are reported for three ionic liquids: 1-ethyl-3- methylimidazolium thiocyanate (EMIM-SCN, 220–258 K), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF{sub 4}, 243–318 K), and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF{sub 6}, 258–323 K). The dispersion of {sup 1}H spin-lattice relaxation rate R{sub 1}(ω) is measured in the frequency range of 10 kHz–20 MHz, and the studies are complemented by {sup 19}F spin-lattice relaxation measurements on BMIM-PF{sub 6} in the corresponding frequency range. From the {sup 1}H relaxation results self-diffusion coefficients for the cation in EMIM-SCN, BMIM-BF{sub 4}, and BMIM-PF{sub 6} are determined. This is done by performing an analysis considering all relevant intra- and intermolecular relaxation contributions to the {sup 1}H spin-lattice relaxation as well as by benefiting from the universal low-frequency dispersion law characteristic of Fickian diffusion which yields, at low frequencies, a linear dependence of R{sub 1} on square root of frequency. From the {sup 19}F relaxation both anion and cation diffusion coefficients are determined for BMIM-PF{sub 6}. The diffusion coefficients obtained from FC NMR relaxometry are in good agreement with results reported from pulsed- field-gradient NMR. This shows that NMR relaxometry can be considered as an alternative route of determining diffusion coefficients of both cations and anions in ionic liquids.
NASA Astrophysics Data System (ADS)
Suzuki, S.; Itoh, H.
2016-05-01
The diffusion coefficient of the metastable excited Ne(3P2) atom in neon, the reflection coefficient of Ne(3P2) at the surface of an electrode and the rate coefficient of Ne(3P2) for collisional quenching by Ne(1S0) were determined from the gas pressure dependence of the effective lifetime of Ne(3P2). The effective lifetime of Ne(3P2) was measured from the transient current after turning off the Ultraviolet (UV) light in a Townsend discharge. The observed transient current waveform was analysed by solving the diffusion equation for the metastable excited Ne(3P2) atom using the third kind of boundary condition. The rate coefficient of Ne(3P2) for collisional quenching by Ne(1S0) and the reflection coefficient were determined by a nonspectroscopic method for the first time in neon to the best of our knowledge and were (3.2 ± 0.4) × 10‑16 cm3 s‑1 and 0.10 ± 0.04, respectively. The obtained diffusion coefficient at 1 Torr was 177 ± 17 cm2 s‑1, which is consistent with the value reported by Dixon and Grant. Moreover, the present results are compared with the results of Phelps and were found to be in good agreement. We also discuss the deexcitation rate of Ne(3P2) at pressures of up to 60 Torr in comparison with previously reported values.
A new in-situ method to determine the apparent gas diffusion coefficient of soils
NASA Astrophysics Data System (ADS)
Laemmel, Thomas; Paulus, Sinikka; Schack-Kirchner, Helmer; Maier, Martin
2015-04-01
Soil aeration is an important factor for the biological activity in the soil and soil respiration. Generally, gas exchange between soil and atmosphere is assumed to be governed by diffusion and Fick's Law is used to describe the fluxes in the soil. The "apparent soil gas diffusion coefficient" represents the proportional factor between the flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gases through the soil. One common way to determine this coefficient is to take core samples in the field and determine it in the lab. Unfortunately this method is destructive and needs laborious field work and can only reflect a small fraction of the whole soil. As a consequence insecurity about the resulting effective diffusivity on the profile scale must remain. We developed a new in-situ method using new gas sampling device, tracer gas and inverse soil gas modelling. The gas sampling device contains several sampling depths and can be easily installed into vertical holes of an auger, which allows for fast installation of the system. At the lower end of the device inert tracer gas is injected continuously. The tracer gas diffuses into the surrounding soil. The resulting distribution of the tracer gas concentrations is used to deduce the diffusivity profile of the soil. For Finite Element Modeling of the gas sampling device/soil system the program COMSOL is used. We will present the results of a field campaign comparing the new in-situ method with lab measurements on soil cores. The new sampling pole has several interesting advantages: it can be used in-situ and over a long time; so it allows following modifications of diffusion coefficients in interaction with rain but also vegetation cycle and wind.
Cleveland, G G; Chang, D C; Hazlewood, C F; Rorschach, H E
1976-01-01
The anisotropy of the spin-diffusion coefficient Ds of water protons in skeletal muscle has been studied by pulsed NMR methods. The mid-portion of the tibialis anterior muscle of mature male rats was placed in a special sample holder by means of which the muscle fiber orientation theta relative to the diffusion direction could be varied over the range 0 degrees less than or equal to theta less than or equal to 90 degrees. The value of Ds(theta) was determined for theta = 0 degrees, 45 degrees, and 90 degrees. The measured anisotropy Ds(0)/Ds(90) was 1.39, and the value of Ds(0) was 1.39 X 10(-5) cm2/s. These results are interpreted within the framework of a model calculation in which the diffusion equation is solved for a regular hexagonal network similar to the actin-myosin filament network. The large anisotropy, and the large reduction in the value of Ds measured parallel to the filament axes lead to two major conclusions: (a) interpretations in which the reduction in Ds is ascribed to the effect of geometrical obstructions on the diffusion of "free" water are ruled out; and, (b) there is a large fraction of the cellular water associated with the proteins in such a way that its diffusion coefficient is substantially reduced. PMID:963204
Celik, Azim
2016-01-01
PURPOSE We aimed to investigate the effect of key imaging parameters on the accuracy of apparent diffusion coefficient (ADC) maps using a phantom model combined with ADC calculation simulation and propose strategies to improve the accuracy of ADC quantification. METHODS Diffusion-weighted imaging (DWI) sequences were acquired on a phantom model using single-shot echo-planar imaging DWI at 1.5 T scanner by varying key imaging parameters including number of averages (NEX), repetition time (TR), echo time (TE), and diffusion preparation pulses. DWI signal simulations were performed for varying TR and TE. RESULTS Magnetic resonance diffusion signal and ADC maps were dependent on TR and TE imaging parameters as well as number of diffusion preparation pulses, but not on the NEX. However, the choice of a long TR and short TE could be used to minimize their effects on the resulting DWI sequences and ADC maps. CONCLUSION This study shows that TR and TE imaging parameters affect the diffusion images and ADC maps, but their effect can be minimized by utilizing diffusion preparation pulses. Another key imaging parameter, NEX, is less relevant to DWI and ADC quantification as long as DWI signal-to-noise ratio is above a certain level. Based on the phantom results and data simulations, DWI acquisition protocol can be optimized to obtain accurate ADC maps in routine clinical application for whole body imaging. PMID:26573977
Takeshita, Sho; Ogata, Toshiyasu; Mera, Hidekazu; Tsugawa, Jun; Fukae, Jiro; Tsuboi, Yoshio
2016-05-31
An 80-year-old woman was admitted to our hospital with acute onset of flaccid paraplegia and sensory and urinary disturbances that developed soon after acute pain in her lower back and leg. Neurological examination revealed, severe flaccid paraplegia, bladder and rectal disturbances and dissociated sensory loss below the level of L1 spinal cord segment. MR imaging with T2 weighted imaging (T2WI) and diffusion weighted imaging (DWI) on day 2 showed hyper signal intensity in the spinal cord at the vertebral level of L1 while initial apparent diffusion coefficient (ADC) showed decreased signal intensity in the lesion. We diagnosed spinal cord infarction, and anticoagulant and neuroprotective agents were administrated. Serial MRI findings revealed that the DWI signal of the lesion attenuated with time, and pseudo-normalization of the ADC occurred approximately 1 month after onset. These findings were similar to those seen in brain infarction. Our patient demonstrated serial MRI changes of spinal cord infarction showing anterior spinal cord syndrome. PMID:27098903
Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma
Bakhtiyari-Ramezani, M. Alinejad, N.; Mahmoodi, J.
2015-11-15
In the fusion devices, ions, H atoms, and H{sub 2} molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H{sub 2} molecules, and desorption of the recombined H{sub 2} molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.
Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma
NASA Astrophysics Data System (ADS)
Bakhtiyari-Ramezani, M.; Mahmoodi, J.; Alinejad, N.
2015-11-01
In the fusion devices, ions, H atoms, and H2 molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H2 molecules, and desorption of the recombined H2 molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.
Kernel-based regression of drift and diffusion coefficients of stochastic processes
NASA Astrophysics Data System (ADS)
Lamouroux, David; Lehnertz, Klaus
2009-09-01
To improve the estimation of drift and diffusion coefficients of stochastic processes in case of a limited amount of usable data due to e.g. non-stationarity of natural systems we suggest to use kernel-based instead of histogram-based regression. We propose a method for bandwidth selection and compare it to a widely used cross-validation method. Kernel-based regression reveals an enhanced ability to estimate drift and diffusion especially for a small amount of data. This allows one to improve resolvability of changes in complex dynamical systems as evidenced by an exemplary analysis of electroencephalographic data recorded from a human epileptic brain.
Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites
NASA Technical Reports Server (NTRS)
Wei, Chengyu; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)
2001-01-01
Classical molecular dynamics (MD) simulations employing Brenner potential for intra-nanotube interactions and van der Waals forces for polymer-nanotube interface have been used to investigate thermal expansion and diffusion characteristics of carbon nanotube-polyethylene composites. Addition of carbon nanotubes to polymer matrix is found to significantly increase the glass transition temperature Tg, and thermal expansion and diffusion coefficients in the composite above Tg. The increase has been attributed to the temperature dependent increase of the excluded volume for the polymer chains, and the findings could have implications in the composite processing, coating and painting applications.
Integral formula for the effective diffusion coefficient in two-dimensional channels
NASA Astrophysics Data System (ADS)
Kalinay, Pavol
2016-07-01
The effective one-dimensional description of diffusion in two-dimensional channels of varying cross section is revisited. The effective diffusion coefficient D (x ) , extending Fick-Jacobs equation, depending on the longitudinal coordinate x , is derived here without use of scaling of the transverse coordinates. The result of the presented method is an integral formula for D (x ) , calculating its value at x as an integral of contributions from the neighboring positions x' depending on h (x') , a function shaping the channel. Unlike the standard formulas based on the scaling, the new proposed formula also describes D (x ) correctly near the cusps, or in wider channels.
NASA Astrophysics Data System (ADS)
Charsooghi, Mohammad A.; Akhlaghi, Ehsan A.; Tavaddod, Sharareh; Khalesifard, H. R.
2011-02-01
We developed a graphical user interface, MATLAB based program to calculate the translational diffusion coefficients in three dimensions for a single diffusing particle, suspended inside a fluid. When the particles are not spherical, in addition to their translational motion also a rotational freedom is considered for them and in addition to the previous translational diffusion coefficients a planar rotational diffusion coefficient can be calculated in this program. Time averaging and ensemble averaging over the particle displacements are taken to calculate the mean square displacement variations in time and so the diffusion coefficients. To monitor the random motion of non-spherical particles a reference frame is used that the particle just have translational motion in it. We call it the body frame that is just like the particle rotates about the z-axis of the lab frame. Some statistical analysis, such as velocity autocorrelation function and histogram of displacements for the particle either in the lab or body frames, are available in the program. Program also calculates theoretical values of the diffusion coefficients for particles of some basic geometrical shapes; sphere, spheroid and cylinder, when other diffusion parameters like temperature and fluid viscosity coefficient can be adjusted. Program summaryProgram title: KOJA Catalogue identifier: AEHK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 48 021 No. of bytes in distributed program, including test data, etc.: 1 310 320 Distribution format: tar.gz Programming language: MatLab (MathWorks Inc.) version 7.6 or higher. Statistics Toolbox and Curve Fitting Toolbox required. Computer: Tested on windows and linux, but generally it would work on any
Drift tube measurements of mobilities and longitudinal diffusion coefficients of ions in gases
Chelf, R.D.
1982-01-01
The zero-field mobilities of Br/sup -/ and NH/sub 4//sup +/ in O/sub 2/ were determined as a function of gas temperature in a high pressure drift tube mass spectrometer. The mobilities and longitudinal diffusion coefficients of the ion-gas combinations Br/sup -/ in Ne and Kr, Li/sup +/ in Xe, and Tl//sup +/ in Kr and Xe were determined as a function of E/N, where E is the electric field strength and N is the gas number density in a low pressure drift tube mass spectrometer. The measured longitudinal diffusion coefficients were used for a test and comparison of the generalized Einstein relations of Viehland-Mason and Waldman-Mason theories. The measured mobilities of Br/sup -/ in Kr and Tl//sup +/ in Kr were used in an iterative-inversion scheme from which the ion-neutral interaction potentials were determined.
Diffusion coefficients of energetic water group ions near Comet Giacobini-Zinner
NASA Astrophysics Data System (ADS)
Tan, L. C.; Mason, G. M.; Richardson, I. G.; Ipavich, F. M.
1993-03-01
Data from the ultralow-energy charge analyzer and energetic particle anisotropy spectrometer sensors, acquired when the ICE spacecraft flew past Comet Giacobini-Zinner on September 11, 1985, are combined, and a single, self-consistent analysis technique is applied to derive a single-particle spectrum from about 200 to 1600 km/s. This information, together with the deduced bulk flow speed of the ions, is used to calculate a parallel diffusion coefficient in the transition region downstream of the bow wave (2.3 +/- 0.5) x 10 exp 17 sq cm/s; the corresponding scattering mean free path is (6 +/- 1) x 10 exp 4 km. The parallel diffusion coefficient is found to depend on the collision frequency of water group ions with Alfven waves, which are assumed to be propagating parallel (antiparallel) to the magnetic field.
A Monte Carlo model for determination of binary diffusion coefficients in gases
NASA Astrophysics Data System (ADS)
Panarese, A.; Bruno, D.; Colonna, G.; Diomede, P.; Laricchiuta, A.; Longo, S.; Capitelli, M.
2011-06-01
A Monte Carlo method has been developed for the calculation of binary diffusion coefficients in gas mixtures. The method is based on the stochastic solution of the linear Boltzmann equation obtained for the transport of one component in a thermal bath of the second one. Anisotropic scattering is included by calculating the classical deflection angle in binary collisions under isotropic potential. Model results are compared to accurate solutions of the Chapman-Enskog equation in the first and higher orders. We have selected two different cases, H 2 in H 2 and O in O 2, assuming rigid spheres or using a model phenomenological potential. Diffusion coefficients, calculated in the proposed approach, are found in close agreement with Chapman-Enskog results in all the cases considered, the deviations being reduced using higher order approximations.
Diffusion coefficients of energetic water group ions near Comet Giacobini-Zinner
NASA Technical Reports Server (NTRS)
Tan, L. C.; Mason, G. M.; Richardson, I. G.; Ipavich, F. M.
1993-01-01
Data from the ultralow-energy charge analyzer and energetic particle anisotropy spectrometer sensors, acquired when the ICE spacecraft flew past Comet Giacobini-Zinner on September 11, 1985, are combined, and a single, self-consistent analysis technique is applied to derive a single-particle spectrum from about 200 to 1600 km/s. This information, together with the deduced bulk flow speed of the ions, is used to calculate a parallel diffusion coefficient in the transition region downstream of the bow wave (2.3 +/- 0.5) x 10 exp 17 sq cm/s; the corresponding scattering mean free path is (6 +/- 1) x 10 exp 4 km. The parallel diffusion coefficient is found to depend on the collision frequency of water group ions with Alfven waves, which are assumed to be propagating parallel (antiparallel) to the magnetic field.
Oxygen diffusion coefficient and solubility in a new proton exchange membrane
Haug, A.T.; White, R.E.
2000-03-01
The electrochemical monitoring technique is used to measure the solubility and the diffusion coefficient of oxygen in a new proton exchange membrane that is being developed by Cape Cod Research, Inc., Using the method of least squares, the data were fit to an analytical solution of Fick's second law to determine D and c{sub 0}. Values of 0.40 x 10{sup {minus}6}cm{sup 2}/s and 4.98 x 10{sup {minus}6} mol/cm{sup 3} were obtained for the diffusion coefficient and solubility, respectively, of the Cape Cod membrane. These values are significantly less than those of Nafion 117 tested under identical conditions.
A Monte Carlo model for determination of binary diffusion coefficients in gases
Panarese, A.; Bruno, D.; Colonna, G.; Diomede, P.; Laricchiuta, A.; Longo, S.; Capitelli, M.
2011-06-20
A Monte Carlo method has been developed for the calculation of binary diffusion coefficients in gas mixtures. The method is based on the stochastic solution of the linear Boltzmann equation obtained for the transport of one component in a thermal bath of the second one. Anisotropic scattering is included by calculating the classical deflection angle in binary collisions under isotropic potential. Model results are compared to accurate solutions of the Chapman-Enskog equation in the first and higher orders. We have selected two different cases, H{sub 2} in H{sub 2} and O in O{sub 2}, assuming rigid spheres or using a model phenomenological potential. Diffusion coefficients, calculated in the proposed approach, are found in close agreement with Chapman-Enskog results in all the cases considered, the deviations being reduced using higher order approximations.
Rowley, R.L.; Oscarson, J.L.
1993-01-01
The objective of the work is to provide accurate data on diffusion coefficients and heats of absorption of acid gases in aqueous amine solutions to assist in the design of economical new amine treating systems and to improve the efficiency of existing plants. Specifically covered in the report are measurements of the mutual diffusion coefficient of methyldiethanolamine(MDEA) and diethanolamine in water. Measurements have been made at 25, 50 and 75C and at 0, 20, 35 and 50 wt% amine. Heats of absorption of CO2 into aqueous mixtures of MDEA have also been measured calorimetrically. Results are reported at temperatures of 120 and 260F and pressures of 500 and 1000 psia at total MDEA concentrations of 20, 35 and 50%.
Determination of the Solute Diffusion Coefficient by the Droplet Migration Method
Shan Liu; Jing Teng; Jeongyun Choi
2007-07-01
Further analysis of droplet migration in a temperature gradient field indicates that different terms can be used to evaluate the solute diffusion coefficient in liquid (D{sub L}) and that there exists a characteristic curve that can describe the motion of all the droplets for a given composition and temperature gradient. Critical experiments are subsequently conducted in succinonitrile (SCN)-salol and SCN-camphor transparent alloys in order to observe dynamic migration processes of a number of droplets. The derived diffusion coefficients from different terms are the same within experimental error. For SCN-salol alloys, D{sub L} = (0.69 {+-} 0.05) x 10{sup -3} mm{sup 2}/s, and for SCN-camphor alloys, D{sub L} = (0.24 {+-} 0.02) x 10{sup -3} mm{sup 2}/s.
Thermal diffusivity coefficient of glycerin determined on an acoustically levitated drop.
Ohsaka, K; Rednikov, A; Sadhal, S S
2002-10-01
We present a technique that can be used to determine the thermal diffusivity coefficient of undercooled liquids that exist at temperatures below their freezing points. The technique involves levitation of a small amount of liquid in the shape of a flattened drop using an acoustic levitator and heating it with a CO2 laser. The heated drop is then allowed to cool naturally by heat loss from the surface. Due to acoustic streaming, heat loss is highly non-uniform and appears to mainly occur at the drop circumference (equatorial region). This fact allows us to relate the heat loss rate with a heat transfer model to determine the thermal diffusion coefficient. We demonstrate the feasibility of the technique using glycerin drops as a model liquid. PMID:12446319
Diffusion coefficients of sodium fluoride in aqueous solutions at 298.15 k and 310.15 k.
Ribeiro, Ana C F; Lobo, Victor M M; Sobral, Abilio J F N; Soares, Helder T F C; Esteso, Ana R J; Esteso, Miguel A
2010-06-01
Mutual diffusion coefficients (interdiffusion coefficients) have been measured for sodium fluoride in water at 298.15 K and 310.15 K at concentrations between 0.003 mol dm-3 and 0.05 mol dm-3. The diffusion coefficients were measured using a conductimetric cell. The experimental mutual diffusion coefficients are discussed on the basis of the Onsager-Fuoss model. The limiting molar conductivity of the fluoride ion in these solutions at 310.15 K has been estimated using these results. PMID:24061738
NASA Astrophysics Data System (ADS)
Kujawa, Sebastian; Weres, Jerzy; Olek, Wiesław
2016-07-01
Uncertainties in mathematical modelling of water transport in cereal grain kernels during drying and storage are mainly due to implementing unreliable values of the water diffusion coefficient and simplifying the geometry of kernels. In the present study an attempt was made to reduce the uncertainties by developing a method for computer-aided identification of the water diffusion coefficient and more accurate 3D geometry modelling for individual kernels using original inverse finite element algorithms. The approach was exemplified by identifying the water diffusion coefficient for maize kernels subjected to drying. On the basis of the developed method, values of the water diffusion coefficient were estimated, 3D geometry of a maize kernel was represented by isoparametric finite elements, and the moisture content inside maize kernels dried in a thin layer was predicted. Validation of the results against experimental data showed significantly lower error values than in the case of results obtained for the water diffusion coefficient values available in the literature.
Scaling Limits of a Tagged Particle in the Exclusion Process with Variable Diffusion Coefficient
NASA Astrophysics Data System (ADS)
Gonçalves, Patrícia; Jara, Milton
2008-09-01
We prove a law of large numbers and a central limit theorem for a tagged particle in a symmetric simple exclusion process in ℤ with variable diffusion coefficient. The scaling limits are obtained from a similar result for the current through -1/2 for a zero-range process with bond disorder. For the CLT, we prove convergence to a fractional Brownian motion of Hurst exponent 1/4.
Measurement of the diffusion coefficient of acetone in succinonitrile at its melting point
NASA Technical Reports Server (NTRS)
Chopra, M. A.; Glicksman, M. E.; Singh, N. B.
1988-01-01
The diffusion coefficient of acetone in liquid succinonitrile at 331.1 K was determined using the method of McBain and Dawson (1935). Only dilute mixtures of SCN-acetone were studied. The interdiffusion constant was determined to be 0.0000127 sq cm/s and was essentially independent of the acetone concentration over the range investigated (0.5 to 18 mol pct acetone).
NASA Technical Reports Server (NTRS)
Gage, K. S.; Jasperson, W. H.
1977-01-01
An analysis is presented of the tropospheric turbulence data obtained by the Metrac positioning system, a radio location system which employs the Doppler principle to track inexpensive expendable balloon-borne transmitters. A Minneapolis field test of the Metrac system provided one-second samples of transmitter frequency from balloons tracked by four ground stations for more than an hour. The derivation of diffusion coefficients from the turbulence data was conducted by two methods, yielding highly consistent results.
NASA Technical Reports Server (NTRS)
Chow, M.; Houska, C. R.
1980-01-01
Solutions are given for one-dimensional diffusion problems with a time varying surface composition and also a composition dependent diffusion coefficient. The most general solution does not require special mathematical functions to fit the variation in surface composition or D(C). In another solution, a series expansion may be used to fit the time dependent surface concentration. These solutions make use of iterative calculations that converge rapidly and are highly stable. Computer times are much shorter than that required for finite difference calculations and can efficiently make use of interactive graphics terminals. Existing gas carburization data were used to provide an illustration of an iterative approach with a time varying carbon composition at the free surface.
Aguilar-Mendez, M A; Martin-Martinez, E San; Morales, J E; Cruz-Orea, A; Jaime-Fonseca, M R
2007-04-01
Water vapor diffusion coefficient (WVDC) and thermal diffusivity (alpha) were determined in gelatin-starch films through photothermal techniques. The effect of different variables in the elaboration of these films, such as starch and glycerol concentrations and pH, were evaluated through the response surface methodology. The results indicated that an increase in the glycerol concentration and pH favored the WVDC of the films. On the other hand, alpha was influenced principally by the starch content and pH of the film-forming solution. The minimum alpha value was 4.5 x 10(-4) cm2/s, which is compared with alpha values reported for commercial synthetic polymers. PMID:17420552
Method for Calculating the Optical Diffuse Reflection Coefficient for the Ocular Fundus
NASA Astrophysics Data System (ADS)
Lisenko, S. A.; Kugeiko, M. M.
2016-07-01
We have developed a method for calculating the optical diffuse reflection coefficient for the ocular fundus, taking into account multiple scattering of light in its layers (retina, epithelium, choroid) and multiple refl ection of light between layers. The method is based on the formulas for optical "combination" of the layers of the medium, in which the optical parameters of the layers (absorption and scattering coefficients) are replaced by some effective values, different for cases of directional and diffuse illumination of the layer. Coefficients relating the effective optical parameters of the layers and the actual values were established based on the results of a Monte Carlo numerical simulation of radiation transport in the medium. We estimate the uncertainties in retrieval of the structural and morphological parameters for the fundus from its diffuse reflectance spectrum using our method. We show that the simulated spectra correspond to the experimental data and that the estimates of the fundus parameters obtained as a result of solving the inverse problem are reasonable.
Computing quasi-linear diffusion coefficients using the delta-f particle-in-cell method
Austin, T. M.; Smithe, D. N.; Ranjbar, V.
2009-11-26
Linear wave codes AORSA and TORIC couple to the bounce-averaged nonlinear Fokker-Planck code CQL3D through quasi-linear diffusion coefficients. Both linear wave codes rely on the quasi-local approximation that includes only first-order parallel and perpendicular gradient variations of cyclotron frequency and ignores field line curvature along with temperature and density gradient effects. The delta-f particle-in-cell (DFPIC) method has been successfully used for simulating ion-cyclotron fast wave behavior. This method also permits particle behavior such as multiple pass resonance, banana orbits, and superadiabaticity. We present new work on generating quasi-linear diffusion coefficients using the DFPIC method that will permit the electromagnetic particle-in-cell (EMPIC) code, VORPAL, to couple to CQL3D and to compare to AORSA and TORIC. A new multiple weight delta-f approach will be presented that converts velocity derivatives to action derivatives and yields a full tensor quasi-linear diffusion coefficient.
Renslow, Ryan S.; Majors, Paul D.; McLean, Jeffrey S.; Fredrickson, Jim K.; Ahmed, Bulbul; Beyenal, Haluk
2010-01-01
Diffusive mass transfer in biofilms is characterized by the effective diffusion coefficient. It is well-documented that the effective diffusion coefficient can vary by location in a biofilm. The current literature is dominated by effective diffusion coefficient measurements for distinct cell clusters and stratified biofilms showing this spatial variation. Regardless of whether distinct cell clusters or surface-averaging methods are used, position-dependent measurements of the effective diffusion coefficient are currently: 1) invasive to the biofilm, 2) performed under unnatural conditions, 3) lethal to cells, and/or 4) spatially restricted to only certain regions of the biofilm. Invasive measurements can lead to inaccurate results and prohibit further (time-dependent) measurements which are important for the mathematical modeling of biofilms. In this study our goals were to: 1) measure the effective diffusion coefficient for water in live biofilms, 2) monitor how the effective diffusion coefficient changes over time under growth conditions, and 3) correlate the effective diffusion coefficient with depth in the biofilm. We measured in situ two-dimensional effective diffusion coefficient maps within Shewanella oneidensis MR-1 biofilms using pulsed-field gradient nuclear magnetic resonance methods, and used them to calculate surface-averaged relative effective diffusion coefficient (Drs) profiles. We found that 1) Drs decreased from the top of the biofilm to the bottom, 2) Drs profiles differed for biofilms of different ages, 3) Drs profiles changed over time and generally decreased with time, 4) all the biofilms showed very similar Drs profiles near the top of the biofilm, and 5) the Drs profile near the bottom of the biofilm was different for each biofilm. Practically, our results demonstrate that advanced biofilm models should use a variable effective diffusivity which changes with time and location in the biofilm. PMID:20589671
Renslow, Ryan S.; Majors, Paul D.; McLean, Jeffrey S.; Fredrickson, Jim K.; Ahmed, B.; Beyenal, Haluk
2010-08-15
Diffusive mass transfer in biofilms is characterized by the effective diffusion coefficient. It is well-documented that the effective diffusion coefficient can vary by location in a biofilm. The current literature is dominated by effective diffusion coefficient measurements for distinct cell clusters and stratified biofilms showing this spatial variation. Regardless of whether distinct cell clusters or surface-averaging methods are used, position-dependent measurements of the effective diffusion coefficient are currently: 1) invasive to the biofilm, 2) performed under unnatural conditions, 3) lethal to cells, and/or 4) spatially restricted to only certain regions of the biofilm. Invasive measurements can lead to inaccurate results and prohibit further (time dependent) measurements which are important for the mathematical modeling of biofilms. In this study our goals were to: 1) measure the effective diffusion coefficient for water in live biofilms, 2) monitor how the effective diffusion coefficient changes over time under growth conditions, and 3) correlate the effective diffusion coefficient with depth in the biofilm. We measured in situ two-dimensional effective diffusion coefficient maps within Shewanella oneidensis MR-1biofilms using pulsed-field gradient nuclear magnetic resonance methods, and used them to calculate surface-averaged relative effective diffusion coefficient (Drs) profiles. We found that 1) Drs decreased from the top of the biofilm to the bottom, 2) Drs profiles differed for biofilms of different ages, 3) Drs profiles changed over time and generally decreased with time, 4) all the biofilms showed very similar Drs profiles near the top of the biofilm, and 5) the Drs profile near the bottom of the biofilm was different for each biofilm. Practically, our results demonstrate that advanced biofilm models should use a variable effective diffusivity which changes with time and location in the biofilm.
Shcherbak, L.; Kopach, O.; Fochuk, P.; James, R. B.; Bolotnikov, A. E.
2015-01-21
Understanding of self- and dopant-diffusion in semiconductor devices is essential to our being able to assure the formation of well-defined doped regions. In this paper, we compare obtained in the literature up to date the Arrhenius’ parameters (D=D_{0}exp(–ΔE_{a}/kT)) of point-defect diffusion coefficients and the I-VII groups impurities in CdTe crystals and films. We found that in the diffusion process there was a linear dependence between the pre-exponential factor, D_{0}, and the activation energy, ΔE_{a}, of different species: This was evident in the self-diffusivity and isovalent impurity Hg diffusivity as well as for the dominant IIIA and IVA groups impurities and Chlorine, except for the fast diffusing elements (e.g., Cu and Ag), chalcogens O, S, and Se, halogens I and Br as well as the transit impurities Mn, Co, Fe. As a result, reasons of the lack of correspondence of the data to compensative dependence are discussed.
