Science.gov

Sample records for diffuse radio emission

  1. DIFFUSE RADIO EMISSION IN ABELL 754

    SciTech Connect

    Kale, Ruta; Dwarakanath, K. S. E-mail: dwaraka@rri.res.in

    2009-07-10

    We present a low-frequency study of the diffuse radio emission in the galaxy cluster A754. We present a new 150 MHz image of the galaxy cluster A754 made with the Giant Metrewave Radio Telescope and discuss the detection of four diffuse features. We compare the 150 MHz image with the images at 74, 330, and 1363 MHz; one new diffuse feature is detected. The flux density upper limits at 330 and 1363 MHz imply a synchrotron spectral index, {alpha}>2 (S {proportional_to} {nu}{sup -{alpha}}), for the new feature. The 'west relic' detected at 74 MHz is not detected at 150 MHz and is thus consistent with its nondetection at 1363 MHz and 330 MHz. Integrated spectra of all the diffuse features are presented. The fourth diffuse feature is located along the proposed merger axis in A754 and 0.7 Mpc away from the peak of X-ray emission; we refer to it as a relic. We have made use of the framework of the adiabatic compression model to obtain spectra. We show that the spectrum of the fourth diffuse feature is consistent with that of a cocoon of a radio galaxy lurking for about 9 x 10{sup 7} yr; no shock compression is required. The other three diffuse emission have spectra steeper than 1.5 and could be cocoons lurking for longer time. We discuss other possibilities such as shocks and turbulent reacceleration being responsible for the diffuse emission in A754.

  2. Diffuse Radio Emission in the Galaxy Cluster Abell 754

    NASA Astrophysics Data System (ADS)

    Kale, R.; Dwarakanath, K. S.

    2009-09-01

    We present a low frequency (<1.4GHz) study of the diffuse radio halo and relic emission in the galaxy cluster Abell 0754. Images at 150 MHz made using the Giant Metrewave Radio Telescope (GMRT) revealed 4 diffuse features; 3 of which are new. Images at 330 and 1363 MHz were created using archival data from the GMRT and the VLA respectively. These yield synchrotron spectral indices, α (S ∝ν-α), steeper than 2 for the new features. Adiabatic compression of fossil radio galaxy cocoon by shocks can lead to the formation of radio relics (Ensslin & Gopal-Krishna, 2001). In the framework of this model we find that the relic in A754 can be explained as a lurking cocoon of a radio galaxy; no shock compression is required to produce this emission. The implications of this result to the merger scenario in A754 are discussed.

  3. Diffuse radio emission from clusters in the MareNostrum Universe simulation

    NASA Astrophysics Data System (ADS)

    Hoeft, M.; Brüggen, M.; Yepes, G.; Gottlöber, S.; Schwope, A.

    2008-12-01

    Large-scale diffuse radio emission is observed in some clusters of galaxies. There is ample of evidence that the emission has its origin in synchrotron losses of relativistic electrons that have been accelerated in cluster mergers. In a cosmological simulation, we estimate the radio emission of structure formation shocks as follows: introducing a novel approach to identify strong shock fronts in an smoothed particle hydrodynamics (SPH) simulation, we determine the Mach number as well as the downstream density and temperature in the MareNostrum Universe simulation which has 2 × 10243 particles in a 500h-1Mpc box. Then, we estimate the radio emission using the formalism derived in Hoeft & Brüggen to produce artificial radio maps of massive clusters and to derive a luminosity function of diffuse radio sources. Several of our clusters show radio objects with similar morphology to observed large-scale radio relics, whereas about half of the clusters show only very little radio emission. In agreement with observational findings, the maximum diffuse radio emission of our clusters depends strongly on their X-ray temperature. We find that the so-called accretion shocks cause only very little radio emission. We conclude that a moderate efficiency of shock acceleration, namely ξe = 0.005, and moderate magnetic fields in the region of the relics, namely 0.07-0.8μG are sufficient to reproduce the number density and luminosity of radio relics.

  4. The ATCA REXCESS Diffuse Emission Survey (ARDES) - I. Detection of a giant radio halo and a likely radio relic

    NASA Astrophysics Data System (ADS)

    Shakouri, S.; Johnston-Hollitt, M.; Pratt, G. W.

    2016-07-01

    We present the results of the radio halo survey of 16 REXCESS southern clusters up to a redshift of 0.2 with the Australia Telescope Compact Array (ATCA) at 1.4 and 2.1 GHz. This cluster sample called the ATCA REXCESS Diffuse Emission Survey (ARDES) includes clusters in a wide range of X-ray luminosities and is morphologically unbiased. We find two diffuse radio sources in the clusters RXCJ2234.5-3744 (Abell 3888) and RXCJ0225.1-2928. The diffuse radio emission in RXCJ2234.5-3744 is a giant radio halo and the diffuse emission in RXCJ0225.1-2928 is a peculiar radio relic candidate. The radio halo has a spectral index of α = -1.48 ± 0.14 and the K-corrected P1.4 is 1.9 ± 0.2 × 1024 W Hz-1. The properties of the detected halo are consistent with both the current P1.4-LX and P1.4-YSZ correlations. The putative radio relic is located approximately 1 Mpc from the cluster in a filament and has a physical extent of 346 ± 20 kpc and a power of P1.4 = 3.3 ± 0.8 × 1023 W Hz-1, which places it in the lower power region of currently known relics.

  5. Diffuse radio emission in the complex merging galaxy cluster Abell2069

    NASA Astrophysics Data System (ADS)

    Drabent, A.; Hoeft, M.; Pizzo, R. F.; Bonafede, A.; van Weeren, R. J.; Klein, U.

    2015-03-01

    Context. Galaxy clusters with signs of a recent merger in many cases show extended diffuse radio features. This emission originates from relativistic electrons that suffer synchrotron losses due to the intracluster magnetic field. The mechanisms of particle acceleration and the properties of the magnetic field are still poorly understood. Aims: We search for diffuse radio emission in galaxy clusters. Here, we study the complex galaxy cluster Abell 2069, for which X-ray observations indicate a recent merger. Methods: We investigate the cluster's radio continuum emission by deep Westerbork Synthesis Radio Telescope (WSRT) observations at 346 MHz and Giant Metrewave Radio Telescope (GMRT) observations at 322 MHz. Results: We find an extended diffuse radio feature roughly coinciding with the main component of the cluster. We classify this emission as a radio halo and estimate its lower limit flux density at 25 ± 9 mJy. Moreover, we find a second extended diffuse source located at the cluster's companion and estimate its flux density at 15 ± 2 mJy. We speculate that this is a small halo or a mini-halo. If true, this cluster is the first example of a double-halo in a single galaxy cluster.

  6. COMPLEX DIFFUSE RADIO EMISSION IN THE MERGING PLANCK ESZ CLUSTER A3411

    SciTech Connect

    Van Weeren, R. J.; Fogarty, K.; Jones, C.; Forman, W. R.; Kraft, R. P.; Murray, S. S.; Clarke, T. E.; Brueggen, M.; Lal, D. V.; Roettgering, H. J. A.

    2013-06-01

    We present Very Large Array (VLA) radio and Chandra X-ray observations of the merging galaxy cluster A3411. For the cluster, we find an overall temperature of 6.4{sup +0.6}{sub -1.0} keV and an X-ray luminosity of 2.8 {+-} 0.1 Multiplication-Sign 10{sup 44} erg s{sup -1} between 0.5 and 2.0 keV. The Chandra observation reveals the cluster to be undergoing a merger event. The VLA observations show the presence of large-scale diffuse emission in the central region of the cluster, which we classify as a 0.9 Mpc size radio halo. In addition, a complex region of diffuse, polarized emission is found in the southeastern outskirts of the cluster along the projected merger axis of the system. We classify this region of diffuse emission as a radio relic. The total extent of this radio relic is 1.9 Mpc. For the combined emission in the cluster region, we find a radio spectral index of -1.0 {+-} 0.1 between 74 MHz and 1.4 GHz. The morphology of the radio relic is peculiar, as the relic is broken up into five fragments. This suggests that the shock responsible for the relic has been broken up due to interaction with a large-scale galaxy filament connected to the cluster or other substructures in the intracluster medium. Alternatively, the complex morphology reflects the presence of electrons in fossil radio bubbles that are re-accelerated by a shock.

  7. SPECTRAL INDEX STUDIES OF THE DIFFUSE RADIO EMISSION IN ABELL 2256: IMPLICATIONS FOR MERGER ACTIVITY

    SciTech Connect

    Kale, Ruta; Dwarakanath, K. S. E-mail: dwaraka@rri.res.i

    2010-08-01

    We present a multi-wavelength analysis of the merging rich cluster of galaxies, Abell 2256 (A2256). We have observed A2256 at 150 MHz using the Giant Metrewave Radio Telescope and successfully detected the diffuse radio halo and the relic emission over a {approx}1.2 Mpc{sup 2} extent. Using this 150 MHz image and the images made using archival observations from the Very Large Array (VLA; 1369 MHz) and the Westerbrok Synthesis Radio Telescope (WSRT; 330 MHz), we have produced spectral index images of the diffuse radio emission in A2256. These spectral index images show a distribution of flat spectral index (S {proportional_to} {nu}{sup {alpha}}, {alpha} in the range -0.7 to -0.9) plasma in the region NW of the cluster center. Regions showing steep spectral indices ({alpha} in the range -1.0 to -2.3) are toward the SE of the cluster center. These spectral indices indicate synchrotron lifetimes for the relativistic plasmas in the range 0.08-0.4 Gyr. We interpret this spectral behavior as resulting from a merger event along the direction SE to NW within the last 0.5 Gyr or so. A shock may be responsible for the NW relic in A2256 and the megaparsec scale radio halo toward the SE is likely to be generated by the turbulence injected by mergers. Furthermore, the diffuse radio emission shows spectral steepening toward lower frequencies. This low-frequency spectral steepening is consistent with a combination of spectra from two populations of relativistic electrons created at two epochs (two mergers) within the last {approx}0.5 Gyr. Earlier interpretations of the X-ray and the optical data also suggested that there were two mergers in Abell 2256 in the last 0.5 Gyr, consistent with the current findings. Also highlighted in this study is the futility of correlating the average temperatures of thermal gas and the average spectral indices of diffuse radio emission in the respective clusters.

  8. CONSTRAINTS ON DARK MATTER ANNIHILATION IN CLUSTERS OF GALAXIES FROM DIFFUSE RADIO EMISSION

    SciTech Connect

    Storm, Emma; Jeltema, Tesla E.; Profumo, Stefano; Rudnick, Lawrence

    2013-05-10

    Annihilation of dark matter can result in the production of stable Standard Model particles including electrons and positrons that, in the presence of magnetic fields, lose energy via synchrotron radiation, observable as radio emission. Galaxy clusters are excellent targets to search for or to constrain the rate of dark matter annihilation, as they are both massive and dark matter dominated. In this study, we place limits on dark matter annihilation in a sample of nearby clusters using upper limits on the diffuse radio emission, low levels of observed diffuse emission, or detections of radio mini-halos. We find that the strongest limits on the annihilation cross section are better than limits derived from the non-detection of clusters in the gamma-ray band by a factor of {approx}3 or more when the same annihilation channel and substructure model, but different best-case clusters, are compared. The limits on the cross section depend on the assumed amount of substructure, varying by as much as two orders of magnitude for increasingly optimistic substructure models as compared to a smooth Navarro-Frenk-White profile. In our most optimistic case, using the results of the Phoenix Project, we find that the derived limits reach below the thermal relic cross section of 3 Multiplication-Sign 10{sup -26} cm{sup 3} s{sup -1} for dark matter masses as large as 400 GeV, for the b b-bar annihilation channel. We discuss uncertainties due to the limited available data on the magnetic field structure of individual clusters. We also report the discovery of diffuse radio emission from the central 30-40 kpc regions of the groups M49 and NGC 4636.

  9. Radio emission and nonlinear diffusive shock acceleration of cosmic rays in the supernova SN 1993J

    NASA Astrophysics Data System (ADS)

    Tatischeff, V.

    2009-05-01

    Aims: The extensive observations of the supernova SN 1993J at radio wavelengths make this object a unique target for the study of particle acceleration in a supernova shock. Methods: To describe the radio synchrotron emission we use a model that couples a semianalytic description of nonlinear diffusive shock acceleration with self-similar solutions for the hydrodynamics of the supernova expansion. The synchrotron emission, which is assumed to be produced by relativistic electrons propagating in the postshock plasma, is worked out from radiative transfer calculations that include the process of synchrotron self-absorption. The model is applied to explain the morphology of the radio emission deduced from high-resolution VLBI imaging observations and the measured time evolution of the total flux density at six frequencies. Results: Both the light curves and the morphology of the radio emission indicate that the magnetic field was strongly amplified in the blast wave region shortly after the explosion, possibly via the nonresonant regime of the cosmic-ray streaming instability operating in the shock precursor. The amplified magnetic field immediately upstream from the subshock is determined to be Bu ≈ 50 (t/1 { day})-1 G. The turbulent magnetic field was not damped behind the shock but carried along by the plasma flow in the downstream region. Cosmic-ray protons were efficiently produced by diffusive shock acceleration at the blast wave. We find that during the first 8.5 years after the explosion, about 19% of the total energy processed by the forward shock was converted to cosmic-ray energy. However, the shock remained weakly modified by the cosmic-ray pressure. The high magnetic field amplification implies that protons were rapidly accelerated to energies well above 1015 eV. The results obtained for this supernova support the scenario that massive stars exploding into their former stellar wind are a major source of Galactic cosmic-rays of energies above 1015 eV. We

  10. A model of diffuse Galactic radio emission from 10 MHz to 100 GHz

    NASA Astrophysics Data System (ADS)

    de Oliveira-Costa, Angélica; Tegmark, Max; Gaensler, B. M.; Jonas, Justin; Landecker, T. L.; Reich, Patricia

    2008-07-01

    Understanding diffuse Galactic radio emission is interesting both in its own right and for minimizing foreground contamination of cosmological measurements. cosmic microwave background experiments have focused on frequencies >~10GHz, whereas 21-cm tomography of the high-redshift universe will mainly focus on <~0.2GHz, for which less is currently known about Galactic emission. Motivated by this, we present a global sky model derived from all publicly available total power large-area radio surveys, digitized with optical character recognition when necessary and compiled into a uniform format, as well as the new Villa Elisa data extending the 1.42-GHz map to the entire sky. We quantify statistical and systematic uncertainties in these surveys by comparing them with various global multifrequency model fits. We find that a principal component based model with only three components can fit the 11 most accurate data sets (at 10, 22, 45 and 408 MHz and 1.42, 2.326, 23, 33, 41, 61, 94 GHz) to an accuracy around 1-10 per cent depending on frequency and sky region. Both our data compilation and our software returning a predicted all-sky map at any frequency from 10 MHz to 100 GHz are publicly available at http://space.mit.edu/home/angelica/gsm.

  11. Triggered Jovian radio emissions

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1985-01-01

    Certain Jovian radio emissions seem to be triggered from outside, by much weaker radio waves from the sun. Recently found in the Voyager observations near Jupiter, such triggering occurs at hectometric wavelengths during the arrival of solar radio bursts, with the triggered emissions lasting sometimes more than an hour as they slowly drifted toward higher frequencies. Like the previous discovery of similar triggered emissions at the earth, this suggests that Jupiter's emissions might also originate from natural radio lasers.

  12. Stellar radio emission (Review)

    NASA Astrophysics Data System (ADS)

    Zhelezniakov, V. V.

    The current understanding of the radio-emission characteristics of 'ordinary' main sequence stars as well as giants and supergiants is examined. Particular consideration is given to radio emission from supergiants, Young T Tauri stars, magnetic Ap stars, flare stars of UV Ceti type, Alpha Sco, and RS CVn objects. It is noted that the study of stellar radio emission is in its initial stage. Further progress in this area depends on successes in finding new radio sources, associated, for example, with magnetic stars, and on an intensified investigation of the frequency spectra and polarization of already-discovered radio stars. It is also noted that, although the current knowledge of solar physics can help in understanding stellar radio emission, models and ideas developed for solar conditions should not be mechanically transferred to other stars by a simple change in scale.

  13. TRIS. III. The Diffuse Galactic Radio Emission at δ = +42°

    NASA Astrophysics Data System (ADS)

    Tartari, A.; Zannoni, M.; Gervasi, M.; Boella, G.; Sironi, G.

    2008-11-01

    We present values of temperature and spectral index of the Galactic diffuse radiation measured at 600 and 820 MHz along a 24h right ascension circle at declination δ = + 42°. They have been obtained from a subset of absolute measurements of the sky temperature made with TRIS, an experiment devoted to the measurement of the CMB temperature at decimetric wavelengths with an angular resolution of about 20°. Our analysis confirms the preexisting picture of the Galactic diffuse emission at decimetric wavelength and improves the accuracy of the measurable quantities. In particular, the signal coming from the halo has a spectral index in the range 2.9-3.1 above 600 MHz, depending on the sky position. In the disk, at TRIS angular resolution, the free-free emission accounts for the 11% of the overall signal at 600 MHz and 21% at 1420 MHz. The polarized component of the Galactic emission, evaluated from the survey by Brouw and Spoelstra, affects the observations at TRIS angular resolution by less than 3% at 820 MHz and less than 2% at 600 MHz. Within the uncertainties, our determination of the Galactic spectral index is practically unaffected by the correction for polarization. Since the overall error budget of the sky temperatures measured by TRIS at 600 MHz, that is, 66 (systematic) + 18 (statistical) mK, is definitely smaller than those reported in previous measurements at the same frequency, our data have been used to discuss the zero levels of the sky maps at 150, 408, 820, and 1420 MHz in literature. Concerning the 408 MHz survey, limiting our attention to the patch of sky corresponding to the region observed by TRIS, we suggest a correction of the base level of +3.9 +/- 0.6 K.

  14. Global Sky Model (GSM): A Model of Diffuse Galactic Radio Emission from 10 MHz to 100 GHz

    NASA Astrophysics Data System (ADS)

    de Oliveira-Costa, Angelica; Tegmark, Max; Gaensler, B. M.; Jonas, Justin; Landecker, T. L.; Reich, Patricia

    2010-11-01

    Understanding diffuse Galactic radio emission is interesting both in its own right and for minimizing foreground contamination of cosmological measurements. Cosmic Microwave Background experiments have focused on frequencies > 10 GHz, whereas 21 cm tomography of the high redshift universe will mainly focus on < 0.2 GHz, for which less is currently known about Galactic emission. Motivated by this, we present a global sky model derived from all publicly available total power large-area radio surveys, digitized with optical character recognition when necessary and compiled into a uniform format, as well as the new Villa Elisa data extending the 1.4 GHz map to the entire sky. We quantify statistical and systematic uncertainties in these surveys by comparing them with various global multi-frequency model fits. We find that a principal component based model with only three components can fit the 11 most accurate data sets (at 10, 22, 45 & 408 MHz and 1.4, 2.3, 23, 33, 41, 61, 94 GHz) to an accuracy around 1%-10% depending on frequency and sky region. The data compilation and software returning a predicted all-sky map at any frequency from 10 MHz to 100 GHz are publicly available at the link below.

  15. Galactic Diffuse Polarized Emission

    NASA Astrophysics Data System (ADS)

    Carretti, Ettore

    2011-12-01

    Diffuse polarized emission by synchrotron is a key tool to investigate magnetic fields in the Milky Way, particularly the ordered component of the large scale structure. Key observables are the synchrotron emission itself and the RM is by Faraday rotation. In this paper the main properties of the radio polarized diffuse emission and its use to investigate magnetic fields will be reviewed along with our current understanding of the galactic magnetic field and the data sets available. We will then focus on the future perspective discussing RM-synthesis - the new powerful instrument devised to unlock the information encoded in such an emission - and the surveys currently in progress like S-PASS and GMIMS.

  16. Diffuse radio emission around FR II sources as exemplified by 3C452

    NASA Astrophysics Data System (ADS)

    Wiita, Paul J.; Sirothia, S. K.; Gopal-Krishna, ..

    2014-01-01

    We have discovered a pair of megaparsec size radio lobes of extremely steep spectrum straddling the well-known classical double radio source 3C452. For the past several decades 3C452 has been regarded as a textbook example of an edge-brightened double radio source of Fanaroff-Riley type II (FR II) but we show it to be a bonafide "double-double" radio galaxy (DDRG). The inner double fed by the jets has evolved into a perfectly normal FR II radio source. Thus, 3C452 presents a uniquely robust example of recurrent nuclear activity in which the restarted jets are expanding non-relativistically within the relic synchrotron plasma from an earlier active phase. This situation contrasts markedly with the strikingly narrow inner doubles observed in a few other DDRGs that have been interpreted in terms of compression of the synchrotron plasma of the relic outer lobes at the relativistic bow-shocks driven by the near ballistic propagation of the two inner jets through the relic plasma. We also present additional examples of the occurrence of faded outer lobes around well defined FRII sources, using our deep GMRT images at meter wavelengths processed with AIPS++ software. We also examine the statistics of the occurrence of such sources using a flux density limited sample. A key ramification of our findings are that they caution against the use of FR II classical double radio sources for testing cosmological models and unification schemes for active galactic nuclei.

  17. Decimetric radio dot emissions

    NASA Astrophysics Data System (ADS)

    Mészárosová, H.; Karlický, M.; Sawant, H. S.; Fernandes, F. C. R.; Cecatto, J. R.; de Andrade, M. C.

    2008-11-01

    Context: We study a rare type of solar radio bursts called decimetric dot emissions. Aims: In the period 1999-2001, 20 events of decimetric dot emissions observed by the Brazilian Solar Spectroscope (BSS) in the frequency range 950-2640 MHz are investigated statistically and compared with radio fine structures of zebras and fibers. Methods: For the study of the spectral characteristics of the dot emissions we use specially developed Interactive Data Language (IDL) software called BSSView and basic statistical methods. Results: We have found that the dm dot emissions, contrary to the fine structures of the type IV bursts (i.e. zebras, fibers, lace bursts, spikes), are not superimposed on any background burst emission. In the radio spectrum, in most cases the dot emissions form chains that appear to be arranged in zebra patterns or fibers. Because some zebras and fibers, especially those observed with high time and high spectral resolutions, also show emission dots (but superimposed on the background burst emission), we compared the spectral parameters of the dot emissions with the dots being the fine structure of zebras and fibers. For both these dots, similar spectral characteristics were found. Some similarities of the dot emissions can be found also with the lace bursts and spikes. For some events the dot emissions show structural evolution from patterns resembling fibers to patterns resembling zebras and vice versa, or they evolve into fully chaotic patterns. Conclusions: For the first time, we present decimetric dot emissions that appear to be arranged in zebra patterns or fibers. We propose that these emissions are generated by the plasma emission mechanism at the locations in the solar atmosphere where the double resonance condition is fulfilled.

  18. Stellar radio emission

    NASA Technical Reports Server (NTRS)

    Bookbinder, Jay A.

    1988-01-01

    This paper presents an overview of the various radiation mechanisms believed to play a role in stellar radio emission. The radio emission from most stars is nonthermal and is generally due to mildly relativistic electrons with energies from a few keV to over 10 MeV. Magnetic fields play a crucial role both in accelerating the electrons to the requisite energies and in mediating the emission mechanism. They also play a fundamental role in creating the velocity anisotropies that are necessary for the operation of some of the coherent emission mechanisms. Coherent emission is seen most commonly on the M dwarfs, rarely on the RS CVns, and has yet to be detected for any other class of star. These coherent processes are best studied by means of their dynamic spectra; such studies are now just getting underway.

  19. Radio emission from supernovae.

    NASA Astrophysics Data System (ADS)

    Weiler, K. W.; Panagia, N.; Sramek, R. A.; Van Dyk, S. D.; Stockdale, C. J.; Williams, C. L.

    Study of radio supernovae over the past 30 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. Along with reviewing these general properties of the radio emission from supernovae, we present our extensive observations of the radio emission from supernova (SN) 1993J in M 81 (NGC 3031) made with the Very Large Array and other radio telescopes. The SN 1993J radio emission evolves regularly in both time and frequency, and the usual interpretation in terms of shock interaction with a circumstellar medium (CSM) formed by a pre-supernova stellar wind describes the observations rather well considering the complexity of the phenomenon. However: 1) The highest frequency measurements at 85 - 110 GHz at early times (<40 days) are not well fitted by the parameterization which describes the cm wavelength measurements. 2) At a time ˜3100 days after shock breakout, the decline rate of the radio emission steepens from (t+beta ) beta ˜ -0.7 to beta ˜ -2.7 without change in the spectral index (nu +alpha ; alpha ˜ -0.81). This decline is best described not as a power-law, but as an exponential decay with an e-folding time of ˜ 1100 days. 3) The best overall fit to all of the data is a model including both non-thermal synchrotron self-absorption (SSA) and a thermal free-free absorbing (FFA) components at early times, evolving to a constant spectral index, optically thin decline rate, until a break in that decline rate at day ˜3100, as mentioned above.

  20. Radio Emission from Supernovae

    NASA Astrophysics Data System (ADS)

    Weiler, Kurt W.; Panagia, Nino; Sramek, Richard A.; van Dyk, Schuyler D.; Williams, Christopher L.; Stockdale, Christopher J.; Kelley, Matthew T.

    2007-10-01

    Study of radio supernovae over the past 27 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the presupernova stellar system, and to detect clumpiness of the circumstellar material. Along with reviewing these general properties of the radio emission from supernovae, we present our extensive observations of the radio emission from supernova (SN) 1993J in M 81 (NGC 3031) made with the Very Large Array and other radio telescopes. The SN 1993J radio emission evolves regularly in both time and frequency, and the usual interpretation in terms of shock interaction with a circumstellar medium (CSM) formed by a pre-supernova stellar wind describes the observations rather well considering the complexity of the phenomenon. However: 1) The highest frequency measurements at 85-110 GHz at early times (<40 days) are not well fitted by the parameterization which describes the cm wavelength measurements rather well. 2) At mid-cm wavelengths there is often deviation from the fitted radio light curves, particularly near the peak flux density, and considerable shorter term deviations in the declining portion when the emission has become optically thin. 3) At a time ~3100 days after shock breakout, the decline rate of the radio emission steepens from (t+β)β~-0.7 to β~-2.7 without change in the spectral index (ν+αα~-0.81). However, this decline is best described not as a power-law, but as an exponential decay starting at day ~3100 with an e-folding time of ~1100 days. 4) The best overall fit to all of the data is

  1. DIFFUSIVE SHOCK ACCELERATION SIMULATIONS OF RADIO RELICS

    SciTech Connect

    Kang, Hyesung; Ryu, Dongsu; Jones, T. W. E-mail: ryu@canopus.cnu.ac.kr

    2012-09-01

    Recent radio observations have identified a class of structures, so-called radio relics, in clusters of galaxies. The radio emission from these sources is interpreted as synchrotron radiation from GeV electrons gyrating in {mu}G-level magnetic fields. Radio relics, located mostly in the outskirts of clusters, seem to associate with shock waves, especially those developed during mergers. In fact, they seem to be good structures to identify and probe such shocks in intracluster media (ICMs), provided we understand the electron acceleration and re-acceleration at those shocks. In this paper, we describe time-dependent simulations for diffusive shock acceleration at weak shocks that are expected to be found in ICMs. Freshly injected as well as pre-existing populations of cosmic-ray (CR) electrons are considered, and energy losses via synchrotron and inverse Compton are included. We then compare the synchrotron flux and spectral distributions estimated from the simulations with those in two well-observed radio relics in CIZA J2242.8+5301 and ZwCl0008.8+5215. Considering that CR electron injection is expected to be rather inefficient at weak shocks with Mach number M {approx}< a few, the existence of radio relics could indicate the pre-existing population of low-energy CR electrons in ICMs. The implication of our results on the merger shock scenario of radio relics is discussed.

  2. Solar radio emission

    NASA Technical Reports Server (NTRS)

    Goldman, M. V.; Smith, D. F.

    1981-01-01

    Active areas of both observational and theoretical research in which rapid progress is being made are discussed. These include: (1) the dynamic spectrum or frequency versus time plot; (2) physical mechanisms in the development of various types of bursts; (3) microwave type 1, 2, 3, and moving type 4 bursts; (4) bursts caused by trapped electrons; (5) physics of type 3bursts; (6) the physics of type 2 bursts and their related shocks; (7) the physics of both stationary and moving traps and associated type 1 and moving type 4 bursts; and (8) the status of the field of solar radio emission.

  3. Galactic Diffuse Emissions

    SciTech Connect

    Digel, Seth W.; /SLAC

    2007-10-25

    Interactions of cosmic rays with interstellar nucleons and photons make the Milky Way a bright, diffuse source of high-energy {gamma}-rays. Observationally, the results from EGRET, COMPTEL, and OSSE have now been extended to higher energies by ground-based experiments, with detections of diffuse emission in the Galactic center reported by H.E.S.S. in the range above 100 GeV and of diffuse emission in Cygnus by MILAGRO in the TeV range. In the range above 100 keV, INTEGRAL SPI has found that diffuse emission remains after point sources are accounted for. I will summarize current knowledge of diffuse {gamma}-ray emission from the Milky Way and review some open issues related to the diffuse emission -- some old, like the distribution of cosmic-ray sources and the origin of the 'excess' of GeV emission observed by EGRET, and some recently recognized, like the amount and distribution of molecular hydrogen not traced by CO emission -- and anticipate some of the advances that will be possible with the Large Area Telescope on GLAST. We plan to develop an accurate physical model for the diffuse emission, which will be useful for detecting and accurately characterizing emission from Galactic point sources as well as any Galactic diffuse emission from exotic processes, and for studying the unresolved extragalactic emission.

  4. Particle acceleration and diffusion in fossil radio plasma

    NASA Astrophysics Data System (ADS)

    Enßlin, Torsten A.

    The strong activity of radio galaxies should have led to a nearly ubiquitous presence of fossil radio plasma in the denser regions of the inter-galactic medium as clusters, groups and filaments of galaxies. This fossil radio plasma can contain large quantities of relativistic particles (electrons and possibly protons) by magnetic confinement. These particles might be released and/or re-energized under environmental influences as turbulence and shock waves. Possible connections of such processes to the formation of the observed sources of diffuse radio emission in clusters of galaxies (the cluster radio halos and the cluster radio relics) are discussed.

  5. CONSTRAINING RADIO EMISSION FROM MAGNETARS

    SciTech Connect

    Lazarus, P.; Kaspi, V. M.; Dib, R.; Champion, D. J.; Hessels, J. W. T.

    2012-01-10

    We report on radio observations of five magnetars and two magnetar candidates carried out at 1950 MHz with the Green Bank Telescope in 2006-2007. The data from these observations were searched for periodic emission and bright single pulses. Also, monitoring observations of magnetar 4U 0142+61 following its 2006 X-ray bursts were obtained. No radio emission was detected for any of our targets. The non-detections allow us to place luminosity upper limits of L{sub 1950} {approx}< 1.60 mJy kpc{sup 2} for periodic emission and L{sub 1950,single} {approx}< 7.6 Jy kpc{sup 2} for single pulse emission. These are the most stringent limits yet for the magnetars observed. The resulting luminosity upper limits together with previous results are discussed, as is the importance of further radio observations of radio-loud and radio-quiet magnetars.

  6. Phenomenology of magnetospheric radio emissions

    NASA Technical Reports Server (NTRS)

    Carr, T. D.; Desch, M. D.; Alexander, J. K.

    1983-01-01

    Jupiter has now been observed over 24 octaves of the radio spectrum, from about 0.01 MHz to 300,000 MHz. Its radio emissions fill the entire spectral region where interplanetary electromagnetic propagation is possible at wavelengths longer than infrared. Three distinct types of radiation are responsible for this radio spectrum. Thermal emission from the atmosphere accounts for virtually all the radiation at the high frequency end. Synchrotron emission from the trapped high-energy particle belt deep within the inner magnetosphere is the dominant spectral component from about 4000 to 40 MHz. The third class of radiation consists of several distinct components of sporadic low frequency emission below 40 MHz. The decimeter wavelength emission is considered, taking into account the discovery of synchrotron emission, radiation by high-energy electrons in a magnetic field, and the present status of Jovian synchrotron phenomenology. Attention is also given to the decameter and hectometer wavelength emission, and emissions at kilometric wavelengths.

  7. Contribution to the diffuse radio background from extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Vernstrom, T.; Scott, Douglas; Wall, J. V.

    2011-08-01

    We examine the brightness of the cosmic radio background (CRB) by comparing the contribution from individual source counts to absolute measurements. We use a compilation of radio counts to estimate the contribution of detected sources to the CRB in several different frequency bands. Using a Monte Carlo Markov chain technique, we estimate the brightness values and uncertainties, paying attention to various sources of systematic error. At ν= 150, 325, 408, 610, 1.4, 4.8 and 8.4 GHz, our calculated contributions to the background sky temperature are 18, 2.8, 1.6, 0.71, 0.11, 0.0032 and 0.0059 K, respectively. We then compare our results to absolute measurements from the Absolute Radiometer for Cosmology, Astrophysics and Diffuse Emission (ARCADE 2) experiment. If the ARCADE 2 measurements are correct and come from sources, then there must be an additional population of radio galaxies, fainter than where current data are probing. More specifically, the Euclidean-normalized counts at 1.4 GHz have to have an additional bump below about 10 μJy.

  8. Radio Emission from Supernovae

    SciTech Connect

    Weiler, Kurt W.; Panagia, Nino; Sramek, Richard A.; Van Dyk, Schuyler D.; Stockdale, Christopher J.; Kelley, Matthew T.

    2009-05-03

    Study of radio supernovae over the past 27 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the presupernova stellar system, and to detect dumpiness of the circumstellar material.

  9. CHANDRA OBSERVATIONS OF 3C RADIO SOURCES WITH z < 0.3: NUCLEI, DIFFUSE EMISSION, JETS, AND HOTSPOTS

    SciTech Connect

    Massaro, F.; Harris, D. E.; Tremblay, G. R.; Axon, D.; O'Dea, C. P.; Baum, S. A.; Capetti, A.; Chiaberge, M.; Macchetto, F. D.; Sparks, W.; Gilli, R.; Giovannini, G.; Grandi, P.; Risaliti, G.

    2010-05-01

    We report on our Chandra Cycle 9 program to observe half of the 60 (unobserved by Chandra) 3C radio sources at z < 0.3 for 8 ks each. Here we give the basic data: the X-ray intensity of the nuclei and any features associated with radio structures such as hotspots and knots in jets. We have measured fluxes in soft, medium, and hard bands and are thus able to isolate sources with significant intrinsic column density. For the stronger nuclei, we have applied the standard spectral analysis which provides the best-fit values of X-ray spectral index and column density. We find evidence for intrinsic absorption exceeding a column density of 10{sup 22} cm{sup -2} for one-third of our sources.

  10. Venus - Global surface radio emissivity

    NASA Technical Reports Server (NTRS)

    Ford, P. G.; Pettengill, G. H.

    1983-01-01

    Observations of thermal radio emission from the surface of Venus, made by the Pioneer Venus radar mapper at a wavelength of 17 cm, show variations that are dominated by changes in surface emissivity. The regions of lowest emissivity (0.54 + or - 0.05 for the highland areas of Aphrodite Terra and Theia Mons) correspond closely to regions of high radar reflectivity reported earlier. These results support the inference of inclusions of material with high electrical conductivity in the surface rock of these areas.

  11. Radio emission from supernova remnants

    NASA Astrophysics Data System (ADS)

    Dubner, Gloria; Giacani, Elsa

    2015-09-01

    The explosion of a supernova releases almost instantaneously about 10^{51} ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from an SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critically discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analysis of the prospects for future research with the latest-generation radio telescopes.

  12. Radio emission from AM Herculis

    NASA Technical Reports Server (NTRS)

    Bastian, T. S.; Dulk, G. A.; Chanmugam, G.

    1985-01-01

    Observations of the quiescent microwave emission of the magnetic cataclysmic variable AM Herculis are presented. The emission, which declined from a mean value of 0.58 mJy at 4.9 GHz to about 0.3 mJy, in rough coincidence with the entry of AM Herculis into an optical low state (mid-1983), is explained in terms of optically thick gyrosynchrotron emission. It is noted that the observation of a coherent outburst at 4.9 GHz, interpreted as the result of a cyclotron maser on the red dwarf secondary, indicates that the secondary is magnetized. Possible implications are briefly explored. Comparisons between this system and other stellar continuum radio sources are made.

  13. ARCADE 2 Observations of Galactic Radio Emission

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Fixsen, D. J.; Levin, S. M.; Limon, M.; Lubin, P. M.; Mirel, P.; Seiffert, M.; Singal, J.; Villela, T.; Wollack, E.; Wuensche, C. A.

    2010-01-01

    We use absolutely calibrated data from the Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE 2) flight in July 2006 to model Galactic emission at frequencies 3, 8, and 10 GHz. The spatial structure in the data is consistent with a superposition of free-free and synchrotron emission. Emission with spatial morphology traced by the Haslam 408 MHz survey has spectral index beta_synch = -2.5 +/- 0.1, with free-free emission contributing 0.10 +/- 0.01 of the total Galactic plane emission in the lowest ARCADE 2 band at 3.15 GHz. We estimate the total Galactic emission toward the polar caps using either a simple plane-parallel model with csc|b| dependence or a model of high-latitude radio emission traced by the COBE/FIRAS map of CII emission. Both methods are consistent with a single power-law over the frequency range 22 MHz to 10 GHz, with total Galactic emission towards the north polar cap T_Gal = 0.498 +/- 0.028 K and spectral index beta = -2.55 +/- 0.03 at reference frequency 0.31 GHz. The well calibrated ARCADE 2 maps provide a new test for spinning dust emission, based on the integrated intensity of emission from the Galactic plane instead of cross-correlations with the thermal dust spatial morphology. The Galactic plane intensity measured by ARCADE 2 is fainter than predicted by models without spinning dust, and is consistent with spinning dust contributing 0.4 +/- 0.1 of the Galactic plane emission at 23 GHz.

  14. The relation between infrared and radio emission in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Helou, George

    1991-01-01

    A remarkable correlation between the far infrared and the radio continuum emission of star forming galaxies was one of the early results based on IRAS data, and has remained one of the most intriguing. Recent work has extended the correlation to early type galaxies, revealing a slightly different ratio in lenticulars. When radio and infrared maps of disk galaxies are compared, the radio disks appear systematically more diffuse. This has been interpreted as a manifestation of the diffusion of cosmic-ray electrons, and has allowed a fresh look at the behavior of magnetic fields and cosmic rays in spiral galaxies, and at their relation to the rest of the interstellar medium.

  15. X-ray and radio core emission in radio quasars

    NASA Technical Reports Server (NTRS)

    Kembhavi, A.; Feigelson, E. D.; Singh, K. P.

    1986-01-01

    In order to investigate the physical relationship between X-ray and radio core emission in radio-selected quasars, 35 radio quasars have been observed with the VLA at 6 and 20 cm. The sample was chosen from a list of radio quasars with known X-ray luminosity but poorly known radio properties. Including data gathered from the literature, radio core detections or upper limits at 6 cm have been obtained for 127 radio quasars which have published Einstein X-ray data. A statistical association is sought between radio core luminosity and X-ray luminosity, and it is found that there is a strong correlation. The slope of the relation of L(x) to L(Gamma)-alpha is alpha = 0.71 + or - 0.07 for unresolved quasars with flat radio spectra. The slope decreases as quasars with extended radio regions are considered. This is traced to the presence of radio emission which is unrelated to the X-ray emission, in the presently unresolved cores of quasars.

  16. Diffuse Microwave Emission Survey

    NASA Astrophysics Data System (ADS)

    Shafer, R. A.; Mather, J.; Kogut, A.; Fixsen, D. J.; Seiffert, M.; Lubin, P. M.; Levin, S. M.

    1996-12-01

    The Diffuse Microwave Emission Survey (DIMES) is a mission concept selected by NASA in 1995 to answer fundamental questions about the content and history of the universe. DIMES will use a set of absolutely calibrated cryogenic radiometers from a space platform to measure the frequency spectrum of the cosmic microwave background (CMB) at wavelengths 15--0.3 cm (frequency 2--100 GHz) to precision 0.1 mK or better. Measurements at centimeter wavelengths probe different physical processes than the COBE-FIRAS spectra at shorter wavelengths, and complement the anisotropy measurements from DMR, balloon and ground-based instruments, and the planned MAP and COBRAS/SAMBA satellites. DIMES will observe the free-free signal from early photoionization to establish the precise epoch of structure formation, and will measure or limit energy release at redshift 10(4) < z < 10(7) by measuring the chemical potential distortion of the CMB spectrum. Both are likely under current cosmological theory and allowed by current measurement limits; even an upper limit at the expected sensitivity 10(-5) MJy/sr will place important constraints on the matter content, structure, and evolution of the universe. Detecting these distortions or showing that they do not exist constitutes the last frontier of CMB observations.

  17. Radio emission in peculiar galaxies

    NASA Technical Reports Server (NTRS)

    Demellorabaca, Dulia F.; Abraham, Zulema

    1990-01-01

    During the last decades a number of surveys of peculiar galaxies have been carried out and accurate positions become available. Since peculiarities are a possible evidence of radio emission (Wright, 1974; Sulentic, 1976; Stocke et al., 1978), the authors selected a sample of 24 peculiar galaxies with optical jet-like features or extensions in different optical catalogues, mainly the Catalogue of Southern Peculiar Galaxies and Associations (Arp and Madore, 1987) and the ESO/Uppsala Survey of the ESO(B) Atlas (Lauberts, 1982) for observation at the radio continuum frequency of 22 GHz. The sample is listed in a table. Sol (1987) studied this sample and concluded that the majority of the jet-like features seem to admit an explanation in terms of interactive galaxies with bridges and/or tails due to tidal effects. Only in a few cases do the jets seem to be possibly linked to some nuclear activity of the host galaxy. The observations were made with the 13.7m-radome enclosed Itapetinga Radiotelescope (HPBW of 4.3 arcmin), in Brazil. The receiver was a 1 GHz d.s.b. super-heterodine mixer operated in total-power mode, with a system temperature of approximately 800 K. The observational technique consisted in scans in right ascention, centralized in the optical position of the galaxy. The amplitude of one scan was 43 arcmin, and its duration time was 20 seconds. The integration time was at least 2 hours (12 ten-minute observations) and the sensibility limit adopted was an antenna temperature greater than 3 times the r.m.s. error of the baseline determination. Virgo A was used as the calibrator source. Three galaxies were detected for the first time as radio sources and four other known galaxies at low frequencies had their flux densities measured at 22 GHz. The results for these sources are presented.

  18. On the origin of radio emission in radio quiet quasars

    NASA Astrophysics Data System (ADS)

    Laor, Ari; Behar, Ehud

    The radio emission in radio loud quasars (RLQs) originates in a jet carrying relativistic electrons. In radio quiet quasars (RQQs) the radio emission is ˜ 103 times weaker, relative to other bands. Its origin is not clearly established yet, but it is often speculated to arise from a weak jet. Here we show that there is a tight relation between L_R and L_X for RQQs, with L_R/L_X˜ 10-5, based on the optically selected Palomar-Green (PG) quasars, with nearly complete X-ray and radio detections (avoiding biases and selection effects). Coronally active stars also show a tight relation between L_R and L_X with L_R/L_X˜ 10-5 (the Güdel & Benz relation), which together with correlated variability indicates that stellar coronae are magnetically heated. The X-ray emission of quasars most likely originates from a hot accretion disk corona, and since RQQs follow the Güdel & Benz relation, it is natural to associate their radio emission with coronal emission as well. The tight relation between L_R and L_X may simply reflect the equality of accretion disk coronal heating by magnetically generated relativistic electrons (producing L_R), and coronal cooling by Compton scattering (producing L_X). This suggestion can be tested by looking for correlated X-ray and radio variability patterns, such as the Neupert effect, displayed by stellar coronae.

  19. Radio emissions from RHESSI TGFs

    NASA Astrophysics Data System (ADS)

    Mezentsev, Andrey; Østgaard, Nikolai; Gjesteland, Thomas; Albrechtsen, Kjetil; Cummer, Steven

    2016-04-01

    The discovery of bursts of energetic photons coming out to space from the Earth's atmosphere, referred to as terrsetrial gamma-ray flashes (TGFs), has stimulated research activity investigating different aspects of the TGF generation and accompanying processes. Two models of the TGF production are nowadays competing to explain the observations of the TGFs and related phenomena. One of the models involves the feedback mechanism enhancing the production rate of the runaway electrons in the ambient electric field of a thundercloud. Another model considers runaway electrons accelerated in the strong local electric field in front of the upward propagating negative leader of the +IC. We performed a detailed analysis of RHESSI TGFs detected between August 2004 and September 2015. It was reported that the RHESSI satellite clock has a systematic error of ˜ 1.8 ms, but the exact value remained unknown, also it was unclear if this systematic clock error is changing with time or not. We compared RHESSI TGFs with the world wide lightning location network (WWLLN) database and found the distribution of the time delays between the TGF peak times and associated WWLLN detections. This distribution allowed us to find the value of the RHESSI systematic clock offset with the microsecond accuracy level. Also we found that this offset experienced two changes: in August 2005 and in October 2013, which was confirmed by two independent ways. We found that in case of double TGFs WWLLN detection corresponds to the second TGF of the pair. VLF magnetic field recordings from the Duke University also attribute radio sferics to the second TGF, exhibiting no detectable radio emission during the first TGFs of the TGF pairs. We have proposed a possible scenario that is consistent with the observations. This scenario supports the leader-based model of the TGF generation. Spectral characteristics of 77 sferics recorded by the Duke University VLF sensors and related to the RHEESI TGFs show that maximal

  20. Modeling of radio emissions from Neptune

    NASA Astrophysics Data System (ADS)

    Menietti, J. D.; Curran, D. B.

    We have developed a plasma model of the Neptunian magnetosphere that includes a density cavity centered on the L=6 magnetic field line. Assuming the O8 magnetic field model, we have performed ray tracing of smooth radio emission from Neptune, and the results generally support the findings of Ladreiter et al. (1991), but differ in details of the source locations. In addition, we have examined source locations of bursty radio emission that are consistent with propagation at small wave normal angles as hypothesized for the temperature anisotropic beam instability (TABI) (Winglee et al., 1992). The source locations are adjacent (complementary) to the sources of the smooth radio emission. Using previously developed plasma and magnetic field models for Uranus, we have performed a similar study of bursty radio emissions. Again the source locations appear to be adjacent to the source regions of smooth radio emission, consistent with the TABI.

  1. Models of Uranium continuum radio emission

    NASA Technical Reports Server (NTRS)

    Romig, Joseph H.; Evans, David R.; Sawyer, Constance B.; Schweitzer, Andrea E.; Warwick, James W.

    1987-01-01

    Uranium continuum radio emission detected by the Voyager 2 Planetary Radio Astronomy experiment during the January 1986 encounter is considered. The continuum emissions comprised four components (equatorial emissions, anomaly emissions, strong nightside emissions, and weak nightside emissions) associated with different sources. The equatorial emissions appeared most prominently during the days before closest approach and extended from 40 kHz or below to about 120 kHz. The anomaly emissions were seen about 12 hours before closest approach and extended to about 250 kHz. The agreement found between Miranda's phase and strong radio emission at 20.4 kHz, just after closest approach, suggests intense dynamic activity on the Miranda L shell.

  2. Non-thermal radio emission from Saturn

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.

    1978-01-01

    Direct, strong evidence for non-thermal radio emission from Saturn exists in the hectometric data observed by Imp 6. The planet has been tentatively identified as a decametric source, but the most sensitive and most recent data fail to confirm this. At metric or decimetric wavelengths Saturn has no non-thermal emission like Jupiter's synchrotron sources. Finally, a comparative study of Earth and Jupiter radio emissions suggests lightning discharges.

  3. Coherent emission in fast radio bursts

    NASA Astrophysics Data System (ADS)

    Katz, J. I.

    2014-05-01

    The fast (ms) radio bursts reported by Lorimer et al. Science 318, 777 (2007) and Thornton et al. Science 341, 53 (2013) have extremely high brightness temperatures if at the inferred cosmological distances. This implies coherent emission by "bunches" of charges. Fast radio bursts, like the giant pulses of the Crab pulsar, display banded spectra that may be harmonics of plasma frequency emission by plasma turbulence and are inconsistent with emission by charge distributions moving relativistically. We model the emission region as a screen of half-wave dipole radiators resonant around the frequencies of observation, the maximally bright emission mechanism of nonrelativistic charges, and calculate the implied charge bunching. From this we infer the minimum electron energy required to overcome electrostatic repulsion. If fast radio bursts are the counterparts of Galactic events, their Galactic counterparts may be detected from any direction above the horizon by radio telescopes in their far sidelobes or by small arrays of dipoles.

  4. Radio emission of sea surface at centimeter wavelengths and is fluctuations

    NASA Technical Reports Server (NTRS)

    Tseytlin, N. M.; Shutko, A. M.; Zhislin, G. M.

    1981-01-01

    The eigen thermal radio emission of the sea was examined as well as the agitated surface of the sea when the reflection (scattering) is similar in nature to diffused scattering. The contribution of this emission to the total emission of the sea is practically constant in time, and the time fluctuations of the radio emissions of the sea are basically determined only by a change in the eigen emission of the sea, connected with the agitation.

  5. Quasar emission lines, radio structures and radio unification

    NASA Astrophysics Data System (ADS)

    Jackson, Neal; Browne, I. W. A.

    2013-02-01

    Unified schemes of radio sources, which account for different types of radio active galactic nucleus in terms of anisotropic radio and optical emission, together with different orientations of the ejection axis to the line of sight, have been invoked for many years. Recently, large samples of optical quasars, mainly from the Sloan Digital Sky Survey (SDSS), together with large radio samples, such as Faint Images of the Radio Sky at Twenty cm (FIRST), have become available. These hold the promise of providing more stringent tests of unified schemes but, compared to previous samples, lack high-resolution radio maps. Nevertheless, they have been used to investigate unified schemes, in some cases yielding results which appear inconsistent with such theories. Here we investigate using simulations how the selection effects to which such investigations are subject can influence the conclusions drawn. In particular, we find that the effects of limited resolution do not allow core-dominated radio sources to be fully represented in the samples, that the effects of limited sensitivity systematically exclude some classes of sources and the lack of deep radio data make it difficult to decide to what extent closely separated radio sources are associated. Nevertheless, we conclude that relativistic unified schemes are entirely compatible with the current observational data. For a sample selected from SDSS and FIRST which includes weak-cored triples we find that the equivalent width of the [O III] emission line decreases as core dominance increases, as expected, and also that core-dominated quasars are optically brighter than weak-cored quasars.

  6. Solar emission levels at low radio frequencies

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.

    1990-01-01

    Solar radio emission could seriously interfere with observations made by a low frequency (1 to 10 MHz) array in space. International Sun-Earth Explorer (ISEE-3) radio data were used to determine solar emission level. The results indicate that solar emission should seriously disturb less than ten percent of the data, even during the years of solar maximum. Thus it appears that solar emission should not cause a disastrous loss of data. The information needed to design procedures to excise solar interference from the data produced by any low-frequency array is provided.

  7. Transient pulsed radio emission from a magnetar.

    PubMed

    Camilo, Fernando; Ransom, Scott M; Halpern, Jules P; Reynolds, John; Helfand, David J; Zimmerman, Neil; Sarkissian, John

    2006-08-24

    Anomalous X-ray pulsars (AXPs) are slowly rotating neutron stars with very bright and highly variable X-ray emission that are believed to be powered by ultra-strong magnetic fields of >10(14) G, according to the 'magnetar' model. The radio pulsations that have been observed from more than 1,700 neutron stars with weaker magnetic fields have never been detected from any of the dozen known magnetars. The X-ray pulsar XTE J1810-197 was revealed (in 2003) as the first AXP with transient emission when its luminosity increased 100-fold from the quiescent level; a coincident radio source of unknown origin was detected one year later. Here we show that XTE J1810-197 emits bright, narrow, highly linearly polarized radio pulses, observed at every rotation, thereby establishing that magnetars can be radio pulsars. There is no evidence of radio emission before the 2003 X-ray outburst (unlike ordinary pulsars, which emit radio pulses all the time), and the flux varies from day to day. The flux at all radio frequencies is approximately equal--and at >20 GHz XTE J1810-197 is currently the brightest neutron star known. These observations link magnetars to ordinary radio pulsars, rule out alternative accretion models for AXPs, and provide a new window into the coronae of magnetars. PMID:16929292

  8. Radio emissions and the heliospheric termination shock

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Cairns, I. H.; Donohue, D. J.; Matthaeus, W. H.

    1994-01-01

    With the Voyager spacecrafts' discovery of low-frequency radio emissions from the depths of the outer heliosphere has come the realization that the boundaries between our heliosphere and the local interstellar medium have been detected. A model is presented here that can account for the observed radio emissions, based upon a termination shock modified by the dynamical effect of galactic and anomalous cosmic rays. Frequency and time domain properties of both continuum and transient radio events are explained, and new estimates for the distance to the termination shock (approximately 60-70 astronomical units) and the heliopause (less than or approximately 90 AU) are given.

  9. Nonthermal Radio Emission and the HR Diagram

    NASA Technical Reports Server (NTRS)

    Gibson, D. M.

    1985-01-01

    Perhaps the most reliable indicator of non-radiative heating/momentum in a stellar atmosphere is the presence of nonthermal radio emission. To date, 77 normal stellar objects have been detected and identified as nonthermal sources. These stellar objects are tabulated herein. It is apparent that non-thermal radio emission is not ubiquitous across the HR diagram. This is clearly the case for the single stars; it is not as clear for the binaries unless the radio emission is associated with their late-type components. Choosing to make this association, the single stars and the late-type components are plotted together. The following picture emerges: (1) there are four locations on the HR diagram where non-thermal radio stars are found; (2) the peak incoherent 5 GHz luminosities show a suprisingly small range for stars within each class; (3) the fraction of stellar energy that escapes as radio emission can be estimated by comparing the integrated maximum radio luminosity to the bolometric luminosity; (4) there are no apparent differences in L sub R between binaries with two cool components, binaries with one hot and one cool component, and single stars for classes C and D; and (5) The late-type stars (classes B, C, and D) are located in parts of the HR diagram where there is reason to suspect that the surfaces of the stars are being braked with respect to their interiors.

  10. Discussing the processes constraining the Jovian synchrotron radio emission's features

    NASA Astrophysics Data System (ADS)

    Santos-Costa, Daniel; Bolton, Scott J.

    2008-03-01

    Our recent analysis and understanding of the Jovian synchrotron radio emission with a radiation-belt model is presented. In this work, the electron population is determined by solving the Fokker-Planck diffusion equation and considering different physical processes. The results of the modeling are first compared to in situ particle data, brightness distributions, radio spectrum, and beaming curves to verify the simulated particle distributions. The dynamics of high-energy electrons in Jupiter's inner magnetosphere and their related radio emission are then examined. The results demonstrate that the Jovian moons set the extension and intensity of the synchrotron emission's brightness distribution along the magnetic equator. Simulations show that moons and dust both control the transport toward the planet by significantly reducing the abundance of particles constrained to populate, near the equator and inside 1.8 Jovian radii, the innermost region of the magnetosphere. Due to interactions with dust and synchrotron mechanism, radiation-belt electrons are moved along field lines, between Metis (1.79 Jovian radii) and Amalthea (2.54 Jovian radii), toward high latitudes. The quantity of particles transported away from the equator is sufficient to produce measurable secondary radio emissions. Among all the phenomena acting in the inner magnetosphere, the moons (Amalthea and Thebe) are the primary moderator for the radiation's intensity at high latitudes. Moon losses also affect the characteristics of the total radio flux with longitude. The sweeping effect amplifies the 10-h modulation of the beaming curve's amplitude while energy resonances occurring near Amalthea and Thebe belong to phenomena adjusting it to the right level. Interactions with dust do not significantly constrain radio spectrum features. Resonances near Amalthea and Thebe are responsible for the Jovian radio spectrum's particular slope.

  11. Io control of Jovian radio emission

    NASA Technical Reports Server (NTRS)

    Desch, M. D.

    1980-01-01

    The possibility of Io controlling Jovian decametric radio emission, particularly in the region below 22 MHz, is discussed. Results of a two-year survey at 26.3 at 26.3 MHz are presented which demonstrate the control of Io over a high-intensity storm component of the radio emission and the independence of a weak radio component from the phase of Io, as was observed at lower frequencies. It is thus hypothesized that Io control is a flux-dependent rather than a frequency-dependent phenomenon, and results of analyses at 18 and 10 MHz which support this hypothesis are presented. The apparent correlation between frequency and Io control is thus shown to result from a selection effect due to the increase of non-Io emission with decreasing frequency and relative antenna detection threshold. This result implies a contiguous Io-controlled source region extending out several Jovian radii along the Io flux tube.

  12. Control of Jovian Radio Emission by Callisto

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Gurnett, D. A.; Christopher, I.

    2001-01-01

    Galileo has been in orbit around Jupiter since December 1995 and a large database has been collected. We present the results of a survey of the plasma wave data for the frequency range 2.0 MHz to 5.6 MHz, the low frequency decametric (DAM) emissions. While the control of a portion of the radio emission by the moon lo is well known, and Ganymede control has been more recently indicated, we report that a small but significant portion of DAM emission is seen to be correlated with the orbital phase of Callisto. While the occurrence rate of emission controlled by Ganymede and Callisto is considerably less than for lo, the power levels can be nearly the same. We estimate the power of the Callisto-dependent emission to be approx. 70% of the Io-dependent radio emission and about the same as the Ganymede-dependent radio emission. This result indicates an Alfven current system associated with Callisto, and thus a significant interaction of the magnetosphere of Callisto with that of Jupiter as is believed to exist for both lo and Ganymede.

  13. Radio galaxies dominate the high-energy diffuse gamma-ray background

    DOE PAGESBeta

    Hooper, Dan; Linden, Tim; Lopez, Alejandro

    2016-08-09

    It has been suggested that unresolved radio galaxies and radio quasars (sometimes referred to as misaligned active galactic nuclei) could be responsible for a significant fraction of the observed diffuse gamma-ray background. In this study, we use the latest data from the Fermi Gamma-Ray Space Telescope to characterize the gamma-ray emission from a sample of 51 radio galaxies. In addition to those sources that had previously been detected using Fermi data, we report here the first statistically significant detection of gamma-ray emission from the radio galaxies 3C 212, 3C 411, and B3 0309+411B. Combining this information with the radio fluxes,more » radio luminosity function, and redshift distribution of this source class, we find that radio galaxies dominate the diffuse gamma-ray background, generating 77.2(+25.4)(-9.4)% of this emission at energies above ~1 GeV . We discuss the implications of this result and point out that it provides support for scenarios in which IceCube's high-energy astrophysical neutrinos also originate from the same population of radio galaxies.« less

  14. Radio galaxies dominate the high-energy diffuse gamma-ray background

    NASA Astrophysics Data System (ADS)

    Hooper, Dan; Linden, Tim; Lopez, Alejandro

    2016-08-01

    It has been suggested that unresolved radio galaxies and radio quasars (sometimes referred to as misaligned active galactic nuclei) could be responsible for a significant fraction of the observed diffuse gamma-ray background. In this study, we use the latest data from the Fermi Gamma-Ray Space Telescope to characterize the gamma-ray emission from a sample of 51 radio galaxies. In addition to those sources that had previously been detected using Fermi data, we report here the first statistically significant detection of gamma-ray emission from the radio galaxies 3C 212, 3C 411, and B3 0309+411B. Combining this information with the radio fluxes, radio luminosity function, and redshift distribution of this source class, we find that radio galaxies dominate the diffuse gamma-ray background, generating 77.2+25.4‑9.4% of this emission at energies above ~1 GeV . We discuss the implications of this result and point out that it provides support for scenarios in which IceCube's high-energy astrophysical neutrinos also originate from the same population of radio galaxies.

  15. Radio emission from chemically peculiar stars

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Drake, Stephen A.; Bastian, T. S.

    1992-01-01

    In five VLA observing runs the initial survey of radio emission from magnetic Bp-Ap stars by Drake et al. is extended to include a total of 16 sources detected at 6 cm out of 61 observed, giving a detection rate of 26 percent. Of these stars, three are also detected at 2 cm, four at 3.6 cm, and five at 20 cm. The 11 new stars detected as radio sources have spectral types B5-A0 and are He-weak and Si-strong. No classical (SrCrEu-type) Ap stars have yet been detected. The 16 detected sources show a wide range of radio luminosities with the early-B He-S stars on average 20 times more radio luminous than the late-B He-W stars and 1000 times more luminous than Theta Aurigae. Multifrequency observations indicate flat spectra in all cases. Four stars have a detectable degree of circular polarization at one or more frequencies. It is argued that the radio-emitting CP (chemically peculiar) stars form a distinct class of radio stars that differs from both the hot star wind sources and the active late-type stars. The observed properties of radio emission from these stars may be understood in terms of optically thick gyrosynchrotron emission from a nonthermal distribution of electrons produced in a current sheet far from the star. In this model the electrons travel along magnetic fields to smaller radii and higher magnetic latitudes where they mirror and radiate microwave radiation.

  16. Possible radio emission mechanism for pulsars

    NASA Technical Reports Server (NTRS)

    Kovalev, Y. A.

    1979-01-01

    A mathematical model is presented and discussed as a possible mechanism to describe radio emission from pulsars. The model determines that the magnetic field in the neutron proton electron (npe) layer of a neutron star results from a quasistationary eddy current of superconducting and normal protons relative to normal electrons, which generates radio emission by the Josephson effect. The radiation propagates in the magnetically active medium, from the optically thick npe layer to the magnetosphere through breaks in the crust. As a result, hot radio spots form on the surface of the star, and a radiation pattern forms near the magnetic poles, the cross section of which gives the observed pulse structure. Due to the specific properties of the mechanism, variations of the quasistationary current are converted to amplitude frequency variations of the radiation spectrum. Variations of the fine structure of the spectrum pulse amplitude and spectral index, as well as their correlation are discussed.

  17. Detection of radio continuum emission from Procyon

    NASA Technical Reports Server (NTRS)

    Drake, Stephen A.; Simon, Theodore; Brown, Alexander

    1993-01-01

    We have detected the F5 IV-V star Procyon as a weak and variable 3.6 cm radio continuum source using the VLA. The inferred radio luminosity is similar to, though some-what higher than, the X-band luminosity of the active and flaring sun. The 33 micro-Jy flux density level at which we detected Procyon on four of five occasions is close to the 36 micro-Jy radio flux density expected from a model in which the radio emission consists of two components: optically thick 'stellar disk' emission with a 3.6 cm brightness temperature of 20,000 K that is 50 percent larger than the solar value, and optically thin coronal emission with an emission measure the same as that indicated by Einstein and EXOSAT X-ray flux measurements in 1981 and 1983. The maximum mass-loss rate of a warm stellar wind is less than 2 x 10 exp -11 solar mass/yr. An elevated flux density of 115 micro-Jy observed on a single occasion provides circumstantial evidence for the existence of highly localized magnetic fields on the surface of Procyon.

  18. Radio emission physics in the Crab pulsar

    NASA Astrophysics Data System (ADS)

    Eilek, Jean A.; Hankins, Timothy H.

    2016-06-01

    We review our high-time-resolution radio observations of the Crab pulsar and compare our data to a variety of models for the emission physics. The Main Pulse and the Low Frequency Interpulse come from regions somewhere in the high-altitude emission zones (caustics) that also produce pulsed X-ray and -ray emission. Although no emission model can fully explain these two components, the most likely models suggest they arise from a combination of beam-driven instabilities, coherent charge bunching and strong electromagnetic turbulence. Because the radio power fluctuates on a wide range of time scales, we know the emission zones are patchy and dynamic. It is tempting to invoke unsteady pair creation in high-altitude gaps as the source of the variability, but current pair cascade models cannot explain the densities required by any of the likely models. It is harder to account for the mysterious High Frequency Interpulse. We understand neither its origin within the magnetosphere nor the striking emission bands in its dynamic spectrum. The most promising models are based on analogies with solar zebra bands, but they require unusual plasma structures which are not part of our standard picture of the magnetosphere. We argue that radio observations can reveal much about the upper magnetosphere, but work is required before the models can address all of the data.

  19. Radio emission physics in the Crab pulsar

    NASA Astrophysics Data System (ADS)

    Eilek, Jean A.; Hankins, Timothy H.

    2016-06-01

    > We review our high-time-resolution radio observations of the Crab pulsar and compare our data to a variety of models for the emission physics. The Main Pulse and the Low Frequency Interpulse come from regions somewhere in the high-altitude emission zones (caustics) that also produce pulsed X-ray and -ray emission. Although no emission model can fully explain these two components, the most likely models suggest they arise from a combination of beam-driven instabilities, coherent charge bunching and strong electromagnetic turbulence. Because the radio power fluctuates on a wide range of time scales, we know the emission zones are patchy and dynamic. It is tempting to invoke unsteady pair creation in high-altitude gaps as the source of the variability, but current pair cascade models cannot explain the densities required by any of the likely models. It is harder to account for the mysterious High Frequency Interpulse. We understand neither its origin within the magnetosphere nor the striking emission bands in its dynamic spectrum. The most promising models are based on analogies with solar zebra bands, but they require unusual plasma structures which are not part of our standard picture of the magnetosphere. We argue that radio observations can reveal much about the upper magnetosphere, but work is required before the models can address all of the data.

  20. Control of Jovian Radio Emission by Ganymede

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Gurnett, D. A.; Kurth, W. S.; Groene, J. B.

    1998-01-01

    Galileo has been in orbit around Jupiter since December 1995. We present the results of a survey of the data for the frequency range 3.2 MHz to 5.6 MHz, the low-frequency decametric (DAM) emissions. While the control of a portion of the radio emission by the moon Io is well-known, we report that a small but significant portion of low-frequency DAM emission is seen to be correlated with the orbital phase of Ganymede. This result is in agreement with other recent results indicating a significant interaction of the magnetosphere of Ganymede with that of Jupiter.

  1. Elliptically polarized bursty radio emissions from Jupiter

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Desch, M. D.; Kaiser, M. L.; Manning, R.; Fainberg, J.; Stone, R. G.

    1995-01-01

    We report a new component of Jovian radio emission observed by the Ulysses spacecraft when Ulysses was at high Jovigraphic latitudes (greater than or approximately = 30 deg north or south of the Jovian magnetic equator). This bursty high-latitude emission is elliptically polarized in the right-hand sense when observed from northern latitudes and in the left-hand sense when observed from southern latitudes, consistent with extraordinary mode. The orientation of the polarization ellipse is observed to systematically vary with time relative to the observer. It is argued that the elliptically-polarized nature of the emission is intrinsic to the source region.

  2. Cross-Correlations in Quasar Radio Emission

    NASA Astrophysics Data System (ADS)

    Nefedyev, Yuri; Panischev, Oleg; Demin, Sergey

    The main factors forming the complex evolution of the accretive astrophysical systems are nonlinearity, intermittency, nonstationarity and also collective phenomena. To discover the dynamic processes in these objects and to detain understanding their properties we need to use all the applicable analyzing methods. Here we use the Flicker-Noise Spectroscopy (FNS) as a phenomenological approach to analyzing and parameterizing the auto- and cross-correlations in time series of astrophysical objects dynamics. As an example we consider the quasar flux radio spectral density at frequencies 2.7 GHz and 8.1 GHz. Data have been observed by Dr. N. Tanizuka (Laboratory for Complex Systems Analysis, Osaka Prefecture University) in a period of 1979 to 1988 (3 309 days). According to mental habits quasar is a very energetic and distant active galactic nucleus containing a supermassive black hole by size 10-10,000 times the Schwarzschild radius. The quasar is powered by an accretion disc around the black hole. The accretion disc material layers, moving around the black hole, are under the influence of gravitational and frictional forces. It results in raising the high temperature and arising the resonant and collective phenomena reflected in quasar emission dynamics. Radio emission dynamics of the quasar 0215p015 is characterized by three quasi-periodic processes, which are prevalent in considering dynamics. By contrast the 1641p399's emission dynamics have not any distinguish processes. It means the presence of high intermittency in accretive modes. The second difference moment allows comparing the degree of manifesting of resonant and chaotic components in initial time series of the quasar radio emission. The comparative analysis shows the dominating of chaotic part of 1641p399's dynamics whereas the radio emission of 0215p015 has the predominance of resonant component. Analyzing the collective features of the quasar radio emission intensity demonstrates the significant

  3. Calculation of the radio emission from EAS

    NASA Technical Reports Server (NTRS)

    Allan, H. R.; Sun, M. P.; Crannell, C. J.; Hough, J. H.; Shutie, P. F.

    1975-01-01

    Time-varying features of an electron-photon cascade are considered, particularly those associated with radio emission. The cosmic ray shower is represented as a superposition of collinear 10 GeV electron-photon cascades launched at different heights in the atmosphere. Actual simulations are performed for only 10 cascades at each of 40 heights and the results are scaled to represent the total number of cascades required. The apparent angular motions of the cascade particles as detected by antennas located at various positions up to 300 m from the shower axis are simulated. The radio pulse waveform and the corresponding frequency spectrum are obtained from these motions.

  4. Merger Activity and Radio Emission Within A2061

    NASA Astrophysics Data System (ADS)

    Bailey, Avery; Sarazin, Craig L.; Clarke, Tracy E.; Chatzikos, Marios; Hogge, Taylor; Wik, Daniel R.; Rudnick, Lawrence; Farnsworth, Damon; Van Weeren, Reinout J.; Brown, Shea

    2015-01-01

    Abell 2061 is a galaxy cluster located in the Corona Borealis Supercluster that boasts radio and X-ray structures indicative of a merger. A2061 is located at a redshift z = .0784, contains two brightest cluster galaxies, and has another cluster (A2067) about 2.5 Mpc to the NE, falling towards it. Within A2061, there exists an elongated structure of soft X-ray emission extending to the NE of cluster's center (referred to as the 'Plume') along with a hard X-ray shock region (the 'Shock') located just NE of the cluster's center. Previous observations in the radio have indicated the presence of a extended, central radio halo/relic accompanying the cluster's main X-ray emission but with slight NE displacement and further NE extension. Also emitting in the radio, to the SW of A2061, is a radio relic. The X-ray structures of A2061 were previously examined in 2009 by a Chandra observation. Here we present the results of an August 2013 XMM-Newton observation of the cluster. This XMM-Newton observation, imaged by three detectors, covers a greater field of view with a longer exposure (48.6 ks) than the previous Chandra observation. We will present images and spectra of various regions of the cluster. In addition, we will discuss the dynamics of the cluster, the nature of the Plume, Shock and other features, and origin of the central diffuse radio halo/relic and SW radio relic. These X-ray observations will also be compared to a numerical simulation from the Simulation Library of Astrophysics cluster Mergers (SLAM).

  5. Radio Emissions from the Outer Heliosphere

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.

    1996-01-01

    For nearly fifteen years the Voyager 1 and 2 spacecraft have been detecting an unusual radio emission in the outer heliosphere in the frequency range from about 2 to 3 kHz. Two major events have been observed, the first in 1983-84 and the second in 1992-93. In both cases the onset of the radio emission occurred about 400 days after a period of intense solar activity, the first in mid-July 1982, and the second in May-June 1991. These two periods of solar activity produced the two deepest cosmic ray Forbush decreases ever observed. Forbush decreases are indicative of a system of strong shocks and associated disturbances propagating outward through the heliosphere. The radio emission is believed to have been produced when this system of shocks and disturbances interacted with one of the outer boundaries of the heliosphere, most likely in the vicinity of the the heliopause. The emission is believed to be generated by the shock-driven Langmuir-wave mode conversion mechanism, which produces radiation at the plasma frequency (f(sub p)) and at twice the plasma frequency (2f(sub p)). From the 400-day travel time and the known speed of the shocks, the distance to the interaction region can be computed, and is estimated to be in the range from about 110 to 160 AU.

  6. Models of Neptune's smooth recurrent radio emission

    NASA Technical Reports Server (NTRS)

    Sawyer, Constance

    1993-01-01

    The quantitative response of the Planetary Radio Astronomy (PRA) instrument to a wave with polarization ellipse of arbitrary shape and orientation, arriving at the antennas from any direction, can be determined. This capability is used to model the time variation of intensity and circular polarization over a range of radio frequencies for proposed radio-source locations and emission characteristics at Neptune. At frequencies below 400 kHz the observed variation of intensity, polarization, and phase are closely simulated in an offset tilted dipole magnetic field by conjugate sources at midlatitude with filled emission cones. The phase of emission at higher frequencies is reproduced by sources at lower latitude. Modeled wide-cone emission does not reach the spacecraft at the observed phase nor have the polarization sense observed before closest approach. Source-surface maps of apparent polarization for the period before closest approach when instrumental response is especially sensitive to source location is presented. The method is capable of extension to more realistic models of the magnetic field.

  7. AGN coronal emission models - I. The predicted radio emission

    NASA Astrophysics Data System (ADS)

    Raginski, I.; Laor, Ari

    2016-06-01

    Accretion discs in active galactic nucleus (AGN) may be associated with coronal gas, as suggested by their X-ray emission. Stellar coronal emission includes radio emission, and AGN corona may also be a significant source for radio emission in radio quiet (RQ) AGN. We calculate the coronal properties required to produce the observed radio emission in RQ AGN, either from synchrotron emission of power-law (PL) electrons, or from cyclosynchrotron emission of hot mildly relativistic thermal electrons. We find that a flat spectrum, as observed in about half of RQ AGN, can be produced by corona with a disc or a spherical configuration, which extends from the innermost regions out to a pc scale. A spectral break to an optically thin power-law emission is expected around 300-1000 GHz, as the innermost corona becomes optically thin. In the case of thermal electrons, a sharp spectral cut-off is expected above the break. The position of the break can be measured with very long baseline interferometry observations, which exclude the cold dust emission, and it can be used to probe the properties of the innermost corona. Assuming equipartition of the coronal thermal energy density, the PL electrons energy density, and the magnetic field, we find that the energy density in a disc corona should scale as ˜R-1.3, to get a flat spectrum. In the spherical case the energy density scales as ˜R-2, and is ˜4 × 10-4 of the AGN radiation energy density. In Paper II we derive additional constraints on the coronal parameters from the Gudel-Benz relation, Lradio/LX-ray ˜ 10- 5, which RQ AGN follow.

  8. Analysis and Modeling of Jovian Radio Emissions Observed by Galileo

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.

    2003-01-01

    Our studies of Jovian radio emission have resulted in the publication of five papers in refereed journals, with three additional papers in progress. The topics of these papers include the study of narrow-band kilometric radio emission; the apparent control of radio emission by Callisto; quasi-periodic radio emission; hectometric attenuation lanes and their relationship to Io volcanic activity; and modeling of HOM attenuation lanes using ray tracing. A further study of the control of radio emission by Jovian satellites is currently in progress. Abstracts of each of these papers are contained in the Appendix. A list of the publication titles are also included.

  9. Coronal Mass Ejections and Solar Radio Emissions

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2010-01-01

    Coronal mass ejections (CMEs) have important connections to various types of radio emissions from the Sun. The persistent noise storm radiation (type I storm at metric wavelengths, type III storms at longer wavelengths) can be clearly interrupted by the occurrence of a CME in the active region that produces the storm. Sometimes the noise storm completely disappears and other times, it reappears in the active region. Long-lasting type III bursts are associated with CME eruption, thought to be due to the reconnection process taking place beneath the erupting CME. Type II bursts are indicative of electron acceleration in the CME-driven shocks and hence considered to be the direct response of the CME propagation in the corona and interplanetary medium. Finally type IV bursts indicate large-scale post-eruption arcades containing trapped electrons that produce radio emission. This paper summarizes some key results that connect CMEs to various types of radio emission and what we can learn about particle acceleration in the corona) and interplanetary medium. Particular emphasis will be placed on type If bursts because of their connection to interplanetary shocks detected in situ.

  10. Polarization model applied to Uranian radio emission

    NASA Astrophysics Data System (ADS)

    Sawyer, C. B.; Neal, K. L.; Warwick, J. W.

    1991-04-01

    The total power and the degree of circular polarization as measured by the Planetary Radio Astronomy experiments on the Voyager spacecraft are modeled. For a source near the electron cyclotron frequency, the degree of circular polarization is determined by the angle between the wave vector and the field. It is shown that the observed strong circular polarization of Uranian smooth low-frequency (SLF) can be modeled as emission that is beamed along the direction of the magnetic field in a filled cone. The main observational constraints of SLF emission from Uranus are met by conjugate sources at about 21 deg from the magnetic equator.

  11. Analysis of Jovian low frequency radio emissions

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1985-01-01

    The density of ions in the Io plasma torus and the scattering of these ions by low frequency electromagnetic emissions detected by Voyager 1 were studied. The ion density profile was investigated using whistler dispersion measurements provided by the Voyager plasma instrument. The scale height and absolute density of H+ ions in the vicinity of the plasma torus were determined by combining the measured plasma densities with the whistler dispersion measurements. A theoretical analysis of the modes of propagation of low frequency electromagnetic emissions in the torus was undertaken. Polarization reversal effects and rough estimates of the ion diffusion coefficient were utilized. Numerical evaluation of the ion diffusion coefficients in the torus were made using the observed Voyager 1 wave intensities. Results show that the observed wave intensities produce significant ion diffusion effects in the ion torus.

  12. Discovery of radio emission from AE Aquarii

    SciTech Connect

    Bookbinder, J.A.; Lamb, D.Q.

    1987-12-01

    VLA 1.4-GHz and 4.9-GHz observations of six DQ Her cataclysmic variables, obtained in the C/D hybrid configuration with 50-MHz bandwidth, 7-sec time resolution, and limiting flux density about 200 microJy on July 21, 1984, are reported. Variable radio emission with time scale less than 5 min, circular polarization less than 15 percent, and flux density 3-5 mJy at 1.4 GHz and 8-16 mJy at 4.9 GHz is detected from AE Aqr. This emission is tentatively attributed to synchrotron emission from mildly relativistic electrons, powered by the MHD torque coupling the magnetic white dwarf to either (1) a secondary with a strong magnetic field or (2) an accretion disk. 20 references.

  13. Discovery of radio emission from AE Aquarii

    NASA Technical Reports Server (NTRS)

    Bookbinder, J. A.; Lamb, D. Q.

    1987-01-01

    VLA 1.4-GHz and 4.9-GHz observations of six DQ Her cataclysmic variables, obtained in the C/D hybrid configuration with 50-MHz bandwidth, 7-sec time resolution, and limiting flux density about 200 microJy on July 21, 1984, are reported. Variable radio emission with time scale less than 5 min, circular polarization less than 15 percent, and flux density 3-5 mJy at 1.4 GHz and 8-16 mJy at 4.9 GHz is detected from AE Aqr. This emission is tentatively attributed to synchrotron emission from mildly relativistic electrons, powered by the MHD torque coupling the magnetic white dwarf to either (1) a secondary with a strong magnetic field or (2) an accretion disk.

  14. DETECTION OF RADIO EMISSION FROM FIREBALLS

    SciTech Connect

    Obenberger, K. S.; Taylor, G. B.; Dowell, J.; Henning, P. A.; Schinzel, F. K.; Stovall, K.; Hartman, J. M.; Ellingson, S. W.; Helmboldt, J. F.; Wilson, T. L.; Kavic, M.; Simonetti, J. H.

    2014-06-20

    We present the findings from the Prototype All-Sky Imager, a back end correlator of the first station of the Long Wavelength Array, which has recorded over 11,000 hr of all-sky images at frequencies between 25 and 75 MHz. In a search of this data for radio transients, we have found 49 long-duration (10 s of seconds) transients. Ten of these transients correlate both spatially and temporally with large meteors (fireballs), and their signatures suggest that fireballs emit a previously undiscovered low frequency, non-thermal pulse. This emission provides a new probe into the physics of meteors and identifies a new form of naturally occurring radio transient foreground.

  15. The Radio Wave Emission from Sgr A*

    NASA Astrophysics Data System (ADS)

    Beaklini, Pedro Paulo Bonetti

    2008-10-01

    SgrA* is a compact radio source, with radius smaller than 1 AU. Its position is coincident with the dynamic center of a star cluster that orbits the 4 million solar mass supermassive black hole found in the center of the Milky Way. SgrA* is surrounded by a complex of HII regions, with complex morphology, named SgrA. The variability of the SgrA* emission was observed at different wavelengths, as radio, infrared and X-rays, with timescales that range from hours to months. Recent observations using interferometric techniques have detected a quasiperiodicity in the radio light curve from SgrA*. In our work, we present the result of 43 GHz observations obtained with the Itapetinga radiotelescope, located in Atibaia, which aimed to detect this variability and verify the existence of a periodicity. Sgr B2, an HII complex near SgrA*, was used as a calibrator to eliminate any extrinsic variability. The obtained light curve is consistent with previous results reported in the literature, confirming the increase in the amplitude of the variability with frequency. Particularly, daily variability was found that is compatible with what was reported at 7 mm using VLBI techniques. The expected 106 days periodicity was not found in our data by the Jurkevich statistic method, which instead indicated the existence of a 90 day period. However, the superposition of the 7 mm data on a 106 day look similar to what was found from the 1.3 cm observations. Considering that the observations at 7 mm do not cover all the phases in the full cycle, more observations are needed to confirm the existence of a periodicity in the light curve.

  16. A multidisciplinary study of planetary, solar and astrophysical radio emissions

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Calvert, W.; Fielder, R.; Goertz, C.; Grabbe, C.; Kurth, W.; Mutel, R.; Sheerin, J.; Mellott, M.; Spangler, S.

    1986-01-01

    Combination of the related fields of planetary, solar, and astrophysical radio emissions was attempted in order to more fully understand the radio emission processes. Topics addressed include: remote sensing of astrophysical plasma turbulence; Alfven waves; astrophysical shock waves; surface waves; very long base interferometry results; very large array observations; solar magnetic flux; and magnetohydrodynamic waves as a tool for solar corona diagnostics.

  17. Phenomenology of Neptune's radio emissions observed by the Voyager planetary radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Pedersen, B. M.; Lecacheux, A.; Zarka, P.; Aubier, M. G.; Kaiser, M. L.; Desch, M. D.

    1992-01-01

    The Neptune flyby in 1989 added a new planet to the known number of magnetized planets generating nonthermal radio emissions. We review the Neptunian radio emission morphology as observed by the planetary radio astronomy experiment on board Voyager 2 during a few weeks before and after closest approach. We present the characteristics of the two observed recurrent main components of the Neptunian kilometric radiation, i.e., the 'smooth' and the 'bursty' emissions, and we describe the many specific features of the radio spectrum during closest approach.

  18. U. radio emission from quiescent filaments

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.

    1989-01-01

    Full-disk Very Large Array (VLA) synthesis maps of the quiet Sun indicate that filaments can be seen in emission at 91.6 cm wavelength; they are detected in absorption at shorter microwave wavelengths. The 91.6 cm emission has a brightness temperature of T sub B = 3 x 10(exp 5) K. It is hotter, wider and longer than the underlying filament detected at H alpha wavelengths, but the similarity between the shape, position, elongation and orientation of the radio and optical features suggests their close association. The 91.6 cm emission is attributed to the thermal-bremsstrahlung of a hot transition sheath that envelopes the H alpha filament and acts as an interface between the cool, dense H alpha filament and the hotter, rarefied corona. The transition sheath is seen in emission because of the lower optical depth of the corona at 90 cm wavelength, and the width of this sheet is 10(exp 9) cm. A power law gradient in pressure provides a better match to the observations than a constant pressure model; definitive tests of theoretical models await simultaneous multi-wavelength studies of filaments at different observing angles. When the thermal bremsstrahlung is optically thin, the magnetic field strength in the transition sheath can be inferred from the observed circular polarization. Variable physical parameters of the sheath, such as width, electron density, and electron temperature, can explain controversial reports of the detection of, or the failure to detect, the meter-wavelength counterpart of H alpha filaments.

  19. The radio emission from the ultraluminous far-infrared galaxy NGC 6240

    NASA Technical Reports Server (NTRS)

    Colbert, Edward J. M.; Wilson, Andrew S.; Bland-Hawthorn, Jonathan

    1994-01-01

    We present new radio observations of the 'prototypical' ultraluminous far-infrared galaxy NGC 6240, obtained using the Very Large Array (VLA) at lambda = 20 cm in B-configuration and at lambda = 3.6 cm in A-configuration. These data, along with those from four previous VLA observations, are used to perform a comprehensive study of the radio emission from NGC 6240. Approximately 70% (approximately 3 x 10(exp 23) W/Hz) of the total radio power at 20 cm originates from the nuclear region (approximately less than 1.5 kpc), of which half is emitted by two unresolved (R approximately less than 36 pc) cores and half by a diffuse component. The radio spectrum of the nuclear emission is relatively flat (alpha approximately equals 0.6; S(sub nu) proportional to nu(exp -alpha). The supernova rate required to power the diffuse component is consistent with that predicted by the stellar evolution models of Rieke et al. (1985). If the radio emission from the two compact cores is powered by supernova remnants, then either the remnants overlap and form hot bubbles in the cores, or they are very young (approximately less than 100 yr.) Nearly all of the remaining 30% of the total radio power comes from an 'armlike' region extending westward from the nuclear region. The western arm emission has a steep spectrum (alpha approximately equals 1.0), suggestive of aging effects from synchrotron or inverse-Compton losses, and is not correlated with starlight; we suggest that it is synchrotron emission from a shell of material driven by a galactic superwind. Inverse Compton scattering of far-infrared photons in the radio sources is expected to produce an X-ray flux of approximately 2 - 6 x 10(exp -14) ergs/s/sq cm in the 2 - 10 keV band. No significant radio emission is detected from or near the possible ultramassive 'dark core'.

  20. Diffuse Gamma Rays Galactic and Extragalactic Diffuse Emission

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.; Strong, Andrew W.; Reimer, Olaf

    2004-01-01

    Diffuse gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived average spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.

  1. Neptune's non-thermal radio emissions - Phenomenology and source locations

    NASA Technical Reports Server (NTRS)

    Rabl, Gerald K. F.; Ladreiter, H.-P.; Rucker, Helmut O.; Kaiser, Michael L.

    1992-01-01

    During the inbound and the outbound leg of Voyager 2's encounter with Neptune, the Planetary Radio Astronomy (PRA) experiment aboard the spacecraft detected short radio bursts at frequencies within the range of about 500-1300 kHz, and broad-banded smoothly varying emission patterns within the frequency range from about 40-800 kHz. Both emissions can be described in terms of a period of 16.1 hours determining Neptune's rotation period. Furthermore, just near closest approach, a narrow-banded smoothly varying radio component was observed occurring between 600 and 800 kHz. After giving a brief overview about some general characteristics of Neptune's nonthermal radio emission, the source locations of Neptune's emission components are determined, using an offset tilted dipole model for Neptune's magnetic field. Assuming that the emission originates near the electron gyrofrequency a geometrical beaming model is developed in order to fit the observed emission episodes.

  2. Amalthea's Modulation of Jovian Decametric Radio Emission

    NASA Astrophysics Data System (ADS)

    Arkhypov, Oleksiy V.

    2006-08-01

    Institute of Radio Astronomy, National Academy of Sciences of Ukraine, Kharkiv, Ukraine Amalthea is the largest body after Galilean satellites near Jupiter. An anomaly in Jovian synchrotron radiation has been found just on the Amalthea magnetic shell (de Pater, Schulz & Brecht 1997). It has been suggested that Amalthea's motion through Jupiter's magnetic field induces Alfvén or whistler wings or electrostatic high-frequency waves which lead to the pitch angle scattering. It is reasonable to search for another effect of these processes: magnetospheric inhomogeneities which could be found via scattering of Jovian decametric radio emission (DAM). Such scattering on field-aligned inhomogeneities in the Io plasma torus is known as "modulation lanes" in DAM dynamic spectra. To search for analogous Amalthea's modulation, the positions and frequency drift of about 600 lanes are measured on the UFRO spectra of DAM. The special 3D algorithm is used for localization of field-aligned magnetospheric inhomogeneities by the frequency drift of modulation lanes. It is found that about 4% of the lanes are clustered near Amalthea's magnetic shell. There are two such clusters near longitudes of 123°≤λ[III]≤140° and 284°≤λ[III]≤305°, which coincide with the regions of maximum compression of fresh plasma due to rotating magnetic field of Jupiter (where ∂(B^2)/∂λ[III]) is maximal). The Amalthea modulation could explain the enigmatic "hf-lanes" (Genova, Aubier & Lecacheux 1981). The found magnetospheric formations are a new argument for the ice nature of Amalthea which has the density less than that of water (Anderson et al. 2005). Anderson J.D. et al. 2005, Science, 308, 5726, pp. 1291-1293. de Pater I., Schulz M., Brecht S.H. 1997, J. Geophys. Res., 102, A10, pp. 22043-22064. Genova F., Aubier M.G., Lecacheux A. 1981, Astron. and Astrophys. 104, 2, pp. 229-239.

  3. Solar wind control of Jupiter's hectometric radio emission

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.; Desch, M. D.

    1989-01-01

    Radio, plasma, and magnetic field data obtained by Voyager 1 and Voyager 2 were used to examine the manner in which the Jovian hectometric radio emission (HOM) is controlled by the solar wind. Using the method of superposed epochs, it was found that the higher energy HOM is correlated with the IMF as well as with the solar wind density and pressure. However, unlike the Io-independent decametric radio emission (Non-Io DAM), the HOM displayed no correlation with the solar wind velocity, although this radio component appear to be also influenced by the IMF. The results suggest separate HOM amd Non-Io DAM sources.

  4. RADIO AND GAMMA-RAY PULSED EMISSION FROM MILLISECOND PULSARS

    SciTech Connect

    Du, Y. J.; Chen, D.; Qiao, G. J.

    2013-01-20

    Pulsed {gamma}-ray emission from millisecond pulsars (MSPs) has been detected by the sensitive Fermi space telescope, which sheds light on studies of the emission region and its mechanism. In particular, the specific patterns of radio and {gamma}-ray emission from PSR J0101-6422 challenge the popular pulsar models, e.g., outer gap and two-pole caustic models. Using the three-dimensional annular gap model, we have jointly simulated radio and {gamma}-ray light curves for three representative MSPs (PSR J0034-0534, PSR J0101-6422, and PSR J0437-4715) with distinct radio phase lags, and present the best simulated results for these MSPs, particularly for PSR J0101-6422 with complex radio and {gamma}-ray pulse profiles, and for PSR J0437-4715 with a radio interpulse. We have found that both the {gamma}-ray and radio emission originate from the annular gap region located in only one magnetic pole, and the radio emission region is not primarily lower than the {gamma}-ray region in most cases. In addition, the annular gap model with a small magnetic inclination angle instead of an 'orthogonal rotator' can account for the MSPs' radio interpulse with a large phase separation from the main pulse. The annular gap model is a self-consistent model not only for young pulsars but also MSPs, and multi-wavelength light curves can be fundamentally explained using this model.

  5. On the proposed triggering of Jovian radio emissions

    NASA Astrophysics Data System (ADS)

    Desch, M. D.; Kaiser, M. L.

    1985-09-01

    Calvert (1985) has proposed that solar type III radio bursts can trigger the onset of certain Jovian hectometer wavelength emissions. The authors show, using the data obtained by the Voyager Planetary Radio Astronomy experiment, that this triggering hypothesis is not supported statistically. Furthermore, the authors question the causality of this proposed triggering because much of the Jovian hectometer emission is due to a quasi-continuous radio source rotating, in lighthouse fashion, with Jupiter. Thus, an observed "onset" of emission is simply a function of the observer's position in local time around Jupiter.

  6. On the proposed triggering of Jovian radio emissions

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Kaiser, M. L.

    1985-01-01

    Calvert (1985) has proposed that a solar type III radio bursts can trigger the onset of certain Jovian hectometer wavelength emissions. It is shown, using the data obtained by the Voyager Planetary Radio Astronomy experiment, that this triggering hypothesis is not supported statistically. Furthermore, the causality of this proposed triggering is questioned because much of the Jovian hectometer emission is due to a quasi-continuous radio source rotating, in lighthouse fashion, with Jupiter. Thus, an observed 'onset' of emission is simply a function of the observer's position in local time around Jupiter.

  7. On the Diffuse Non-thermal Emission from Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Donnert, J.

    2011-07-01

    A number of galaxy clusters show complex radio emission not associable with optical counterparts. These objects are commonly classified as radio relics, radio mini halos and giant radio halos. The latter are diffuse Mpc-sized objects centred on the intra-cluster medium (ICM) and are commonly observed in merging clusters. In this work we investigate the formation of radio halos by means of astrophysical numerical simulations. Radio halos (RH) are observed in the GHz regime and show a complex broken power-law emission spectrum. This points to a population of relativistic electrons (CRe) interacting with the magnetic field present in the intra-cluster medium and emitting radio synchrotron radiation. Furthermore RH are transient phenomena, as inferred from the bimodal distribution of radio bright and radio quiet clusters found early on. Their scaling relations with thermal cluster observables breaks the self-similar model established from X-ray observations. In general, relativistic particles are injected strongly localised by shocks and galactic outflows into the ICM with a power-law spectrum. They are then subject to energy losses via inverse Compton, synchrotron, bremsstrahlung and Coulomb processes. This results in a limited lifetime of cosmic-ray electrons at synchrotron bright energies in the intra-cluster medium of ≈ 10^8 yrs. However, due to their interaction with the complex magnetic field of the ICM, it can be shown that cosmic-ray electrons have their effective diffusion speed limited to the Alven velocity in the thermal plasma. This poses a problem on the formation of radio halos, because it is unclear how the cluster-wide synchrotron bright population of CRe, necessary to make a radio halo, can be maintained under these conditions. Currently two competing models are heavily discussed to solve this problem. Hadronic (secondary) models consider the hadronic interaction of relativistic protons (CRp) with the thermal gas of the ICM. In contrast to CR

  8. Correlation of radio and gamma emissions in lightning initiation.

    PubMed

    Gurevich, A V; Antonova, V P; Chubenko, A P; Karashtin, A N; Mitko, G G; Ptitsyn, M O; Ryabov, V A; Shepetov, A L; Shlyugaev, Yu V; Thu, W M; Vildanova, L I; Zybin, K P

    2013-10-18

    The results of simultaneous radio and gamma emission measurements during thunderstorms are presented. A gamma detector situated at the height 3840 m and two radio detectors of Tien-Shan Mountain Scientific Station (altitude 3340 m) registered intensive gamma flashes and radio pulses during the time of lightning initiation. The radio-gamma correlation grows abruptly at the initial moment (a few hundred microseconds), and the correlation coefficient reaches 0.9-0.95. The gamma-energy spectrum measured during lightning initiation is close to the characteristic spectrum of runaway breakdown. Radio pulses observed at the same time have highest amplitudes. Combined observation of gamma and radio emissions confirm the conception of lightning initiation due to multiple simultaneous electric discharges at hydrometeors stimulated and synchronized by low-energy electrons generated in the runaway breakdown process. PMID:24182272

  9. THE CHANDRA M101 MEGASECOND: DIFFUSE EMISSION

    SciTech Connect

    Kuntz, K. D.; Snowden, S. L. E-mail: snowden@milkyway.gsfc.nasa.go

    2010-05-15

    Because M101 is nearly face-on, it provides an excellent laboratory in which to study the distribution of X-ray-emitting gas in a typical late-type spiral galaxy. We obtained a Chandra observation with a cumulative exposure of roughly 1 Ms to study the diffuse X-ray emission in M101. The bulk of the X-ray emission is correlated with the star formation traced by the far-UV (FUV) emission. The global FUV/X-ray correlation is nonlinear (the X-ray surface brightness is roughly proportional to the square root of the FUV surface brightness) and the small-scale correlation is poor, probably due to the delay between the FUV emission and the X-ray production in star-forming regions. The X-ray emission contains only minor contributions from unresolved stars ({approx}<3%), unresolved X-ray point sources ({approx}<4%), and individual supernova remnants ({approx}3%). The global spectrum of the diffuse emission can be reasonably well fitted with a three-component thermal model, but the fitted temperatures are not unique; many distributions of emission measure can produce the same temperatures when observed with the current CCD energy resolution. The spectrum of the diffuse emission depends on the environment; regions with higher X-ray surface brightnesses have relatively stronger hard components, but there is no significant evidence that the temperatures of the emitting components increase with surface brightness.

  10. Fossil shell emission in dying radio loud AGNs

    NASA Astrophysics Data System (ADS)

    Kino, M.; Ito, H.; Kawakatu, N.; Orienti, M.; Nagai, H.; Wajima, K.; Itoh, R.

    2016-02-01

    We investigate shell emission associated with dying radio loud AGNs. First, based on our recent work by Ito et al. (2015), we describe the dynamical and spectral evolution of shells after stopping the jet energy injection. We find that the shell emission overwhelms that of the radio lobes soon after stopping the jet energy injection because fresh electrons are continuously supplied into the shell via the forward shock, while the radio lobes rapidly fade out without jet energy injection. We find that such fossil shells can be a new class of target sources for SKA telescope. Next, we apply the model to the nearby radio source 3C84. Then, we find that the fossil shell emission in 3C84 is less luminous in the radio band while it is bright in the TeV γ-ray band and can be detectable by CTA. Data from STELLA

  11. Neptune radio emission in dipole and multipole magnetic fields

    NASA Technical Reports Server (NTRS)

    Sawyer, C. B.; King, N. V.; Romig, J. H.; Warwick, J. W.

    1995-01-01

    We study Neptune's smooth radio emission in two ways: we simulate the observations and we then consider the radio effects of Neptune's magnetic multipoles. A procedure to deduce the characteristics of radio sources observed by the Planetary Radio Astronomy experiment minimizes limiting assumptions and maximizes use of the data, including quantitative measurement of circular polarization. Study of specific sources simulates time variation of intensity and apparent polarization of their integrated emission over an extended time period. The method is applied to Neptune smooth recurrent emission (SRE). Time series are modeled with both broad and beamed emission patterns, and at two frequencies which exhibit different time variation of polarization. These dipole-based results are overturned by consideration of more complex models of Neptune's magnetic field. Any smooth emission from the anticipated auroral radio source is weak and briefly observed. Dominant SRE originates complex fields at midlatitude. Possible SRE source locations overlap that of 'high-latitude' emission (HLE) between +(out) and -(in) quadrupoles. This is the first identification of multipolar magnetic structure with a major source of planetary radio emission.

  12. Analysis of Jovian decamteric data: Study of radio emission mechanisms

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Rosenkranz, P. W.; Arias, T. A.; Garnavich, P. N.; Hammerschlag, R.

    1986-01-01

    This research effort involved careful examination of Jovian radio emission data below 40 MHz, with emphasis on the informative observations of the Planetary Radio Astronomy experiment (PRA) on the Voyager 1 and 2 spacecraft. The work is divided into three sections, decametric arcs, decametric V bursts, and hectometric modulated spectral activity (MSA).

  13. Radio emissions from terrestrial planets around white dwarfs

    NASA Astrophysics Data System (ADS)

    Willes, A. J.; Wu, K.

    2005-03-01

    Terrestrial planets in close orbits around magnetic white dwarf stars are potential electron-cyclotron maser sources, by analogy to planetary radio emissions generated from the electrodynamic interaction between Jupiter and the Galilean moons. We present predictions of radio flux densities and the number of detectable white-dwarf/terrestrial-planet systems, and discuss a scenario for their formation.

  14. Evidence for solar wind control of Saturn radio emission

    NASA Technical Reports Server (NTRS)

    Desch, M. D.

    1982-01-01

    Using data collected by the Voyager 1 and 2 spacecraft in 1980 and 1981, strong evidence is presented for a direct correlation between variations in the solar wind at Saturn and the level of activity of Saturn's nonthermal radio emission. Correlation coefficients of 57 to 58% are reached at lag times of 0 to 1 days between the arrival at Saturn of high pressure solar wind streams and the onset of increased radio emission. The radio emission exhibits a long-term periodicity of 25 days, identical to the periodicity seen in the solar wind at this time and consistent with the solar rotation period. The energy coupling efficiency between the solar wind with the Saturn radio emission is estimated and compared with that for Earth.

  15. Satellite Emission Radio Interferometric Earth Surveying (SERIES). [astrometry

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.

    1980-01-01

    Existing satellite radio emissions of the global positioning system were exploited as a resource for cost effective high accuracy geodetic measurements. System applications were directed toward crustal dynamics and earthquake research.

  16. Near Earth space sporadic radio emission busts occurring during sunrise

    NASA Technical Reports Server (NTRS)

    Dudnik, A. V.; Zaljubovsky, I. I.; Kartashev, V. M.; Lasarev, A. V.; Shmatko, E. S.

    1985-01-01

    During the period of low solar activity at sunrise the effect of sporadic high frequency near Earth space radio emission was experimentally discovered at middle latitudes. The possible mechanism of its origin is discussed.

  17. Evidence for extended radio emission surrounding RX Puppis

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Oliversen, R. J.; Michalitsianos, A. G.; Kafatos, M.

    1986-01-01

    Evidence for an approximately 1-arcsec extended structure in 6 cm continuum emission emanating from the symbiotic star system RX Puppis is reported. Hourly continuum flux changes were not detected as suggested in previous radio experiments by others. The observations indicate that the predominant nature of the radio emission is thermal and consistent with an optically thick stellar wind emanating from the symbiotic star system. The results presented here are discussed with regard to other similar stellar binary systems.

  18. The Radio Emission Of Radio Quiet Quasars - A New Working Hypothesis

    NASA Astrophysics Data System (ADS)

    Laor, Ari; Behar, E.

    2009-12-01

    What is the origin of radio emission in radio quiet Active Galactic Nuclei? In radio loud AGN the answer is clear, jet emission. In RQ AGN, which are 103 times weaker, the answer is not established yet, but it is commonly thought to originate in a weak jet. RQ AGN display a significant correlation between the radio luminosity (LR) and X-ray luminosity (LX), with LR 10-5 LX. A very similar correlation, known as the Guedel-Benz relation, holds for coronally active stars. The Guedel-Benz relation strongly suggests that stellar coronae are magnetically heated. In AGN the X-ray emission is also thought to originate in a magnetically heated corona, and thus it is natural to associate their radio emission with coronal activity as well. The radio emission may thus serve as a probe for physical processes in AGN coronae, as it does in stellar coronae. I will discuss some predictions, based on this hypothesis, on the likely radio spectrum, its variability, and its relation to the X-ray variability.

  19. Diffuse γ-Ray Emission from Misaligned Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Di Mauro, M.; Calore, F.; Donato, F.; Ajello, M.; Latronico, L.

    2014-01-01

    Active galactic nuclei (AGNs) with jets seen at small viewing angles are the most luminous and abundant objects in the γ-ray sky. AGNs with jets misaligned along the line of sight appear fainter in the sky but are more numerous than the brighter blazars. We calculate the diffuse γ-ray emission due to the population of misaligned AGNs (MAGNs) unresolved by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). A correlation between the γ-ray luminosity and the radio-core luminosity is established and demonstrated to be physical by statistical tests, as well as compatible with upper limits based on Fermi-LAT data for a large sample of radio-loud MAGNs. We constrain the derived γ-ray luminosity function by means of the source-count distribution of the radio galaxies detected by the Fermi-LAT. We finally calculate the diffuse γ-ray flux due to the whole MAGN population. Our results demonstrate that MAGNs can contribute from 10% up to nearly the entire measured isotropic gamma-ray background. We evaluate a theoretical uncertainty on the flux of almost an order of magnitude.

  20. Diffuse γ-ray emission from misaligned active galactic nuclei

    SciTech Connect

    Di Mauro, M.; Donato, F.; Calore, F.; Ajello, M.; Latronico, L.

    2014-01-10

    Active galactic nuclei (AGNs) with jets seen at small viewing angles are the most luminous and abundant objects in the γ-ray sky. AGNs with jets misaligned along the line of sight appear fainter in the sky but are more numerous than the brighter blazars. We calculate the diffuse γ-ray emission due to the population of misaligned AGNs (MAGNs) unresolved by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). A correlation between the γ-ray luminosity and the radio-core luminosity is established and demonstrated to be physical by statistical tests, as well as compatible with upper limits based on Fermi-LAT data for a large sample of radio-loud MAGNs. We constrain the derived γ-ray luminosity function by means of the source-count distribution of the radio galaxies detected by the Fermi-LAT. We finally calculate the diffuse γ-ray flux due to the whole MAGN population. Our results demonstrate that MAGNs can contribute from 10% up to nearly the entire measured isotropic gamma-ray background. We evaluate a theoretical uncertainty on the flux of almost an order of magnitude.

  1. Detection of Nonthermal Radio Emission from a Polar coronal mass ejection

    NASA Astrophysics Data System (ADS)

    Gopalswamy, Nat; Reiner, Mike J.; Makela, Pertti; Yashiro, Seiji; Akiyama, Sachiko

    2016-07-01

    High-latitude coronal mass ejections from the polar crown region are generally of low energy and hence thought to be not responsible for driving shocks. However, the eruption of such CMEs are associated with weak post eruption arcades suggesting that particle acceleration does happen in the reconnection region beneath the erupting filaments. An unusually fast CME erupted from the southern polar crown on 1999 June 14 observed by the Large Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric Observatory (SOHO) mission. The post eruption arcade was observed by the Soft X-ray Telescope on board the Yohkoh mission and the Extreme-ultraviolet imaging Telescope (EIT) on board SOHO. A diffuse radio emission was observed below 1 MHz by the Radio and Plasma Wave experiment (WAVES) on board the Wind spacecraft. The good temporal association between the radio burst and the CME suggests that the CME must be the source of energy for the radio emission. The drift rate of the radio burst was much smaller than that of a typical interplanetary type II burst. We suggest that the radio burst is produced by a flank of the CME-driven shock passing through a streamer located close to the east limb of the Sun. Such an interaction is likely to have caused the slow drift of the burst because the shock flank passes roughly parallel to the solar surface in the flank region. The enhanced density in the streamer makes the local Alfven speed lower, making the shock sufficiently strong to accelerate a few keV electrons that lead to the radio emission. The diffuse feature also contains a series of spikes, which suggest possible escape of nonthermal electrons along open field lines. We use the radio direction finding to confirm the results. This result has important implications for particle acceleration by shock flanks, where the geometry is expected to be quasi-perpendicular.

  2. Characterizing the radio continuum emission from intense starburst galaxies

    NASA Astrophysics Data System (ADS)

    Galvin, T. J.; Seymour, N.; Filipović, M. D.; Tothill, N. F. H.; Marvil, J.; Drouart, G.; Symeonidis, M.; Huynh, M. T.

    2016-09-01

    The intrinsic thermal (free-free) and non-thermal (synchrotron) emission components that comprise the radio continuum of galaxies represent unique, dust-free measures of star formation rates (SFR). Such high SFR galaxies will dominate the deepest current and future radio surveys. We disentangle the thermal and non-thermal emission components of the radio continuum of six ultraluminous infrared galaxies (LFIR > 1012.5 L⊙) at redshifts of 0.2 ≤ z ≤ 0.5 and 22 IR selected galaxies. Radio data over a wide frequency range (0.8 < ν < 10 GHz) are fitted with a star-forming galaxy model comprising of thermal and non-thermal components. The luminosities of both radio continuum components are strongly correlated to the 60 μm luminosity across many orders of magnitude (consistent with the far-IR to radio correlation). We demonstrate that the spectral index of the radio continuum spectral energy distribution is a useful proxy for the thermal fraction. We also find that there is an increase in mean and scatter of the thermal fraction with FIR to radio luminosity ratio which could be influenced by different time-scales of the thermal and non-thermal emission mechanisms.

  3. Analysis of Jovian decametric data: Study of radio emission mechanisms

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Arias, T. A.; Garnavich, P. M.; Rosenkranz, P. W.

    1985-01-01

    The Voyager 1 and Voyager 2 Planetary Radio Astronomy Experiments (PRA) have produced the finest set of Jovian decametric radio emission data ever obtained. Jovian decametric L-burst and S-burst arcs were characterized and the data reconciled with models for the radio emission geometry and mechanisms. The first major results involve comparisons of the distribution of arc separations with longitudes. The identification and analyses of systematic variations in the PRA data have yielded interesting results, but only the most obvious features of the data were examined. Analyses of the PRA data were extended with the use of new 6-Sec formats that are more sensitive to the S-bursts.

  4. Affirmation of triggered Jovian radio emissions and their attribution to corotating radio lasers

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1985-01-01

    It is argued that the original statistical evidence for the existence of triggered radio emissions and corotating radio lasers on Jupiter remains valid notwithstanding the critique of Desch and Kaiser (1985). The Voyager radio spectrograms used to identify the triggered emissions are analyzed and the results are discussed. It is shown that the critique by Desch and Kaiser is unjustified because it is not based on the original event criteria, i.e., the correlation between the occurrence of Jovian auroral kilometric radiation and fast-drift type III solar bursts in the same frequency.

  5. The diffuse galactic gamma ray emission

    NASA Technical Reports Server (NTRS)

    Bertsch, David L.

    1990-01-01

    The EGRET (Energetic Gamma-Ray Experiment Telescope) detector will provide a much more detailed view of the diffuse galactic gamma ray intensity in terms of higher resolution, greater statistical significance, and broader energy range than earlier missions. These observations will furnish insight into a number of very important questions related to the dynamics and structure of the Galaxy. A diffuse emission model is being developed that incorporates the latest information on matter distribution and source functions. In addition, it is tailored to the EGRET instrument response functions. The analysis code of the model maintains flexibility to accommodate the quality of the data that is anticipated. The discussion here focuses on the issues of the distributions of matter, cosmic rays, and radiation fields, and on the important source functions that enter into the model calculation of diffuse emission.

  6. On the origin of radio emission in radio-quiet quasars

    NASA Astrophysics Data System (ADS)

    Laor, Ari; Behar, Ehud

    2008-10-01

    The radio emission in radio-loud quasars originates in a jet carrying relativistic electrons. In radio-quiet quasars (RQQs) the relative radio emission is ~103 times weaker, and its origin is not established yet. We show here that there is a strong correlation between the radio luminosity (LR) and X-ray luminosity (LX) with LR ~ 10-5 LX, for the radio-quiet Palomar-Green (PG) quasar sample. The sample is optically selected, with nearly complete radio and X-ray detections, and thus this correlation cannot be due to direct selection biases. The PG quasars lie on an extension of a similar correlation noted by Panessa et al., for a small sample of nearby low-luminosity type 1 active galactic nuclei (AGN). A remarkably similar correlation, known as the Güdel-Benz relation, where LR/LX ~ 10-5, holds for coronally active stars. The Güdel-Benz relation, together with correlated stellar X-ray and radio variability, implies that the coronae are magnetically heated. We therefore raise the possibility that AGN coronae are also magnetically heated, and that the radio emission in RQQ also originates in coronal activity. If correct, then RQQ should generally display compact flat cores at a few GHz due to synchrotron self-absorption, while at a few hundred GHz we should be able to see directly the X-ray emitting corona, and relatively rapid and large amplitude variability, correlated with the X-ray variability, is likely to be seen. We also discuss possible evidence that the radio and X-ray emission in ultraluminous X-ray sources and Galactic black holes may be of coronal origin as well.

  7. X-RAY EMISSION FROM OPTICALLY SELECTED RADIO-INTERMEDIATE AND RADIO-LOUD QUASARS

    SciTech Connect

    Miller, B. P.; Brandt, W. N.; Schneider, D. P.; Wu Jianfeng; Gibson, R. R.; Steffen, A. T. E-mail: niel@astro.psu.edu E-mail: jfwu@astro.psu.edu E-mail: rgibson@astro.washington.edu

    2011-01-01

    We present the results of an investigation into the X-ray properties of radio-intermediate and radio-loud quasars (RIQs and RLQs, respectively). We combine large, modern optical (e.g., SDSS) and radio (e.g., FIRST) surveys with archival X-ray data from Chandra, XMM-Newton, and ROSAT to generate an optically selected sample that includes 188 RIQs and 603 RLQs. This sample is constructed independently of X-ray properties but has a high X-ray detection rate (85%); it provides broad and dense coverage of the l-z plane, including at high redshifts (22% of objects have z = 2-5), and it extends to high radio-loudness values (33% of objects have R* = 3-5, using logarithmic units). We measure the 'excess' X-ray luminosity of RIQs and RLQs relative to radio-quiet quasars (RQQs) as a function of radio loudness and luminosity, and parameterize the X-ray luminosity of RIQs and RLQs both as a function of optical/UV luminosity and also as a joint function of optical/UV and radio luminosity. RIQs are only modestly X-ray bright relative to RQQs; it is only at high values of radio loudness (R* {approx}> 3.5) and radio luminosity that RLQs become strongly X-ray bright. We find no evidence for evolution in the X-ray properties of RIQs and RLQs with redshift (implying jet-linked IC/CMB emission does not contribute substantially to the nuclear X-ray continuum). Finally, we consider a model in which the nuclear X-ray emission contains both disk/corona-linked and jet-linked components and demonstrate that the X-ray jet-linked emission is likely beamed but to a lesser degree than applies to the radio jet. This model is used to investigate the increasing dominance of jet-linked X-ray emission at low inclinations.

  8. High-Latitude Radio Emission in a Sample of Edge-on Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Irwin, Judith A.; English, Jayanne; Sorathia, Barkat

    1999-05-01

    We have mapped 16 edge-on galaxies at 20 cm using the Very Large Array in its C configuration, and a subset of these galaxies in the D configuration at 6 and/or 20 cm, in a search for extended (>~1 kpc) radio continuum emission above and below the plane. For five galaxies, we could form spectral index, energy, and magnetic field maps (assuming minimum energy). While the galaxies were partly chosen by radio flux density, they span a variety of star formation rates (SFRs), and only six might be considered ``starburst'' galaxies. A range of Hubble type and degree of isolation are also represented. The galaxies largely fall on the FIR-radio continuum correlation. They also display a correlation between IR surface brightness and warmth, extending the previously observed relation of Lehnert & Heckman to galaxies with lower star formation rates. We find that all but one galaxy show evidence for nonthermal high-latitude radio continuum emission, suggesting that cosmic-ray (CR) halos are common in star-forming galaxies. Of these, eight galaxies are new detections. The high-latitude emission is seen over a variety of spatial scales and in discrete and/or smooth features. In some cases, discrete features are seen on large scales, suggesting that smooth radio halos may consist, in part, of discrete features combined with low spatial resolution. In general, the discrete features emanate from the disk, but estimates of CR diffusion lengths suggest that diffusion alone is insufficient to transport the particles to the high latitudes seen (>15 kpc in one case). Thus CRs likely diffuse through low-density regions and/or are assisted by other mechanisms (e.g., winds). We searched for correlations between the prevalence of high-latitude radio emission and a number of other properties, including the global SFR, supernova input rate per unit star-forming area, E_A, and environment, and do not find clear correlations with any of these properties. A subset of the data allows, at best

  9. ON THE ORIGIN OF RADIO EMISSION FROM MAGNETARS

    SciTech Connect

    Szary, Andrzej; Melikidze, George I.; Gil, Janusz

    2015-02-10

    Magnetars are the most magnetized objects in the known universe. Powered by the magnetic energy, and not by the rotational energy as in the case of radio pulsars, they have long been regarded as a completely different class of neutron stars. The discovery of pulsed radio emission from a few magnetars weakened the idea of a clean separation between magnetars and normal pulsars. We use the partially screened gap (PSG) model to explain radio emission of magnetars. The PSG model requires that the temperature of the polar cap is equal to the so-called critical value, i.e., the temperature at which the thermal ions outflowing from the stellar surface screen the acceleration gap. We show that a magnetar has to fulfill the temperature, power, and visibility conditions in order to emit radio waves. First, in order to form PSG, the residual temperature of the surface has to be lower than the critical value. Second, since the radio emission is powered by the rotational energy, it has to be high enough to enable heating of the polar cap by backstreaming particles to the critical temperature. Finally, the structure of the magnetic field has to be altered by magnetospheric currents in order to widen a radio beam and increase the probability of detection. Our approach allows us to predict whether a magnetar can emit radio waves using only its rotational period, period derivative, and surface temperature in the quiescent mode.

  10. Spontaneous Radio Frequency Emissions from Natural Aurora. Chapter 4

    NASA Technical Reports Server (NTRS)

    LaBelle, J.

    2009-01-01

    At high latitudes, suitably sensitive radio experiments tuned below 5 MHz detect up to three types of spontaneous radio emissions from the Earth s ionosphere. In recent years, ground-based and rocket-borne experiments have provided strong evidence for theoretical explanations of the generation mechanism of some of these emissions, but others remain unexplained. Achieving a thorough understanding of these ionospheric emissions, accessible to ground-based experiments, will not only bring a deeper understanding of Earth s radio environment and the interactions between waves and particles in the ionosphere but also shed light on similar spontaneous emissions occurring elsewhere in Earth s environment as well as other planetary and stellar atmospheres.

  11. The Far-Infrared Emission of Radio Loud and Radio Quiet Quasars

    NASA Technical Reports Server (NTRS)

    Polletta, M.; Courvoisier, T. J.-L.; Wilkes, B. J.; Hooper, E. J.

    2000-01-01

    Continuum observations at radio, millimeter, infrared and soft X-ray energies are presented for a sample of 22 quasars, consisting of flat and steep spectrum radio loud, radio intermediate and radio quiet objects. The primary observational distinctions, among the different kinds of quasars in the radio and IR energy domains are studied using large observational datasets provided by ISOPHOT on board the Infrared Space Observatory, by the IRAM interferometer, by the sub-millimetre array SCUBA on JCMT, and by the European Southern Observatory (ESO) facilities IRAC1 on the 2.2 m telescope and SEST. The spectral energy distributions of all quasars from radio to IR energies are analyzed and modeled with non-thermal and thermal spectral components. The dominant mechanism emitting in the far/mid-IR is thermal dust emission in all quasars, with the exception of flat spectrum radio loud quasars for which the presence of thermal IR emission remains rather uncertain, since it is difficult to separate it from the bright non-thermal component. The dust is predominantly heated by the optical/ultraviolet radiation emitted from the external components of the AGN. A starburst contributes to the IR emission at different levels, but always less than the AGN (<= 27%). The distribution of temperatures, sizes, masses, and luminosities of the emitting dust are independent of the quasar type.

  12. Physics of radio emission in gamma-ray pulsars

    NASA Astrophysics Data System (ADS)

    Petrova, S. A.

    2016-02-01

    > Propagation of radio emission in a pulsar magnetosphere is reviewed. The effects of polarization transfer, induced scattering and reprocessing to high energies are analysed with a special emphasis on the implications for the gamma-ray pulsars. The possibilities of the pulsar plasma diagnostics based on the observed radio pulse characteristics are also outlined. As an example, the plasma number density profiles obtained from the polarization data for the Vela and the gamma-ray millisecond pulsars J1446-4701, J1939+2134 and J1744-1134 are presented. The number densities derived tend to be the highest/lowest when the radio pulse leads/lags the gamma-ray peak. In the PSR J1939+2134, the plasma density profiles for the main pulse and interpulse appear to fit exactly the same curve, testifying to the origin of both radio components above the same magnetic pole and their propagation through the same plasma flow in opposite directions. The millisecond radio pulse components exhibiting flat position angle curves are suggested to result from the induced scattering of the main pulse by the same particles that generate gamma rays. This is believed to underlie the wide-sense radio/gamma-ray correlation in the millisecond pulsars. The radio quietness of young gamma-ray pulsars is attributed to resonant absorption, whereas the radio loudness to the radio beam escape through the periphery of the open field line tube.

  13. Lunar occultation of the diffuse radio sky: LOFAR measurements between 35 and 80 MHz

    NASA Astrophysics Data System (ADS)

    Vedantham, H. K.; Koopmans, L. V. E.; de Bruyn, A. G.; Wijnholds, S. J.; Brentjens, M.; Abdalla, F. B.; Asad, K. M. B.; Bernardi, G.; Bus, S.; Chapman, E.; Ciardi, B.; Daiboo, S.; Fernandez, E. R.; Ghosh, A.; Harker, G.; Jelic, V.; Jensen, H.; Kazemi, S.; Lambropoulos, P.; Martinez-Rubi, O.; Mellema, G.; Mevius, M.; Offringa, A. R.; Pandey, V. N.; Patil, A. H.; Thomas, R. M.; Veligatla, V.; Yatawatta, S.; Zaroubi, S.; Anderson, J.; Asgekar, A.; Bell, M. E.; Bentum, M. J.; Best, P.; Bonafede, A.; Breitling, F.; Broderick, J.; Brüggen, M.; Butcher, H. R.; Corstanje, A.; de Gasperin, F.; de Geus, E.; Deller, A.; Duscha, S.; Eislöffel, J.; Engels, D.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Hoeft, M.; Hörandel, J.; Iacobelli, M.; Juette, E.; Kondratiev, V. I.; Kuniyoshi, M.; Kuper, G.; Mann, G.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Nelles, A.; Norden, M. J.; Orru, E.; Pandey-Pommier, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Renting, A.; Röttgering, H.; Schwarz, D.; Shulevski, A.; Smirnov, O.; Stappers, B. W.; Steinmetz, M.; Swinbank, J.; Tagger, M.; Tang, Y.; Tasse, C.; ter Veen, S.; Thoudam, S.; Toribio, C.; Vocks, C.; Wise, M. W.; Wucknitz, O.; Zarka, P.

    2015-07-01

    We present radio observations of the Moon between 35 and 80 MHz to demonstrate a novel technique of interferometrically measuring large-scale diffuse emission extending far beyond the primary beam (global signal) for the first time. In particular, we show that (i) the Moon appears as a negative-flux source at frequencies 35 < ν < 80 MHz since it is `colder' than the diffuse Galactic background it occults, (ii) using the (negative) flux of the lunar disc, we can reconstruct the spectrum of the diffuse Galactic emission with the lunar thermal emission as a reference, and (iii) that reflected RFI (radio-frequency interference) is concentrated at the centre of the lunar disc due to specular nature of reflection, and can be independently measured. Our RFI measurements show that (i) Moon-based Cosmic Dawn experiments must design for an Earth-isolation of better than 80 dB to achieve an RFI temperature <1 mK, (ii) Moon-reflected RFI contributes to a dipole temperature less than 20 mK for Earth-based Cosmic Dawn experiments, (iii) man-made satellite-reflected RFI temperature exceeds 20 mK if the aggregate scattering cross-section of visible satellites exceeds 175 m2 at 800 km height, or 15 m2 at 400 km height. Currently, our diffuse background spectrum is limited by sidelobe confusion on short baselines (10-15 per cent level). Further refinement of our technique may yield constraints on the redshifted global 21 cm signal from Cosmic Dawn (40 > z > 12) and the Epoch of Reionization (12 > z > 5).

  14. Dynamic Spectra Predicted for 2-3 Khz Radio Emission

    NASA Astrophysics Data System (ADS)

    Mitchell, Jeremy J.; Cairns, Iver H.; Robinson, Peter A.

    Radio emissions observed at 2-3 kHz by the Voyager spacecraft occur when global merged interaction regions (GMIRs) reach the heliopause. The radiation is thought to occur when a GMIR enters a region close to the heliopause where the electron speed distribution is primed with a superthermal tail produced by lower hybrid drive. Previously this priming mechanism was combined with a theory for type II solar radio bursts to predict the flux of radio emission in the outer heliosphere. Here this theory is extended in two ways. First theoretical arguments regarding the availability of Langmuir and ion sound waves are used to determine whether emission occurs via three wave processes or processes involving wave scattering off thermal ions (STI). New expressions for conversion efficiencies into radio emission associated with STI are then implemented where appropriate. Second dynamic spectra are calculated for the radio emission generated by shock from the inner solar wind to beyond the heliopause. The results are then compared with existing Voyager observations.

  15. On Polarization of the Zebra Pattern in Solar Radio Emission

    NASA Astrophysics Data System (ADS)

    Zlotnik, E. Y.; Zaitsev, V. V.; Altyntsev, A. T.

    2014-01-01

    The problem of strong polarization of the zebra-type fine structure in solar radio emission is discussed. In the framework of the plasma mechanism of radiation at the levels of the double plasma resonance, the polarization of the observed radio emission may be due to a difference in rates of plasma wave conversion into ordinary and extraordinary waves or different conditions of escaping of these waves from the source. In a weakly anisotropic plasma which is a source of the zebra-pattern with rather large harmonic numbers, the degree of polarization of the radio emission at twice the plasma frequency originating from the coalescence of two plasma waves is proportional to the ratio of the electron gyrofrequency to the plasma frequency, which is a small number and is negligible. Noticeable polarization can therefore arise only if the observed radio emission is a result of plasma wave scattering by ions (including induced scattering) or their coalescence with low-frequency waves. In this case, the ordinary mode freely leaves the source, but the extraordinary mode gets into the decay zone and does not exit from the source. As a result, the outgoing radio emission can be strongly polarized as the ordinary mode. Possible reasons for the polarization of the zebra pattern in the microwave region are discussed.

  16. Satellite emission radio interferometric earth surveying series - GPS geodetic system

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.

    1979-01-01

    A concept called SERIES (satellite emissions radio interferometric earth surveying) which makes use of GPS (global positioning system) radio transmissions without any satellite modifications, is described. Through the use of very long baseline interferometry (VLBI) and its calibration methods, 0.5 to 3 cm three dimensional baseline accuracy can be achieved over distances of 2 to 200 km respectively, with only 2 hours of on-site data acquisition. Attention is given to such areas as: the radio flux equivalent of GPS transmissions, synthesized delay precision, transmission and frequency subsystem requirements, tropospheric and ionospheric errors. Applications covered include geodesy and seismic tectonics.

  17. Source localization of Jupiter's Io dependent radio emissions

    NASA Technical Reports Server (NTRS)

    Aubier, Monique G.; Genova, Francoise; Calvert, Wynne

    1988-01-01

    The peak frequencies of the Io-dependent part of the Jovian emissions are compared with the surface gyrofrequency determined from Jovian magnetic models in order to localize the source of Jovian radio emissions. The bulk of the Io-controlled emissions was found to be delayed by up to 70 deg of equatorial longitude from the predicted instantaneous position of the Io flux tube, with the L and S emissions both displaying this same unexpected behavior. It is suggested that the source of these emissions is delayed substantially with respect to Io either as an Alfven-wave delay or because of errors in the magnetic field models.

  18. Diffuse emission and pathological Seyfert spectra

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1995-01-01

    In this annual ROSAT status report, the diffuse emission and spectra from Seyfert galaxies are examined. Three papers are presented and their contents include the soft x-ray properties and spectra of a binary millisecond pulsar, the PSPC and HRI observations of a Starburst/Seyfert 2 Galaxy, and an analysis of the possibility of x-ray luminous starbursts in the Einstein Medium Sensitivity Survey.

  19. Analysis of Uranian radio emissions, Uranus Data Analysis Program (UDAP)

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1991-01-01

    Progress under this grant has included identifying certain new radio emission components and determining the source location of both these and the two major Uranian radio emission (the SHF and bursty components) by a unique new statistical minimization technique. This new source location technique has subsequently also been applied at Neptune, with considerable success. New radio spectrograms have been prepared to clarify the behavior of such emissions, using both the usual 48-second, log-averaged data and the original 6-second PRA data, the latter showing a number of interesting new features. Also, a plasmasphere was discovered at Uranus, auroral plasma cavities were discovered at both Uranus and Neptune, and it was found that the currently-accepted rotation period for Uranus is in error by a small amount.

  20. Possible radio emission from Uranus at 0.5 MHz

    NASA Technical Reports Server (NTRS)

    Brown, L. W.

    1975-01-01

    Radio emission from the direction of Uranus was detected in data from the radio astronomy experiment on the IMP-6 spacecraft. Previously, emission from the direction of Jupiter and Saturn was observed by the IMP-6 at a number of frequencies near 1 MHz during the period April 1971 to October 1972. These radio bursts were identified in the IMP-6 data through an analysis of the phase of the observed modulated signal detected from the spinning dipole antenna. This technique was applied to the direction of the planet Uranus with possible positive results. Over the approximately 500 days of data, three to six bursts with unique spectral characteristics were found. Identification with Uranus is confused by the likely presence of low level terrestrial and solar emission. The observed events persisted less than three minutes and are strongest in intensity near 0.5 MHz.

  1. A model for radio emission from solar coronal shocks

    SciTech Connect

    Zhao, G. Q.; Chen, L.; Wu, D. J.

    2014-05-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  2. STEADY AND TRANSIENT RADIO EMISSION FROM ULTRACOOL DWARFS

    SciTech Connect

    Osten, Rachel A.; Phan-Bao, N.; Hawley, Suzanne L.; Reid, I. Neill; Ojha, Roopesh E-mail: pbngoc@asiaa.sinica.edu.tw E-mail: inr@stsci.edu

    2009-08-01

    We present the results of multi-frequency radio observing campaigns designed to elucidate the nature of radio emission from very low mass stars. We detect radio emission in an additional two epochs of the ultracool dwarf binary LP 349-25, finding that the observed emission is broad band and steady on timescales between 10 s and 10.7 hr, as well as on timescales of 0.6 and 1.6 years. This system is unusual for ultracool dwarfs with detectable radio emission, in exhibiting a lack of any large-scale variability, particularly the bursting (periodic or aperiodic) behavior exhibited by the other objects with detectable levels of radio emission. We explore the constraints that the lack of variability on long- and short-timescales, and flat spectral index, imply about the radio-emitting structures and mechanism. The temporal constraints argue for a high latitude emitting region with a large inclination so that it is always in view, and survives for at least 0.6 years. Temporal constraints also limit the plasma conditions, implying that the electron density be n{sub e} < 4 x 10{sup 5} cm{sup -3} and B< 130 G in order not to see time variations due to collisional or radiative losses from high-energy particles. The observations and constraints provided by them are most compatible with a nonthermal radio emission mechanism, likely gyrosynchrotron emission from a spatially homogeneous or inhomogeneous source. This indicates that, similar to behaviors noted for chromospheric, transition region, and coronal plasmas in ultracool dwarfs, the magnetic activity patterns observed in active higher mass stars can survive to the substellar boundary. We also present new epochs of multi-frequency radio observations for the ultracool dwarfs 2MASS 05233822-140322 and 2MASS14563831-2809473(=LHS 3003); each has been detected in at least one previous epoch but are not detected in the epochs reported here. The results here suggest that magnetic configurations in ultracool dwarfs can be long

  3. 3D modelling of stellar auroral radio emission

    NASA Astrophysics Data System (ADS)

    Leto, P.; Trigilio, C.; Buemi, C. S.; Umana, G.; Ingallinera, A.; Cerrigone, L.

    2016-06-01

    The electron cyclotron maser is the coherent emission process that gives rise to the radio lighthouse effect observed in the hot magnetic chemically peculiar star CU Virginis. It has also been proposed to explain the highly circularly polarized radio pulses observed in some ultracool dwarfs with spectral type earlier than M7. Coherent events of this kind resemble auroral radio emission from the magnetized planets of the Solar system. In this article, we present a three-dimensional model able to simulate the timing and profile of the pulses emitted by those stars characterized by a dipolar magnetic field by following the hypothesis of the laminar source model, used to explain the beaming of terrestrial auroral kilometric radiation. This model proves to be a powerful tool with which to understand the auroral radio emission phenomenon, allowing us to derive some general conclusions about the effects of the model's free parameters on the features of coherent pulses and to learn more about the detectability of such pulsed radio emission.

  4. Long-term changes in Jovian synchrotron radio emission - Intrinsic variations or effects of viewing geometry?

    NASA Astrophysics Data System (ADS)

    Hood, L. L.

    1993-04-01

    Possible causes of the observed long-term variation of Jovian synchrotron radio emission, including both intrinsic changes in the Jovian radiation belts and apparent changes due to variations in the Jovigraphic declination of the earth, DE, are investigated. An increase in diffusion rate with other parameters held constant results in an inward displacement of the peak emission radial distance that is not observed. Effects of viewing geometry changes are examined. The possible importance of such effects is suggested by a correlation between the total decimetric radio flux and DE, which varies between -3.3 and +3.3 deg during one Jovian orbital period. Because the Jovian central meridian longitudes where the magnetic latitude passes through zero during a given Jovian rotation change substantially with DE and since significant longitudinal asymmetries exist in both the volume emissivity and the latitudinal profile of the beam, the total intensity should be at least a partial function of D sub E.

  5. Detection of exomoons through observation of radio emissions

    SciTech Connect

    Noyola, J. P.; Satyal, S.; Musielak, Z. E. E-mail: ssatyal@uta.edu

    2014-08-10

    In the Jupiter-Io system, the moon's motion produces currents along the field lines that connect it to Jupiter's polar regions. The currents generate and modulate radio emissions along their paths via the electron-cyclotron maser instability. Based on this process, we suggest that such modulation of planetary radio emissions may reveal the presence of exomoons around giant planets in exoplanetary systems. A model explaining the modulation mechanism in the Jupiter-Io system is extrapolated and used to define criteria for exomoon detectability. A cautiously optimistic scenario of the possible detection of such exomoons around Epsilon Eridani b and Gliese 876 b is provided.

  6. Fine spectral structures in Jovian decametric radio emission observed by ground-based radio telescope.

    NASA Astrophysics Data System (ADS)

    Panchenko, M.; Brazhenko, A. I.; Shaposhnikov, V. E.; Konovalenko, A. A.; Rucker, H. O.

    2014-04-01

    Jupiter with the largest planetary magnetosphere in the solar system emits intense coherent non-thermal radio emission in a wide frequency range. This emission is a result of a complicated interaction between the dynamic Jovian magnetosphere and energetic particles supplying the free energy from planetary rotation and the interaction between Jupiter and the Galilean moons. Decametric radio emission (DAM) is the strongest component of Jovian radiation observed in a frequency range from few MHz up to 40 MHz. This emission is generated via cyclotron maser mechanism in sources located along Jovian magnetic field lines. Depending on the time scales the Jovian DAMexhibits different complex spectral structures. We present the observations of the Jovian decametric radio emission using the large ground-based radio telescope URAN- 2 (Poltava, Ukraine) operated in the decametric frequency range. This telescope is one of the largest low frequency telescopes in Europe equipped with high performance digital radio spectrometers. The antenna array of URAN-2 consists of 512 crossed dipoles with an effective area of 28 000m2 and beam pattern size of 3.5 x 7 deg. (at 25 MHz). The instrument enables continuous observations of the Jovian radio during long period of times. Jovian DAM was observed continuously since Sep. 2012 (depending on Jupiter visibility) with relatively high time-frequency resolution (4 kHz - 100ms) in the broad frequency range (8-32MHz). We have detected a big amount of the fine spectral structures in the dynamic spectra of DAM such as trains of S-bursts, quasi-continuous narrowband emission, narrow-band splitting events and zebra stripe-like patterns. We analyzed mainly the fine structures associated with non-Io controlled DAM. We discuss how the observed narrowband structures which most probably are related to the propagation of the decametric radiation in the Jupiter's ionosphere can be used to study the plasma parameters in the inner Jovian magnetosphere.

  7. Radio Emissions from Plasma with Electron Kappa-Distributions

    NASA Astrophysics Data System (ADS)

    Fleishman, G. D.; Kuznetsov, A. A.

    2015-12-01

    Gregory Fleishman (New Jersey Institute of Technology, Newark, USA)Alexey Kuznetsov (Institute of Solar-Terrestrial Physics, Irkutsk, Russia), Currently there is a concern about the ability of the classical thermal (Maxwellian) distribution to describe quasisteady-state plasma in the solar atmosphere, including active regions. In particular, other distributions have been proposed to better fit observations, for example, kappa-distributions. If present, these distributions will generate radio emissions with different observable properties compared with the classical gyroresonance (GR) or free-free emission, which implies a way of remotely detecting these kappa distributions in the radio observations. Here we present analytically derived GR and free-free emissivities and absorption coefficients for the kappa-distribution, and discuss their properties, which are in fact remarkably different from the classical Maxwellian plasma. In particular, the radio brightness temperature from a gyrolayer increases with the optical depth τ for kappa-distribution. This property has a remarkable consequence allowing a straightforward observational test: the GR radio emission from the non-Maxwellian distributions is supposed to be noticeably polarized even in the optically thick case, where the emission would have strictly zero polarization in the case of Maxwellian plasma. This offers a way of remote probing the plasma distribution in astrophysical sources, including solar active regions as a vivid example. In this report, we present analytical formulae and computer codes to calculate the emission parameters. We simulate the gyroresonance emission under the conditions typical of the solar active regions and compare the results for different electron distributions. We discuss the implications of our findings for interpretation of radio observations. This work was supported in part by NSF grants AGS-1250374 and AGS-1262772, NASA grant NNX14AC87G to New Jersey Institute of Technology

  8. Mean and extreme radio properties of quasars and the origin of radio emission

    SciTech Connect

    Kratzer, Rachael M.; Richards, Gordon T.

    2015-02-01

    We investigate the evolution of both the radio-loud fraction (RLF) and (using stacking analysis) the mean radio loudness of quasars. We consider how these properties evolve as a function of redshift and luminosity, black hole (BH) mass and accretion rate, and parameters related to the dominance of a wind in the broad emission-line region. We match the FIRST source catalog to samples of luminous quasars (both spectroscopic and photometric), primarily from the Sloan Digital Sky Survey. After accounting for catastrophic errors in BH mass estimates at high redshift, we find that both the RLF and the mean radio luminosity increase for increasing BH mass and decreasing accretion rate. Similarly, both the RLF and mean radio loudness increase for quasars that are argued to have weaker radiation line driven wind components of the broad emission-line region. In agreement with past work, we find that the RLF increases with increasing optical/UV luminosity and decreasing redshift, while the mean radio loudness evolves in the exact opposite manner. This difference in behavior between the mean radio loudness and the RLF in L−z may indicate selection effects that bias our understanding of the evolution of the RLF; deeper surveys in the optical and radio are needed to resolve this discrepancy. Finally, we argue that radio-loud (RL) and radio-quiet (RQ) quasars may be parallel sequences, but where only RQ quasars at one extreme of the distribution are likely to become RL, possibly through slight differences in spin and/or merger history.

  9. Multi-Spacecraft Observations of Saturn Kilometric Radio Emission

    NASA Technical Reports Server (NTRS)

    MacDowall, R. J.; Hess, R. A.

    2011-01-01

    Saturn kilometric radiation (SKR) is the auroral radio emission of Saturn, which has been observed by Voyager 1 & 2, Cassini, and Ulysses. Ulysses is able to detect the intense intervals of SKR from distances up to 10 AU, because of its long antennas (72 m tip-to-tip) and sensitive radio receivers. Studies of SKR by A. Lecacheux gave the surprising result that the periodicity of SKR varied with time; it was not locked to a planetary rotation of Saturn. This result has been confirmed by Cassini radio observations. Here, we compare Ulysses and Cassini observations of SKR to constrain a mode! for the SKR emission geometry. SpecifIcally, we examine the question - are the brighter sources of 5KR fixed in Saturn longitude or local time? The results have significant consequences for our understanding of SKR and its varying periodicity

  10. CURVATURE-DRIFT INSTABILITY FAILS TO GENERATE PULSAR RADIO EMISSION

    SciTech Connect

    Kaganovich, Alexander; Lyubarsky, Yuri

    2010-10-01

    The curvature-drift instability has long been considered as a viable mechanism for pulsar radio emission. We reconsidered this mechanism by finding an explicit solution describing the propagation of short electromagnetic waves in a plasma flow along curved magnetic field lines. We show that even though the waves could be amplified, the amplification factor remains very close to unity; therefore, this mechanism is unable to generate high brightness temperature emission from initial weak fluctuations.