Shcherbak, L.; Kopach, O.; Fochuk, P.; James, R. B.; Bolotnikov, A. E.
2015-01-21
Understanding of self- and dopant-diffusion in semiconductor devices is essential to our being able to assure the formation of well-defined doped regions. In this paper, we compare obtained in the literature up to date the Arrhenius’ parameters (D=D0exp(–ΔEa/kT)) of point-defect diffusion coefficients and the I-VII groups impurities in CdTe crystals and films. We found that in the diffusion process there was a linear dependence between the pre-exponential factor, D0, and the activation energy, ΔEa, of different species: This was evident in the self-diffusivity and isovalent impurity Hg diffusivity as well as for the dominant IIIA and IVA groups impurities andmore » Chlorine, except for the fast diffusing elements (e.g., Cu and Ag), chalcogens O, S, and Se, halogens I and Br as well as the transit impurities Mn, Co, Fe. As a result, reasons of the lack of correspondence of the data to compensative dependence are discussed.« less
Minority carrier diffusion lengths and absorption coefficients in silicon sheet material
NASA Technical Reports Server (NTRS)
Dumas, K. A.; Swimm, R. T.
1980-01-01
Most of the methods which have been developed for the measurement of the minority carrier diffusion length of silicon wafers require that the material have either a Schottky or an ohmic contact. The surface photovoltage (SPV) technique is an exception. The SPV technique could, therefore, become a valuable diagnostic tool in connection with current efforts to develop low-cost processes for the production of solar cells. The technique depends on a knowledge of the optical absorption coefficient. The considered investigation is concerned with a reevaluation of the absorption coefficient as a function of silicon processing. A comparison of absorption coefficient values showed these values to be relatively consistent from sample to sample, and independent of the sample growth method.
Molecular dynamics calculation of rotational diffusion coefficient of a carbon nanotube in fluid.
Cao, Bing-Yang; Dong, Ruo-Yu
2014-01-21
Rotational diffusion processes are correlated with nanoparticle visualization and manipulation techniques, widely used in nanocomposites, nanofluids, bioscience, and so on. However, a systematical methodology of deriving this diffusivity is still lacking. In the current work, three molecular dynamics (MD) schemes, including equilibrium (Green-Kubo formula and Einstein relation) and nonequilibrium (Einstein-Smoluchowski relation) methods, are developed to calculate the rotational diffusion coefficient, taking a single rigid carbon nanotube in fluid argon as a case. We can conclude that the three methods produce same results on the basis of plenty of data with variation of the calculation parameters (tube length, diameter, fluid temperature, density, and viscosity), indicative of the validity and accuracy of the MD simulations. However, these results have a non-negligible deviation from the theoretical predictions of Tirado et al. [J. Chem. Phys. 81, 2047 (1984)], which may come from several unrevealed factors of the theory. The three MD methods proposed in this paper can also be applied to other situations of calculating rotational diffusion coefficient. PMID:25669403
NASA Astrophysics Data System (ADS)
Kim, Changho; Borodin, Oleg; Karniadakis, George Em
2015-12-01
We analyze two standard methods to compute the diffusion coefficient of a tracer particle in a medium from molecular dynamics (MD) simulation, the velocity autocorrelation function (VACF) method, and the mean-squared displacement (MSD) method. We show that they are equivalent in the sense that they provide the same mean values with the same level of statistical errors. We obtain analytic expressions for the level of the statistical errors present in the time-dependent diffusion coefficient as well as the VACF and the MSD. Under the assumption that the velocity of the tracer particle is a Gaussian process, all results are expressed in terms of the VACF. Hence, the standard errors of all relevant quantities are computable once the VACF is obtained from MD simulation. By using analytic models described by the Langevin equations driven by Gaussian white noise and Poissonian white shot noise, we verify our theoretical error estimates and discuss the non-Gaussianity effect in the error estimates when the Gaussian process approximation does not hold exactly. For validation, we perform MD simulations for the self-diffusion of a Lennard-Jones fluid and the diffusion of a large and massive colloid particle suspended in the fluid. Our theoretical framework is also applicable to mesoscopic simulations, e.g., Langevin dynamics and dissipative particle dynamics.
A novel grating-imaging method to measure carrier diffusion coefficient in graphene
NASA Astrophysics Data System (ADS)
Chen, Ke; Wang, Yaguo; Akinwande, Deji; Bank, Seth; Lin, Jung-Fu
Similar to carrier mobility, carrier diffusion coefficient in graphene determines the response rate of future graphene-based electronics. Here we present a simple, sensitive and non-destructive technique integrated with ultrafast pump-probe spectroscopy to measure carrier diffusion in CVD-grown graphene. In the method, the pump and the probe beams pass through the same area of a photomask with metal strips i.e. a transmission amplitude grating, and get diffracted. The diffracted light is collected by an objective lens and focused onto the sample to generate carrier density grating. Relaxation of this carrier density grating is governed by both carrier recombination and carrier diffusion in the sample. Transient transmission change of the probe beams, which reflects this relaxation process, is recorded. The measured diffusion coefficients of multilayer and monolayer CVD-grown graphene are 2000cm2/s and 10000cm2/s, respectively, comparable with the reported values of epitaxial graphene and reduced graphene. This transmission grating technique can be used to measure carrier dynamics in versatile 2D materials.
Molecular dynamics calculation of rotational diffusion coefficient of a carbon nanotube in fluid
NASA Astrophysics Data System (ADS)
Cao, Bing-Yang; Dong, Ruo-Yu
2014-01-01
Rotational diffusion processes are correlated with nanoparticle visualization and manipulation techniques, widely used in nanocomposites, nanofluids, bioscience, and so on. However, a systematical methodology of deriving this diffusivity is still lacking. In the current work, three molecular dynamics (MD) schemes, including equilibrium (Green-Kubo formula and Einstein relation) and nonequilibrium (Einstein-Smoluchowski relation) methods, are developed to calculate the rotational diffusion coefficient, taking a single rigid carbon nanotube in fluid argon as a case. We can conclude that the three methods produce same results on the basis of plenty of data with variation of the calculation parameters (tube length, diameter, fluid temperature, density, and viscosity), indicative of the validity and accuracy of the MD simulations. However, these results have a non-negligible deviation from the theoretical predictions of Tirado et al. [J. Chem. Phys. 81, 2047 (1984)], which may come from several unrevealed factors of the theory. The three MD methods proposed in this paper can also be applied to other situations of calculating rotational diffusion coefficient.
Mialdun, A; Shevtsova, V
2015-12-14
We report on the measurement of diffusion (D), Soret (S(T)), and thermodiffusion (D(T)) coefficients in toluene-cyclohexane mixture with mass fraction of toluene 0.40 onboard of the International Space Station. The coefficients were measured in the range of the mean temperatures between 20 °C and 34 °C. The Soret coefficient is negative within the investigated temperature range and its absolute value |S(T)| decreases with increasing temperature. The diffusion coefficient for this system increases with temperature rising. For comparison, the temperature dependence of diffusion coefficient was measured in ground laboratory using counter-flow cell technique and revealed a good agreement with microgravity results. A non-direct comparison of the measured onboard Soret coefficients with different systems indicated a similar trend for the temperature dependent behavior. Unexpected experimental finding is that for this system the thermodiffusion coefficient D(T) does not depend on temperature. PMID:26671399
NASA Astrophysics Data System (ADS)
Mialdun, A.; Shevtsova, V.
2015-12-01
We report on the measurement of diffusion (D), Soret (ST), and thermodiffusion (DT) coefficients in toluene-cyclohexane mixture with mass fraction of toluene 0.40 onboard of the International Space Station. The coefficients were measured in the range of the mean temperatures between 20 °C and 34 °C. The Soret coefficient is negative within the investigated temperature range and its absolute value |ST| decreases with increasing temperature. The diffusion coefficient for this system increases with temperature rising. For comparison, the temperature dependence of diffusion coefficient was measured in ground laboratory using counter-flow cell technique and revealed a good agreement with microgravity results. A non-direct comparison of the measured onboard Soret coefficients with different systems indicated a similar trend for the temperature dependent behavior. Unexpected experimental finding is that for this system the thermodiffusion coefficient DT does not depend on temperature.
NASA Astrophysics Data System (ADS)
Lu, Yong; Zhang, Ping
2013-05-01
We report the prediction of temperature-dependent diffusion coefficients of interstitial hydrogen, deuterium, and tritium atoms in α-Ti using transition state theory. The microscopic parameters in the pre-factor and activation energy of the impurity diffusion coefficients are obtained from first-principles total energy and phonon calculations including the full coupling between the vibrational modes of the diffusing atom with the host lattice. The dual occupancy case of impurity atom in the hcp matrix is considered, and four diffusion paths are combined to obtain the final diffusion coefficients. The calculated diffusion parameters show good agreement with experiments. Our numerical results indicate that the diffusions of deuterium and tritium atoms are slower than that of the hydrogen atom at temperatures above 425 K and 390 K, respectively.
Trunova, Valentina; Sidorina, Anna; Kriventsov, Vladimir
2014-10-17
Information about X-ray mass attenuation coefficients in different materials is necessary for accurate X-ray fluorescent analysis. The X-ray mass attenuation coefficients for energy of 7-12keV were measured in biological (Mussel and Oyster tissues, blood, hair, liver, and Cabbage leaves) and geological (Baikal sludge, soil, and Alaskite granite) samples. The measurements were carried out at the EXAFS Station of Siberian Synchrotron Radiation Center (VEPP-3). Obtained experimental mass attenuation coefficients were compared with theoretical values calculated for some samples. PMID:25464176
NASA Astrophysics Data System (ADS)
Hirao, Akiko; Nishizawa, Hideyuki; Tsukamoto, Takayuki; Matsumoto, Kazuki
1999-10-01
A new easy method for obtaining a drift mobility and a diffusion coefficient from a nondispersive time-of-flight transient has been developed. Nondispersive transients are described well in the theoretical photocurrent equation (PTE) based on the fact that a carrier packet drifts at a constant velocity and is spread by diffusion, the top electrode acts as a reflecting and partially absorbing wall, and the counter electrode acts as an absorbing wall. The fitting of the PTE to photocurrent transients gives the mobility and the diffusion coefficient (D) simultaneously. These are suitable characteristic values for descriptions of carriers transport because they do not show the thickness dependence and the negative field dependence in a low electric field. The mobility that sometimes shows the thickness dependence and the negative field dependence in a low electric field, however, has usually been measured from the time of the intersection of the asymptotes to the plateau and trailing edge of the transients. In order to obtain (mu) a from photocurrent transients by a simple method, we have tried to describe t0 and tail-broadening parameter W as functions of (mu) a and D, where W is defined as (t1/2 - t0)/t1/2 and t1/2 is the time at which the current is a half of that in the plateau region. The dependences of calculated (mu) k and W on the electric field and the sample thickness agreed well with those of the experimental data. These results verify the PTE and suggest that (mu) a and D can be calculated from t0 and W. We also report that the diffusion coefficient is proportional to the power of 2 of the mobility. This result agrees with a theory based on the Langevin equation which describes motions of carriers in a fluctuated field.
Dynamic properties and third order diffusion coefficients of ions in electrostatic fields
NASA Astrophysics Data System (ADS)
Koutselos, Andreas D.
1997-05-01
Velocity correlation functions and third order diffusion coefficients of ions moving in a buffer gas under the influence of an electrostatic field are determined via molecular dynamics simulation. For the closed shell system of K+ in Ar using a universal interaction model potential, the general form of the third order correlation functions is found to be monotonically decaying in time except in the cases of <ΔvZ(0)ΔvX(t)2>, <ΔvZ(0)ΔvY(t)2>, and <ΔvZ(0)ΔvZ(t)2>, with Δv(t)=v(t) -
NASA Astrophysics Data System (ADS)
Somers, Marcel A. J.; Mittemeijer, Eric J.
1995-01-01
Models were derived for monolayer and bilayer growth into a substrate in which diffusion of the solute governs the growth kinetics, as in gas-solid reactions, for example. In the models, the composition dependence of the solute diffusivity in the phases constituting the layers was accounted for by appropriate definition of an effective diffusion coefficient for a (sub)layer. This effective diffusion coefficient is the intrinsic diffusion coefficient weighted over the composition range of the (sub)layer. The models were applied for analyzing the growth kinetics of a γ'-Fe4N1-x monolayer on an α-Fe substrate and the growth kinetics of an ɛ-Fe2N1-z/γ'-Fe4N1-x bilayer on an α-Fe substrate, as observed by gaseous nitriding in an NH3/H2-gas mixture at 843 K. The kinetics of layer development and the evolution of the microstructure were investigated by means of thermogravimetry, layer-thickness measurements, light microscopy, and electron probe X-ray microanalysis (EPMA). The effective and self-diffusion coefficients were determined for each of the nitride layers. The composition dependence of the intrinsic (and effective) diffusion coefficients was established. Re-evaluating literature data for diffusion in γ'-Fe4N1-x on the basis of the present model, it followed that the previous and present data are consistent. The activation energy for diffusion of nitrogen in γ'-Fe4N1-x was determined from the temperature dependence of the self-diffusion coefficient. The self-diffusion coefficient for nitrogen in ɛ-Fe2N1-z was significantly larger than that for γ'-Fe4N1-x. This was explained qualitatively, considering the possible mechanisms for interstitial diffusion of nitrogen atoms in the close-packed iron lattices of the ɛ and γ' iron nitrides.
NASA Astrophysics Data System (ADS)
Szyszkiewicz-Warzecha, Krzysztof; Jasielec, Jerzy J.; Fausek, Janusz; Filipek, Robert
2016-06-01
Transport properties of ions have significant impact on the possibility of rebars corrosion thus the knowledge of a diffusion coefficient is important for reinforced concrete durability. Numerous tests for the determination of diffusion coefficients have been proposed but analysis of some of these tests show that they are too simplistic or even not valid. Hence, more rigorous models to calculate the coefficients should be employed. Here we propose the Nernst-Planck and Poisson equations, which take into account the concentration and electric potential field. Based on this model a special inverse method is presented for determination of a chloride diffusion coefficient. It requires the measurement of concentration profiles or flux on the boundary and solution of the NPP model to define the goal function. Finding the global minimum is equivalent to the determination of diffusion coefficients. Typical examples of the application of the presented method are given.
NASA Astrophysics Data System (ADS)
Liu, Xin; Ben-Zion, Yehuda; Zigone, Dimitri
2015-11-01
We develop and apply an algorithm for deriving interstation seismic attenuation from cross-correlations of ambient noise recorded by linear arrays. Theoretical results on amplitude decay due to attenuation are used to form a linear least-square inversion for interstation QR values of Rayleigh surface waves propagating along linear arrays having three or more stations. The noise wave field is assumed stationary within each day and the interstation distances should be greater than the employed wavelength. The inversion uses differences of logarithmic amplitude decay curves measured at different stations from cross-correlation functions within a given frequency band. The background attenuation between noise sources and receivers is effectively cancelled with this method. The site amplification factors are assumed constant (or following similar patterns) in the frequency band of interest. The inversion scheme is validated with synthetic tests using ambient noise generated by ray-theory-based calculations with heterogeneous attenuation and homogenous velocity structure. The interstation attenuation and phase velocity dispersion curves are inverted from cross-correlations of the synthetic data. The method is then applied to triplets of stations from the regional southern California seismic network crossing the Mojave section of the San Andreas fault, and a dense linear array crossing the southern San Jacinto Fault zone. Bootstrap technique is used to derive empirical mean and confidence interval for the obtained inverse Q values. The results for the regional stations yield QR values around 25 for a frequency band 0.2-0.36 Hz. The results for the San Jacinto fault zone array give QR values of about 6-30 for frequencies in the range 15-25 Hz.
Provenzale, James M.; Isaacson, Jared; Chen, Steven; Stinnett, Sandra; Liu, Chunlei
2013-01-01
OBJECTIVE The purpose of our study was to correlate decrease in apparent diffusion coefficient (ADC) and increase in fractional anisotropy (FA) in various white matter (WM) regions using diffusion tenor imaging (DTI) within the first year of life. MATERIALS AND METHODS We performed DTI on 53 infants and measured FA and ADC within 10 WM regions important in brain development. For each region, we calculated the slope of ADC as a function of FA, the correlation coefficient (r) and correlation of determination (r2). We performed a group analysis of r values and r2 values for six WM regions primarily composed of crossing fibers and four regions primarily having parallel fibers. Upon finding that a strong correlation of FA with age existed, we adjusted for age and calculated partial correlation coefficients. RESULTS Slopes of FA versus ADC ranged from −1.00711 to −1.67592 (p < 0.05); r values ranged from −0.81 to −0.50 and r2 values from 0.25 to 0.66. The four greatest r2 values were within WM regions having large numbers of crossing fibers and the three lowest r2 values were in regions having predominantly parallel fibers. After adjusting for age, slopes ranged from −1.08095 to 0.09612 (p < 0.05 in five cases); partial correlation coefficients ranged from −0.49 to 0.03 and r2 values from 0.31 to 0.79. The highest partial correlation coefficients were then relatively equally distributed between the two types of WM regions. CONCLUSION In various regions, FA and ADC evolved with differing degrees of correlation. We found a strong influence of age on the relationship between FA and ADC. PMID:21098179
NASA Astrophysics Data System (ADS)
El-Khayatt, A. M.; Ali, A. M.; Singh, Vishwanath P.
2014-01-01
The mass attenuation coefficients, μ/ρ, total interaction cross-section, σt, and mean free path (MFP) of some Heavy Metal Oxides (HMO) glasses, with potential applications as gamma ray shielding materials, have been investigated using the MCNP-4C code. Appreciable variations are noted for all parameters by changing the photon energy and the chemical composition of HMO glasses. The numerical simulations parameters are compared with experimental data wherever possible. Comparisons are also made with predictions from the XCOM program in the energy region from 1 keV to 100 MeV. Good agreement noticed indicates that the chosen Monte Carlo method may be employed to make additional calculations on the photon attenuation characteristics of different glass systems, a capability particularly useful in cases where no analogous experimental data exist.
Evolution of the Magnetic Field Line Diffusion Coefficient and Non-Gaussian Statistics
NASA Astrophysics Data System (ADS)
Snodin, A. P.; Ruffolo, D.; Matthaeus, W. H.
2016-08-01
The magnetic field line random walk (FLRW) plays an important role in the transport of energy and particles in turbulent plasmas. For magnetic fluctuations that are transverse or almost transverse to a large-scale mean magnetic field, theories describing the FLRW usually predict asymptotic diffusion of magnetic field lines perpendicular to the mean field. Such theories often depend on the assumption that one can relate the Lagrangian and Eulerian statistics of the magnetic field via Corrsin’s hypothesis, and additionally take the distribution of magnetic field line displacements to be Gaussian. Here we take an ordinary differential equation (ODE) model with these underlying assumptions and test how well it describes the evolution of the magnetic field line diffusion coefficient in 2D+slab magnetic turbulence, by comparisons to computer simulations that do not involve such assumptions. In addition, we directly test the accuracy of the Corrsin approximation to the Lagrangian correlation. Over much of the studied parameter space we find that the ODE model is in fairly good agreement with computer simulations, in terms of both the evolution and asymptotic values of the diffusion coefficient. When there is poor agreement, we show that this can be largely attributed to the failure of Corrsin’s hypothesis rather than the assumption of Gaussian statistics of field line displacements. The degree of non-Gaussianity, which we measure in terms of the kurtosis, appears to be an indicator of how well Corrsin’s approximation works.
Optimal estimation of the diffusion coefficient from non-averaged and averaged noisy magnitude data
NASA Astrophysics Data System (ADS)
Kristoffersen, Anders
2007-08-01
The magnitude operation changes the signal distribution in MRI images from Gaussian to Rician. This introduces a bias that must be taken into account when estimating the apparent diffusion coefficient. Several estimators are known in the literature. In the present paper, two novel schemes are proposed. Both are based on simple least squares fitting of the measured signal, either to the median (MD) or to the maximum probability (MP) value of the Probability Density Function (PDF). Fitting to the mean (MN) or a high signal-to-noise ratio approximation to the mean (HS) is also possible. Special attention is paid to the case of averaged magnitude images. The PDF, which cannot be expressed in closed form, is analyzed numerically. A scheme for performing maximum likelihood (ML) estimation from averaged magnitude images is proposed. The performance of several estimators is evaluated by Monte Carlo (MC) simulations. We focus on typical clinical situations, where the number of acquisitions is limited. For non-averaged data the optimal choice is found to be MP or HS, whereas uncorrected schemes and the power image (PI) method should be avoided. For averaged data MD and ML perform equally well, whereas uncorrected schemes and HS are inadequate. MD provides easier implementation and higher computational efficiency than ML. Unbiased estimation of the diffusion coefficient allows high resolution diffusion tensor imaging (DTI) and may therefore help solving the problem of crossing fibers encountered in white matter tractography.
Ab initio calculation of oxygen self-diffusion coefficient in uranium dioxide UO2
NASA Astrophysics Data System (ADS)
Dorado, Boris; Garcia, Philippe; Torrent, Marc
Uranium dioxide UO2 is the most widely used nuclear fuel worldwide and its atomic transport properties are relevant to practically all engineering aspects of the material. Although transport properties have already been studied in UO2 by means of first-principles calculations, the ab initio determination of self-diffusion coefficients has up to now remained unreachable because the relevant computational tools were neither available or adapted. The present work reports our results related to the ab initio calculation of the oxygen self-diffusion coefficient in UO2. We first determine the Gibbs free energies of formation of oxygen charged defects by calculating both the electronic and vibrational (hence entropic) contributions. Then, we use the transition state theory in order to compute the effective jump frequency of the defects, which in turn provides us with the value of the pre-exponential factor. The results are compared to self-diffusion data obtained experimentally with a careful monitoring of the relevant thermodynamic conditions (oxygen partial pressure, temperature, impurity content).
Measuring partition and diffusion coefficients for volatile organic compounds in vinyl flooring
NASA Astrophysics Data System (ADS)
Cox, Steven S.; Zhao, Dongye; Little, John C.
Interactions between volatile organic compounds (VOCs) and vinyl flooring (VF), a relatively homogenous, diffusion-controlled building material, were characterized. The sorption/desorption behavior of VF was investigated using single-component and binary systems of seven common VOCs ranging in molecular weight from n-butanol to n-pentadecane. The simultaneous sorption of VOCs and water vapor by VF was also investigated. Rapid determination of the material/air partition coefficient ( K) and the material-phase diffusion coefficient ( D) for each VOC was achieved by placing thin VF slabs in a dynamic microbalance and subjecting them to controlled sorption/desorption cycles. K and D are shown to be independent of concentration for all of the VOCs and water vapor. For the four alkane VOCs studied, K correlates well with vapor pressure and D correlates well with molecular weight, providing a means to estimate these parameters for other alkane VOCs. While the simultaneous sorption of a binary mixture of VOCs is non-competitive, the presence of water vapor increases the uptake of VOCs by VF. This approach can be applied to other diffusion-controlled materials and should facilitate the prediction of their source/sink behavior using physically-based models.
The measurement of self-diffusion coefficients in liquid metals with quasielastic neutron scattering
NASA Astrophysics Data System (ADS)
Meyer, Andreas
2015-01-01
Quasielastic incoherent neutron scattering (QENS) has proven to be a versatile tool to study self diffusion of atoms in liquid metals. Here it is shown, that coherent contributions to the signal in the small q limit appear as a flat and energy independent constant to the QENS signal in single-component liquid metals even for systems with a small incoherent scattering cross section, like aluminum. Container-less processing via electromagnetic or electrostatic levitation devices, especially designed for QENS, enables the in-situ measurement on liquid metallic droplets of sizes between 5 mm to 10 mm in diameter. This gives access to the study of chemically reactive, refractory metallic melts and extends the accessible temperature range to undercoolings of several hundred Kelvin below the respective melting point. Compared to experiments using a thin-walled crucible giving hollow-cylindrical sample geometry it is shown that multiple scattering on levitated droplets is negligible for the analysis of the self-diffusion coefficient. QENS results of liquid germanium and 73germanium isotope mixtures, titanium, nickel, copper and aluminum are reviewed. The self-diffusion coefficients of these systems are best described by an Arrhenius-type temperature dependence around their respective melting points.
Measurement of Retinalamin diffusion coefficient in human sclera by optical spectroscopy
NASA Astrophysics Data System (ADS)
Genina, Elina A.; Bashkatov, Alexey N.; Zubkova, Elena A.; Kamenskikh, Tatiana G.; Tuchin, Valery V.
2008-12-01
The use of cytomedines (such as Retinalamin) in clinical practice has shown high effectiveness of the medicaments in ophthalmology. The study of diffusion of Retinalamin in scleral tissue is important for estimation of a drug dose delivered into inner tissue of eye, time of drug action, etc. In vitro measurements of spectral reflectance of sclera interacting with aqueous solution of Retinalamin have been carried out. Ten human sclera samples were included in the study. The results of the experiments have shown that penetration of Retinalamin into scleral tissue leads to the decrease of scleral reflectance due to optical immersion. Estimation of diffusion coefficient of studied solution has been made on the basis of analysis of optical reflectance dynamics of the sclera samples. The diffusion coefficient of Retinalamin in human scleral tissue was evaluated as (1.82±0.14)×10 -6 cm 2/s. The results are important for treatment of partial optic atrophy observed at primary open-angle glaucoma and others eye diseases.
NASA Astrophysics Data System (ADS)
Han, I.; Demir, L.
2009-01-01
The total mass attenuation coefficients ( μ m), for Cr, Fe, Ni and Fe xNi 1-x ( x = 0.8, 0.7, 0.6, 0.5, 0.4, 0.3 and 0.2), Fe xCr yNi 1-(x+y) ( x = 0.7, y = 0.1; x = 0.5, y = 0.2; x = 0.4, y = 0.3; x = 0.3, y = 0.3; x = 0.2, y = 0.2 and x = 0.1, y = 0.2) and Ni xCr 1-x ( x = 0.8, 0.6, 0.5, 0.4 and 0.2) alloys were measured at 22.1, 25.0, 59.5 and 88.0 keV photon energies. The samples were irradiated with 10 mCi Cd-109 and 100 mCi Am-241 radioactive point source using transmission arrangement. The γ- and X-rays were counted by a Si(Li) detector with a resolution of 160 eV at 5.9 keV. Total atomic and electronic cross-sections ( σ t and σ e), effective atomic and electron numbers ( Z eff and N eff) were determined experimentally and theoretically using the obtained mass attenuation coefficients for investigated 3d alloys. The theoretical mass attenuation coefficients of each alloy were estimated using mixture rule. The experimental values were compared with the calculated values for all samples.
Chen, Ruimin; Tsui, Po-Hsiang; Zhou, Qifa; Humayun, Mark S; Shung, K Kirk
2010-01-01
A cataract is a clouding of the lens in the eye that affects vision. Phacoemulsification is the mostly common surgical method for treating cataracts, and determining that the optimal phacoemulsification energy is dependent on measuring the hardness of the lens. This study explored the use of an ultrasound needle transducer for invasive measurements of ultrasound attenuation coefficient to evaluate the hardness of the cataract lens. A 47 MHz high-frequency needle transducer with a diameter of 0.9 mm was fabricated by a polarized PMN-33%PT single crystal in the present study. The attenuation coefficients at different stages of an artificial porcine cataract lens were measured using the spectral shift approach. The hardness of the cataract lens was also evaluated by mechanical measurement of its elastic properties. The results demonstrated that the ultrasonic attenuation coefficient was increased from 0.048 ± 0.02 to 0.520 ± 0.06 dB mm−1 MHz−1 corresponding to an increase in Young’s modulus from 6 ± 0.4 to 96 ± 6.2 kPa as the cataract further developed. In order to evaluate the feasibility of combining needle transducer and phacoemulsification probe for real-time measurement during cataract surgery, the needle transducer was mounted on the phacoemulsification probe for a vibration test. The results indicated that there was no apparent damage to the tip of the needle transducer and the pulse–echo test showed that a good performance in sensitivity was maintained after the vibration test. PMID:19759408
NASA Astrophysics Data System (ADS)
Huang, Chih-Chung; Chen, Ruimin; Tsui, Po-Hsiang; Zhou, Qifa; Humayun, Mark S.; Shung, K. Kirk
2009-10-01
A cataract is a clouding of the lens in the eye that affects vision. Phacoemulsification is the mostly common surgical method for treating cataracts, and determining that the optimal phacoemulsification energy is dependent on measuring the hardness of the lens. This study explored the use of an ultrasound needle transducer for invasive measurements of ultrasound attenuation coefficient to evaluate the hardness of the cataract lens. A 47 MHz high-frequency needle transducer with a diameter of 0.9 mm was fabricated by a polarized PMN-33%PT single crystal in the present study. The attenuation coefficients at different stages of an artificial porcine cataract lens were measured using the spectral shift approach. The hardness of the cataract lens was also evaluated by mechanical measurement of its elastic properties. The results demonstrated that the ultrasonic attenuation coefficient was increased from 0.048 ± 0.02 to 0.520 ± 0.06 dB mm-1 MHz-1 corresponding to an increase in Young's modulus from 6 ± 0.4 to 96 ± 6.2 kPa as the cataract further developed. In order to evaluate the feasibility of combining needle transducer and phacoemulsification probe for real-time measurement during cataract surgery, the needle transducer was mounted on the phacoemulsification probe for a vibration test. The results indicated that there was no apparent damage to the tip of the needle transducer and the pulse-echo test showed that a good performance in sensitivity was maintained after the vibration test.
NASA Astrophysics Data System (ADS)
Deb Nath, S. K.