  11. ON THE EVOLUTION OF THE CORES OF RADIO SOURCES AND THEIR EXTENDED RADIO EMISSION

    SciTech Connect

    Yuan Zunli; Wang Jiancheng

    2012-01-10

    The work in this paper aims at determining the evolution and possible co-evolution of radio-loud active galactic nuclei (AGNs) and their cores via their radio luminosity functions (i.e., total and core RLFs, respectively). Using a large combined sample of 1063 radio-loud AGNs selected at low radio frequency, we investigate the RLF at 408 MHz of steep-spectrum radio sources. Our results support a luminosity-dependent evolution. Using core flux density data of the complete sample 3CRR, we investigate the core RLF at 5.0 GHz. Based on the combined sample with incomplete core flux data, we also estimate the core RLF using a modified factor of completeness. Both results are consistent and show that the comoving number density of radio cores displays a persistent decline with redshift, implying a negative density evolution. We find that the core RLF is obviously different from the total RLF at the 408 MHz band which is mainly contributed by extended lobes, implying that the cores and extended lobes could not be co-evolving at radio emission.

  12. On the Evolution of the Cores of Radio Sources and Their Extended Radio Emission

    NASA Astrophysics Data System (ADS)

    Yuan, Zunli; Wang, Jiancheng

    2012-01-01

    The work in this paper aims at determining the evolution and possible co-evolution of radio-loud active galactic nuclei (AGNs) and their cores via their radio luminosity functions (i.e., total and core RLFs, respectively). Using a large combined sample of 1063 radio-loud AGNs selected at low radio frequency, we investigate the RLF at 408 MHz of steep-spectrum radio sources. Our results support a luminosity-dependent evolution. Using core flux density data of the complete sample 3CRR, we investigate the core RLF at 5.0 GHz. Based on the combined sample with incomplete core flux data, we also estimate the core RLF using a modified factor of completeness. Both results are consistent and show that the comoving number density of radio cores displays a persistent decline with redshift, implying a negative density evolution. We find that the core RLF is obviously different from the total RLF at the 408 MHz band which is mainly contributed by extended lobes, implying that the cores and extended lobes could not be co-evolving at radio emission.

  13. RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy

    NASA Astrophysics Data System (ADS)

    Junklewitz, H.; Bell, M. R.; Selig, M.; Enßlin, T. A.

    2016-02-01

    We present resolve, a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori log-normal statistics. resolve estimates the measured sky brightness in total intensity, and the spatial correlation structure in the sky, which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. During this process, the algorithm succeeds in deconvolving the effects of the radio interferometric point spread function. Additionally, resolve provides a map with an uncertainty estimate of the reconstructed surface brightness. Furthermore, with resolve we introduce a new, optimal visibility weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows improved performance against two standard imaging approaches for extended sources, Multiscale-CLEAN and the Maximum Entropy Method.

  14. Quasar feedback and the origin of radio emission in radio-quiet quasars

    NASA Astrophysics Data System (ADS)

    Zakamska, Nadia L.; Greene, Jenny E.

    2014-07-01

    We analyse Sloan Digital Sky Survey spectra of 568 obscured luminous quasars. The [O III] λ5007 Å emission line shows blueshifts and blue excess, indicating that some of the narrow-line gas is undergoing an organized outflow. The velocity width containing 90 per cent of line power ranges from 370 to 4780 km s-1, suggesting outflow velocities up to ˜2000 km s-1, and is strongly correlated with the radio luminosity among the radio-quiet quasars. We propose that radio emission in radio-quiet quasars is due to relativistic particles accelerated in the shocks within the quasar-driven outflows; star formation in quasar hosts is insufficient to explain the observed radio emission. The median radio luminosity of the sample of νLν[1.4 GHz] = 1040 erg s-1 suggests a median kinetic luminosity of the quasar-driven wind of Lwind = 3 × 1044 erg s-1, or about 4 per cent of the estimated median bolometric luminosity Lbol = 8 × 1045 erg s-1. Furthermore, the velocity width of [O III] is positively correlated with mid-infrared luminosity, which suggests that outflows are ultimately driven by the radiative output of the quasar. Emission lines characteristic of shocks in quasi-neutral medium increase with the velocity of the outflow, which we take as evidence of quasar-driven winds propagating into the interstellar medium of the host galaxy. Quasar feedback appears to operate above the threshold luminosity of Lbol ˜ 3 × 1045 erg s-1.

  15. Periodic bursts of Jovian non-Io decametric radio emission.

    PubMed

    Panchenko, M; Rucker, H O; Farrell, W M

    2013-03-01

    During the years 2000-2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period [Formula: see text] longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300° and 60° (via 360°). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every [Formula: see text] days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind. PMID:23585696

  16. Periodic Bursts of Jovian Non-Io Decametric Radio Emission

    NASA Technical Reports Server (NTRS)

    Panchenko, M.; Rucker, H O.; Farrell, W. M.

    2013-01-01

    During the years 2000-2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have Recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period approx. = 1:5% longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300 deg. and 60 deg. (via 360 deg.). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every approx. 25 days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind.

  17. Periodic bursts of Jovian non-Io decametric radio emission

    PubMed Central

    Panchenko, M.; Rucker, H.O.; Farrell, W.M.

    2013-01-01

    During the years 2000–2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period ≈1.5% longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300° and 60° (via 360°). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every ∼25 days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind. PMID:23585696

  18. Cosmic rays from multi-wavelength observations of the Galactic diffuse emission

    NASA Astrophysics Data System (ADS)

    Orlando, Elena

    2016-05-01

    Cosmic rays (CRs) generate diffuse emission while interacting with the Galactic magnetic field (B-field), the interstellar gas and the radiation field. This diffuse emission extends from radio, microwaves, through X-rays, to high-energy gamma rays. Diffuse emission has considerably increased the interest of the astrophysical community due to recent detailed observations by Planck, Fermi-LAT, and by very-high energy Cherenkov telescopes. Observations of this diffuse emission and comparison with detailed predictions are used to gain information on the properties of CRs, such as their density, spectra, distribution and propagation in the Galaxy. Unfortunately disentangling and characterizing this diffuse emission strongly depends on uncertainties in the knowledge of unresolved sources, gas, radiation fields, and B-fields, other than CRs throughout the Galaxy. We discuss here the diffuse emission produced by CRs and its uncertainties, and the comparison of this predicted emission with recent multi-wavelength observations. We show insights on CR spectra and intensities. Then we address the importance for forthcoming telescopes, especially for the Square Kilometre Array telescope (SKA) and the Cherencov Telescope Array (CTA), and for missions at MeV.

  19. New observations of the low frequency interplanetary radio emissions

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.

    1991-01-01

    Recent Voyager 1 observations reveal reoccurrences of the low frequency interplanetary radio emissions. Three of the new events are weak transient events which rise in frequency from the range of 2-2.5 kHz to about 3 kHz with drift rates of approximately 1.5 kHz/year. The first of the transient events begins in mid-1989 and the more recent pair of events both were first detected in late 1991. In addition, there is an apparent onset of a 2-kHz component of the emission beginning near day 70 of 1991. The new transient emissions are barely detectable on Voyager 1 and are below the threshold of detectability on Voyager 2, which is less sensitive than Voyager 1. The new activity provides new opportunities to test various theories of the triggering, generation, and propagation of the outer heliospheric radio emissions and may signal a response of the source of the radio emissions to the increased solar activity associated with the recent peak in the solar cycle.

  20. Shocks in nova outflows. II. Synchrotron radio emission

    NASA Astrophysics Data System (ADS)

    Vlasov, Andrey; Vurm, Indrek; Metzger, Brian D.

    2016-08-01

    The discovery of GeV gamma-rays from classical novae indicates that shocks and relativistic particle acceleration are energetically key in these events. Further evidence for shocks comes from thermal keV X-ray emission and an early peak in the radio light curve on a timescale of months with a brightness temperature which is too high to result from freely expanding photo-ionized gas. Paper I developed a one dimensional model for the thermal emission from nova shocks. This work concluded that the shock-powered radio peak cannot be thermal if line cooling operates in the post-shock gas at the rate determined by collisional ionization equilibrium. Here we extend this calculation to include non-thermal synchrotron emission. Applying our model to three classical novae, we constrain the amplification of the magnetic field ɛB and the efficiency ɛe of accelerating relativistic electrons of characteristic Lorentz factor γ ˜ 100. If the shocks are radiative (low velocity v_sh ≲ 1000 km s-1) and cover a large solid angle of the nova outflow, as likely characterize those producing gamma-rays, then values of ɛe ˜ 0.01 - 0.1 are required to achieve the peak radio brightness for ɛB = 10-2. Such high efficiencies exclude secondary pairs from pion decay as the source of the radio-emitting particles, instead favoring the direct acceleration of electrons at the shock. If the radio-emitting shocks are instead adiabatic (high velocity), as likely characterize those responsible for the thermal X-rays, then much higher brightness temperatures are possible, allowing the radio-emitting shocks to cover a smaller outflow solid angle.

  1. Virtual observatory tools and amateur radio observations supporting scientific analysis of Jupiter radio emissions

    NASA Astrophysics Data System (ADS)

    Cecconi, Baptiste; Hess, Sebastien; Le Sidaner, Pierre; Savalle, Renaud; Stéphane, Erard; Coffre, Andrée; Thétas, Emmanuel; André, Nicolas; Génot, Vincent; Thieman, Jim; Typinski, Dave; Sky, Jim; Higgins, Chuck; Imai, Masafumi

    2016-04-01

    In the frame of the preparation of the NASA/JUNO and ESA/JUICE (Jupiter Icy Moon Explorer) missions, and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet-VESPA (Virtual European Solar and Planetary Access). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nancay Decameter Array are already shared on the planetary science VO using this protocol, as well as data from the Iitate Low Frquency Radio Antenna, in Japan. Amateur radio data from the RadioJOVE project is also available. The attached figure shows data from those three providers. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  2. On Io's control of Jovian decametric radio emissions

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.

    1986-01-01

    Io's control of Jovian decametric radio emission (DAM) has been attributed to Io distorting the electron distribution in the inner Jovian magnetosphere. Observations of Faraday rotation in DAM are used to determine the properties of the electron distribution before and after its interaction with Io. It is shown that there is an enhancement in the density of the energetic component in the Io plasma torus correlated with certain Jovian longitude. Io's interaction with this energetic component can produce heating of this component. The Io-controlled emission is attributed to enhanced emission from the heated electrons moving down the field lines to Jupiter.

  3. Theories of radio emissions and plasma waves. [in Jupiter magnetosphere

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Goertz, C. K.

    1983-01-01

    The complex region of Jupiter's radio emissions at decameter wavelengths, the so-called DAM, is considered, taking into account the basic theoretical ideas which underly both the older and newer theories and models. Linear theories are examined, giving attention to direct emission mechanisms, parallel propagation, perpendicular propagation, and indirect emission mechanisms. An investigation of nonlinear theories is also conducted. Three-wave interactions are discussed along with decay instabilities, and three-wave up-conversio. Aspects of the Io and plasma torus interaction are studied, and a mechanism by which Io can accelerate electrons is reviewed.

  4. Source characteristics of Jovian narrow-band kilometric radio emissions

    NASA Astrophysics Data System (ADS)

    Reiner, M. J.; Fainberg, J.; Stone, R. G.; Kaiser, M. L.; Desch, M. D.; Manning, R.; Zarka, P.; Pedersen, B.-M.

    1993-07-01

    New observations of Jovian narrow-band kilometric (nKOM) radio emissions were made by the Unified Radio and Plasma Wave (URAP) experiment on the Ulysses spacecraft during the Ulysses-Jupiter encounter in early February 1992. These observations have demonstrated the unique capability of the URAP instrument for determining both the direction and polarization of nKOM radio sources. An important result is the discovery that nKOM radio emission originates from a number of distinct sources located at different Jovian longitudes and at the inner and outermost regions of the Io plasma torus. These sources have been tracked for several Jovian rotations, yielding their corotational lags, their spatial and temporal evolution, and their radiation characteristics at both low latitudes far from Jupiter and at high latitudes near the planet. Both right-hand and left-hand circularly polarized nKOM sources were observed. The polarizations observed for sources in the outermost regions of the torus seem to favor extraordinary mode emission.

  5. Zebra spectral structures in Jovian decametric radio emissions

    NASA Astrophysics Data System (ADS)

    Rošker, S.; Panchenko, M.; Rucker, H. O.; Brazhenko, A. I.

    2015-10-01

    Jupiter with the largest planetary magnetosphere in the solar system emits intense coherent non-thermal radiation in a wide frequency range. This emission is a result of complicated interactions between the dynamic Jovian magnetosphere and energetic particles supplying free energy from planetary rotation and the interaction between Jupiter and the Galilean moon Io. Decametric radio emission (DAM) is the strongest component of Jovian radiation observed in a frequency range from a few MHz up to 40 MHz. Depending on the time scales the Jovian DAM exhibits different complex spectral structures. Recent observations of the Jovian decametric radio emission using the large ground-based radio telescope URAN-2 (Poltava, Ukraine) enabled the detection of fine spectral structures, specifically zebra stripe-like patterns, never reported before in the Jovian decametric wavelength regime (Figure 1). In this presentation we describe and analyse these new observations by investigating the characteristics of the Jovian decametric zebra patterns. On basis of these findings the possible mechanism of wave generation is discussed and in particular the value of the determination of local plasma densities within the Jovian magnetosphere by remote radio sensing is emphasized.

  6. Scientists Detect Radio Emission from Rapidly Rotating Cosmic Dust Grains

    NASA Astrophysics Data System (ADS)

    2001-11-01

    Astronomers have made the first tentative observations of a long-speculated, but never before detected, source of natural radio waves in interstellar space. Data from the National Science Foundation's 140 Foot Radio Telescope at the National Radio Astronomy Observatory in Green Bank, W.Va., show the faint, tell-tale signals of what appear to be dust grains spinning billions of times each second. This discovery eventually could yield a powerful new tool for understanding the interstellar medium - the immense clouds of gas and dust that populate interstellar space. The NRAO 140 Foot Radio Telescope The NRAO 140-Foot Radio Telescope "What we believe we have found," said Douglas P. Finkbeiner of Princeton University's Department of Astrophysics, "is the first hard evidence for electric dipole emission from rapidly rotating dust grains. If our studies are confirmed, it will be the first new source of continuum emission to be conclusively identified in the interstellar medium in nearly the past 20 years." Finkbeiner believes that these emissions have the potential in the future of revealing new and exciting information about the interstellar medium; they also may help to refine future studies of the Cosmic Microwave Background Radiation. The results from this study, which took place in spring 1999, were accepted for publication in Astrophysical Journal. Other contributors to this paper include David J. Schlegel, department of astrophysics, Princeton University; Curtis Frank, department of astronomy, University of Maryland; and Carl Heiles, department of astronomy, University of California at Berkeley. "The idea of dust grains emitting radiation by rotating is not new," comments Finkbeiner, "but to date it has been somewhat speculative." Scientists first proposed in 1957 that dust grains could emit radio signals, if they were caused to rotate rapidly enough. It was believed, however, that these radio emissions would be negligibly small - too weak to be of any impact to

  7. Radio emission from magnetic exoplanets: GMRT observations and results

    NASA Astrophysics Data System (ADS)

    Majid, W.; Winterhalter, D.; Kuiper, T.; Lazio, J.

    2011-10-01

    Massive extrasolar planets are expected to emit, in analogy with Jupiter and Saturn, detectable radio emission at low frequencies. We have carried out a series of observations of known extrasolar planetary systems at 150 MHz with the Giant Meterwave Radio Telescope (GMRT) in both interferometric and phased array modes. We will describe our observing campaign, target list, and preliminary results from studies of dynamic spectra. As low frequency observations are plagued with RFI, we will focus on observing strategies and analysis techniques to minimize, identify and remove RFI effects from dynamic spectra. We will also briefly discuss prospects for similar searches with future instruments such as LOFAR, the LWA, and the SKA instruments.

  8. RFID Transponders' Radio Frequency Emissions in Aircraft Communication and Navigation Radio Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Williams, Reuben A.; Koppen, Sandra V.; Salud, Maria Theresa P.

    2006-01-01

    Radiated emissions in aircraft communication and navigation bands are measured from several active radio frequency identification (RFID) tags. The individual tags are different in design and operations. They may also operate in different frequency bands. The process for measuring the emissions is discussed, and includes tag interrogation, reverberation chamber testing, and instrument settings selection. The measurement results are described and compared against aircraft emission limits. In addition, interference path loss for the cargo bays of passenger aircraft is measured. Cargo bay path loss is more appropriate for RFID tags than passenger cabin path loss. The path loss data are reported for several aircraft radio systems on a Boeing 747 and an Airbus A320.

  9. Amalthea's modulation of Jovian decametric radio emission

    NASA Astrophysics Data System (ADS)

    Arkhypov, O. V.; Rucker, H. O.

    2007-05-01

    Most modulation lanes in dynamic spectra of Jovian decametric emission (DAM) are formed by radiation scattering on field-aligned inhomogeneities in the Io plasma torus. The positions and frequency drift of hundreds of lanes have been measured on the DAM spectra from UFRO archives. A special 3D algorithm is used for localization of field-aligned magnetospheric inhomogeneities by the frequency drift of modulation lanes. It is found that some lanes are formed near the magnetic shell of the satellite Amalthea mainly at longitudes of 123°≤λ_III≤140° (north) and 284°≤λ_III≤305° (south). These disturbances coincide with regions of plasma compression by the rotating magnetic field of Jupiter. Such modulations are found at other longitudes too (189° to 236°) with higher sensitivity. Amalthea's plasma torus could be another argument for the ice nature of the satellite, which has a density less than that of water.

  10. Amalthea's modulation of Jovian decametric radio emission

    NASA Astrophysics Data System (ADS)

    Arkhypov, O. V.; Rucker, H. O.

    2007-08-01

    Most modulation lanes in dynamic spectra of Jovian decametric emission (DAM) are formed by radiation scattering on field-aligned inhomogeneities in the Io plasma torus. The positions and frequency drift of hundreds of lanes have been measured on the DAM spectra from UFRO archives. A special 3D algorithm is used for localization of field-aligned magnetospheric inhomogeneities by the frequency drift of modulation lanes. It is found that some lanes are formed near the magnetic shell of the satellite Amalthea mainly at longitudes of 123 to 140 deg. (north; III 1965 system) and 284 to 305 deg. (south). These disturbances coincide with regions of plasma compression by the rotating magnetic field of Jupiter. Such modulations are found at other longitudes too (189 to 236 deg.) with higher sensitivity. Amalthea's plasma torus could be another argument for the ice nature of the satellite, which has a density less than that of water.

  11. ELECTRON-BEAM-INDUCED RADIO EMISSION FROM ULTRACOOL DWARFS

    SciTech Connect

    Yu, S.; Doyle, J. G.; Kuznetsov, A.; Hallinan, G.; Antonova, A.; MacKinnon, A. L.; Golden, A.

    2012-06-10

    We present the numerical simulations for an electron-beam-driven and loss-cone-driven electron-cyclotron maser (ECM) with different plasma parameters and different magnetic field strengths for a relatively small region and short timescale in an attempt to interpret the recent discovered intense radio emission from ultracool dwarfs. We find that a large amount of electromagnetic (EM) field energy can be effectively released from the beam-driven ECM, which rapidly heats the surrounding plasma. A rapidly developed high-energy tail of electrons in velocity space (resulting from the heating process of the ECM) may produce the radio continuum depending on the initial strength of the external magnetic field and the electron beam current. Both significant linear polarization and circular polarization of EM waves can be obtained from the simulations. The spectral energy distributions of the simulated radio waves show that harmonics may appear from 10 to 70{nu}{sub pe} ({nu}{sub pe} is the electron plasma frequency) in the non-relativistic case and from 10 to 600{nu}{sub pe} in the relativistic case, which makes it difficult to find the fundamental cyclotron frequency in the observed radio frequencies. A wide frequency band should therefore be covered by future radio observations.

  12. Unknown radio emission at about 3 MHz recorded in Norway

    NASA Astrophysics Data System (ADS)

    Farges, T.; Blanc, E.; Strand, E.

    2012-04-01

    A wideband electric field antenna has been installed in Norway (at Hessdalen, 62°41' North and 11°12' East). A signal of 50 ms is automatically recorded every 5 s in order to monitor the spectral variations from 1 kHz to 5 MHz. Signals have been acquired during more than one year from September 2010 to December 2011. The measured electromagnetic spectrum is very similar to other spectra commonly measured in other places in the World. It shows emissions in numerous bands at fixed frequencies corresponding to radio transmissions in VLF, LF, MF and HF bands. However, one emission is quite different and arouses our curiosity. We find a quasi-continuous radio emission at a frequency varying from 2.7 to more than 3.4 MHz with a mean value of 3.0 MHz. The bandwidth is quite large (about 40 kHz) while it is about 9 kHz for all the other radio emissions at frequencies higher than 100 kHz. During the night, the frequency is relatively stable at about 3.1 MHz while during day-time a frequency shift of 200-300 kHz is often observed. These variations can be quick (few tens of minutes) or slow (several hours). Moreover, the emission disappears during day-time, the disappearance duration depending on the daylight duration. From November to the end of March, there is almost no disappearance while in April disappearances are more frequent and longer. From May to July, the emission disappears systematically during day-time from 6:00 UT to 20:00 UT. At the sunrise time the emission frequency suddenly decreases and systematically disappears when it reaches a threshold value (from 2.7 to 2.85 MHz). The emission (frequency and duration) is not influenced by the magnetic storms. We will show in the paper statistical results and some hypothesis on the mechanism which can produce this radio emission.

  13. Physical Analysis of the Jovian Synchrotron Radio Emission

    NASA Astrophysics Data System (ADS)

    Santos-Costa, D.; Bolton, S. J.; Levin, S. M.; Thorne, R. M.

    2006-12-01

    We present results of our recent investigation of the Jovian synchrotron emission based on a particle transport code. The features of the two-dimensional brightness distributions, radio spectra and beaming curves are correlated to the different phenomena driven the dynamics of the electron radiation belts. The adiabatic invariant theory was used for performing this analysis work. The theoretical approach first enabled us to describe the electron radiation belts by modeling the interactions between high-energy trapped particles and plasmas, neutrals, moons, dust and magnetic field. Then radio observations were used to discuss the computed particle distributions in the inner magnetosphere of Jupiter. The simulated brightness mappings were compared with VLA observations made at two wavelengths (20 and 6 cm). The beaming curve comparisons at 13-cm wavelength were performed for different epochs in order to evaluate the dependence of the model to the geometric factor De. The computed radio spectra were discussed with measurements made in the [0.5-20] GHz radio band. The simulation results match the different remote observations very well and thus allowed us to study the phenomenology of the Jovian synchrotron radio emission. The analysis of the Jovian synchrotron emission demonstrates that during the inward particle transport, local losses associated with the Jovian moons set the extension and intensity of the synchrotron radiation along the magnetic equator. Close to the planet, trapped electrons suffer from the interactions with dust and magnetic field, resulting in the transport of particles toward the high latitudes. The quantity of particles transported away from the equator is sufficient to produce the measurable secondary radio emissions. The simulations show that the moon sweeping effect controls both the transport toward the planet and at high latitudes by reducing the abundance of particles constrained to populate the regions out of the equator. Among the

  14. Virtual Observatory tools and Amateur Radio Observations Supporting Scientific Analysis of Jupiter Radio Emissions

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Hess, S. L. G.; Le Sidaner, P.; Savalle, R.; Erard, S.; Coffre, A.; Thétas, E.; André, N.; Génot, V.; Thieman, J.; Typinski, D.; Sky, J.; Higgins, C.

    2015-10-01

    In the frame of the preparation of the NASA/JUNO and ESA/JUICE (Jupiter Icy Moon Explorer) missions, and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet-VESPA (Virtual European Solar and Planetary Access). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nancay Decameter Array are already shared on the planetary science VO using this protocol. Amateur radio data from the RadioJOVE project is also available. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets. A preliminary study based on January-February 2014 data will also be presented

  15. Escaping radio emission from pulsars: Possible role of velocity shear

    SciTech Connect

    Mahajan, S.M. |; Machabeli, G.Z.; Rogava, A.D. |

    1997-01-01

    It is demonstrated that the velocity shear, intrinsic to the e{sup +}e{sup {minus}} plasma present in the pulsar magnetosphere, can efficiently convert the nonescaping longitudinal Langmuir waves (produced by some kind of a beam or stream instability) into propagating (escaping) electromagnetic waves. It is suggested that this shear induced transformation may be the basic mechanism needed for the eventual generation of the observed pulsar radio emission.

  16. Jovian longitudinal control of Io-related radio emissions

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.; Hill, T. W.

    1979-01-01

    A theoretical model is proposed to explain the control of Io-related radio emissions by Jupiter's rotational phase. The model is based on the hypothesis that the radio emissions are generated by Birkeland currents flowing between Io and the Jovian ionosphere. Specifically, it is suggested that the precipitation of radiation-belt electrons within a certain range of Jovian longitudes produces a restricted region of enhanced ionization and correspondingly enhanced conductivity in Jupiter's ionosphere and that the Io-Jupiter Birkeland current and the associated radio emissions are dramatically increased when Io's flux tube encounters this sector of enhanced ionization in Jupiter's ionosphere. The magnitude of the current is found to be about 100,000 A at most Jovian longitudes because of ionospheric resistance. It is estimated that within the favored longitudinal sector electron precipitation produces an enhancement of this current by one to three orders of magnitude. The model predictions are compared with observations made during the Pioneer 10 and 11 flybys, and satisfactory agreement is obtained.

  17. Detection of 610-MHz radio emission from hot magnetic stars

    NASA Astrophysics Data System (ADS)

    Chandra, P.; Wade, G. A.; Sundqvist, J. O.; Oberoi, D.; Grunhut, J. H.; ud-Doula, A.; Petit, V.; Cohen, D. H.; Oksala, M. E.; David-Uraz, A.

    2015-09-01

    We have carried out a study of radio emission from a small sample of magnetic O- and B-type stars using the Giant Metrewave Radio Telescope, with the goal of investigating their magnetospheres at low frequencies. These are the lowest frequency radio measurements ever obtained of hot magnetic stars. The observations were taken at random rotational phases in the 1390 and the 610 MHz bands. Out of the eight stars, we detect five B-type stars in both the 1390 and the 610 MHz bands. The three O-type stars were observed only in the 1390 MHz band, and no detections were obtained. We explain this result as a consequence of free-free absorption by the free-flowing stellar wind exterior to the confined magnetosphere. We also study the variability of individual stars. One star - HD 133880 - exhibits remarkably strong and rapid variability of its low-frequency flux density. We discuss the possibility of this emission being coherent emission as reported for CU Vir by Trigilio et al.

  18. The deep diffuse extragalactic radio sky at 1.75 GHz

    NASA Astrophysics Data System (ADS)

    Vernstrom, T.; Norris, Ray P.; Scott, Douglas; Wall, J. V.

    2015-03-01

    We present a study of diffuse extragalactic radio emission at 1.75 GHz from part of the ELAIS-S1 (European Large Area Infrared Space Observatory Survey - South 1) field using the Australia Telescope Compact Array. The resulting mosaic is 2.46 deg2, with a roughly constant noise region of 0.61 deg2 used for analysis. The image has a beam size of 150 arcsec × 60 arcsec and instrumental <σn> = (52 ± 5) μJy beam-1. Using point-source models from the Australia Telescope Large Area Survey, we subtract the discrete emission in this field for S ≥ 150 μJy beam-1. Comparison of the source-subtracted probability distribution, or P(D), with the predicted distribution from unsubtracted discrete emission and noise, yields an excess of (76 ± 23) μJy beam-1. Taking this as an upper limit on any extended emission, we constrain several models of extended source counts, assuming Ωsource ≤ 2 arcmin. The best-fitting models yield temperatures of the radio background from extended emission of Tb = (10 ± 7) mK, giving an upper limit on the total temperature at 1.75 GHz of (73 ± 10) mK. Further modelling shows that our data are inconsistent with the reported excess temperature of ARCADE2 to a source-count limit of 1 μJy. Our new data close a loop-hole in the previous constraints, because of the possibility of extended emission being resolved out at higher resolution. Additionally, we look at a model of cluster halo emission and two dark matter particle annihilation source-count models, and discuss general constraints on any predicted counts from such sources. Finally, we report the derived integral count at 1.4 GHz using the deepest discrete count plus our new extended-emission limits, providing numbers that can be used for planning future ultradeep surveys.

  19. Radio emission from the magnetic equator of Uranus

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Desch, M. D.; Connerney, J. E. P.

    1989-01-01

    The major observational characteristics of the smooth, narrow bandwidth component of Uranus' radio emissions are well described by sources radiating near the local electron gyrofrequency, confined to the magnetic equatorial plane and encircling the planet at radial distances of approximately 2 to 3 R(U). The most intense emission appears to be generated in association with the epsilon ring at 2.0 R(U) radial distance. A cold electron density of less than or equal to 4/cu cm are inferred in this region.

  20. Radio emission from the magnetic equator of Uranus

    SciTech Connect

    Kaiser, M.L.; Desch, M.D.; Connerney, J.E.P. )

    1989-03-01

    The major observational characteristics of the smooth, narrow bandwidth component of Uranus' radio emissions are well described by sources radiating near the local electron gyrofrequency, confined to the magnetic equatorial plane and encircling the plant at radial distances of approximately 2 to 3 R{sub v}. The most intense emission appears to be generated in association with the {var epsilon} ring at 2.0 R{sub v} radial distance. The authors infer a cold electron density of {le} 4 cm{sup {minus}3} in this region.

  1. Modeling Bright γ-Ray and Radio Emission at Fast Cloud Shocks

    NASA Astrophysics Data System (ADS)

    Lee, Shiu-Hang; Patnaude, Daniel J.; Raymond, John C.; Nagataki, Shigehiro; Slane, Patrick O.; Ellison, Donald C.

    2015-06-01

    Recent observations by the Large Area Telescope on board the Fermi satellite have revealed bright γ-ray emission from middle-aged supernova remnants (SNRs) inside our Galaxy. These remnants, which also possess bright non-thermal radio shells, are often found to be interacting directly with surrounding gas clouds. We explore the non-thermal emission mechanism at these dynamically evolved SNRs by constructing a hydrodynamical model. Two scenarios of particle acceleration, either a re-acceleration of Galactic cosmic rays or an efficient nonlinear diffusive shock acceleration (NLDSA) of particles injected from downstream, are considered. Using parameters inferred from observations, our models are contrasted with the observed spectra of SNR W44. For the re-acceleration case, we predict a significant enhancement of radio and GeV emission as the SNR undergoes a transition into the radiative phase. If sufficiently strong magnetic turbulence is present in the molecular cloud, the re-acceleration scenario can explain the observed broadband spectral properties. The NLDSA scenario also succeeds in explaining the γ-ray spectrum but fails to reproduce the radio spectral index. Efficient NLDSA also results in a significant post-shock non-thermal pressure that limits the compression during cooling and prevents the formation of a prominent dense shell. Some other interesting differences between the two models in hydrodynamical behavior and resulting spectral features are illustrated.

  2. Onion-shell model for cosmic ray electrons and radio synchrotron emission in supernova remnants

    NASA Technical Reports Server (NTRS)

    Beck, R.; Drury, L. O.; Voelk, H. J.; Bogdan, T. J.

    1985-01-01

    The spectrum of cosmic ray electrons, accelerated in the shock front of a supernova remnant (SNR), is calculated in the test-particle approximation using an onion-shell model. Particle diffusion within the evolving remnant is explicity taken into account. The particle spectrum becomes steeper with increasing radius as well as SNR age. Simple models of the magnetic field distribution allow a prediction of the intensity and spectrum of radio synchrotron emission and their radial variation. The agreement with existing observations is satisfactory in several SNR's but fails in other cases. Radiative cooling may be an important effect, especially in SNR's exploding in a dense interstellar medium.

  3. Stochastic reacceleration of relativistic electrons by turbulent reconnection: a mechanism for cluster-scale radio emission?

    NASA Astrophysics Data System (ADS)

    Brunetti, G.; Lazarian, A.

    2016-05-01

    In this paper, we investigate a situation where relativistic particles are reaccelerated diffusing across regions of reconnection and magnetic dynamo in super-Alfvenic, incompressible large-scale turbulence. We present an exploratory study of this mechanism in the intracluster medium (ICM). In view of large-scale turbulence in the ICM, we adopt a reconnection scheme that is based on turbulent reconnection and magnetohydrodynamics (MHD) turbulence. In this case, particles are accelerated and decelerated in a systematic way in reconnecting and magnetic-dynamo regions, respectively, and on longer time-scales undergo a stochastic process diffusing across these sites (similar to second-order Fermi). Our study extends on larger scales numerical studies that focused on the acceleration in and around turbulent reconnecting regions. We suggest that this mechanism may play a role in the reacceleration of relativistic electrons in galaxy clusters providing a new physical scenario to explain the origin of cluster-scale diffuse radio emission. Indeed differently from current turbulent reacceleration models proposed for example for radio haloes, this mechanism is based on the effect of large-scale incompressible and super-Alfvenic turbulence. In this new model, turbulence governs the interaction between relativistic particles and magnetic field lines that diffuse, reconnect and are stretched in the turbulent ICM.

  4. Radio emission from the nova-like variable AC Cancri and the symbiotic variable AG Draconis

    SciTech Connect

    Torbett, M.V.; Campbell, B.

    1987-07-01

    Radio emission at 6 cm has been detected from the nova-like cataclysmic variable AC Cnc and the symbiotic variable AG Dra. The AC Cnc observation constitutes the first radio detection in this class of objects. The AG Dra source is probably resolved and appears to show asymmetric, extended structure. The radio emission can best be explained by thermal bremsstrahlung. 26 references.

  5. Natural radio emission of Jupiter as interferences for radar investigations of the icy satellites of Jupiter

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Hess, S.; Hérique, A.; Santovito, M. R.; Santos-Costa, D.; Zarka, P.; Alberti, G.; Blankenship, D.; Bougeret, J. L.; Bruzzone, L.; Kofman, W.

    2011-10-01

    Radar instruments are part of the core payload of the two Europa Jupiter System Mission (EJSM) spacecraft: NASA-led Jupiter Europa Orbiter (JEO) and ESA-led Jupiter Ganymede Orbiter (JGO). At this point of the project, several frequency bands are under study for radar, which ranges between 5MHz and 50MHz. Part of this frequency range overlaps with that of the natural Jovian radio emissions, which are very intense in the decametric range, below 40 MHz. Radio observations above 40 MHz are free of interferences, whereas below this threshold, careful observation strategies have to be investigated. We present a review of spectral intensity, variability and sources of these radio emissions. As the radio emission are strongly beamed, it is possible to model the visibility of the radio emissions, as seen from the vicinity of Europa or Ganymede. We have investigated Io-related radio emissions as well as radio emissions related to the auroral oval. We also review the radiation belts synchrotron emission characteristics. We present radio sources visibility products (dynamic spectra and radio source location maps, on still frames or movies), which can be used for operation planning. This study clearly shows that a deep understanding of the natural radio emissions at Jupiter is necessary to prepare the future EJSM radar instrumentation. We show that this radio noise has to be taken into account very early in the observation planning and strategies for both JGO and JEO. We also point out possible synergies with RPW (Radio and Plasma Waves) instrumentations.

  6. Natural radio emission of Jupiter as interferences for radar investigations of the icy satellites of Jupiter

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Hess, S.; Hérique, A.; Santovito, M. R.; Santos-Costa, D.; Zarka, P.; Alberti, G.; Blankenship, D.; Bougeret, J.-L.; Bruzzone, L.; Kofman, W.

    2012-02-01

    Radar instruments are part of the core payload of the two Europa Jupiter System Mission (EJSM) spacecraft: NASA-led Jupiter Europa Orbiter (JEO) and ESA-led Jupiter Ganymede Orbiter (JGO). At this point of the project, several frequency bands are under study for radar, which ranges between 5 and 50 MHz. Part of this frequency range overlaps with that of the natural jovian radio emissions, which are very intense in the decametric range, below 40 MHz. Radio observations above 40 MHz are free of interferences, whereas below this threshold, careful observation strategies have to be investigated. We present a review of spectral intensity, variability and sources of these radio emissions. As the radio emissions are strongly beamed, it is possible to model the visibility of the radio emissions, as seen from the vicinity of Europa or Ganymede. We have investigated Io-related radio emissions as well as radio emissions related to the auroral oval. We also review the radiation belts synchrotron emission characteristics. We present radio sources visibility products (dynamic spectra and radio source location maps, on still frames or movies), which can be used for operation planning. This study clearly shows that a deep understanding of the natural radio emissions at Jupiter is necessary to prepare the future EJSM radar instrumentation. We show that this radio noise has to be taken into account very early in the observation planning and strategies for both JGO and JEO. We also point out possible synergies with RPW (Radio and Plasma Waves) instrumentations.

  7. RELATIVISTIC MODEL ON PULSAR RADIO EMISSION AND POLARIZATION

    SciTech Connect

    Kumar, D.; Gangadhara, R. T. E-mail: ganga@iiap.res.in

    2012-02-20

    We have developed a relativistic model for pulsar radio emission and polarization by taking into account a detailed geometry of emission region, rotation, and modulation. The sparks activity on the polar cap leads to plasma columns in the emission region and modulated emission. By considering relativistic plasma bunches streaming out along the rotating dipolar field lines as a source of curvature radiation, we have deduced the polarization state of the radiation field in terms of the Stokes parameters. We have simulated a set of typical pulse profiles and analyzed the role of viewing geometry, rotation, and modulation in the pulsar polarization profiles. Our simulations explain most of the diverse behaviors of polarization generally found in pulsar radio profiles. We show that both the 'antisymmetric' and 'symmetric' types of circular polarization are possible within the framework of curvature radiation. We also show that the 'kinky' nature in the polarization position angle traverses might be due to the rotation and modulation effects. The phase lag of the polarization position angle inflection point relative to the phase of core peak depends upon the rotationally induced asymmetry in the curvature of source trajectory and modulation.

  8. Radio Emission from Red-Giant Hot Jupiters

    NASA Technical Reports Server (NTRS)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such "Red-Giant Hot Jupiters" (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  9. Radio Emission from Red-giant Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-04-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  10. Predicting Changes in the Radio Emission Fluxes of Extragalactic Sources

    NASA Astrophysics Data System (ADS)

    Sukharev, A. L.; Ryabov, M. I.; Donskikh, G. I.

    2016-06-01

    Data from long-term monitoring with the 26-m University of Michigan radio telescope at a frequency of 14.5 GHz (1974-2011) is used to predict changes in the radio emission fluxes from the extragalactic sources 3C273, 3C120, 3C345, 3C446, 3C454.3, OJ287, OT081, and BLLac. The predictions are based on data on the major periods of variability and their durations obtained by wavelet analysis. The radio emission fluxes from the sources 3C345, 3C446, and 3C454.3, which have complicated variabilities, are predicted using an autoregression linear prediction method. This yields a forecast of the flux variations extending up to 5 years. Harmonic prediction is used for another group of sources, BLLac, OJ287, and OT081, with rapid variability. This approach yielded forecasts extending 4-9 years. For the sources 3C273 and 3C120, which have stable long periods, the harmonic method was also used and yielded a forecast extending up to 16 years. The reliability of the prediction was confirmed by independent observational data from the MOJAVE program for 2011-2015.

  11. NuSTAR results from the Galactic Center - diffuse emission

    NASA Astrophysics Data System (ADS)

    Hailey, Charles

    2016-03-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) was launched in June 2012. It carried the first true, hard X-ray (>~10 keV-79 keV) focusing telescopes into orbit. Its twin telescopes provide 10 times better angular resolution and 100 times better sensitivity than previously obtainable in the hard X-ray band. Consequently NuSTAR is able to resolve faint diffuse structures whose hard X-rays offer insight into some of the most energetic processes in the Galactic Center. One of the surprising discoveries that NuSTAR made in the Galactic Center is the central hard X-ray emission (CHXE). The CHXE is a diffuse emission detected from ~10 keV to beyond 50 keV in X-ray energy, and extending spatially over a region ~8 parsecs x ~4 parsecs in and out of the plane of the galaxy respectively, and centered on the supermassive black hole Sgr A*. The CHXE was speculated to be due to a large population of unresolved black hole X-ray binaries, millisecond pulsars (MSP), a class of highly magnetized white dwarf binaries called intermediate polars, or to particle outflows from Sgr A*. The presence of an unexpectedly large population of MSP in the Galactic Center would be particularly interesting, since MSP emitting at higher energies and over a much larger region have been posited to be the origin of the gamma-ray emission that is also ascribed to dark matter annihilation in the galaxy. In addition, the connection of the CHXE to the ~9000 unidentified X-ray sources in the central the the ~100 pc detected by the Chandra Observatory, to the soft X-ray emission detected by the Chandra and XMM/Newton observatories in the Galactic Center, and to the hard X-ray emission detected by both the RXTE and INTEGRAL observatories in the Galactic Ridge, is unclear. I review these results and present recent NuSTAR observations that potentially resolve the origin of the CHXE and point to a unified origin for all these X-ray emissions. Two other noteworthy classes of diffuse structures in the

  12. Radio Emission from Weak Spherical Shocks in the Outskirts of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung

    2015-04-01

    In Kang (2015) we calculated the acceleration of cosmic-ray electrons at weak spherical shocks that are expected to form in the cluster outskirts, and estimated the diffuse synchrotron radiation emitted by those electrons. There we demonstrated that, at decelerating spherical shocks, the volume integrated spectra of both electrons and radiation deviate significantly from the test-particle power-laws predicted for constant planar shocks, because the shock compression ratio and the flux of inject electrons decrease in time. In this study, we consider spherical blast waves propagating through a constant density core surrounded by an isothermal halo with ρ∝ r^{-n} in order to explore how the deceleration of the shock affects the radio emission from accelerated electrons. The surface brightness profile and the volume-integrated radio spectrum of the model shocks are calculated by assuming a ribbon-like shock surface on a spherical shell and the associated downstream region of relativistic electrons. If the postshock magnetic field strength is about 0.7 or 7μG, at the shock age of ˜ 50 Myr, the volume-integrated radio spectrum steepens gradually with the spectral index from α_{inj} to α_{inj}+0.5 over 0.1-10 GHz, where α_{inj} is the injection index at the shock position expected from the diffusive shock acceleration theory. Such gradual steepening could explain the curved radio spectrum of the radio relic in cluster A2266, which was interpreted as a broken power-law by Trasatti et al. (2015), if the relic shock is young enough so that the break frequency is around 1$ GHz.

  13. Saturn radio emission and the solar wind - Voyager-2 studies

    SciTech Connect

    Desch, M.D.; Rucker, H.O.

    1985-01-01

    Voyager 2 data from the Plasma Science experiment, the Magnetometer experiment and the Planetary Radio Astronomy experiment were used to analyze the relationship between parameters of the solar wind/interplanetary medium and the nonthermal Saturn radiation. Solar wind and interplanetary magnetic field properties were combined to form quantities known to be important in controlling terrestrial magnetospheric processes. The Voyager 2 data set used in this investigation consists of 237 days of Saturn preencounter measurements. However, due to the immersion of Saturn and the Voyager 2 spacecraft into the extended Jupiter magnetic tail, substantial periods of the time series were lacking solar wind data. To cope with this problem a superposed epoch method (CHREE analysis) was used. The results indicate the superiority of the quantities containing the solar wind density in stimulating the radio emission of Saturn - a result found earlier using Voyager 1 data - and the minor importance of quantities incorporating the interplanetary magnetic field. 10 references.

  14. Saturn radio emission and the solar wind - Voyager-2 studies

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Rucker, H. O.

    1985-01-01

    Voyager 2 data from the Plasma Science experiment, the Magnetometer experiment and the Planetary Radio Astronomy experiment were used to analyze the relationship between parameters of the solar wind/interplanetary medium and the nonthermal Saturn radiation. Solar wind and interplanetary magnetic field properties were combined to form quantities known to be important in controlling terrestrial magnetospheric processes. The Voyager 2 data set used in this investigation consists of 237 days of Saturn preencounter measurements. However, due to the immersion of Saturn and the Voyager 2 spacecraft into the extended Jupiter magnetic tail, substantial periods of the time series were lacking solar wind data. To cope with this problem a superposed epoch method (CHREE analysis) was used. The results indicate the superiority of the quantities containing the solar wind density in stimulating the radio emission of Saturn - a result found earlier using Voyager 1 data - and the minor importance of quantities incorporating the interplanetary magnetic field.

  15. Cloud-to-stratosphere lightning discharges - A radio emission model

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Desch, M. D.

    1992-01-01

    Recent observations of rare cloud-to-stratospheric lightning discharges suggest the events are inherently 'slow-rising', with the emitted energy reaching peak values in about 10 milliseconds. Applying a dipole radiation model, it is demonstrated that the emitted radio wave energy from such slow-rising events is strongest below about 50 Hz, and possesses a significant rolloff at higher frequencies. In the analysis, various current distributions are considered in order to determine the effect on the radio spectrum. Near 10 kHz, the emission from cloud-to-stratospheric lightning is significantly reduced as compared to the typical cloud-to-ground return stroke, with amplitudes as much as 50 dB lower. This result may explain the lack of detection of VLF signals from recently observed long-lasting discharge events.

  16. Spectral Components Analysis of Diffuse Emission Processes

    SciTech Connect

    Malyshev, Dmitry; /KIPAC, Menlo Park

    2012-09-14

    We develop a novel method to separate the components of a diffuse emission process based on an association with the energy spectra. Most of the existing methods use some information about the spatial distribution of components, e.g., closeness to an external template, independence of components etc., in order to separate them. In this paper we propose a method where one puts conditions on the spectra only. The advantages of our method are: 1) it is internal: the maps of the components are constructed as combinations of data in different energy bins, 2) the components may be correlated among each other, 3) the method is semi-blind: in many cases, it is sufficient to assume a functional form of the spectra and determine the parameters from a maximization of a likelihood function. As an example, we derive the CMB map and the foreground maps for seven yeas of WMAP data. In an Appendix, we present a generalization of the method, where one can also add a number of external templates.

  17. Quiescent Diffusive and Fumarolic Volcanic Bromocarbon Emissions

    NASA Astrophysics Data System (ADS)

    Schwandner, F. M.; Giźe, A. P.; Seward, T. M.; Hall, P. A.; Dietrich, V. J.

    2002-12-01

    Future scenarios of declining atmospheric burdens of Ozone Depleting Substances (ODS) such as halocarbons after phase-out following international regulation (Montreal Protocol) vary strongly depending on what contribution from natural sources is taken into account. In addition, current and pre-industrial global atmospheric budgets of ODS are poorly balanced by known natural and anthropogenic sources of halocarbons (Butler, 2000). Brominated halocarbons have a high Ozone Depletion Potential, Br is at least 40x as efficient as Cl in polar stratospheric ozone destruction (Solomon et al., 1992). CH3Br is the dominant Br carrier to the stratosphere with sources being ca.: 32% anthropogenic, 39% natural, but ca. 29% unaccounted for (WMO, 1998). Natural sources have been reviewed recently (Gribble, 2000, Butler, 2000), including magmatic inorganic (Bureau, 2000) and volcanic organic sources (Rassmussen et al., 1980; Schwandner et al., 2002). CH3Br and other bromocarbons have been reported in non-eruptive volcanic gases previously (Jordan et al., 2000; Schwandner et al., 2000). Due to its capability to extremely rapidly hydrolyse (Gan et al., 1995), CH3Br should not be sampled by the caustic soda bottle technique as used by Jordan et al. (2000) whose samples also show signs of air contamination, but by cryogenic separation of steam with subsequent sorbent trapping, as used by Isidorov (1990), Wahrenberger (1996) and Schwandner et al. (2000, 2001). To contribute significantly to the natural Br budget, volcanic gases would have to at least contain 2 ppmv (dry gas) CH3Br, scaled to a global CO2 emission of 66 Tgy-1 (Stoiber, 1995) based on CO2 flux to halocarbon concentration correlations (e.g. CFC-11: R2=0.91, Schwandner et al., 2002). However, CH3Br is not the only volcanogenic bromocarbon. Analysis of diffusive flank and crater degassing on Vulcano island (Italy) showed a strong diffusive component of CH3Br and C2H5Br emissions in 60-100°C hot pristine unvegetated

  18. Chromospheric evaporation and decimetric radio emission in solar flares

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Benz, Arnold O.

    1995-01-01

    We have discovered decimetric signatures of the chromospheric evaporation process. Evidence for the radio detection of chromospheric evaporation is based on the radio-inferred values of (1) the electron density, (2) the propagation speed, and (3) the timing, which are found to be in good agreement with statistical values inferred from the blueshifted Ca XIX soft X-ray line. The physical basis of our model is that free-free absorption of plasma emission is strongly modified by the steep density gradient and the large temperature increase in the upflowing flare plasma. The steplike density increase at the chromospheric evaporation front causes a local discontinuity in the plasma frequency, manifested as almost infinite drift rate in decimetric type III bursts. The large temperature increase of the upflowing plasma considerably reduces the local free-free opacity (due to the T(exp -3/2) dependence) and thus enhances the brightness of radio bursts emitted at the local plasma frequency near the chromospheric evaporation front, while a high-frequency cutoff is expected in the high-density regions behind the front, which can be used to infer the velocity of the upflowing plasma. From model calculations we find strong evidence that decimetric bursts with a slowly drifting high-frequency cutoff are produced by fundamental plasma emission, contrary to the widespread belief that decimetric bursts are preferentially emitted at the harmonic plasma level. We analyze 21 flare episodes from 1991-1993 for which broadband (100-3000 MHz) radio dynamic spectra from Pheonix, hard X-ray data from (BATSE/CGRO) and soft X-ray data from Burst and Transient Source Experiment/Compton Gamma Ray Observatory (GOES) were available.

  19. Radio emission from dusty galaxies observed by AKARI

    NASA Astrophysics Data System (ADS)

    Pepiak, A.; Pollo, A.; Takeuchi, T. T.; Solarz, A.; Jurusik, W.

    2014-10-01

    We probe radio-infrared correlation for two samples of extragalactic sources from the local Universe from the AKARI All-Sky Catalogue. The first, smaller sample (1053 objects) was constructed by the cross-correlation of the AKARI/FIS All-Sky Survey Bright Source Catalogue, the AKARI IRC All-Sky Survey Point Source Catalogue and the NRAO VLA Sky Survey, i.e. it consists of sources detected in the mid- and far-infrared by AKARI, and at the 1.4 GHz radio frequency by NRAO. The second, larger sample (13,324 objects) was constructed by the cross-correlation of only the AKARI/FIS All-Sky Survey Bright Source Catalogue and the NRAO VLA Sky Survey, i.e. it consists of sources detected in the far-infrared and radio, without a condition to be detected in the mid-infrared. Additionally, all objects in both samples were identified as galaxies in the NED and/or SIMBAD databases, and a part of them is known to host active galactic nuclei (AGNs). For the present analysis, we have restricted our samples only to sources with known redshift z. In this paper, we analyse the far-infrared-radio correlation for both of these samples. We compare the ratio of infrared and radio emission from normal star-forming dusty galaxies and AGNs in both samples. For the smaller sample we obtained =2.14 for AGNs and =2.27 for normal galaxies, while for the larger sample =2.15 for AGNs and =2.22 for normal galaxies. An average value of the slope in both samples is ~2.2, which is consistent with the previous measurements from the literature.

  20. Confirmation of Pulsed Radio Emission from the Pulsar J1907+0919 (Shitov Radio Pulsar, SGR 1900+14)

    NASA Astrophysics Data System (ADS)

    Glushak, A. P.; Losovsky, B. Ya.; Dumsky, D. V.

    2015-10-01

    Observations at a frequency of 111 MHz with the Large Phased Array at the Pushchino Radio Astronomy Observatory of the Astro Space Center of the P.N. Lebedev Physical Institute confirm the pulsed radio emission of the X-ray pulsar J1907+0919 that is a counterpart of the magnetar SGR 1900+14. Its pulsed radio emission was discovered earlier by Shitov (1999). A flux density periodogram is built. A new spin period P = 5.22756(42) s and flux density 50± 5~mJy are measured at the Epoch 56834.6 MJD. A value of the pulsar radio emission spectral index is estimated as < -4.3. This radio spectrum is one of the steepest among the spectra of known pulsars.

  1. DARK MATTER AND SYNCHROTRON EMISSION FROM GALACTIC CENTER RADIO FILAMENTS

    SciTech Connect

    Linden, Tim; Hooper, Dan; Yusef-Zadeh, Farhad

    2011-11-10

    The inner degrees of the Galactic center contain a large population of filamentary structures observed at radio frequencies. These so-called non-thermal radio filaments (NRFs) trace magnetic field lines and have attracted significant interest due to their hard (S{sub v} {proportional_to}{nu}{sup -0.1{+-}0.4}) synchrotron emission spectra. The origin of these filaments remains poorly understood. We show that the electrons and positrons created through the annihilations of a relatively light ({approx}5-10 GeV) dark matter particle with the cross section predicted for a simple thermal relic can provide a compelling match to the intensity, spectral shape, and flux variation of the NRFs. Furthermore, the characteristics of the dark matter particle necessary to explain the synchrotron emission from the NRFs are consistent with those required to explain the excess {gamma}-ray emission observed from the Galactic center by the Fermi Large Area Telescope, as well as the direct detection signals observed by CoGeNT and DAMA/LIBRA.

  2. Possible radio emission from Uranus at 0.5 MHz

    NASA Technical Reports Server (NTRS)

    Brown, L. W.

    1976-01-01

    Radio emission from the direction of Uranus has been detected in data from the Goddard radio astronomy experiment on the IMP-6 spacecraft. Previously, emission from the direction of Jupiter and Saturn had been observed by IMP-6 at a number of frequencies near 1 MHz and were identified through an analysis of the phase of the observed modulated signal detected from the spinning dipole antenna. This technique was applied to the direction of Uranus with possible positive results. Over the approximately 500 days of data, three to six bursts with unique spectral characteristics have been found. The events persisted less than 3 minutes and are strongest in intensity near 0.5 MHz. Identification with Uranus is confused by the likely presence of low-level terrestrial and solar emission. Because of the unfavorable angular separation of earth and Uranus, there is a possibility that the bursts are atypical terrestrial magnetospheric phenomena, although the uniqueness of the set of events indicates the probable detection of radiation from Uranus.

  3. Dark Matter and Synchrotron Emission from Galactic Center Radio Filaments

    SciTech Connect

    Linden, Tim; Hooper, Dan; Yusef-Zadeh, Farhad

    2011-11-10

    The inner degrees of the Galactic center contain a large population of filamentary structures observed at radio frequencies. These so-called non-thermal radio filaments (NRFs) trace magnetic field lines and have attracted significant interest due to their hard (S_v ~ -0.1 +/- 0.4) synchrotron emission spectra. The origin of these filaments remains poorly understood. We show that the electrons and positrons created through the annihilations of a relatively light (~5-10 GeV) dark matter particle with the cross section predicted for a simple thermal relic can provide a compelling match to the intensity, spectral shape, and flux variation of the NRFs. Furthermore, the characteristics of the dark matter particle necessary to explain the synchrotron emission from the NRFs is consistent with those required to explain the excess gamma-ray emission observed from the Galactic center by the Fermi-LAT, as well as the direct detection signals observed by CoGeNT and DAMA/LIBRA.

  4. Theory of Type 3 and Type 2 Solar Radio Emissions

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Cairns, I. H.

    2000-01-01

    The main features of some current theories of type III and type II bursts are outlined. Among the most common solar radio bursts, type III bursts are produced at frequencies of 10 kHz to a few GHz when electron beams are ejected from solar active regions, entering the corona and solar wind at typical speeds of 0.1c. These beams provide energy to generate Langmuir waves via a streaming instability. In the current stochastic-growth theory, Langmuir waves grow in clumps associated with random low-frequency density fluctuations, leading to the observed spiky waves. Nonlinear wave-wave interactions then lead to secondary emission of observable radio waves near the fundamental and harmonic of the plasma frequency. Subsequent scattering processes modify the dynamic radio spectra, while back-reaction of Langmuir waves on the beam causes it to fluctuate about a state of marginal stability. Theories based on these ideas can account for the observed properties of type III bursts, including the in situ waves and the dynamic spectra of the radiation. Type 11 bursts are associated with shock waves propagating through the corona and interplanetary space and radiating from roughly 30 kHz to 1 GHz. Their basic emission mechanisms are believed to be similar to those of type III events and radiation from Earth's foreshock. However, several sub-classes of type II bursts may exist with different source regions and detailed characteristics. Theoretical models for type II bursts are briefly reviewed, focusing on a model with emission from a foreshock region upstream of the shock for which observational evidence has just been reported.

  5. X-ray inverse Compton emission from the radio halo of M87

    NASA Technical Reports Server (NTRS)

    Feigelson, E. D.

    1984-01-01

    A significant fraction of known galaxies contain an active galactic nucleus (AGN) at their cores, the site of violent activity and non-stellar radiation seen across the entire electromagnetic spectrum. This activity is thought to be due to the accretion of gas onto a massive black hole. A fraction of AGNs also eject collimated beams of energetic material, usually seen by virtue of its synchrotron emission in the radio band. Efforts to study these jets from AGNs in the X-ray band with the Einstein Observatory has led to several detections, most notably the jets in the nearby radio galaxies Centaurus A and Virgo A = M87. In their study of M87, Schreier, Gorenstein and Feigelson (1982) noted that, in addition to the synchrotron jet 10"-20" from the nucleus, X-rays appear to be generated in the diffuse radio halo 2'-5' from the nucleus. This finding may be particularly important as it may constitute the first known case of X-ray inverse Compton emission from AGN ejecta, allowing for the first time direct determination of the magnetic field strengths.

  6. Kinetic Simulations of Solar Type II Radio Burst Emission Processes

    SciTech Connect

    Ganse, Urs; Burkart, Thomas; Spanier, Felix; Vainio, Rami

    2010-03-25

    Using our kinetic Particle-in-Cell simulation code, we have examined the behavior of different plasma modes in the environment close to a CME shock front, with special focus on the modes that may contribute to the formation of type II radio bursts. Apart from electron velocity spectra, numerical dispersion plots obtained from simulation data allow for analysis of wave modes in the simulated plasma, especially showing growth and damping of these modes over time. These plots reveal features at 2omega{sub p} which are not predicted by linear wave theory, that may be results of nonlinear three wave interaction processes as theoretically predicted for type II emission processes.

  7. Pulsed Radio Emission from PSR J1119-6127 disappeared

    NASA Astrophysics Data System (ADS)

    Burgay, M.; Possenti, A.; Kerr, M.; Esposito, P.; Rea, N.; Zelati, F. Coti; Israel, G. L.; Johnston, S.

    2016-07-01

    We have searched for pulsed radio emission from the direction of the known high magnetic field pulsar PSR J1119-6127 (spin period of 409 ms, magnetic field intensity at surface of about 4 x 10^13 G, spin-down age of about 1700 yr, embedded in the supernova remnant SNR G292.2-0.5), which showed bursts similar to those typical of the Soft Gamma Repeaters (SGR) at 13:02:07.91 UT on 27 July 2016 (Younes et al,GCN Circular #19735) and at 01:27:51 UT on 28 July 2016 (Kennea et al,Atel #9274).

  8. Correlation of pulsar radio emission spectrum with peculiarities of particle acceleration in a polar gap

    SciTech Connect

    Kontorovich, V. M. Flanchik, A. B.

    2013-01-15

    The analytical expression for the frequency of radio emission intensity maximum in pulsars with free electron emission from the stellar surface has been found. Peculiarities of the electron acceleration in a polar gap are considered. The correlation between the high-frequency cutoff and low-frequency turnover in the radio emission spectrum of pulsars known from observations has been explained.

  9. Chromospheric Evaporation and Decimetric Radio Emission in Solar Flares

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Benz, Arnold O.

    1995-01-01

    We have discovered decimetric signatures of the chromospheric evaporation process. Evidence for the radio detection of chromospheric evaporation is based on the radio-inferred values of (1) the electron density, (2) the propagation speed, and (3) the timing, which are found to be in good agreement with statistical values inferred from the blueshifted Ca xix soft X-ray line. The physical basis of our model is that free-free absorption of plasma emission is strongly modified by the steep density gradient and the large temperature increase in the upflowing flare plasma. The steplike density increase at the chromospheric evaporation front causes a local discontinuity in the plasma frequency, manifested as almost infinite drift rate in decimetric type III bursts. The large temperature increase of the upflowing plasma considerably reduces the local free-free opacity (due to the T-(exp -3/2) dependence) and thus enhances the brightness of radio bursts emitted at the local plasma frequency near the chromospheric evaporation front, while a high-frequency cutoff is expected in the high-density regions behind the front, which can be used to infer the velocity of the upflowing plasma. From model calculations we find strong evidence that decimetric bursts with a slowly drifting high-frequency cutoff are produced by fundamental plasma emission, contrary to the widespread belief that decimetric bursts are preferentially emitted at the harmonic plasma level. We analyzed 21 flare episodes from 1991-1993 for which broadband (100-3000 MHz) radio dynamic spectra from Phoenix, hard X-ray data from BATSE/CGRO, and soft X-ray data from GOES were available. We detected slowly drifting high-frequency cutoffs between 1.1 and 3.0 GHz, with drift rates of -41 +/- 32 MHz/s, extending over time intervals of 24 +/- 23 s. Developing a density model for type III-emitting flare loops based on the statistically observed drift rate of type III bursts by Alvarez & Haddock, we infer velocities of up to

  10. Tracking the CME-driven shock wave on 2012 March 5 and radio triangulation of associated radio emission

    SciTech Connect

    Magdalenić, J.; Marqué, C.; Mierla, M.; Zhukov, A. N.; Rodriguez, L.; Krupar, V.; Maksimović, M.; Cecconi, B.

    2014-08-20

    We present a multiwavelength study of the 2012 March 5 solar eruptive event, with an emphasis on the radio triangulation of the associated radio bursts. The main points of the study are reconstruction of the propagation of shock waves driven by coronal mass ejections (CMEs) using radio observations and finding the relative positions of the CME, the CME-driven shock wave, and its radio signatures. For the first time, radio triangulation is applied to different types of radio bursts in the same event and performed in a detailed way using goniopolarimetric observations from STEREO/Waves and WIND/Waves spacecraft. The event on 2012 March 5 was associated with a X1.1 flare from the NOAA AR 1429 situated near the northeast limb, accompanied by a full halo CME and a radio event comprising long-lasting interplanetary type II radio bursts. The results of the three-dimensional reconstruction of the CME (using SOHO/LASCO, STEREO COR, and HI observations), and modeling with the ENLIL cone model suggest that the CME-driven shock wave arrived at 1 AU at about 12:00 UT on March 7 (as observed by SOHO/CELIAS). The results of radio triangulation show that the source of the type II radio burst was situated on the southern flank of the CME. We suggest that the interaction of the shock wave and a nearby coronal streamer resulted in the interplanetary type II radio emission.

  11. Radio continuum and far-infrared emission of spiral galaxies: Implications of correlations

    NASA Technical Reports Server (NTRS)

    Rengarajan, T. N.; Iyengar, K. V. K.

    1990-01-01

    Researchers present a study extending the correlation seen between radio continuum and far-infrared emissions from spiral galaxies to a lower frequency of 408 MHz and also as a function of radio spectral index. The tight correlation seen between the two luminosities is then used to constrain several parameters governing the emissions such as the changes in star formation rate and mass function, frequency of supernovae that are parents of the interstellar electrons and factors governing synchrotron radio emission.

  12. The sources of Uranus' dominant nightside radio emissions

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Desch, M. D.; Curtis, S. A.

    1987-01-01

    The broad-bandwidth radio emission detected by Voyager 2 over the nightside of Uranus is examined. It is concluded that the source location of the smooth component is consistent with emission originating near the electron gyrofrequency from a small set of field lines whose foot points lie near the Uranomagnetic southern (dark) pole. The source centroid is at L = 11.5, and extends in latitude between about L = 8 and L = 25. This deduced source region is primarily on closed field lines that pass through the outer radiation belt and have their opposite foot points near the Uranomagnetic northern pole (near the present epoch terminator). The source location of the bursty component is less well defined but is consistent with the set of open field lines which map down to the region surrounding the planet's south magnetic dipole tip.

  13. Optical emission study of radio-frequency excited toluene plasma.

    PubMed

    Lee, Szetsen; Liu, Shiao-Jun; Liang, Rui-Ji

    2008-12-25

    UV-visible emission spectra of radio-frequency (rf) excited toluene plasma were studied. Benzyl radicals as well as toluene monomer and excimer were observed in toluene plasma. It was found that the intensities, peak positions, and linewidths of monomer and excimer emission bands exhibit strong dependence on rf power and plasma processing time. This can be ascribed to photochemical reactions in plasma. Gas-chromatographic analysis of the deposition products from toluene plasma indicated that the main component was bibenzyl. Spectroscopic evidence has shown that the bibenzyl molecule was formed by the coupling reaction between two benzyl radicals in plasma. The spectroscopic characteristics of toluene monomer and excimer are correlated with a kinetic model in plasma. PMID:19049320

  14. Radio emission from AM Herculis-type binaries

    NASA Technical Reports Server (NTRS)

    Chanmugam, G.; Dulk, G. A.

    1982-01-01

    A VLA search for 4.9 GHz radiation from the magnetic cataclysmic variable AM Her, along with the similar EF Eri binary, has led to the discovery of AM Her radio emission having a flux density of 0.67 + or - 0.052 mJy, where 1 mJy is equal to 10 to the -29th W/sq m per Hz. Neither AM Her circular polarization nor EF Eri were detected. The AM Her data are shown to be consistent with a model in which radiation is due to geosynchrotron emission from electrons of energies of a few hundred keV, which are trapped in the magnetosphere of the white dwarf element of the cataclysmic variable.

  15. Considerations on the radio emission from extended air showers

    NASA Astrophysics Data System (ADS)

    Conti, E.; Sartori, G.

    2016-05-01

    The process of radio emission from extended air showers produced by high energy cosmic rays has reached a good level of comprehension and prediction. It has a coherent nature, so the emitted power scales quadratically with the energy of the primary particle. Recently, a laboratory measurement has revealed that an incoherent radiation mechanism exists, namely, the bremsstrahlung emission. In this paper we expound why bremsstrahlung radiation, that should be present in showers produced by ultra high energy cosmic rays, has escaped detection so far, and why, on the other side, it could be exploited, in the 1–10 GHz frequency range, to detect astronomical γ-rays. We propose an experimental scheme to verify such hypothesis, which, if correct, would deeply impact on the observational γ-ray astronomy.

  16. Roles Played by Electrostatic Waves in Producing Radio Emissions

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    2000-01-01

    Processes in which electromagnetic radiation is produced directly or indirectly via intermediate waves are reviewed. It is shown that strict theoretical constraints exist for electrons to produce nonthermal levels of radiation directly by the Cerenkov or cyclotron resonances. In contrast, indirect emission processes in which intermediary plasma waves are converted into radiation are often favored on general and specific grounds. Four classes of mechanisms involving the conversion of electrostatic waves into radiation are linear mode conversion, hybrid linear/nonlinear mechanisms, nonlinear wave-wave and wave-particle processes, and radiation from localized wave packets. These processes are reviewed theoretically and observational evidence summarized for their occurrence. Strong evidence exists that specific nonlinear wave processes and mode conversion can explain quantitatively phenomena involving type III solar radio bursts and ionospheric emissions. On the other hand, no convincing evidence exists that magnetospheric continuum radiation is produced by mode conversion instead of nonlinear wave processes. Further research on these processes is needed.

  17. Weathering the Largest Storms in the Universe : Understanding environmental effects on extended radio emission in clusters

    NASA Astrophysics Data System (ADS)

    Dehghan, S.

    2014-05-01

    This thesis presents an investigation of the habitat of extended radio sources, and the way in which the generation and properties of these radio sources are affected by environmental factors. We begin with a detailed structure analysis of the 0.3 deg2 area of the MUSYC-ACES field, generated by applying a density-based clustering method, known as DBSCAN, to our spectroscopic and photometric samples of the field. As a result, we identify 62 over-dense regions across the field. Based on the properties of the detected structures, we classify 13 as clusters, of which 90% are associated with diffuse soft-band X-ray emission. This provides a strong and independent confirmation that both the clustering and classification methodologies are reliable for use in investigation of the environment of the radio sources in the Chandra Deep Field South (CDFS). Using an interpolation-based method followed by a new calibration technique of using clusters of similar mass as standard candles, we are able to estimate the local environmental richness for a desired region. This methodology is applied to a sample of AGNs and star forming galaxies in the CDFS to probe whether or not the radio luminosity of the different radio sources is correlated to their environments. As a result, we do not find a significant correlation between the radio luminosity and the environment of star-forming galaxies and radio-quiet AGNs, however, a weak positive dependency is spotted for radio-loud AGNs. This may indicate that over-populated environments trigger or enhance the radio activity processes in the AGNs. We find that star-forming galaxies, unlike radio-loud AGNs, tend to avoid overpopulated environments especially at low redshifts. However, radio-loud AGN are found in both poor and rich environments. As a result, we find neither of these radio sources suitable for tracing the over-dense regions of the Universe, unlike tailed radio galaxies. It is believed that tailed radio galaxies reside in the dense

  18. AURORAL RADIO EMISSION FROM STARS: THE CASE OF CU VIRGINIS

    SciTech Connect

    Trigilio, Corrado; Leto, Paolo; Umana, Grazia; Buemi, Carla S.; Leone, Francesco

    2011-09-20

    CU Virginis is a rapidly rotating Magnetic Chemically Peculiar star with at present unique characteristics as a radio emitter. The most intriguing one is the presence of intense, 100% circularly polarized radiation ascribed to a cyclotron maser. Each time the star rotates, this highly beamed emission points two times toward the Earth, like a pulsar. We observed CU Vir in 2010 April with the Expanded Very Large Array in two bands centered at 1450 and 1850 MHz. We covered nearly the whole rotational period, confirming the presence of the two pulses at a flux density up to 20 mJy. Dynamical spectra, obtained with unprecedented spectral and temporal sensitivity, allow us to clearly see the different time delays as a function of frequency. We interpret this behavior as a propagation effect of the radiation inside the stellar magnetosphere. The emerging scenario suggests interesting similarities with the auroral radio emission from planets, in particular with the Auroral Kilometric Radiation from Earth, which originates at few terrestrial radii above the magnetic poles and was only recently discovered to be highly beamed. We conclude that the magnetospheres of CU Vir, Earth, and other planets, maybe also exoplanets, could have similar geometrical and physical characteristics in the regions where the cyclotron maser is generated. In addition, the pulses are perfect 'markers' of the rotation period. This has given us for the first time the possibility to measure with extraordinary accuracy the spin-down of a star on or near the main sequence.