2014-05-01
Diffusion of perfluoropolyethers (PFPEs) lubricants on a hard disk surface is an important self healing characteristic to replenish PFPEs lubricants on their uncovered surface. In the present paper, we study the diffusion coefficients of non-functional PFPE Z and PFPE Zdol with functional end groups as a function of lubricant film thickness on a thin DLC (diamond-like) film. Diffusion coefficients of PFPE Z and PFPE Zdol molecules on a DLC film are calculated using the equation of Einstein's law of diffusion (Guo et al. J. Appl. Phys 93:8707, 2003; Guo Ph.D. thesis, 2006; Chung et al. IEEE Trans. Magn. 45:3644, 2009) considering the movement of their center of mass to reach their equilibrium positions from their original configurations. And it is averaged with the film thickness to show the thickness dependence on the diffusion of PFPEs lubricants on a DLC substrate. Firstly diffusion coefficients of sub-monolayer of partially coverage PFPE Z and PFPE Zdol on a DLC substrate are studied briefly and secondly the diffusion coefficient of monolayer PFPE Zdol on a DLC substrate is also studied elaborately. To support our results, we compare our thickness-dependent diffusion coefficients of PFPE Z and PFPE Zdol with those of published theoretical (Guo Ph.D. thesis, 2006; Chung et al. IEEE Trans. Magn. 45:3644, 2009) and experimental results (Chung et al. Tribol. Lett. 32:35, 2008; Ma et al. Tribol. Lett. 10:203, 2001). Here we study how lubricant film thickness plays an important role on its diffusion. Effects of polar end bead functionality, lubricant film thickness enhance the anisotropic behavior of diffusion coefficients of PFPE Zdol on the DLC substrate. But in the present analysis we consider hard disk carbon overcoat as a thin DLC film and we include all of their atoms within the force cut-off distance with PFPEs lubricant molecules for the interactions to study the thickness dependence on their diffusion coefficients.
Effective atomic number and mass attenuation coefficient of PbO-BaO-B2O3 glass system
NASA Astrophysics Data System (ADS)
Issa, Shams A. M.
2016-03-01
Gamma-rays attenuation coefficient, half-value layer, mean free path, effective atomic number and electron density have been measured in glass system of xPbO-(50-x) BaO-50B2O3 (where 5≤x≤45 mol%) for gamma ray photon energies of 0.356, 0.662, 1.173 and 1.33 MeV. The emitted gamma ray was detected by 3×3 in. NaI(Tl) scintillation gamma ray spectrometers. The results were found in good agreement with the theoretical values which calculated from WinXcom.
NASA Astrophysics Data System (ADS)
Kumar, Sandeep; Singh, Sukhpal
2016-05-01
Five samples of Bismuth-Ground granulated blast furnace slag (Bi-GGBFS) concretes were prepared using composition (0.6 cement + x Bi2O3 + (0.4-x) GGBFS, x = 0.05, 0.10, 0.15, 0.20 and 0.25) by keeping constant water (W) cement (C) ratio. Mass attenuation coefficients (μm) of these prepared samples were calculated using a computer program winXCOM at different gamma ray energies, whereas effective atomic numbers (Zeff) is calculated using mathematical formulas. The radiation shielding properties of Bi-GGBFS concrete has been compared with standard radiation shielding concretes.
Autrey, S Thomas ); Camaioni, Donald M. ); Kandanarachchi, Pramod H.; Franz, James A. )
2000-12-01
The diffusion coefficients of a benzyl-, sec-phenethyl-, and diphenylmethyl alcohol and the corresponding aryl carbonyls (benzaldehyde, acetophenone and benzophenone) were measured by Taylor's dispersion method in both ethyl and isopropyl alcohol. The experimental values are compared to published transient grating measurements of the corresponding aryl ketyl radicals (benzyl-, sec-phenethyl-, and diphenylmethyl-ketyl radical). In general, the diffusion coefficient of the aryl alcohols and the corresponding aryl ketyl radicals are equivalent within experimental error. This work shows that the diffusion of ketyl radicals is not anomalously slow and that aryl alcohols are significantly better models than the corresponding aryl ketones for analyzing the diffusion of aryl ketyl radicals in both ethyl and isopropyl alcohol. Empirical estimates of the diffusion coefficients of aryl alcohols using the Spernol-Wirtz and Wilke-Chang modifications to the Stokes-Einstein diffusion equation do not adequately account for the interactions between the aryl ketyl radicals or aryl alcohols with the hydroxylic solvents ethyl and isopropyl alcohol. The excellent agreement between the experimental diffusion coefficients of the aryl alcohols and the corresponding ketyl radicals show that the transient grating method can provide accurate estimates for the diffusion coefficients of transient species. This is especially important when a stable model is not available, for example the pyranyl radical.
NASA Astrophysics Data System (ADS)
Pichardo, Samuel; Sin, Vivian W.; Hynynen, Kullervo
2011-01-01
For medical applications of ultrasound inside the brain, it is necessary to understand the relationship between the apparent density of skull bone and its corresponding speed of sound and attenuation coefficient. Although there have been previous studies exploring this phenomenon, there is still a need to extend the measurements to cover more of the clinically relevant frequency range. The results of measurements of the longitudinal speed of sound and attenuation coefficient are presented for specimens of human calvaria. The study was performed for the frequencies of 0.27, 0.836, 1.402, 1.965 and 2.525 MHz. Specimens were obtained from fresh cadavers through a protocol with the Division of Anatomy of the University of Toronto. The protocol was approved by the Research Ethics Board of Sunnybrook Health Sciences Centre. The specimens were mounted in polycarbonate supports that were marked for stereoscopic positioning. Computer tomography (CT) scans of the skulls mounted on their supports were performed, and a three-dimensional skull surface was reconstructed. This surface was used to guide a positioning system to ensure the normal sound incidence of an acoustic signal. This signal was produced by a focused device with a diameter of 5 cm and a focal length of 10 cm. Measurements of delay in time of flight were carried out using a needle hydrophone. Measurements of effective transmitted energy were carried out using a radiation force method with a 10 µg resolution scale. Preliminary functions of speed of sound and attenuation coefficient, both of which are related to apparent density, were established using a multi-layer propagation model that takes into account speed of sound, density and thickness of the layer. An optimization process was executed from a large set of random functions and the best functions were chosen for those ones that closest reproduced the experimental observations. The final functions were obtained after a second pass of the optimization
Miyoshi, Hirofumi
1999-01-01
Donnan dialysis with ion-exchange membranes was studied under various kinds of experimental conditions using ions of different valences. The diffusion coefficients (D{sub d}) of various kinds of ions in the ion-exchange membrane were obtained by curve fitting an equation derived from the mass balance to three kinds of Donnan dialytic experiments. It was found that the value of D{sub d}/D{sub s} using D{sub d} of monovalent ions in Donnan dialysis with a set of monovalent feed ions and bivalent driving ions was 1/175, where D{sub s} represents a diffusion coefficient in solution. D{sub s} was calculated from the Nernst-Einstein equation substituted by the ionic conductance of ions at infinite dilution in water. Using D{sub d} of bivalent ions in Donnan dialysis with the same set led to a D{sub d}/D{sub s} value of 1/438. Moreover, using D{sub d} in Donnan dialysis with the same set, the value of D{sub d}/D{sub e} was kept constant at 0.4 (D{sub e} expresses the diffusion coefficient in the membrane when the valences of the feed and driving ions are equal). On the other hand, both D{sub d}/D{sub s} and D{sub d}/D{sub e} using D{sub d} in Donnan dialysis with a set of bivalent feed ions and monovalent driving ions were not constant.
NASA Technical Reports Server (NTRS)
Goldstein, M. L.
1977-01-01
In a study of cosmic ray propagation in interstellar and interplanetary space, a perturbed orbit resonant scattering theory for pitch angle diffusion in a slab model of magnetostatic turbulence is slightly generalized and used to compute the diffusion coefficient for spatial propagation parallel to the mean magnetic field. This diffusion coefficient has been useful for describing the solar modulation of the galactic cosmic rays, and for explaining the diffusive phase in solar flares in which the initial anisotropy of the particle distribution decays to isotropy.
Thomas, Franziska A; Visco, Ilaria; Petrášek, Zdeněk; Heinemann, Fabian; Schwille, Petra
2015-12-01
Recently, a new and versatile assay to determine the partitioning coefficient [Formula: see text] as a measure for the affinity of peripheral membrane proteins for lipid bilayers was presented in the research article entitled, "Introducing a fluorescence-based standard to quantify protein partitioning into membranes" [1]. Here, the well-characterized binding of hexahistidine-tag (His6) to NTA(Ni) was utilized. Complementarily, this data article reports the average diffusion coefficient [Formula: see text] of His6-tagged enhanced green fluorescent protein (eGFP-His6) and the fluorescent lipid analog ATTO-647N-DOPE in giant unilamellar vesicles (GUVs) containing different amounts of NTA(Ni) lipids. In addition, dissociation constants [Formula: see text] of the NTA(Ni)/eGFP-His6 system are reported. Further, a conversion between [Formula: see text] and [Formula: see text] is provided. PMID:26587560
Integral formula for the effective diffusion coefficient in two-dimensional channels.
Kalinay, Pavol
2016-07-01
The effective one-dimensional description of diffusion in two-dimensional channels of varying cross section is revisited. The effective diffusion coefficient D(x), extending Fick-Jacobs equation, depending on the longitudinal coordinate x, is derived here without use of scaling of the transverse coordinates. The result of the presented method is an integral formula for D(x), calculating its value at x as an integral of contributions from the neighboring positions x^{'} depending on h(x^{'}), a function shaping the channel. Unlike the standard formulas based on the scaling, the new proposed formula also describes D(x) correctly near the cusps, or in wider channels. PMID:27575072
NASA Astrophysics Data System (ADS)
Wu, Yan; Duan, Guosheng; Zhao, Xiang
2015-03-01
Effects of magnetic field intensity on carbon diffusion coefficient in pure iron in the γ-Fe temperature region were investigated using carburizing technology. The carbon penetration profiles from the iron surface to interior were measured by field emission electron probe microanalyzer. The carbon diffusion coefficient in pure iron carburized with different magnetic field intensities was calculated according to the Fick's second law. It was found that the magnetic field intensity could obviously affect the carbon diffusion coefficient in pure iron in the γ-Fe temperature region, and the carbon diffusion coefficient decreased obviously with the enhancement of magnetic field intensity, when the magnetic field intensity was higher than 1 T, the carbon diffusion coefficient in field annealed specimen was less than half of that of the nonfield annealed specimen, further enhancing the magnetic field intensity, the carbon diffusion coefficient basically remains unchanged. The stiffening of lattice due to field-induced magnetic ordering was responsible for an increase in activation barrier for jumping carbon atoms. The greater the magnetic field intensity, the stronger the inhibiting effect of magnetic field on carbon diffusion.
Sanford, R.F.
1982-01-01
Geological examples of binary diffusion are numerous. They are potential indicators of the duration and rates of geological processes. Analytical solutions to the diffusion equations generally do not allow for variable diffusion coefficients, changing boundary conditions, and impingement of diffusion fields. The three programs presented here are based on Crank-Nicholson finite-difference approximations, which can take into account these complicating factors. Program 1 describes the diffusion of a component into an initially homogeneous phase that has a constant surface composition. Specifically it is written for Fe-Mg exchange in olivine at oxygen fugacities appropriate for the lunar crust, but other components, phases, or fugacities may be substituted by changing the values of the diffusion coefficient. Program 2 simulates the growth of exsolution lamellae. Program 3 describes the growth of reaction rims. These two programs are written for pseudobinary Ca-(Mg, Fe) exchange in pyroxenes. In all three programs, the diffusion coefficients and boundary conditions can be varied systematically with time. To enable users to employ widely different numerical values for diffusion coefficients and diffusion distance, the grid spacing in the space dimension and the increment by which the grid spacing in the time dimension is increased at each time step are input constants that can be varied each time the programs are run to yield a solution of the desired accuracy. ?? 1982.
The diffusive logistic equation with a free boundary and sign-changing coefficient
NASA Astrophysics Data System (ADS)
Wang, Mingxin
2015-02-01
This short paper concerns a diffusive logistic equation with a free boundary and sign-changing coefficient, which is formulated to study the spread of an invasive species, where the free boundary represents the expanding front. A spreading-vanishing dichotomy is derived, namely the species either successfully spreads to the right-half-space as time t → ∞ and survives (persists) in the new environment, or it fails to establish itself and will extinct in the long run. The sharp criteria for spreading and vanishing are also obtained. When spreading happens, we estimate the asymptotic spreading speed of the free boundary.
Sterling, Sarah M.; Allgeyer, Edward S.; Fick, Jörg; Prudovsky, Igor; Mason, Michael D.; Neivandt, David J.
2013-01-01
Model cellular membranes enable the study of biological processes in a controlled environment and reduce the traditional challenges associated with live or fixed cell studies. However, model membrane systems based on the air/water or oil/solution interface do not allow for incorporation of transmembrane proteins, or for the study of protein transport mechanisms. Conversely, a phospholipid bilayer deposited via the Langmuir-Blodgett/Langmuir Schaefer method on a hydrogel layer is potentially an effective mimic of the cross-section of a biological membrane, and facilitates both protein incorporation and transport studies. Prior to application, however, such membranes must be fully characterized, particularly with respect to the phospholipid bilayer phase transition temperature. Here we present a detailed characterization of the phase transition temperature of the inner and outer leaflets of a chitosan supported model membrane system. Specifically, the lateral diffusion coefficient of each individual leaflet has been determined as a function of temperature. Measurements were performed utilizing z-scan fluorescence correlation spectroscopy (FCS), a technique that yields calibration-free diffusion information. Analysis via the method of Wawrezinieck and coworkers, revealed that phospholipid diffusion changes from raft-like to free diffusion as the temperature is increased; an insight into the dynamic behavior of hydrogel supported membranes not previously reported. PMID:23705855
Xu, Jing; Zhang, Jianshun S; Liu, Xiaoyu; Gao, Zhi
2012-06-01
The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50%, and 70% RH). The "green" materials contained recycled materials and were friendly to environment. A dynamic dual-chamber test method was used. Results showed that a higher relative humidity led to a larger effective diffusion coefficient for two kinds of wallboards and carpet. The carpet was also found to be very permeable resulting in an effective diffusion coefficient at the same order of magnitude with the formaldehyde diffusion coefficient in air. The partition coefficient (K(ma)) of formaldehyde in conventional wallboard was 1.52 times larger at 50% RH than at 20% RH, whereas it decreased slightly from 50% to 70% RH, presumably due to the combined effects of water solubility of formaldehyde and micro-pore blocking by condensed moisture at the high RH level. The partition coefficient of formaldehyde increased slightly with the increase of relative humidity in "green" wallboard and "green" carpet. At the same relative humidity level, the "green" wallboard had larger partition coefficient and effective diffusion coefficient than the conventional wallboard, presumably due to the micro-pore structure differences between the two materials. The data generated could be used to assess the sorption effects of formaldehyde on building materials and to evaluate its impact on the formaldehyde concentration in buildings. PMID:22788105
Lateral diffusivity coefficients from the dynamics of a SF6 patch in a coastal environment
NASA Astrophysics Data System (ADS)
Kersalé, M.; Petrenko, A. A.; Doglioli, A. M.; Nencioli, F.; Bouffard, J.; Blain, S.; Diaz, F.; Labasque, T.; Quéguiner, B.; Dekeyser, I.
2016-01-01
The dispersion of a patch of the tracer sulfur hexafluoride (SF6) is used to assess the lateral diffusivity in the coastal waters of the western part of the Gulf of Lion (GoL), northwestern Mediterranean Sea, during the Latex10 experiment (September 2010). Immediately after the release, the spreading of the patch is associated with a strong decrease of the SF6 concentrations due to the gas exchange from the ocean to the atmosphere. This has been accurately quantified, evidencing the impact of the strong wind conditions during the first days of this campaign. Few days after the release, as the atmospheric loss of SF6 decreased, lateral diffusivity coefficient at spatial scales of 10 km has been computed using two approaches. First, the evolution of the patch with time was combined with a diffusion-strain model to obtain estimates of the strain rate (γ = 2.5 10- 6 s- 1) and of the lateral diffusivity coefficient (Kh = 23.2 m2 s- 1). Second, a steady state model was applied, showing Kh values similar to the previous method after a period of adjustment between 2 and 4.5 days. This implies that after such period, our computation of Kh becomes insensitive to the inclusion of further straining of the patch. Analysis of sea surface temperature satellite imagery shows the presence of a strong front in the study area. The front clearly affected the dynamics within the region and thus the temporal evolution of the patch. Our results are consistent with previous studies in open ocean and demonstrate the success and feasibility of those methods also under small-scale, rapidly-evolving dynamics typical of coastal environments.
Shiva, Amir Houshang; Teasdale, Peter R; Bennett, William W; Welsh, David T
2015-08-12
A systematic comparison of the diffusion coefficients of cations (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) and oxyanions (Al, As, Mo, Sb, V, W) in open (ODL) and restricted (RDL) diffusive layers used by the DGT technique was undertaken. Diffusion coefficients were measured using both the diffusion cell (Dcell) method at pH 4.00 and the DGT time-series (D(DGT)) method at pH 4.01 and 7.04 (pH 8.30 was used instead of 7.04 for Al) using the Chelex-Metsorb mixed binding layer. The performance of Chelex-Metsorb as a new DGT binding layer for Al uptake was also evaluated for the first time. Reasonable agreement was observed between D(cell) and D(DGT) measurements for both ODL and RDL, except for V and W. The ratios of D(cell)/D(DGT) for V of 0.44 and 0.39, and for W of 0.66 and 0.63 with ODL and RDL respectively, were much lower due to the formation of a high proportion of polyoxometalate species at the higher concentrations required with the D(cell) measurements. This is the first time that D values have been reported for several oxyanions using RDL. Except for Al at pH 8.30 with ODL, all D(DGT) measurements were retarded relative to diffusion coefficients in water (DW) for both diffusive hydrogels. Diffusion in RDL was further retarded compared with ODL, for all elements (0.66-0.78) with both methods. However, the degree of retardation observed changed for cations and anions at each pH. At pH 7.04 cations had a slightly higher D(DGT) and oxyanions had a slightly lower D(DGT) than at pH 4.01 for both ODL and RDL. It is proposed that this is due to partial formation of acrylic acid functional groups (pKa ≈4.5), which would be fully deprotonated at pH 7.04 (negative) and mostly protonated at pH 4.01 (neutral). As Al changes from being cationic at pH 4.01 to anionic at pH 8.30 the results were more complex. PMID:26320970
Alonso de Mezquia, David; Wang, Zilin; Lapeira, Estela; Klein, Michael; Wiegand, Simone; Mounir Bou-Ali, M
2014-11-01
In this study, the thermodiffusion, molecular diffusion, and Soret coefficients of 12 binary mixtures composed of toluene, n-hexane and n-dodecane in the whole range of concentrations at atmospheric pressure and temperatures of 298.15 K and 308.15 K have been determined. The experimental measurements have been carried out using the Thermogravitational Column, the Sliding Symmetric Tubes and the Thermal Diffusion Forced Rayleigh Scattering techniques. The results obtained using the different techniques show a maximum deviation of 9% for the thermodiffusion coefficient, 8% for the molecular diffusion coefficient and 2% for the Soret coefficient. For the first time we report a decrease of the thermodiffusion coefficient with increasing ratio of the thermal expansion coefficient and viscosity for a binary mixture of an organic ring compound with a short n-alkane. This observation is discussed in terms of interactions between the different components. Additionally, the thermogravitational technique has been used to measure the thermodiffusion coefficients of four ternary mixtures consisting of toluene, n-hexane and n-dodecane at 298.15 K. In order to complete the study, the values obtained for the molecular diffusion coefficient in binary mixtures, and the thermodiffusion coefficient of binary and ternary mixtures have been compared with recently derived correlations. PMID:25376978
The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...
The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...
Energy Science and Technology Software Center (ESTSC)
1985-10-10
MARCOPOLO calculates the radial and axial diffusion coefficients in one-group and multi-group theory for a cylinderized cell (Wigner-Seitz theory) with several concentric zones according to the isotropic shock or linear anisotropic shock hypotheses.
NASA Astrophysics Data System (ADS)
Yoshida, Masayuki; Morooka, Masami; Takahashi, Manabu; Tomokage, Hajime
2000-05-01
Based on the pair diffusion models of vacancy and interstitial (V and I) mechanisms, the V and I components of effective P diffusion coefficient, DP^+,Veff and DP^+,Ieff, and the controlling process of P diffusion in Si are obtained. Assuming that the I mechanism is dominant, not only the I- concentration, CI^-, but also its gradient, d CI^-/d λ , is effective on DP^+,Ieff at high CP^+. DP^+,Ieff is large at d CI^-/d λ <0 and small at d CI^-/d λ >0. P+ and I- are generated by the dissociation of P-I pair. When excess I- thus generated is removed, d CI^-/d λ <0 is obtained. d CI^-/d λ <0 is also obtained by the decrease in quasi self-interstitial formation energy. Several diffusion models simulate the P diffusion profile well under an inert atmosphere. Applying the controlling process to them, the reason why they simulate the P profile well is investigated. Because all of them simulate the P profile well, it is difficult to conclude which model is correct. It is suggested that it is possible to conclude which model is correct from the P profile under oxidation at CP^+s >1× 1020 cm-3 (s: surface).
Damla, Nevzat; Cevik, Uğur; Kobya, Ali Ihsan; Celik, Ahmet; Celik, Necati
2010-11-01
The activity concentrations of 226Ra, 232Th, and 40K in lime and gypsum samples used as building materials in Turkey were measured using gamma spectrometry. The mean activity concentrations of 226Ra, 232Th, and 40K were found to be 38±16, 20±9, and 156±54 Bq kg(-1) for lime and found to be 17±6, 13±5, and 429±24 Bq kg(-1) for gypsum, respectively. The radiological hazards due to the natural radioactivity in the samples were inferred from calculations of radium equivalent activities (Raeq), indoor absorbed dose rate in the air, the annual effective dose, and gamma and alpha indices. These radiological parameters were evaluated and compared with the internationally recommended limits. The experimental mass attenuation coefficients (μ/ρ) of the samples were determined in the energy range 81-1,332 keV. The experimental mass attenuation coefficients were compared with theoretical values obtained using XCOM. It is found that the calculated values and the experimental results are in good agreement. PMID:19921450
NASA Astrophysics Data System (ADS)
Yılmaz, Demet; Boydaş, Elif; Cömert, Esra
2016-08-01
In this study, we aimed to determine mass attenuation coefficient (μm) and effective atomic number (Zeff) for some compounds of the 3d transition elements such as CoO, CoF2, CoF3, Cr2O3, CrF2, CrF3, FeO, Fe2O3, MnO2, TiO2, V2O3, VF3, V2O5, VF4 and ZnO at 19.63 and 22.10 keV photon energies by using an HPGe detector with a resolution of 182 eV at 5.9 keV. The experimental results of μm are compared with the theoretical results. Also, effective atomic numbers of compounds of the 3d transition elements have been determined by using experimental and theoretical mass attenuation coefficients. The agreement of measured values of effective atomic numbers with theoretical calculations is quite satisfactory.
NASA Astrophysics Data System (ADS)
Farajnezhad, Arsalan; Asef Afshar, Orang; Asgarpour Khansary, Milad; Shirazian, Saeed
2016-07-01
The free volume theory has found practical application for prediction of diffusional behavior of polymer/solvent systems. In this paper, reviewing free volume theory, binary mutual diffusion coefficients in some polymer/solvent systems have been systematically presented through chemical thermodynamic modeling in terms of both activity coefficients and fugacity coefficients models. Here chemical thermodynamic model of compressible regular solution (CRS) was used for evaluation of diffusion coefficients calculations as the pure component properties would be required only. Four binary polymeric solutions of cyclohexane/polyisobutylene, n-pentane/polyisobutylene, toluene/polyisobutylene and chloroform/polyisobutylene were considered. The agreement between calculated data and the experimentally collected data was desirable and no considerable error propagation in approximating mutual diffusion coefficients has been observed.
Shalchi, A.; Danos, R. J.
2013-03-10
A spatially varying mean magnetic field gives rise to so-called adiabatic focusing of energetic particles propagating through the universe. In the past, different analytical approaches have been proposed to calculate the particle diffusion coefficient along the mean field with focusing. In the present paper, we show how these different results are related to each other. New results for the parallel diffusion coefficient that are more general than previous results are also presented.
NASA Astrophysics Data System (ADS)
Wu, Dan; Lu, Wanjun
2015-04-01
Injecting CO2 into lean-oil reservoirs is not only a way to geological storage but also enhanced oil recovery. In the secondary displacements of oil reservoir by CO2-injection, diffusion coefficients and solubility of CO2 are key parameters to calculate the volume of CO2 injected and the time to achieve the desired viscosity in the numerical simulation. Unfortunately, the experimental data on the CO2 diffusion coefficient and solubility in liquid hydrocarbons under high pressure conditions are scarce. Hexadecane has properties similar to the average properties of Brazilian heavy oil. Experimental data on the diffusion coefficients and solubility of CO2 in hexadecane were reviewed by Nieuwoudt and Rand (2002), Rincon and Trejo (2001) and Breman et al (1994), indicating that the data in the literature were limited at relatively low temperatures and/or low pressures. In this paper, the diffusion coefficients of carbon dioxide in hexadecane at different temperature and pressure were determined with in situ Raman spectroscopy. A model was established to describe relationship among diffusion coefficients, temperature, and pressure. The solubility of CO2 in hexadecane was obtained from 298.15 to 473.15 K and 10 to 45 MPa. The experimental results show that:(1) Solubility of CO2 decreases with increasing temperature.(2) Increasing pressure increases the CO2 solubility. in terms of the degree of influence,100K is similar with 10MPa.(3) Diffusion coefficients of CO2 increases with increasing temperature. (4) Increasing pressure decreases the CO2 diffusion coefficients, whereas the pressure effect on CO2 diffusion coefficients is very weak. Compared with traditional sampling and analytical methods, the advantages of our method include: (1) the use of in situ Raman signals for solubility measurements eliminates possible uncertainty caused by sampling and ex situ analysis. (2) it is simple and efficient, and (3) high-pressure data can be obtained safely.
Seismic attenuation: effects of interfacial impedance on wave-induced pressure diffusion
NASA Astrophysics Data System (ADS)
Qi, Qiaomu; Müller, Tobias M.; Rubino, J. Germán
2014-12-01
Seismic attenuation and dispersion in layered sedimentary structures are often interpreted in terms of the classical White model for wave-induced pressure diffusion across the layers. However, this interlayer flow is severely dependent on the properties of the interface separating two layers. This interface behaviour can be described by a pressure jump boundary condition involving a non-vanishing interfacial impedance. In this paper, we incorporate the interfacial impedance into the White model by solving a boundary value problem in the framework of quasi-static poroelasticity. We show that the White model predictions for attenuation and dispersion substantially change. These changes can be attributed to petrophysically plausible scenarios such as imperfect hydraulic contacts or the presence of capillarity.
NASA Astrophysics Data System (ADS)
Ladefoged, Claes N.; Benoit, Didier; Law, Ian; Holm, Søren; Kjær, Andreas; Højgaard, Liselotte; Hansen, Adam E.; Andersen, Flemming L.
2015-10-01
The reconstruction of PET brain data in a PET/MR hybrid scanner is challenging in the absence of transmission sources, where MR images are used for MR-based attenuation correction (MR-AC). The main challenge of MR-AC is to separate bone and air, as neither have a signal in traditional MR images, and to assign the correct linear attenuation coefficient to bone. The ultra-short echo time (UTE) MR sequence was proposed as a basis for MR-AC as this sequence shows a small signal in bone. The purpose of this study was to develop a new clinically feasible MR-AC method with patient specific continuous-valued linear attenuation coefficients in bone that provides accurate reconstructed PET image data. A total of 164 [18F]FDG PET/MR patients were included in this study, of which 10 were used for training. MR-AC was based on either standard CT (reference), UTE or our method (RESOLUTE). The reconstructed PET images were evaluated in the whole brain, as well as regionally in the brain using a ROI-based analysis. Our method segments air, brain, cerebral spinal fluid, and soft tissue voxels on the unprocessed UTE TE images, and uses a mapping of R2* values to CT Hounsfield Units (HU) to measure the density in bone voxels. The average error of our method in the brain was 0.1% and less than 1.2% in any region of the brain. On average 95% of the brain was within ±10% of PETCT, compared to 72% when using UTE. The proposed method is clinically feasible, reducing both the global and local errors on the reconstructed PET images, as well as limiting the number and extent of the outliers.
Ladefoged, Claes N; Benoit, Didier; Law, Ian; Holm, Søren; Kjær, Andreas; Højgaard, Liselotte; Hansen, Adam E; Andersen, Flemming L
2015-10-21
The reconstruction of PET brain data in a PET/MR hybrid scanner is challenging in the absence of transmission sources, where MR images are used for MR-based attenuation correction (MR-AC). The main challenge of MR-AC is to separate bone and air, as neither have a signal in traditional MR images, and to assign the correct linear attenuation coefficient to bone. The ultra-short echo time (UTE) MR sequence was proposed as a basis for MR-AC as this sequence shows a small signal in bone. The purpose of this study was to develop a new clinically feasible MR-AC method with patient specific continuous-valued linear attenuation coefficients in bone that provides accurate reconstructed PET image data. A total of 164 [(18)F]FDG PET/MR patients were included in this study, of which 10 were used for training. MR-AC was based on either standard CT (reference), UTE or our method (RESOLUTE). The reconstructed PET images were evaluated in the whole brain, as well as regionally in the brain using a ROI-based analysis. Our method segments air, brain, cerebral spinal fluid, and soft tissue voxels on the unprocessed UTE TE images, and uses a mapping of R(*)2 values to CT Hounsfield Units (HU) to measure the density in bone voxels. The average error of our method in the brain was 0.1% and less than 1.2% in any region of the brain. On average 95% of the brain was within ±10% of PETCT, compared to 72% when using UTE. The proposed method is clinically feasible, reducing both the global and local errors on the reconstructed PET images, as well as limiting the number and extent of the outliers. PMID:26422177
Effect of cation on diffusion coefficient of ionic liquids at onion-like carbon electrodes.