  19. Sharing Planetary Radio Emission Dataset in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Hess, S.; Le Sidaner, P.; Erard, S.; Coffre, A.; Thétas, E.; André, N.; Jacquey, C.

    2013-09-01

    In the double frame of the preparation of the ESA-led JUICE mission and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet/IDIS (Integrated and Distributed Information Service). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nançay Decameter Array are already shared on the planetary science VO using this protocol. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  20. Sharing Planetary Radio Emission Dataset in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Hess, S.; Le Sidaner, P.; Coffre, A.; Thetas, E.; andre, N.

    2013-12-01

    In the double frame of the preparation of the ESA-led JUICE mission and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet/IDIS (Integrated and Distributed Information Service). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nançay Decameter Array are already shared on the planetary science VO using this protocol. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  1. Sharing Planetary Radio Emission Dataset in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Cecconi, Baptiste; Le Sidaner, Pierre; Hess, Sebastien; Girard, Julien; Thetas, Emmanuel; Coffre, Andree; Malapert, Jean-Christophe; Genot, Vincent

    In the double frame of the preparation of the ESA-led JUICE mission and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet/IDIS (Integrated and Distributed Information Service). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nançay Decameter Array are already shared on the planetary science VO using this protocol. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  2. Sharing Planetary Radio Emission Dataset in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Cecconi, Baptiste; Hess, Sebastien; Le Sidaner, Pierre; Erard, Stéphane; Coffre, Andrée; Thétas, Emmanuel; André, Nicolas; Jacquey, Christian

    2013-04-01

    In the double frame of the preparation of the ESA-led JUICE mission and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet/IDIS (Integrated and Distributed Information Service). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nançay Decameter Array are already shared on the planetary science VO using this protocol. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  3. In situ observations of medium frequency auroral radio emissions

    NASA Astrophysics Data System (ADS)

    Broughton, M.; Labelle, J. W.; Pfaff, R. F.; Parrot, M.; Yan, X.; Burchill, J. K.

    2013-12-01

    The auroral ionosphere is a region rich with plasma waves that can be studied both in space and on the ground. These waves may mediate energy exchange between particle populations and provide information about the local plasma properties and boundaries. Auroral medium frequency (MF) burst is an impulsive radio emission observed at ground-level from 1.3-4.5 MHz that is associated with local substorm onset. There have been two recent reports of impulsive, broadband, MF waves at high latitudes. Burchill and Pfaff [2005] reported observations from the FAST satellite of impulsive, broadband, MF and low frequency (LF) radio waves. Using data from the DEMETER satellite, Parrot et al. [2009] surveyed MF waves caused by lightning. This study did show a high-latitude population of MF waves. We investigate whether the waves observed by these two satellites are related to auroral MF burst. Using FAST satellite burst mode electric field data from high-latitude (> 60 degrees magnetic), low-altitude (< 1000 km) intervals of moderate to large geomagnetic activity (Kp > 3) from 1996-2002, we have found forty-four examples of impulsive MF waves, all of which are associated with impulsive LF waves. Although MF burst and the waves observed by FAST have similar spectral signatures, they have different magnetic local time dependencies, which suggests that they may be unrelated. A study of MF waves observed at high latitude by DEMETER is ongoing. In situ observations of MF burst could provide crucial information about this heretofore unexplained natural radio emission.

  4. Are supernovae radio sources - A search for radio emission from young supernova remnants

    NASA Technical Reports Server (NTRS)

    Brown, R. L.; Marscher, A. P.

    1978-01-01

    A search has been conducted for radio emission at 11 and 3.7 cm from 46 recent supernovae having accurately determined positions and ages of a few months to 79 years. None of these supernovae was detected at a flux density greater than 5-10 mJy. These negative results cannot be explained by internal absorption and are thus due to intrinsically weak synchrotron emission in young supernova remnants. There are two possibilities: either (1) relativistic particles are accelerated not by the supernova outburst but by processes occurring much later (at least about 75 years) in the remnant or (2) the magnetic field in the young remnants evolves very slowly, in proportion to the inverse square root of time, so that its value in the remnants observed was no more than about 0.002 gauss. The constraints the observations place on these possibilities and on the energy in cosmic rays in young remnants are discussed. Gamma-ray observations at times of no more than about 1 year following an outburst will allow one to discriminate between the two alternative explanations of the radio results.

  5. Experimental Investigation of Radio-Turbulence Induced Diffusion -- Final Report

    SciTech Connect

    Spitz, H. B.; Usman, S.

    2005-07-07

    The outcome of this research project suggests that the transport of radon in water is significantly greater than that predicted solely by molecular diffusion. The original study was related to the long term storage of {sup 226}Ra-bearing sand at the DOE Fernald site and determining whether a barrier of water covering the sand would be effective in reducing the emanation of {sup 222}Rn from the sand. Initial observations before this study found the transport of radon in water to be greater than that predicted solely by molecular diffusion. Fick's law on diffusion was used to model the transport of radon in water including the impact associated with radioactive decay. Initial measurements suggested that the deposition of energy in water associated with the radioactive decay process influences diffusion and enhances transport of radon. A multi-region, one-dimensional, steady-state transport model was used to analyze the movement of radon through a sequential column of air, water and air. An effective diffusion coefficient was determined by varying the thickness of the water column and measuring the time for transport of {sup 222}Rn through of the water barrier. A one-region, one-dimensional transient diffusion equation was developed to investigate the build up of radon at the end of the water column to the time when a steady-state, equilibrium condition was achieved. This build up with time is characteristic of the transport rate of radon in water and established the basis for estimating the effective diffusion coefficient for {sup 222}Rn in water. Several experiments were conducted using different types and physical arrangements of water barriers to examine how radon transport is influenced by the water barrier. Results of our measurements confirm our theoretical analyses which suggest that convective forces other than pure molecular diffusion impact the transport of {sup 222}Rn through the water barrier. An effective diffusion coefficient is defined that includes

  6. Search for Cyclotron-maser Radio Emission from Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Dulk, G. A.; Leblanc, Y.; Bastian, T. S.

    1997-07-01

    There is reason to believe that extrasolar planets and/or brown dwarfs of mass about 1 to 50 M_J have magnetic fields, that they emit extremely intense cyclotron-maser radiation at metric wavelengths, and that this radiation may be detectable with sensitive radio telescopes like the VLA. The radiation is emitted at the electron cyclotron frequency, and has been detected from Earth, Jupiter, Saturn, Uranus and Neptune, from the Sun, from flare stars, and close binaries. The frequency range of cyclotron maser radiation is fixed by the magnetic field strength on the object. To be detected at, say 0.33 GHz, the required field strength is 118 G, which is intermediate between the 14 G field of Jupiter and the ~ 1000 G field of stellar active regions. An estimation of the flux density of the expected radiation can be made from an interpolation between Jupiter's radio emission (10(10) mJy at 5 AU) and that of nearby red dwarf stars ( ~ 100 mJy at 3 pc). Thus the flux from a planet or brown dwarf 3 to 30 times massive than Jupiter is plausibly 1 to 10 mJy, easily detectable with the VLA. If emission is detected, several important parameters about the planet can be deduced: the strength of its magnetic field, the period of its rotation, and the possible existence of a moon such as Jupiter's Io. Possible means of distinguishing stellar maser emissions from those of planets include: 1) Temporal variations and spectra differ from stars to planets. 2) The polarization is likely to be 100% circular or elliptical for planets, but not for stars. We have searched for exoplanet radio emission with 60 hours of observations with the VLA during November 1996. The observed stars with giant planets or brown dwarfs included 51 Peg, 70 Vir, 47 UMa, 55 CnC, Tau Boo, Gl 229, and HD 114762. We will present the method of observation, the limitations due to confusion and background noise, and the results.

  7. Polarized radio emission from extensive air showers measured with LOFAR

    SciTech Connect

    Schellart, P.; Buitink, S.; Corstanje, A.; Enriquez, J.E.; Falcke, H.; Hörandel, J.R.; Krause, M.; Nelles, A.; Rachen, J.P.; Veen, S. ter; Thoudam, S.

    2014-10-01

    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly 99%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, for 163 individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to the zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from (3.3± 1.0)% for very inclined air showers at 25 m to (20.3± 1.3)% for almost vertical showers at 225 m. Both dependencies are in qualitative agreement with theoretical predictions.

  8. Emission measure distribution for diffuse regions in solar active regions

    SciTech Connect

    Subramanian, Srividya; Tripathi, Durgesh; Klimchuk, James A.; Mason, Helen E.

    2014-11-01

    Our knowledge of the diffuse emission that encompasses active regions is very limited. In this paper we investigate two off-limb active regions, namely, AR 10939 and AR 10961, to probe the underlying heating mechanisms. For this purpose, we have used spectral observations from Hinode/EIS and employed the emission measure (EM) technique to obtain the thermal structure of these diffuse regions. Our results show that the characteristic EM distributions of the diffuse emission regions peak at log T = 6.25 and the coolward slopes are in the range 1.4-3.3. This suggests that both low- as well as high-frequency nanoflare heating events are at work. Our results provide additional constraints on the properties of these diffuse emission regions and their contribution to the background/foreground when active region cores are observed on-disk.

  9. Diffuse gamm-ray Emission: Lessons and Perspectives

    SciTech Connect

    Moskalenko, Igor V.; Strong, Andrew W.; /Garching, Max Planck Inst., MPE

    2007-04-25

    The Galactic diffuse emission is potentially able to reveal much about the sources and propagation of cosmic rays (CR), their spectra and intensities in distant locations. It can possibly unveil WIMP dark matter (DM) through its annihilation signatures. The extragalactic background may provide vital information about the early stages of the universe, neutralino annihilation, and unresolved sources (blazars) and their cosmological evolution. The g-ray instrument EGRET on the CGRO contributed much to the exploration of the Galactic diffuse emission. The new NASA Gamma-ray Large Area Space Telescope (GLAST) is scheduled for launch in 2007; study of the diffuse g-ray emission is one of the priority goals. We describe current understanding of the diffuse emission and its potential for future discoveries.

  10. VERY LONG BASELINE ARRAY IMAGING OF PARSEC-SCALE RADIO EMISSIONS IN NEARBY RADIO-QUIET NARROW-LINE SEYFERT 1 GALAXIES

    SciTech Connect

    Doi, Akihiro; Asada, Keiichi; Inoue, Makoto; Fujisawa, Kenta; Nagai, Hiroshi; Hagiwara, Yoshiaki; Wajima, Kiyoaki

    2013-03-01

    We conducted Very Long Baseline Array (VLBA) observations of seven nearby narrow-line Seyfert 1 (NLS1) galaxies at 1.7 GHz ({lambda}18 cm) with milliarcsecond resolution. This is the first systematic very long baseline interferometry study focusing on the central parsec-scale regions of radio-quiet NLS1s. Five of the seven were detected at a brightness temperature of {approx}> 5 Multiplication-Sign 10{sup 6} K and contain radio cores with high brightness temperatures of >6 Multiplication-Sign 10{sup 7} K, indicating a nonthermal process driven by jet-producing central engines as in radio-loud NLS1s and other active galactic nucleus classes. VLBA images of MRK 1239, MRK 705, and MRK 766 exhibit parsec-scale jets with clear linear structures. A large portion of the radio power comes from diffuse emission components that are distributed within the nuclear regions ({approx}< 300 pc), which is a common characteristic throughout the observed NLS1s. Jet kinetic powers limited by the Eddington limit may be insufficient to allow the jets to escape to kiloparsec scales for these radio-quiet NLS1s with low-mass black holes of {approx}< 10{sup 7} M {sub Sun }.

  11. The Contribution of Ionizing Starts to the Far-Infrared and Radio Emission in the Milky Way: Evidence for a Swept-up Shell and Diffuse Ionized Halo Around the W4 Chimney/Supershell

    NASA Technical Reports Server (NTRS)

    Terebey, Susan; Oliversen, R. (Technical Monitor)

    1999-01-01

    Normandeau have proposed that W4 is a galactic chimney, the only chimney to-date identified in our Galaxy. Using the recent approx. 1 min resolution IGA (Infrared Galaxy Atlas) and DRAO (Dominion Royal Astrophysical Observatory) CGPS (Canadian Galactic Plane Survey) galactic plane surveys we analyze the far-infrared and radio structure of the W 4 chimney/supershell. We show W4 has a swept-up partially ionized shell of gas and dust which is powered by the OCl 352 star cluster. Analysis of the dust column density establishes there is dense interstellar material below the shell, directly showing the dense material which caused the lower shell expansion to stall. Due to much lower densities above the Galactic plane, the upper W4 shell achieved 'breakout' to form a Galactic chimney. Although the shell appears ionization bounded, it is very inhomogenous and an ionized halo provides evidence of significant Lyman continuum leakage. A large fraction of the OCl 352 cluster photons escape to large distances and are available to ionize the WIM (warm ionized medium) component of the interstellar medium.

  12. Two component model for X-ray emission of radio selected QSO's

    NASA Technical Reports Server (NTRS)

    Isobe, T.; Feigelson, E. D.; Singh, K. P.; Kembhavi, A.

    1986-01-01

    Using a large database of radio, optical, and x ray luminosities of AGNs with survival analysis, it was found that the x ray emission of the radio selected quasars has two components. One is related to the optical luminosity and the other is related to the radio luminosity.

  13. Large Scale Diffuse X-ray Emission from Abell 3571

    NASA Technical Reports Server (NTRS)

    Molnar, Sandor M.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    Observations of the Luman alpha forest suggest that there are many more baryons at high redshift than we can find in the Universe nearby. The largest known concentration of baryons in the nearby Universe is the Shapley supercluster. We scanned the Shapley supercluster to search for large scale diffuse emission with the Rossi X-ray Timing Explorer (RXTE), and found some evidence for such emission. Large scale diffuse emission may be associated to the supercluster, or the clusters of galaxies within the supercluster. In this paper we present results of scans near Abell 3571. We found that the sum of a cooling flow and an isothermal beta model adequately describes the X-ray emission from the cluster. Our results suggest that diffuse emission from A3571 extends out to about two virial radii. We briefly discuss the importance of the determination of the cut off radius of the beta model.

  14. Using Radio Emissions to Understand Solar Particle Events

    NASA Astrophysics Data System (ADS)

    Cane, H. V.; Richardson, I. G.; Erickson, W.

    2014-12-01

    Streams of low energy electrons propagating from the low corona out along open field lines into the heliosphere produce radio emissions that drift rapidly to successively lower frequencies (type III bursts). The presence of type III bursts allows particles detected in situ to be traced back to their associated solar events. This includes high energy ions which are nearly always accompanied by low energy electrons that generate type III bursts. By examining hundreds of type III radio bursts observed by the WAVES instrument on WIND that accompany energetic particle increases, a number of insights into the origins of these particle increases and particle propagation have been obtained and will be discussed. These insights include the presence of flare particles in the majority of particle events and the existence of cross-field transport in the interplanetary medium. A new result is that there are small Fe-rich increases observed by the EPACT instrument on WIND that are not associated with co-temporal flares (i.e., there are no accompanying type III bursts) meaning that the association rate of Fe-rich "impulsive" events with coronal mass ejections is more than 90%.

  15. Factors controlling the occurrence of the Jovian decametric radio emission

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. V.; Shaposhnikov, V. E.; Rucker, H. O.

    The statistical analysis of occurrence of Io-related Jovian decametric radio (DAM) emission shows that the occurrence of the emission increase when Io is in the longitude range 120° -300° (Io's longitude in the frame III). Another result of the statistical analysis is a predominance of DAM emission sources in the northern hemisphere of Jupiter. We show that these phenomena are the result of the joint effect of two factors - the variation of the efficiency of particle acceleration in the ionosphere of the satellite Io and the variation of the broadening of the angular spectrum of accelerated particles during their pass through Io's plasma torus depending on Io's longitude. The planes of the rotational, magnetic and centrifugal (for Io's torus) equators do not coincide. As a result the magnetic field near the satellite Io, which determines the accelerated particle efficiency [1], changes periodically. The most effective acceleration takes place in the longitude range 120° ≤ λIo ≤ 300° . Just in this longitude range the satellite Io appears to be "screened" by the plasma torus of the southern hemisphere. Making their way to the southern hemisphere, the particles are scattered in the torus plasma 2° , within which they and withdrawn from a narrow range of pitch-angles ∆θ0 can reach the southern hemisphere [2]. Therefore in the mentioned longitude range northern sources of DAM emission should be concentrated. At the same time in the longitude range, where the "screening" effect of the plasma torus in the southern direction is negligible, the efficiency of the accelerated mechanism is essentially smaller due to the decrease of the magnetic field near Io. Therefore the southern sources turn to be weaker and are located mainly outside the longitude range, where the emission from the northern sources predominates. Since the emission from the northern sources predominates, the active longitudes are determined basically by this emission and are in the range 120

  16. Type II solar radio bursts predicted by 3-D MHD CME and kinetic radio emission simulations

    NASA Astrophysics Data System (ADS)

    Schmidt, J. M.; Cairns, Iver H.

    2014-01-01

    Impending space weather events at Earth are often signaled by type II solar radio bursts. These bursts are generated upstream of shock waves driven by coronal mass ejections (CMEs) that move away from the Sun. We combine elaborate three-dimensional (3-D) magnetohydrodynamic predictions of realistic CMEs near the Sun with a recent analytic kinetic radiation theory in order to simulate two type II bursts. Magnetograms of the Sun are used to reconstruct initial solar magnetic and active region fields for the modeling. STEREO spacecraft data are used to dimension the flux rope of the initial CME, launched into an empirical data-driven corona and solar wind. We demonstrate impressive accuracy in time, frequency, and intensity for the two type II bursts observed by the Wind spacecraft on 15 February 2011 and 7 March 2012. Propagation of the simulated CME-driven shocks through coronal plasmas containing preexisting density and magnetic field structures that stem from the coronal setup and CME initiation closely reproduce the isolated islands of type II emission observed. These islands form because of a competition between the growth of the radio source due to spherical expansion and a fragmentation of the radio source due to increasingly radial fields in the nose region of the shock and interactions with streamers in the flank regions of the shock. Our study provides strong support for this theory for type II bursts and implies that the physical processes involved are understood. It also supports a near-term capability to predict and track these events for space weather predictions.

  17. On the elliptical polarization of Jupiter's decametric radio emission

    NASA Technical Reports Server (NTRS)

    Melrose, D. B.; Dulk, G. A.

    1991-01-01

    The origin of the 100 percent elliptical polarization of Jupiter's decametric radio emission is investigated. The transfer of polarized radiation when coupling of the Stokes parameters is important is studied, and it is found, in agreement with earlier authors, that the density in and near the source region must be so low that the polarization remains fixed along the ray path. The polarization of the cyclotron maser radiation in these circumstances is determined, and it is found that the dispersion relation of the rarefied plasma composed of energetic, anisotropic electrons is like that in the vacuum. It is also found that the growth rate is sufficient to saturate the maser and account for the observed brightness temperature. Possible sources of plasma in and near the source region in Jupiter's inner, polar magnetosphere are considered.

  18. Jovian radio emission below 5 mHz

    NASA Technical Reports Server (NTRS)

    Evans, D. R.

    1983-01-01

    The GS2 and GS3 operational modes of the planetary radio astronomy experiment on the Voyager 1 spacecraft are described as well as the dynamic spectra obtained. Repeated pulses of unpolarized emission (P bursts) recorded by GS2 were studied and attempts were made to correlate their occurrences, which have sudden onset and conclusion, with features in the GS3 dynamic spectra. The influence of the phase of any of the Galilean satellites or the subspacecraft system 3 longitude on P bursts was also investigated. Tables show Voyage 1 GS2 frequencies, high quality Jovian P bursts, and the geometry and pulse repetition frequency of the P burst groups. Plotted bursts are included.

  19. Analysis of Jovian decametric data: Study of radio emission mechanisms

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Arias, T. A.

    1985-01-01

    Data gathered by the Voyager 1 and Voyager 2 Planetary Radio Astronomy Experiments (PRA) are unique in many ways including their frequency range, time resolution, polarization information and geometric characteristics. Studies of rapidly varying phenomena have thus far been hampered by paper display techniques which require large amounts of paper to exploit the full PRA time resolution. A software package capable of effectively displaying full 6s resolution PRA dynamic spectra on a high quality video monitor while compensating for the aforementioned variations was developed. The most striking phenomena revealed by the new display techniques is called Modulated Spectral Activity (MSA) because of its appearance in dynamic spectra as a series at least two parallel emission bands which drift back and forth in frequency on time scales of tens of seconds. In an attempt to locate and understand the MSA source mechanism, a catalogue has been compiled of the start and end of all known MSA events.

  20. The relationship of storm severity to directionally resolved radio emissions

    NASA Technical Reports Server (NTRS)

    Johnson, R. O.; Bushman, M. L.; Sherrill, W. M.

    1980-01-01

    Directionally resolved atmospheric radio frequency emission data were acquired from thunderstorms occurring in the central and southwestern United States. In addition, RF sferic tracking data were obtained from hurricanes and tropical depressions occurring in the Gulf of Mexico. The data were acquired using a crossed baseline phase interferometer operating at a frequency of 2.001 MHz. The received atmospherics were tested for phase linearity across the array, and azimuth/elevation angles of arrival were computed in real time. A histogram analysis of sferic burst count versus azimuth provided lines of bearing to centers of intense electrical activity. Analysis indicates a consistent capability of the phase linear direction finder to detect severe meteorological activity to distances of 2000 km from the receiving site. The technique evidences the ability to discriminate severe storms from nonsevere storms coexistent in large regional scale thunderstorm activity.

  1. The magnetoionic modes and propagation properties of auroral radio emissions

    NASA Technical Reports Server (NTRS)

    Calvert, Wynne; Hashimoto, Kozo

    1990-01-01

    The nature of the magnetoionic wave modes which accompany the aurora is clarified here by a detailed analysis, using multiple techniques, of DE 1 auroral radio observations. All four of the possible magnetoionic wave modes are found to occur, apparently emitted from two different source regions on the same auroral field line. AKR originates primarily in the X mode near the electron cyclotron frequency, and is frequently also accompanied by a weaker O-mode component from the same location. The next most prominent auroral emission is the W-mode auroral hiss originating from altitudes always well below the DE 1 satellite at frequencies below the local cyclotron frequency. The previously reported Z-mode auroral radiation was also detected, but from sources also below the satellite at the poleward edge of the cavity, and not from the expected AKR source at the cyclotron frequency.

  2. Solar wind control of Jupiter's decametric radio emission

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.; Genova, F.; Desch, M. D.

    1986-01-01

    Observations of the solar wind close to Jupiter are compared with the decametric radio emission (DAM), using data recorded by Voyager 1 and Voyager 2 during 1979. The Non-Io DAM, recorded by both spacecraft and combined using the superposed epoch technique, is found to correlate with the solar wind density and velocity, as well as with the interplanetary magnetic field (IMF) magnitude. In agreement with earlier work using ground-based observations, there are indications that the Non-Io DAM is somehow associated with magnetic sector structure although the precise details of the relationship are still not known and it is not clear if this is a fundamental effect or some secondary effect of intercorrelation.

  3. Radio emission signature of Saturn immersions in Jupiter's magnetic tail

    NASA Technical Reports Server (NTRS)

    Desch, M. D.

    1983-01-01

    During the interval from about May through August 1981, when Voyager 2 was inbound to Saturn, the Planetary Radio Astronomy instrument measured repeated, dramatic decreases in the intensity of the Saturn Kilometric Radiation (SKR). The emission dropouts averaged two orders of magnitude below mean energy levels and varied from about 1 to 10 Saturn rotations in duration. Comparison with pre-Saturn encounter Voyager 1 observations (June to November, 1980) shows that the SKR dropouts were unique to the Voyager 2 observing interval, consistent with the closer proximity of Saturn to Jupiter's distant magnetotail in 1981. Further, the dropouts occurred on the average at times when Voyager 2 is known to have been within or near Jupiter's magnetic tail.

  4. Herringbone bursts associated with type II solar radio emission

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.; Robinson, R. D.

    1987-01-01

    Detailed observations of the herringbone (HB) fine structure on type II solar radio bursts are presented. Data from the Culgoora radiospectrograph, radiometer and radioheliograph are analyzed. The characteristic spectral profiles, frequency drift rates and exciter velocities, fluxes, source sizes, brightness temperatures, and polarizations of individual HB bursts are determined. Correlations between individual bursts within the characteristic groups of bursts and the properties of the associated type II bursts are examined. These data are compatible with HB bursts being radiation at multiples of the plasma frequency generated by electron streams accelerated by the type II shock. HB bursts are physically distinct phenomena from type II and type III bursts, differing significantly in emission processes and/or source conditions; this conclusion indicates that many of the presently available theoretical ideas for HB bursts are incorrect.

  5. Diffuse X-Ray Emission in the Milky Way

    NASA Technical Reports Server (NTRS)

    Snowden, Steve

    2011-01-01

    Our understanding of the diffuse X-ray emission from the Milky Way has evolved. extensively with time from when it was first observed in the 1960's, and its origin is still the subject of debate as much now as ever. This presentation will provide an overview of that evolution, the various emission components, emission mechanisms, an assessment of the current state of the field, and implications for eROSITA.

  6. Direct And Reprocessed Gamma-Ray Emission of Kpc-Scale Jets in FR I Radio Galaxies

    SciTech Connect

    Stawarz, L.; Kneiske, T.M.; Kataoka, J.; /Tokyo Inst. Tech. /KIPAC, Menlo Park

    2007-10-09

    We discuss the contribution of kiloparsec-scale jets in FR I radio galaxies to the diffuse {gamma}-ray background radiation. The analyzed {gamma}-ray emission comes from inverse-Compton scattering of starlight photon fields by the ultrarelativistic electrons whose synchrotron radiation is detected from such sources at radio, optical and X-ray energies. We find that these objects, under the minimum-power hypothesis (corresponding to a magnetic field of 300 {micro}G in the brightest knots of these jets), can contribute about one percent to the extragalactic {gamma}-ray background measured by EGRET. We point out that this result already indicates that the magnetic fields in kpc-scale jets of low-power radio galaxies are not likely to be smaller than 10 {micro}G on average, as otherwise the extragalactic {gamma}-ray background would be overproduced.

  7. Diffuse X-ray Emission from M101

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.; Pence, W. D.; Mukai, K.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The total 0.45-2.0 keV luminosity of M101 is 3.1 x 10(exp 39) ergs/s, of which 2.2 x 10(exp 39) ergs/s is due to diffuse emission. Of the diffuse emission, no more than 6% can be due to unresolved point sources such as X-ray binaries, and approx. 11% is due to dwarf stars. The diffuse emission traces the spiral arms and is roughly correlated with the H alpha and FUV (far ultraviolet) emission. The radial distribution closely follows the optical profile. The bulk of the diffuse emission is characterized by a two thermal component spectrum with kT = 0.20,0.75 keV, and the ratios of the emission measures of the two components is roughly constant as a function of both radius and surface brightness. The softer component has a sufficiently large covering factor that the bulk of the emission is likely extra-planar. We find no evidence of an extended axisymmetric X-ray halo, suggesting that any such halo has a strength much smaller than current predictions.

  8. Direct evidence for solar wind control of Jupiter's hectometer-wavelength radio emission

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Barrow, C. H.

    1984-01-01

    Observations of the solar wind close to Jupiter by the Voyager 1 and Voyager 2 spacecraft in 1978 and 1979 are compared with the hectometer-wavelength radio emission from the planet. A significant positive correlation is found between variations in the solar wind plasma density at Jupiter and the level of Jovian radio emission output. During the 173-day interval studied for the Voyager 2 data the radio emission displayed a long-term periodicity of about 13 days, identical to that shown by the solar wind density at Jupiter and consistent with the magnetic sector structure association already proposed for ground-based observations of the decameter-wavelength emission.

  9. Direct evidence for solar wind control of Jupiter's hectometer-wavelength radio emission

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Barrow, C. H.

    1984-01-01

    Observations of the solar wind close to Jupiter, by the Voyager 1 and Voyager 2 spacecraft in 1978 and 1979, are compared with the hectometer wavelength radio emission from the planet. A significant positive correlation is found between variations in the solar wind plasma density at Jupiter and the level of Jovian radio emission output. During the 173-day interval studied for the Voyager 2 data, the radio emission displayed a long term periodicity of about 13 days, identical to that shown by the solar wind density at Jupiter and consistent with the magnetic sector structure association already proposed for groundbased observations of the decameter wavelength emission.

  10. The source location of certain Jovian decametric radio emissions

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1983-01-01

    Evidence is presented which supports the concept that certain of the Jovian decametric radio waves originate as northern hemisphere extraordinary mode cyclotron emissions. The wave signals received by Voyager 1 near 10 MHz shortly after the closest approach to Jupiter were found to exhibit cusps in the fringe pattern which can be attributed to Faraday rotation in the Io plasma torus. At nearly the same time, the wave polarization near 1 MHz was found to exhibit a sudden reversal of its rotation sense, indicating that the wave path for those frequencies had also become perpendicular to the magnetic field at the spacecraft. It was determined that the waves came from the northern hemisphere at progressively lower altitudes with increasing frequency, and if the source is assumed to be associated with an L = 6 field line, the emission appears to have occurred near the source cyclotron frequency somewhere in the local midnight sector. The evidence indicates that the source is at the Io flux tube and that the emitted wave mode must have been extraordinary. In addition, the emitted wave polarization must have been substantially noncircular which would require a low plasma density near the source, much like that which occurs with auroral kilometric radiation at the earth.

  11. Modeling of the Intracloud Lightning Discharge Radio Emission

    NASA Astrophysics Data System (ADS)

    Iudin, D. I.; Iudin, F. D.; Hayakawa, M.

    2015-08-01

    This paper aims at analyzing the broadband part of electromagnetic emission from thunderclouds in a frequency range of tens of kilohertz to hundreds of megahertz. A model of the intracloud lightning discharge formation is presented. The lightning formation is described as a stochastic growth of the branching discharge channels, which is determined by the electrostatic field. The dynamics of the electric field and of the charge distribution over the lightning structure is calculated deterministically. The effect of the initial charge density in the cloud and the parameters of the conducting channels on spatio-temporal characteristics of the currents and structure of the lightning discharge is studied. The discharge radio emission is calculated by summing up the radiation fields of each channel at the observation point. The standard model for a separate discharge current is adopted, and the electromagnetic radiation in the far zone is estimated. It is found that the obtained frequency spectra exhibit a universal power-law behavior. The results of the modeling agree with known experimental data.

  12. Outer heliospheric radio emissions. II - Foreshock source models

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Kurth, William S.; Gurnett, Donald A.

    1992-01-01

    Observations of LF radio emissions in the range 2-3 kHz by the Voyager spacecraft during the intervals 1983-1987 and 1989 to the present while at heliocentric distances greater than 11 AU are reported. New analyses of the wave data are presented, and the characteristics of the radiation are reviewed and discussed. Two classes of events are distinguished: transient events with varying starting frequencies that drift upward in frequency and a relatively continuous component that remains near 2 kHz. Evidence for multiple transient sources and for extension of the 2-kHz component above the 2.4-kHz interference signal is presented. The transient emissions are interpreted in terms of radiation generated at multiples of the plasma frequency when solar wind density enhancements enter one or more regions of a foreshock sunward of the inner heliospheric shock. Solar wind density enhancements by factors of 4-10 are observed. Propagation effects, the number of radiation sources, and the time variability, frequency drift, and varying starting frequencies of the transient events are discussed in terms of foreshock sources.

  13. Parallel acceleration of diffuse scattering model for indoor radio prediction by CUDA

    NASA Astrophysics Data System (ADS)

    Meng, Xiao; Guo, Li-xin; Tao, Wei

    2013-10-01

    Radio wave propagation prediction is very important for the design of the mobile communication network. The raytracing algorithm is a commonly used computational method for site-specific prediction of the radio channel characteristics of wireless communication systems. However, it does not consider the diffuse scattering. Therefore, an indoor diffuse scattering model which based on diffuse scattering theory and FDTD is established. The diffuse scattering of indoor walls and ceiling and floor is calculated at a series of discrete time instance in this method. In recent years, the compute unified device architecture (CUDA) of NVIDIA takes advantage of the GPU for parallel computing, and greatly improve the speed of computation. Because there is a large number of data to deal with, in order to reduce the computation time, a GPU-based diffuse scattering model for indoor radio prediction is introduced in this paper, which fully utilizes the parallel processing capabilities of CUDA to further improve the computational efficiency. It can be found that good acceleration effect has been achieved.

  14. The Chandra M10l Megasecond: Diffuse Emission

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.

    2009-01-01

    Because MIOl is nearly face-on, it provides an excellent laboratory in which to study the distribution of X-ray emitting gas in a typical late-type spiral galaxy. We obtained a Chandra observation with a cumulative exposure of roughly 1 Ms to study the diffuse X-ray emission in MlOl. The bulk of the X-ray emission is correlated with the star formation traced by the FUV emission. The global FUV/Xray correlation is non-linear (the X-ray surface brightness is roughly proportional to the square root of the FUV surface brightness) and the small-scale correlation is poor, probably due to the delay between the FUV emission and the X-ray production ill star-forming regions. The X-ray emission contains only minor contributions from unresolved stars (approximates less than 3%), unresolved X-ray point sources (approximates less than 4%), and individual supernova remnants (approximates 3%). The global spectrum of the diffuse emission can be reasonably well fitted with a three component thermal model, but the fitted temperatures are not unique; many distributions of emission measure can produce the same temperatures when observed with the current CCD energy resolution. The spectrum of the diffuse emission depends on the environment; regions with higher X-ray surface brightnesses have relatively stronger hard components, but there is no significant evidence that the temperatures of the emitting components increase with surface brightness.

  15. Offset, tilted dipole models of Uranian smooth high-frequency radio emission

    NASA Technical Reports Server (NTRS)

    Schweitzer, Andrea E.; Romig, Joseph H.; Evans, David R.; Sawyer, Constance B.; Warwick, James W.

    1990-01-01

    The smooth high-frequency (SHF) component of the radio emission detected during the Voyager 2 encounter with Uranus (January 1986) is studied. An offset tilted dipole (OTD) investigation of the SHF emission at L shells is carried out within the range of the bursty source locations. A viable high L shell model is presented. It is suggested that Miranda, which reaches a minimum L shell at L = 5, may be related to the timing of several types of radio emissions.

  16. A radio-aware routing algorithm for reliable directed diffusion in lossy wireless sensor networks.

    PubMed

    Kim, Yong-Pyo; Jung, Euihyun; Park, Yong-Jin

    2009-01-01

    In Wireless Sensor Networks (WSNs), transmission errors occur frequently due to node failure, battery discharge, contention or interference by objects. Although Directed Diffusion has been considered as a prominent data-centric routing algorithm, it has some weaknesses due to unexpected network errors. In order to address these problems, we proposed a radio-aware routing algorithm to improve the reliability of Directed Diffusion in lossy WSNs. The proposed algorithm is aware of the network status based on the radio information from MAC and PHY layers using a cross-layer design. The cross-layer design can be used to get detailed information about current status of wireless network such as a link quality or transmission errors of communication links. The radio information indicating variant network conditions and link quality was used to determine an alternative route that provides reliable data transmission under lossy WSNs. According to the simulation result, the radio-aware reliable routing algorithm showed better performance in both grid and random topologies with various error rates. The proposed solution suggested the possibility of providing a reliable transmission method for QoS requests in lossy WSNs based on the radio-awareness. The energy and mobility issues will be addressed in the future work. PMID:22408493

  17. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  18. Radio Emissions Precursors of Impulsive Phase of Solar Flares Recorded by CALLISTO-BR

    NASA Astrophysics Data System (ADS)

    Fernandes, Francisco; Cunha-Silva, Rafael; Galdino, Marcela; Sodré, Zuleika

    2016-07-01

    A solar flare consists in an eruptive process and involves a sudden release of energy generated by processes carried on from instabilities in the magnetic configuration at solar atmosphere, generating emissions at different wavelengths. Usually, the pre-flare phase presents an increasing of soft X-ray, ultraviolet and radio emissions. In this work, we present a survey of solar radio emission recorded in metric wavelengths (45 - 250 MHz) by CALLISTO-BR spectrograph, belong to the e-Callisto network, associated with pre-flare phase of solar X-rays flares. A sample of 281 radio emissions was analyzed, and 120 were identified as precursor emissions of X-rays flares. The main results of the statistics can be summarized as: (a) 55% of the precursor radio emissions start less than 60 minutes before the beginning of the associated X-ray flare and about 20% start less than 20 minutes before the X-ray emission; (b) 27% of flares with precursor emissions are classified as B class, 61% of C class, and less than 22% of M class. No precursors radio emissions were associated with X class flare; (c) about 42% of radio precursor emissions are of type III bursts and 33% have complex morphology, as drifting pulsating structures. Analysis of global emission trends recorded during the precursor phase of the C4.8 flare of February 15, 2011 (14:32-14:51 UT) is also presented. The occurrence of radio emission during the pre-impulsive phase of a solar flare suggests the presence of plasma turbulence in the active region, since during the impulsive phase, when the energy is released, occur the heating of the plasma and increasing of soft X-ray emission as identified in the event analyzed. The results are presented and discussed.

  19. WFPC2 LRF Imaging of Emission-Line Nebulae in 3CR Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Privon, G. C.; O'Dea, C. P.; Baum, S. A.; Axon, D. J.; Kharb, P.; Buchanan, C. L.; Sparks, W.; Chiaberge, M.

    2008-04-01

    We present Hubble Space Telescope WFPC2 Linear Ramp Filter images of high surface brightness emission lines (either [O II], [O III], or H α + [N II]) in 80 3CR radio sources. We overlay the emission-line images on high-resolution VLA radio images (eight of which are new reductions of archival data) in order to examine the spatial relationship between the optical and radio emission. We confirm that the radio and optical emission-line structures are consistent with weak alignment at low redshift (z < 0.6) except in the compact steep-spectrum (CSS) radio galaxies where both the radio source and the emission-line nebulae are on galactic scales and strong alignment is seen at all redshifts. There are weak trends for the aligned emission-line nebulae to be more luminous and for the emission-line nebula size to increase with redshift and/or radio power. The combination of these results suggests that there is a limited but real capacity for the radio source to influence the properties of the emission-line nebulae at these low redshifts (z < 0.6). Our results are consistent with previous suggestions that both mechanical and radiant energy are responsible for generating alignment between the radio source and emission-line gas. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 05-26555. These observations are associated with program 5957.

  20. The connection between the 15 GHz radio and gamma-ray emission in blazars

    NASA Astrophysics Data System (ADS)

    Max-Moerbeck, W.; Richards, J. L.; Hovatta, T.; Pavlidou, V.; Pearson, T. J.; Readhead, A. C. S.; King, O. G.; Reeves, R.

    2015-03-01

    Since mid-2007 we have carried out a dedicated long-term monitoring programme at 15 GHz using the Owens Valley Radio Observatory 40 meter telescope (OVRO 40m). One of the main goals of this programme is to study the relation between the radio and gamma-ray emission in blazars and to use it as a tool to locate the site of high energy emission. Using this large sample of objects we are able to characterize the radio variability, and study the significance of correlations between the radio and gamma-ray bands. We find that the radio variability of many sources can be described using a simple power law power spectral density, and that when taking into account the red-noise characteristics of the light curves, cases with significant correlation are rare. We note that while significant correlations are found in few individual objects, radio variations are most often delayed with respect to the gamma-ray variations. This suggests that the gamma-ray emission originates upstream of the radio emission. Because strong flares in most known gamma-ray-loud blazars are infrequent, longer light curves are required to settle the issue of the strength of radio-gamma cross-correlations and establish confidently possible delays between the two. For this reason continuous multiwavelength monitoring over a longer time period is essential for statistical tests of jet emission models.

  1. EMISSION PATTERNS OF SOLAR TYPE III RADIO BURSTS: STEREOSCOPIC OBSERVATIONS

    SciTech Connect

    Thejappa, G.; Bergamo, M.; MacDowall, R. J. E-mail: mbergamo@umd.edu

    2012-02-01

    Simultaneous observations of solar type III radio bursts obtained by the STEREO A, B, and WIND spacecraft at low frequencies from different vantage points in the ecliptic plane are used to determine their directivity. The heliolongitudes of the sources of these bursts, estimated at different frequencies by assuming that they are located on the Parker spiral magnetic field lines emerging from the associated active regions into the spherically symmetric solar atmosphere, and the heliolongitudes of the spacecraft are used to estimate the viewing angle, which is the angle between the direction of the magnetic field at the source and the line connecting the source to the spacecraft. The normalized peak intensities at each spacecraft R{sub j} = I{sub j} /{Sigma}I{sub j} (the subscript j corresponds to the spacecraft STEREO A, B, and WIND), which are defined as the directivity factors are determined using the time profiles of the type III bursts. It is shown that the distribution of the viewing angles divides the type III bursts into: (1) bursts emitting into a very narrow cone centered around the tangent to the magnetic field with angular width of {approx}2 Degree-Sign and (2) bursts emitting into a wider cone with angular width spanning from {approx} - 100 Degree-Sign to {approx}100 Degree-Sign . The plots of the directivity factors versus the viewing angles of the sources from all three spacecraft indicate that the type III emissions are very intense along the tangent to the spiral magnetic field lines at the source, and steadily fall as the viewing angles increase to higher values. The comparison of these emission patterns with the computed distributions of the ray trajectories indicate that the intense bursts visible in a narrow range of angles around the magnetic field directions probably are emitted in the fundamental mode, whereas the relatively weaker bursts visible to a wide range of angles are probably emitted in the harmonic mode.

  2. PREDICTION OF TYPE II SOLAR RADIO BURSTS BY THREE-DIMENSIONAL MHD CORONAL MASS EJECTION AND KINETIC RADIO EMISSION SIMULATIONS

    SciTech Connect

    Schmidt, J. M.; Cairns, Iver H.; Hillan, D. S.

    2013-08-20

    Type II solar radio bursts are the primary radio emissions generated by shocks and they are linked with impending space weather events at Earth. We simulate type II bursts by combining elaborate three-dimensional MHD simulations of realistic coronal mass ejections (CMEs) at the Sun with an analytic kinetic radiation theory developed recently. The modeling includes initialization with solar magnetic and active region fields reconstructed from magnetograms of the Sun, a flux rope of the initial CME dimensioned with STEREO spacecraft observations, and a solar wind driven with averaged empirical data. We demonstrate impressive accuracy in time, frequency, and intensity for the CME and type II burst observed on 2011 February 15. This implies real understanding of the physical processes involved regarding the radio emission excitation by shocks and supports the near-term development of a capability to predict and track these events for space weather prediction.

  3. Upper limits on gravitational wave emission from 78 radio pulsars

    NASA Astrophysics Data System (ADS)

    Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith, P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain, M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer, K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burmeister, O.; Busby, D.; Butler, W. E.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Carter, K.; Casey, M. M.; Castaldi, G.; Cepeda, C.; Chalkey, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini, F.; Chin, D.; Chin, E.; Chow, J.; Christensen, N.; Clark, J.; Cochrane, P.; Cokelaer, T.; Colacino, C. N.; Coldwell, R.; Conte, R.; Cook, D.; Corbitt, T.; Coward, D.; Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Croce, R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Debra, D.; Degallaix, J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; di Credico, A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.; Dumas, J.-C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Ganezer, K. S.; Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L.; González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Howell, E.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito, M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.; Leiner, J.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo, M.; Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.; Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McNabb, J. W. C.; McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.; Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton, G.; Nishizawa, A.; Nocera, F.; Numata, K.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Parameswariah, C.; Patel, P.; Pedraza, M.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Regimbau, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.; de La Jordana, L. Sancho; Sandberg, V.; Sanders, G. H.; Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Savov, P.; Sazonov, A.; Schediwy, S.; Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.; Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K.-X.; Sung, M.; Sutton, P. J.; Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor, R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Tyler, W.; Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck, C.; van Putten, M.; Varvella, M.; Vass, S.; Vecchio, A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, H.; Ward, R.; Watts, K.; Webber, D.; Weidner, A.; Weinert, M.; Weinstein, A.; Weiss, R.; Wen, S.; Wette, K.; Whelan, J. T.; Whitbeck, D. M.; Whitcomb, S. E.; Whiting, B. F.; Wiley, S.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Wilmut, I.; Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods, D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Yunes, N.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M.; Zur Mühlen, H.; Zweizig, J.; Kramer, M.; Lyne, A. G.

    2007-08-01

    We present upper limits on the gravitational wave emission from 78 radio pulsars based on data from the third and fourth science runs of the LIGO and GEO 600 gravitational wave detectors. The data from both runs have been combined coherently to maximize sensitivity. For the first time, pulsars within binary (or multiple) systems have been included in the search by taking into account the signal modulation due to their orbits. Our upper limits are therefore the first measured for 56 of these pulsars. For the remaining 22, our results improve on previous upper limits by up to a factor of 10. For example, our tightest upper limit on the gravitational strain is 2.6×10-25 for PSR J1603-7202, and the equatorial ellipticity of PSR J2124 3358 is less than 10-6. Furthermore, our strain upper limit for the Crab pulsar is only 2.2 times greater than the fiducial spin-down limit.

  4. Constraining the Vela Pulsar's Radio Emission Region Using Nyquist-limited Scintillation Statistics

    NASA Astrophysics Data System (ADS)

    Johnson, M. D.; Gwinn, C. R.; Demorest, P.

    2012-10-01

    Using a novel technique, we achieve ~100 picoarcsec resolution and set an upper bound of less than 4 km for the characteristic size of the Vela pulsar's emission region. Specifically, we analyze flux-density statistics of the Vela pulsar at 760 MHz. Because the pulsar exhibits strong diffractive scintillation, these statistics convey information about the spatial extent of the radio emission region. We measure both a characteristic size of the emission region and the emission sizes for individual pulses. Our results imply that the radio emission altitude for the Vela pulsar at this frequency is less than 340 km.

  5. CONSTRAINING THE VELA PULSAR'S RADIO EMISSION REGION USING NYQUIST-LIMITED SCINTILLATION STATISTICS

    SciTech Connect

    Johnson, M. D.; Gwinn, C. R.; Demorest, P. E-mail: cgwinn@physics.ucsb.edu

    2012-10-10

    Using a novel technique, we achieve {approx}100 picoarcsec resolution and set an upper bound of less than 4 km for the characteristic size of the Vela pulsar's emission region. Specifically, we analyze flux-density statistics of the Vela pulsar at 760 MHz. Because the pulsar exhibits strong diffractive scintillation, these statistics convey information about the spatial extent of the radio emission region. We measure both a characteristic size of the emission region and the emission sizes for individual pulses. Our results imply that the radio emission altitude for the Vela pulsar at this frequency is less than 340 km.

  6. Search for X-ray emission from the radio lobes of Scorpius X-1

    NASA Astrophysics Data System (ADS)

    Geldzahler, Barry; Hertz, Paul

    1987-11-01

    Images obtained with the low-energy imaging telescope on board the European X-Ray Astronomy Satellite have been searched for X-ray emission from the radio lobes of Sco X-1. After the scattered photons from the image of the central X-ray source in Sco X-1 are taken into account, no significant additional X-ray flux from the radio lobes can be detected above the background. The 3 sigma upper limit is less than 0.7 micro-Jy for the northeast radio lobe and less than 1.0 micro-J for the southwest radio lobe. This eliminates the embedded source model of Kundt and Gopal-Krishna as a viable model of the radio emission. These limits are three orders of magnitude too high to constrain models of synchrotron or inverse Compton X-ray emission.

  7. Evaluation of the vertical turbulent diffusion coefficient of industrial emissions

    NASA Astrophysics Data System (ADS)

    Ryzhakova, N. K.; Pokrovskaya, E. A.; Babicheva, V. O.

    2015-07-01

    A method for determining the vertical turbulent diffusion coefficients of industrial emissions in complex terrain and with long exposure times has been considered. The method is based on the usage of the distribution of the polluting impurity measured along a certain direction from a point source. The measurements are carried out with moss-biomonitors for a CHP in Novosibirsk.

  8. Diffuse X-ray emission from the superbubble N70

    NASA Astrophysics Data System (ADS)

    Reyes-Iturbide, J.; Rosado, M.; Rodríguez-González, A.; Velázquez, P. F.; Ambrocio-Cruz, P.

    2011-10-01

    We present a study of the diffuse X-ray emission from the superbubbles N70. Using observations from the XMM-Newton satellite we obtained images and spectra over the energy range 0.2 to 10 keV of this superbubble.

  9. NEW LIMITS ON RADIO EMISSION FROM X-RAY DIM ISOLATED NEUTRON STARS

    SciTech Connect

    Kondratiev, V. I.; McLaughlin, M. A.; Lorimer, D. R.; Burgay, M.; Possenti, A.; Turolla, R.; Popov, S. B.; Zane, S. E-mail: maura.mclaughlin@mail.wvu.edu E-mail: burgay@ca.astro.it E-mail: roberto.turolla@pd.infn.it E-mail: sergepolar@gmail.com

    2009-09-01

    We have carried out a search for radio emission at 820 MHz from six X-ray dim isolated neutron stars (XDINSs) with the Robert C. Byrd Green Bank Radio Telescope. No transient or pulsed emission was found using fast folding, fast Fourier transform, and single-pulse searches. The corresponding flux limits are about 0.01 mJy for pulsed emission, depending on the integration time for the particular source and assuming a duty cycle of 2%, and 20 mJy for single dispersed pulses. These are the most sensitive limits to date on radio emission from XDINSs. There is no evidence for isolated radio pulses, as seen in a class of neutron stars known as rotating radio transients. Our results imply that either the radio luminosities of these objects are lower than those of any known radio pulsars, or they could simply be long-period nearby radio pulsars with high magnetic fields beaming away from the Earth. To test the latter possibility, we would need around 40 similar sources to provide a 1{sigma} probability of at least one of them beaming toward us. We also give a detailed description of our implementation of the Fast Folding Algorithm.

  10. Sharing Low Frequency Radio Emissions in the Virtual Observatory: Application for JUNO-Ground-Radio Observations Support.

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Savalle, R.; Zarka, P. M.; Anderson, M.; Andre, N.; Coffre, A.; Clarke, T.; Denis, L.; Ebert, R. W.; Erard, S.; Genot, V. N.; Girard, J. N.; Griessmeier, J. M.; Hess, S. L.; Higgins, C. A.; Hobara, Y.; Imai, K.; Imai, M.; Kasaba, Y.; Konovalenko, A. A.; Kumamoto, A.; Kurth, W. S.; Lamy, L.; Le Sidaner, P.; Misawa, H.; Nakajo, T.; Orton, G. S.; Ryabov, V. B.; Sky, J.; Thieman, J.; Tsuchiya, F.; Typinski, D.

    2015-12-01

    In the frame of the preparation of the NASA/JUNO and ESA/JUICE (Jupiter Icy Moon Explorer) missions, and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet-VESPA (Virtual European Solar and Planetary Access). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nancay Decameter Array are already shared on the planetary science VO using this protocol, as well as data from the Iitate Low Frquency Radio Antenna, in Japan. Amateur radio data from the RadioJOVE project is also available. The attached figure shows data from those three providers. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  11. Radio emission from extensive air showers as a method for cosmic-ray detection

    SciTech Connect

    Kalmykov, N. N.; Konstantinov, A. A.; Engel, R.

    2010-07-15

    At the present time, radio emission from extensive air showers (EASs) is being considered as a new promising method for detecting cosmic rays of energy in the region E{sub 0} > 5 x 10{sup 16} eV. Radio emission from an EAS whose development is simulated by the Monte Carlo method is calculated here. The field of radio emission from an EAS is calculated on the basis of two representations of a shower: that as a set of individual particles and that as a continuous set of currents. The sensitivity of radio emission to EAS parameters in the frequency range 10-100 MHz is investigated. The results can be used to analyze experiments that being presently performed (CODALEMA and LOPES) and those that are being planned for the future.

  12. Ultraviolet and Radio Emission from the Northern Middle Lobe of Centaurus A

    NASA Technical Reports Server (NTRS)

    Neff, Susan

    2009-01-01

    We present deep GALEX ultraviolet (135 - 280 nm) images of the Northern Middle Lobe (NML) of the nearby radio galaxy Centaurus A. We find that the ultraviolet emission appears to have a complex interaction with soft X-ray, H-alpha emission, and radio emission, which should help constrain various models of energy transport in the NML. We also present new 90cm VLA images of the NML. The radio morphology at this wavelength is indicative of a more complex system than either a straightforward flaring jet (Morganti et al. 1999) or a bubble with trailing stem (Saxton et al. 2001). New limits are placed on the lack of radio emission from any corresponding southern counterpart to the NML.

  13. Radio-Quiet Quasars in the VIDEO Survey: Evidence for AGN-powered radio emission below 1 mJy

    NASA Astrophysics Data System (ADS)

    White, Sarah; Jarvis, Matt; Haeussler, Boris; Maddox, Natasha

    2015-01-01

    Several lines of evidence suggest that the interaction between active galactic nucleus (AGN) activity and star formation is responsible for the co-evolution of black hole mass with galaxy bulge mass. Therefore studying this interplay is crucial to our understanding of galaxy formation and evolution. The new generation of radio surveys are able to play a key role in this area, as both processes produce radio emission.We use a combination of optical and near-infrared photometry to select a sample of 72 quasars from the VISTA Deep Extragalactic Observations (VIDEO) Survey, over 1 deg2. The depth of VIDEO allows us to study very low accretion rates and/or lower-mass black holes. 26% of the candidate quasar sample has been spectroscopically confirmed using the Southern African Large Telescope and the VIMOS VLT Deep Survey. We then use a radio-stacking technique to sample below the nominal flux-density threshold of existing Very Large Array data at 1.4 GHz. In agreement with other work, we show that a power-law fit to the radio number counts is inadequate, with an upturn in the counts being observed at these faint luminosities. Previous authors attribute this to an emergent star-forming population. However, by comparing radio emission from our quasars with that from a control sample of galaxies, we suggest that this emission is predominantly caused by accretion activity. Further support for an AGN origin is provided by a comparison of two independent estimates of star formation rate. These findings have important implications for modelling radio populations below 1 mJy, which is necessary for the development of the Square Kilometre Array.

  14. Searches for correlated X-ray and radio emission from X-ray burst sources

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.; Catura, R. C.; Lamb, P. A.; White, N. E.; Sanford, P. W.; Hoffman, J. A.; Lewin, W. H. G.; Jernigan, J. G.

    1978-01-01

    The NRAO Green Bank interferometer has been used to monitor MXB 1730-335 and MXB 1837+05 during periods when 68 X-ray bursts were detected by X-ray observations. No significant radio emission was detected from these objects, or from MXB 1820-30 and MXB 1906+00, which emitted no bursts throughout the simultaneous observations. The data place upper limits on radio emission from these objects in the 2695 and 8085 MHz bands.

  15. LATE-TIME RADIO EMISSION FROM X-RAY-SELECTED TIDAL DISRUPTION EVENTS

    SciTech Connect

    Bower, Geoffrey C.; Cenko, S. Bradley; Silverman, Jeffrey M.; Bloom, Joshua S.; Metzger, Brian D.

    2013-02-15

    We present new observations with the Karl G. Jansky Very Large Array of seven X-ray-selected tidal disruption events (TDEs). The radio observations were carried out between 9 and 22 years after the initial X-ray discovery, and thus probe the late-time formation of relativistic jets and jet interactions with the interstellar medium in these systems. We detect a compact radio source in the nucleus of the galaxy IC 3599 and a compact radio source that is a possible counterpart to RX J1420.4+5334. We find no radio counterparts for five other sources with flux density upper limits between 51 and 200 {mu}Jy (3{sigma}). If the detections truly represent late radio emission associated with a TDE, then our results suggest that a fraction, {approx}> 10%, of X-ray-detected TDEs are accompanied by relativistic jets. We explore several models for producing late radio emission, including interaction of the jet with gas in the circumnuclear environment (blast wave model), and emission from the core of the jet itself. Upper limits on the radio flux density from archival observations suggest that the jet formation may have been delayed for years after the TDE, possibly triggered by the accretion rate dropping below a critical threshold of {approx}10{sup -2}-10{sup -3} M-dot {sub Edd}. The non-detections are also consistent with this scenario; deeper radio observations can determine whether relativistic jets are present in these systems. The emission from RX J1420.4+5334 is also consistent with the predictions of the blast wave model; however, the radio emission from IC 3599 is substantially underluminous, and its spectral slope is too flat, relative to the blast wave model expectations. Future radio monitoring of IC 3599 and RX J1420.4+5334 will help to better constrain the nature of the jets in these systems.

  16. A Giant Radio Flare from Cygnus X-3 with Associated Gamma-Ray Emission

    NASA Technical Reports Server (NTRS)

    Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.; Corbet, R. H. D.; Miller-Jones, J. C. A.; Richards, J. L.; Pooley, G.; Trushkin, S.; Dubois, R.; Hill, A. B.; Kerr, M.; Max-Moerbeck, W.; Readhead, A. C. S.; Bodaghee, A.; Tudose, V.; Parent, D.; Wilms, J.; Pottschmidt, K.

    2012-01-01

    With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 2011, Cyg X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy gamma-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (approx 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E greater than or equal 100 MeV) reveal renewed gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of gamma-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. No gamma rays are observed during the one-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio quenched) state trigger gamma-ray emission, implying a connection to the accretion process, and also that the gamma-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.

  17. A plethora of diffuse steep spectrum radio sources in Abell 2034 revealed by LOFAR

    NASA Astrophysics Data System (ADS)

    Shimwell, T. W.; Luckin, J.; Brüggen, M.; Brunetti, G.; Intema, H. T.; Owers, M. S.; Röttgering, H. J. A.; Stroe, A.; van Weeren, R. J.; Williams, W. L.; Cassano, R.; de Gasperin, F.; Heald, G. H.; Hoang, D. N.; Hardcastle, M. J.; Sridhar, S. S.; Sabater, J.; Best, P. N.; Bonafede, A.; Chyży, K. T.; Enßlin, T. A.; Ferrari, C.; Haverkorn, M.; Hoeft, M.; Horellou, C.; McKean, J. P.; Morabito, L. K.; Orrù, E.; Pizzo, R.; Retana-Montenegro, E.; White, G. J.

    2016-06-01

    With Low-Frequency Array (LOFAR) observations, we have discovered a diverse assembly of steep spectrum emission that is apparently associated with the intracluster medium (ICM) of the merging galaxy cluster Abell 2034. Such a rich variety of complex emission associated with the ICM has been observed in few other clusters. This not only indicates that Abell 2034 is a more interesting and complex system than previously thought but it also demonstrates the importance of sensitive and high-resolution, low-frequency observations. These observations can reveal emission from relativistic particles which have been accelerated to sufficient energy to produce observable emission or have had their high energy maintained by mechanisms in the ICM. The most prominent feature in our maps is a bright bulb of emission connected to two steep spectrum filamentary structures, the longest of which extends perpendicular to the merger axis for 0.5 Mpc across the south of the cluster. The origin of these objects is unclear, with no shock detected in the X-ray images and no obvious connection with cluster galaxies or AGNs. We also find that the X-ray bright region of the cluster coincides with a giant radio halo with an irregular morphology and a very steep spectrum. In addition, the cluster hosts up to three possible radio relics, which are misaligned with the cluster X-ray emission. Finally, we have identified multiple regions of emission with a very steep spectral index that seem to be associated with either tailed radio galaxies or a shock.

  18. Diffuse and fugitive emission dose assessment on the Hanford Site

    SciTech Connect

    Davis, W.E.; Schmidt, J.W.; Gleckler, B.P.; Rhoads, K.

    1995-01-01

    On February 3, 1993, the US Department of Energy, Richland Operations Office (RL), received a Compliance Order and Information Request from the Director of the Air and Toxics Division of the US Environmental Protection Agency (EPA), Region 10. The Compliance Order requires RL to (1) evaluate all radionuclide emission points at the Hanford Site to determine which are subject to continuous emission measurement requirements in 40 Code of Federal Regulations (CFR) 61, Subpart H, and (2) continuously measure radionuclide emissions in accordance with 40 CFR 61.93. The Information Request requires RL to provide a written Compliance Plan to meet the requirements of the Compliance Order. The RL Compliance Plan included as one of its milestones the requirement to develop a Federal Facility Compliance Agreement (FFCA). An FFCA was negotiated between RL and the EPA, Region 10, and was entered into on February 7, 1994. One of the milestones was to provide EPA, Region 10, with a copy of the Federal Clean Air Act Title V operating air permit application and Air Emission Inventory (AEI) concurrent with its submission to the Washington State Department of Ecology. The AEI will include an assessment of the diffuse and fugitive emissions from the Hanford Site. This assessment does not identify any diffuse or fugitive emission source that would cause an effective dose equivalent greater than 0.1 mrem/yr.

  19. X-ray inverse Compton emission from the radio halo of M87. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Wood, P. A. D.

    1985-01-01

    M87 has been observed in the 0.2-4 KeV X-ray band using the High Resolution Imager on the Einstein Observatory, and at 1.452 GHz using the Very Large Array. The radio map showed that the halo contained prominent asymmetries to the east and southwest. The X-ray map indicated similar asymmetries, but they were imbedded in the diffuse hot gas that surrounds the core out to a radius of several arcminutes. The hot X-ray emitting gas was assumed to be spherically symmetric and could, therefore, be subtracted from the image. The resultant image was asymmetric with major lobes to the east and southwest that coincide approximately with the asymmetries in the radio halo. The data indicates that inverse Compton emission is a plausible model for the X-rays coming from the asymmetric component.

  20. The Diffuse Emission in the Spiral NGC 6946

    NASA Astrophysics Data System (ADS)

    Schlegel, E. M.; Holt, S. S.; Petre, R.

    2002-12-01

    We describe the 57.8 ksec Chandra observation of the diffuse emission in the nearby face-on spiral NGC 6946. After the removal of point sources, about 5900 net counts remain. The spectrum may be fit either with variable Mekal model or a thermal bremsstrahlung plus gaussians. The continuum temperatures for both models are identical within the uncertainties at 0.25 keV. For the variable Mekal model, only the abundances of Si and Fe differ significantly from solar with the abundance of Si elevated to about 3 while the Fe abundance is about 0.7. For the bremsstrahlung model, seven zero-width gaussians must be included to provide a good fit to the spectrum. The diffuse emission follows the spiral arms; an overlay of X-ray contours on a 6 cm polarized intensity map of Beck & Hoernes (1996) confirms the interarm appearance of the polarized emission. An extrapolation of the point source luminosity distribution shows the diffuse emission can not be the sum of unresolved point sources. This research was supported by NASA contract number NAS8-39073 to the Smithsonian Astrophysical Observatory.

  1. Diffuse and fugitive radionuclide emissions assessment for the Hanford Site

    SciTech Connect

    Davis, W.E.; Gleckler, B.P.; Schmidt, J.W.; Rhoads, K.

    1996-12-31

    On February 7, 1994 a Federal Facility Compliance Agreement (FFCA) was signed by the Department of Energy Richland Operations and the US Environmental Protection Agency, EPA, Region 10. The FFCA defines the actions needed to bring the Hanford Site into compliance with 40 Code of Federal Regulations Part 61 Subpart H. One of the milestones specified by the FFCA was that the Hanford Site is to provide EPA with a copy of the Federal Clean Air Act Title V operating air permit application and Air Emission Inventory (AEI) concurrent with its submission to the Washington State Department of Ecology. The AEI includes a dose assessment of the radionuclide emissions from diffuse and unmonitored sources at the Hanford Site. This paper describes how the dose assessment was performed using upwind and downwind radionuclide air concentration measurements. The paper also describes results from two diffuse and fugitive emissions studies. The studies were performed at several diffuse and fugitive emissions sites and utilized arrays of upwind and downwind low volume (2 cfm) air samplers. One study also utilized 4 high volume (40 cfm) PM{sub 10} air samplers to sample during high wind conditions.

  2. Systematic Search of the Nearest Stars for Exoplanetary Radio Emission: Preliminary results from LOFAR

    NASA Astrophysics Data System (ADS)

    Winterhalter, Daniel; Knapp, Mary

    2016-04-01

    Radio observations have been used as a tool to search for exoplanets since before the confirmed discovery of the first extrasolar planet. To date, neither targeted observations of known exoplanets nor surveys have produced definitive detections of exoplanetary radio emission. We present the framework for, and initial results from, a blind radio survey of the nearest star systems for exoplanetary radio emission. The very closest stars were chosen to minimize the dilution of potential radio signals by distance and thereby increase the probability of a detection. The goal of this survey is to obtain, at minimum, physically meaningful upper limits on radio emission from (or modulated by) substellar companions of the nearest stars. The target selection criteria for this survey are restricted to distance, observability for LOFAR and the VLA, and data quality metrics only. Stellar properties are not considered because preconceptions about the types of systems most likely to exhibit radio emission have not been observationally confirmed and may be incorrect. Two survey targets, GJ 411 and GJ 725A/B, have been observed with the LOFAR telescope LBA (30-75 MHz) system. A series of 4 2-hour integrations and 1 3-hour integration were made for each target of a period of approximately 2 weeks. Additional observations are underway with LOFAR as well as the VLA. Preliminary results from the first LOFAR observations are presented.

  3. Wave propagation and earth satellite radio emission studies

    NASA Technical Reports Server (NTRS)

    Yeh, K. C.; Liu, C. H.; Flaherty, B. J.

    1974-01-01

    Radio propagation studies of the ionosphere using satellite radio beacons are described. The ionosphere is known as a dispersive, inhomogeneous, irregular and sometimes even nonlinear medium. After traversing through the ionosphere the radio signal bears signatures of these characteristics. A study of these signatures will be helpful in two areas: (1) It will assist in learning the behavior of the medium, in this case the ionosphere. (2) It will provide information of the kind of signal characteristics and statistics to be expected for communication and navigational satellite systems that use the similar geometry.

  4. FAR-ULTRAVIOLET DIFFUSE EMISSION FROM THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Pradhan, Ananta C.; Pathak, Amit; Murthy, Jayant

    2010-08-01

    We present the first observations of diffuse radiation in the far-ultraviolet (FUV; 1000-1150 A) from the Large Magellanic Cloud based on observations made with the Far Ultraviolet Spectroscopic Explorer. The fraction of the total radiation in the field emitted as diffuse radiation is typically 5%-20% with a high of 45% near N70 where there are few exciting stars, indicating that much of the emission is not due to nearby stars. Much less light is scattered in the FUV than at longer wavelengths, with the stellar radiation going into heating the interstellar dust.

  5. The birthplace of planetary radio astronomy: The Seneca, Maryland observatory 50 years after Burke and Franklin's Jupiter radio emission discovery.

    NASA Astrophysics Data System (ADS)

    Garcia, L. N.; Thieman, J. R.; Higgins, C. A.

    2004-12-01

    Burke and Franklin's discovery of radio emissions from Jupiter in 1955 effectively marked the birth of the field of planetary radio astronomy. The discovery was made near Seneca, Maryland using the Department of Terrestrial Magnetism/Carnegie Institution of Washington's Mills Cross Array. Fifty years later there is very little evidence of this 96-acre X-shaped array of dipoles still in existence, nor evidence of any of the other antennas used at this site. The site, now known as the McKee Besher Wildlife Management Area, is owned by the State of Maryland Department of Natural Resources. Radio Jove, a NASA/GSFC education and public outreach project, will recognize the 50th anniversary of this discovery through an historic reenactment using their receiver and dual-dipole array system. Our search through the DTM/CIW archives, our visit to the site to look for evidence of this array, and other efforts at commemorating this anniversary will be described.

  6. RFID Transponders' RF Emissions in Aircraft Communication and Navigation Radio Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Koppen Sandra V.; Fersch, Mariatheresa S.

    2008-01-01

    Radiated emission data in aircraft communication and navigation bands are presented for several active radio frequency identification (RFID) tags. The individual tags are different in design, operation and transmitting frequencies. The process for measuring the tags emissions in a reverberation chamber is discussed. Measurement issues dealing with tag interrogation, low level measurement in the presence of strong transmissions, and tags low duty factors are discussed. The results show strong emissions, far exceeding aircraft emission limits and can be of potential interference risks.

  7. Diffuse X-Ray Emission in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Tyler, Krystal; Quillen, A. C.; LaPage, Amanda; Rieke, George H.