Van Aken, Katherine L; McDonough, John K; Li, Song; Feng, Guang; Chathoth, Suresh M; Mamontov, Eugene; Fulvio, Pasquale F; Cummings, Peter T; Dai, Sheng; Gogotsi, Yury
2014-07-16
While most supercapacitors are limited in their performance by the stability of the electrolyte, using neat ionic liquids (ILs) as the electrolyte can expand the voltage window and temperature range of operation. In this study, ILs with bis(trifluoromethylsulfonyl)imide (Tf2N) as the anion were investigated as the electrolyte in onion-like carbon-based electrochemical capacitors. To probe the influence of cations on the electrochemical performance of supercapacitors, three different cations were used: 1-ethyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium and 1,6-bis(3-methylimidazolium-1-yl). A series of electrochemical characterization tests was performed using cyclic voltammetry (CV), galvanostatic cycling and electrochemical impedance spectroscopy (EIS). Diffusion coefficients were measured using EIS and correlated with quasielastic neutron scattering and molecular dynamics simulation. These three techniques were used in parallel to confirm a consistent trend between the three ILs. It was found that the IL with the smaller sized cation had a larger diffusion coefficient, leading to a higher capacitance at faster charge-discharge rates. Furthermore, the IL electrolyte performance was correlated with increasing temperature, which limited the voltage stability window and led to the formation of a solid electrolyte interphase on the carbon electrode surface, evident in both the CV and EIS experiments. PMID:24920163
Computing the blood brain barrier (BBB) diffusion coefficient: A molecular dynamics approach
NASA Astrophysics Data System (ADS)
Shamloo, Amir; Pedram, Maysam Z.; Heidari, Hossein; Alasty, Aria
2016-07-01
Various physical and biological aspects of the Blood Brain Barrier (BBB) structure still remain unfolded. Therefore, among the several mechanisms of drug delivery, only a few have succeeded in breaching this barrier, one of which is the use of Magnetic Nanoparticles (MNPs). However, a quantitative characterization of the BBB permeability is desirable to find an optimal magnetic force-field. In the present study, a molecular model of the BBB is introduced that precisely represents the interactions between MNPs and the membranes of Endothelial Cells (ECs) that form the BBB. Steered Molecular Dynamics (SMD) simulations of the BBB crossing phenomenon have been carried out. Mathematical modeling of the BBB as an input-output system has been considered from a system dynamics modeling viewpoint, enabling us to analyze the BBB behavior based on a robust model. From this model, the force profile required to overcome the barrier has been extracted for a single NP from the SMD simulations at a range of velocities. Using this data a transfer function model has been obtained and the diffusion coefficient is evaluated. This study is a novel approach to bridge the gap between nanoscale models and microscale models of the BBB. The characteristic diffusion coefficient has the nano-scale molecular effects inherent, furthermore reducing the computational costs of a nano-scale simulation model and enabling much more complex studies to be conducted.
Double obstacle phase field approach to an inverse problem for a discontinuous diffusion coefficient
NASA Astrophysics Data System (ADS)
Deckelnick, Klaus; Elliott, Charles M.; Styles, Vanessa
2016-04-01
We propose a double obstacle phase field approach to the recovery of piece-wise constant diffusion coefficients for elliptic partial differential equations. The approach to this inverse problem is that of optimal control in which we have a quadratic fidelity term to which we add a perimeter regularization weighted by a parameter σ. This yields a functional which is optimized over a set of diffusion coefficients subject to a state equation which is the underlying elliptic PDE. In order to derive a problem which is amenable to computation the perimeter functional is relaxed using a gradient energy functional together with an obstacle potential in which there is an interface parameter ɛ. This phase field approach is justified by proving {{Γ }}- convergence to the functional with perimeter regularization as ε \\to 0. The computational approach is based on a finite element approximation. This discretization is shown to converge in an appropriate way to the solution of the phase field problem. We derive an iterative method which is shown to yield an energy decreasing sequence converging to a discrete critical point. The efficacy of the approach is illustrated with numerical experiments.
A simple method for the determination of ionic diffusion coefficients in flooded soils
NASA Astrophysics Data System (ADS)
Gardner, P. J.; Flynn, N.; Maltby, E.
2001-02-01
Soil cores from river marginal wetlands from the Torridge and Severn catchments in the UK were collected to study rates of soil denitrification at different sites and at two stations (levee and backplain depression) at the river margin. Half the cores were sterilized prior to flooding to destroy the denitrifying bacteria. After flooding and equilibration, monitoring the concentration of amended nitrate in the supernatant of the sterile cores over a period of 7 days provided a simple procedure for the estimation of the diffusion coefficient of the nitrate ion in the flooded soils. An expression was developed that permitted this diffusion coefficient to be extracted from the slope of a plot of supernatant concentration versus (time)1/2. The values obtained, at 15 °C, varied from 2·4 to 6·8 × 10-10m2s-1. Sterile cores are usually treated as controls in denitrification experiments; this work develops a procedure whereby they may yield useful soil process information.
In-situ estimate of submesoscale horizontal eddy diffusion coefficients across a front
NASA Astrophysics Data System (ADS)
Nencioli, Francesco; d'Ovidio, Francesco; Doglioli, Andrea; Petrenko, Anne
2013-04-01
Fronts, jets and eddies are ubiquitous features of the world oceans, and play a key role in regulating energy budget, heat transfer, horizontal and vertical transport, and biogeochemical processes. Although recent advances in computational power have favored the analysis of mesoscale and submesoscale dynamics from high-resolution numerical simulations, studies from in-situ observations are still relatively scarce. The small dimensions and short duration of such structures still pose major challenges for fine-scale dedicated field experiments. As a consequence, in-situ quantitative estimates of key physical parameters for high-resolution numerical models, such as horizontal eddy diffusion coefficients, are still lacking. The Latex10 campaign (September 1-24, 2010), within the LAgrangian Transport EXperiment (LATEX), adopted an adaptive sampling strategy that included satellite data, ship-based current measurements, and iterative Lagrangian drifter releases to successfully map coherent transport structures in the western Gulf of Lion. Comparisons with AVHRR imagery evidenced that the detected structures were associated with an intense frontal feature, originated by the convergence and subsequent stirring of colder coastal waters with warmer open-sea waters. We present a method for computing horizontal eddy diffusion coefficients by combining the stirring rates estimated from the Lagrangian drifter trajectories with the shapes of the surface temperature and salinity gradient (assumed to be at the equilibrium) from the ship thermosalinograph. The average value we obtained from various sections across the front is 2.5 m2s-1, with horizontal scales (width of the front) ranging between 0.5 and 2.5 km. This is in line with the values commonly used for high-resolution numerical simulations. Further field experiment will be required to extend the results to different ocean regions and regimes, and to thoroughly test the robustness of the equilibrium hypothesis. Remote sensed
NASA Astrophysics Data System (ADS)
Frazer, E. J.; Thonstad, J.
2010-06-01
The solubility of alumina was measured by rotating an alumina cylinder (~500 rpm) in a high-purity melt for ~3 to 6 hours, crushing and sampling the frozen melt, and determining the oxygen content in a Leco analyzer. The alumina solubilities determined were as follows: (1) 3.2 ± 0.3 wt pct in NaF-AlF3 eutectic at 1023 K (750 °C); (2) 3.0 ± 0.3 wt pct in NaF-AlF3-CaF2 (5 wt pct) at 1023 K (750 °C); and (3) 5.2 ± 0.5 wt pct in a KF-AlF3 eutectic at 1003 K (730 °C). The alumina solubility in the KF-AlF3 eutectic was 2 wt pct more than in the sodium analogue, offering the possibility of operating a low-temperature aluminum smelting cell without the need for an alumina slurry. The diffusion coefficient of the dissolved alumina species was determined in the NaF-AlF3 eutectic at 1023 K (750 °C) using the rotating disc method and applying the Levich equation. Through a limited range of rotation rates, the system seemed to be mass-transfer controlled, and the diffusion coefficient was estimated to be in the range 1.8 to 2.2 × 10-6 cm2 s-1. This value is about five times lower than the values encountered at traditional aluminum smelting temperatures (~1233 K (960 °C)) and would result in relatively low mass transfer coefficients.
Hydraulic conductivity, albumin reflection and diffusion coefficients of pig mediastinal pleura.
Parameswaran, S; Brown, L V; Ibbott, G S; Lai-Fook, S J
1999-09-01
Hydraulic conductivity (L), albumin reflection coefficient (sigma), and albumin diffusion coefficient (D) were measured across pig mediastinal pleura. The tissue (7 mm diameter) was bonded between two chambers. Flow (Q) of lactated Ringer solution between the chambers was measured in turn at driving pressures (DeltaP) of 2, 4, and 6 cm H(2)O. Value of L was proportional to the slope of the Q-DeltaP curve. Then Q was measured in turn at three albumin osmotic pressure differences (Deltapi equivalent to -1, -2, and -3 g/dl albumin concentration difference, DeltaC) with DeltaP constant at either 2, 3, 4, or 6 cm H(2)O. From Starling's equation, magnitude of sigma was the slope of the Q-Deltapi curve divided by the slope of the Q-DeltaP curve. We measured the diffusion of 0, 2, 5, and 10 g/dl albumin with tracer (125)I-albumin. Tracer mass (M) that diffused across the pleura was measured for 10 h using a well-type NaI(T1) detector. D was calculated from the slope of the M-time curve. Values of L averaged 2.0 x 10(-8) cm(3). s(-1). dyne(-1) (n = 23). Values of sigma were small (0.02-0.05) and sigma increased as flow increased 20-fold. D (n = 24) increased 3-fold from 2.7 x 10(-8) cm(2)/s as DeltaC increased from 0 to 10 g/dl. The small values of sigma indicated that mediastinal pleura provided little restriction to the passage of protein. PMID:10458927
NASA Astrophysics Data System (ADS)
Yoshida, Ken; Matubayasi, Nobuyuki; Nakahara, Masaru
2008-12-01
The self-diffusion coefficients D for water, benzene, and cyclohexane are determined by using the pulsed-field-gradient spin echo method in high-temperature conditions along the liquid branch of the coexistence curve: 30-350 °C (1.0-0.58 g cm-3), 30-250 °C (0.87-0.56 g cm-3), and 30-250 °C (0.77-0.48 g cm-3) for water, benzene, and cyclohexane, respectively. The temperature and density effects are separated and their origins are discussed by examining the diffusion data over a wide range of thermodynamic states. The temperature dependence of the self-diffusion coefficient for water is larger than that for organic solvents due to the large contribution of the attractive hydrogen-bonding interaction in water. The density dependence is larger for organic solvents than for water. The difference is explained in terms of the van der Waals picture that the structure of nonpolar organic solvents is determined by the packing effect due to the repulsion or exclusion volumes. The dynamic solvation shell scheme [K. Yoshida et al., J. Chem. Phys. 127, 174509 (2007)] is applied for the molecular interpretation of the translational dynamics with the aid of molecular dynamics simulation. In water at high temperatures, the velocity relaxation is not completed before the relaxation of the solvation shell (mobile-shell type) as a result of the breakdown of the hydrogen-bonding network. In contrast, the velocity relaxation of benzene is rather confined within the solvation shell (in-shell type).
Drag and diffusion coefficient of a spherical particle attached to a fluid interface
NASA Astrophysics Data System (ADS)
Hardt, Steffen; Doerr, Aaron; Masoud, Hassan; Stone, Howard
2015-11-01
We consider a spherical particle attached to the interface between two immiscible fluids of large viscosity contrast. The degree of immersion in the two fluids is determined by the contact angle. For small enough particles and significant contact-angle hysteresis, it can be assumed that the three-phase contact line is pinned at the particle surface. We study the movement of such particles along the fluid interface for the case of small Reynolds and capillary numbers. We solve the Stokes equation based on two geometric perturbation expansions around contact angles of 90 degrees and 180 degrees, the latter corresponding to a particle completely immersed in the less viscous phase. Based on the Lorentz Reciprocity Theorem we obtain expressions for the drag coefficient of an interfacial particle which are analogs of the well-known Stokes drag coefficient for a particle moving in an unbounded medium. Interpolation of the two results gives a relationship which approximates the drag coefficient quite accurately over the entire range of contact angles. A comparison with previously published numerical results for contact angles below 90 degrees shows good agreement. Using the fluctuation-dissipation theorem, we also obtain expressions for the diffusion constant of a small particle attached to a fluid interface.
NASA Astrophysics Data System (ADS)
Asadian, M.; Saeedi, H.; Yadegari, M.; Shojaee, M.
2014-06-01
In this paper, a new mathematical model has been presented to determine the equilibrium segregation (k0) and effective segregation (keff) coefficients for neodymium (Nd) in YAG crystal grown by Czochralski (CZ) method. Determination of diffusion coefficient (DL) of Nd impurity in molten YAG is also investigated. In this model, utilizing Lambert W-function is a new idea to solve the Scheil equation for calculation of effective segregation coefficient. The Nd concentration in the crystal has been measured by optical absorption method to calculate keff. The analyses show that the keff is related to the growth parameters such as crystal growth rate (ug) and crystal rotation rate (ω), ( ug/√{ω}) but it is independent of the Nd concentration in the initial melt (C0). Based on obtained keff and experimental growth data, k0 and DL of Nd in molten YAG have been calculated. For all experiments, the average value of k0=0.216 and DL=1.4×10-6 (cm2/s) are obtained. Our results are corroborated by the theoretical and experimental data from the literature.
Apparent diffusion coefficient and fractional anisotropy of newly diagnosed grade II gliomas†
Khayal, Inas S.; McKnight, Tracy R.; McGue, Colleen; Vandenberg, Scott; Lamborn, Kathleen R.; Chang, Susan M.; Cha, Soonmee; Nelson, Sarah J.
2013-01-01
Distinguishing between low-grade oligodendrogliomas (ODs) and astrocytomas (AC) is of interest for defining prognosis and stratifying patients to specific treatment regimens. The purpose of this study was to determine if the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) from diffusion imaging can help to differentiate between newly diagnosed grade II OD and AC subtypes and to evaluate the ADC and FA values for the mixed population of oligoastrocytomas (OA). Fifty-three patients with newly diagnosed grade II gliomas were studied using a 1.5T whole body scanner (23 ODs, 16 ACs, and 14 OAs). The imaging protocol included post-gadolinium T1-weighted images, T2-weighted images, and either three and/or six directional diffusion imaging sequence with b = 1000 s/mm2. Diffusion-weighted images were analyzed using in-house software to calculate maps of ADC and for six directional acquisitions, FA. The intensity values were normalized by values from normal appearing white matter (NAWM) to generate maps of normalized apparent diffusion coefficient (nADC) and normalized fractional anisotropy (nFA). The hyperintense region in the T2 weighted image was defined as the T2All region. A Mann–Whitney rank-sum test was performed on the 25th, median, and 75th nADC and nFA among the three subtypes. Logistic regression was performed to determine how well the nADC and nFA predict subtype. Lesions diagnosed as being OD had significantly lower nADC and significantly higher nFA, compared to AC. The nADC and nFA values individually classified the data with an accuracy of 87%. Combining the two did not enhance the classification. The patients with OA had nADC and nFA values between those of OD and AC. This suggests that ADC and FA may be helpful in directing tissue sampling to the most appropriate regions for taking biopsies in order to make a definitive diagnosis. PMID:19125391
Apparent diffusion coefficient and fractional anisotropy of newly diagnosed grade II gliomas.
Khayal, Inas S; McKnight, Tracy R; McGue, Colleen; Vandenberg, Scott; Lamborn, Kathleen R; Chang, Susan M; Cha, Soonmee; Nelson, Sarah J
2009-05-01
Distinguishing between low-grade oligodendrogliomas (ODs) and astrocytomas (AC) is of interest for defining prognosis and stratifying patients to specific treatment regimens. The purpose of this study was to determine if the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) from diffusion imaging can help to differentiate between newly diagnosed grade II OD and AC subtypes and to evaluate the ADC and FA values for the mixed population of oligoastrocytomas (OA). Fifty-three patients with newly diagnosed grade II gliomas were studied using a 1.5T whole body scanner (23 ODs, 16 ACs, and 14 OAs). The imaging protocol included post-gadolinium T1-weighted images, T2-weighted images, and either three and/or six directional diffusion imaging sequence with b = 1000 s/mm(2). Diffusion-weighted images were analyzed using in-house software to calculate maps of ADC and for six directional acquisitions, FA. The intensity values were normalized by values from normal appearing white matter (NAWM) to generate maps of normalized apparent diffusion coefficient (nADC) and normalized fractional anisotropy (nFA). The hyperintense region in the T2 weighted image was defined as the T2All region. A Mann-Whitney rank-sum test was performed on the 25th, median, and 75th nADC and nFA among the three subtypes. Logistic regression was performed to determine how well the nADC and nFA predict subtype. Lesions diagnosed as being OD had significantly lower nADC and significantly higher nFA, compared to AC. The nADC and nFA values individually classified the data with an accuracy of 87%. Combining the two did not enhance the classification. The patients with OA had nADC and nFA values between those of OD and AC. This suggests that ADC and FA may be helpful in directing tissue sampling to the most appropriate regions for taking biopsies in order to make a definitive diagnosis. PMID:19125391
Demir, Senay; Altinkaya, Naime; Kocer, Nazim Emrah; Erbay, Ayse; Oguzkurt, Pelin
2015-01-01
PURPOSE In children the assessment of solid tumors’ response to chemotherapy is based primarily on size reduction, which can be unreliable and a late marker, in the presence of necrosis. We aimed to establish whether apparent diffusion coefficient (ADC) values of childhood neuroblastomas show proportional changes in relation to chemotherapy response. METHODS We evaluated 15 pediatric patients with abdominopelvic neuroblastomas, who had undergone MRI before and after chemotherapy. Two radiologists retrospectively analyzed all images by drawing a round uniform region-of-interest in the solid/contrast-enhancing portion of the lesions in consensus. The ADC values from pre- and postchemotherapy images were compared. RESULTS Postchemotherapy ADC values were significantly higher than those obtained before treatment (P < 0.05, for minimum, maximum, and median ADC values). CONCLUSION Our results support diffusion-weighted MRI as a promising noninvasive biomarker of therapeutic responses. To the best of our knowledge, this is the first report to compare diffusion-weighted imaging findings before and after chemotherapy in childhood neuroblastic tumors. PMID:25519453
Measurement and prediction of the oxygen diffusion coefficient in partly saturated media
NASA Astrophysics Data System (ADS)
Aachib, M.; Mbonimpa, M.; Aubertin, M.; Bussiere, B.
2004-05-01
Molecular diffusion is an important mechanism for gas transport in various natural and man-made systems. This is particularly the case with soil covers installed on acid generating mine tailings, where oxygen availability has to be controlled. One of the most important roles of such covers is to limit gas flux, which depends on the effective diffusion coefficient De of the cover materials. This paper presents an experimental procedure and results from oxygen diffusion tests performed on different types of materials, at various degrees of saturation. The determination of De in the laboratory from the test data is based on solutions to Fick's laws. The ensuing values of De are compared to values calculated from available models that relate De to basic material properties, including porosity and degree of saturation. Statistical indicators are used to evaluate the accuracy of selected models, individually and on a comparative basis. It is shown that modified versions of the Millington-Quirk and Millington-Shearer models provide De values close to the measured data. A semi-empirical expression, ensuing from these models and measurements, is proposed as a simple means of estimating De.
Measurement of 18O tracer diffusion coefficients in thin yttria stabilized zirconia films
Gerstl, M.; Frömling, T.; Schintlmeister, A.; Hutter, H.; Fleig, J.
2011-01-01
In this paper we present a method to measure oxygen tracer diffusion coefficients in thin ion conducting films without being limited by slow oxygen incorporation kinetics. The method is based on a two step process. In the first step a substantial amount of 18O tracer is locally incorporated for example into an yttria stabilized zirconia (YSZ) layer at low temperatures with the aid of an electric current, thus overcoming slow thermal oxygen exchange while still limiting lateral diffusion to a minimum. In the second step controlled diffusion takes place at elevated temperatures in ultra high vacuum (UHV) to impede loss of tracer due to oxygen exchange at the film surface. In this second step the surface of the thin film may additionally be modified compared to the oxygen incorporation step. This allows to easily investigate effects of interfaces on ion transport. The achieved in-plane concentration profiles are then measured by secondary ion mass spectrometry (SIMS). Comparison with electrical measurements on YSZ thin films proves the applicability of the method.
Determination of the diffusion length and the optical self absorption coefficient using EBIC model
NASA Astrophysics Data System (ADS)
Guermazi, S.; Guermazi, H.; Mlik, Y.; El Jani, B.; Grill, C.; Toureille, A.
2001-10-01
We have developed a model of calculation of the induced current due to an electron beam. The expression for the electron beam induced current (EBIC) with an extended generation profile is obtained via the resolution of a steady state continuity equation by the Green function method, satisfying appropriated boundary conditions to the physical model. The generation profile takes into account the lateral diffusion, the effect of defects, dislocations and recombination surfaces besides the number of absorbed electrons and that of diffuse electrons as a function of the depth. In the case of a Schottky diode Au/GaAs obtained by metalorganic vapour phase epitaxy (MOVPE) method, the theoretical induced current profile is compared to the experimental one and to theoretical profiles whose analytical expressions are given by van Roosbroeck and Bresse. The minority carriers diffusion length L_n = 2 μm and the optical self-absorption coefficient a=0.034 μm^{-1} can be deduced from the experimental current profile, measured by scanning electron microscopy. The theoretical curve, obtained from the proposed model is in a good agreement with the experimental one for surface recombination velocity 10^6 cm s^{-1} except for distances far from the depletion layer (x_0 > 2.3 μm) where the photocurrent produced by the multiple process of the reabsorbed recombination radiation is preponderant. Our results are in agreement with those obtained by other experimental techniques on the same samples.
Apparent diffusion coefficient measurements to support a diagnosis of intracranial hypotension
Fulwadhva, U; Dundmadappa, S K
2014-01-01
Objective: Intracranial hypotension (ICH) can be a challenging diagnosis, as cerebrospinal fluid leaks may be difficult to confirm, patients may have other causes for clinical symptoms and imaging findings can be non-specific, particularly in the setting of comorbidities. We investigate the use of brain diffusion measurements [apparent diffusion coefficient (ADC) values] in the assessment of ICH. Methods: 13 cases of ICH were identified retrospectively based on imaging findings and their clinical histories were compared with 13 control subjects. Regional ADC values and average diffusion constant (Dav) from brain slice ADC histograms were measured. Results: ADC values trended higher in all brain regions in patients with ICH than those in control subjects, with statistically significant differences in frontal white matter, mid-brain and deep grey structures. Dav determined by a single-slice ADC histogram was significantly higher in patients with ICH than in the control group (p = 0.008). In two cases followed longitudinally, Dav correlated with the patient's symptoms and decreased towards normal value with blood patch. In one case, decreased Dav correlated with the formation of subdural collections. Conclusion: Cerebral oedema as assessed by increased ADC is strongly correlated with ICH (10 of 13 cases). Histographic analysis of ADC values may offer increased accuracy of ADC measurement. ADC value assessment in the determination of ICH may be particularly useful in complex clinical cases, where treatment is followed over time or where gadolinium is not used and meningeal enhancement cannot be assessed. Advances in knowledge: This article investigates the use of brain diffusion measurements in the assessment of ICH in the clinical setting. PMID:24896198
Comparison of photon attenuation coefficients (2-150 KeV) for diagnostic imaging simulations
NASA Astrophysics Data System (ADS)
Dodge, Charles W., III; Flynn, Michael J.
2004-05-01
The Radiology Research Laboratory at the Henry Ford Hospital has been involved in modeling x-ray units in order to predict image quality. A critical part of that modeling process is the accurate choice of interaction coefficients. This paper serves as a review and comparison of existing interaction models. Our objective was to obtain accurate and easily calculated interaction coefficients, at diagnostically relevant energies. We obtained data from: McMaster, Lawrence Berkeley Lab data (LBL), XCOM and FFAST Data from NIST, and the EPDL-97 database via LLNL. Our studies involve low energy photons; therefore, comparisons were limited to Coherent (Rayleigh), Incoherent (Compton) and Photoelectric effects, which were summed to determine a total interaction cross section. Without measured data, it becomes difficult to definitively choose the most accurate method. However, known limitations in the McMaster data and smoothing of photo-edge transitions can be used as a guide to establish more valid approaches. Each method was compared to one another graphically and at individual points. We found that agreement between all methods was excellent when away from photo-edges. Near photo-edges and at low energies, most methods were less accurate. Only the Chanter (FFAST) data seems to have consistently and accurately predicted the placement of edges (through M-shell), while minimizing smoothing errors. The EPDL-97 data by LLNL was the best over method in predicting coherent and incoherent cross sections.
Drabik, Dominik; Przybyło, Magda; Sikorski, Aleksander; Langner, Marek
2016-03-01
Fluorescence Correlation Spectroscopy (FCS) is a technique, which allows determination of the diffusion coefficient and concentration of fluorescent objects suspended in the solution. The measured parameter is the fluctuation of the fluorescence signal emitted by diffusing molecules. When 100 nm DOPC vesicles labeled with various fluorescent dyes (Fluorescein-PE, NBD-PE, Atto488 DOPE or βBodipy FL) were measured, different values of diffusion coefficients have been obtained. These diffusion coefficients were different from the expected values measured using the dynamic light scattering method (DLS). The FCS was initially developed for solutions containing small fluorescent molecules therefore the observed inconsistency may result from the nature of vesicle suspension itself. The duration of the fluorescence signal may depend on the following factors: the exposure time of the labeled object to the excitation beam, the photo-physical properties (e.g., stability) of a fluorophore, the theoretical model used for the calculations of the diffusion coefficient and optical properties of the vesicle suspension. The diffusion coefficients determined for differently labeled liposomes show that its dependence on vesicle size and quantity of fluorescent probed used for labeling was significant demonstrating that the fluorescence properties of the fluorophore itself (bleaching and/or blinking) were critical factors for a correct outcome of FCS experiment. The new, based on combined FCS and DLS measurements, method for the determination of the focal volume prove itself to be useful for the evaluation of a fluorescence dye with respect to its applicability for FCS experiment. PMID:26695945
NASA Astrophysics Data System (ADS)
Kikugawa, Gota; Ando, Shotaro; Suzuki, Jo; Naruke, Yoichi; Nakano, Takeo; Ohara, Taku
2015-01-01
In the present study, molecular dynamics (MD) simulations on the monatomic Lennard-Jones liquid in a periodic boundary system were performed in order to elucidate the effect of the computational domain size and shape on the self-diffusion coefficient measured by the system. So far, the system size dependence in cubic computational domains has been intensively investigated and these studies showed that the diffusion coefficient depends linearly on the inverse of the system size, which is theoretically predicted based on the hydrodynamic interaction. We examined the system size effect not only in the cubic cell systems but also in rectangular cell systems which were created by changing one side length of the cubic cell with the system density kept constant. As a result, the diffusion coefficient in the direction perpendicular to the long side of the rectangular cell significantly increases more or less linearly with the side length. On the other hand, the diffusion coefficient in the direction along the long side is almost constant or slightly decreases. Consequently, anisotropy of the diffusion coefficient emerges in a rectangular cell with periodic boundary conditions even in a bulk liquid simulation. This unexpected result is of critical importance because rectangular fluid systems confined in nanospace, which are present in realistic nanoscale technologies, have been widely studied in recent MD simulations. In order to elucidate the underlying mechanism for this serious system shape effect on the diffusion property, the correlation structures of particle velocities were examined.
NASA Astrophysics Data System (ADS)
Manouchehrian Fard, Manouchehr; Beiki, Hossein
2015-12-01
An experimental study was performed to measure benzoic acid diffusion coefficient in water-based γ-Al2O3 nanofluids at different temperatures. Measurements were carried out at 15, 20 and 25 °C. γ-Al2O3 nanoparticles with an average diameter of 10-20 nm were added into de-ionized water as the based fluid. Nanoparticles volume fractions used in the based fluid were 0.025, 0.05, 0.1, 0.2, 0.4 and 0.8 %. Measurements showed that the diffusion coefficients was not changed with nanoparticles concentration and no enhancement was found. Dependence of diffusion coefficients on nanoparticles concentration followed the same trend in all temperatures investigated in this work. Nano stirring and nano-obstacles could be regarded as two reasons for mass diffusivity changes in nanofluids.
Diffuse-light two-dimensional line-of-sight attenuation for soot concentration measurements.
Thomson, Kevin A; Johnson, Matthew R; Snelling, David R; Smallwood, Gregory J
2008-02-10
A technique of diffuse-light two-dimensional line-of-sight attenuation (diffuse 2D-LOSA) is described and demonstrated that achieves very high levels of sensitivity in transmissivity measurements (optical thicknesses down to 0.001) while effectively mitigating interferences due to beam steering. An optical system is described in which an arc lamp coupled with an integrating sphere is used as a source of diffuse light that is imaged to the center of the particulate laden medium. The center of the medium is then imaged onto a CCD detector with 1:1 magnification. Comparative measurements with collimated 2D-LOSA in nonpremixed flames demonstrate the accuracy and improved optical noise rejection of the technique. Tests in weakly sooting, nonpremixed methane-air flames, and in high pressure methane-air flames, reveal the excellent sensitivity of diffuse 2D-LOSA, which is primarily limited by the shot noise of the lamp and CCD detector. PMID:18268781
NASA Astrophysics Data System (ADS)
Ciavatta, Stefano; Torres, Ricardo; Martinez-Vicente, Victor; Smyth, Timothy; Dall'Olmo, Giorgio; Polimene, Luca; Allen, Icarus
2014-05-01
Biogeochemical processes in shelf seas and coastal areas can determine the health and productivity of local systems and are important terms of the global carbon budget. The quantitative characterization of the spatial-temporal evolution of biogeochemical variables in shelf-seas is thus relevant in the framework of marine system management and climate change studies In this work we evaluate, for the first time, whether the assimilation of remotely-sensed diffuse attenuation coefficient data into a marine ecosystem model can improve the simulation of key biogeochemical variables and processes in a shelf sea. A localized Ensemble Kalman filter was used to assimilate weekly SeaWiFS data of diffuse light attenuation coefficient, i.e. Kd(443), into an ecosystem model of the western English Channel, for the simulation of year 2006. The spatial distributions of (unassimilated) surface chlorophyll from SeaWiFS, and eighteen time series of biogeochemical and optical data measured weekly at the monitoring station L4 were used to evaluate the system performance. A comparative assimilation experiment was run by using SeaWiFS chlorophyll data. We found that Kd(443) assimilation reduced the root mean square error and improved the correlation with the assimilated satellite observations in the largest part area of the WEC. The error for the (unassimilated) chlorophyll tended to decrease as well, but the estimates deteriorated in some parts of the study area. Assimilation of Kd(443) provided better estimates of the (unassimilated) in situ data when compared with both the reference simulation and chlorophyll assimilation. Indeed, model RMSE and bias of the estimates decreased for more than a half of the variables, and the skill metrics resulted in general better for the assimilation of the optical data. Importantly, assimilation of Kd(443) impacted the simulation of biogeochemical fluxes and ecosystem processes (e.g. shifted the simulated food web towards the microbial loop), and in
Macarini, Luca; Stoppino, Luca Pio; Milillo, Paola; Ciuffreda, Pierpaolo; Fortunato, Francesca; Vinci, Roberta
2010-01-01
The purpose of the study was to assess the capability and the reliability of apparent diffusion coefficient (ADC) measurements in the evaluation of different benign renal abnormalities. Twenty-five healthy volunteers and 31 patients, divided into seven different groups (A-G) according to pathology, underwent diffusion-weighted magnetic resonance imaging (DW MRI) of the kidneys using 1.5-T system. DW images were obtained in the axial plane with a spin-echo echo planar imaging single-shot sequence with three b values (0, 300, and 600 s/mm²). Before acquisition of DW sequences, we performed in each patient a morphological study of the kidneys. ADC was 2.40±0.20×10⁻³ mm² s⁻¹ in volunteers. A significant difference was found between Groups A (cysts=3.39±0.51×10⁻³ mm² s⁻¹) and B (acute/chronic renal failure=1.38±0.40×10⁻³ mm² s⁻¹) and between Groups A and C (chronic pyelonephritis=1.53±0.21×10⁻³ mm² s⁻¹) (P<.05). An important difference was also observed among Group D (hydronephrosis=4.82±0.35×10⁻³ mm² s⁻¹) and Groups A, B, and C (P<.05), whereas no differences were found between Groups B and C (P>.05). A considerable correlation between glomerular filtration rate and ADC was found (P=.04). In conclusion, significant differences were detected among different patient groups, and this suggests that ADC measurements can be useful in differentiating normal renal parenchyma from most commonly encountered nonmalignant renal lesions. PMID:21092872
Yang, Yunjun; Gao, Lingyun; Fu, Jun; Zhang, Jun; Li, Yuxin; Yin, Bo; Chen, Weijian; Geng, Daoying
2013-11-01
Supratentorial cerebral infarction can cause functional inhibition of remote regions such as the cerebellum, which may be relevant to diaschisis. This phenomenon is often analyzed using positron emission tomography and single photon emission CT. However, these methods are expensive and radioactive. Thus, the present study quantified the changes of infarction core and remote regions after unilateral middle cerebral artery occlusion using apparent diffusion coefficient values. Diffusion-weighted imaging showed that the area of infarction core gradually increased to involve the cerebral cortex with increasing infarction time. Diffusion weighted imaging signals were initially increased and then stabilized by 24 hours. With increasing infarction time, the apparent diffusion coefficient value in the infarction core and remote bilateral cerebellum both gradually decreased, and then slightly increased 3-24 hours after infarction. Apparent diffusion coefficient values at remote regions (cerebellum) varied along with the change of supratentorial infarction core, suggesting that the phenomenon of diaschisis existed at the remote regions. Thus, apparent diffusion coefficient values and diffusion weighted imaging can be used to detect early diaschisis. PMID:25206615
Optical data collected in coastal waters off South Florida and in the Caribbean Sea between January 2009 and December 2010 were used to evaluate products derived with three bio-optical inversion algorithms applied to MOIDS/Aqua, MODIS/Terra, and SeaWiFS satellite observations. Th...
Akman, F; Durak, R; Turhan, M F; Kaçal, M R
2015-07-01
The effective atomic numbers and electron densities of some samarium compounds were determined using the experimental total mass attenuation coefficient values near the K edge in the X-ray energy range from 36.847 up to 57.142 keV. The measurements, in the region from 36.847 to 57.142 keV, were done in a transmission geometry utilizing the Kα2, Kα1, Kβ1 and Kβ2 X-rays from different secondary source targets excited by the 59.54 keV gamma-photons from an Am-241 annular source. This paper presents the first measurement of the effective atomic numbers and electron densities for some samarium compounds near the K edge. The results of the study showed that the measured values were in good agreement with the theoretically calculated ones. PMID:25880612
Attenuation and velocity structure from diffuse coda waves: Constraints from underground array data
NASA Astrophysics Data System (ADS)
Galluzzo, Danilo; La Rocca, Mario; Margerin, Ludovic; Del Pezzo, Edoardo; Scarpa, Roberto
2015-03-01
An analysis of coda waves excited in the 0.2-20 Hz frequency band and recorded by the underground array Underseis (central Italy) has been performed to constrain both seismic attenuation at regional scale and velocity structure in the Mount Gran Sasso area. Attenuation was estimated with the MLTWA method, and shows a predominance of scattering phenomena over intrinsic absorption. The values of Qi and Qs are compatible with other estimates obtained in similar tectonic environments. Array methods allowed for a detailed study of the propagation characteristics, demonstrating that earthquake coda at frequencies greater than about 6 Hz is composed of only body waves. Coherence and spectral characteristics of seismic waves measured along the coda of local and regional earthquakes indicate that the wavefield becomes fully diffuse only in the late coda. The frequency-dependent energy partitioning between horizontal and vertical components has been also estimated and compared with synthetic values computed in a layered half-space under the diffuse field assumption. This comparison confirms that, for frequencies higher than 6 Hz, the coda appears as a sum of body waves coming from all directions while, in the low frequency range (0.2-2 Hz), the observations can be well explained by a coda wavefield composed of an equipartition mixture of surface and body waves traveling in a multiple-layered medium. A Monte-Carlo inversion has been performed to obtain a set of acceptable velocity models of the upper crust. The present results show that a broadband coda wavefield recorded in an underground environment is useful to constrain both the regional attenuation and the velocity structure of the target area, thereby complementing the results of classical array analysis of the wavefield.
Surface diffusion coefficient of Au atoms on single layer graphene grown on Cu
Ruffino, F. Cacciato, G.; Grimaldi, M. G.
2014-02-28
A 5 nm thick Au film was deposited on single layer graphene sheets grown on Cu. By thermal processes, the dewetting phenomenon of the Au film on the graphene was induced so to form Au nanoparticles. The mean radius, surface-to-surface distance, and surface density evolution of the nanoparticles on the graphene sheets as a function of the annealing temperature were quantified by scanning electron microscopy analyses. These quantitative data were analyzed within the classical mean-field nucleation theory so to obtain the temperature-dependent Au atoms surface diffusion coefficient on graphene: D{sub S}(T)=[(8.2±0.6)×10{sup −8}]exp[−(0.31±0.02(eV)/(at) )/kT] cm{sup 2}/s.
Varga, Agnes; Gyetvai, Gergely; Nagy, Lívia; Nagy, Géza
2009-08-01
The diffusion coefficient of glucose in different media is an important parameter in life sciences, as well as in biotechnology and microbiology. In this work a simple, fast method is proposed that is based on the electrochemical time of flight principle. In most of the earlier time of flight experiments performed, a constant flight distance was applied. In the present work a scanning electrochemical microscope (SECM) was applied as a measuring tool. With use of the SECM, the flying distance could be changed with high precision, making measurements with several flight distances more accurate and reliable values could be obtained for solutions as well as for gels. The conventional voltammetric methods are not applicable for glucose detection. In our work electrocatalytic copper oxide coated copper microelectrodes and micro-sized amperometric enzyme sensors were used as detectors, while microdroplet-ejecting pneumatically driven micropipettes were used as a source. PMID:19517100
Energetic particle diffusion coefficients upstream of quasi-parallel interplanetary shocks
NASA Technical Reports Server (NTRS)
Tan, L. C.; Mason, G. M.; Gloeckler, G.; Ipavich, F. M.
1989-01-01
The properties of about 30 to 130-keV/e protons and alpha particles upstream of six quasi-parallel interplanetary shocks that passed by the ISEE 3 spacecraft during 1978-1979 were analyzed, and the values for the upstream energegic particle diffusion coefficient, kappa, in these six events were deduced for a number of energies and upstream positions. These observations were compared with predictions of Lee's (1983) theory of shock acceleration. It was found that the observations verified the prediction of the A/Q dependence (where A and Q are the particle atomic mass and ionization state, respectively) of kappa for alpha and proton particles upstream of the quasi-parallel shocks.
NASA Astrophysics Data System (ADS)
Çelik, Necati; Çevik, Uğur; Çelik, Ahmet
2012-06-01
Mass attenuation coefficients were determined experimentally for Sc, Ni and W for gamma energies of 59.5, 122, 276, 302, 356, 383 and 662 keV for different detector collimator diameters ranging from 2 to 10 mm. The aim was to investigate the quantitative analysis of detector collimator diameter effect on measured mass attenuation coefficients. It was found that measured mass attenuation coefficients decrease systematically with the increasing collimator diameter. The relative difference was found to be up to around 3% in some cases. The observed decrease in mass attenuation coefficients was attributed to the detection of elastic and inelastic scattered photons from the absorber. In elastic scattering process the photons change in direction but not in energy and get counted under the full energy peak if they reach the detector. In inelastic scattering however, both direction and energy of the scattered photons change. It was seen that most of the inelastic scattered photons also get counted by the detection system since they lose an amount of energy lower than the energy resolution of the detector. It is understood from the present results that it is essential to take into account the experimental geometry when reporting mass attenuation coefficients.
Nam, Kibo; Rosado-Mendez, Ivan M; Wirtzfeld, Lauren A; Pawlicki, Alexander D; Kumar, Viksit; Madsen, Ernest L; Ghoshal, Goutam; Lavarello, Roberto J; Oelze, Michael L; Bigelow, Timothy A; Zagzebski, James A; O'Brien, William D; Hall, Timothy J
2011-10-01
In vivo estimations of the frequency-dependent acoustic attenuation (alpha) and backscatter (eta) coefficients using radiofrequency (rf) echoes acquired with clinical ultrasound systems must be independent of the data acquisition setup and the estimation procedures. In a recent in vivo assessment of these parameters in rodent mammary tumors, overall agreement was observed among alpha and eta estimates using data from four clinical imaging systems. In some cases, particularly in highly-attenuating heterogeneous tumors, multisystem variability was observed. This paper compares alpha and eta estimates of a well-characterized rodent-tumor-mimicking homogeneous phantom scanned using seven transducers with the same four clinical imaging systems: a Siemens Acuson S2000, an Ultrasonix RP, a Zonare Z.one and a VisualSonics Vevo2100. alpha and eta estimates of lesion-mimicking spheres in the phantom were independently assessed by three research groups, who analyzed their system's rf echo signals. Imaging-system-based estimates of alpha and eta of both lesion-mimicking spheres were comparable to through-transmission laboratory estimates and to predictions using Faran's theory, respectively. A few notable variations in results among the clinical systems were observed but the average and maximum percent difference between alpha estimates and laboratory-assessed values was 11% and 29%, respectively. Excluding a single outlier dataset, the average and maximum average difference between eta estimates for the clinical systems and values predicted from scattering theory was 16% and 33%, respectively. These results were an improvement over previous interlaboratory comparisons of attenuation and backscatter estimates. Although the standardization of our estimation methodologies can be further improved, this study validates our results from previous rodent breast-tumor model studies. PMID:22518954
Metin, Melike R.; Aydın, Hasan; Çetin, Hüseyin; Özmen, Evrim; Kayaçetin, Serra
2016-01-01
Objectives: To establish retrospectively the relation between the histopathologic grade of colorectal liver metastasis and apparent diffusion coefficient (ADC) values of hepatic metastases of colorectal adenocarcinomas. Methods: The diagnoses of liver metastases were confirmed with biopsy, surgery, and follow-up imaging findings. Twenty-six patients with 94 liver metastasis were included in the study. Of 94 masses, 59 were poorly-differentiated adenocarcinoma, 18 were moderately-differentiated adenocarcinoma, and 17 were well-differentiated regarding the diameters, ADC values, and ratio index (RI) values. Kolmogorov-smirnov normality test, Kruskal-wallis analysis of variance, Mann-Whitney U test with Bonferroni correction, Spearman correlation analysis, and receiver operating characteristics curve methods were applied to evaluate the statistical relations. Results: There was a statistically significant difference in terms of ADC values and RI between poorly-differentiated adenocarcinoma and moderately-differentiated adenocarcinoma plus well-differentiated adenocarcinomas. Poorly-differentiated adenocarcinomas have the lowest ADC values and highest RI values among other groups. Conclusion: Use of ADC values alone can be executed for the diagnosis of focal hepatic masses and also can aid in the differentiation of benign and malignant hepatic lesions. PMID:27052280
NASA Astrophysics Data System (ADS)
Fuente, Raquel; Apiñaniz, Estibaliz; Mendioroz, Arantza; Salazar, Agustín
2011-08-01
Modulated photothermal radiometry (PTR) has been widely used to measure the thermal diffusivity of bulk materials. The method is based on illuminating the sample with a plane light beam and measuring the infrared emission with an infrared detector. The amplitude and phase of the PTR voltage is recorded as a function of the modulation frequency and then fitted to the theoretical model. In this work, we test the ability of modulated PTR to retrieve simultaneously the thermal diffusivity and the optical absorption coefficient of homogeneous slabs. In order to eliminate the instrumental factor, self-normalization is used, i.e., the ratio of the PTR signal recorded at the rear and front surfaces. The influence of the multiple reflections of the light beam, the heat losses, and the transparency to infrared wavelengths are analyzed. Measurements performed on a wide variety of homogeneous materials, covering the whole range from transparent to opaque, confirm the validity of the method. In Part II of this work, the method is extended to multilayered materials.
Relationship Between Choline and Apparent Diffusion Coefficient in Patients With Gliomas
Khayal, Inas S.; Crawford, Forrest W.; Saraswathy, Suja; Lamborn, Kathleen R.; Chang, Susan M.; Cha, Soonmee; McKnight, Tracy R.; Nelson, Sarah J.
2011-01-01
Purpose To examine the relationship between apparent diffusion coefficients (ADC) from diffusion weighted imaging (DWI) and choline levels from proton magnetic resonance spectroscopic imaging (MRSI) in newly diagnosed Grade II and IV gliomas within distinct anatomic regions. Materials and Methods A total of 37 patients with Grade II and 28 patients with Grade IV glioma were scanned on a 1.5T system with 3D MRSI and DWI. Region level analysis included Spearman rank correlation between median normalized ADC and choline for each patient per grade within each distinct abnormal anatomical region. Voxel level analysis calculated a Spearman rank correlation per region, per patient. Results Grade II lesions showed no evidence of a correlation between normalized ADC and choline using either the region or voxel level analysis. Region level analysis of Grade IV lesions did not appear to correlate in the contrast enhancement or necrotic core, but did suggest a significant negative correlation in the more heterogeneous nonenhancing and combined regions. Conclusion There appears to be differences in the relationship between ADC and choline levels in Grade II and Grade IV gliomas. Correlation within these regions in Grade IV lesions was strongest when all regions were included, suggesting heterogeneity may be driving the relationship. PMID:18383265
Fat Confounds the Observed Apparent Diffusion Coefficient in Patients with Hepatic Steatosis
Hansmann, Jan; Hernando, Diego; Reeder, Scott B.
2013-01-01
Purpose Triglyceride signal contained in peaks near the water peak remain unsuppressed by conventional fat suppression techniques used in diffusion-weighted imaging (DWI). In this work we investigated the dependence of the apparent diffusion coefficient (ADC) on liver fat content and whether it is confounded by fat signal. Methods 43 patients underwent liver DWI (b=0,500s/mm2) and single-voxel MR-spectroscopy (MRS). Proton density fat-fraction (PDFF;range 0.23–34.5%) was measured from MRS. A theoretical model was developed to account for the effects of fat on observed ADC, and used to correct the ADC. Linear correlation analysis was performed to assess the relationship between PDFF and ADC before and after correction. Results Linear correlation analysis showed an inverse dependence between observed ADC and PDFF before correction (r2=0.132;p=0.017), and no dependence after correction (r2=0.033;p=0.24). Conclusion The observed decrease in ADC in patients with fatty liver is, at least in part, artifactual due to residual fat signal near the water peak. PMID:23161434
Su, Ya; Yao, X. Steve; Li, Zhihong; Meng, Zhuo; Liu, Tiegen; Wang, Longzhi
2015-01-01
We present detailed measurement results of optical attenuation’s thermal coefficients (referenced to the temperature of the skin surface) in different depth regions of in vivo human forearm skins using optical coherence tomography (OCT). We first design a temperature control module with an integrated optical probe to precisely control the surface temperature of a section of human skin. We propose a method of using the correlation map to identify regions in the skin having strong correlations with the surface temperature of the skin and find that the attenuation coefficient in these regions closely follows the variation of the surface temperature without any hysteresis. We observe a negative thermal coefficient of attenuation in the epidermis. While in dermis, the slope signs of the thermal coefficient of attenuation are different at different depth regions for a particular subject, however, the depth regions with a positive (or negative) slope are different in different subjects. We further find that the magnitude of the thermal coefficient of attenuation coefficient is greater in epidermis than in dermis. We believe the knowledge of such thermal properties of skins is important for several noninvasive diagnostic applications, such as OCT glucose monitoring, and the method demonstrated in this paper is effective in studying the optical and biological properties in different regions of skin. PMID:25780740
Small effect of water on upper-mantle rheology based on silicon self-diffusion coefficients.
Fei, Hongzhan; Wiedenbeck, Michael; Yamazaki, Daisuke; Katsura, Tomoo
2013-06-13
Water has been thought to affect the dynamical processes in the Earth's interior to a great extent. In particular, experimental deformation results suggest that even only a few tens of parts per million of water by weight enhances the creep rates in olivine by orders of magnitude. However, those deformation studies have limitations, such as considering only a limited range of water concentrations and very high stresses, which might affect the results. Rock deformation can also be understood as an effect of silicon self-diffusion, because the creep rates of minerals at temperatures as high as those in the Earth's interior are limited by self-diffusion of the slowest species. Here we experimentally determine the silicon self-diffusion coefficient DSi in forsterite at 8 GPa and 1,600 K to 1,800 K as a function of water content CH2O from less than 1 to about 800 parts per million of water by weight, yielding the relationship, DSi ≈ (CH2O)(1/3). This exponent is strikingly lower than that obtained by deformation experiments (1.2; ref. 7). The high nominal creep rates in the deformation studies under wet conditions may be caused by excess grain boundary water. We conclude that the effect of water on upper-mantle rheology is very small. Hence, the smooth motion of the Earth's tectonic plates cannot be caused by mineral hydration in the asthenosphere. Also, water cannot cause the viscosity minimum zone in the upper mantle. And finally, the dominant mechanism responsible for hotspot immobility cannot be water content differences between their source and surrounding regions. PMID:23765497
Arnspang, Eva C; Koffman, Jennifer S; Marlar, Saw; Wiseman, Paul W; Nejsum, Lene N
2014-01-01
Lateral diffusion and compartmentalization of plasma membrane proteins are tightly regulated in cells and thus, studying these processes will reveal new insights to plasma membrane protein function and regulation. Recently, k-Space Image Correlation Spectroscopy (kICS)(1) was developed to enable routine measurements of diffusion coefficients directly from images of fluorescently tagged plasma membrane proteins, that avoided systematic biases introduced by probe photophysics. Although the theoretical basis for the analysis is complex, the method can be implemented by nonexperts using a freely available code to measure diffusion coefficients of proteins. kICS calculates a time correlation function from a fluorescence microscopy image stack after Fourier transformation of each image to reciprocal (k-) space. Subsequently, circular averaging, natural logarithm transform and linear fits to the correlation function yields the diffusion coefficient. This paper provides a step-by-step guide to the image analysis and measurement of diffusion coefficients via kICS. First, a high frame rate image sequence of a fluorescently labeled plasma membrane protein is acquired using a fluorescence microscope. Then, a region of interest (ROI) avoiding intracellular organelles, moving vesicles or protruding membrane regions is selected. The ROI stack is imported into a freely available code and several defined parameters (see Method section) are set for kICS analysis. The program then generates a "slope of slopes" plot from the k-space time correlation functions, and the diffusion coefficient is calculated from the slope of the plot. Below is a step-by-step kICS procedure to measure the diffusion coefficient of a membrane protein using the renal water channel aquaporin-3 tagged with EGFP as a canonical example. PMID:24893770
Kimura, Y; Kida, Y; Matsushita, Y; Yasaka, Y; Ueno, M; Takahashi, K
2015-06-25
Translational diffusion coefficients of diphenylcyclopropenone (DPCP), diphenylacetylene (DPA), and carbon monoxide (CO) in 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([BMIm][NTf2]) and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([EMIm][NTf2]) were determined by the transient grating (TG) spectroscopy under pressure from 0.1 to 200 MPa at 298 K and from 298 to 373 K under 0.1 MPa. Diffusion coefficients of these molecules at high temperatures in tributylmethylphosphonium bis(trifluoromethanesulfonyl)imide ([P4441][NTf2]), and tetraoctylphosphonium bis(trifluoromethanesulfonyl)imide ([P8888][NTf2]), and also in the mixtures of [BMIm][NTf2], N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide ([Pp13][NTf2]), and trihexyltetradecylphosphonium bis(trifluoromethanesulfonyl)imide ([P66614][NTf2]) with ethanol or chloroform have been determined. Diffusion coefficients except in ILs of phosphonium cations were well scaled by the power law of T/η, i.e., (T/η)(P), where T and η are the absolute temperature and the viscosity, irrespective of the solvent species, pressure and temperature, and the compositions of mixtures. The values of the exponent P were smaller for the smaller size of the molecules. On the other hand, the diffusion coefficients in ILs of phosphonium cations with longer alkyl chains were larger than the values expected from the correlation obtained by other ILs and conventional liquids. The deviation becomes larger with increasing the number of carbon atoms of alkyl-chain of cation, and with decreasing the molecular size of diffusing molecules. The molecular size dependence of the diffusion coefficient was correlated by the ratio of the volume of the solute to that of the solvent as demonstrated by the preceding work (Kaintz et al., J. Phys. Chem. B 2013 , 117 , 11697 ). Diffusion coefficients have been well correlated with the power laws of both T/η and the relative volume of the solute to the solvent
NASA Astrophysics Data System (ADS)
Xiong, Jianyin; Zhang, Yinping; Wang, Xinke; Chang, Dongwu
Through the observation of the pore structure and mercury intruding porosimetry (MIP) experiments of some typical porous building materials, we found that the diffusion coefficient of the material can be expressed by that of a representative elementary volume (REV) in which the pore structure can be simplified as a connection in series of macro and meso pores. Based upon that, a macro-meso two-scale model for predicting the diffusion coefficient of porous building materials is proposed. In contrast to the traditional porous mass transfer model for determining the diffusion coefficient described in the literature [Blondeau, P., Tiffonnet, A.L., Damian, A., Amiri, O., Molina, J.L., 2003. Assessment of contaminant diffusivities in building materials from porosimetry tests. Indoor Air 13, 302-310; Seo, J., Kato, S., Ataka, Y., Zhu, Q., 2005. Evaluation of effective diffusion coefficient in various building materials and absorbents by mercury intrusion porosimetry. In Proceedings of the Indoor Air, Beijing, China, pp. 1854-1859], the proposed model relates the volatile organic compound (VOC) diffusion coefficient of building material not only to the porosity of the building material, but also to the pore size distribution and pore connection modes. To verify the model, a series of experiments of VOC emissions of three types of medium-density board were conducted. The comparison of the model and experimental results shows that the proposed model agrees much better with the experimental results than the traditional models in the literature. More validation for other building materials is needed. The proposed model is useful for predicting the VOC diffusion coefficient of porous building materials and for developing low VOC emission building materials.
Yasuda, Isamu; Hikita, Tomoji . Fundamental Technology Research Lab.)
1994-05-01
Chemical relaxation experiments were conducted on sintered samples of calcium-doped lanthanum chromites by abruptly changing the oxygen partial pressure in the atmosphere and following the time change of conductivity. The re-equilibration kinetics was analyzed by fitting the relaxation data to the solutions of Fick's second law for appropriate boundary conditions. The diffusion equation ignoring the effect of surface reaction failed to describe the transient behavior especially for the initial stage, while that taking the surface effect into account gave a satisfactory interpretation of the overall relaxation process and allowed a precise determination of the two kinetic parameters: oxygen chemical diffusion coefficient and surface reaction rate constant. The chemical diffusion coefficients increased with a decrease of the oxygen partial pressure due to the corresponding change in the concentration of the moving species. The activation energy was similar to that of oxygen vacancy diffusion coefficients in other monocrystalline perovskites, suggesting that the measured diffusion coefficients were attributable to lattice diffusion. The surface reaction rate constant increased with a decrease of the oxygen partial pressure similarly to the reported oxygen nonstoichiometry, which implies that the presence of oxygen vacancies plays an important role in the surface reaction kinetics.
Rowley, R.L.; Adams, M.E.; Marshall, T.L.; Oscarson, J.L.; Wilding, W.V.; Anderson, D.J.
1997-03-01
Natural gas processors use amine treating processes to remove the acid gases H{sub 2}S and CO{sub 2} from gas streams. Absorption rates of gaseous CO{sub 2} into aqueous N-methyldiethanolamine (MDEA) solutions were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. The absorption rate was found to be insensitive to the diffusion coefficient of CO{sub 2} in solution but very sensitive to the diffusion rate of bicarbonate and protonated MDEA ions. Evidence also suggested that chemical reaction equilibrium is rapid relative to diffusion. A numerical model was developed on the basis of these observations. The model was used to regress diffusion coefficients of bicarbonate and protonated amine, which must be equivalent by electroneutrality arguments, from measured absorption rates. Complete modeling of the absorption process also required data for the diffusion coefficient of MDEA in water. These were measured using a Taylor dispersion apparatus. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate and protonated MDEA were obtained at 298.2 K and 318.2 K in solutions containing 20, 35, and 50 mass % MDEA in water.
Olson, A; Pugh, E N
1993-01-01
Experiments have demonstrated that single photoisomerizations in amphibian and primate rods can cause the suppression of 3-5% of the dark circulating current at the response peak (Baylor, D. A., T. D. Lamb, and K. W. Yau. 1979. J. Physiol. (Lond.). 288:613-634; Baylor, D. A., B. J. Nunn, and J. L. Schnapf. 1984. J. Physiol. (Lond.). 357:575-607). These results indicate that the change in [cGMP] effected by a single isomerization must spread longitudinally over at least the corresponding fractional length of the outer segment. The effective longitudinal diffusion coefficient, Dx, of cGMP is thus an important determinant of rod sensitivity. We report here measurements of the effective longitudinal diffusion coefficients, Dx, of two fluorescently labeled molecules: 5/6-carboxyfluorescein and 8-(fluoresceinyl)thioguanosine 3',5'-cyclic monophosphate, introduced into detached outer segments via whole-cell patch electrodes. For these compounds, the average time for equilibration of the entire outer segment with the patch pipette was approximately 6 min. Fluorescence images of rods were analyzed with a one-dimensional diffusion model that included limitations on transfer between the electrode and outer segment and the effects of intracellular binding of the dyes. The analyses yielded estimates of Dx of 1.9 and 1.0 microns 2.s-1 for the two dyes. It is shown that these results place an upper limit on Dx for cGMP of 11 microns2.s-1. The actual value of Dx for cGMP in the rod will depend on the degree of intracellular binding of cGMP. Estimates of the effective buffering power for cGMP in the rod at rest range from two to six (Lamb and Pugh, 1992; Cote and Brunnock, 1993). When combined with these estimates, our results predict that for cGMP itself, Dx falls within the range of 1.4-5.5 microns 2.s-1. Images FIGURE 5 FIGURE 6 PMID:8241412
First-principles binary diffusion coefficients for H, H₂, and four normal alkanes + N₂.
Jasper, Ahren W; Kamarchik, Eugene; Miller, James A; Klippenstein, Stephen J
2014-09-28
Collision integrals related to binary (dilute gas) diffusion are calculated classically for six species colliding with N2. The most detailed calculations make no assumptions regarding the complexity of the potential energy surface, and the resulting classical collision integrals are in excellent agreement with previous semiclassical results for H + N2 and H2 + N2 and with recent experimental results for CnH(2n+2) + N2, n = 2-4. The detailed classical results are used to test the accuracy of three simplifying assumptions typically made when calculating collision integrals: (1) approximating the intermolecular potential as isotropic, (2) neglecting the internal structure of the colliders (i.e., neglecting inelasticity), and (3) employing unphysical R(-12) repulsive interactions. The effect of anisotropy is found to be negligible for H + N2 and H2 + N2 (in agreement with previous quantum mechanical and semiclassical results for systems involving atomic and diatomic species) but is more significant for larger species at low temperatures. For example, the neglect of anisotropy decreases the diffusion coefficient for butane + N2 by 15% at 300 K. The neglect of inelasticity, in contrast, introduces only very small errors. Approximating the repulsive wall as an unphysical R(-12) interaction is a significant source of error at all temperatures for the weakly interacting systems H + N2 and H2 + N2, with errors as large as 40%. For the normal alkanes in N2, which feature stronger interactions, the 12/6 Lennard-Jones approximation is found to be accurate, particularly at temperatures above ∼700 K where it predicts the full-dimensional result to within 5% (although with somewhat different temperature dependence). Overall, the typical practical approach of assuming isotropic 12/6 Lennard-Jones interactions is confirmed to be suitable for combustion applications except for weakly interacting systems, such as H + N2. For these systems, anisotropy and inelasticity can safely be
First-principles binary diffusion coefficients for H, H2 and four normal alkanes + N2
Jasper, Ahren W.; Kamarchik, Eugene; Miller, James A.; Klippenstein, Stephen J.