    2004-07-01

    We compare the soft diffuse X-ray emission from Chandra images of 12 nearby intermediate-inclination spiral galaxies to the morphology seen in Hα, molecular gas, and mid-infrared emission. We find that diffuse X-ray emission is often located along spiral arms in the outer parts of spiral galaxies but tends to be distributed in a more nearly radially symmetric morphology in the center. The X-ray morphology in the spiral arms matches that seen in the mid-infrared or Hα and thus implies that the X-ray emission is associated with recent active star formation. In the spiral arms there is a good correlation between the level of diffuse X-ray emission and that in the mid-infrared in different regions. The correlation between X-ray and mid-IR flux in the galaxy centers is less strong. We also find that the central X-ray emission tends to be more luminous in galaxies with brighter bulges, suggesting that more than one process is contributing to the level of central diffuse X-ray emission. We see no strong evidence for X-ray emission trailing the location of high-mass star formation in spiral arms. However, population synthesis models predict a high mechanical energy output rate from supernovae for a time period that is about 10 times longer than the lifetime of massive ionizing stars, conflicting with the narrow appearance of the arms in X-rays. The fraction of supernova energy that goes into heating the interstellar medium must depend on environment and is probably higher near sites of active star formation. The X-ray estimated emission measures suggest that the volume filling factors and scale heights are low in the outer parts of these galaxies but higher in the galaxy centers. The differences between the X-ray properties and morphology in the centers and outer parts of these galaxies suggest that galactic fountains operate in outer galaxy disks but that winds are primarily driven from galaxy centers.

  8. Shock-powered radio emission from V5589 Sagittarii (Nova Sgr 2012 #1)

    NASA Astrophysics Data System (ADS)

    Weston, Jennifer H. S.; Sokoloski, J. L.; Chomiuk, Laura; Linford, Justin D.; Nelson, Thomas; Mukai, Koji; Finzell, Tom; Mioduszewski, Amy; Rupen, Michael P.; Walter, Frederick M.

    2016-08-01

    Since the Fermi discovery of γ-rays from novae, one of the biggest questions in the field has been how novae generate such high-energy emission. Shocks must be a fundamental ingredient. Six months of radio observations of the 2012 Nova V5589 Sgr with the VLA and 15 weeks of X-ray observations with Swift/XRT show that the radio emission consisted of: (1) a shock-powered, non-thermal flare; and (2) weak thermal emission from 10-5 M⊙ of freely expanding, photoionized ejecta. Absorption features in the optical spectrum and the peak optical brightness suggest that V5589 Sgr lies 4 kpc away (3.2-4.6 kpc). The shock-powered flare dominated the radio light curve at low frequencies before day 100. The spectral evolution of the radio flare, its high radio brightness temperature, the presence of unusually hard (kTx > 33 keV) X-rays, and the ratio of radio to X-ray flux near radio maximum all support the conclusions that the flare was shock-powered and non-thermal. Unlike most other novae with strong shock-powered radio emission, V5589 Sgr is not embedded in the wind of a red-giant companion. Based on the similar inclinations and optical line profiles of V5589 Sgr and V959 Mon, we propose that shocks in V5589 Sgr formed from collisions between a slow flow with an equatorial density enhancement and a subsequent faster flow. We speculate that the relatively high speed and low mass of the ejecta led to the unusual radio emission from V5589 Sgr, and perhaps also to the non-detection of γ-rays.

  9. Shock-powered radio emission from V5589 Sagittarii (Nova Sgr 2012 #1)

    NASA Astrophysics Data System (ADS)

    Weston, Jennifer H. S.; Sokoloski, J. L.; Chomiuk, Laura; Linford, Justin D.; Nelson, Thomas; Mukai, Koji; Finzell, Tom; Mioduszewski, Amy; Rupen, Michael P.; Walter, Frederick M.

    2016-08-01

    Since the Fermi discovery of $\\gamma$-rays from novae, one of the biggest questions in the field has been how novae generate such high-energy emission. Shocks must be a fundamental ingredient. Six months of radio observations of the 2012 nova V5589 Sgr with the VLA and 15 weeks of X-ray observations with Swift/XRT show that the radio emission consisted of: 1) a shock-powered, non-thermal flare; and 2) weak thermal emission from $10^{-5}$ M$_\\odot$ of freely expanding, photoionized ejecta. Absorption features in the optical spectrum and the peak optical brightness suggest that V5589 Sgr lies 4 kpc away (3.2-4.6 kpc). The shock-powered flare dominated the radio light curve at low frequencies before day 100. The spectral evolution of the radio flare, its high radio brightness temperature, the presence of unusually hard ($kT_x > 33$ keV) X-rays, and the ratio of radio to X-ray flux near radio maximum all support the conclusions that the flare was shock-powered and non-thermal. Unlike most other novae with strong shock-powered radio emission, V5589 Sgr is not embedded in the wind of a red-giant companion. Based on the similar inclinations and optical line profiles of V5589 Sgr and V959 Mon, we propose that shocks in V5589 Sgr formed from collisions between a slow flow with an equatorial density enhancement and a subsequent faster flow. We speculate that the relatively high speed and low mass of the ejecta led to the unusual radio emission from V5589 Sgr, and perhaps also to the non-detection of $\\gamma$-rays.

  10. Diffuse γ-ray emission from galactic pulsars

    SciTech Connect

    Calore, F.; Di Mauro, M.; Donato, F. E-mail: mattia.dimauro@to.infn.it

    2014-11-20

    Millisecond pulsars (MSPs) are old fast-spinning neutron stars that represent the second most abundant source population discovered by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi). As guaranteed γ-ray emitters, they might contribute non-negligibly to the diffuse emission measured at high latitudes by Fermi-LAT (i.e., the Isotropic Diffuse γ-Ray Background (IDGRB)), which is believed to arise from the superposition of several components of galactic and extragalactic origin. Additionally, γ-ray sources also contribute to the anisotropy of the IDGRB measured on small scales by Fermi-LAT. In this manuscript we aim to assess the contribution of the unresolved counterpart of the detected MSPs population to the IDGRB and the maximal fraction of the measured anisotropy produced by this source class. To this end, we model the MSPs' spatial distribution in the Galaxy and the γ-ray emission parameters by considering observational constraints coming from the Australia Telescope National Facility pulsar catalog and the Second Fermi-LAT Catalog of γ-ray pulsars. By simulating a large number of MSP populations through a Monte Carlo simulation, we compute the average diffuse emission and the anisotropy 1σ upper limit. We find that the emission from unresolved MSPs at 2 GeV, where the peak of the spectrum is located, is at most 0.9% of the measured IDGRB above 10° in latitude. The 1σ upper limit on the angular power for unresolved MSP sources turns out to be about a factor of 60 smaller than Fermi-LAT measurements above 30°. Our results indicate that this galactic source class represents a negligible contributor to the high-latitude γ-ray sky and confirm that most of the intensity and geometrical properties of the measured diffuse emission are imputable to other extragalactic source classes (e.g., blazars, misaligned active galactic nuclei, or star-forming galaxies). Nevertheless, because MSPs are more concentrated toward the

  11. Observations of O VI Emission from the Diffuse Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Shelton, R. L.; Kruk, J. W.; Murphy, E. M.; Andersson, B. G.; Blair, W. P.; Dixon, W. V.; Edelstein, J.; Fullerton, A. W.; Gry, C.; Howk, J. C.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We report the first Far Ultraviolet Spectroscopic Explorer (FUSE) measurements of diffuse O(VI) (lambda lambda 1032,1038) emission from the general diffuse interstellar medium outside of supernova remnants or superbubbles. We observed a 30 arcsec x 30 arcsec region of the sky centered at l = 315.0 deg and b = -41.3 deg. From the observed intensities (2930 +/- 290 (random) +/- 410 (systematic) and 1790 +/- 260 (random) +/- 250 (systematic) photons/sq cm/s/sr in the 1032 and 1038 angstrom emission lines, respectively), derived equations, and assumptions about the source location, we calculate the intrinsic intensity, electron density, thermal pressure, and emitting depth. The intensities are too large for the emission to originate solely in the Local Bubble. Thus, we conclude that the Galactic thick disk and lower halo also contribute. High velocity clouds are ruled out because there are none near the pointing direction. The calculated emitting depth is small, indicating that the O(VI)-bearing gas fills a small volume. The observations can also be used to estimate the cooling rate of the hot interstellar medium and constrain models. The data also yield the first intensity measurement of the C(II) 3s 2S(1/2) to 2p 2P(3/2) emission line at 1037 angstrom and place upper limits on the intensities of ultraviolet line emission from C(I), C(III), Si(II), S(III), S(IV), S(VI), and Fe(III).

  12. Highlighting the history of French radio astronomy. 1: Nordmann's attempt to observe solar radio emission in 1901

    NASA Astrophysics Data System (ADS)

    Débarbat, Suzanne; Lequeux, James; Orchiston, Wayne

    2007-03-01

    Soon after the discovery of radio waves by Hertz in 1886 the idea that the Sun must emit this radiation was suggested. A number of scientists from different nations then attempted to detect this emission, and one of these was the French astronomer, Charles Nordmann. This paper provides biographical Information an Nordmann before discussing his attempt to detect solar emisson in 1901 and the reasons he was unsuccessful.

  13. Solar Radio Emission as a Prediction Technique for Coronal Mass Ejections' registration

    NASA Astrophysics Data System (ADS)

    Sheiner, Olga; Fridman, Vladimir

    2016-07-01

    The concept of solar Coronal Mass Ejections (CMEs) as global phenomenon of solar activity caused by the global magnetohydrodynamic processes is considered commonly accepted. These processes occur in different ranges of emission, primarily in the optical and the microwave emission being generated near the surface of the sun from a total of several thousand kilometers. The usage of radio-astronomical data for CMEs prediction is convenient and promising. Actually, spectral measurements of solar radio emission cover all heights of solar atmosphere, sensitivity and accuracy of measurements make it possible to record even small energy changes. Registration of the radio emission is provided by virtually all-weather ground-based observations, and there is the relative cheapness to obtain the corresponding information due to a developed system of monitoring observations. On the large statistical material there are established regularities of the existence of sporadic radio emission at the initial stage of CMEs' formation and propagation in the lower layers of the solar atmosphere during the time interval from 2-3 days to 2 hours before registration of CMEs on coronagraph. In this report we present the prediction algorithm and scheme of short-term forecasting developed on the base of statistical analysis regularities of solar radio emission data prior to "isolated" solar Coronal Mass Ejections registered in 1998, 2003, 2009-2013.

  14. Far-Infrared sources and diffuse emission in M31

    NASA Technical Reports Server (NTRS)

    Xu, Cong; Helou, George

    1994-01-01

    A study on the far-infrared (FIR) emission of M31 has been carried out with the High Resolution (HiRes) maps (approx. 1 min) derived from IRAS data. Sixty-eight FIR sources are detected in M31, which in general coincide with optical HII regions, and contribute 15, 23, 29, and 23 percent to the fluxes in 12, 25, 60, and 100 micron bands, respectively. The remaining diffuse emission, which dominates the FIR emission of M31, is studied using a dust heating model which utilizes the UV and optical photometry maps and the HI maps available in the literature. It is found that the global dust-to-gas ratio in M31 disk is 6.5 10(exp -3), very close to the dust-to-gas ratio in the solar neighborhood. There is a significant galactocentric gradient of the dust-to-HI-gas ratio, with an e-folding scale length of 9 kpc. The diffuse dust correlates tightly with the HI gas. The model indicates that the non-ionizing UV (913-4000A) radiation from massive and intermediate massive stars contributes only about 30 percent of the heating of the diffuse dust, while the optical-NIR (4000-9000A) radiation from the old stellar population is responsible for the most of the heating.

  15. Is lightning a possible source of the radio emission on HAT-P-11b?

    NASA Astrophysics Data System (ADS)

    Hodosán, G.; Rimmer, P. B.; Helling, Ch.

    2016-09-01

    Lightning induced radio emission has been observed on Solar system planets. There have been many attempts to observe exoplanets in the radio wavelength, however, no unequivocal detection has been reported. Lecavelier des Etangs et al. carried out radio transit observations of the exoplanet HAT-P-11b, and suggested that a small part of the radio flux can be attributed to the planet. Here, we assume that this signal is real, and study if this radio emission could be caused by lightning with similar energetic properties like in the Solar system. We find that a lightning storm with 3.8 × 106 times larger flash densities than the Earth-storms with the largest lightning activity is needed to produce the observed signal from HAT-P-11b. The optical emission of such thunderstorm would be comparable to that of the host star. We show that HCN produced by lightning chemistry is observable 2-3 yr after the storm, which produces signatures in the L (3.0-4.0 μm) and N (7.5-14.5 μm) infrared bands. We conclude that it is unlikely that the observed radio signal was produced by lightning, however, future, combined radio and infrared observations may lead to lightning detection on planets outside the Solar system.

  16. The dynamical status of ZwCl 2341.1+0000: a very elongated galaxy structure with a complex radio emission

    NASA Astrophysics Data System (ADS)

    Boschin, W.; Girardi, M.; Barrena, R.

    2013-09-01

    We study the dynamical status of the galaxy system ZwCl 2341.1+0000, a filamentary multi-Mpc galaxy structure associated with a complex diffuse radio emission. Our analysis is mainly based on new spectroscopic data for 128 galaxies acquired at the Italian Telescopio Nazionale Galileo. We also use optical data available in the Sloan Digital Sky Survey and X-ray data from the Chandra archive. We select 101 cluster member galaxies and compute the cluster redshift ˜ 0.2693 and the global line-of-sight velocity dispersion σV ˜ 1000 km s-1. Our optical analysis agrees with the presence of at least three, likely four or more, optical subclusters causing the south-south-east-north-north-west (SSE-NNW) elongation of the galaxy distribution and a significant velocity gradient in the south-north direction. In particular, we detect an important low-velocity subclump in the southern region, roughly coincident with the brightest peak of the diffuse radio emission but with a clear offset between the optical and radio peaks. We also detect one (or two) optical subcluster(s) at north, in correspondence with the second brightest radio emission, and another one in the central cluster region, where a third diffuse radio source has been recently detected. A more refined analysis involving the study of the 2D galaxy distribution suggests an even more complex structure. Depending on the adopted model, we obtain a mass estimate Msys ˜ 1-3 × 10^{15}h_{70}^{-1}M_{⊙} for the whole system. As for the X-ray analysis, we confirm the SSE-NNW elongation of the intracluster medium and detect four significant peaks. The X-ray emission is strongly asymmetric and offsetted with respect to the galaxy distribution, thus suggesting a merger caught in the phase of post-core-core passage. Our findings support two possible hypotheses for the nature of the diffuse radio emission of ZwCl 2341.1+0000: a two relics + halo scenario or diffuse emission associated with the infall and merging of several

  17. Long-duration Coherent Radio Emission from the dMe Star Proxima Centauri

    NASA Astrophysics Data System (ADS)

    Slee, O. B.; Willes, A. J.; Robinson, R. D.

    The Australia Telescope and Anglo-Australian Telescope were used in May 2000 to record the radio and optical emissions from the dMe flare star Proxima Centauri. Eight bright optical flares over a two-day interval resulted in no detectable excess short-term radio emission at 1.38 and 2.50GHz. However, a slowly declining 1.38GHz emission over the two-day interval was nearly 100% right circular polarised and was restricted to a relatively narrow bandwidth with total intensity (I) and circular polarisation (V) varying significantly over the 104MHz receiver bandwidth. These are the first observations to show that highly-polarised narrowband flare star emission can persist for several days. This signature is attributed to sources of coherent radio emission in the star's corona. Similarities with various solar radio emissions are discussed; however, it is not possible with the existing observations to distinguish between fundamental plasma emission and electron-cyclotron maser emission as the responsible mechanism.

  18. COMPARATIVE ANALYSIS OF TWO FORMATION SCENARIOS OF BURSTY RADIO EMISSION FROM ULTRACOOL DWARFS

    SciTech Connect

    Kuznetsov, A. A.; Doyle, J. G.; Yu, S.; Hallinan, G.; Antonova, A.; Golden, A.

    2012-02-10

    Recently, a number of ultracool dwarfs have been found to produce periodic radio bursts with high brightness temperature and polarization degree; the emission properties are similar to the auroral radio emissions of the magnetized planets of the solar system. We simulate the dynamic spectra of radio emission from ultracool dwarfs. The emission is assumed to be generated due to the electron-cyclotron maser instability. We consider two source models: the emission caused by interaction with a satellite and the emission from a narrow sector of active longitudes; the stellar magnetic field is modeled by a tilted dipole. We have found that for the dwarf TVLM 513-46546, the model of the satellite-induced emission is inconsistent with observations. On the other hand, the model of emission from an active sector is able to reproduce qualitatively the main features of the radio light curves of this dwarf; the magnetic dipole seems to be highly tilted (by about 60 Degree-Sign ) with respect to the rotation axis.

  19. Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere.

    PubMed

    Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA. PMID:19257596

  20. Unprecedentedly Strong and Narrow Electromagnetic Emissions Stimulated by High-Frequency Radio Waves in the Ionosphere

    SciTech Connect

    Norin, L.; Leyser, T. B.; Nordblad, E.; Thide, B.; McCarrick, M.

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  1. A Study of Nonthermal X-Ray and Radio Emission from the O Star 9 Sgr

    NASA Technical Reports Server (NTRS)

    Waldron, Wayne L.; Corcoran, Michael F.; Drake, Stephen A.

    1999-01-01

    The observed X-ray and highly variable nonthermal radio emission from OB stars has eluded explanation for more than 18 years. The most favorable model of X-ray production in these stars (shocks) predicts both nonthermal radio and X-ray emission. The nonthermal X-ray emission should occur above 2 keV and the variability of this X-ray component should also be comparable to the observed radio variability. To test this scenario, we proposed an ASC/VLA monitoring program to observe the OB star, 9 Sgr, a well known nonthermal, variable radio source and a strong X-ray source. We requested 625 ks ASCA observations with a temporal spacing of approximately 4 days which corresponds to the time required for a density disturbance to propagate to the 6 cm radio free-free photosphere. The X-ray observations were coordinated with 5 multi-wavelength VLA observations. These observations represent the first systematic attempt to investigate the relationship between the X-ray and radio emission in OB stars.

  2. Multi-parameter Correlation of Jovian Radio Emissions with Solar Wind and Interplanetary Magnetic Field Data

    NASA Astrophysics Data System (ADS)

    MacDowall, R. J.; Golla, T.; Reiner, M. J.; Farrell, W. M.

    2015-12-01

    Variability of the numerous varieties of Jovian radio emission has been associated with aspects of solar wind (SW) and interplanetary magnetic field (IMF) parameters outside the magnetosphere. Here we demonstrate multiple-parameter correlations that relate each of several Jovian emissions, including bKOM and quasi-periodic bursts, to the SW and IMF impacting the Jovian magnetosphere. The data used are from the Ulysses spacecraft with radio data from the Unified Radio and Plasma wave (URAP) instrument, which provides high-quality remote radio observations of the Jovian emissions. The URAP observations are correlated with SW and IMF data from the relevant instruments on Ulysses, propagated to the nose of the Jovian magnetosphere with a sophisticated code. Because the aphelion of the Ulysses orbit was at the Jovian distance from the Sun, Ulysses spent ample time near Jupiter in 1991-1992 and 2003-2004, which are the intervals analyzed. Our results can be inverted such that radio observations by a Jovian orbiter, such as Cassini or Juno, are able to identify SW/IMF changes based on the behavior of the radio emissions.

  3. The Annular Gap: Gamma-Ray & Radio Emission of Pulsars

    NASA Astrophysics Data System (ADS)

    Qiao, G. J.; Du, Y. J.; Han, J. L.; Xu, R. X.

    2013-01-01

    Pulsars have been found more than 40 years. Observations from radio to gamma-rays present abundant information. However, the radiation mechanism is still an open question. It is found that the annular gap could be formed in the magnetosphere of pulsars (neutron stars or quark stars), which combines the advantages of the polar cap, slot gap and outer gap models. It is emphasized that observations of some radio pulsars, normal and millisecond gamma-ray pulsars (MSGPs) show that the annular gap would play a very important role. Here we show some observational and theoretical evidences about the annular gap. For example, bi-drifting sub-pulses; radio and gamma-ray millisecond pulsars and so on.

  4. Search for Radio Emission from HD80606b: a Highly Eccentric Exoplanet

    NASA Astrophysics Data System (ADS)

    Knapp, M.; Winterhalter, D.; Lazio, J.; Majid, W.; Kuiper, T.; Farrell, W. M.; Spitler, L.

    2014-12-01

    Exoplanetary radio emission is a potential goldmine of information about a wider sample of planetary interiors, dynamos, and magnetospheres than our solar system provides. To date, however, radio searches for exoplanetary radio emission have been unsuccessful likely because the observing frequencies are too high. Using the relatively new Low Frequency Array (LOFAR), we present analyses of observations of the highly eccentric Jovian exoplanet HD80606b during five epochs before and after the planet's periastron. All of the gas giants in the solar system, as well as the Earth, exhibit magnetospheric radio emission due to the electron cyclotron maser instability. The power of this emission is modulated by the solar wind intensity. HD80606b is in a highly eccentric (e=0.93) orbit with a 111 day period. As the planet passes from apastron (0.88 AU) to periastron (0.03 AU), it experiences widely varying stellar wind conditions which should lead to variable radio emission with the highest power corresponding to periastron passage. HD80606b has been observed previously with the VLA at 325 MHz and 1425 MHz by Lazio et. al (2010), but LOFAR's lower frequency range (30-75 MHz) and high sensitivity is better suited to Jovian-type radio emissions. The LOFAR observations were made 48 hours and 18 hours pre-periastron, plus 18 and 48 hours post-periastron to capture the predicted strongest emission, and near apastron to provide a baseline level. The data are analyzed for both time-dependent and frequency dependent emission at each of the five observation epochs. This work presents the ongoing analysis of the data. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  5. The Contribution of Ionizing Stars to the Far-Infrared and Radio Emission in the Galaxy

    NASA Technical Reports Server (NTRS)

    Terebey, S.; Fich, M.; Taylor, R.

    1999-01-01

    A summary of research activities carried out in this eighth and final progress report. The final report includes: this summary document, copies of three published research papers, plus a draft manuscript of a fourth research paper entitled "The Contribution of Ionizing Stars to the FarInfrared and Radio Emission in the Milky Way; Evidence for a Swept-up Shell and Diffuse Ionized Halo around the W4 Chimney/Supershell." The main activity during the final quarterly reporting period was research on W4, including analysis of the radio and far-infrared images, generation of shell models, a literature search, and preparation of a research manuscript. There will be additional consultation with co-authors prior to submission of the paper to the Astrophysical Journal. The results will be presented at the 4th Tetons Summer Conference on "Galactic Structure, Stars, and the ISM" in May 2000. In this fourth and last paper we show W4 has a swept-up partially ionized shell of gas and dust which is powered by the OCl 352 star cluster. Analysis shows there is dense interstellar material directly below the shell, evidence that that the lower W4 shell "ran into a brick wall" and stalled, whereas the upper W4 shell achieved "breakout" to form a Galactic chimney. An ionized halo is evidence of Lyman continuum leakage which ionizes the WIM (warm ionized medium). It has long been postulated that the strong winds and abundant ionizing photons from massive stars are responsible for much of the large scale structure in the interstellar medium (ISM), including the ISM in other galaxies. However standard HII region theory predicts few photons will escape the local HII region. The significance of W4 and this work is it provides a direct example of how stellar winds power a galactic chimney, which in turn leads to a low density cavity from which ionizing photons can escape to large distances to ionize the WIM.

  6. Quantitative prediction of type II solar radio emission from the Sun to 1 AU

    NASA Astrophysics Data System (ADS)

    Schmidt, J. M.; Cairns, Iver H.

    2016-01-01

    Coronal mass ejections (CMEs) are frequently associated with shocks and type II solar radio bursts. Despite involving fundamental plasma physics and being the archetype for collective radio emission from shocks, type II bursts have resisted detailed explanation for over 60 years. Between 29 November and 1 December 2013 the two widely separated spacecraft STEREO A and B observed a long lasting, intermittent, type II radio burst from ≈4 MHz to 30 kHz (harmonic), including an intensification when the CME-driven shock reached STEREO A. We demonstrate the first accurate and quantitative simulation of a type II burst from the high corona (near 11 solar radii) to 1 AU for this event with a combination of a data-driven three-dimensional magnetohydrodynamic simulation for the CME and plasma background and an analytic quantitative kinetic model for the radio emission.

  7. Source location of the smooth high-frequency radio emissions from Uranus

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Calvert, W.

    1989-01-01

    The source location of the smooth high-frequency radio emissions from Uranus has been determined. Specifically, by fitting the signal dropouts which occurred as Voyager traversed the hollow center of the emission pattern to a symmetrical cone centered on the source magnetic field direction at the cyclotron frequency, a southern-hemisphere (nightside) source was found at approximately 56 deg S, 219 deg W. The half-angle for the hollow portion of the emission pattern was found to be 13 deg.

  8. An Analysis of Interplanetary Solar Radio Emissions Associated with a Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Eastwood, J. P.; Kruparova, O.; Santolik, O.; Soucek, J.; Magdalenić, J.; Vourlidas, A.; Maksimovic, M.; Bonnin, X.; Bothmer, V.; Mrotzek, N.; Pluta, A.; Barnes, D.; Davies, J. A.; Martínez Oliveros, J. C.; Bale, S. D.

    2016-05-01

    Coronal mass ejections (CMEs) are large-scale eruptions of magnetized plasma that may cause severe geomagnetic storms if Earth directed. Here, we report a rare instance with comprehensive in situ and remote sensing observations of a CME combining white-light, radio, and plasma measurements from four different vantage points. For the first time, we have successfully applied a radio direction-finding technique to an interplanetary type II burst detected by two identical widely separated radio receivers. The derived locations of the type II and type III bursts are in general agreement with the white-light CME reconstruction. We find that the radio emission arises from the flanks of the CME and are most likely associated with the CME-driven shock. Our work demonstrates the complementarity between radio triangulation and 3D reconstruction techniques for space weather applications.

  9. GALEX OBSERVATIONS OF DIFFUSE ULTRAVIOLET EMISSION FROM DRACO

    SciTech Connect

    Sujatha, N. V.; Murthy, Jayant; Suresh, Rahul; Henry, Richard Conn; Bianchi, Luciana E-mail: murthy@iiap.res.i E-mail: rch@pha.jhu.ed

    2010-11-10

    We have studied small-scale (2') spatial variation of the diffuse ultraviolet (UV) radiation using a set of 11 Galaxy Evolution Explorer deep observations in the constellation of Draco. We find a good correlation between the observed UV background and the infrared (IR) 100 {mu}m flux, indicating that the dominant contributor of the diffuse background in the field is scattered starlight from the interstellar dust grains. We also find strong evidence of additional emission in the far-ultraviolet (FUV) band which is absent in the near-ultraviolet (NUV) band. This is most likely due to Lyman band emission from molecular hydrogen in a ridge of dust running through the field and to line emissions from species such as C IV (1550 A) and Si II (1533 A) in the rest of the field. A strong correlation exists between the FUV/NUV ratio and the FUV intensity in the excess emission regions in the FUV band irrespective of the optical depth of the region. The optical depth increases more rapidly in the UV than the IR and we find that the UV/IR ratio drops off exponentially with increasing IR due to saturation effects in the UV. Using the positional details of Spitzer extragalactic objects, we find that the contribution of extragalactic light in the diffuse NUV background is 49 {+-} 13 photons cm{sup -2} sr{sup -1} s{sup -1} A{sup -1} and is 30 {+-} 10 photons cm{sup -2} sr{sup -1} s{sup -1} A{sup -1} in the FUV band.

  10. On Using Solar Radio Emission to Probe Interiors of Asteroids and Comets

    NASA Astrophysics Data System (ADS)

    Winebrenner, D. P.; Gary, D. E.; Sahr, J. D.; Asphaug, E. I.

    2015-12-01

    Asteroids, comets and other primitive solar system bodies are key sources of information on the early solar system, on volatiles and organics delivered to the terrestrial planets, and on processes of planetary formation now observed in operation around other stars. Whether asteroids (in various size classes) are rubble piles or monolithic, and whether any porosity or internal voids contain volatiles, are first-order questions for understanding the delivery of volatiles to the early Earth, and for assessing impact hazards. Information on bulk composition aids discrimination between types and origins of primitive bodies, .e.g., the degree of aqueous alteration and bound-water content of carbonaceous chondrite bodies, and the volatile mass fraction of comets. Radar and radio methods can provide direct information on bulk composition, micro- and macro-porosity, body-scale internal structure, and on whether voids in rocky materials are volatile- or vacuum-filled. Such methods therefore figure prominently in current missions to primitive bodies (e.g., CONSERT) and in a variety of proposed missions. Radio transmitters necessary for conventional methods, however, add considerably to spacecraft mass and power requirements. Moreover, at many wavelengths most useful for radio sounding, powerful radio emission from the Sun strongly interferes with conventional signals. Here we present initial results from an investigation of how solar radio emission could serve as a natural resource for probing interiors of primitive bodies, rather than as interference. We briefly review methods for using stochastic radio illumination (aka noise radar methods), and illustrate the characteristics of solar radio emission relevant to mission design (e.g., observed intervals between emission events of specified intensity for different points in the solar cycle). We then discuss methods for selecting and interpreting observations in terms of interior properties, for bodies is different size classes

  11. ON THE ORIGIN OF THE RADIO EMISSION OF Sw 1644+57

    SciTech Connect

    Barniol Duran, Rodolfo; Piran, Tsvi E-mail: tsvi.piran@mail.huji.ac.il

    2013-06-20

    We apply relativistic equipartition synchrotron arguments to the puzzling radio emission of the tidal disruption event candidate Sw 1644+57. We find that regardless of the details of the equipartition scenario considered, the energy required to produce the observed radio (i.e., energy in the magnetic field and radio emitting electrons) must increase by a factor of {approx}20 during the first 200 days. It then saturates. This energy increase cannot be alleviated by a varying geometry of the system. The radio data can be explained by the following. (1) An afterglow like emission of the X-ray emitting narrow relativistic jet. The additional energy can arise here from a slower moving material ejected in the first few days that gradually catches up with the slowing down blast wave. However, this requires at least {approx}4 Multiplication-Sign 10{sup 53} erg in the slower moving outflow. This is much more than the energy of the fast moving outflow that produced the early X-rays and it severely constrains the overall energy budget. (2) Alternatively, the radio may arise from a mildly relativistic and quasi-spherical outflow. Here, the energy available for radio emission increases with time, reaching at least {approx}10{sup 51} erg after 200 days. This scenario requires, however, a second separate X-ray emitting collimated relativistic component. Given these results, it is worthwhile to consider alternative models in which the energy of the magnetic field and/or of the radio emitting electrons increases with time without having a continuous energy supply to the blast wave. This can happen, for example, if the energy is injected initially mostly in one form (Poynting flux or baryonic) and it is gradually converted to the other form, leading to a strong time-varying deviation from equipartition. Another intriguing possibility is that a gradually decreasing inverse Compton cooling modifies the synchrotron emission and leads to an increase of the available energy in the radio

  12. Updated modeling of Io and non-Io Radio Auroral Emissions of Jupiter

    NASA Astrophysics Data System (ADS)

    Louis, C.; Lamy, L.; Zarka, P.; Cecconi, B.; Hess, S.

    2015-10-01

    The radio auroral emissions produced by the Jupiter's magnetosphere between a few kHz and 40MHz, the most intense of our Solar System, are known since half a century, but they still drive many questions, and their deepened study is one of the main aim of the JUNO missions (arrival in July 2016). Jovian auroral radio emissions are thought to be produced through the Cyclotron Maser Instability (CMI), from non-maxwellian weakly relativistic electrons gyrating along high-latitude magnetic fields lines (Zarka, 1998). These emissions divide in different spectral components, driven or not by the moon Io. The origin and the relationship between kilometric, hectometric and decametric non-Io emissions in particular remains poorly understood. To investigate these emissions, we simulated numerical dynamic spectra with the most recent version of the ExPRES code - Exoplanetary and Planetary Radio Emission Simulator, available at http://maser.obspm.fr - already used to successfully model Io decametric and Saturn's kilometric arcshaped emissions (Hess et al., 2008, Lamy et al., 2008) and predict exoplanetary radio emissions (Hess et al., 2011). Such simulations bring direct constraints on the locus of active magnetic field lines and on the nature of CMI-unstable electrons (Hess et al., submitted). We validated the new theoretical calculation of the beaming angle used by ExPRES, which now includes refraction at the source. We then built updated simulations of Io and non-Io emissions which were compared to the radio observations acquired by the Cassini spacecraft (Jupiter flyby in 2000) and the Nançay decameter array (routines observations of Jupiter).

  13. Radio Monitoring of the Periodically Variable IR Source LRLL 54361: No Direct Correlation between the Radio and IR Emissions

    NASA Astrophysics Data System (ADS)

    Forbrich, Jan; Rodríguez, Luis F.; Palau, Aina; Zapata, Luis A.; Muzerolle, James; Gutermuth, Robert A.

    2015-11-01

    LRLL 54361 is an infrared source located in the star-forming region IC 348 SW. Remarkably, its infrared luminosity increases by a factor of 10 over roughly one week every 25.34 days. To understand the origin of these remarkable periodic variations, we obtained sensitive 3.3 cm JVLA radio continuum observations of LRLL 54361 and its surroundings in six different epochs: three of them during the IR-on state and three during the IR-off state. The radio source associated with LRLL 54361 remained steady and did not show a correlation with the IR variations. We suggest that the IR is tracing the results of fast (with a timescale of days) pulsed accretion from an unseen binary companion, while the radio traces an ionized outflow with an extent of ∼100 AU that smooths out the variability over a period of the order of a year. The average flux density measured in these 2014 observations, 27 ± 5 μJy, is about a factor of two less than that measured about 1.5 years before, 53 ± 11 μJy, suggesting that variability in the radio is present, but over larger timescales than in the IR. We discuss other sources in the field, in particular two infrared/X-ray stars that show rapidly varying gyrosynchrotron emission.

  14. Nonthermal Radio Emission from Hot Star Winds: Its Origin and Physical Implications

    NASA Technical Reports Server (NTRS)

    Chen, Wan; White, Richard L.

    1994-01-01

    Nonthermal radio emission has been observed from some of the most luminous hot star winds. It is understood to be synchrotron radiation of the relativistic electrons in the winds. To understand how the electrons are accelerated to such high energies and to correctly explain the observed radio flux and spectra require an exhaustive investigation of all the relevant physical processes involved and possibly point to a complex wind structure. In this paper we discuss the logical path toward a comprehensive model of the nonthermal radio emission from hot star winds. Based on the available observational data and fundamental theoretical considerations, we found that the only physically viable and self-consistent scenario is: the nonthermal radio emission is synchrotron radiation of relativistic electrons (left right harpoon) the electrons are accelerated by shocks via the first-order Fermi mechanism (left right harpoon) the acceleration has to be in situ in the radio emitting region (left right harpoon) the shocks formed at the base of the winds have to propagate to beyond the radio photosphere.

  15. Nonthermal radio emission from hot star winds: Its origin and physical implications

    NASA Technical Reports Server (NTRS)

    Chen, Wan; White, Richard L.

    1994-01-01

    Nonthermal radio emission has been observed from some of the most luminous hot star winds. It is understood to be synchrotron radiation of the relativistic electrons in the winds. To understand how the electrons are accelerated to such high energies and to correctly explain the observed radio flux and spectra require an exhaustive investigation of all the relevant physical processes involved and possibly point to a complex wind structure. In this paper we discuss the logical path toward a comprehensive model of the nonthermal radio emission from hot star winds. Based on the available observational data and fundamental theoretical considerations, we found that the only physically viable and self-consistent scenario is: the nonthermal radio emission is synchrotron radiation of relativistic electrons the electrons are accelerated by shocks via the first-order Fermi mechanism the acceleration has to be in situ in the radio emitting region and the shocks formed at the base of the winds have to propagate to beyond the radio photosphere.

  16. Discovery of Diffuse Hard X-ray Emission Around Jupiter

    NASA Astrophysics Data System (ADS)

    Ezoe, Yuichiro; Ishikawa, K.; Ohashi, T.; Terada, N.; Miyoshi, Y.; Uchiyama, Y.

    2009-09-01

    Our discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter is reported. Recent Chandra and XMM-Newton observations revealed several types of X-rays in the vicinity of Jupiter such as auroral and disk emission from Jupiter and faint diffuse X-rays from the Io Plasma Torus (see Bhardwaj et al. 2007 for review). To investigate possible diffuse hard X-ray emission around Jupiter with the highest sensitivity, we conducted data analysis of Suzaku XIS observations of Jupiter on Feb 2006. After removing satellite and planetary orbital motions, we detected a significant diffuse X-ray emission extending to 6 x 3 arcmin with the 1-5 keV X-ray luminosity of 3e15 erg/s. The emitting region very well coincided with the Jupiter's radiation belts and the bright spot seemed to move according to the Io's motion. The 1-5 keV X-ray spectrum was represented by a simple power law model with a photon index of 1.4. Such a flat continuum strongly suggests non-thermal origin. We hence examined three mechanisms: bremsstrahlung by keV electrons, synchrotron emission by TeV electrons, and inverse Compton scattering of solar photons by MeV electrons. The former two can be rejected because of the X-ray spectral shape and implausible existence of TeV electrons around Jupiter, respectively. The last possibility was found to be possible because tens MeV electrons, which have been confirmed in inner radiation belts (Bolton et al. 2002), can kick solar photons to the keV energy range and provide a simple power-law continuum. We estimated an average electron density from the X-ray luminosity assuming the oblate spheroid shaped emitting region with 8 x 8 x 4 Jovian radii. The necessary density was 0.02 1/cm3 for 50 MeV electrons. Hence, our results may suggest a new particle acceleration phenomenon related to Io.

  17. Subsurface emissions from Mercury - VLA radio observations at 2 and 6 centimeters

    NASA Technical Reports Server (NTRS)

    Ledlow, Michael J.; Zeilik, Michael; Burns, Jack O.; Gisler, Galen R.; Zhao, Jun-Hui; Baker, Daniel N.

    1992-01-01

    Radio observations of Mercury made with the VLA; once in 1986, and on two dates in February of 1988 are presented. These observations are the first to spatially map both hot regions associated with the theoretical hot poles. These 'hot poles' are separated by 180 deg and are a result of the unusual diurnal heating from Mercury's 3/2 spin-orbit resonance and eccentric orbit. The highest resolution data maps areas of the planet as small as 330 km. Maps of total intensity, brightness temperature, polarized intensity, fractional polarization, depolarization, and spectral index are included. It is found that the subsurface thermal emissions from Mercury are characteristic of blackbody reradiation from the solar insolation over a diurnal cycle. These observations to produce full-disk thermophysical models are used. The one-dimensional, time-dependent heat-diffusion equation for all observed disk elements at each epoch in order to constrain thermophsyical parameters and properties of the subsurface material are solved. Using typical lunar values for several of the parameters, it is possible to reproduce the temperature morphology and most of the observed temperature values. It is found that the best-fit models require a substantial contribution of the heat transport in the subsurface to be radiative in nature. The primary difficulty in the models is in predicting the observed temperature differences as a function of frequency.

  18. Sampling Studies Of Quasars, Radio-loud Galaxies, & Radio-quiet Galaxies -- Searching For The Cause Of Radio Emission

    NASA Astrophysics Data System (ADS)

    Coldwell, G.; Salois, Amee; Soechting, I.; Smith, M.

    2011-01-01

    Comparing the environments of Radio-Loud Galaxies, Radio-Quiet Galaxies, and Quasars offers an opportunity to study the evolution of these objects. Our samples have been carefully chosen from Data Release 7 of the Sloan Digital Sky Survey, which also includes samples studied in the FIRST survey, and have been cut to determine the best possible results. Our study includes three samples. The Quasar sample currently contains 69 objects, the Radio-Loud Galaxy (RLG) sample has 1,335 objects, and the Radio-Quiet Galaxy (RQG) sample contains 2,436 objects (any updates will be given at the meeting). A number of trims were made to produce (smaller) samples with characteristics suited for precise results. By comparing the environments of these three samples we will be able to see any similarities or differences between them. If similarities are detected it suggests that the central object has evolved according to 'nature' - in an isolated manner with little environmental feedback, which may or may not have an effect on its evolution, as supposed by Coldwell et al. (2009). If differences are detected it suggests that the central object has evolved according to `nurture’ and that the environment may have played an important role in the development of their properties. We employ similar procedures used by Coldwell et al. (2009) in their study of blue and red AGNs. Upon the completion of an accurate sample, future work will be pursued studying a number of properties of the environments including studies of: the stellar masses, star formation rates, sersic morphologies, as well as densities and ages of the environments.

  19. Control of Jupiter's Radio Emission and Aurorae by the Solar Wind

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.; Hospodarsky, G. B.; Persoon, A. M.; Zarka, P.; Lecacheux, A.; Bolton, S. J.; Desch, . D.; Farrell, W. W.; Kaiser, M. L.

    2002-01-01

    Radio emissions from Jupiter provided the first evidence that this giant planet has a strong magnetic field and a large magnetosphere. Jupiter also has polar aurorae, which are similar in many respects to Earth's aurorae. The radio emissions are believed to be generated along the high-latitude magnetic field lines by the same electrons that produce the aurorae, and both the radio emission in the hectometric frequency range and the aurorae vary considerably. The origin of the variability, however, has been poorly understood. Here we report simultaneous observations using the Cassini and Galileo spacecraft of hectometric radio emissions and extreme ultraviolet auroral emissions from Jupiter. Our results show that both of these emissions are triggered by interplanetary shocks propagating outward from the Sun. When such a shock arrives at Jupiter, it seems to cause a major compression and reconfiguration of the magnetosphere, which produces strong electric fields and therefore electron acceleration along the auroral field lines, similar to the processes that occur during geomagnetic storms at the Earth.

  20. Diffusion tensor in electron transport in gases in a radio-frequency field

    SciTech Connect

    Maeda, K.; Makabe, T.; Nakano, N.; Bzenic, S.; Petrovic, Z.L.

    1997-05-01

    Electron transport theory in gases in a radio-frequency field is developed in the hydrodynamic regime from the density gradient expansion method of the Boltzmann equation. Swarm parameters for the radio-frequency (rf) field with periodic time modulation are derived as functions of both reduced effective field strength and reduced angular frequency from the time dependent velocity distribution function. The rf electron transport in phase space is analyzed from the series of governing equations by a direct numerical procedure (DNP). Electron velocity distribution function and corresponding swarm parameters obtained from DNP agree with those of the Monte Carlo simulation in the frequency range 10{endash}200 MHz at 10 Td for Reid`s inelastic ramp model gas. The temporal modulation of the ensemble average of energy and the diffusion tensor are discussed. The appearance of the anomalous time behavior of the longitudinal diffusion coefficient is discussed in particular detail, and we provide an explanation of the observed effect. {copyright} {ital 1997} {ital The American Physical Society}

  1. Simulation of radio emission from air showers in atmospheric electric fields

    SciTech Connect

    Buitink, S.; Huege, T.; Falcke, H; Kuijpers, J.

    2010-02-25

    We study the effect of atmospheric electric fields on the radio pulse emitted by cos- mic ray air showers. Under fair weather conditions the dominant part of the radio emission is driven by the geomagnetic field. When the shower charges are accelerated and deflected in an electric field additional radiation is emitted. We simulate this effect with the Monte Carlo code REAS2, using CORSIKA-simulated showers as input. In both codes a routine has been implemented that treats the effect of the electric field on the shower particles. We find that the radio pulse is significantly altered in background fields of the order of ~100 V/cm and higher. Practically, this means that air showers passing through thunderstorms emit radio pulses that are not a reliable measure for the shower energy. Under other weather circumstances significant electric field effects are expected to occur rarely, but nimbostratus clouds can harbor fields that are large enough. In general, the contribution of the electric field to the radio pulse has polarization properties that are different from the geomagnetic pulse. In order to filter out radio pulses that have been affected by electric field effects, radio air shower experiments should keep weatherinformation and perform full polarization measurements of the radio signal.

  2. Bright radio emission from an ultraluminous stellar-mass microquasar in M 31.

    PubMed

    Middleton, Matthew J; Miller-Jones, James C A; Markoff, Sera; Fender, Rob; Henze, Martin; Hurley-Walker, Natasha; Scaife, Anna M M; Roberts, Timothy P; Walton, Dominic; Carpenter, John; Macquart, Jean-Pierre; Bower, Geoffrey C; Gurwell, Mark; Pietsch, Wolfgang; Haberl, Frank; Harris, Jonathan; Daniel, Michael; Miah, Junayd; Done, Chris; Morgan, John S; Dickinson, Hugh; Charles, Phil; Burwitz, Vadim; Della Valle, Massimo; Freyberg, Michael; Greiner, Jochen; Hernanz, Margarita; Hartmann, Dieter H; Hatzidimitriou, Despina; Riffeser, Arno; Sala, Gloria; Seitz, Stella; Reig, Pablo; Rau, Arne; Orio, Marina; Titterington, David; Grainge, Keith

    2013-01-10

    A subset of ultraluminous X-ray sources (those with luminosities of less than 10(40) erg s(-1); ref. 1) are thought to be powered by the accretion of gas onto black holes with masses of ∼5-20M cicled dot, probably by means of an accretion disk. The X-ray and radio emission are coupled in such Galactic sources; the radio emission originates in a relativistic jet thought to be launched from the innermost regions near the black hole, with the most powerful emission occurring when the rate of infalling matter approaches a theoretical maximum (the Eddington limit). Only four such maximal sources are known in the Milky Way, and the absorption of soft X-rays in the interstellar medium hinders the determination of the causal sequence of events that leads to the ejection of the jet. Here we report radio and X-ray observations of a bright new X-ray source in the nearby galaxy M 31, whose peak luminosity exceeded 10(39) erg s(-1). The radio luminosity is extremely high and shows variability on a timescale of tens of minutes, arguing that the source is highly compact and powered by accretion close to the Eddington limit onto a black hole of stellar mass. Continued radio and X-ray monitoring of such sources should reveal the causal relationship between the accretion flow and the powerful jet emission. PMID:23235823

  3. Time-scales of close-in exoplanet radio emission variability

    NASA Astrophysics Data System (ADS)

    See, V.; Jardine, M.; Fares, R.; Donati, J.-F.; Moutou, C.

    2015-07-01

    We investigate the variability of exoplanetary radio emission using stellar magnetic maps and 3D field extrapolation techniques. We use a sample of hot Jupiter hosting stars, focusing on the HD 179949, HD 189733 and τ Boo systems. Our results indicate two time-scales over which radio emission variability may occur at magnetized hot Jupiters. The first is the synodic period of the star-planet system. The origin of variability on this time-scale is the relative motion between the planet and the interplanetary plasma that is corotating with the host star. The second time-scale is the length of the magnetic cycle. Variability on this time-scale is caused by evolution of the stellar field. At these systems, the magnitude of planetary radio emission is anticorrelated with the angular separation between the subplanetary point and the nearest magnetic pole. For the special case of τ Boo b, whose orbital period is tidally locked to the rotation period of its host star, variability only occurs on the time-scale of the magnetic cycle. The lack of radio variability on the synodic period at τ Boo b is not predicted by previous radio emission models, which do not account for the co-rotation of the interplanetary plasma at small distances from the star.

  4. Gamma-ray Burst Reverse Shock Emission in Early Radio Afterglows

    NASA Astrophysics Data System (ADS)

    Resmi, Lekshmi; Zhang, Bing

    2016-07-01

    Reverse shock (RS) emission from gamma-ray bursts is an important tool in investigating the nature of the ejecta from the central engine. If the magnetization of the ejecta is not high enough to suppress the RS, a strong RS emission component, usually peaking in the optical/IR band early on, would provide an important contribution to early afterglow light curve. In the radio band, synchrotron self-absorption may suppress early RS emission and also delay the RS peak time. In this paper, we calculate the self-absorbed RS emission in the radio band under different dynamical conditions. In particular, we stress that the RS radio emission is subject to self-absorption in both RSs and forward shocks (FSs). We calculate the ratio between the RS to FS flux at the RS peak time for different frequencies, which is a measure of the detectability of the RS emission component. We then constrain the range of physical parameters for a detectable RS, in particular the role of magnetization. We notice that unlike optical RS emission which is enhanced by moderate magnetization, moderately magnetized ejecta do not necessarily produce a brighter radio RS due to the self-absorption effect. For typical parameters, the RS emission component would not be detectable below 1 GHz unless the medium density is very low (e.g., n < 10‑3 cm‑3 for the interstellar medium and A * < 5 × 10‑4 for wind). These predictions can be tested using the afterglow observations from current and upcoming radio facilities such as the Karl G. Jansky Very Large Array, the Low-Frequency Array, the Five Hundred Meter Aperture Spherical Telescope, and the Square Kilometer Array.

  5. A model of the diffuse galactic gamma ray emission

    NASA Technical Reports Server (NTRS)

    Sreekumar, Parameswaran

    1990-01-01

    The galaxy was observed to be a source of high energy gamma rays as shown by the two successful satellite experiments, SAS-2 and COS-B. It is generally understood that these diffuse gamma rays result from interactions between energetic cosmic rays and interstellar gas. This work makes use of the most recent data on the distribution of atomic and molecular hydrogen in the galaxy along with new estimates of gamma ray production functions to model the diffuse galactic gamma ray emission. The model allows various spatial distributions for cosmic rays in the Galaxy including non-axisymmetric ones. In the light of the expected data from EGRET (Energetic Gamma-Ray Experiment Telescope), an improved model of cosmic ray-matter-gamma ray interaction will provide new insights into the distribution of cosmic rays and the strength of its coupling to matter.

  6. Radio-continuum Emission from Magellanic Clouds Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Filipovic, Miroslav

    2015-08-01

    Comparison of recent Australia Telescope Compact Array (ATCA) / Parkes mosaic surveys of the Magellanic Clouds (MCs) with positions of known planetary nebulae (PNe) have revealed a total of about 50 radio counterparts. Six (15) Small Magellanic Cloud (SMC) candidates were found in 5~GHz surveys, while ~35 were found in the Large Magellanic Cloud (LMC). Followup high resolution ATCA observations at 6 and 3 cm (4" and 2" beams, respectively) reveal that these sources are located within 1" of their optical counterparts. They are extended with higher than expected flux densities. Complimentary optical PNe spectra have typical electron temperatures and densities. Estimates of nebular ionized mass, based on these elevated radio flux densities, suggest they may be the result of significant circumstellar envelopes. These envelopes may have been formed from winds ejected from high mass (up to 8 solar) progenitor stars.

  7. Constraints on dark matter annihilations from diffuse gamma-ray emission in the Galaxy

    SciTech Connect

    Tavakoli, Maryam; Evoli, Carmelo; Cholis, Ilias; Ullio, Piero E-mail: cholis@fnal.gov E-mail: ullio@sissa.it

    2014-01-01

    Recent advances in γ-ray cosmic ray, infrared and radio astronomy have allowed us to develop a significantly better understanding of the galactic medium properties in the last few years. In this work using the DRAGON code, that numerically solves the CR propagation equation and calculating γ-ray emissivities in a 2-dimensional grid enclosing the Galaxy, we study in a self consistent manner models for the galactic diffuse γ-ray emission. Our models are cross-checked to both the available CR and γ-ray data. We address the extend to which dark matter annihilations in the Galaxy can contribute to the diffuse γ-ray flux towards different directions on the sky. Moreover we discuss the impact that astrophysical uncertainties of non DM nature, have on the derived γ-ray limits. Such uncertainties are related to the diffusion properties on the Galaxy, the interstellar gas and the interstellar radiation field energy densities. Light ∼ 10 GeV dark matter annihilating dominantly to hadrons is more strongly constrained by γ-ray observations towards the inner parts of the Galaxy and influenced the most by assumptions of the gas distribution; while TeV scale DM annihilating dominantly to leptons has its tightest constraints from observations towards the galactic center avoiding the galactic disk plane, with the main astrophysical uncertainty being the radiation field energy density. In addition, we present a method of deriving constraints on the dark matter distribution profile from the diffuse γ-ray spectra. These results critically depend on the assumed mass of the dark matter particles and the type of its end annihilation products.

  8. Variable Radio Emission from Nova V5588 Sgr

    NASA Astrophysics Data System (ADS)

    Krauss, M. I.; Chomiuk, L.; Sokoloski, J. L.; Rupen, M. P.; Mioduszewski, A. J.; Roy, N.; O'Brien, T. J.; Bode, M. F.; Eyres, S. P. S.

    2011-08-01

    The EVLA Nova Team reports additional radio flux measurements of the classical nova V5588 Sgr (IAUC #9203, CBET #2707) which indicate significant variability. Observations taken 66 days after the initial discovery of this nova yield non-detections at 5.9 and 33.1 GHz; the derived upper limits are significantly lower than our previously reported detections on day 48 (ATel #3397).

  9. Searching towards the Galactic Centre region for pulsed radio emission

    NASA Astrophysics Data System (ADS)

    Toomey, Lawrence; Johnston, Simon; Hobbs, George; Bhat, Ramesh; Shannon, Ryan

    2014-10-01

    A search of archival Parkes survey data has uncovered a source similar to that of a radio pulsar, however the detection DM indicates that it may be either the closest pulsar ever discovered, or simply a case of mistaken identity and is in fact an RFI event that closely mimics that of a pulsar signal. We would like to propose a grid search of the location of this source, at 3 available frequency bands, in order to determine its nature.

  10. Searches for gamma ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Bertsch, D. L.; Hartman, R. C.; Hunter, S. D.

    1983-01-01

    Searches were made for pulsed high energy (E 35 MeV) gamma radiation from 43 pulsars using the SAS-2 data base and radio parameters. No positive results were found, and the upper limits are consistent with the concept that gamma ray production efficiency increases with increasing apparent age. Two limits suggest that efficiency cannot be a simple function of apparent age beyond 10,000,000 years.

  11. Radio emission evolution of nonstationary sources in the Hedgehog model

    NASA Technical Reports Server (NTRS)

    Kovalev, Y. A.; Mikhaylutsa, V. P.

    1980-01-01

    Correlations are obtained for numerical calculation of flux F sub v and polarized radiation intensity of a cloud of arbitrary geometry, consisting of ultrarelativistic electrons that dissipate in a radial magnetic field of the nucleus at a random angle to the observer. It is possible that some of the variable extragalactic objects that were previously described by the Shklovskiy model are young formations in the examined model. Radio astronomical observations would permit a determination of their distance, age, and lifetime.

  12. Diffuse Galactic low energy gamma ray continuum emission

    NASA Technical Reports Server (NTRS)

    Skibo, J. G.; Ramaty, R.

    1993-01-01

    We investigate the origin of diffuse low-energy Galactic gamma-ray continuum down to about 30 keV. We calculate gamma-ray emission via bremsstrahlung and inverse Compton scattering by propagating an unbroken electron power law injection spectrum and employing a Galactic emmissivity model derived from COSB observations. To maintain the low energy electron population capable of producing the observed continuum via bremsstrahlung, a total power input of 4 x 10 exp 41 erg/s is required. This exceeds the total power supplied to the nuclear cosmic rays by about an order of magnitude.

  13. Discovery of New Faint Radio Emission on 8° to 3' Scales in the Coma Field, and Some Galactic and Extragalactic Implications

    NASA Astrophysics Data System (ADS)

    Kronberg, P. P.; Kothes, R.; Salter, C. J.; Perillat, P.

    2007-04-01

    We present a deep, 8° diameter, 0.4 GHz radio image using a first-time combination of the NAIC Arecibo 305 m telescope in Puerto Rico and the wide-angle interferometer at the Dominion Radio Astrophysical Observatory at Penticton, Canada. Our observations are centered on the Coma Cluster of galaxies in the ``Great Wall'' of galaxies near the north Galactic pole. The complementary nature of these two instruments enables us to produce a distortion-free image that is sensitive to radiation on scales from 8° down to that of an individual galaxy halo at the 100 Mpc distance of the Great Wall. Newly revealed patches of distributed radio ``glow'' are seen well above the detection limit. One prominent such area coincides with groupings of radio galaxies near the Coma Cluster and indicates intergalactic magnetic fields in the range 0.2-0.4 μG on scales of up to ~4 Mpc. Other patches of diffuse emission, not previously explored at these high latitudes on arcminute scales, probably consist of Galactic ``cirrus.'' A striking anticorrelation is found between low-level diffuse radio glow and some regions of enhanced optical galaxy surface density, suggesting that cosmological large-scale structure, normally defined by the baryonic (or dark) matter density, is not uniquely traced by faint continuum radio glow. Rather, intergalactic diffuse synchrotron radiation may be a proxy for IGM cosmic-ray and magnetic energy density, rather than matter density. The diffuse, arcminute-level structures over a large region of sky are potentially important pathfinders to CMB foreground radiation on high multipole scales.

  14. The ATLAS3D Project - XXXI. Nuclear radio emission in nearby early-type galaxies

    NASA Astrophysics Data System (ADS)

    Nyland, Kristina; Young, Lisa M.; Wrobel, Joan M.; Sarzi, Marc; Morganti, Raffaella; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie

    2016-05-01

    We present the results of a high-resolution, 5 GHz, Karl G. Jansky Very Large Array study of the nuclear radio emission in a representative subset of the ATLAS3D survey of early-type galaxies (ETGs). We find that 51 ± 4 per cent of the ETGs in our sample contain nuclear radio emission with luminosities as low as 1018 W Hz-1. Most of the nuclear radio sources have compact (≲25-110 pc) morphologies, although ˜10 per cent display multicomponent core+jet or extended jet/lobe structures. Based on the radio continuum properties, as well as optical emission line diagnostics and the nuclear X-ray properties, we conclude that the majority of the central 5 GHz sources detected in the ATLAS3D galaxies are associated with the presence of an active galactic nucleus (AGN). However, even at subarcsecond spatial resolution, the nuclear radio emission in some cases appears to arise from low-level nuclear star formation rather than an AGN, particularly when molecular gas and a young central stellar population is present. This is in contrast to popular assumptions in the literature that the presence of a compact, unresolved, nuclear radio continuum source universally signifies the presence of an AGN. Additionally, we examine the relationships between the 5 GHz luminosity and various galaxy properties including the molecular gas mass and - for the first time - the global kinematic state. We discuss implications for the growth, triggering, and fuelling of radio AGNs, as well as AGN-driven feedback in the continued evolution of nearby ETGs.

  15. Diffuse Helium Emission as a Precursory Sign of Volcanic Unrest

    NASA Astrophysics Data System (ADS)

    Padron, E.; Perez, N.; Hernandez Perez, P. A.; Sumino, H.; Melian Rodriguez, G.; Barrancos, J.; Nolasco, D.; Padilla, G.; Dionis, S.; Rodriguez, F.; Hernandez, I.; Calvo, D.; Peraza, M.; Nagao, K.

    2012-12-01

    Since July 16, 2011, an anomalous seismicity at El Hierro island, the youngest and smallest of the Canary Islands, was recorded by IGN seismic network. After the occurrence of more than 10,000 seismic events, volcanic tremor was recorded since 05:15 of the October 10, by all of the seismic stations on the island, with highest amplitudes recorded in the southernmost station. During the afternoon of October 12 a large light-green coloured area was observed in the sea to the souht of La Restinga village (at the southernmost part of El Hierro island), suggesting the existence of a submarine eruption. Since October 12, frequent episodes of, turbulent gas emission and foaming, and the appearance of steamy lava fragments has been observed on the sea surface. As part of the volcanic surveillance of the island, the Instituto Volcanologico de Canarias (INVOLCAN) geochemical monitoring program is carrying out diffuse helium surveys on the surface environment of El Hierro (soil atmosphere). This nobel gas has been investigated because it has been considered an almost ideal geochemical indicator because it is chemically inert, physically stable, nonbiogenic, sparingly soluble in water under ambient conditions and almost non-adsorbable. At each survey, 600 sampling sites covering the whole island and following an homogeneous distribution are selected for helium measurements in the soil gases, The helium concentration gradients with respect to its value on air (5.24 ppm) allow us to estimate a pure diffusive emission rate of helium throughout the island. The first survey was carried out on the summer of 2003, when the island was on a quiescence period. At this survey, the amount of helium released by the volcanic system of El Hierro was estimated in 6 kg/d. Since the beginning of the seismic unrest, 13 helium emission surveys have been carried out. The helium emission rate has shown an excellent agreement with the evolution of the volcanic crisis of the island, reaching 30 kg

  16. SAS-2 galactic gamma-ray results. 1: Diffuse emission

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Lamb, R. C.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1977-01-01

    Continuing analysis of the data from the SAS-2 high energy gamma ray experiment has produced an improved picture of the sky at photon energies above 35 MeV. On a large scale, the diffuse emission from the galactic plane is the dominant feature observed by SAS-2. This galactic plane emission is most intense between galactic longitudes 310 deg and 45 deg, corresponding to a region within 7 kpc of the galactic center. Within the high-intensity region, SAS-2 observes peaks around galactic longitudes 315, 330, 345, 0, and 35 deg. These peaks appear to be correlated with galactic features and components such as molecular hydrogen, atomic hydrogen, magnetic fields, cosmic-ray concentrations, and photon fields.

  17. Diffuse synchrotron emission from galactic cosmic ray electrons

    NASA Astrophysics Data System (ADS)

    Di Bernardo, G.; Grasso, D.; Evoli, C.; Gaggero, D.

    2015-09-01

    Synchrotron diffuse radiation (SDR) emission is one of the major Galactic components, in the 100 MHz up to 100 GHz frequency range. Its spectrum and sky map provide valuable measure of the galactic cosmic ray electrons (GCRE) in the relevant energy range, as well as of the strength and structure of the Galactic magnetic fields (GMF), both regular and random ones. This emission is an astrophysical sky foreground for the study of the Cosmic Microwave Background (CMB), and the extragalactic microwave measurements, and it needs to be modelled as better as possible. In this regard, in order to get an accurate description of the SDR in the Galaxy, we use - for the first time in this context - 3-dimensional GCRE models obtained by running the DRAGON code. This allows us to account for a realistic spiral arm pattern of the source distribution, demanded to get a self-consistent treatment of all relevant energy losses influencing the final synchrotron spectrum.

  18. The Connection between the Radio Jet and the Gamma-ray Emission in the Radio Galaxy 3C 120

    NASA Astrophysics Data System (ADS)

    Casadio, Carolina; Gómez, José L.; Grandi, Paola; Jorstad, Svetlana G.; Marscher, Alan P.; Lister, Matthew L.; Kovalev, Yuri Y.; Savolainen, Tuomas; Pushkarev, Alexander B.

    2015-08-01

    We present the analysis of the radio jet evolution of the radio galaxy 3C 120 during a period of prolonged γ-ray activity detected by the Fermi satellite between 2012 December and 2014 October. We find a clear connection between the γ-ray and radio emission, such that every period of γ-ray activity is accompanied by the flaring of the millimeter very long baseline interferometry (VLBI) core and subsequent ejection of a new superluminal component. However, not all ejections of components are associated with γ-ray events detectable by Fermi. Clear γ-ray detections are obtained only when components are moving in a direction closer to our line of sight. This suggests that the observed γ-ray emission depends not only on the interaction of moving components with the millimeter VLBI core, but also on their orientation with respect to the observer. Timing of the γ-ray detections and ejection of superluminal components locate the γ-ray production to within ∼0.13 pc from the millimeter VLBI core, which was previously estimated to lie about 0.24 pc from the central black hole. This corresponds to about twice the estimated extension of the broad line region, limiting the external photon field and therefore suggesting synchrotron self Compton as the most probable mechanism for the production of the γ-ray emission. Alternatively, the interaction of components with the jet sheath can provide the necessary photon field to produced the observed γ-rays by Compton scattering.

  19. Radio imaging of synchrotron emission associated with a CME on the 14th of August 2010

    NASA Astrophysics Data System (ADS)

    Bain, H. M.; Krucker, S.; Raftery, C. L.; Saint-Hilaire, P.

    2012-12-01

    Radio observations can be used to identify sources of electron acceleration within flares and CMEs. In a small number of events, radio imaging has revealed the presence of synchrotron emission from nonthermal electrons in the expanding loops of the CME (Bastian et al. (2001), Maia et al. (2007) and Démoulin et al. (2012)). Events in which the synchrotron emission is sufficiently bright to be identified in the presence of plasma emission from radio bursts, which are prevalent at meter wavelengths, are infrequent. Using radio images from the Nançay Radioheliograph (NRH) we present observations of synchrotron emission associated with a CME which occurred on the 14th of August 2010. Using context observations from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory, the SWAP instrument onboard Proba2, the LASCO coronograph onboard SOHO and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), we follow the propagation of the CME out to 2-3 solar radii and characterize the associated electron distribution. We find that the synchrotron emission is cospatial with the CME core.

  20. Beamed and Unbeamed X-Ray Emission in FR1 Radio Galaxies

    NASA Technical Reports Server (NTRS)

    Worrall, Diana M.

    2000-01-01

    The research exploited ROSAT's sensitivity, together with its spatial and spectral resolution, to separate X-ray emission components in the sources. Prior to ROSAT, the dominant X-ray emission mechanism in radio galaxies as a class was unclear, with correlations between the X-ray and radio emission used on one hand to argue for a nuclear origin for the X-rays, and on the other hand for a thermal origin. Our observations (normally between 10 and 25 ks in length) routinely detected the target sources, and demonstrated that both resolved (thermal) and unresolved X-ray emission are typically present. Highlights of our work included two of the first detections of high-power radio galaxies at high redshift, 3C 280 and 3C 220.1. When combined with the work of two other groups, we find that of the 38 radio galaxies at z > 0.6 in the 3CRR sample, 12 were observed in ROSAT pointed observations and 9 were detected with the four most significant detections exhibiting source extent, including 3C 280 and 3C 220.1. Moreover, we discovered extended emission around five 3CRR quasars at redshift greater than about 0.4, one of which is at z > 0.6. Unification predicts that the X-ray environments of powerful radio galaxies and quasars should be similar, and our results show that powerful radio sources are finding some of the highest-redshift X-ray clusters known to date, pointing to deep gravitational potential wells early in the Universe.

  1. DETECTION OF RADIO EMISSION FROM THE HYPERACTIVE L DWARF 2MASS J13153094-2649513AB

    SciTech Connect

    Burgasser, Adam J.; Melis, Carl; Zauderer, B. Ashley; Berger, Edo

    2013-01-01

    We report the detection of radio emission from the unusually active L5e + T7 binary 2MASS J13153094-2649513AB made with the Australian Telescope Compact Array. Observations at 5.5 GHz reveal an unresolved source with a continuum flux of 370 {+-} 50 {mu}Jy, corresponding to a radio luminosity of L{sub rad} = {nu}L{sub {nu}} = (9 {+-} 3) Multiplication-Sign 10{sup 23} erg s{sup -1} and log{sub 10} L{sub rad}/L{sub bol} = -5.44 {+-} 0.22. No detection is made at 9.0 GHz to a 5{sigma} limit of 290 {mu}Jy, consistent with a power-law spectrum S{sub {nu}}{proportional_to}{nu}{sup -{alpha}} with {alpha} {approx}> 0.5. The emission is quiescent, with no evidence of variability or bursts over three hours of observation, and no measurable polarization (V/I < 34%). 2MASS J1315-2649AB is one of the most radio-luminous ultracool dwarfs detected in quiescent emission to date, comparable in strength to other cool sources detected in outburst. Its detection indicates no decline in radio flux through the mid-L dwarfs. It is unique among L dwarfs in having strong and persistent H{alpha} and radio emission, indicating the coexistence of a cool, neutral photosphere (low electron density) and a highly active chromosphere (high electron density and active heating). These traits, coupled with the system's mature age and substellar secondary, make 2MASS J1315-2649AB an important test for proposed radio emission mechanisms in ultracool dwarfs.

  2. DIFFUSE HARD X-RAY EMISSION IN STARBURST GALAXIES AS SYNCHROTRON FROM VERY HIGH ENERGY ELECTRONS

    SciTech Connect

    Lacki, Brian C.; Thompson, Todd A.

    2013-01-01

    The origin of the diffuse hard X-ray (2-10 keV) emission from starburst galaxies is a long-standing problem. We suggest that synchrotron emission of 10-100 TeV electrons and positrons (e {sup {+-}}) can contribute to this emission, because starbursts have strong magnetic fields. We consider three sources of e {sup {+-}} at these energies: (1) primary electrons directly accelerated by supernova remnants, (2) pionic secondary e {sup {+-}} created by inelastic collisions between cosmic ray (CR) protons and gas nuclei in the dense interstellar medium of starbursts, and (3) pair e {sup {+-}} produced between the interactions between 10 and 100 TeV {gamma}-rays and the intense far-infrared (FIR) radiation fields of starbursts. We create one-zone steady-state models of the CR population in the Galactic center (R {<=} 112 pc), NGC 253, M82, and Arp 220's nuclei, assuming a power-law injection spectrum for electrons and protons. We consider different injection spectral slopes, magnetic field strengths, CR acceleration efficiencies, and diffusive escape times, and include advective escape, radiative cooling processes, and secondary and pair e {sup {+-}}. We compare these models to extant radio and GeV and TeV {gamma}-ray data for these starbursts, and calculate the diffuse synchrotron X-ray and inverse Compton (IC) luminosities of these starbursts in the models which satisfy multiwavelength constraints. If the primary electron spectrum extends to {approx}PeV energies and has a proton/electron injection ratio similar to the Galactic value, we find that synchrotron emission contributes 2%-20% of their unresolved, diffuse hard X-ray emission. However, there is great uncertainty in this conclusion because of the limited information on the CR electron spectrum at these high energies. IC emission is likewise a minority of the unresolved X-ray emission in these starbursts, from 0.1% in the Galactic center to 10% in Arp 220's nuclei, with the main uncertainty being the starbursts

  3. Diffuse Hard X-Ray Emission in Starburst Galaxies as Synchrotron from Very High Energy Electrons

    NASA Astrophysics Data System (ADS)

    Lacki, Brian C.; Thompson, Todd A.