2014-09-30
Collision integrals related to binary (dilute gas) diffusion are calculated classically for six species colliding with N2. The most detailed calculations make no assumptions regarding the complexity of the potential energy surface, and the resulting classical collision integrals are in excellent agreement with previous semiclassical results for H + N2 and H2 + N2 and with recent experimental results for C n H2n+2 + N2, n = 2–4. The detailed classical results are used to test the accuracy of three simplifying assumptions typically made when calculating collision integrals: (1) approximating the intermolecular potential as isotropic, (2) neglecting the internal structuremore » of the colliders (i.e., neglecting inelasticity), and (3) employing unphysical R–12 repulsive interactions. The effect of anisotropy is found to be negligible for H + N2 and H2 + N2 (in agreement with previous quantum mechanical and semiclassical results for systems involving atomic and diatomic species) but is more significant for larger species at low temperatures. For example, the neglect of anisotropy decreases the diffusion coefficient for butane + N2 by 15% at 300 K. The neglect of inelasticity, in contrast, introduces only very small errors. Approximating the repulsive wall as an unphysical R–12 interaction is a significant source of error at all temperatures for the weakly interacting systems H + N2 and H2 + N2, with errors as large as 40%. For the normal alkanes in N2, which feature stronger interactions, the 12/6 Lennard–Jones approximation is found to be accurate, particularly at temperatures above –700 K where it predicts the full-dimensional result to within 5% (although with somewhat different temperature dependence). Overall, the typical practical approach of assuming isotropic 12/6 Lennard–Jones interactions is confirmed to be suitable for combustion applications except for weakly interacting systems, such as H + N2. For these systems, anisotropy and inelasticity
First-principles binary diffusion coefficients for H, H2, and four normal alkanes + N2
NASA Astrophysics Data System (ADS)
Jasper, Ahren W.; Kamarchik, Eugene; Miller, James A.; Klippenstein, Stephen J.
2014-09-01
Collision integrals related to binary (dilute gas) diffusion are calculated classically for six species colliding with N2. The most detailed calculations make no assumptions regarding the complexity of the potential energy surface, and the resulting classical collision integrals are in excellent agreement with previous semiclassical results for H + N2 and H2 + N2 and with recent experimental results for CnH2n+2 + N2, n = 2-4. The detailed classical results are used to test the accuracy of three simplifying assumptions typically made when calculating collision integrals: (1) approximating the intermolecular potential as isotropic, (2) neglecting the internal structure of the colliders (i.e., neglecting inelasticity), and (3) employing unphysical R-12 repulsive interactions. The effect of anisotropy is found to be negligible for H + N2 and H2 + N2 (in agreement with previous quantum mechanical and semiclassical results for systems involving atomic and diatomic species) but is more significant for larger species at low temperatures. For example, the neglect of anisotropy decreases the diffusion coefficient for butane + N2 by 15% at 300 K. The neglect of inelasticity, in contrast, introduces only very small errors. Approximating the repulsive wall as an unphysical R-12 interaction is a significant source of error at all temperatures for the weakly interacting systems H + N2 and H2 + N2, with errors as large as 40%. For the normal alkanes in N2, which feature stronger interactions, the 12/6 Lennard-Jones approximation is found to be accurate, particularly at temperatures above ˜700 K where it predicts the full-dimensional result to within 5% (although with somewhat different temperature dependence). Overall, the typical practical approach of assuming isotropic 12/6 Lennard-Jones interactions is confirmed to be suitable for combustion applications except for weakly interacting systems, such as H + N2. For these systems, anisotropy and inelasticity can safely be
NASA Astrophysics Data System (ADS)
Landry, Guillaume; Seco, Joao; Gaudreault, Mathieu; Verhaegen, Frank
2013-10-01
Dual energy computed tomography (DECT) can provide simultaneous estimation of relative electron density ρe and effective atomic number Zeff. The ability to obtain these quantities (ρe, Zeff) has been shown to benefit selected radiotherapy applications where tissue characterization is required. The conventional analysis method (spectral method) relies on knowledge of the CT scanner photon spectra which may be difficult to obtain accurately. Furthermore an approximate empirical attenuation correction of the photon spectrum through the patient is necessary. We present an alternative approach based on a parameterization of the measured ratio of low and high kVp linear attenuation coefficients for deriving Zeff which does not require the estimation of the CT scanner spectra. In a first approach, the tissue substitute method (TSM), the Rutherford parameterization of the linear attenuation coefficients was employed to derive a relation between Zeff and the ratio of the linear attenuation coefficients measured at the low and high kVp of the CT scanner. A phantom containing 16 tissue mimicking inserts was scanned with a dual source DECT scanner at 80 and 140 kVp. The data from the 16 inserts phantom was used to obtain model parameters for the relation between Zeff and \\mu \\big|_{140kVp}^{80kVp}. The accuracy of the method was evaluated with a second phantom containing 4 tissue mimicking inserts. The TSM was compared to a more complex approach, the reference tissue method (RTM), which requires the derivation of stoichiometric fit parameters. These were derived from the 16 inserts phantom scans and used to calculate CT numbers at 80 and 140 kVp for a set of tabulated reference human tissues. Model parameters for the parameterization of \\mu \\big|_{140\\;kVp}^{80\\;kVp} were estimated for this reference tissue dataset and compared to the results of the TSM. Residuals on Zeff for the reference tissue dataset for both TSM and RTM were compared to those obtained from the
Landry, Guillaume; Seco, Joao; Gaudreault, Mathieu; Verhaegen, Frank
2013-10-01
Dual energy computed tomography (DECT) can provide simultaneous estimation of relative electron density ρe and effective atomic number Zeff. The ability to obtain these quantities (ρe, Zeff) has been shown to benefit selected radiotherapy applications where tissue characterization is required. The conventional analysis method (spectral method) relies on knowledge of the CT scanner photon spectra which may be difficult to obtain accurately. Furthermore an approximate empirical attenuation correction of the photon spectrum through the patient is necessary. We present an alternative approach based on a parameterization of the measured ratio of low and high kVp linear attenuation coefficients for deriving Zeff which does not require the estimation of the CT scanner spectra. In a first approach, the tissue substitute method (TSM), the Rutherford parameterization of the linear attenuation coefficients was employed to derive a relation between Zeff and the ratio of the linear attenuation coefficients measured at the low and high kVp of the CT scanner. A phantom containing 16 tissue mimicking inserts was scanned with a dual source DECT scanner at 80 and 140 kVp. The data from the 16 inserts phantom was used to obtain model parameters for the relation between Zeff and [Formula: see text]. The accuracy of the method was evaluated with a second phantom containing 4 tissue mimicking inserts. The TSM was compared to a more complex approach, the reference tissue method (RTM), which requires the derivation of stoichiometric fit parameters. These were derived from the 16 inserts phantom scans and used to calculate CT numbers at 80 and 140 kVp for a set of tabulated reference human tissues. Model parameters for the parameterization of [Formula: see text] were estimated for this reference tissue dataset and compared to the results of the TSM. Residuals on Zeff for the reference tissue dataset for both TSM and RTM were compared to those obtained from the spectral method. The
Chantler, C.T.; Islam, M.T.; Rae, N.A.; Tran, C.Q.; Glover, J.L.; Barnea, Z.
2012-09-25
An extension of the X-ray extended-range technique is described for measuring X-ray mass attenuation coefficients by introducing absolute measurement of a number of foils - the multiple independent foil technique. Illustrating the technique with the results of measurements for gold in the 38-50 keV energy range, it is shown that its use enables selection of the most uniform and well defined of available foils, leading to more accurate measurements; it allows one to test the consistency of independently measured absolute values of the mass attenuation coefficient with those obtained by the thickness transfer method; and it tests the linearity of the response of the counter and counting chain throughout the range of X-ray intensities encountered in a given experiment. In light of the results for gold, the strategy to be ideally employed in measuring absolute X-ray mass attenuation coefficients, X-ray absorption fine structure and related quantities is discussed.
Hasnain, Sabeeha; McClendon, Christopher L; Hsu, Monica T; Jacobson, Matthew P; Bandyopadhyay, Pradipta
2014-01-01
A new coarse-grained model of the E. coli cytoplasm is developed by describing the proteins of the cytoplasm as flexible units consisting of one or more spheres that follow Brownian dynamics (BD), with hydrodynamic interactions (HI) accounted for by a mean-field approach. Extensive BD simulations were performed to calculate the diffusion coefficients of three different proteins in the cellular environment. The results are in close agreement with experimental or previously simulated values, where available. Control simulations without HI showed that use of HI is essential to obtain accurate diffusion coefficients. Anomalous diffusion inside the crowded cellular medium was investigated with Fractional Brownian motion analysis, and found to be present in this model. By running a series of control simulations in which various forces were removed systematically, it was found that repulsive interactions (volume exclusion) are the main cause for anomalous diffusion, with a secondary contribution from HI. PMID:25180859
Jafar, Maysam M; Parsai, Arman; Miquel, Marc E
2016-01-01
There is considerable disparity in the published apparent diffusion coefficient (ADC) values across different anatomies. Institutions are increasingly assessing repeatability and reproducibility of the derived ADC to determine its variation, which could potentially be used as an indicator in determining tumour aggressiveness or assessing tumour response. In this manuscript, a review of selected articles published to date in healthy extra-cranial body diffusion-weighted magnetic resonance imaging is presented, detailing reported ADC values and discussing their variation across different studies. In total 115 studies were selected including 28 for liver parenchyma, 15 for kidney (renal parenchyma), 14 for spleen, 13 for pancreatic body, 6 for gallbladder, 13 for prostate, 13 for uterus (endometrium, myometrium, cervix) and 13 for fibroglandular breast tissue. Median ADC values in selected studies were found to be 1.28 × 10-3 mm2/s in liver, 1.94 × 10-3 mm2/s in kidney, 1.60 × 10-3 mm2/s in pancreatic body, 0.85 × 10-3 mm2/s in spleen, 2.73 × 10-3 mm2/s in gallbladder, 1.64 × 10-3 mm2/s and 1.31 × 10-3 mm2/s in prostate peripheral zone and central gland respectively (combined median value of 1.54×10-3 mm2/s), 1.44 × 10-3 mm2/s in endometrium, 1.53 × 10-3 mm2/s in myometrium, 1.71 × 10-3 mm2/s in cervix and 1.92 × 10-3 mm2/s in breast. In addition, six phantom studies and thirteen in vivo studies were summarized to compare repeatability and reproducibility of the measured ADC. All selected phantom studies demonstrated lower intra-scanner and inter-scanner variation compared to in vivo studies. Based on the findings of this manuscript, it is recommended that protocols need to be optimised for the body part studied and that system-induced variability must be established using a standardized phantom in any clinical study. Reproducibility of the measured ADC must also be assessed in a volunteer population, as variations are far more significant in vivo compared
Zheng, De-Xian; Meng, Shu-Chun; Liu, Qing-Jun; Li, Chuan-Ting; Shang, Xi-Dan; Zhu, Yu-Seng; Bai, Tian-Jun; Xu, Shi-Ming
2016-01-01
AIM: To determine if efficacy of chemotherapy on liver metastasis of gastrointestinal tract cancer can be predicted by apparent diffusion coefficient (ADC) values of diffusion-weighted imaging (DWI). METHODS: In total, 86 patients with liver metastasis of gastrointestinal tract cancer (156 metastatic lesions) diagnosed in our hospital were included in this study. The maximum diameters of these tumors were compared with each other before treatment, 2 wk after treatment, and 12 wk after treatment. Selected patients were classified as the effective group and the ineffective group, depending on the maximum diameter of the tumor after 12 wk of treatment; and the ADC values at different treatment times between the two groups were compared. Spearman rank correlation was used to analyze the relationship between ADC value and tumor diameter. Receiver operating characteristic curve (ROC curve) was used to analyze the ADC values before treatment to predict the patient’s sensitivity and specificity degree of efficacy to the chemotherapy. RESULTS: There was no difference in age between the two groups and in maximum tumor diameter before treatment and 2 wk after treatment. However, after 12 wk of treatment, maximum tumor diameter in the effective group was significantly lower than that in the ineffective group (P < 0.05). Before treatment, ADC values in the ineffective group were significantly higher than those in the effective group (P < 0.05). There was no difference in ADC values between the effective and ineffective groups after 2 and 12 wk of treatment. However, ADC values were significantly higher after 2 and 12 wk of treatment compared to before treatment in the effective group (P < 0.05). Spearman rank correlation analysis showed that ADC value before treatment and the reduced percentage of the maximum tumor diameter after 12 wk of treatment were negatively correlated, while the increase in the percentage of the ADC value 12 wk after treatment and the decrease in the
Park, Sung Yoon; Kim, Chan Kyo; Park, Byung Kwan; Park, Won; Park, Hee Chul; Han, Deok Hyun; Kim, Bohyun
2012-06-01
Purpose: To investigate the feasibility of diffusion-weighted MRI (DWI) as an early and reproducible change indicator in patients receiving radiotherapy for prostate cancer (PC). Methods and Materials: Eight consecutive patients with biopsy-proven PC underwent DWI at 3T. All patients who received external-beam radiotherapy had four serial MR scans, as follows: before therapy (PreTx); after 1 week of therapy (PostT1); after 3 weeks of therapy (PostT2); and 1 month after the completion of therapy (PostT3). At each time, the apparent diffusion coefficient (ADC) was measured in tumors and normal tissues. For reproducibility of the ADC measurement, five patients also had two separate pretreatment DWI scans at an interval of <2 weeks. Serum prostate-specific antigen (PSA) levels were evaluated at the same time as MR scans. Results: Thirteen tumors (peripheral zone = 10; transition zone = 3) were found. The mean ADC values for the tumors from PreTx to PostT3 were 0.86, 1.03, 1.15, and 1.26 Multiplication-Sign 10{sup -3} mm{sup 2}/s in sequence, respectively. Compared with PreTx, PostT1 (p = 0.005), PostT2 (p = 0.003), and PostT3 (p < 0.001) showed a significant increase in ADC values. The mean ADC values of the benign tissues from PreTx to PostT3 were 1.60, 1.58, 1.47, and 1.46 Multiplication-Sign 10{sup -3} mm{sup 2}/s in sequence, respectively. Reproducibility of ADC measurements was confirmed with a mean difference in ADC of -0.04 in peripheral zone and -0.017 in transition zone between two separate pretreatment MR scans. The mean PSA levels from PreTx to PostT3 were 9.05, 9.18, 9.25, and 4.11 ng/mL in sequence, respectively. Conclusions: DWI, as a reproducible biomarker, has the potential to evaluate the early therapeutic changes of PC to radiotherapy.
Xiao, P; Wong, W; Cottenden, A M; Imhof, R E
2012-08-01
Skin over-hydration is a common problem that affects many people who wear incontinence pads or diapers. The aim of this study is to develop a new method for stratum corneum (SC) over-hydration and SC water diffusion coefficient measurements using opto-thermal transient emission radiometry (OTTER) and evaporimetry. With OTTER, we can measure the SC surface hydration and hydration gradient. With evaporimetry, we can measure the time-dependent evaporative drying curves of water vapour flux density (WVFD). The combination of hydration results and WVFD results can yield information on the SC water diffusion coefficient and how it depends on the SC surface hydration level. The results show that SC water diffusion coefficient is non-linearly proportional to the SC surface hydration level. The results also show strong correlations between evaporative drying flux measured using the Evaporimeter and surface hydration estimated from OTTER measurements. PMID:22515301
Un, Adem; Demir, Faruk
2013-10-01
Total mass attenuation coefficients, effective atomic numbers and effective electron numbers values for different 16 heavy-weight and normal-weight concretes are calculated in the energy range from 1 keV to 100 GeV. The values of mass attenuation coefficients used in calculations are taken from the WinXCom computer program. The obtained results for heavy-weight concretes are compared with the results for normal-weight concretes. The results of heavy-weight concretes fairly differ from results for normal-weight concretes. PMID:23838359
NASA Astrophysics Data System (ADS)
Ansari, Rafat R.; Suh, Kwang I.; Sebag, J.
2006-02-01
PURPOSE: Pharmacologic vitreolysis is a new approach to improve vitreo-retinal surgery. Ultimately, the development of drugs to liquefy and detach vitreous from retina should prevent disease by mitigating the contribution of vitreous to retinopathy and eliminate the need for surgery. However, the mechanism of action of pharmacologic vitreolysis remains unclear. The technique of Dynamic light scattering (DLS) was used to evaluate the effects of microplasmin by following the diffusion coefficients of spherical polystyrene nano-particles injected with microplasmin into the vitreous. METHODS: Diffusion coefficients in dissected (n=9) porcine eyes were measured in vitro. DLS was performed on all specimens at 37°C as often as every 10 minutes for up to 6 hours following injections of human recombinant microplasmin at doses ranging from 0.125 mg to 0.8 mg, with 20 nm diameter tracer nanospheres. RESULTS: DLS findings in untreated porcine vitreous were similar to the previously described findings in bovine and human vitreous, demonstrating a fast (early) component, resulting from the flexible hyaluronan molecules, and a slow (late) component, resulting form the stiff collagen molecules. Microplasmin increased porcine vitreous diffusion coefficients. A new approach was developed to use DLS measurements of vitreous diffusion coefficients to evaluate the effects of microplasmin in intact eyes. CONCLUSIONS: Pharmacologic vitreolysis with human recombinant microplasmin increases vitreous diffusion coefficients in vitro. The results of these studies indicate that this new approach using DLS to measure vitreous diffusion coefficients can be used to study the effects of pharmacologic vitreolysis using microplasmin and other agents in intact eyes and ultimately in vivo.
Danel, J-F; Kazandjian, L; Zérah, G
2012-06-01
Computations of the self-diffusion coefficient and viscosity in warm dense matter are presented with an emphasis on obtaining numerical convergence and a careful evaluation of the standard deviation. The transport coefficients are computed with the Green-Kubo relation and orbital-free molecular dynamics at the Thomas-Fermi-Dirac level. The numerical parameters are varied until the Green-Kubo integral is equal to a constant in the t→+∞ limit; the transport coefficients are deduced from this constant and not by extrapolation of the Green-Kubo integral. The latter method, which gives rise to an unknown error, is tested for the computation of viscosity; it appears that it should be used with caution. In the large domain of coupling constant considered, both the self-diffusion coefficient and viscosity turn out to be well approximated by simple analytical laws using a single effective atomic number calculated in the average-atom model. PMID:23005237
Goemans, M.G.E.; Gloyna, E.F.
1996-10-01
The potential of sub- and supercritical water as extraction solvents has been demonstrated for the (reactive) extraction of coals, used car tires, organic species from residual aqueous solutions, and class selective extraction of organic pollutants with different polarities from solids. In addition, the potential of extraction of coal with supercritical aqueous solutions has been studied. However, physical transport in water at elevated temperature and pressures- and their impact on heterogenous reactions and (reactive) extraction -are not adequately understood. This situation is largely due to the limited data that is available for diffusion in high temperature, high pressure water mixture. Only the molecular diffusion of Iodine ions and hydroquinone in near-critical subcritical water and the self diffusion of coefficient of compressed supercritical water have been reported. In this paper, we present molecular diffusion coefficients of benzophenone, acetone, naphthalene, and anthracene in water at infinite dilution. Pressures ranged from 250 to 500 bar at temperatures ranging from 50{degrees}C to 500{degrees}C resulting in water densities ranging from 1000 to 150 kg/m{sup 3}. Diffusion coefficients were determined by the Taylor-Aris dispersion technique. The effects of increased diffusion on the mass transfer coefficients for emulsions and packed beds were quantified. Molecular division coefficients were 10 to 20 times faster in supercritical water than in water at ambient conditions. Experimental results were correlated with hydrodynamic and kinetic theory. This study and results to be published elsewhere show that diffusion-limited conditions are much more likely to be encountered in supercritical water than is commonly acknowledged.
NASA Astrophysics Data System (ADS)
Bashkatov, Alexey N.; Genina, Elina A.; Kochubey, Vyacheslav I.; Tuchin, Valery V.; Chikina, Elena E.; Knyazev, Anatoly B.; Mareev, Oleg V.
2005-06-01
The optical properties of human maxillary sinus mucosa were measured in the wavelength range 400-2000 nm. The measurements were carried out using the commercially available spectrophotometer with the integrating sphere. The inverse adding-doubling method has been used to determine the absorption and reduced scattering coefficients from the measurements. Diffusion of Methylene Blue in the mucous tissue has been studied in vitro and value of the diffusion coefficient of Methylene Blue in the tissue has been estimated at 20°C as (4.77+/-2.9)x10-7 cm2/sec.
NASA Astrophysics Data System (ADS)
Ahadi, Amirhossein; Saghir, M. Ziad
2014-08-01
In this study, a Mach-Zehnder interferometer that is equipped with two lasers of different wavelengths was used to conduct high resolution measurements of concentration profiles of a ternary mixture inside a diffusion cell. Windowed Fourier transform along with an advanced unwrapping procedure was employed to extract the phase image from fringe images. Then the phase difference was obtained for a spatial resolution of 1920×1240. According to the measured refractive index profile, concentration contours of two components (out of three) were measured. Consequently, the concentration profile of the third components was calculated. Previously, the analytical solution for binary mixtures was used to estimate only the pure diffusion coefficients. In this study, for the first time, the refractive indices measured by two lasers along with the analytical solution for the ternary system, based on Fick's law, and an evolutionary algorithm (EA) known as a genetic algorithm (GA) were employed to measure the pure and cross diffusion coefficients of a transparent ternary mixture simultaneously. The optimization method to estimate diffusion coefficients was tested against various objective functions, and the best approach was that which was proposed herein. In order to validate the proposed measurement method, the experimental results of the Selectable Optical Diagnostics Instrument-Diffusion Coefficients in Mixtures (SODI-DCMIX1 project) on board the International Space Station (ISS) were analyzed using this technique and the obtained results were compared with previous techniques.
NASA Astrophysics Data System (ADS)
Unno, M.; Kawamoto, K.; Moldrup, P.; Komatsu, T.
2008-12-01
The soil-gas diffusion coefficient (Dp) and its dependency on air-filled porosity (ɛ) govern gas diffusion and reaction processes in soil. Accurate Dp(ɛ) prediction models for variably saturated peat soils are needed to evaluate vadose zone transport and fate of greenhouse gases such as methane in peaty wetlands. In this study, we measured Dp on undisturbed peat soil samples at different soil-water matric potentials, and developed new, linear and nonlinear expressions for describing and predicting Dp(ɛ). The new Dp(ɛ) models together with existing Dp(ɛ) models were tested against both measured data and independent data sets from literature. Twelve undisturbed 100cm3 peat soil cores were taken between the soil surface and down to 30-cm depth at Bibai wetland, Hokkaido, Japan. The soil cores were initially saturated with water, and drained at given matric potentials, pF=1.0, 1.5, 1.8, 2.0, 3.0, and 4.1 (where pF equals to log | Ψ | , Ψ: the soil-water matric potential in cm H2O), using the hanging water and pressure plate methods. At each matric potential, simultaneous measurements of volume shrinkage, soil-water retention, and Dp were conducted. Literature datasets of Dp(ɛ) for peat soil cores taken from different areas within the same wetland, specifically 12 samples from Iiyama and Hasegawa (2005) and 12 samples from Iiduka et al. (2008), were also used. A total of 191 measurements of Dp(ɛ) at pF ≤ 2.0 were applied for developing new Dp(ɛ) models for pF ≤ 2.0 where effects of shrinkage on Dp were assumed negligible. By modifying 3 existing Dp(ɛ) models, the Buckingham (1904) model, the Macroporosity-Dependent Model (MPD; Moldrup et al., 2000), and the Penman-Call model (Moldrup et al., 2005), we suggested 3 new Dp(ɛ) expressions for peat soil. In the Buckingham-based Dp(ɛ) model, a variable X(ɛ"w relationship (where X is the pore connectivity factor) derived from measurements was introduced in the Dp(ɛ) expression. In the Penman-Call-based Dp
Langenback, E.G.; Foster, W.M.; Bergofsky, E.H.
1989-01-01
We determined the overall external counting efficiency of radiolabeled particles deposited in the sheep lung. This efficiency permits the noninvasive calculation of the number of particles and microcuries from gamma-scintillation lung images of the live sheep. Additionally, we have calculated the attenuation of gamma radiation (120 keV) by the posterior chest wall and the gamma-scintillation camera collection efficiency of radiation emitted from the lung. Four methods were employed in our experiments: (1) by light microscopic counting of discrete carbonized polystyrene particles with a count median diameter (CMD) of 2.85 microns and tagged with cobalt-57, we delineated a linear relationship between the number of particles and the emitted counts per minute (cpm) detected by well scintillation counting; (2) from this conversion relationship we determined the number of particles inhaled and deposited in the lungs by scintillation counting fragments of dissected lung at autopsy; (3) we defined a linear association between the number of particles or microcuries contained in the lung and the emitted radiation as cpm detected by a gamma scintillation camera in the live sheep prior to autopsy; and (4) we compared the emitted radiation from the lungs of the live sheep to that of whole excised lungs in order to calculate the attenuation coefficient (ac) of the chest wall. The mean external counting efficiency was 4.00 X 10(4) particles/cpm (5.1 X 10(-3) microCi/cpm), the camera collection efficiency was 1 cpm/10(4) disintegrations per minute (dpm), and the ac had a mean of 0.178/cm. The external counting efficiency remained relatively constant over a range of particles and microcuries, permitting a more general use of this ratio to estimate number of particles or microcuries depositing after inhalation in a large mammalian lung if a similarly collimated gamma camera system is used.
NASA Astrophysics Data System (ADS)
Ali, E. S. M.; Spencer, B.; McEwen, M. R.; Rogers, D. W. O.
2015-02-01
In this study, a quantitative estimate is derived for the uncertainty in the XCOM photon mass attenuation coefficients in the energy range of interest to external beam radiation therapy—i.e. 100 keV (orthovoltage) to 25 MeV—using direct comparisons of experimental data against Monte Carlo models and theoretical XCOM data. Two independent datasets are used. The first dataset is from our recent transmission measurements and the corresponding EGSnrc calculations (Ali et al 2012 Med. Phys. 39 5990-6003) for 10-30 MV photon beams from the research linac at the National Research Council Canada. The attenuators are graphite and lead, with a total of 140 data points and an experimental uncertainty of ˜0.5% (k = 1). An optimum energy-independent cross section scaling factor that minimizes the discrepancies between measurements and calculations is used to deduce cross section uncertainty. The second dataset is from the aggregate of cross section measurements in the literature for graphite and lead (49 experiments, 288 data points). The dataset is compared to the sum of the XCOM data plus the IAEA photonuclear data. Again, an optimum energy-independent cross section scaling factor is used to deduce the cross section uncertainty. Using the average result from the two datasets, the energy-independent cross section uncertainty estimate is 0.5% (68% confidence) and 0.7% (95% confidence). The potential for energy-dependent errors is discussed. Photon cross section uncertainty is shown to be smaller than the current qualitative ‘envelope of uncertainty’ of the order of 1-2%, as given by Hubbell (1999 Phys. Med. Biol 44 R1-22).
2011-01-01
Background To study the rules that apparent diffusion coefficient (ADC) changes with time and space in cerebral infarction, and to provide the evidence in defining the infarction stages. Methods 117 work-ups in 98 patients with cerebral infarction (12 hyperacute, 43 acute, 29 subacute, 10 steady, and 23 chronic infarctions) were imaged with both conventional MRI and diffusion weighted imaging. The average ADC values, the relative ADC (rADC) values, and the ADC values or rADC values from the center to the periphery of the lesion were calculated. Results The average ADC values and the rADC values of hyperacute and acute infarction lesion depressed obviously. rADC values in hyperacute and acute stage was minimized, and increased progressively as time passed and appeared as "pseudonormal" values in approximately 8 to 14 days. Thereafter, rADC values became greater than normal in chronic stage. There was positive correlation between rADC values and time (P < 0.01). The ADC values and the rADC values in hyperacute and acute lesions had gradient signs that these lesions increased from the center to the periphery. The ADC values and the rADC values in subacute lesions had adverse gradient signs that these lesions decreased from the center to the periphery. Conclusion The ADC values of infarction lesions have evolution rules with time and space. The evolution rules with time and those in space can be helpful to decide the clinical stage, and to provide the evidence in guiding the treatment or judging the prognosis in infarction. PMID:21211049
Zhang, Lei; Rao, Sheng-Xiang; Xu, Xue-Feng; Wang, Dan-Song; Jin, Da-Yong; Zeng, Meng-Su
2016-01-01
PURPOSE We aimed to explore the potential value of the whole tumor apparent diffusion coefficient (ADC) for discriminating between benign and malignant intraductal papillary mucinous neoplasms (IPMNs) of the pancreas. METHODS Forty-two patients underwent 1.5 T magnetic resonance imaging that included diffusion-weighted imaging (DWI, b=0.500 s/mm2). The mean, minimum, and maximum ADC values were measured for the whole tumor. The differences between benign and malignant IPMNs were calculated for the mean ADC, ADC-min, and ADC-max values. Receiver operating characteristics (ROC) analysis was conducted to evaluate their potential diagnostic performance. RESULTS Fifteen of 25 benign IPMNs demonstrated low or iso-signal intensity on DWI with a b value of 500 s/mm2 compared with normal pancreatic parenchyma, whereas all malignant IPMNs demonstrated high signal intensity. The mean value of ADC was significantly higher in benign IPMNs compared with malignant IPMNs (3.39×10−3 mm2/s vs. 2.39×10−3 mm2/s, P < 0.001), with an area under the ROC curve (AUC) of 0.92 (95% confidence interval [CI], 0.79–0.98). The ADC-min value of malignant IPMNs was also significantly lower than that of benign IPMNs (1.24×10−3 mm2/s vs. 2.58×10−3 mm2/s, P < 0.001), with an AUC of 0.94 (95% CI, 0.82–0.99). No marked difference was found between benign and malignant IPMNs for the ADC-max value (3.89×10−3 mm2/s vs. 3.78×10−3 mm2/s, P = 0.299). CONCLUSION Lower mean and minimum ADC values of the whole tumor might be potential predictors of malignant IPMNs of the pancreas. PMID:27283593
Diffusion length damage coefficient and annealing studies in proton-irradiated InP
NASA Technical Reports Server (NTRS)
Hakimzadeh, Roshanak; Vargas-Aburto, Carlos; Bailey, Sheila G.; Williams, Wendell
1993-01-01
We report on the measurement of the diffusion length damage coefficient (K(sub L)) and the annealing characteristics of the minority carrier diffusion length (L(sub n)) in Czochralski-grown zinc-doped indium phosphide (InP), with a carrier concentration of 1 x 10(exp l8) cm(exp -3). In measuring K(sub L) irradiations were made with 0.5 MeV protons with fluences ranging from 1 x 10(exp 11) to 3 x 10(exp 13) cm(exp -2). Pre- and post-irradiation electron-beam induced current (EBIC) measurements allowed for the extraction of L(sub n) from which K(sub L) was determined. In studying the annealing characteristics of L(sub n) irradiations were made with 2 MeV protons with fluence of 5 x 10(exp 13) cm(exp -2). Post-irradiation studies of L(sub n) with time at room temperature, and with minority carrier photoinjection and forward-bias injection were carried out. The results showed that recovery under Air Mass Zero (AMO) photoinjection was complete. L(sub n) was also found to recover under forward-bias injection, where recovery was found to depend on the value of the injection current. However, no recovery of L(sub n) after proton irradiation was observed with time at room temperature, in contrast to the behavior of 1 MeV electron-irradiated InP solar cells reported previously.