    2013-01-01

    The origin of the diffuse hard X-ray (2-10 keV) emission from starburst galaxies is a long-standing problem. We suggest that synchrotron emission of 10-100 TeV electrons and positrons (e ±) can contribute to this emission, because starbursts have strong magnetic fields. We consider three sources of e ± at these energies: (1) primary electrons directly accelerated by supernova remnants, (2) pionic secondary e ± created by inelastic collisions between cosmic ray (CR) protons and gas nuclei in the dense interstellar medium of starbursts, and (3) pair e ± produced between the interactions between 10 and 100 TeV γ-rays and the intense far-infrared (FIR) radiation fields of starbursts. We create one-zone steady-state models of the CR population in the Galactic center (R <= 112 pc), NGC 253, M82, and Arp 220's nuclei, assuming a power-law injection spectrum for electrons and protons. We consider different injection spectral slopes, magnetic field strengths, CR acceleration efficiencies, and diffusive escape times, and include advective escape, radiative cooling processes, and secondary and pair e ±. We compare these models to extant radio and GeV and TeV γ-ray data for these starbursts, and calculate the diffuse synchrotron X-ray and inverse Compton (IC) luminosities of these starbursts in the models which satisfy multiwavelength constraints. If the primary electron spectrum extends to ~PeV energies and has a proton/electron injection ratio similar to the Galactic value, we find that synchrotron emission contributes 2%-20% of their unresolved, diffuse hard X-ray emission. However, there is great uncertainty in this conclusion because of the limited information on the CR electron spectrum at these high energies. IC emission is likewise a minority of the unresolved X-ray emission in these starbursts, from 0.1% in the Galactic center to 10% in Arp 220's nuclei, with the main uncertainty being the starbursts' magnetic field. We also model generic starbursts, including

  4. Beamed and Unbeamed X-ray Emission in FR1 Radio Galaxies

    NASA Technical Reports Server (NTRS)

    Worrall, Diana M.

    1997-01-01

    There is good evidence for X-ray emission associated with AGN jets which are relativistically boosted towards the observer. But to what jet radius does such X-ray emission persist? To attempt to answer this question one can look at radio galaxies; their cores are sufficiently X-ray faint that any unbeamed X-ray emission in the vicinity of the central engine must be obscured. The jets of such sources are at unfavourable angles for relativistic boosting, and so their relatively weak X-ray emission must be carefully separated from the plateau of resolved X-ray emission from a hot interstellar, intragroup, or intracluster medium on which they are expected to sit. This paper presents results arguing that jet X-ray emission is generally detected in radio galaxies, even those of low intrinsic power without hot spots. The levels of emission suggest an extrapolated radio to soft X-ray spectral index, alpha(sub tao x) of about 0.85 at parsec to perhaps kiloparsec distances from the cores.

  5. Modelling auroral currents at hot Jupiters: implications for auroral radio emissions

    NASA Astrophysics Data System (ADS)

    Nichols, J. D.; Milan, S. E.

    2014-04-01

    Recently, the radio emissions of exoplanets have come under focus due to the commencement of observations using new radio telescopes such as LOFAR. A class of planet which has attracted significant attention in this respect is the close-orbiting 'hot Jupiter', several of which, according to previous estimates, may produce detectable radio emissions driven by stellar windmagnetosphere interactions. However, this expectation rests on the accuracy over many orders of magnitude of the 'Radiometric Bode's Law', an empirical relation between the solar wind energy input and radio power output of a variety of bodies in the solar system, some of which (e.g. Jupiter) are known to be dominated instead by internal processes such as planetary rotation. In this presentation we calculate the expected radio luminosity generated by a Dungey cycle-like stellar wind interaction with a hot Jupiter's magnetosphere. Specifically, we adapt the Milan (2013) model of the terrestrial twin-vortical ionospheric plasma flow and resulting field-aligned currents to the case of hot Jupiters, and we compute the total auroral and radio luminosities for various parameters and compare with previous empirical estimates.

  6. Lightning as a possible source of the radio emission on HAT-P-11b

    NASA Astrophysics Data System (ADS)

    Hodosán, G.; Rimmer, P. B.; Helling, Ch.

    2016-04-01

    Lightning induced radio emission has been observed on Solar System planets. There have been many attempts to observe exoplanets in the radio wavelength, however, no unequivocal detection has been reported. Lecavelier des Etangs et al. (2013, A&A, 552, A65) carried out radio transit observations of the exoplanet HAT-P-11b, and suggested that a small part of the radio flux can be attributed to the planet. In the current letter, we assume that this signal is real, and study if this radio emission could be caused by lightning in the atmosphere of the planet. We find that a lightning storm with 530 times larger flash densities than the Earth-storms with the largest lightning activity is needed to produce the observed signal from HAT-P-11b. The optical counterpart would nevertheless be undetectable with current technology. We show that HCN produced by lightning chemistry of such thunderstorms is observable 2-3 years after the storm, which produces signatures in the L (3.0μm - 4.0μm) and N (7.5μm - 14.5μm) infrared bands. We conclude that future, combined radio and infrared observations may lead to lightning detection on planets outside the Solar System.

  7. Clumped X-ray emission around radio galaxies in Abell clusters

    NASA Technical Reports Server (NTRS)

    Burns, Jack O.; Rhee, George; Owen, Frazer N.; Pinkney, Jason

    1994-01-01

    We have made a comparison of the X-ray and radio morphologies for a sample of 41 rich cluster fields using Einstein Observatory Imaging Proportional Counter (IPC) and Very Large Array (VLA) 20 cm images. Surprisingly, we find that 75% of the radio galaxies have a statistically significant X-ray peak or subclump within 5 min of the radio galaxy position. The X-ray luminosity and the generally extended nature of the X-ray subclumps suggest that these subclumps are overdense regions emitting free-free radiation, although there is also evidence for Active Galactic Nuclei (AGN) X-ray emission coming from some of the more compact, high surface brightness X-ray peaks. Some interesting correlations with radio morphology were also discovered. For clusters which contain wide-angle-tailed radio sources associated with centrally dominant galaxies, there are significant elongations or clumps in the central X-ray emission which are unusual for this type of cluster. We suggest that cluster radio galaxies are pointers to particular clusters or regions within clusters that have recently undergone mergers between cluster subsystems.

  8. Discovery of radio emission from the brown dwarf LP944-20.

    PubMed

    Berger, E; Ball, S; Becker, K M; Clarke, M; Frail, D A; Fukuda, T A; Hoffman, I M; Mellon, R; Momjian, E; Murphy, N W; Teng, S H; Woodruff, T; Zauderer, B A; Zavala, R T

    2001-03-15

    Brown dwarfs are not massive enough to sustain thermonuclear fusion of hydrogen at their centres, but are distinguished from gas-giant planets by their ability to burn deuterium. Brown dwarfs older than approximately 10 Myr are expected to possess short-lived magnetic fields and to emit radio and X-rays only very weakly from their coronae. An X-ray flare was recently detected on the brown dwarf LP944-20, whereas previous searches for optical activity (and one X-ray search) yielded negative results. Here we report the discovery of quiescent and flaring radio emission from LP944-20, with luminosities several orders of magnitude larger than predicted by the empirical relation between the X-ray and radio luminosities that has been found for many types of stars. Interpreting the radio data within the context of synchrotron emission, we show that LP944-20 has an unusually weak magnetic field in comparison to active M-dwarf stars, which might explain the previous null optical and X-ray results, as well as the strength of the radio emissions compared to those at X-ray wavelengths. PMID:11268202

  9. Search for radio emission from the nearby binary brown dwarf system ɛ Indi Bab

    NASA Astrophysics Data System (ADS)

    Blank, D. L.

    2004-11-01

    We have observed the nearest known brown dwarfs, the binary system ɛ Indi Bab (d= 3.626 pc), for 8.6- and 4.8-GHz radio emission with the Australia Telescope Compact Array. If either brown dwarf emits radio flares, then they are respectively at least 5.5 and 1.2 times weaker than LP 944-20, the nearest brown dwarf with detected radio emission. We associate the ROSAT source 1WGA J2203.9 - 5647 with ɛ Indi Bab since the separation was about 30 arcsec at the time of the ROSAT observation. Assuming the association, then ɛ Indi Bab has an L0.4-2.4keV X-ray luminosity of 5.6 × 1025 erg s-1 which makes it roughly a factor of 2 less luminous than LP 944-20. The radio non-detections imply that ɛ Indi Bab does not violate, or at least does not violate as strongly as LP 944-20, the Güdel-Benz relationship of X-ray and radio emission.

  10. NONLINEAR WAVE INTERACTIONS AS EMISSION PROCESS OF TYPE II RADIO BURSTS

    SciTech Connect

    Ganse, Urs; Kilian, Patrick; Spanier, Felix; Vainio, Rami

    2012-06-01

    The emission of fundamental and harmonic frequency radio waves of type II radio bursts are assumed to be products of three-wave interaction processes of beam-excited Langmuir waves. Using a particle-in-cell code, we have performed simulations of the assumed emission region, a coronal mass ejection foreshock with two counterstreaming electron beams. Analysis of wavemodes within the simulation shows self-consistent excitation of beam-driven modes, which yield interaction products at both fundamental and harmonic emission frequencies. Through variation of the beam strength, we have investigated the dependence of energy transfer into electrostatic and electromagnetic modes, confirming the quadratic dependence of electromagnetic emission on electron beam strength.

  11. Advanced digital self-triggering of radio emission of cosmic rays

    NASA Astrophysics Data System (ADS)

    Ruehle, Christoph; Pierre Auger Collaboration

    2012-01-01

    Radio detection provides information about the electromagnetic part of an air shower in the atmosphere complementary to that obtained by water-Cherenkov detectors predominantly sensitive to the muonic content of an air shower at ground. For the measurement of ultra-high-energy cosmic rays (UHECR) by the detection of their coherent radio emission, several test setups have been developed and deployed at the Pierre Auger Observatory in Argentina. However, these UHECR radio pulses are significantly polluted by man-made radio frequency interferences (RFI). This requires a special design of antennas, analog, data acquisition (DAQ), and communication electronics, which are under investigation at the Pierre Auger Observatory. In large-scale detector arrays sophisticated self-triggering methods are necessary, to use the limited available communication data rate efficiently. This paper gives an overview of the electronics and self-triggering methods used in the test setups at the Pierre Auger Observatory and describes the experiences gained so far.

  12. Models relating the radio emission and ionised gas in Seyfert nuclei

    NASA Technical Reports Server (NTRS)

    Pedlar, A.; Unger, S. W.; Axon, D. J.; Dyson, J. E.

    1987-01-01

    Possible models are discussed in which the radio emitting components in Seyfert II nuclei can compress and accelerate the ambient nuclear medium to produce the characteristics of the narrow line region. A first order model, which considers only the expansion of the radio components, is briefly described. However, in many Seyfert nuclei it appears that the linear motion of the radio components is also important. This can result in shock heating of the ambient medium, and if the cooling time is long enough, can lead to a displacement between the radio component and the associated emission lines. This effect may be present in NGC 1068 and NGC 5929 and by considering ram pressure balance and the cooling length it is possible to estimate lobe velocities and ambient densities.

  13. Radio emission of energetic cosmic ray air showers: Polarization measurements with LOPES

    NASA Astrophysics Data System (ADS)

    Lopes Collaboration; Isar, P. G.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Auffenberg, J.; Badea, F.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Ghia, P. L.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huang, X.; Huege, T.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Kolotaev, Y.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Nigl, A.; Oehlschläger, J.; Over, S.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F.; Sima, O.; Singh, K.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.; LOPES Collaboration

    2009-06-01

    LOPES is a radio antenna array co-located with the Karlsruhe Shower Core and Array DEtector, KASCADE-Grande in Forschungszentrum Karlsruhe, Germany, which provides well-calibrated trigger information and air shower parameters for primary energies up to 10eV. By the end of 2006, the radio antennas were re-configured to perform polarization measurements of the radio signal of cosmic ray air showers, recording in the same time both, the East-West and North-South polarization directions of the radio emission. The main goal of these measurements is to reconstruct the polarization characteristics of the emitted signal. This will allow a detailed comparison with theoretical predictions. The current status of these measurements is reported here.

  14. THE UBIQUITOUS RADIO CONTINUUM EMISSION FROM THE MOST MASSIVE EARLY-TYPE GALAXIES

    SciTech Connect

    Brown, Michael J. I.; Jannuzi, Buell T.; Floyd, David J. E.; Mould, Jeremy R.

    2011-04-20

    We have measured the radio continuum emission of 396 early-type galaxies brighter than K = 9, using 1.4 GHz imagery from the NRAO Very Large Array Sky Survey, Green Bank 300 ft Telescope, and 64 m Parkes Radio Telescope. For M{sub K} < -24 early-type galaxies, the distribution of radio powers at fixed absolute magnitude spans four orders of magnitude and the median radio power is proportional to K-band luminosity to the power 2.78 {+-} 0.16. The measured flux densities of M{sub K} < -25.5 early-type galaxies are greater than zero in all cases. It is thus highly likely that the most massive galaxies always host an active galactic nucleus or have recently undergone star formation.

  15. Exploring Dual and Binary AGN via Radio Emission

    NASA Astrophysics Data System (ADS)

    Burke Spolaor, Sarah; Lazio, J.

    2012-05-01

    Dual and binary supermassive black holes (SMBHs) are thought to form as a direct result of a major galaxy merger. The discovery of late-stage SMBH pairs could critically inform upcoming gravitational wave science and cosmological formation models, and could provide fascinating studies of post-merger dynamics and merger-induced SMBH growth. However, it has been notoriously difficult to identify clear electromagnetic markers for dual and binary SMBHs in late-stage merger systems. Accordingly, few definitive discoveries of paired SMBHs have yet been made, with only a handful of known systems at projected separations below 1kpc. We will review the unique contributions that radio imaging observations can make to this field: particularly in the search for new systems, the confirmation of candidate small-orbit binary systems, and the potential for multi-messenger gravitational wave science when combined with pulsar timing methods. We will also provide an update on recent radio searches for binary AGN. We acknowledge that a portion of research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  16. The Relationship Between Solar Radio and Hard X-Ray Emission

    NASA Technical Reports Server (NTRS)

    White, S. M.; Benz, A. O.; Christe, S.; Farnik, F.; Kundu, M. R.; Mann, G.; Ning, Z.; Raulin, J.-P.; Silva-Valio, A. V. R.; Saint-Hilaire, P.; Vilmer, N.; Warmuth, A.

    2011-01-01

    This review discusses the complementary relationship between radio and hard Xray observations of the Sun using primarily results from the era of the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite. A primary focus of joint radio and hard X-ray studies of solar flares uses observations of nonthermal gyrosynchrotron emission at radio wavelengths and bremsstrahlung hard X-rays to study the properties of electrons accelerated in the main flare site, since it is well established that these two emissions show very similar temporal behavior. A quantitative prescription is given for comparing the electron energy distributions derived separately from the two wavelength ranges: this is an important application with the potential for measuring the magnetic field strength in the flaring region, and reveals significant differences between the electrons in different energy ranges. Examples of the use of simultaneous data from the two wavelength ranges to derive physical conditions are then discussed, including the case of microflares, and the comparison of images at radio and hard X-ray wavelengths is presented. There have been puzzling results obtained from observations of solar flares at millimeter and submillimeter wavelengths, and the comparison of these results with corresponding hard X-ray data is presented. Finally, the review discusses the association of hard X-ray releases with radio emission at decimeter and meter wavelengths, which is dominated by plasma emission (at lower frequencies) and electron cyclotron maser emission (at higher frequencies), both coherent emission mechanisms that require small numbers of energetic electrons. These comparisons show broad general associations but detailed correspondence remains more elusive.

  17. ORIGIN OF ELECTRON CYCLOTRON MASER INDUCED RADIO EMISSIONS AT ULTRACOOL DWARFS: MAGNETOSPHERE-IONOSPHERE COUPLING CURRENTS

    SciTech Connect

    Nichols, J. D.; Burleigh, M. R.; Casewell, S. L.; Cowley, S. W. H.; Wynn, G. A.; Clarke, J. T.; West, A. A.

    2012-11-20

    A number of ultracool dwarfs emit circularly polarized radio waves generated by the electron cyclotron maser instability. In the solar system such radio is emitted from regions of strong auroral magnetic-field-aligned currents. We thus apply ideas developed for Jupiter's magnetosphere, being a well-studied rotationally dominated analog in our solar system, to the case of fast-rotating UCDs. We explain the properties of the radio emission from UCDs by showing that it would arise from the electric currents resulting from an angular velocity shear in the fast-rotating magnetic field and plasma, i.e., by an extremely powerful analog of the process that causes Jupiter's auroras. Such a velocity gradient indicates that these bodies interact significantly with their space environment, resulting in intense auroral emissions. These results strongly suggest that auroras occur on bodies outside our solar system.

  18. Stacking Searches for Greater Than 100 MeV Gamma Ray Emission from Radio Galaxies and Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Cillis, A. N.; Hartman, R. C.; Bertsch, D. L.

    2003-01-01

    The EGRET telescope on CGRO detected more than sixty sources of high-energy gamma radiation associated with active galactic nuclei (AGN). All but one of those belong to the blazar subclass; the only exception is the nearby radio galaxy Centaurus A. Since there is no obvious reason other than proximity to expect Cen A to be the only non-blazar AGN emitting in high-energy gamma rays, we have utilized the "stacking" technique to search for $>100$-MeV emission from two non-blazar AGN subclasses, radio galaxies and Seyfert galaxies. Maps of gamma-ray counts, exposure, and diffuse background have been created, then co-added in varying numbers based on sorts by redshift, 5-GHZ flux density, and optical brightness, and finally tested for gamma-ray emission. No detection significance greater than $2\\sigma$ has been found for any subclass, sorting parameter, or number of objects co-added. Monte Carlo simulations have also been performed, to validate the technique and estimate the significance of the results.

  19. THE ORIGIN OF THE INFRARED EMISSION IN RADIO GALAXIES. III. ANALYSIS OF 3CRR OBJECTS

    SciTech Connect

    Dicken, D.; Axon, D.; Robinson, A.; Kharb, P.; Tadhunter, C.; Morganti, R. E-mail: djasps@rit.ed E-mail: c.tadhunter@sheffield.ac.u

    2010-10-20

    We present Spitzer photometric data for a complete sample of 19 low-redshift (z< 0.1) 3CRR radio galaxies as part of our efforts to understand the origin of the prodigious mid- to far-infrared (MFIR) emission from radio-loud active galactic nuclei (AGNs). Our results show a correlation between AGN power (indicated by [O III]{lambda}5007 emission line luminosity) and 24 {mu}m luminosity. This result is consistent with the 24 {mu}m thermal emission originating from warm dust heated directly by AGN illumination. Applying the same correlation test for 70 {mu}m luminosity against [O III] luminosity we find this relation to suffer from increased scatter compared to that of 24 {mu}m. In line with our results for the higher-radio-frequency-selected 2 Jy sample, we are able to show that much of this increased scatter is due to heating by starbursts that boost the far-infrared emission at 70 {mu}m in a minority of objects (17%-35%). Overall this study supports previous work indicating AGN illumination as the dominant heating mechanism for MFIR emitting dust in the majority of low-to-intermediate redshift radio galaxies (0.03 < z < 0.7), with the advantage of strong statistical evidence. However, we find evidence that the low-redshift broad-line objects (z < 0.1) are distinct in terms of their positions on the MFIR versus [O III] correlations.

  20. Radio emission of RRAT-pulsars at a frequency of 111 MHz

    NASA Astrophysics Data System (ADS)

    Losovsky, Boris; Dmitry Dumsky, Mr/.

    We will report about our resalts concerning the observations of a number of Rotating Radio Transient (RRAT) pulsars .These observations have been carried out at Large Phased Array of P.N. Lebedev Physical Institute at 111 MHz during 2010-2013 years. RRAT- pulsars were first discovered in archive Parkes Multibeam Pulsar Survey [1,2]and Arecibo Pulsar Survey[3] at higher frequency 1400 MHz and some pulsars were discovered at frequency of 350 MHz with Green Bank Telescope[4]. A characteristic feature of these pulsars is sporadic radio emission in rare active phase and no radio emission for a long time making it difficult to find periodicity .Fast Folding Algorithm processing of observations at 111 MHz shows that even in passive phase RRAT-pulsars generate weak radio emission with the period corresponding to the period of sporadic radio pulses observed in the active phase. The flux density of the radio emission of these pulsars in passive phase is rather small even at low frequency 111 MHz, that greatly complicates its registration at high frequencies since flux density of the RRAT- pulsars decreases with increasing frequency.\\ ȩnterline{References}\\ 1.McLaughlin M.A., Lyne A.G., Lorimer D.R. et al., 2006, Nature,439,817. 2.Keane E.F., Ludovici D.A., Eatough E.P. et al., 2010, MNRAS,401,1057. 3.Deneva J.S., Cordes J.M., McLaughlin M.A. et al., 2009,ApJ,703,2259. 4.Keane E.F.,McLaughlin M.A., Bull.Astr.Soc.India, 2011,39,1.

  1. A parametric study of the propagation of auroral radio emissions through auroral cavities

    NASA Astrophysics Data System (ADS)

    Gautier, A.; Hess, S.; Cecconi, B.; Zarka, P. M.

    2013-12-01

    Auroral Kilometric Radiation is the radio counterpart of the Earth's auroral radiations, observed in a large domain of wavelength, from Infrared to UV and obviously in visible. It is generated at high latitude (~70°), mostly along the nightside magnetic field lines connecting to the Earth's magnetospheric tail. In-situ observations by numerous spacecraft show that the radio sources are embedded inside depleted cavities. The auroral cavities contain a hot tenuous plasma (ne~1 cm-3, Te~5 keV) in a strong ambient magnetic field (fp/fc < 0.1). The mechanism of emission, the Cyclotron Maser Instability (CMI), predicts an intense X mode emission near gyromagnetic frequency preferentially perpendicular to the local magnetic field. But as the radio waves are generated inside a depleted cavity, they are refracted. The apparent beaming of the source is different from that predicted by the CMI. The characteristics of the apparent beaming of the source outside of the cavity depends on several geometrical and physical parameters of the surrounding medium, as well as the frequency of the radio wave. A ray tracing code (ARTEMIS-P), which computes the trajectories of electromagnetic waves in magnetized plasma, is use to compute the path of radio ray from the source inside the hot tenuous plasma of the cavity to the outside. We model a cylindrical plasma cavity characterized by a few parameters (width, edge and parallel gradients) and we study the effect of the cavity geometry on the beaming of AKR for several frequencies. We draw conclusions about the deterministic nature of the beaming angle of the radio emissions generated in cavities. We then extend our study to emissions from giant planets.

  2. Study of sub-auroral radio emissions observed by ICE experiment onboard DEMETER satellite

    NASA Astrophysics Data System (ADS)

    Boudjada, M. Y.; Galopeau, P. H. M.; Mogilevski, M. M.; Sawas, S.; Blecki, J.; Berthelier, J. J.; Voller, W.

    2012-04-01

    We report on the terrestrial kilometric and hectometric radio emissions recorded by the DEMETER/ICE (Instrument Champ Electrique) experiment. This instrument measures the electric field components of electromagnetic and electrostatic waves in the frequency range from DC to 3.25 MHz. Despite the limited satellite invariant latitude (data acquisition below about 65°), specific events have been observed, close to the sub-auroral region, in the frequency range from 100 kHz to about 1 MHz. This range covers the well-known auroral kilometric radiation (AKR), the terrestrial kilometric continuum, and the sub-auroral terrestrial emission at higher frequency up to 3 MHz. The high spectral capability of the experiment leads us to distinguish between the bursty and the continuum emissions. Selected events have been found to principally occur in the late evening and early morning sectors of the magnetosphere (22 MLT - 02 MLT) but others have been observed on the dayside. Our first results are compared to previous radio observations performed on board INTERBALL-1 (Kuril'chik et al, Cosmic Research, 43, 2005) and GEOTAIL (Hashimoto et al., JGR, 104, 1999) satellites. We also discuss the common and different features of the Earth and Jovian radio emissions. We emphasis on the observational parameters: the occurrence probability, the emission beam and the spectral emission types. We show that the physical interpretation of the auroral phenomena needs a good knowledge of the geometric configuration of the source and observer and the reception system (antenna beam and receivers).

  3. Radio emission of extensive air showers at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Filonenko, A. D.

    2016-05-01

    It is found that the power of the incoherent radiation of ionization electrons of an extensive air shower in the frequency range of 150 GHz is more than 10-24 W/m2Hz, with the shower energy ~1018 eV at a distance of 5 km from its axis. This means that, unlike fluorescent detectors, a radio telescope with an effective area of more than 300 m2 can monitor the trajectory of showers with an energy higher than 1018 eV at any time of the day regardless of the weather. The spectrum maximum near the frequency of 150 GHz is roughly three orders of magnitude higher than the value experimentally measured in the characteristic band (~5-10 GHz).

  4. Physical properties of conventional explosives deduced from radio frequency emissions

    SciTech Connect

    Harlin, Jeremiah D; Nemzek, Robert

    2008-01-01

    Los Alamos National Laboratory collected broadband radio frequency (RF) electric field change measurements from multiple detonations of high explosives (HE). Three types of HE were used: small cylinders of flake TNT, solid TNT, and PBX-9501. Low frequency signals (<80 MHz) were shot-to-shot repeatable and occurred within the first 100 {mu} s at measured amplitudes of about 2 V m{sup -1} at 35 m distance. High frequency signals (>290 MHz) occurred later, were an order of magnitude lower in signal strength, and were not repeatable. There is a positive correlation between the maximum electric field change and the shock velocity of the HE. The amount of free charge produced in the explosion estimated from the first RF pulse is between 10 and 150 {mu} C. This implies a weakly ionized plasma with temperatures between 2600 and 2900 K.

  5. RADIO EMISSION FROM SN 1994I IN NGC 5194 (M 51): THE BEST-STUDIED TYPE Ib/c RADIO SUPERNOVA

    SciTech Connect

    Weiler, Kurt W.; Panagia, Nino; Stockdale, Christopher; Rupen, Michael; Sramek, Richard A.; Williams, Christopher L. E-mail: panagia@stsci.edu E-mail: mrupen@nrao.edu E-mail: clmw@mit.edu

    2011-10-20

    We present the results of detailed monitoring of the radio emission from the Type Ic supernova SN 1994I from three days after optical discovery on 1994 March 31 until eight years later at age 2927 days on 2002 April 5. The data were mainly obtained using the Very Large Array at the five wavelengths of {lambda}{lambda}1.3, 2.0, 3.6, 6.2, and 21 cm and from the Cambridge 5 km Ryle Telescope at {lambda}2.0 cm. Two additional measurements were obtained at millimeter wavelengths. This data set represents the most complete, multifrequency radio observations ever obtained for a Type Ib/c supernova. The radio emission evolves regularly in both time and frequency and is well described by established supernova emission/absorption models. It is the first radio supernova with sufficient data to show that it is clearly dominated by the effects of synchrotron self-absorption at early times.

  6. Radio emission observed by Galileo in the inner Jovian magnetosphere during orbit A-34

    NASA Astrophysics Data System (ADS)

    Menietti, J. Douglas; Gurnett, Donald A.; Groene, Joseph B.

    2005-10-01

    The Galileo spacecraft encountered the inner magnetosphere of Jupiter on its way to a flyby of Amalthea on November 5, 2002. During this encounter, the spacecraft observed distinct spin modulation of plasma wave emissions. The modulations occurred in the frequency range from a few hundred hertz to a few hundred kilohertz and probably include at least two distinct wave modes. Assuming transverse EM radiation, we have used the swept-frequency receivers of the electric dipole antenna to determine the direction to the source of these emissions. Additionally, with knowledge of the magnetic field some constraints are placed on the wave mode of the emission based on a comparative analysis of the wave power versus spin phase of the different emissions. The emission appears in several bands separated by attenuation lanes. The analysis indicates that the lanes are probably due to blockage of the freely propagating emission by high density regions of the Io torus near the magnetic equator. Radio emission at lower frequencies (<40 kHz) appears to emanate from sources at high latitude and is not attenuated. Emission at f>80kHz is consistent with O-mode and Z-mode. Lower frequency emissions could be a mixture of O-mode, Z-mode and whistler mode. Emission for f<5kHz shows bands that are similar to upper hybrid resonance bands observed near the terrestrial plasmapause, and also elsewhere in Jovian magnetosphere. Based on the observations and knowledge of similar terrestrial emissions, we hypothesize that radio emission results from mode conversion near the strong density gradient of the inner radius of the cold plasma torus, similar to the generation of nKOM and continuum emission observed in the outer Jovian magnetosphere and in the terrestrial magnetosphere from source regions near the plasmapause.

  7. Auroral Radio Emission Direction of Arrival Studies of Simultaneous Medium Frequency Burst and Auroral Hiss

    NASA Astrophysics Data System (ADS)

    Broughton, M.; Labelle, J. W.

    2010-12-01

    The auroral zone is the source of multiple kinds of radio emissions that can be observed on the ground. The study of radio emissions offers a way to remotely sense space plasma processes and, in the case of auroral emissions, to use the auroral ionosphere as a large-scale plasma physics laboratory. Medium frequency (MF) burst is an impulsive radio emission at 1.5-4.5 MHz observed on the ground. Its generation mechanism is unknown, and it is often associated with the onset of substorms. Auroral hiss is an impulsive emission observed on the ground at frequencies up to 1 MHz and is also associated with substorm onset. LaBelle et al. [1997] reported a temporal relationship between MF burst and auroral hiss. Multiple impulses of both MF burst and auroral hiss occurred simultaneously over a time period that in certain cases lasted tens of minutes. While the temporal relationship on the timescale of seconds is well established, the spatial relationship between MF burst and auroral hiss has yet to be investigated. Dartmouth College currently operates a broadband (0-5 MHz) four-element radio interferometer at Toolik Field Station in Alaska (68° 38' N, 149° 36' W, 68.5° magnetic latitude) in order to study the direction of arrival (DOA) of radio emissions. Since the antenna spacing is 50 meters, the interferometer is optimized for DOA measurements of MF bursts. However, in certain cases, it can provide the DOA for the high-frequency portion of impulsive auroral hiss. We present two case studies that represent the first simultaneous DOA measurements of impulsive auroral hiss and MF burst. On March 4, 2010, the DOA of MF burst was predominantly from 30 degrees south of east, an observation consistent with the statistical work performed by Bunch et al. [2009]. Simultaneous DOA measurements of the high-frequency portion of auroral hiss also showed the DOA as approximately 30 degrees south of east but with greater scatter in the data. The second case study, which involved an

  8. Probing Atmospheric Electric Fields through Radio Emission from Cosmic-Ray-Induced Air Showers

    NASA Astrophysics Data System (ADS)

    Scholten, Olaf; Trinh, Gia; Buitink, Stijn; Corstanje, Arthur; Ebert, Ute; Enriquez, Emilio; Falcke, Heino; Hoerandel, Joerg; Nelles, Anna; Schellart, Pim; Rachen, Joerg; Rutjes, Casper; ter Veen, Sander; Rossetto, Laura; Thoudam, Satyendra

    2016-04-01

    Energetic cosmic rays impinging on the atmosphere create a particle avalanche called an extensive air shower. In the leading plasma of this shower electric currents are induced that generate coherent radio wave emission that has been detected with LOFAR, a large and dense array of simple radio antennas primarily developed for radio-astronomy observations. Our measurements are performed in the 30-80 MHz frequency band. For fair weather conditions the observations are in excellent agreement with model calculations. However, for air showers measured under thunderstorm conditions we observe large differences in the intensity and polarization patterns from the predictions of fair weather models. We will show that the linear as well as the circular polarization of the radio waves carry clear information on the magnitude and orientation of the electric fields at different heights in the thunderstorm clouds. We will show that from the measured data at LOFAR the thunderstorm electric fields can be reconstructed. We thus have established the measurement of radio emission from extensive air showers induced by cosmic rays as a new tool to probe the atmospheric electric fields present in thunderclouds in a non-intrusive way. In part this presentation is based on the work: P. Schellart et al., Phys. Rev. Lett. 114, 165001 (2015).

  9. Search for non-thermal radio emission from Eta Carina's outer blast wave with ATCA

    NASA Astrophysics Data System (ADS)

    Ohm, Stefan; Urquhart, James; Skilton, Joanna Lucy; Hinton, Jim; Domainko, Wilfried

    2010-10-01

    Non-thermal hard X-ray and high-energy (HE; 1 MeV < E < 100 GeV) gamma-ray emission in the direction of Eta Carina has been recently detected using the INTEGRAL, AGILE and Fermi satellites. This emission can be either interpreted in the framework of particle acceleration in the colliding wind region between the two massive stars or in the very fast moving blast wave which originates in the historical 1843 "Great Eruption". The detection of a radio shell at the location of the shock would support the latter scenario and confirm Eta Carina as prime example of a new source type, namely, an LBV star whose massive ejecta accelerates electrons to non-thermal energies. While Fermi and INTEGRAL do not provide sufficient angular resolution to resolve the blast wave, high resolution radio observations using ATCA will be able to test non-thermal radio emission from this acceleration site. The current sensitivity of ATCA is such that a relatively modest observation time of 12 hours will be sufficient to image the synchrotron emission from the blast region down to magnetic field strengths well below typical ISM values and hence prove or reject our blast-wave hypothesis for the high energy emission.

  10. Radio detection of formaldehyde emission from Comet Halley

    NASA Technical Reports Server (NTRS)

    Snyder, Lewis E.; Palmer, Patrick; De Pater, Imke

    1989-01-01

    The J(K-1 K1) = -1(11) -10(10) transition of H2CO was detected in emission at 4829.659 MHz from Comet Halley. The H2CO emission line had a peak intensity of 2.66 + or - 0.78 mJy/beam with a small blueshift of -0.76 + or - 0.40 km/s, which is consistent with the anisotropic outgassing of the nucleus in the solar direction found for other cometary species. Data analysis suggests that cometary H2CO was produced from an extended source in the coma as well as directly from the nucleus and that it was not refrigerated as in interstellar dark nebulae. The derived H2CO production rate of 1.5 x 10 to the 28th molecules/s is obtained which is consistent with observational and theoretical findings.

  11. A search for radio emission from the 'nonmagnetic' chemically peculiar stars

    NASA Technical Reports Server (NTRS)

    Drake, S. A.; Linsky, J. L.; Bookbinder, J. A.

    1994-01-01

    We have observed 23 members of the Am and HgMn subclasses of chemically peculiar (CP) stars with the Very Large Array (VLA) to search for nonthermal radio emission at levels comparable to those found for the Si and He peculiar subclasses of the CP stars by Linsky et al. (1992). This study was motivated by recent claims that magnetic fields of kilogauss strength are present in at least some of the Am and HgMn stars, contrary to previous beliefs, which would indicate that radio-emitting magnetospheres could be present in these stars. We detected none of the Am and HgMn stars as radio emitters with upper limits typically less than 0.20 mJy. Applying a correlation between radio luminosity, surface magnetic field, and effective temperature derived from previous radio studies of the Si and He peculiar CP stars, we find that the predicted radio luminosities of alpha And (an HgMn star) and Sirius (a hot Am star) are more than an order of magnitude larger than the observed upper limits, indicating that these stars lack magnetospheres, and, by inference, surface magnetic fields.

  12. MODELING OF GYROSYNCHROTRON RADIO EMISSION PULSATIONS PRODUCED BY MAGNETOHYDRODYNAMIC LOOP OSCILLATIONS IN SOLAR FLARES

    SciTech Connect

    Mossessian, George; Fleishman, Gregory D.

    2012-04-01

    A quantitative study of the observable radio signatures of the sausage, kink, and torsional magnetohydrodynamic (MHD) oscillation modes in flaring coronal loops is performed. Considering first non-zero order effect of these various MHD oscillation modes on the radio source parameters such as magnetic field, line of sight, plasma density and temperature, electron distribution function, and the source dimensions, we compute time-dependent radio emission (spectra and light curves). The radio light curves (of both flux density and degree of polarization) at all considered radio frequencies are then quantified in both time domain (via computation of the full modulation amplitude as a function of frequency) and in Fourier domain (oscillation spectra, phases, and partial modulation amplitude) to form the signatures specific to a particular oscillation mode and/or source parameter regime. We found that the parameter regime and the involved MHD mode can indeed be distinguished using the quantitative measures derived in the modeling. We apply the developed approach to analyze radio burst recorded by Owens Valley Solar Array and report possible detection of the sausage mode oscillation in one (partly occulted) flare and kink or torsional oscillations in another flare.

  13. Non-thermal radio emission from colliding flows in classical nova V1723 Aql

    NASA Astrophysics Data System (ADS)

    Weston, Jennifer H. S.; Sokoloski, J. L.; Metzger, Brian D.; Zheng, Yong; Chomiuk, Laura; Krauss, Miriam I.; Linford, Justin D.; Nelson, Thomas; Mioduszewski, Amy J.; Rupen, Michael P.; Finzell, Tom; Mukai, Koji

    2016-03-01

    The importance of shocks in nova explosions has been highlighted by Fermi's discovery of γ-ray-producing novae. Over three years of multiband Very Large Array radio observations of the 2010 nova V1723 Aql show that shocks between fast and slow flows within the ejecta led to the acceleration of particles and the production of synchrotron radiation. Soon after the start of the eruption, shocks in the ejecta produced an unexpected radio flare, resulting in a multipeaked radio light curve. The emission eventually became consistent with an expanding thermal remnant with mass 2 × 10-4 M⊙ and temperature 104 K. However, during the first two months, the ≳106 K brightness temperature at low frequencies was too high to be due to thermal emission from the small amount of X-ray-producing shock-heated gas. Radio imaging showed structures with velocities of 400 km s-1 (d/6 kpc) in the plane of the sky, perpendicular to a more elongated 1500 km s-1 (d/6 kpc) flow. The morpho-kinematic structure of the ejecta from V1723 Aql appears similar to nova V959 Mon, where collisions between a slow torus and a faster flow collimated the fast flow and gave rise to γ-ray-producing shocks. Optical spectroscopy and X-ray observations of V1723 Aql during the radio flare are consistent with this picture. Our observations support the idea that shocks in novae occur when a fast flow collides with a slow collimating torus. Such shocks could be responsible for hard X-ray emission, γ-ray production, and double-peaked radio light curves from some classical novae.

  14. Radio synchrotron emission from secondary electrons in interaction-powered supernovae

    NASA Astrophysics Data System (ADS)

    Petropoulou, M.; Kamble, A.; Sironi, L.

    2016-07-01

    Several supernovae (SNe) with an unusually dense circumstellar medium (CSM) have been recently observed at radio frequencies. Their radio emission is powered by relativistic electrons that can be either accelerated at the SN shock (primaries) or injected as a by-product (secondaries) of inelastic proton-proton collisions. We investigate the radio signatures from secondary electrons, by detailing a semi-analytical model to calculate the temporal evolution of the distributions of protons, primary and secondary electrons. With our formalism, we track the cooling history of all the particles that have been injected into the emission region up to a given time, and calculate the resulting radio spectra and light curves. For an SN shock propagating through the progenitor wind, we find that secondary electrons control the early radio signatures, but their contribution decays faster than that of primary electrons. This results in a flattening of the light curve at a given radio frequency that depends only upon the radial profiles of the CSM density and of the shock velocity, υ0. The relevant transition time at the peak frequency is {˜ } {190} d K_ep,-3^{-1} A_{w, 16}{/β _{0, -1.5}^2}, where Aw is the wind mass-loading parameter, β0 = υ0/c and Kep are the electron-to-proton ratio of accelerated particles. We explicitly show that late peak times at 5 GHz (i.e. tpk ≳ 300-1000 d) suggest a shock wave propagating in a dense wind (Aw ≳ 1016-1017 gr cm-1), where secondary electrons are likely to power the observed peak emission.

  15. Radio synchrotron emission from secondary electrons in interaction-powered supernovae

    NASA Astrophysics Data System (ADS)

    Petropoulou, M.; Kamble, A.; Sironi, L.

    2016-04-01

    Several supernovae (SNe) with an unusually dense circumstellar medium (CSM) have been recently observed at radio frequencies. Their radio emission is powered by relativistic electrons that can be either accelerated at the SN shock (primaries) or injected as a by-product (secondaries) of inelastic proton-proton collisions. We investigate the radio signatures from secondary electrons, by detailing a semi-analytical model to calculate the temporal evolution of the distributions of protons, primary and secondary electrons. With our formalism, we track the cooling history of all the particles that have been injected into the emission region up to a given time, and calculate the resulting radio spectra and light curves. For a SN shock propagating through the progenitor wind, we find that secondary electrons control the early radio signatures, but their contribution decays faster than that of primary electrons. This results in a flattening of the light curve at a given radio frequency that depends only upon the radial profiles of the CSM density and of the shock velocity, υ0. The relevant transition time at the peak frequency is ˜ {190} d K_ep,-3^{-1} A_{w, 16}{/β _{0, -1.5}^2}, where Aw is the wind mass-loading parameter, β0 = υ0/c and Kep is the electron-to-proton ratio of accelerated particles. We explicitly show that late peak times at 5 GHz (i.e., tpk ≳ 300 - 1000 d) suggest a shock wave propagating in a dense wind (Aw ≳ 1016 - 1017 gr cm-1), where secondary electrons are likely to power the observed peak emission.

  16. Source location of the smooth high-frequency radio emissions from Uranus

    SciTech Connect

    Farrell, W.M.; Calvert, W. )

    1989-05-01

    The source location of the smooth high-frequency (SHF) radio emissions from Uranus has been determined using a technique differing from those applied previously. Specifically, by fitting the signal dropouts which occurred as Voyager traversed the hollow center for the emission pattern to a symmetrical cone centered on the source magnetic field direction at the cyclotron frequency, a southern-hemisphere (nightside) source was found at approximately 56{degree} S, 219{degree} W. The half-angle for the hollow portion of the emission pattern was found to be 13{degree}.

  17. Maps of Jovian radio emission at 1412 MHz

    NASA Technical Reports Server (NTRS)

    Pater, I. D.

    1978-01-01

    Jupiter was observed with the Westerbork Radio Telescope at a frequency of 1412 MHz in December 1977 when it was at its most northerly opposition to the earth. Pictures were obtained of Jupiter in all four Stokes parameters at 24 different rotational aspects of the planet, each integrated over 15 degrees of Jovian rotation. The maps clearly indicate the presence of higher order terms in the dipolar field of Jupiter at distances of approximately 2 Rj from the center. They also show a displacement of the main dipole of 0.119 plus or minus 0.009 Rj from the center of the disk towards longitude 135-145 degree and a displacement of 0.04 plus or minus 0.04 Rj towards the north in agreement with the displacement found by the Pioneer spacecraft. From the data it is estimated that the thermal disk temperature at this frequency is more than 300 K but less than 340 K, which implies an ammonia mixing ratio of approximately 0.0005.

  18. The spectrum and variability of radio emission from AE Aquarii

    NASA Technical Reports Server (NTRS)

    Abada-Simon, Meil; Lecacheux, Alain; Bastian, Tim S.; Bookbinder, Jay A.; Dulk, George A.

    1993-01-01

    The first detections of the magnetic cataclysmic variable AE Aquarii at millimeter wavelengths are reported. AE Aqr was detected at wavelengths of 3.4 and 1.25 mm. These data are used to show that the time-averaged spectrum is generally well fitted by a power law S(nu) varies as nu exp alpha, where alpha is approximately equal to 0.35-0.60, and that the power law extends to millimeter wavelengths, i.e., the spectral turnover is at a frequency higher than 240 GHz. It is suggested that the spectrum is consistent with that expected from a superposition of flarelike events where the frequency distribution of the initial flux density is a power law f (S0) varies as S0 exp -epsilon, with index epsilon approximately equal to 1.8. Within the context of this model, the high turnover frequency of the radio spectrum implies magnetic field strengths in excess of 250 G in the source.

  19. SCATTERING OF PULSAR RADIO EMISSION BY THE INTERSTELLAR PLASMA

    SciTech Connect

    Coles, W. A.; Rickett, B. J.; Gao, J. J.; Hobbs, G.; Verbiest, J. P. W.

    2010-07-10

    We present simulations of scattering phenomena which are important in pulsar observations, but which are analytically intractable. The simulation code, which has also been used for solar wind and atmospheric scattering problems, is available from the authors. These simulations reveal an unexpectedly important role of dispersion in combination with refraction. We demonstrate the effect of analyzing observations which are shorter than the refractive scale. We examine time-of-arrival fluctuations in detail: showing their correlation with intensity and dispersion measure, providing a heuristic model from which one can estimate their contribution to pulsar timing observations, and showing that much of the effect can be corrected making use of measured intensity and dispersion. Finally, we analyze observations of the millisecond pulsar J0437-4715, made with the Parkes radio telescope, that show timing fluctuations which are correlated with intensity. We demonstrate that these timing fluctuations can be corrected, but we find that they are much larger than would be expected from scattering in a homogeneous turbulent plasma with isotropic density fluctuations. We do not have an explanation for these timing fluctuations.

  20. Diffuse X-Ray Emission from Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Sarkar, Kartick C.; Nath, Biman B.; Sharma, Prateek; Shchekinov, Yuri

    2016-02-01

    We study the diffuse X-ray luminosity (LX) of star-forming galaxies using two-dimensional axisymmetric hydrodynamical simulations and analytical considerations of supernovae-(SNe-)driven galactic outflows. We find that the mass loading of the outflows, a crucial parameter for determining the X-ray luminosity, is constrained by the availability of gas in the central star-forming region, and a competition between cooling and expansion. We show that the allowed range of the mass loading factor can explain the observed scaling of LX with star formation rate (SFR) as {L}{{X}}\\quad \\propto SFR2 for SFR ≳ \\quad 1 {M}⊙ yr-1, and a flatter relation at low SFRs. We also show that the emission from the hot circumgalactic medium (CGM) in the halo of massive galaxies can explain the large scatter in the {L}{{X}}{--}{SFR} relation for low SFRs (≲few {M}⊙ yr-1). Our results suggest that galaxies with small SFRs and large diffuse X-ray luminosities are excellent candidates for the detection of the elusive CGM.

  1. Galactic Synchrotron Emission and the Far-infrared–Radio Correlation at High Redshift

    NASA Astrophysics Data System (ADS)

    Schober, J.; Schleicher, D. R. G.; Klessen, R. S.

    2016-08-01

    Theoretical scenarios, including the turbulent small-scale dynamo, predict that strong magnetic fields already exist in young galaxies. Based on the assumption of energy equipartition between magnetic fields and turbulence, we determine the galactic synchrotron flux as a function of redshift z. Galaxies in the early universe are different from local galaxies, in particular, the former have more intense star formation. To cover a large range of conditions, we consider two different systems: one model galaxy comparable to the Milky Way and one typical high-z starburst galaxy. We include a model of the steady-state cosmic ray spectrum and find that synchrotron emission can be detected up to cosmological redshifts with current and future radio telescopes. The turbulent dynamo theory is in agreement with the origin of the observed correlation between the far-infrared (FIR) luminosity L FIR and the radio luminosity L radio. Our model reproduces this correlation well at z = 0. We extrapolate the FIR–radio correlation to higher redshifts and predict a time evolution with a significant deviation from its present-day appearance already at z≈ 2 for a gas density that increases strongly with z. In particular, we predict a decrease of the radio luminosity with redshift which is caused by the increase of cosmic ray energy losses at high z. The result is an increase of the ratio between L FIR and L radio. Simultaneously, we predict that the slope of the FIR–radio correlation becomes shallower with redshift. This behavior of the correlation could be observed in the near future with ultra-deep radio surveys.

  2. Effect of discharge parameters on emission yields in a radio-frequency glow-discharge atomic-emission source

    NASA Astrophysics Data System (ADS)

    Parker, Mark; Hartenstein, Matthew L.; Marcus, R. Kenneth

    1997-05-01

    A study is performed on a radio-frequency glow-discharge atomic-emission (rf-GD-AES) source to determine the factors effecting the emission yields for both metallic and nonconductive sample types. Specifically, these studies focus on determining how the operating parameters (power and pressure) influence emission yields. The results follow predicted patterns as determined by Langmuir probe diagnostic studies of a similar source. In particular, discharge gas pressure is the key operating parameter as slight changes in pressure may significantly affect the emission yield of the analyte species. RF power is less important and is shown to produce only relatively small changes in the emission yield over the ranges typically used in rf-GD analyses. These studies indicate that the quantitative analysis of layered materials, depth-profiling, may be adversely affected if the data collection scheme, i.e. the quantitative algorithm, requires changing the pressure during an analysis to keep the operating current and voltage constant. A direct relationship is shown to exist between the Ar (discharge gas) emission intensity and that of sputtered species for nonconductors. This observance is used to compensate for differences in emission intensities observed in the analysis of various thickness nonconductive samples. The sputtered element emission signals are corrected based on the emission intensity of an Ar (1) transition, implying that quantitative analysis of nonconductive samples is not severely limited by the availability of matrix matched standards.

  3. Radio continuum detection in blue early-type weak-emission-line galaxies

    NASA Astrophysics Data System (ADS)

    Paswan, A.; Omar, A.

    2016-06-01

    The star formation rates (SFRs) in weak-emission-line (WEL) galaxies in a volume-limited (0.02 < z < 0.05) sample of blue early-type galaxies (ETGs) identified from the Sloan Digital Sky Survey, are constrained here using 1.4-GHz radio continuum emission. The direct detection of 1.4-GHz radio continuum emission is made in eight WEL galaxies and a median stacking is performed on 57 WEL galaxies using Very Large Array (VLA) Faint Images of Radio Sky at Twenty-cm (FIRST) images. The median stacked 1.4-GHz flux density and luminosity are estimated as 79 ± 19 μJy and 0.20 ± 0.05 × 1021 W Hz-1, respectively. The radio far-infrared correlation in four WEL galaxies suggests that the radio continuum emission from WEL galaxies is most likely a result of star formation activities. The median SFR for WEL galaxies is estimated as 0.23 ± 0.06 M⊙ yr-1, which is much less than SFRs (0.5-50 M⊙ yr-1) in purely star-forming blue ETGs. The SFRs in blue ETGs are found to be correlated with their stellar velocity dispersions (σ) and decreasing gradually beyond σ of ˜100 km s-1. This effect is most likely linked to the growth of a black hole and the suppression of star formation via active galactic nucleus (AGN) feedback. The colour differences between star-forming and WEL subtypes of blue ETGs appear to be driven to a large extent by the level of current star formation activities. In a likely scenario of an evolutionary sequence between subtypes, the observed colour distribution in blue ETGs can be explained best in terms of fast evolution through AGN feedback.

  4. THE VLA SURVEY OF CHANDRA DEEP FIELD SOUTH. V. EVOLUTION AND LUMINOSITY FUNCTIONS OF SUB-MILLIJANSKY RADIO SOURCES AND THE ISSUE OF RADIO EMISSION IN RADIO-QUIET ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Padovani, P.; Mainieri, V.; Rosati, P.; Miller, N.; Kellermann, K. I.; Tozzi, P.

    2011-10-10

    We present the evolutionary properties and luminosity functions of the radio sources belonging to the Chandra Deep Field South Very Large Array survey, which reaches a flux density limit at 1.4 GHz of 43 {mu}Jy at the field center and redshift {approx}5 and which includes the first radio-selected complete sample of radio-quiet active galactic nuclei (AGNs). We use a new, comprehensive classification scheme based on radio, far- and near-IR, optical, and X-ray data to disentangle star-forming galaxies (SFGs) from AGNs and radio-quiet from radio-loud AGNs. We confirm our previous result that SFGs become dominant only below 0.1 mJy. The sub-millijansky radio sky turns out to be a complex mix of SFGs and radio-quiet AGNs evolving at a similar, strong rate; non-evolving low-luminosity radio galaxies; and declining radio powerful (P {approx}> 3 x 10{sup 24} W Hz{sup -1}) AGNs. Our results suggest that radio emission from radio-quiet AGNs is closely related to star formation. The detection of compact, high brightness temperature cores in several nearby radio-quiet AGNs can be explained by the coexistence of two components, one non-evolving and AGN related and one evolving and star formation related. Radio-quiet AGNs are an important class of sub-millijansky sources, accounting for {approx}30% of the sample and {approx}60% of all AGNs, and outnumbering radio-loud AGNs at {approx}< 0.1 mJy. This implies that future, large area sub-millijansky surveys, given the appropriate ancillary multiwavelength data, have the potential of being able to assemble vast samples of radio-quiet AGNs, bypassing the problems of obscuration that plague the optical and soft X-ray bands.

  5. The VLA Survey of Chandra Deep Field South. V. Evolution and Luminosity Functions of Sub-millijansky Radio Sources and the Issue of Radio Emission in Radio-quiet Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Padovani, P.; Miller, N.; Kellermann, K. I.; Mainieri, V.; Rosati, P.; Tozzi, P.

    2011-10-01

    We present the evolutionary properties and luminosity functions of the radio sources belonging to the Chandra Deep Field South Very Large Array survey, which reaches a flux density limit at 1.4 GHz of 43 μJy at the field center and redshift ~5 and which includes the first radio-selected complete sample of radio-quiet active galactic nuclei (AGNs). We use a new, comprehensive classification scheme based on radio, far- and near-IR, optical, and X-ray data to disentangle star-forming galaxies (SFGs) from AGNs and radio-quiet from radio-loud AGNs. We confirm our previous result that SFGs become dominant only below 0.1 mJy. The sub-millijansky radio sky turns out to be a complex mix of SFGs and radio-quiet AGNs evolving at a similar, strong rate; non-evolving low-luminosity radio galaxies; and declining radio powerful (P >~ 3 × 1024 W Hz-1) AGNs. Our results suggest that radio emission from radio-quiet AGNs is closely related to star formation. The detection of compact, high brightness temperature cores in several nearby radio-quiet AGNs can be explained by the coexistence of two components, one non-evolving and AGN related and one evolving and star formation related. Radio-quiet AGNs are an important class of sub-millijansky sources, accounting for ~30% of the sample and ~60% of all AGNs, and outnumbering radio-loud AGNs at <~ 0.1 mJy. This implies that future, large area sub-millijansky surveys, given the appropriate ancillary multiwavelength data, have the potential of being able to assemble vast samples of radio-quiet AGNs, bypassing the problems of obscuration that plague the optical and soft X-ray bands.

  6. On the nature of a "typical" pulsar radio emission.

    NASA Astrophysics Data System (ADS)

    Kazbegi, A. Z.; Machabeli, G. Z.; Melikidze, G. I.; Usov, V. V.

    1989-01-01

    The possibility of the excitation of electromagnetic (t) as well as of longitudinal-transverse (lt) waves in the magnetosphere of a "typical" pulsar is discussed. Two mechanisms of the t-waves excitation exist. The first mechanism is connected with the cyclotron resonance between t-waves and high-energy particles of both: the "tail" of the distribution function and the primary beam. The second mechanism is conditioned by the particles drift motion and needs to satisfy a Cherenkov resonance condition. Due to the second mechanism the lt-waves excitation is also possible. The waves excited due to the cyclotron instability cause the diffusion of particles across the magnetic field. For the sufficiently large pitch angles the additional possibility of t-waves excitation appears.

  7. On the nature of a typical pulsars radio emission

    NASA Astrophysics Data System (ADS)

    Kazbegi, A. Z.; Machabeli, G. Z.; Melikidze, G. I.; Usov, V. V.

    1989-01-01

    The possibility of the excitation of electromagnetic (t) as well as of longitudinal-transverse (lt) waves in the magnetosphere of a typical pulsar is discussed. Two mechanisms of the t-wave excitation exist. The first is connected with the cyclotron resonance between t-waves and high-energy particles of both the tail of the distribution function and the primary beam. The second mechanism is conditioned by particle drift motion and needs to satisfy a Cherenkov resonance condition. Due to the second mechanism lt-wave excitation is also possible. The waves excited due to the cyclotron instability cause the diffusion of particles across the magnetic field. For sufficiently large pitch angles, t-wave excitation is also possible.

  8. UV extinction and IR emission in diffuse H2 regions

    NASA Technical Reports Server (NTRS)

    Aannestad, Per A.

    1994-01-01

    HII regions occupy a unique position in our understanding of the physical relationships between stars, the interstellar medium, and galactic structure. Observations show a complex interaction between a newly formed hot star and its surroundings. In particular, the ultraviolet radiation from the stars modifies the pre-existing dust, which again affects both the amount of ionizing radiation absorbed by the gas, and the infrared spectrum emitted by the heated dust. The aim of this project was to use UV and far-UV observations to gain information on the nebular dust, and to use this dust to model the far-IR emission, for a consistent picture of a few selected diffuse HII regions. Using archival data from the IUE and Voyager data banks and computed model atmospheres, we have deduced extinction curves for early-types stars. The requisite spectral resolution turned out to be a major task. We have successfully modelled these curves in terms of a multi-component, multi-size distribution of dust grains, and interpret the differences in the curves as primarily due to the presence or non-presence of intermediate size grains (0.01 to 0.04 micron). Much smaller (0.005 micron) grains must also be present. Finally, we have made calculations of the temperature fluctuations and the corresponding infra-red emission in such small grains.

  9. Rotational modulation of Saturn's radio emissions after equinox

    NASA Astrophysics Data System (ADS)

    Ye, Shengyi; Fischer, Georg; Kurth, William; Gurnett, Donald

    2016-04-01

    The modulation rate of Saturn kilometric radiation (SKR), originally thought to be constant, was found to vary with time by comparing the Voyager and Ulysses observations. More recently, Cassini RPWS observations of SKR revealed two different modulation rates, one associated with each hemisphere of Saturn, and it was proposed that the rotation rates are subject to seasonal change. The almost continuous observations of SKR, Saturn narrowband emission, and auroral hiss by RPWS provide a good method of tracking the rotation rates of the planet's magnetosphere. We will show that the rotation rate of the northern SKR is slower than that of the southern SKR in 2015. Auroral hiss provides another unambiguous method of tracking the rotation signals from each hemisphere because the whistler mode wave cannot cross the equator. Rotation rates of auroral hiss are shown to agree with those of SKR when both are observed at high latitudes. The dual rotation rates of 5 kHz narrowband emissions reappeared after a long break since equinox and they agree with those of auroral hiss in 2013.

  10. Simultaneous ground- and satellite-based observation of MF/HF auroral radio emissions

    NASA Astrophysics Data System (ADS)

    Sato, Yuka; Kumamoto, Atsushi; Katoh, Yuto; Shinbori, Atsuki; Kadokura, Akira; Ogawa, Yasunobu

    2016-05-01

    We report on the first simultaneous measurements of medium-high frequency (MF/HF) auroral radio emissions (above 1 MHz) by ground- and satellite-based instruments. Observational data were obtained by the ground-based passive receivers in Iceland and Svalbard, and by the Plasma Waves and Sounder experiment (PWS) mounted on the Akebono satellite. We observed two simultaneous appearance events, during which the frequencies of the auroral roar and MF bursts detected at ground level were different from those of the terrestrial hectometric radiation (THR) observed by the Akebono satellite passing over the ground-based stations. This frequency difference confirms that auroral roar and THR are generated at different altitudes across the F peak. We did not observe any simultaneous observations that indicated an identical generation region of auroral roar and THR. In most cases, MF/HF auroral radio emissions were observed only by the ground-based detector, or by the satellite-based detector, even when the satellite was passing directly over the ground-based stations. A higher detection rate was observed from space than from ground level. This can primarily be explained in terms of the idea that the Akebono satellite can detect THR emissions coming from a wider region, and because a considerable portion of auroral radio emissions generated in the bottomside F region are masked by ionospheric absorption and screening in the D/E regions associated with ionization which results from auroral electrons and solar UV radiation.

  11. Narrowband Radio Emission As A Possible Feature of Before CMEs Onset Processes

    NASA Astrophysics Data System (ADS)

    Fridman, V.; Sheiner, O.; Grechin, S.

    The narrow band events in microwave radio emission were discovered during the ob- servations by RT-22 CrAO on August 12, 1989 before CMEs registration has been done. The observations were carried out using the sweeping spectrograph in 13-17 GHz range with frequency resolution of 100 MHz and sweeping time of less then 1 sec. It is well known that the period preceding the CMEs formation is characterized by sporadic radio emission of different types. We have found the existence of fast changes in temporal behavior of radio emission during the burst. They are character- ized by consistent origin of narrow-band (<1 GHz) components of emission with flux amplitude of about 1 sfu, moving from high to low frequencies in 1-3 seconds. We detected the shift of spectral maximum to short waves and appearance of narrow-band (<800 MHz) features during the CMEs formation. The results are being discussed within the framework of known models of radioemission of active region and bursts. Their application to possible conditions in formation of CMEs is also addressed in this research. This work is being supported by the Federal Science and Technology Programme "Astronomy" and the Russian Foundation for Fundamental Research.

  12. Low frequency radio emission from magnetic exoplanets and RFI combating strategies

    NASA Astrophysics Data System (ADS)

    Majid, W.

    2012-09-01

    Massive extrasolar planets are expected to emit, in analogy with Jupiter and Saturn, detectable radio emission at low frequencies. A number of radio campaigns have been undertaken focusing in particular on nearby hot Jupiters. As of yet, no confirmed detection has been reported in the literature. One of the potential issues limiting instrument sensitivity is the presence of radio frequency interference (RFI). Low frequency observations are plagued with RFI and a considerable amount of effort is needed to "clean" the data before attempting to search for presence of astrophysical signals. In this talk we present some strategies for combating RFI with analysis techniques to minimize, identify and remove RFI effects from dynamic spectra. We will discuss the implementation of these techniques in the context of observations carried out at the GMRT and LOFAR.

  13. A search of the SAS-2 data for pulsed gamma-ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Ogelman, H. B.; Fichtel, C. E.

    1976-01-01

    Data from the SAS-2 high energy gamma ray experiment were examined for pulsed emission from each of 75 radio pulsars which were viewed by the instrument and which have sufficiently well defined period and period derivative information from radio observations to allow for gamma ray periodicity searches. When gamma ray arrival times were converted to pulsar phase using the radio reference timing information, two pulsars, PSR 1747-46 and PSR 1818-04, showed positive effects, each with a probability less than 0.0001 of being a random fluctuation in the data for that pulsar. These are in addition to PSR 0531+21 and PSR 0833-45, previously reported. The results of this study suggest that gamma-ray astronomy has reached the detection threshold for gamma ray pulsars and that work in the near future should give important information on the nature of pulsars.

  14. SCO X-1: Origin of the radio and hard X-ray emissions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Cheng, C. C.; Tsuruta, S.

    1973-01-01

    The consequences of models for the central radio source and the hard X-ray ( 30 keV) emitting region in Sco X-1 are examined. It was found that the radio emission could result from noncoherent synchrotron radiation and that the X-rays may be produced by bremsstrahlung. It is shown that both mechanisms require a mass outflow from Sco X-1. The radio source is located at r approximately 3x10 to the 12th power cm from the center of the star, and its linear dimensions do not exceed 3x10 to the 13th power cm. The magnetic field in the radio source is on the order of 1 gauss. If the hard X-rays are produced by thermal bremsstrahlung, their source is located at 10 to the 9th power approximately r approximately 5x10 to the 9th power cm, the temperature is 2x10 to the 9th power K, and the emission measure is 2x10 to the 56th power/cu cm. This hot plasma loses energy inward by conduction and outward by supersonic expansion. The rates of energy loss for both processes are about 10 to the 36th power erg/s, comparable to the total luminosity of Sco X-1.

  15. Dynamic of diffuse CO2 emission from Decepcion volcano, Antartica

    NASA Astrophysics Data System (ADS)

    Nolasco, D.; Padron, E.; Hernandez Perez, P. A.; Christian, F.; Kusakabe, M.; Wakita, H.

    2010-12-01

    Deception Island is a volcanic island located at the South Shetland Island off the Antartic Peninsula. It constitutes a back-arc stratovolcano with a basal diameter of ~ 30 Km, the volcano rises ~ 1400 m from the seafloor to the maximum height, Mt. Pond of 540 m above sea level and over half the island is covered by glaciers. This island has a horse-shoe shape with a large flooded caldera with a diameter of about 6x10 km and a maximum depth of 190 m. This caldera is open to the sea through a narrow channel of 500 m at Neptunes Bellows. Deception Island shows the most recent active volcanism, evidence of several eruptions since the late 18th century, and well-known eruptions in 1967, 1969 and 1970 caused serious damage to local scientific stations. The aim of this study is to estimate the CO2 emissions from the Deception volcano bay. In-situ measurements of CO2 efflux from the surface environment of Deception Bay were performed by means of a portable Non Dispersive Infrared spectrophotometer (NDIR) model LICOR Li800, following the accumulation chamber method coupled with a floating device. A total of 244 CO2 efflux measurements were performed in Deception bay in November and December, 2009. CO2 efflux values ranged from non-detectable up to 119,9 g m-2 d-1. To quantify the total CO2 emission from Deception Bay, a CO2 efflux map was constructed using sequential Gaussian simulations (sGs). Most of the studied area showed background levels of CO2 efflux (~4 g m-2 d-1), while peak levels (>20 g m-2 d-1) were mainly identified inside the Fumarole Bay, Telefon Bay and Pendulum Cove areas. The total CO2 emission from Deception Bay was estimated about 191 ± 9 t/d To study the temporal evolution of the CO2 efflux values at Fumarole bay, a two month time series of CO2 diffuse emission values was recorded by an automatic geochemical station, which was installed on December 8, 2009, which measured also soil temperature and humidity and meteorological parameters. CO2 values

  16. Adaptive-array Electron Cyclotron Emission diagnostics using data streaming in a Software Defined Radio system

    NASA Astrophysics Data System (ADS)

    Idei, H.; Mishra, K.; Yamamoto, M. K.; Hamasaki, M.; Fujisawa, A.; Nagashima, Y.; Hayashi, Y.; Onchi, T.; Hanada, K.; Zushi, H.; the QUEST team

    2016-04-01

    Measurement of the Electron Cyclotron Emission (ECE) spectrum is one of the most popular electron temperature diagnostics in nuclear fusion plasma research. A 2-dimensional ECE imaging system was developed with an adaptive-array approach. A radio-frequency (RF) heterodyne detection system with Software Defined Radio (SDR) devices and a phased-array receiver antenna was used to measure the phase and amplitude of the ECE wave. The SDR heterodyne system could continuously measure the phase and amplitude with sufficient accuracy and time resolution while the previous digitizer system could only acquire data at specific times. Robust streaming phase measurements for adaptive-arrayed continuous ECE diagnostics were demonstrated using Fast Fourier Transform (FFT) analysis with the SDR system. The emission field pattern was reconstructed using adaptive-array analysis. The reconstructed profiles were discussed using profiles calculated from coherent single-frequency radiation from the phase array antenna.

  17. Polarization features of solar radio emission and possible existence of current sheets in active regions

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Zheleznyakov, V. V.; White, S. M.; Kundu, M. R.

    1994-01-01

    We show that it is possible to account for the polarization features of solar radio emission provided the linear mode coupling theory is properly applied and the presence of current sheets in the corona is taken into account. We present a schematic model, including a current sheet that can explain the polarization features of both the low frequency slowly varying component and the bipolar noise storm radiation; the two radiations face similar propagation conditions through a current sheet and hence display similar polarization behavior. We discuss the applications of the linear mode coupling theory to the following types of solar emission: the slowly varying component, the microwave radio bursts, metric type U bursts, and bipolar noise storms.

  18. Understanding Limitations in the Determination of the Diffuse Galactic Gamma-ray Emission

    SciTech Connect

    Moskalenko, Igor V.; Digel, S.W.; Porter, T.A.; Reimer, O.; Strong, A.W.; /Garching, Max Planck Inst., MPE

    2006-10-03

    We discuss uncertainties and possible sources of errors associated with the determination of the diffuse Galactic {gamma}-ray emission using the EGRET data. Most of the issues will be relevant also in the GLAST era. The focus here is on issues that impact evaluation of dark matter annihilation signals against the diffuse {gamma}-ray emission of the Milky Way.

  19. Morphology of the Galactic dark matter synchrotron emission with self-consistent cosmic-ray diffusion models

    SciTech Connect

    Linden, Tim; Anderson, Brandon; Profumo, Stefano

    2010-09-15

    A generic prediction in the paradigm of weakly interacting dark matter is the production of relativistic particles from dark matter pair annihilation in regions of high dark matter density. Ultrarelativistic electrons and positrons produced in the center of the Galaxy by dark matter annihilation should produce a diffuse synchrotron emission. While the spectral shape of the synchrotron dark matter haze depends on the particle model (and secondarily on the Galactic magnetic fields), the morphology of the haze depends primarily on (1) the dark matter density distribution, (2) the Galactic magnetic field morphology, and (3) the diffusion model for high-energy cosmic-ray leptons. Interestingly, an unidentified excess of microwave radiation with characteristics similar to those predicted by dark matter models has been claimed to exist near the Galactic center region in the data reported by the Wilkinson Microwave Anisotropy Probe (WMAP) satellite, and is dubbed the 'WMAP haze'. In this study, we carry out a self-consistent treatment of the variables enumerated above, enforcing constraints from the available data on cosmic rays, radio surveys, and diffuse gamma rays. We outline and make predictions for the general morphology and spectral features of a 'dark matter haze' and we compare them to the WMAP haze data. We also characterize and study the spectrum and spatial distribution of the inverse-Compton emission resulting from the same population of energetic electrons and positrons. We point out that the spectrum and morphology of the radio emission at different frequencies are powerful diagnostics to test whether a Galactic synchrotron haze indeed originates from dark matter annihilation.

  20. Relationship of Solar Radio Emission at λ=1.43m and Optical Processes in the Sun

    NASA Astrophysics Data System (ADS)

    Makandarashvili, Sh.; Oghrapishvili, N.; Japaridze, D.; Maghradze, D.

    2016-09-01

    Radio frequency observations supplement optical studies and in some cases they are the only way of obtaining information on the physical conditions for radio waves and their propagation. Solar radio emission appears in two forms, "quiescent" and "sporadic." Their distinctive features are well known. Solar radio observations at meter wavelengths (λ = 1.43 m, ν = 210 MHz) have been made at the Abastumani Astrophysical Observatory using a solar radio telescope throughout five solar cycles (since 1957). This article is a study of the long-term observations of solar radio bursts and sunspots. It is found that there is a correlation between the amplitudes of the radio bursts, the number of spots, and the regions of the spots.

  1. Self-consistent particle-in-cell simulations of fundamental and harmonic radio plasma emission mechanisms

    NASA Astrophysics Data System (ADS)

    Tsiklauri, D.; Thurgood, J. O.

    2015-12-01

    first co-author Jonathan O. Thurgood (QMUL) The simulation of three-wave interaction based plasma emission, an underlying mechanism for type III solar radio bursts, is a challenging task requiring fully-kinetic, multi-dimensional models. This paper aims to resolve a contradiction in past attempts, whereby some authors report that no such processes occur and others draw conflicting conclusions, by using 2D, fully kinetic, particle-in-cell simulations of relaxing electron beams. Here we present the results of particle-in-cell simulations which for different physical parameters permit or prohibit the plasma emission. We show that the possibility of plasma emission is contingent upon the frequency of the initial electrostatic waves generated by the bump-in-tail instability, and that these waves may be prohibited from participating in the necessary three-wave interactions due to the frequency beat requirements. We caution against simulating astrophysical radio bursts using unrealistically dense beams (a common approach which reduces run time), as the resulting non-Langmuir characteristics of the initial wave modes significantly suppresses the emission. Comparison of our results indicates that, contrary to the suggestions of previous authors, a plasma emission mechanism based on two counter-propagating beams is unnecessary in astrophysical context. Finally, we also consider the action of the Weibel instability, which generates an electromagnetic beam mode. As this provides a stronger contribution to electromagnetic energy than the emission, we stress that evidence of plasma emission in simulations must disentangle the two contributions and not simply interpret changes in total electromagnetic energy as the evidence of plasma emission. In summary, we present the first self-consistent demonstration of fundamental and harmonic plasma emission from a single-beam system via fully kinetic numerical simulation. Pre-print can be found at http://astro.qmul.ac.uk/~tsiklauri/jtdt1

  2. Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers.

    PubMed

    Schellart, P; Trinh, T N G; Buitink, S; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Nelles, A; Rachen, J P; Rossetto, L; Scholten, O; Ter Veen, S; Thoudam, S; Ebert, U; Koehn, C; Rutjes, C; Alexov, A; Anderson, J M; Avruch, I M; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Butcher, H R; Ciardi, B; de Geus, E; de Vos, M; Duscha, S; Eislöffel, J; Fallows, R A; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Heald, G; Hessels, J W T; Hoeft, M; Holties, H A; Juette, E; Kondratiev, V I; Kuniyoshi, M; Kuper, G; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Moldon, J; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D J; Serylak, M; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Tasse, C; Toribio, M C; van Weeren, R J; Vermeulen, R; Vocks, C; Wise, M W; Wucknitz, O; Zarka, P

    2015-04-24

    We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields. PMID:25955053

  3. The Diffuse Galactic Gamma-Ray Emission Model for GLAST LAT

    SciTech Connect

    Porter, T.A.; Digel, S.W.; Grenier, I.A.; Moskalenko, I.V.; Strong, A.W.; /Garching, Max Planck Inst., MPE

    2007-06-13

    Diffuse emission from the Milky Way dominates the gamma-ray sky. About 80% of the high-energy luminosity of the Milky Way comes from processes in the interstellar medium. The Galactic diffuse emission traces interactions of energetic particles, primarily protons and electrons, with the interstellar gas and radiation field, thus delivering information about cosmic-ray spectra and interstellar mass in distant locations. Additionally, the Galactic diffuse emission is the celestial foreground for the study of gamma-ray point sources and the extragalactic diffuse gamma-ray emission. We will report on the latest developments in the modeling of the Galactic diffuse emission, which will be used for the Gamma Ray Large Area Space Telescope (GLAST) investigations.

  4. Radio continuum emission and HI gas accretion in the NGC 5903/5898 compact group of galaxies

    NASA Astrophysics Data System (ADS)

    Wiita, Paul; Gopal-Krishna; Mhaskey, Mukul

    2012-03-01

    We investigate the nature of the multi-component radio continuum and HI emission associated with the nearby galaxy group comprised of two dominant ellipticals, NGC 5898 and NGC 5903 and a dwarf lenticular ESO514-G003. Striking new details of radio emission come from the ongoing TIFR.GMRT.SKY.SURVEY (TGSS) which provides images with a resolution of ˜24^'' x18^'' and rms noise of 5 mJy at 150 MHz. Previous observations of this compact triplet include images at higher frequencies of the radio continuum as well as huge HI trails originating from the vicinity of NGC 5903. The TGSS 150 MHz image has revealed a large asymmetric radio halo around NGC 5903 and also established that the dwarf SO galaxy ESO514-G003 is the host to a previously known bright double radio source. The radio emission from NGC 5903 is found to have a very steep radio spectrum (α˜-1.5) and to envelope a network of radio continuum filaments bearing a spatial relationship to the HI trails. Both its radio loud members are also the only galaxies that are seen to be connected to an HI filament. This correlation is consistent with the premise that cold gas accretion is of prime importance for triggering powerful jet activity in the nuclei of early-type galaxies.

  5. On the Methods of Determining the Radio Emission Geometry in Pulsar Magnetospheres

    NASA Technical Reports Server (NTRS)

    Dyks, J.; Rudak, B.; Harding, Alice K.

    2004-01-01

    We present a modification of the relativistic phase shift method of determining the radio emission geometry from pulsar magnetospheres proposed by Gangadhara & Gupta (2001). Our modification provides a method of determining radio emission altitudes which does not depend on the viewing geometry and does not require polarization measurements. We suggest application of the method to the outer edges of averaged radio pulse profiles to identify magnetic field lines associated with'the edges of the pulse and, thereby, to test the geometric method based on the measurement of the pulse width at the lowest intensity level. We show that another relativistic method proposed by Blaskiewicz et al. (1991) provides upper limits for emission altitudes associated with the outer edges of pulse profiles. A comparison of these limits with the altitudes determined with the geometric method may be used to probe the importance of rotational distortions of magnetic field and refraction effects in the pulsar magnetosphere. We provide a comprehensive discussion of the assumptions used in the relativistic methods.

  6. Strongly lensed neutral hydrogen emission: detection predictions with current and future radio interferometers

    NASA Astrophysics Data System (ADS)

    Deane, R. P.; Obreschkow, D.; Heywood, I.

    2015-09-01

    Strong gravitational lensing provides some of the deepest views of the Universe, enabling studies of high-redshift galaxies only possible with next-generation facilities without the lensing phenomenon. To date, 21-cm radio emission from neutral hydrogen has only been detected directly out to z ˜ 0.2, limited by the sensitivity and instantaneous bandwidth of current radio telescopes. We discuss how current and future radio interferometers such as the Square Kilometre Array (SKA) will detect lensed H I emission in individual galaxies at high redshift. Our calculations rely on a semi-analytic galaxy simulation with realistic H I discs (by size, density profile and rotation), in a cosmological context, combined with general relativistic ray tracing. Wide-field, blind H I surveys with the SKA are predicted to be efficient at discovering lensed H I systems, increasingly so at z ≳ 2. This will be enabled by the combination of the magnification boosts, the steepness of the H I luminosity function at the high-mass end, and the fact that the H I spectral line is relatively isolated in frequency. These surveys will simultaneously provide a new technique for foreground lens selection and yield the highest redshift H I emission detections. More near term (and existing) cm-wave facilities will push the high-redshift H I envelope through targeted surveys of known lenses.

  7. The effect of magnetic topography on high-latitude radio emission at Neptune

    NASA Technical Reports Server (NTRS)

    Sawyer, C. B.; Warwick, James W.; Romig, J. H.

    1992-01-01

    Occultation by a local elevation on the surface of constant magnetic field is proposed as a new interpretation for the unusual properties of Neptune high-latitude emission. Abrupt changes in intensity and polarization of this broadband smooth radio emission were observed as the Voyager 2 spacecraft passed near the north magnetic pole before closest approach. The observed sequence of cutoffs with polarization reversal would not occur during descent of the spacecraft through regular surfaces of increasing magnetic field. The sequence can be understood in terms of constant-frequency (constant-field) surfaces that are not only offset from the planet center but are locally highly distorted by an elevation that occults the outgoing extraordinary-mode beam. The required occulter is similar to the field enhancement observed directly by the magnetometer team when Voyager reached lower altitude farther to the west. Evidence is presented that the sources of the high-altitude emission are located near the longitude of the minimum-B anomaly associated with the dipole offset and that the local elevation of constant-B surfaces extends eastward from the longitude where it is directly measured by the magnetometer to the longitude where occultation of the remote radio source is observed. Together, the radio and magnetometer experiments indicate that the constant-frequency surfaces are distorted by an elevation that extends 0.3 rad in the longitudinal direction.

  8. The relationship between the carbon monoxide intensity and the radio continuum emission in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Adler, David S.; Lo, K. Y.; Allen, Ronald J.

    1991-01-01

    The relationship between the velocity-integrated CO emission and the nonthermal radio continuum brightness in the disks of normal spiral galaxies is examined on a variety of length scales. On a global scale, the total CO intensity correlates strongly with the total radio continuum flux density for a sample of 31 galaxies. On scales of about 2 kpc or more in the disk of individual galaxies, it is found that the ratio I(CO)/T(20) remains fairly constant over the entire disk as well as from galaxy to galaxy. For the eight spirals in the sample, the disk-averaged values of I(CO)/T(20) range from 0.6-2.4, with the average over all eight galaxies being 1.3 +/- 0.6. It is concluded that what these various length scales actually trace are differences in the primary heating mechanism of the gas in the beam. The observed relationship between CO and nonthermal radio continuum emission can be explained by assuming that molecular gas in galactic disks is heated primarily by cosmic rays. The observed relationship is used to show that the brightness of synchrotron emission is proportional to n(cr) exp 0.4 - 0.9 in galactic disks.

  9. Radio-wave emission due to hypervelocity impacts and its correlation with optical observations

    NASA Astrophysics Data System (ADS)

    Takano, T.; Maki, K.; Yamori, A.

    This paper describes the most interesting phenomena of radio-wave emission due to hypervelocity impacts. A projectile of polycarbonate with 1.1 g weight was accelerated by a rail gun to 3.8 km/sec, and hit two targets which are a 2 mm thick aluminum plate upstream and a 45 mm diameter aluminum column downstream, respectively. The projectile first breaks wires to give a triggering signal to a data recorder, then penetrates the aluminum plate, and finally hit the column, The emitted radio-waves propagate through the chamber window, and are received by antennas at each frequency band. The receivers in 22 GHz- and 2 GHz-bands consist of a low noise amplifier, a mixer, a local oscillator and an IF amplifier , respectively. The receiver in 1 MHz-band is a simple RF amplifier. The outputs of all receivers are fed to a data recorder which is actually a high-speed digital oscilloscope with a large amount of memory. The radio-waves were successfully recorded in 22 GHz-band with 500 MHz bandwidth, in 2 GHz-band with 300 MHz bandwidth, and in 1MHz-band. The waveforms in 22 GHz- and 2 GHz-bands coincide well each other, and are composed of two groups of sharp impulses with a separation of about 20 micro seconds. The width of an impulse is less than 2 n sec. which is the resolution limit of the data recorder. We carried out optical observations using an ultra-high speed camera simultaneously through another window of the chamber. The time interval between scenes is 2 micro sec. We can see a faint light of the projectile before the first impact to the plate, and then a brilliant gas exploding backward from the plate and forward to the column. After hitting the column target, the brilliant gas flows to the chamber wall and is reflected back to make a mixture with dark gas in the chamber. Excellent correlation between radio-wave emission and the observed optical phenomena was obtained in the experiment. It is easily conceived that the radio-waves consist of quite a wide frequency

  10. THE ABSENCE OF RADIO EMISSION FROM THE GLOBULAR CLUSTER G1

    SciTech Connect

    Miller-Jones, J. C. A.; Wrobel, J. M.; Sivakoff, G. R.; Heinke, C. O.; Miller, R. E.; Plotkin, R. M.; Di Stefano, R.; Greene, J. E.; Ho, L. C.; Joseph, T. D.; Maccarone, T. J.; Kong, A. K. H.

    2012-08-10

    The detections of both X-ray and radio emission from the cluster G1 in M31 have provided strong support for existing dynamical evidence for an intermediate-mass black hole (IMBH) of mass (1.8 {+-} 0.5) Multiplication-Sign 10{sup 4} M{sub Sun} at the cluster center. However, given the relatively low significance and astrometric accuracy of the radio detection, and the non-simultaneity of the X-ray and radio measurements, this identification required further confirmation. Here we present deep, high angular resolution, strictly simultaneous X-ray and radio observations of G1. While the X-ray emission (L{sub X} = 1.74{sup +0.53}{sub -0.44} Multiplication-Sign 10{sup 36} (d/750 kpc){sup 2} erg s{sup -1} in the 0.5-10 keV band) remained fully consistent with previous observations, we detected no radio emission from the cluster center down to a 3{sigma} upper limit of 4.7 {mu}Jy beam{sup -1}. Our favored explanation for the previous radio detection is flaring activity from a black hole low-mass X-ray binary (LMXB). We performed a new regression of the 'Fundamental Plane' of black hole activity, valid for determining black hole mass from radio and X-ray observations of sub-Eddington black holes, finding log M{sub BH} = (1.638 {+-} 0.070)log L{sub R} - (1.136 {+-} 0.077)log L{sub X} - (6.863 {+-} 0.790), with an empirically determined uncertainty of 0.44 dex. This constrains the mass of the X-ray source in G1, if a black hole, to be <9.7 Multiplication-Sign 10{sup 3} M{sub Sun} at 95% confidence, suggesting that it is a persistent LMXB. This annuls what was previously the most convincing evidence from radiation for an IMBH in the Local Group, though the evidence for an IMBH in G1 from velocity dispersion measurements remains unaffected by these results.

  11. A search for slowly varying radio continuum emission from UV Ceti stars

    NASA Technical Reports Server (NTRS)

    Spangler, S. R.; Shawhan, S. D.

    1976-01-01

    The paper presents results of a search conducted at the Arecibo Observatory for variable 430-MHz emission from the active flare stars EQ Peg, YZ CMi, and AD Leo. No statistically significant evidence for slowly varying emission is found to a level of 0.05 Jy for AD Leo, 0.018-0.021 Jy for YZ CMi, and 0.009-0.018 Jy for EQ Peg. Upper limits of about 10 trillion K are determined for the brightness temperature of active radio regions on these stars at the time of the observations.

  12. Source of O mode radio emissions from the dayside of Uranus

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Curran, D. B.

    1990-01-01

    During the inbound trajectory toward Uranus, the Planetary Radio Astronomy instrument on Voyager 2 observed narrow-band smooth (n-smooth) emission at frequencies centered near 60 kHz and O-mode emission (the dayside source) in a frequency range narrowly confined around 160 kHz. Assuming empirical models of the plasma density for the dayside magnetosphere of Uranus, and using cold plasma theory together with observational constraints, ray-tracing calculations are performed to determine the source location of the O-mode emission. The dayside source appears to originate along magnetic field lines with a footprint near the north magnetic pole. Sources of nightside high-frequency broadband smooth (b-smooth) emission observed by Voyager after encounter are believed to exist near the conjugate footprint of these same field lines. This would indicate that the particle population supplying the free energy source has energies at least as high as a few keV.

  13. Spectral selective radio frequency emissions from laser induced breakdown of target materials

    SciTech Connect

    Vinoth Kumar, L.; Manikanta, E.; Leela, Ch.; Prem Kiran, P.

    2014-08-11

    The radio frequency emissions scanned over broad spectral range (30 MHz–1 GHz) from single shot nanosecond (7 ns) and picosecond (30 ps) laser induced breakdown (LIB) of different target materials (atmospheric air, aluminum, and copper) are presented. The dominant emissions from ns-LIB, compared to those from the ps-LIB, indicate the presence and importance of atomic and molecular clusters in the plasma. The dynamics of laser pulse-matter interaction and the properties of the target materials were found to play an important role in determining the plasma parameters which subsequently determine the emissions. Thus, with a particular laser and target material, the emissions were observed to be spectral selective. The radiation detection capability was observed to be relatively higher, when the polarization of the input laser and the antenna is same.

  14. Effect of laser intensity on radio frequency emissions from laser induced breakdown of atmospheric air

    NASA Astrophysics Data System (ADS)

    Vinoth Kumar, L.; Manikanta, E.; Leela, Ch.; Prem Kiran, P.

    2016-06-01

    The studies on the effect of input laser intensity, through the variation of laser focusing geometry, on radio frequency (RF) emissions, over 30-1000 MHz from nanosecond (ns) and picosecond (ps) laser induced breakdown (LIB) of atmospheric air are presented. The RF emissions from the ns and ps LIB were observed to be decreasing and increasing, respectively, when traversed from tight to loose focusing conditions. The angular and radial intensities of the RF emissions from the ns and ps LIB are found to be consistent with sin2θ/r2 dependence of the electric dipole radiation. The normalized RF emissions were observed to vary with incident laser intensity (Iλ2), indicating the increase in the induced dipole moment at moderate input laser intensities and the damping of radiation due to higher recombination rate of plasma at higher input laser intensities.

  15. Galactic Diffuse Gamma Ray Emission Is Greater than 10 Gev

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    AGILE and Gamma-ray Large Area Telescope (GLAST) are the next high-energy gamma-ray telescopes to be flown in space. These instruments will have angular resolution about 5 times better than Energetic Gamma-Ray Experiment Telescope (EGRET) above 10 GeV and much larger field of view. The on-axis effective area of AGILE will be about half that of EGRET, whereas GLAST will have about 6 times greater effective area than EGRET. The capabilities of ground based very high-energy telescopes are also improving, e.g. Whipple, and new telescopes, e.g. Solar Tower Atmospheric Cerenkov Effect Experiment (STACEE), Cerenkov Low Energy Sampling and Timing Experiment (CELESTE), and Mars Advanced Greenhouse Integrated Complex (MAGIC) are expected to have low-energy thresholds and sensitivities that will overlap the GLAST sensitivity above approximately 10 GeV. In anticipation of the results from these new telescopes, our current understanding of the galactic diffuse gamma-ray emission, including the matter and cosmic ray distributions is reviewed. The outstanding questions are discussed and the potential of future observations with these new instruments to resolve these questions is examined.

  16. Phasing the Very Large Array on Galileo in the presence of Jupiter's strong radio emission

    NASA Technical Reports Server (NTRS)

    Ulvestad, J. S.

    1991-01-01

    Work is in progress to determine the feasibility of using the Very Large Array (VLA) radio telescope to receive telemetry from Galileo during its close encounter with Io on 7 Dec. 1995. The VLA was used previously to receive telemetry from Voyager 2 at Neptune. However, Jupiter's strong radio emission is an additional complication in the case of the Galileo encounter. This article analyzes the effect of Jupiter's radio emission on the phase-adjustment procedure ('autophasing') used to maintain coherence among the 27 VLA antennas. Results of an experiment designed to mimic the Io encounter are presented. As expected, Jupiter's strong radio emission has a considerable effect on the autophasing procedure. A simple emission model is found to give a good approximation to the fringe-visibility plots derived from the VLA data, and that successful model is used to estimate the VLA's ability to autophase on Galileo during the Io encounter. The effect of Jupiter should be small for projected baselines longer than approximately 800 m and completely negligible for projected baselines longer than approximately 1.1 km. The most extended configuration of the VLA (the A configuration) probably can be used successfully for telemetry reception during the Io encounter. Further analysis and testing of the effect of correlated noise from Jupiter is necessary before a final decision can be made about the feasibility of using the second largest (B) configuration of the VLA for reception of Galileo telemetry. Use of the B configuration could simplify the upgrades needed to support the Io encounter. Tests to help choose the preferred VLA configuration could be performed by using the VLA to observe the Magellan spacecraft at Venus during Jul. and Oct. 1991. Examination of the effects of planet noise on the VLA have implications beyond the use of that telescope for supporting the Io encounter. The effects of planet radio emission on spacecraft data received by antenna arrays are relevant to

  17. Multi-instrument study of the Jovian radio emissions triggered by solar wind shocks and inferred magnetospheric subcorotation rates

    NASA Astrophysics Data System (ADS)

    Hess, S. L. G.; Echer, E.; Zarka, P.; Lamy, L.; Delamere, P. A.

    2014-09-01

    The influence of solar wind conditions on the Jovian auroral radio emissions has long been debated, mostly because it has always been difficult to get accurate solar wind and radio observations at the same time. We present here a study of Jupiter's radio emissions compared to solar wind conditions using radio (RPWS) and magnetic (MAG) data from the Cassini spacecraft from October to December 2000, just before its flyby of Jupiter. The spacecraft was then in the solar wind and could record both the radio emissions coming from the Jovian magnetosphere and the solar wind magnetic field (IMF). With these data, we found a good correspondence between the arrival of interplanetary shocks at Jupiter and the occurrence of radio storms. Our results confirm those from the previous studies showing that fast forward shocks (FFS) trigger mostly dusk emissions, whereas fast reverse shocks (FRS) trigger both dawn and dusk emissions. FFS-triggered emissions are found to occur 10-30 h after the shock arrival when the IMF is weak (below 2 nT), and quasi-immediately after shock arrival when the IMF is strong (above 2 nT). FRS-triggered emissions are found to occur quasi-immediately even when the IMF is weak. We show and discuss in depth the characteristic morphologies of the radio emissions related to each type of shock and their implications. We also used simultaneous radio observations from the ground-based Nançay decameter array and from the Galileo radio instrument (PWS). From the comparison of these measurements with Cassini's, we deduce the regions where the radio storms occur, as well as the radio source subcorotation rates. We show that FFS-triggered emissions onset happens in a sector of local time centered around 15:00 LT, and that all the shock-triggered radio sources sub-corotate with a subcorotation rate of ~50% when the IMF is below 2 nT and of ~80% when it is above 2 nT. These rates could correspond to the extended and compressed states of the Jovian magnetosphere.

  18. A Deep Search for Prompt Radio Emission from Thermonuclear Supernovae with the Very Large Array

    NASA Astrophysics Data System (ADS)

    Chomiuk, Laura; Soderberg, Alicia M.; Chevalier, Roger A.; Bruzewski, Seth; Foley, Ryan J.; Parrent, Jerod; Strader, Jay; Badenes, Carles; Fransson, Claes; Kamble, Atish; Margutti, Raffaella; Rupen, Michael P.; Simon, Joshua D.

    2016-04-01

    Searches for circumstellar material around Type Ia supernovae (SNe Ia) are some of the most powerful tests of the nature of SN Ia progenitors, and radio observations provide a particularly sensitive probe of this material. Here, we report radio observations for SNe Ia and their lower-luminosity thermonuclear cousins. We present the largest, most sensitive, and spectroscopically diverse study of prompt ({{Δ }}t≲ 1 years) radio observations of 85 thermonuclear SNe, including 25 obtained by our team with the unprecedented depth of the Karl G. Jansky Very Large Array. With these observations, SN 2012cg joins SN 2011fe and SN 2014J as an SN Ia with remarkably deep radio limits and excellent temporal coverage (six epochs, spanning 5–216 days after explosion, implying \\dot{M}/{v}w≲ 5× {10}-9 \\tfrac{{M}ȯ {{{yr}}}-1}{100 {km} {{{s}}}-1}, assuming {ε }B = 0.1 and {ε }e = 0.1). All observations yield non-detections, placing strong constraints on the presence of circumstellar material. We present analytical models for the temporal and spectral evolution of prompt radio emission from thermonuclear SNe as expected from interaction with either wind-stratified or uniform density media. These models allow us to constrain the progenitor mass loss rates, with limits in the range of \\dot{M}≲ {10}-9-{10}-4 {M}ȯ yr‑1, assuming a wind velocity of vw = 100 km s‑1. We compare our radio constraints with measurements of Galactic symbiotic binaries to conclude that ≲10% of thermonuclear SNe have red giant companions.

  19. X-ray emission associated with radio galaxies in the Perseus cluster

    NASA Technical Reports Server (NTRS)

    Rhee, George; Burns, Jack O.; Kowalski, Michael P.

    1994-01-01

    In this paper, we report on new x-ray observations of the Perseus cluster made using four separate pointings of the Roentgen Satellite (ROSAT) Positron Sensitive Proportional Counter (PSPC). We searched for x-ray emission associated with 16 radio galaxies and detected six above 3 sigma. We made use of the PSPC spectra to determine if the x-ray emission associated with radio galaxies in Perseus is thermal or nonthermal in origin (i.e., hot gas or an active galactic nuclei (AGN)). For the head-tail radio galaxy IC 310, we find that the data are best fit by a power law model with an unusually large spectral index alpha = 2.7. This is consistent with its unresolved spatial structure. On the other hand, a second resolved x-ray source associated with another radio galaxy 2.3 Mpc from the Perseus center (V Zw 331) is best fit by a thermal model. For three sources with insufficient flux for a full spectral analysis, we calculated hardness ratios. On this basis, the x-ray emission associated with the well known head-tail source NGC 1265 is consistent with thermal radiation. The x-ray spectra of UGC 2608 and UGC 2654 probably arise from hot gas, although very steep power-law spectra (alpha greater than 3.2) are also possible. The spectrum of NGC 1275 is quite complex due to the presence of an AGN and the galaxy's location at the center of a cluster cooling flow.

  20. Discovery of millimetre-wave excess emission in radio-quiet active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Behar, Ehud; Baldi, Ranieri D.; Laor, Ari; Horesh, Assaf; Stevens, Jamie; Tzioumis, Tasso

    2015-07-01

    The physical origin of radio emission in radio-quiet active galactic nuclei (RQ AGN) remains unclear, whether it is a downscaled version of the relativistic jets typical of radio-loud (RL) AGN, or whether it originates from the accretion disc. The correlation between 5 GHz and X-ray luminosities of RQ AGN, which follows LR = 10-5LX observed also in stellar coronae, suggests an association of both X-ray and radio sources with the accretion disc corona. Observing RQ AGN at higher (mm-wave) frequencies, where synchrotron self-absorption is diminished, and smaller regions can be probed, is key to exploring this association. Eight RQ AGN, selected based on their high X-ray brightness and variability, were observed at 95 GHz with the CARMA (Combined Array for Research in Millimetre-wave Astronomy) and ATCA (the Australia Telescope Compact Array) telescopes. All targets were detected at the 1-10 mJy level. Emission excess at 95 GHz of up to ×7 is found with respect to archival low-frequency steep spectra, suggesting a compact, optically thick core superimposed on the more extended structures that dominate at low frequencies. Though unresolved, the 95 GHz fluxes imply optically thick source sizes of 10-4-10-3 pc, or ˜10-1000 gravitational radii. The present sources lie tightly along an LR (95 GHz) = 10-4LX (2-10 keV) correlation, analogous to that of stellar coronae and RQ AGN at 5 GHz, while RL AGN are shown to have higher LR/LX ratios. The present observations argue that simultaneous mm-wave and X-ray monitoring of RQ AGN features a promising method for understanding accretion disc coronal emission.

  1. A LINK BETWEEN X-RAY EMISSION LINES AND RADIO JETS IN 4U 1630-47?

    SciTech Connect

    Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Broderick, Jess W.; Lee, Julia C.; Ponti, Gabriele; Tzioumis, Anastasios K.; Edwards, Philip G.

    2014-03-20

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. Here we present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find no evidence for any relativistic X-ray emission lines. Indeed, despite ∼5 × brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is ≳ 20 × weaker than the line observed by Díaz Trigo et al. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby interstellar medium, in which case the X-ray emission lines might be unrelated to the radio emission.

  2. A Model of Jupiter's Decametric Radio Emissions as a Searchlight Beam

    NASA Astrophysics Data System (ADS)

    Imai, K.; Garcia, L.; Reyes, F.; Imai, M.; Thieman, J. R.

    It has long been recognized that there is a marked long-term periodic variation in Jupiter's integrated radio occurrence probability. The period of the variation is on the order of a decade. Carr et al. [1970] showed that such variations are closely correlated with Jovicentric declination of the Earth (DE). The range of the smoothed variation of DE is from approximately +3.3 to -3.3 degrees. This DE effect was extensively studied and confirmed by Garcia [1996]. It shows that the occurrence probability of the non-Io-A source is clearly controlled by DE at 18, 20, and 22 MHz during the 1957-1994 apparitions. We propose a new model to explain the DE effect. This new model shows that the beam structure of Jupiter radio emissions, which has been thought of like a hollow-cone, has a narrow beam like a searchlight, which can be explained by assuming that the three dimensional shape of the radio source expands along the line of the magnetic field. If we consider the sizes of the radio coherent region are 1000 m along Jupiter's magnetic field line and 200 m along the latitudinal direction, the equivalent beam pattern is 1 degree wide along Jupiter's magnetic field line and 5 degrees in latitude. As the searchlight beam is fixed with Jupiter's magnetic field, the pure geometrical effect of DE can be explained by this searchlight beam model.

  3. Detection techniques of radio emission from ultra high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Morris, Chad M.

    We discuss recent and future efforts to detect radio signals from extended air showers at the Pierre Auger Observatory in Malargue, Argentina. With the advent of low-cost, high-performance digitizers and robust digital signal processing software techniques, radio detection of cosmic rays has resurfaced as a promising measurement system. The inexpensive nature of the detector media (metallic wires, rods or parabolic dishes) and economies of scale working in our favor (inexpensive high-quality C-band amplifiers and receivers) make an array of radio antennas an appealing alternative to the expense of deploying an array of Cherenkov detector water tanks or 'fly's eye' optical telescopes for fluorescence detection. The calorimetric nature of the detection and the near 100% duty cycle gives the best of both traditional detection techniques. The history of cosmic ray detection detection will be discussed. A short review on the astrophysical properties of cosmic rays and atmospheric interactions will lead into a discussion of two radio emission channels that are currently being investigated.

  4. Concerning mechanisms for the zebra pattern formation in the solar radio emission

    SciTech Connect

    Laptukhov, A. I.; Chernov, G. P.

    2009-02-15

    The nature of the zebra patterns in continuous type-IV solar radio bursts is discussed. The most comprehensively developed models of such patterns involve mechanisms based on the double plasma resonance and plasma wave-whistler interaction. Over the last five years, there have appeared a dozen papers concerning the refinement of the mechanism based on the double plasma resonance, because, in its initial formulation, this mechanism failed to describe many features of the zebra pattern. It is shown that the improved model of this mechanism with a power-law distribution function of hot electrons within the loss cone is inapplicable to the coronal plasma. In recent papers, the formation of the zebra pattern in the course of electromagnetic wave propagation through the solar corona was considered. In the present paper, all these models are estimated comparatively. An analysis of recent theories shows that any types of zebra patterns can form in the course of radio wave propagation in the corona, provided that there are plasma inhomogeneities of different scales on the wave path. The superfine structure of zebra stripes in the form of millisecond spikes with a strict period of {approx}30 ms can be attributed to the generation of continuous radio emission in the radio source itself, assuming that plasma inhomogeneities are formed by a finite-amplitude wave with the same period.

  5. Radio to Gamma-Ray Emission from Shell-Type Supernova Remnants: Predictions from Non-Linear Shock Acceleration Models

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Ellison, Donald C.; Reynolds, Stephen P.; Grenier, Isabelle A.; Goret, Philippe

    1998-01-01

    Supernova remnants (SNRs) are widely believed to be the principal source of galactic cosmic rays, produced by diffusive shock acceleration in the environs of the remnant's expanding blast wave. Such energetic particles can produce gamma-rays and lower energy photons via interactions with the ambient plasma. The recently reported observation of TeV gamma-rays from SN1006 by the CANGAROO Collaboration, combined with the fact that several unidentified EGRET sources have been associated with known radio/optical/X-ray-emitting remnants, provides powerful motivation for studying gamma-ray emission from SNRs. In this paper, we present results from a Monte Carlo simulation of non-linear shock structure and acceleration coupled with photon emission in shell-like SNRs. These non-linearities are a by-product of the dynamical influence of the accelerated cosmic rays on the shocked plasma and result in distributions of cosmic rays which deviate from pure power-laws. Such deviations are crucial to acceleration efficiency considerations and impact photon intensities and spectral shapes at all energies, producing GeV/TeV intensity ratios that are quite different from test particle predictions.

  6. Neutral hydrogen in elliptical galaxies with nuclear radio sources and optical emission lines

    NASA Technical Reports Server (NTRS)

    Dressel, L. L.; Bania, T. M.; Oconnell, R. W.

    1982-01-01

    An H I detection survey of eleven elliptical galaxies with powerful nuclear radio sources was conducted, using the 305 m antenna of Arecibo Observatory, to test the hypothesis that large H I mass is conductive to the formation of nuclear radio sources in elliptical galaxies. The H I was detected in emission in UGC 09114 and was possibly detected in absorption in UGC 06671. Observations of the remaining galaxies were not sensitive enough to support or refute the hypothesis. Data was combined from other H I surveys and spectroscopic surveys to search for correlations of H I mass with other galactic properties and environmental conditions. Strong correlations of (O II) lambda 3727 emission with H I content and with nuclear radio power were found. The latter two properties may simply indicate, respectively, whether a significant amount of gas is available to be ionized and whether energy is provided by nuclear activity for ionization. No dependence of H I content on optical luminosity or on degree of isolation from other galaxies was found.

  7. Circular polarization of radio emission from air showers probes atmospheric electric fields in thunderclouds.

    NASA Astrophysics Data System (ADS)

    Gia Trinh, Thi Ngoc; Scholten, Olaf; Buitink, Stijn; Corstanje, Arthur; Ebert, Ute; Enriquez, Emilio; Falcke, Heino; Horandel, Jörg R.; Nelles, Anna; Schellart, Pim; Rachen, Jorg; Rossetto, Laura; Rutjes, Casper; ter Veen, Sander; Thoudam, Satyendra

    2016-04-01

    When a high-energy cosmic-ray particle enters the upper layer of the atmosphere, it generates many secondary high-energy particles and forms a cosmic-ray-induced air shower. In the leading plasma of this shower electric currents are induced that emit electromagnetic radiation. These radio waves can be detected with LOw-Frequency ARray (LOFAR) radio telescope. Events have been collected under fair-weather conditions as well as under atmospheric conditions where thunderstorms occur. For the events under the fair weather conditions the emission process is well understood by present models. For the events measured under the thunderstorm conditions, we observe a large fraction of the circular polarization near the core of the shower which is not shown in the events under the fair-weather conditions. This can be explained by the change of direction of the atmospheric electric fields with altitude. Therefore, measuring the circular polarization of radio emission from cosmic ray extensive air showers during the thunderstorm conditions helps to have a better understanding about the structure of atmospheric electric fields in the thunderclouds.

  8. Emissive sheath measurements in the afterglow of a radio frequency plasma

    SciTech Connect

    Sheehan, J. P. Hershkowitz, N.; Barnat, E. V.; Weatherford, B. R.; Kaganovich, I. D.

    2014-01-15

    The difference between the plasma potential and the floating potential of a highly emissive planar surface was measured in the afterglow of a radio frequency discharge. A Langmuir probe was used to measure the electron temperature and an emissive probe was used to measure the spatial distribution of the potential using the inflection point in the limit of zero emission technique. Time-resolved measurements were made using the slow-sweep method, a technique for measuring time-resolved current-voltage traces. This was the first time the inflection point in the limit of zero emission was used to make time-resolved measurements. Measurements of the potential profile of the presheath indicate that the potential penetrated approximately 50% farther into the plasma when a surface was emitting electrons. The experiments confirmed a recent kinetic theory of emissive sheaths, demonstrating that late in the afterglow as the plasma electron temperature approached the emitted electron temperature, the emissive sheath potential shrank to zero. However, the difference between the plasma potential and the floating potential of a highly emissive planar surface data appeared to be much less sensitive to the electron temperature ratio than the theory predicts.

  9. EFFECTS OF ALFVEN WAVES ON ELECTRON CYCLOTRON MASER EMISSION IN CORONAL LOOPS AND SOLAR TYPE I RADIO STORMS

    SciTech Connect

    Zhao, G. Q.; Chen, L.; Wu, D. J.; Yan, Y. H.

    2013-06-10

    Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.

  10. Experimental tests of the generation mechanism of auroral medium frequency burst radio emissions

    NASA Astrophysics Data System (ADS)

    Bunch, N. L.; Labelle, J.; Weatherwax, A. T.; Hughes, J. M.; Lummerzheim, D.

    2009-09-01

    Medium frequency (MF) burst is an impulsive auroral radio emission at 1.3-4.5 MHz commonly detected by ground-based instruments for a few minutes at substorm onsets. It is thought to arise from mode conversion radiation. The Dartmouth College MF radio interferometer at Toolik Field Station, Alaska (68.51° invariant latitude), measured spectra, amplitudes, and directions of arrival (DOA) of 47 MF burst events during 2006-2007 and 49 events during 2007-2008. Statistical analysis of these events shows that they come predominantly from the south and east of Toolik, as expected because propagation conditions are more favorable poleward and westward of the active auroral arcs than equatorward or eastward during premidnight (westward moving) substorm onset activity. Case studies of a selected MF burst event on 20 November 2007 show that motions of the radio emissions qualitatively track the motions of auroral arcs simultaneously observed with all-sky camera. Case studies of DOA data of selected MF burst events on 31 January and 20 November 2007 show that higher-frequency components of MF burst arrive at higher elevation angles than lower-frequency components. Statistical studies confirm this trend. Ray-tracing analysis shows that this trend implies that sources of the higher-frequency components of the MF burst are at higher altitudes than those of the lower-frequency components. The analysis also shows that the MF burst comes from the bottomside F region ionosphere. These observations are consistent with a mechanism of MF burst emission whereby the emissions originate from mode conversion of Langmuir or upper hybrid waves excited over a range of altitudes in the bottomside F region.

  11. Radio imaging of the very-high-energy gamma-ray emission region in the central engine of a radio galaxy.

    PubMed

    Acciari, V A; Aliu, E; Arlen, T; Bautista, M; Beilicke, M; Benbow, W; Bradbury, S M; Buckley, J H; Bugaev, V; Butt, Y; Byrum, K; Cannon, A; Celik, O; Cesarini, A; Chow, Y C; Ciupik, L; Cogan, P; Cui, W; Dickherber, R; Fegan, S J; Finley, J P; Fortin, P; Fortson, L; Furniss, A; Gall, D; Gillanders, G H; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Holder, J; Horan, D; Hui, C M; Humensky, T B; Imran, A; Kaaret, P; Karlsson, N; Kieda, D; Kildea, J; Konopelko, A; Krawczynski, H; Krennrich, F; Lang, M J; LeBohec, S; Maier, G; McCann, A; McCutcheon, M; Millis, J; Moriarty, P; Ong, R A; Otte, A N; Pandel, D; Perkins, J S; Petry, D; Pohl, M; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Roache, E; Rose, H J; Schroedter, M; Sembroski, G H; Smith, A W; Swordy, S P; Theiling, M; Toner, J A; Varlotta, A; Vincent, S; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Williams, D A; Wissel, S; Wood, M; Walker, R C; Davies, F; Hardee, P E; Junor, W; Ly, C; Aharonian, F; Akhperjanian, A G; Anton, G; Barres de Almeida, U; Bazer-Bachi, A R; Becherini, Y; Behera, B; Bernlöhr, K; Bochow, A; Boisson, C; Bolmont, J; Borrel, V; Brucker, J; Brun, F; Brun, P; Bühler, R; Bulik, T; Büsching, I; Boutelier, T; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Chounet, L-M; Clapson, A C; Coignet, G; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubois, F; Dubus, G; Dyks, J; Dyrda, M; Egberts, K; Emmanoulopoulos, D; Espigat, P; Farnier, C; Feinstein, F; Fiasson, A; Förster, A; Fontaine, G; Füssling, M; Gabici, S; Gallant, Y A; Gérard, L; Gerbig, D; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Göhring, D; Hauser, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Jahn, C; Jung, I; Katarzyński, K; Katz, U; Kaufmann, S; Kendziorra, E; Kerschhaggl, M; Khangulyan, D; Khélifi, B; Keogh, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Lamanna, G; Lenain, J-P; Lohse, T; Marandon, V; Martin, J M; Martineau-Huynh, O; Marcowith, A; Maurin, D; McComb, T J L; Medina, M C; Moderski, R; Moulin, E; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Olive, J-F; de Oña Wilhelmi, E; Orford, K J; Ostrowski, M; Panter, M; Paz Arribas, M; Pedaletti, G; Pelletier, G; Petrucci, P-O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raubenheimer, B C; Raue, M; Rayner, S M; Renaud, M; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Sahakian, V; Santangelo, A; Schlickeiser, R; Schöck, F M; Schröder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sikora, M; Skilton, J L; Sol, H; Spangler, D; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Superina, G; Szostek, A; Tam, P H; Tavernet, J-P; Terrier, R; Tibolla, O; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Venter, L; Vialle, J P; Vincent, P; Vivier, M; Völk, H J; Volpe, F; Wagner, S J; Ward, M; Zdziarski, A A; Zech, A; Anderhub, H; Antonelli, L A; Antoranz, P; Backes, M; Baixeras, C; Balestra, S; Barrio, J A; Bastieri, D; Becerra González, J; Becker, J K; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Bock, R K; Bonnoli, G; Bordas, P; Borla Tridon, D; Bosch-Ramon, V; Bose, D; Braun, I; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Curtef, V; Dazzi, F; De Angelis, A; De Cea del Pozo, E; Delgado Mendez, C; De los Reyes, R; De Lotto, B; De Maria, M; De Sabata, F; Dominguez, A; Dorner, D; Doro, M; Elsaesser, D; Errando, M; Ferenc, D; Fernández, E; Firpo, R; Fonseca, M V; Font, L; Galante, N; García López, R J; Garczarczyk, M; Gaug, M; Goebel, F; Hadasch, D; Hayashida, M; Herrero, A; Hildebrand, D; Höhne-Mönch, D; Hose, J; Hsu, C C; Jogler, T; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Miyamoto, H; Moldón, J; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Oya, I; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Perez-Torres, M A; Persic, M; Peruzzo, L; Prada, F; Prandini, E; Puchades, N; Reichardt, I; Rhode, W; Ribó, M; Rico, J; Rissi, M; Robert, A; Rügamer, S; Saggion, A; Saito, T Y; Salvati, M; Sanchez-Conde, M; Satalecka, K; Scalzotto, V; Scapin, V; Schweizer, T; Shayduk, M; Shore, S N; Sidro, N; Sierpowska-Bartosik, A; Sillanpää, A; Sitarek, J; Sobczynska, D; Spanier, F; Stamerra, A; Stark, L S; Takalo, L; Tavecchio, F; Temnikov, P; Tescaro, D; Teshima, M; Torres, D F; Turini, N; Vankov, H; Wagner, R M; Zabalza, V

    2009-07-24

    The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10(12) electron volts and are bright sources of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy Messier 87, revealing a period of extremely strong VHE gamma-ray flares accompanied by a strong increase of the radio flux from its nucleus. These results imply that charged particles are accelerated to very high energies in the immediate vicinity of the black hole. PMID:19574351

  12. Manifestation of Quasilinear Diffusion on Whistlers in the Fine-Structure Radio Sources of Solar Radio Bursts

    SciTech Connect

    Chernov, G.P.

    2005-04-15

    The zebra structure and fiber bursts in the dynamic spectra of the solar type IV radio burst recorded on October 25, 1994, are analyzed using observational data from ground-based stations and Earth-orbiting satellites. The fine structure is observed when new hot magnetic loops, in which high- and low-frequency plasma instabilities develop, ascend to the solar corona. The frequency range of the fine structure is determined by the dimensions of these loops. The main features of the zebra structure are analyzed in terms of the interaction of plasma waves with whistlers. The results obtained are compared to the predictions from the double plasma resonance model.

  13. First dynamic computations of synchrotron emission from the cygnus a radio cavity: Evidence for electron pair plasma in cavity

    SciTech Connect

    Mathews, William G.

    2014-03-01

    Cosmic rays, thermal gas and magnetic fields in FRII radio cavities are assumed to come entirely from winds flowing from just behind the jet shocks. Combining analytic and computational methods, it is shown that the computed radio-electron energy distribution and synchrotron emissivity spectra everywhere in the Cygnus A radio cavity agree with radio observations of the Cygnus A lobes. The magnetic field energy density is small everywhere and evolves passively in the post-shock wind. Most synchrotron emission arises in recent post-shock material as it flows back along the radio cavity wall. Because it experienced less adiabatic expansion, the magnetic field in this young backflow is larger than elsewhere in the radio lobe, explaining the observed radio synchrotron limb-brightening. The boundary backflow decelerates due to small cavity pressure gradients, causing large-scale fields perpendicular to the backflow (and synchrotron emission) to grow exponentially unlike observations. However, if the field is random on subgrid (sub-kpc) scales, the computed field reproduces both the magnitude and slowly decreasing radio synchrotron emissivity observed along the backflow. The radio synchrotron spectrum and image computed with a small-scale random field agree with Very Large Array observations. The total relativistic energy density in the post-jet shock region required in computations to inflate the radio cavity matches the energy density of relativistic electrons observed in the post-shock region of Cygnus A. This indicates that the component in the jet and cavity that dominates the dynamical evolution is a relativistic pair plasma.

  14. Progress and problems in the theory of type III solar radio emission

    NASA Technical Reports Server (NTRS)

    Goldman, M. V.

    1983-01-01

    The experimental and theoretical status of type III solar radio emission is considered in detail. Very recent developments which are relevant to the underlying plasma physics are emphasized. In particular, the identity of the submegahertz emissions as fundamental, or second harmonic, the degree of correlation between emissivities, electron streams, and plasma (Langmuir) waves, paradoxes concerned with the time-ordering of these phenomena, and the role of background density irregularities and ion-acoustic turbulence in the solar wind, are discussed. From the theoretical point of view, the current picture of the underlying Langmuir turbulence, including such effects as the interaction between Langmuir waves and stream electrons, induced scatter off ions, and strong turbulence effects such as modulational instability and soliton collapse, is discussed.

  15. MODELING THE RADIO EMISSION FROM Cyg OB2 NO. 5: A QUADRUPLE SYSTEM?

    SciTech Connect

    Kennedy, M.; Dougherty, S. M.; Fink, A.; Williams, P. M. E-mail: sean.dougherty@nrc.c E-mail: pmw@roe.ac.u

    2010-02-01

    Fifty observations at frequencies between 1.4 GHz and 43 GHz of the 6.6 day O6.5-7+O5.5-6 binary Cyg OB2 No. 5 using the Very Large Array over 20 years are re-examined. The aim is to determine the location and character of the previously detected variable radio emission. The radio emission from the system consists of a primary component that is associated with the binary, and a non-thermal source (NE), 0.''8 to the NE of the binary that has been ascribed to a wind-collision region (WCR) between the stellar winds of the binary and that of a B-type star (Star D) to the NE. Previous studies have not accounted for the potential contribution of NE to the total radio emission, most especially in observations where the primary and NE sources are not resolved as separate sources. NE shows no evidence of variation in 23 epochs where it is resolved separately from the primary radio component, demonstrating that the variable emission arises in the primary component. Since NE is non-variable, the radio flux from the primary can now be well determined for the first time, most especially in observations that do not resolve both the primary and NE components. The variable radio emission from the primary component has a period of 6.7 +- 0.3 years which is described by a simple model of a non-thermal source orbiting within the stellar wind envelope of the binary. Such a model implies the presence of a third, unresolved stellar companion (Star C) orbiting the 6.6 day binary with a period of 6.7 years and independent of Star D to the NE. The variable non-thermal emission arises from either a WCR between Star C and the binary system, or possibly from Star C directly. The model gives a mass-loss rate of 3.4 x 10{sup -5} M{sub sun} yr{sup -1} for Cyg OB2 No. 5, unusually high for an Of supergiant and comparable to that of WR stars, and consistent with an unusually strong He I 1.083 mum emission line, also redolent of WR stars. An examination of radial velocity observations available

  16. Strange doings on Io. [Jupiter radio emission modification, sodium cloud, ionized sulfur and extreme brightness

    NASA Technical Reports Server (NTRS)

    Goody, R.

    1978-01-01

    Some unusual properties of Io are discussed, and possible explanations for these are considered. The properties discussed include Io's ability to modify radio waves emitted by Jupiter in the decametric band, the satellite's ionosphere and sodium cloud, its extraordinary brightness, and the presence of ionized sulfur just inside the satellite's orbit. Io's ability to modulate Jovian decametric radio emission is explained on the basis of the hypothesis that the satellite conducts electricity and interacts with Jupiter's magnetic field. Characteristics of the sodium cloud are reviewed, and the probable mechanism responsible for this cloud is outlined. It is concluded that the only plausible explanation for the brightness of Io is the presence of cat's-eye-type reflectors, possibly composed of crystalline deposits, on the satellite's surface.

  17. Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; De Rosa, G.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Escoffier, S.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gómez-González, J. P.; Graf, K.; Guillard, G.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, E.; Lambard, G.; Lefèvre, D.; Leonora, E.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Müller, C.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaš, G. E.; Perrina, C.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tayalati, Y.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; de Wolf, E.; Yatkin, K.; Yepes, H.; Zornoza, J. D.; Zúñiga, J.; Falco, E. E.

    2014-11-01

    This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08× 1046 erg s-1. This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars.

  18. Influence of short gravity waves on thermal radio emission of water surface

    NASA Astrophysics Data System (ADS)

    Ilin, V. A.; Naumov, A. A.; Rayzer, V. Y.; Filonovich, S. R.; Etkin, V. S.

    1985-06-01

    An experimental study is presented of the thermal radio emission caused by short waves, accompanied by a quantitative interpretation of the data obtained. Emphasis is on an analysis of the variation in radio brightness contrast as a function of steepness of the short gravity waves, measured by means of a high-frequency radiometer operating in the lambda = 0.8 cm range. Waves were artificially generated in a small channel, wavelength 8 to 40 cm, height 0.6 to 3 cm. Due to the high sensitivity of the radiometric apparatus used, effects were recorded which were related to the influence of the profile and steepness of the short gravity waves. The possibility of using the geometrical optics approximation for quantitative interpretation of the experimental data is demonstrated. The model is based on essentially non-Gaussian statistics of slopes corresponding to quasimonochromatic waves of finite amplitude.

  19. Collisional quenching of OH radio emission from comet Hale-Bopp.

    PubMed

    Schloerb, F P; Devries, C H; Lovell, A J; Irvine, W M; Senay, M; Wootten, H A

    1997-01-01

    Observations of comets in the 18-cm OH transitions offer a means to probe gas production, kinematics, and OH excitation in comets. We present initial results of OH observations of comet Hale-Bopp obtained with the NRAO 43 m antenna located in Greenbank, WV. Maps of the emission provide strong constraints on the amount of quenching of the inversion of the OH ground state A-doublet in the coma. Analysis of the total radio OH flux and maps of its radial brightness distribution indicate a quenched region on the order of approximately 500,000 km during March and April 1997. This large value is generally consistent with previous observations of radio OH quenching in lower production rate comets when the high production rate of comet Hale-Bopp is considered. PMID:11543323

  20. Collisional quenching of OH radio emission from comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Schloerb, F. P.; Devries, C. H.; Lovell, A. J.; Irvine, W. M.; Senay, M.; Wootten, H. A.; Ferris, J. P. (Principal Investigator)

    1997-01-01

    Observations of comets in the 18-cm OH transitions offer a means to probe gas production, kinematics, and OH excitation in comets. We present initial results of OH observations of comet Hale-Bopp obtained with the NRAO 43 m antenna located in Greenbank, WV. Maps of the emission provide strong constraints on the amount of quenching of the inversion of the OH ground state A-doublet in the coma. Analysis of the total radio OH flux and maps of its radial brightness distribution indicate a quenched region on the order of approximately 500,000 km during March and April 1997. This large value is generally consistent with previous observations of radio OH quenching in lower production rate comets when the high production rate of comet Hale-Bopp is considered.

  1. VERITAS UPPER LIMIT ON THE VERY HIGH ENERGY EMISSION FROM THE RADIO GALAXY NGC 1275

    SciTech Connect

    Acciari, V. A.; Benbow, W.; Aliu, E.; Boltuch, D.; Arlen, T.; Celik, O.; Aune, T.; Bautista, M.; Cogan, P.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Bradbury, S. M.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cui, W.; Duke, C.

    2009-12-01

    The recent detection by the Fermi gamma-ray space telescope of high-energy gamma-rays from the radio galaxy NGC 1275 makes the observation of the very high energy (VHE: E>100 GeV) part of its broadband spectrum particularly interesting, especially for the understanding of active galactic nuclei with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently observed by VERITAS at energies above 100 GeV for about 8 hr. No VHE gamma-ray emission was detected by VERITAS from NGC 1275. A 99% confidence level upper limit of 2.1% of the Crab Nebula flux level is obtained at the decorrelation energy of approximately 340 GeV, corresponding to 19% of the power-law extrapolation of the Fermi Large Area Telescope result.

  2. Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data

    SciTech Connect

    Adrián-Martínez, S.; Ardid, M.; Bou-Cabo, M.; André, M.; Anton, G.; Aubert, J.-J.; Bertin, V.; Brunner, J.; Busto, J.; Basa, S.; Biagi, S.; Capone, A.; Caramete, L.; and others

    2014-11-01

    This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08× 10{sup 46} erg s{sup -1}. This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars.

  3. Diffuse Galactic gamma-ray emission with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carrigan, S.; Casanova, S.; Chadwick, P. M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morâ, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Odaka, H.; Ohm, S.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.; Fukui, Y.; H. E. S. S. Collaboration

    2014-12-01

    Diffuse γ -ray emission is the most prominent observable signature of celestial cosmic-ray interactions at high energies. While already being investigated at GeV energies over several decades, assessments of diffuse γ -ray emission at TeV energies remain sparse. After completion of the systematic survey of the inner Galaxy, the H.E.S.S. experiment is in a prime position to observe large-scale diffuse emission at TeV energies. Data of the H.E.S.S. Galactic Plane Survey are investigated in regions off known γ -ray sources. Corresponding γ -ray flux measurements were made over an extensive grid of celestial locations. Longitudinal and latitudinal profiles of the observed γ -ray fluxes show characteristic excess emission not attributable to known γ -ray sources. For the first time large-scale γ -ray emission along the Galactic plane using imaging atmospheric Cherenkov telescopes has been observed. While the background subtraction technique limits the ability to recover modest variation on the scale of the H.E.S.S. field of view or larger, which is characteristic of the inverse Compton scatter-induced Galactic diffuse emission, contributions of neutral pion decay as well as emission from unresolved γ -ray sources can be recovered in the observed signal to a large fraction. Calculations show that the minimum γ -ray emission from π0 decay represents a significant contribution to the total signal. This detection is interpreted as a mix of diffuse Galactic γ -ray emission and unresolved sources.

  4. NRAO 12-Meter Radio Telescope Detects Molecular Emission from Comet Hyakutake

    NASA Astrophysics Data System (ADS)

    1996-05-01

    Observations of Comet Hyakutake with the National Science Foundation's millimeter-wave radio telescope in Arizona have revealed new information about our Solar System's original material, including the first detection of the Carbonyl Sulfide (OCS) molecule in a comet. Since mid-March, the 12-Meter telescope, part of the National Radio Astronomy Observatory (NRAO) and located on Kitt Peak in Arizona, has been used by four separate research teams to measure the emission from primordial molecular species within the bright Comet Hyakutake (C/1996 B2). Results obtained near the comet's closest approach on March 25th have yielded a wealth of information about the primordial composition of this comet. Comets are thought to be remnants from the formation of our Solar System, and as such, can provide valuable information about the early stages of our Solar System's chemical and physical development. Especially important is the study of cometary "parent molecules" -- molecules which have been present since the comet's birth, but have not been disturbed by chemical processing. Studying these molecules gives radio astronomers a very accurate "snapshot" of the material from which our Solar System, including Earth, was formed. The 12-Meter Telescope allows astronomers to observe what scientists call "millimeter waves," electromagnetic waves with wavelengths of just a few millimeters. These waves are shorter than radio microwaves and longer than infrared waves. Numerous molecules emit radiation at these wavelengths and thus can be detected by the 12-Meter telescope. The 12-Meter telescope, more than 25 years old, inaugurated the science of millimeter-wavelength molecular astronomy and is the instrument responsible for the discovery of dozens of molecules in space. Observations by Maria Womack (Pennsylvania State University), Michel C. Festou (Observatoire Midi Pyrenees, Toulouse), and Alan Stern (Southwest Research Institute) have measured the abundances of a number of suspected

  5. PROBING SHOCK BREAKOUT AND PROGENITORS OF STRIPPED-ENVELOPE SUPERNOVAE THROUGH THEIR EARLY RADIO EMISSIONS

    SciTech Connect

    Maeda, Keiichi

    2013-01-01

    We study properties of early radio emission from stripped-envelope supernovae (SNe; those of Type IIb/Ib/Ic). We suggest there is a sub-class of stripped-envelope SNe based on their radio properties, including the optically well-studied Type Ic SNe (SNe Ic) 2002ap and 2007gr, showing a rapid rise to a radio peak within {approx}10 days and reaching a low luminosity (at least an order of magnitude fainter than a majority of SNe IIb/Ib/Ic). They show a decline after the peak that is shallower than that of other stripped-envelope SNe while their spectral index is similar. We show that all these properties are naturally explained if the circumstellar material (CSM) density is low and therefore the forward shock is expanding into the CSM without deceleration. Since the forward shock velocity in this situation, as estimated from the radio properties, still records the maximum velocity of the SN ejecta following the shock breakout, observing these SNe in radio wavelengths provides new diagnostics on the nature of both the breakout and the progenitor which otherwise require a quite rapid follow-up in other wavelengths. The inferred post-shock breakout velocities of SNe Ic 2002ap and 2007gr are sub-relativistic, {approx}0.3c. These are higher than that inferred for SN II 1987A, in line with suggested compact progenitors. However, these are lower than expected for a Wolf-Rayet (W-R) progenitor. It may reflect an as yet unresolved nature of the progenitors just before the explosion, and we suggest that the W-R progenitor envelopes might have been inflated which could quickly reduce the maximum ejecta velocity from the initial shock breakout velocity.

  6. Self-consistent particle-in-cell simulations of fundamental and harmonic plasma radio emission mechanisms

    NASA Astrophysics Data System (ADS)

    Thurgood, J. O.; Tsiklauri, D.

    2015-12-01

    Aims: The simulation of three-wave interaction based plasma emission, thought to be the underlying mechanism for Type III solar radio bursts, is a challenging task requiring fully-kinetic, multi-dimensional models. This paper aims to resolve a contradiction in past attempts, whereby some studies indicate that no such processes occur. Methods: We self-consistently simulate three-wave based plasma emission through all stages by using 2D, fully kinetic, electromagnetic particle-in-cell simulations of relaxing electron beams using the EPOCH2D code. Results: Here we present the results of two simulations; Run 1 (nb/n0 = 0.0057, vb/ Δvb = vb/Ve = 16) and Run 2 (nb/n0 = 0.05, vb/ Δvb = vb/Ve = 8), which we find to permit and prohibit plasma emission respectively. We show that the possibility of plasma emission is contingent upon the frequency of the initial electrostatic waves generated by the bump-in-tail instability, and that these waves may be prohibited from participating in the necessary three-wave interactions due to frequency conservation requirements. In resolving this apparent contradiction through a comprehensive analysis, in this paper we present the first self-consistent demonstration of fundamental and harmonic plasma emission from a single-beam system via fully kinetic numerical simulation. We caution against simulating astrophysical radio bursts using unrealistically dense beams (a common approach which reduces run time), as the resulting non-Langmuir characteristics of the initial wave modes significantly suppresses emission. Comparison of our results also indicates that, contrary to the suggestions of previous authors, an alternative plasma emission mechanism based on two counter-propagating beams is unnecessary in an astrophysical context. Finally, we also consider the action of the Weibel instability which generates an electromagnetic beam mode. As this provides a stronger contribution to electromagnetic energy than the emission, we stress that

  7. PSR J0737-3039B: A PROBE OF RADIO PULSAR EMISSION HEIGHTS

    SciTech Connect

    Perera, B. B. P.; McLaughlin, M. A.; Lomiashvili, D.; Gourgouliatos, K. N.; Lyutikov, M.

    2012-05-10

    In the double pulsar system PSR J0737-3039A/B, the strong wind produced by pulsar A distorts the magnetosphere of pulsar B. The influence of these distortions on the orbital-dependent emission properties of pulsar B can be used to determine the location of the coherent radio emission generation region in the pulsar magnetosphere. Using a model of the wind-distorted magnetosphere of pulsar B and the well-defined geometrical parameters of the system, we determine the minimum emission height to be {approx}20R{sub NS} in the two bright orbital longitude regions. We can determine the maximum emission height by accounting for the amount of deflection of the polar field line with respect to the magnetic axis using the analytical magnetic reconnection model of Dungey and the semi-empirical numerical model of Tsyganenko. Both of these models estimate the maximum emission height to be {approx}2500R{sub NS}. The minimum and maximum emission heights we calculate are consistent with those estimated for normal isolated pulsars.

  8. Modelling the multi-wavelength emission of flat-spectrum radio quasar 3C 279

    NASA Astrophysics Data System (ADS)

    Zheng, Y. G.; Yang, C. Y.

    2016-04-01

    We employ a length-dependent conical jet model for the jet structure and emission properties of flat-spectrum radio quasar 3C 279 in the steady state. In the model, ultra-relativistic leptons are injected at the base of the jet and propagate along the jet structure. Non-thermal photons are produced by both synchrotron emission and inverse Compton scattering off synchrotron photons and external soft photons at each segment of the jet. We derive the total energy spectra contribution through integrating every segment. We apply the model to the quasi-simultaneous multi-wavelength observed data of two quiescent epochs. Using the observed radio data of the source, we determine the length of the jet L ˜ 100 pc and the magnetic field B0 ˜ 0.1-1 G at the base of the jet. Assuming a steady geometry of the jet structure and suitable physical parameters, we reproduce the multi-wavelength spectra during two quiescent observed epochs. Our results show that the initial γ-ray emission site is ˜0.5 pc from the black hole.

  9. FREE-FREE EMISSION AND RADIO RECOMBINATION LINES FROM PHOTOEVAPORATING DISKS

    SciTech Connect

    Pascucci, I.; Gorti, U.; Hollenbach, D.

    2012-06-01

    Recent infrared observations have demonstrated that photoevaporation driven by high-energy photons from the central star contributes to the dispersal of protoplanetary disks. Here, we show that photoevaporative winds should produce a detectable free-free continuum emission given the range of stellar ionizing photons and X-ray luminosities inferred for young Sun-like stars. We point out that Very Large Array observations of the nearby disk around TW Hya might have already detected this emission at centimeter wavelengths and calculate the wind electron density and mass flow rate. We also estimate the intensities of H radio recombination lines tracing the wind and discuss which ones could be detected with current instrumentation. The detection and profiles of these recombination lines would unambiguously prove our inference of free-free emission from photoevaporating disks like TW Hya. In addition, radio/millimeter data can help constraining wind parameters such as temperature and electron density that are fundamental in measuring mass flow rates.

  10. Interacting Cosmic Rays with Molecular Clouds: A Bremsstrahlung Origin of Diffuse High-energy Emission from the Inner 2°×1° of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Hewitt, J. W.; Wardle, M.; Tatischeff, V.; Roberts, D. A.; Cotton, W.; Uchiyama, H.; Nobukawa, M.; Tsuru, T. G.; Heinke, C.; Royster, M.

    2013-01-01

    The high-energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray, and γ-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of this work. We first present radio continuum observations using the Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of ~GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas. The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of Fe I 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra, and the H.E.S.S. observatories. The inferred physical quantities from modeling multiwavelength emission in the context of bremsstrahlung emission from the inner ~300 × 120 pc of the Galactic center are constrained to have the cosmic-ray ionization rate ~1-10 × 10-15 s-1, molecular gas heating rate elevating the gas temperature to 75-200 K, fractional ionization of molecular gas 10-6-10-5, large-scale magnetic field 10-20 μG, the density of diffuse and dense molecular gas ~100 and ~103 cm-3 over 300 pc and 50 pc path lengths, and the variability of Fe I Kα 6.4 keV line emission on yearly timescales. Important implications of our study are that GeV electrons emitting in radio can explain the GeV γ-rays detected by Fermi and that the cosmic-ray irradiation model, like the model of the X-ray irradiation triggered by past activity of Sgr A*, can also explain the origin of the variable 6.4 keV emission from Galactic center molecular clouds.

  11. LOOKING FOR A PULSE: A SEARCH FOR ROTATIONALLY MODULATED RADIO EMISSION FROM THE HOT JUPITER, {tau} BOOeTIS b

    SciTech Connect

    Hallinan, G.; Bourke, S.; Sirothia, S. K.; Ishwara-Chandra, C. H.; Antonova, A.; Doyle, J. G.; Hartman, J.; Golden, A.

    2013-01-01

    Hot Jupiters have been proposed as a likely population of low-frequency radio sources due to electron cyclotron maser emission of similar nature to that detected from the auroral regions of magnetized solar system planets. Such emission will likely be confined to specific ranges of orbital/rotational phase due to a narrowly beamed radiation pattern. We report on GMRT 150 MHz radio observations of the hot Jupiter {tau} Booetis b, consisting of 40 hr carefully scheduled to maximize coverage of the planet's 79.5 hr orbital/rotational period in an effort to detect such rotationally modulated emission. The resulting image is the deepest yet published at these frequencies and leads to a 3{sigma} upper limit on the flux density from the planet of 1.2 mJy, two orders of magnitude lower than predictions derived from scaling laws based on solar system planetary radio emission. This represents the most stringent upper limits for both quiescent and rotationally modulated radio emission from a hot Jupiter yet achieved and suggests that either (1) the magnetic dipole moment of {tau} Booetis b is insufficient to generate the surface field strengths of >50 G required for detection at 150 MHz or (2) Earth lies outside the beaming pattern of the radio emission from the planet.

  12. Jet Emission in Young Radio Sources: A Fermi Large Area Telescope Gamma-Ray View

    NASA Astrophysics Data System (ADS)

    Migliori, G.; Siemiginowska, A.; Kelly, B. C.; Stawarz, Ł.; Celotti, A.; Begelman, M. C.

    2014-01-01

    We investigate the contribution of the beamed jet component to the high-energy emission in young and compact extragalactic radio sources, focusing for the first time on the γ-ray band. We derive predictions on the γ-ray luminosities associated with the relativistic jet assuming a leptonic radiative model. The high-energy emission is produced via Compton scattering by the relativistic electrons in a spherical region at the considered scales (lsim10 kpc). Simulations show a wide range of γ-ray luminosities, with intensities up to ~1046-1048 erg s-1 depending on the assumed jet parameters. We find a highly linear relation between the simulated X-ray and γ-ray luminosities that can be used to select candidates for γ-ray detection. We compare the simulated luminosity distributions in the radio, X-ray, and γ-ray regimes with observations for the largest sample of X-ray-detected young radio quasars. Our analysis of ~4-yr Fermi Large Area Telescope (LAT) data does not yield any statistically significant detections. However, the majority of the model-predicted γ-ray fluxes for the sample are near or below the current Fermi-LAT flux threshold and compatible with the derived upper limits. Our study gives constraints on the minimum jet power (L jet, kin/L disk > 0.01) of a potential jet contribution to the X-ray emission in the most compact sources (lsim 1 kpc) and on the particle-to-magnetic field energy density ratio that are in broad agreement with equipartition assumptions.

  13. Jet emission in young radio sources: A Fermi large area telescope gamma-ray view

    SciTech Connect

    Migliori, G.; Siemiginowska, A.; Kelly, B. C.; Stawarz, Ł.; Celotti, A.; Begelman, M. C.

    2014-01-10

    We investigate the contribution of the beamed jet component to the high-energy emission in young and compact extragalactic radio sources, focusing for the first time on the γ-ray band. We derive predictions on the γ-ray luminosities associated with the relativistic jet assuming a leptonic radiative model. The high-energy emission is produced via Compton scattering by the relativistic electrons in a spherical region at the considered scales (≲10 kpc). Simulations show a wide range of γ-ray luminosities, with intensities up to ∼10{sup 46}-10{sup 48} erg s{sup –1} depending on the assumed jet parameters. We find a highly linear relation between the simulated X-ray and γ-ray luminosities that can be used to select candidates for γ-ray detection. We compare the simulated luminosity distributions in the radio, X-ray, and γ-ray regimes with observations for the largest sample of X-ray-detected young radio quasars. Our analysis of ∼4-yr Fermi Large Area Telescope (LAT) data does not yield any statistically significant detections. However, the majority of the model-predicted γ-ray fluxes for the sample are near or below the current Fermi-LAT flux threshold and compatible with the derived upper limits. Our study gives constraints on the minimum jet power (L {sub jet,} {sub kin}/L {sub disk} > 0.01) of a potential jet contribution to the X-ray emission in the most compact sources (≲ 1 kpc) and on the particle-to-magnetic field energy density ratio that are in broad agreement with equipartition assumptions.

  14. Modelling of the spectral energy distribution of Fornax A: leptonic and hadronic production of high-energy emission from the radio lobes

    NASA Astrophysics Data System (ADS)

    McKinley, B.; Yang, R.; López-Caniego, M.; Briggs, F.; Hurley-Walker, N.; Wayth, R. B.; Offringa, A. R.; Crocker, R.; Bernardi, G.; Procopio, P.; Gaensler, B. M.; Tingay, S. J.; Johnston-Hollitt, M.; McDonald, M.; Bell, M.; Bhat, N. D. R.; Bowman, J. D.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Emrich, D.; Ewall-Wice, A.; Feng, L.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hewitt, J. N.; Hindson, L.; Jacobs, D.; Kaplan, D. L.; Kasper, J. C.; Kratzenberg, E.; Kudryavtseva, N.; Lenc, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Pindor, B.; Prabu, T.; Riding, J.; Rogers, A. E. E.; Roshi, D. A.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Waterson, M.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.