Bozkurt Bostan, Tuğba; Koç, Gonca; Sezgin, Gülten; Altay, Canan; Fazıl Gelal, M.; Oyar, Orhan
2016-01-01
Background: Magnetic resonance imaging (MRI) has become a diagnostic and problem solving method for the breast examinations in addition to conventional breast examination methods. Diffusion-weighted imaging (DWI) adds valuable information to conventional MRI. Aims: Our aim was to show the impact of apparent diffusion coefficient (ADC) values acquired with DWI to differentiate benign and malignant breast lesions. Study Design: Diagnostic accuracy study. Methods: Forty-six women with 58 breast masses (35 malignant, 23 benign) were examined on a 1.5 T clinical MRI scanner. The morphologic characteristics of the lesions on conventional MRI sequences and contrast uptake pattern were assessed. ADC values of both lesions and normal breast parenchyma were measured. The ADC values obtained were statistically compared with the histopathologic results using Paired Samples t-Test. Results: Multiple lesions were detected in 12 (26%) of the patients, while only one lesion was detected in 34 (74%). Overall, 35 lesions out of 58 were histopathologically proven to be malignant. In the dynamic contrast-enhanced series, 5 of the malignant lesions were type 1, while 8 benign lesions revealed either type 2 or 3 time signal intensity curves (85% sensitivity, 56% spesifity). Mean ADC values were significantly different in malignant vs. benign lesions. (1.04±0.29×10−3 cm2/sec vs. 1.61±0.50×10−3 cm2/sec for the malignant and benign lesions, respectively, p=0.03). A cut-off value of 1.30×10−3 mm2/sec for ADC detected with receiver operating characteristic analysis yielded 89.1% sensitivity and 100% specificity for the differentiation between benign and malignant lesions. Conclusion: ADC values improve the diagnostic accuracy of solid breast lesions when evaluated with the conventional MRI sequences. Therefore, DWI should be incorporated to routine breast MRI protocol. PMID:27308073
Katirag, Ahmet; Beker-Acay, Mehtap; Unlu, Ebru; Demirbas, Hayri; Demirturk, Nese
2016-01-01
Objective: Our purpose was to reveal the efficiency of diffusion weighted imaging (DWI) in the diagnosis of encephalitis, and to determine the relation between the apparent diffusion coefficient (ADC) values, the onset of the clinical symptoms, and the lesion extent. Methods: Conventional magnetic resonance imaging (MRI) was performed in 17 patients with encephalitis diagnosed on the basis of laboratory, clinical and radiologic findings during 2009 and 2015. Based on the duration between the onset of the symptoms and the brain MRI findings, the patients were divided into three groups. ADC values of the encephalitis lesion, the lesions’ topographic analysis score, deep gray matter involvement, patients’ clinical situation and the duration of the arrival to the clinic was examined. Results: Mean ADC values were 0,988±0,335 x10-3 mm2/s in group I (0-2 days), 1,045±0,347 x10-3 mm2/s in Group-II (3-7 days), 1,451±0,225 x10-3 mm2/s in Group-III (8 days and over). The relation between the ADC values and the duration of the arrival, topographic analysis score, the relation between the patients’ clinical situation and the deep gray matter involvement were found to be statistically significant. The deep gray matter involvement was demonstrated more clearly by FLAIR images when compared with DWI. Conclusion: Conventional MRI sequences may be insufficient in showing the encephalitis lesion. DWI must be added to the imaging modalities immediately in the cases suspected of having encephalitis. PMID:27375722
Almasian, Mitra; Bosschaart, Nienke; van Leeuwen, Ton G; Faber, Dirk J
2015-12-01
Optical coherence tomography (OCT) has the potential to quantitatively measure optical properties of tissue such as the attenuation coefficient and backscattering coefficient. However, to obtain reliable values for strong scattering tissues, accurate consideration of the effects of multiple scattering and the nonlinear relation between the scattering coefficient and scatterer concentration (concentration-dependent scattering) is required. We present a comprehensive model for the OCT signal in which we quantitatively account for both effects, as well as our system parameters (confocal point spread function and sensitivity roll-off). We verify our model with experimental data from controlled phantoms of monodisperse silica beads (scattering coefficients between 1 and 30 mm(−1) and scattering anisotropy between 0.4 and 0.9). The optical properties of the phantoms are calculated using Mie theory combined with the Percus–Yevick structure factor to account for concentration-dependent scattering. We demonstrate excellent agreement between the OCT attenuation and backscattering coefficient predicted by our model and experimentally derived values. We conclude that this model enables us to accurately model OCT-derived parameters (i.e., attenuation and backscattering coefficients) in the concentration-dependent and multiple scattering regime for spherical monodisperse samples. PMID:26720868
Shalchi, A.
2014-01-10
We explore perpendicular diffusion based on the unified nonlinear transport theory. In Paper I, we focused on magnetostatic turbulence, whereas in the present article we include dynamical turbulence effects. For simplicity, we assume a constant correlation time. We show that there is now a nonvanishing contribution of the slab modes. We explore the parameter regimes in which the turbulence dynamics becomes important for perpendicular diffusion. Analytical forms for the perpendicular diffusion coefficient are derived, which can be implemented easily in solar modulation or shock acceleration codes.
Isotopic mass-dependence of metal cation diffusion coefficients in liquid water
Bourg, I.C.; Richter, F.M.; Christensen, J.N.; Sposito, G.
2009-01-11
Isotope distributions in natural systems can be highly sensitive to the mass (m) dependence of solute diffusion coefficients (D) in liquid water. Isotope geochemistry studies routinely have assumed that this mass dependence either is negligible (as predicted by hydrodynamic theories) or follows a kinetic-theory-like inverse square root relationship (D {proportional_to} m{sup -0.5}). However, our recent experimental results and molecular dynamics (MD) simulations showed that the mass dependence of D is intermediate between hydrodynamic and kinetic theory predictions (D {proportional_to} m{sup -{beta}} with 0 {<=} {beta} < 0.2 for Li{sup +}, Cl{sup -}, Mg{sup 2+}, and the noble gases). In this paper, we present new MD simulations and experimental results for Na{sup +}, K{sup +}, Cs{sup +}, and Ca{sup 2+} that confirm the generality of the inverse power-law relation D {proportional_to} m{sup -{beta}}. Our new findings allow us to develop a general description of the influence of solute valence and radius on the mass dependence of D for monatomic solutes in liquid water. This mass dependence decreases with solute radius and with the magnitude of solute valence. Molecular-scale analysis of our MD simulation results reveals that these trends derive from the exponent {beta} being smallest for those solutes whose motions are most strongly coupled to solvent hydrodynamic modes.
NASA Astrophysics Data System (ADS)
Drozdov, Alexander; Mann, Ian; Baker, Daniel N.; Subbotin, Dmitriy; Ozeke, Louis; Shprits, Yuri; Kellerman, Adam
Two parameterizations of the resonant wave-particle interactions of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate the effect of changing a diffusion coefficient on the radiation belt simulation. The period of investigation includes geomagnetically quiet and active time. The simulations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. 1. Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 2. Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.
Sun, Licun; Pu, Xiaoyun
2016-01-01
A visualization and quantification optical method for measuring binary liquid diffusion coefficient (D) based on an asymmetric liquid-core cylindrical lens (ALCL) is introduced in this paper. Four groups of control experiments were performed to verify the influences of diffusing substance category, concentration and temperature on diffusion process, and the measured D values were well consistent with data measured by Holographic interferometry and Taylor dispersion methods. The drifting of the diffusion image recorded by CCD reflects the diffusion rate visually in an easily understandable way. This optical method for measuring D values based on the ALCL is characterized by visual measurement, simplified device, and easy operation, which provides a new way for measuring liquid D value visually. PMID:27325006
Sun, Licun; Pu, Xiaoyun
2016-01-01
A visualization and quantification optical method for measuring binary liquid diffusion coefficient (D) based on an asymmetric liquid-core cylindrical lens (ALCL) is introduced in this paper. Four groups of control experiments were performed to verify the influences of diffusing substance category, concentration and temperature on diffusion process, and the measured D values were well consistent with data measured by Holographic interferometry and Taylor dispersion methods. The drifting of the diffusion image recorded by CCD reflects the diffusion rate visually in an easily understandable way. This optical method for measuring D values based on the ALCL is characterized by visual measurement, simplified device, and easy operation, which provides a new way for measuring liquid D value visually. PMID:27325006
NASA Astrophysics Data System (ADS)
Ménesguen, Y.; Gerlach, M.; Pollakowski, B.; Unterumsberger, R.; Haschke, M.; Beckhoff, B.; Lépy, M.-C.
2016-02-01
The knowledge of atomic fundamental parameters such as mass attenuation coefficients with low uncertainties, is of decisive importance in elemental quantification using x-ray fluorescence analysis techniques. Several databases are accessible and frequently used within a large community of users. These compilations are most often in good agreement for photon energies in the hard x-ray ranges. However, they significantly differ for low photon energies and around the absorption edges of any element. In a joint cooperation of the metrology institutes of France and Germany, mass attenuation coefficients of copper and zinc were determined experimentally in the photon energy range from 100 eV to 30 keV by independent approaches using monochromatized synchrotron radiation at SOLEIL (France) and BESSY II (Germany), respectively. The application of high-accuracy experimental techniques resulted in mass attenuation coefficient datasets determined with low uncertainties that are directly compared to existing databases. The novel datasets are expected to enhance the reliability of mass attenuation coefficients.
NASA Astrophysics Data System (ADS)
Masuda, Akiko; Ushida, Kiminori; Nishimura, Goro; Kinjo, Masataka; Tamura, Mamoru; Koshino, Hiroyuki; Yamashita, Koichi; Kluge, Thomas
2004-12-01
The distance dependence of the diffusion coefficient (DDDC) of a globular protein (cytchrome c) in aqueous hyaluronan (HA) solution, which is a model system for extracellular matrices (ECMs), was measured by a combination of three kinds of spectroscopic measurements of diffusion coefficients, the time and space samplings of which are different. The results of the three methods are plotted against the diffusion distance derived from the consideration of each experimental condition. Due to the characteristic morphology of HA with an effective mesh structure, the proteins showed two extreme diffusion modes: (1) short (<10 nm) diffusion with rare contact with polymer chains; (2) long (>100 nm) diffusion significantly disrupted by polymer chains showing an ≈30% reduction in diffusion coefficient. The transition from the short diffusion to the long one occurs in a very narrow range (10-100 nm) of diffusion distance and this unique character of HA realizing anomalous diffusion should provide suitable environments for various bioactivities when involved in ECM.
Demir, D; Un, A; Ozgül, M; Sahin, Y
2008-12-01
Gamma-ray transmission methods have been used accurately for the study of the properties of soil in the agricultural purposes. In this study, photon attenuation coefficient, porosity and field capacity of soil are determined by using gamma-ray transmission method. To this end, the soil sample was collected from Erzurum and a 2 x 2 in NaI (Tl) scintillation detector measured the attenuation of strongly collimated monoenergetic gamma beam through soil sample. The radioactive sources used in the experiment were (241)Am, (133)Ba and (137)Cs. The mass attenuation coefficients of dry soil samples were calculated from the transmission measurements. The soil samples were irrigated by adding known quantities of water and the soil-water properties were examined. It was observed that gamma-ray transmission method for determination of the soil parameters has advantages such as practical, inexpensive, non-destructive and fast analysis. PMID:18554919
Measurement of the x-ray mass attenuation coefficients of gold in the 38-50-keV energy range
Islam, M T; Rae, N A; Glover, J L; Barnea, Z; de Jonge, M D; Tran, C Q; Wang, J; Chantler, C T
2010-11-12
We used synchrotron x rays to measure the x-ray mass attenuation coefficients of gold at nine energies from 38 to 50 keV with accuracies of 0.1%. Our results are much more accurate than previous measurements in this energy range. A comparison of our measurements with calculated mass attenuation coefficients shows that our measurements fall almost exactly midway between the XCOM and FFAST calculated theoretical values, which differ from one another in this energy region by about 4%, even though the range includes no absorption edge. The consistency and accuracy of these measurements open the way to investigations of the x-ray attenuation in the region of the L absorption edge of gold.
Estimation of CO2 diffusion coefficient at 0-10 cm depth in undisturbed and tilled soils
Technology Transfer Automated Retrieval System (TEKTRAN)
Diffusion coefficients (D) of CO2 at 0 – 10 cm layers in undisturbed and tilled soil conditions were estimated using Penman, Millington-Quirk, Ridgwell et al. (1999), Troeh et al., and Moldrup et al. models. Soil bulk density and volumetric soil water content ('v) at 0 – 10 cm were measured on April...
Goossens, Karel; Prior, Mira; Pacheco, Victor; Willbold, Dieter; Müllen, Klaus; Enderlein, Jörg; Hofkens, Johan; Gregor, Ingo
2015-07-28
Dual-focus fluorescence correlation spectroscopy (2fFCS) is a versatile method to determine accurate diffusion coefficients of fluorescent species in an absolute, reference-free manner. Whereas (either classical or dual-focus) FCS has been employed primarily in the life sciences and thus in aqueous environments, it is increasingly being used in materials chemistry, as well. These measurements are often performed in nonaqueous media such as organic solvents. However, the diffusion coefficients of reference dyes in organic solvents are not readily available. For this reason we determined the translational diffusion coefficients of several commercially available organosoluble fluorescent dyes by means of 2fFCS. The selected dyes and organic solvents span the visible spectrum and a broad range of refractive indices, respectively. The diffusion coefficients can be used as absolute reference values for the calibration of experimental FCS setups, allowing quantitative measurements to be performed. We show that reliable information about the hydrodynamic dimensions of the fluorescent species (including noncommercial compounds) within organic media can be extracted from the 2fFCS data. PMID:26144863
Dominé, F; Xueref, I
2001-09-01
Diffusion of gases in ice is involved in cloud, snow, and ice core chemistry, but few data exist on the relevant diffusion coefficients. A novel method to measure diffusion coefficients in ice has recently been proposed by Livingston et al. (Anal. Chem., 2000, 72, 5590-5599). It is based on depth profiling of doped ice crystals epitaxially grown on Ru(001) by laser resonant desorption (LRD). Using this method, Livingston et al. obtained a value of the diffusion coefficient of the HCl hydrate in ice at 190 K of about 5 x 10(-11) cm2/s. We argue here that this value is many orders of magnitude higher than what could be expected from literature values, which are not reported in sufficient detail by Livingston et al. We investigate the possibilities that their high value could be due to (1) diffusion in defects in the ice, which would be present in very high concentrations because of the ice growth method; and (2) the fact that diffusion of high concentrations of HCl in ice at 190 K forms an amorphous HCl:H2O solid mixture, where HCl diffusion is fast. We present new infrared spectroscopic data on solid HCl:H2O mixtures that confirm that such mixtures can indeed be formed in an amorphous state at 190 K. Our proposed interpretation is that by depositing large amounts of HCl on epitaxially grown ice, Livingston et al. created a superficial amorphous binary mixture and that fast diffusion of HCl in the ice, possibly accelerated by a high defect density, produced an amorphous HCl:H2O mixture. We conclude that the processes studied by Livingston et al. are different from those involved in the atmospheric and cryospheric sciences, and that their data, obtained by depth profiling using LRD, probably cannot be applied to those fields. PMID:11569830
Gebrekristos, R.A.; Shapiro, A.M.; Usher, B.H.
2008-01-01
An in situ method of estimating the effective diffusion coefficient for a chemical constituent that diffuses into the primary porosity of a rock is developed by abruptly changing the concentration of the dissolved constituent in a borehole in contact with the rock matrix and monitoring the time-varying concentration. The experiment was conducted in a borehole completed in mudstone on the campus of the University of the Free State in Bloemfontein, South Africa. Numerous tracer tests were conducted at this site, which left a residual concentration of sodium chloride in boreholes that diffused into the rock matrix over a period of years. Fresh water was introduced into a borehole in contact with the mudstone, and the time-varying increase of chloride was observed by monitoring the electrical conductivity (EC) at various depths in the borehole. Estimates of the effective diffusion coefficient were obtained by interpreting measurements of EC over 34 d. The effective diffusion coefficient at a depth of 36 m was approximately 7.8??10-6 m2/d, but was sensitive to the assumed matrix porosity. The formation factor and mass flux for the mudstone were also estimated from the experiment. ?? Springer-Verlag 2007.
Majer, G.; Melchior, J. P.
2014-03-07
Precise diffusion measurements of rhodamine 6G (Rh6G) dissolved in D{sub 2}O at concentrations between 50 and 200 μM were carried out in the temperature range from 280 to 320 K using pulsed field gradient nuclear magnetic resonance (PFG-NMR). The obtained diffusion coefficients can be used as a calibration reference in fluorescence correlation spectroscopy (FCS). Besides measuring the diffusivity of Rh6G, the diffusion coefficient of the solvent in the same system could be determined in parallel by PFG-NMR as the resonances of water and Rh6G are well separated in the {sup 1}H NMR spectrum. To analyze the differences due to the isotope effect of the solvent (D{sub 2}O vs. H{sub 2}O), the correlation time τ{sub D} of Rh6G was measured by FCS in both D{sub 2}O and H{sub 2}O. The obtained isotopic correction factor, τ{sub D}(D{sub 2}O)/τ{sub D}(H{sub 2}O) = 1.24, reflects the isotope effect of the solvent´s self-diffusion coefficients as determined previously by PFG-NMR.
Higaki, M.; Otsuka, T.; Hashizume, K.; Tokunaga, K.; Ezato, K.; Suzuki, S.; Enoeda, M.; Akiba, M.
2015-03-15
Hydrogen diffusion coefficients in a reduced activation ferritic/martensitic steel (F82H) and an oxide dispersion strengthened F82H (ODS-F82H) have been determined from depth profiles of plasma-loaded hydrogen with a tritium imaging plate technique (TIPT) in the temperature range from 298 K to 523 K. Data on hydrogen diffusion coefficients, D, in F82H, are summarized as D [m{sup 2}*s{sup -1}] =1.1*10{sup -7}exp(-16[kJ mol{sup -1}]/RT). The present data indicate almost no trapping effect on hydrogen diffusion due to an excess entry of energetic hydrogen by the plasma loading, which results in saturation of the trapping sites at the surface and even in the bulk. In the case of ODS-F82H, data of hydrogen diffusion coefficients are summarized as D [m{sup 2}*s{sup -1}] =2.2*10{sup -7}exp(-30[kJ mol{sup -1}]/RT) indicating a remarkable trapping effect on hydrogen diffusion caused by tiny oxide particles (Y{sub 2}O{sub 3}) in the bulk of F82H. Such oxide particles introduced in the bulk may play an effective role not only on enhancement of mechanical strength but also on suppression of hydrogen penetration by plasma loading.
NASA Technical Reports Server (NTRS)
Paillat, O.; Wasserburg, G. J.
1993-01-01
Experimental studies of self-diffusion isotopes in silicate melts often have quite large uncertainties when comparing one study to another. We designed an experiment in order to improve the precision of the results by simultaneously studying several elements (Mg, Ca, Sr, Ba) during the same experiment thereby greatly reducing the relative experimental uncertainties. Results show that the uncertainties on the diffusion coefficients can be reduced to 10 percent, allowing a more reliable comparison of differences of self-diffusion coefficients of the elements. This type of experiment permits us to study precisely and simultaneously several elements with no restriction on any element. We also designed an experiment to investigate the possible effects of multicomponent diffusion during Mg self-diffusion experiments by comparing cases where the concentrations of the elements and the isotopic compositions are different. The results suggest that there are differences between the effective means of transport. This approach should allow us to investigate the importance of multicomponent diffusion in silicate melts.
Mandal, A.B.; Nair, B.U. )
1991-10-31
Critical micelle concentrations (cmc) of cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC) surfactants in aqueous solution have been determined by using the cyclic voltammetric technique. (Co(en){sub 3})(ClO{sub 4}){sub 3} has been used as the redox-active electrochemical probe. The cmc values so obtained for the surfactants were found to be in good agreement with the literature values. The partition coefficient, K, of the electrochemical probe between water and surfactants in nonmicellar and micellar states was estimated using the peak current, i{sub p} and half-wave potential, E{sub 1/2} values. The self-diffusion coefficient, D{sub m}, interaction parameter, k{sub f}, and hydrodynamic radius of the micelles were also estimated. The results suggest that the probe is sensitive to the nature of surfactant as well as surfactant concentration.
NASA Astrophysics Data System (ADS)
Bologna, Mauro; Svenkeson, Adam; West, Bruce J.; Grigolini, Paolo
2015-07-01
Diffusion processes in heterogeneous media, and biological systems in particular, are riddled with the difficult theoretical issue of whether the true origin of anomalous behavior is renewal or memory, or a special combination of the two. Accounting for the possible mixture of renewal and memory sources of subdiffusion is challenging from a computational point of view as well. This problem is exacerbated by the limited number of techniques available for solving fractional diffusion equations with time-dependent coefficients. We propose an iterative scheme for solving fractional differential equations with time-dependent coefficients that is based on a parametric expansion in the fractional index. We demonstrate how this method can be used to predict the long-time behavior of nonautonomous fractional differential equations by studying the anomalous diffusion process arising from a mixture of renewal and memory sources.
NASA Astrophysics Data System (ADS)
Manapova, Aigul
2016-08-01
We consider optimal control problems for second order elliptic equations with non-self-adjoint operators-convection-diffusion problems. Control processes are described by semi-linear convection-diffusion equation with discontinuous data and solutions (states) subject to the boundary interface conditions of imperfect type (i.e., problems with a jump of the coefficients and the solution on the interface; the jump of the solution is proportional to the normal component of the flux). Controls are involved in the coefficients of diffusion and convective transfer. We prove differentiability and Lipshitz continuity of the cost functional, depending on a state of the system and a control. The calculation of the gradients uses the numerical solutions of direct problems for the state and adjoint problems.
NASA Astrophysics Data System (ADS)
Liu, Wenlong; Tu, Weichao; Li, Xinlin; Sarris, Theodore; Khotyaintsev, Yuri; Fu, Huishan; Zhang, Hui; Shi, Quanqi
2016-02-01
Based on 7 years' observations from Time History of Events and Macroscale Interactions during Substorms (THEMIS), we investigate the statistical distribution of electric field Pc5 ULF wave power under different geomagnetic activities and calculate the radial diffusion coefficient due to electric field, , for outer radiation belt electrons. A simple empirical expression of is also derived. Subsequently, we compare to previous DLL models and find similar Kp dependence with the model, which is also based on in situ electric field measurements. The absolute value of is constantly higher than , probably due to the limited orbital coverage of CRRES. The differences between and the commonly used and models are significant, especially in Kp dependence and energy dependence. Possible reasons for these differences and their implications are discussed. The diffusion coefficient provided in this paper, which also has energy dependence, will be an important contributor to quantify the radial diffusion process of radiation belt electrons.
Plata, Juan C.; Holbrook, Andrew B.; Marx, Michael; Salgaonkar, Vasant; Jones, Peter; Pascal-Tenorio, Aurea; Bouley, Donna; Diederich, Chris; Sommer, Graham; Pauly, Kim Butts
2015-01-01
Purpose: Evaluate whether a decrease in apparent diffusion coefficient (ADC), associated with loss of tissue viability (LOTV), can be observed during the course of thermal ablation of the prostate. Methods: Thermal ablation was performed in a healthy in vivo canine prostate model (N = 2, ages: 5 yr healthy, mixed breed, weights: 13–14 kg) using a transurethral high-intensity ultrasound catheter and was monitored using a strategy that interleaves diffusion weighted images and gradient-echo images. The two sequences were used to measure ADC and changes in temperature during the treatment. Changes in temperature were used to compute expected changes in ADC. The difference between expected and measured ADC, ADCDIFF, was analyzed in regions ranging from moderate hyperthermia to heat fixation. A receiver operator characteristic (ROC) curve analysis was used to select a threshold of detection of LOTV. Time of threshold activation, tLOTV, was compared with time to reach CEM43 = 240, tDOSE. Results: The observed relationship between temperature and ADC in vivo (2.2%/ °C, 1.94%–2.47%/ °C 95% confidence interval) was not significantly different than the previously reported value of 2.4%/ °C in phantom. ADCDIFF changes after correction for temperature showed a mean decrease of 25% in ADC 60 min post-treatment in regions where sufficient thermal dose (CEM43 > 240) was achieved. Following our ROC analysis, a threshold of 2.25% decrease in ADCDIFF for three consecutive time points was chosen as an indicator of LOTV. The ADCDIFF was found to decrease quickly (1–2 min) after reaching CEM43 = 240 in regions associated with heat fixation and more slowly (10–20 min) in regions that received slower heating. Conclusions: Simultaneous monitoring of ADC and temperature during treatment might allow for a more complete tissue viability assessment of ablative thermal treatments in the prostate. ADCDIFF decreases during the course of treatment may be interpreted as loss of
Wang, Hai-Yi; Wang, Jia; Tang, Ye-Huan; Ye, Hui-Yi; Ma, Lin
2015-01-01
Background: Coronal diffusion-weighted magnetic resonance imaging (DW-MRI) and apparent diffusion coefficient (ADC) values have gradually become applied (following conventional axial DW-MRI) in the renal analysis. To explore whether data obtained using coronal DW-MRI are comparable with those derived using axial DW-MRI, this preliminary study sought to assess the agreement in renal ADC values between coronal DW-MRI and axial DW-MRI. Methods: Thirty-four healthy volunteers were enrolled in the study; written consents were obtained. All subjects underwent respiratory-triggered axial and coronal DW-MRI using a 1.5-MR system with b values of 0 and 800 s/mm2. The signal-to-noise ratios (SNRs) of the two DW-MRI sequences were measured and statistically compared using the paired t-test. The extent of agreement of ADC values of the upper pole, mid-pole, and lower pole of the kidney; the mean ADC values of the left kidney and right kidney; and the mean ADC values of the bilateral kidneys were evaluated via calculation of intraclass correlation coefficients (ICCs) or Bland–Altman method between the two DW-MRI sequences. Results: The SNR of coronal DW-MR images was statistically inferior to that of axial DW-MR images (P < 0.001). The ICCs of the ADC values of each region of interest, and the mean ADC values of bilateral kidneys, between the two sequences, were greater than 0.5, and the mean ADCs of the bilateral kidneys demonstrated the highest ICC (0.869; 95% confidence interval: 0.739–0.935). In addition, 94.1% (32/34), 94.1% (32/34), and 97.1% (31/34) of the ADC bias was inside the limits of agreement in terms of the mean ADC values of the left kidneys, right kidneys, and bilateral kidneys when coronal and axial DWI-MRI were compared. Conclusions: ADC values derived using coronal DW-MRI exhibited moderate-to-good agreement to those of axial DW-MRI, rendering the former an additional useful DW-MRI method, and causing the ADC values derived using the two types of DW
NASA Astrophysics Data System (ADS)
Tran, C. Q.; Chantler, C. T.; Barnea, Z.; Paterson, D.; Cookson, D. J.
2003-04-01
We used the x-ray extended-range technique to measure the x-ray mass attenuation coefficients of silicon with an accuracy between 0.27% and 0.5% in the 5 keV-20 keV energy range. Subtraction of the x-ray scattering contribution enabled us to derive the corresponding x-ray photoelectric absorption coefficients and determine the absolute value of the imaginary part of the atomic form factor of silicon. Discrepancies between the experimental values of the mass attenuation coefficients and theoretically calculated values are discussed. New approaches to the theoretical calculation will be required to match the precision and accuracy of the experimental results.
Analysis of ligand-protein exchange by Clustering of Ligand Diffusion Coefficient Pairs (CoLD-CoP)
NASA Astrophysics Data System (ADS)
Snyder, David A.; Chantova, Mihaela; Chaudhry, Saadia
2015-06-01
NMR spectroscopy is a powerful tool in describing protein structures and protein activity for pharmaceutical and biochemical development. This study describes a method to determine weak binding ligands in biological systems by using hierarchic diffusion coefficient clustering of multidimensional data obtained with a 400 MHz Bruker NMR. Comparison of DOSY spectrums of ligands of the chemical library in the presence and absence of target proteins show translational diffusion rates for small molecules upon interaction with macromolecules. For weak binders such as compounds found in fragment libraries, changes in diffusion rates upon macromolecular binding are on the order of the precision of DOSY diffusion measurements, and identifying such subtle shifts in diffusion requires careful statistical analysis. The "CoLD-CoP" (Clustering of Ligand Diffusion Coefficient Pairs) method presented here uses SAHN clustering to identify protein-binders in a chemical library or even a not fully characterized metabolite mixture. We will show how DOSY NMR and the "CoLD-CoP" method complement each other in identifying the most suitable candidates for lysozyme and wheat germ acid phosphatase.
A first-principles study of the diffusion coefficients of alloying elements in dilute α-Ti alloys.