    2015-02-01

    We present new low-frequency observations of the nearby radio galaxy Fornax A at 154 MHz with the Murchison Widefield Array, microwave flux-density measurements obtained from WMAP and Planck data, and γ-ray flux densities obtained from Fermi data. We also compile a comprehensive list of previously published images and flux-density measurements at radio, microwave and X-ray energies. A detailed analysis of the spectrum of Fornax A between 154 and 1510 MHz reveals that both radio lobes have a similar spatially averaged spectral index, and that there exists a steep-spectrum bridge of diffuse emission between the lobes. Taking the spectral index of both lobes to be the same, we model the spectral energy distribution of Fornax A across an energy range spanning 18 orders of magnitude, to investigate the origin of the X-ray and γ-ray emission. A standard leptonic model for the production of both the X-rays and γ-rays by inverse-Compton scattering does not fit the multiwavelength observations. Our results best support a scenario where the X-rays are produced by inverse-Compton scattering and the γ-rays are produced primarily by hadronic processes confined to the filamentary structures of the Fornax A lobes.

  15. Measuring a Cherenkov ring in the radio emission from air showers at 110-190 MHz with LOFAR

    NASA Astrophysics Data System (ADS)

    Nelles, A.; Schellart, P.; Buitink, S.; Corstanje, A.; de Vries, K. D.; Enriquez, J. E.; Falcke, H.; Frieswijk, W.; Hörandel, J. R.; Scholten, O.; ter Veen, S.; Thoudam, S.; van den Akker, M.; Anderson, J.; Asgekar, A.; Bell, M. E.; Bentum, M. J.; Bernardi, G.; Best, P.; Bregman, J.; Breitling, F.; Broderick, J.; Brouw, W. N.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; Deller, A.; Duscha, S.; Eislöffel, J.; Fallows, R. A.; Garrett, M. A.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Horneffer, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; Maat, P.; Mann, G.; Mevius, M.; Norden, M. J.; Paas, H.; Pandey-Pommier, M.; Pietka, G.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Scaife, A. M. M.; Schwarz, D.; Smirnov, O.; Stappers, B. W.; Steinmetz, M.; Stewart, A.; Tagger, M.; Tang, Y.; Tasse, C.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wijnholds, S. J.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

    2015-05-01

    Measuring radio emission from air showers offers a novel way to determine properties of the primary cosmic rays such as their mass and energy. Theory predicts that relativistic time compression effects lead to a ring of amplified emission which starts to dominate the emission pattern for frequencies above ∼ 100 MHz. In this article we present the first detailed measurements of this structure. Ring structures in the radio emission of air showers are measured with the LOFAR radio telescope in the frequency range of 110-190 MHz. These data are well described by CoREAS simulations. They clearly confirm the importance of including the index of refraction of air as a function of height. Furthermore, the presence of the Cherenkov ring offers the possibility for a geometrical measurement of the depth of shower maximum, which in turn depends on the mass of the primary particle.

  16. From Radio with Love: an overview of the role of radio observations in understanding high-energy emission from active galaxies

    NASA Astrophysics Data System (ADS)

    Ojha, Roopesh

    2012-03-01

    The gamma-ray satellite Fermi and the ground based TeV facilities MAGIC, VERITAS and HESS have ushered in a new era in the observation of high-energy emission from active galaxies. The energy budgets of these objects have a major contribution from gamma-rays and it is simply not possible to understand their physics without high-energy observations. Though the exact mechanisms for high-energy production in galaxies remains an open question, gamma-rays typically result from interactions between high-energy particles. Via different interactions these same particles can produce radio emission. Thus the non-thermal nature of gamma-ray emission practically guarantees that high-energy emitters are also radio loud. Aside from their obvious role as a component of multiwavelength analysis, radio observations provide two crucial elements essential to understanding the source structure and physical processes of high-energy emitters: very high timing resolution and very high spatial resolution. A brief overview of the unique role played by radio observations in unraveling the mysteries of the high energy Universe is presented here.

  17. From Radio with Love: An Overview of the Role of Radio Observations in Understanding High-Energy Emission from Active Galaxies

    NASA Technical Reports Server (NTRS)

    Ojha, Roopesh

    2012-01-01

    The gamma-ray satellite Fermi and the ground based TeV facilities MAGIC, VERITAS and HESS have ushered in a new era in the observation of high-energy emission from active galaxies. The energy budgets of these objects have a major contribution from gamma-rays and it is simply not possible to understand their physics without high-energy observations. Though the exact mechanisms for high-energy production in galaxies remains an open question, gamma-rays typically result from interactions between high-energy particles. Via different interactions these same particles can produce radio emission. Thus the non-thermal nature of gamma-ray emission practically guarantees that high-energy emitters are also radio loud. Aside from their obvious role as a component of multiwavelength analysis, radio observations provide two crucial elements essential to understanding the source structure and physical processes of high-energy emitters: very high timing resolution and very high spatial resolution. A brief overview of the unique role played by radio observations in unraveling the mysteries of the high energy Universe as presented here.

  18. Analysis and interpretation of diffuse x-ray emission using data from the Einstein satellite

    NASA Technical Reports Server (NTRS)

    Helfand, David J.

    1991-01-01

    An ambitious program to create a powerful and accessible archive of the HEAO-2 Imaging Proportional Counter (IPC) database was outlined. The scientific utility of that database for studies of diffuse x ray emissions was explored. Technical and scientific accomplishments are reviewed. Three papers were presented which have major new scientific findings relevant to the global structure of the interstellar medium and the origin of the cosmic x ray background. An all-sky map of diffuse x ray emission was constructed.

  19. A search of the SAS-2 data for pulsed gamma-ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Ogelman, H.; Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.

    1976-01-01

    Data from the SAS-2 high-energy (above 35 MeV) gamma-ray experiment have been examined for pulsed emission from each of 75 radio pulsars which were viewed by the instrument and which have sufficiently well-defined period and period-derivative information from radio observations to allow for gamma-ray periodicity searches. When gamma-ray arrival times were converted to pulsar phase using the radio reference timing information, two pulsars, PSR 1747-46 and PSR 1818-04, showed positive effects, each with a probability of less than 1 part in 10,000 of being a random fluctuation in the data for that pulsar. These are in addition to PSR 0531+21 and PSR 0833-45, previously reported. The results of this study suggest that gamma-ray astronomy has reached the detection threshold for gamma-ray pulsars and that work in the near future should give important new information on the nature of pulsars.

  20. POLARIZED EXTENDED Ly{alpha} EMISSION FROM A z = 2.3 RADIO GALAXY

    SciTech Connect

    Humphrey, A.; Vernet, J.; Fosbury, R. A. E.; Villar-Martin, M.; Di Serego Alighieri, S.; Cimatti, A.

    2013-05-01

    We present spatially resolved spectropolarimetric measurements of the 100 kpc scale gaseous environment of the z = 2.34 radio galaxy TXS 0211-122. The polarization level of the narrow Ly{alpha} emission is low centrally (P < 5%), but rises to P = 16.4% {+-} 4.6% in the eastern part of the nebula, indicating that the nebula is at least partly powered by the scattering of Ly{alpha} photons by H I. Not only is this the first detection of polarized Ly{alpha} around a radio-loud active galaxy, it is also the second detection to date for any kind of Ly{alpha} nebula. We also detect a pair of diametrically opposed UV continuum sources along the slit, at the outer edges of the Ly{alpha} nebula, which we suggest may be the limb of a dusty shell, related to the large-scale H I absorbers often associated with high-z radio galaxies.

  1. Murchison Widefield Array Limits on Radio Emission from ANTARES Neutrino Events

    NASA Astrophysics Data System (ADS)

    Croft, S.; Kaplan, D. L.; Tingay, S. J.; Murphy, T.; Bell, M. E.; Rowlinson, A.; for the MWA Collaboration; Adrián-Martínez, S.; Ageron, M.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, T.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; for the ANTARES Collaboration; Klotz, A.; Boer, M.; Le Van Suu, A.; for the TAROT Collaboration; Akerlof, C.; Zheng, W.; for the ROTSE Collaboration

    2016-04-01

    We present a search, using the Murchison Widefield Array (MWA), for electromagnetic (EM) counterparts to two candidate high-energy neutrino events detected by the ANTARES neutrino telescope in 2013 November and 2014 March. These events were selected by ANTARES because they are consistent, within 0.°4, with the locations of galaxies within 20 Mpc of Earth. Using MWA archival data at frequencies between 118 and 182 MHz, taken ∼20 days prior to, at the same time as, and up to a year after the neutrino triggers, we look for transient or strongly variable radio sources that are consistent with the neutrino positions. No such counterparts are detected, and we set a 5σ upper limit for low-frequency radio emission of ∼1037 erg s‑1 for progenitors at 20 Mpc. If the neutrino sources are instead not in nearby galaxies, but originate in binary neutron star coalescences, our limits place the progenitors at z ≳ 0.2. While it is possible, due to the high background from atmospheric neutrinos, that neither event is astrophysical, the MWA observations are nevertheless among the first to follow up neutrino candidates in the radio, and illustrate the promise of wide-field instruments like MWA for detecting EM counterparts to such events.

  2. Discovery of Radio Emission From Transient Anomalous X-Ray Pulsar XTE J1810-197

    SciTech Connect

    Halpern, J P; Gotthelf, E V; Becker, R H; Helfand, D J; White, R L

    2005-10-25

    We report the first detection of radio emission from any anomalous X-ray pulsar (AXP). Data from the Very Large Array (VLA) MAGPIS survey with angular resolution 6'' reveals a point-source of flux density 4.5 {+-} 0.5 mJy at 1.4 GHz at the precise location of the 5.54 s pulsar XTE J1810-197. This is greater than upper limits from all other AXPs and from quiescent states of soft gamma-ray repeaters (SGRs). The detection was made in 2004 January, 1 year after the discovery of XTE J1810-197 during its only known outburst. Additional VLA observations both before and after the outburst yield only upper limits that are comparable to or larger than the single detection, neither supporting nor ruling out a decaying radio afterglow related to the X-ray turn-on. Another hypothesis is that, unlike the other AXPs and SGRs, XTE J1810-197 may power a radio synchrotron nebula by the interaction of its particle wind with a moderately dense environment that was not evacuated by previous activity from this least luminous, in X-rays, of the known magnetars.

  3. Temporal frequency of radio emissions for the April 25, 1984 flare

    NASA Technical Reports Server (NTRS)

    Wells, G. D.; Hausman, B. A.; Kroehl, H. W.

    1986-01-01

    The National Geophysical Data Center archives data of the solar-terrestrial environment. The USAF Radio Solar Telescope Network (RSTN) data allow performance of time series analysis to determine temporal oscillations as low as three seconds. The X13/3B flare which erupted in region 4474 (S12E43) on the 24 to 25 of April 1984, was selected. The soft X-rays, 1 to 8 A, remained above X-levels for 50 minutes and the radio emissions measured at Learmonth Solar Observatory reached a maximum of 3.15 x 10 to the 5th power SFUs at 410 MHz at 0000UT. A power spectral analysis of the fixed frequency RSTN data from Learmonth shows possible quasi-periodic fluctuations in the range two to ten seconds. Repetition rates or quasi-periodicities, in the case of the power spectral analysis, generally showed the same trends as the average solar radio flux at 245 and 8800 MHz. The quasi-periodicities at 1415 MHz showed no such trends.

  4. Horizon-scale Lepton Acceleration in Jets: Explaining the Compact Radio Emission in M87

    NASA Astrophysics Data System (ADS)

    Broderick, Avery E.; Tchekhovskoy, Alexander

    2015-08-01

    It has now become clear that the radio jet in the giant elliptical galaxy M87 must turn on very close to the black hole. This implies the efficient acceleration of leptons within the jet at scales much smaller than feasible by the typical dissipative events usually invoked to explain jet synchrotron emission. Here we show that the stagnation surface, the separatrix between material that falls back into the black hole and material that is accelerated outward forming the jet, is a natural site of pair formation and particle acceleration. This occurs via an inverse Compton pair catastrophe driven by unscreened electric fields within the charge-starved region about the stagnation surface and substantially amplified by a post-gap cascade. For typical estimates of the jet properties in M87, we find excellent quantitive agreement between the predicted relativistic lepton densities and those required by recent high-frequency radio observations of M87. This mechanism fails to adequately fill a putative jet from Sagittarius A* with relativistic leptons, which may explain the lack of an obvious radio jet in the Galactic center. Finally, this process implies a relationship between the kinetic jet power and the gamma-ray luminosity of blazars, produced during the post-gap cascade.

  5. Diffuse nesidioblastosis diagnosed on a Ga-68 DOTATATE positron emission tomography/computerized tomography.

    PubMed

    Arun, Sasikumar; Rai Mittal, Bhagwant; Shukla, Jaya; Bhattacharya, Anish; Kumar, Praveen

    2013-07-01

    The authors describe a 50 days old pre-term infant with persistent hyperinsulinemic hypoglycemia of infancy in whom Ga-68 DOTATATE positron emission tomography/computerized tomography scan showed diffusely increased tracer uptake in the entire pancreas with no abnormal tracer uptake anywhere else in the body, suggestive of a diffuse variant of nesidioblastosis. PMID:24250024

  6. A Study of the X-Ray Emission from Three Radio Pulsars

    NASA Technical Reports Server (NTRS)

    Slane, Patrick O. (Principal Investigator)

    1996-01-01

    The subject grant is for work on a study of x-ray emission from isolated pulsars. The purpose of the study was to: determine whether the pulsars were x-ray sources; and, if so, search for evidence of pulsations at the known radio period; and study the nature of the x-ray emission. Observation of the pulsar PSR 0355+54 were obtained, and the analysis of these data is complete. These results were reported at the 183rd AAS Meeting, and in a paper entitled 'X-Ray Emission from PSR 0355+54' which as published in the The Astrophysical Journal. Also obtained an approx. 3 ks PSPC observations of PSR 1642-03. A summary of the results from these data were reported in a Conference Proceedings for the 'New Horizon of X-ray Astronomy' symposium. In addition, as part of a study with a student from the SAO Summer Intern Program, I incorporated ROSAT archival data in an extended study of pulsar emission. These results were reported at the 185th AAS Meeting, and in a paper entitled 'Soft X-ray Emission from Selected Isolated Pulsars' which was published in The Astrophysical Journal (Letters).

  7. Synoptic observations of Jupiter's radio emissions: Average Statistical properties observed by Voyager

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.; Carr, T. D.; Thieman, J. R.; Schauble, J. J.; Riddle, A. C.

    1980-01-01

    Observations of Jupiter's low frequency radio emissions collected over one month intervals before and after each Voyager encounter were analyzed. Compilations of occurrence probability, average power flux density and average sense of circular polarization are presented as a function of central meridian longitude, phase of Io, and frequency. The results are compared with ground based observations. The necessary geometrical conditions are preferred polarization sense for Io-related decametric emission observed by Voyager from above both the dayside and nightside hemispheres are found to be essentially the same as are observed in Earth based studies. On the other hand, there is a clear local time dependence in the Io-independent decametric emission. Io appears to have an influence on average flux density of the emission down to below 2 MHz. The average power flux density spectrum of Jupiter's emission has a broad peak near 9MHz. Integration of the average spectrum over all frequencies gives a total radiated power for an isotropic source of 4 x 10 to the 11th power W.

  8. Quiescent Radio Emission from Southern Late-Type M Dwarfs and a Spectacular Radio Flare from the M8 Dwarf DENIS 1048-3956

    NASA Astrophysics Data System (ADS)

    Burgasser, Adam J.; Putman, Mary E.

    2005-06-01

    We report the results of a radio monitoring program conducted at the Australia Telescope Compact Array to search for quiescent and flaring emission from seven nearby Southern late-type M and L dwarfs. Two late-type M dwarfs, the M7 V LHS 3003 and the M8 V DENIS 1048-3956, were detected in quiescent emission at 4.80 GHz. The observed emission is consistent with optically thin gyrosynchrotron emission from mildly relativistic (~1-10 keV) electrons with source densities ne<~109 cm-3 in B>~10 G magnetic fields. DENIS 1048-3956 was also detected in two spectacular, short-lived flares, one at 4.80 GHz (peak fν=6.0+/-0.8 mJy) and one at 8.64 GHz (peak fν=29.6+/-1.0 mJy) approximately 10 minutes later. The high brightness temperature (TB>~1013 K), short emission period (~4-5 minutes), high circular polarization (~100%), and apparently narrow spectral bandwidth of these events imply a coherent emission process in a region of high electron density (ne~1011-1012 cm-3) and magnetic field strength (B~1 kG). If the two flare events are related, the apparent frequency drift in the emission suggests that the emitting source either moved into regions of higher electron or magnetic flux density or was compressed, e.g., by twisting field lines or gas motions. This emission may be related to a recent optical flare from this source that exhibited indications of chromospheric mass motion. The quiescent fluxes from the radio-emitting M dwarfs are too bright to support the Güdel-Benz empirical radio/X-ray relations, confirming a trend previously noted by Berger et al. The violation of these relations is symptomatic of a divergence in magnetic emission trends at and beyond spectral type M7/M8, where relative X-ray and Hα emission drops precipitously while relative radio emission appears to remain constant or possibly increases. With an apparent decline in chromospheric/coronal heating, the origin of hot coronal plasmas around ultracool dwarfs remains uncertain, although external

  9. Emission-line properties of optically and radio-selected complete quasar samples

    NASA Technical Reports Server (NTRS)

    Baldwin, J. A.; Wampler, E. Joseph; Gaskell, C. Martin

    1989-01-01

    Spectrophotometry of two complete samples of quasars, one obtained from the flat radio spectra of the objects and the other from their optical colors, is presented. It is confirmed that the equivalent widths of the major UV emission lines decrease with increasing continuum luminosity (the Baldwin effect) and that the (Ly-alpha + N V)/C IV and 1909 A/C IV intensity ratios are also luminosity-dependent by virtue of the C IV luminosity dependence. It is shown that the Mg II/C IV intensity ratio and possibly the strengths of the blue Fe II emission features and the FWHM of the 1909 A blend are luminosity-dependent. These results generally support the Mushotzky and Ferland (1984) interpretation of the Baldwin effect in terms of a weak inverse correlation between the continuum luminosity and ionization parameter.

  10. PERIODIC RADIO EMISSION FROM THE M7 DWARF 2MASS J13142039+1320011: IMPLICATIONS FOR THE MAGNETIC FIELD TOPOLOGY

    SciTech Connect

    McLean, M.; Berger, E.; Irwin, J.; Forbrich, J.; Reiners, A.

    2011-11-01

    We present multi-epoch radio and optical observations of the M7 dwarf 2MASS J13142039+1320011. We detect a {approx}1 mJy source at 1.43, 4.86, 8.46, and 22.5 GHz, making it the most luminous radio emission over the widest frequency range detected from an ultracool dwarf to date. A 10 hr Very Large Array observation reveals that the radio emission varies sinusoidally with a period of 3.89 {+-} 0.05 hr, and an amplitude of {approx}30% at 4.86 GHz and {approx}20% at 8.46 GHz. The periodicity is also seen in circular polarization, where at 4.86 GHz the polarization reverses helicity from left- to right-handed in phase with the total intensity. An archival detection in the Faint Images of the Radio Sky at Twenty Centimeters survey indicates that the radio emission has been stable for at least a decade. We also detect periodic photometric variability in several optical filters with a period of 3.79 hr and measure a rotation velocity of vsin i = 45 {+-} 5 km s{sup -1}, in good agreement with the radio and optical periods. The subtle difference in radio and optical periods may be due to differential rotation, with {Delta}{Omega} {approx} 1 rad day{sup -1} between the equation and poles. The period and rotation velocity allow us to place a lower limit on the radius of the source of {approx}> 0.13R{sub sun}, about 30% larger than theoretical expectations. The properties of the radio emission can be explained with a simple model of a magnetic dipole misaligned relative to the stellar rotation axis, with the sinusoidal variations and helicity reversal due to the rotation of the magnetic poles relative to our line of sight. The long-term stability of the radio emission indicates that the magnetic field (and hence the dynamo) is stable on a much longer timescale than the convective turnover time of {approx}0.2 yr. If the radio emission is due to gyrosynchrotron emission the inferred magnetic field strength is {approx}0.1 kG, while the electron cyclotron maser process requires a

  11. Evidence for the charge-excess contribution in air shower radio emission observed by the CODALEMA experiment

    NASA Astrophysics Data System (ADS)

    Bellétoile, A.; Dallier, R.; Lecacheux, A.; Marin, V.; Martin, L.; Revenu, B.; Torres, D.

    2015-09-01

    CODALEMA is one of the pioneer experiments dedicated to the radio detection of ultra high energy cosmic rays (UHECR), located at the radio observatory of Nançay (France). The CODALEMA experiment uses both a particle detector array and a radio antenna array. Data from both detection systems have been used to determine the ground coordinates of the core of extensive air showers (EAS). We discuss the observed systematic shift of the core positions determined with these two detection techniques. We show that this shift is due to the charge-excess contribution to the total radio emission of air showers, using the simulation code SELFAS. The dependences of the radio core shift to the primary cosmic ray characteristics are studied in details. The observation of this systematic shift can be considered as an experimental signature of the charge excess contribution.

  12. Simultaneous observations of changes in coronal bright point emission at the 20 cm radio and He Lambda 10830 wavelengths

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia R.; Harvey, Karen L.

    1986-01-01

    Preliminary results of observations of solar coronal bright points acquired simultaneously from ground based observatories at the radio wavelength of 20 cm and in the He I wavelength 10830 line on September 8, 1985, are reported. The impetus for obtaining simultaneous radio and optical data is to identify correlations, if any, in changes of the low transition-coronal signatures of bright points with the evolution of the magnetic field, and to distinguish between intermittent heating and changes in the magnetic field topology. Although simultaneous observations of H alpha emission and the photospheric magnetic field at Big Bear were also made, as well as radio observations from Owen Valley Radio Interferometer and Solar Maximum Mission (SSM) (O VIII line), only the comparison between He 10830 and the Very Large Array (VLA) radio data are presented.

  13. Low-frequency radio emission in the massive galaxy cluster MACS J0717.5 + 3745

    NASA Astrophysics Data System (ADS)

    Pandey-Pommier, M.; Richard, J.; Combes, F.; Dwarakanath, K. S.; Guiderdoni, B.; Ferrari, C.; Sirothia, S.; Narasimha, D.

    2013-09-01

    Aims: To investigate the nonthermal emission mechanism and their interaction during cluster mergers, we analyze multiple low-frequency radio data for the X-ray luminous massive galaxy cluster MACS J0717.5 + 3745, located at z = 0.5548. Large-scale structure-formation models in the Universe suggest that galaxy clusters grow via constant accretion of gas and the merger of galaxy groups and smaller clusters. Low-frequency radio observations trace these mergers in the form of relics and halos. The dual frequency observations were performed on MACS J0717.5 + 3745 to investigate the spectral index pattern of the nonthermal emission and its interaction within the intracluster medium (ICM), during merger process. Methods: Continuum observations were carried out using GMRT at 0.235 and 0.61 GHz on MACS J0717.5 + 3745 and archival data from the VLA (0.074 and 1.42 GHz) and WSRT (0.325 GHz) was used to complement the results. Furthermore, to explore the thermal and nonthermal interactions within the ICM and the morphological distribution, Chandra X-ray and HST data were used. Results: A highly complex nonthermal radio emission distribution is seen in the cluster at very low frequencies, with a global spectral index α0.2350.61˜-1.17±0.37. We have detected a giant radio halo within the cluster system with a linear size of 1.58 Mpc and a "Chair-shaped" filament structure between the merging subclusters of linear size 853 kpc at 0.235 GHz. This is the most powerful halo ever observed with P1.4 = 9.88 × 1025 WHz-1 and an equipartition magnetic field estimate of ~6.49 μG. The bright filament structure is well located in the central merging region of subclusters with enhanced temperature, as shown by Chandra and HST data analysis, further indicating the formation of this structure due to shock waves encountered within the ICM during the merger events.

  14. Initial LOFAR observations of epoch of reionization windows. II. Diffuse polarized emission in the ELAIS-N1 field

    NASA Astrophysics Data System (ADS)

    Jelić, V.; de Bruyn, A. G.; Mevius, M.; Abdalla, F. B.; Asad, K. M. B.; Bernardi, G.; Brentjens, M. A.; Bus, S.; Chapman, E.; Ciardi, B.; Daiboo, S.; Fernandez, E. R.; Ghosh, A.; Harker, G.; Jensen, H.; Kazemi, S.; Koopmans, L. V. E.; Labropoulos, P.; Martinez-Rubi, O.; Mellema, G.; Offringa, A. R.; Pandey, V. N.; Patil, A. H.; Thomas, R. M.; Vedantham, H. K.; Veligatla, V.; Yatawatta, S.; Zaroubi, S.; Alexov, A.; Anderson, J.; Avruch, I. M.; Beck, R.; Bell, M. E.; Bentum, M. J.; Best, P.; Bonafede, A.; Bregman, J.; Breitling, F.; Broderick, J.; Brouw, W. N.; Brüggen, M.; Butcher, H. R.; Conway, J. E.; de Gasperin, F.; de Geus, E.; Deller, A.; Dettmar, R.-J.; Duscha, S.; Eislöffel, J.; Engels, D.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Hamaker, J. P.; Hassall, T. E.; Haverkorn, M.; Heald, G.; Hessels, J. W. T.; Hoeft, M.; Hörandel, J.; Horneffer, A.; van der Horst, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; Mann, G.; McKay-Bukowski, D.; McKean, J. P.; Munk, H.; Nelles, A.; Norden, M. J.; Paas, H.; Pandey-Pommier, M.; Pietka, G.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Rowlinson, A.; Scaife, A. M. M.; Schwarz, D.; Serylak, M.; Smirnov, O.; Steinmetz, M.; Stewart, A.; Tagger, M.; Tang, Y.; Tasse, C.; ter Veen, S.; Thoudam, S.; Toribio, C.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wijers, R. A. M. J.; Wijnholds, S. J.; Wucknitz, O.; Zarka, P.

    2014-08-01

    Aims: This study aims to characterise the polarized foreground emission in the ELAIS-N1 field and to address its possible implications for extracting of the cosmological 21 cm signal from the LOw-Frequency ARray - Epoch of Reionization (LOFAR-EoR) data. Methods: We used the high band antennas of LOFAR to image this region and RM-synthesis to unravel structures of polarized emission at high Galactic latitudes. Results: The brightness temperature of the detected Galactic emission is on average ~4 K in polarized intensity and covers the range from -10 to + 13 rad m-2 in Faraday depth. The total polarized intensity and polarization angle show a wide range of morphological features. We have also used the Westerbork Synthesis Radio Telescope (WSRT) at 350 MHz to image the same region. The LOFAR and WSRT images show a similar complex morphology at comparable brightness levels, but their spatial correlation is very low. The fractional polarization at 150 MHz, expressed as a percentage of the total intensity, amounts to ≈1.5%. There is no indication of diffuse emission in total intensity in the interferometric data, in line with results at higher frequencies Conclusions: The wide frequency range, high angular resolution, and high sensitivity make LOFAR an exquisite instrument for studying Galactic polarized emission at a resolution of ~1-2 rad m-2 in Faraday depth. The different polarized patterns observed at 150 MHz and 350 MHz are consistent with different source distributions along the line of sight wring in a variety of Faraday thin regions of emission. The presence of polarized foregrounds is a serious complication for epoch of reionization experiments. To avoid the leakage of polarized emission into total intensity, which can depend on frequency, we need to calibrate the instrumental polarization across the field of view to a small fraction of 1%.

  15. Electron cyclotron maser emission in coronal arches and solar radio type V bursts

    SciTech Connect

    Tang, J. F.; Wu, D. J.; Tan, C. M.

    2013-12-10

    Solar radio type V bursts were classified as a special spectral class based on their moderately long duration, wide bandwidth, and sense of polarization opposite of associated type III bursts. However, type V bursts are also closely related to the preceding type III bursts. They have an approximately equal source height and the same dispersion of position with frequency. Electron cyclotron maser (ECM) instability driven by beam electrons has been used to explain type III bursts in recent years. We propose ECM emission as the physical process of type V solar radio bursts. According to the observed properties of type V and III bursts, we propose that energetic electrons in excited type V continuum are trapped in coronal loops, which are adjacent to the open field lines traced by type III electrons. With the proposed magnetic field configuration and the ECM emission mechanism, the observed properties of type V bursts, such as long duration, wide bandwidth, and opposite sense of polarization can be reasonably explained by our model.

  16. Direction of Arrival Measurements of Auroral Medium Frequency Burst Radio Emissions at Toolik Lake, AK

    NASA Astrophysics Data System (ADS)

    Bunch, N. L.; Labelle, J. W.; Hughes, J. M.; Weatherwax, A. T.; Ye, S.; Lummerzheim, D.

    2007-12-01

    MF burst is an impulsive radio emission of auroral origin detected by ground-based instruments approximately between 1,300 and 3,700 kHz, and associated with substorm onsets. Its exact generation mechanism is unknown, though it has been speculated that it arises from mode conversion radiation. To discover the generation mechanism and the relation of MF burst to auroral processes, Dartmouth has deployed radio interferometers in Alaska, Northern Canada, Greenland, and Antarctica, including a three-element interferometer deployed at Toolik Lake Field Station in Alaska in 2006. This instrument measured spectra, amplitudes, and directions of arrival (DOA's) of over 47 MF burst events occurring between November 30, 2006 and May 26, 2007. These represent the first DOA measurements ever reported for the impulsive MF burst phenomenon. Preliminary analysis shows that the events originated from a wide range of directions in the sky, with all azimuths represented in the distribution of DOA's. The DOA of each individual event is well-defined, however. Many events show apparent motion, with southward motions more common than northward among the subset of events analyzed so far. Some of the events were detected simultaneously on an interferometer deployed at Kaktovik, Alaska, 400 km away. The all-sky imager at Toolik Lake was also operational for some events. Further analysis of these data promises to reveal first information about the locations and motions of MF burst sources, a first step towards discovering the generation mechanism of this mysterious radio emission and its relation to auroral processes.

  17. Correlation of far-infrared emission and radio continuum emission along the major axis of edge-on spiral galaxies

    NASA Technical Reports Server (NTRS)

    Heikkila, Bryant; Webber, William R.

    1994-01-01

    Using new High Resolution far-infrared (FIR) images we have determined FIR flux densities, the FIR luminosity, and intensity profiles along the major axis for eight nearby edge-on spiral galaxies. We present spatial comparisons between the FIR profiles in three of the four IRAS Bands (25, 60, 100 microns). We also present direct spatial comparisons between the 60 micron intensity profiles and intensity profiles from 20 cm radio continuum maps with identical resolution (approx. 60 sec) obtained from J. J. Condon. Using these profiles we have evaluated the 60 micron-to-20 cm ratio Q(sub 60) along the major axis for each galaxy and have compared the results to global Q(sub 60) values. This analysis reveals that a considerable amount of complicated structure exists within the disk of spiral galaxies. Closer examination of this disk structure will make it possible to place further constraints on the well known global far-infrared and radio continuum emission correlation.

  18. Interplanetary radio storms. 2: Emission levels and solar wind speed in the range 0.05-0.8 AU

    NASA Technical Reports Server (NTRS)

    Bougeret, J. L.; Fainberg, J.; Stone, R. G.

    1982-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetry medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the Sun. Usng a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the central meridian passage of the storm. The comparison with average in situ density measurements compiled from the HELIOS 1-2 observations favors type III storm burst radio emission at the harmonic of the local plasma frequency.

  19. Fermi Large Area Telescope Detection of Extended Gamma-Ray Emission from the Radio Galaxy Fornax A

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiaro, G.; Ciprini, S.; Cohen, J. M.; Cohen-Tanugi, J.; Costanza, F.; Cutini, S.; D’Ammando, F.; Davis, D. S.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Georganopoulos, M.; Giglietto, N.; Giordano, F.; Giroletti, M.; Godfrey, G.; Green, D.; Grenier, I. A.; Guiriec, S.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Jogler, T.; Jóhannesson, G.; Kensei, S.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lubrano, P.; Magill, J. D.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Negro, M.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Schmid, J.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Stawarz, Ł.; Takahashi, H.; Thayer, J. B.; Thompson, D. J.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Wood, K. S.; Wood, M.; Zimmer, S.

    2016-07-01

    We report the Fermi Large Area Telescope detection of extended γ-ray emission from the lobes of the radio galaxy Fornax A using 6.1 years of Pass 8 data. After Centaurus A, this is now the second example of an extended γ-ray source attributed to a radio galaxy. Both an extended flat disk morphology and a morphology following the extended radio lobes were preferred over a point-source description, and the core contribution was constrained to be \\lt 14% of the total γ-ray flux. A preferred alignment of the γ-ray elongation with the radio lobes was demonstrated by rotating the radio lobes template. We found no significant evidence for variability on ˜0.5 year timescales. Taken together, these results strongly suggest a lobe origin for the γ-rays. With the extended nature of the \\gt 100 {{MeV}} γ-ray emission established, we model the source broadband emission considering currently available total lobe radio and millimeter flux measurements, as well as X-ray detections attributed to inverse Compton (IC) emission off the cosmic microwave background (CMB). Unlike the Centaurus A case, we find that a leptonic model involving IC scattering of CMB and extragalactic background light (EBL) photons underpredicts the γ-ray fluxes by factors of about ˜2–3, depending on the EBL model adopted. An additional γ-ray spectral component is thus required, and could be due to hadronic emission arising from proton–proton collisions of cosmic rays with thermal plasma within the radio lobes.

  20. Fermi Large Area Telescope Detection of Extended Gamma-Ray Emission from the Radio Galaxy Fornax A

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiaro, G.; Ciprini, S.; Cohen, J. M.; Cohen-Tanugi, J.; Costanza, F.; Cutini, S.; D’Ammando, F.; Davis, D. S.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Georganopoulos, M.; Giglietto, N.; Giordano, F.; Giroletti, M.; Godfrey, G.; Green, D.; Grenier, I. A.; Guiriec, S.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Jogler, T.; Jóhannesson, G.; Kensei, S.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lubrano, P.; Magill, J. D.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Negro, M.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Schmid, J.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Stawarz, Ł.; Takahashi, H.; Thayer, J. B.; Thompson, D. J.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Wood, K. S.; Wood, M.; Zimmer, S.

    2016-07-01

    We report the Fermi Large Area Telescope detection of extended γ-ray emission from the lobes of the radio galaxy Fornax A using 6.1 years of Pass 8 data. After Centaurus A, this is now the second example of an extended γ-ray source attributed to a radio galaxy. Both an extended flat disk morphology and a morphology following the extended radio lobes were preferred over a point-source description, and the core contribution was constrained to be \\lt 14% of the total γ-ray flux. A preferred alignment of the γ-ray elongation with the radio lobes was demonstrated by rotating the radio lobes template. We found no significant evidence for variability on ∼0.5 year timescales. Taken together, these results strongly suggest a lobe origin for the γ-rays. With the extended nature of the \\gt 100 {{MeV}} γ-ray emission established, we model the source broadband emission considering currently available total lobe radio and millimeter flux measurements, as well as X-ray detections attributed to inverse Compton (IC) emission off the cosmic microwave background (CMB). Unlike the Centaurus A case, we find that a leptonic model involving IC scattering of CMB and extragalactic background light (EBL) photons underpredicts the γ-ray fluxes by factors of about ∼2–3, depending on the EBL model adopted. An additional γ-ray spectral component is thus required, and could be due to hadronic emission arising from proton–proton collisions of cosmic rays with thermal plasma within the radio lobes.

  1. Direction of Arrival Studies of Medium Frequency Burst Radio Emissions at Toolik Lake, AK

    NASA Astrophysics Data System (ADS)

    Bunch, N.; Labelle, J.; Weatherwax, A.; Lummerzheim, D.; Stenbaek-Nielsen, H.

    2008-05-01

    MF burst is an impulsive radio emission of auroral origin, which can be detected by ground-based instruments at frequencies between 1,300 and 4,500kHz. MF burst has been shown to be associated with substorm onset, but its exact generation mechanism remains unknown, although it is thought to arise from mode conversion radiation [see review by LaBelle and Treumann, 2002] . In search of the generation mechanism of this emission, Dartmouth College has deployed radio interferometers in Alaska, Northern Canada, Greenland, and Antarctica, including a three-element interferometer deployed to Toolik Field Station in Alaska during the summer of 2006. This instrument measured spectra, amplitudes and directions of arrival (DOA's) of over 47 MF burst events between November 30, 2006 and May 26, 2007. These data represent the first DOA measurements of impulsive MF burst, of which selected case studies were presented at the Fall 2007 AGU conference. Here we present a statistical survey of all 47 events as well as detailed analysis of three events occurring on: Mar 5, Mar 23, and Nov 20, 2007. For the statistical survey, we present distributions of DOA as a function of local time and frequency. In each case study we analyze the direction of arrival of the emissions as a function of both time and frequency within each event. The time variations will be compared with the time variations of optical auroral forms simultaneously measured with all-sky cameras. The dependence of the arrival direction on frequency enables a significant test of the generation mechanism whereby the waves are emitted at the local plasma or upper hybrid frequency in the topside ionosphere, predicting that higher frequencies should originate at lower altitudes. These three events have been selected because All-Sky camera data are available at these times from Toolik Lake and Fort Yukon, Alaska. These are critical both for identifying which optical features are associated with the radio emissions as well as for

  2. Experimental tests of a topside generation mechanism for auroral medium frequency burst radio emissions

    NASA Astrophysics Data System (ADS)

    Broughton, M.; Labelle, J. W.; Roberg-Clark, G. T.; McCready, M. A.; Bunch, N. L.; Weatherwax, A. T.

    2011-12-01

    The auroral zone is the source of multiple kinds of radio emissions that can be observed on the ground. The study of radio emissions offers a way to remotely sense space plasma processes and, in the case of auroral emissions, to use the auroral ionosphere as a large-scale plasma physics laboratory. Medium frequency (MF) burst is an impulsive radio emission at 1.5-4.5 MHz observed on the ground. Its generation mechanism is unknown, and it is often associated with the onset of substorms. Using continuous wave measurements, Bunch and LaBelle [2009] reported that MF burst is made up of both structured and unstructured features. The most commonly observed structured feature appears as a "backwards seven" on a time-frequency spectrogram. Recently, LaBelle [2011] proposed that MF bursts originate as Langmuir waves on the topside of the ionosphere that subsequently mode-convert into electromagnetic waves that are observed on the ground. We report two experimental tests of this theory. First, the theory predicts that the maximum frequency of MF burst must lie below the maximum ionospheric plasma frequency along the source magnetic field line. We have identified eleven instances where MF bursts were observed during operations of the Sondrestrom incoherent scatter radar near Kangerlussuaq, Greenland. A preliminary analysis of these data suggests that for all or nearly all eleven cases the maximum frequency of the MF burst lies below the maximum F-region plasma frequency inferred from the radar data. The second prediction of the theory concerns the "backwards seven" fine structures. The theory predicts that the lower frequency of a "backwards seven" fine structure must lie above the L-mode cutoff along the wave propagation path. Assuming a slab ionosphere, LaBelle [2011] found that this prediction held for the six fine structures reported by Bunch and LaBelle [2009]. In 2010, continuous wave measurements were made at South Pole Station, yielding over one hundred observations

  3. Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: A Case for Caustic Radio Emission?

    NASA Technical Reports Server (NTRS)

    Guillemot, L.; Johnson, T. J.; Venter, C.; Kerr, M.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Kramer, M.; Cognard, I.; Stappers, B. W.; Harding, A. K.; Camilo, F.; Espinoza, C. M.; Freire, P. C. C.; Gargano, F.; Grove, J. E.; Johnston, S.; Michelson, P. F.; Noutsos, A.; Parent, D.; Ransom, S. M.; Ray, P. S.; Shannon, R.; Smith, D. A.

    2011-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival RXTE and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (approx. 4(sigma)) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034..0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission pro les suggests co-located emission regions in the outer magnetosphere.

  4. The solar wind control of Jupiter's broad-band kilometric radio emission

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.; Leblanc, Y.; Desch, M. D.

    1988-01-01

    Observations of the solar wind close to Jupiter are compared with the broad-band kilometric radio emission (bKOM), using data recorded by Voyager 1 and Voyager 2 during 1979. The lower bKOM frequencies, less than about 300 kHz, are found to correlate with the solar wind density and pressure and with the interplanetary magnetic field (IMF) magnitude during periods when there is a well-defined magnetic sector structure. The results suggest that lower frequency bKOM events are most likely to occur after a sector boundary has passed Jupiter during the period when the solar wind density and the IMF magnitude are increasing towards the sector center. The average bKOM energy per Jovian rotation tends to have lower values soon after the sector center has passed. Higher-frequency/higher-energy bKOM emission may be contaminated by hectometric emission (HOM) and differently correlated with solar activity. The solar wind control may also be obscured by some stronger control. It is suggested that electron density fluctuations in the Io torus, where the source is believed to be located, may be responsible for variations in the beaming and hence variations in the observed emission.

  5. A computationally assisted spectroscopic technique to measure secondary electron emission coefficients in radio frequency plasmas

    NASA Astrophysics Data System (ADS)

    Daksha, M.; Berger, B.; Schuengel, E.; Korolov, I.; Derzsi, A.; Koepke, M.; Donkó, Z.; Schulze, J.

    2016-06-01

    A computationally assisted spectroscopic technique to measure secondary electron emission coefficients (γ-CAST) in capacitively-coupled radio-frequency plasmas is proposed. This non-intrusive, sensitive diagnostic is based on a combination of phase resolved optical emission spectroscopy and particle-based kinetic simulations. In such plasmas (under most conditions in electropositive gases) the spatio-temporally resolved electron-impact excitation/ionization rate features two distinct maxima adjacent to each electrode at different times within each RF period. While one maximum is the consequence of the energy gain of electrons due to sheath expansion, the second maximum is produced by secondary electrons accelerated towards the plasma bulk by the sheath electric field at the time of maximum voltage drop across the adjacent sheath. Due to these different excitation/ionization mechanisms, the ratio of the intensities of these maxima is very sensitive to the secondary electron emission coefficient γ. This sensitvity, in turn, allows γ to be determined by comparing experimental excitation profiles and simulation data obtained with various γ-coefficients. The diagnostic, tested here in a geometrically symmetric argon discharge, yields an effective secondary electron emission coefficient of γ =0.066+/- 0.01 for stainless steel electrodes.

  6. Source of O mode radio emissions from the dayside of Uranus

    SciTech Connect

    Menietti, J.D.; Curran, D.B. )

    1990-09-01

    During the inbound trajectory toward Uranus the Planetary Radio Astronomy instrument on board the Voyager 2 spacecraft observed narrowband smooth (n-smooth) emission at frequencies centered near 60 kHz and O mode emission (the dayside source) in a frequency range narrowly confined around 160 kHz. By assuming empirical models of the plasma density for the dayside magnetosphere of Uranus, and by using cold plasma theory together with observational constraints, the authors have performed ray-tracing calculations to determine the source lcoation of the O mode emission. The dayside source appears to originate along magnetic field lines with a footprint near the north magnetic pole. Sources of nightside, high-frequency, broadband smooth (b-smooth) emission observed by Voyager after encounter are believed to exist near the conjugate footprint of these same field lines. This would indicate that the particle population supplying the free energy source has energies at least as high as a few keV and the density in the source region satisfies the condition 0.3 < f{sub p}/f{sub ce} < 1.0 where f{sub p} and f{sub ce} are the electron plasma frequency and gyrofrequency, respectively.

  7. A multiwavelength view of the galaxy cluster Abell 523 and its peculiar diffuse radio source

    NASA Astrophysics Data System (ADS)

    Girardi, M.; Boschin, W.; Gastaldello, F.; Giovannini, G.; Govoni, F.; Murgia, M.; Barrena, R.; Ettori, S.; Trasatti, M.; Vacca, V.

    2016-03-01

    We study the structure of the galaxy cluster Abell 523 (A523) at z = 0.104 using new spectroscopic data for 132 galaxies acquired at the Telescopio Nazionale Galileo, new photometric data from the Isaac Newton Telescope, and X-ray and radio data from the Chandra and Very Large Array archives. We estimate the velocity dispersion of the galaxy population, σ _V=949_{-60}^{+80} km s-1, and the X-ray temperature of the hot intracluster medium, kT = 5.3 ± 0.3 keV. We infer that A523 is a massive system: M200 ˜ 7-9 × 1014 M⊙. The analysis of the optical data confirms the presence of two subclusters, 0.75 Mpc apart, tracing the SSW-NNE direction and dominated by the two brightest cluster galaxies (BCG1 and BCG2). The X-ray surface brightness is strongly elongated towards the NNE direction, and its peak is clearly offset from both the brightest cluster galaxies (BCGs). We confirm the presence of a 1.3 Mpc large radio halo, elongated in the ESE-WNW direction and perpendicular to the optical/X-ray elongation. We detect a significant radio/X-ray offset and radio polarization, two features which might be the result of a magnetic field energy spread on large spatial scales. A523 is found consistent with most scaling relations followed by clusters hosting radio haloes, but quite peculiar in the Pradio-LX relation: it is underluminous in the X-rays or overluminous in radio. A523 can be described as a binary head-on merger caught after a collision along the SSW-NNE direction. However, minor optical and radio features suggest a more complex cluster structure, with A523 forming at the crossing of two filaments along the SSW-NNE and ESE-WNW directions.

  8. A distinct class of isolated intracloud lightning discharges and their associated radio emissions

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Shao, X. M.; Holden, D. N.; Rhodes, C. T.; Brook, M.; Krehbiel, P. R.; Stanley, M.; Rison, W.; Thomas, R. J.

    1999-02-01

    Observations of radio emissions from thunderstorms were made during the summer of 1996 using two arrays of sensors located in northern New Mexico. The first array consisted of three fast electric field change meters separated by distances of 30 to 230 km. The second array consisted of three broadband (3 to 30 MHz) HF data acquisition systems separated by distances of 6 to 13 km. Differences in signal times of arrival at multiple stations were used to locate the sources of received signals. Relative times of arrival of signal reflections from the ionosphere and Earth were used to determine source heights. A distinct class of short-duration electric field change emissions was identified and characterized. The emissions have previously been termed narrow positive bipolar pulses (NPBPs). NPBPs were emitted from singular intracloud discharges that occurred in the most active regions of three thunderstorms located in New Mexico and west Texas. The discharges occurred at altitudes between 8 and 11 km above mean sea level. NEXRAD radar images show that the NPBP sources were located in close proximity to high reflectivity storm cores where reflectivity values were in excess of 40 dBZ. NPBP electric field change waveforms were isolated, bipolar, initially positive pulses with peak amplitudes comparable to those of return stroke field change waveforms. The mean FWHM (full width at half maximum) of initial NPBP field change pulses was 4.7 μs. The HF emissions associated with NPBPs were broadband noise-like radiation bursts with a mean duration of 2.8 μs and amplitudes 10 times larger than emissions from typical intracloud and cloud-to-ground lightning processes. Calculations indicate that the events represent a distinct class of singular, isolated lightning discharges that have limited spatial extents of 300 to 1000 m and occur in high electric field regions. The unique radio emissions produced by these discharges, in combination with their unprecedented physical

  9. Cs2 ‘diffuse bands’ emission from superheated cesium vapor

    NASA Astrophysics Data System (ADS)

    Pichler, G.; Makdisi, Y.; Kokaj, J.; Thomas, N.; Mathew, J.; Beuc, R.

    2016-07-01

    Thermal emission from superheated cesium vapor was studied to very high temperatures from 700 °C to 1000 °C. This was performed in the vapor condition only and with no liquid cesium present in the all-sapphire cell. We observed a number of atomic and molecular spectral features simultaneously in emission and absorption, especially peculiar thermal emission of cesium dimer diffuse bands (2 3Πg → a 3∑u + transitions) around 710 nm coexisting with absorption bands around first resonance lines at 852 and 894 nm. We performed appropriate calculations of the diffuse band emission profiles and compared them with measured profiles. We also performed absorption measurements and compared observed diffuse band profiles with calculated ones. Possible applications of the observed phenomena will be discussed in terms of the solar energy conversion using dense cesium vapor.

  10. The role of rotation and polar-cap currents on pulsar radio emission and polarization

    SciTech Connect

    Kumar, D.; Gangadhara, R. T. E-mail: ganga@iiap.res.in

    2013-06-01

    Perturbations such as rotation and polar-cap current (PC-current) have been believed to greatly affect the pulsar radio emission and polarization. The two effects have not been considered simultaneously in the literature; each one of these has been considered separately, and a picture has been deduced by simply superposing them, but such an approach can lead to spurious results. Hence, by considering pulsar rotation and PC-current perturbations together instead of one at a time, we have developed a single particle curvature radiation model, which is expected to be much more realistic. By simulating a set of typical pulse profiles, we have made an attempt to explain most of the observational results of pulsar radio emission and polarization. The model predicts that due to the perturbations the leading side component can become either stronger or weaker than the corresponding trailing one in any given cone, depending on the passage of the sight line and modulation (nonuniform source distribution). Further, we find that the phase delay of the polarization angle inflection point with respect to the core component greatly depends on the viewing geometry. The correlation between the sign reversal of circular polarization and the polarization angle swing in the case of core-dominated pulsars becomes obscure once the perturbations and modulation become significant. However, the correlation between the negative circular polarization and the increasing polarization angle and vice versa is very clear in the case of conal-double pulsars. The 'kinky'-type distortions in polarization angle swing could be due to the incoherent superposition of modulated emission in the presence of strong perturbations.

  11. Coronal Thick Target Hard X-Ray Emissions and Radio Emissions

    NASA Astrophysics Data System (ADS)

    Lee, Jeongwoo; Lim, Daye; Choe, G. S.; Kim, Kap-Sung; Jang, Minhwan

    2013-05-01

    A distinctive class of hard X-ray (HXR) sources located in the corona was recently found, which implies that the collisionally thick target model (CTTM) applies even to the corona. We investigated whether this idea can be independently verified by microwave radiations which have been known as the best companion to HXRs. This study is conducted on the GOES M2.3 class flare which occurred on 2002 September 9 and was observed by the Reuven Ramaty High-Energy Solar Spectroscopic Imager and the Owens Valley Solar Array. Interpreting the observed energy-dependent variation of HXR source size under the CTTM, the coronal density should be as high as 5 × 1011 cm-3 over a distance of up to 12''. To explain the cutoff feature of the microwave spectrum at 3 GHz, however, we require a density no higher than 1 × 1011 cm-3. Additional constraints must be placed on the temperature and magnetic field of the coronal source in order to reproduce the microwave spectrum as a whole. First, a spectral feature called the Razin suppression requires a magnetic field in a range of 250-350 G along with high viewing angles around 75°. Second, to avoid excess fluxes at high frequencies due to the free-free emission that was not observed, we need a high temperature >=2 × 107 K. These two microwave spectral features, Razin suppression and free-free emissions, become more significant at regions of high thermal plasma density and are essential for validating and determining additional parameters of the coronal HXR sources.

  12. CORONAL THICK TARGET HARD X-RAY EMISSIONS AND RADIO EMISSIONS

    SciTech Connect

    Lee, Jeongwoo; Lim, Daye; Choe, G. S.; Kim, Kap-Sung; Jang, Minhwan

    2013-05-20

    A distinctive class of hard X-ray (HXR) sources located in the corona was recently found, which implies that the collisionally thick target model (CTTM) applies even to the corona. We investigated whether this idea can be independently verified by microwave radiations which have been known as the best companion to HXRs. This study is conducted on the GOES M2.3 class flare which occurred on 2002 September 9 and was observed by the Reuven Ramaty High-Energy Solar Spectroscopic Imager and the Owens Valley Solar Array. Interpreting the observed energy-dependent variation of HXR source size under the CTTM, the coronal density should be as high as 5 Multiplication-Sign 10{sup 11} cm{sup -3} over a distance of up to 12''. To explain the cutoff feature of the microwave spectrum at 3 GHz, however, we require a density no higher than 1 Multiplication-Sign 10{sup 11} cm{sup -3}. Additional constraints must be placed on the temperature and magnetic field of the coronal source in order to reproduce the microwave spectrum as a whole. First, a spectral feature called the Razin suppression requires a magnetic field in a range of 250-350 G along with high viewing angles around 75 Degree-Sign . Second, to avoid excess fluxes at high frequencies due to the free-free emission that was not observed, we need a high temperature {>=}2 Multiplication-Sign 10{sup 7} K. These two microwave spectral features, Razin suppression and free-free emissions, become more significant at regions of high thermal plasma density and are essential for validating and determining additional parameters of the coronal HXR sources.

  13. RADIO SYNCHROTRON EMISSION FROM A BOW SHOCK AROUND THE GAS CLOUD G2 HEADING TOWARD THE GALACTIC CENTER

    SciTech Connect

    Narayan, Ramesh; Sironi, Lorenzo; Oezel, Feryal

    2012-10-01

    A dense ionized cloud of gas has been recently discovered to be moving directly toward the supermassive black hole, Sgr A*, at the Galactic center. In 2013 June, at the pericenter of its highly eccentric orbit, the cloud will be approximately 3100 Schwarzschild radii from the black hole and will move supersonically through the ambient hot gas with a velocity of v{sub p} Almost-Equal-To 5400 km s{sup -1}. A bow shock is likely to form in front of the cloud and could accelerate electrons to relativistic energies. We estimate via particle-in-cell simulations the energy distribution of the accelerated electrons and show that the non-thermal synchrotron emission from these electrons might exceed the quiescent radio emission from Sgr A* by a factor of several. The enhanced radio emission should be detectable at GHz and higher frequencies around the time of pericentric passage and in the following months. The bow shock emission is expected to be displaced from the quiescent radio emission of Sgr A* by {approx}33 mas. Interferometric observations could resolve potential changes in the radio image of Sgr A* at wavelengths {approx}< 6 cm.

  14. SCORPIO: a deep survey of radio emission from the stellar life-cycle

    NASA Astrophysics Data System (ADS)

    Umana, G.; Trigilio, C.; Franzen, T. M. O.; Norris, R. P.; Leto, P.; Ingallinera, A.; Buemi, C. S.; Agliozzo, C.; Cavallaro, F.; Cerrigone, L.

    2015-11-01

    Radio emission has been detected in a broad variety of stellar objects from all stages of stellar evolution. However, most of our knowledge originates from targeted observations of small samples, which are strongly biased to sources which are peculiar at other wavelengths. In order to tackle this problem we have conducted a deep 1.4 GHz survey by using the Australian Telescope Compact Array, with a net bandwidth of 1.7 GHz (1.4-3.1 GHz) , following the same observing setup as that used for the Australia Telescope Large Area Survey project, this time choosing a region more appropriate for stellar work. In this paper, the Stellar Continuum Originating from Radio Physics In Ourgalaxy (SCORPIO) project is presented as well as results from the pilot experiment. The achieved rms is 30 μJy and the angular resolution ˜10 arcsec. 614 point-like sources have been extracted just from the pilot field. Only 34 of them are classified in SIMBAD or the NASA/IPAC Extragalactic Database. About 80 per cent of the extracted sources are reported in one of the inspected catalogues and 50 per cent of them appears to belong to a reddened stellar/Galactic population. However, the evaluation of extragalactic contaminants is very difficult without further investigations. Interesting results have been obtained for extended radio sources that fall in the SCORPIO field. Many roundish-like structures (indicated as bubbles in the following) have been found, some of which are classified at other wavelengths. However, for all of these sources, our project has provided us with images of unprecedented sensitivity and angular resolution.

  15. Diffuse X-ray emission from the Dumbbell Nebula?

    NASA Technical Reports Server (NTRS)

    Chu, You-Hua; Kwitter, Karen B.; Kaler, James B.

    1993-01-01

    We have analyzed ROSAT Position Sensitive Proportional Counter pointed observations of the Dumbbell Nebula and find that the previously reported 'extended' X-ray emission is an instrumental electronic ghost image at the softest energy band. At slightly higher energy bands, the image of the Dumbbell is not very different from that of the white dwarf HZ43. We conclude that the X-ray emission of the Dumbbell Nebula comes from its central star. A blackbody model is fitted to the spectrum and the best-fit temperature of not greater than 136,000 +/- 10,000 K is in excellent agreement with the Zanstra temperatures.

  16. THE CHANDRA CARINA COMPLEX PROJECT: DECIPHERING THE ENIGMA OF CARINA'S DIFFUSE X-RAY EMISSION

    SciTech Connect

    Townsley, Leisa K.; Broos, Patrick S.; Garmire, Gordon P.; Chu, You-Hua; Gruendl, Robert A.; Gagne, Marc; Hamaguchi, Kenji; Montmerle, Thierry; Naze, Yael; Oey, M. S.; Park, Sangwook; Petre, Robert; Pittard, Julian M.

    2011-05-01

    We present a 1.42 deg{sup 2} mosaic of diffuse X-ray emission in the Great Nebula in Carina from the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer camera. After removing >14,000 X-ray point sources from the field, we smooth the remaining unresolved emission, tessellate it into segments of similar apparent surface brightness, and perform X-ray spectral fitting on those tessellates to infer the intrinsic properties of the X-ray-emitting plasma. By modeling faint resolved point sources, we estimate the contribution to the extended X-ray emission from unresolved point sources and show that the vast majority of Carina's unresolved X-ray emission is truly diffuse. Line-like correlated residuals in the X-ray spectral fits suggest that substantial X-ray emission is generated by charge exchange at the interfaces between Carina's hot, rarefied plasma and its many cold neutral pillars, ridges, and clumps.

  17. DISENTANGLING THE NATURE OF THE RADIO EMISSION IN WOLF-RAYET STARS

    SciTech Connect

    Montes, Gabriela; Perez-Torres, Miguel A.; Alberdi, Antonio; Gonzalez, Ricardo F. E-mail: torres@iaa.e E-mail: g.montes@astrosmo.unam.m

    2009-11-01

    We present quasi-simultaneous, multi-frequency Very Large Array observations at 4.8, 8.4, and 22.5 GHz of a sample of 13 Wolf-Rayet (WR) stars, aimed at disentangling the nature of their radio emission and the possible detection of a non-thermal behavior in close binary systems. We detected 12 stars from our sample, for which we derived spectral information and estimated their mass-loss rates. From our data, we identified four thermal sources (WR 89, 113, 138, and 141), and three sources with a composite spectrum (similar contribution of thermal and non-thermal emission; WR 8, 98, and 156). On the other hand, from the comparison with previous observations, we confirm the non-thermal spectrum of one (WR 105), and also found evidence of a composite spectrum for WR 79a, 98a, 104, and 133. Finally, we discuss the possible scenarios to explain the nature of the emission for the observed objects.

  18. Radio emission from AM Herculis - The quiescent component and an outburst

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.; Bastian, T. S.; Chanmugam, G.

    1983-01-01

    The VLA has been used to search for radio emission from the AM Her-type binaries VV Pup, EF Eri, PG 1550 + 191, CW 1103 + 354, and AN UMa, at 4.9 GHz. A remarkable 10-min outburst was detected from AM Her at 4.9 GHz, which was about 20 times more intense than the quiescent emission and was essentially 100 percent circularly polarized. It is suggested that the quiescent emission of AM Her can be accounted for by 500-keV electrons trapped in the magnetosphere of the white dwarf, provided that the electron energy spectrum is quite hard and that the spectral hardness or number density of energetic electrons increases with radius, while the outburst is probably due to an electron-cyclotron maser operating near the surface of the red dwarf companion. The implied existence of a 1000-gauss localized magnetic field and a corona on the red dwarf has consequences for mass transfer, field line interactions, and variable activity.

  19. Disentangling the Nature of the Radio Emission in Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Montes, Gabriela; Pérez-Torres, Miguel A.; Alberdi, Antonio; González, Ricardo F.

    2009-11-01

    We present quasi-simultaneous, multi-frequency Very Large Array observations at 4.8, 8.4, and 22.5 GHz of a sample of 13 Wolf-Rayet (WR) stars, aimed at disentangling the nature of their radio emission and the possible detection of a non-thermal behavior in close binary systems. We detected 12 stars from our sample, for which we derived spectral information and estimated their mass-loss rates. From our data, we identified four thermal sources (WR 89, 113, 138, and 141), and three sources with a composite spectrum (similar contribution of thermal and non-thermal emission; WR 8, 98, and 156). On the other hand, from the comparison with previous observations, we confirm the non-thermal spectrum of one (WR 105), and also found evidence of a composite spectrum for WR 79a, 98a, 104, and 133. Finally, we discuss the possible scenarios to explain the nature of the emission for the observed objects.

  20. The connection between radio and γ-ray emission in Fermi/LAT blazars

    NASA Astrophysics Data System (ADS)

    Fan, Xu-Liang; Bai, Jin-Ming; Liu, Hong-Tao; Chen, Liang; Liao, Neng-Hui

    2012-11-01

    We collect the second Large Area Telescope AGN catalog (2LAC) and Monitor of Jets in AGN with VLBA Equipment (MOJAVE) quasi-simultaneous data to investigate the radio-γ connection of blazars. The cross sample contains 166 sources. The statistical analysis based on this sample confirms positive correlations between these two bands, but the correlations become weaker as the γ-ray energy increases. The statistical results between various parameters show negative correlations of γ-ray photon spectral index with γ-ray loudness for both Flat Spectrum Radio Quasars (FSRQs) and BL Lacertae objects, positive correlations of γ-ray variability index with the γ-ray loudness for FSRQs, a negative correlation of the γ-ray variability index with the γ-ray photon spectral index for FSRQs, and negative correlations of γ-ray photon spectral index with γ-ray luminosity for FSRQs. These results suggest that the γ-ray variability may be due to changes inside the γ-ray emission region like the injected power, rather than changes in the photon density of the external radiation fields, and the variability amplitude tends to be larger as the γ-rays are closer to the high energy peak of the spectral energy distribution (SED). No correlation of variability index found for BL Lacertae objects implies that variability behavior may differ below and above the peak energy.

  1. 3D Simulations of the Quiet Sun Radio Emission at Millimeter and Submillimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    De La Luz, V.; Lara, A.; Mendoza, E.; Shimojo, M.

    2008-07-01

    We present 2D projections of 3D simulations of the quiet-sun radio-emission, at different frequencies on the centimeter- submillimeter wavelength range (specifically at 1.4, 3.9, 17, 34, 43, 110, 212 and 250 GHz). We have built a 3D, spherically symmetric, solar model and solved the classical equation of radiative transfer using quiet-sun temperature and electronic density models. We compare our results with Nobeyama Radio Heliograph observations at 17 GHz. The 3.9 and 43 GHz images will be useful to calibrate the observations of the new 5 meter millimeter telescope (RT5) which is going to be installed at "Sierra Negra" Volcano, in the state of Puebla, México, at an altitude of 4,600 m. over the sea level. This project is a collaboration between Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE) and Universidad Nacional Autónoma de México (UNAM).

  2. Intranight optical variability of radio-quiet weak emission line quasars - IV

    NASA Astrophysics Data System (ADS)

    Kumar, Parveen; Chand, Hum; Gopal-Krishna

    2016-09-01

    We report an extension of our programme to search for radio-quiet BL Lac candidates using intranight optical variability (INOV) as a probe. The present INOV observations cover a well-defined representative set of 10 `radio-quiet weak-emission-line quasars' (RQWLQs), selected from a newly published sample of 46 such sources, derived from the Sloan Digital Sky Survey (Data release 7). Intranight CCD monitoring of the 10 RQWLQs was carried out in 18 sessions lasting at least 3.5 h. For each session, differential light curves of the target RQWLQ were derived relative to two steady comparison stars monitored simultaneously. Combining these new data with those already published by us for 15 RQWLQs monitored in 30 sessions, we estimate an INOV duty cycle of ˜3 per cent for the RQWLQs, which appears inconsistent with BL Lacs. However, the observed INOV events (which occurred in just two of the sessions) are strong (with a fractional variability amplitude ψ > 10 per cent), hence blazar-like. We briefly point out the prospects of an appreciable rise in the estimated INOV duty cycle for RQWLQs with a relatively modest increase in sensitivity for monitoring these rather faint objects.

  3. The far-infrared emission of the radio-loud quasar 3C 318

    NASA Astrophysics Data System (ADS)

    Podigachoski, P.; Barthel, P. D.; Peletier, R. F.; Steendam, S.

    2016-01-01

    3C 318, a radio-loud quasar at z = 1.574, is a subgalactic-sized radio source, and a good test-bed for the interplay between black hole and galaxy growth in the high-z Universe. Based on its IRAS, ISO, and SCUBA detections, it has long been considered as one of the most intrinsically luminous (LIR > 1013 L⊙) infrared sources in the Universe. Recent far-infrared data from the Herschel Space Observatory reveal that most of the flux associated with 3C 318, measured with earlier instruments, in fact comes from a bright nearby source. Optical imaging and spectroscopy show that this infrared-bright source is a strongly star-forming pair of interacting galaxies at z = 0.35. Adding existing Spitzer and SDSS photometry, we perform a spectral energy distribution analysis of the pair, and find that it has a combined infrared luminosity of LIR = 1.5 × 1012 L⊙, comparable to other intermediate-redshift ultra-luminous infrared galaxies studied with Herschel. Isolating the emission from 3C 318's host, we robustly constrain the level of star formation to a value a factor of three lower than that published earlier, which is more in line with the star formation activity found in other Herschel-detected 3CR objects at similar redshift.

  4. Radio emission from the supernova remnant G160.9 + 2.6 (HB9)

    NASA Astrophysics Data System (ADS)

    Leahy, D. A.; Roger, R. S.

    1991-03-01

    High-resolution radio observations of the large-angular-diameter SNR HB9 are reported. Data obtained in the 408- and 1420-MHz continuum and in H I using the four 9-m paraboloid antennas of the Dominion Radio Astrophysical Observatory synthesis telescope during 1986-1989 are presented in graphs and grey-scale and contour maps and discussed in detail. It is shown that the emission is dominated by filamentary arcs extending across the SNR, often at locations where filaments are seen in H-alpha but at times displaced inward from the optical filaments. The mean spectral index derived from these observations is alpha = 0.61, with rms deviation 0.08 on scale sizes equal to about 15 percent of the SNR diameter. The distance of the SNR is estimated as 4 kpc or less, and it is suggested that HB9 may be associated with PSR 0458 + 46, at about 1.2 kpc. The H I observations show no evidence of interaction between the SNR and the atomic component of the surrounding gas.

  5. The Diffusion and Impact of Radio Frequency Identification in Supply Chains: A Multi-Method Approach

    ERIC Educational Resources Information Center

    Wu, Xiaoran

    2012-01-01

    As a promising and emerging technology for supply chain management, Radio Frequency Identification (RFID) is a new alternative to existing tracking technologies and also allows a range of internal control and supply chain coordination. RFID has generated a significant amount of interest and activities from both practitioners and researchers in…

  6. The Outer Heliosphere: Solar Wind, Cosmic Ray and VLF Radio Emission Variations

    NASA Technical Reports Server (NTRS)

    McNutt, Ralph L., Jr.

    1995-01-01

    The Voyager 1 and 2 spacecraft now 45 astronomical units (AU) from Earth continue to monitor the outer heliosphere field and particles environment on a daily basis during their journey to the termination shock of the solar wind. Strong transient shocks continue to be detected in the solar wind plasma. The largest of these are associated with Global Merged Interaction Regions (GMIR's) which, in turn, block cosmic ray entry into the inner heliosphere and are apparently responsible for triggering the two major episodes of VLF radio emissions now thought to come from the heliopause. Distance estimates to the termination shock are consistent with those determined from observations of anomalous cosmic rays. Current observations and implications for heliospheric structure are discussed.

  7. A LOFAR mini-survey for low-frequency radio emission from the nearest brown dwarfs

    NASA Astrophysics Data System (ADS)

    Burningham, Ben; Hardcastle, M.; Nichols, J. D.; Casewell, S. L.; Littlefair, S. P.; Stark, C.; Burleigh, M. R.; Metchev, S.; Tannock, M. E.; van Weeren, R. J.; Williams, W. L.; Wynn, G. A.

    2016-08-01

    We have conducted a mini-survey for low-frequency radio emission from some of the closest brown dwarfs to the Sun with rapid rotation rates: SIMP J013656.5 +093347, WISEPC J150649.97+702736.0, and WISEPA J174124.26+255319.5. We have placed robust 3σ upper limits on the flux density in the 111 - 169 MHz frequency range for these targets: WISE 1506: <0.72 mJy; WISE 1741: <0.87 mJy; SIMP 0136: <0.66 mJy. At 8 hours of integration per target to achieve these limits, we find that systematic and detailed study of this class of object at LOFAR frequencies will require a substantial dedication of resources.

  8. Radio emission from RS CVn binaries. II - Polarization and spectral properties

    NASA Technical Reports Server (NTRS)

    Mutel, R. L.; Morris, D. H.; Doiron, D. J.; Lestrade, J. F.

    1987-01-01

    Multiepoch radio observations of circular polarization and spectral characteristics of several close, late-type stellar binaries are reported. The median luminosity of four well-studied systems ranged from 16.2 to 17.1 ergs/s/Hz. For individual systems, the fractional circular polarization decreases with increasing luminosity, particularly at frequencies above 5 GHz. Eclipsing binaries have significantly lower average circular polarization compared with noneclipsing systems. Helicity reversal is almost always observed between 1.4 and 4.9 GHz for systems with high orbital inclination. Comparison with ten years of previously published polarization observations for two RS CVn stellar systems show that the same helicity occurs at a given frequency for a given source, indicating a very stable, large-scale magnetic field geometry. These spectral and polarization characteristics strongly support a model of inhomogeneous gyrosynchrotron emission arising from electrons with power law energy spectra interacting with inhomogeneous magnetic fields.