Xu, W W; Shang, S L; Zhou, B C; Wang, Y; Chen, L J; Wang, C P; Liu, X J; Liu, Z K
2016-06-22
Using first-principles calculations accompanied by the transition state theory and an 8-frequency model, we present a comprehensive investigation of the diffusion coefficients of substitutional alloying elements X in dilute α-Ti alloys, where X denotes Al, V, Nb, Ta, Mo, Zr, and Sn. The alloying elements Mo and Al exhibit a maximum and a minimum diffusion rate in dilute α-Ti alloys, respectively. It is found that the nearest-neighbor solute-vacancy binding energies and activation energies are roughly inversely proportional to the volume changes induced by solute atoms. There are two exceptions to this trend: Al and Mo. Besides the physical effect (i.e., solute size), two other key factors governing solute diffusion in dilute α-Ti are clarified: the chemical bonding characteristics and vibrational features of X-Ti pairs. It verifies that the ultrafast diffusivity of Mo arises from the interactions with Ti atoms by metallic bonds and its low-frequency contributions to lattice vibration, while the more covalent bonding nature and the high-frequency contributions to the lattice vibration of Al lead to its ultraslow diffusivity. In addition, the correlation effects of diffusion coefficients are non-negligible for the large solutes Ta, Nb, and Zr, in which the direct solute-vacancy migration barriers are much smaller than the solvent-vacancy migration barriers. PMID:27282515
Chen, Yuan-Gui; Chen, Ming-Qiu; Guo, Yu-Yan; Li, Si-Cong; Wu, Jun-Xin; Xu, Ben-Hua
2016-01-01
Objective To evaluate the predictive value of the apparent diffusion coefficient (ADC) for pathologic complete response (pCR) to neoadjuvant chemoradiotherapy (NCRT) in locally advanced rectal cancer. Methods A total of 265 patients with rectal adenocarcinoma, whole Diffusion-Weighted MRI (DWI-MRI) images, clinically stage II to III (cT3-4 and/or cN+) and treated with NCRT followed by TME were screened. Fifty patients with pCR and another 50 patients without pCR with similar clinical charcacters and treatment regimens were selected for statistical analysis. All the patients’ pre-CRT and post-CRT average ADC values were calculated from the coefficient maps created by DWI-MRI and recorded independently. The difference in the ADC values between the pCR and non-pCR was analyzed by the Mann-Whitney U test. The cut-off ADC value of the receiver operating characteristic (ROC) curve with pCR was then established. Results The mean pre- and post-ADC values in all patients, and in pCR patients and non-pCR patients were 0.879±0.06 and 1.383±0.11, 0.859±0.04 and 1.440±0.10, 0.899±0.07 and 1.325±0.09 (×10-3mm2/s), respectively. The difference between the pre- and post-ADC values in all patients, pCR patients, and non-pCR patients were considered to be statistically significant. The pre-ADC value was significantly lower in the pCR patients than in the non-pCR patients (p = 0.003), whereas the post-ADC values were significantly higher in the pCR patients than in the non-pCR patients. The percentage increase of the ADC value (ΔADC%) in the pCR and non-pCR patients were 68% and 48% respectively (p<0.001). The ROC curves of the cut-off value of the pre-CRT patient ADC value was 0.866×10-3mm2/s. The AUC, sensitivity, specificity, PPV, NPV, and accuracy of diagnosing pCR were 0.670 (95% CI 0.563–0.777), 0.600, 0.640, 60%, 60%, and 60%, respectively. The cut-off value of ΔADC% was 58%. The corresponding AUC, sensitivity, specificity, PPV, NPV, and accuracy of diagnosing p
Association of the apparent diffusion coefficient with maturity in adolescent sacroiliac joints
Vendhan, Kanimozhi; Roberts, James; Atkinson, David; Punwani, Shonit; Sen, Debajit; Ioannou, Yiannis; Hall‐Craggs, Margaret A.
2016-01-01
Purpose To determine the extent to which apparent diffusion coefficient (ADC) values vary with skeletal maturity in adolescent joints. Materials and Methods A retrospective study was performed with Institutional Review Board (IRB) approval. We used a picture archiving and communication system (PACS) search to identify and recruit all adolescents who had undergone 1.5T magnetic resonance imaging (MRI) of the sacroiliac joints (SIJs) between January 2010 and June 2015, and had no evidence of sacroiliitis and normal inflammatory markers. In all, 55 individuals were assessed. For each patient, coronal and sagittal images of the sacrum were visually analyzed to determine sacral maturity. Patients were divided into three groups depending on the degree of fusion of the sacral segmental apophyses: “Fused,” “Partial,” and “Unfused.” For each group, SIJ ADC was measured using a linear region‐of‐interest technique. Results Mean ADC values were 690 × 10−6 mm2/s in the fused group, 720 × 10−6 mm2/s in the partial group, and 842 × 10−6 mm2/s in the unfused group. ADC values were significantly higher in the unfused group than in the fused group (P = 0.046). ADC values were also higher in unfused subjects than partially fused subjects (P = 0.074). Conclusion Joint ADC values are higher in skeletally immature (unfused) patients than in skeletally more mature (fused) patients. ADC values measured in the unfused group overlap with those previously reported in sacroiliitis. These results suggest that ADC measurements in adolescent joints must be interpreted in light of joint maturity. Joint immaturity may lead to misdiagnosis of sacroiliitis, since immature juxta‐articular bone may appear similar to inflammation. J. Magn. Reson. Imaging 2016. J. Magn. Reson. Imaging 2016;44:556–564. PMID:26898474
Lu, Yan; Li, Mingzhong
2016-01-01
The solubility and diffusion coefficient are two of the most important physicochemical properties of a drug compound. In practice, both have been measured separately, which is time consuming. This work utilizes a novel technique of UV imaging to determine the solubility and diffusion coefficients of poorly water-soluble drugs simultaneously. A 2-step optimal method is proposed to determine the solubility and diffusion coefficients of a poorly water-soluble pharmaceutical substance based on the Fick's second law of diffusion and UV imaging measurements. Experimental results demonstrate that the proposed method can be used to determine the solubility and diffusion coefficients of a drug with reasonable accuracy, indicating that UV imaging may provide a new opportunity to accurately measure the solubility and diffusion coefficients of a poorly water-soluble drug simultaneously and rapidly. PMID:26852848
Haas, O.; Velazquez, C.S.; Porat, Z.; Murray, R.W.
1995-10-12
Ferrocene labeled monomethoxy-poly(ethylene glycol)s (MPEG) with molecular weights of 1900 and 750 were used as redox probe solutes in poly(ethylene glycol) melt solvents of molecular weight 750, 2000, and 20000. Cyclic voltammetry and chronoamperometry at microdisk electrodes were employed to measure the diffusion coefficients of the redox probes, which were independent of the probe concentration and varied between 10{sup -7} and 10{sup -10} cm{sup 2}/s. Diffusional activation barrier results also suggest that the ferrocene label does not significantly influence the diffusivity of the probe molecule in the host solvent. Activation barrier, viscosity, and ionic conductivity results show that the LiClO{sub 4} electrolyte does not influence the diffusion barrier or viscosity as long as the ether O/Li{sup +} ratio is >=250 (ca. 0.1 M) which is still a sufficient electrolyte concentration to allow quantitative electrochemical diffusion measurements. 21 refs., 7 figs., 2 tabs.
de Oliveira, Lucas Nonato; Sampaio, Francisco Glaildo Almeida; Moreira, Marcos Vasques; de Almeida, Adelaide
2014-08-01
In Fricke dosimetry, optical density measurements are performed some time after dosimeter irradiation. Values of the diffusion coefficient of Fe(3+) in Fricke Xylenol gel (FXG) are necessary for determining the spatial distribution of the absorbed dose from measurements of the optical density. Five sets of FXG dosimeters, kept at different constant temperatures, were exposed to collimated 6 MV photons. The optical density profile, proportional to the Fe(3+) concentration, at the boundary between irradiated and non-irradiated parts of each dosimeter was measured periodically over a period of 60 h. By comparing the experimental data with a function that accounts for the unobserved initial concentration profile of Fe(3+) in the FXG, we obtained diffusion coefficients 0.30±0.05, 0.40±0.05, 0.50±0.05, 0.60±0.05 and 0.80±0.05 mm(2)/h for the temperatures 283.0±0.5, 286.0±0.5, 289.0±0.5, 292.0±0.5, and 296.0±0.5 K, respectively. The activation energy of Fe(3+) diffusion in the gel, 0.54±0.06 eV, was determined from the temperature dependence of the diffusion coefficients. PMID:24836903
NASA Technical Reports Server (NTRS)
Dean, D. C.; Goldstein, J. I.
1984-01-01
The interdiffusion coefficient of FeNi in fcc taenite (gamma) of Fe-Ni and Fe-Ni-0.2 P alloys was measured as a function of temperature between 600 and 900 C. This temperature range is directly applicable to the nucleation and growth of the Widmanstatten pattern in iron meteorites and metal regions of stony and stony-iron meteorites. Diffusion couples were made from FeNi or FeNiP alloys which ensured that the couples were in the taenite phase at the diffusion temperature. The presence or absence of grain boundary diffusion was determined by measuring the Ni profile normal to the existing grain boundaries with the AEM. Ignoring any variation of interdiffusion coefficient with composition, the measured data was plotted versus the reciprocal of the diffusion temperature. The FeNi data generally follow the extrapolated Goldstein, et al. (1965) data from high temperatures. The FeNiP data indicates that small additions of P (0.2 wt%) cause a 3 to 10 fold increase in the FeNi interdifussion coefficient increasing with decreasing temperature. This increase is about the same as that predicted by Narayan and Goldstein (1983) at the Widmanstatten growth temperature.
NASA Astrophysics Data System (ADS)
Gebel, M. E.; Kaleuati, M. A.; Finlayson-Pitts, B. J.
2003-06-01
This paper describes an undergraduate junior- and senior-level instrumental analysis experiment that uses three infrared analysis techniques: conventional transmission spectroscopy, attenuated total reflection (ATR) spectroscopy, and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Using transmission spectroscopy, methyl t-butyl ether, MTBE, in a state-supplied certification gasoline was measured to be 11.3 ± 0.4 % (v/v, 2s), in agreement with the stated MTBE content of 10.9% (v/v). Measurements were also carried out on various brands of commercial gasoline and MTBE was found to vary from 9.2 to 12.2% (v/v). ATR was used to measure the ethanol content of different brands of vodka, which ranged from 36 to 40 % (v/v) in agreement with the labeled concentration of 40% (v/v). This part of the experiment highlights the significant advantages of using ATR for the analysis of aqueous solutions that cannot be carried out using normal transmission spectroscopy. Finally, DRIFTS measurements were made of total hydrocarbons in six soil samples. The results ranged from below the detection limit of 120 ppm (w/w) for soil from a path at a residential home to 915 ppm (w/w) for a sample from the center planter of a gas station. This part of the experiment illustrates the advantages of using DRIFTS to analyze solids compared to making pellets or mulls. This experiment is carried out during one seven-hour laboratory period.
Torgersen, T.; Mathieu, G.; Hesslein, R.H.; Broecker, W.S.
1982-01-20
A direct field comparison was conducted to determine the dependency of gas exchange coefficient (k/sub x/) on the diffusion coefficient (D/sub x/). The study also sought to confirm the enhanced vertical exchange properties of limnocorrals and similar enclosures. Gas exchange coefficients for /sup 222/Rn and /sup 3/He were determined in a small northern Ontario lake, using a /sup 226/Ra and /sup 3/H spike to gain the necessary precision. The results indicate that the gas exchange coefficient is functionally dependent on the diffusion coefficient raised to the 1.22/sub -35//sup + > 12/ power (k/sub x/ = f(D/sub x//sup 1.22)), clearly supporting the stagnant film model of gas exchange. Limnocorrals were found to have gas exchange rates up to 1.7 times higher than the whole lake in spite of the observation of more calm surface conditions in the corral than in the open lake. 33 references, 6 figures, 8 tables.
NASA Astrophysics Data System (ADS)
Montejo, Ludguier D.; Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.
2013-03-01
We apply the Fourier Transform to absorption and scattering coefficient images of proximal interphalangeal (PIP) joints and evaluate the performance of these coefficients as classifiers using receiver operator characteristic (ROC) curve analysis. We find 25 features that yield a Youden index over 0.7, 3 features that yield a Youden index over 0.8, and 1 feature that yields a Youden index over 0.9 (90.0% sensitivity and 100% specificity). In general, scattering coefficient images yield better one-dimensional classifiers compared to absorption coefficient images. Using features derived from scattering coefficient images we obtain an average Youden index of 0.58 +/- 0.16, and an average Youden index of 0.45 +/- 0.15 when using features from absorption coefficient images.
NASA Astrophysics Data System (ADS)
Gubar, Yu. I.
2015-11-01
A radial profile of the plasma mass distribution in Jupiter's magnetosphere in the region beyond Io's orbit up to ˜15 Jupiter radii R J constructed according to the results of measurements on the Voyager 1 and Galileo spacecraft is used to determine the radial dependence and radial diffusion coefficient D LL . The initial profile is approximated by a function decreasing as L -5 ± 1. For this radial mass distribution, radial ion diffusion outside of Io's orbit caused by centrifugal forces is possible. An estimate of (1.2-6.7)10-11 L 6 ± 1 for D LL was obtained.
Pressure diffusion waves in porous media
Silin, Dmitry; Korneev, Valeri; Goloshubin, Gennady
2003-04-08
Pressure diffusion wave in porous rocks are under consideration. The pressure diffusion mechanism can provide an explanation of the high attenuation of low-frequency signals in fluid-saturated rocks. Both single and dual porosity models are considered. In either case, the attenuation coefficient is a function of the frequency.
Navrátilová Rovenská, Katerina
2014-07-01
Waterproofing, usually made of bitumen or polymers with various additives, is used to protect buildings mainly against dampness, but also against radon transported from the soil beneath the building. The radon diffusion coefficient is a material property which is considered to be strongly influenced by the inner structure (chemical composition, crystallinity) of a measured sample. We have used this parameter together with measurements of mechanical properties (hardness, tensile strength, elongation at break, etc.) and FTIR spectroscopy has been used in order to describe the changes in material properties induced by long-term degradation. This paper summarizes the results of radon diffusion coefficient measurements of waterproof materials exposed to radon, soil bacteria, high temperature and combinations of these factors. We have discovered changes as high as 83 % have been discovered compared to virgin samples. PMID:24748486
Song, Huiying; Vanderheyden, Yoachim; Adams, Erwin; Desmet, Gert; Cabooter, Deirdre
2016-07-15
Diffusion plays an important role in all aspects of band broadening in chromatography. An accurate knowledge of molecular diffusion coefficients in different mobile phases is therefore crucial in fundamental column performance studies. Correlations available in literature, such as the Wilke-Chang equation, can provide good approximations of molecular diffusion under reversed-phase conditions. However, these correlations have been demonstrated to be less accurate for mobile phases containing a large percentage of acetonitrile, as is the case in hydrophilic interaction liquid chromatography. A database of experimentally measured molecular diffusion coefficients of some 45 polar and apolar compounds that are frequently used as test molecules under hydrophilic interaction liquid chromatography and reversed-phase conditions is therefore presented. Special attention is given to diffusion coefficients of polar compounds obtained in large percentages of acetonitrile (>90%). The effect of the buffer concentration (5-10mM ammonium acetate) on the obtained diffusion coefficients is investigated and is demonstrated to mainly influence the molecular diffusion of charged molecules. Diffusion coefficients are measured using the Taylor-Aris method and hence deduced from the peak broadening of a solute when flowing through a long open tube. The validity of the set-up employed for the measurement of the diffusion coefficients is demonstrated by ruling out the occurrence of longitudinal diffusion, secondary flow interactions and extra-column effects, while it is also shown that radial equilibration in the 15m long capillary is effective. PMID:27240944
Li, P.Y.; Chen, P.K.
1994-01-24
The release of {sup 222}Radon to the atmosphere is controlled by the rate of its gas transport through earthen materials. Of the many soil-related parameters, radon diffusion coefficient is the key parameter that characterizes this transport. We compared the radon diffusion coefficients measured at the laboratories for the UMTRA Project with simple empirical correlations developed by others. The empirical correlations predict the radon diffusion coefficient based on the fraction of moisture saturation and porosity. One of the more recent correlations agrees reasonably well with the measurements. In addition, by using a series of correlation curves, we studied the empirical relationships of the. radon diffusion coefficient with the saturated hydraulic conductivity, the fines content, and the moisture saturation in soil. The results reveal that a reliable determination of the long-term moisture and porosity is essential in the design of an adequate radon barrier with respect to the radon diffusion coefficient.
Nonlinear Diffusions and Stable-Like Processes with Coefficients Depending on the Median or VaR
Kolokoltsov, Vassili N.
2013-08-01
The paper is devoted to the well-posedness for nonlinear McKean-Vlasov type diffusions with coefficients depending on the median or, more generally, on the {alpha}-quantile of the underlying distribution. The median is not a continuous function on the space of probability measures equipped with the weak convergence. This is one reason why well-posedness of the SDE considered in the paper does not follow by standard arguments.
NASA Astrophysics Data System (ADS)
Raymundo-Ortiz, A. I.; Ramos-Ramirez, E. G.; Cruz-Orea, A.; Salazar-Montoya, J. A.
2013-09-01
The main objective of this work is to determine the effect of different sodium alginate concentrations in hydrogels on their water-vapor diffusion coefficient (WVDC) and thermal effusivity (. These physical parameters were measured by photoacoustic and pyroelectric techniques, respectively. The results indicate that the higher values for the WVDC are presented at a concentration of 2 % sodium alginate. At lower concentrations of sodium alginate, the sample thermal effusivity increases, with a value close to the water thermal effusivity.
Use of NMR Imaging to Determine the Diffusion Coefficient of Water in Bio-based Hydrogels
Technology Transfer Automated Retrieval System (TEKTRAN)
The diffusion of liquid in a hydrogel material is a fundamental property which must be controlled in order to create effective delivery systems for the agricultural and pharmaceutical industries. NMR spectroscopy has been used to determine the diffusion of water and deuterium oxide in a bio-based h...
NASA Astrophysics Data System (ADS)
Akar, A.; Baltaş, H.; Çevik, U.; Korkmaz, F.; Okumuşoğlu, N. T.
2006-11-01
The half-value thicknesses, linear and mass attenuation coefficients of biological samples such as bone, muscle, fat and water have been measured at 140, 364 and 662 keV γ-ray energies by using the ATOMLABTM-930 medical spectrometer. The γ-rays were obtained from 99mTc, 131I and 137Cs γ-ray point sources. Also theoretical calculations have been performed in order to obtain the half-value thicknesses and, mass and linear attenuation coefficients at photon energies 0.001 keV 20 MeV for bone, muscle and water samples. The calculated value and the experimental results of this work and the other results in literature are found to be in good agreement.
NASA Astrophysics Data System (ADS)
Mohd Yusof, Mohd Fahmi; Hamid, Puteri Nor Khatijah Abdul; Bauk, Sabar; Hashim, Rokiah; Tajuddin, Abdul Aziz
2015-04-01
The Rhizophora spp. particleboards were fabricated using ≤ 104 µm particle size at three different fabrication methods; binderless, steam pre-treated and tannin-added. The mass attenuation coefficient of Rhizophora spp. particleboards were measured using x-ray fluorescent (XRF) photon from niobium, molybdenum, palladium, silver and tin metal plates that provided photon energy between 16.59 to 25.26 keV. The results were compared to theoretical values for water calculated using photon cross-section database (XCOM).The results showed that all Rhizophora spp. particleboards having mass attenuation coefficient close to calculated XCOM for water. Tannin-added Rizophora spp. particleboard was nearest to calculated XCOM for water with χ2 value of 13.008 followed by binderless Rizophora spp. (25.859) and pre-treated Rizophora spp. (91.941).
NASA Astrophysics Data System (ADS)
Degrelle, D.; Mavon, C.; Groetz, J.-E.
2016-04-01
This study presents a numerical method in order to determine the mass attenuation coefficient of a sample with an unknown chemical composition at low energy. It is compared with two experimental methods: a graphic method and a transmission method. The method proposes to realise a numerical absorption calibration curve to process experimental results. Demineralised water with known mass attenuation coefficient (0.2066cm2g-1 at 59.54 keV) is chosen to confirm the method. 0.1964 ± 0.0350cm2g-1 is the average value determined by the numerical method, that is to say less than 5% relative deviation compared to more than 47% for the experimental methods.
NASA Astrophysics Data System (ADS)
Lin, Binhua; Cui, Bianxiao; Xu, Xinliang; Zangi, Ronen; Diamant, Haim; Rice, Stuart A.
2015-03-01
We report the results of experimental studies of the short time-long wavelength behavior of collective particle displacements in q1D and q2D colloid suspensions. Our results are reported via the q->0 behavior of the hydrodynamic function H (q) that relates the effective collective diffusion coefficient, De (q) , with the static structure factor S (q) and the self-diffusion coefficient of isolated particles Do: H (q) De (q) S (q) /Do. We find an apparent divergence of H (q) as q->0 with the form H(q)q-(1.7 < γ<1.9), for both q1D and q2D colloid suspensions. Given that S (q) does not diverge as we infer that De (q) does. This behavior is qualitatively different from that of the three-dimensional H (q) and De (q) as q->0, and the divergence is of a different functional form from that predicted for the diffusion coefficient in one component 1D and 2D fluids not subject to boundary conditions that define the dimensionality of the system. The research was supported by the NSF MRSEC at the U of Chicago (NSF/DMR-MRSEC 0820054), NSF/CHE 0822838 (ChemMatCARS), and Israel Science Foundation (Grant No. 8/10).
Diffusion coefficients of actinide and lanthanide ions in molten Li[sub 2]BeF[sub 4
Moriyama, Hirotake; Moritani, Kimikazu; Ito, Yasuhiko . Dept. of Nuclear Engineering)
1994-01-01
In the conceptual design of molten salt breeder reactors (MSBR) developed at ORNL, molten fluoride mixtures are used as the fuel carrier and coolant. The fuel salt must be reprocessed continuously in order to meet a high breeding ratio. The main function of the reprocessing are to isolate [sup 233]Pa from the neutron flux and to remove the fission product lanthanides having high neutron absorption cross sections. The processing method involves the reductive extraction of these components from the fuel salt into liquid bismuth solutions in a two phase contacting system. Diffusion coefficients of actinide and lanthanide ions in molten Li[sub 2]BeF[sub 4] were measured in the temperature range from 813 to 1,023 K by a capillary method. The diffusion coefficients of both ions are unusually high, considering the high viscosity of the liquids. The dependence of the diffusion coefficients on temperature and ionic charge are discussed in terms of the theories of Stokes and Einstein.
Gonzalez-Vazquez, J P; Anta, Juan A; Bisquert, Juan
2009-11-28
The random walk numerical simulation (RWNS) method is used to compute diffusion coefficients for hopping transport in a fully disordered medium at finite carrier concentrations. We use Miller-Abrahams jumping rates and an exponential distribution of energies to compute the hopping times in the random walk simulation. The computed diffusion coefficient shows an exponential dependence with respect to Fermi-level and Arrhenius behavior with respect to temperature. This result indicates that there is a well-defined transport level implicit to the system dynamics. To establish the origin of this transport level we construct histograms to monitor the energies of the most visited sites. In addition, we construct "corrected" histograms where backward moves are removed. Since these moves do not contribute to transport, these histograms provide a better estimation of the effective transport level energy. The analysis of this concept in connection with the Fermi-level dependence of the diffusion coefficient and the regime of interest for the functioning of dye-sensitised solar cells is thoroughly discussed. PMID:19890520
Yao, Shenggen; Weber, Daniel K; Separovic, Frances; Keizer, David W
2014-07-01
Molecular translational self-diffusion, a measure of diffusive motion, provides information on the effective molecular hydrodynamic radius, as well as information on the properties of media or solution through which the molecule diffuses. Protein translational diffusion measured by pulsed-field gradient nuclear magnetic resonance (PFG-NMR) has seen increased application in structure and interaction studies, as structural changes or protein-protein interactions are often accompanied by alteration of their effective hydrodynamic radii. Unlike the analysis of complex mixtures by PFG-NMR, for monitoring changes of protein translational diffusion under various conditions, such as different stages of folding/unfolding, a partial region of the spectrum or even a single resonance is sufficient. We report translational diffusion coefficients measured by PFG-NMR with a modified stimulated echo (STE) sequence where band-selective pulses are employed for all three (1)H RF pulses. Compared with conventional non-selective sequence, e.g. the BPP-LED sequence, the advantage of this modified band-selective excitation short transient (BEST) version of STE (BEST-STE) sequence is multi-fold, namely: (1) potential sensitivity gain as in generalized BEST-based sequences, (2) water suppression is no longer required as the magnetization of solvent water is not perturbed during the measurement, and (3) dynamic range problems due to the presence of intense resonances from molecules other than the protein or peptide of interest, such as non-deuterated detergent micelles, are avoided. PMID:24824112
NASA Astrophysics Data System (ADS)
Inoue, Gen; Yokoyama, Kouji; Ooyama, Junpei; Terao, Takeshi; Tokunaga, Tomomi; Kubo, Norio; Kawase, Motoaki
2016-09-01
The reduction of oxygen transfer resistance through porous components consisting of a gas diffusion layer (GDL), microporous layer (MPL), and catalyst layer (CL) is very important to reduce the cost and improve the performance of a PEFC system. This study involves a systematic examination of the relationship between the oxygen transfer resistance of the actual porous components and their three-dimensional structure by direct measurement with FIB-SEM and X-ray CT. Numerical simulations were carried out to model the properties of oxygen transport. Moreover, based on the model structure and theoretical equations, an approach to the design of new structures is proposed. In the case of the GDL, the binder was found to obstruct gas diffusion with a negative effect on performance. The relative diffusion coefficient of the MPL is almost equal to that of the model structure of particle packing. However, that of CL is an order of magnitude less than those of the other two components. Furthermore, an equation expressing the relative diffusion coefficient of each component can be obtained with the function of porosity. The electrical conductivity of MPL, which is lower than that of the carbon black packing, is considered to depend on the contact resistance.
Yang, Xiao-Yong; Lu, Yong; Zhang, Ping
2015-04-28
The temperature-dependent diffusion coefficient of interstitial helium in zirconium carbide (ZrC) matrix is calculated based on the transition state theory. The microscopic parameters in the activation energy and prefactor are obtained from first-principles total energy and phonon frequency calculations including the all atoms. The obtained activation energy is 0.78 eV, consistent with experimental value. Besides, we evaluated the influence of C and Zr vacancies as the perturbation on helium diffusion, and found the C vacancy seems to confine the mobility of helium and the Zr vacancy promotes helium diffusion in some extent. These results provide a good reference to understand the behavior of helium in ZrC matrix.
Li, Zhigang; Wang, Hai
2003-12-01
The transport of small particles in the free-molecule regime is investigated on the basis of gas kinetic theory. Drag force formulations were derived in two limiting collision models-namely, specular and diffuse scattering-by considering the potential force of interactions between the particle and fluid molecules. A parametrized drag coefficient equation is proposed and accounts for the transition from specular to diffuse scattering as particle size exceeds a critical value. The resulting formulations are shown to be consistent with the Chapman-Enskog theory of molecular diffusion. In the limit of rigid-body interactions, these formulations can be simplified also to Epstein's solutions [P. S. Epstein, Phys. Rev. 23, 710 (1924)]. PMID:14754191
Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.
2016-04-08
Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less
NASA Astrophysics Data System (ADS)
Pawar, Pravina P.; Bichile, Govind K.
2013-11-01
The total mass attenuation coefficients of some amino acids, such as Glycine (C2H5NO2), DL-Alanine (C3H7NO2), Proline (C5H9NO2), L-Leucine (C6H13NO2 ), L-Arginine (C6H14N4O2) and L-Arginine Monohydrochloride (C6H15ClN4O2), were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies using a well-collimated narrow beam good geometry set-up. The gamma rays were detected using NaI (Tl) scintillation detection system with a resolution of 10.2% at 662 keV. The attenuation coefficient data were then used to obtain the effective atomic numbers (Zeff) and effective electron densities (Neff) of amino acids. It was observed that the effective atomic number (Zeff) and effective electron densities (Neff) tend to be almost constant as a function of gamma-ray energy. The results show that, the experimental values of mass attenuation coefficients, effective atomic numbers and effective electron densities are in good agreement with the theoretical values with less than 1% error.
NASA Astrophysics Data System (ADS)
Tsitverblit, N.
1999-09-01
This work uncovers the instabilities arising in laterally heated stably stratified systems when the diffusivities of the two involved components are equal. These instabilities are demonstrated to be the result of the differential diffusion caused by the unequal lateral diffusion gradients of the components. Such gradients form in the perturbed state due to the different side-wall boundary conditions. Examination of the bifurcation phenomena in the finite enclosures with equal diffusivities exhibited most qualitative features established by Tsitverblit and Kit [Phys. Fluids A 5, 1062 (1993)] and Tsitverblit [Phys. Fluids 7, 718 (1995)] for such phenomena in the heat-salt problem. In the behavior of singularities and steady flows, a number of the regularities that are not distinct in the heat-salt case were distinguished. Additional results obtained with the solute sidewall boundary conditions being of the same (fixed-value) type as the temperature conditions were also discussed.
NASA Astrophysics Data System (ADS)
Portman, John J.
2003-02-01
Intrachain contact formation rates, fundamental to the dynamics of biopolymer self-organization such as protein folding, can be monitored in the laboratory through fluorescence quenching measurements. The common approximations for the intrachain contact rate given by the theory of Szabo, Schulten, and Schulten (SSS) [J. Chem. Phys. 72, 4350 (1980)] and Wilemski-Fixman (WF) [J. Chem. Phys. 60, 878 (1973)] are shown to be complementary variational bounds: The SSS and WF approximations are lower and upper bounds, respectively, on the mean first contact times. As reported in the literature, the SSS approximation requires an effective diffusion coefficient 10 to 100 times smaller than expected to fit experimentally measured quenching rates. An all atom molecular dynamics simulation of an eleven residue peptide sequence in explicit water is analyzed to investigate the source of this surprising parameter value. The simulated diffusion limited contact time is ≈6 ns for a reaction radius of 4 Å for solvent viscosity corresponding to that of water at 293 K and 1 atm (η=1.0 cP). In analytical work, the polymer is typically modeled by a Gaussian chain of effective monomers. Compared to Gaussian dynamics, the simulated end-to-end distance autocorrelation has a much slower relaxation. The long time behavior of the distance autocorrelation function can be approximated by a Gaussian model in which the monomer diffusion coefficient D0 is reduced to D0/6. This value of the diffusion coefficient brings the mean end-to-end contact time from analytical approximations and simulation into agreement in the sense that the SSS and WF approximations bracket the simulated mean first contact time.